

A University of Sussex PhD thesis

Available online via Sussex Research Online:

http://sro.sussex.ac.uk/

This thesis is protected by copyright which belongs to the author.

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

Please visit Sussex Research Online for more information and further details

A Service Oriented Mobile Augmented Reality

Architecture for Media Content Visualization in

Digital Heritage Experiences

By

Sasithorn Rattanarungrot

A thesis submitted in fulfillment of the requirements for the degree of

Doctor of Philosophy at the University of Sussex

School of Engineering and Informatics

Department of Informatics

University of Sussex

Brighton

BN1 9QT

April 2016

 II

Declaration

The work described in this thesis, carried out in the school of Engineering and
Informatics, I hereby declare that this thesis has not been and will not be
submitted in whole or in part to another University for the award of any other
degree.

Signed:

 Sasithorn Rattanarungrot

Copyright © 2016 University of Sussex

 III

Acknowledgements

This thesis has been accomplished by the supervision of Dr Martin White and Dr Paul

Newbury. I really appreciate their time, support, and kindness. I also would like to

thank Dr Ben Jackson who has given me some help and advice. Another group of

people who have encouraged me during my PhD study is my colleagues at Walailak

University, Thailand. I am grateful to have known these people. Nevertheless, I would

like to thank the Royal Thai Government who supports me financially for the PhD study

and the living in the United Kingdom.

I have been obliged and delightful to be a daughter of my parents (Boonsub

Rattanarungrot, Pranee Rattanarungrot), a sister of my two brothers (Aroon

Rattanarungrot, Arthid Rattanarungrot). I really appreciate their encouragement, love

and understanding. Moreover, I would like to thank all of my lovely friends and family

members who are always with me. Finally, I am really grateful to have known Chatsuda

Knowthong, my dearest friend. I would like to thank her for moral support and good

friendship.

 IV

UNIVERSITY OF SUSSEX

Sasithorn Rattanarungrot

Submitted for the degree of Doctor of Philosophy

A Service Oriented Mobile Augmented Reality Architecture for Media

Content Visualization in Digital Heritage Experiences

Abstract

Mobile augmented reality has become an influential tool for digital content
representation and visualization of media content in terms of enhancing users’
experience and improving the adaptability and usability of typical augmented reality
applications, such as in e-commerce shopping, virtual museum, or digital heritage
scenarios. This research proposes a new Service Oriented Mobile AR Architecture
called SOMARA, which includes a novel mobile AR client application.

SOMARA takes advantage the ability to integrate third party content through service-
orientation. The SOMARA architecture enhances traditional standalone mobile AR
applications with embedded media content by uniquely integrating a web service
framework into an augmented reality client application to create more efficient and
flexible mobile augmented reality applications that efficiently supports novel media
content acquisition and visualization through appropriate access parameters.

The proposed architecture requires access to media content through specific media
content service providers, e.g. a museum commissioning an augmented reality based
museum interactive — predetermined media content, or any third party with their own
service APIs, e.g. the Victoria and Albert Museum API — related external media
content. This approach allows relevant third party media content to be ‘mashed’ via
their public API with museums’ augmented reality interactive’s ‘embedded’ media
content in the SOMARA mobile AR client. In this way novel mobile AR interactive
applications, such as a museum augmented reality interactive, can be created based on
particular museum environment scenarios that integrate a museum visitor’s experience
with the interactive’s cultural objects.

Such experiences based on a SOMARA type museum augmented reality interactive can
also be saved allowing visitors to take home their museum experience. SOMARA thus
allows museum interactive experiences based on visualization of museums and third
party media content physically located in the museum to be migrated to the visitor’s
home environment for further study, enjoyment and understanding. This unique feature,
ability to effectively replay the experience at home, of the proposed system utilizes
service-orientation to integrate third party media content, which is currently deficient
from commercial augmented reality solutions.

 V

List of Publications

Conference papers

1. S. Rattanarungrot, M. White, and P. Newbury, “A mobile service oriented

multiple object tracing augmented reality architecture for education and learning

experiences,” in Proceedings of the International Conference on Mobile

Learning, IADIS Press, 2014, pp. 327–334.

2. S. Rattanarungrot, M. White, Z. Patoli, and T. Pascu, “The Application of

Augmented Reality for Reanimating Cultural Heritage,” in Virtual, Augmented

and Mixed Reality. Applications of Virtual and Augmented Reality SE - 8, vol.

8526, R. Shumaker and S. Lackey, Eds. Springer International Publishing, 2014,

pp. 85–95.

3. S. Rattanarungrot and M. White, “A service-oriented mobile augmented reality

architecture for personalized museum environments,” Virtual Systems &

Multimedia (VSMM), 2014 International Conference on. pp. 277–284, 2014.

4. S. Rattanarungrot, M. White, and B. Jackson, “The Application of Service

Orientation on a Mobile AR Platform - A Museum Scenario,” in International

Congress on Digital Heritage - Theme 2 - Computer Graphics And Interaction,

2015.

 VI

Glossary

2D Two Dimensions

3D Three Dimensions

6DOF Six Degrees of Freedom

AR Augmented Reality

ARC 3D Automatic Reconstruction Cloud Three Dimensions

API Application Programming Interface

AREL Augmented Reality Experience Language

AR-PDA Augmented Reality Personal Digital Assistant

BBF Best-Bin-First

BIM_WPVS Building Information Models-Web Perspective View Service

CAD Computer-Aided Design

CLONALG Clonal Selection Algorithm

CV Computer Vision

FERN Fast Keypoint Recognition Algorithm

GIS Geographical Information Systems

GPS Global Positioning System

HTML Hypertext

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

JSON JavaScript Object Notation

LM Levenberg-Marquardt

MCaaS Media Content as a Service

MLA Museum Learning Activity

NFT Natural Feature Tracking

OGC Open Geospatial Consortium

OS Operating System

PSO Particle Swarm Optimization

 VII

RANSAC Random Sample Consensus

RCH Reanimating Cultural Heritage

REST Representational State Transfer

RFID Radio-Frequency Identification

RGB-D Red Green Blue Depth

RSS Rich Site Summary

SOA Service Oriented Architecture

SDK System Development Kit

SIFT Scale Invariant Feature Transform

SLAM Simultaneous Localization and Mapping

SOAP Simple Object Access Protocol

SOMARA Service Oriented Mobile Augmented Reality Architecture

UDDI Universal Description, Discovery, and Integration

UI User Interface

URI Uniform Resource Identifier

URL Uniform Resource Locator

VM Virtual Museum

VR Virtual Reality

WSDL Web Services Description Language

XML Extensible Markup Language

 VIII

Table of Content
1	
 Introduction 15	

1.1	
 Augmented Reality 17	

1.2	
 Media Content as a Service 19	

1.3	
 Museum Environment Scenarios 20	

1.3.1	
 Multiple object tracking 21	

1.3.2	
 Photogrammetry to acquire 3D content 22	

1.4	
 Closed AR Architectures 23	

1.5	
 Open AR Architectures 25	

1.6	
 Research Question and Potential Benefits 28	

1.7	
 Contribution to Knowledge 30	

1.8	
 Thesis Organization 31	

2	
 Service-Oriented Mobile AR 33	

2.1	
 Augmented Reality 33	

2.2	
 Mobile AR System 34	

2.2.1	
 Computer vision 36	

2.2.2	
 Object tracking 36	

2.3	
 Mobile AR SDKs 38	

2.3.1	
 ARToolKit 38	

2.3.2	
 Qualcomm Vuforia 39	

2.3.3	
 Metaio 39	

2.4	
 Mobile Application Development Tools 40	

2.5	
 Service-Oriented Architecture 41	

2.5.1	
 Web services 42	

2.5.2	
 Web service mobile AR platform 46	

2.6	
 Photogrammetry Services 48	

2.6.1	
 Arc3D and MeshLab 48	

2.6.2	
 123D Catch 49	

2.7	
 Web Service-based Photogrammetry 49	

2.8	
 Web Service Providers 50	

2.9	
 Summary 52	

3	
 Mobile AR Scenarios 54	

3.1	
 Architectural Requirements 54	

3.1.1	
 Service-orientation 55	

3.1.2	
 Content acquisition 60	

3.1.3	
 AR environment personalization 61	

3.2	
 Museum Learning Scenarios 62	

3.2.1	
 Museum-based learning scenario 67	

3.2.2	
 Home-based learning scenario 67	

3.3	
 System Specifications 69	

3.4	
 Summary 71	

4	
 Architectural Design 72	

4.1	
 Mobile Client 74	

4.1.1	
 Mobile interface 75	

4.1.2	
 AR application 75	

4.2	
 Web Service Framework 94	

4.3	
 Web Service Providers 95	

4.4	
 Summary 96	

 IX

5	
 A SOMARA Application Development 97	

5.1	
 Development Tools — XCode and iOS SDK 98	

5.2	
 AR View 98	

5.3	
 Tracking and Content Configuration 101	

5.3.1	
 Museum-based learning scenario 101	

5.3.2	
 Home-based museum learning scenario 106	

5.4	
 Object Augmentation 110	

5.5	
 Service Request and Response 111	

5.5.1	
 Museum-based learning scenario 111	

5.5.2	
 Home-based museum learning scenario 113	

5.5.3	
 XMLParser 114	

5.5.4	
 NSJSONSerialization 116	

5.6	
 Third Party Service Request 117	

5.7	
 Interaction and Object Selection 119	

5.8	
 Saving Selected Content 120	

5.9	
 Taking Photos and Photogrammetry Service Request 124	

5.10	
 AR Browser 126	

5.11	
 Summary 130	

6	
 System and Unit Testing 131	

6.1	
 Museum-based Learning Scenario 132	

6.1.1	
 Object tracking 133	

6.2	
 Home-based Learning Scenario 139	

6.2.1	
 Object tracking 141	

6.3	
 AR Environment Personalization 143	

6.4	
 AR Browser 145	

6.5	
 Photogrammetry Service 151	

6.6	
 Summary 153	

7	
 Conclusion 154	

7.1	
 The Research Accomplishment 154	

7.1.1	
 SOMARA 154	

7.1.2	
 The SOMARA-based mobile AR framework and application 155	

7.1.3	
 The Metaio AR SDK 155	

7.1.4	
 SOA-based content acquisition and utilization 155	

7.2	
 The Limitations and Problems 155	

7.2.1	
 Metaio AR SDK 156	

7.2.2	
 Web service providers 157	

7.2.3	
 Photogrammetry service 157	

7.3	
 Future Development 158	

References 160	

Appendix 170	

A.	
 Web Service Provider APIs 170	

B.	
 Tracking Configuration for Home-based Learning Scenario 196	

C.	
 Tracking Configuration for Home-based Learning Scenario 200	

D.	
 The 3D Maps of Reference Objects 206	

E.	
 Installing the Metaio Augmented Reality SDK 213	

F.	
 Object Tracking 220	

 X

Vision-based tracking 221	

Object recognition 231	

3D modeling, rendering and reconstruction 236	

 XI

Table of Figures

Figure 1.1 Closed mobile AR platform 24	

Figure 1.2 Service Oriented Mobile AR Architecture 26	

Figure 2.1 The continuum of reality and virtuality [49] 33	

Figure 2.2 Snapshots of Juanio and Aurasma AR browsers 41	

Figure 2.3 Service request and response process using SOAP 43	

Figure 2.4 An example of a SOAP request message 43	

Figure 2.5 An example of a SOAP response message 44	

Figure 2.6 Service request and response process using REST 45	

Figure 2.7 HTTP service request 45	

Figure 2.8 HTTP response header message 46	

Figure 2.9 Response document in XML format 46	

Figure 2.10 The API directory website [81] 51	

Figure 2.11 Europeana service API [93] 52	

Figure 3.1 SierraLeoneHeritage API [98] 58	

Figure 3.2 Victoria and Albert Museum API [99] 59	

Figure 3.3 Google Maps APIs [100] 60	

Figure 3.4 The use-case diagram of general museum learning 64	

Figure 3.5 SOMARA use-case diagram 66	

Figure 3.6 Home-based museum learning use-case diagram 69	

Figure 4.1 Service-Oriented Mobile AR Architecture 73	

Figure 4.2 Metaio native AR SDK (www.metaio.com) 76	

Figure 4.3 Tracking and content configuration process 79	

Figure 4.4 Tracking and API configuration process 79	

Figure 4.5 The process of tracking and content acquisition in museum-based scenario 81	

Figure 4.6 The process of service and content requests 82	

Figure 4.7 The process of tracking and content acquisition in home-based scenario 83	

Figure 4.8 The service and content request in the home-based museum learning 84	

Figure 4.9 JSON document processing 85	

Figure 4.10 The process of reading the XML response document 86	

Figure 4.11 The object augmentation process in museum-based and home-based

museum learning scenario 88	

Figure 4.12 Photogrammetry service request module 90	

 XII

Figure 4.13 The process of photogrammetry service request done by mobile users 91	

Figure 4.14 The process of creating personalized AR environments 92	

Figure 4.15 Use-case diagram of AR environment personalization 92	

Figure 4.16 The process of visualizing personalized AR environments using AR

Browser 93	

Figure 4.17 The use-case diagram of AR Browser 94	

Figure 4.18 Web service framework 95	

Figure 4.19 Web service framework and the implemented service providers 96	

Figure 5.1 iOS and XCode development framework 98	

Figure 5.2 The mobile AR View of the museum-based learning scenario 99	

Figure 5.3 The mobile AR View of home-based museum learning scenario 100	

Figure 5.4 The AR Browser view 100	

Figure 5.5 The UI View showing a Google Map image 118	

Figure 5.6 The Data Model of the application 122	

Figure 5.7 A View Controller supporting a Camera View 124	

Figure 5.8 The Collection View Cell 125	

Figure 5.9 The Camera View 125	

Figure 5.10 The UITabBar Controller of the Table views 127	

Figure 6.1 The main application page running on an iPad 132	

Figure 6.2 The AR View of museum-based learning scenario 133	

Figure 6.3 The related media content of a targeted object 134	

Figure 6.4 The obtained associated content of a tracked physical object 135	

Figure 6.5 The JSON response from the Victoria and Albert Museum API 136	

Figure 6.6 The service APIs in a content configuration file 136	

Figure 6.7 The obtained related content of a tracked physical object 137	

Figure 6.8 The web service response document in JSON format 138	

Figure 6.9 The associated content of a targeted sample object 139	

Figure 6.10 The AR view of home-based museum learning 140	

Figure 6.11 The URLs of participating content providers 140	

Figure 6.12 The related content of a trigger image representing a targeted cultural object

 141	

Figure 6.13 The tracked trigger image 142	

Figure 6.14 The web service response and acquired content 143	

Figure 6.15 Selected content and the Alert View asking for a preference name 144	

 XIII

Figure 6.16 A screen shows selected content and preference name 145	

Figure 6.17 User's preference names 146	

Figure 6.18 A personal AR environment 147	

Figure 6.19 Saved content acquired from a museum-based learning scenario 148	

Figure 6.20 The list of museums 149	

Figure 6.21 A map of the area around the British Museum 150	

Figure 6.22 A service request in URL format of Google Static Maps API 150	

Figure 6.23 The map presenting the source of a preferred object stored in the Victoria

and Albert Museum 151	

Figure 6.24 The Camera View 152	

Figure 6.25 The Collection View displaying photographs taken of a sample object 153	

Figure A.1 Victoria and Albert Museum 171	

Figure A.2 Victoria and Albert Museum API 172	

Figure A.3 The API Query Builder 172	

Figure A.4 The outcome of a service request 173	

Figure A.5 SierraLeoneHeritage 186	

Figure A.6 SierraLeoneHeritage API 186	

Figure A.7 The SierraLeoneHeritage result page 189	

Figure A.8 Google Maps APIs 190	

Figure A.9 Google Maps Web Service APIs 191	

Figure A.10 Google Places API Web Services 191	

Figure A.11 Text Search Requests 192	

Figure A.12 Google Static Maps API 194	

Figure A.13 The Google Static Maps URL request 194	

Figure D.1 Metaio Toolbox on iOS 207	

Figure D.2 The created map of a sample object 208	

Figure D.3 Metaio Creator on Mac 209	

Figure D.4 A selected 3D map file of a sample object 209	

Figure D.5 The 3D map of a sample object 210	

Figure D.6 The tracking configuration files exported from a 3D map 210	

Figure D.7 The 3D map of a sample object 211	

Figure D.8 The 3D map on Metaio Creator 211	

Figure D.9 The 3D map file and tracking configuration file 212	

Figure E.1 The Metaio development frameworks 214	

 XIV

Figure E.2 iOS development framework 215	

Figure E.3 The mobile AR application development environment 215	

Figure E.4 The frameworks and libraries in the development environment 216	

Figure E.5 The application registration page on the Metaio developer portal 217	

Figure E.6 The MetaioLicenseString in the development environment 218	

Figure E.7 The Metaio SDK folder containing the required files 218	

Figure E.8 The project of the mobile AR application and the

MetaioSDKViewController 219	

Figure F.1 Markers for Studierstube Tracker [114] 222	

Figure F.2 Marker-less tracking 224	

Figure F.3 Natural feature tracking [113] 225	

Figure F.4 Handy AR [117] 226	

Figure F.5 Model-based tracking [123] 227	

Figure F.6 Tracking-by-detection [61] 228	

Figure F.7 Shape augmentation using recursive tracking [129] 230	

Figure F.8 3D object recognition using 3D model recognition [133] 234	

 15

Chapter I

1 Introduction

Cultural heritage has been continuously improved so much in terms of assisted

technologies, content representation and innovative applications supporting cultural

heritage study, learning and digital content consumption. The European Work Program

2016-2017 has stated technologies that support access and utilization of digital cultural

heritage in Virtual Museum (VM) that allow visitors to access content before, during

and after a visit. Technologies that effectively enhance VM are Virtual Reality (VR)

and Augmented Reality (AR) in terms of digital content representation and

interpretation that can be applied in physical museum, online or heritage sites [1].

Mobile AR has become an influential tool for digital content representation and

visualization of media content in terms of enhancing users’ experience and improving

the adaptability and usability of typical AR applications, such as in e-commerce

shopping, virtual museum or digital heritage scenarios. This research proposes a new

Service Oriented Mobile AR Architecture called SOMARA, which includes a novel

mobile AR client application, which takes advantage the ability to integrate third party

content through service-orientation (e.g. Media Content as a Service — MCaaS).

Recent evolutions in mobile technologies such as screen resolution, processing speed,

embedded cameras and mobile network bandwidth have continuously led to an

enormous improvement in mobile applications and implementations. Furthermore,

advanced developments in mobile graphics processors, application programming

interfaces (APIs) and displays have increased the processing potential in real time

graphics tasks for instances of 3D rendering, visualization and interaction. Because of

these advanced developments, many mobile applications today can provide graphic

features and content, which hitherto where mostly found in desktop graphical user

interface or in 3D rendering found in game development approaches.

 16

Mobility, as in the ability to take application mobile or a users’ penchant to use

applications in a mobile context, has strongly influenced both the quality and

performance of mobile technologies and applications in terms of greater potential for

use of hardware (e.g. mobile devices) and development software (mobile applications),

the quality of a mobile or wireless network, the scalability in application developments

and service providers and finally, the usability and ubiquity of mobile services. Most

mobile devices have a network connection module so mobile applications can be

efficiently implemented in a client-server framework. This mobile network connectivity

facilitates solutions for remote rendering on a mobile device. The most computational

operations are processed on servers, which then send the output to mobile clients for

visualization.

Nevertheless, cloud computing has currently been implemented in many client-server

applications such as web service-based mobile applications [2] and service-oriented

cloud computing [3]. Cloud computing is an enormous challenge adapting the

traditional client-server architecture to cloud-based infrastructure on the Internet. The

infrastructure relies on clients and services on the cloud computing architecture such as

processing services and data services. For example, rendering 3D graphics on a cloud-

based service infrastructure extremely improves the efficiency of the real-time

rendering of 3D content [4][5]. Some 3D rendering services on the cloud infrastructure

services are ArcGIS for Server [6] and 123D Catch on Autodesk® Cloud [7].

Advanced technologies utilized in hardware such as powerful mobile processors [8][9]

and high quality smartphone cameras [10], software such as Swift [11] , hybrid and

HTML5 development tools [12] combined with mobile network approaches such as

cloud networking [13] and advanced mobile networks [14] for mobile computing that

are now available on many platforms such as smart phones and tablet PCs have enabled

mobile 3D computer graphics to be a part of an evolution and innovation in mobile

applications. In the context of this thesis advanced interactive graphics development

software is of particular interest. Currently, there are two state-of-the-art mobile

graphics software architectures: OpenGL ES and M3G that both are configured as APIs

for C/C++ and Java programming respectively [15] [16] that are very useful in

developing mobile AR applications.

 17

The following sub-sections discuss briefly the key concepts critical to the development

of novel mobile AR applications, such as SOMARA, AR, mobile AR, MCaaS, museum

environment scenarios, closed versus open AR platforms. These key concepts lead

toward a consideration of the research question, potential solutions and a set of

technology objectives. This chapter closes with a statement of the research contribution

and organization of the thesis.

1.1 Augmented Reality

AR has recently been an influential technology utilized to efficiently enhance users’

perception through computer-generated media content overlaid on real physical

environments [17][18] . The types of media content that can be visualized on AR scenes

are 3D models, labels, text, images, videos, etc. [19]. AR has become a powerful tool in

many scenarios designed for particular approaches such as advertising, museum

experiences, e-commerce, education and many other scenarios. In addition, AR

applications are currently found in many platforms such as hand-held devices, PCs,

wearable devices and even specially designed monitors and projectors for museum or

advertising approaches [20][17][18]. In the context of this thesis the application

scenarios discussed will focus on museum (digital heritage) experiences as described in

the author’s papers [21][22], but SOMARA could equally apply to other AR based

interactive scenarios in different domains as described in the author’s first paper [23].

AR application development requires important functions or AR tasks, including

tracking, recognition and visualization, to enable AR applications to work

simultaneously with cameras and computer screens. Traditional AR tracking is able to

recognize markers and then overlay relevant media content on top of the markers.

Marker AR is generally found in various scenarios, however using markers still has

some restrictions in terms of flexibility and usability of AR application utilization.

Applying marker-less AR is a solution that improves the functionality of AR

applications by enable the applications to track and recognize marker-less such as

images or 3D objects and then augment media content on the marker-less environment.

This marker-less approach remarkably improves the implementation and experience of

AR in various scenarios [24][19][25].

While AR scenarios can affect peoples’ activities and lifestyles in positive ways,

implementing mobile AR can prove to be a particular technological challenge.

 18

Nevertheless, mobile AR has become the most recent trend in indoor and outdoor

scenarios such as location-based AR, gaming or potential graphics applications, which

allow users to experience static or interactive content on the real scene. Mobile AR

systems require a tracking module including marker, marker-less and Global

Positioning System (GPS) in order to recognize reference objects or identify current

location of a user and the system will then augment related media content of a tracked

object or user’s current location [26].

Mobility is a powerful and influential structural concept that has been found in mobile

technology and platforms including mobile devices, wireless networks, pervasive

computing and ubiquitous networks. Current AR systems on mobile platforms enable

mobile users to participate in virtual content and services at anytime and anywhere.

Mobile devices are available on small and handheld devices (smartphone, tablets, etc.)

that are lightweight and much more convenient to be carried. With such devices,

wireless or mobile network connection will enable mobile devices to automatically

connect to the Internet everywhere. A typical mobile’s advanced hardware and software

features can process interactive 3D graphic in real time enabling good human-computer

interaction to be created. Because of these qualifications, mobile devices have become

powerful tools that people can access and also utilize services and applications easily in

the progressive and interesting ways. Mobile AR will potentially enhance users’ new

experiences in visualization and interaction with 3D models on mobile platforms by

using embedded cameras, displays and graphical user interfaces — the basic 3

components needed for mobile AR scenarios embedded in a single mobile device.

Mobile AR has been implemented in various innovative applications such as gaming,

shopping guides, advertising, edutainment, travel guides, museum guides, medical

visualization, etc. However, these AR applications often provide limited flexibility

because their media content are usually embedded within the application in advanced

and they rely on marker-based approaches [27] [15]. Therefore, current AR applications

can be enhanced by improving visualization, tracking, recognition, interaction, displays

and user interface design of such AR applications both within the real and virtual

environment.

AR applications work by superimposing or combining interactive virtual objects with

real world environments in real time, and in this way AR application providers exploit

 19

software and hardware video (camera and tracking) techniques to represent computer

generated models together with real objects to create visualization services based on

interactive graphics representations. In addition, users can view and interact with virtual

objects in a real environment through the AR application interface or through virtual

interaction techniques such as hand tracking [28] or mixed-reality interfaces [29]. In

such AR systems, cameras, displays and graphics libraries are currently the most

important modules on mobile devices for implementing computer vision techniques

such as 3D object tracking and recognition on AR environment [27]. This thesis

proposes to add a new service-orientation module to this AR architecture to enable a

new generation of mobile AR applications that can integrate MCaaS.

1.2 Media Content as a Service

MCaaS in the context of this thesis exploits the well-known Service-Oriented

Architecture (SOA) approach, which is a web 2.0 technology that has been empowering

sharing and acquiring digital content, data and services over open and interoperable

networks. SOA and APIs often go hand-in-hand to provide flexible and efficient access

for end-users to open data (e.g. media content) that is consumed in web applications.

Currently, there are many open and interoperable networks and providers on various

platforms, which interactively offer versatile data and content to other applications.

Open and interoperable network applications that consume or share data via service-

orientation are usually based on web service architectures. They make data accessible

over the Internet, perhaps as a mobile network, and are often configured client-server

applications exploiting a private or public API. Examples of web service providers are

Web Map Services, mash-up services, geospatial and social networking data

[30][31][32].

This thesis investigates how to efficiently exploit open and interoperable networks (web

services and APIs) to provide access to digital media content for mobile AR

environments (using museum scenarios as an example). Through a web service

approach, AR based media content are presented as virtual media or digital content on

see-through AR browsers (on a mobile tablet or smartphone), which can be used instead

of web browsers in outdoor AR environments or real scenes.

 20

This SOA approach supports very well a client-server scheme over a mobile/wireless

network. Thus, SOA and client-server architectures are well suited to developing mobile

AR architectures, such as SOMARA. Additionally, integrating media content via an

API allows the AR application to obtain more associated valuable content and

significantly increase the usability and functionality of the proposed mobile AR

application. So, a key features of SOMARA proposed in this thesis includes the

integration of a web service framework into a mobile AR application.

This feature could be extensively implemented in indoor or outdoor AR scenarios, for

which the AR browser is an application based on a web service framework to show

media content in a real environment. The mobile AR client proposed in this thesis offers

a key advantage (over current museum based AR systems) from being deployed on a

service-oriented architecture. That is, it provides third party open services to access

related digital media content from third party digital content providers [33][34].

1.3 Museum Environment Scenarios

Generally, museums basically allow visitors to physically view cultural objects, read

details on small cards and take away some leaflets. Currently, some museums also

provide a website that also exhibits digital cultural content and enable users to search

catalogues online. Thus, the museum learning activities (MLAs) can be now performed

online anytime and anywhere inside or outside the museum.

For the enjoyment of the casual or professional visitors, many museums have integrated

technologies into their ‘collections environments’ (e.g. online or in a physical display)

such as VR, AR and mobile technologies in order to revolutionize cultural object

exhibits as well as enhance visitors’ experiences in participating the learning activities

offered by the museum itself [35][36][37][38]. The next generation of museum exhibits

could effectively be organized as AR exhibits on mobile platform exploiting SOA in

order to create a tool or application on mobile devices that support effective learning

scenarios where visitors will have opportunities to perform cultural objects study or

view virtual exhibitions through a mobile device. These novel mobile AR applications

will then be able to support content acquisition where associated cultural media content

from any open services or repositories can be requested and the content will be

presented to visitors on the AR environment.

 21

Photogrammetry or image-based reconstruction is a technique that usefully supports

content acquisition that could be beneficially applied in MLAs where visitors are able to

obtain a 3D model of a preferred cultural object and utilize the acquired model in

mobile AR environments. The photogrammetry could be integrated into the novel

mobile AR applications in order to enhance typical museum learning where visitors are

not allowed to take photographs or take away anything related to exhibited objects. The

photogrammetry and its features are discussed further in section 1.3.2, and 2.6.

Additionally, the proposed mobile AR platform also supports multiple object tracking

that enable the novel mobile AR applications to track and recognize several targeted

objects individually. Multiple object tracking allows providers to create an AR

exhibition of a group of cultural artifacts composed of reference cultural objects that

will be tracked and related content of each object that will be visualized on top of the

real environment. The multiple object tracking is discussed further in section 1.3.1, and

Appendix F.

1.3.1 Multiple object tracking

Object tracking is one of the AR tasks that mobile AR applications firstly perform

through the embedded-camera of a mobile device in order to detect and then recognize a

reference object, which could be a marker or marker-less. Typical indoor mobile AR

applications are particularly designed to track one single object and augment a related

content on top of the real scene. For example, a mobile AR game allows users to

download a marker or an image from which the application will augments an interactive

game and mobile users can then have interaction with the active content on the screen.

In order to create more functional and adaptable mobile AR applications, multiple

object tracking could be another option in order to provide object augmentation to

various reference objects in the same environment or scenario. This feature usefully

enhances the concept of mobile AR in museum or learning scenarios that support

content utilization in rich media environments where users are able to track a selection

of reference objects and visualize associated content of each tracked object. In addition,

mobile users are able to participate in the AR environments where they can create

personal AR environments from the visualized content of preferred objects.

Multiple object tracking also enhances more flexible AR applications which is another

level of improving the usability of mobile AR applications and providing various digital

 22

media content augmented from physical objects or images in AR environments. The

new mobile AR applications can offer a broad range of reference objects and multiple

related media content particularly specified for each object. The multiple object tracking

can generate richer learning environments, which can be combined to other obtained

media content, to mobile users so that they can efficiently view and utilize media

content in AR environments. Typical mobile AR SDKs provide single object tracking

and it can be improved to multiple object tracking by creating a tracking and content

configuration file for reference objects. Thus, performing multiple object tracking and

media content augmentation requires more preparation and processing compared to

single object tracking.

1.3.2 Photogrammetry to acquire 3D content

Photogrammetry is an advanced technique for reconstructing 3D virtual objects from

original objects. 3D model reconstruction tasks are mainly composed of matching and

merging multiple images [39]. Photogrammetry requires photographs of a targeted

object in order to create a virtual 3D model from the prepared photographs and the final

outcome will be given away to the users. Image-based reconstruction or

photogrammetry could be effectively used as a tool to perform 3D content acquisition in

the novel mobile AR applications beneficially applied in MLA scenarios. Providing

photogrammetry services to visitors is another technological strategy for physical

museums that allow visitors to participate in selecting preferred objects, sending

photogrammetry service requests and taking away obtained 3D models that can be done

on a mobile device and the novel mobile AR application based on SOMARA.

Photogrammetry applications currently are based on client-server architecture where

users are able to upload photographs of a target objects to the server by using an

application client on mobile devices, PCs or a web-based application.

Another platform of photogrammetry applications is the open photogrammetry services

which expose service APIs and allow any applications to create connections with the

services through a web service framework. Photogrammetry web services can then be

integrated into mobile AR applications and the services can be requested directly from

the client-side applications. As the result, the outcome of the service, which is virtual

3D models, is able to be instantly visualized in AR environments and taken away for

presenting in other situations.

 23

1.4 Closed AR Architectures

Most current mobile indoor and outdoor AR applications nowadays are implemented as

‘standalone’ or ‘closed platforms’ that provide users with a limited amount of

embedded data or content on top of the real scene [5][40]. In this context a standalone

platform means a single AR application not connected to any form of dynamic update,

but can connect to the app store for a new version. On the other hand, a closed platform

means that the AR application can be dynamically updated, for example, with

commercial advertising, usually on a client-server framework. However, neither

solution offer a communication channel to download or obtain dynamic content from

other third party media that are related to the actual AR application’s media content in

real-time. For example, if this was a museum app displaying cultural objects there is no

way to add or integrate third party digital cultural object media content. This means the

AR application is fixed and inflexible, i.e. cannot be dynamically updated with

‘meaningful’ media content. Therefore, these AR applications have no ability to provide

content sharing between mobile end-users (e.g. museum visitors) and third party AR

data providers because of the closed platform approach. Therefore, obtaining new

content generally relies on application providers or application stores to update the AR

applications.

For example, commercial outdoor AR applications such as Aurasma [41] and Layar

[42] offer an interface or tool to create personal AR environments and upload media

content to their server for use in the AR application. These tools then allocate an

account to each individual mobile user and a channel to an AR environment so that they

can visualize their own AR environments. However, dynamic advertising does take

place in that commercial organizations (e.g. KFC, Tesco, whoever) can provide media

content that are also displayed on the AR application (part of the revenue model for

Aurasma, etc.). However, because the AR applications themselves are implemented on

a closed platform where only their members (in thus case the application developer and

any commercial advertiser) can place their preferred content (the developer, for

example, could be a museum, and they also allow through the tool a channel for

advertising media content that are displayed with their cultural content) on the AR

environment, they are effectively inflexible and not truly dynamic, because they cannot

exploit user-generated content.

 24

Figure 1.1 illustrates the structure of typical AR applications on a closed platform and

the process of updating the content that mobile users can only be done through the

application store when the providers have launched an updated version of the

application.

 Figure 1.1 Closed mobile AR platform

AR applications lend themselves to the display of 3D objects. However for any mobile

3D graphic application, 3D virtual models still have to be created and designed in

desktop computers and then transferred to mobile devices for running or rendering on

applications just as they do for mobile games or other interactive media applications

(e.g. web 3D apps). Although new generation mobile devices can generate good

performance 3D graphics content, some complicated rendering tasks still require more

processing power such as digital cultural heritage scenes, 3D virtual cities or

complicated 3D models. Therefore, processing complicated tasks such as image-based

reconstruction or 3D photogrammetry exploiting multiple images matching and 3D

model building cannot be completely done on mobile devices because of the mobile

 25

device’s limited resources. Unfortunately, closed architectures such as that described

above preclude the ability to access photogrammetry (and other media) services to

alleviate 3D content generation.

1.5 Open AR Architectures

In contrast, an open AR platform (open architecture) exploiting SOA, as illustrated in

Figure 1.2, offers many more advantages, such as the ability to integrate third party or

user-generated content. SOA is an open architecture that enables any application to

participate with an open network where valuable content and services from potential

providers can be accessed and requested. Thus, in an open architecture mobile AR

applications are able to exploit a web service framework in order to create applications

on an open platform, rather than a closed platform.

There are many advantages to utilizing an open architecture (or open platform). For

example, it is relatively easy to integrate a web service framework (e.g. based on REST)

into a mobile AR platform in order to create a novel open mobile AR application, as

proposed in this thesis. Open architectures are able to apply service API calls, create

enhanced interactions (between embedded and third party media content), request both

local (e.g. British Museum AR exhibition content) and third party (e.g. Victoria and

Albert Museum) media content and integrate them into the same mobile AR client

application, and also share the results with other potential applications or service

providers.

Additionally, mobile AR clients are capable of applying mash-up services, again

through third party APIs, by requesting and presenting value-added media content such

as geolocation and social networking data on AR or mixed reality environments. For

example, an object from the British Museum (Mende Mask) and another object from the

Victoria and Albert Museum (another Mende Mask) collocated in digital space (i.e. in

the mobile client AR application) can be integrated with a Google map showing their

shared location of origin (Sierra Leone).

The structure of SOMARA from a use case perspective is illustrated in Figure 1.2. Here,

the critical components that comprise the open architecture or platform are composed of

a mobile AR client, web service framework, and content or service providers. The

 26

mobile user is typically a museum visitor (or a shopper in a retail scenario) browsing

augmented content.

 Figure 1.2 Service Oriented Mobile AR Architecture

The mobile AR client performs AR tasks that support the interaction between a user and

the novel mobile AR application in order to view augmented content of a targeted

object on the screen. This new type of open mobile AR application effectively supports

content acquisition where existing media content on the real scene can be augmented

with media content from third party sources. Because, an open architecture can

consume related third party media content, it will enhance the end-user experience

 27

further than is normally associated with closed platform AR — because there are richer

media content in the AR environment that could lead to a greater understanding of the

objects being studied.

Another valuable service that could be applied to a mobile AR platform is 3D model

building from photographs or photogrammetry — alluded to in sections 1.3.2 and

discussed further in section 2.6. Photogrammetry is an image-based 3D reconstruction

method that requires high performance machines and plenty of resources to perform

complex modeling, rendering and reconstruction tasks. At the moment, there are some

closed photogrammetry applications that allow users to use their application tools for

uploading a stream of photographs of a target object and then the systems will create a

3D virtual model and send it back to the user. This application will help users acquire

3D virtual models and utilize such models in their applications with time and cost

saving. Typical examples of the photogrammetry applications are 123D Catch [7] and

Autodesk ReCap [43]. Also, there are several potential European consortiums working

on the concept of mobile photogrammetry for cultural heritage applications, in

particular exploiting RGB-D cameras [44].

Another key feature required for enhancing mobile AR applications beyond so called

marker-based AR is marker-less object tracking used to track and recognize physical

targeted reference objects. This is a necessary requirement to build ‘usable’ AR

applications such as those needed in shopping, museums and other environments where

an end-user has the need to visualize associated media content collocated with the

physical object (e.g. a museum artifact or a product in a shop, etc.). In this context, this

thesis presents a mobile AR application based on marker-less AR by enhancing the

Metaio AR SDK [45] i.e. with multiple object tracking, recognition and content

visualization that demonstrates the efficacy of a new service-orientation approach

[21][22][23][46].

Associated or related content can now be revealed on the real scene by augmenting the

physical objects. In the mobile AR application proposed in this thesis, the tracking

module is designed to perform marker-less tracking, which requires 3D object tracking

(and image tracking) so that the system can recognize physical objects. Moreover, the

proposed mobile AR system can augment various content of one reference object — as

mentioned, this will lead to a richer AR environment in terms of media objects

 28

associated with the reference object. That is, multiple objects tracking has the potential

to greatly enhance the interpretation of mobile AR scenarios and their environments

where mobile users can obviously view a greater variety of media content from a

reference object on the screen. Mobile AR applications can also offer some features for

the users to manage and utilize those revealed content, e.g. saving an AR scenario for

future use.

1.6 Research Question and Potential Benefits

Factors introduced above concerning open and closed AR architectures, scenarios of

use, etc. lead to the consideration of an overarching research question posed in this

thesis. This research question further leads towards consideration of potential benefits

that will drive the design and development of the SOMARA framework in which key

technology components (SOA, multiple object tracking, content acquisition and

utilization) are implemented to demonstrate the efficacy of an open AR architecture.

Overall Research Question:

• How can a typical mobile AR application based on a closed architecture (or

closed platform) be enhanced through service-orientation to create a more

flexible open architecture that can acquire valuable MCaaS from participating

open sources for museum (and other) interactive experiences?

This thesis proposes potential benefits to this research question: Service Oriented

Architecture on a Mobile AR platform (SOMARA) that	

• Exploits an open architecture through service-orientation: SOA is able to

enhance typical mobile AR applications in order to obtain valuable associated

content from participating open providers and extensively increase the

adaptability and functionality of typical mobile AR applications on closed

platforms (closed architecture). Therefore, integrating a web service framework

into a closed mobile AR system efficiently improves the content acquisition and

utilization of mobile AR system [40] [34] [47] [48].

• Integrates a web services framework into the mobile AR client: SOMARA is

a unique implementation of a SOA on mobile AR platform where a web service

framework is integrated into the AR application in order to perform

interoperability tasks to acquire valuable media content that can be visualized on

 29

the real scene and enhance the AR environment. The proposed service-oriented

mobile AR application is composed of a mobile client, web service framework,

and service providers.

• Exploits APIs to access Media Content as a Service: SOMARA’s web service

framework accesses media content via a set of APIs including an API developed

to access the Reanimating Cultural Heritage (RCH) digital archive as a test bed.

The mobile AR client also integrates other existing service APIs from third party

content providers, e.g. Victoria and Albert Museum, in order to verify a service-

orientation approach. Web service responses are processed and the obtained

content are presented on top of a targeted object in AR environments.

• Exploits APIs to access services: Another benefit from working simultaneously

on a web service framework and exploiting an open platform is that of obtaining

value-added content from open services or third party such as photogrammetry

or image-based reconstruction, which support 3D model acquisition from

photographs. In addition, the mobile AR system also effectively support content

utilization feature where mobile users are able to create personal AR

environments by selecting preferred content on the active scene and save it for

reviewing in other situations. This feature enhances the learning experiences and

interpretation by transforming typical data or metadata into rich media content

on AR environments. Another useful service in proposed museum learning

scenarios is Google Maps where the user may wish to see a location origin of a

cultural artifact. Google Maps APIs are applied by the mobile AR client that a

visitor is able to see locations origin of a collection of preferred cultural artifacts

saved from the museum on the map.

• Implements a web service based museum scenario: The application of

SOMARA is validated through the implementation of a prototype mobile AR

museum interactive application that integrates multiple object tracking.

Multiple object tracking is required in the novel service-oriented mobile AR

application in order to create a series of reference objects augmentation that

expand the AR content representation and enrich the AR environment. The

prototype allows MLA scenarios to be implemented where the mobile AR

application is developed on a web service client framework [46][21] and mobile

platform that related content of cultural objects are visualized on the mobile

 30

screen. The novel mobile client developed in this prototype beneficially supports

two related modes of use: museum-based and home-based AR visualizations.

1.7 Contribution to Knowledge

This new concept of developing an open AR architecture on mobile platform by

implementing SOA will provide the adaptability and improvement of typical closed

mobile AR applications that limit the exploitation of AR features and content

acquisition that mobile AR applications should be able to obtain valuable media content

from other sources such as third party. In order to prove the proposed concept, it

requires a novel open mobile AR architecture and a mobile AR client that is applied to

MLA scenarios where museum exhibits is transformed into media content on the real

scene and it can be viewed through the mobile screen. The novel mobile AR application

augments cultural objects by presenting related content in AR environments as well as

requesting associated content and services from other participating museum content

providers or third party. The following is the contribution to knowledge of this research,

which is the accomplishment of developing SOA on mobile AR systems.

• A Service Oriented Mobile AR Architecture to support different mobile AR

scenarios [23] — Conceptual Architecture

o A new Service Oriented Mobile AR Architecture or SOMARA that is

the development of a mobile AR framework based on SOA. A web

service framework is applied into the architecture in order to create a

mobile AR client that can access open service providers such as third

party or local service providers and consume MCaaS. The connections

allow the mobile AR client to send requests and receive responses, which

is media content that will be visualized in AR environments.

• A prototype software framework based on iOS to demonstrate a SOMARA type

application [21]— Specific Software Framework

o A novel mobile AR software framework on iOS platform is developed in

order to support the concept of SOMARA. A SOMARA application is

built to validate the architectural concept and software framework. The

SOMARA framework requires the embedded-camera of a mobile device,

AR SDK and mobile/wireless connection in order to perform object

tracking and interoperability tasks respectively. The SOMARA-based

 31

application enables mobile users to interact with visualized media

content and the application itself through the touch-screen mobile

interface.

• A multiple object tracking algorithm exploiting the Metaio AR SDK to support

[22] — Specific Algorithm

o The Metaio AR SDK is applied as a framework performing AR tasks

composed of object tracking, object recognition and content

visualization. The Metaio AR SDK offers only single object tracking and

single media content visualization. In order to create a mobile AR client

that support rich media content augmented from different reference

objects, the original object tracking has been extended in a unique way to

afford multiple object tracking.

• Service-oriented content acquisition and utilization [46] — A SOA Approach

o SOMARA encourages a new content acquisition approach that can be

done through a web service framework, which is the advantage of SOA

and open platform. Associated media content for a particular scenario

could be requested from various sources such as third party (Google

Maps, Flickers) or potential open services (Photogrammetry services).

Obtained media content can be visualized on the screen and AR

environment where mobile users are able to create interaction with active

media content.

1.8 Thesis Organization

This research focuses on the design of SOMARA and the development of a novel

mobile AR application based on SOMARA. The novel application is on open platform

where SOA and web service framework is required and implemented into the

application in order to create the mobile AR client that effectively perform AR tasks

and interoperability tasks. The following is the thesis organization that explains the

process of pursuing the research and creating useful SOMARA and its application in

order to accomplish the contribution to knowledge.

Chapter 1 introduces the research proposed in this thesis, and provides detailed

discussions of the research concepts, technological approaches taken, architectures and

components designed, and solutions provided to achieve the research goals proposed.

 32

Chapter 2 presents detailed background, concepts and applications of each component

architectural proposed in the research. This information is incorporated with related

technologies and techniques that were studied and implemented.

Chapter 3 provides the AR scenarios composed of architectural requirements and

museum environment scenarios. The architectural requirements explain solutions and

techniques that improve the usability of standalone mobile AR applications and create a

mobile AR application on open platform. This chapter also presents the implementation

of SOMARA and its application in the potential museum environment scenarios that the

novel mobile AR application can enhance visitors’ perception and experience in MLAs.

Chapter 4 explains the architectural design of SOMARA and its service orientation that

generate a novel mobile AR application. The service orientation is composed of a

mobile AR client, web service framework and service providers and each component is

on client-server architecture. The processes of performing AR tasks, content acquisition

and utilization are also described in this chapter.

Chapter 5 describes the implementation of SOMARA in MLA scenarios. The

SOMARA-based application is developed on native development platform, Objective

C, XCode and iPad mobile device. The novel mobile AR application requires an AR

SDK in order to perform AR tasks and simultaneously work with the AR application

and mobile interface to interact with mobile users and visualize content on the screen.

Chapter 6 explains the final mobile AR application based on SOMARA that support

physical museum learning scenario and home-based museum learning scenario in

testing and evaluation issues. The testing and evaluation shows how the designed

SOMARA and its application can efficiently support content acquisition and utilization

over a web service framework and AR platform. Therefore, the testing and evaluation

will prove that the novel SOMARA is capable, useful and stable for applying in other

scenarios.

Chapter 7 concludes the research accomplishment and gives some directions to future

developments and implementations such as applying the system with multiple

photogrammetry service providers or developing mobile client side with client-server

architecture that will be able to enhance collaboration and interoperability in sharing

digital AR content.

 33

Chapter ΙΙ

2 Service-Oriented Mobile AR

The aims of this research is to design a Service-Oriented Mobile Augmented Reality

Architecture (SOMARA) and build proof of concepts and prototypes through a novel

mobile AR application based on SOMARA in order to support content acquisition and

utilization on mobile and AR platforms. There are three main SOMARA requirements

that efficiently improve the usability and adaptability of standalone mobile AR

applications including: 1) service orientation, 2) content acquisition and 3)

consumption. This chapter explains the components of each requirement and the

technology approaches in the literature survey including background, concepts,

applications and implementation related to the significant components in a SOMARA.

2.1 Augmented Reality

Augmented Reality (AR) is a mixed reality technology that is a combination of real and

virtual environments. Mixed reality consists of the real environment, AR, augmented

virtuality and virtual reality (VR). Figure 2.1 presents mix reality and its elements in the

scale of the continuum between reality and virtual reality.

 Figure 2.1 The continuum of reality and virtuality [49]

 34

 AR combines the real environment together with computer generated virtual objects

and enables users to interact with virtual content as an element of the real environment.

AR is different from VR in the experience of the realistic. VR is a technique to create a

virtual environment and let users be a component of that environment. Consequently,

users seem to be incorporated as part of the scene and can interact with other

components. AR simultaneously provides users with a realistic and a virtual experience

while VR allows users to participate only within the virtual environment. Applying VR

requires display technologies such as a computer screen or a head-mounted display in

order to present the virtual scene or content, whereas AR functionally uses embedded

cameras to track targeted objects and related content is visualized on a screen.

Moreover, AR can be applied for indoor or outdoor purposes using positioning systems

such as GPS in order to present content based on the user’s current location, a process,

which is called location-based AR. These technologies enrich AR applications in terms

of flexibility, adaptability and variety where AR has become a powerful tool in

developing a broad range of applications on many platforms. Additionally, AR supports

users in various activities such as marketing, education, maintenance, design,

simulation, medical and personal assistance [17][18][50][51][52]. Examples of AR

applications include developing an interactive coloring book [53], AR experiences for

museum visitors [38][54], an AR shopping assistant [55][56] and developing AR to

support mathematics and geometry education [57].

2.2 Mobile AR System

The mobility concept has become an innovative and powerful tool to create more

advanced and usable applications implemented in many different scenarios. A current

challenge in mobile technology is the implementation of AR on mobile platforms that

focus on the convergence of AR, ubiquitous and wearable computing [27]. A mobile

AR system is able to provide mobile users with media content e.g. 3D models,

animations, images, videos and text visualized on a mobile screen and AR tasks can be

done in both indoor and outdoor environments. Examples of mobile AR applications

are:

• Virtual character-based application

• Cultural heritage

• Edutainment and games

 35

• Navigation and path-finding

• Collaborative assembly and design

• Industrial maintenance and inspection

Examples of mobile AR applications are systems for remote collaboration [58], mobile

AR for navigation and collaborative use [59] and for cultural heritage [60]. The

motivation for this research focuses on designing a SOMARA, which is the

implementation of a SOA on a mobile AR system, which addresses shortfalls in many

of the current AR systems. For example, a SOMARA application is an open AR

application on a mobile platform that is applied in MLA scenarios — current AR

applications are closed to user-generated content. An open SOA allows novel mobile

AR applications to be designed to accomplish AR tasks as well as interoperability tasks

through a web service framework, where interaction between mobile users and the

application can be done through the mobile interface. The AR tasks are composed of

object tracking, recognition and content visualization. The following explains the notion

of each AR tasks, which is one of the components in SOMARA.

• Object tracking is the process of detecting the real scene and finding a

reference object pre-defined in the configuration file. Object tracking

requires the embedded-camera of a mobile device in order to capture the

video of the real scene and the tracking process will detect feature of objects

in the scene.

• Object recognition is done after the system detect feature of an object in the

real scene. The extracted feature will be compared with the pre-defined

feature of a reference object stored in the content library. Once the reference

is recognized, it will be augmented by presenting related content

superimposed on top of the recognized object.

• Content visualization is augmenting a recognized object with related media

content combined into the real scene. The novel mobile AR system is able to

visualize various kinds of media content on the screen and users are also able

to have interaction with the active content in the AR environment.

The tracking process requires an embedded camera on a mobile device that tracks

reference objects and related content is visualized on the screen. The mobile AR

application is applied in two MLA scenarios including a museum-based learning and a

 36

home-based learning. These two scenarios demand physical object tracking and image-

based tracking. The object tracking requires a computer vision technique whereby the

embedded camera on the mobile device is used to capture video streams and perform

the tracking and recognition tasks. The following sections describe the literature survey

and technologies for the SOMARA and the novel mobile AR application development.

The components inside the SOMARA are mainly composed of AR tasks and

interoperability tasks.

2.2.1 Computer vision

Typical AR applications use computer vision as a sensing technique to work with

cameras for vision-based or optical tracking. Computer vision is a powerful feature in

AR due to the fact that it depends on features that are presented naturally to cameras.

Moreover, it does not need any adjustment of the environment. The system detects and

tracks real world objects, calculates the virtual object position and orientation and then

overlays the virtual objects onto the real scene [61]. Computer vision is an area of

computer graphics used for image or video frame processing that has been implemented

in many types of application and platform such as face detection, 3D model building

(photogrammetry), medical imaging, motion capture, robot vision, image processing,

fingerprint recognition and biometrics [39]. In mobile technologies, computer vision is

a technique applied in mobile AR systems for vision-based tracking. Consequently,

cameras and displays are the most important modules in mobile devices for tracking and

visualization. The following sections describe the concept and application of vision-

based tracking.

2.2.2 Object tracking

Object tracking is the most significant task in a real-time AR approach [62] in order to

detect and calculate the position and orientation of objects such as shapes, 2D images or

3D objects. The system provides virtual objects combined with the real environment at

the calculated position and pose. Additionally, tracking incorporates feature extraction

techniques to extract features of these objects and perform object recognition tasks.

Real-time accurate tracking is a key requirement of an AR system to superimpose 3D

virtual objects onto a real world scene at the right location and time. The achievement

of this process is a precise composite of real objects and virtual objects, which is called

 37

registration [63]. Tracking techniques in AR are composed of sensor-based, vision-

based and hybrid tracking [24].

Sensor-based tracking

Sensor-based tracking utilizes sensor technologies such as ultrasound, infrared laser-

diodes, optical gyroscopes and magnetic, acoustic and mechanical sensors for inside-out

and outside-in tracking [50][64] that apply signal emitters and sensors on target and

tracker equipment.

Vision-based tracking

Vision-based tacking integrates cameras with computer vision algorithms in order to

capture video streams as an input and accomplish camera pose estimation of 3D virtual

objects relevant to the real world objects [17] [65].

Hybrid tracking

Hybrid tracking requires two or more sensing techniques to work together for more

robust and accurate tracking in outdoor environments. Examples of the sensing

techniques are GPS and inertial and active transmitters and receivers (magnetic, optical,

ultrasonic) and passive optical [66].

Each tracking technique or tracker has its own specific functions and operations.

Although they are suitable for different types of application, the objectives of tracking

techniques are to specify targets in the real world and to calculate the virtual objects’

positions relative to real world objects with high accuracy and robustness.

Implementing tracking methods in an AR approach are based on the type of AR

application, such as mobile or static, and the environment in which the AR devices are

applied [20], meaning they may be restricted to being indoor or outdoor. Therefore, a

combination of vision-based tracking and robust tracking techniques such as GPS can

provide more robust and advanced applications on mobile devices for outdoor

environments.

In this research, the implementation of the SOMARA relies on a mobile device (e.g. an

iPad) and uses embedded-camera and vision-based tracking. Such mobile devices are

commonly available to the user in AR scenarios, such as a museum learning. The novel

mobile AR application and mobile interface performs AR operations in order to

 38

visualize 3D virtual objects and overlay the virtual objects onto real targeted objects at

the right pose in an indoor environment. Computer vision-based tracking is suitable for

many indoor AR application platforms as they do not require any specific hardware or

maintenance. The topics describe vision-based tracking that is typically composed of

feature-based tracking and model-based tracking are in Appendix F.

2.3 Mobile AR SDKs

In section 2.2 this thesis described many computer vision, software methods and

algorithms that are or can be applied to Mobile AR systems. In this section the thesis

gives and overview of some of the more useful Mobile AR SDKs that can be exploited

to implement novel AR applications.

For mobile application developers, there are AR Software Development Kits (SDKs)

offering native development frameworks as a tool that can be integrated into the

development framework including PC and mobile platforms. The AR SDKs offer AR

tasks such as object tracking, object recognition, content rendering and visualization to

developers so that they can integrate the provided application libraries or functions into

the development framework. Applying a mobile AR SDK is a solution for any mobile

AR application that does not require the development of AR tasks; utilizing existing AR

SDKs can be the simplest and quickest way to develop a mobile AR application. The

initial task of a mobile AR application is object tracking where the applied AR SDK

controls the embedded camera and presents the camera view on a screen. The system

then detects objects on the screen and recognizes these targeted objects by performing

feature extraction and comparing them with the pre-defined features of objects in the

system. The recognized object is augmented by superimposing pre-defined media

content such as 3D models, images, videos, etc. on top of the tracked object. Each AR

SDK exposes different functions and techniques in order to perform AR tasks.

Examples of AR SDK are ARToolKit, Qualcomm and Metaio.

2.3.1 ARToolKit

ARToolKit is one of the first open-source software providing an AR SDK on all

platforms including Mac OS X, PC, Linux, Android and iOS and a plug-in for Unity

3D. It supports Natural Feature Tracking (NFT) focusing on marker tracking, OpenCV

for camera calibration and OpenSceneGraph for advanced rendering. The SDK also

 39

supports mobile focus including OpenGL ES, multi-platform mobile support and GPS

and compass integration on the iOS platform [67] .

2.3.2 Qualcomm Vuforia

Qualcomm presents Vuforia SDK that supports AR application development with iOS,

Android or Digital Eyewear including tracking and recognizing images, objects, text,

markers and environment reconstruction. Vuforia also supports mixed reality: a

combination of AR and VR in order to create immersive environments. Vuforia-based

AR applications can be applied on optical see-through digital eyewear such as the

Samsung Gear VR or R-7 in order to present mixed reality experiences to users. In

addition, Vuforia offers its Cloud Recognition Service to recognize images and manage

databases in the cloud [68].

2.3.3 Metaio

Metaio SDK supports GPS, Simultaneous Localization and Mapping (SLAM) tracking

and location services and it can be applied to iOS, Android, Unity 3D and Windows

frameworks. The SDK can perform location-based tracking, marker and marker-less

tracking including images and physical objects. It also supports Augmented Reality

Experience Language (AREL) templates that enable iOS developers to create AR

applications with AREL using HTML5 and Javascript on UIWeb View instead of

Objective C. In addition, Metaio provides a cloud plug-in so that AR applications are

able to access the Metaio Cloud and utilize or upload content into the cloud. Metaio

offers Junaio which is a mobile AR browser supporting location-based AR and image-

based tracking. Junaio enables mobile users to create their own AR channels containing

personal AR content, publish AR scenarios or access other existing channels [45][45].

Due to the continuously increasing requirements of SOA, cloud computing and mobile

computing, applying a web services framework into mobile AR systems can be a

beneficial solution for client-side applications in order to achieve mobile computing and

digital content sharing with platform independence. In this research, SOA is integrated

into a closed mobile AR platform to create a novel mobile AR application on an open

platform that is able to accomplish content acquisition as well as content utilization. The

following are the details and implementation of the SOA, the novel mobile AR

application and its components.

 40

2.4 Mobile Application Development Tools

In mobile application development frameworks there are existing tools for building

mobile applications on different platforms. Mobile platforms that can effectively

support and run AR applications are iOS and Android. Mobile AR applications on iOS

devices can be developed on native development platforms by using XCode and

Objective C. Moreover, applications can be created on hybrid platforms where HTML5

and JQuery are applied instead of the native platform, and this makes the development

processes easier for HTML developers [69]. Android is another platform that also

supports AR applications and their development tool is based on Android Studio and

Java [70].

There is a solution for general mobile users or content providers who want to create and

publish AR environments through an AR browser that can perform indoor and outdoor

AR. The AR browser is an easy way to produce AR environments or provide AR

content through personal channels. It performs object tracking and location-based

tracking so the system accesses the user’s channel and downloads personal content for

visualisation on the browser. Examples of AR browser are Junaio [71], Aurasma [41],

Layar [42]. Figure 2.2 shows a snapshot of Junaio performing location-based AR and

Aursama performing logo tracking.

 41

(a) Junaio (b) Aurasma

Figure 2.2 Snapshots of Juanio and Aurasma AR browsers

2.5 Service-Oriented Architecture

SOA is an open architecture containing services for any application or other service in

order to have connection and request data or processing [72][73]. Cloud computing has

adopted SOA in order to create networks of cloud computing and services [3]. SOA has

been integrated into many difference scenarios such as AR e-business systems [33],

industrial systems [74], smart-home architecture [75] and co-production systems [76].

The SOA technology used to create connection to services is web services. The

following is the details and components of web services and its framework that is

applied into any client application.

 42

2.5.1 Web services

A web service is a technology that relies on SOA. Web services can be implemented in

client-side applications in order to provide service interfaces or a data service

architecture for interoperability tasks in the form of APIs on server sides. A web service

allows application clients or other servers to discover, connect and request operations or

processing and acquire outputs from the servers via the Internet across hardware and

software platforms. It is implemented in a variety of different approaches. The Web 2.0

technology that is popular at the moment allows users to share their own information

over the Internet, such as in social networking. A mashup is an application platform in

Web 2.0 technology that is the implementation of web services or web APIs. Users can

download mashup APIs for inclusion in client-side applications and requesting services.

Examples of mashup technologies are Google Maps and Rich Site Summary (RSS).

Examples of web service methods are SOAP and REST.

SOAP

Simple Object Access Protocol (SOAP) is a web service standard and communication

protocol that utilizes an Extensible Markup Language (XML) document format in

operation and sends the SOAP messages via Hypertext Transfer Protocol (HTTP).

Utilizing SOAP requires provision of a Web Services Description Language (WSDL)

definition document for service descriptions such as input, output and procedure

approaches for client sides. Developers can find WSDL documents and web service

interface information from Universal Description, Discovery, and Integration (UDDI)

registries that are maintained and presented on websites [77]. Examples of SOAP web

service providers are TempConvert, StockQuote and Astronomy [78]. Figure 2.3

presents the structure of a service request and response through SOAP in application-to-

application communications.

 43

 Figure 2.3 Service request and response process using SOAP

Figure 2.4 illustrates an example of a SOAP request message that is in XML document

format. The SOAP request message in XML format consists of the method required,

and parameters are sent to that method.

 Figure 2.4 An example of a SOAP request message

Figure 2.5 presents a SOAP response message that is an XML document coved by a

SOAP protocol message. The document contains output of the requested module.

 44

 Figure 2.5 An example of a SOAP response message

REST

Representational State Transfer (REST) is a new method for making web service

connections and sending messages in client-server architecture. REST is an alternative

to SOAP and uses service APIs to explain application resources in distributed systems.

Consequently, REST is an option for implementing web services by using potential

APIs from application servers. APIs represent application resources identified by a

Uniform Resource Identifier (URI). REST is an architecture that transfers data over

HTTP, composed of methods GET, POST, DELETE [79] [80]. Examples of REST web

service providers are Twitter, Last.fm and Foursquare [81]. Figure 2.6 shows the REST

architecture where the service request and response is sent through HTTP.

 45

 Figure 2.6 Service request and response process using REST

Figure 2.7 presents the structure of an HTTP service request by sending the REST

service request in Uniform Resource Locator (URL) format:

https://maps.googleapis.com/maps/api/place/nearbysearch/xml?location=51.5131699,-

0.1443185&radius=500&types=bakery&key=AIzaSyAZQw7PEjmwNtsWRPphtw2D1

omQCRjgw8I

 Figure 2.7 HTTP service request

Figure 2.8 shows the REST response header message via HTTP and Figure 2.9 shows

the response content of the request in an XML document.

 46

 Figure 2.8 HTTP response header message

 Figure 2.9 Response document in XML format

2.5.2 Web service mobile AR platform

Exploiting web service frameworks to create mobile AR and mixed reality systems as

open AR architectures that are able to obtain content from open resources can be very

useful for creating novel AR applications — SOMARA is a web service architecture

designed to do just this. Such mobile AR clients based on a web service framework can

 47

access open services and support content acquisition on client-server architectures and

the Internet. Integrating a web service framework into stand-alone (e.g. closed

commercial systems like Aurasma, etc.) mobile AR applications can bring general data,

user-generated content or commercial content to mixed reality systems, however there

is little work addressing this need [48] [40]. Other examples of applications applying

SOA into AR are E-business systems [33], development of an AR browser for an

interoperable outdoor AR system [82] and creating a mixed reality mash-up system for

mobile AR applications (Mixed Reality Web Service Platform) [83]. Most of the

applications are based on third party content providers such as Google Maps, Yelp,

Twitter, etc. This open and user-generated content is visualized on mobile AR browsers

that require GPS or sensors in order to identify the user’s location and get metadata

depending on their location.

Building on this limited work, this thesis proposes SOMARA, which offers a service-

orientation approach designed for supporting mobile AR client development in

applications such as AR Museum scenarios, but also other scenarios. SOMARA’s

service-orientation is composed of a mobile client, web service framework and service

providers. This novel mobile AR application can be classed as one of the next

generation of mobile applications that combines a web service framework into an

application on mobile devices such as an iPhone or iPad [2]. While SOMARA’s mobile

AR client is applied in museum environment scenarios, discussed in following chapter

of this thesis, it can be applied to other commercial scenarios such as retail shopping.

However, SOMARA’s AR technology is demonstrated in this thesis with a scenario that

presents virtual exhibitions of cultural objects to enhance visitors’ experiences in

MLAs. SOMARA’s mobile AR application is able to perform typical AR tasks

including object tracking, recognition and content visualization. Additionally, it

performs interoperability tasks by creating connections to open providers in order to

send service requests and receive responses. The web service framework is a tool that

encourages content acquisition in the client-server architecture and the mobile AR client

acquires associated media content from open museum content providers.

Another source of content that could be beneficial for museum environments and other

scenarios are photogrammetry service providers. Currently, such service providers are

sparse, but the potential is enormous and as such, SOMARA is laying the groundwork

to integrate to such services. Photogrammetry or image-based reconstruction services

 48

can produce a virtual 3D model of a preferred object so that the obtained 3D model can

be usefully consumed in other situations, i.e. MLA scenarios.

Given the enormous potential of photogrammetry services integrated with AR

applications it is worth discussing such services in more detail.

2.6 Photogrammetry Services

Photogrammetry is an advanced technique for generating a 3D virtual object from

multiple images of a target object or for performing image-based reconstruction. This

technique makes the process of 3D object acquisition easier and more flexible. The

processing steps of the reconstruction of photo-realistic 3D content consist of feature

matching, structure from motion recovery, dense depth map estimation, 3D model

building and texture map recovery [84]. In computer vision techniques, performing

vision-based tracking captures natural features such as edges, lines and textures from a

virtual environment. Tracking natural features can be used to develop more advanced

computer vision and graphic tasks by implementing 3D modeling, rendering and

reconstruction approaches. These approaches allow the applications to create 3D virtual

models from real objects automatically by tracking edges or wireframes, creating

textures and rendering virtual models of objects.

Photogrammetry providers offer 3D reconstruction services that are based on client-

server architecture and web-based applications. Users or client sides can use tools that

are based on the web application or desktop computer platform for uploading images to

the server and editing the final 3D virtual models. Examples of photogrammetry

applications are: Arc3D and MeshLab, and 123D Catch .

2.6.1 Arc3D and MeshLab

Arc3D and MeshLab constitute a web-based application for reconstructing 3D virtual

models from multiple images. MeshLab is a mesh-processing tool that is composed of

an image uploader, model viewer and editing function. MeshLab is a client-side

application on PCs to work with Arc3D within client-server architecture [85][86]. The

web-based service for 3D reconstruction requires photos of an object and an Internet

connection to accomplish automatic 3D reconstruction processing by a cluster server.

Therefore, users have to use specific tools such as web-based applications for uploading

photos and manipulating 3D virtual models [87].

 49

2.6.2 123D Catch

Autodesk® 123D Catch is a tool for generating 3D models. It is a web-based

application on a client-server architecture that allows users to submit multiple digital

photos of objects via an Internet connection and achieve realistic 3D models. Users can

use a web-based application, PC or tablet PC tool for uploading pictures and editing 3D

models [7].

Most of the photogrammetry applications for 3D reconstruction are created using a

web-based and client-server approach rather than a web service architecture approach.

In addition, the applications are in a close dependency platform so they do not provide

any operational interface for client-side applications. Another example of a web-based

application for geospatial data services is EuroSpec, which is an implementation of a

web-based service and geospatial data infrastructure. EuroSpec provides reference

geographic information that cross-border users can locate, select, access and download

data sets from a distributed source. The communication is via the Internet, using a web-

based approach and Open Geospatial Consortium (OGC) standards [88].

OGC offers open standards for interfaces or encoding on geospatial data and location

services. This allow multiple and diverse organizations to acquire interoperability,

information sharing and location-based services. Examples of the standard are Built

Environment and 3D, CityGML and Web Map Service. These can support service

interface design, distributed computing between web service architectures, service

providers and application clients that are platform independent. Now, there are many

web service-based providers on distributed geospatial processing [89].

2.7 Web Service-based Photogrammetry

The SOMARA-based mobile AR application requires web service-based 3D

photogrammetry providers for performing image-based reconstruction and

accomplishing content acquisition on open mobile AR platforms. Therefore, integrating

photogrammetry service interfaces into the web service framework could be beneficial

because of the rapid communication, the increased requirements in interoperability

tasks, information sharing, platform independence and effective server-side

architecture. Furthermore, these features enhance the experience of mobile users and

client-side applications in any platform to achieve both simple and complicated tasks

 50

such as data services, 3D reconstruction, geo-information and remote sensing by

invoking the services over a communication network and the Internet.

There is some ongoing research on developing web service-based frameworks for geo-

information services such as maps or Geographic Information Systems (GIS)

processing. There is a web service architecture for GIS. The system provides GIS web

services with the interoperability of data analysis and spatial data sharing from many

organizations. The processed outcome of this architecture is a composite map from

distributed mapping systems on the servers. The architecture is composed of web

mapping servers, data sources and a web client. Each server offers an interface for the

web clients to request the services [90]. Another application is a geo-information

service named Building Information Models-Web Perspective View Service (BIM-

WPVS). This service provides virtual 3D city models and an advanced 3D visualization

web service on client-server architecture. The server opens a service interface for

performing GIS and BIM data collection, 3D rendering and data visualization [91]. In

addition, there is the design of a web service architecture for enhancing the proficiency

of photogrammetry workstations. The architecture is composed of service customers, a

portal server and service providers. The aim of this architecture is to allow users to

request application services and digitized map images through a portal server that

directly connects to the service providers [92].

Integrating a web service framework with photogrammetry services could be a solution

for client-side applications to benefit from phenomenal mobile computing, distributed

computing and AR content acquisition on mobile platforms. In this research, the mobile

AR application requires web service-based photogrammetry providers that conceptually

offer a photogrammetry or 3D reconstruction service on web service architecture by

receiving a set of images of a target object from a mobile web service-based client.

Then, a rendered 3D virtual object is sent back to the mobile client and presented in an

AR environment.

2.8 Web Service Providers

One of the main components in a service-orientation architecture is a supply of web

service providers. Web service providers offer platform-independent open services that

any application can access through a web service framework. They present service

interfaces such as WSDL and API documents so that client-side applications integrate

 51

potential service interfaces into their service request module. The service interfaces

present data sources or methods that can be called in order to request data, metadata or

content in open repositories. Currently, there are a large number of typical and

specifically designed service interfaces from third parties in both SOAP and REST

protocol format. Service APIs can be found on the Internet by using search engines.

Figure 2.10 shows a web site containing APIs in many different areas that enables users

or developers to search for potential APIs and get information and details of those

targeted.

 Figure 2.10 The API directory website [81]

The website allows developers to search APIs by identifying the types of API and

protocol or format required. The list of APIs is displayed on the website as a result of

searching in the repository. Figure 2.11 presents a selected API which is Europeana.

The detail page shows information of the provider and the API as well as the protocol

and format it supports. Users can then click the links that lead to the API homepage and

see data about how to work with the API and the parameters it needs.

 52

 Figure 2.11 Europeana service API [93]

Developers are able to choose service providers that supply data relating to the scenario

of the application. The content acquisition processes can be accomplished by an

application client sending a request and receiving a response in XML or JavaScript

Object Notation (JSON) format. The application client requires a parser in order to read

through the received document and extract data. Some service interfaces are based on

cloud computing and cloud APIs, such as Amazon Web Service APIs [94].

Furthermore, specifically designed applications also require particular content providers

that return valuable content for client-side applications for a designed scenario.

2.9 Summary

Service-orientation, which is one of the components of SOMARA, enables the creation

of a mobile AR application on open platform. The service-orientation is composed of a

mobile AR client, a web service framework and web service providers. This chapter

describes technologies and techniques required in developing the SOMARA-based

mobile AR application based on the service-orientation. The literature survey leads to

 53

understanding each component of the service-orientation in more details and

encouraging the application development by utilizing those techniques. It can also

enhance knowledge and experiences that enable developers to innovate a novel

technique by combining each technique altogether or improve an existing technique.

The SOMARA-based mobile AR application is developed by implementing the Metaio

AR SDK to perform AR tasks. The Metaio AR SDK uses SLAM that is a marker-less

feature-based tracking technique. Exploiting an existing AR SDK is the quickest way to

develop an application but it still has limitation such as tracking environments. The

Metaio AR SDK provides a good quality tracking technique and tool to perform

physical object tracking but the tracking module still has to work under controlled

environments that there is no reflection or shadow. This can enhance an idea of

developing a new tracking and recognition tracking that uses or adapts the proposed

algorithms and techniques above.

 54

Chapter III

3 Mobile AR Scenarios

AR has become a data representation tool that effectively enhances users’ perceptions

and experiences in visualizing computer-generated content in a real environment. AR

on a mobile platform can be applied to indoor and outdoor applications such as

location-based AR. Multimedia content of location-based AR can be visualized in a real

environment depending on the user’s location and AR tasks can be performed at any

time and any place. The majority of mobile AR applications are currently based on

closed platforms where the content acquisition has been limited and there are no

communication channels between the application and other applications or existing

open service providers. Mobile users are only able to view pre-designed media content

that has been installed into the system in advance. This chapter presents the main

requirements that innovate functionality and usability of typical standalone mobile AR

applications. These requirements efficiently strengthen the design of SOMARA and

development of the open mobile AR application. This novel mobile AR application

presents supporting tasks that take advantage of an open architecture where a web

service framework performs interoperable tasks and acquires value-added content from

participating open providers. This acquired content can be effectively consumed in AR

environments that enhance content utilization and AR environment interpretation. The

proposed architecture transforms general mobile AR systems into novel mobile AR

learning systems where active AR environments and media content can be saved and

taken away for further studies at any time or place.

3.1 Architectural Requirements

There are three main requirements that can be implemented into a typical mobile AR

platform in order to improve the adaptability and functionality of typical closed-

 55

platform mobile AR application and enrich the usability of these applications, including

service-orientation, open content acquisition and personalization. These requirements

support the design of SOMARA enabling the development of a novel mobile AR

application that demonstrate the SOMARA concept with its service-orientation, and

support for content acquisition and utilization in AR environments.

3.1.1 Service-orientation

SOA is an interoperable service platform that supports any application in order to access

a network of open service providers as well as provide service interfaces and APIs for

the clients in order to create connections to any potential open providers [95] [96].

SOA-based applications can effectively present various related data from other sources

or potential providers and share their data among other mobile users via mobile or

wireless networks. As a result, SOA creates collaboration among applications in a

client-server architecture that does not depend on any specific location or application

platforms. Therefore, closed platform mobile applications that deliver limited data to

users are able to implement SOAs, APIs and service interfaces that apparently transform

them to applications on an open platform. This framework and its implementation

expand the functionality of mobile devices that have limited resources such as a small

display and restricted processing speed. Taking advantages of a SOA results in creating

cost-effective applications on mobile platforms that additionally require processing and

data from other web service providers.

In order to create an open mobile AR application, the mobile development architecture

potentially requires service-orientation that is the collaboration of a mobile AR platform

and SOA. The designed service-orientation is generally composed of a web service

framework, mobile client and service APIs. The following explains the details of the

service-orientation and the components inside that support the development of a mobile

AR application on an open platform.

Web service framework

 The web service framework is an important component in a SOA that efficiently

facilitates generating the open framework and accessing open services for a novel

mobile AR system that is versatile and can be implemented in various scenarios such as

a shopping environment, cultural objects exhibitions and AR-based learning. The web

 56

service framework performs back-end interoperable tasks in order to create connections

between web service providers and the service request module working inside the

client-side applications. In this research, a novel mobile AR application applies REST

as a web service client framework in the service request module that utilizes the iOS

web service library applied by XCode in order to access and send requests to the

participating services. The web service framework exploits a mobile client and service

providers.

Mobile client

Client-side applications are created by implementing a web service framework into the

mobile AR application. The application clients are able to access and interact with open

services by applying potential service APIs into the service request module. They can

then perform interoperable and content acquisition tasks by creating a connection to and

from open service providers or participating servers. In addition, AR content can be

shared via the open network and consumed by other AR applications as well [34][48].

Open mobile AR systems can also participate in distributed application development in

order to perform pervasive computing and create distant AR services for mobile devices

that require context and the location of the users [47][97]. Interoperable frameworks

also offer a feature for location-based mobile AR, e.g. an AR browser that enables

anywhere augmentation, a content-sharing framework and visualization in real-time of

associated media content from AR providers on the see-through browser visualized in

the real environment [82]. The web service framework has been used to work as a back-

end system that creates connections for requesting services and receiving responses.

The responses are passed to the AR application, processed and the data is then

visualized and presented in the real scene. The web service framework essentially

requires service APIs as service interfaces of participating providers that can be open

services or data providers. The APIs present the URL of the data source along with

parameters required for building a query in order to retrieve relevant data from the

repository. The contributing APIs are applied into the service request modules in order

to send a request along with necessarily required parameters to the providers. The

potential service APIs for the client-side applications can be third party APIs such as

Google Maps, Flickr, Facebook, etc. [81] or particular service APIs in the desired

scenarios that are described in the following section.

 57

The SOMARA-based application is an AR application on a mobile platform and web

service framework specified to create connections to open services and perform

interoperability tasks. This novel mobile AR application or mobile client is

implemented on a camera-embedded mobile device that is able to perform AR tasks

such as multiple object tracking, recognition and content visualization. In this research,

the mobile client is prototyped on an iOS platform and run on an iPad where native

development frameworks including XCode and Objective C are required. The mobile

client offers a mobile interface for mobile users so that they can interact with active

media content visualized on the screen as well as perform object tracking. The mobile

client also contains an AR SDK that performs AR tasks in the AR application and

simultaneously works with the mobile interface of the AR application as a front-end

system for mobile users so that they can interact with the application and active content.

In this research, the Metaio AR SDK [45] has been used to apply the mobile client to

perform object tracking, recognition and content visualization.

Service providers

The mobile client requires service interfaces or APIs from participating open providers

in SOA. Server-side applications offer data in their repository and services that can be

requested through a web service framework and HTTP. In this research, the novel

mobile AR application is applied in a MLA scenario and the application requires service

APIs of the participating museum services and third parties. The application applies

service APIs from existing museum content providers and a third party including the

Reanimating Cultural Heritage (RCH) service API [98], the Victoria and Albert

museum API [99] and the Google Maps APIs [100] as a proof of concept. These APIs

are based on a REST platform and provide output in XML and JSON document format.

Figure 3.1 presents the RCH service API and the details of services provided.

 58

Figure 3.1 SierraLeoneHeritage API [98]

Figure 3.2 shows the Victoria and Albert museum API documentation. The document

explains how to start working with the API and the output formats that can be JSON or

XML documents.

 59

 Figure 3.2 Victoria and Albert Museum API [99]

 Figure 3.3 presents the Google Maps APIs and the details of each service, which

explains how to access and request location data.

 60

 Figure 3.3 Google Maps APIs [100]

3.1.2 Content acquisition

The key objective of SOA is allowing any application to access open services or

applications and request processing or valuable data from these providers. Integrating

SOA into a mobile AR platform results in acquiring new and valuable media content of

a targeted object in real-time that could potentially be visualized in an AR environment.

Open mobile AR applications are able to create connections and request associated

content from existing potential providers who can be a third party or participating

service providers in the anticipated scenarios. The content acquisition process can be

done beneficially on a specific approach such as a photogrammetry service request

where a mobile client is able to acquire a virtual 3D model of a preferred object from a

web service-based photogrammetry provider. Photogrammetry or an image-based

reconstruction service is a valuable technique for any mobile AR application that

requires 3D models of preferred physical objects and then utilizes these obtained

models in an AR environment. In this case, the acquisition process is accomplished by

taking photographs of a targeted object and then directly sending a request along with

the photographs through the web service framework to the photogrammetry provider.

Currently, there are photogrammetry services on web-based platform such as ARC 3D

[87] and CMP SfM [101] and on client-server platforms such as 123D Catch [7] and

ReCap [43]. All of these services are closed platform applications and do not provide

 61

any APIs to other applications. Another approach is general content acquisition where

the web service framework in a mobile AR client is effectively implemented in order to

acquire valuable media content, e.g. 3D models, videos, audio, social networking data,

etc. from existing open sources or third parties. The obtained content is then presented

on the real scene along with existing content.

In this research, the SOMARA based mobile AR client is applied in an MLA scenario,

and the content acquisition process is performed by creating connections and access to

participating museum content providers. Moreover, the proposed photogrammetry

service can be usefully applied in the mobile AR client in order to support 3D model

reconstruction of a targeted object for an MLA. This feature is an advanced feature or

strategy that could enhance a typical MLA and offer a content acquisition module to

perform a function that provides some connection channels to open service providers

and web service-based photogrammetry services. The mobile AR client is able to

request associated media content from potential open providers and also has a function

to support image-based reconstruction service request from photogrammetry service

providers, although currently there is only one provider, Autodesk, named Recap API

[102]. The Recap API is now on the beta version and does not allow the mobile AR

client to use it.

3.1.3 AR environment personalization

Another aspect of the open mobile AR system that takes advantage of SOA and a

mobile AR platform is AR environment personalization. Acquired content from the

content acquisition function, web service framework and participating providers are not

only visualized on the mobile device screen but also consumed in personal AR

environments where mobile users can interact with the active content on the screen,

such as selecting and saving preferred content relative to a targeted object so that the

selected content can be taken away and revealed again in other situations. This feature

supports AR content utilization that obtains or provides content overlaid on top of a real

scene that can be saved and reused in personal AR environments where mobile users are

able to review what they have experienced in other situations. This feature is adaptable

and can effectively support learning as well as providing shopping experiences where

active media content on the novel mobile AR application can be flexibly utilized and

data representation can be presented differently by using personalized AR

environments. Compared to general mobile AR applications on closed platforms where

 62

application providers do not allow mobile users to own their pre-designed media

content, the web service-based mobile AR application is able to send a request for open

content through the web service framework where the acquired content is transferred to

the AR application and mobile interface. AR environment personalization is an

advantageous strategy in mobile AR application development because mobile users are

able to create their own AR environments by selecting content on the mobile device’s

screen and saving it as a personal museum exhibition. In the mobile AR client, after

receiving associated content from open service providers or museum exhibition sources,

the acquired content could be beneficially utilized by offering a personalization feature

so that mobile visitors are able to generate personalized AR environments with this

content.

Developing an open mobile AR application and supporting functions basically requires

three important components: a mobile AR client, a web service framework and service

providers. This research proposes SOMARA, composed of these three components

incorporated on a mobile platform in the architecture. In SOMARA, the mobile client is

an AR application on a mobile platform that integrates a web service framework into

the system in order to perform AR tasks as well as simultaneously work with the mobile

interface and AR application. The web service framework requires service interfaces or

APIs of potential providers that can generate connections to the participating providers,

send requests and receive responses. The responses are then processed and obtained

content is sent back to be visualized on the mobile interface where mobile users are able

to view and consume active content on the screen by selecting and creating personal AR

environments.

3.2 Museum Learning Scenarios

SOMARA is an architecture based on a mobile platform and a web service framework.

The application on SOMARA overcomes the limitation of closed platform architecture

by creating interoperability between the application itself and other applications. The

result of this is an open mobile AR application that is able to deliver collaborative

components including content acquisition and consumption to mobile users as well as

supporting the development of an open mobile AR system in many different scenarios,

e.g. a shopping experience, mobile learning, MLAs, etc. In this research, SOMARA is

applied in a museum scenario where mobile devices are effectively brought into the

MLAs. SOMARA is exploited to develop novel open mobile AR applications that can

 63

enhance MLAs or cultural heritage environments and increase visitors’ experiences and

knowledge in cultural objects exhibited by augmenting a target object and presenting

media content in the real scene. The application can create associations between

participating museums and other potential open providers such as third parties through a

web service framework and a mobile AR platform.

In general, museums exhibit cultural objects along with information that is illustrated or

presented on a board, poster or monitor and visitors are allowed to read and view this

information and content as well as taking leaflets provided. Most modern museums now

offer interactive multimedia content on a touch-screen where visitors can experience or

view information by interacting with media content through the user interfaces.

Applying AR or mixed reality technology into MLAs is another level of improving the

exhibition services that can enhance visitors’ experiences in terms of improving the

learning approaches in museum environments, drawing visitors’ attention and

enhancing understanding of the context of cultural objects as well as museum exhibits

[38][103][104][105]. In addition, the web service-based mobile AR system improves

participation between contributing museums and visitors are able to interact with active

media content as well as obtain personal AR environments, including preferred cultural

content of the exhibition that usefully encourages content acquisition, content utilization

and MLAs in other situations. Figure 3.4 presents the use-case diagram of a general

MLA where MLA activities are done within the physical museum and on the museum’s

website. Visitors are able to view physical objects, view content on the monitors and

interact with content on the screen. In addition, MLAs can also be done through the

museum’s website where there are online catalogues of cultural artifacts that can be

searched and viewed anytime by users.

 64

Figure 3.4 The use-case diagram of general museum learning

Currently, there are many museums that have developed a website providing an online

catalogue of the cultural objects in their repository and it becomes another presentation

channel so that visitors can also perform an MLA online. Each particular item can be

searched and its information and metadata is shown on the web page. Examples of

online museum exhibitions are the Victoria and Albert Museum [106], the British

Museum [107] and Europeana [108]. Another example is a website that exhibits an

online catalogue of cultural objects from Sierra Leone. The data repository of RCH

[109] contains metadata of objects exhibited in many museums around the United

Kingdom. These have shown that MLAs has already moved to another level of cultural

data representation and communication. Moreover, the museums present an API or

service interface in a SOAP or REST platform so that any client application is able to

implement the API and then send a request along with parameters to the open cultural

content service and receive a response in an XML or JSON document that can be read

and presented on the application that requires the specific museum content as part of the

outcome or the service interfaces. Therefore, applications on any platform are able to

implement these APIs and request associated cultural content from the open museum

repositories through the SOA. The acquired cultural content can then be presented and

utilized on the application client with platform-independent features.

 65

SOMARA supports content acquisition on a mobile AR platform and is applied in

museum scenarios where associated museum content from open museum services is

requested and overlaid on top of a real scene or AR environment. This architecture

enables generating museum studies on a mobile AR platform using a mobile device.

Cultural media content can be visualized on the screen in real environments by

augmenting a real cultural object in a physical museum. Participating museums’ APIs

are required in this architecture in order to combine the APIs into the service request

module and produce the output on the AR scene. In this research, SOMARA has been

implemented in two associated MLA prototypes, which are museum-based and home-

based learning. In the MLA scenarios, content acquisition modules in the mobile AR

client are able to request associated content from particular museum exhibition sources

or third party providers in order to visualize the acquired content on the museum

visitors’ screens. In addition, the content acquisition is not only from open museum

repositories or museum services but SOMARA also supports service connections to

useful open services that produce media content for MLAs in real-time.

Photogrammetry or image-based reconstruction services benefit museum visitors by

allowing them to request virtual 3D models of their preferred cultural objects. The

visitors can then consume these acquired models by creating personal AR environments

containing the models and other preferred media content. Figure 3.5 proposed the use-

case diagram of SOMARA that supports MLAs.

 66

 Figure 3.5 SOMARA use-case diagram

The following are the proposed museum scenarios applied by the SOMARA and its

application. Both scenarios enhance typical museum studies in different situations by

offering visitors a novel mobile AR application that supports content acquisition and

utilization. As the result, MLAs can be done inside or outside the museum and cultural

content can be acquired from open services.

 67

3.2.1 Museum-based learning scenario

The proposed mobile AR system effectively enhances physical MLAs by offering an

AR application on mobile devices, e.g. an iPad, to visitors in order to present related

media content of a targeted cultural object that can be virtual text, images, videos, 3D

models, etc. superimposed on top of a cultural object or a real scene. This content in an

AR environment enhances the learning experience and encourages visitors to engage in

museum-learning environments where supporting content can be seen through a mobile

interface. In addition, the open mobile AR application also offers some encouraging

features that take advantage of SOA and existing open providers. As a result, it benefits

MLAs and visitors in terms of content acquisition and consumption where the museum

itself can present associated content from other participating museums or third parties to

visitors as well as offering valuable services such as image-based reconstruction that

enables visitors to acquire 3D models of their preferred objects. The obtained content

can then be utilized by saving them in a personal AR environment along with other

selected content.

SOMARA and its application enhances typical museum studies where an exhibition can

provide value-added services on mobile devices and AR environments that allow

visitors to view and take away acquired content of preferred objects. The AR system is

used as a data representation tool in order to visualize associated media content of a

targeted object in a real scene and allows mobile users to send a request and interact

with active content. The mobile AR application for MLA scenarios requires marker-less

or object-based tracking where a cultural object exhibited is tracked, recognized and its

related content is visualized on the mobile’s screen. As a result, MLA enhances visitors’

experiences as it offers valuable web service-based content and services as a strategy to

support learning and content utilization through the SOA and its components.

Additionally, the museum is able to provide a value-added mobile learning application

that aggregates content from the museum itself, participating museums and other third

parties.

3.2.2 Home-based learning scenario

Museum visitors mostly go to museums to learn about historical incidents and cultural

objects exhibited. To experience such a different environment and knowledge, visitors

have to go the museum themselves and browse the exhibitions inside. This can be done

 68

easily if the visitors go to a nearby or local museum. However, MLAs may limit other

people who live far away and require resources but are unable to visit the museums

physically. In addition, museums generally do not allow visitors to perform any other

supporting learning activities such as taking photos of a preferred object or saving

multimedia content presented on a monitor and taking them away for viewing in other

situations. SOMARA usefully encourages media content utilization and supports MLAs

outside the museum or in home-based MLAs. In the novel mobile AR application, there

is a photogrammetry service request module that provides a content acquisition feature;

museum visitors are able to request a model of a targeted object and then save it into a

personal AR environment, which can then be revealed or presented in a home-based

learning scenario. The home-based learning can be performed by a mobile user in other

situations outside the museum. Consequently, museum learning and exhibition

browsing do not need to be done in the physical museum as the mobile AR application

offers a home-based learning function whereby mobile users are able to pursue the

MLAs as well as view personal AR environments at home or school. The system

requires marker-less or image-based tracking in order to track and recognize a trigger

image and then augment cultural media content of the particular cultural object in the

museum. The trigger images can be printed images or leaflets of targeted objects and

they can be downloaded from the museum’s website. As the result, home-based

learning and its process can be done anywhere and at any time outside the museum,

where mobile users are able to pursue remote MLAs via a mobile/wireless network. To

do so, the system does not store any content of targeted objects and the mobile client

requests related media content of a targeted object at the time the system recognizes its

trigger image.

 The system first starts working with a tracking configuration file that sets up the

tracking and recognition process with an XML file containing targeted marker-less

tracking objects. Then, the mobile AR application can send the request for relevant

content of a tracked image or object to the participating server. In museum environment

scenarios, the mobile client requires service APIs of open web service servers that offer

cultural content belonging to a particular museum. Mobile users can then pursue MLAs

by requesting related virtual content from the server and then visualize them on an AR

scene by using a printed image or leaflet of a targeted artifact as a trigger object. Figure

3.6 illustrates the use-case diagram of home-based MLAs where mobile users are able

 69

to perform MLAs outside the museum by using the novel mobile AR application to

augment trigger images instead of real physical objects. The related content is obtained

from the open museum content provider and visualized on the real scene.

 Figure 3.6 Home-based museum learning use-case diagram

3.3 System Specifications

The set of system specifications are developed based on the research question and

description of the potential benefits that strongly supports the creation of SOMARA and

the service-orientation. These system specifications coupled with the background

 70

literature survey developed in Chapter 2 and the more detailed scenarios discussed in

this section lead to the user requirements for SOMARA described in Chapter 4.

• This thesis proposes a mobile AR application developed to demonstrate the

efficacy of SOA (in order to illustrate the improvements expected on an open

platform based on mobile AR system when compared to closed AR platforms)

by implementing a web service framework as a client-server system. This novel

open mobile AR application is able to obtain more valuable content from open

content providers or service providers to extensively enhance the usability and

functionality of current mobile AR systems.

• A Service Oriented Mobile AR Architecture (SOMARA) is developed to

demonstrate content acquisition via mobile or wireless networks and content

utilization through an AR client-server environment. The associated technology

features (SOA, mobile, wireless, client-server) are exploited on an open platform

and AR framework to illustrate aggregation of valuable media content from

other sources, where those acquired content are consumed in the AR platform by

mobile users.

• The design of the SOMARA application in this thesis is based on an open

mobile AR system that implements or integrates service APIs from participating

providers. The novel mobile AR application is able to perform typical AR tasks

and interoperability tasks such as multiple object tracking, sending a request and

receiving a response for associated content of a targeted object and potential

services that enhance the feature of the novel mobile AR client and bring

supportive content onto mobile AR environments.

• The SOMARA application is designed to be adaptable and could effectively be

applied in different scenarios such as learning, shopping and museum

experiences. In this research, SOMARA is applied to ‘museum interactive

scenarios’ to demonstrate that an open mobile AR application can efficiently

support virtual exhibitions based on AR environments displaying museum

content that can be requested from participating content providers and third

party.

• A final technology objective is to demonstrate the scalability of SOMARA

through service-orientation by providing example supportive content acquisition

and utilization modules, e.g. a photogrammetry service request module and an

 71

AR environment personalization module that are integrated with SOMARA and

other novel mobile AR applications. The photogrammetry or image-based

reconstruction service request module allows mobile users to simply acquire a

3D model of a targeted object and then create a personal AR environment of the

model along with other preferred media content visualized on the screen. The

personal AR environment can be taken away and revealed in other situations

such as a ‘take home museum exhibition’.

3.4 Summary

This chapter explains architectural requirements that encourage the development of an

open mobile AR platform. Three main requirements that support the creation of

SOMARA are service-orientation, content acquisition and AR environment

personalization. A SOMARA-based mobile AR application is applied in MLAs where

museum visitors are able to view cultural artifacts and request related content through

mobile AR environments and a web service framework. The application supports two

MLA scenarios including museum-based and home-based learning. These scenarios

enhance learning activities that can be performed inside the museum or at home.

 72

Chapter IV

4 Architectural Design

This chapter explains the structure of the Service-Oriented Mobile AR Architecture

(SOMARA), its components and its service orientation that is specifically designed to

support efficient content acquisition and utilization on mobile AR platforms. SOMARA

improves on the usability and adaptability of general mobile AR applications for closed

platforms, which limit the acquisition, consumption and visualization of digital media

content, e.g. user generated content. Any novel mobile AR application based on

SOMARA exists on an open platform and has a mobile web service framework as a

back-end system. SOMARA specifically allows for the inclusion of user generated

content from open service providers and their APIs. These could be third party or

participating providers, depending on the desired scenarios and the APIs to be used in

the AR application. Open mobile AR applications are able to connect to open providers

via specifically implemented service interfaces (of these service providers). These

interfaces are held in the service request module along with details of the parameters

that they require. A service request will be sent through a web service framework to the

service provider when mobile users or the system want to acquire media content from

other sources. Application clients on any SOA are generally platform independent: any

client on any platform can perform request-response tasks and data acquisition between

service providers and application clients. Figure 4.1 presents SOMARA and its

components as a client-server architecture. The architecture shows the web service

framework working simultaneously with the AR application and other components in

order to create service requests and receive responses. This is achieved by directly

implementing the service APIs of participating service providers.

 73

 Figure 4.1 Service-Oriented Mobile AR Architecture

The SOMARA creates a service-orientation mainly composed of a mobile client, a web

service framework and open service providers' APIs. It is based on a client-server

architecture and the mobile/wireless framework. The following describes each

significant component within SOMARA. These work together, in real-time, in order to

accomplish AR tasks and interoperability tasks. In addition, there are some use-case

diagrams illustrating the interaction between mobile users and the system through the

service interface.

 74

4.1 Mobile Client

The mobile client is an open AR application developed on a mobile platform and using

a web service framework. The mobile client is able to perform interaction tasks, AR

tasks and interoperability tasks in order to support users’ interactions, content

acquisitions, and content utilizations. The mobile AR client itself is composed of an AR

application developed on top of a web service-based framework and service interfaces.

These facilitate interoperable AR systems by simultaneously working with all the

relevant open service providers in order to create connections and request content. The

acquired media content will be visualized via an AR environment. Therefore, the

mobile client is able to send requests for high-value content that can be visualized on

the mobile AR system and superimposed on top of the real scene. The media content

involved could be 3D objects, animations, images, maps, videos, tags, billboards, etc.

These high-value content can very effectively extend and improve the quality of the

experience provided by the mobile AR system in many different scenarios: shopping,

MLAs or other scenarios such as personal assistance, or personalized AR systems.

The mobile client performs AR tasks that utilize and incorporate mobile device features

such as embedded cameras and high quality touch-screens. These features are used to

accomplish tasks such as, tracking, visualization and interaction between mobile users,

references to physical objects (marker or marker-less) and computer-generated content.

This mobile AR client framework is also designed for enhancing the data acquisition

and collaboration features already present in conventional mobile AR applications - on

closed platforms. Implementing a SOA on a mobile AR platform enables a mobile AR

application to generate connections and acquire valuable digital content from open

services or third party providers. The mobile AR client, in addition, offers features that

support content acquisition and utilization facilities – the former including, for example,

photogrammetry services and AR environment personalization. These features represent

one of the benefits of using an open mobile AR platform. The mobile client can deliver

valuable content to mobile AR environments as well as representing AR environment

interpretations so that active content can be consumed and reused by mobile users. The

mobile interface, mobile AR SDK, AR application are components of SOMARA

mobile client that work concurrently to accomplish an AR presentation.

 75

4.1.1 Mobile interface

A mobile AR system will usually offers just basic features for performing object

tracking, recognition and visualization in relation to referenced objects. Related content

of a tracked object will be rendered and visualized on the screen through the mobile

interface. A mobile interface is a front-end system whereby mobile users can interact

with the mobile AR application as well as with other mobile users and the system. The

mobile AR application requires a touch-screen user interface with which mobile users

can interact with the system, view visualized content and have interactions with those

active content. In addition, the process of object tracking is done via an embedded

camera on the mobile device. A targeted object can be viewed on the screen and, at the

same time, the relevant content will be retrieved by the AR application and visualized

by the AR SDK. The designated interactions between users and active content, which

can be performed via the mobile interface, are selecting, and saving. This latter

functionality can be performed on selected, predefined content or on content obtained

from services - so that these content can be displayed again in other situations. The

mobile AR application is developed on an iOS platform and the design is focused on the

iPad device since this has a large screen as compared to the iPhone.

4.1.2 AR application

Mobile AR systems work with the embedded-camera, sensors, computer vision

techniques and etc. in order to achieve object detection, tracking and content

visualization. Using a built-in camera and/or GPS module in order to capture real

environments and/or the user’s location provides the AR system with the information

necessary for performing object tracking, visualization and overlaying (virtual content

on the real scene). The real-world scene could relate to either an indoor or an outdoor

environment. For this research, the Metaio native AR SDK will be implemented within

the AR system module to perform 3D tracking, recognition of target objects and

visualization of relevant virtual content.

Metaio SDK is the native platform designed for mobile AR application development,

and includes xCode/Objective-C for iOS and JavaScript for Android. The Metiao native

SDK performs basic AR tasks including object tracking, recognition and visualization

of objects (that the system will retrieve virtual content for, in order to present these to

users). Metaio native SDK provides specific libraries, frameworks and APIs that

 76

developers can use to create mobile applications specific to their own platforms. These

APIs fully support AR environments, in terms of hardware access, tracking processes,

user interface design, content rendering and visualization.

For this research, the mobile AR application will be developed on a native iOS platform

by implementing Metaio AR SDK for iOS into the AR application. Figure 4.2 presents

the structure of the native Metaio AR SDK, which provides basic AR tasks to

developers.

 Figure 4.2 Metaio native AR SDK (www.metaio.com)

An AR application on the mobile AR client works with the AR SDK in order to

simultaneously perform AR tasks and supporting tasks, thus creating interaction

between mobile users and media content. In addition, the application will include web

service connection modules, which will be able to request associated content or

services. Moreover, the AR application will also include some features that will

enhance AR content utilization, allowing mobile users to perform additional tasks that

could be designed into the AR application so making it unique.

The novel AR application is built on top of a mobile and web service platform. Thus,

some functions are available to it simply by connecting to existing providers through a

web service. Therefore, the AR application strongly supports the mobile AR client to

become an interactive open system that works in different ways with different special

service providers in order to acquire virtual objects - e.g. image-based reconstructions

or other such services. Standalone AR applications, on the other hand, present only a

predefined and limited number of content to mobile users.

 77

Interoperable frameworks and web service providers nowadays also support

connections between mobile clients and provide data that can be presented and utilized

on AR platforms, e.g. social network data, geospatial content, POIs data and mix reality

content. As a result, mobile AR systems can become mobile web service clients by

working with the web service client module in order to create connections with different

service and content providers. Thus, an application can send very specific requests for

additional content. The final outcome from these requests, which will be effectively

overlaid on top of images of physical objects and real scenes, could be virtual objects,

games, map data, videos, tags or billboards, etc. These can very effectively extend the

AR system, whether it is related to shopping, or museum experiences, or is a personal

assistance and personalized AR system.

Within the mobile AR application, there are a number of primary functions that will

perform basic AR tasks. These simultaneously work with the Metaio AR SDK, and they

include object tracking, object recognition and content visualization. In addition to this,

the system also interacts with, and performs connection and content manipulation tasks

for, mobile users in order for the application to provide its innovative features and to

provide an interoperability framework in terms of the mobile platform and the AR

environment.

The AR tasks are generally performed by the AR application whilst the AR SDK

performs the task of recognizing reference objects; the system can thus present

computer-generated content to accompany the objects. At the same time, the system

also enables interaction between mobile users and active content so that users will be

able to obtain possibly related information, which interrelates with content on the

screen. Additionally, the system offers usefully featured functions that rely on the

interoperability framework and the web service basis. These features work with users to

quickly and smoothly accomplish connections to providers via the mobile network. The

final outcomes from these services will be utilized on the mobile client. Mobile users

will be able to personalize AR environments by selecting and saving preferred content

on the screen.

In this research, a novel mobile AR application scenario exploiting service-orientation

will be implemented in relation to museum experiences. This will be beneficial to its

mobile users as a visual strategy to attract the user’s attention with environmentally

 78

augmented hints, virtual exhibitions, augmented imagery, and other graphical

information. Moreover, the system strongly engages mobile users. It does so by

enabling the creation of AR preferences, such as personal AR environments, and by the

presence of virtual experiences that can be launched and viewed in various situations.

The following describes each component of this AR application. These components

work concurrently together in order to perform AR tasks as well as interoperability

tasks.

Tracking and content configuration

When a user wants to track a marker or marker-less object and the relevant camera view

appears after she or he touches the tracking button, tracking configuration and content

configuration will be performed, in concert, by the AR application itself and the AR

SDK. These processes will identify all of the reference objects and their related content.

These objects can then be tracked and recognized and the related content retrieved and

visualized, overlaying the tracked objects on the image of the real-world scene. The

mobile AR client supports physical object tracking as well as image-based tracking.

This will be performed in two difference MLA-related scenarios.

For MLAs, the configuration process starts working when the system initiates the AR

scene. The system has to classify all the reference objects that will be tracked and

recognized via the tracking process. Each reference object has particular related media

content, associated with it, which need to be identified in parallel with the tracking

configuration. There are two methods of obtaining content related to reference objects:

the cached and non-cached methods. For a mobile AR application that has a fixed

number of related content prepared and cached in advance, a configuration file of the

content is used to inform the system of each group of content that belong to each

targeted object. The non-cached method is used when the system does not hold any

related content itself, on the other hand, there is a data repository or open server that the

application can refer to using a web service in order to obtain the related content for

referenced objects. In this scenario, the configuration file will be composed of the

service APIs of the relevant open content providers. For example, a museum has an

open server maintaining data and meta-data relating to its cultural artifacts and presents

these on a website. The mobile AR client is able to use its (the web-site's) APIs to

acquire particular media content for a target object in the physical museum and then

 79

present the received content via the AR environment. Figure 4.3 illustrates the tracking

and content configuration process performed by the AR application that will initially

identify particular objects and retrieve their related content via this tracking and

augmenting process.

 Figure 4.3 Tracking and content configuration process

Figure 4.4 presents the non-cached tracking configuration process. This, first, accesses

the XML tracking configuration, and the related API configuration file so that the

system can identify all of the reference objects and the participating APIs for each

object. This latter is a specification of a URL and the parameters it requires, linking to

the source of media content to each object.

 Figure 4.4 Tracking and API configuration process

 80

The non-cached method could be applied in both museum and home-based scenarios. In

the physical-museum MLA scenario, the architecture also offers the solution that the

mobile client doesn’t need to store the content that are related to the reference objects. It

can, instead, request these content from participating content providers, such as museum

subject content providers, depending on what is best for the circumstances. In the home-

based MLA scenario, the mobile client performs image tracking after the camera view

appears. In order to do this, the system requires the tracking configuration so that it can

identify the reference marker-less or image objects, which must be tracked. It will also

require the associated service APIs configuration that will identify the service API for

each reference object. If the mobile client tracks and recognizes an image, the related

APIs will be used and the associated content obtained and then visualized on the screen.

Service and content request

The mobile AR application supports both museum and home-based scenarios. Both of

them can perform service and content requests in order to acquire related or associated

content from participating open service or third party providers. The service and content

request module works simultaneously with the web service framework in order to send

requests and receive responses. In this module, the service interfaces or APIs of the

providers are required to be present so that a web service request, which is in the format

of a URL, can be sent along with its necessary parameters, to the participating providers

via mobile/wireless network. In the physical-museum MLA scenario, the module is

called when a visitor wishes to view the associated content for a targeted object. To do

so, the system will access the participating API configuration file, which contains the

associated APIs for each reference object, in order to retrieve the API for the object.

Figure 4.5 shows a use case diagram of the associated content request process and the

visualization of acquired content as performed by the mobile AR client for a museum

visitor and through the mobile interface of the AR application.

 81

 Figure 4.5 The process of tracking and content acquisition in museum-based scenario

Acquiring virtual content from interoperable networks and open service providers can

be achieved via the service request modules of the AR application. These modules

include the service interfaces of the participating open providers. The providers could

be museum content providers or third parties. The interface specifications include

information concerning the parameters, which are required. In the museum-based

scenario, a visitor is able to request associated content whenever they want by touching

the sign or active object on the mobile interface. The application will then send the

request along with its necessary parameters to the provider and receive the response in

XML or JSON format. The received content will be visualized on the active AR

environment. Figure 4.6 shows the process of service and content requests undertaken

by the AR application when a mobile user requests associated content from an open

server.

 82

 Figure 4.6 The process of service and content requests

In the home-based learning scenario, mobile users are able to perform MLAs outside

the museum by tracking an image of a targeted object. The AR application will work on

the non-cached system whereby the application has to obtain media content from

participating open content providers by sending a request to the URL retrieved from the

API configuration file. The content requests will be automatically performed when a

mobile user tracks a trigger image and the system recognizes that image. The

augmentation will be accomplished by the application sending a service request off to

the provider through the web service framework and, of course, then receiving and

processing the response. The related content of the trigger image will be visualized on

the screen through the mobile interface. Figure 4.7 illustrates the use-case diagram of

the home-based MLA scenario, and the content request process whereby a mobile user

is able to track a trigger image in order to view relevant media content for the selected

object.

 83

 Figure 4.7 The process of tracking and content acquisition in home-based scenario

Both museum and home-based learning scenarios offer a feature allowing mobile users

to effectively interact with active content on the screen by selecting and saving the

content and thus creating personal AR environments via the mobile interface. The

preferred museum content can be presented in other situations that enable users to

conveniently review these AR images. The detail of the processes involved with content

consumption is explained below in the supporting modules section.

 Figure 4.8 presents an AR application performing content and service requests via the

non-cached system applicable to home-based MLAs. After the object tracking and

recognition phase the system will request related content in advance. This is to be ready

for when user tracks the trigger image for the first time — otherwise there would be no

geometry for the associated content stored in the content library.

 84

 Figure 4.8 The service and content request in the home-based museum learning

Response processing

Service APIs provide the processing and return the outcome in relation to either XML

or JSON document format. The service request URL relates to the source of the data. It

is composed of the API, plus the parameters and output format dictated by the

application client. The output document from the open service or other content provider

is in either XML or JSON format and will be sent through the web service framework

back to the mobile client. The AR application has to read and extract data from the

response file. The native iOS development framework provides a function for

developers to develop a reader for XML and JSON documents, which includes

 85

NSXMLParser and NSJSONSerialization. Figure 4.9 presents the procedure for

processing the JSON document response by utilizing the NSJSONSerialization

function. The extracted data is transformed into objects and geometries, which will be

kept in the content library of the AR application. The geometries will be retrieved and

visualized on the AR scene when their reference object is tracked and recognized.

 Figure 4.9 JSON document processing

Figure 4.10 shows the procedure for processing a response document in XML format by

utilizing NSXMLParser. All of the elements contained in the XML document will be

read through and the relevant data extracted from the document. The geometries for the

data will be created and stored in the content library as for process related to

NSJSONSerializaton.

 86

 Figure 4.10 The process of reading the XML response document

Object augmentation

Object augmentation is the process of tracking objects and superimposing relevant

media content associated with the targeted objects onto the real-world image. The

mobile client starts tracking the real-world scene when the camera screen is presented

and the mobile device user points a mobile client at the scene. When the system starts

tracking the scene, the AR application will automatically work with the Metaio AR

SDK in order to detect and recognize reference objects. Multiple content for a tracked

object will be retrieved, aggregated and presented on top of the tracked object in the

real-world scene/image. The proposed MLA scenarios mainly rely on this object

augmentation in order to present media content - as geometries or objects, which can be

seen on the screen.

In the museum-based learning scenario, the mobile AR client initially stores related

content of reference objects in the content library that these can be retrieved directly

(i.e. locally) once the system recognizes an object. The configuration process firstly

identifies reference objects and the related content for each individual object so that the

 87

augmentation process can display related media content of the tracked objects, as

required. Moreover, mobile users are able to request associated content by touching the

object on the active screen; at which point, the system will check to see if there are any

interactions with geometries on the screen. Once the user indicates that they want to see

associated content, the system will read the associated content configuration file and

extract data. The data is in the form of the predefined API and parameter specifications

relevant to the participating provider. A service request will then be sent through the

web service framework to the participating provider and a response document in the

XML or JSON format will be sent back to the service request module.

In the home-based learning scenario, there are no predefined content stored in the

content library and so all the content must be requested when the system tracks a trigger

image. The object augmentation module will read through the reference configuration

file and retrieve the URL, which is the API and associated parameters for the open

content provider, related to the tracked image. The content request will then be sent

through the web service framework to the provider and the response obtained will then

be processed. The user can then view associated media content of the tracked trigger

image, which represent the physical object in the museum. Figure 4.11 presents the

process of object augmentation for museum-based and home-based learning scenario.

The augmentation process starts working when the AR View starts and the related

content will be visualized as soon as the system is able to recognize at least one

reference object. The main functions of both scenarios are generally similar but the

process of content acquisition in the home-based learning has to be done by tracking the

trigger images. The acquired associated content from the provider will be presented on

the screen.

 88

 Figure 4.11 The object augmentation process in museum-based and home-based
museum learning scenario

Supporting modules

This novel mobile AR application, or mobile client, is able to offer some supporting

modules that take full advantage of it being on an open platform and, in addition, being

an AR system. There are two approaches that could be usefully applied by the mobile

client in relation to MLA scenarios, for content acquistion and utilisation. The

following are details of each approach (these have been implemented into the mobile

client and offered functions to users).

Content acquisition

Content acquistion is generally accomplished by sending a request to a participating

content provider (which one depends on the scenario) and receiving a response through

 89

a web service framework. In addition, content acquistion can also be performed by

sending a request to a possible service provider whose responses can usefully be

presented in AR environments. One possible service provider that can, beneficially be

used by the mobile client for MLA scenarios is a photogrammetry service. A

photogrammetry service is an image-based reconstruction service whereby photographs

of a physical object or landscape can be uploaded to it so that a virtual 3D model of the

object is created. The resultant model will be sent back to the mobile client and

visualized to the user. Photogrammetry is one of the content acquisition approaches that

can be usefully integrated into a mobile client where this supports web-based content

acquistion. In this case the content acquisition is carried out by sending a request along

with parameters, which are a sequence of photographs, to the service provider. The

service provider then responds with a 3D model that can be consumed in the AR

environment. A photogrammetry service request module in the mobile client applies the

service API of the provider and works with the embedded camera of the mobile device

in order to obtain photographs of a selected object. It then makes an image-based

reconstruction request and receives a response that is a virtual 3D model of the object.

The final model will then be visualized and utilized on the scene. Figure 4.12 presents

the process of requesting a photogrammetry service that requires photographs of a

targeted object as parameters to be sent to the provider.

 90

 Figure 4.12 Photogrammetry service request module

The photogrammetry service request module is initiated when the mobile device user

touches a button to start taking photographs. A timer will then be activated in order to

automatically take further photographs. Each photograph will be transformed into an

object and saved into the content library. The timer will be halted when the user touches

the stop button (and so the system will stop taking photographs). The user can then

decide to send a request for a virtual 3D model of the targeted object. Figure 4.13 shows

the use-case diagram of a photogrammetry service request. The mobile user will

participate by targeting an object, taking photographs of that object, and then sending a

request for image-based reconstruction services to the relevant service provider.

 91

 Figure 4.13 The process of photogrammetry service request done by mobile users

Content utilization

Content utilization is one of the features strongly supported by the mobile client in order

to enable mobile users to consume acquired AR content. These content can be acquired

from a mobile AR environment and then selected content can be used and/or displayed

in other situations. The proposed content utilization module is an AR environment

personalization system that allows mobile users to select and save content, which have

been obtained and then visualized on the screen. This suggested AR environment

personalization supports data representation using a mobile AR framework so that

media content can be presented within AR environments. Personal AR environments

can be selected for presentation elsewhere and presented by augmenting a trigger image.

Figure 4.14 illustrates the process of AR environment personalization that mobile users

are able to select and save their preferred AR content.

 92

 Figure 4.14 The process of creating personalized AR environments

 Figure 4.15 is the use-case diagram for the AR environment personalization module,

which can be accessed through the mobile interface. Mobile users are able to select and

save preferred content. The saved content can then be visualized in an AR Browser that

augments a trigger image by displaying or revealing selected related content.

 Figure 4.15 Use-case diagram of AR environment personalization

 93

The AR Browser is used to reveal personalized AR environments composed of saved

media content, including acquired content from participating providers and/or virtual

3D objects from photogrammetry services that have been selected and saved by the

mobile user. This module will require the presence of an embedded-camera (readily

provided by modern smartphones and tablets) in order to perform image-based tracking

and so reveal user's preferences on the AR browser. Figure 4.16 illustrates the AR

Browser whereby mobile users are able to reveal personalized AR content over-laid on

the real scene by tracking a trigger image.

 Figure 4.16 The process of visualizing personalized AR environments using AR
Browser

Figure 4.17 shows the use-case diagram relating to using the AR Browser in order to

view personalized AR environments in other situations (outside the museum).

 94

 Figure 4.17 The use-case diagram of AR Browser

4.2 Web Service Framework

The web service framework is a technology used to create connections and interactions

between services in a SOA. A web service framework can be applied to any system that

requires open architecture. The system will then become a client-side application that is

able to access open services in the SOA. In this research, the web service framework is

implemented into the mobile AR application, making it a mobile client on open

platform. The web service-based mobile AR application or mobile client will be able to

perform interoperable tasks including sending requests and receiving responses as well

as supporting the application client in acquiring associated content from open service or

content providers. The web service framework in the native iOS development

framework supports the REST communication protocol. This requires service APIs of

participating providers to be in the form of a URL containing the source of content, the

function and the parameters required, which will be processed in the server side. The

web service framework works concurrently with the AR application as a back-end

system for creating web service connections in order to send requests and receive

responses between the mobile client and web service providers. The web service

responses will need XMLParser or NSJSONSerialization function in order to process

XML or JSON documents representing the final outcome from the web service

providers. The content will be extracted from the received document and visualized on

the screen. Figure 4.18 presents the structure of the web service framework of the

mobile client using the REST architecture.

 95

 Figure 4.18 Web service framework

4.3 Web Service Providers

SOMARA requires service APIs from all providers. These can be participating open

providers that could be third party, potential content providers for the desired scenario

or effective service providers who can provide processing services such as image-based

reconstruction and so valuable content for AR environments such as 3D models,

images, text etc. Open providers basically offer services for SOA so that any application

is able to create connections and interaction with the participating providers through a

web service framework. Web service providers process service requests and return

responses to service requesters or application clients. Service providers offer service

interfaces or APIs for clients and the service connection module inside that will apply

the APIs and identify required parameters before sending requests to the providers. In

this research, SOMARA is applied in museum scenarios for which the participating web

service providers will be museum content providers that have exposition data

concerning the objects in their repository. The proposed providers applied in SOMARA

offer service APIs and the mobile client will apply those APIs in order to send service

requests and receive responses. The participating service providers for MLAs chosen to

integrate into the mobile client as sample content providers for SOMARA are the RCH

Cultural Object Service and Victoria and Albert Museum open service mentioned in

Chapter 3. Figure 4.19 illustrates the structure of the selected museum service providers

 96

that their API is applied into the service request module in order to obtain valuable

content from the open sources.

 Figure 4.19 Web service framework and the implemented service providers

4.4 Summary

This chapter describes SOMARA and it’s components that encourage the development

of SOA on a mobile AR platform. SOMARA generates service-orientation enabling the

creation of SOMARA-based mobile AR application that is composed of a mobile AR

client, a web service framework and open service providers. The mobile AR client

performs AR tasks that work simultaneously with the AR application and the mobile

interface for tracking reference objects and visualizing related content on the real scene.

The application also supports interoperability tasks where mobile users or the

application itself are able to request associated content from web service providers

through a web service framework.

 97

Chapter V

5 A SOMARA Application
Development

This chapter explains the process of developing a novel mobile AR application based on

the Service-Oriented Mobile Augmented Reality Architecture (SOMARA) — a

SOMARA application. As such, this chapter provides the implementation of SOMARA

based AR application that can be used as a guide for the development of other museum

AR applications exploiting SOMARA — this particular implementation of a SOMARA

application should not be regarded as a product; it serves to illustrate how build a

typical SOMARA applications, and in this case using Apple technology. The

development focuses on an implementation of SOMARA, which includes building the

mobile AR client on an open platform that supports SOMARA, with a web service

framework in order to work as a back-end system to perform interoperability tasks. The

application is composed of functions in order to perform AR tasks including object

tracking, recognition and content visualization and interoperability tasks including

service connections and content acquisition. The novel mobile AR application supports

museum-based and home-based learning scenarios. The mobile client is an AR

application on a mobile platform and in this research the application is developed on

Apple iOS SDK and XCode IDE. The following sections cover the processes of

developing a SOMARA application that enhances the usability and functionality of

typical standalone or closed-platform mobile AR applications. Each section shows the

important functions and modules inside the open mobile AR application that effectively

perform AR tasks, interoperability tasks and supporting tasks that encourage content

acquisition and consumption.

 98

5.1 Development Tools — XCode and iOS SDK

The development tools chosen for building mobile AR applications are XCode and

Objective-C language because XCode IDE provides developer tools, a graphical

interface and a debugger that effectively support application development. Developers

have to apply for an Apple developer membership and register mobile devices that will

be used to run the application. In addition, the personal certificate and profile on the

developer portal needs to be downloaded and installed in the computer used to develop

the application as well as in the mobile device that is the deployment target. Figure 5.1

presents the development framework of XCode IDE for the iOS platform and the

components of the mobile application environment.

 Figure 5.1 iOS and XCode development framework

The XCode IDE provides the Main Storyboard and View Controller as the start view for

developers to create the first view of a mobile application. The developer can add more

views into the application whereby each view contains a header file, implementation file

and View Controller.

5.2 AR View

A SOMARA application has three AR Views for museum-based learning, home-based

museum learning and an AR Browser. The AR Views have been created on top of the

 99

normal View Controller and simultaneously work with MetaioSDKViewController for

connecting to the embedded camera and presenting a real scene so that mobile users can

track a targeted object and see visualized content superimposed onto the tracked object.

The View Controller contains modules that control and work with the AR View and

MetaioSDKViewController in order to perform AR tasks as well as interoperability

tasks, and mobile users are able to interact with the system and active content on the

screen. Figure 5.2 shows the mobile AR View of the museum-based learning scenario

that is run on an iPad. The AR View includes a mobile interface that allows mobile

users to interact with the visualized content and system through the touch screen and

buttons located on the screen.

 Figure 5.2 The mobile AR View of the museum-based learning scenario

Figure 5.3 presents the mobile AR View of the home-based learning scenario. In this

scenario, an AR View is required for mobile users to perform image-based tracking and

system interaction in order to view associated content acquired from the participating

service provider on the screen.

 100

 Figure 5.3 The mobile AR View of home-based museum learning scenario

Figure 5.4 shows the AR Browser that reveals personal AR environments created by

mobile users. Preferred content from the museum-based learning scenario that has been

stored in the database is retrieved and visualized on the AR Browser in other situations.

 Figure 5.4 The AR Browser view

 101

5.3 Tracking and Content Configuration

The tracking and content configuration starts working after the View Controller is

loaded and the AR View appears on the screen. The tracking configuration process

requires a tracking data file that is processed by the MetaioSDK to identify and

recognize reference objects. In addition, a content configuration file is needed in order

to provide related media content of each reference object that will be tracked. The

following are the tracking processes applied in the museum-based learning and home-

based museum learning scenarios that require different tracking and content

configuration files.

5.3.1 Museum-based learning scenario

Museum-based learning performs physical object tracking and the system visualizes

related content that has been pre-defined in the content library. The configuration

process requires a tracking configuration file and content configuration file for

initializing reference objects that are to be tracked and related content of each object

that is to be revealed on the real scene. The following is the tracking and content

configuration for the museum-based learning scenario.

Tracking configuration

The tracking configuration process is done when the UI View is loaded and the camera

view is presented on the screen. The required tracking configuration file is in XML

document format as shown below.

<?xml version="1.0" encoding="UTF-8"?>
<TrackingData>
 <Sensors>
 <Sensor Type="FeatureBasedSensorSource" Subtype="ML3D">
 <SensorID>FeatureBasedSensorSource_0</SensorID>
 <Parameters>
 <featureorientationassignment>gravity</featureorientationassignment>
 <MaxObjectsToDetectPerFrame>5</MaxObjectsToDetectPerFrame>
 <MaxObjectsToTrackInParallel>1</MaxObjectsToTrackInParallel>
 </Parameters>
 <SensorCOS>
 <SensorCosID>fb23be3415c00141a340d36b2766f610</SensorCosID>
 <parameters>
 <numextensiblefeatures>0</numextensiblefeatures>
 <mintriangulationangle>6</mintriangulationangle>
 <map>fb23be3415c00141a340d36b2766f610.f3b</map>

 102

 <MinMatches>15</MinMatches>
 <NumExtensibleFeatures>250</NumExtensibleFeatures>
 </parameters>
 </SensorCOS>
 </Sensor>
 </Sensors>
 <Connections>
 <COS>
 <Name>cos1</Name>
 <Fuser Type="SmoothingFuser">
 <Parameters>
 …
 </Parameters>
 </Fuser>
 <SensorSource>
 <SensorID>FeatureBasedSensorSource_0</SensorID>
 <SensorCosID>fb23be3415c00141a340d36b2766f610</SensorCosID>
 <HandEyeCalibration>
 <TranslationOffset>
 …
 </TranslationOffset>
 <RotationOffset>
 …
 </RotationOffset>
 </HandEyeCalibration>
 <COSOffset>
 <TranslationOffset>
 …
 </TranslationOffset>
 <RotationOffset>
 …
 </RotationOffset>
 </COSOffset>
 </SensorSource>
 </COS>
 </Connections>
</TrackingData>

The XML document contains the metadata or details of reference objects specified by

the developer, including a 3D tracking map of each reference object created by Metaio

Toolbox, the SensorCOSID and COS name. The SensorCOS includes a group of details

of each reference object composed of SensorCOSID and the parameters containing the

3D tracking map file and the default numbers. The 3D tracking map files have to be

stored in the content library and the MetaioSDK uses the prepared map files in order to

track and recognize a targeted object on the AR scene. The process of creating 3D map

 103

files of reference objects can be seen in Appendix D. The following code is the process

of setting up the tracking configuration file in XCode and Objective-C.

NSString* trackingDataFile = [[NSBundle mainBundle] pathForResource:@"Tracking"
ofType:@"xml" inDirectory:@"Assets1"];
bool success = m_metaioSDK->setTrackingConfiguration([trackingDataFile
UTF8String]);

Content configuration

The next process is to perform content configuration that identifies related content to

each reference object. The pre-defined content is organized in the XML document and it

requires the XMLParser to read through the document and extract data in the document.

The data are transformed into geometries of each object and visualized when the object

is tracked and recognized.

<?xml version="1.0" encoding="UTF-8"?>
<Contentgroup>
 <Cos>
 <Name>cos1</Name>
 <Billboard>
 <Title> Tea leaf tin </Title>
 <Details>A Test 3D Object</Details>
 </Billboard>
 <Model>
 <MFilename>metaioman</MFilename>
 <MFiletype>md2</MFiletype>
 </Model>
 <Image>
 <IFilename>crabtree</IFilename>
 <IFiletype>png</IFiletype>
 </Image>
 <Image>
 <IFilename>MoreDetails</IFilename>
 <IFiletype>png</IFiletype>
 </Image>
 </Cos>
</Contentgroup>

The system can also support acquiring related content of a tracked object from open

sources such as a local museum content provider. This can be done by sending a request

for related content of a reference object to the provider and receiving a response. The

developer does not need to prepare media content and store it in the library of the

application in advance. In this option, the content configuration file contains service

APIs or URLs and required parameters used to access the content provider and request

 104

media content of the reference objects. The following is an example of a content

configuration file in XML format identified to each reference object for sending web

service requests.

<?xml version="1.0" encoding="UTF-8"?>
<Contentgroup>
 <Cos>
 <Name>cos1</Name>
 <CID>http://www.vam.ac.uk/api/json/museumobject/O78523</CID>
 </Cos>
</Contentgroup>

The designed content configuration file has to be transferred to XMLParser in order to

extract the specified content of each reference object and create geometries of the

content. The pseudocode for configuring related content of each reference object and

the process of calling XMLParser is displayed below.

identify content configuration file;
set NSData of the content configuration file;
create an array of retrieved billboard content;
create the object of BillboardContentParser;
call function parseXMLFile in BillboardContentParser;
if(success)
{
 create billboard objects of acquired content in the array;
}

BillboardContentParser retrieves data of content stored in the content configuration file

and it returns an array of data that is sent to the module for building geometries. The

BillboardContentParser is used to read data in the tag <BillBoard> that are used to

create billboard content presenting text on the AR screen. The following is the

pseudocode of functions in BillboardContentParser class.

-(NSMutableArray *)parseXMLFile:(NSData *)xmlData
{
 initialize received XML data to NSXMLParser;
 set Delegate;
 parse XML document;
 return array;
}
-(void)parserDidStartDocument:(NSXMLParser *)parser
{
 create an object of array;
}

 105

-(void)parser:(NSXMLParser *)parser didStartElement:
(NSString *)elementName namespaceURI:(NSString *)namespaceURI
qualifiedName:(NSString *)qName attributes:(NSDictionary *)attributeDict
{
 if(elementName is equal to “Cos”)
 {
 create an object for billboards;
 }
}
-(void) parser:(NSXMLParser *)parser foundCharacters:(NSString *)string
{
 find and collect string;
}
-(void) parser:(NSXMLParser *)parser didEndElement:
(NSString *)elementName namespaceURI:(NSString *)namespaceURI
qualifiedName:(NSString *)qName
{
 if (elementName is equal to “Name”)
 {
 store collected string in object;
 }
 else if (elementName is equal to “Title”)
 {
 store collected string in object;
 }
 else if (elementName is equal to “Details”)
 {
 store collected string in object;
 }
 if (elementName is equal to “Cos”)
 {
 add object to the array;
 }
}
-(void) parserDidEndDocument:(NSXMLParser *)parser
{
}

The returned array of data extracted from the content configuration file is sent to the

CreateBillboardARContent module, which is shown below, for building geometries of

content in the obtained array.

- (void)CreateBillboardARContent:(NSMutableArray *)data
{
 create billboard object
 create array for billboards;
 read billboard data from array
 {
 if(data is the end of array)

 106

 {
 break;
 }
 else
 {
 create billboard image from title;
 create geometry of billboard image;
 set visibility;
 create billboard image from details;
 create geometry of billboard image;
 set visibility;
 add geometry object to array;
 }
 }
}

5.3.2 Home-based museum learning scenario

Home-based museum learning performs image tracking that requires trigger images of

real cultural objects. After recognizing the trigger image, the system sends a request to

the participating open service and receives a response that is the associated content of

the tracked image; this is visualized on the real scene. The following explains the

tracking and content configuration process of the home-based museum learning

scenario.

Tracking configuration

The tracking configuration process requires a tracking configuration file in the same

way as the museum-based learning scenario. The following is the tracking configuration

file in XML format used for tracking trigger images.

<?xml version="1.0"?>
<TrackingData>
 <Sensors>
 <Sensor Type="FeatureBasedSensorSource" Subtype="Fast">
 <SensorID>FeatureTracking1</SensorID>
 <Parameters>
 <FeatureDescriptorAlignment>regular</FeatureDescriptorAlignment>
 <MaxObjectsToDetectPerFrame>5</MaxObjectsToDetectPerFrame>
 <MaxObjectsToTrackInParallel>1</MaxObjectsToTrackInParallel>
 <SimilarityThreshold>0.7</SimilarityThreshold>
 </Parameters>
 <SensorCOS>
 <SensorCosID>Patch1</SensorCosID>
 <Parameters>
 <ReferenceImage>Nomoli.jpg</ReferenceImage>

 107

 <SimilarityThreshold>0.7</SimilarityThreshold>
 </Parameters>
 </SensorCOS>
 </Sensor>
 </Sensors>
 <Connections>
 <COS>
 <Name>cos1</Name>
 <Fuser Type="SmoothingFuser">
 <Parameters>
 …
 </Parameters>
 </Fuser>
 <SensorSource>
 <SensorID>FeatureTracking1</SensorID>
 <SensorCosID>Patch1</SensorCosID>
 <HandEyeCalibration>
 <TranslationOffset>
 …
 </TranslationOffset>
 <RotationOffset>
 …
 </RotationOffset>
 </HandEyeCalibration>
 <COSOffset>
 <TranslationOffset>
 …
 </TranslationOffset>
 <RotationOffset>
 …
 </RotationOffset>
 </COSOffset>
 </SensorSource>
 </COS>
 </Connections>
</TrackingData>

This XML configuration file is used to configure the tracking process by MetaioSDK

for tracking planar surface objects such as a page in a magazine or images. The file

contains details of each reference image including the SensorCosID, reference image

file and COS name that is used to track and recognize a trigger image, and then the

system reveals associated content obtained from open services such as third party or

museum content providers. The process of setting up the configuration file is shown

below.

NSString* trackingDataFile = [[NSBundle mainBundle]
pathForResource:@"MarkerlessTracking" ofType:@"xml" inDirectory:@"Assets1"];

 108

bool success = m_metaioSDK->setTrackingConfiguration([trackingDataFile
UTF8String]);

Content configuration

The associated content is requested from the participating content providers on the

client-server architecture; the content configuration process identifies the service API of

each provider and parameters required for sending a request. The following is the

content configuration file in XML format containing the URL and parameters of each

reference image.

<?xml version="1.0" encoding="UTF-8"?>
<Contentgroup>
 <Cos>
 <Name>cos1</Name>
 <CID>http://www.sierraleoneheritage.com/api/search_service/fetch_item/coid/231
 1/format/xml</CID>
 </Cos>
 <Cos>
 <Name>cos2</Name>
 <CID>http://www.sierraleoneheritage.com/api/search_service/fetch_item/coid/220
 0/format/xml</CID>
 </Cos>
 <Cos>
 <Name>cos3</Name>
 <CID>http://www.sierraleoneheritage.com/api/search_service/fetch_item/coid/237
 0/format/xml</CID>
 </Cos>
 <Cos>
 <Name>null</Name>
 </Cos>
</Contentgroup>

The pseudocode for setting up the content configuration file is explained below. The file

is sent to XMLParser in order to extract the URL of each trigger image. The extracted

data are returned back to the module and stored in the array.

identify URL configuration file;
set NSData of the URL configuratrion file;
create the object of ReferenceObjectIDParser;
create an array of retrieved URLs;
call function parseXMLFile in ReferenceObjectIDParser;

The following is the pseudocode of functions in ReferenceObjectIDParser class that

reads through the content configuration file, extracts data in the file and returns the

array of data back to the module.

 109

-(NSMutableArray *)parseXMLFile:(NSData *)xmlData
{
 initialize received XML data to NSXMLParser;
 set Delegate;
 parse XML document;
 return array;
}
-(void)parserDidStartDocument:(NSXMLParser *)parser
{
 create an object of array;
}
-(void)parser:(NSXMLParser *)parser didStartElement:(NSString *)elementName
namespaceURI:(NSString *)namespaceURI qualifiedName:(NSString *)qName
attributes:(NSDictionary *)attributeDict
{
 if (elementName is equal to “Cos”)
 {
 create an object for URL reference objects;
 }
}
-(void) parser:(NSXMLParser *)parser foundCharacters:(NSString *)string
{
 find and collect string;
}
-(void) parser:(NSXMLParser *)parser didEndElement:(NSString *)elementName
namespaceURI:(NSString *)namespaceURI qualifiedName:(NSString *)qName
{
 if(elementName is equal to “Name”)
 {
 store collected string in object;
 }
 else if (elementName is equal to “CID”)
 {
 store collected string in object;
 }
 if (elementName is equal to “Cos”)
 {
 add object to the array;
 }
}
-(void) parserDidEndDocument:(NSXMLParser *)parser
{
}

The tracking configuration files presented above in both museum-based and home-

based learning scenarios support single object tracking where the system can track only

one reference object. In order to perform multiple object tracking, the system requires a

 110

tracking configuration file that contains tracking information of all reference physical

objects so that the SDK can process all of the information at once.

5.4 Object Augmentation

The process of tracking objects and augmenting related content on top of the real scene

is described in this section. The tracking system starts working when the UI View is

loaded, the AR View appears on the screen and the configuration is done by the

MetaioSDK. The object augmentation module works recursively in order to get all

tracking values in the real environment and recognize a reference object. In this module,

mobile users can start tracking a targeted object seen on the AR View and the system

augments related media content of the tracked object and visualizes them on the view.

The code that performs object tracking or getting tracking values of objects in the real

scene is shown below.

std::vector<metaio::TrackingValues> poses = m_metaioSDK->getTrackingValues();

The system augments related content on top of the real scene by checking whether the

tracking finds and recognizes a reference object in the environment; then the system

displays relevant content of the tracked object on the screen. This process can be done

by getting the COSName of the tracked object and reading through the array of

geometries for the related content that are visible to mobile users. The following

pseucode performs object augmentation that visualizes billboards containing text on top

of the tracked reference object.

if(found an object)
{
 create a sting of COS name from found object;
 read prepared object from array
 {
 if COS Name is equal to COS Name of the object
 {
 add object to the billboard group;
 set coordinateSystemID of the object;
 set visibility to true;
 break;
 }
 }
}

 111

5.5 Service Request and Response

The content acquisition process in the SOMARA application is applied in both

museum-based and home-based learning activity scenarios. Associated content of

reference objects can be requested from participating open providers through the new

SOMARA web service framework. The following is the code for sending service

requests and receiving responses that can be in XML or JSON documents in both

scenarios.

5.5.1 Museum-based learning scenario

Museum-based learning offers mobile users a module for requesting associated content

of a targeted object when the user touches a button visualized on the screen. The AR

View detects interaction from the mobile user and then performs a content request. The

following is the pseucode for detecting touch by picking up selected geometries and

checking whether the touched object is a service request one. The system performs

content configuration in order to fetch the prepared URL and parameters, which is the

API of the participating service provider, which could also be the museum itself

exposing its collections via a web service API.

- (void) touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
{
 get interaction on screen;
 get location of the touch object;
 get geometry from location in ViewportCoordinates;
 if(found geometry)
 {
 search touched geometry in the moreDetialsBoardArray
 {
 if(cosName in object is equal to “null”)
 {
 break;
 }
 if(selected geometry is moreDetailsObject)
 {
 identify associated museum content configuration file;
 set NSData of associated museum content configuration file;
 create an object of ReferenceObjectIDParser;
 create an array of URL reference objects;
 call parseXMLFile in ReferenceObjectIDParser;
 search object in the array
 {
 if(cName is equal to “null”)

 112

 {
 break;
 }
 else if (cName is equal to the cosName of selected
 geometry)
 {
 connect web service by sending cid in the targeted
 object;
 }
 }
 break;
 }
 }
 }

This module requires the content configuration file presented below. The content

configuration file contains APIs of service providers along with parameters in URL

format that are read from the file and sent back to the module.

<?xml version="1.0" encoding="UTF-8"?>
<Contentgroup>
 <Cos>
 <Name>cos1</Name>
 <CID>http://www.vam.ac.uk/api/json/museumobject/?q=tea</CID>
 </Cos>
 <Cos>
 <Name>cos2</Name>

<CID>http://www.sierraleoneheritage.com/api/search_service/fetch_item/coid/220
0/format/xml</CID>

 </Cos>
 <Cos>
 <Name>null</Name>
 </Cos>
</Contentgroup>
	

The XML file above is sent to the XMLParser, which is ReferenceObjectIDParser. The

ReferenceObjectIDParser is shown above in Section 5.3.2. The returned data are stored

in an array and the prepared URL, which is the service API and parameters of the

selected object, is retrieved and sent to the module in order to request associated content

through the web service framework. The following is the web service connection

module that sends a request and receives a response in JSON format. The response

contains associated content that is transformed into geometries or objects and visualized

on the screen in the AR environment.

 113

- (void)connectWebservice:(NSString*)cid
{
 identify URL string to NSURL;
 create URL request with URL string;
 set TimoutInterval;
 set HTTP method to “GET”
 create NSOperationQueue object;
 send URL request
 if(receive response)
 {
 set JSON object with received data;
 if (JSON object is NSDictionary class)
 {
 set JSON object to NSDictionary class;
 call function for building geometries of received data;
 }
 }
}

5.5.2 Home-based museum learning scenario

All of the content visualized in the home-based learning is requested from participating

content providers after the system track and recognition of trigger images. The web

service connection and service request is performed in the AR View where the system

gets tracking values of an object in the real scene and recognizes the reference objects.

If there is no related content stored in the array, the system sends a request to the

participating providers in order to acquire associated content of the recognized object.

The pseudocode below is the web service request in the home-based museum learning.

if(cosName in object is equal to string “firstobject”)
{
 connect web service by sending cos name of the tracked object;
 set cos name of first object in array of content to “serviceObject”;
 break;
}

The web service connection module in the code is called connectWebServices and the

CosName of the tracked image is sent to the module in order to send a request for

associated content of a tracked object.

- (void)connectWebServices:(NSString *)cosName
{
 create an object of XMLMuseumContentParser;
 create an object of URL reference object;
 search URL reference object in reference object array

 114

 {
 if(cName in the object is equal to “null”
 {
 break;
 }
 else if (cName in the object is equal to string cosName)
 {
 if(cid in the object is equal to string “null”)
 {
 create an object of MuseumContentElement
 set cName in the object to cosName;
 set elementName to “null”;
 set data to “null”;
 add object to array of content;
 }
 else
 {
 set cid of the object to URL string;
 identify URL string to NSURL;
 create URL request with URL string;
 set TimoutInterval;
 set HTTP method to “GET”
 create NSOperationQueue object;
 send URL request;
 if(received response)
 {
 call and send received data to function parseXMLfile in
 MuseumContentParser;
 }
 }
 }
 }
}

5.5.3 XMLParser

Open service providers return content in both XML and JSON document formats. In the

home-based learning scenario, the selected document, which is the outcome of a service

request, is in XML format and it requires the XMLParser in order to extract data from

the response document. The following is the functions in XMLParser class that reads

through the XML document, fetches the requested data in the document and returns

them to the main module.

-(NSMutableArray *)parseXMLFile:(NSData *)xmlData
{
 initial NSXMLParser with received XML document
 create array object for content;

 115

 set Delegate for parser;
 parse XML document;
 return array;
}
-(void)parserDidStartDocument:(NSXMLParser *)parser
{
}
-(void)parser:(NSXMLParser *)parser didStartElement:(NSString *)elementName
namespaceURI:(NSString *)namespaceURI qualifiedName:(NSString *)qName
attributes:(NSDictionary *)attributeDict
{
 if(elementName is equal to “Object”)
 {
 store elementName;
 }
 else if(elementName is equal to “Description”)
 {
 store elementName;
 }
 else if(elementName is equal to “media”)
 {
 store elementName;
 }
 else if(elementName is equal to “museum”)
 {
 store elementName;
 }
}
-(void) parser:(NSXMLParser *)parser foundCharacters:(NSString *)string
{
 if(elementName is equal to “Object”)
 {
 collect string;
 }
 else if(elementName is equal to “Description”)
 {
 collect string;
 }
 else if(elementName is equal to “media”)
 {
 collect string;
 }
 else if(elementName is equal to “museum”)
 {
 collect string;
 }
}
-(void) parser:(NSXMLParser *)parser didEndElement:(NSString *)elementName
namespaceURI:(NSString *)namespaceURI qualifiedName:(NSString *)qName
{

 116

 if(elementName is equal to “Object”)
 {
 create object for content;
 store elementName in object;
 store collected string in object
 add object to array;
 }
 else if(elementName is equal to “Description”)
 {
 create object for content;
 store elementName in object;
 store collected sting in object
 add object to array;
 }
 else if(elementName is equal to “media”)
 {
 create object for content;
 store elementName in object;
 store collected sting in object
 add object to array;
 }
 else if (elementName is equal to “museum”)
 {
 create object for content;
 store elementName in object;
 store collected sting in object
 add object to array;
 }
}
-(void) parserDidEndDocument:(NSXMLParser *)parse
{
 create object for content;
 store “null” in object;
 add object to array;
}

5.5.4 NSJSONSerialization
	

The system also has a module that de-serializes JSON documents from participating

service providers. In the museum-based learning scenario, the acquired document from

the Victoria and Albert Museum is in JSON format and is read through by the

pseudocode shown below.

-(void) createDownloadedDataContent:(NSDictionary *)data
{
 get NSDictionary data in “record”;
 read data in each record
 {
 get NSDictionary data in “fields”;

 117

 create an object of content;
 get object number data in “object_number”;
 get primary image ID data in “primary_image_id”;
 create URL string from primary image ID;
 set URL sting to NSURL;
 get image data from URL string;
 create image object from image data;
 add image object to array;
 }
}

The structure of JSON documents that are the outcome of each service API is totally

different and developers need specifically to create a de-serialization module for the

selected service API. 	

5.6 Third Party Service Request

In the process of content acquisition, there can be content that is the outcome of service

APIs such as the source of the cultural object or museum name. For example, the

museum name can be used to acquire location (latitude, longitude) of the place as well

as a map that shows the position of the museum. This content can be requested from a

third party such as Google Maps API by sending a request composed of the name of the

service, required parameters and user’s key to the provider. Figure 5.5 presents the UI

View that shows a map image of a selected place processed by Google Maps API.

 118

 Figure 5.5 The UI View showing a Google Map image

The pseudocode below performs fetching of a selected name on the table view that

shows a list of museums or places related to preferred objects saved in the database. The

location of a selected name is fetched from the database and is used to create a URL

request that is sent to the Google Map Service. A response from the service is passed

through to the UIView in Figure 5.5 for showing on the screen.

-(void)tableView:(UITableView *)tableView
accessoryButtonTappedForRowWithIndexPath:(NSIndexPath *)indexPath
{
 set fetchedResultsController to selected object;
 get content in object;
 get value from key “location”
 get value from key “latitude”;
 get value from key “longitude”;
 create GoogleMap URL string from fetched latitude and longitude;
 set URL string to NSURL;
 set URL request to NSURL;
 set TimeoutInterval to 30.0;
 set HTTPMethod to “GET”;
 set NSOperationQueue object;
 create web service connection;
 if(received data)
 {
 create image object of acquired data;
 create GoogleMapView object;
 set acquired image to GoogleMapView object;

 119

 present googleMap View;
 }
}

The pseudocode below shows the process of sending a request for the location (latitude,

longitude) to the Google Map provider by using Google Place API. The obtained

location is stored in the database and used to request a map of the selected place.

-(void)getLocation:(NSString *)museum
{
 create URL string from acquired museum name;
 create NSMutableString from URL string;
 create NSURL from NSMutableString;
 create URL request from NSURL;
 set TimeoutInterval to 30.0;
 set HTTPMethod to “GET”;
 create object of NSOperationQueue;
 create web service connection
 if(received data)
 {
 create JSONobject from received data;
 if (JSON object class is NSDictionary class)
 {

 get data from key “results”;
 get data from key “geometry”;
 get data from key “location”;
 get data from key “lat”;
 get data from key “lng”;
 add acquired locations to array;
 }
 }
}

5.7 Interaction and Object Selection

Mobile users are able to interact with active content on their mobile’s screen, such as

selecting preferred content on the AR View that can be saved into the database and

revealed in the AR Browser. The module named touchesBegan() receives users’

interaction or touching on the AR View so that the system gets the position of a touched

object in the AR View. After that, the system gets the geometry on the touched location

and compares it to the media content geometries in the library. The pseudocode in

section 5.5.1 searches if the touched geometry is the MoreDetail object. The system

then sends a web service request to the participating content provider for associated

content of the tracked object. The URL of the provider is stored in the

 120

AssociatedMuseumContent.xml file and this file has to be read through by an

XMLParser function called ReferenceObjectIDParser in order to extract the URL or

service API of each targeted object. Users are able to select other active geometries on

the AR View in order to create personal AR environments by saving the selected

content into the database where the preferred content can be retrieved and revealed in

other situations by tracking a trigger image. The following is the code in the

touchesBegan() where the selected geometry is checked to see if it is active media

content on the AR View.

- (void) touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
{
 get interaction on screen;
 get location of the touch object;
 get geometry from location in ViewportCoordinates;
 search touched geometry in the array of content
 {
 if(found touched geometry in the array)
 {
 add selected geometry in the array of selected object;
 }
 }
}

5.8 Saving Selected Content

Mobile users are able to save preferred content that has been selected in the AR View

by touching the Save button; the system shows a dialogue box asking the user to type in

the name of their preference and then save the selected media content into the database.

The following is the code for setting up the alert view containing buttons and a text

field.

- (IBAction)saveSelectedGeometires:(id)sender
{
 MuseumObjects *object = [[MuseumObjects alloc]init];

object.cosName = @"null";
[selectedContent addObject:object];
 create AlertView object;
 identify messages and titles to objects on the AlertView;
 set AlertViewStyle;
 set TextField index;
 set KeyboardType;
 show AlertView;

}

 121

The code below is to show the alertView in order to allow users either to save their preferred
media content into the database or to cancel the saving process.

-(void) alertView:(UIAlertView *)alertView clickedButtonAtIndex:
(NSInteger)buttonIndex
{
 get index of the clicked button;
 if(button title is “Cancel”)
 {
 create new array object;
 }
 else if(button title is “OK”)
 {
 get text from TextField;
 save selected content and text into the database;
 }
}

After touching the OK button, the module sends the preference name to the

saveToCoreDataDB module that saves the selected media content into the object-base

database. The following is the code in the saveToCoreDataDB module called by the

alertView() for setting up and working with the database.

-(void)saveToCoreDataDB:(NSString *)preferrenceName
{

 create new object for entity named “PreferredObjects”;
 if (found new object)
 {
 add selected COS name to object;
 add preferenceName to object;
 add date to object;
 add source of content to object;
 for (read selected object in array)
 {
 if (COS name in object is equal to “null”)
 {
 break;
 }
 if (object type in object is equal to “media”)
 {
 create new object for entity named “ImageBillboard”;
 add imagePath to object;
 add image to object;
 add object to PreferredObjects object;
 }
 else if (object type in object is equal to “object” or “description”)
 {
 create new object for entity named “TextBillboard”;
 add text to object;

 122

 add billboard type to object;
 add object to PreferredObjects object;
 }
 else if (object type in object is equal to “museum”)
 {
 preferredObjects.museum = savedObjects.data;
 add museum data to PreferredObjects object;
 }
 }
 save PreferredObjects object;
 }
 }
}

Figure 5.6 illustrates the structure of the Core Data that is the object-based databased

operated by XCode. The Data Model contains entities used to store the details of

selected content.

 Figure 5.6 The Data Model of the application

The following is the class of the designed Core Data model representing the database

for storing preferred content. The class is composed of components in the entity and

subclasses that are used in order to store data in the database.

PreferredObjects.h

#import <Foundation/Foundation.h>
#import <CoreData/CoreData.h>

 123

@class GeoLocation, ImageBillboard, Model, TextBillboard, Video;
@interface PreferredObjects : NSManagedObject
@property (nonatomic, retain) NSString * cosname;
@property (nonatomic, retain) NSDate * datecreate;
@property (nonatomic, retain) NSNumber * id;
@property (nonatomic, retain) NSString * museum;
@property (nonatomic, retain) NSString * preferencename;
@property (nonatomic, retain) NSString * source;
@property (nonatomic, retain) NSSet *image;
@property (nonatomic, retain) GeoLocation *location;
@property (nonatomic, retain) NSSet *model;
@property (nonatomic, retain) NSSet *text;
@property (nonatomic, retain) NSSet *video;
@end
@interface PreferredObjects (CoreDataGeneratedAccessors)
- (void)addImageObject:(ImageBillboard *)value;
- (void)removeImageObject:(ImageBillboard *)value;
- (void)addImage:(NSSet *)values;
- (void)removeImage:(NSSet *)values;
- (void)addModelObject:(Model *)value;
- (void)removeModelObject:(Model *)value;
- (void)addModel:(NSSet *)values;
- (void)removeModel:(NSSet *)values;
- (void)addTextObject:(TextBillboard *)value;
- (void)removeTextObject:(TextBillboard *)value;
- (void)addText:(NSSet *)values;
- (void)removeText:(NSSet *)values;
- (void)addVideoObject:(Video *)value;
- (void)removeVideoObject:(Video *)value;
- (void)addVideo:(NSSet *)values;
- (void)removeVideo:(NSSet *)values;
@end

PreferredObjects.m

#import "PreferredObjects.h"
#import "GeoLocation.h"
#import "ImageBillboard.h"
#import "Model.h"
#import "TextBillboard.h"
#import "Video.h"
@implementation PreferredObjects
@dynamic cosname;
@dynamic datecreate;
@dynamic id;
@dynamic museum;
@dynamic preferencename;
@dynamic source;
@dynamic image;
@dynamic location;
@dynamic model;
@dynamic text;
@dynamic video;
@end

 124

5.9 Taking Photos and Photogrammetry Service Request

One of the features in museum-based learning scenarios applied through SOMARA is a

photogrammetry service request that demonstrates the proposed content acquisition over

SOA. The photogrammetry service request requires images of a targeted object that is

sent through a web service framework to the service provider. In this example

SOMARA application, there is a View Controller used to support a camera view that

captures images of a preferred object in the museum environment. Figure 5.7 presents

the photogrammetry View Controller in museum-based learning where it offers a

feature for mobile users to take photographs of a targeted object and the photographs

taken are shown on the View Controller.

 Figure 5.7 A View Controller supporting a Camera View

The View Controller contains a Collection View holding a Collection View Cell. The

Collection View Cell is used to present a background image, which is a captured image

of the targeted object. Figure 5.8 illustrates the Collection View Cell that has an Image

View on the top in order to show a captured image on the Collection View.

 125

 Figure 5.8 The Collection View Cell

On the View Controller, there is also a Camera View installed on the top in order to

operate the embedded camera and present the current scene on the view so that mobile

users can take photographs that are shown on the View Controller. Figure 5.9 presents

the Camera View on top of the View Controller.

 Figure 5.9 The Camera View

 126

The camera view shows a real scene and is used to take photographs of a targeted object

continuously after touching the Start button. Touching the Stop button ends taking

photographs and shows all the taken photographs on the screen. The code below

presents the Camera View after selecting Take Photos. The Camera View displays on

the screen and allows users to take photographs of a targeted object.

- (IBAction)takePhotos:(id)sender
{
 show ImagePicker for camera;
}
- (void)showImagePickerForSourceType:(UIImagePickerControllerSourceType)source
Type
{
 create object of UIImagePickerController;
 set presentation style to object;
 set source type to object;
 set delegate to object;
 if(source type is camera)
 {
 set show camera controls
 load view named “CameraView”;
 set cameraView frame to imagePickerController object;
 }
 present imagePickerController object;
}

After selecting Start on the Camera View, the system takes photographs of the object.

Each photograph automatically taken is stored in an array that can be used to display on

the Collection View or sent as a request to the photogrammetry service provider.

- (void)imagePickerController:(UIImagePickerController *)picker
didFinishPickingMediaWithInfo:(NSDictionary *)info
{
 set taken value to image object;
 add image object to array
 if(cameTimer)
 {
 return;
 }
 update the view of taken photos;
}

5.10 AR Browser

AR Browser is used to present personal AR environments as well as an obtained 3D

model of a preferred object from a photogrammetry service. The personal AR

 127

environments are composed of preferred objects that are geometries visualized on the

AR View. In the museum-based learning scenario, mobile users are able to select and

save preferred content on the screen and use the AR Browser for revealing saved

content at home or in other situations. In this project, AR Browser is a sub-view

implemented on the UITabBar Controller used to contain and organize sub-views,

which can be selected and viewed by mobile users. Figure 5.10 shows the UITabBar

Controller that controls the tab bar of a UI View.

 Figure 5.10 The UITabBar Controller of the Table views

The code below shows the UITabBar Controller class and its sub-views. Each sub-view

is organized by UINavigation Controller in order to present each view by clicking a tab

on the tab-bar as shown in the code below.

- (void)viewDidLoad
{
 load view;
 create tabBarController object;
 add tabBarController view to current view;
 create TableView object for preference names;
 create UINavigationController object with TableView;
 create TableView object for geolocations;
 create UINavigationController object with TableView;
 set all created objects to tabBarController object;
}

 128

One of the sub-views in the UINavigation Controller is a view for revealing personal

AR environments created by mobile users. The view is implemented by UITableView

Controller that fetches data stored in the CoreData or database and presents it on the

Table View so that mobile users can select each preference and view selected content in

a real scene. The following is the code of a sub-view utilising UITableView Contoller

and performing data retrieving, entity control and data presentation.

-(NSManagedObjectModel *)manageObjectModel
{
 if (found the object model)
 {
 return the object model;
 }
 create URL path for resource;
 initialize URL path to the object model;
 return object model;
}
-(NSPersistentStoreCoordinator *)persistentStoreCoordinator
{
 if (found the persistentStoreCoordinator)
 {
 return persistentStoreCoordinator;
 }
 create a string to store path to the database file;
 create URL from the store path string;
 identify objects and keys on the database;
 initialize presistentStoreCoordinator with the object model;
 return persistentStoreCoordinator;
}
-(NSFetchedResultsController *)fetchedResultsController
{
 if (found fetchedResultsController)
 {
 return fetchedResultsController;
 }
 create fetch request object;
 identify entity “PreferredObjects” in object context;
 set entity to fetch request object;
 set fetch batch size to 20;
 initialize sort descriptor object with key “datecreate”;
 initialize array object with sort descriptor;
 set sort descriptor to fetch request;
 initialize FetchedResults Controller with fetch request in object context;
 set delegate to FetchedResultsController;
 return fetchedResultsController;
}
-(void)controllerWillChangeContent:(NSFetchedResultsController *)controller
{

 129

 update Table View;
}
-(void)controllerDidChangeContent:(NSFetchedResultsController *)controller
{
 end updating Table View;
}
- (void)viewDidLoad
{
 set persistentStoreCoordinator;
 create context object;
 set PersistentStoreCoordinator to context object;
}
- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView
{
 count number of sections in Table View;
 return number;
}
- (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:
 (NSInteger)section
{
 fetch object in each section;
 return number of objects;
}
- (UITableViewCell *)tableView:(UITableView *)tableView cellForRowAtIndexPath:
 (NSIndexPath *)indexPath
{
 identify cell idenifier to “ContentCell”;
 dequeue cell to Table View cell;
 if (cell is empty)
 {
 initialize cell with default style;
 }
 configure cell at index path;
 return cell;
}
-(void)configureCell:(UITableViewCell *)cell atIndexPath:(NSIndexPath *)indexPath
{
 fetch object at index path;
 set text in textLabel from key “preferencename”;
}
-(void)tableView:(UITableView *)tableView accessoryButtonTappedForRow
 WithIndexPath:(NSIndexPath *)indexPath
{
 fetch object at selected row;
 load PersonalARViewController;
 set selected content to PersonalARViewController;
 present PersonalARViewController;
 }
}
@end

 130

The TableView lists all preference names of personal AR environments stored in the

database and allows mobile users to select one in order to view the saved media content

in the AR environment by tracking an image referred to a targeted cultural object. The

AR Browser view of the application supporting content utilization is presented in Figure

5.10.

Another sub-view in the UINavigation Controller is a Table View showing a list of

museums or places of selected objects fetched from the database. This Table View

utilizes a Google Map API called Static Map for processing and providing a map image

of the selected museum or place. The service request, URL, parameters and UI View

can be seen in Section 5.6.

5.11 Summary

This chapter explains the development of the SOMARA-based mobile AR application

using iOS platform and XCode as an example or reference application. The

development is composed of front-end systems including views and interfaces, and

back-end systems including a web service framework, AR tasks and interoperability

tasks. The application is applied in MLAs composed of museum-based and home-based

learning scenarios that require different functions.

 131

Chapter VI

6 System and Unit Testing

This chapter describes system testing and evaluation of the SOMARA-based novel

mobile AR application that performs AR tasks, content acquisition and content

utilization. This example SOMARA application is a mobile AR client running on an

iPad and it is developed on a web service framework exploiting service orientation,

which requires mobile or wireless connection, in order to access open services and

accomplish interoperability tasks. The mobile AR client is developed in MLA scenarios

comprising museum-based and home-based learning. These scenarios require different

tracking techniques and content acquisition schemes in order to encourage flexible

museum exhibition through AR. The application has a mobile interface where mobile

users are able to perform object tracking, visualize content and interact with the system.

The web service framework is a back-end system that creates connections and accesses

participating service providers (e.g. third party or the application’s parent museum) by

implementing service APIs. Example service APIs used in this mobile AR client in

order to support MLAs and provide associated content to the sample reference objects

are the Victoria and Albert Museum API and the Sierra Leone Heritage API. Figure 6.1

shows the main page of the SOMARA application on which mobile users are able to

select museum learning or choose supporting functions in the system.

 132

 Figure 6.1 The main application page running on an iPad

The main page contains buttons including Museum-based AR, Home-based AR, AR

Browser and Start Photogrammetry. The Museum-based AR is selected in order to

perform museum-based learning where mobile users can perform object tracking,

augmentation and can send web service requests for associated media content inside the

museum. The following is a museum-based learning scenario of the novel mobile AR

application that supports physical object tracking, content visualization and content

acquisition.

6.1 Museum-based Learning Scenario

In this scenario, the system performs physical object tracking that requires cultural

reference objects and pre-defined related media content stored in the library. Figure 6.2

presents the AR View of museum-based learning.

 133

 Figure 6.2 The AR View of museum-based learning scenario

When the system tracks and recognizes an object in the AR view, the system visualizes

related media content of a targeted object. The following is an example of the outcome

of object tracking in a museum-based learning scenario and the process of content

acquisition that allows mobile users to send a request for associated media content of a

targeted object.

6.1.1 Object tracking

In museum-based learning scenarios, object tracking can be done in a museum that

exhibits cultural artifacts. Mobile users are able to track a reference object in order to

view related media content visualized on the real scene. Figure 6.3 shows a tracked

targeted object and its related content stored in the library of the system.

 134

 Figure 6.3 The related media content of a targeted object

Media content visualized in the AR view are text, images and a 3D model. Mobile users

are able to acquire associated content of a targeted object from participating service

providers by touching the More Details geometry; the system then sends a web service

request to the open provider. The obtained content is visualized on the screen instead of

the active content. Figure 6.4 presents the content acquisition of the associated content

of a sample object from the Victoria and Albert Museum.

 135

 Figure 6.4 The obtained associated content of a tracked physical object

The associated content or images visualized on the AR scene in Figure 6.4 is the

response from the Victoria and Albert Museum API that can be in the form of either a

JSON or an XML document. Figure 6.5 shows the web service response of the Victoria

and Albert API in JSON format whereby the required data are extracted and

transformed into geometries that can be visualized and seen on the AR view.

 136

 Figure 6.5 The JSON response from the Victoria and Albert Museum API

The service API of each reference object is stored in a content configuration file in

XML format. The content configuration file is sent to XMLParser for extracting data.

Figure 6.6 shows the service APIs or URL of participating service providers related to

each reference object.

 Figure 6.6 The service APIs in a content configuration file

The media content of reference objects in a museum-based leaning scenario can be

requested from an open server as well as storing media content in the library in advance.

If the museum has digital collections or digital content stored in the server providing

 137

open services, the mobile AR client is then able to obtain related content of reference

objects though a web service framework. Figure 6.7 presents the AR view that

visualises acquired related content of a tracked physical object.

 Figure 6.7 The obtained related content of a tracked physical object

The response document from the Victoria and Albert Museum API containing content

visualised in Figure 6.8 is in JSON format; it is read through and the data extracted. The

obtained data are transformed to geometries and stored in the library. Figure 6.8

illustrates the web service response document in JSON format.

 138

 Figure 6.8 The web service response document in JSON format

The associated objects of the targeted object can be requested from the Victoria and

Albert Museum API by touching the active image on the AR View. The system then

sends a request to the provider along with a parameter that is the name of the cultural

object. A response is sent back in JSON document format. Figure 6.9 presents an image

of associated objects of the targeted sample object. The JSON response document of an

associated content request can be seen in Figure 6.5.

 139

 Figure 6.9 The associated content of a targeted sample object

6.2 Home-based Learning Scenario

A home-based learning scenario is another scenario that supports MLAs, one that can

be done at any time and anywhere outside the museum. Home-based learning requires

images of preferred objects instead of physical objects for the system to perform

marker-less tracking and augment associated content requested from open providers. In

this home-based learning scenario, the system accesses and utilizes content from the

Sierra Leone Heritage API [98]. Figure 6.10 shows the AR view of a home-based

learning scenario.

 140

 Figure 6.10 The AR view of home-based museum learning

When the system start loading the AR view, it also starts extracting data from a content

configuration file in XML format composed of URLs or service APIs of participating

content providers. Figure 6.11 presents extracted data from an XML file processed by

XMLParser.

 Figure 6.11 The URLs of participating content providers

 141

6.2.1 Object tracking

Mobile users can now track a trigger image of a physical object, the system recognizes

the tracked image and sends a request for associated content through the web service

framework to the Sierra Leone Heritage API. Figure 6.12 presents the trigger image of a

targeted physical object that the system tracks, automatically sending a web service

request for associated content to the service provider.

 Figure 6.12 The related content of a trigger image representing a targeted cultural
object

Figure 6.13 shows the related content of a trigger image composed of images, text and a

3D model of the physical cultural object that is added into the AR View in order to

enhance the AR environment and increase more understanding about the targeted

object.

 142

 Figure 6.13 The tracked trigger image

After sending a request, the system receives a web service response in either XML or

JSON format. The response is read through in order to extract required content that is

visualized on the screen. Figure 6.14 shows the web service response in XML format

and received content read through by XMLParser.

 143

 Figure 6.14 The web service response and acquired content

The acquired content is stored in the library and the geometries of this content are

created and visualized on the AR View in order to augment a trigger image of a real

cultural object.

6.3 AR Environment Personalization

Mobile users are able to select active content on the screen and then save preferred

content to a database. This can be done in both museum-based and home-based learning

scenarios. After selecting preferred content, mobile users can touch the Save button and

the Alert View appears on the screen asking the user to fill in a preference name.

Touching the Save button saves selected content to the database. Figure 6.15 shows the

Alert View after selecting content in a museum-based learning scenario.

 144

 Figure 6.15 Selected content and the Alert View asking for a preference name

Media content on the AR View in home-based learning scenarios can be selected and

saved just as in the museum-based learning scenario. Figure 6.16 presents the home-

based learning AR environment and the Alert View asking for a preference name for the

personal AR environment.

 145

 Figure 6.16 A screen shows selected content and preference name

6.4 AR Browser

The AR browser is used to present saved AR environments stored in the database by

listing preference names and museum names of preferred objects. Mobile users are able

to choose a preference name in order to reveal its AR environment or content by

tracking a trigger image. Figure 6.17 shows the Table View listing preference names of

saved personal AR environments.

 146

 Figure 6.17 User's preference names

After selecting a preference name, the system loads the AR view and creates geometries

of the saved content in advance. When a trigger image is tracked, the system reveals the

associated content as a personal AR environment on the real scene. Figure 6.18

illustrates the saved content in the database of a preferred object that is visualized on the

screen. This content has been saved in a home-based learning scenario.

 147

 Figure 6.18 A personal AR environment

Figure 6.19 shows the AR Browser presenting saved content in a personal AR

environment by augmenting a trigger image of the targeted physical object. This content

is obtained in a museum-based learning scenario and can be revealed in other situations

such as at home or school.

 148

 Figure 6.19 Saved content acquired from a museum-based learning scenario

The AR Browser also has a list of the names of museums that have been retrieved from

the database. It allows mobile users to request a static map of the area where the

museum is located. In this browser, Google Maps APIs, a third party, participates in the

content acquisition process. Figure 6.20 shows the list of museums stored in the

database. The list shows the name of the museum that owns the preferred objects and

from whom mobile users have saved content.

 149

 Figure 6.20 The list of museums

The map of the area around the selected museum, supported by Google Maps APIs, is

revealed on the screen as an image. Mobile users can also see the position of the

museum or the origin of the preferred objects and other places nearby. Figure 6.21

presents the map of the selected British Museum that represents the saved content from

a home-based learning scenario and the Sierra Leone Heritage API. The saved content

belongs to a preferred object stored in the British Museum.

 150

 Figure 6.21 A map of the area around the British Museum

The system creates a service request in URL format that is the service API of Google

Maps Web Service, which is called Google Static Maps API. The URL request is

composed of the service API, parameters and user ID. A completed service request is

transferred through the web service framework to the service provider. Figure 6.22

presents a service request for Google Maps Web Service for obtaining a static image

presenting the position or the origin of a targeted object.

 Figure 6.22 A service request in URL format of Google Static Maps API

 151

Figure 6.23 presents a map relating to a targeted object in the Victoria and Albert

Museum that provides content in a museum-based learning scenario. The map shows

the location of the origin of the targeted object that is stored in the Victoria and Albert

Museum.

 Figure 6.23 The map presenting the source of a preferred object stored in the Victoria
and Albert Museum

6.5 Photogrammetry Service

An example content acquisition function is a photogrammetry service request that can

be performed in a museum-based scenario. The SOMARA-based mobile AR

application has a function to take photographs of a preferred object and send a request

to a photogrammetry service provider. Figure 6.24 presents the Camera View that

automatically takes photographs of a targeted object. Mobile users are able to move a

mobile device around the object in order to capture photographs.

 152

 Figure 6.24 The Camera View

After the user touches the Start button, the system starts taking photographs of the

sample object. The camera has to be moved around the object so that the system can

take photographs from every angle. Figure 6.25 shows photographs taken in the

Collection View. The Collection View appears after taking photographs by touching the

Done button. Touching the Request Photogrammetry button sends a request through a

web service framework to an open photogrammetry service.

 153

 Figure 6.25 The Collection View displaying photographs taken of a sample object

6.6 Summary

This chapter illustrates a working example SOMARA-based mobile AR application

running on a mobile device, which is an iPad. The application supports both museum-

based and home-based learning scenarios that require different tracking techniques.

Both scenarios acquire content from participating open service providers including the

Victoria and Albert Museum API and the Sierra Leone Heritage API in order to

augment a targeted object that could be a physical object in museum-based learning or a

trigger image representing a physical object in a home-based learning scenario.

 154

Chapter VII

7 Conclusion

A unique service oriented mobile augmented reality architecture (SOMARA) has been

designed and developed as both a conceptual [21][23], prototype [22][46], example or

reference implementation (chapter 5 and 6). The reference application is developed

based on SOMARA that is an implementation of SOA on a mobile AR platform in

order to create an open mobile AR architecture. The SOMARA application performs

AR tasks as well as interoperability tasks in order to demonstrate content acquisition

and content utilization through a web service framework. This chapter concludes the

outcome of the research process that presents the accomplishment of developing

SOMARA and implementing a mobile AR application on an open platform. The

development also indicates its obvious limitations; it could be improved in order to

create a more complete SOMARA-based mobile AR application as well as prepare an

efficient open mobile AR framework for application to other scenarios.

7.1 The Research Accomplishment

The proposed SOMARA-based mobile AR application is the implementation of

SOMARA in MLA scenarios as a proof of concepts and prototypes. The following are

the research accomplishment that fulfills contribution to knowledge explained in

chapter 1.

7.1.1 SOMARA

The designed SOMARA is composed of a mobile AR framework based on SOA that

support an open mobile AR architecture. A web service framework is applied into the

architecture as a back-end system to the mobile AR client in order to access open

service providers such as third party or local service providers. The mobile AR client

 155

sends requests and receive responses though the web service framework. Acquired

media content is visualized in AR environments.

7.1.2 The SOMARA-based mobile AR framework and application

The proposed SOMARA-based mobile AR application is able to perform AR tasks as

well as interoperability tasks that require service APIs of participating service providers

demonstrated through the inclusion of third party content from the Victoria and Albert

Museum API, the Sierra Leone Heritage API and Google Maps API. These APIs offer

media content for the application or mobile AR client applied in MLA scenarios

comprising museum-based and home-based learning.

7.1.3 The Metaio AR SDK

The mobile AR client implements the Metaio AR SDK to perform AR tasks and use its

physical object tracking function and content visualization to create multiple object

tracking. The mobile AR client enhances AR environments by visualizing rich media

contents augmented from different reference objects.

7.1.4 SOA-based content acquisition and utilization

The application supports content acquisition that is achieved through a web service

framework as a back-end system. The application obtains associated content from open

service providers and visualizes the acquired content on the screen. The application also

encourages content utilization that allows mobile users to create personal AR

environments from preferred content by selecting and saving it into the database that

can be retrieved and visualized in the AR Browser. These features demonstrate the

accomplishment of developing SOMARA and its application that contributes the

implementation of an open mobile AR architecture that effectively apply a web service

framework and existing valuable service APIs.

7.2 The Limitations and Problems

Developing a SOMARA-based mobile AR application requires many components that

work together to produce an effective mobile AR client. The application development

process has delivered some understanding and experiences in a mobile AR framework

and open architecture that encourage content acquisition and utilization. The following

are issues that have been found during the development process that can be improved to

 156

create a more sophisticated (or product oriented) SOMARA-based mobile AR

application.

7.2.1 Metaio AR SDK

The SOMARA-based mobile AR application uses Metaio AR SDK to perform AR tasks

including tracking, recognition and content visualization. Developing an open mobile

AR application using Metaio AR SDK has limited some features of the application. The

following are issues found in the development process that affect the outcome of the

application.

Object tracking

The object tracking function of Metaio AR SDK is able to perform single object

tracking, meaning that the system can track only one object and visualize one single

content item in an AR environment. Extending object tracking in a mobile AR

application using Metaio AR SDK required the tracking configuration process to be

redesigned in order to create multiple object tracking. Each single object can be

augmented by visualizing multiple related content superimposed on top of the tracked

object. A content configuration file is needed to specify each reference object with its

content. The content configuration file is in XML format and it requires an XMLParser

to read through and extract data out of the file. The created multiple object tracking can

track objects sequentially, which delivers different tracking experiences from multiple

object tracking in parallel. However, the Metaio AR SDK limits the number of objects

that can be tracked in an AR scene to one object, therefore it is possible to add more

reference objects and manage multiple content for each object sequentially. It is

possible to create a mobile AR application that performs multiple object tracking in

parallel, but this is beyond the scope of this thesis with the mataio SDK. However, one

mobile SDK that can be effectively implemented in this platform is Vuforia.

Content visualization

The obtained media content such as text and images are visualized on the AR view as

billboards or geometries and there are multiple content visualized on the view once an

object is tracked and augmented. The AR view on a mobile device such as an iPad has

limited space to display multiple content at the same time and it is quite difficult to

organize all of the related content overlaid on top of a tracked object on the AR view.

 157

Metaio AR SDK provides a content visualization function, but it restricts the number of

reference objects that are tracked in the same environment. The framework of the SDK

supports single content representation that can cause difficulty when it is applied to

multiple content visualization. The billboard geometries, including text and images,

cannot be placed on a specific location but are placed on the current position of the

camera, which is 0,0,0. The geometries are vertically aligned on the AR view by adding

them into a BillboardGroup, which is a feature provided by Metaio mobile AR SDK for

location-based AR.

7.2.2 Web service providers

The SOMARA-based mobile AR application uses third party service APIs including

Google Maps API, the Victoria and Albert Museum API and specifically designed APIs

including the Sierra Leone Heritage API as examples from which the mobile AR client

acquires content. These APIs provide useful media content such as text and images and

can be effectively applied in mobile AR environments. In a home-based museum

learning scenario, mobile users are able to view museum content through AR

environments where 3D models of targeted objects can be visualized on their trigger

images. Displaying 3D models of cultural objects in AR environments usefully

enhances MLAs by supporting home-based learning that allows museum visitors to

perform MLAs in other situations through AR environments. SOMARA and the

SOMARA-based mobile AR application have a function to visualize 3D models on the

AR scene. None of the web service providers used in the novel mobile AR application

provide 3D models of cultural objects and the application is mainly restricted to text and

images from these providers. The application still needs a web service provider that

provides valuable media content, including 3D models for MLAs.

7.2.3 Photogrammetry service

One of the proposed content acquisition features supported by SOMARA is a

photogrammetry service that encourages mobile users to obtain a 3D model of a

preferred object in a museum-based learning scenario. Currently, there are many

existing photogrammetry applications available on many platforms such as stand-alone,

mobile or client-server. These applications are based on closed architectures and only

provide an application interface for users on their preferred platform. The SOMARA-

based mobile AR application requires an open photogrammetry service that offers an

 158

image-based reconstruction service to the mobile AR client that encourages content

acquisition over a mobile or wireless network. A final 3D model of the targeted object

can be visualized on the AR view in order to demonstrate a preferred cultural object in a

home-base learning scenario. The mobile AR client has a function to support a

photogrammetry service request but it still requires a web service-based

photogrammetry service to achieve the content acquisition and utilization in SOMARA.

7.3 Future Development

The SOMARA-based mobile AR application requires AR tasks to perform object

tracking, recognition and content visualization. Implementing a mobile AR SDK into

the application is a quick and convenient way to acquire AR tasks. All existing mobile

AR SDKs offer a free version that is relatively easy to obtain. The Metaio mobile AR

SDK used in the application has necessarily limited some features required in the

application development. Developing in-house AR tasks would be a best solution in this

framework in order to provide more suitable and flexible AR tasks to the application

and produce a proper and manageable outcome on the AR view.

The mobile AR client utilizes a Google Maps API in order to acquire a map image of a

selected place. The obtained map is a static map that can only be presented on the View.

There is also a Google Maps SDK that can be implemented into the mobile AR client in

order to present dynamic maps and locations of preferred cultural artifacts. The Google

Maps SDK can improve the functionality and usability of SOMARA and its application

by offering supporting features related to the addresses or locations of preferred objects.

The aim of developing SOMARA is to create an open architecture on a mobile AR

platform that is adaptable to many different scenarios. The SOMARA-based mobile AR

application in this research is applied in MLA scenarios that encourage content

acquisition and utilization in a mobile AR environment. SOMARA can be effectively

applied in other scenarios that require an open mobile AR framework in order to

augment objects and visualize media content in the real environment. One of the

proposed scenarios is a shopping environment where users can experience receiving

supporting information for shopping through open mobile AR environments. Content

acquisition and utilization techniques encourage users to receive more valuable media

content that can enhance shopping experiences. Users are able to use a mobile device to

track products in the shop and see related media content of a targeted product

 159

augmented and visualized on the screen. A web service framework will enable users to

acquire associated content of the product and create personal preferences that could be a

collection of preferred products and details offered by the shop itself or by a third party.

Another scenario that can be improved by implementing SOMARA is Mobile Learning

(ML). ML supports learning through mobile AR systems where students can learn from

media content visualized on a mobile device’s screen or AR environments. This

encourages learning activities that can be done on mobile AR platforms and outside the

classroom. The system allows students to request more valuable content in order to

enrich the AR learning environment as well as to interact with media content on the real

scene. These can improve students’ understanding of the topics they are learning.

 160

References

[1] “Europe in a changing world - Inclusive, innovative and reflective societies -
European Commission.” [Online]. Available:
https://ec.europa.eu/programmes/horizon2020/en/h2020-section/europe-
changing-world-inclusive-innovative-and-reflective-societies. [Accessed: 05-
Apr-2016].

[2] J. H. Christensen, “Using RESTful web-services and cloud computing to create
next generation mobile applications,” Proc. 24th ACM SIGPLAN Conf.
companion Object oriented Program. Syst. Lang. Appl., pp. 627–634, 2009.

[3] W.-T. Tsai, X. Sun, and J. Balasooriya, “Service-Oriented Cloud Computing
Architecture,” 2010 Seventh Int. Conf. Inf. Technol. New Gener., pp. 684–689,
2010.

[4] Ruby Annette, “A Service Broker Model for Cloud based Render Farm
Selection,” vol. 96, no. 24, pp. 11–14, 2014.

[5] X. Luo, “From Augmented Reality to Augmented Computing: A Look at Cloud-
Mobile Convergence,” 2009 Int. Symp. Ubiquitous Virtual Real., no. November
2007, pp. 29–32, Jul. 2009.

[6] “ArcGIS for Server | GIS Web Server Software | Web Map Server.” [Online].
Available: http://www.esri.com/software/arcgis/arcgisserver. [Accessed: 07-Jan-
2016].

[7] “Autodesk 123D Catch | Generate 3d model from photos.” [Online]. Available:
http://www.123dapp.com/catch. [Accessed: 16-Oct-2015].

[8] “Snapdragon Processors for Power and Efficiency | Qualcomm.” [Online].
Available: https://www.qualcomm.com/products/snapdragon/processors.
[Accessed: 09-Dec-2015].

[9] “The World’s Fastest Mobile Processors | NVIDIA Tegra|NVIDIA.” [Online].
Available: http://www.nvidia.com/object/tegra.html. [Accessed: 09-Dec-2015].

[10] “Sony Xperia Z5 Mobile review: Best mobile photo & video scores to date -
DxOMark.” [Online]. Available: http://www.dxomark.com/Mobiles/Sony-
Xperia-Z5-Mobile-review-Best-mobile-photo-video-scores-to-date. [Accessed:
09-Dec-2015].

[11] “Swift - Overview - Apple Developer.” [Online]. Available:
https://developer.apple.com/swift/. [Accessed: 09-Dec-2015].

[12] “Native, HTML5, or Hybrid: Understanding Your Mobile Application
Development Options - developer.force.com.” [Online]. Available:
https://developer.salesforce.com/page/Native,_HTML5,_or_Hybrid:_Understandi
ng_Your_Mobile_Application_Development_Options. [Accessed: 09-Dec-2015].

[13] “Next Generation Network: Are You Ready?” [Online]. Available: https://www-

 161

ssl.intel.com/content/www/uk/en/communications/next-generation-network-
architecture-infographic.html. [Accessed: 09-Dec-2015].

[14] T. D. Duplex, “[WHITE] Timing and Synchronization for LTE-TDD and LTE-
Advanced Mobile Networks,” pp. 1–9, 2013.

[15] T. Capin, K. Pulli, and T. Akenine-Möller, “The state of the art in mobile
graphics research,” IEEE Comput. Graph. Appl., vol. 28, no. 4, pp. 74–84, 2008.

[16] A. Henrysson and M. Ollila, “UMAR: Ubiquitous Mobile Augmented Reality,”
in Proceedings of the 3rd International Conference on Mobile and Ubiquitous
Multimedia, 2004, pp. 41–45.

[17] D. W. F. Van Krevelen and R. Poelman, “A Survey of Augmented Reality
Technologies , Applications and Limitations,” Int. J., vol. 9, no. 2, 2010.

[18] R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre,
“Recent advances in augmented reality,” Computer Graphics and Applications,
IEEE, vol. 21, no. 6. pp. 34–47, 2001.

[19] Y. Genc, S. Riedel, F. Souvannavong, C. Akinlar, and N. Navab, “Marker-less
Tracking for AR: A Learning-Based Approach,” in Proceedings of the 1st
International Symposium on Mixed and Augmented Reality, 2002, p. 295–.

[20] J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic,
“Augmented reality technologies, systems and applications,” Multimed. Tools
Appl., vol. 51, no. 1, pp. 341–377, Dec. 2010.

[21] S. Rattanarungrot, M. White, Z. Patoli, and T. Pascu, “The Application of
Augmented Reality for Reanimating Cultural Heritage,” in Virtual, Augmented
and Mixed Reality. Applications of Virtual and Augmented Reality SE - 8, vol.
8526, R. Shumaker and S. Lackey, Eds. Springer International Publishing, 2014,
pp. 85–95.

[22] S. Rattanarungrot and M. White, “A service-oriented mobile augmented reality
architecture for personalized museum environments,” Virtual Systems &
Multimedia (VSMM), 2014 International Conference on. pp. 277–284, 2014.

[23] S. Rattanarungrot, M. White, and P. Newbury, “A Mobile Service Oriented
Multiple Object Tracking Augmented Reality Architecture for Education and
Learning Experiences,” in International Conference on Mobile Learning 2014,
2014, pp. 327–331.

[24] F. Zhou, H. B.-L. Duh, and M. Billinghurst, “Trends in augmented reality
tracking, interaction and display: A review of ten years of ISMAR,” in Mixed
and Augmented Reality, 2008. ISMAR 2008. 7th IEEE/ACM International
Symposium on, 2008, pp. 193–202.

[25] R. Koch, K. Koeser, B. Streckel, and J.-F. Evers-Senne, “Markerless image-
based 3d tracking for real-time augmented reality applications,” in The 7th Int.
Workshop on Image analysis for multimedia interactive services, Montreux,
Switzerland, 2005.

[26] Springer, Recent trends of mobile collaborative augmented reality systems.

 162

Springer, 2011.

[27] G. Papagiannakis, G. Singh, and N. Magnenat-Thalmann, “A survey of mobile
and wireless technologies for augmented reality systems,” Comput. Animat.
Virtual Worlds, vol. 19, no. 1, pp. 3–22, 2008.

[28] M. Schlattmann, T. N. Nakorn, and R. Klein, “3D Interaction Techniques for 6
DOF Markerless Hand-Tracking,” J. or Proc. WSCG to Appear, 2009.

[29] M. White, P. Petridis, F. Liarokapis, and D. Pletinckx, “Multimodal Mixed
Reality Interfaces for Visualizing Digital Heritage,” no. April, 2007.

[30] G. Alonso and F. Casati, “Service-Oriented Architecture (SOA) and Web
Services,” 21st Int. Conf. Data Eng. ICDE05, no. Icde, pp. 1147–1147, 2005.

[31] “Service-Oriented Architecture (SOA) Definition.” [Online]. Available:
http://www.service-architecture.com/articles/web-services/service-
oriented_architecture_soa_definition.html. [Accessed: 14-Oct-2015].

[32] D. K. Senior, A. Ibm, and G. Business, “Service Oriented Architecture (SOA)
SOA Guide,” Architecture, vol. 24, pp. 1–5, 2006.

[33] R. Wang and X. Wang, “Applying Service-Oriented Architecture into an
Augmented Reality E-business System,” 2008 IEEE Int. Conf. E-bus. Eng., pp.
621–626, 2008.

[34] P. Selonen, P. Belimpasakis, Y. You, T. Pylvänäinen, and S. Uusitalo, “Mixed
reality web service platform,” Multimed. Syst., vol. 18, no. 3, pp. 215–230, 2012.

[35] R. Wojciechowski, K. Walczak, M. White, and W. Cellary, “Building Virtual
and Augmented Reality Museum Exhibitions,” in Proceedings of the Ninth
International Conference on 3D Web Technology, 2004, pp. 135–144.

[36] M. Hirose and T. Tanikawa, “Overview of the Digital Museum Project,” in
Proceedings of the 9th ACM SIGGRAPH Conference on Virtual-Reality
Continuum and Its Applications in Industry, 2010, pp. 11–16.

[37] A. Karoulis, S. Sylaiou, and M. White, “Usability Evaluation of a Virtual
Museum Interface,” Informatica, vol. 17, no. 3, pp. 363–380, 2006.

[38] Y. Kolstee and W. Van Eck, “The augmented Van Gogh’s: Augmented reality
experiences for museum visitors,” in 2011 IEEE International Symposium on
Mixed and Augmented Reality - Arts, Media, and Humanities, ISMAR-AMH
2011, 2011, pp. 49–52.

[39] R. Szeliski, “Computer Vision  : Algorithms and Applications,” Computer (Long.
Beach. Calif)., vol. 5, no. 3, p. 832, 2010.

[40] P. Belimpasakis, P. Selonen, and Y. You, “Bringing user-generated content from
Internet services to mobile augmented reality clients,” 2010 Cloud-Mobile
Converg. Virtual Real. Work. (CMCVR 2010) Proc., pp. 14–17, Mar. 2010.

[41] “AURASMA.” [Online]. Available: https://www.aurasma.com/. [Accessed: 15-
Oct-2015].

 163

[42] “Augmented Reality | Interactive Print | Layar.” [Online]. Available:
https://www.layar.com/. [Accessed: 15-Oct-2015].

[43] “ReCap Reality Capture for 3D Documentation | Autodesk ReCap,” 2016.
[Online]. Available: https://recap.autodesk.com/. [Accessed: 12-Nov-2015].

[44] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “RGB-D Mapping  : Using
Depth Cameras for Dense 3D Modeling of Indoor Environments,” Int. J. Rob.
Res., vol. 31, no. 5, pp. 647–663, 2012.

[45] “Getting Started with the Metaio SDK.” [Online]. Available:
https://my.metaio.com/dev/sdk/index.html. [Accessed: 03-Nov-2015].

[46] S. Rattanarungrot, M. White, and B. Jackson, “The Application of Service
Orientation on a Mobile AR Platform - A Museum Scenario,” in International
Congress on Digital Heritage - Theme 2 - Computer Graphics And Interaction,
2015.

[47] M. Chouiten, J.-Y. Didier, and M. Mallem, “A Framework for Service Based
Composite Augmented Reality Applications,” 2013 Int. Symp. Ubiquitous
Virtual Real., pp. 19–22, Jul. 2013.

[48] P. Belimpasakis, P. Selonen, and Y. You, “A web service platform for building
interoperable augmented reality solutions,” in International AR standards
Workshop Oct 11-12 2010, 2010, pp. 1–5.

[49] P. Milgram, H. Takemura, A. Utsumi, and F. Kishino, “Augmented reality: a
class of displays on the reality-virtuality continuum,” Proc. SPIE, vol. 2351. pp.
282–292, 1995.

[50] G. Sziebig, “Achieving total immersion  : Technology trends behind Augmented
Reality - A survey,” Optimization.

[51] H.-K. Wu, S. W.-Y. Lee, H.-Y. Chang, and J.-C. Liang, “Current status,
opportunities and challenges of augmented reality in education,” Comput. Educ.,
vol. 62, pp. 41–49, 2013.

[52] M. Kesim and Y. Ozarslan, “Augmented Reality in Education: Current
Technologies and the Potential for Education,” Procedia - Soc. Behav. Sci., vol.
47, no. 222, pp. 297–302, Jan. 2012.

[53] A. Clark, A. Dünser, and R. Grasset, “An interactive augmented reality coloring
book,” SIGGRAPH Asia 2011 Emerg. Technol. - SA ’11, pp. 1–1, 2011.

[54] T. Miyashita, P. Meier, T. Tachikawa, S. Orlic, T. Eble, V. Scholz, A. Gapel, O.
Gerl, S. Arnaudov, and S. Lieberknecht, “An augmented reality museum guide,”
in Proceedings - 7th IEEE International Symposium on Mixed and Augmented
Reality 2008, ISMAR 2008, 2008, pp. 103–106.

[55] Y. Lu and S. Smith, “Augmented Reality e-Commerce Assistant System: Trying
While Shopping,” in Proceedings of the 12th International Conference on
Human-computer Interaction: Interaction Platforms and Techniques, 2007, pp.
643–652.

 164

[56] W. Zhu, C. B. Owen, H. Li, and J.-H. Lee, “Design of the PromoPad: An
Automated Augmented-Reality Shopping Assistant,” in Computational
Advancements in End-User Technologies: Emerging Models and Frameworks, S.
Clarke, Ed. Hershey, PA, USA: IGI Global, 2010, pp. 193–205.

[57] H. Kaufmann and D. Schmalstieg, “Mathematics and geometry education with
collaborative augmented reality,” Comput. Graph., vol. 27, no. 3, pp. 339–345,
2003.

[58] L. Alem, F. Tecchia, and W. Huang, “HandsOnVideo: Towards a Gesture based
Mobile AR System for Remote Collaboration,” in Recent Trends of Mobile
Collaborative Augmented Reality Systems, L. Alem and W. Huang, Eds. Springer
New York, 2011, pp. 135–148.

[59] A. Morrison, A. Mulloni, S. Lemmelä, A. Oulasvirta, G. Jacucci, P. Peltonen, D.
Schmalstieg, and H. Regenbrecht, “Collaborative use of mobile augmented
reality with paper maps,” Comput. Graph., vol. 35, no. 4, pp. 789–799, 2011.

[60] A. Angelopoulou, D. Economou, V. Bouki, A. Psarrou, L. Jin, C. Pritchard, and
F. Kolyda, “Mobile augmented reality for cultural heritage,” Springer, 2012.

[61] V. Lepetit, “On Computer Vision for Augmented Reality,” in Ubiquitous Virtual
Reality, 2008. ISUVR 2008. International Symposium on, 2008, pp. 13–16.

[62] A. I. Comport, É. Marchand, F. Chaumette, and C. De Beaulieu, “A real-time
tracker for markerless augmented reality,” pp. 0–9, 2006.

[63] R. Azuma, J. W. Lee, B. Jiang, J. Park, S. You, and U. Neumann, “Tracking in
unprepared environments for augmented reality systems,” vol. 23, pp. 787–793,
1999.

[64] J. P. Rolland, L. Davis, and Y. Baillot, “A survey of tracking technology for
virtual environments,” Fundam. wearable Comput. Augment. Real., vol. 8, no.
September, pp. 1–48, 2001.

[65] D. Koller, G. Klinkerl, E. Rosel, D. Breen, R. Whit, and M. Tuceryan, “Real-
time Vision-Based Camera Tracking for Augmented Reality Applications,” 1997.

[66] R. T. Azuma, B. R. Hoff, H. E. N. Iii, R. Sarfaty, M. J. Daily, G. Bishop, V. Chi,
G. Welch, R. Nichols, and J. Cannon, “Making Augmented Reality Work
Outdoors Requires Hybrid Tracking,” pp. 1–6, 1998.

[67] “Open Source Augmented Reality SDK | ARToolKit.org.” [Online]. Available:
http://artoolkit.org/. [Accessed: 02-Nov-2015].

[68] “Getting Started View | Vuforia Library Prod.” [Online]. Available:
https://developer.vuforia.com/library/getting-started. [Accessed: 03-Nov-2015].

[69] “Resources - Apple Developer.” [Online]. Available:
https://developer.apple.com/resources/. [Accessed: 11-Nov-2015].

[70] “Download Android Studio and SDK Tools | Android Developers.” [Online].
Available: http://developer.android.com/sdk/index.html. [Accessed: 11-Nov-
2015].

 165

[71] “Junaio – Augmented Reality Browser.” [Online]. Available:
http://www.junaio.com/. [Accessed: 11-Nov-2015].

[72] D. Sprott and L. Wilkes, “Understanding service-oriented architecture,” Archit.
J., vol. 1, pp. 10–17, 2004.

[73] M.-T. Schmidt, B. Hutchison, P. Lambros, and R. Phippen, “The Enterprise
Service Bus: Making service-oriented architecture real,” IBM Syst. J., vol. 44, no.
4, pp. 781–797, 2005.

[74] N. Komoda, “Service oriented architecture (SOA) in industrial systems,” Ind.
Informatics, 2006 IEEE Int. Conf., pp. 1–5, 2006.

[75] C. L. Wu, C. F. Liao, and L. C. Fu, “Service-oriented smart-home architecture
based on OSGi and mobile-agent technology,” IEEE Trans. Syst. Man Cybern.
Part C Appl. Rev., vol. 37, no. 2, pp. 193–205, 2007.

[76] A. Ordanini and P. Pasini, “Service co-production and value co-creation: The
case for a service-oriented architecture (SOA),” Eur. Manag. J., vol. 26, no. 5,
pp. 289–297, 2008.

[77] “XML Soap.” [Online]. Available:
http://www.w3schools.com/xml/xml_soap.asp. [Accessed: 28-Oct-2015].

[78] “Directory of public SOAP Web Services.” [Online]. Available:
http://www.service-
repository.com/?offset=0&max=10&sort=rating&order=desc. [Accessed: 29-
Oct-2015].

[79] “Fielding Dissertation: CHAPTER 5: Representational State Transfer (REST).”
[Online]. Available:
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm.
[Accessed: 28-Oct-2015].

[80] “Create REST Request.” [Online]. Available:
https://docs.oracle.com/cd/E27515_01/common/tutorials/conversion_create_rest_
request.html. [Accessed: 29-Oct-2015].

[81] “API Directory | ProgrammableWeb.” [Online]. Available:
http://www.programmableweb.com/apis/directory. [Accessed: 29-Oct-2015].

[82] R. Lee, D. Kitayama, Y.-J. Kwon, and K. Sumiya, “Interoperable augmented web
browsing for exploring virtual media in real space,” Proc. 2nd Int. Work. Locat.
Web LOCWEB 09, pp. 1–4, 2009.

[83] B. Petros, Y. Yu, and S. Petri, “Enabling rapid creation of content for
consumption in mobile Augmented Reality,” Proc. - NGMAST 2010 4th Int.
Conf. Next Gener. Mob. Appl. Serv. Technol., pp. 1–6, 2010.

[84] M. Pollefeys, L. Van Gool, M. Vergauwen, K. Cornelis, F. Verbiest, and J. Tops,
“Video-to-3D,” pp. 1–12.

[85] P. Cignoni, M. Corsini, M. Dellepiane, G. Ranzuglia, M. Vergauven, and L. Van
Gool, “MeshLab and Arc3D  : Photo-Reconstruction and Processing 3D meshes,”

 166

pp. 1–6, 2008.

[86] “ARC 3D.” [Online]. Available: http://www.arc3d.be/. [Accessed: 04-Nov-
2015].

[87] M. Vergauwen and L. Gool, “Web-based 3D Reconstruction Service,” Mach.
Vis. Appl., vol. 17, no. 6, pp. 411–426, May 2006.

[88] C. Heipke, “Web-Based Photogrammetric Image and Geospatial Services – an
Overview,” no. Schiewe, pp. 1–7, 2005.

[89] “Welcome to the OGC | OGC.” [Online]. Available:
http://www.opengeospatial.org/. [Accessed: 05-Nov-2015].

[90] K. Sahin, “Service oriented architecture (SOA) based web services for
geographic information systems,” XXIst ISPRS Congr. Beijing, pp. 625–630,
2008.

[91] B. Hagedorn and J. Döllner, “High-level web service for 3D building information
visualization and analysis,” Proc. 15th Annu. ACM Int. Symp. Adv. Geogr. Inf.
Syst. - GIS ’07, p. 1, 2007.

[92] K. Park and A. Yilmaz, “A Design of Web Service for Digital Photogrammetry
Workstation using Service Oriented Architecture.”

[93] “Introduction to the Europeana APIs - Europeana Labs.” [Online]. Available:
http://labs.europeana.eu/api. [Accessed: 12-Nov-2015].

[94] “Amazon Web Services (AWS) - Cloud Computing Services.” [Online].
Available: https://aws.amazon.com/. [Accessed: 06-Nov-2015].

[95] K. B. Laskey and K. Laskey, “Service oriented architecture,” Wiley Interdiscip.
Rev. Comput. Stat., vol. 1, no. 1, pp. 101–105, 2009.

[96] T. Erl, Service-Oriented Architecture: A Field Guide to Integrating XML and
Web Services. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2004.

[97] G. Kunito, K. Sakamoto, N. Yamada, T. Takakashi, and S. Tanaka, “Architecture
for Providing Services in the Ubiquitous Computing Environment,” 26th IEEE
Int. Conf. Distrib. Comput. Syst. Work. 2006 ICDCS Work. 2006, pp. 60–60,
2006.

[98] “SierraLeoneHeritageApi examples.” [Online]. Available:
http://sierraleone.heritageinformatics.org/api/. [Accessed: 12-Nov-2015].

[99] “Victoria and Albert Museum API Documentation.” [Online]. Available:
http://www.vam.ac.uk/api/. [Accessed: 12-Nov-2015].

[100] “Google Maps APIs | Google Developers.” [Online]. Available:
https://developers.google.com/maps/. [Accessed: 21-Aug-2016].

[101] J. Heller, M. Havlena, M. Jancosek, A. Torii, and T. Pajdla, “3D reconstruction
from photographs by CMP SfM web service,” Machine Vision Applications
(MVA), 2015 14th IAPR International Conference on. pp. 30–34, 2015.

 167

[102] “Developer Autodesk ReCap API Samples.” [Online]. Available:
http://developer-recap-autodesk.github.io/. [Accessed: 12-Nov-2015].

[103] C. PortalÃ©s, J. L. Lerma, and C. PÃ©rez, “Photogrammetry and augmented
reality for cultural heritage applications,” Photogramm. Rec., vol. 24, no. 128,
pp. 316–331, Dec. 2009.

[104] A.-C. Haugstvedt and J. Krogstie, “Mobile augmented reality for cultural
heritage: A technology acceptance study,” in 2012 IEEE International
Symposium on Mixed and Augmented Reality (ISMAR), 2012, pp. 247–255.

[105] P. Petridis, M. White, N. Mourkousis, F. Liarokapis, M. Sifniotis, A. Basu, and
C. Gatzidis, “Exploring and interacting with virtual museums,” Proc. Comput.
Appl. Quant. Methods Archaeol., 2005.

[106] “V&A Home Page - Victoria and Albert Museum,” Oct. 2015.

[107] “British Museum - Welcome to the British Museum.” [Online]. Available:
http://www.britishmuseum.org/. [Accessed: 12-Nov-2015].

[108] “Europeana - Homepage.” [Online]. Available: http://www.europeana.eu/portal/.
[Accessed: 12-Nov-2015].

[109] “SierraLeoneHeritage.org | Digital Heritage Resource.” [Online]. Available:
http://www.sierraleoneheritage.org/. [Accessed: 12-Nov-2015].

[110] J. P. Lima, F. Simões, L. Figueiredo, and J. Kelner, “Model Based Markerless 3D
Tracking applied to Augmented Reality,” Evaluation, vol. 1, pp. 2–15, 2010.

[111] M. Pressigout and E. Marchand, “Hybrid tracking algorithms for planar and non-
planar structures subject to illumination changes,” 2006 IEEE/ACM International
Symposium on Mixed and Augmented Reality. pp. 52–55, 2006.

[112] U. Neumann, “Virtual Reality Dynamic Registration Correction in Augmented
Reality Systems,” IEEE Comput. Graph. Appl., no. September, pp. 52–60, 1995.

[113] U. Neumann and S. You, “Natural feature tracking for augmented reality,” IEEE
Transactions on Multimedia, vol. 1, no. 1. pp. 53–64, 1999.

[114] D. Wagner, T. Langlotz, and D. Schmalstieg, “Robust and unobtrusive marker
tracking on mobile phones,” 2008 7th IEEE/ACM Int. Symp. Mix. Augment.
Real., pp. 121–124, Sep. 2008.

[115] H. Kato, K. Tachibana, M. Billinghurst, and M. Grafe, “A registration method
based on texture tracking using ARToolKit,” IEE Rev., pp. 77–85.

[116] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, and D. Schmalstieg, “Pose
tracking from natural features on mobile phones,” 2008 7th IEEE/ACM Int.
Symp. Mix. Augment. Real., pp. 125–134, Sep. 2008.

[117] T. Lee and T. Höllerer, “Multithreaded hybrid feature tracking for markerless
augmented reality.,” IEEE Trans. Vis. Comput. Graph., vol. 15, no. 3, pp. 355–
68, 2009.

[118] R. Koch, K. Koeser, B. Streckel, and C. Kiel, “Markerless Image-based 3D

 168

Tracking for Real-time Augmented Reality Applications.”

[119] N. Karlsson, E. Di Bernardo, J. Ostrowski, L. Goncalves, P. Pirjanian, and M. E.
Munich, “The vSLAM Algorithm for Robust Localization and Mapping,” no.
April, pp. 24–29, 2005.

[120] C. Oberhofer, J. Grubert, and G. Reitmayr, “Natural feature tracking in
JavaScript,” 2012 IEEE Virtual Real., vol. 4, pp. 113–114, Mar. 2012.

[121] Z. Pan, Y. Li, M. Zhang, C. Sun, K. Guo, X. Tang, and S. Z. Zhou, “A Real-time
Multi-cue Hand Tracking Algorithm Based on Computer Vision,” pp. 219–222.

[122] G. Reitmayr and T. Drummond, “Going out: robust model-based tracking for
outdoor augmented reality,” 2006 IEEE/ACM Int. Symp. Mix. Augment. Real.,
pp. 109–118, Oct. 2006.

[123] L. Vacchetti, V. Lepetit, and P. Fua, “Stable real-time 3D tracking using online
and offline information.,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no.
10, pp. 1385–91, Oct. 2004.

[124] N. Krahnstoever and R. Sharma, “Appearance Management and Cue Fusion for
3D Model-Based Tracking,” in Proc. IEEE Conf. Comp. Vision and Pattern
Recognition (CPVR), 2003, pp. 249–256.

[125] I. Skrypnyk and D. G. Lowe, “Scene Modelling , Recognition and Tracking with
Invariant Image Features,” no. Ismar, 2004.

[126] H. Wuest, F. Vial, and D. Stricker, “Adaptive Line Tracking with Multiple
Hypotheses for Augmented Reality Department of Virtual and Augmented
Reality,” pp. 0–7, 2005.

[127] C. Wiedemann, M. Ulrich, and C. Steger, “Recognition and tracking of 3D
objects,” in PATTERN RECOGNITION, 2008, vol. 5096, pp. 132–141.

[128] M. Ozuysal, P. Fua, and V. Lepetit, “Fast Keypoint Recognition in Ten Lines of
Code,” in 2007 IEEE Conference on Computer Vision and Pattern Recognition,
2007, pp. 1–8.

[129] N. Hagbi, O. Bergig, J. El-Sana, and M. Billinghurst, “Shape recognition and
pose estimation for mobile Augmented Reality.,” IEEE Trans. Vis. Comput.
Graph., vol. 17, no. 10, pp. 1369–79, Oct. 2011.

[130] Y. Kalantidis, L. G. Pueyo, M. Trevisiol, R. van Zwol, and Y. Avrithis, “Scalable
Triangulation-based Logo Recognition,” in Proceedings of the 1st ACM
International Conference on Multimedia Retrieval, 2011, pp. 20:1–20:7.

[131] P. J. Gausemeier, “Development of a Real Time Image Based Object
Recognition Method for Mobile AR-Devices,” Architecture, vol. 1, no. 212, pp.
133–140, 2003.

[132] C. M. Cyr and B. B. Kimia, “3D object recognition using shape similiarity-based
aspect graph,” Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE
International Conference on, vol. 1. pp. 254–261 vol.1, 2001.

 169

[133] I. Gordon and D. G. Lowe, “What and Where  : 3D Object Recognition with
Accurate Pose,” Lect. Notes Comput. Sci., 2004.

[134] S. Xu and Q. Peng, “3D object recognition using multiple features and neural
network,” 2008 IEEE Conf. Cybern. Intell. Syst., pp. 434–439, Sep. 2008.

[135] B. Scholz-reiter, H. Thamer, and C. Uriarte, “An Approach for 3D Object
Recognition of Universal Goods,” Int. J., vol. 5, no. 2, pp. 218–225, 2011.

[136] H. Akbar, N. Suryana, and S. Sahib, “Training neural networks using Clonal
Selection Algorithm and Particle Swarm Optimization: A comparisons for 3D
object recognition,” 2011 11th Int. Conf. Hybrid Intell. Syst., pp. 692–697, Dec.
2011.

[137] R. Freeman and a. Steed, “Interactive modelling and tracking for mixed and
augmented reality,” Proc. ACM Symp. Virtual Real. Softw. Technol. - VRST ’06,
p. 61, 2006.

 170

Appendix

A. Web Service Provider APIs

 171

Victoria and Albert Museum API

Victoria and Albert Museum provides a website (www.vam.ac.uk) that offers online

collections and allow museum visitors to view and learn cultural artifacts on the

website.

 Figure A.1 Victoria and Albert Museum

The museum also expose an API called Victoria and Albert Museum API that provides

service interfaces for any applications to access data and metadata of objects exhibited

in the Victoria and Albert Museum.

 172

 Figure A.2 Victoria and Albert Museum API

The API Query Builder enables users to create API calls that can be used in the web

service request module in the application client.

 Figure A.3 The API Query Builder

 173

The Builder creates an URL of a web service request composed of the source of

content, the module requested, parameters and the output format. The outcome of a

service request is presented on the Builder.

 Figure A.4 The outcome of a service request

The following is a JSON response document of the web service request

http://www.vam.ac.uk/api/json/museumobject/?q=tea+canister&images=1.

{ "meta": {
 "result_count":170 ,
 "cluster_counts" : {},
 "clusters" : [] ,
 "group_details": [] },
 "records": [
 {
 "pk": 8968,
 "model": "collection.museumobject",
 "fields": {
 "primary_image_id": "2006AM7317",
 "rights": 3,
 "year_start": 1760,
 "object_number": "O77973",
 "artist": "Unknown",
 "museum_number": "C.69&A-1938",
 "object": "Tea canister",
 "longitude": "-2.02806000",
 "last_processed": "2016-04-01 23:21:01",

 174

 "event_text": "",
 "place": "Staffordshire",
 "location": "British Galleries, room 52b, case 1",
 "last_checked": "2016-04-01 23:21:01",
 "museum_number_token": "c691938",
 "latitude": "52.82474900",
 "title": "",
 "date_text": "1760-1770 (made)",
 "slug": "tea-canister-unknown",
 "sys_updated": "2015-01-26 00:00:00",
 "collection_code": "CER"
 }
 },
 {
 "pk": 9835,
 "model": "collection.museumobject",
 "fields": {
 "primary_image_id": "2006AM2645",
 "rights": 3,
 "year_start": 1780,
 "object_number": "O79070",
 "artist": "Unknown",
 "museum_number": "W.72-1919",
 "object": "Tea canister",
 "longitude": "-2.07449000",
 "last_processed": "2016-04-01 23:26:05",
 "event_text": "",
 "place": "Bilston",
 "location": "British Galleries, room 118e, case 1",
 "last_checked": "2016-04-01 23:26:05",
 "museum_number_token": "w721919",
 "latitude": "52.56663500",
 "title": "",
 "date_text": "1780-1800 (made)",
 "slug": "tea-canister-unknown",
 "sys_updated": "2014-08-04 00:00:00",
 "collection_code": "FWK"
 }
 },
 {
 "pk": 8858,
 "model": "collection.museumobject",
 "fields": {
 "primary_image_id": "2006AT4084",
 "rights": 3,
 "year_start": 1760,
 "object_number": "O77863",
 "artist": "Unknown",
 "museum_number": "C.16-1940",
 "object": "Tea canister",
 "longitude": "-2.02806000",
 "last_processed": "2016-04-01 23:20:26",
 "event_text": "",
 "place": "Staffordshire",
 "location": "British Galleries, room 118e, case 3",

 175

 "last_checked": "2016-04-01 23:20:26",
 "museum_number_token": "c161940",
 "latitude": "52.82474900",
 "title": "",
 "date_text": "1760-1765 (made)",
 "slug": "tea-canister-unknown",
 "sys_updated": "2014-07-31 00:00:00",
 "collection_code": "CER"
 }
 },
 {
 "pk": 8832,
 "model": "collection.museumobject",
 "fields": {
 "primary_image_id": "2006AM3394",
 "rights": 3,
 "year_start": 1795,
 "object_number": "O77834",
 "artist": "Josiah Wedgwood and Sons",
 "museum_number": "C.112&A-1956",
 "object": "Tea canister",
 "longitude": "-2.18420000",
 "last_processed": "2016-04-01 23:20:18",
 "event_text": "",
 "place": "Burslem",
 "location": "British Galleries, room 118e, case 3",
 "last_checked": "2016-04-01 23:20:18",
 "museum_number_token": "c1121956",
 "latitude": "53.05424900",
 "title": "",
 "date_text": "1795-1800 (made)",
 "slug": "tea-canister-josiah-wedgwood-and",
 "sys_updated": "2015-06-24 00:00:00",
 "collection_code": "CER"
 }
 },
 {
 "pk": 13550,
 "model": "collection.museumobject",
 "fields": {
 "primary_image_id": "2006AM3440",
 "rights": 3,
 "year_start": 1745,
 "object_number": "O79779",
 "artist": "Unknown",
 "museum_number": "414:958-1885",
 "object": "Tea canister",
 "longitude": "-2.02806000",
 "last_processed": "2016-04-01 23:47:26",
 "event_text": "",
 "place": "Staffordshire",
 "location": "British Galleries, room 52b, case 1",
 "last_checked": "2016-04-01 23:47:26",
 "museum_number_token": "4149581885",
 "latitude": "52.82474900",

 176

 "title": "",
 "date_text": "ca. 1750 (made)",
 "slug": "tea-canister-unknown",
 "sys_updated": "2014-11-19 00:00:00",
 "collection_code": "CER"
 }
 },
 {
 "pk": 154194,
 "model": "collection.museumobject",
 "fields": {
 "primary_image_id": "2009CT0498",
 "rights": 3,
 "year_start": 1745,
 "object_number": "O190483",
 "artist": "Unknown",
 "museum_number": "414:958/A-1885",
 "object": "Tea canister",
 "longitude": "-2.02806000",
 "last_processed": "2016-04-02 11:55:07",
 "event_text": "",
 "place": "Staffordshire",
 "location": "Ceramics Study Galleries, Britain, room 138, case 7, shelf 3",
 "last_checked": "2016-04-02 11:55:07",
 "museum_number_token": "414958a1885",
 "latitude": "52.82474900",
 "title": "",
 "date_text": "ca. 1750 (made)",
 "slug": "tea-canister-unknown",
 "sys_updated": "2015-05-26 00:00:00",
 "collection_code": "CER"
 }
 },
 {
 "pk": 8898,
 "model": "collection.museumobject",
 "fields": {
 "primary_image_id": "2006AM5304",
 "rights": 3,
 "year_start": 1690,
 "object_number": "O77903",
 "artist": "Elers, David and John Philip",
 "museum_number": "C.275-1921",
 "object": "Tea canister",
 "longitude": "-2.02806000",
 "last_processed": "2016-04-01 23:20:39",
 "event_text": "",
 "place": "Staffordshire",
 "location": "British Galleries, room 56c, case 4",
 "last_checked": "2016-04-01 23:20:39",
 "museum_number_token": "c2751921",
 "latitude": "52.82474900",
 "title": "",
 "date_text": "1690-1698 (made)",
 "slug": "tea-canister-elers-david-and",

 177

 "sys_updated": "2015-07-17 00:00:00",
 "collection_code": "CER"
 }
 },
 {
 "pk": 22371,
 "model": "collection.museumobject",
 "fields": {
 "primary_image_id": "2006AJ5280",
 "rights": 3,
 "year_start": 1745,
 "object_number": "O21252",
 "artist": "Unknown",
 "museum_number": "C.13-1963",
 "object": "Tea canister",
 "longitude": "-2.59143000",
 "last_processed": "2016-04-02 00:37:43",
 "event_text": "",
 "place": "Bristol",
 "location": "British Galleries, room 52b, case 1",
 "last_checked": "2016-04-02 00:37:43",
 "museum_number_token": "c131963",
 "latitude": "51.45365900",
 "title": "",
 "date_text": "ca. 1750-1760 (made)",
 "slug": "tea-canister-unknown",
 "sys_updated": "2014-11-19 00:00:00",
 "collection_code": "CER"
 }
 },
 {
 "pk": 75427,
 "model": "collection.museumobject",
 "fields": {
 "primary_image_id": "2010EJ2514",
 "rights": 3,
 "year_start": 1756,
 "object_number": "O99172",
 "artist": "S\u00e8vres porcelain factory",
 "museum_number": "768A-1882",
 "object": "Tea canister",
 "longitude": "1.71832000",
 "last_processed": "2016-04-02 05:04:36",
 "event_text": "",
 "place": "France",
 "location": "Europe 1600-1815, lift lobby, case CA2",
 "last_checked": "2016-04-02 05:04:36",
 "museum_number_token": "768a1882",
 "latitude": "46.71244800",
 "title": "Boite a the",
 "date_text": "ca. 1761 (made)",
 "slug": "boite-a-the-tea-canister-sevres-porcelain-factory",
 "sys_updated": "2015-12-04 00:00:00",
 "collection_code": "CER"
 }

 178

 },
 {
 "pk": 273307,
 "model": "collection.museumobject",
 "fields": {
 "primary_image_id": "2010ED2603",
 "rights": 3,
 "year_start": 1755,
 "object_number": "O334362",
 "artist": "F\u00fcrstenberg Porcelain",
 "museum_number": "C.50&A-1956",
 "object": "Tea canister and cover",
 "longitude": "9.66248000",
 "last_processed": "2016-04-02 19:00:12",
 "event_text": "",
 "place": "F\u00fcrstenberg",
 "location": "Europe 1600-1815, room 3, case CA3",
 "last_checked": "2016-04-02 19:00:12",
 "museum_number_token": "c501956",
 "latitude": "52.36421000",
 "title": "",
 "date_text": "ca. 1760 (made)",
 "slug": "tea-canister-and-furstenberg-porcelain",
 "sys_updated": "2015-12-04 00:00:00",
 "collection_code": "CER"
 }
 },
 {
 "pk": 8352,
 "model": "collection.museumobject",
 "fields": {
 "primary_image_id": "2006AM5978",
 "rights": 3,
 "year_start": 1755,
 "object_number": "O77657",
 "artist": "Swirled Flowers Painter",
 "museum_number": "5288&A-1901",
 "object": "Tea canister",
 "longitude": "-1.81541000",
 "last_processed": "2016-04-01 23:18:13",
 "event_text": "",
 "place": "West Midlands",
 "location": "British Galleries, room 52b, case 1",
 "last_checked": "2016-04-01 23:18:13",
 "museum_number_token": "52881901",
 "latitude": "52.50523000",
 "title": "",
 "date_text": "1755-1760 (made)",
 "slug": "tea-canister-swirled-flowers-painter",
 "sys_updated": "2014-11-19 00:00:00",
 "collection_code": "CER"
 }
 },
 {
 "pk": 9477,

 179

 "model": "collection.museumobject",
 "fields": {
 "primary_image_id": "2006AM2247",
 "rights": 3,
 "year_start": 1717,
 "object_number": "O78644",
 "artist": "Farnell, John",
 "museum_number": "M.854:1, 2-1926",
 "object": "Tea canister",
 "longitude": "-0.12714000",
 "last_processed": "2016-04-01 23:23:47",
 "event_text": "",
 "place": "London",
 "location": "British Galleries, room 52b, case 1",
 "last_checked": "2016-04-01 23:23:47",
 "museum_number_token": "m8541926",
 "latitude": "51.50632100",
 "title": "",
 "date_text": "1717-1718 (made)",
 "slug": "tea-canister-farnell-john",
 "sys_updated": "2014-11-19 00:00:00",
 "collection_code": "MET"
 }
 },
 {
 "pk": 9363,
 "model": "collection.museumobject",
 "fields": {
 "primary_image_id": "2006AM6828",
 "rights": 3,
 "year_start": 1773,
 "object_number": "O78523",
 "artist": "Courtauld, Louisa",
 "museum_number": "M.28-1934",
 "object": "Tea canister",
 "longitude": "-0.12714000",
 "last_processed": "2016-04-01 23:23:09",
 "event_text": "",
 "place": "London",
 "location": "British Galleries, room 118e, case 8",
 "last_checked": "2016-04-01 23:23:09",
 "museum_number_token": "m281934",
 "latitude": "51.50632100",
 "title": "",
 "date_text": "1773-1774 (hallmarked)",
 "slug": "tea-canister-courtauld-louisa",
 "sys_updated": "2014-08-14 00:00:00",
 "collection_code": "MET"
 }
 },
 {
 "pk": 9830,
 "model": "collection.museumobject",
 "fields": {
 "primary_image_id": "2006AM6303",

 180

 "rights": 3,
 "year_start": 1685,
 "object_number": "O79065",
 "artist": "Cradock, Marmaduke",
 "museum_number": "W.70-1919",
 "object": "Tea canister",
 "longitude": "-0.12714000",
 "last_processed": "2016-04-01 23:26:03",
 "event_text": "",
 "place": "London",
 "location": "British Galleries, room 56d, case 14",
 "last_checked": "2016-04-01 23:26:03",
 "museum_number_token": "w701919",
 "latitude": "51.50632100",
 "title": "",
 "date_text": "1685-1717 (made)",
 "slug": "tea-canister-cradock-marmaduke",
 "sys_updated": "2014-08-04 00:00:00",
 "collection_code": "FWK"
 }
 },
 {
 "pk": 13211,
 "model": "collection.museumobject",
 "fields": {
 "primary_image_id": "2006AM7382",
 "rights": 3,
 "year_start": 1722,
 "object_number": "O10916",
 "artist": "Nash, Bowles",
 "museum_number": "M.180A/1, 2-1919",
 "object": "Pair of tea canisters",
 "longitude": "-0.12714000",
 "last_processed": "2016-04-01 23:45:37",
 "event_text": "",
 "place": "London",
 "location": "British Galleries, room 52b, case 1",
 "last_checked": "2016-04-01 23:45:37",
 "museum_number_token": "m1801919",
 "latitude": "51.50632100",
 "title": "",
 "date_text": "1722-1723 (made)",
 "slug": "pair-of-tea-nash-bowles",
 "sys_updated": "2015-07-01 00:00:00",
 "collection_code": "MET"
 }
 }
] }

The image of each object presented on the Builder can be selected and the system will

create a service quest of the selected image for its metadata. The web service request is :

http://www.vam.ac.uk/api/json/museumobject/O79070.

 181

[
 {
 "pk": 9835,
 "model": "collection.museumobject",
 "fields": {
 "original_price": "",
 "attributions_note": "",
 "related_museum_numbers": "",
 "museum_number": "W.72-1919",
 "date_end": "1800-12-31",
 "labels": [
 {
 "pk": 3830,
 "model": "collection.label",
 "fields": {
 "date": "27/03/2003",
 "museumobject": 9835,
 "label_text": "British Galleries:\nThis canister combines bright-cut engraving, a
technique introduced to silver in the 1770s, with areas of paint and a final layer of varnish. The
tin appears yellow because of the varnish."
 }
 }
],
 "descriptive_line": "Tea canister of elongated hexagonal form, of tin, with incised
decoration, decortated with red japanning and lacquering imitating gilding",
 "shape": "",
 "longitude": "-2.07449000",
 "year_start": 1780,
 "exhibitions": [],
 "subjects": [],
 "date_text": "1780-1800 (made)",
 "primary_image_id": "2006AM2645",
 "rights": 3,
 "physical_description": "",
 "dimensions": "Height: 11.11 cm, Width: 13.97 cm, Depth: 8.57 cm",
 "title": "",
 "date_start": "1780-01-01",
 "materials_techniques": "Tin, bright-cut engraved and japanned, with brass handle",
 "last_processed": "2016-04-01 23:26:05",
 "label": "British Galleries:\nThis canister combines bright-cut engraving, a technique
introduced to silver in the 1770s, with areas of paint and a final layer of varnish. The tin appears
yellow because of the varnish. [27/03/2003]",
 "event_text": "",
 "production_type": "",
 "collections": [
 {
 "pk": 6,
 "model": "collection.collection",
 "fields": {
 "code": "FWK",
 "name": "Furniture and Woodwork Collection",
 "museumobject_count": 10947,
 "source": "",
 "cis_id": null,
 "museumobject_image_count": 6143,

 182

 "type": "",
 "slug": "fwk"
 }
 }
],
 "location": "British Galleries, room 118e, case 1",
 "marks": "",
 "latitude": "52.56663500",
 "techniques": [],
 "materials": [],
 "edition_number": "",
 "styles": [],
 "inventory_set": [
 {
 "pk": 11995,
 "model": "collection.inventory",
 "extras": {
 "gallery_id": 160
 },
 "fields": {
 "box": "",
 "case": "1",
 "inventory_number": 528323,
 "room": "118E",
 "part_name": "",
 "museum_number": "W.72-1919",
 "museumobject": 9835,
 "shelf": "",
 "site": "VA",
 "on_display": true,
 "status": "",
 "location": "British Galleries, room 118e",
 "museum_number_token": "w721919",
 "gallery": 160
 }
 }
],
 "updated": null,
 "galleries": [
 {
 "pk": 160,
 "model": "collection.gallery",
 "fields": {
 "room_code": "118E",
 "site_name": "",
 "name": "British Galleries, room 118e",
 "site_code": "VA",
 "museumobject_count": 163,
 "source": "",
 "on_display": true,
 "cis_id": "THES49228",
 "museumobject_image_count": 161,
 "type": "",
 "slug": "118e-va"
 }

 183

 }
],
 "names": [
 {
 "pk": 3,
 "model": "collection.name",
 "fields": {
 "death_date": null,
 "surname": "",
 "name": "unknown",
 "gender": null,
 "museumobject_count": 164487,
 "death_year": null,
 "source": "object_production",
 "cis_id": "A1848",
 "museumobject_image_count": 83564,
 "forename": "",
 "birth_date": null,
 "nationality": "",
 "type": "person",
 "slug": "unknown",
 "birth_year": null
 }
 }
],
 "placecontext_set": [
 {
 "pk": 10782,
 "model": "collection.placecontext",
 "extras": {
 "place_id": 572
 },
 "fields": {
 "part_name": "",
 "uncertainty": "or Wolverhampton",
 "museumobject": 9835,
 "role": "made",
 "place": 572,
 "order": 1
 }
 }
],
 "original_currency": "",
 "museum_number_token": "w721919",
 "object": "Tea canister",
 "categories": [
 {
 "pk": 13,
 "model": "collection.category",
 "fields": {
 "name": "Tea, Coffee & Chocolate wares",
 "museumobject_count": 2516,
 "source": "cis_category",
 "cis_id": null,
 "museumobject_image_count": 2080,

 184

 "type": "",
 "slug": "tea-coffee-chocolate-wares"
 }
 },
 {
 "pk": 12,
 "model": "collection.category",
 "fields": {
 "name": "British Galleries",
 "museumobject_count": 1596,
 "source": "cis_category",
 "cis_id": null,
 "museumobject_image_count": 1476,
 "type": "",
 "slug": "british-galleries"
 }
 }
],
 "last_checked": "2016-04-01 23:26:05",
 "public_access_description": "Object Type\nTea canisters were used to store loose tea
leaves. They were called 'canisters' until about 1800, when the term caddy began to be used.
They were placed on the table as tea was served and were therefore decorated in a variety of
fashionable styles.\n\nOwnership & Use\nTea was a popular drink even in middle-income
households in the later 18th century although the price was high owing to import restrictions
and duties. Tea canisters had locks to safeguard the valuable tea. All tea came from China until
1839 when Indian tea began to be imported. This canister has two compartments inside to keep
different types of tea apart. Black teas were Bohea, Congou and Souchong, and the more
expensive green teas Singlo or Hyson. Blending the teas was an essential part of the tea-making
ritual.\n\nDesign & Designing\nThis metal tea canister is hexagonal, a popular shape for
canisters and the angled sides would have shown off the sparkling effect of the metal in the
incised patterns and the gold stars, border patterns and lozenge shapes. The inside is lined with
metal foil.",
 "exhibition_history": "",
 "bibliography": "Jones, Yvonne, <i>Japanned Papier-M\u00e2ch\u00e9 and Tinware c.
1740-1940</i>. Woodbridge, Antique Collectors' Club, 2012 (ISBN 978 1 85149 686 0), p. 49,
fig. 36",
 "vanda_exhibition_history": "",
 "slug": "tea-canister-unknown",
 "sys_updated": "2014-08-04 00:00:00",
 "image_set": [
 {
 "pk": 5124,
 "model": "collection.image",
 "fields": {
 "sys_updated": "2012-10-13 00:00:00",
 "last_processed": "2016-04-01 12:52:43",
 "priority": 0,
 "image_id": "2006AM2645",
 "sys_id": 112645,
 "last_checked": "2016-04-01 12:52:43",
 "size_bytes": null,
 "local": "collection_images/2006AM/2006AM2645.jpg"
 }
 }
],

 185

 "places": [
 {
 "pk": 572,
 "model": "collection.place",
 "extras": {
 "parent_id": 546
 },
 "fields": {
 "name": "Bilston",
 "parent": 546,
 "country": "England",
 "museumobject_count": 3,
 "longitude": "-2.07449000",
 "source": "production",
 "cis_id": "x30593",
 "museumobject_image_count": 3,
 "latitude": "52.56663500",
 "type": "city/town",
 "slug": "bilston-england-x30593"
 }
 }
],
 "artist": "Unknown",
 "namecontext_set": [
 {
 "pk": 9714,
 "model": "collection.namecontext",
 "extras": {
 "name_id": 3
 },
 "fields": {
 "name": 3,
 "part_name": "",
 "uncertainty": "",
 "museumobject": 9835,
 "role": "production",
 "order": 1
 }
 }
],
 "historical_significance": "",
 "year_end": 1800,
 "object_number": "O79070",
 "events": [],
 "credit": "Given by Thomas Sutton, Esq., in memory of his wife",
 "history_note": "",
 "place": "Bilston",
 "production_note": "",
 "historical_context_note": "",
 "collection_code": "FWK"
 }
 }
]

 186

SierraLeoneHeritage API

http://sierraleone.heritageinformatics.org provides online collections of Sierra Leonean

artefacts exhibited in museums around the UK and the Sierra Leonean National

Museum.

 Figure A.5 SierraLeoneHeritage

SierraLeoneHeritage also offer an API called SierraLeoneHeritage API that exposes

modules that allow developers to access data and metadata aggregated in the server.

 Figure A.6 SierraLeoneHeritage API

 187

The API provides modules and their URL request that users can change the object ID

and the response document format, which could be XML or JSON. An XML response

of the get_item module is shown below.

<xml>
<status>success</status>
<data>
<COId>1</COId>
<AccessionNumber>SLNM.1946.01.02</AccessionNumber>
<Object>Sowei Mask</Object>
<CultureGroup>Unknown</CultureGroup>
<Dimensions>Unknown</Dimensions>
<ProductionDate>Pre 1946</ProductionDate>
<AssociatedPlaces>Unknown</AssociatedPlaces>
<AssociatedPeople>Unknown</AssociatedPeople>
<Museum>Sierra Leone National Museum</Museum>
<FK_ExId>1</FK_ExId>
<Materials>Wood</Materials>
<Description>
Carved wooden helmet mask used by the exclusively female Sande (Mende) or Bondo/Bundu
(Temne) societies. The mask is traditionally worn by a high-ranking member of the society, the
dancing sowei , known as the ndoli jowei among the Mende or a-Nowo among the Temne.
Worn with a raffia costume, the masks typically have a polished black finish, with neck rings,
elaborate coiffure and dignified facial expression. The mask is thought to represent conceptions
of idealised womanhood. This example resembles Sherbro-Bullom types, from the turn of the
20th century. It has a high vertical forehead, and a chequered hairstyle.
</Description>
<ObjectType>Masks, headresses</ObjectType>
<Media>
<Medium>
<MediaTitle>No Data</MediaTitle>
<MediaDescription>No Data</MediaDescription>
<MediaFileName>SLNM.1946.01.02.pic1</MediaFileName>
<MediaType>Image</MediaType>
<FK_COId>1</FK_COId>
<Media>
<small>
http://sierraleone.heritageinformatics.org/assets/objects/sierra_leone_national_museum/image/t
humbs/small/slnm.1946.01.02.pic1.jpg
</small>
<medium>
http://sierraleone.heritageinformatics.org/assets/objects/sierra_leone_national_museum/image/t
humbs/medium/slnm.1946.01.02.pic1.jpg
</medium>
<large>
http://sierraleone.heritageinformatics.org/assets/objects/sierra_leone_national_museum/image/sl
nm.1946.01.02.pic1.jpg
</large>
<media>
http://sierraleone.heritageinformatics.org/assets/objects/sierra_leone_national_museum/image/sl
nm.1946.01.02.pic1.jpg
</media>
</Media>

 188

</Medium>
<Medium>
<MediaTitle>No Data</MediaTitle>
<MediaDescription>No Data</MediaDescription>
<MediaFileName>SLNM.1946.01.02.pic2</MediaFileName>
<MediaType>Image</MediaType>
<FK_COId>1</FK_COId>
<Media>
<small>
http://sierraleone.heritageinformatics.org/assets/objects/sierra_leone_national_museum/image/t
humbs/small/slnm.1946.01.02.pic2.jpg
</small>
<medium>
http://sierraleone.heritageinformatics.org/assets/objects/sierra_leone_national_museum/image/t
humbs/medium/slnm.1946.01.02.pic2.jpg
</medium>
<large>
http://sierraleone.heritageinformatics.org/assets/objects/sierra_leone_national_museum/image/sl
nm.1946.01.02.pic2.jpg
</large>
<media>
http://sierraleone.heritageinformatics.org/assets/objects/sierra_leone_national_museum/image/sl
nm.1946.01.02.pic2.jpg
</media>
</Media>
</Medium>
<Medium>
<MediaTitle>No Data</MediaTitle>
<MediaDescription>No Data</MediaDescription>
<MediaFileName>SLNM.1946.01.02.pic3</MediaFileName>
<MediaType>Image</MediaType>
<FK_COId>1</FK_COId>
<Media>
<small>
http://sierraleone.heritageinformatics.org/assets/objects/sierra_leone_national_museum/image/t
humbs/small/slnm.1946.01.02.pic3.jpg
</small>
<medium>
http://sierraleone.heritageinformatics.org/assets/objects/sierra_leone_national_museum/image/t
humbs/medium/slnm.1946.01.02.pic3.jpg
</medium>
<large>
http://sierraleone.heritageinformatics.org/assets/objects/sierra_leone_national_museum/image/sl
nm.1946.01.02.pic3.jpg
</large>
<media>
http://sierraleone.heritageinformatics.org/assets/objects/sierra_leone_national_museum/image/sl
nm.1946.01.02.pic3.jpg
</media>
</Media>
</Medium>
<Medium>
<MediaTitle>No Data</MediaTitle>
<MediaDescription>No Data</MediaDescription>
<MediaFileName>No Data</MediaFileName>

 189

<MediaType>Image</MediaType>
<FK_COId>1</FK_COId>
<Media>
<small>
http://sierraleone.heritageinformatics.org/assets/objects/all/image/small/no-image.jpg
</small>
<medium>
http://sierraleone.heritageinformatics.org/assets/objects/all/image/medium/no-image.jpg
</medium>
<large>
http://sierraleone.heritageinformatics.org/assets/objects/all/image/large/no-image.jpg
</large>
<media>
http://sierraleone.heritageinformatics.org/assets/objects/all/image/large/no-image.jpg
</media>
</Media>
</Medium>
</Media>
</data>
</xml>

The API page also presents the results of the URL request and a web interface that users

can see results of each open module.

 Figure A.7 The SierraLeoneHeritage result page

 190

Google Maps APIs

Google Maps APIs offer a broad range of service APIs for location, maps and places

processing that support client application on every platform. Users have to create an

account and register to get a key for a particular API.

 Figure A.8 Google Maps APIs

The following describes Google Maps APIs that have been implemented into the

SOMARA-based mobile AR application.

Google Places API Web Service

After selecting the HTTP (Web services) button, the system presents a list and details of

services available for developers.

 191

 Figure A.9 Google Maps Web Service APIs

Google Places API Web Service provides processing for application clients that require

information of a specific place, a list of places based on a specific location, etc.

 Figure A.10 Google Places API Web Services

 192

Place Searches has been implemented into the SOMARA-based mobile AR application

in order to acquire the location (latitude, longitude) of a museum selected by a user. The

module that provide detailed information of a specific place is Text Search Requests

 Figure A.11 Text Search Requests

The create URL used to acquire the location of British Museum is:

https://maps.googleapis.com/maps/api/place/textsearch/json?query=British%20Museum

&key=AIzaSyC3GtYIqNylldA29Enfyg_YM5uSfjnHm94

A JSON response of the service quest above is presented below.

{
 "html_attributions" : [],
 "results" : [
 {
 "formatted_address" : "Great Russell St, London WC1B 3DG, United Kingdom",
 "geometry" : {
 "location" : {
 "lat" : 51.5194133,
 "lng" : -0.1269566
 }
 },
 "icon" : "https://maps.gstatic.com/mapfiles/place_api/icons/museum-71.png",
 "id" : "ad6aaec7b7b0fa2c97a127c24845d76135e760ae",
 "name" : "The British Museum",
 "opening_hours" : {

 193

 "open_now" : false,
 "weekday_text" : []
 },
 "photos" : [
 {
 "height" : 1067,
 "html_attributions" : [
 "\u003ca
href=\"https://maps.google.com/maps/contrib/101073730345618386482/photos\"\u003eCarlos
López\u003c/a\u003e"
],
 "photo_reference" : "CmRdAAAANFms_W7GBoiodzoFq_j5-
3bK33hEnHBGgQpEJsQQX9UDem-MYfgjOrL8i4ZJNQl1-
ZULQQ_RyBHB5rZ8mix2L98KM6oDHA9DPLHHxkBrqs0tzFMfAzt4rZ9PfhpPQQf7EhAJD
Pj10P4iZ2p7NVWpB2bFGhTKjb93zBGL_kz6R6Fs05M8Lob-yQ",
 "width" : 1600
 }
],
 "place_id" : "ChIJB9OTMDIbdkgRp0JWbQGZsS8",
 "rating" : 4.6,
 "reference" : "CnRlAAAAWeVJlBpEKNEbdHjIJwAUVnmP7id9B3REOB-
LMXjWiGLIqx94YdaqfuevL3Sb2LL9oS6xqlAYTWZoZhmmndVBs6UiKJ3UlZ2_QSFxC8G
Xeb-4iuu-
bFJy2uy2Rwvt7Av5Tvp4_9_RttA3mBRxM8soaxIQPA8wPWHEG7Oe5Lp2JNNrGhoUOX7u
Q1ipJmMZaaHtUC0PnjvprfI",
 "types" : ["museum", "point_of_interest", "establishment"]
 }
],
 "status" : "OK"
}

Google Static Maps API

Google Static Maps API provides a static map of a location (latitude, longitude) that can

be presented on a website or used by any application. The SOMARA-based Mobile AR

application requires a static map to present the position of a selected museum or the

origin of a selected object.

 194

 Figure A.12 Google Static Maps API

The URL request includes the location of a particular place, the size of the map, the

marker indicating the position of the place, etc.

 Figure A.13 The Google Static Maps URL request

 195

A service request for a static map that presents the location of British Museum in the

center is:

https://maps.googleapis.com/maps/api/staticmap?center=51.5194133,-

0.1269566&zoom=13&size=600x600&maptype=roadmap&markers=color:red|label:S|5

1.5194133,-0.1269566&key=AIzaSyDpBmBxxtpSrDyGBKOPR1glbefdgjH_Q7E

The location of British Museum is Latitude: 51.5194133, Longitude: -0.1269566.

 196

B. Tracking Configuration for
Home-based Learning
Scenario

 197

<?xml version="1.0" encoding="UTF-8"?>
<TrackingData>
 <Sensors>
 <Sensor Type="FeatureBasedSensorSource" Subtype="ML3D">
 <SensorID>FeatureBasedSensorSource_0</SensorID>
 <Parameters>
 <featureorientationassignment>gravity</featureorientationassignment>
 <MaxObjectsToDetectPerFrame>5</MaxObjectsToDetectPerFrame>
 <MaxObjectsToTrackInParallel>1</MaxObjectsToTrackInParallel>
 </Parameters>
 <SensorCOS>
 <SensorCosID>fb23be3415c00141a340d36b2766f610</SensorCosID>
 <parameters>
 <numextensiblefeatures>0</numextensiblefeatures>
 <mintriangulationangle>6</mintriangulationangle>
 <map>fb23be3415c00141a340d36b2766f610.f3b</map>
 <MinMatches>15</MinMatches>
 <NumExtensibleFeatures>250</NumExtensibleFeatures>
 </parameters>
 </SensorCOS>
 <SensorCOS>
 <SensorCosID>88320ad8a0b8d7fb9ccdd466217b1d69</SensorCosID>
 <parameters>
 <numextensiblefeatures>0</numextensiblefeatures>
 <mintriangulationangle>6</mintriangulationangle>
 <map>88320ad8a0b8d7fb9ccdd466217b1d69.f3b</map>
 <MinMatches>15</MinMatches>
 <NumExtensibleFeatures>250</NumExtensibleFeatures>
 </parameters>
 </SensorCOS>
 </Sensor>
 </Sensors>
 <Connections>
 <COS>
 <Name>cos1</Name>
 <Fuser Type="SmoothingFuser">
 <Parameters>
 <AlphaRotation>0.8</AlphaRotation>
 <AlphaTranslation>1.0</AlphaTranslation>
 <GammaRotation>0.8</GammaRotation>
 <GammaTranslation>1.0</GammaTranslation>
 <KeepPoseForNumberOfFrames>0</KeepPoseForNumberOfFrames>
 </Parameters>
 </Fuser>
 <SensorSource>
 <SensorID>FeatureBasedSensorSource_0</SensorID>
 <SensorCosID>fb23be3415c00141a340d36b2766f610</SensorCosID>
 <HandEyeCalibration>
 <TranslationOffset>
 <x>0.0</x>
 <y>0.0</y>
 <z>0.0</z>
 </TranslationOffset>
 <RotationOffset>
 <x>0.0</x>

 198

 <y>0.0</y>
 <z>0.0</z>
 <w>1.0</w>
 </RotationOffset>
 </HandEyeCalibration>
 <COSOffset>
 <TranslationOffset>
 <x>0.0</x>
 <y>0.0</y>
 <z>0.0</z>
 </TranslationOffset>
 <RotationOffset>
 <x>0.0</x>
 <y>0.0</y>
 <z>0.0</z>
 <w>1.0</w>
 </RotationOffset>
 </COSOffset>
 </SensorSource>
 </COS>
 <COS>
 <Name>cos2</Name>
 <Fuser Type="SmoothingFuser">
 <Parameters>
 <AlphaRotation>0.8</AlphaRotation>
 <AlphaTranslation>1.0</AlphaTranslation>
 <GammaRotation>0.8</GammaRotation>
 <GammaTranslation>1.0</GammaTranslation>
 <KeepPoseForNumberOfFrames>0</KeepPoseForNumberOfFrames>
 </Parameters>
 </Fuser>
 <SensorSource>
 <SensorID>FeatureBasedSensorSource_0</SensorID>
 <SensorCosID>88320ad8a0b8d7fb9ccdd466217b1d69</SensorCosID>
 <HandEyeCalibration>
 <TranslationOffset>
 <x>0.0</x>
 <y>0.0</y>
 <z>0.0</z>
 </TranslationOffset>
 <RotationOffset>
 <x>0.0</x>
 <y>0.0</y>
 <z>0.0</z>
 <w>1.0</w>
 </RotationOffset>
 </HandEyeCalibration>
 <COSOffset>
 <TranslationOffset>
 <x>0.0</x>
 <y>0.0</y>
 <z>0.0</z>
 </TranslationOffset>
 <RotationOffset>
 <x>0.0</x>

 199

 <y>0.0</y>
 <z>0.0</z>
 <w>1.0</w>
 </RotationOffset>
 </COSOffset>
 </SensorSource>
 </COS>
 </Connections>
</TrackingData>

 200

C. Tracking Configuration for
Home-based Learning
Scenario

 201

<?xml version="1.0"?>
<TrackingData>
 <Sensors>
 <Sensor Type="FeatureBasedSensorSource" Subtype="Fast">
 <SensorID>FeatureTracking1</SensorID>
 <Parameters>
 <FeatureDescriptorAlignment>regular</FeatureDescriptorAlignment>
 <MaxObjectsToDetectPerFrame>5</MaxObjectsToDetectPerFrame>
 <MaxObjectsToTrackInParallel>1</MaxObjectsToTrackInParallel>
 <SimilarityThreshold>0.7</SimilarityThreshold>
 </Parameters>
 <SensorCOS>
 <SensorCosID>Patch1</SensorCosID>
 <Parameters>
 <ReferenceImage>Nomoli.jpg</ReferenceImage>
 <SimilarityThreshold>0.7</SimilarityThreshold>
 </Parameters>
 </SensorCOS>
 <SensorCOS>
 <SensorCosID>Patch2</SensorCosID>
 <Parameters>
 <ReferenceImage>Nomoli1.jpg</ReferenceImage>
 <SimilarityThreshold>0.8</SimilarityThreshold>
 </Parameters>
 </SensorCOS>
 <SensorCOS>
 <SensorCosID>Patch3</SensorCosID>
 <Parameters>
 <ReferenceImage>bowl1.jpg</ReferenceImage>
 <SimilarityThreshold>0.8</SimilarityThreshold>
 </Parameters>
 </SensorCOS>
 <SensorCOS>
 <SensorCosID>Patch4</SensorCosID>
 <Parameters>
 <ReferenceImage>render.jpg</ReferenceImage>
 <SimilarityThreshold>0.8</SimilarityThreshold>
 </Parameters>
 </SensorCOS>
 </Sensor>
 </Sensors>
 <Connections>
 <COS>
 <Name>cos1</Name>
 <Fuser Type="SmoothingFuser">
 <Parameters>
 <KeepPoseForNumberOfFrames>2</KeepPoseForNumberOfFrames>
 <GravityAssistance></GravityAssistance>
 <AlphaTranslation>0.8</AlphaTranslation>
 <GammaTranslation>0.8</GammaTranslation>
 <AlphaRotation>0.5</AlphaRotation>
 <GammaRotation>0.5</GammaRotation>
 <ContinueLostTrackingWithOrientationSensor>false</ContinueLostTrackingWithOrient
 ationSensor>
 </Parameters>

 202

 </Fuser>
 <SensorSource>
 <SensorID>FeatureTracking1</SensorID>
 <SensorCosID>Patch1</SensorCosID>
 <HandEyeCalibration>
 <TranslationOffset>
 <X>0</X>
 <Y>0</Y>
 <Z>0</Z>
 </TranslationOffset>
 <RotationOffset>
 <X>0</X>
 <Y>0</Y>
 <Z>0</Z>
 <W>1</W>
 </RotationOffset>
 </HandEyeCalibration>
 <COSOffset>
 <TranslationOffset>
 <X>0</X>
 <Y>0</Y>
 <Z>0</Z>
 </TranslationOffset>
 <RotationOffset>
 <X>0</X>
 <Y>0</Y>
 <Z>0</Z>
 <W>1</W>
 </RotationOffset>
 </COSOffset>
 </SensorSource>
 </COS>
 <COS>
 <Name>cos2</Name>
 <Fuser Type="BestQualityFuser">
 <Parameters>
 <KeepPoseForNumberOfFrames>2</KeepPoseForNumberOfFrames>
 <GravityAssistance></GravityAssistance>
 <AlphaTranslation>0.8</AlphaTranslation>
 <GammaTranslation>0.8</GammaTranslation>
 <AlphaRotation>0.5</AlphaRotation>
 <GammaRotation>0.5</GammaRotation>
 <ContinueLostTrackingWithOrientationSensor>false</ContinueLostTrackingWithOrient
 ationSensor>
 </Parameters>
 </Fuser>
 <SensorSource>
 <SensorID>FeatureTracking1</SensorID>
 <SensorCosID>Patch2</SensorCosID>
 <HandEyeCalibration>
 <TranslationOffset>
 <X>0</X>
 <Y>0</Y>
 <Z>0</Z>
 </TranslationOffset>

 203

 <RotationOffset>
 <X>0</X>
 <Y>0</Y>
 <Z>0</Z>
 <W>1</W>
 </RotationOffset>
 </HandEyeCalibration>
 <COSOffset>
 <TranslationOffset>
 <X>0</X>
 <Y>0</Y>
 <Z>0</Z>
 </TranslationOffset>
 <RotationOffset>
 <X>0</X>
 <Y>0</Y>
 <Z>0</Z>
 <W>1</W>
 </RotationOffset>
 </COSOffset>
 </SensorSource>
 </COS>
 <COS>
 <Name>cos3</Name>
 <Fuser Type="BestQualityFuser">
 <Parameters>
 <KeepPoseForNumberOfFrames>2</KeepPoseForNumberOfFrames>
 <GravityAssistance></GravityAssistance>
 <AlphaTranslation>0.8</AlphaTranslation>
 <GammaTranslation>0.8</GammaTranslation>
 <AlphaRotation>0.5</AlphaRotation>
 <GammaRotation>0.5</GammaRotation>
<ContinueLostTrackingWithOrientationSensor>false</ContinueLostTrackingWithOrientationS
ensor>
 </Parameters>
 </Fuser>
 <SensorSource>
 <SensorID>FeatureTracking1</SensorID>
 <SensorCosID>Patch3</SensorCosID>
 <HandEyeCalibration>
 <TranslationOffset>
 <X>0</X>
 <Y>0</Y>
 <Z>0</Z>
 </TranslationOffset>
 <RotationOffset>
 <X>0</X>
 <Y>0</Y>
 <Z>0</Z>
 <W>1</W>
 </RotationOffset>
 </HandEyeCalibration>
 <COSOffset>
 <TranslationOffset>
 <X>0</X>

 204

 <Y>0</Y>
 <Z>0</Z>
 </TranslationOffset>
 <RotationOffset>
 <X>0</X>
 <Y>0</Y>
 <Z>0</Z>
 <W>1</W>
 </RotationOffset>
 </COSOffset>
 </SensorSource>
 </COS>
 <COS>
 <Name>cos4</Name>
 <Fuser Type="BestQualityFuser">
 <Parameters>
 <KeepPoseForNumberOfFrames>2</KeepPoseForNumberOfFrames>
 <GravityAssistance></GravityAssistance>
 <AlphaTranslation>0.8</AlphaTranslation>
 <GammaTranslation>0.8</GammaTranslation>
 <AlphaRotation>0.5</AlphaRotation>
 <GammaRotation>0.5</GammaRotation>
<ContinueLostTrackingWithOrientationSensor>false</ContinueLostTrackingWithOrientationS
ensor>
 </Parameters>
 </Fuser>
 <SensorSource>
 <SensorID>FeatureTracking1</SensorID>
 <SensorCosID>Patch4</SensorCosID>
 <HandEyeCalibration>
 <TranslationOffset>
 <X>0</X>
 <Y>0</Y>
 <Z>0</Z>
 </TranslationOffset>
 <RotationOffset>
 <X>0</X>
 <Y>0</Y>
 <Z>0</Z>
 <W>1</W>
 </RotationOffset>
 </HandEyeCalibration>
 <COSOffset>
 <TranslationOffset>
 <X>0</X>
 <Y>0</Y>
 <Z>0</Z>
 </TranslationOffset>
 <RotationOffset>
 <X>0</X>
 <Y>0</Y>
 <Z>0</Z>
 <W>1</W>
 </RotationOffset>
 </COSOffset>

 205

 </SensorSource>
 </COS>
 </Connections>
</TrackingData>

 206

D. The 3D Maps of Reference
Objects

 207

Figure D.1 presents the Metaio Toolbox on iPad used to create a map of a physical

reference object. Users select the 3D Maps icon in order to create a new 3D tracking

map of an object.

 Figure D.1 Metaio Toolbox on iOS

After the Start button is touched, the application shows a camera view that allow users

to point the camera on the mobile device at the targeted object and move around in

order to create a good quality map of the object. Figure D.2 illustrates the application

creating a 3D map of a sample object. The application learns the environment and then

tracks the features of the object that can be seen on the camera view.

 208

 Figure D.2 The created map of a sample object

The 3D map can be saved to the mobile device and then transferred to Metaio Creator

running on a PC or MAC where the map file is loaded and exported to two separate

files including a map file and a tracking configuration file in XML format. The tracking

configuration file and 3D map file are specifically created for a particular reference

object and these need to be stored in the library of the novel mobile AR application.

Figure D.3 shows Creator used to create an AR environment of a reference object that

could be a physical object, image, environment, human face or marker. The process

starts by selecting a 3D map file of a reference object. For physical object tracking,

developers have to import or open a 3D map of the reference object that has been

created by Metaio Toolbox.

 209

 Figure D.3 Metaio Creator on Mac

The saved 3D map file transferred from the mobile device is opened in Creator,

presenting a 3D map of the physical object. Figure D.4 shows the selected 3D map file

created and saved by Metaio Toolbox that is loaded into the Creator.

 Figure D.4 A selected 3D map file of a sample object

Figure D.5 shows the 3D map of a sample object on the Creator. The 3D map is

exported to a tracking configuration file and a tracking map.

 210

 Figure D.5 The 3D map of a sample object

Figure D.6 presents the 3D map exported to a tracking configuration file and a 3D

tracking map that is saved and copied into the iOS project for building marker-less

tracking components.

 Figure D.6 The tracking configuration files exported from a 3D map

 211

The figures below present the map file of another reference object installed into the

mobile AR client for the museum-based learning scenario.

 Figure D.7 The 3D map of a sample object

 Figure D.8 The 3D map on Metaio Creator

 212

 Figure D.9 The 3D map file and tracking configuration file

 213

E. Installing the Metaio
Augmented Reality SDK

 214

In order to build a mobile AR application, the development framework requires an AR

SDK for performing AR tasks including object tracking, recognition and content

visualization. In this research, the mobile AR application uses Metaio’s native AR SDK

that can be downloaded from the Metaio website. After installing the SDK into the

computer and opening the SDK folder, the developer sees the existing libraries for the

development frameworks it supports. Figure E.1 presents the provided libraries and

frameworks for developing environments including Android, iOS and Unity.

 Figure E.1 The Metaio development frameworks

Developers are able to choose the SDK specifically created for each platform in order to

build a mobile AR application based on their needs. Figure E.2 shows the components

for developing a mobile AR application on iOS SDK.

 215

 Figure E.2 iOS development framework

After creating a new project in XCode, the metaioSDK.framework file has to be copied

and pasted into the folder of the created mobile AR application. Figure E.3 shows the

folder of the application and development environment inside including the

metaioSDK.framework.

 Figure E.3 The mobile AR application development environment

 216

The developer opens the iOS project in the XCode IDE and adds the

metaioSDK.framework and other necessary libraries into the Linked Frameworks and

Libraries in the General Menu. Figure E.4 illustrates the framework and libraries

required in the development environment.

The next step is to register the application in the Metaio Developer Portal; the system

then creates an SDK signature for each application. The developer must copy the

signature and pass it into the MetaioLicenseString in the Info menu. Figure E.5 shows

the application registration in the portal that can be done after logging into the system.

 Figure E.4 The frameworks and libraries in the development environment

 217

 Figure E.5 The application registration page on the Metaio developer portal

The Metaio SDK version 5.X signature is copied and pasted into the XCode iOS Target

Properties. Figure E.6 presents the SDK signature and other necessary keys in the

development environment. The signature is used to identify the member or user of the

SDK installed in the system.

 218

 Figure E.6 The MetaioLicenseString in the development environment

 In the Metaio SDK folder, the developer must copy MetaioSDKViewController files

and EAGLView files and paste them into the application development folder. Then

these files have to be added into the project in the XCode. Figure E.7 presents the

Metaio SDK folder containing the required files.

 Figure E.7 The Metaio SDK folder containing the required files

The MetaioSDKViewController and EAGLView files utilise the

MetaioSDK.framework in order to create a sensor interface and perform object tracking

and rendering. Figure E.8 presents the project of the mobile AR application in XCode

and the Metaio SDK’s view controller and its supporting files.

 219

 Figure E.8 The project of the mobile AR application and the
MetaioSDKViewController

 220

F. Object Tracking

 221

Vision-based tracking

Real-time vision-based tracking is typically implemented in mobile AR systems

because new generation mobile devices already have a high quality camera that can be

used as a sensor. Vision-based tracking uses computer vision methods for processing

video streams and images. Performing vision-based tracking on mobile AR results in

low computational requirements, higher accuracy, flexibility, robustness and cost

savings in operations when compared to other sensing techniques [19]. In addition,

there are some advantages of vision-based tracking such as higher precision, less

sensitivity to intervention and more compact systems [110]. Most of the currently

available tracking techniques are composed of feature-based and model-based tracking

[111].

For indoor AR applications, vision-based tracking is particularly suitable for

implementation because of its hardware requirements, robustness and accuracy.

Computer vision does not rely on the volume of sensitizers, unlike magnetic,

mechanical or ultrasonic sensors [61]. In addition, only computer vision can guarantee

an accurate alignment between real objects and virtual objects. Vision-based tracking

requires cameras, which are equipped in mobile devices or connected to computers as

its optical sensor. Registration in an AR system has to be accurate in order to maintain

the user’s perception of virtual objects related to real objects in the same environment.

In addition, there is a close-loop AR system that can dynamically measure registration

errors and correct the cause of any mis-registration such as camera orientation or

position [112].

The closed-loop system can correct temporal errors in video-based AR systems that are

analogous to vision-based tracking systems [24]. Nevertheless, registration is the most

crucial component in AR systems. Virtual objects have to be adjusted with the 3D

location and orientation of real objects when users move their viewpoint. Adjustment is

based on precisely estimating a real-world viewing pose that is six degrees of freedom

(6DOF): three degrees of freedom for position and three for orientation. The accuracy

of tracked objects posed correctly defines the projection of 3D virtual objects into the

real world scene[113].

 222

Feature-based tracking

Feature-based tracking uses fiducials that are easily recognizable landmarks [27] or

known artificial patterns [110] as a marker for tracking and overlaying with virtual

objects using registration techniques or camera pose estimation. The fundamental

characteristic of feature-based tracking is to discover 2D image features and the

relationship with the 3D graphic objects or scenes relevant to their features. Another

feature is camera pose calculation of 2D features and finding the 3D coordinates of

markers for object registration. In addition, feature-based tracking can be divided into

two groups: visual marker-based and visual marker-less tracking [24][27].

Marker-based tracking

Mobile AR applications typically use original printed markers that are in square or

circular shapes. Markers or fiducial markers are more easily tracked and processed by

cameras and computer vision approaches when they are placed on specific or general

positions around the environment such as tabletops, books or walls. The fiducial

markers offer feature points that are tracked and 2D image coordinates are identified

and calculated for 3D object coordinates. There is a new marker technique that is less

obtrusive than the usual black and white squares, called Studierstube Tracker. The

Studierstube Tracker is a new marker-tracking library for mobile AR that supports

frame markers, split markers and dot markers [114]. Figure F.1 illustrate a frame

marker, split marker and dot marker that can be tracked by the Studierstube Tracker.

(a) Frame marker (b) Split marker (c) Dot marker

 Figure F.1 Markers for Studierstube Tracker [114]

Marker-based tracking has been found in multiple AR applications. Fiducial markers

are still useful as they can be tracked with high accuracy, robustness and low

 223

computational power. In contrast, printed markers have to be installed in the real

environment where good visualization and interaction with users is not guaranteed. Due

to the functionality in computer vision methods, mobile AR applications are not limited

to use in indoor environments. In addition, applying marker-based AR in some

environments may cause occlusion of markers by real objects; this will affect the quality

of view and appearance. Applying fiducial markers is inconvenient because they have to

be placed in the real environment and the system can track only those markers in the

view. Moreover, markers have specific shapes and colors while image-processing

algorithms have much more potential to track a variety of shapes, colors and textures

found in the natural feature extraction of real objects [115]. Furthermore, markers are

useless or inconvenient to present and track in some outdoor applications such as

location-based AR, gaming or travel guides that offer graphics, media content and

location-based user interfaces. Applying hybrid tracking such as GPS, Radio-Frequency

Identification (RFID) and tracking sensors with marker-less techniques can be done

effectively to improve the usability and functionality of the services.

The implementation of marker-less tracking is more complicated and consumes more

processing power than marker-based tracking. However, marker-less tracking leads to

further advanced developments in computer vision and image processing methods,

allowing the system to track real objects in the real environment without the use of any

fiducial markers.

Marker-less tracking

Trends in mobile AR applications have recently focused on marker-less tracking that

uses computer vision for tracking the natural features of objects to create highly

miscellaneous and flexible applications. Marker-less tracking improves usability and

ubiquity in AR, especially in complex environments, because it does not require any

markers to be placed on real world scenes. The systems can utilize natural features in

the real environment and track any part of the scene as a marker [110]. Marker-less AR

effectively enhances the user’s experience in 3D visualization and interaction with the

virtual objects in the real world scenes. Marker-less tracking extracts natural features of

real objects such as points, lines, edges and textures [24] by using natural feature

extraction methods. The system performs detecting and tracking in any part of the real

environment and overlays 3D virtual models at the calculated pose by using optical

 224

sensors and registration techniques. These methods make the development of mobile

AR applications much more flexible and scalable for indoor or outdoor use by

implementing marker-less tracking with other sensing techniques.

The difference between marker-based and marker-less tracking is in the methods that

are used to track and register the computer-generated virtual objects. In addition,

performing tracking in complex environments such as those involving moving objects,

occlusion of objects and illumination increases complexity in processing. Because of

these factors, marker-less tracking is obviously more complicated and has greater

computational requirements than marker-based tracking. Advanced applications in

marker-less AR at the moment can be found in interactive prints, shopping guides,

advertising, maintenance tools, AR magazines, travel guides, augmented cities, AR

kiosks, etc.

Marker-less tracking applications enhance the AR experiences of users by augmenting

computer-generated virtual objects from real objects in the real environment and

presenting in different ways, rather than relying on fiducial markers. Figure F.2 presents

the example of marker-less tracking by augmented a targeted object [45].

 Figure F.2 Marker-less tracking

 Real-time natural feature tracking has been studied and developed continuously for

tracking or detection techniques [113][116][117][118][119] and implementation

 225

techniques [120]. The following research proposes advanced development and

technologies in natural feature tracking.

One of the architectures for marker-less tracking is detecting and tracking natural

features such as points and regions occurring in video images or unprepared

environments by using a multistage tracking algorithm. The architecture is composed of

natural feature detection and selection, multistage motion estimation and feedback

evaluation. Additionally, the applications can perform image sequence annotation, pose

stabilization and tracking range extension. The system is implemented in a closed-loop

architecture that maintains performance and accuracy [113]. Figure F.3 shows the

natural feature tracking that present tags of detected positions.

 Figure F.3 Natural feature tracking [113]

 Scale Invariant Feature Transform (SIFT) and Fast Keypoint Recognition Algorithm

(FERN) are natural feature tracking techniques in which the main tasks of natural

feature extraction are composed of feature detection, feature tracking, feature extraction

and pose calculation in real-time. These techniques are modified to perform real-time

6DOF tracking and pose refinement on mobile phones. SIFT performs feature detection,

feature tracking, descriptor creation, descriptor matching, outlier removal and target

data acquisition, while FERN performs feature detection, classification, training, active

search and outlier rejection [116]. In addition, there is another real-time architecture for

feature tracking in which its operations are performed in a synchronized multithread

framework composed of video frame capture, optical-flow feature tracking, distinctive

feature detection and virtual object rendering. The system also performs recognition on

 226

different stored scenes by matching SIFT features [117]. Figure F.4 presents the Handy

AR using feature-based maker-less tracking.

 Figure F.4 Handy AR [117]

The structure-from-motion technique is a marker-less real-time tracking technique for

AR applications using a fisheye lens on a camera for tracking 3D scene points and 2D

feature points, and a tracker is used to track 2D image features. The system utilizes the

structure-from-motion technique for tracking geometric data and estimating camera

pose and 3D features online. Feature matching is also an efficient technique for

achieving real-time feature tracking and object registration [25].

Natural feature tracking can be implemented on many different platforms as they are

currently presented in mobile AR applications. There is a natural feature tracking

pipeline on web browsers that is cross-platform with AR solutions. The system is

implemented by JavaScript and embedded in a plugin-free web technology-based AR

pipeline in which all tracking tasks such as video access, detection and tracking and 3D

rendering are implemented in HTML5, JavaScript and WebGL platforms [120].

Moreover, marker-less tracking has recently been adapted to 6DOF hand-tracking

techniques. Hand-tracking techniques track the position and orientation of a user’s

hands. Tracking determines the user’s hand gestures such as grabbing as a virtual user

interface for AR systems [28][121].

Model-based tracking

One current approach is model-based tracking, a trend in vision-based tracking that uses

the natural features of real objects such as lines, edges and textures for tracking and

 227

calculating camera positions in real time. Model-based tracking methods use models of

the extracted features of the objects such as a Computer-Aided Design (CAD) model or

2D template [24]. The models are usually created from features including edges and

lines but edges are most frequently used because of the ease in finding them and their

robustness to lighting changes. Textures are also useful features for creating models and

they can be combined with edge information or feature points by performing edge

detection or extraction to obtain more robustness and accuracy [122]. Figure F.5

presents the model-based tracking using 2D feature points.

 Figure F.5 Model-based tracking [123]

Model-based tracking is a marker-less tracking technique, which is the most recent

technique in computer vision-based tracking. Lines, edges and textures are features that

can be used to build models. Edges and textures are the most useful features and some

applications integrate both to build models [24]. Model-based tracking is a powerful

technique for determining 3D location, pose of objects and feature models of image

sequences. However, tracking complex objects that have high DOF articulated models

is still complicated because small components lack good visual features, include clutter

and there may be occlusion between components. Possible solutions are to base feature

models on multiple views or to increase the reliability of particular feature models

[124]. The main advantage of model-based tracking is that knowledge about the scene

or 3D information leads to improvements in robustness and performance by predicting

hidden movements of the object, and actions to reduce the effects of outlier data can be

found in the tracking process [62] .

Model-based tracking techniques consist of recursive tracking and tracking by detection

on natural features of tracked objects, composed of edges, textures and optical flow.

Therefore, when considering features of objects used for tracking including edge-based,

texture-based and optical-flow based methods, model-based tracking can be categorized

into two methods: tracking-by-detection and recursive tracking.

 228

• Tracking-by-detection

o View based (edge-based)

o Keypoint based (texture-based)

• Recursive tracking

o Point sampling (edge-based)

o Optical flow based

o Template matching (texture-based)

o Interest point based (texture-based)

Tracking-by-detection

Tracking-by-detection calculates the current camera pose from the tracked objects

without any previous pose estimation or knowledge of scene geometry [125]. Tracking

by detection can be implemented to track features of objects and create models from

edges and textures. This technique extracts feature points from video frames and

matches them into a database of models and 3D locations of objects. A 3D pose is then

estimated from the correspondences. The implementation of a tracking by detection

approach creates specific difficulty because of the image database and the input frames

that may be obtained from many different viewpoints [61]. Figure F.6 shows the result

of the tracking-by-detection technique.

 Figure F.6 Tracking-by-detection [61]

Edge-based tracking by detection techniques are developed and implemented in several

approaches because edges are efficient and robust to detection. The edge-based tracking

method extracts the edges of an object and matches the 3D object model to the database,

then estimates the pose of the object. The main tasks are typically composed of tracking

objects, generating models, recognition and calculation of poses and projecting virtual

objects onto the scene [126]. Recent research on edge-based tracking-by-detection

approaches mostly focus on developing algorithms for real-time tracking, recognition

and matching object models [62][125][126][127].

 229

One of the model-based tracking techniques is a real-time 3D model-based tracking

algorithm for a video-see-through monocular vision system on a visual servoing system.

The goal of visual servoing is to move a camera in order to detect an object at a defined

position in the image. Visual servoing uses techniques composed of a moving edge

tracker, feature matching, uncertainty propagation and M-estimator in order to achieve

robust real-time tracking [62]. The system architecture for fully automated marker-less

AR utilizes a sparse metric model and the SIFT algorithm in order to generate stable

natural features of objects and determine the pose of a virtual object. The system

performs in two stages. The first stage is extracting SIFT features for creating a metric

model of objects, conducting model recognition and current camera pose computation.

The second stage is matching detected features in the current video frames with the

world model. The matching is used to compute the current camera pose [125].

There are some methods implemented using 3D object tracking and recognition for 3D

object pose calculation. A 3D model-based tracking and model-based recognition

technique can be done using a 3D CAD model of an object for training. The method

performs training with models based on the geometry information of a 3D CAD model

of an object and then processes an exhaustive search and hierarchical search to match

the models and calculate a 3D object pose [127]. Another method performs a visibility

test on visible edges of the model and extracts the sample points of visible 3D model

lines, then minimizes the distances between projection of all sample points and the

sample points in the image [126].

The tracking by detection technique still has some challenges in implementation and

there is an approach that is efficient enough to improve tracking performance [61]. It

can be achieved by using a classifier to recognize the feature points, which relies on a

texture-based tracking method. The texture-based tracking method relies on texture

information found on real objects [125]. A classification method is implemented by

utilizing a FERN for generating models and estimating object poses [128]. This

algorithm is based on a naive Bayesian classification framework for accuracy and

robustness. The classifier is used to recognize the patches surrounding key points.

Furthermore, the classifier uses hundreds of simple binary features and models class

posterior probabilities. The system uses SIFT to compare computational times with the

FERN algorithm.

 230

For improving the robustness and accuracy in tracking by detection methods, edge-

based and texture-based can be combined together to perform real-time model-based

tracking and pose estimation. There is a real-time, robust and efficient 3D model-based

tracking algorithm that utilizes a virtual visual servoing approach to estimate the pose

between the camera and the object and to integrate texture information to edge-based

extraction and pose computation [111].

Recursive tracking

Recursive tracking is used for tracking 3D objects with fast camera movements so the

system uses the last camera pose to estimate the current pose. Edge-based recursive

tracking uses a point sampling method that samples some control points along the edges

of the 3D model and compares the projection with strong gradients in the image. In

addition, texture-based recursive tracing is classified into two subcategories: template

matching, which recovers object movement by applying a distortion model to a

reference image, and interest point-based, which localizes features in the camera pose

estimation. Each tracking technique is suitable for different scenarios and environments

such as moving objects or moving cameras. Edge-based methods are suitable when

tracked objects are polygonal or have strong contours. Optical flow-based techniques

work with textured objects and a texture-based method is the best solution if the optical

flow-based techniques do not solve the problem.

Model-based visual tracking has recently attracted attention in many areas such as

robotics and AR where object recognition tasks are quite commonly combined with

visual tracking [129]. Figure F.7 presents shape augmentation using recursive tracking.

 Figure F.7 Shape augmentation using recursive tracking [129]

 231

Real-time 3D tracking is an important module in mobile AR for performing computer

vision tasks in both indoor and outdoor environments. However, integrating 3D marker-

less tracking with computer vision techniques is still a challenge to enhance the tracking

mechanism in video frames for example, creating 3D models from tracked objects.

Object recognition is a new technique incorporating maker-less tracking to improve the

proficiency in tracking and pose estimation that allows the system to increase its

perception in a real environment.

Object recognition

Vision-based tracking has now been incorporated effectively with object recognition to

perform visual tasks on AR platforms. Real-time object recognition has recently been

applied to perform object detection, object tracking, feature extraction, recognition and

augmentation with real environments such as planar surfaces, images and 3D objects.

Object recognition is a complicated task in computer vision because there are various

kinds of real object in the environment. Each object has their own size, shape, pose and

occlusion with other objects. Object recognition is a method in computer vision that can

be effectively developed to improve advanced features in some AR applications and

robot vision such as face, object and logo recognition. Most of the recent advances in

computer vision have focused on machine learning techniques in object recognition

[61]. The object recognition field has made significant progress and is often a solution

to current limitations. Most AR applications today rely on working with recognition

target objects such as sketches, images and video frames [130].

3D object recognition is a powerful method for identifying physical objects, because

when a particular object is recognized it can trigger relevant services such as the display

of associated virtual objects or loading of new graphical user interfaces to access more

features. The tracking method in video streams is composed of two phases: learning and

tracking for pose estimation [19]. The system can recognize and identify real objects

after being trained with sample objects. 3D object recognition in AR works together

with marker-less tracking in order to detect and track real objects and then performs

real-time recognition and pose estimation. As an adaptive learning system, the first

stage is training the system with new objects by using feature extraction and machine

learning techniques. The system is then able to track real scenes and identify the objects

in the scenes by using pattern or shape-matching techniques. Performing object

 232

recognition requires a database for maintaining the sample shapes or models that have

been trained. The machine learning applied in object recognition techniques consist of

neural networks, support vector machines and boosting. The following sections

introduce the recognition technique for shapes, 2D images and 3D objects. These are

described by research that has implemented object recognition with different

techniques.

Planar surfaces recognition

Recognition systems for AR have recently been studied and developed for a variety of

scenarios. One of the approaches used is real-time recognition and pose estimation for

planar surfaces or 2D images. The research in this approach are Nestor [129] and

Scalable Triangulation-based Logo recognition [130].

Nestor is a system for recognizing and tracking shape contours in real-time on a mobile

phone. The system can track hand sketches and overlays 3D virtual content onto a real

scene. The process starts training the system by presenting new shapes to the camera;

the system analyses and stores the learned shapes in its library. Two main tasks in the

system are model-based recognition and 3D pose estimation. For model-based

recognition, the system performs shape recognition by analyzing the contour structures

and then generating the projective invariant signatures from their concavities that are

further used to accomplish feature extraction for pose estimation and tracking. In

addition, the geometric invariant constructions are used to calculate the signatures for

the shapes that can then be recognized across different viewpoints.

Another research in the shape recognition area is Scalable Triangulation-based Logo

Recognition. The objective of this research is to recognize logos in a query image by

applying a bag-of-words model because logos normally contain useful information such

as text and geometric shapes for detection processes. Moreover, most logos emerge on

planar surfaces that are used to facilitate the process of feature detection and extraction.

The research uses a class database to collect the sample logos separated into each class

or brand in the database. The local features of each sample are grouped by using multi-

scale triangulation, then the local features are applied by a Delaunay triangulation that is

directed by the scales from the feature detector. A signature from each triangle is

extracted and the signatures of all samples in the class are used to represent each class.

The signatures are extracted from a query image during the recognition process and then

 233

they are matched to the samples in the class database. Finally, an inverted index

response is used to rank the class models and provide a sub-linear search.

 3D object recognition

3D object recognition is the next advanced step in an object recognition system in an

AR environment. Current research on recognition have focused on object detection,

object tracking, feature extraction, pattern matching and generating virtual content

relevant to real 3D objects and environments at the estimated pose. Research on 3D

object recognition is mainly focused on face and object detection as well as recognition

by implementing machine-learning techniques. Currently much research and

applications concentrate on recognizing 3D objects in photographs or image sequences

with samples or training input images such as personal photo collections, location

recognition, intelligent photo editing and image search. These are developed from the

area of recognition including face recognition, instance recognition, category

recognition and context and scene understanding. The following are the techniques used

to perform 3D object recognition.

Image-based recognition

An example of tracking and image-based recognition for mobile AR is AR-PDA. The

AR-PDA project effectively provides services to customers by presenting AR

technology on a high-end mobile phone or PDA. The goal of this project is to support

customers by providing AR as an interactive tool for their domestic equipment, such as

a virtual user manual and maintenance tasks. The project is developed on client-server

architecture that relies on a mobile network. The server receives live video streams that

are taken by an integrated camera and recognizes the objects by analyzing the images.

The specific relevant information or multimedia is assigned to the video stream and sent

back to the AR-PDA. The image-based recognition and tracking in this project uses 3D-

geometrics of the objects and requires information created from a 3D-CAD file [131].

2D shape similarity metric

A 2D shape similarity metric is a technique for comparing an unknown view with

prototypical views and measuring the similarity by evaluating the distance between the

segmented shapes of 3D objects and the prototypical views. The shape similarity metric

is used to rank the similarity between unknown objects in unknown views and samples

 234

that are stored in the metric to recognize real objects and their pose. An aspect graph is

implemented to specify the viewing sphere area. The aspect is produced by evaluating

the similarity of each 2D shape and grouping its views, then each aspect is represented

by a prototypical view. The system identifies a prototype view from a database of all

views of objects that stores views in five-degree increments. The prototypical views

help the system decrease the search time by indexing. The testing process starts by

randomly selecting an object from the database and then generating views from the

selected object at random angles. The unknown views are compared to the prototypical

views and the results from matching are sorted and reported to the unknown object

[132].

3D model recognition

The 3D model recognition technique creates 3D metric models from images of an object

that are taken by a camera. The system then recognizes new images by matching with

the 3D models and accurately calculates object poses for superimposing a virtual object

onto the new images. The research specifies a solution for accurate 3D pose calculation

so that a virtual model is superimposed on recognized objects at the correct pose. First,

the system processes SIFT feature extraction from the sample images and implements

indexing by linking images to create a spanning tree. The correspondences are utilized

to create a matrix model of the real objects. Moreover, the system calculates the camera

calibration parameters and camera poses relevant to the image viewpoints. The next

process detects features of the video frame and matches the features with the real model

using a Best-Bin-First (BBF) algorithm. Then the system calculates the current pose of

the real object and presents the virtual object superimposed on the objects using a

RANdom SAmple Consensus (RANSAC) and Levenberg-Marquardt algorithm [133].

Figure F.8 shows 3D object recognition using the 3D model recognition technique.

 Figure F.8 3D object recognition using 3D model recognition [133]

 235

Neural network for 3D object recognition

Another research that implements machine-learning techniques is a multiple feature

extraction method of 3D objects from 2D images to increase the performance of an

appearance-based 3D object recognition system. The 2D image features to be extracted

include texture, color, Hu’s moment and affine moment invariants. Hu’s moment

invariants represent the invariant rotation, scale and translation properties. Affine

moment invariants represent the invariant transformation properties. For each 2D image

of a 3D object, these characteristics are mapped to a 1D feature vector of 23

components of the 2D image. The vector is used to train a back propagation neural

network and the trained neural network is used to identify 3D objects. In addition, the

color moments and texture characteristics are used to recognize 3D objects of the same

shape [134].

The concept for developing an object recognition system can be applied to unloading

processes in order to organize and detect the pose of universal packaged goods in a

container unit by using sensor data. The unloading process is challenging because the

object recognition system for goods in undefined shapes is complicated and requires

robustness and reliability. Moreover, the unloading process requires a proper sensor

system to acquire shape and depth information of the goods in packaging scenarios. The

system uses time-of-flight cameras that can work with the specific environment inside

the containers. The system needs many range images from the cameras to improve the

efficiency in sensor detection. Then, the system analyses the range images to extract the

important features and creates a class of the packaged goods relevant to the features

[135].

There are algorithms for 3D object recognition including the Clonal Selection

Algorithm (CLONALG) and Particle Swarm Optimization (PSO). The modeling

process evaluates the 2D image appearance of a 3D object and creates a 3D model. The

first stage is segmenting the 2D image with Otsu’s threshold method. The second stage

is extracting a set of invariant features. The third stage is assigning the neural network

weights by utilizing CLONALG and PSO. Finally, the neural network is trained by

implementing a Levenberg-Marquardt (LM) algorithm. The experiment outputs show

that the CLONALG-LM algorithm has higher efficiency and performance compared to

PSO-LM and other traditional algorithms [136].

 236

3D modeling, rendering and reconstruction

In the area of 3D modeling and reconstruction, model-based reconstruction is developed

by implementing 3D model-based tracking and 3D object recognition such as whole

body modeling and tracking. Tracking humans, modeling their shape and appearance

and recognizing their activities are all applications in development. Therefore, the idea

of integrating 3D modeling and tracking by generating 3D models or shapes from the

tracked objects in real time is a possible development for an AR environment. In

addition, model reconstruction and rendering techniques can be incorporated. These can

be used to enable new mobile interactive applications in the area of mixed reality that

combines virtual objects with real objects and a real world scene. One research in this

area is an online interactive primitive modeling technique that enables a user to

reconstruct and label geometry relative to a marker in a scene. The research uses object-

based tracking incorporating a feature tracker for tracking the movement of the camera

relative to the object. Its outcome is a lightweight and fast approach to scene modeling

that might be suitable for use on mobile computer devices [137].

	PhD Coversheet
	Rattanarungrot, Sasithorn

