University of Sussex

A University of Sussex PhD thesis
Available online via Sussex Research Online:

http://sro.sussex.ac.uk/

This thesis is protected by copyright which belongs to the author.

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

Please visit Sussex Research Online for more information and further details

A Service Oriented Mobile Augmented Reality
Architecture for Media Content Visualization in

Digital Heritage Experiences

Sasithorn Rattanarungrot

A thesis submitted in fulfillment of the requirements for the degree of

Doctor of Philosophy at the University of Sussex

School of Engineering and Informatics
Department of Informatics
University of Sussex
Brighton

BN19QT

April 2016

II

Declaration

The work described in this thesis, carried out in the school of Engineering and
Informatics, I hereby declare that this thesis has not been and will not be
submitted in whole or in part to another University for the award of any other
degree.

Signed:

Sasithorn Rattanarungrot

Copyright © 2016 University of Sussex

III

Acknowledgements

This thesis has been accomplished by the supervision of Dr Martin White and Dr Paul
Newbury. I really appreciate their time, support, and kindness. I also would like to
thank Dr Ben Jackson who has given me some help and advice. Another group of
people who have encouraged me during my PhD study is my colleagues at Walailak
University, Thailand. I am grateful to have known these people. Nevertheless, I would
like to thank the Royal Thai Government who supports me financially for the PhD study
and the living in the United Kingdom.

I have been obliged and delightful to be a daughter of my parents (Boonsub
Rattanarungrot, Pranee Rattanarungrot), a sister of my two brothers (Aroon
Rattanarungrot, Arthid Rattanarungrot). I really appreciate their encouragement, love
and understanding. Moreover, I would like to thank all of my lovely friends and family
members who are always with me. Finally, I am really grateful to have known Chatsuda
Knowthong, my dearest friend. I would like to thank her for moral support and good

friendship.

v

UNIVERSITY OF SUSSEX
Sasithorn Rattanarungrot

Submitted for the degree of Doctor of Philosophy

A Service Oriented Mobile Augmented Reality Architecture for Media

Content Visualization in Digital Heritage Experiences

Abstract

Mobile augmented reality has become an influential tool for digital content
representation and visualization of media content in terms of enhancing users’
experience and improving the adaptability and usability of typical augmented reality
applications, such as in e-commerce shopping, virtual museum, or digital heritage
scenarios. This research proposes a new Service Oriented Mobile AR Architecture
called SOMARA, which includes a novel mobile AR client application.

SOMARA takes advantage the ability to integrate third party content through service-
orientation. The SOMARA architecture enhances traditional standalone mobile AR
applications with embedded media content by uniquely integrating a web service
framework into an augmented reality client application to create more efficient and
flexible mobile augmented reality applications that efficiently supports novel media
content acquisition and visualization through appropriate access parameters.

The proposed architecture requires access to media content through specific media
content service providers, e.g. a museum commissioning an augmented reality based
museum interactive — predetermined media content, or any third party with their own
service APIs, e.g. the Victoria and Albert Museum API — related external media
content. This approach allows relevant third party media content to be ‘mashed’ via
their public API with museums’ augmented reality interactive’s ‘embedded’ media
content in the SOMARA mobile AR client. In this way novel mobile AR interactive
applications, such as a museum augmented reality interactive, can be created based on
particular museum environment scenarios that integrate a museum visitor’s experience
with the interactive’s cultural objects.

Such experiences based on a SOMARA type museum augmented reality interactive can
also be saved allowing visitors to take home their museum experience. SOMARA thus
allows museum interactive experiences based on visualization of museums and third
party media content physically located in the museum to be migrated to the visitor’s
home environment for further study, enjoyment and understanding. This unique feature,
ability to effectively replay the experience at home, of the proposed system utilizes
service-orientation to integrate third party media content, which is currently deficient
from commercial augmented reality solutions.

List of Publications

Conference papers

1.

S. Rattanarungrot, M. White, and P. Newbury, “A mobile service oriented
multiple object tracing augmented reality architecture for education and learning
experiences,” in Proceedings of the International Conference on Mobile
Learning, IADIS Press, 2014, pp. 327-334.

S. Rattanarungrot, M. White, Z. Patoli, and T. Pascu, “The Application of
Augmented Reality for Reanimating Cultural Heritage,” in Virtual, Augmented
and Mixed Reality. Applications of Virtual and Augmented Reality SE - 8, vol.
8526, R. Shumaker and S. Lackey, Eds. Springer International Publishing, 2014,
pp. 85-95.

S. Rattanarungrot and M. White, “A service-oriented mobile augmented reality
architecture for personalized museum environments,” Virtual Systems &
Multimedia (VSMM), 2014 International Conference on. pp. 277-284, 2014.

S. Rattanarungrot, M. White, and B. Jackson, “The Application of Service
Orientation on a Mobile AR Platform - A Museum Scenario,” in International
Congress on Digital Heritage - Theme 2 - Computer Graphics And Interaction,
2015.

2D

3D
6DOF
AR

ARC 3D
API
AREL
AR-PDA
BBF
BIM_WPVS
CAD
CLONALG
Cv
FERN
GIS

GPS
HTML
HTTP
IDE
JSON
LM
MCaaS
MLA
NFET
OGC

OS

PSO

VI

Glossary

Two Dimensions

Three Dimensions

Six Degrees of Freedom

Augmented Reality

Automatic Reconstruction Cloud Three Dimensions
Application Programming Interface
Augmented Reality Experience Language
Augmented Reality Personal Digital Assistant
Best-Bin-First

Building Information Models-Web Perspective View Service
Computer-Aided Design

Clonal Selection Algorithm

Computer Vision

Fast Keypoint Recognition Algorithm
Geographical Information Systems

Global Positioning System

Hypertext

Hypertext Transfer Protocol

Integrated Development Environment
JavaScript Object Notation
Levenberg-Marquardt

Media Content as a Service

Museum Learning Activity

Natural Feature Tracking

Open Geospatial Consortium

Operating System

Particle Swarm Optimization

RANSAC
RCH
REST
RFID
RGB-D
RSS

SOA
SDK
SIFT
SLAM
SOAP
SOMARA
UDDI

Ul

URI

URL

VM

VR
WSDL
XML

VII

Random Sample Consensus

Reanimating Cultural Heritage

Representational State Transfer

Radio-Frequency Identification

Red Green Blue Depth

Rich Site Summary

Service Oriented Architecture

System Development Kit

Scale Invariant Feature Transform

Simultaneous Localization and Mapping

Simple Object Access Protocol

Service Oriented Mobile Augmented Reality Architecture
Universal Description, Discovery, and Integration
User Interface

Uniform Resource Identifier

Uniform Resource Locator

Virtual Museum

Virtual Reality

Web Services Description Language

Extensible Markup Language

VIII

Table of Content
1 Introduction 15
1.1 Augmented Reality 17
1.2 Media Content as a Service 19
1.3 Museum Environment Scenarios 20
1.3.1 Multiple object tracking 21
1.3.2 Photogrammetry to acquire 3D content 22
1.4 Closed AR Architectures 23
1.5 Open AR Architectures 25
1.6 Research Question and Potential Benefits 28
1.7 Contribution to Knowledge 30
1.8 Thesis Organization 31
2 Service-Oriented Mobile AR 33
2.1 Augmented Reality 33
2.2 Mobile AR System 34
2.2.1 Computer vision 36
2.2.2 Object tracking 36
2.3 Mobile AR SDKs 38
2.3.1 ARToolKit 38
2.3.2 Qualcomm Vuforia 39
2.3.3 Metaio 39
2.4 Mobile Application Development Tools 40
2.5 Service-Oriented Architecture 41
2.5.1 Web services 42
2.5.2 Web service mobile AR platform 46
2.6 Photogrammetry Services 48
2.6.1 Arc3D and MeshLab 48
2.6.2 123D Catch 49
2.7 Web Service-based Photogrammetry 49
2.8 Web Service Providers 50
2.9 Summary 52
3 Mobile AR Scenarios 54
3.1 Architectural Requirements 54
3.1.1 Service-orientation 55
3.1.2 Content acquisition 60
3.1.3 AR environment personalization 61
3.2 Museum Learning Scenarios 62
3.2.1 Museum-based learning scenario 67
3.2.2 Home-based learning scenario 67
3.3 System Specifications 69
3.4 Summary 71
4 Architectural Design 72
4.1 Mobile Client 74
4.1.1 Mobile interface 75
4.1.2 AR application 75
4.2 Web Service Framework 94
4.3 Web Service Providers 95

4.4 Summary 96

5 A SOMARA Application Development
5.1 Development Tools — XCode and 10S SDK
5.2 AR View
5.3 Tracking and Content Configuration
5.3.1 Museum-based learning scenario
5.3.2 Home-based museum learning scenario
5.4 Object Augmentation
5.5 Service Request and Response
5.5.1 Museum-based learning scenario
5.5.2 Home-based museum learning scenario
5.5.3 XMLParser
5.5.4 NSJSONSerialization
5.6 Third Party Service Request
5.7 Interaction and Object Selection
5.8 Saving Selected Content
5.9 Taking Photos and Photogrammetry Service Request
5.10 AR Browser
5.11 Summary

6 System and Unit Testing

6.1 Museum-based Learning Scenario
6.1.1 Object tracking

6.2 Home-based Learning Scenario
6.2.1 Object tracking

6.3 AR Environment Personalization

6.4 AR Browser

6.5 Photogrammetry Service

6.6 Summary

7 Conclusion
7.1 The Research Accomplishment
7.1.1 SOMARA
7.1.2 The SOMARA-based mobile AR framework and application
7.1.3 The Metaio AR SDK
7.1.4 SOA-based content acquisition and utilization
7.2 The Limitations and Problems
7.2.1 Metaio AR SDK
7.2.2 Web service providers
7.2.3 Photogrammetry service
7.3 Future Development

References

Appendix

A. Web Service Provider APIs

B. Tracking Configuration for Home-based Learning Scenario
C. Tracking Configuration for Home-based Learning Scenario
D. The 3D Maps of Reference Objects

E. Installing the Metaio Augmented Reality SDK

F. Object Tracking

IX

97

98

98
101
101
106
110
111
111
113
114
116
117
119
120
124
126
130

131
132
133
139
141
143
145
151
153

154
154
154
155
155
155
155
156
157
157
158

160
170
170
196
200
206
213
220

Vision-based tracking 221
Object recognition 231
236

3D modeling, rendering and reconstruction

Table of Figures

Figure 1.1 Closed mobile AR platform

Figure 1.2 Service Oriented Mobile AR Architecture

Figure 2.1 The continuum of reality and virtuality [49]
Figure 2.2 Snapshots of Juanio and Aurasma AR browsers
Figure 2.3 Service request and response process using SOAP
Figure 2.4 An example of a SOAP request message

Figure 2.5 An example of a SOAP response message

Figure 2.6 Service request and response process using REST
Figure 2.7 HTTP service request

Figure 2.8 HTTP response header message

Figure 2.9 Response document in XML format

Figure 2.10 The API directory website [81]

Figure 2.11 Europeana service API [93]

Figure 3.1 SierralLeoneHeritage API [98]

Figure 3.2 Victoria and Albert Museum API [99]

Figure 3.3 Google Maps APIs [100]

Figure 3.4 The use-case diagram of general museum learning
Figure 3.5 SOMARA use-case diagram

Figure 3.6 Home-based museum learning use-case diagram
Figure 4.1 Service-Oriented Mobile AR Architecture

Figure 4.2 Metaio native AR SDK (www.metaio.com)
Figure 4.3 Tracking and content configuration process

Figure 4.4 Tracking and API configuration process

XI

24
26
33
41
43
43
44
45
45
46
46
51
52
58
59
60
64
66
69
73
76
79
79

Figure 4.5 The process of tracking and content acquisition in museum-based scenario 81

Figure 4.6 The process of service and content requests

Figure 4.7 The process of tracking and content acquisition in home-based scenario

Figure 4.8 The service and content request in the home-based museum learning

Figure 4.9 JSON document processing

Figure 4.10 The process of reading the XML response document

Figure 4.11 The object augmentation process in museum-based and home-based

museum learning scenario

Figure 4.12 Photogrammetry service request module

82
83
84
85
86

88
90

Figure 4.13 The process of photogrammetry service request done by mobile users

Figure 4.14 The process of creating personalized AR environments

Figure 4.15 Use-case diagram of AR environment personalization

Figure 4.16 The process of visualizing personalized AR environments using AR
Browser

Figure 4.17 The use-case diagram of AR Browser

Figure 4.18 Web service framework

Figure 4.19 Web service framework and the implemented service providers

Figure 5.1 10S and XCode development framework

Figure 5.2 The mobile AR View of the museum-based learning scenario

Figure 5.3 The mobile AR View of home-based museum learning scenario

Figure 5.4 The AR Browser view

Figure 5.5 The Ul View showing a Google Map image

Figure 5.6 The Data Model of the application

Figure 5.7 A View Controller supporting a Camera View

Figure 5.8 The Collection View Cell

Figure 5.9 The Camera View

Figure 5.10 The UlTabBar Controller of the Table views

Figure 6.1 The main application page running on an iPad

Figure 6.2 The AR View of museum-based learning scenario

Figure 6.3 The related media content of a targeted object

Figure 6.4 The obtained associated content of a tracked physical object

Figure 6.5 The JSON response from the Victoria and Albert Museum API

Figure 6.6 The service APIs in a content configuration file

Figure 6.7 The obtained related content of a tracked physical object

Figure 6.8 The web service response document in JSON format

Figure 6.9 The associated content of a targeted sample object

Figure 6.10 The AR view of home-based museum learning

Figure 6.11 The URLs of participating content providers

XII

91
92
92

93

94

95

96

98

99
100
100
118
122
124
125
125
127
132
133
134
135
136
136
137
138
139
140
140

Figure 6.12 The related content of a trigger image representing a targeted cultural object

Figure 6.13 The tracked trigger image
Figure 6.14 The web service response and acquired content

Figure 6.15 Selected content and the Alert View asking for a preference name

141
142
143
144

XIII

Figure 6.16 A screen shows selected content and preference name 145
Figure 6.17 User's preference names 146
Figure 6.18 A personal AR environment 147
Figure 6.19 Saved content acquired from a museum-based learning scenario 148
Figure 6.20 The list of museums 149
Figure 6.21 A map of the area around the British Museum 150
Figure 6.22 A service request in URL format of Google Static Maps API 150
Figure 6.23 The map presenting the source of a preferred object stored in the Victoria
and Albert Museum 151
Figure 6.24 The Camera View 152
Figure 6.25 The Collection View displaying photographs taken of a sample object 153
Figure A.1 Victoria and Albert Museum 171
Figure A.2 Victoria and Albert Museum API 172
Figure A.3 The API Query Builder 172
Figure A.4 The outcome of a service request 173
Figure A.5 SierraleoneHeritage 186
Figure A.6 SierralLeoneHeritage API 186
Figure A.7 The SierraleoneHeritage result page 189
Figure A.8 Google Maps APIs 190
Figure A.9 Google Maps Web Service APIs 191
Figure A.10 Google Places API Web Services 191
Figure A.11 Text Search Requests 192
Figure A.12 Google Static Maps API 194
Figure A.13 The Google Static Maps URL request 194
Figure D.1 Metaio Toolbox on i0S 207
Figure D.2 The created map of a sample object 208
Figure D.3 Metaio Creator on Mac 209
Figure D.4 A selected 3D map file of a sample object 209
Figure D.5 The 3D map of a sample object 210
Figure D.6 The tracking configuration files exported from a 3D map 210
Figure D.7 The 3D map of a sample object 211
Figure D.8 The 3D map on Metaio Creator 211
Figure D.9 The 3D map file and tracking configuration file 212

Figure E.1 The Metaio development frameworks 214

X1V

Figure E.2 10S development framework 215
Figure E.3 The mobile AR application development environment 215
Figure E.4 The frameworks and libraries in the development environment 216
Figure E.5 The application registration page on the Metaio developer portal 217
Figure E.6 The MetaioLicenseString in the development environment 218
Figure E.7 The Metaio SDK folder containing the required files 218
Figure E.8 The project of the mobile AR application and the
MetaioSDKViewController 219
Figure F.1 Markers for Studierstube Tracker [114] 222
Figure F.2 Marker-less tracking 224
Figure F.3 Natural feature tracking [113] 225
Figure F.4 Handy AR [117] 226
Figure F.5 Model-based tracking [123] 227
Figure F.6 Tracking-by-detection [61] 228
Figure F.7 Shape augmentation using recursive tracking [129] 230

Figure F.8 3D object recognition using 3D model recognition [133] 234

15

Chapter 1

1 Introduction

Cultural heritage has been continuously improved so much in terms of assisted
technologies, content representation and innovative applications supporting cultural
heritage study, learning and digital content consumption. The European Work Program
2016-2017 has stated technologies that support access and utilization of digital cultural
heritage in Virtual Museum (VM) that allow visitors to access content before, during
and after a visit. Technologies that effectively enhance VM are Virtual Reality (VR)
and Augmented Reality (AR) in terms of digital content representation and

interpretation that can be applied in physical museum, online or heritage sites [1].

Mobile AR has become an influential tool for digital content representation and
visualization of media content in terms of enhancing users’ experience and improving
the adaptability and usability of typical AR applications, such as in e-commerce
shopping, virtual museum or digital heritage scenarios. This research proposes a new
Service Oriented Mobile AR Architecture called SOMARA, which includes a novel
mobile AR client application, which takes advantage the ability to integrate third party

content through service-orientation (e.g. Media Content as a Service — MCaaS).

Recent evolutions in mobile technologies such as screen resolution, processing speed,
embedded cameras and mobile network bandwidth have continuously led to an
enormous improvement in mobile applications and implementations. Furthermore,
advanced developments in mobile graphics processors, application programming
interfaces (APIs) and displays have increased the processing potential in real time
graphics tasks for instances of 3D rendering, visualization and interaction. Because of
these advanced developments, many mobile applications today can provide graphic
features and content, which hitherto where mostly found in desktop graphical user

interface or in 3D rendering found in game development approaches.

16

Mobility, as in the ability to take application mobile or a users’ penchant to use
applications in a mobile context, has strongly influenced both the quality and
performance of mobile technologies and applications in terms of greater potential for
use of hardware (e.g. mobile devices) and development software (mobile applications),
the quality of a mobile or wireless network, the scalability in application developments
and service providers and finally, the usability and ubiquity of mobile services. Most
mobile devices have a network connection module so mobile applications can be
efficiently implemented in a client-server framework. This mobile network connectivity
facilitates solutions for remote rendering on a mobile device. The most computational
operations are processed on servers, which then send the output to mobile clients for

visualization.

Nevertheless, cloud computing has currently been implemented in many client-server
applications such as web service-based mobile applications [2] and service-oriented
cloud computing [3]. Cloud computing is an enormous challenge adapting the
traditional client-server architecture to cloud-based infrastructure on the Internet. The
infrastructure relies on clients and services on the cloud computing architecture such as
processing services and data services. For example, rendering 3D graphics on a cloud-
based service infrastructure extremely improves the efficiency of the real-time
rendering of 3D content [4][5]. Some 3D rendering services on the cloud infrastructure

services are ArcGIS for Server [6] and 123D Catch on Autodesk® Cloud [7].

Advanced technologies utilized in hardware such as powerful mobile processors [8][9]
and high quality smartphone cameras [10], software such as Swift [11] , hybrid and
HTMLS development tools [12] combined with mobile network approaches such as
cloud networking [13] and advanced mobile networks [14] for mobile computing that
are now available on many platforms such as smart phones and tablet PCs have enabled
mobile 3D computer graphics to be a part of an evolution and innovation in mobile
applications. In the context of this thesis advanced interactive graphics development
software is of particular interest. Currently, there are two state-of-the-art mobile
graphics software architectures: OpenGL ES and M3G that both are configured as APIs
for C/C++ and Java programming respectively [15] [16] that are very useful in

developing mobile AR applications.

17

The following sub-sections discuss briefly the key concepts critical to the development
of novel mobile AR applications, such as SOMARA, AR, mobile AR, MCaaS, museum
environment scenarios, closed versus open AR platforms. These key concepts lead
toward a consideration of the research question, potential solutions and a set of
technology objectives. This chapter closes with a statement of the research contribution

and organization of the thesis.

1.1 Augmented Reality

AR has recently been an influential technology utilized to efficiently enhance users’
perception through computer-generated media content overlaid on real physical
environments [17][18] . The types of media content that can be visualized on AR scenes
are 3D models, labels, text, images, videos, etc. [19]. AR has become a powerful tool in
many scenarios designed for particular approaches such as advertising, museum
experiences, e-commerce, education and many other scenarios. In addition, AR
applications are currently found in many platforms such as hand-held devices, PCs,
wearable devices and even specially designed monitors and projectors for museum or
advertising approaches [20][17][18]. In the context of this thesis the application
scenarios discussed will focus on museum (digital heritage) experiences as described in
the author’s papers [21][22], but SOMARA could equally apply to other AR based

interactive scenarios in different domains as described in the author’s first paper [23].

AR application development requires important functions or AR tasks, including
tracking, recognition and visualization, to enable AR applications to work
simultaneously with cameras and computer screens. Traditional AR tracking is able to
recognize markers and then overlay relevant media content on top of the markers.
Marker AR is generally found in various scenarios, however using markers still has
some restrictions in terms of flexibility and usability of AR application utilization.
Applying marker-less AR is a solution that improves the functionality of AR
applications by enable the applications to track and recognize marker-less such as
images or 3D objects and then augment media content on the marker-less environment.
This marker-less approach remarkably improves the implementation and experience of

AR 1n various scenarios [24][19][25].

While AR scenarios can affect peoples’ activities and lifestyles in positive ways,

implementing mobile AR can prove to be a particular technological challenge.

18

Nevertheless, mobile AR has become the most recent trend in indoor and outdoor
scenarios such as location-based AR, gaming or potential graphics applications, which
allow users to experience static or interactive content on the real scene. Mobile AR
systems require a tracking module including marker, marker-less and Global
Positioning System (GPS) in order to recognize reference objects or identify current
location of a user and the system will then augment related media content of a tracked

object or user’s current location [26].

Mobility is a powerful and influential structural concept that has been found in mobile
technology and platforms including mobile devices, wireless networks, pervasive
computing and ubiquitous networks. Current AR systems on mobile platforms enable
mobile users to participate in virtual content and services at anytime and anywhere.
Mobile devices are available on small and handheld devices (smartphone, tablets, etc.)
that are lightweight and much more convenient to be carried. With such devices,
wireless or mobile network connection will enable mobile devices to automatically
connect to the Internet everywhere. A typical mobile’s advanced hardware and software
features can process interactive 3D graphic in real time enabling good human-computer
interaction to be created. Because of these qualifications, mobile devices have become
powerful tools that people can access and also utilize services and applications easily in
the progressive and interesting ways. Mobile AR will potentially enhance users’ new
experiences in visualization and interaction with 3D models on mobile platforms by
using embedded cameras, displays and graphical user interfaces — the basic 3

components needed for mobile AR scenarios embedded in a single mobile device.

Mobile AR has been implemented in various innovative applications such as gaming,
shopping guides, advertising, edutainment, travel guides, museum guides, medical
visualization, etc. However, these AR applications often provide limited flexibility
because their media content are usually embedded within the application in advanced
and they rely on marker-based approaches [27] [15]. Therefore, current AR applications
can be enhanced by improving visualization, tracking, recognition, interaction, displays
and user interface design of such AR applications both within the real and virtual

environment.

AR applications work by superimposing or combining interactive virtual objects with

real world environments in real time, and in this way AR application providers exploit

19

software and hardware video (camera and tracking) techniques to represent computer
generated models together with real objects to create visualization services based on
interactive graphics representations. In addition, users can view and interact with virtual
objects in a real environment through the AR application interface or through virtual
interaction techniques such as hand tracking [28] or mixed-reality interfaces [29]. In
such AR systems, cameras, displays and graphics libraries are currently the most
important modules on mobile devices for implementing computer vision techniques
such as 3D object tracking and recognition on AR environment [27]. This thesis
proposes to add a new service-orientation module to this AR architecture to enable a

new generation of mobile AR applications that can integrate MCaaS.

1.2 Media Content as a Service

MCaaS in the context of this thesis exploits the well-known Service-Oriented
Architecture (SOA) approach, which is a web 2.0 technology that has been empowering
sharing and acquiring digital content, data and services over open and interoperable
networks. SOA and APIs often go hand-in-hand to provide flexible and efficient access
for end-users to open data (e.g. media content) that is consumed in web applications.
Currently, there are many open and interoperable networks and providers on various

platforms, which interactively offer versatile data and content to other applications.

Open and interoperable network applications that consume or share data via service-
orientation are usually based on web service architectures. They make data accessible
over the Internet, perhaps as a mobile network, and are often configured client-server
applications exploiting a private or public API. Examples of web service providers are
Web Map Services, mash-up services, geospatial and social networking data

[30][31][32].

This thesis investigates how to efficiently exploit open and interoperable networks (web
services and APIs) to provide access to digital media content for mobile AR
environments (using museum scenarios as an example). Through a web service
approach, AR based media content are presented as virtual media or digital content on
see-through AR browsers (on a mobile tablet or smartphone), which can be used instead

of web browsers in outdoor AR environments or real scenes.

20

This SOA approach supports very well a client-server scheme over a mobile/wireless
network. Thus, SOA and client-server architectures are well suited to developing mobile
AR architectures, such as SOMARA. Additionally, integrating media content via an
API allows the AR application to obtain more associated valuable content and
significantly increase the usability and functionality of the proposed mobile AR
application. So, a key features of SOMARA proposed in this thesis includes the

integration of a web service framework into a mobile AR application.

This feature could be extensively implemented in indoor or outdoor AR scenarios, for
which the AR browser is an application based on a web service framework to show
media content in a real environment. The mobile AR client proposed in this thesis offers
a key advantage (over current museum based AR systems) from being deployed on a
service-oriented architecture. That is, it provides third party open services to access

related digital media content from third party digital content providers [33][34].

1.3 Museum Environment Scenarios

Generally, museums basically allow visitors to physically view cultural objects, read
details on small cards and take away some leaflets. Currently, some museums also
provide a website that also exhibits digital cultural content and enable users to search
catalogues online. Thus, the museum learning activities (MLAs) can be now performed

online anytime and anywhere inside or outside the museum.

For the enjoyment of the casual or professional visitors, many museums have integrated
technologies into their ‘collections environments’ (e.g. online or in a physical display)
such as VR, AR and mobile technologies in order to revolutionize cultural object
exhibits as well as enhance visitors’ experiences in participating the learning activities
offered by the museum itself [35][36][37][38]. The next generation of museum exhibits
could effectively be organized as AR exhibits on mobile platform exploiting SOA in
order to create a tool or application on mobile devices that support effective learning
scenarios where visitors will have opportunities to perform cultural objects study or
view virtual exhibitions through a mobile device. These novel mobile AR applications
will then be able to support content acquisition where associated cultural media content
from any open services or repositories can be requested and the content will be

presented to visitors on the AR environment.

21

Photogrammetry or image-based reconstruction is a technique that usefully supports
content acquisition that could be beneficially applied in MLAs where visitors are able to
obtain a 3D model of a preferred cultural object and utilize the acquired model in
mobile AR environments. The photogrammetry could be integrated into the novel
mobile AR applications in order to enhance typical museum learning where visitors are
not allowed to take photographs or take away anything related to exhibited objects. The

photogrammetry and its features are discussed further in section 1.3.2, and 2.6.

Additionally, the proposed mobile AR platform also supports multiple object tracking
that enable the novel mobile AR applications to track and recognize several targeted
objects individually. Multiple object tracking allows providers to create an AR
exhibition of a group of cultural artifacts composed of reference cultural objects that
will be tracked and related content of each object that will be visualized on top of the
real environment. The multiple object tracking is discussed further in section 1.3.1, and

Appendix F.

1.3.1 Multiple object tracking

Object tracking is one of the AR tasks that mobile AR applications firstly perform
through the embedded-camera of a mobile device in order to detect and then recognize a
reference object, which could be a marker or marker-less. Typical indoor mobile AR
applications are particularly designed to track one single object and augment a related
content on top of the real scene. For example, a mobile AR game allows users to
download a marker or an image from which the application will augments an interactive
game and mobile users can then have interaction with the active content on the screen.
In order to create more functional and adaptable mobile AR applications, multiple
object tracking could be another option in order to provide object augmentation to
various reference objects in the same environment or scenario. This feature usefully
enhances the concept of mobile AR in museum or learning scenarios that support
content utilization in rich media environments where users are able to track a selection
of reference objects and visualize associated content of each tracked object. In addition,
mobile users are able to participate in the AR environments where they can create

personal AR environments from the visualized content of preferred objects.

Multiple object tracking also enhances more flexible AR applications which is another

level of improving the usability of mobile AR applications and providing various digital

22

media content augmented from physical objects or images in AR environments. The
new mobile AR applications can offer a broad range of reference objects and multiple
related media content particularly specified for each object. The multiple object tracking
can generate richer learning environments, which can be combined to other obtained
media content, to mobile users so that they can efficiently view and utilize media
content in AR environments. Typical mobile AR SDKs provide single object tracking
and it can be improved to multiple object tracking by creating a tracking and content
configuration file for reference objects. Thus, performing multiple object tracking and
media content augmentation requires more preparation and processing compared to

single object tracking.

1.3.2 Photogrammetry to acquire 3D content

Photogrammetry is an advanced technique for reconstructing 3D virtual objects from
original objects. 3D model reconstruction tasks are mainly composed of matching and
merging multiple images [39]. Photogrammetry requires photographs of a targeted
object in order to create a virtual 3D model from the prepared photographs and the final
outcome will be given away to the users. Image-based reconstruction or
photogrammetry could be effectively used as a tool to perform 3D content acquisition in
the novel mobile AR applications beneficially applied in MLA scenarios. Providing
photogrammetry services to visitors is another technological strategy for physical
museums that allow visitors to participate in selecting preferred objects, sending
photogrammetry service requests and taking away obtained 3D models that can be done
on a mobile device and the novel mobile AR application based on SOMARA.
Photogrammetry applications currently are based on client-server architecture where
users are able to upload photographs of a target objects to the server by using an

application client on mobile devices, PCs or a web-based application.

Another platform of photogrammetry applications is the open photogrammetry services
which expose service APIs and allow any applications to create connections with the
services through a web service framework. Photogrammetry web services can then be
integrated into mobile AR applications and the services can be requested directly from
the client-side applications. As the result, the outcome of the service, which is virtual
3D models, is able to be instantly visualized in AR environments and taken away for

presenting in other situations.

23

1.4 Closed AR Architectures

Most current mobile indoor and outdoor AR applications nowadays are implemented as
‘standalone’ or ‘closed platforms’ that provide users with a limited amount of
embedded data or content on top of the real scene [5][40]. In this context a standalone
platform means a single AR application not connected to any form of dynamic update,
but can connect to the app store for a new version. On the other hand, a closed platform
means that the AR application can be dynamically updated, for example, with
commercial advertising, usually on a client-server framework. However, neither
solution offer a communication channel to download or obtain dynamic content from
other third party media that are related to the actual AR application’s media content in
real-time. For example, if this was a museum app displaying cultural objects there is no
way to add or integrate third party digital cultural object media content. This means the
AR application is fixed and inflexible, i.e. cannot be dynamically updated with
‘meaningful’ media content. Therefore, these AR applications have no ability to provide
content sharing between mobile end-users (e.g. museum visitors) and third party AR
data providers because of the closed platform approach. Therefore, obtaining new
content generally relies on application providers or application stores to update the AR

applications.

For example, commercial outdoor AR applications such as Aurasma [41] and Layar
[42] offer an interface or tool to create personal AR environments and upload media
content to their server for use in the AR application. These tools then allocate an
account to each individual mobile user and a channel to an AR environment so that they
can visualize their own AR environments. However, dynamic advertising does take
place in that commercial organizations (e.g. KFC, Tesco, whoever) can provide media
content that are also displayed on the AR application (part of the revenue model for
Aurasma, etc.). However, because the AR applications themselves are implemented on
a closed platform where only their members (in thus case the application developer and
any commercial advertiser) can place their preferred content (the developer, for
example, could be a museum, and they also allow through the tool a channel for
advertising media content that are displayed with their cultural content) on the AR
environment, they are effectively inflexible and not truly dynamic, because they cannot

exploit user-generated content.

24

Figure 1.1 illustrates the structure of typical AR applications on a closed platform and
the process of updating the content that mobile users can only be done through the

application store when the providers have launched an updated version of the

application.
Closed Mobile AR Application Platform
Augmented Reality tasks
Content visualisation and
interaction
Mobile User

Download applications

Application Server

Application Store

Create applications

Application Developers

Figure 1.1 Closed mobile AR platform

AR applications lend themselves to the display of 3D objects. However for any mobile
3D graphic application, 3D virtual models still have to be created and designed in
desktop computers and then transferred to mobile devices for running or rendering on
applications just as they do for mobile games or other interactive media applications
(e.g. web 3D apps). Although new generation mobile devices can generate good
performance 3D graphics content, some complicated rendering tasks still require more
processing power such as digital cultural heritage scenes, 3D virtual cities or
complicated 3D models. Therefore, processing complicated tasks such as image-based
reconstruction or 3D photogrammetry exploiting multiple images matching and 3D

model building cannot be completely done on mobile devices because of the mobile

25

device’s limited resources. Unfortunately, closed architectures such as that described
above preclude the ability to access photogrammetry (and other media) services to

alleviate 3D content generation.

1.5 Open AR Architectures

In contrast, an open AR platform (open architecture) exploiting SOA, as illustrated in
Figure 1.2, offers many more advantages, such as the ability to integrate third party or
user-generated content. SOA is an open architecture that enables any application to
participate with an open network where valuable content and services from potential
providers can be accessed and requested. Thus, in an open architecture mobile AR
applications are able to exploit a web service framework in order to create applications

on an open platform, rather than a closed platform.

There are many advantages to utilizing an open architecture (or open platform). For
example, it is relatively easy to integrate a web service framework (e.g. based on REST)
into a mobile AR platform in order to create a novel open mobile AR application, as
proposed in this thesis. Open architectures are able to apply service API calls, create
enhanced interactions (between embedded and third party media content), request both
local (e.g. British Museum AR exhibition content) and third party (e.g. Victoria and
Albert Museum) media content and integrate them into the same mobile AR client
application, and also share the results with other potential applications or service

providers.

Additionally, mobile AR clients are capable of applying mash-up services, again
through third party APIs, by requesting and presenting value-added media content such
as geolocation and social networking data on AR or mixed reality environments. For
example, an object from the British Museum (Mende Mask) and another object from the
Victoria and Albert Museum (another Mende Mask) collocated in digital space (i.e. in
the mobile client AR application) can be integrated with a Google map showing their

shared location of origin (Sierra Leone).

The structure of SOMARA from a use case perspective is illustrated in Figure 1.2. Here,
the critical components that comprise the open architecture or platform are composed of

a mobile AR client, web service framework, and content or service providers. The

26

mobile user is typically a museum visitor (or a shopper in a retail scenario) browsing

augmented content.

Mobile AR Application

Augmented Reality tasks

Content visualisation and
interaction

Mobile User

Web service request

Media Content as a Service

Web Service Fr wi

Associated content providers

RCH Database

Third party content providers

V&A Museum, Google Maps,etc.

Associated service providers

Photogrammetry Services, etc.

Figure 1.2 Service Oriented Mobile AR Architecture

The mobile AR client performs AR tasks that support the interaction between a user and
the novel mobile AR application in order to view augmented content of a targeted
object on the screen. This new type of open mobile AR application effectively supports
content acquisition where existing media content on the real scene can be augmented
with media content from third party sources. Because, an open architecture can

consume related third party media content, it will enhance the end-user experience

27

further than is normally associated with closed platform AR — because there are richer
media content in the AR environment that could lead to a greater understanding of the

objects being studied.

Another valuable service that could be applied to a mobile AR platform is 3D model
building from photographs or photogrammetry — alluded to in sections 1.3.2 and
discussed further in section 2.6. Photogrammetry is an image-based 3D reconstruction
method that requires high performance machines and plenty of resources to perform
complex modeling, rendering and reconstruction tasks. At the moment, there are some
closed photogrammetry applications that allow users to use their application tools for
uploading a stream of photographs of a target object and then the systems will create a
3D virtual model and send it back to the user. This application will help users acquire
3D virtual models and utilize such models in their applications with time and cost
saving. Typical examples of the photogrammetry applications are 123D Catch [7] and
Autodesk ReCap [43]. Also, there are several potential European consortiums working
on the concept of mobile photogrammetry for cultural heritage applications, in

particular exploiting RGB-D cameras [44].

Another key feature required for enhancing mobile AR applications beyond so called
marker-based AR is marker-less object tracking used to track and recognize physical
targeted reference objects. This is a necessary requirement to build ‘usable’ AR
applications such as those needed in shopping, museums and other environments where
an end-user has the need to visualize associated media content collocated with the
physical object (e.g. a museum artifact or a product in a shop, etc.). In this context, this
thesis presents a mobile AR application based on marker-less AR by enhancing the
Metaio AR SDK [45] i.e. with multiple object tracking, recognition and content
visualization that demonstrates the efficacy of a new service-orientation approach

[21][22][23][46].

Associated or related content can now be revealed on the real scene by augmenting the
physical objects. In the mobile AR application proposed in this thesis, the tracking
module is designed to perform marker-less tracking, which requires 3D object tracking
(and image tracking) so that the system can recognize physical objects. Moreover, the
proposed mobile AR system can augment various content of one reference object — as

mentioned, this will lead to a richer AR environment in terms of media objects

28

associated with the reference object. That is, multiple objects tracking has the potential
to greatly enhance the interpretation of mobile AR scenarios and their environments
where mobile users can obviously view a greater variety of media content from a
reference object on the screen. Mobile AR applications can also offer some features for
the users to manage and utilize those revealed content, e.g. saving an AR scenario for

future use.

1.6 Research Question and Potential Benefits

Factors introduced above concerning open and closed AR architectures, scenarios of
use, etc. lead to the consideration of an overarching research question posed in this
thesis. This research question further leads towards consideration of potential benefits
that will drive the design and development of the SOMARA framework in which key
technology components (SOA, multiple object tracking, content acquisition and

utilization) are implemented to demonstrate the efficacy of an open AR architecture.
Overall Research Question:

* How can a typical mobile AR application based on a closed architecture (or
closed platform) be enhanced through service-orientation to create a more
flexible open architecture that can acquire valuable MCaaS from participating

open sources for museum (and other) interactive experiences?

This thesis proposes potential benefits to this research question: Service Oriented

Architecture on a Mobile AR platform (SOMARA) that

* Exploits an open architecture through service-orientation: SOA is able to
enhance typical mobile AR applications in order to obtain valuable associated
content from participating open providers and extensively increase the
adaptability and functionality of typical mobile AR applications on closed
platforms (closed architecture). Therefore, integrating a web service framework
into a closed mobile AR system efficiently improves the content acquisition and
utilization of mobile AR system [40] [34] [47] [48].

* Integrates a web services framework into the mobile AR client: SOMARA is
a unique implementation of a SOA on mobile AR platform where a web service
framework 1is integrated into the AR application in order to perform

interoperability tasks to acquire valuable media content that can be visualized on

29

the real scene and enhance the AR environment. The proposed service-oriented
mobile AR application is composed of a mobile client, web service framework,
and service providers.

Exploits APIs to access Media Content as a Service: SOMARA’s web service
framework accesses media content via a set of APIs including an API developed
to access the Reanimating Cultural Heritage (RCH) digital archive as a test bed.
The mobile AR client also integrates other existing service APIs from third party
content providers, e.g. Victoria and Albert Museum, in order to verify a service-
orientation approach. Web service responses are processed and the obtained
content are presented on top of a targeted object in AR environments.

Exploits APIs to access services: Another benefit from working simultaneously
on a web service framework and exploiting an open platform is that of obtaining
value-added content from open services or third party such as photogrammetry
or image-based reconstruction, which support 3D model acquisition from
photographs. In addition, the mobile AR system also effectively support content
utilization feature where mobile users are able to create personal AR
environments by selecting preferred content on the active scene and save it for
reviewing in other situations. This feature enhances the learning experiences and
interpretation by transforming typical data or metadata into rich media content
on AR environments. Another useful service in proposed museum learning
scenarios is Google Maps where the user may wish to see a location origin of a
cultural artifact. Google Maps APIs are applied by the mobile AR client that a
visitor is able to see locations origin of a collection of preferred cultural artifacts
saved from the museum on the map.

Implements a web service based museum scenario: The application of
SOMARA is validated through the implementation of a prototype mobile AR
museum interactive application that integrates multiple object tracking.
Multiple object tracking is required in the novel service-oriented mobile AR
application in order to create a series of reference objects augmentation that
expand the AR content representation and enrich the AR environment. The
prototype allows MLA scenarios to be implemented where the mobile AR
application is developed on a web service client framework [46][21] and mobile

platform that related content of cultural objects are visualized on the mobile

30

screen. The novel mobile client developed in this prototype beneficially supports

two related modes of use: museum-based and home-based AR visualizations.

1.7 Contribution to Knowledge

This new concept of developing an open AR architecture on mobile platform by
implementing SOA will provide the adaptability and improvement of typical closed
mobile AR applications that limit the exploitation of AR features and content
acquisition that mobile AR applications should be able to obtain valuable media content
from other sources such as third party. In order to prove the proposed concept, it
requires a novel open mobile AR architecture and a mobile AR client that is applied to
MLA scenarios where museum exhibits is transformed into media content on the real
scene and it can be viewed through the mobile screen. The novel mobile AR application
augments cultural objects by presenting related content in AR environments as well as
requesting associated content and services from other participating museum content
providers or third party. The following is the contribution to knowledge of this research,

which is the accomplishment of developing SOA on mobile AR systems.

* A Service Oriented Mobile AR Architecture to support different mobile AR
scenarios [23] — Conceptual Architecture
o A new Service Oriented Mobile AR Architecture or SOMARA that is
the development of a mobile AR framework based on SOA. A web
service framework is applied into the architecture in order to create a
mobile AR client that can access open service providers such as third
party or local service providers and consume MCaaS. The connections
allow the mobile AR client to send requests and receive responses, which
1s media content that will be visualized in AR environments.
* A prototype software framework based on 10S to demonstrate a SOMARA type
application [21]— Specific Software Framework
o A novel mobile AR software framework on 10S platform is developed in
order to support the concept of SOMARA. A SOMARA application is
built to validate the architectural concept and software framework. The
SOMARA framework requires the embedded-camera of a mobile device,
AR SDK and mobile/wireless connection in order to perform object

tracking and interoperability tasks respectively. The SOMARA-based

31

application enables mobile users to interact with visualized media
content and the application itself through the touch-screen mobile
interface.
* A multiple object tracking algorithm exploiting the Metaio AR SDK to support
[22] — Specific Algorithm
o The Metaio AR SDK is applied as a framework performing AR tasks
composed of object tracking, object recognition and content
visualization. The Metaio AR SDK offers only single object tracking and
single media content visualization. In order to create a mobile AR client
that support rich media content augmented from different reference
objects, the original object tracking has been extended in a unique way to
afford multiple object tracking.
* Service-oriented content acquisition and utilization [46] — A SOA Approach
o SOMARA encourages a new content acquisition approach that can be
done through a web service framework, which is the advantage of SOA
and open platform. Associated media content for a particular scenario
could be requested from various sources such as third party (Google
Maps, Flickers) or potential open services (Photogrammetry services).
Obtained media content can be visualized on the screen and AR
environment where mobile users are able to create interaction with active

media content.

1.8 Thesis Organization

This research focuses on the design of SOMARA and the development of a novel
mobile AR application based on SOMARA. The novel application is on open platform
where SOA and web service framework is required and implemented into the
application in order to create the mobile AR client that effectively perform AR tasks
and interoperability tasks. The following is the thesis organization that explains the
process of pursuing the research and creating useful SOMARA and its application in

order to accomplish the contribution to knowledge.

Chapter 1 introduces the research proposed in this thesis, and provides detailed
discussions of the research concepts, technological approaches taken, architectures and

components designed, and solutions provided to achieve the research goals proposed.

32

Chapter 2 presents detailed background, concepts and applications of each component
architectural proposed in the research. This information is incorporated with related

technologies and techniques that were studied and implemented.

Chapter 3 provides the AR scenarios composed of architectural requirements and
museum environment scenarios. The architectural requirements explain solutions and
techniques that improve the usability of standalone mobile AR applications and create a
mobile AR application on open platform. This chapter also presents the implementation
of SOMARA and its application in the potential museum environment scenarios that the

novel mobile AR application can enhance visitors’ perception and experience in MLAs.

Chapter 4 explains the architectural design of SOMARA and its service orientation that
generate a novel mobile AR application. The service orientation is composed of a
mobile AR client, web service framework and service providers and each component is
on client-server architecture. The processes of performing AR tasks, content acquisition

and utilization are also described in this chapter.

Chapter 5 describes the implementation of SOMARA in MLA scenarios. The
SOMARA-based application is developed on native development platform, Objective
C, XCode and 1Pad mobile device. The novel mobile AR application requires an AR
SDK in order to perform AR tasks and simultaneously work with the AR application

and mobile interface to interact with mobile users and visualize content on the screen.

Chapter 6 explains the final mobile AR application based on SOMARA that support
physical museum learning scenario and home-based museum learning scenario in
testing and evaluation issues. The testing and evaluation shows how the designed
SOMARA and its application can efficiently support content acquisition and utilization
over a web service framework and AR platform. Therefore, the testing and evaluation
will prove that the novel SOMARA is capable, useful and stable for applying in other

scenarios.

Chapter 7 concludes the research accomplishment and gives some directions to future
developments and implementations such as applying the system with multiple
photogrammetry service providers or developing mobile client side with client-server
architecture that will be able to enhance collaboration and interoperability in sharing

digital AR content.

33

Chapter 11

2 Service-Oriented Mobile AR

The aims of this research is to design a Service-Oriented Mobile Augmented Reality
Architecture (SOMARA) and build proof of concepts and prototypes through a novel
mobile AR application based on SOMARA in order to support content acquisition and
utilization on mobile and AR platforms. There are three main SOMARA requirements
that efficiently improve the usability and adaptability of standalone mobile AR
applications including: 1) service orientation, 2) content acquisition and 3)
consumption. This chapter explains the components of each requirement and the
technology approaches in the literature survey including background, concepts,

applications and implementation related to the significant components in a SOMARA.

2.1 Augmented Reality

Augmented Reality (AR) is a mixed reality technology that is a combination of real and
virtual environments. Mixed reality consists of the real environment, AR, augmented
virtuality and virtual reality (VR). Figure 2.1 presents mix reality and its elements in the

scale of the continuum between reality and virtual reality.

Augmented Augmented Virtual

Reality Reality Virtuality Reality

Figure 2.1 The continuum of reality and virtuality [49]

34

AR combines the real environment together with computer generated virtual objects
and enables users to interact with virtual content as an element of the real environment.
AR 1is different from VR in the experience of the realistic. VR is a technique to create a
virtual environment and let users be a component of that environment. Consequently,
users seem to be incorporated as part of the scene and can interact with other
components. AR simultaneously provides users with a realistic and a virtual experience
while VR allows users to participate only within the virtual environment. Applying VR
requires display technologies such as a computer screen or a head-mounted display in
order to present the virtual scene or content, whereas AR functionally uses embedded
cameras to track targeted objects and related content is visualized on a screen.
Moreover, AR can be applied for indoor or outdoor purposes using positioning systems
such as GPS in order to present content based on the user’s current location, a process,
which is called location-based AR. These technologies enrich AR applications in terms
of flexibility, adaptability and variety where AR has become a powerful tool in
developing a broad range of applications on many platforms. Additionally, AR supports
users in various activities such as marketing, education, maintenance, design,
simulation, medical and personal assistance [17][18][50][51][52]. Examples of AR
applications include developing an interactive coloring book [53], AR experiences for
museum visitors [38][54], an AR shopping assistant [55][56] and developing AR to

support mathematics and geometry education [57].

2.2 Mobile AR System

The mobility concept has become an innovative and powerful tool to create more
advanced and usable applications implemented in many different scenarios. A current
challenge in mobile technology is the implementation of AR on mobile platforms that
focus on the convergence of AR, ubiquitous and wearable computing [27]. A mobile
AR system is able to provide mobile users with media content e.g. 3D models,
animations, images, videos and text visualized on a mobile screen and AR tasks can be
done in both indoor and outdoor environments. Examples of mobile AR applications

are:

* Virtual character-based application
e Cultural heritage

* Edutainment and games

35

* Navigation and path-finding
* Collaborative assembly and design

* Industrial maintenance and inspection

Examples of mobile AR applications are systems for remote collaboration [58], mobile
AR for navigation and collaborative use [59] and for cultural heritage [60]. The
motivation for this research focuses on designing a SOMARA, which is the
implementation of a SOA on a mobile AR system, which addresses shortfalls in many
of the current AR systems. For example, a SOMARA application is an open AR
application on a mobile platform that is applied in MLA scenarios — current AR
applications are closed to user-generated content. An open SOA allows novel mobile
AR applications to be designed to accomplish AR tasks as well as interoperability tasks
through a web service framework, where interaction between mobile users and the
application can be done through the mobile interface. The AR tasks are composed of
object tracking, recognition and content visualization. The following explains the notion

of each AR tasks, which is one of the components in SOMARA.

* Object tracking is the process of detecting the real scene and finding a
reference object pre-defined in the configuration file. Object tracking
requires the embedded-camera of a mobile device in order to capture the
video of the real scene and the tracking process will detect feature of objects
in the scene.

* Object recognition is done after the system detect feature of an object in the
real scene. The extracted feature will be compared with the pre-defined
feature of a reference object stored in the content library. Once the reference
is recognized, it will be augmented by presenting related content
superimposed on top of the recognized object.

* Content visualization is augmenting a recognized object with related media
content combined into the real scene. The novel mobile AR system is able to
visualize various kinds of media content on the screen and users are also able

to have interaction with the active content in the AR environment.

The tracking process requires an embedded camera on a mobile device that tracks
reference objects and related content is visualized on the screen. The mobile AR

application is applied in two MLA scenarios including a museum-based learning and a

36

home-based learning. These two scenarios demand physical object tracking and image-
based tracking. The object tracking requires a computer vision technique whereby the
embedded camera on the mobile device is used to capture video streams and perform
the tracking and recognition tasks. The following sections describe the literature survey
and technologies for the SOMARA and the novel mobile AR application development.
The components inside the SOMARA are mainly composed of AR tasks and

interoperability tasks.

2.2.1 Computer vision

Typical AR applications use computer vision as a sensing technique to work with
cameras for vision-based or optical tracking. Computer vision is a powerful feature in
AR due to the fact that it depends on features that are presented naturally to cameras.
Moreover, it does not need any adjustment of the environment. The system detects and
tracks real world objects, calculates the virtual object position and orientation and then
overlays the virtual objects onto the real scene [61]. Computer vision is an area of
computer graphics used for image or video frame processing that has been implemented
in many types of application and platform such as face detection, 3D model building
(photogrammetry), medical imaging, motion capture, robot vision, image processing,
fingerprint recognition and biometrics [39]. In mobile technologies, computer vision is
a technique applied in mobile AR systems for vision-based tracking. Consequently,
cameras and displays are the most important modules in mobile devices for tracking and
visualization. The following sections describe the concept and application of vision-

based tracking.

2.2.2 Object tracking

Object tracking is the most significant task in a real-time AR approach [62] in order to
detect and calculate the position and orientation of objects such as shapes, 2D images or
3D objects. The system provides virtual objects combined with the real environment at
the calculated position and pose. Additionally, tracking incorporates feature extraction
techniques to extract features of these objects and perform object recognition tasks.
Real-time accurate tracking is a key requirement of an AR system to superimpose 3D
virtual objects onto a real world scene at the right location and time. The achievement

of this process is a precise composite of real objects and virtual objects, which is called

37

registration [63]. Tracking techniques in AR are composed of sensor-based, vision-

based and hybrid tracking [24].

Sensor-based tracking

Sensor-based tracking utilizes sensor technologies such as ultrasound, infrared laser-
diodes, optical gyroscopes and magnetic, acoustic and mechanical sensors for inside-out
and outside-in tracking [50][64] that apply signal emitters and sensors on target and

tracker equipment.

Vision-based tracking

Vision-based tacking integrates cameras with computer vision algorithms in order to
capture video streams as an input and accomplish camera pose estimation of 3D virtual

objects relevant to the real world objects [17] [65].

Hybrid tracking

Hybrid tracking requires two or more sensing techniques to work together for more
robust and accurate tracking in outdoor environments. Examples of the sensing
techniques are GPS and inertial and active transmitters and receivers (magnetic, optical,

ultrasonic) and passive optical [66].

Each tracking technique or tracker has its own specific functions and operations.
Although they are suitable for different types of application, the objectives of tracking
techniques are to specify targets in the real world and to calculate the virtual objects’
positions relative to real world objects with high accuracy and robustness.
Implementing tracking methods in an AR approach are based on the type of AR
application, such as mobile or static, and the environment in which the AR devices are
applied [20], meaning they may be restricted to being indoor or outdoor. Therefore, a
combination of vision-based tracking and robust tracking techniques such as GPS can
provide more robust and advanced applications on mobile devices for outdoor

environments.

In this research, the implementation of the SOMARA relies on a mobile device (e.g. an
iPad) and uses embedded-camera and vision-based tracking. Such mobile devices are
commonly available to the user in AR scenarios, such as a museum learning. The novel

mobile AR application and mobile interface performs AR operations in order to

38

visualize 3D virtual objects and overlay the virtual objects onto real targeted objects at
the right pose in an indoor environment. Computer vision-based tracking is suitable for
many indoor AR application platforms as they do not require any specific hardware or
maintenance. The topics describe vision-based tracking that is typically composed of

feature-based tracking and model-based tracking are in Appendix F.

2.3 Mobile AR SDKs

In section 2.2 this thesis described many computer vision, software methods and
algorithms that are or can be applied to Mobile AR systems. In this section the thesis
gives and overview of some of the more useful Mobile AR SDKs that can be exploited

to implement novel AR applications.

For mobile application developers, there are AR Software Development Kits (SDKs)
offering native development frameworks as a tool that can be integrated into the
development framework including PC and mobile platforms. The AR SDKs offer AR
tasks such as object tracking, object recognition, content rendering and visualization to
developers so that they can integrate the provided application libraries or functions into
the development framework. Applying a mobile AR SDK is a solution for any mobile
AR application that does not require the development of AR tasks; utilizing existing AR
SDKSs can be the simplest and quickest way to develop a mobile AR application. The
initial task of a mobile AR application is object tracking where the applied AR SDK
controls the embedded camera and presents the camera view on a screen. The system
then detects objects on the screen and recognizes these targeted objects by performing
feature extraction and comparing them with the pre-defined features of objects in the
system. The recognized object is augmented by superimposing pre-defined media
content such as 3D models, images, videos, etc. on top of the tracked object. Each AR
SDK exposes different functions and techniques in order to perform AR tasks.

Examples of AR SDK are ARToolKit, Qualcomm and Metaio.

2.3.1 ARToolKit

ARToolKit is one of the first open-source software providing an AR SDK on all
platforms including Mac OS X, PC, Linux, Android and i0OS and a plug-in for Unity
3D. It supports Natural Feature Tracking (NFT) focusing on marker tracking, OpenCV

for camera calibration and OpenSceneGraph for advanced rendering. The SDK also

39

supports mobile focus including OpenGL ES, multi-platform mobile support and GPS

and compass integration on the iOS platform [67] .

2.3.2 Qualcomm Vuforia

Qualcomm presents Vuforia SDK that supports AR application development with 1OS,
Android or Digital Eyewear including tracking and recognizing images, objects, text,
markers and environment reconstruction. Vuforia also supports mixed reality: a
combination of AR and VR in order to create immersive environments. Vuforia-based
AR applications can be applied on optical see-through digital eyewear such as the
Samsung Gear VR or R-7 in order to present mixed reality experiences to users. In
addition, Vuforia offers its Cloud Recognition Service to recognize images and manage

databases in the cloud [68].

2.3.3 Metaio

Metaio SDK supports GPS, Simultaneous Localization and Mapping (SLAM) tracking
and location services and it can be applied to 10S, Android, Unity 3D and Windows
frameworks. The SDK can perform location-based tracking, marker and marker-less
tracking including images and physical objects. It also supports Augmented Reality
Experience Language (AREL) templates that enable 1OS developers to create AR
applications with AREL using HTMLS5 and Javascript on UIWeb View instead of
Objective C. In addition, Metaio provides a cloud plug-in so that AR applications are
able to access the Metaio Cloud and utilize or upload content into the cloud. Metaio
offers Junaio which is a mobile AR browser supporting location-based AR and image-
based tracking. Junaio enables mobile users to create their own AR channels containing

personal AR content, publish AR scenarios or access other existing channels [45][45].

Due to the continuously increasing requirements of SOA, cloud computing and mobile
computing, applying a web services framework into mobile AR systems can be a
beneficial solution for client-side applications in order to achieve mobile computing and
digital content sharing with platform independence. In this research, SOA is integrated
into a closed mobile AR platform to create a novel mobile AR application on an open
platform that is able to accomplish content acquisition as well as content utilization. The
following are the details and implementation of the SOA, the novel mobile AR

application and its components.

40

2.4 Mobile Application Development Tools

In mobile application development frameworks there are existing tools for building
mobile applications on different platforms. Mobile platforms that can effectively
support and run AR applications are 10S and Android. Mobile AR applications on 10S
devices can be developed on native development platforms by using XCode and
Objective C. Moreover, applications can be created on hybrid platforms where HTMLS
and JQuery are applied instead of the native platform, and this makes the development
processes easier for HTML developers [69]. Android is another platform that also
supports AR applications and their development tool is based on Android Studio and

Java [70].

There is a solution for general mobile users or content providers who want to create and
publish AR environments through an AR browser that can perform indoor and outdoor
AR. The AR browser is an easy way to produce AR environments or provide AR
content through personal channels. It performs object tracking and location-based
tracking so the system accesses the user’s channel and downloads personal content for
visualisation on the browser. Examples of AR browser are Junaio [71], Aurasma [41],
Layar [42]. Figure 2.2 shows a snapshot of Junaio performing location-based AR and

Aursama performing logo tracking.

41

Dorset Gardens
Methodist Church

Academy of
Creative Training
0.6mi

Brighton Institute of
Modern Music —
0.6mi

(a) Junaio (b) Aurasma

Figure 2.2 Snapshots of Juanio and Aurasma AR browsers

2.5 Service-Oriented Architecture

SOA is an open architecture containing services for any application or other service in
order to have connection and request data or processing [72][73]. Cloud computing has
adopted SOA in order to create networks of cloud computing and services [3]. SOA has
been integrated into many difference scenarios such as AR e-business systems [33],
industrial systems [74], smart-home architecture [75] and co-production systems [76].
The SOA technology used to create connection to services is web services. The
following is the details and components of web services and its framework that is

applied into any client application.

42

2.5.1 Web services

A web service is a technology that relies on SOA. Web services can be implemented in
client-side applications in order to provide service interfaces or a data service
architecture for interoperability tasks in the form of APIs on server sides. A web service
allows application clients or other servers to discover, connect and request operations or
processing and acquire outputs from the servers via the Internet across hardware and
software platforms. It is implemented in a variety of different approaches. The Web 2.0
technology that is popular at the moment allows users to share their own information
over the Internet, such as in social networking. A mashup is an application platform in
Web 2.0 technology that is the implementation of web services or web APIs. Users can
download mashup APIs for inclusion in client-side applications and requesting services.
Examples of mashup technologies are Google Maps and Rich Site Summary (RSS).
Examples of web service methods are SOAP and REST.

S0AP

Simple Object Access Protocol (SOAP) is a web service standard and communication
protocol that utilizes an Extensible Markup Language (XML) document format in
operation and sends the SOAP messages via Hypertext Transfer Protocol (HTTP).
Utilizing SOAP requires provision of a Web Services Description Language (WSDL)
definition document for service descriptions such as input, output and procedure
approaches for client sides. Developers can find WSDL documents and web service
interface information from Universal Description, Discovery, and Integration (UDDI)
registries that are maintained and presented on websites [77]. Examples of SOAP web
service providers are TempConvert, StockQuote and Astronomy [78]. Figure 2.3
presents the structure of a service request and response through SOAP in application-to-

application communications.

Application Client

O

Application
Service Provider

ol '}'[©,

SOAP SOAP response SOAP
message
HTTP HTTP

SOAP request
message

Figure 2.3 Service request and response process using SOAP

43

Figure 2.4 illustrates an example of a SOAP request message that is in XML document

format. The SOAP request message in XML format consists of the method required,

and parameters are sent to that method.

SOAP::Transport::HTTP::Client::send_receive: POST http://
Accopt ettt R RRRAE

Accept: multipart/*

Accept: application/soap

Content-Length: 580

<?xml version="1.0" cncodmg:" UTE-8"7>
<soap:Envelope

soap:encodingStyle="http://schemas.xmlsoap.org/soap/
encoding/"

</soap:Body>
</soap:Envelope>

Figure 2.4 An example of a SOAP request message

Figure 2.5 presents a SOAP response message that is an XML document coved by a

SOAP protocol message. The document contains output of the requested module.

44

SOAP::Transport::HTTP::Client::send_receive: HTTP/1.1 200 OK
Connection: close

Date: Thu, 23 Mar 2006 18:31:03 GMT

Server: Apache/2.1.6 (Unix) mod_ssl/2.1.6 OpenSSL/0.9.7g PHP/
5.0.5 mod_perl/2.0. 2-dev Perl/v5.8.0

Content- Lcngth 754

Chcnt Rcsponsc Num. 1

SOAPServer: SOAP::Lite/Perl/0.65_3

<?xml version="1.0" encoding="UTF-8"?><soap:Envelope
;gmlns:xsi-"http //www w3.or g/2001/XMLSchcrna instancc"

0135F8F40 10400 19AAS536AF48008E00D4000020189212400004
20007412A86800001 A000D320D46500D3D40034000020C0AS8
5180B1F70803B0OC08C42463230458CF46C6B3368C45A1A2F0
F8E9A02448804E0DB79999A0E1B1C83CFEE70084722978A96

Figure 2.5 An example of a SOAP response message
REST

Representational State Transfer (REST) is a new method for making web service
connections and sending messages in client-server architecture. REST is an alternative
to SOAP and uses service APIs to explain application resources in distributed systems.
Consequently, REST is an option for implementing web services by using potential
APIs from application servers. APIs represent application resources identified by a
Uniform Resource Identifier (URI). REST 1is an architecture that transfers data over
HTTP, composed of methods GET, POST, DELETE [79] [80]. Examples of REST web
service providers are Twitter, Last.fm and Foursquare [81]. Figure 2.6 shows the REST

architecture where the service request and response is sent through HTTP.

45

Application Service

Application Client Provider
RESTful RESTful
XML,JSON service response
HTTP < HTTP

+

REST service request

Figure 2.6 Service request and response process using REST

Figure 2.7 presents the structure of an HTTP service request by sending the REST

service request in Uniform Resource Locator (URL) format:

https://maps.googleapis.com/maps/api/place/nearbysearch/xml?location=51.5131699,-
0.1443185&radius=500&types=bakery&key=AlzaSyAZQw7PEjmwNtsWRPphtw2D1
omQCRjgw8I

Request Header Value

(Request-Line) GET /maps/api/place/nearbysearch/xmi?location=51.5131699,-0.1443185&radius=500&types=bakery&key=AlzaSyAZQw7...
Host maps.googleapis.com

User-Agent Mozilla/5.0 (Macintosh; Intel Mac OS X 10.11; rv:45.0) Gecko/20100101 Firefox/45.0

Accept text/html,application/xhtml+xml,application/xml;g=0.9*/*;0=0.8

Accept-Language en-US,en;a=0.5

Accept-Encoding gzip, deflate, br

Figure 2.7 HTTP service request

Figure 2.8 shows the REST response header message via HTTP and Figure 2.9 shows

the response content of the request in an XML document.

46

Response Header
(Status-Line)
Content-Type
Date

Expires
Cache-Control
Vary
Content-Encoding
Server
Content-Length
X-XSS-Protection
x-frame-options
Alternate-Protocol
Alt-Sve
X-Firefox-Spdy

Value

HTTP/2.0 200 OK
application/xml; charset=UTF-8
Tue, 26 Apr 2016 17:06:47 GMT
Tue, 26 Apr 2016 17:11:47 GMT
public, max-age=300
Accept-Language

gzip

pablo

7023

1; mode=Dblock

SAMEORIGIN

443:quic

quic=":443"; ma=2592000; v="32,31,30,29,28,27,26,25"
h2

Figure 2.8 HTTP response header message

<type>restaurant</type>
<type>bakery</type>
<type>store</type>
<type>food</type>
<type>point_of_interest</type>
<type>establishment</type>
- <geometry>
~ <location>
<Iat>51.5144581</lat>
<Ing>-0.1391992</lng>
</location>
</geometry>
<rating>3 9</rating>
- <icon>
gstati

- <PlaceSearchResponse>
<status>OK </status>
— <result>
<name>Le Pain Quotidien</name>
icinity>18 Great Street, L
<type>cafe</type>

<ficon>
— <reference>

</reference>

~ <opening_hours>
<open_now>true</open_now>
<lopening_hours>
- <photo>
~ <photo_reference>

</photo_reference>
<width>1984</width>
<height>1472</height>
— <html_attribution>
<a href=' gl

71.png

CnRKAAAASC_aEg6wHILFwuSpwOv9HilszoKjjT9X29yox7TUHDUKOWZMixQy-xt5koUB3ejoBNISABW;DpbhiNulFmnZnutT7aMJ7WjGZM_aSIBWoUQGRSFIEZIIwSVHkgZTBXPVItB3SWR-
EAx_hP6HxO8zFTxIQw6g0wzx 1 yFAWGBR{WqYDBROUNvd-jzsIfPkgiK-ARBp_n3jliTO

<id>1c8222d6d06d4b44¢6d2c553bb4b82473ec074d</id>

CmRAAAAAXCTW 12ZKCOEjWI0OVVIBITgo9q0k- 1DFeQTbTjncX6xgETg4zS_bGFPS]3tONnjXTXWRHOG: fmOPKO-AxuVoeY 11M7hdtoY y02yHKIGPSFx4FI0BS_L_a0Y_EhD-
xUmd4gKWeM0QO9DOMiOASGhQ8Rh40Fb1 wer3d9IAAgFWysqxuEQ

112132414023533 Ben Ross

</html_attribution>
</photo>

<scope>GOOGLE</scope>
<Jresult>
— <result>
<name>Aubaine</name>

<type>bar</type>
<type>restaurant</type>
<type>bakery</type>
<type>store</type>
<type>food</type>
<type>point_of_interest</type>
<type>establishment</type>
- <geometry>
~ <location>
<Iat>51.5109433</lat>
<Ing>-0.1393176</Ing>
</location>

<vicinity>4 Heddon Street, London</vicinity>

<place_id>ChIJ8W1157cEdkgRMwYFID-GOQY </place_id>

Figure 2.9 Response document in XML format

2.5.2 Web service mobile AR platform

Exploiting web service frameworks to create mobile AR and mixed reality systems as

open AR architectures that are able to obtain content from open resources can be very

useful for creating novel AR applications — SOMARA is a web service architecture

designed to do just this. Such mobile AR clients based on a web service framework can

47

access open services and support content acquisition on client-server architectures and
the Internet. Integrating a web service framework into stand-alone (e.g. closed
commercial systems like Aurasma, etc.) mobile AR applications can bring general data,
user-generated content or commercial content to mixed reality systems, however there
is little work addressing this need [48] [40]. Other examples of applications applying
SOA into AR are E-business systems [33], development of an AR browser for an
interoperable outdoor AR system [82] and creating a mixed reality mash-up system for
mobile AR applications (Mixed Reality Web Service Platform) [83]. Most of the
applications are based on third party content providers such as Google Maps, Yelp,
Twitter, etc. This open and user-generated content is visualized on mobile AR browsers
that require GPS or sensors in order to identify the user’s location and get metadata

depending on their location.

Building on this limited work, this thesis proposes SOMARA, which offers a service-
orientation approach designed for supporting mobile AR client development in
applications such as AR Museum scenarios, but also other scenarios. SOMARA’s
service-orientation is composed of a mobile client, web service framework and service
providers. This novel mobile AR application can be classed as one of the next
generation of mobile applications that combines a web service framework into an
application on mobile devices such as an iPhone or iPad [2]. While SOMARA’s mobile
AR client is applied in museum environment scenarios, discussed in following chapter
of this thesis, it can be applied to other commercial scenarios such as retail shopping.
However, SOMARA'’s AR technology is demonstrated in this thesis with a scenario that
presents virtual exhibitions of cultural objects to enhance visitors’ experiences in
MLAs. SOMARA’s mobile AR application is able to perform typical AR tasks
including object tracking, recognition and content visualization. Additionally, it
performs interoperability tasks by creating connections to open providers in order to
send service requests and receive responses. The web service framework is a tool that
encourages content acquisition in the client-server architecture and the mobile AR client

acquires associated media content from open museum content providers.

Another source of content that could be beneficial for museum environments and other
scenarios are photogrammetry service providers. Currently, such service providers are
sparse, but the potential is enormous and as such, SOMARA is laying the groundwork

to integrate to such services. Photogrammetry or image-based reconstruction services

48

can produce a virtual 3D model of a preferred object so that the obtained 3D model can

be usefully consumed in other situations, i.e. MLA scenarios.

Given the enormous potential of photogrammetry services integrated with AR

applications it is worth discussing such services in more detail.

2.6 Photogrammetry Services

Photogrammetry is an advanced technique for generating a 3D virtual object from
multiple images of a target object or for performing image-based reconstruction. This
technique makes the process of 3D object acquisition easier and more flexible. The
processing steps of the reconstruction of photo-realistic 3D content consist of feature
matching, structure from motion recovery, dense depth map estimation, 3D model
building and texture map recovery [84]. In computer vision techniques, performing
vision-based tracking captures natural features such as edges, lines and textures from a
virtual environment. Tracking natural features can be used to develop more advanced
computer vision and graphic tasks by implementing 3D modeling, rendering and
reconstruction approaches. These approaches allow the applications to create 3D virtual
models from real objects automatically by tracking edges or wireframes, creating

textures and rendering virtual models of objects.

Photogrammetry providers offer 3D reconstruction services that are based on client-
server architecture and web-based applications. Users or client sides can use tools that
are based on the web application or desktop computer platform for uploading images to
the server and editing the final 3D virtual models. Examples of photogrammetry
applications are: Arc3D and MeshLab, and 123D Catch .

2.6.1 Arc3D and MeshLab

Arc3D and MeshLab constitute a web-based application for reconstructing 3D virtual
models from multiple images. MeshLab is a mesh-processing tool that is composed of
an image uploader, model viewer and editing function. MeshLab is a client-side
application on PCs to work with Arc3D within client-server architecture [85][86]. The
web-based service for 3D reconstruction requires photos of an object and an Internet
connection to accomplish automatic 3D reconstruction processing by a cluster server.
Therefore, users have to use specific tools such as web-based applications for uploading

photos and manipulating 3D virtual models [87].

49

2.6.2 123D Catch

Autodesk® 123D Catch is a tool for generating 3D models. It is a web-based
application on a client-server architecture that allows users to submit multiple digital
photos of objects via an Internet connection and achieve realistic 3D models. Users can
use a web-based application, PC or tablet PC tool for uploading pictures and editing 3D
models [7].

Most of the photogrammetry applications for 3D reconstruction are created using a
web-based and client-server approach rather than a web service architecture approach.
In addition, the applications are in a close dependency platform so they do not provide
any operational interface for client-side applications. Another example of a web-based
application for geospatial data services is EuroSpec, which is an implementation of a
web-based service and geospatial data infrastructure. EuroSpec provides reference
geographic information that cross-border users can locate, select, access and download
data sets from a distributed source. The communication is via the Internet, using a web-

based approach and Open Geospatial Consortium (OGC) standards [88].

OGC offers open standards for interfaces or encoding on geospatial data and location
services. This allow multiple and diverse organizations to acquire interoperability,
information sharing and location-based services. Examples of the standard are Built
Environment and 3D, CityGML and Web Map Service. These can support service
interface design, distributed computing between web service architectures, service
providers and application clients that are platform independent. Now, there are many

web service-based providers on distributed geospatial processing [89].

2.7 Web Service-based Photogrammetry

The SOMARA-based mobile AR application requires web service-based 3D
photogrammetry providers for performing image-based reconstruction and
accomplishing content acquisition on open mobile AR platforms. Therefore, integrating
photogrammetry service interfaces into the web service framework could be beneficial
because of the rapid communication, the increased requirements in interoperability
tasks, information sharing, platform independence and effective server-side
architecture. Furthermore, these features enhance the experience of mobile users and

client-side applications in any platform to achieve both simple and complicated tasks

50

such as data services, 3D reconstruction, geo-information and remote sensing by

invoking the services over a communication network and the Internet.

There is some ongoing research on developing web service-based frameworks for geo-
information services such as maps or Geographic Information Systems (GIS)
processing. There is a web service architecture for GIS. The system provides GIS web
services with the interoperability of data analysis and spatial data sharing from many
organizations. The processed outcome of this architecture is a composite map from
distributed mapping systems on the servers. The architecture is composed of web
mapping servers, data sources and a web client. Each server offers an interface for the
web clients to request the services [90]. Another application is a geo-information
service named Building Information Models-Web Perspective View Service (BIM-
WPVS). This service provides virtual 3D city models and an advanced 3D visualization
web service on client-server architecture. The server opens a service interface for
performing GIS and BIM data collection, 3D rendering and data visualization [91]. In
addition, there is the design of a web service architecture for enhancing the proficiency
of photogrammetry workstations. The architecture is composed of service customers, a
portal server and service providers. The aim of this architecture is to allow users to
request application services and digitized map images through a portal server that

directly connects to the service providers [92].

Integrating a web service framework with photogrammetry services could be a solution
for client-side applications to benefit from phenomenal mobile computing, distributed
computing and AR content acquisition on mobile platforms. In this research, the mobile
AR application requires web service-based photogrammetry providers that conceptually
offer a photogrammetry or 3D reconstruction service on web service architecture by
receiving a set of images of a target object from a mobile web service-based client.
Then, a rendered 3D virtual object is sent back to the mobile client and presented in an

AR environment.

2.8 Web Service Providers

One of the main components in a service-orientation architecture is a supply of web
service providers. Web service providers offer platform-independent open services that
any application can access through a web service framework. They present service

interfaces such as WSDL and API documents so that client-side applications integrate

51

potential service interfaces into their service request module. The service interfaces
present data sources or methods that can be called in order to request data, metadata or
content in open repositories. Currently, there are a large number of typical and
specifically designed service interfaces from third parties in both SOAP and REST
protocol format. Service APIs can be found on the Internet by using search engines.
Figure 2.10 shows a web site containing APIs in many different areas that enables users
or developers to search for potential APIs and get information and details of those

targeted.

’ ProgrammableWeb APINews APIDirectory For APIProviders For Developers Listings ~ Forum

ProgrammableWeb: the world's largest
API repository, GROWING DAILY

| Search Over 14,252 APIs
By Protocols/Formats | I E

‘ API Directory Search

Search over 14,252 APIs
updated daily

‘ Browse by Category)
‘ Newest APIs
‘ Latest Mashups >

Filter APIs

API Name

Description ategory Jpdated
Natural History This REST API lets users access the data portal of Museums 02.20.2015 I Add an ‘
Museum London's Natural History Museum to retrieve
collection and research datasets for use in software or PW Research Center
applications. The datasets, returned in...
Our data. Your PowerPoints. Use our API research for
The Portal to Texas The Portal to Texas History is a resource to learn about Museums 08.25.2014 your next presentation. See all 4
History past events occurred in Texas. The organization offers
APIs for the Corpus Cristi Museum of Science and 10302
History and invites developers to...
Balboa Park Commons Balboa Park Commons API can be a useful help for Museums 07.28.2014 (A;;‘I)Wth injwely
s Since 2005
developers interested to categorize, organize and
retrieve museums' data. In the main page, users can
find query results along with image, title... L
Artsy The Artsy API provides access to images of historic Art 09.15.2014 - - -
artwork and related information on artsy.net for
educational and other non-commercial purposes.

 Artsy’s mission is to make... It's gone. Undo
What was wrong with this ad?
Victoria & Albert The Victoria & Albert Museum API is designed as a atio 11.20.2009
Museum RESTful interface to our collections and what we know Repetitive
about them. It returns all items in the database Already purchased
(paginated) in XML or JSON format. The... Not interested
DigitalNZ Find, share and use New Zealand's digital content lead Reference 08.21.2009

by the National Library of New Zealand. Access to
database of metadata that comes from various
institutions around New Zealand including...

Figure 2.10 The API directory website [81]

The website allows developers to search APIs by identifying the types of API and
protocol or format required. The list of APIs is displayed on the website as a result of
searching in the repository. Figure 2.11 presents a selected API which is Europeana.
The detail page shows information of the provider and the API as well as the protocol
and format it supports. Users can then click the links that lead to the API homepage and

see data about how to work with the API and the parameters it needs.

52

* ProgrammableWeb APINews APl Directory For APl Providers For Developers Listings ~ Forum

Europeana OpenSearch API

Europeana enables people to explore the
digital resources of Europe's museums,
libraries, archives and audio-visual Search over 14,252 APIs
collections. The Europeana OpenSearch AP updated daily
allows users to develop applications that can
| search and display Europeana collections
f metadata and previews. Europeana has ’
aggregated metadata from about 1500 data
providers. Most of these providers give

- BUrGpEANa [Browse by Category)

I Track this Al | Newest APIs ®

API Directory Search

velog Q|

in
[Latest Mashups ®
8" SUMMARY SAMPLE CODE HOWTO DEVELOPERS COMMENTS FOLLOWERS
@ | SPECS
PW Research Center
E APIProvider http//europeana.eu Our data. Your PowerPoints. Use our API research for

API Endpoint http://api.europeana.eu/api/opensearch ST R EE0A 2

Growth of Top 10
Web API Categories

APl Homepage http://europeanalabs.eu/wiki/EuropeanaOpenSearchAP

Primary Category ~ Education i Since 2009
Secondary Categories ~ Search, Reference, Museums, Search ”

Protocol / Formats JSON, RSS, REST - H‘

SSL Support No
Contact Email api@europeana.eu Architects' wisdom
Authentication Mode APl Key needed
Download a Free
FOLLOWERS (7) ‘ Audiobook .

-> Gantt Chart Template -
QROHEEO® x

We Buy Any House For
DEVEI NPERS (O Cach

Figure 2.11 Europeana service API [93]

Developers are able to choose service providers that supply data relating to the scenario
of the application. The content acquisition processes can be accomplished by an
application client sending a request and receiving a response in XML or JavaScript
Object Notation (JSON) format. The application client requires a parser in order to read
through the received document and extract data. Some service interfaces are based on
cloud computing and cloud APIs, such as Amazon Web Service APIs [94].
Furthermore, specifically designed applications also require particular content providers

that return valuable content for client-side applications for a designed scenario.

2.9 Summary

Service-orientation, which is one of the components of SOMARA, enables the creation
of a mobile AR application on open platform. The service-orientation is composed of a
mobile AR client, a web service framework and web service providers. This chapter
describes technologies and techniques required in developing the SOMARA-based

mobile AR application based on the service-orientation. The literature survey leads to

53

understanding each component of the service-orientation in more details and
encouraging the application development by utilizing those techniques. It can also
enhance knowledge and experiences that enable developers to innovate a novel

technique by combining each technique altogether or improve an existing technique.

The SOMARA-based mobile AR application is developed by implementing the Metaio
AR SDK to perform AR tasks. The Metaio AR SDK uses SLAM that is a marker-less
feature-based tracking technique. Exploiting an existing AR SDK is the quickest way to
develop an application but it still has limitation such as tracking environments. The
Metaio AR SDK provides a good quality tracking technique and tool to perform
physical object tracking but the tracking module still has to work under controlled
environments that there is no reflection or shadow. This can enhance an idea of
developing a new tracking and recognition tracking that uses or adapts the proposed

algorithms and techniques above.

54

Chapter 111

3 Mobile AR Scenarios

AR has become a data representation tool that effectively enhances users’ perceptions
and experiences in visualizing computer-generated content in a real environment. AR
on a mobile platform can be applied to indoor and outdoor applications such as
location-based AR. Multimedia content of location-based AR can be visualized in a real
environment depending on the user’s location and AR tasks can be performed at any
time and any place. The majority of mobile AR applications are currently based on
closed platforms where the content acquisition has been limited and there are no
communication channels between the application and other applications or existing
open service providers. Mobile users are only able to view pre-designed media content
that has been installed into the system in advance. This chapter presents the main
requirements that innovate functionality and usability of typical standalone mobile AR
applications. These requirements efficiently strengthen the design of SOMARA and
development of the open mobile AR application. This novel mobile AR application
presents supporting tasks that take advantage of an open architecture where a web
service framework performs interoperable tasks and acquires value-added content from
participating open providers. This acquired content can be effectively consumed in AR
environments that enhance content utilization and AR environment interpretation. The
proposed architecture transforms general mobile AR systems into novel mobile AR
learning systems where active AR environments and media content can be saved and

taken away for further studies at any time or place.

3.1 Architectural Requirements

There are three main requirements that can be implemented into a typical mobile AR

platform in order to improve the adaptability and functionality of typical closed-

55

platform mobile AR application and enrich the usability of these applications, including
service-orientation, open content acquisition and personalization. These requirements
support the design of SOMARA enabling the development of a novel mobile AR
application that demonstrate the SOMARA concept with its service-orientation, and

support for content acquisition and utilization in AR environments.

3.1.1 Service-orientation

SOA is an interoperable service platform that supports any application in order to access
a network of open service providers as well as provide service interfaces and APIs for
the clients in order to create connections to any potential open providers [95] [96].
SOA-based applications can effectively present various related data from other sources
or potential providers and share their data among other mobile users via mobile or
wireless networks. As a result, SOA creates collaboration among applications in a
client-server architecture that does not depend on any specific location or application
platforms. Therefore, closed platform mobile applications that deliver limited data to
users are able to implement SOAs, APIs and service interfaces that apparently transform
them to applications on an open platform. This framework and its implementation
expand the functionality of mobile devices that have limited resources such as a small
display and restricted processing speed. Taking advantages of a SOA results in creating
cost-effective applications on mobile platforms that additionally require processing and

data from other web service providers.

In order to create an open mobile AR application, the mobile development architecture
potentially requires service-orientation that is the collaboration of a mobile AR platform
and SOA. The designed service-orientation is generally composed of a web service
framework, mobile client and service APIs. The following explains the details of the
service-orientation and the components inside that support the development of a mobile

AR application on an open platform.

Web service framework

The web service framework is an important component in a SOA that efficiently
facilitates generating the open framework and accessing open services for a novel
mobile AR system that is versatile and can be implemented in various scenarios such as

a shopping environment, cultural objects exhibitions and AR-based learning. The web

56

service framework performs back-end interoperable tasks in order to create connections
between web service providers and the service request module working inside the
client-side applications. In this research, a novel mobile AR application applies REST
as a web service client framework in the service request module that utilizes the 10S
web service library applied by XCode in order to access and send requests to the
participating services. The web service framework exploits a mobile client and service

providers.

Mobile client

Client-side applications are created by implementing a web service framework into the
mobile AR application. The application clients are able to access and interact with open
services by applying potential service APIs into the service request module. They can
then perform interoperable and content acquisition tasks by creating a connection to and
from open service providers or participating servers. In addition, AR content can be
shared via the open network and consumed by other AR applications as well [34][48].
Open mobile AR systems can also participate in distributed application development in
order to perform pervasive computing and create distant AR services for mobile devices
that require context and the location of the users [47][97]. Interoperable frameworks
also offer a feature for location-based mobile AR, e.g. an AR browser that enables
anywhere augmentation, a content-sharing framework and visualization in real-time of
associated media content from AR providers on the see-through browser visualized in
the real environment [82]. The web service framework has been used to work as a back-
end system that creates connections for requesting services and receiving responses.
The responses are passed to the AR application, processed and the data is then
visualized and presented in the real scene. The web service framework essentially
requires service APIs as service interfaces of participating providers that can be open
services or data providers. The APIs present the URL of the data source along with
parameters required for building a query in order to retrieve relevant data from the
repository. The contributing APIs are applied into the service request modules in order
to send a request along with necessarily required parameters to the providers. The
potential service APIs for the client-side applications can be third party APIs such as
Google Maps, Flickr, Facebook, etc. [81] or particular service APIs in the desired

scenarios that are described in the following section.

57

The SOMARA-based application is an AR application on a mobile platform and web
service framework specified to create connections to open services and perform
interoperability tasks. This novel mobile AR application or mobile client is
implemented on a camera-embedded mobile device that is able to perform AR tasks
such as multiple object tracking, recognition and content visualization. In this research,
the mobile client is prototyped on an iOS platform and run on an iPad where native
development frameworks including XCode and Objective C are required. The mobile
client offers a mobile interface for mobile users so that they can interact with active
media content visualized on the screen as well as perform object tracking. The mobile
client also contains an AR SDK that performs AR tasks in the AR application and
simultaneously works with the mobile interface of the AR application as a front-end
system for mobile users so that they can interact with the application and active content.
In this research, the Metaio AR SDK [45] has been used to apply the mobile client to

perform object tracking, recognition and content visualization.

Service providers

The mobile client requires service interfaces or APIs from participating open providers
in SOA. Server-side applications offer data in their repository and services that can be
requested through a web service framework and HTTP. In this research, the novel
mobile AR application is applied in a MLA scenario and the application requires service
APIs of the participating museum services and third parties. The application applies
service APIs from existing museum content providers and a third party including the
Reanimating Cultural Heritage (RCH) service API [98], the Victoria and Albert
museum API [99] and the Google Maps APIs [100] as a proof of concept. These APIs
are based on a REST platform and provide output in XML and JSON document format.
Figure 3.1 presents the RCH service API and the details of services provided.

58

SierraLeoneHeritage API

Example API calls

get_item/coid/1/..
Call returns a CulturalObject description from a COId. Renderered example does not currently show all available image sizes.
Populate the results area (below) with an example render of the response.

fetch_related_objects/coid/1/.....

Call returns an array of related CulturalObject descriptions from a COId. - This call is taken from the original APl so may not return expected results - Renderered example
does not currently show all available image sizes.

Populate the results area (below) with an example render of the response.

get_associated_media/coid/1/.....

Call returns an array of Associated media descriptions (videos) from a COId. - This call is taken from the original APl so may not return expected results - Renderered example
does not currently show all available image sizes. e.g thumbnails - could do with a prettybox player window.

Populate the results area (below) with an example render of the response.

get_associated_media_object/amoid/1/...
Call returns a single Associated media descriptions (videos) from a AMOId. - This call is taken from the original API - Renderered example does not currently show all available
media e.g thumbnails - could do with a prettybox player window.

Populate the results area (below) with an example render of the response.

get_museum_list/get_museum_list/.....
Call returns an array of Museums (contributors) to the database. No argument required
Populate the results area (below) with an example render of the response.

get_collection_by_museum/museum/British%20Museum/.....

Call returns an array of CulturalObject descriptions from a Museum name. - This call is taken from the original API so may not retum expected results - Renderered example
does not currently show all available image sizes. e.g thumbnails

Populate the results area (below) with an example render of the response.

get_random_objects
Would be improved by adding adding media paths to the response
No renderer example yet

get_random_videos
No renderer example yet

get_related_items/coid/1/.....

Call returns an array of related CulturalObject descriptions from a COId. - This call is a from recent work - May undergo development once an RCH API convention is
established - Renderered example does not currently show all available image sizes. e.g thumbnails.

This call can generated a large response so you may want to use get_related_list instead.

Populate the results area (below) with an example render of the response.

get_related_list/coid/1/.....

Call returns a minimised array of related CulturalObject descriptions from a COId. The call was added to provide a compact (small) message size compared to the
get_related_items call. The reasoning behind the reduced field set is that only the image path and the COIld are needed for a basic list (e.g. a selector window). - This call is
from recent work - May undergo development once an RCH API convention is established - Renderered example does not currently show all available image sizes. e.g
thumbnails.

Populate the results area (below) with an example render of the response.

get_all_videos/..... note: call retuns 47 distinct video filenames (+ AMOId) This suggests a further 11 videos are in the assets directory that are not accesible via the db (so
need to be added)
Basic renderer example yet (see comment at top of html page

get_collection_list/..... note: call currently returns the entire contents of the CulturalObjects table.
What it should/will do is include the entire object description for all objects. (Massive!)
This is big

Figure 3.1 SierralLeoneHeritage API [98]

Figure 3.2 shows the Victoria and Albert museum API documentation. The document
explains how to start working with the API and the output formats that can be JSON or
XML documents.

59

Victoria and Albert Museum API Documentation

‘Welcome to our API. It is designed as a RESTful interface to our collections and what we know about them

If you make a request to this service you are deemed to have accepted the terms and conditions.
Principles and Getting Started

The API Query Builder

Try building your own API calls with this rudimentary HTML GUI. Then, take those URLS away and do
something nice with them or come back and read the rest of the documentation.

http://www .vam.ac.uk/api/gb
Interface

‘We strongly believe in the URL as interface. It's nice to be able to read a URL and guess what it might bring
back.

We also believe the URL is a better interface than a complex SOAP- or XML-RPC-based system for returning
data that is generally available elsewhere in HTML form.

Formats
After /api, the first part of the URL indicates the format in which you would like your response
JSON

http://www.vam.ac.uk/api/json, biect/

Returns all items in the database (paginated) in serialised JavaScript format

XML

http://www.vam.ac.uk/api/xml/museumobiect/

Returns all items in the database (paginated) in XML format. Note this is not yet as fully implemented as

JSON but could be useful if your app prefers to consume XML. The JSON contains more of the related
information concerning objects.

JSONP
To make it easier to do client-side mash-ups using V&A data, we offer all our JSON responses with a JSONP

wrapper function. Simply pass the desired name of a callback function you wish to use on the client side in the
callback parameter. Only A-z, 0-9 and underscore characters are allowed in your function name.

You can play with the JSONP functionality using our API Query Builder at http://www.vam.ac.uk/api/gb. This
gives you a rudimentary GUI to help you create useful API calls for your own work. If you are interested in
JSONP, you can save the HTML of the API Query Builder locally to play with the source. It is all encapsulated
in that one file.

Another way to get started with JSONP is to follow the example below...
JjQuery JSONP example

<script type="text/javascript" src="http://ajax.googleapis.com/ajax/libs/jquery/1.5.1/jquery.min.js"></script>
<script type="text/javascript">
/*
Clever stuff goes here
*/
function renderResults(jsonp_data) {
/* Do something with the JSON objects */
}

Figure 3.2 Victoria and Albert Museum API [99]

Figure 3.3 presents the Google Maps APIs and the details of each service, which

explains how to access and request location data.

60

{) Google Developers Q. (Google Maps APIs €)) Search

Products > Google Maps APls

@ Google Maps APIs

Millions of websites and apps use Google Maps APIs to power location experiences for their
users.

GETSTARTED [l VIEW PRICING AND PLANS

SEND FEEDBACK

Google Maps for every platform @ @

Google Maps APIs are available for Android, i0S, web browsers and via HTTP web services. B N N
Android ios Web Web services

GET STARTED

Latest updates

Premium Plan with Maps APIs Credits

When you use the Google Maps APIs together, you bring the
best of Google Maps to everything you build. With our
Premium Plan, a single usage quota makes it easier to use
Maps APIs together to help scale your business.

BLOG_PRICING AND PLANS A - L

Figure 3.3 Google Maps APIs [100]

3.1.2 Content acquisition

The key objective of SOA is allowing any application to access open services or
applications and request processing or valuable data from these providers. Integrating
SOA into a mobile AR platform results in acquiring new and valuable media content of
a targeted object in real-time that could potentially be visualized in an AR environment.
Open mobile AR applications are able to create connections and request associated
content from existing potential providers who can be a third party or participating
service providers in the anticipated scenarios. The content acquisition process can be
done beneficially on a specific approach such as a photogrammetry service request
where a mobile client is able to acquire a virtual 3D model of a preferred object from a
web service-based photogrammetry provider. Photogrammetry or an image-based
reconstruction service is a valuable technique for any mobile AR application that
requires 3D models of preferred physical objects and then utilizes these obtained
models in an AR environment. In this case, the acquisition process is accomplished by
taking photographs of a targeted object and then directly sending a request along with
the photographs through the web service framework to the photogrammetry provider.
Currently, there are photogrammetry services on web-based platform such as ARC 3D
[87] and CMP SfM [101] and on client-server platforms such as 123D Catch [7] and

ReCap [43]. All of these services are closed platform applications and do not provide

61

any APIs to other applications. Another approach is general content acquisition where
the web service framework in a mobile AR client is effectively implemented in order to
acquire valuable media content, e.g. 3D models, videos, audio, social networking data,
etc. from existing open sources or third parties. The obtained content is then presented
on the real scene along with existing content.

In this research, the SOMARA based mobile AR client is applied in an MLA scenario,
and the content acquisition process is performed by creating connections and access to
participating museum content providers. Moreover, the proposed photogrammetry
service can be usefully applied in the mobile AR client in order to support 3D model
reconstruction of a targeted object for an MLA. This feature is an advanced feature or
strategy that could enhance a typical MLA and offer a content acquisition module to
perform a function that provides some connection channels to open service providers
and web service-based photogrammetry services. The mobile AR client is able to
request associated media content from potential open providers and also has a function
to support image-based reconstruction service request from photogrammetry service
providers, although currently there is only one provider, Autodesk, named Recap API
[102]. The Recap API is now on the beta version and does not allow the mobile AR

client to use it.

3.1.3 AR environment personalization

Another aspect of the open mobile AR system that takes advantage of SOA and a
mobile AR platform is AR environment personalization. Acquired content from the
content acquisition function, web service framework and participating providers are not
only visualized on the mobile device screen but also consumed in personal AR
environments where mobile users can interact with the active content on the screen,
such as selecting and saving preferred content relative to a targeted object so that the
selected content can be taken away and revealed again in other situations. This feature
supports AR content utilization that obtains or provides content overlaid on top of a real
scene that can be saved and reused in personal AR environments where mobile users are
able to review what they have experienced in other situations. This feature is adaptable
and can effectively support learning as well as providing shopping experiences where
active media content on the novel mobile AR application can be flexibly utilized and
data representation can be presented differently by wusing personalized AR

environments. Compared to general mobile AR applications on closed platforms where

62

application providers do not allow mobile users to own their pre-designed media
content, the web service-based mobile AR application is able to send a request for open
content through the web service framework where the acquired content is transferred to
the AR application and mobile interface. AR environment personalization is an
advantageous strategy in mobile AR application development because mobile users are
able to create their own AR environments by selecting content on the mobile device’s
screen and saving it as a personal museum exhibition. In the mobile AR client, after
receiving associated content from open service providers or museum exhibition sources,
the acquired content could be beneficially utilized by offering a personalization feature
so that mobile visitors are able to generate personalized AR environments with this
content.

Developing an open mobile AR application and supporting functions basically requires
three important components: a mobile AR client, a web service framework and service
providers. This research proposes SOMARA, composed of these three components
incorporated on a mobile platform in the architecture. In SOMARA, the mobile client is
an AR application on a mobile platform that integrates a web service framework into
the system in order to perform AR tasks as well as simultaneously work with the mobile
interface and AR application. The web service framework requires service interfaces or
APIs of potential providers that can generate connections to the participating providers,
send requests and receive responses. The responses are then processed and obtained
content is sent back to be visualized on the mobile interface where mobile users are able
to view and consume active content on the screen by selecting and creating personal AR

environments.

3.2 Museum Learning Scenarios

SOMARA is an architecture based on a mobile platform and a web service framework.
The application on SOMARA overcomes the limitation of closed platform architecture
by creating interoperability between the application itself and other applications. The
result of this is an open mobile AR application that is able to deliver collaborative
components including content acquisition and consumption to mobile users as well as
supporting the development of an open mobile AR system in many different scenarios,
e.g. a shopping experience, mobile learning, MLAs, etc. In this research, SOMARA is
applied in a museum scenario where mobile devices are effectively brought into the

MLAs. SOMARA is exploited to develop novel open mobile AR applications that can

63

enhance MLAs or cultural heritage environments and increase visitors’ experiences and
knowledge in cultural objects exhibited by augmenting a target object and presenting
media content in the real scene. The application can create associations between
participating museums and other potential open providers such as third parties through a

web service framework and a mobile AR platform.

In general, museums exhibit cultural objects along with information that is illustrated or
presented on a board, poster or monitor and visitors are allowed to read and view this
information and content as well as taking leaflets provided. Most modern museums now
offer interactive multimedia content on a touch-screen where visitors can experience or
view information by interacting with media content through the user interfaces.
Applying AR or mixed reality technology into MLAs is another level of improving the
exhibition services that can enhance visitors’ experiences in terms of improving the
learning approaches in museum environments, drawing visitors’ attention and
enhancing understanding of the context of cultural objects as well as museum exhibits
[38][103][104][105]. In addition, the web service-based mobile AR system improves
participation between contributing museums and visitors are able to interact with active
media content as well as obtain personal AR environments, including preferred cultural
content of the exhibition that usefully encourages content acquisition, content utilization
and MLAs in other situations. Figure 3.4 presents the use-case diagram of a general
MLA where MLA activities are done within the physical museum and on the museum’s
website. Visitors are able to view physical objects, view content on the monitors and
interact with content on the screen. In addition, MLAs can also be done through the
museum’s website where there are online catalogues of cultural artifacts that can be

searched and viewed anytime by users.

64

Typical Museum Study Scenarios

Cultural objects browsing
iew content on the interactive
screen

View online catalouge
Listen to audio guide

Figure 3.4 The use-case diagram of general museum learning

seum and Content Provider
Mobile User

Currently, there are many museums that have developed a website providing an online
catalogue of the cultural objects in their repository and it becomes another presentation
channel so that visitors can also perform an MLA online. Each particular item can be
searched and its information and metadata is shown on the web page. Examples of
online museum exhibitions are the Victoria and Albert Museum [106], the British
Museum [107] and Europeana [108]. Another example is a website that exhibits an
online catalogue of cultural objects from Sierra Leone. The data repository of RCH
[109] contains metadata of objects exhibited in many museums around the United
Kingdom. These have shown that MLAs has already moved to another level of cultural
data representation and communication. Moreover, the museums present an API or
service interface in a SOAP or REST platform so that any client application is able to
implement the API and then send a request along with parameters to the open cultural
content service and receive a response in an XML or JSON document that can be read
and presented on the application that requires the specific museum content as part of the
outcome or the service interfaces. Therefore, applications on any platform are able to
implement these APIs and request associated cultural content from the open museum
repositories through the SOA. The acquired cultural content can then be presented and

utilized on the application client with platform-independent features.

65

SOMARA supports content acquisition on a mobile AR platform and is applied in
museum scenarios where associated museum content from open museum services is
requested and overlaid on top of a real scene or AR environment. This architecture
enables generating museum studies on a mobile AR platform using a mobile device.
Cultural media content can be visualized on the screen in real environments by
augmenting a real cultural object in a physical museum. Participating museums’ APIs
are required in this architecture in order to combine the APIs into the service request
module and produce the output on the AR scene. In this research, SOMARA has been
implemented in two associated MLA prototypes, which are museum-based and home-
based learning. In the MLA scenarios, content acquisition modules in the mobile AR
client are able to request associated content from particular museum exhibition sources
or third party providers in order to visualize the acquired content on the museum
visitors’ screens. In addition, the content acquisition is not only from open museum
repositories or museum services but SOMARA also supports service connections to
useful open services that produce media content for MLAs in real-time.
Photogrammetry or image-based reconstruction services benefit museum visitors by
allowing them to request virtual 3D models of their preferred cultural objects. The
visitors can then consume these acquired models by creating personal AR environments
containing the models and other preferred media content. Figure 3.5 proposed the use-

case diagram of SOMARA that supports MLAs.

66

Mobile AR Application

Track a targeted object
\/
iew related media content on
the real scene
Request associated media
content
Request valuable
services/photogrammetry
Mobile User Service Framework
View acquired media content
\/
Select and save preferred
active content
\/
isualised personalised AR
environments

Service Request Module

Associated content request

Museum Content Providers

request/Photgrammetry

Web Service Framework Service Providers

Third party content request

Third Party (Google Maps, Flickr, etc.)

Figure 3.5 SOMARA use-case diagram

The following are the proposed museum scenarios applied by the SOMARA and its
application. Both scenarios enhance typical museum studies in different situations by
offering visitors a novel mobile AR application that supports content acquisition and
utilization. As the result, MLAs can be done inside or outside the museum and cultural

content can be acquired from open services.

67

3.2.1 Museum-based learning scenario

The proposed mobile AR system effectively enhances physical MLAs by offering an
AR application on mobile devices, e.g. an iPad, to visitors in order to present related
media content of a targeted cultural object that can be virtual text, images, videos, 3D
models, etc. superimposed on top of a cultural object or a real scene. This content in an
AR environment enhances the learning experience and encourages visitors to engage in
museum-learning environments where supporting content can be seen through a mobile
interface. In addition, the open mobile AR application also offers some encouraging
features that take advantage of SOA and existing open providers. As a result, it benefits
MLAs and visitors in terms of content acquisition and consumption where the museum
itself can present associated content from other participating museums or third parties to
visitors as well as offering valuable services such as image-based reconstruction that
enables visitors to acquire 3D models of their preferred objects. The obtained content
can then be utilized by saving them in a personal AR environment along with other

selected content.

SOMARA and its application enhances typical museum studies where an exhibition can
provide value-added services on mobile devices and AR environments that allow
visitors to view and take away acquired content of preferred objects. The AR system is
used as a data representation tool in order to visualize associated media content of a
targeted object in a real scene and allows mobile users to send a request and interact
with active content. The mobile AR application for MLA scenarios requires marker-less
or object-based tracking where a cultural object exhibited is tracked, recognized and its
related content is visualized on the mobile’s screen. As a result, MLA enhances visitors’
experiences as it offers valuable web service-based content and services as a strategy to
support learning and content utilization through the SOA and its components.
Additionally, the museum is able to provide a value-added mobile learning application
that aggregates content from the museum itself, participating museums and other third

parties.

3.2.2 Home-based learning scenario

Museum visitors mostly go to museums to learn about historical incidents and cultural
objects exhibited. To experience such a different environment and knowledge, visitors

have to go the museum themselves and browse the exhibitions inside. This can be done

68

easily if the visitors go to a nearby or local museum. However, MLAs may limit other
people who live far away and require resources but are unable to visit the museums
physically. In addition, museums generally do not allow visitors to perform any other
supporting learning activities such as taking photos of a preferred object or saving
multimedia content presented on a monitor and taking them away for viewing in other
situations. SOMARA usefully encourages media content utilization and supports MLAs
outside the museum or in home-based MLAs. In the novel mobile AR application, there
is a photogrammetry service request module that provides a content acquisition feature;
museum visitors are able to request a model of a targeted object and then save it into a
personal AR environment, which can then be revealed or presented in a home-based
learning scenario. The home-based learning can be performed by a mobile user in other
situations outside the museum. Consequently, museum learning and exhibition
browsing do not need to be done in the physical museum as the mobile AR application
offers a home-based learning function whereby mobile users are able to pursue the
MLAs as well as view personal AR environments at home or school. The system
requires marker-less or image-based tracking in order to track and recognize a trigger
image and then augment cultural media content of the particular cultural object in the
museum. The trigger images can be printed images or leaflets of targeted objects and
they can be downloaded from the museum’s website. As the result, home-based
learning and its process can be done anywhere and at any time outside the museum,
where mobile users are able to pursue remote MLAs via a mobile/wireless network. To
do so, the system does not store any content of targeted objects and the mobile client
requests related media content of a targeted object at the time the system recognizes its

trigger image.

The system first starts working with a tracking configuration file that sets up the
tracking and recognition process with an XML file containing targeted marker-less
tracking objects. Then, the mobile AR application can send the request for relevant
content of a tracked image or object to the participating server. In museum environment
scenarios, the mobile client requires service APIs of open web service servers that offer
cultural content belonging to a particular museum. Mobile users can then pursue MLAs
by requesting related virtual content from the server and then visualize them on an AR
scene by using a printed image or leaflet of a targeted artifact as a trigger object. Figure

3.6 illustrates the use-case diagram of home-based ML As where mobile users are able

69

to perform MLAs outside the museum by using the novel mobile AR application to

augment trigger images instead of real physical objects. The related content is obtained

from the open museum content provider and visualized on the real scene.

Mobile AR Application

Track a trigger image
\/
Request associated media
content

iew acquired media content

Mobile User

on the real scene

\/
Select and save preferred
active content
\/
isualised personalised AR
environments

Service Request Module

'eb Service Framework

Associated content request

Museum Content Providers

Web Service Framework

request/Photgrammetry

Service Providers

Third party content request

Third Party (Google Maps, Flickr, etc.)

Figure 3.6 Home-based museum learning use-case diagram

3.3 System Specifications

The set of system specifications are developed based on the research question and

description of the potential benefits that strongly supports the creation of SOMARA and

the service-orientation. These system specifications coupled with the background

70

literature survey developed in Chapter 2 and the more detailed scenarios discussed in

this section lead to the user requirements for SOMARA described in Chapter 4.

* This thesis proposes a mobile AR application developed to demonstrate the
efficacy of SOA (in order to illustrate the improvements expected on an open
platform based on mobile AR system when compared to closed AR platforms)
by implementing a web service framework as a client-server system. This novel
open mobile AR application is able to obtain more valuable content from open
content providers or service providers to extensively enhance the usability and
functionality of current mobile AR systems.

* A Service Oriented Mobile AR Architecture (SOMARA) is developed to
demonstrate content acquisition via mobile or wireless networks and content
utilization through an AR client-server environment. The associated technology
features (SOA, mobile, wireless, client-server) are exploited on an open platform
and AR framework to illustrate aggregation of valuable media content from
other sources, where those acquired content are consumed in the AR platform by
mobile users.

* The design of the SOMARA application in this thesis is based on an open
mobile AR system that implements or integrates service APIs from participating
providers. The novel mobile AR application is able to perform typical AR tasks
and interoperability tasks such as multiple object tracking, sending a request and
receiving a response for associated content of a targeted object and potential
services that enhance the feature of the novel mobile AR client and bring
supportive content onto mobile AR environments.

* The SOMARA application is designed to be adaptable and could effectively be
applied in different scenarios such as learning, shopping and museum
experiences. In this research, SOMARA is applied to ‘museum interactive
scenarios’ to demonstrate that an open mobile AR application can efficiently
support virtual exhibitions based on AR environments displaying museum
content that can be requested from participating content providers and third
party.

* A final technology objective is to demonstrate the scalability of SOMARA
through service-orientation by providing example supportive content acquisition

and utilization modules, e.g. a photogrammetry service request module and an

71

AR environment personalization module that are integrated with SOMARA and
other novel mobile AR applications. The photogrammetry or image-based
reconstruction service request module allows mobile users to simply acquire a
3D model of a targeted object and then create a personal AR environment of the
model along with other preferred media content visualized on the screen. The
personal AR environment can be taken away and revealed in other situations

such as a ‘take home museum exhibition’.

3.4 Summary

This chapter explains architectural requirements that encourage the development of an
open mobile AR platform. Three main requirements that support the creation of
SOMARA are service-orientation, content acquisition and AR environment
personalization. A SOMARA-based mobile AR application is applied in MLAs where
museum visitors are able to view cultural artifacts and request related content through
mobile AR environments and a web service framework. The application supports two
MLA scenarios including museum-based and home-based learning. These scenarios

enhance learning activities that can be performed inside the museum or at home.

72

Chapter 1V

4 Architectural Design

This chapter explains the structure of the Service-Oriented Mobile AR Architecture
(SOMARA), its components and its service orientation that is specifically designed to
support efficient content acquisition and utilization on mobile AR platforms. SOMARA
improves on the usability and adaptability of general mobile AR applications for closed
platforms, which limit the acquisition, consumption and visualization of digital media
content, e.g. user generated content. Any novel mobile AR application based on
SOMARA exists on an open platform and has a mobile web service framework as a
back-end system. SOMARA specifically allows for the inclusion of user generated
content from open service providers and their APIs. These could be third party or
participating providers, depending on the desired scenarios and the APIs to be used in
the AR application. Open mobile AR applications are able to connect to open providers
via specifically implemented service interfaces (of these service providers). These
interfaces are held in the service request module along with details of the parameters
that they require. A service request will be sent through a web service framework to the
service provider when mobile users or the system want to acquire media content from
other sources. Application clients on any SOA are generally platform independent: any
client on any platform can perform request-response tasks and data acquisition between
service providers and application clients. Figure 4.1 presents SOMARA and its
components as a client-server architecture. The architecture shows the web service
framework working simultaneously with the AR application and other components in
order to create service requests and receive responses. This is achieved by directly

implementing the service APIs of participating service providers.

73

—
p—— AR SDK
Physical object Image .) o
Mobile ytrackingl track?ng Recognition Visualization
Interface
| — T
o AR Application

Tracking and content
configuration

Service and content request
Content

Library

Response processing

E Context i
H From — i .
E Location E Object augmentation
e ;
Supporting modules (e.g.
personalization, photogrammetry)
AR browser
Request Handler Response Handler
Web Service Client Framework
Mobile client side
Server side
Web Service Provider Framework
Subject Museum Photogrammetry Third party service
content providers service providers providers

Figure 4.1 Service-Oriented Mobile AR Architecture

The SOMARA creates a service-orientation mainly composed of a mobile client, a web
service framework and open service providers' APIs. It is based on a client-server
architecture and the mobile/wireless framework. The following describes each
significant component within SOMARA. These work together, in real-time, in order to
accomplish AR tasks and interoperability tasks. In addition, there are some use-case
diagrams illustrating the interaction between mobile users and the system through the

service interface.

74

4.1 Mobile Client

The mobile client is an open AR application developed on a mobile platform and using
a web service framework. The mobile client is able to perform interaction tasks, AR
tasks and interoperability tasks in order to support users’ interactions, content
acquisitions, and content utilizations. The mobile AR client itself is composed of an AR
application developed on top of a web service-based framework and service interfaces.
These facilitate interoperable AR systems by simultaneously working with all the
relevant open service providers in order to create connections and request content. The
acquired media content will be visualized via an AR environment. Therefore, the
mobile client is able to send requests for high-value content that can be visualized on
the mobile AR system and superimposed on top of the real scene. The media content
involved could be 3D objects, animations, images, maps, videos, tags, billboards, etc.
These high-value content can very effectively extend and improve the quality of the
experience provided by the mobile AR system in many different scenarios: shopping,

MLASs or other scenarios such as personal assistance, or personalized AR systems.

The mobile client performs AR tasks that utilize and incorporate mobile device features
such as embedded cameras and high quality touch-screens. These features are used to
accomplish tasks such as, tracking, visualization and interaction between mobile users,
references to physical objects (marker or marker-less) and computer-generated content.
This mobile AR client framework is also designed for enhancing the data acquisition
and collaboration features already present in conventional mobile AR applications - on
closed platforms. Implementing a SOA on a mobile AR platform enables a mobile AR
application to generate connections and acquire valuable digital content from open
services or third party providers. The mobile AR client, in addition, offers features that
support content acquisition and utilization facilities — the former including, for example,
photogrammetry services and AR environment personalization. These features represent
one of the benefits of using an open mobile AR platform. The mobile client can deliver
valuable content to mobile AR environments as well as representing AR environment
interpretations so that active content can be consumed and reused by mobile users. The
mobile interface, mobile AR SDK, AR application are components of SOMARA

mobile client that work concurrently to accomplish an AR presentation.

75

4.1.1 Mobile interface

A mobile AR system will usually offers just basic features for performing object
tracking, recognition and visualization in relation to referenced objects. Related content
of a tracked object will be rendered and visualized on the screen through the mobile
interface. A mobile interface is a front-end system whereby mobile users can interact
with the mobile AR application as well as with other mobile users and the system. The
mobile AR application requires a touch-screen user interface with which mobile users
can interact with the system, view visualized content and have interactions with those
active content. In addition, the process of object tracking is done via an embedded
camera on the mobile device. A targeted object can be viewed on the screen and, at the
same time, the relevant content will be retrieved by the AR application and visualized
by the AR SDK. The designated interactions between users and active content, which
can be performed via the mobile interface, are selecting, and saving. This latter
functionality can be performed on selected, predefined content or on content obtained
from services - so that these content can be displayed again in other situations. The
mobile AR application is developed on an 10S platform and the design is focused on the

1Pad device since this has a large screen as compared to the iPhone.

4.1.2 AR application

Mobile AR systems work with the embedded-camera, sensors, computer vision
techniques and etc. in order to achieve object detection, tracking and content
visualization. Using a built-in camera and/or GPS module in order to capture real
environments and/or the user’s location provides the AR system with the information
necessary for performing object tracking, visualization and overlaying (virtual content
on the real scene). The real-world scene could relate to either an indoor or an outdoor
environment. For this research, the Metaio native AR SDK will be implemented within
the AR system module to perform 3D tracking, recognition of target objects and

visualization of relevant virtual content.

Metaio SDK is the native platform designed for mobile AR application development,
and includes xCode/Objective-C for 10S and JavaScript for Android. The Metiao native
SDK performs basic AR tasks including object tracking, recognition and visualization
of objects (that the system will retrieve virtual content for, in order to present these to

users). Metaio native SDK provides specific libraries, frameworks and APIs that

76

developers can use to create mobile applications specific to their own platforms. These
APIs fully support AR environments, in terms of hardware access, tracking processes,

user interface design, content rendering and visualization.

For this research, the mobile AR application will be developed on a native iOS platform
by implementing Metaio AR SDK for iOS into the AR application. Figure 4.2 presents
the structure of the native Metaio AR SDK, which provides basic AR tasks to

developers.

Rendering Capturing Tracking

Sensor-

interface
Metaio native SDK

Figure 4.2 Metaio native AR SDK (www.metaio.com)

An AR application on the mobile AR client works with the AR SDK in order to
simultaneously perform AR tasks and supporting tasks, thus creating interaction
between mobile users and media content. In addition, the application will include web
service connection modules, which will be able to request associated content or
services. Moreover, the AR application will also include some features that will
enhance AR content utilization, allowing mobile users to perform additional tasks that

could be designed into the AR application so making it unique.

The novel AR application is built on top of a mobile and web service platform. Thus,
some functions are available to it simply by connecting to existing providers through a
web service. Therefore, the AR application strongly supports the mobile AR client to
become an interactive open system that works in different ways with different special
service providers in order to acquire virtual objects - e.g. image-based reconstructions
or other such services. Standalone AR applications, on the other hand, present only a

predefined and limited number of content to mobile users.

77

Interoperable frameworks and web service providers nowadays also support
connections between mobile clients and provide data that can be presented and utilized
on AR platforms, e.g. social network data, geospatial content, POIs data and mix reality
content. As a result, mobile AR systems can become mobile web service clients by
working with the web service client module in order to create connections with different
service and content providers. Thus, an application can send very specific requests for
additional content. The final outcome from these requests, which will be effectively
overlaid on top of images of physical objects and real scenes, could be virtual objects,
games, map data, videos, tags or billboards, etc. These can very effectively extend the
AR system, whether it is related to shopping, or museum experiences, or is a personal

assistance and personalized AR system.

Within the mobile AR application, there are a number of primary functions that will
perform basic AR tasks. These simultaneously work with the Metaio AR SDK, and they
include object tracking, object recognition and content visualization. In addition to this,
the system also interacts with, and performs connection and content manipulation tasks
for, mobile users in order for the application to provide its innovative features and to
provide an interoperability framework in terms of the mobile platform and the AR

environment.

The AR tasks are generally performed by the AR application whilst the AR SDK
performs the task of recognizing reference objects; the system can thus present
computer-generated content to accompany the objects. At the same time, the system
also enables interaction between mobile users and active content so that users will be
able to obtain possibly related information, which interrelates with content on the
screen. Additionally, the system offers usefully featured functions that rely on the
interoperability framework and the web service basis. These features work with users to
quickly and smoothly accomplish connections to providers via the mobile network. The
final outcomes from these services will be utilized on the mobile client. Mobile users
will be able to personalize AR environments by selecting and saving preferred content

on the screen.

In this research, a novel mobile AR application scenario exploiting service-orientation
will be implemented in relation to museum experiences. This will be beneficial to its

mobile users as a visual strategy to attract the user’s attention with environmentally

78

augmented hints, virtual exhibitions, augmented imagery, and other graphical
information. Moreover, the system strongly engages mobile users. It does so by
enabling the creation of AR preferences, such as personal AR environments, and by the
presence of virtual experiences that can be launched and viewed in various situations.
The following describes each component of this AR application. These components
work concurrently together in order to perform AR tasks as well as interoperability

tasks.

Tracking and content configuration

When a user wants to track a marker or marker-less object and the relevant camera view
appears after she or he touches the tracking button, tracking configuration and content
configuration will be performed, in concert, by the AR application itself and the AR
SDK. These processes will identify all of the reference objects and their related content.
These objects can then be tracked and recognized and the related content retrieved and
visualized, overlaying the tracked objects on the image of the real-world scene. The
mobile AR client supports physical object tracking as well as image-based tracking.

This will be performed in two difference MLA-related scenarios.

For MLAs, the configuration process starts working when the system initiates the AR
scene. The system has to classify all the reference objects that will be tracked and
recognized via the tracking process. Each reference object has particular related media
content, associated with it, which need to be identified in parallel with the tracking
configuration. There are two methods of obtaining content related to reference objects:
the cached and non-cached methods. For a mobile AR application that has a fixed
number of related content prepared and cached in advance, a configuration file of the
content is used to inform the system of each group of content that belong to each
targeted object. The non-cached method is used when the system does not hold any
related content itself, on the other hand, there is a data repository or open server that the
application can refer to using a web service in order to obtain the related content for
referenced objects. In this scenario, the configuration file will be composed of the
service APIs of the relevant open content providers. For example, a museum has an
open server maintaining data and meta-data relating to its cultural artifacts and presents
these on a website. The mobile AR client is able to use its (the web-site's) APIs to

acquire particular media content for a target object in the physical museum and then

79

present the received content via the AR environment. Figure 4.3 illustrates the tracking
and content configuration process performed by the AR application that will initially
identify particular objects and retrieve their related content via this tracking and

augmenting process.

Mobile AR SDK
. ; . XML tracking W
Tracking configuration e configuration file
. . XML content
Content configuration [« configuration file W
XML content parser
\ .
Geometry building 4—>(Content library T

Figure 4.3 Tracking and content configuration process

Figure 4.4 presents the non-cached tracking configuration process. This, first, accesses
the XML tracking configuration, and the related API configuration file so that the
system can identify all of the reference objects and the participating APIs for each
object. This latter is a specification of a URL and the parameters it requires, linking to

the source of media content to each object.

Mobile AR SDK
XML tracking
Tracking configuration configuration file

2

XMLAPI 1

API configuration configuration file

XML API configuration
parser

Figure 4.4 Tracking and API configuration process

80

The non-cached method could be applied in both museum and home-based scenarios. In
the physical-museum MLA scenario, the architecture also offers the solution that the
mobile client doesn’t need to store the content that are related to the reference objects. It
can, instead, request these content from participating content providers, such as museum
subject content providers, depending on what is best for the circumstances. In the home-
based MLA scenario, the mobile client performs image tracking after the camera view
appears. In order to do this, the system requires the tracking configuration so that it can
identify the reference marker-less or image objects, which must be tracked. It will also
require the associated service APIs configuration that will identify the service API for
each reference object. If the mobile client tracks and recognizes an image, the related

APIs will be used and the associated content obtained and then visualized on the screen.

Service and content request

The mobile AR application supports both museum and home-based scenarios. Both of
them can perform service and content requests in order to acquire related or associated
content from participating open service or third party providers. The service and content
request module works simultaneously with the web service framework in order to send
requests and receive responses. In this module, the service interfaces or APIs of the
providers are required to be present so that a web service request, which is in the format
of a URL, can be sent along with its necessary parameters, to the participating providers
via mobile/wireless network. In the physical-museum MLA scenario, the module is
called when a visitor wishes to view the associated content for a targeted object. To do
so, the system will access the participating API configuration file, which contains the
associated APIs for each reference object, in order to retrieve the API for the object.
Figure 4.5 shows a use case diagram of the associated content request process and the
visualization of acquired content as performed by the mobile AR client for a museum

visitor and through the mobile interface of the AR application.

81

Mobile Interface Web Service Framework

Track physical object
Request associated contents

Visualized acquired contents
Save and create personal AR
environments

Create web service requests

Receive responses

Visitors AR application Content providers

Figure 4.5 The process of tracking and content acquisition in museum-based scenario

Acquiring virtual content from interoperable networks and open service providers can
be achieved via the service request modules of the AR application. These modules
include the service interfaces of the participating open providers. The providers could
be museum content providers or third parties. The interface specifications include
information concerning the parameters, which are required. In the museum-based
scenario, a visitor is able to request associated content whenever they want by touching
the sign or active object on the mobile interface. The application will then send the
request along with its necessary parameters to the provider and receive the response in
XML or JSON format. The received content will be visualized on the active AR
environment. Figure 4.6 shows the process of service and content requests undertaken
by the AR application when a mobile user requests associated content from an open

SCrver.

82

Associated content request

XML associated content b5
parser E Subject museum content
£ providers
. Web service client P N “E r -
Web service request e ek < - %’ Photogrammetry service
‘ e providers
[
XML parser, §
JSON deserialization g Third party service providers
[
e — =
Geometry building =l Content library

r 3

Content visualization

Mobile interface

Figure 4.6 The process of service and content requests

In the home-based learning scenario, mobile users are able to perform MLAs outside
the museum by tracking an image of a targeted object. The AR application will work on
the non-cached system whereby the application has to obtain media content from
participating open content providers by sending a request to the URL retrieved from the
API configuration file. The content requests will be automatically performed when a
mobile user tracks a trigger image and the system recognizes that image. The
augmentation will be accomplished by the application sending a service request off to
the provider through the web service framework and, of course, then receiving and
processing the response. The related content of the trigger image will be visualized on
the screen through the mobile interface. Figure 4.7 illustrates the use-case diagram of
the home-based MLA scenario, and the content request process whereby a mobile user
is able to track a trigger image in order to view relevant media content for the selected

object.

83

Mobile Interface Web Service Framework

Track physical object
&——(_ Visualized acquired contents — < >
Visitors AR application Content providers

Save and create personal AR
environments

Figure 4.7 The process of tracking and content acquisition in home-based scenario

Both museum and home-based learning scenarios offer a feature allowing mobile users
to effectively interact with active content on the screen by selecting and saving the
content and thus creating personal AR environments via the mobile interface. The
preferred museum content can be presented in other situations that enable users to
conveniently review these AR images. The detail of the processes involved with content

consumption is explained below in the supporting modules section.

Figure 4.8 presents an AR application performing content and service requests via the
non-cached system applicable to home-based MLAs. After the object tracking and
recognition phase the system will request related content in advance. This is to be ready
for when user tracks the trigger image for the first time — otherwise there would be no

geometry for the associated content stored in the content library.

Mobile AR SDK

¥

Tracking configuration

-

XML tracking 1
configuration file

L

Content configuration

a

XML API 1

¥

configuration file

parser

XML API configuration

XML parser, <
JSON deserialization

¥

Geometry building

I 2

EContent Iibraryi

—

“

Object tracking

w

¢

Object recognition

Mobile AR SDK

Content request ’_

¥

¥

Content visualization

¥

Web service framework ‘

Mobile interface ‘

{L

Web service framework

Subject museum
content providers

Photogrammetry
service providers

Third party service

providers

Figure 4.8 The service and content request in the home-based museum learning

Response processing

84

Service APIs provide the processing and return the outcome in relation to either XML

or JSON document format. The service request URL relates to the source of the data. It

is composed of the API, plus the parameters and output format dictated by the

application client. The output document from the open service or other content provider

is in either XML or JSON format and will be sent through the web service framework

back to the mobile client. The AR application has to read and extract data from the

response file. The native 10S development framework provides a function for

developers to develop a reader for XML and JSON documents, which includes

85

NSXMLParser and NSJSONSerialization. Figure 4.9 presents the procedure for
processing the JSON document response by utilizing the NSJSONSerialization
function. The extracted data is transformed into objects and geometries, which will be
kept in the content library of the AR application. The geometries will be retrieved and

visualized on the AR scene when their reference object is tracked and recognized.

NSJSONReadingMutable
containers

¥

Check structure of the <
document

NSJSONSerialization

Check each record in
dictionary

Extract data from the record

Create objects of data

* ' ~

-

Freate geometries of objec%—q Content library

Mobile AR SDK

Figure 4.9 JSON document processing

Figure 4.10 shows the procedure for processing a response document in XML format by
utilizing NSXMLParser. All of the elements contained in the XML document will be
read through and the relevant data extracted from the document. The geometries for the
data will be created and stored in the content library as for process related to

NSJSONSerializaton.

NSXMLParserDelegate

¥

Check starting document < m———

Check starting element

¥

Find characters

¥

Check ending element

¥

Create objects of data

Check ending document fe———

¥

Create geometries of 0bjects |- B

Content library

86

3 L Conentibray

Mobile AR SDK

Figure 4.10 The process of reading the XML response document
Object augmentation

Object augmentation is the process of tracking objects and superimposing relevant
media content associated with the targeted objects onto the real-world image. The
mobile client starts tracking the real-world scene when the camera screen is presented
and the mobile device user points a mobile client at the scene. When the system starts
tracking the scene, the AR application will automatically work with the Metaio AR
SDK in order to detect and recognize reference objects. Multiple content for a tracked
object will be retrieved, aggregated and presented on top of the tracked object in the
real-world scene/image. The proposed MLA scenarios mainly rely on this object
augmentation in order to present media content - as geometries or objects, which can be

seen on the screen.

In the museum-based learning scenario, the mobile AR client initially stores related
content of reference objects in the content library that these can be retrieved directly
(i.e. locally) once the system recognizes an object. The configuration process firstly

identifies reference objects and the related content for each individual object so that the

87

augmentation process can display related media content of the tracked objects, as
required. Moreover, mobile users are able to request associated content by touching the
object on the active screen; at which point, the system will check to see if there are any
interactions with geometries on the screen. Once the user indicates that they want to see
associated content, the system will read the associated content configuration file and
extract data. The data is in the form of the predefined API and parameter specifications
relevant to the participating provider. A service request will then be sent through the
web service framework to the participating provider and a response document in the

XML or JSON format will be sent back to the service request module.

In the home-based learning scenario, there are no predefined content stored in the
content library and so all the content must be requested when the system tracks a trigger
image. The object augmentation module will read through the reference configuration
file and retrieve the URL, which is the API and associated parameters for the open
content provider, related to the tracked image. The content request will then be sent
through the web service framework to the provider and the response obtained will then
be processed. The user can then view associated media content of the tracked trigger
image, which represent the physical object in the museum. Figure 4.11 presents the
process of object augmentation for museum-based and home-based learning scenario.
The augmentation process starts working when the AR View starts and the related
content will be visualized as soon as the system is able to recognize at least one
reference object. The main functions of both scenarios are generally similar but the
process of content acquisition in the home-based learning has to be done by tracking the
trigger images. The acquired associated content from the provider will be presented on

the screen.

88

Mobile AR SDK
Getting trackin —_— —
> vaglues & Content library T
Object recognition Geometry building
. < XML parser
Content ret A !
on en;e reve JSON deserialization
Content visualization :t Content request
v ‘ 3
= Mobile interface ; Web service framework
f A
Getting interaction,
touched objects
Saving selected “_

objects

——

F‘xé@cmbﬁcr*j
__database

~—

Web service provider framework ‘

Third party service
providers

Photogrammetry
service providers

Subject museum
content providers

Figure 4.11 The object augmentation process in museum-based and home-based
museum learning scenario

Supporting modules

This novel mobile AR application, or mobile client, is able to offer some supporting
modules that take full advantage of it being on an open platform and, in addition, being
an AR system. There are two approaches that could be usefully applied by the mobile
client in relation to MLA scenarios, for content acquistion and utilisation. The
following are details of each approach (these have been implemented into the mobile

client and offered functions to users).

Content acquisition

Content acquistion is generally accomplished by sending a request to a participating

content provider (which one depends on the scenario) and receiving a response through

89

a web service framework. In addition, content acquistion can also be performed by
sending a request to a possible service provider whose responses can usefully be
presented in AR environments. One possible service provider that can, beneficially be
used by the mobile client for MLA scenarios is a photogrammetry service. A
photogrammetry service is an image-based reconstruction service whereby photographs
of a physical object or landscape can be uploaded to it so that a virtual 3D model of the
object is created. The resultant model will be sent back to the mobile client and
visualized to the user. Photogrammetry is one of the content acquisition approaches that
can be usefully integrated into a mobile client where this supports web-based content
acquistion. In this case the content acquisition is carried out by sending a request along
with parameters, which are a sequence of photographs, to the service provider. The
service provider then responds with a 3D model that can be consumed in the AR
environment. A photogrammetry service request module in the mobile client applies the
service API of the provider and works with the embedded camera of the mobile device
in order to obtain photographs of a selected object. It then makes an image-based
reconstruction request and receives a response that is a virtual 3D model of the object.
The final model will then be visualized and utilized on the scene. Figure 4.12 presents
the process of requesting a photogrammetry service that requires photographs of a

targeted object as parameters to be sent to the provider.

90

Start taking photos

Start/Stop timer aa
> Capture image

{ Save image object

¥

{ Content library

Stop taking photos e

_ﬁ Photogrammetry 2 Saving acquired
service request " model

S —
—Selected object
___ database J

‘ Web service framework

Web service provider framework

Photogrammetry service providers

Figure 4.12 Photogrammetry service request module

The photogrammetry service request module is initiated when the mobile device user
touches a button to start taking photographs. A timer will then be activated in order to
automatically take further photographs. Each photograph will be transformed into an
object and saved into the content library. The timer will be halted when the user touches
the stop button (and so the system will stop taking photographs). The user can then
decide to send a request for a virtual 3D model of the targeted object. Figure 4.13 shows
the use-case diagram of a photogrammetry service request. The mobile user will
participate by targeting an object, taking photographs of that object, and then sending a

request for image-based reconstruction services to the relevant service provider.

91

Mobile Interface Web Service Framework

Start taking photos

Stop taking photos
Request photogrammetry
services

Figure 4.13 The process of photogrammetry service request done by mobile users

Create web service requests

>

Photogrammetry Provider

Mobile Users AR application

Receive responses and fina
outcomes

Content utilization

Content utilization is one of the features strongly supported by the mobile client in order
to enable mobile users to consume acquired AR content. These content can be acquired
from a mobile AR environment and then selected content can be used and/or displayed
in other situations. The proposed content utilization module is an AR environment
personalization system that allows mobile users to select and save content, which have
been obtained and then visualized on the screen. This suggested AR environment
personalization supports data representation using a mobile AR framework so that
media content can be presented within AR environments. Personal AR environments
can be selected for presentation elsewhere and presented by augmenting a trigger image.
Figure 4.14 illustrates the process of AR environment personalization that mobile users

are able to select and save their preferred AR content.

Detect interaction on
the screen

Get location on the
view

Get scale on the view

\

Get geometry from
viewport coordinate

Compare selected geometry
with the stored geometries

¥

Save selected
geometry

Identify trigger image

¥

elected obje
database

92

Figure 4.14 The process of creating personalized AR environments

Figure 4.15 is the use-case diagram for the AR environment personalization module,

which can be accessed through the mobile interface. Mobile users are able to select and

save preferred content. The saved content can then be visualized in an AR Browser that

augments a trigger image by displaying or revealing selected related content.

Mobile Interface

Select object/content

Mobile User

Save selected object/content

View saved ojects/contents

AR application

Figure 4.15 Use-case diagram of AR environment personalization

93

The AR Browser is used to reveal personalized AR environments composed of saved
media content, including acquired content from participating providers and/or virtual
3D objects from photogrammetry services that have been selected and saved by the
mobile user. This module will require the presence of an embedded-camera (readily
provided by modern smartphones and tablets) in order to perform image-based tracking
and so reveal user's preferences on the AR browser. Figure 4.16 illustrates the AR
Browser whereby mobile users are able to reveal personalized AR content over-laid on

the real scene by tracking a trigger image.

Mobile AR SDK

\4
Get tracking values
A

Recognize object

¥

Retrieve related
contents

— Conﬁggrereference ‘
image

4_":"""Sélécted'obj*e’cf'""’;‘
__database

Content visualization

Mobile interface

Figure 4.16 The process of visualizing personalized AR environments using AR
Browser

Figure 4.17 shows the use-case diagram relating to using the AR Browser in order to

view personalized AR environments in other situations (outside the museum).

94

Mobile Interface

Track maker-less object

Mobile User AR Application

isualize personalized
contents on the augmented
reality browser

Figure 4.17 The use-case diagram of AR Browser

4.2 Web Service Framework

The web service framework is a technology used to create connections and interactions
between services in a SOA. A web service framework can be applied to any system that
requires open architecture. The system will then become a client-side application that is
able to access open services in the SOA. In this research, the web service framework is
implemented into the mobile AR application, making it a mobile client on open
platform. The web service-based mobile AR application or mobile client will be able to
perform interoperable tasks including sending requests and receiving responses as well
as supporting the application client in acquiring associated content from open service or
content providers. The web service framework in the native 10S development
framework supports the REST communication protocol. This requires service APIs of
participating providers to be in the form of a URL containing the source of content, the
function and the parameters required, which will be processed in the server side. The
web service framework works concurrently with the AR application as a back-end
system for creating web service connections in order to send requests and receive
responses between the mobile client and web service providers. The web service
responses will need XMLParser or NSJISONSerialization function in order to process
XML or JSON documents representing the final outcome from the web service
providers. The content will be extracted from the received document and visualized on
the screen. Figure 4.18 presents the structure of the web service framework of the

mobile client using the REST architecture.

95

Set URL request

¥ X
s
Set HTTPMethod g Subject musgum content
* ® providers
Send asynchronous ' ' . § Photogrammetry service ‘
request =P | Completion handler | —) g providers
ke
. >
Recelve NSURL < § Third party service providers
response e
L
=

Content visualization

Mobile interface

Figure 4.18 Web service framework

4.3 Web Service Providers

SOMARA requires service APIs from all providers. These can be participating open
providers that could be third party, potential content providers for the desired scenario
or effective service providers who can provide processing services such as image-based
reconstruction and so valuable content for AR environments such as 3D models,
images, text etc. Open providers basically offer services for SOA so that any application
is able to create connections and interaction with the participating providers through a
web service framework. Web service providers process service requests and return
responses to service requesters or application clients. Service providers offer service
interfaces or APIs for clients and the service connection module inside that will apply
the APIs and identify required parameters before sending requests to the providers. In
this research, SOMARA is applied in museum scenarios for which the participating web
service providers will be museum content providers that have exposition data
concerning the objects in their repository. The proposed providers applied in SOMARA
offer service APIs and the mobile client will apply those APIs in order to send service
requests and receive responses. The participating service providers for MLAs chosen to
integrate into the mobile client as sample content providers for SOMARA are the RCH
Cultural Object Service and Victoria and Albert Museum open service mentioned in

Chapter 3. Figure 4.19 illustrates the structure of the selected museum service providers

96

that their API is applied into the service request module in order to obtain valuable

content from the open sources.

| Set URL request |

¥

| Set HTTPMethod |

¥

RCH
API

RCH service

3

]
| Sehd asyRCRrORQUS H Completion handler [
[*

request

| Receive NSURL

resg:onse

| Content visualization

| Mobile interface ‘

‘._

A

V&A
API

Victoria & Albert Museum
service

RCH
repository
V&A Museum
repository

Figure 4.19 Web service framework and the implemented service providers

4.4 Summary

This chapter describes SOMARA and it’s components that encourage the development

of SOA on a mobile AR platform. SOMARA generates service-orientation enabling the

creation of SOMARA-based mobile AR application that is composed of a mobile AR

client, a web service framework and open service providers.

The mobile AR client

performs AR tasks that work simultaneously with the AR application and the mobile

interface for tracking reference objects and visualizing related content on the real scene.

The application also supports interoperability tasks where mobile users or the

application itself are able to request associated content from web service providers

through a web service framework.

97

Chapter V

5 A SOMARA Application
Development

This chapter explains the process of developing a novel mobile AR application based on
the Service-Oriented Mobile Augmented Reality Architecture (SOMARA) — a
SOMARA application. As such, this chapter provides the implementation of SOMARA
based AR application that can be used as a guide for the development of other museum
AR applications exploiting SOMARA — this particular implementation of a SOMARA
application should not be regarded as a product; it serves to illustrate how build a
typical SOMARA applications, and in this case using Apple technology. The
development focuses on an implementation of SOMARA, which includes building the
mobile AR client on an open platform that supports SOMARA, with a web service
framework in order to work as a back-end system to perform interoperability tasks. The
application 1s composed of functions in order to perform AR tasks including object
tracking, recognition and content visualization and interoperability tasks including
service connections and content acquisition. The novel mobile AR application supports
museum-based and home-based learning scenarios. The mobile client is an AR
application on a mobile platform and in this research the application is developed on
Apple 10S SDK and XCode IDE. The following sections cover the processes of
developing a SOMARA application that enhances the usability and functionality of
typical standalone or closed-platform mobile AR applications. Each section shows the
important functions and modules inside the open mobile AR application that effectively
perform AR tasks, interoperability tasks and supporting tasks that encourage content

acquisition and consumption.

98

5.1 Development Tools — XCode and iOS SDK

The development tools chosen for building mobile AR applications are XCode and
Objective-C language because XCode IDE provides developer tools, a graphical
interface and a debugger that effectively support application development. Developers
have to apply for an Apple developer membership and register mobile devices that will
be used to run the application. In addition, the personal certificate and profile on the
developer portal needs to be downloaded and installed in the computer used to develop
the application as well as in the mobile device that is the deployment target. Figure 5.1
presents the development framework of XCode IDE for the iOS platform and the

components of the mobile application environment.

U oo

Figure 5.1 10S and XCode development framework

The XCode IDE provides the Main Storyboard and View Controller as the start view for
developers to create the first view of a mobile application. The developer can add more
views into the application whereby each view contains a header file, implementation file

and View Controller.

5.2 AR View

A SOMARA application has three AR Views for museum-based learning, home-based

museum learning and an AR Browser. The AR Views have been created on top of the

99

normal View Controller and simultaneously work with MetaioSDKViewController for
connecting to the embedded camera and presenting a real scene so that mobile users can
track a targeted object and see visualized content superimposed onto the tracked object.
The View Controller contains modules that control and work with the AR View and
MetaioSDKViewController in order to perform AR tasks as well as interoperability
tasks, and mobile users are able to interact with the system and active content on the
screen. Figure 5.2 shows the mobile AR View of the museum-based learning scenario
that is run on an iPad. The AR View includes a mobile interface that allows mobile
users to interact with the visualized content and system through the touch screen and

buttons located on the screen.

® Xoode Fie €ot View Fid Navgws Edtor Produd Oy Souce Comol Window e TORNEU A+ < = Waohr ik Q=

Figure 5.2 The mobile AR View of the museum-based learning scenario

Figure 5.3 presents the mobile AR View of the home-based learning scenario. In this
scenario, an AR View is required for mobile users to perform image-based tracking and
system interaction in order to view associated content acquired from the participating

service provider on the screen.

100

® Xcods Fie Eot View Frd Navows Eotor Produt Owowg Sowos Contol Window Hep Oenee

A > < W WeoAr 1w Q=
ece » A Arnsouniasacn) 8 oo 4t Ao Retawcn | B b osaac Suctsoded | OVOTZONS 4 1820 4.4 L

210

]

Figure 5.3 The mobile AR View of home-based museum learning scenario

Figure 5.4 shows the AR Browser that reveals personal AR environments created by
mobile users. Preferred content from the museum-based learning scenario that has been

stored in the database is retrieved and visualized on the AR Browser in other situations.

® Xcods Fie Eot View Frd Navows Eotor Product Owowg Sowoe Conol Window Hep

©BNEU A= < ® wataew Q=

> 1 0

Figure 5.4 The AR Browser view

101

5.3 Tracking and Content Configuration

The tracking and content configuration starts working after the View Controller is
loaded and the AR View appears on the screen. The tracking configuration process
requires a tracking data file that is processed by the MetaioSDK to identify and
recognize reference objects. In addition, a content configuration file is needed in order
to provide related media content of each reference object that will be tracked. The
following are the tracking processes applied in the museum-based learning and home-
based museum learning scenarios that require different tracking and content

configuration files.

5.3.1 Museum-based learning scenario

Museum-based learning performs physical object tracking and the system visualizes
related content that has been pre-defined in the content library. The configuration
process requires a tracking configuration file and content configuration file for
initializing reference objects that are to be tracked and related content of each object
that is to be revealed on the real scene. The following is the tracking and content

configuration for the museum-based learning scenario.

Tracking configuration

The tracking configuration process is done when the Ul View is loaded and the camera
view is presented on the screen. The required tracking configuration file is in XML

document format as shown below.

<?xml version="1.0" encoding="UTF-8"7>
<TrackingData>
<Sensors>
<Sensor Type="FeatureBasedSensorSource" Subtype="ML3D">
<SensorID>FeatureBasedSensorSource 0</SensorID>
<Parameters>
<featureorientationassignment>gravity</featureorientationassignment>
<MaxObjectsToDetectPerFrame>5</MaxObjectsToDetectPerFrame>
<MaxObjectsToTrackInParalle]>1</MaxObjectsToTrackInParallel>
</Parameters>
<SensorCOS>
<SensorCosID>fb23be3415c¢00141a340d36b27661610</SensorCosID>
<parameters>
<numextensiblefeatures>0</numextensiblefeatures>
<mintriangulationangle>6</mintriangulationangle>
<map>tb23be3415c00141a340d36b27661610.3b</map>

102

<MinMatches>15</MinMatches>
<NumExtensibleFeatures>250</NumExtensibleFeatures>
</parameters>
</SensorCOS>
</Sensor>
</Sensors>
<Connections>
<COS>
<Name>cos1</Name>
<Fuser Type="SmoothingFuser">
<Parameters>

</Parameters>
</Fuser>
<SensorSource>
<SensorID>FeatureBasedSensorSource 0</SensorID>
<SensorCosID>fb23be3415¢00141a340d36b2766f610</SensorCosID>
<HandEyeCalibration>
<TranslationOffset>

</TranslationOffset>
<RotationOffset>

</RotationOffset>
</HandEyeCalibration>
<COSOffset>

<TranslationOffset>

</TranslationOffset>
<RotationOffset>

</RotationOffset>
</COSOffset>
</SensorSource>
</COS>
</Connections>
</TrackingData>
The XML document contains the metadata or details of reference objects specified by
the developer, including a 3D tracking map of each reference object created by Metaio
Toolbox, the SensorCOSID and COS name. The SensorCOS includes a group of details
of each reference object composed of SensorCOSID and the parameters containing the
3D tracking map file and the default numbers. The 3D tracking map files have to be

stored in the content library and the MetaioSDK uses the prepared map files in order to

track and recognize a targeted object on the AR scene. The process of creating 3D map

103

files of reference objects can be seen in Appendix D. The following code is the process

of setting up the tracking configuration file in XCode and Objective-C.

NSString* trackingDataFile = [[NSBundle mainBundle] pathForResource:@"Tracking"
of Type:@"xml" inDirectory:(@"Assets1"];

bool success = m_metaioSDK->setTrackingConfiguration([trackingDataFile
UTF8String]);

Content configuration

The next process is to perform content configuration that identifies related content to
each reference object. The pre-defined content is organized in the XML document and it
requires the XMLParser to read through the document and extract data in the document.
The data are transformed into geometries of each object and visualized when the object

is tracked and recognized.

<?xml version="1.0" encoding="UTF-8"7>

<Contentgroup>
<Cos>

<Name>cos1</Name>

<Billboard>
<Title> Tea leaf tin </Title>
<Details>A Test 3D Object</Details>

</Billboard>

<Model>
<MFilename>metaioman</MFilename>
<MFiletype>md2</MFiletype>

</Model>

<Image>
<IFilename>crabtree</IFilename>
<IFiletype>png</IFiletype>

</Image>

<Image>
<IFilename>MoreDetails</IFilename>
<IFiletype>png</IFiletype>

</Image>

</Cos>
</Contentgroup>

The system can also support acquiring related content of a tracked object from open
sources such as a local museum content provider. This can be done by sending a request
for related content of a reference object to the provider and receiving a response. The
developer does not need to prepare media content and store it in the library of the
application in advance. In this option, the content configuration file contains service

APIs or URLs and required parameters used to access the content provider and request

104

media content of the reference objects. The following is an example of a content
configuration file in XML format identified to each reference object for sending web

service requests.

<?xml version="1.0" encoding="UTF-8"7>
<Contentgroup>
<Cos>
<Name>cos1</Name>
<CID>http://www.vam.ac.uk/api/json/museumobject/O78523</CID>
</Cos>
</Contentgroup>

The designed content configuration file has to be transferred to XMLParser in order to
extract the specified content of each reference object and create geometries of the

content. The pseudocode for configuring related content of each reference object and

the process of calling XMLParser is displayed below.

identify content configuration file;

set NSData of the content configuration file;

create an array of retrieved billboard content;

create the object of BillboardContentParser;

call function parseXMLFile in BillboardContentParser;
if(success)

{
j

create billboard objects of acquired content in the array;

BillboardContentParser retrieves data of content stored in the content configuration file
and it returns an array of data that is sent to the module for building geometries. The
BillboardContentParser is used to read data in the tag <BillBoard> that are used to
create billboard content presenting text on the AR screen. The following is the

pseudocode of functions in BillboardContentParser class.

-(NSMutableArray *)parseXMLFile:(NSData *)xmlData

{
initialize received XML data to NSXMULParser;
set Delegate;
parse XML document;
return array;
}
-(void)parserDidStartDocument:(NSXMLParser *)parser
{

create an object of array;

}

105

-(void)parser:(NSXMLParser *)parser didStartElement:
(NSString *)elementName namespaceURI:(NSString *)namespaceURI
qualifiedName:(NSString *)qName attributes:(NSDictionary *)attributeDict

{
if(elementName is equal to “Cos”)
{
create an object for billboards;
b
}

-(void) parser:(NSXMLParser *)parser foundCharacters:(NSString *)string
{

}
-(void) parser:(NSXMLParser *)parser didEndElement:

(NSString *)elementName namespaceURI:(NSString *)namespaceURI
qualifiedName:(NSString *)qName
{

if (elementName is equal to “Name”)

{

store collected string in object;

}

else if (elementName is equal to “Title™)

{

store collected string in object;

}

else if (elementName is equal to “Details”)

{

store collected string in object;

}

if (elementName is equal to “Cos”)

{

}
}
-(void) parserDidEndDocument:(NSXMLParser *)parser
{
}

find and collect string;

add object to the array;

The returned array of data extracted from the content configuration file is sent to the
CreateBillboard ARContent module, which is shown below, for building geometries of

content in the obtained array.

- (void)CreateBillboard AR Content:(NSMutableArray *)data
{

create billboard object

create array for billboards;

read billboard data from array

{
if(data is the end of array)

106

{
break;

}

else

{
create billboard image from title;
create geometry of billboard image;
set visibility;
create billboard image from details;
create geometry of billboard image;
set visibility;
add geometry object to array;

}

}

5.3.2 Home-based museum learning scenario

Home-based museum learning performs image tracking that requires trigger images of
real cultural objects. After recognizing the trigger image, the system sends a request to
the participating open service and receives a response that is the associated content of
the tracked image; this is visualized on the real scene. The following explains the
tracking and content configuration process of the home-based museum learning

scenario.

Tracking configuration

The tracking configuration process requires a tracking configuration file in the same
way as the museum-based learning scenario. The following is the tracking configuration

file in XML format used for tracking trigger images.

<?xml version="1.0"7>
<TrackingData>
<Sensors>
<Sensor Type="FeatureBasedSensorSource" Subtype="Fast">
<SensorID>FeatureTracking1</SensorID>
<Parameters>
<FeatureDescriptorAlignment>regular</FeatureDescriptorAlignment>
<MaxObjectsToDetectPerFrame>5</MaxObjectsToDetectPerFrame>
<MaxObjectsToTrackInParalle]>1</MaxObjectsToTrackInParallel>
<SimilarityThreshold>0.7</Similarity Threshold>
</Parameters>
<SensorCOS>
<SensorCosID>Patch1</SensorCosID>
<Parameters>
<Referencelmage>Nomoli.jpg</Referencelmage>

107

<SimilarityThreshold>0.7</Similarity Threshold>
</Parameters>
</SensorCOS>
</Sensor>
</Sensors>
<Connections>
<COS>
<Name>cos1</Name>
<Fuser Type="SmoothingFuser">
<Parameters>

</Parameters>

</Fuser>

<SensorSource>
<SensorID>FeatureTracking1</SensorID>
<SensorCosID>Patch1</SensorCosID>

<HandEyeCalibration>
<TranslationOffset>
</TranslationOffset>
<RotationOffset>
</RotationOffset>

</HandEyeCalibration>

<COSOffset>
<TranslationOffset>
</TranslationOffset>
<RotationOffset>
</RotationOffset>

</COSOffset>

</SensorSource>
</COS>
</Connections>
</TrackingData>

This XML configuration file is used to configure the tracking process by MetaioSDK
for tracking planar surface objects such as a page in a magazine or images. The file
contains details of each reference image including the SensorCosID, reference image
file and COS name that is used to track and recognize a trigger image, and then the
system reveals associated content obtained from open services such as third party or
museum content providers. The process of setting up the configuration file is shown

below.

NSString* trackingDataFile = [[NSBundle mainBundle]
pathForResource:(@'"MarkerlessTracking" of Type:@"xml" inDirectory:@"Assets1"];

108

bool success = m_metaioSDK->setTrackingConfiguration([trackingDataFile
UTF8String]);

Content configuration

The associated content is requested from the participating content providers on the
client-server architecture; the content configuration process identifies the service API of
each provider and parameters required for sending a request. The following is the
content configuration file in XML format containing the URL and parameters of each

reference image.

<?xml version="1.0" encoding="UTF-8"7>
<Contentgroup>
<Cos>
<Name>cos1</Name>
<CID>http://www.sierraleoneheritage.com/api/search_service/fetch item/coid/231
1/format/xml</CID>
</Cos>
<Cos>
<Name>cos2</Name>
<CID>http://www.sierraleoneheritage.com/api/search_service/fetch item/coid/220
0/format/xml</CID>
</Cos>
<Cos>
<Name>cos3</Name>
<CID>http://www.sierraleoneheritage.com/api/search_service/fetch_item/coid/237
0/format/xml</CID>
</Cos>
<Cos>
<Name>null</Name>
</Cos>
</Contentgroup>

The pseudocode for setting up the content configuration file is explained below. The file

is sent to XMLParser in order to extract the URL of each trigger image. The extracted

data are returned back to the module and stored in the array.

identify URL configuration file;

set NSData of the URL configuratrion file;

create the object of ReferenceObjectIDParser;

create an array of retrieved URLs;

call function parseXMLFile in ReferenceObjectIDParser;

The following is the pseudocode of functions in ReferenceObjectIDParser class that
reads through the content configuration file, extracts data in the file and returns the

array of data back to the module.

109

-(NSMutableArray *)parseXMLFile:(NSData *)xmlData

{
initialize received XML data to NSXMULParser;
set Delegate;
parse XML document;
return array;
}
-(void)parserDidStartDocument:(NSXMLParser *)parser
{
create an object of array;
}

-(void)parser:(NSXMLParser *)parser didStartElement:(NSString *)elementName
namespaceURI:(NSString *)namespaceURI qualifiedName:(NSString *)qName
attributes:(NSDictionary *)attributeDict

{
if (elementName is equal to “Cos”)
{
create an object for URL reference objects;
}
}

-(void) parser:(NSXMLParser *)parser foundCharacters:(NSString *)string
{

}
-(void) parser:(NSXMLParser *)parser didEndElement:(NSString *)elementName

namespaceURI:(NSString *)namespaceURI qualifiedName:(NSString *)qName

find and collect string;

{
if(elementName is equal to “Name”)
{
store collected string in object;
}
else if (elementName is equal to “CID”)
{
store collected string in object;
}
if (elementName is equal to “Cos”)
{
add object to the array;
}
}
-(void) parserDidEndDocument:(NSXMLParser *)parser
{
}

The tracking configuration files presented above in both museum-based and home-
based learning scenarios support single object tracking where the system can track only

one reference object. In order to perform multiple object tracking, the system requires a

110

tracking configuration file that contains tracking information of all reference physical

objects so that the SDK can process all of the information at once.

5.4 Object Augmentation

The process of tracking objects and augmenting related content on top of the real scene
is described in this section. The tracking system starts working when the Ul View is
loaded, the AR View appears on the screen and the configuration is done by the
MetaioSDK. The object augmentation module works recursively in order to get all
tracking values in the real environment and recognize a reference object. In this module,
mobile users can start tracking a targeted object seen on the AR View and the system
augments related media content of the tracked object and visualizes them on the view.
The code that performs object tracking or getting tracking values of objects in the real

scene is shown below.
std::vector<metaio:: TrackingValues> poses = m_metaioSDK->getTrackingValues();

The system augments related content on top of the real scene by checking whether the
tracking finds and recognizes a reference object in the environment; then the system
displays relevant content of the tracked object on the screen. This process can be done
by getting the COSName of the tracked object and reading through the array of
geometries for the related content that are visible to mobile users. The following
pseucode performs object augmentation that visualizes billboards containing text on top

of the tracked reference object.

if(found an object)
{

create a sting of COS name from found object;
read prepared object from array

{
if COS Name is equal to COS Name of the object
{
add object to the billboard group;
set coordinateSystemID of the object;
set visibility to true;
break;
b
b

111

5.5 Service Request and Response

The content acquisition process in the SOMARA application is applied in both
museum-based and home-based learning activity scenarios. Associated content of
reference objects can be requested from participating open providers through the new
SOMARA web service framework. The following is the code for sending service
requests and receiving responses that can be in XML or JSON documents in both

scenarios.

5.5.1 Museum-based learning scenario

Museum-based learning offers mobile users a module for requesting associated content
of a targeted object when the user touches a button visualized on the screen. The AR
View detects interaction from the mobile user and then performs a content request. The
following is the pseucode for detecting touch by picking up selected geometries and
checking whether the touched object is a service request one. The system performs
content configuration in order to fetch the prepared URL and parameters, which is the
API of the participating service provider, which could also be the museum itself

exposing its collections via a web service API.

- (void) touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
{

get interaction on screen;

get location of the touch object;

get geometry from location in ViewportCoordinates;

if(found geometry)
{
search touched geometry in the moreDetialsBoardArray
{

if(cosName in object is equal to “null”)

{

break;

}

if(selected geometry is moreDetailsObject)

{

identify associated museum content configuration file;

set NSData of associated museum content configuration file;
create an object of ReferenceObjectIDParser;

create an array of URL reference objects;

call parseXMLFile in ReferenceObjectIDParser;

search object in the array

{

if(cName is equal to “null”)

112

{
break;
}
else if (cName is equal to the cosName of selected
geometry)
{
connect web service by sending cid in the targeted
object;
}
}
break;

This module requires the content configuration file presented below. The content
configuration file contains APIs of service providers along with parameters in URL

format that are read from the file and sent back to the module.

<?xml version="1.0" encoding="UTF-8"7>
<Contentgroup>
<Cos>
<Name>cos1</Name>
<CID>http://www.vam.ac.uk/api/json/museumobject/?q=tea</CID>
</Cos>
<Cos>
<Name>cos2</Name>
<CID>http://www.sierraleoneheritage.com/api/search_service/fetch_item/coid/220
0/format/xml</CID>
</Cos>
<Cos>
<Name>null</Name>
</Cos>
</Contentgroup>

The XML file above is sent to the XMLParser, which is ReferenceObjectIDParser. The
ReferenceObjectIDParser is shown above in Section 5.3.2. The returned data are stored
in an array and the prepared URL, which is the service API and parameters of the
selected object, is retrieved and sent to the module in order to request associated content
through the web service framework. The following is the web service connection
module that sends a request and receives a response in JSON format. The response
contains associated content that is transformed into geometries or objects and visualized

on the screen in the AR environment.

113

- (void)connectWebservice:(NSString*)cid

{
identify URL string to NSURL;

create URL request with URL string;
set TimoutInterval;

set HTTP method to “GET”

create NSOperationQueue object;
send URL request

if(receive response)

{

set JSON object with received data;
if (JSON object is NSDictionary class)

{
set JSON object to NSDictionary class;

call function for building geometries of received data;

}

5.5.2 Home-based museum learning scenario

All of the content visualized in the home-based learning is requested from participating
content providers after the system track and recognition of trigger images. The web
service connection and service request is performed in the AR View where the system
gets tracking values of an object in the real scene and recognizes the reference objects.
If there is no related content stored in the array, the system sends a request to the
participating providers in order to acquire associated content of the recognized object.

The pseudocode below is the web service request in the home-based museum learning.

if(cosName in object is equal to string “firstobject™)

{
connect web service by sending cos name of the tracked object;
set cos name of first object in array of content to “serviceObject”;
break;

}

The web service connection module in the code is called connectWebServices and the
CosName of the tracked image is sent to the module in order to send a request for

associated content of a tracked object.

- (void)connectWebServices:(NSString *)cosName

{
create an object of XMLMuseumContentParser;
create an object of URL reference object;
search URL reference object in reference object array

114

{
if(cName in the object is equal to “null”
{
break;
}
else if (cName in the object is equal to string cosName)
{
if(cid in the object is equal to string “null”)
{
create an object of MuseumContentElement
set cName in the object to cosName;
set elementName to “null”;
set data to “null”;
add object to array of content;
}
else
{
set cid of the object to URL string;
identify URL string to NSURL;
create URL request with URL string;
set TimoutInterval;
set HTTP method to “GET”
create NSOperationQueue object;
send URL request;
if(received response)
{
call and send received data to function parseXMLfile in
MuseumContentParser;
}
}
}
}
}

5.5.3 XMLParser

Open service providers return content in both XML and JSON document formats. In the

home-based learning scenario, the selected document, which is the outcome of a service

request, is in XML format and it requires the XMLParser in order to extract data from

the response document. The following is the functions in XMLParser class that reads

through the XML document, fetches the requested data in the document and returns

them to the main module.

-(NSMutableArray *)parseXMLFile:(NSData *)xmlData

{
initial NSXMLParser with received XML document

create array object for content;

set Delegate for parser;

parse XML document;

return array;
h
-(void)parserDidStartDocument:(NSXMLParser *)parser
{

}
-(void)parser:(NSXMLParser *)parser didStartElement:(NSString *)elementName

namespaceURI:(NSString *)namespaceURI qualifiedName:(NSString *)qName
attributes:(NSDictionary *)attributeDict

{ if(elementName is equal to “Object”)
{ store elementName;
e}lse if(elementName is equal to “Description”™)
{ store elementName;
ilse if(elementName is equal to “media”)
{ store elementName;
ilse if(elementName is equal to “museum”
{ store elementName;
}
}
-(void) parser:(NSXMLParser *)parser foundCharacters:(NSString *)string
{ if(elementName is equal to “Object”)
{ collect string;
e}lse if(elementName is equal to “Description”)
{ collect string;
ilse if(elementName is equal to “media”)
{ collect string;
ilse if(elementName is equal to “museum”
{ collect string;
}
}

-(void) parser:(NSXMLParser *)parser didEndElement:(NSString *)elementName
namespaceURI:(NSString *)namespaceURI qualifiedName:(NSString *)qName

{

115

116

if(elementName is equal to “Object”)

{
create object for content;
store elementName in object;
store collected string in object
add object to array;
¥
else if(elementName is equal to “Description™)
{
create object for content;
store elementName in object;
store collected sting in object
add object to array;
¥
else if(elementName is equal to “media”)
{
create object for content;
store elementName in object;
store collected sting in object
add object to array;
¥
else if (elementName is equal to “museum”)
{
create object for content;
store elementName in object;
store collected sting in object
add object to array;
¥
¥
-(void) parserDidEndDocument:(NSXMLParser *)parse
{

create object for content;
store “null” in object;
add object to array;

¥
5.5.4 NSJSONSerialization

The system also has a module that de-serializes JSON documents from participating
service providers. In the museum-based learning scenario, the acquired document from
the Victoria and Albert Museum is in JSON format and is read through by the

pseudocode shown below.

-(void) createDownloadedDataContent:(NSDictionary *)data

{

get NSDictionary data in “record”;
read data in each record

{
get NSDictionary data in “fields”;

117

create an object of content;

get object number data in “object number”;

get primary image ID data in “primary_image i1d”;
create URL string from primary image ID;

set URL sting to NSURL;

get image data from URL string;

create image object from image data;

add image object to array;

b
j

The structure of JSON documents that are the outcome of each service API is totally
different and developers need specifically to create a de-serialization module for the

selected service API.

5.6 Third Party Service Request

In the process of content acquisition, there can be content that is the outcome of service
APIs such as the source of the cultural object or museum name. For example, the
museum name can be used to acquire location (latitude, longitude) of the place as well
as a map that shows the position of the museum. This content can be requested from a
third party such as Google Maps API by sending a request composed of the name of the
service, required parameters and user’s key to the provider. Figure 5.5 presents the Ul

View that shows a map image of a selected place processed by Google Maps API.

118

A W) 2 90% (3>) Sasithom..narungrot Q=

@ Xcode File Edit View Find Navigate Editor Product Debug Source Control Window Help W19 B85 & & O

ece » 7 ARMuseumResearch) 2 Generic 108 Devico ARMuseumResearch | Buid ARMuseum Research: Succeeded | Yesterday at 18:27 =Q <000

B s = B (88 < B [] b) No Selection <o DoeOE T E O

+ ® ® o wRegular hRegular BB o S

Figure 5.5 The Ul View showing a Google Map image

The pseudocode below performs fetching of a selected name on the table view that
shows a list of museums or places related to preferred objects saved in the database. The
location of a selected name is fetched from the database and is used to create a URL
request that is sent to the Google Map Service. A response from the service is passed

through to the UIView in Figure 5.5 for showing on the screen.

-(void)tableView:(UITableView *)tableView
accessoryButtonTappedForRowWithIndexPath:(NSIndexPath *)indexPath
{
set fetchedResultsController to selected object;
get content in object;
get value from key “location”
get value from key “latitude”;
get value from key “longitude’;
create GoogleMap URL string from fetched latitude and longitude;
set URL string to NSURL;
set URL request to NSURL;
set Timeoutlnterval to 30.0;
set HTTPMethod to “GET”’;
set NSOperationQueue object;
create web service connection;
if(received data)
{
create image object of acquired data;
create GoogleMapView object;
set acquired image to GoogleMapView object;

119

present googleMap View;

}

The pseudocode below shows the process of sending a request for the location (latitude,
longitude) to the Google Map provider by using Google Place API. The obtained

location is stored in the database and used to request a map of the selected place.

-(void)getLocation:(NSString *)museum

{

create URL string from acquired museum name;
create NSMutableString from URL string;
create NSURL from NSMutableString;

create URL request from NSURL;

set TimeoutInterval to 30.0;

set HTTPMethod to “GET”;

create object of NSOperationQueue;

create web service connection

if(received data)

{

create JSONobject from received data;
if (JSON object class is NSDictionary class)

{

get data from key “results”;

get data from key “geometry”;
get data from key “location”;
get data from key “lat”;

get data from key “Ing”;

add acquired locations to array;

}
5.7 Interaction and Object Selection

Mobile users are able to interact with active content on their mobile’s screen, such as
selecting preferred content on the AR View that can be saved into the database and
revealed in the AR Browser. The module named touchesBegan() receives users’
interaction or touching on the AR View so that the system gets the position of a touched
object in the AR View. After that, the system gets the geometry on the touched location
and compares it to the media content geometries in the library. The pseudocode in
section 5.5.1 searches if the touched geometry is the MoreDetail object. The system
then sends a web service request to the participating content provider for associated

content of the tracked object. The URL of the provider is stored in the

120

AssociatedMuseumContent.xml file and this file has to be read through by an
XMLParser function called ReferenceObjectIDParser in order to extract the URL or
service API of each targeted object. Users are able to select other active geometries on
the AR View in order to create personal AR environments by saving the selected
content into the database where the preferred content can be retrieved and revealed in
other situations by tracking a trigger image. The following is the code in the
touchesBegan() where the selected geometry is checked to see if it is active media

content on the AR View.

- (void) touchesBegan:(NSSet *)touches withEvent:(UIlEvent *)event
{

get interaction on screen;

get location of the touch object;

get geometry from location in ViewportCoordinates;

search touched geometry in the array of content

{
if(found touched geometry in the array)
{
add selected geometry in the array of selected object;
}
}

}
5.8 Saving Selected Content

Mobile users are able to save preferred content that has been selected in the AR View
by touching the Save button; the system shows a dialogue box asking the user to type in
the name of their preference and then save the selected media content into the database.

The following is the code for setting up the alert view containing buttons and a text
field.

- (IBAction)saveSelectedGeometires:(id)sender
{
MuseumObjects *object = [[MuseumObjects alloc]init];
object.cosName = @"null";
[selectedContent addObject:object];
create AlertView object;
1dentify messages and titles to objects on the AlertView;
set AlertViewStyle;
set TextField index;
set KeyboardType;
show AlertView;

121

The code below is to show the alertView in order to allow users either to save their preferred
media content into the database or to cancel the saving process.

-(void) alertView:(UIAlertView *)alertView clickedButtonAtIndex:
(NSInteger)buttonIndex
{

get index of the clicked button;

if(button title is “Cancel”)

{

create new array object;

b
else if(button title is “OK™)

{

get text from TextField;
save selected content and text into the database;

h
b

After touching the OK button, the module sends the preference name to the
saveToCoreDataDB module that saves the selected media content into the object-base
database. The following is the code in the saveToCoreDataDB module called by the
alertView() for setting up and working with the database.

-(void)saveToCoreDataDB:(NSString *)preferrenceName
{
create new object for entity named “PreferredObjects”;
if (found new object)
{
add selected COS name to object;
add preferenceName to object;
add date to object;
add source of content to object;
for (read selected object in array)

{

if (COS name in object is equal to “null”)

{
break;

}

if (object type in object is equal to “media”)

{
create new object for entity named “ImageBillboard”;
add imagePath to object;
add 1mage to object;
add object to PreferredObjects object;

}

else if (object type in object is equal to “object” or “description”)

{

create new object for entity named “TextBillboard”;
add text to object;

122

add billboard type to object;
add object to PreferredObjects object;

b

else if (object type in object is equal to “museum”)

{
preferredObjects.museum = savedObjects.data;
add museum data to PreferredObjects object;

}

}

save PreferredObjects object;

j
h

Figure 5.6 illustrates the structure of the Core Data that is the object-based databased
operated by XCode. The Data Model contains entities used to store the details of

selected content.

@ Xcode File Edit View Find Navigate Editor Product Debug Source Control Window Help N e $ 090 2= o) 32 100% B3 (1) Sasithorn..narungrot Q =

ene » A\ ARMuseumResearch) 2* Generic 08 Device ARMuseumResearch | Build ARMuseumResearch: Succeeded | Yesterday at 16:57 . = < O

MusoumCont B tonts xcdatamadel | No Selection <o D O

ProferredObjects

= - . . = I3

+ @ Outiine Style Add Entity Add Astribut Egitor Style

Figure 5.6 The Data Model of the application

The following is the class of the designed Core Data model representing the database
for storing preferred content. The class is composed of components in the entity and
subclasses that are used in order to store data in the database.

PreferredObjects.h

#import <Foundation/Foundation.h>
#import <CoreData/CoreData.h>

@class GeoLocation, ImageBillboard, Model, TextBillboard, Video;
@interface PreferredObjects : NSManagedObject
@property (nonatomic, retain) NSString * cosname;
@property (nonatomic, retain) NSDate * datecreate;
@property (nonatomic, retain) NSNumber * id;
@property (nonatomic, retain) NSString * museum;
@property (nonatomic, retain) NSString * preferencename;
@property (nonatomic, retain) NSString * source;
@property (nonatomic, retain) NSSet *image;
@property (nonatomic, retain) GeoLocation *location;
@property (nonatomic, retain) NSSet *model;
@property (nonatomic, retain) NSSet *text;
@property (nonatomic, retain) NSSet *video;

@end

@interface PreferredObjects (CoreDataGenerated Accessors)
- (void)addImageObject:(ImageBillboard *)value;

- (void)removelmageObject:(ImageBillboard *)value;
- (void)addImage:(NSSet *)values;

- (void)removelmage:(NSSet *)values;

- (void)addModelObject:(Model *)value;

- (void)removeModelObject:(Model *)value;

- (void)addModel:(NSSet *)values;

- (void)removeModel:(NSSet *)values;

- (void)addTextObject:(TextBillboard *)value;

- (void)removeTextObject:(TextBillboard *)value;

- (void)addText:(NSSet *)values;

- (void)removeText:(NSSet *)values;

- (void)addVideoObject:(Video *)value;

- (void)removeVideoObject:(Video *)value;

- (void)addVideo:(NSSet *)values;

- (void)removeVideo:(NSSet *)values;

@end
PreferredObjects.m

#import "PreferredObjects.h"
#import "GeoLocation.h"
#import "ImageBillboard.h"
#import "Model.h"

#import "TextBillboard.h"
#import "Video.h"
@implementation PreferredObjects
@dynamic cosname;
@dynamic datecreate;
@dynamic id;

@dynamic museum;
@dynamic preferencename;
@dynamic source;
@dynamic image;
@dynamic location;
@dynamic model;
@dynamic text;

@dynamic video;

@end

123

124

5.9 Taking Photos and Photogrammetry Service Request

One of the features in museum-based learning scenarios applied through SOMARA is a
photogrammetry service request that demonstrates the proposed content acquisition over
SOA. The photogrammetry service request requires images of a targeted object that is
sent through a web service framework to the service provider. In this example
SOMARA application, there is a View Controller used to support a camera view that
captures images of a preferred object in the museum environment. Figure 5.7 presents
the photogrammetry View Controller in museum-based learning where it offers a
feature for mobile users to take photographs of a targeted object and the photographs

taken are shown on the View Controller.

@ Xcode File Edit View Find Navigate Editor Product Debug Source Control Window Help i @ 8 | D ~ o) 28 100% BT Mon 1 Feb 16:50 Sasithom...narungrot Q =

ece » A\ ARMusoumResearch) 7~ Generc 08 Device ARMuseumFlasearch | Buid Succeeded | 200172016 o 14:48 . B (=l=]

= o B [BI< B] View <)) DB E O
T

oidors

[ololololo

t tow

ClOBe € on e e e e e e e ma e s e ee e me e e eea e + Request Photogrammetry Take Photos

NS o wRegular nRegular S ot (RS

Figure 5.7 A View Controller supporting a Camera View

The View Controller contains a Collection View holding a Collection View Cell. The
Collection View Cell is used to present a background image, which is a captured image
of the targeted object. Figure 5.8 illustrates the Collection View Cell that has an Image

View on the top in order to show a captured image on the Collection View.

125

| @ Xcode File Edit View Find Navigate Editor Product Debug Source Control Window Help. N o ®|
eoe » 7 ARMuseumRosearch) 2 Generic 108 Device | Buid Succesded r 1548
B R Q > = o B (8 < B R 5) No Selection
:. r:;:; g @ Placehoiders
File's Owner

Main iPhone storyboard T
Main_iPad.storyboard @ Fiest Rezpornder
h ViewControtech v [i] Collaction View Cell
™ ViewController.mm
85 images xcassets

» B Supporting Files

Image View Backgr

h. Protogramme...owControllern

m Photogramme...Controler.mr

Protogramme...Controllorxib
CameraViewx

W CollectionViewCell.h

m ColiectionViewCell.m
b

h ARMuseumViowControliecn

™ ARMuseumViewControlier.mm

No Selection

ARMuseumViewControlierxib
h BilboaraCon
m BilboardCon
h ModeiConten
 ModelContontsParser.m

orh

. AROusoum..iowConiroech
. ARMuseumi.Controlermm
RvH——
I Pefoencebjocion
i Rotarsnco0biectio.mm
OS———
& RefarencObioctDParsecm
i OsjectContontn
& OeciContentm
[P —
S LoacPetemn.-Contoteciom
LoacPrutrs. wGontrolocxd
h PersonalViewController.n o 0O6ea
S PorscnaViewControtecm
ParsonavienGontroacxd Label tabe:Aveasy sssamrs o
1 AssocatedCantents
S ———— ton - Intercepts 1ouCh events anc
Button sencs an action message to a target
ok wnin 24 oo

 Segmonted Control - Daiays
m multiple segments, each of whch
Finctana 233 ascras futon

LB 1o e (RS

h ObiectFromWebService h

H
3
>>>>»>>>>>>>5>>5>>>>>5>>>>>>>>B>>>>>> > 253

m ObctFrom¥isbSarvice mm
> [ARMuseunResearchTosts
> [Framoworka
v [products
A ARMusourResoarch app

wRegular nRegular

Figure 5.8 The Collection View Cell

On the View Controller, there is also a Camera View installed on the top in order to
operate the embedded camera and present the current scene on the view so that mobile

users can take photographs that are shown on the View Controller. Figure 5.9 presents

the Camera View on top of the View Controller.

Nis @ ALID

@ Xcode File Edit View Find Navigate Editor Product Debug Source Control Window Help

A\ ARMuseumResearch) J* Generic i0S Devics. ARMuseumResearch | Build Succeeded | 20/01/2016 at 14:48 .
= ® |8< B Re

@ Placenoiders

B) No Seiection

Filo's Ownor

o) urResult htmi @@ First Rospondor
 uWebView him

h EAGLViewh

™ EAGLView.mm

h MotaioSOKViewControllorh

» [camera View

™ MetaloSDKViewControllecmm
» B Resources

h AppDelegaten

m AppDelegate.mm

>>>3>>3 > >

Main_iPhone storyboard
Main_iPad.storyboard
b ViewGontroserh
™ ViewC
B8 images xcassets
» B Supporting Files
h Protogramme...ewContralern
@ Photogramme...Gontrollermm
Photogramme...Controlerxib
B ComeraViewxio
Ih CollectionViewGelLh
@ CollectionViewCell.m

ColiectionViewCell b

N ARMuseumViewControlieth

m ARMuscumViewControliermm
ARMuseumViewControlier:xib

h BilboardConten

m BilboardContentParserm

h ModelContentsParsorh

m ModeiContentsParser.m

h ARMuseumW...iewControlerh

™ ARMuseumW...Controller mm
ARMuseumW...wCor

 ReferenceObjectiD.h

m RotorenceObjoctiD.mm

I RefereneObjectiDParserh

m ReforeneObjectiParser.mm

h ObijectContenth

m ObjectContont.mm

sotn

oxib

W LoadPreferen...iewControlierh

m LoagProferen...Controllormm
LoadPreferen...wControllerxib
h PeraonalViewControllarh

b>>>5>>5>2>2>>>>5>>>2>>>>>B>>>22>2282

wRegular nRegular

Figure 5.9 The Camera View

W) =

100% B Mon 1 Feb 16:48 Sasithorn...narungrot Q.

No Selection

00O =

Labe] Lol Averesy sass amounto

Button - Intsrcapts toueh e

pem———

B ol RSO

126

The camera view shows a real scene and is used to take photographs of a targeted object
continuously after touching the Start button. Touching the Stop button ends taking
photographs and shows all the taken photographs on the screen. The code below
presents the Camera View after selecting Take Photos. The Camera View displays on

the screen and allows users to take photographs of a targeted object.

- (IBAction)takePhotos:(id)sender
{

§
- (void)showImagePickerForSourceType:(UllmagePickerControllerSourceType)source
Type
{
create object of UllmagePickerController;
set presentation style to object;
set source type to object;
set delegate to object;
if(source type is camera)
{
set show camera controls
load view named “CameraView’’;
set cameraView frame to imagePickerController object;

}

present imagePickerController object;

}

After selecting Start on the Camera View, the system takes photographs of the object.

show ImagePicker for camera;

Each photograph automatically taken is stored in an array that can be used to display on

the Collection View or sent as a request to the photogrammetry service provider.

- (void)imagePickerController:(UIImagePickerController *)picker
didFinishPickingMediaWithInfo:(NSDictionary *)info

{

set taken value to image object;
add image object to array
if(cameTimer)

{

return;

}

update the view of taken photos;

}
5.10 AR Browser

AR Browser is used to present personal AR environments as well as an obtained 3D

model of a preferred object from a photogrammetry service. The personal AR

127

environments are composed of preferred objects that are geometries visualized on the
AR View. In the museum-based learning scenario, mobile users are able to select and
save preferred content on the screen and use the AR Browser for revealing saved
content at home or in other situations. In this project, AR Browser is a sub-view
implemented on the UlTabBar Controller used to contain and organize sub-views,
which can be selected and viewed by mobile users. Figure 5.10 shows the UlTabBar

Controller that controls the tab bar of a UI View.

@ Xeods Fie Tot View Fid Navgws Eotor Produt ey Sowos Contol Window Hep CNO® Ko < = vommmen o=

Figure 5.10 The UlTabBar Controller of the Table views

The code below shows the UITabBar Controller class and its sub-views. Each sub-view
is organized by UINavigation Controller in order to present each view by clicking a tab

on the tab-bar as shown in the code below.

- (void)viewDidLoad
{
load view;
create tabBarController object;
add tabBarController view to current view;
create TableView object for preference names;
create UINavigationController object with TableView;
create TableView object for geolocations;
create UINavigationController object with TableView;
set all created objects to tabBarController object;

128

One of the sub-views in the UINavigation Controller is a view for revealing personal
AR environments created by mobile users. The view is implemented by UlTableView
Controller that fetches data stored in the CoreData or database and presents it on the
Table View so that mobile users can select each preference and view selected content in
a real scene. The following is the code of a sub-view utilising UlTableView Contoller

and performing data retrieving, entity control and data presentation.

-(NSManagedObjectModel *)manageObjectModel

{
if (found the object model)

{
b

create URL path for resource;
initialize URL path to the object model;
return object model;

}

-(NSPersistentStoreCoordinator *)persistentStoreCoordinator

{

if (found the persistentStoreCoordinator)

{
b

create a string to store path to the database file;

create URL from the store path string;

identify objects and keys on the database;

initialize presistentStoreCoordinator with the object model,
return persistentStoreCoordinator;

}
-(NSFetchedResultsController *)fetchedResultsController

{
if (found fetchedResultsController)

{
j

create fetch request object;

identify entity “PreferredObjects” in object context;

set entity to fetch request object;

set fetch batch size to 20;

initialize sort descriptor object with key “datecreate”;

initialize array object with sort descriptor;

set sort descriptor to fetch request;

initialize FetchedResults Controller with fetch request in object context;
set delegate to FetchedResultsController;

return fetchedResultsController;

}
-(void)controllerWillChangeContent:(NSFetchedResultsController *)controller

{

return the object model;

return persistentStoreCoordinator;

return fetchedResultsController;

129

update Table View;

}
-(void)controllerDidChangeContent:(NSFetchedResultsController *)controller

{
end updating Table View;

}
- (void)viewDidLoad
{
set persistentStoreCoordinator;
create context object;
set PersistentStoreCoordinator to context object;

}
- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView

{
count number of sections in Table View;
return number;
}
- (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:
(NSInteger)section
{
fetch object in each section;
return number of objects;
}
- (UITableViewCell *)tableView:(UlTableView *)tableView cellForRowAtIndexPath:
(NSIndexPath *)indexPath
{
identify cell idenifier to “ContentCell”;
dequeue cell to Table View cell;
if (cell is empty)
{

initialize cell with default style;
}
configure cell at index path;
return cell;

}
-(void)configureCell:(UITableViewCell *)cell atindexPath:(NSIndexPath *)indexPath

{
fetch object at index path;
set text in textLabel from key “preferencename”;
h
-(void)tableView:(UITableView *)tableView accessoryButtonTappedForRow
WithIndexPath:(NSIndexPath *)indexPath
{
fetch object at selected row;
load Personal AR ViewController;
set selected content to Personal ARViewController;
present Personal ARViewController;

b
}
@end

130

The TableView lists all preference names of personal AR environments stored in the
database and allows mobile users to select one in order to view the saved media content
in the AR environment by tracking an image referred to a targeted cultural object. The
AR Browser view of the application supporting content utilization is presented in Figure

5.10.

Another sub-view in the UINavigation Controller is a Table View showing a list of
museums or places of selected objects fetched from the database. This Table View
utilizes a Google Map API called Static Map for processing and providing a map image
of the selected museum or place. The service request, URL, parameters and Ul View

can be seen in Section 5.6.

5.11 Summary

This chapter explains the development of the SOMARA-based mobile AR application
using 10S platform and XCode as an example or reference application. The
development is composed of front-end systems including views and interfaces, and
back-end systems including a web service framework, AR tasks and interoperability
tasks. The application is applied in MLAs composed of museum-based and home-based

learning scenarios that require different functions.

131

Chapter VI

6 System and Unit Testing

This chapter describes system testing and evaluation of the SOMARA-based novel
mobile AR application that performs AR tasks, content acquisition and content
utilization. This example SOMARA application is a mobile AR client running on an
iPad and it is developed on a web service framework exploiting service orientation,
which requires mobile or wireless connection, in order to access open services and
accomplish interoperability tasks. The mobile AR client is developed in MLA scenarios
comprising museum-based and home-based learning. These scenarios require different
tracking techniques and content acquisition schemes in order to encourage flexible
museum exhibition through AR. The application has a mobile interface where mobile
users are able to perform object tracking, visualize content and interact with the system.
The web service framework is a back-end system that creates connections and accesses
participating service providers (e.g. third party or the application’s parent museum) by
implementing service APIs. Example service APIs used in this mobile AR client in
order to support MLAs and provide associated content to the sample reference objects
are the Victoria and Albert Museum API and the Sierra Leone Heritage API. Figure 6.1
shows the main page of the SOMARA application on which mobile users are able to

select museum learning or choose supporting functions in the system.

132

No SIM = 14:25 58% » ¥

Musuem-Basd AR Home-Based AR AR Browser Start Photogrammetry

Figure 6.1 The main application page running on an iPad

The main page contains buttons including Museum-based AR, Home-based AR, AR
Browser and Start Photogrammetry. The Museum-based AR is selected in order to
perform museum-based learning where mobile users can perform object tracking,
augmentation and can send web service requests for associated media content inside the
museum. The following is a museum-based learning scenario of the novel mobile AR
application that supports physical object tracking, content visualization and content

acquisition.

6.1 Museum-based Learning Scenario

In this scenario, the system performs physical object tracking that requires cultural
reference objects and pre-defined related media content stored in the library. Figure 6.2

presents the AR View of museum-based learning.

133

Figure 6.2 The AR View of museum-based learning scenario

When the system tracks and recognizes an object in the AR view, the system visualizes
related media content of a targeted object. The following is an example of the outcome
of object tracking in a museum-based learning scenario and the process of content
acquisition that allows mobile users to send a request for associated media content of a

targeted object.

6.1.1 Object tracking

In museum-based learning scenarios, object tracking can be done in a museum that
exhibits cultural artifacts. Mobile users are able to track a reference object in order to
view related media content visualized on the real scene. Figure 6.3 shows a tracked

targeted object and its related content stored in the library of the system.

134

Srighton

| Request Contents

View V&A Contents

Save

Reset

Figure 6.3 The related media content of a targeted object

Media content visualized in the AR view are text, images and a 3D model. Mobile users
are able to acquire associated content of a targeted object from participating service
providers by touching the More Details geometry; the system then sends a web service
request to the open provider. The obtained content is visualized on the screen instead of
the active content. Figure 6.4 presents the content acquisition of the associated content

of a sample object from the Victoria and Albert Museum.

135

Request Contents
o S SR C
View V&A Contents:s

po.areéd-by, . S
metaico

Figure 6.4 The obtained associated content of a tracked physical object

The associated content or images visualized on the AR scene in Figure 6.4 is the
response from the Victoria and Albert Museum API that can be in the form of either a
JSON or an XML document. Figure 6.5 shows the web service response of the Victoria
and Albert API in JSON format whereby the required data are extracted and

transformed into geometries that can be visualized and seen on the AR view.

136

2016-03-21 14:18:59.315 ARMuseumResearch[528:148765] HTML = { "meta": {
"result_count":1342 ,
"cluster_counts"” : {},
"clusters" : [] ,
"group_details": [] },
“records": [

"pk": 8967,
"model": "collection.museumobject”,
"fields": {
“primary_image_id": "2006AM7317",
“rights": 3,

“year_start": 1760,

“object_number": "077973",

"artist": "Unknown",

“museum_number": "C.69&A-1938",

“"object": "Tea canister",

"longitude": "-2.02806000",

“last_processed': "2016-01-08 16:02:42",
“event_text": "",

“place": "Staffordshire",

“location": "British Galleries, room 52b, case 1",
"last_checked": "2016-01-08 16:02:42",
“museum_number_token": "c691938",

"latitude": "52.82474900",

"title": "
"date_text": "1760-1770 (made)",
"slug": "tea-canister-unknown",
"sys_updated": "2015-81-26 00:00:00",
"collection_code": "CER"

}

e

"pk': 9402,
"model": "collection.museumobject",
"fields": {
“primary_image_id": "2006AL8244",
“rights": 3,
"year_start": 1795,
"object_number": "078569",
“artist': ",
“museum_number": "M.39:1 to 21-1965",
"object": "Travelling tea service",
"“longitude": "139.83828700",
"last_processed': "2016-01-08 16:04:21",
"event_text": "",
“place”: "Japan",
"location": "British Galleries, room 125e, case 3",
"last_checked": "2016-01-08 16:04:21",
“museum_number_token": "m391965",
"latitude": "37.48759800",
"title": ",
“date_text": "ca. 1800-1880 (made)",
"slug": "travelling-tea-service",
"sys_updated": "2014-87-31 00:00:00",
"collection_code": "EAS"

Figure 6.5 The JSON response from the Victoria and Albert Museum API

The service API of each reference object is stored in a content configuration file in

XML format. The content configuration file is sent to XMLParser for extracting data.

Figure 6.6 shows the service APIs or URL of participating service providers related to

each reference object.

2016-03-21 14:18:58.995 ARMuseumResearch[528:148565] cosl
2016-03-21 14:18:58.996 ARMuseunResearch[528:148565) http://www.vam.ac.uk/api/json/nuseunobject/?q=tea
2016-03-21 14:18:58.998 ARMuseumResearch[528:148565] cos2

2016-03-21 14:18:58.999 ARMuseunResearch[528:148565) http://www.sierraleoneheritage.con/api/search_service/fetch_item/coid/2200/

format/xml

Figure 6.6 The service APIs in a content configuration file

The media content of reference objects in a museum-based leaning scenario can be

requested from an open server as well as storing media content in the library in advance.

If the museum has digital collections or digital content stored in the server providing

137

open services, the mobile AR client is then able to obtain related content of reference
objects though a web service framework. Figure 6.7 presents the AR view that

visualises acquired related content of a tracked physical object.

Request Contents ’ 7

View V&A Contentsjs

Save

Reset

Figure 6.7 The obtained related content of a tracked physical object

The response document from the Victoria and Albert Museum API containing content
visualised in Figure 6.8 is in JSON format; it is read through and the data extracted. The
obtained data are transformed to geometries and stored in the library. Figure 6.8

illustrates the web service response document in JSON format.

138

2016-04-15 15:54:40.819 ARMuseunResearch[4874:1832157] HTML = [
{

"pk": 9363,

"model": "collection.museumobject",

"fields": {
“original_price": ""
“attributions_note": "",
“related_museum_numbers": ",
“museum_number": "M.28-1934",
“date_end": "1774-12-31",

"labels": [
“pk": 3386,
"model": "collection.label",
"fields": {

"date": "27/03/2003",

"museumobject”: 9363,

"label_text": "British Galleries:\nAs the Chinese characters on this canister or 'caddy' suggest, its square form was directly derived from the
'kati' or chest in which Chinese tea was imported. The geometric Greek key pattern on the edges was used both in China and in ancient Greece and Rome. The armorial crest
has a Neo-classical laurel swag and ribbon."

}
1,
“descriptive_line": ""
“shape":
"longitude":
“year_start": 1773,
“exhibitions": [],
“subjects": [],
“date_text": "1773-1774 (hallmarked)",
“primary_image_id": "2006AM6828",
“rights": 3,
“"physical_description": "Caddy - 02/18/96 per DH will be ready in 2 week",
“dimensions": "Height: 10.75 cm, Width: 8.5 cm, Depth: 8.75 cm",

: "1773-01-01",

“materials_techniques": "Silver gilt, with cast and engraved decoration",

"last_processed": "2016-04-01 23:23:09",

"label": "British Galleries:\nAs the Chinese characters on this canister or 'caddy' suggest, its square form was directly derived from the 'kati' or chest in
which Chinese tea was imported. The geometric Greek key pattern on the edges was used both in China and in ancient Greece and Rome. The armorial crest has a Neo-classical
laurel swag and ribbon. [27/03/2003]",

“event_text": "",

“production_type": ""

“"collections": [

"name": "Metalwork Collection",
"museumobject_count": 33191,
"source": ""
“cis_id": null,
"museumobject_image_count": 17128,
“type": ",
"slug": "met"
}
}

"location": "British Galleries, room 118e, case 8",

“marks": "Engraved with the crest of the Hare family (a demi-lion rampant holding a cross fitchee) and with the Chinese characters for 'upper', 'spring' and
‘direction'",

"latitude": "51.50632100",

“techniques": [],

"materials": [],

“edition_number": ""

“styles": [],

Figure 6.8 The web service response document in JSON format

The associated objects of the targeted object can be requested from the Victoria and

Albert Museum API by touching the active image on the AR View. The system then

sends a request to the provider along with a parameter that is the name of the cultural

object. A response is sent back in JSON document format. Figure 6.9 presents an im

age

of associated objects of the targeted sample object. The JSON response document of an

associated content request can be seen in Figure 6.5.

139

Request Contents

- .
=y
View V&A Contentsgs

\-.

\b 1 Save by |

Reset
Figure 6.9 The associated content of a targeted sample object

6.2 Home-based Learning Scenario

A home-based learning scenario is another scenario that supports MLAs, one that can
be done at any time and anywhere outside the museum. Home-based learning requires
images of preferred objects instead of physical objects for the system to perform
marker-less tracking and augment associated content requested from open providers. In
this home-based learning scenario, the system accesses and utilizes content from the
Sierra Leone Heritage API [98]. Figure 6.10 shows the AR view of a home-based

learning scenario.

140

Create Geometries

Figure 6.10 The AR view of home-based museum learning

When the system start loading the AR view, it also starts extracting data from a content
configuration file in XML format composed of URLs or service APIs of participating
content providers. Figure 6.11 presents extracted data from an XML file processed by

XMLParser.

2016-03-14 14:32:06.085 ARMuseumResearch[473:299485] Using anti-aliasing on the device: yes

2016-03-14 14:32:09.154 ARMuseumResearch[473:299485] cosl

2016-03-14 14:32:09.156 ARMuseumResearch[473:299485] http://www.sierraleoneheritage.com/api/search_service/
fetch_item/coid/2311/format/xml

2016-03-14 14:32:09.157 ARMuseumResearch[473:299485] cos2

2016-03-14 14:32:09.157 ARMuseumResearch[473:299485] http://www.sierraleoneheritage.com/api/search_service/
fetch_item/coid/2200/format/xml

2016-03-14 14:32:09.158 ARMuseumResearch[473:299485] cos3

2016-03-14 14:32:09.159 ARMuseumResearch[473:299485] http://www.sierraleoneheritage.com/api/search_service/
fetch_item/coid/2370/format/xml

Figure 6.11 The URLSs of participating content providers

141

6.2.1 Object tracking

Mobile users can now track a trigger image of a physical object, the system recognizes
the tracked image and sends a request for associated content through the web service
framework to the Sierra Leone Heritage API. Figure 6.12 presents the trigger image of a

targeted physical object that the system tracks, automatically sending a web service

request for associated content to the service provider.

: A stone figure, known as

womohl i Mende, carved

! OFf steatite, or

Create Geometries

Save

Restart

Figure 6.12 The related content of a trigger image representing a targeted cultural
object
Figure 6.13 shows the related content of a trigger image composed of images, text and a
3D model of the physical cultural object that is added into the AR View in order to
enhance the AR environment and increase more understanding about the targeted

object.

142

Create Geometries

Save

Dt L S R = e - — ey == == Restart

—

Figure 6.13 The tracked trigger image

After sending a request, the system receives a web service response in either XML or
JSON format. The response is read through in order to extract required content that is
visualized on the screen. Figure 6.14 shows the web service response in XML format

and received content read through by XMLParser.

143

2016-03-15 13:24:41.337 ARMuseumResearch[857:479885] HTML = <?xml version="1.8" encoding="utf-8"?7>
<xml><status>success</status><data><C0Id>2378</C0Id><AccessionNumber>BM:Af.7398.a</AccessionNumber><0Object>Sapi-Portuguese Ivory
Bowl</Object><CultureGroup>Bullom; Temne</CultureGroup><Dimensions>'</Dimensions><ProductionDate>1498-1530</

ProductionDate><A iatedPlaces>Unk /AssociatedPlaces><AssociatedPeople>Augustus Wollaston Franks</

AssociatedPeople><Mus British M /M FK_ExId>2</FK_ExId><Materials>Bone, ivory, tooth</Materials><Description>This is a
16th century carved ivory bowl, on a shallow pedestal. It has geometric incised carving running in panels from the rim, to the
base. The British Museum records refer to this as Afro-Portuguese, a term used to indicate items from Sierra Leone and Nigeria,
made for a Portuguese market in the 15th and 16th centuries. Such items display a mixture of African and European elements and
motifs in their overall form and ornamentation, and were considered prestige items across Europe. A more specific term for items
patronised in Sierra Leone, is Sapi-Portuguese.</Description><ObjectType>Ivories</ObjectType><Media><item><MediaTitle>No Data</
MediaTitle><MediaDescription>No Data</MediaDescription><MediaFileName>7398a (a)</MediaFileName><MediaType>Image</
MediaType><FK_C0Id>2370</FK_COId><Media><small>http://www.sierraleoneheritage.com/assets/objects/british_museum/image/thumbs/small/
7398a (a).jpg</small><medium>http://www.sierraleoneheritage.com/assets/objects/british_museum/image/thumbs/medium/7398a (a).jpg</
medium><large>http://www.sierraleoneheritage.com/assets/objects/british_museum/image/7398a (a).jpg</large><media>http://
www.sierraleoneheritage.com/assets/objects/british_museum/image/7398a (a).jpg</media></Media></item><item><MediaTitle>No Data</
MediaTitle><MediaDescription>No Data</MediaDescription><MediaFileName>7398a (b)</MediaFileName><MediaType>Image</
MediaType><FK_C0Id>2370</FK_C0Id><Media><small>http://www.sierraleoneheritage.com/assets/objects/british_nuseum/image/thumbs/small/
7398a (b).jpg</small><medium>http://www.sierraleoneheritage.com/assets/objects/british_museum/image/thumbs/medium/7398a (b).jpg</
medium><large>http://www.sierraleoneheritage.com/assets/objects/british_museum/image/7398a (b).jpg</large><media>http://
www.sierraleoneheritage.com/assets/objects/british_museum/image/7398a (b).jpg</media></Media></item><item><MediaTitle>No Data</
MediaTitle><MediaDescription>No Data</MediaDescription><MediaFileName>7398a (c)</MediaFileName><MediaType>Image</
MediaType><FK_C0Id>2370</FK_COId><Media><small>http://www.sierraleoneheritage.com/assets/objects/british_museum/image/thumbs/small/
7398a (c).jpg</small><medium>http://www.sierraleoneheritage.com/assets/objects/british_museum/image/thumbs/medium/7398a (c).jpg</
medium><large>http://www.sierraleoneheritage.com/assets/objects/british_museum/image/7398a (c).jpg</large><media>http://
www.sierraleoneheritage.com/assets/objects/british_museum/image/7398a (c).jpg</media></Media></item><item><MediaTitle>No Data</
MediaTitle><MediaDescription>No Data</MediaDescription><MediaFileName>7398a (d)</MediaFileName><MediaType>Image</
MediaType><FK_C0Id>2370</FK_C0Id><Media><small>http://www.sierraleoneheritage.com/assets/objects/british_museum/image/thumbs/small/
7398a (d).jpg</small><medium>http://www.sierraleoneheritage.com/assets/objects/british_museum/image/thumbs/medium/7398a (d).jpg</
medium><large>http://www.sierraleoneheritage.com/assets/objects/british_museum/image/7398a (d).jpg</large><media>http://
www.sierraleoneheritage.com/assets/objects/british_museum/image/7398a (d).jpg</media></Media></item></Media></data></xml>
2016-03-15 13:24:41.359 ARMuseumResearch[857:479885] Success = 1

2016-03-15 13:24:41.360 ARMuseumResearch[857:479885] Parsed Sapi-Portuguese Ivory Bowl

2016-03-15 13:24:41.361 ARMuseumResearch[857:479885] Parsed British Museum

2016-03-15 13:24:41.361 ARMuseumResearch[857:479885] Parsed This is a 16th century carved ivory bowl, on a shallow pedestal. It
has geometric incised carving running in panels from the rim, to the base. The British Museum records refer to this as Afro-
Portuguese, a term used to indicate items from Sierra Leone and Nigeria, made for a Portuguese market in the 15th and 16th
centuries. Such items display a mixture of African and European elements and motifs in their overall form and ornamentation, and
were considered prestige items across Europe. A more specific term for items patronised in Sierra Leone, is Sapi-Portuguese.
2016-03-15 13:24:41.366 ARMuseumResearch[857:479794] Found

2016-03-15 13:24:41.364 ARMuseumResearch[857:479885] Parsed http://www.sierraleoneheritage.com/assets/objects/british_museum/
image/7398a (a).jpg

2016-03-15 13:24:41.368 ARMuseumResearch[857:479885] Parsed http://www.sierraleoneheritage.com/assets/objects/british_museum/
image/7398a (b).jpg

2016-03-15 13:24:41.369 ARMuseumResearch[857:479885] Parsed http://www.sierraleoneheritage.com/assets/objects/british_museum/
image/7398a (c).jpg

2016-03-15 13:24:41.370 ARMuseumResearch[857:479885] Parsed http://www.sierraleoneheritage.com/assets/objects/british_museum/
image/7398a (d).jpg

Figure 6.14 The web service response and acquired content

The acquired content is stored in the library and the geometries of this content are
created and visualized on the AR View in order to augment a trigger image of a real

cultural object.

6.3 AR Environment Personalization

Mobile users are able to select active content on the screen and then save preferred
content to a database. This can be done in both museum-based and home-based learning
scenarios. After selecting preferred content, mobile users can touch the Save button and
the Alert View appears on the screen asking the user to fill in a preference name.
Touching the Save button saves selected content to the database. Figure 6.15 shows the

Alert View after selecting content in a museum-based learning scenario.

144

Save Selected Geometries
Please enter name of your preference

VATeaContainer

Cancel

q w e r t Yy u i o P <)
a | S d | f | g h j | k | return
> z X C \Y b N m ,' 7 Z
2123 @ 0] 2123

Figure 6.15 Selected content and the Alert View asking for a preference name

Media content on the AR View in home-based learning scenarios can be selected and
saved just as in the museum-based learning scenario. Figure 6.16 presents the home-
based learning AR environment and the Alert View asking for a preference name for the

personal AR environment.

145

Save Selected Geometries

Please enter name of your preference

Ivory_bowl

Cancel

Figure 6.16 A screen shows selected content and preference name

6.4 AR Browser

The AR browser is used to present saved AR environments stored in the database by
listing preference names and museum names of preferred objects. Mobile users are able
to choose a preference name in order to reveal its AR environment or content by
tracking a trigger image. Figure 6.17 shows the Table View listing preference names of

saved personal AR environments.

146

No SIM = 17:39 90% [134

Saved Items

VATeaCanister @
VATeaContainer @
V&ATeaContainer @
Ivory_bowl1 (T)
Ivory_bowl (1)

Figure 6.17 User's preference names

After selecting a preference name, the system loads the AR view and creates geometries
of the saved content in advance. When a trigger image is tracked, the system reveals the
associated content as a personal AR environment on the real scene. Figure 6.18
illustrates the saved content in the database of a preferred object that is visualized on the

screen. This content has been saved in a home-based learning scenario.

147

metaio

Figure 6.18 A personal AR environment

Figure 6.19 shows the AR Browser presenting saved content in a personal AR
environment by augmenting a trigger image of the targeted physical object. This content
is obtained in a museum-based learning scenario and can be revealed in other situations

such as at home or school.

148

Figure 6.19 Saved content acquired from a museum-based learning scenario

The AR Browser also has a list of the names of museums that have been retrieved from
the database. It allows mobile users to request a static map of the area where the
museum is located. In this browser, Google Maps APIs, a third party, participates in the
content acquisition process. Figure 6.20 shows the list of museums stored in the
database. The list shows the name of the museum that owns the preferred objects and

from whom mobile users have saved content.

149

No SIM = 03:56 100% | 1 X4

Geolocations

Victoria & Albert Museum @
Victoria & Albert Museum @
Victoria & Albert Museum @
Victoria & Albert Museum @
Victoria & Albert Museum (1)
British Museum @
British Museum (L)

Figure 6.20 The list of museums

The map of the area around the selected museum, supported by Google Maps APIs, is
revealed on the screen as an image. Mobile users can also see the position of the
museum or the origin of the preferred objects and other places nearby. Figure 6.21
presents the map of the selected British Museum that represents the saved content from
a home-based learning scenario and the Sierra Leone Heritage API. The saved content

belongs to a preferred object stored in the British Museum.

150

No SIM = - = = 4 v 98% [mmm #
= e T S =
= [SRE]

= el
S =, &
2 o~
—— = -~
§ T . = =
= = =
=2 ZSL London Zoo = =
< =
* Abbey Road Studios - 5 - T A501 =
L2 i = =
c;P% g - 2
LS =
22 Madame = e 37 =
Tussauds London o o T =3
= P se -2 2, CLERKENWELL s
FITZROVI Barbican Centre
= 3 =4 -
2 The British Museum B> -
. e = ~ L=
3
Xy pAT e
P =1 £=3
e =
= SoHO P CITY OF
rer B COVENT GARDEN = LONDON
e
T
Hyde Park = - London (e
e Az e e s
3200 '~
£ London Eye @
315, ZA313 ° o Buckingham Palace 5
Y ot B
Rd = S Imperial War Museumn £ e
- ™ & —
e =
~ = <
S -4 P 2 &
|£Soogle S = e “Map data ©2016 Google

Figure 6.21 A map of the area around the British Museum

The system creates a service request in URL format that is the service API of Google
Maps Web Service, which is called Google Static Maps API. The URL request is
composed of the service API, parameters and user ID. A completed service request is
transferred through the web service framework to the service provider. Figure 6.22

presents a service request for Google Maps Web Service for obtaining a static image

presenting the position or the origin of a targeted object.

2016-04-20 05:06:00.575 ARMuseunResearch([5168:2316888] lat : 50.8223517

2016-04-20 05:06:00.576 ARMuseunResearch([5168:2316888] lon : -9.1376855

2016-04-20 05:06:00.577 ARMuseunResearch([5168:2316868] GoogleMap url string : https://maps.googleapis.con/maps/api/staticnap?
center=50.8223517,-0.13768556z00m=136s12e=600x600&naptype=roadmapimarkers=color: red%7Clabel: $%7C50.8223517, -0. 13768556key=ATIzaSyDpBnBxxtpSrDyGBKOPR1gbefdgjH_Q7E

Figure 6.22 A service request in URL format of Google Static Maps API

151

Figure 6.23 presents a map relating to a targeted object in the Victoria and Albert
Museum that provides content in a museum-based learning scenario. The map shows
the location of the origin of the targeted object that is stored in the Victoria and Albert

Museum.

No SIM =& &5 = = = T i A e 100% - 4

Brighton Pier & Mating o

Google Map data ©2016 Google

Figure 6.23 The map presenting the source of a preferred object stored in the Victoria
and Albert Museum

6.5 Photogrammetry Service

An example content acquisition function is a photogrammetry service request that can
be performed in a museum-based scenario. The SOMARA-based mobile AR
application has a function to take photographs of a preferred object and send a request
to a photogrammetry service provider. Figure 6.24 presents the Camera View that
automatically takes photographs of a targeted object. Mobile users are able to move a

mobile device around the object in order to capture photographs.

152

Figure 6.24 The Camera View

After the user touches the Start button, the system starts taking photographs of the
sample object. The camera has to be moved around the object so that the system can
take photographs from every angle. Figure 6.25 shows photographs taken in the
Collection View. The Collection View appears after taking photographs by touching the
Done button. Touching the Request Photogrammetry button sends a request through a

web service framework to an open photogrammetry service.

153

Close Request Photogrammetry Take Photos

Figure 6.25 The Collection View displaying photographs taken of a sample object

6.6 Summary

This chapter illustrates a working example SOMARA-based mobile AR application
running on a mobile device, which is an 1Pad. The application supports both museum-
based and home-based learning scenarios that require different tracking techniques.
Both scenarios acquire content from participating open service providers including the
Victoria and Albert Museum API and the Sierra Leone Heritage API in order to
augment a targeted object that could be a physical object in museum-based learning or a

trigger image representing a physical object in a home-based learning scenario.

154

Chapter VII

7 Conclusion

A unique service oriented mobile augmented reality architecture (SOMARA) has been
designed and developed as both a conceptual [21][23], prototype [22][46], example or
reference implementation (chapter 5 and 6). The reference application is developed
based on SOMARA that is an implementation of SOA on a mobile AR platform in
order to create an open mobile AR architecture. The SOMARA application performs
AR tasks as well as interoperability tasks in order to demonstrate content acquisition
and content utilization through a web service framework. This chapter concludes the
outcome of the research process that presents the accomplishment of developing
SOMARA and implementing a mobile AR application on an open platform. The
development also indicates its obvious limitations; it could be improved in order to
create a more complete SOMARA-based mobile AR application as well as prepare an

efficient open mobile AR framework for application to other scenarios.

7.1 The Research Accomplishment

The proposed SOMARA-based mobile AR application is the implementation of
SOMARA in MLA scenarios as a proof of concepts and prototypes. The following are
the research accomplishment that fulfills contribution to knowledge explained in

chapter 1.

7.1.1 SOMARA

The designed SOMARA is composed of a mobile AR framework based on SOA that
support an open mobile AR architecture. A web service framework is applied into the
architecture as a back-end system to the mobile AR client in order to access open

service providers such as third party or local service providers. The mobile AR client

155

sends requests and receive responses though the web service framework. Acquired

media content is visualized in AR environments.

7.1.2 The SOMARA-based mobile AR framework and application

The proposed SOMARA-based mobile AR application is able to perform AR tasks as
well as interoperability tasks that require service APIs of participating service providers
demonstrated through the inclusion of third party content from the Victoria and Albert
Museum API, the Sierra Leone Heritage API and Google Maps API. These APIs offer
media content for the application or mobile AR client applied in MLA scenarios

comprising museum-based and home-based learning.

7.1.3 The Metaio AR SDK

The mobile AR client implements the Metaio AR SDK to perform AR tasks and use its
physical object tracking function and content visualization to create multiple object
tracking. The mobile AR client enhances AR environments by visualizing rich media

contents augmented from different reference objects.

7.1.4 SOA-based content acquisition and utilization

The application supports content acquisition that is achieved through a web service
framework as a back-end system. The application obtains associated content from open
service providers and visualizes the acquired content on the screen. The application also
encourages content utilization that allows mobile users to create personal AR
environments from preferred content by selecting and saving it into the database that
can be retrieved and visualized in the AR Browser. These features demonstrate the
accomplishment of developing SOMARA and its application that contributes the
implementation of an open mobile AR architecture that effectively apply a web service

framework and existing valuable service APIs.

7.2 The Limitations and Problems

Developing a SOMARA-based mobile AR application requires many components that
work together to produce an effective mobile AR client. The application development
process has delivered some understanding and experiences in a mobile AR framework
and open architecture that encourage content acquisition and utilization. The following

are issues that have been found during the development process that can be improved to

156

create a more sophisticated (or product oriented) SOMARA-based mobile AR

application.

7.2.1 Metaio AR SDK

The SOMARA-based mobile AR application uses Metaio AR SDK to perform AR tasks
including tracking, recognition and content visualization. Developing an open mobile
AR application using Metaio AR SDK has limited some features of the application. The
following are issues found in the development process that affect the outcome of the

application.

Object tracking

The object tracking function of Metaio AR SDK is able to perform single object
tracking, meaning that the system can track only one object and visualize one single
content item in an AR environment. Extending object tracking in a mobile AR
application using Metaio AR SDK required the tracking configuration process to be
redesigned in order to create multiple object tracking. Each single object can be
augmented by visualizing multiple related content superimposed on top of the tracked
object. A content configuration file is needed to specify each reference object with its
content. The content configuration file is in XML format and it requires an XMLParser
to read through and extract data out of the file. The created multiple object tracking can
track objects sequentially, which delivers different tracking experiences from multiple
object tracking in parallel. However, the Metaio AR SDK limits the number of objects
that can be tracked in an AR scene to one object, therefore it is possible to add more
reference objects and manage multiple content for each object sequentially. It is
possible to create a mobile AR application that performs multiple object tracking in
parallel, but this is beyond the scope of this thesis with the mataio SDK. However, one

mobile SDK that can be effectively implemented in this platform is Vuforia.

Content visualization

The obtained media content such as text and images are visualized on the AR view as
billboards or geometries and there are multiple content visualized on the view once an
object is tracked and augmented. The AR view on a mobile device such as an iPad has
limited space to display multiple content at the same time and it is quite difficult to

organize all of the related content overlaid on top of a tracked object on the AR view.

157

Metaio AR SDK provides a content visualization function, but it restricts the number of
reference objects that are tracked in the same environment. The framework of the SDK
supports single content representation that can cause difficulty when it is applied to
multiple content visualization. The billboard geometries, including text and images,
cannot be placed on a specific location but are placed on the current position of the
camera, which is 0,0,0. The geometries are vertically aligned on the AR view by adding
them into a BillboardGroup, which is a feature provided by Metaio mobile AR SDK for
location-based AR.

7.2.2 Web service providers

The SOMARA-based mobile AR application uses third party service APIs including
Google Maps API, the Victoria and Albert Museum API and specifically designed APIs
including the Sierra Leone Heritage API as examples from which the mobile AR client
acquires content. These APIs provide useful media content such as text and images and
can be effectively applied in mobile AR environments. In a home-based museum
learning scenario, mobile users are able to view museum content through AR
environments where 3D models of targeted objects can be visualized on their trigger
images. Displaying 3D models of cultural objects in AR environments usefully
enhances MLAs by supporting home-based learning that allows museum visitors to
perform MLAs in other situations through AR environments. SOMARA and the
SOMARA-based mobile AR application have a function to visualize 3D models on the
AR scene. None of the web service providers used in the novel mobile AR application
provide 3D models of cultural objects and the application is mainly restricted to text and
images from these providers. The application still needs a web service provider that

provides valuable media content, including 3D models for MLAs.

7.2.3 Photogrammetry service

One of the proposed content acquisition features supported by SOMARA is a
photogrammetry service that encourages mobile users to obtain a 3D model of a
preferred object in a museum-based learning scenario. Currently, there are many
existing photogrammetry applications available on many platforms such as stand-alone,
mobile or client-server. These applications are based on closed architectures and only
provide an application interface for users on their preferred platform. The SOMARA-

based mobile AR application requires an open photogrammetry service that offers an

158

image-based reconstruction service to the mobile AR client that encourages content
acquisition over a mobile or wireless network. A final 3D model of the targeted object
can be visualized on the AR view in order to demonstrate a preferred cultural object in a
home-base learning scenario. The mobile AR client has a function to support a
photogrammetry service request but it still requires a web service-based

photogrammetry service to achieve the content acquisition and utilization in SOMARA.

7.3 Future Development

The SOMARA-based mobile AR application requires AR tasks to perform object
tracking, recognition and content visualization. Implementing a mobile AR SDK into
the application is a quick and convenient way to acquire AR tasks. All existing mobile
AR SDKs offer a free version that is relatively easy to obtain. The Metaio mobile AR
SDK used in the application has necessarily limited some features required in the
application development. Developing in-house AR tasks would be a best solution in this
framework in order to provide more suitable and flexible AR tasks to the application

and produce a proper and manageable outcome on the AR view.

The mobile AR client utilizes a Google Maps API in order to acquire a map image of a
selected place. The obtained map is a static map that can only be presented on the View.
There is also a Google Maps SDK that can be implemented into the mobile AR client in
order to present dynamic maps and locations of preferred cultural artifacts. The Google
Maps SDK can improve the functionality and usability of SOMARA and its application

by offering supporting features related to the addresses or locations of preferred objects.

The aim of developing SOMARA is to create an open architecture on a mobile AR
platform that is adaptable to many different scenarios. The SOMARA-based mobile AR
application in this research is applied in MLA scenarios that encourage content
acquisition and utilization in a mobile AR environment. SOMARA can be effectively
applied in other scenarios that require an open mobile AR framework in order to
augment objects and visualize media content in the real environment. One of the
proposed scenarios is a shopping environment where users can experience receiving
supporting information for shopping through open mobile AR environments. Content
acquisition and utilization techniques encourage users to receive more valuable media
content that can enhance shopping experiences. Users are able to use a mobile device to

track products in the shop and see related media content of a targeted product

159

augmented and visualized on the screen. A web service framework will enable users to
acquire associated content of the product and create personal preferences that could be a

collection of preferred products and details offered by the shop itself or by a third party.

Another scenario that can be improved by implementing SOMARA is Mobile Learning
(ML). ML supports learning through mobile AR systems where students can learn from
media content visualized on a mobile device’s screen or AR environments. This
encourages learning activities that can be done on mobile AR platforms and outside the
classroom. The system allows students to request more valuable content in order to
enrich the AR learning environment as well as to interact with media content on the real

scene. These can improve students’ understanding of the topics they are learning.

160

References

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

“Europe in a changing world - Inclusive, innovative and reflective societies -
European Commission.” [Online]. Available:
https://ec.europa.eu/programmes/horizon2020/en/h2020-section/europe-
changing-world-inclusive-innovative-and-reflective-societies. [Accessed: 05-
Apr-2016].

J. H. Christensen, “Using RESTful web-services and cloud computing to create
next generation mobile applications,” Proc. 24th ACM SIGPLAN Conf.
companion Object oriented Program. Syst. Lang. Appl., pp. 627-634, 2009.

W.-T. Tsai, X. Sun, and J. Balasooriya, “Service-Oriented Cloud Computing
Architecture,” 2010 Seventh Int. Conf. Inf. Technol. New Gener., pp. 684—689,
2010.

Ruby Annette, “A Service Broker Model for Cloud based Render Farm
Selection,” vol. 96, no. 24, pp. 11-14, 2014.

X. Luo, “From Augmented Reality to Augmented Computing: A Look at Cloud-
Mobile Convergence,” 2009 Int. Symp. Ubiquitous Virtual Real., no. November
2007, pp. 29-32, Jul. 20009.

“ArcGIS for Server | GIS Web Server Software | Web Map Server.” [Online].
Available: http://www.esri.com/software/arcgis/arcgisserver. [Accessed: 07-Jan-
2016].

“Autodesk 123D Catch | Generate 3d model from photos.” [Online]. Available:
http://www.123dapp.com/catch. [Accessed: 16-Oct-2015].

“Snapdragon Processors for Power and Efficiency | Qualcomm.” [Online].
Available: https://www.qualcomm.com/products/snapdragon/processors.
[Accessed: 09-Dec-2015].

“The World’s Fastest Mobile Processors | NVIDIA Tegra|[NVIDIA.” [Online].
Available: http://www.nvidia.com/object/tegra.html. [Accessed: 09-Dec-2015].

“Sony Xperia Z5 Mobile review: Best mobile photo & video scores to date -
DxOMark.” [Online]. Available: http://www.dxomark.com/Mobiles/Sony-
Xperia-Z5-Mobile-review-Best-mobile-photo-video-scores-to-date. [Accessed:
09-Dec-2015].

“Swift - Overview - Apple Developer.” [Online]. Available:
https://developer.apple.com/swift/. [Accessed: 09-Dec-2015].

“Native, HTMLS5, or Hybrid: Understanding Your Mobile Application
Development Options - developer.force.com.” [Online]. Available:
https://developer.salesforce.com/page/Native, HTMLS, or Hybrid: Understandi
ng_Your Mobile Application Development Options. [Accessed: 09-Dec-2015].

“Next Generation Network: Are You Ready?” [Online]. Available: https://www-

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

161

ssl.intel.com/content/www/uk/en/communications/next-generation-network-
architecture-infographic.html. [Accessed: 09-Dec-2015].

T. D. Duplex, “[WHITE] Timing and Synchronization for LTE-TDD and LTE-
Advanced Mobile Networks,” pp. 1-9, 2013.

T. Capin, K. Pulli, and T. Akenine-Modller, “The state of the art in mobile
graphics research,” IEEE Comput. Graph. Appl., vol. 28, no. 4, pp. 74—84, 2008.

A. Henrysson and M. Ollila, “UMAR: Ubiquitous Mobile Augmented Reality,”
in Proceedings of the 3rd International Conference on Mobile and Ubiquitous
Multimedia, 2004, pp. 41-45.

D. W. F. Van Krevelen and R. Poelman, “A Survey of Augmented Reality
Technologies , Applications and Limitations,” Int. J., vol. 9, no. 2, 2010.

R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MaclIntyre,

“Recent advances in augmented reality,” Computer Graphics and Applications,
IEEE, vol. 21, no. 6. pp. 3447, 2001.

Y. Geng, S. Riedel, F. Souvannavong, C. Akinlar, and N. Navab, “Marker-less
Tracking for AR: A Learning-Based Approach,” in Proceedings of the Ist
International Symposium on Mixed and Augmented Reality, 2002, p. 295—.

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic,
“Augmented reality technologies, systems and applications,” Multimed. Tools
Appl., vol. 51, no. 1, pp. 341-377, Dec. 2010.

S. Rattanarungrot, M. White, Z. Patoli, and T. Pascu, “The Application of
Augmented Reality for Reanimating Cultural Heritage,” in Virtual, Augmented
and Mixed Reality. Applications of Virtual and Augmented Reality SE - 8, vol.
8526, R. Shumaker and S. Lackey, Eds. Springer International Publishing, 2014,
pp. 85-95.

S. Rattanarungrot and M. White, “A service-oriented mobile augmented reality
architecture for personalized museum environments,” Virtual Systems &
Multimedia (VSMM), 2014 International Conference on. pp. 277-284, 2014.

S. Rattanarungrot, M. White, and P. Newbury, “A Mobile Service Oriented
Multiple Object Tracking Augmented Reality Architecture for Education and
Learning Experiences,” in International Conference on Mobile Learning 2014,
2014, pp. 327-331.

F. Zhou, H. B.-L. Duh, and M. Billinghurst, “Trends in augmented reality
tracking, interaction and display: A review of ten years of ISMAR,” in Mixed
and Augmented Reality, 2008. ISMAR 2008. 7th IEEE/ACM International
Symposium on, 2008, pp. 193-202.

R. Koch, K. Koeser, B. Streckel, and J.-F. Evers-Senne, “Markerless image-
based 3d tracking for real-time augmented reality applications,” in The 7th Int.
Workshop on Image analysis for multimedia interactive services, Montreux,
Switzerland, 2005.

Springer, Recent trends of mobile collaborative augmented reality systems.

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

162

Springer, 2011.

G. Papagiannakis, G. Singh, and N. Magnenat-Thalmann, “A survey of mobile
and wireless technologies for augmented reality systems,” Comput. Animat.
Virtual Worlds, vol. 19, no. 1, pp. 3-22, 2008.

M. Schlattmann, T. N. Nakorn, and R. Klein, “3D Interaction Techniques for 6
DOF Markerless Hand-Tracking,” J. or Proc. WSCG to Appear, 2009.

M. White, P. Petridis, F. Liarokapis, and D. Pletinckx, “Multimodal Mixed
Reality Interfaces for Visualizing Digital Heritage,” no. April, 2007.

G. Alonso and F. Casati, “Service-Oriented Architecture (SOA) and Web
Services,” 21st Int. Conf. Data Eng. ICDEQ0S, no. Icde, pp. 1147-1147, 2005.

“Service-Oriented Architecture (SOA) Definition.” [Online]. Available:
http://www.service-architecture.com/articles/web-services/service-
oriented architecture soa definition.html. [Accessed: 14-Oct-2015].

D. K. Senior, A. Ibm, and G. Business, “Service Oriented Architecture (SOA)
SOA Guide,” Architecture, vol. 24, pp. 1-5, 2006.

R. Wang and X. Wang, “Applying Service-Oriented Architecture into an
Augmented Reality E-business System,” 2008 IEEE Int. Conf. E-bus. Eng., pp.
621-626, 2008.

P. Selonen, P. Belimpasakis, Y. You, T. Pylvédndinen, and S. Uusitalo, “Mixed
reality web service platform,” Multimed. Syst., vol. 18, no. 3, pp. 215-230, 2012.

R. Wojciechowski, K. Walczak, M. White, and W. Cellary, “Building Virtual
and Augmented Reality Museum Exhibitions,” in Proceedings of the Ninth
International Conference on 3D Web Technology, 2004, pp. 135-144.

M. Hirose and T. Tanikawa, “Overview of the Digital Museum Project,” in
Proceedings of the 9th ACM SIGGRAPH Conference on Virtual-Reality
Continuum and Its Applications in Industry, 2010, pp. 11-16.

A. Karoulis, S. Sylaiou, and M. White, “Usability Evaluation of a Virtual
Museum Interface,” Informatica, vol. 17, no. 3, pp. 363-380, 2006.

Y. Kolstee and W. Van Eck, “The augmented Van Gogh’s: Augmented reality
experiences for museum visitors,” in 2011 IEEE International Symposium on
Mixed and Augmented Reality - Arts, Media, and Humanities, ISMAR-AMH
2011, 2011, pp. 49-52.

R. Szeliski, “Computer Vision : Algorithms and Applications,” Computer (Long.
Beach. Calif)., vol. 5, no. 3, p. 832, 2010.

P. Belimpasakis, P. Selonen, and Y. You, “Bringing user-generated content from
Internet services to mobile augmented reality clients,” 2010 Cloud-Mobile
Converg. Virtual Real. Work. (CMCVR 2010) Proc., pp. 14-17, Mar. 2010.

“AURASMA.” [Online]. Available: https://www.aurasma.com/. [Accessed: 15-
Oct-2015].

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

163

“Augmented Reality | Interactive Print | Layar.” [Online]. Available:
https://www .layar.com/. [Accessed: 15-Oct-2015].

“ReCap Reality Capture for 3D Documentation | Autodesk ReCap,” 2016.
[Online]. Available: https://recap.autodesk.com/. [Accessed: 12-Nov-2015].

P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “RGB-D Mapping : Using
Depth Cameras for Dense 3D Modeling of Indoor Environments,” Int. J. Rob.
Res., vol. 31, no. 5, pp. 647-663, 2012.

“Getting Started with the Metaio SDK.” [Online]. Available:
https://my.metaio.com/dev/sdk/index.html. [Accessed: 03-Nov-2015].

S. Rattanarungrot, M. White, and B. Jackson, “The Application of Service
Orientation on a Mobile AR Platform - A Museum Scenario,” in International
Congress on Digital Heritage - Theme 2 - Computer Graphics And Interaction,
2015.

M. Chouiten, J.-Y. Didier, and M. Mallem, “A Framework for Service Based
Composite Augmented Reality Applications,” 2013 Int. Symp. Ubiquitous
Virtual Real., pp. 19-22, Jul. 2013.

P. Belimpasakis, P. Selonen, and Y. You, “A web service platform for building
interoperable augmented reality solutions,” in International AR standards
Workshop Oct 11-12 2010, 2010, pp. 1-5.

P. Milgram, H. Takemura, A. Utsumi, and F. Kishino, “Augmented reality: a
class of displays on the reality-virtuality continuum,” Proc. SPIE, vol. 2351. pp.
282-292, 1995.

G. Sziebig, “Achieving total immersion : Technology trends behind Augmented
Reality - A survey,” Optimization.

H.-K. Wu, S. W.-Y. Lee, H.-Y. Chang, and J.-C. Liang, “Current status,
opportunities and challenges of augmented reality in education,” Comput. Educ.,
vol. 62, pp. 4149, 2013.

M. Kesim and Y. Ozarslan, “Augmented Reality in Education: Current
Technologies and the Potential for Education,” Procedia - Soc. Behav. Sci., vol.
47, no. 222, pp. 297-302, Jan. 2012.

A. Clark, A. Diinser, and R. Grasset, “An interactive augmented reality coloring
book,” SIGGRAPH Asia 2011 Emerg. Technol. - SA 11, pp. 1-1, 2011.

T. Miyashita, P. Meier, T. Tachikawa, S. Orlic, T. Eble, V. Scholz, A. Gapel, O.
Gerl, S. Arnaudov, and S. Lieberknecht, “An augmented reality museum guide,”
in Proceedings - 7th IEEE International Symposium on Mixed and Augmented
Reality 2008, ISMAR 2008, 2008, pp. 103-106.

Y. Lu and S. Smith, “Augmented Reality e-Commerce Assistant System: Trying
While Shopping,” in Proceedings of the 12th International Conference on
Human-computer Interaction: Interaction Platforms and Techniques, 2007, pp.
643-652.

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

164

W. Zhu, C. B. Owen, H. Li, and J.-H. Lee, “Design of the PromoPad: An
Automated Augmented-Reality Shopping Assistant,” in Computational
Advancements in End-User Technologies: Emerging Models and Frameworks, S.
Clarke, Ed. Hershey, PA, USA: IGI Global, 2010, pp. 193-205.

H. Kaufmann and D. Schmalstieg, “Mathematics and geometry education with
collaborative augmented reality,” Comput. Graph., vol. 27, no. 3, pp. 339-345,
2003.

L. Alem, F. Tecchia, and W. Huang, “HandsOnVideo: Towards a Gesture based
Mobile AR System for Remote Collaboration,” in Recent Trends of Mobile

Collaborative Augmented Reality Systems, L. Alem and W. Huang, Eds. Springer
New York, 2011, pp. 135-148.

A. Morrison, A. Mulloni, S. Lemmeld, A. Oulasvirta, G. Jacucci, P. Peltonen, D.
Schmalstieg, and H. Regenbrecht, “Collaborative use of mobile augmented
reality with paper maps,” Comput. Graph., vol. 35, no. 4, pp. 789-799, 2011.

A. Angelopoulou, D. Economou, V. Bouki, A. Psarrou, L. Jin, C. Pritchard, and
F. Kolyda, “Mobile augmented reality for cultural heritage,” Springer, 2012.

V. Lepetit, “On Computer Vision for Augmented Reality,” in Ubiquitous Virtual
Reality, 2008. ISUVR 2008. International Symposium on, 2008, pp. 13—16.

A. 1. Comport, E. Marchand, F. Chaumette, and C. De Beaulieu, “A real-time
tracker for markerless augmented reality,” pp. 0-9, 2006.

R. Azuma, J. W. Lee, B. Jiang, J. Park, S. You, and U. Neumann, “Tracking in
unprepared environments for augmented reality systems,” vol. 23, pp. 787-793,
1999.

J. P. Rolland, L. Davis, and Y. Baillot, “A survey of tracking technology for
virtual environments,” Fundam. wearable Comput. Augment. Real., vol. 8, no.
September, pp. 148, 2001.

D. Koller, G. Klinkerl, E. Rosel, D. Breen, R. Whit, and M. Tuceryan, “Real-
time Vision-Based Camera Tracking for Augmented Reality Applications,” 1997.

R. T. Azuma, B. R. Hoff, H. E. N. Iii, R. Sarfaty, M. J. Daily, G. Bishop, V. Chi,
G. Welch, R. Nichols, and J. Cannon, “Making Augmented Reality Work
Outdoors Requires Hybrid Tracking,” pp. 1-6, 1998.

“Open Source Augmented Reality SDK | ARToolKit.org.” [Online]. Available:
http://artoolkit.org/. [Accessed: 02-Nov-2015].

“Getting Started View | Vuforia Library Prod.” [Online]. Available:
https://developer.vuforia.com/library/getting-started. [Accessed: 03-Nov-2015].

“Resources - Apple Developer.” [Online]. Available:
https://developer.apple.com/resources/. [Accessed: 11-Nov-2015].

“Download Android Studio and SDK Tools | Android Developers.” [Online].
Available: http://developer.android.com/sdk/index.html. [Accessed: 11-Nov-
2015].

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

165

“Junaio — Augmented Reality Browser.” [Online]. Available:
http://www.junaio.com/. [Accessed: 11-Nov-2015].

D. Sprott and L. Wilkes, “Understanding service-oriented architecture,” Archit.
J., vol. 1, pp. 10-17, 2004.

M.-T. Schmidt, B. Hutchison, P. Lambros, and R. Phippen, “The Enterprise
Service Bus: Making service-oriented architecture real,” IBM Syst. J., vol. 44, no.
4, pp. 781-797, 2005.

N. Komoda, “Service oriented architecture (SOA) in industrial systems,” Ind.
Informatics, 2006 IEEE Int. Conf., pp. 1-5, 2006.

C.L. Wuy, C. F. Liao, and L. C. Fu, “Service-oriented smart-home architecture
based on OSGi and mobile-agent technology,” IEEE Trans. Syst. Man Cybern.
Part C Appl. Rev., vol. 37, no. 2, pp. 193-205, 2007.

A. Ordanini and P. Pasini, “Service co-production and value co-creation: The
case for a service-oriented architecture (SOA),” Eur. Manag. J., vol. 26, no. 5,
pp. 289-297, 2008.

“XML Soap.” [Online]. Available:
http://www.w3schools.com/xml/xml soap.asp. [Accessed: 28-Oct-2015].

“Directory of public SOAP Web Services.” [Online]. Available:
http://www.service-
repository.com/?offset=0&max=10&sort=rating&order=desc. [Accessed: 29-
Oct-2015].

“Fielding Dissertation: CHAPTER 5: Representational State Transfer (REST).”
[Online]. Available:
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest arch style.htm.
[Accessed: 28-Oct-2015].

“Create REST Request.” [Online]. Available:
https://docs.oracle.com/cd/E27515 01/common/tutorials/conversion_create rest
request.html. [Accessed: 29-Oct-2015].

“API Directory | ProgrammableWeb.” [Online]. Available:
http://www.programmableweb.com/apis/directory. [Accessed: 29-Oct-2015].

R. Lee, D. Kitayama, Y.-J. Kwon, and K. Sumiya, “Interoperable augmented web
browsing for exploring virtual media in real space,” Proc. 2nd Int. Work. Locat.
Web LOCWERB 09, pp. 1-4, 2009.

B. Petros, Y. Yu, and S. Petri, “Enabling rapid creation of content for
consumption in mobile Augmented Reality,” Proc. - NGMAST 2010 4th Int.
Conf. Next Gener. Mob. Appl. Serv. Technol., pp. 1-6, 2010.

M. Pollefeys, L. Van Gool, M. Vergauwen, K. Cornelis, F. Verbiest, and J. Tops,
“Video-to-3D,” pp. 1-12.

P. Cignoni, M. Corsini, M. Dellepiane, G. Ranzuglia, M. Vergauven, and L. Van
Gool, “MeshLab and Arc3D : Photo-Reconstruction and Processing 3D meshes,”

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

166

pp. 1-6, 2008.

“ARC 3D.” [Online]. Available: http://www.arc3d.be/. [Accessed: 04-Nov-
2015].

M. Vergauwen and L. Gool, “Web-based 3D Reconstruction Service,” Mach.
Vis. Appl., vol. 17, no. 6, pp. 411-426, May 2006.

C. Heipke, “Web-Based Photogrammetric Image and Geospatial Services — an
Overview,” no. Schiewe, pp. 1-7, 2005.

“Welcome to the OGC | OGC.” [Online]. Available:
http://www.opengeospatial.org/. [Accessed: 05-Nov-2015].

K. Sahin, “Service oriented architecture (SOA) based web services for
geographic information systems,” XXIst ISPRS Congr. Beijing, pp. 625-630,
2008.

B. Hagedorn and J. Déllner, “High-level web service for 3D building information
visualization and analysis,” Proc. 15th Annu. ACM Int. Symp. Adv. Geogr. Inf.
Syst. - GIS "07, p. 1, 2007.

K. Park and A. Yilmaz, “A Design of Web Service for Digital Photogrammetry
Workstation using Service Oriented Architecture.”

“Introduction to the Europeana APIs - Europeana Labs.” [Online]. Available:
http://labs.europeana.eu/api. [Accessed: 12-Nov-2015].

“Amazon Web Services (AWS) - Cloud Computing Services.” [Online].
Available: https://aws.amazon.com/. [Accessed: 06-Nov-2015].

K. B. Laskey and K. Laskey, “Service oriented architecture,” Wiley Interdiscip.
Rev. Comput. Stat., vol. 1, no. 1, pp. 101-105, 2009.

T. Erl, Service-Oriented Architecture: A Field Guide to Integrating XML and
Web Services. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2004.

G. Kunito, K. Sakamoto, N. Yamada, T. Takakashi, and S. Tanaka, “Architecture
for Providing Services in the Ubiquitous Computing Environment,” 26th IEEE
Int. Conf. Distrib. Comput. Syst. Work. 2006 ICDCS Work. 2006, pp. 60—60,
2006.

“SierraLeoneHeritageApi examples.” [Online]. Available:
http://sierraleone.heritageinformatics.org/api/. [Accessed: 12-Nov-2015].

“Victoria and Albert Museum API Documentation.” [Online]. Available:
http://www.vam.ac.uk/api/. [Accessed: 12-Nov-2015].

“Google Maps APIs | Google Developers.” [Online]. Available:
https://developers.google.com/maps/. [Accessed: 21-Aug-2016].

J. Heller, M. Havlena, M. Jancosek, A. Torii, and T. Pajdla, “3D reconstruction
from photographs by CMP SfM web service,” Machine Vision Applications
(MVA), 2015 14th IAPR International Conference on. pp. 30-34, 2015.

167

[102] “Developer Autodesk ReCap API Samples.” [Online]. Available:
http://developer-recap-autodesk.github.io/. [Accessed: 12-Nov-2015].

[103] C.PortalA©s, J. L. Lerma, and C. PA©rez, “Photogrammetry and augmented
reality for cultural heritage applications,” Photogramm. Rec., vol. 24, no. 128,
pp- 316-331, Dec. 2009.

[104] A.-C. Haugstvedt and J. Krogstie, “Mobile augmented reality for cultural
heritage: A technology acceptance study,” in 2012 IEEE International
Symposium on Mixed and Augmented Reality (ISMAR), 2012, pp. 247-255.

[105] P. Petridis, M. White, N. Mourkousis, F. Liarokapis, M. Sifniotis, A. Basu, and
C. Gatzidis, “Exploring and interacting with virtual museums,” Proc. Comput.
Appl. Quant. Methods Archaeol., 2005.

[106] “V&A Home Page - Victoria and Albert Museum,” Oct. 2015.

[107] “British Museum - Welcome to the British Museum.” [Online]. Available:
http://www.britishmuseum.org/. [Accessed: 12-Nov-2015].

[108] “Europeana - Homepage.” [Online]. Available: http://www.europeana.eu/portal/.
[Accessed: 12-Nov-2015].

[109] “SierralLeoneHeritage.org | Digital Heritage Resource.” [Online]. Available:
http://www.sierraleoneheritage.org/. [Accessed: 12-Nov-2015].

[110] J. P. Lima, F. Simdes, L. Figueiredo, and J. Kelner, “Model Based Markerless 3D
Tracking applied to Augmented Reality,” Evaluation, vol. 1, pp. 2—15, 2010.

[111] M. Pressigout and E. Marchand, “Hybrid tracking algorithms for planar and non-
planar structures subject to illumination changes,” 2006 IEEE/ACM International
Symposium on Mixed and Augmented Reality. pp. 52-55, 2006.

[112] U. Neumann, “Virtual Reality Dynamic Registration Correction in Augmented
Reality Systems,” IEEE Comput. Graph. Appl., no. September, pp. 52—60, 1995.

[113] U. Neumann and S. You, “Natural feature tracking for augmented reality,” IEEE
Transactions on Multimedia, vol. 1, no. 1. pp. 53—64, 1999.

[114] D. Wagner, T. Langlotz, and D. Schmalstieg, “Robust and unobtrusive marker
tracking on mobile phones,” 2008 7th IEEE/ACM Int. Symp. Mix. Augment.
Real., pp. 121-124, Sep. 2008.

[115] H. Kato, K. Tachibana, M. Billinghurst, and M. Grafe, “A registration method
based on texture tracking using ARToolKit,” IEE Rev., pp. 77-85.

[116] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, and D. Schmalstieg, “Pose
tracking from natural features on mobile phones,” 2008 7th IEEE/ACM Int.
Symp. Mix. Augment. Real., pp. 125-134, Sep. 2008.

[117] T. Lee and T. Hollerer, “Multithreaded hybrid feature tracking for markerless
augmented reality.,” IEEE Trans. Vis. Comput. Graph., vol. 15, no. 3, pp. 355—
68, 2009.

[118] R. Koch, K. Koeser, B. Streckel, and C. Kiel, “Markerless Image-based 3D

168

Tracking for Real-time Augmented Reality Applications.”

[119] N. Karlsson, E. D1 Bernardo, J. Ostrowski, L. Goncalves, P. Pirjanian, and M. E.
Munich, “The vSLAM Algorithm for Robust Localization and Mapping,” no.
April, pp. 24-29, 2005.

[120] C. Oberhofer, J. Grubert, and G. Reitmayr, “Natural feature tracking in
JavaScript,” 2012 IEEE Virtual Real., vol. 4, pp. 113—-114, Mar. 2012.

[121] Z. Pan, Y. Li, M. Zhang, C. Sun, K. Guo, X. Tang, and S. Z. Zhou, “A Real-time
Multi-cue Hand Tracking Algorithm Based on Computer Vision,” pp. 219-222.

[122] G. Reitmayr and T. Drummond, “Going out: robust model-based tracking for
outdoor augmented reality,” 2006 IEEE/ACM Int. Symp. Mix. Augment. Real.,
pp. 109—-118, Oct. 2006.

[123] L. Vacchetti, V. Lepetit, and P. Fua, “Stable real-time 3D tracking using online
and offline information.,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no.
10, pp. 1385-91, Oct. 2004.

[124] N. Krahnstoever and R. Sharma, “Appearance Management and Cue Fusion for
3D Model-Based Tracking,” in Proc. IEEE Conf. Comp. Vision and Pattern
Recognition (CPVR), 2003, pp. 249-256.

[125] I. Skrypnyk and D. G. Lowe, “Scene Modelling , Recognition and Tracking with
Invariant Image Features,” no. Ismar, 2004.

[126] H. Wuest, F. Vial, and D. Stricker, “Adaptive Line Tracking with Multiple
Hypotheses for Augmented Reality Department of Virtual and Augmented
Reality,” pp. 07, 2005.

[127] C. Wiedemann, M. Ulrich, and C. Steger, “Recognition and tracking of 3D
objects,” in PATTERN RECOGNITION, 2008, vol. 5096, pp. 132—-141.

[128] M. Ozuysal, P. Fua, and V. Lepetit, “Fast Keypoint Recognition in Ten Lines of
Code,” in 2007 IEEE Conference on Computer Vision and Pattern Recognition,
2007, pp. 1-8.

[129] N. Hagbi, O. Bergig, J. El-Sana, and M. Billinghurst, “Shape recognition and
pose estimation for mobile Augmented Reality.,” IEEE Trans. Vis. Comput.
Graph., vol. 17, no. 10, pp. 1369-79, Oct. 2011.

[130] Y. Kalantidis, L. G. Pueyo, M. Trevisiol, R. van Zwol, and Y. Avrithis, “Scalable
Triangulation-based Logo Recognition,” in Proceedings of the 1st ACM
International Conference on Multimedia Retrieval, 2011, pp. 20:1-20:7.

[131] P.J. Gausemeier, “Development of a Real Time Image Based Object
Recognition Method for Mobile AR-Devices,” Architecture, vol. 1, no. 212, pp.
133-140, 2003.

[132] C. M. Cyr and B. B. Kimia, “3D object recognition using shape similiarity-based
aspect graph,” Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE
International Conference on, vol. 1. pp. 254-261 vol.1, 2001.

169

[133] I. Gordon and D. G. Lowe, “What and Where : 3D Object Recognition with
Accurate Pose,” Lect. Notes Comput. Sci., 2004.

[134] S. Xu and Q. Peng, “3D object recognition using multiple features and neural
network,” 2008 IEEE Conf. Cybern. Intell. Syst., pp. 434439, Sep. 2008.

[135] B. Scholz-reiter, H. Thamer, and C. Uriarte, “An Approach for 3D Object
Recognition of Universal Goods,” Int. J., vol. 5, no. 2, pp. 218-225, 2011.

[136] H. Akbar, N. Suryana, and S. Sahib, “Training neural networks using Clonal
Selection Algorithm and Particle Swarm Optimization: A comparisons for 3D
object recognition,” 2011 11th Int. Conf. Hybrid Intell. Syst., pp. 692—697, Dec.
2011.

[137] R. Freeman and a. Steed, “Interactive modelling and tracking for mixed and
augmented reality,” Proc. ACM Symp. Virtual Real. Softw. Technol. - VRST 06,
p. 61, 2006.

170

Appendix

A. Web Service Provider APIs

171

Victoria and Albert Museum API

Victoria and Albert Museum provides a website (www.vam.ac.uk) that offers online
collections and allow museum visitors to view and learn cultural artifacts on the

website.

HOME VISIT WHAT'S ON COLLECTIONS LEARN JOIN & SUPPORT SHOP

The Collections

y)

7%

Figure A.1 Victoria and Albert Museum

The museum also expose an API called Victoria and Albert Museum API that provides
service interfaces for any applications to access data and metadata of objects exhibited

in the Victoria and Albert Museum.

172

Victoria and Albert Museum API Documentation

‘Welcome to our API. It is designed as a RESTful interface to our collections and what we know about them
If you make a request to this service you are deemed to have accepted the terms and conditions.
Principles and Getting Started

The API Query Builder

Try building your own API calls with this rudimentary HTML GUI. Then, take those URLS away and do
something nice with them or come back and read the rest of the documentation.

http://www.vam.ac.uk/api/qb
Interface

‘We strongly believe in the URL as interface. It's nice to be able to read a URL and guess what it might bring
back.

We also believe the URL is a better interface than a complex SOAP- or XML-RPC-based system for returning
data that is generally available elsewhere in HTML form.

Formats
After /api, the first part of the URL indicates the format in which you would like your response
JSON

http://uwa. k/api/3 ject/

Returns all items in the database (paginated) in serialised JavaScript format
XML

http:/ /v, k/api/xml ject/

Returns all items in the database (paginated) in XML format. Note this is not yet as fully implemented as
JSON but could be useful if your app prefers to consume XML. The JSON contains more of the related
information concerning objects.

JSONP
To make it easier to do client-side mash-ups using V&A data, we offer all our JSON responses with a JSONP

wrapper function. Simply pass the desired name of a callback function you wish to use on the client side in the
callback parameter. Only A-z, 0-9 and underscore characters are allowed in your function name.

Figure A.2 Victoria and Albert Museum API

The API Query Builder enables users to create API calls that can be used in the web

service request module in the application client.

&

Current URL

http:/ /v, vam. ac. uk/api/: us ject/?qemedievalimateri

API Results

Ring brooch The Mérode Cup The Langdale Rosary lluminated

By Unknown (Cup and cover) (Rosary) manuscript
France By Unknown By Unknown By Unknown
France England Constantinople
Pair of stirrups Manuscript Horseman's hammer llluminated
By Campi, Bartolomeo By Master of the Budapest By Unknown manuseript
Haly Antiphonary Germany By Unknown
Lombardy Ligge (province)

V&A API Query Builder

API Parameter Selection
Geolocate me

Only objects with images
Search field/Search value

General +

o

Figure A.3 The API Query Builder

173

The Builder creates an URL of a web service request composed of the source of
content, the module requested, parameters and the output format. The outcome of a

service request is presented on the Builder.

‘ &7\ V&A API Query Builder

Current URL AP| Parameter Selection

http://uns. vam. ac.uk/api/ u ject/2qsteatcanistersinages=1 Geolocate me

Only objects with images

API Results Search field/Search value
General 4 | toa canis ter O
m— o
o =3
L) =1

Tea canister Tea canister Tea canister Tea canister
By Unknown By Unknown By Unknown By Josiah Wedgwood and
Staffordshire Bilston Staffordshire Sons

Burslem
i

Tea canister Tea canister Tea canister Tea canister

By Unknown By Unknown By Elers, David and John By Unknown

Staffordshire Staffordshire Philip Bristol
Staffordshire

Figure A.4 The outcome of a service request

The following is a JSON response document of the web service request

http://www.vam.ac.uk/api/json/museumobject/?q=tea+canister&images=1.

{ "meta": {

"result count":170 ,

"cluster counts" : {},

"clusters" : [],

"group_details": [] },

"records": [
{

"pk": 8968,

"model": "collection.museumobject",

"fields": {
"primary_image id": "2006AM7317",
"rights": 3,
"year start": 1760,
"object number": "O77973",
"artist": "Unknown",
"museum_number": "C.69&A-1938",
"object": "Tea canister",
"longitude": "-2.02806000",
"last_processed": "2016-04-01 23:21:01",

174

"event_text":"",
"place": "Staffordshire",
"location": "British Galleries, room 52b, case 1",
"last_checked": "2016-04-01 23:21:01",
"museum_number token": "c691938",
"latitude": "52.82474900",
"title": "",
"date text":"1760-1770 (made)",
"slug": "tea-canister-unknown",
"sys_updated": "2015-01-26 00:00:00",
"collection_code": "CER"
b
¥
{
"pk": 9835,
"model": "collection.museumobject",
"fields": {
"primary_image id": "2006AM2645",
"rights": 3,
"year start": 1780,
"object number": "O79070",
"artist": "Unknown",
"museum_number": "W.72-1919",
"object": "Tea canister",
"longitude": "-2.07449000",
"last_processed": "2016-04-01 23:26:05",
"event_text": "",
"place": "Bilston",
"location": "British Galleries, room 118e, case 1",
"last _checked": "2016-04-01 23:26:05",
"museum_number token": "w721919",
"latitude": "52.56663500",
"title": ",
"date text":"1780-1800 (made)",
"slug": "tea-canister-unknown",
"sys_updated": "2014-08-04 00:00:00",
"collection_code": "FWK"
b
¥
{
"pk": 8858,
"model": "collection.museumobject",
"fields": {
"primary_image id": "2006AT4084",
"rights": 3,
"year start": 1760,
"object number": "O77863",
"artist": "Unknown",
"museum_number": "C.16-1940",
"object": "Tea canister",
"longitude": "-2.02806000",
"last_processed": "2016-04-01 23:20:26",
"event_text": "",
"place": "Staffordshire",
"location": "British Galleries, room 118e, case 3",

"last_checked": "2016-04-01 23:20:26",
"museum_number token": "c161940",
"latitude": "52.82474900",
"title": ",
"date text":"1760-1765 (made)",
"slug": "tea-canister-unknown",
"sys_updated": "2014-07-31 00:00:00",
"collection_code": "CER"

b

¥
{

"pk": 8832,

"model": "collection.museumobject",

"fields": {
"primary_image id": "2006AM3394",
"rights": 3,
"year start": 1795,
"object number": "O77834",
"artist": "Josiah Wedgwood and Sons",
"museum_number": "C.112&A-1956",
"object": "Tea canister",
"longitude": "-2.18420000",
"last_processed": "2016-04-01 23:20:18",
"event_text": "",
"place": "Burslem",

"location": "British Galleries, room 118e, case 3",

"last _checked": "2016-04-01 23:20:18",
"museum_number token": "c1121956",
"latitude": "53.05424900",
"title": ",
"date text": "1795-1800 (made)",
"slug": "tea-canister-josiah-wedgwood-and",
"sys_updated": "2015-06-24 00:00:00",
"collection_code": "CER"

b

¥
{

"pk": 13550,

"model": "collection.museumobject",

"fields": {
"primary_image id": "2006AM3440",
"rights": 3,
"year start": 1745,
"object number": "O79779",
"artist": "Unknown",
"museum_number": "414:958-1885",
"object": "Tea canister",
"longitude": "-2.02806000",
"last_processed": "2016-04-01 23:47:26",
"event_text": "",
"place": "Staffordshire",
"location": "British Galleries, room 52b, case 1",
"last _checked": "2016-04-01 23:47:26",
"museum_number token": "4149581885",
"latitude": "52.82474900",

175

176

"title": ",
"date text": "ca. 1750 (made)",
"slug": "tea-canister-unknown",
"sys_updated": "2014-11-19 00:00:00",
"collection_code": "CER"
b
¥

{
"pk": 154194,

"model": "collection.museumobject",

"fields": {
"primary_image id": "2009CT0498",
"rights": 3,
"year start": 1745,
"object number": "O190483",
"artist": "Unknown",
"museum_number": "414:958/A-1885",
"object": "Tea canister",
"longitude": "-2.02806000",
"last_processed": "2016-04-02 11:55:07",
"event_text": "",
"place": "Staffordshire",
"location": "Ceramics Study Galleries, Britain, room 138, case 7, shelf 3",
"last_checked": "2016-04-02 11:55:07",
"museum_number token": "414958a1885",
"latitude": "52.82474900",
"title": ",
"date text": "ca. 1750 (made)",
"slug": "tea-canister-unknown",
"sys_updated": "2015-05-26 00:00:00",
"collection_code": "CER"

b

s
{

"pk": 8898,

"model": "collection.museumobject",

"fields": {
"primary_image id": "2006AMS5304",
"rights": 3,
"year start": 1690,
"object number": "O77903",
"artist": "Elers, David and John Philip",
"museum_number": "C.275-1921",
"object": "Tea canister",
"longitude": "-2.02806000",
"last_processed": "2016-04-01 23:20:39",
"event_text": "",
"place": "Staffordshire",
"location": "British Galleries, room 56¢, case 4",
"last_checked": "2016-04-01 23:20:39",
"museum_number token": "c2751921",
"latitude": "52.82474900",
"title": ",
"date text": "1690-1698 (made)",
"slug": "tea-canister-elers-david-and",

"sys_updated": "2015-07-17 00:00:00",
"collection_code": "CER"
b
¥
{
"pk": 22371,
"model": "collection.museumobject",
"fields": {
"primary_image id": "2006AJ5280",
"rights": 3,
"year start": 1745,
"object number": "021252",
"artist": "Unknown",
"museum_number": "C.13-1963",
"object": "Tea canister",
"longitude": "-2.59143000",
"last_processed": "2016-04-02 00:37:43",
"event_text": "",
"place": "Bristol",
"location": "British Galleries, room 52b, case 1",
"last_checked": "2016-04-02 00:37:43",
"museum_number token": "c131963",
"latitude": "51.45365900",
"title": ",
"date text": "ca. 1750-1760 (made)",
"slug": "tea-canister-unknown",
"sys_updated": "2014-11-19 00:00:00",
"collection_code": "CER"
H
}s
{
"pk": 75427,
"model": "collection.museumobject",
"fields": {
"primary_image id": "2010EJ2514",
"rights": 3,
"year start": 1756,
"object number": "O99172",
"artist": "S\uOOe8vres porcelain factory",
"museum_number": "768A-1882",
"object": "Tea canister",
"longitude": "1.71832000",
"last_processed": "2016-04-02 05:04:36",
"event_text": "",
"place": "France",

"location": "Europe 1600-1815, lift lobby, case CA2",

"last_checked": "2016-04-02 05:04:36",
"museum_number token": "768a1882",
"latitude": "46.71244800",

"title": "Boite a the",

"date text": "ca. 1761 (made)",

"slug": "boite-a-the-tea-canister-sevres-porcelain-factory",

"sys_updated": "2015-12-04 00:00:00",
"collection_code": "CER"

177

¥
{
"pk": 273307,
"model": "collection.museumobject",
"fields": {
"primary_image id": "2010ED2603",
"rights": 3,
"year start": 1755,
"object number": "0334362",
"artist": "F\uOOfcrstenberg Porcelain”,
"museum_number": "C.50&A-1956",
"object": "Tea canister and cover”,
"longitude": "9.66248000",
"last_processed": "2016-04-02 19:00:12",
"event_text": "",
"place": "F\uOOfcrstenberg",
"location": "Europe 1600-1815, room 3, case CA3",
"last _checked": "2016-04-02 19:00:12",
"museum_number token": "c501956",
"latitude": "52.36421000",
"title": ",
"date text": "ca. 1760 (made)",
"slug": "tea-canister-and-furstenberg-porcelain”,
"sys_updated": "2015-12-04 00:00:00",
"collection_code": "CER"
b
¥
{
"pk": 8352,
"model": "collection.museumobject",
"fields": {
"primary_image id": "2006AM5978",
"rights": 3,
"year start": 1755,
"object number": "O77657",
"artist": "Swirled Flowers Painter",
"museum_number": "5288&A-1901",
"object": "Tea canister",
"longitude": "-1.81541000",
"last_processed": "2016-04-01 23:18:13",
"event_text": "",
"place": "West Midlands",
"location": "British Galleries, room 52b, case 1",
"last _checked": "2016-04-01 23:18:13",
"museum_number token": "52881901",
"latitude": "52.50523000",
"title": ",
"date text":"1755-1760 (made)",
"slug": "tea-canister-swirled-flowers-painter",
"sys_updated": "2014-11-19 00:00:00",
"collection_code": "CER"
b
¥
{

"pk": 9477,

178

;s
{

s
{

"model": "collection.museumobject",
"fields": {
"primary_image id": "2006AM2247",
"rights": 3,
"year start": 1717,
"object number": "O78644",
"artist": "Farnell, John",
"museum_number": "M.854:1, 2-1926",
"object": "Tea canister",
"longitude": "-0.12714000",
"last_processed": "2016-04-01 23:23:47",
"event_text": "",
"place": "London",
"location": "British Galleries, room 52b, case 1",
"last_checked": "2016-04-01 23:23:47",
"museum_number token": "m8541926",
"latitude": "51.50632100",
"title": ",
"date text":"1717-1718 (made)",
"slug": "tea-canister-farnell-john",
"sys_updated": "2014-11-19 00:00:00",
"collection_code": "MET"

}

"pk": 9363,
"model": "collection.museumobject",
"fields": {
"primary_image id": "2006AM6828",
"rights": 3,
"year start": 1773,
"object number": "O78523",
"artist": "Courtauld, Louisa",
"museum_number": "M.28-1934",
"object": "Tea canister",
"longitude": "-0.12714000",
"last_processed": "2016-04-01 23:23:09",
"event_text": "",
"place": "London",
"location": "British Galleries, room 118e, case 8",
"last_checked": "2016-04-01 23:23:09",
"museum_number token": "m281934",
"latitude": "51.50632100",
"title": ",
"date_text": "1773-1774 (hallmarked)",
"slug": "tea-canister-courtauld-louisa",
"sys_updated": "2014-08-14 00:00:00",
"collection_code": "MET"

}

"pk": 9830,
"model": "collection.museumobject",
"fields": {

"primary_image id": "2006AM6303",

179

180

"rights": 3,

"year start": 1685,

"object number": "079065",

"artist": "Cradock, Marmaduke",
"museum_number": "W.70-1919",
"object": "Tea canister",

"longitude": "-0.12714000",
"last_processed": "2016-04-01 23:26:03",
"event_text": "",

"place": "London",

"location": "British Galleries, room 56d, case 14",
"last_checked": "2016-04-01 23:26:03",
"museum_number token": "w701919",
"latitude": "51.50632100",

"title": ",

"date text":"1685-1717 (made)",

"slug": "tea-canister-cradock-marmaduke",
"sys_updated": "2014-08-04 00:00:00",
"collection_code": "FWK"

b
}s
{
"pk": 13211,
"model": "collection.museumobject",
"fields": {
"primary_image id": "2006AM7382",
"rights": 3,
"year start": 1722,
"object number": "O10916",
"artist": "Nash, Bowles",
"museum_number": "M.180A/1, 2-1919",
"object": "Pair of tea canisters",
"longitude": "-0.12714000",
"last_processed": "2016-04-01 23:45:37",
"event_text": "",
"place": "London",
"location": "British Galleries, room 52b, case 1",
"last_checked": "2016-04-01 23:45:37",
"museum_number token": "m1801919",
"latitude": "51.50632100",
"title": ",
"date text":"1722-1723 (made)",
"slug": "pair-of-tea-nash-bowles",
"sys_updated": "2015-07-01 00:00:00",
"collection_code": "MET"
b
b
1}

The image of each object presented on the Builder can be selected and the system will
create a service quest of the selected image for its metadata. The web service request is :

http://www.vam.ac.uk/api/json/museumobject/O79070.

181

"pk": 9835,
"model": "collection.museumobject",
"fields": {
"original price": "",
"attributions_note": "",
"related museum_numbers": "",
"museum_number": "W.72-1919",

"date end": "1800-12-31",

"labels": [
{
"pk": 3830,
"model": "collection.label",
"fields": {

"date": "27/03/2003",

"museumobject": 9835,

"label text": "British Galleries:\nThis canister combines bright-cut engraving, a
technique introduced to silver in the 1770s, with areas of paint and a final layer of varnish. The
tin appears yellow because of the varnish."

}
1,

"descriptive line": "Tea canister of elongated hexagonal form, of tin, with incised
decoration, decortated with red japanning and lacquering imitating gilding",

"shape": """,

"longitude": "-2.07449000",

"year start": 1780,

"exhibitions": [],

"subjects": [],

"date text": "1780-1800 (made)",

"primary_image id": "2006AM2645",

"rights": 3,

"physical description": "",

"dimensions": "Height: 11.11 cm, Width: 13.97 cm, Depth: 8.57 cm",

"title": ",

"date_start": "1780-01-01",

"materials_techniques": "Tin, bright-cut engraved and japanned, with brass handle",

"last_processed": "2016-04-01 23:26:05",

"label": "British Galleries:\nThis canister combines bright-cut engraving, a technique
introduced to silver in the 1770s, with areas of paint and a final layer of varnish. The tin appears
yellow because of the varnish. [27/03/2003]",

"event_text": "",

"production_type": "",

"collections": [

{

"pk": 6,

"model": "collection.collection",

"fields": {
"code": "FWK",
"name": "Furniture and Woodwork Collection",
"museumobject _count": 10947,
"source": "",
"cis_id": null,
"museumobject _image count": 6143,

"n. H"

"type
"slug": "fwk"
}
}
1

"location": "British Galleries, room 118e, case 1",

marksﬂ n H

"latitude": "52.56663500",
"techniques": [],
"materials": [],

"edition_number": "",

"styles": [],
"inventory set": [
{

"pk": 11995,
"model": "collection.inventory",
"extras": {
"gallery id": 160
}s
"fields": {
"box": ",
"case": "1"
"inventory number": 528323,
"room": "118E",
"part name": "",
museum_number": "W.72-1919",
"museumobject": 9835,
"shelf": "",
"site": "VA",
"on_display": true,
"status": "",

"location": "British Galleries, room 118e",

"museum_number token": "w721919",
"gallery": 160
}
H

I
"updated": null,

"galleries": [

{
"pk": 160,
"model": "collection.gallery",
"fields": {
"room_code": "118E",
"site_name": "",

"name": "Brltlsh Galleries, room 118e",
"site_code": "VA",
"museumobject_count": 163,

"source": "",

on_dlsplay : true,

"cis_id": "THES49228",
"museumobject image count": 161,

"type” ""
"slug": "1 18e—va"

182

183

H
]

2
"names": [

{
"pk": 3,
"model": "collection.name",
"fields": {
"death_date": null,

n,mm

"surname": "",

"name": "unknown",

"gender": null,

"museumobject _count": 164487,
"death year": null,

"source": "object production”,
"cis_id": "A1848",
"museumobject image count": 83564,
"forename": """,

"birth_date": null,

n. nn

"nationality": "",
"type": "person",
"slug": "unknown",

"birth_year": null

}
H
I
"placecontext set": [
{
"pk": 10782,
"model": "collection.placecontext",
"extras": {
"place id": 572
¥
"fields": {
"part name": "",
"uncertainty": "or Wolverhampton",
"museumobject": 9835,
"role": "made",
"place": 572,
"order": 1

}
}

I
"original currency": "",
"museum_number token": "w721919",
"object": "Tea canister",
"categories": [
{
"pk": 13,
"model": "collection.category”,
"fields": {
"name": "Tea, Coffee & Chocolate wares",
"museumobject_count": 2516,
"source": "cis_category",
"cis_id": null,
"museumobject _image count": 2080,

184

"type": ",
"slug": "tea-coffee-chocolate-wares"
}
}s
{
"pk": 12,
"model": "collection.category”,
"fields": {
"name": "British Galleries",
"museumobject_count": 1596,
"source": "cis_category",
"cis_id": null,
"museumobject _image count": 1476,
"type™: ™,
"slug": "british-galleries"
}
H

I
"last_checked": "2016-04-01 23:26:05",

"public_access_description": "Object Type\nTea canisters were used to store loose tea
leaves. They were called 'canisters' until about 1800, when the term caddy began to be used.
They were placed on the table as tea was served and were therefore decorated in a variety of
fashionable styles.\n\nOwnership & Use\nTea was a popular drink even in middle-income
households in the later 18th century although the price was high owing to import restrictions
and duties. Tea canisters had locks to safeguard the valuable tea. All tea came from China until
1839 when Indian tea began to be imported. This canister has two compartments inside to keep
different types of tea apart. Black teas were Bohea, Congou and Souchong, and the more
expensive green teas Singlo or Hyson. Blending the teas was an essential part of the tea-making
ritual.\n\nDesign & Designing\nThis metal tea canister is hexagonal, a popular shape for
canisters and the angled sides would have shown off the sparkling effect of the metal in the
incised patterns and the gold stars, border patterns and lozenge shapes. The inside is lined with
metal foil.",

"exhibition history": "",

"bibliography": "Jones, Yvonne, <i>Japanned Papier-M\u00Oe2ch\u00e9 and Tinware c.
1740-1940</i>. Woodbridge, Antique Collectors' Club, 2012 (ISBN 978 1 85149 686 0), p. 49,
fig. 36",

"vanda_ exhibition_history": "",

"slug": "tea-canister-unknown",

"sys_updated": "2014-08-04 00:00:00",

"image set": [

{

"pk": 5124,

"model": "collection.image",

"fields": {
"sys_updated": "2012-10-13 00:00:00",
"last_processed": "2016-04-01 12:52:43",
"priority": 0,
"image id": "2006AM2645",
"sys id": 112645,
"last_checked": "2016-04-01 12:52:43",
"size bytes": null,
"local": "collection_images/2006AM/2006AM2645.jpg"

"places": [
{
"pk": 572,
"model": "collection.place",
"extras": {
"parent_id": 546
}s
"fields": {
"name": "Bilston",
"parent": 546,
"country": "England",
"museumobject count": 3,
"longitude": "-2.07449000",
"source": "production”,
"cis_id": "x30593",
"museumobject _image count": 3,
"latitude": "52.56663500",
"type": "city/town",
"slug": "bilston-england-x30593"

}
}
1,

"artist": "Unknown",
"namecontext set": [
{
"pk": 9714,
"model": "collection.namecontext",
"extras": {
"name_id": 3
}s
"fields": {
"name": 3,

n. nn

"part_name": "",

"uncertainty": "",

"museumobject": 9835,
n.n

"role": "production”,
"order": 1

}
}

I

"historical significance": "",

"year_end": 1800,

"object number": "O79070",

"events": [],

"credit": "Given by Thomas Sutton, Esq., in memory of his wife",
"history _note": "",

"place": "Bilston",

"production_note": "",

"historical context note": "",

"collection_code": "FWK"

185

186

Sierral.eoneHeritage API

http://sierraleone.heritageinformatics.org provides online collections of Sierra Leonean
artefacts exhibited in museums around the UK and the Sierra Leonean National

Museum.

] — L [|1 O I () W WFA.0N VAN N || I] I [JSe—) -

- S — .

Figure A.5 Sierral.eoneHeritage

SierralL.eoneHeritage also offer an API called SierralLeoneHeritage API that exposes

modules that allow developers to access data and metadata aggregated in the server.

SierraLeoneHeritage API

Figure A.6 SierraleoneHeritage API

187

The API provides modules and their URL request that users can change the object ID
and the response document format, which could be XML or JSON. An XML response

of the get item module is shown below.

<xml>

<status>success</status>

<data>

<COId>1</COIld>

<AccessionNumber>SLNM.1946.01.02</AccessionNumber>

<Object>Sowei Mask</Object>

<CultureGroup>Unknown</CultureGroup>

<Dimensions>Unknown</Dimensions>

<ProductionDate>Pre 1946</ProductionDate>
<AssociatedPlaces>Unknown</AssociatedPlaces>
<AssociatedPeople>Unknown</AssociatedPeople>

<Museum>Sierra Leone National Museum</Museum>

<FK_ExId>1</FK_ExId>

<Materials>Wood</Materials>

<Description>

Carved wooden helmet mask used by the exclusively female Sande (Mende) or Bondo/Bundu
(Temne) societies. The mask is traditionally worn by a high-ranking member of the society, the
dancing sowei , known as the ndoli jowei among the Mende or a-Nowo among the Temne.
Worn with a raffia costume, the masks typically have a polished black finish, with neck rings,
elaborate coiffure and dignified facial expression. The mask is thought to represent conceptions
of idealised womanhood. This example resembles Sherbro-Bullom types, from the turn of the
20th century. It has a high vertical forehead, and a chequered hairstyle.

</Description>

<ObjectType>Masks, headresses</ObjectType>

<Media>

<Medium>

<MediaTitle>No Data</MediaTitle>

<MediaDescription>No Data</MediaDescription>
<MediaFileName>SLNM.1946.01.02.pic1</MediaFileName>
<MediaType>Image</MediaType>

<FK_COId>1</FK_COId>

<Media>

<small>
http://sierraleone.heritageinformatics.org/assets/objects/sierra_leone national museum/image/t
humbs/small/slnm.1946.01.02.picl.jpg

</small>

<medium>
http://sierraleone.heritageinformatics.org/assets/objects/sierra_leone national museum/image/t
humbs/medium/slnm.1946.01.02.picl.jpg

</medium>

<large>
http://sierraleone.heritageinformatics.org/assets/objects/sierra_leone national museum/image/sl
nm.1946.01.02.picl.jpg

</large>

<media>
http://sierraleone.heritageinformatics.org/assets/objects/sierra_leone national museum/image/sl
nm.1946.01.02.picl.jpg

</media>

</Media>

188

</Medium>

<Medium>

<MediaTitle>No Data</MediaTitle>

<MediaDescription>No Data</MediaDescription>
<MediaFileName>SLNM.1946.01.02.pic2</MediaFileName>
<MediaType>Image</MediaType>

<FK_COId>1</FK_COId>

<Media>

<small>
http://sierraleone.heritageinformatics.org/assets/objects/sierra_leone national museum/image/t
humbs/small/slnm.1946.01.02.pic2.jpg

</small>

<medium>
http://sierraleone.heritageinformatics.org/assets/objects/sierra_leone national museum/image/t
humbs/medium/slnm.1946.01.02.pic2.jpg

</medium>

<large>
http://sierraleone.heritageinformatics.org/assets/objects/sierra_leone national museum/image/sl
nm.1946.01.02.pic2.jpg

</large>

<media>
http://sierraleone.heritageinformatics.org/assets/objects/sierra_leone national museum/image/sl
nm.1946.01.02.pic2.jpg

</media>

</Media>

</Medium>

<Medium>

<MediaTitle>No Data</MediaTitle>

<MediaDescription>No Data</MediaDescription>
<MediaFileName>SLNM.1946.01.02.pic3</MediaFileName>
<MediaType>Image</MediaType>

<FK_COId>1</FK_COId>

<Media>

<small>
http://sierraleone.heritageinformatics.org/assets/objects/sierra_leone national museum/image/t
humbs/small/slnm.1946.01.02.pic3.jpg

</small>

<medium>
http://sierraleone.heritageinformatics.org/assets/objects/sierra_leone national museum/image/t
humbs/medium/slnm.1946.01.02.pic3.jpg

</medium>

<large>
http://sierraleone.heritageinformatics.org/assets/objects/sierra_leone national museum/image/sl
nm.1946.01.02.pic3.jpg

</large>

<media>
http://sierraleone.heritageinformatics.org/assets/objects/sierra_leone national museum/image/sl
nm.1946.01.02.pic3.jpg

</media>

</Media>

</Medium>

<Medium>

<MediaTitle>No Data</MediaTitle>

<MediaDescription>No Data</MediaDescription>

<MediaFileName>No Data</MediaFileName>

189

<MediaType>Image</MediaType>

<FK_COId>1</FK_COId>

<Media>

<small>
http://sierraleone.heritageinformatics.org/assets/objects/all/image/small/no-image.jpg
</small>

<medium>
http://sierraleone.heritageinformatics.org/assets/objects/all/image/medium/no-image.jpg
</medium>

<large>
http://sierraleone.heritageinformatics.org/assets/objects/all/image/large/no-image.jpg
</large>

<media>
http://sierraleone.heritageinformatics.org/assets/objects/all/image/large/no-image.jpg
</media>

</Media>

</Medium>

</Media>

</data>

</xml>

The API page also presents the results of the URL request and a web interface that users

can see results of each open module.

Set
Note!: This input sets the COId variable used in rendering calls with a COId url segment

Getltem Related (old) Relateditems RelatedList MediaObject Associated AllVideos MuseumList CollectionByMuseum Collection (big)

Results

COld: 1

AccessionNumber: SLNM.1946.01.02

Object: Sowei Mask

CultureGroup: Unknown

Dimensions: Unknown

ProductionDate: Pre 1946

AssociatedPlaces: Unknown

AssociatedPeople: Unknown

Museum: Sierra Leone National Museum

FK_Exld: 1

Materials: Wood

Description: Carved wooden helmet mask used by the exclusively female Sande (Mende) or Bondo/Bundu (Temne) societies. The mask is traditionally worn by a high-
ranking member of the society, the dancing sowei , known as the ndoli jowei among the Mende or a-Nowo among the Temne. Worn with a raffia costume, the masks
typically have a polished black finish, with neck rings, elaborate coiffure and dignified facial expression. The mask is thought to represent conceptions of idealised
womanhood. This example resembles Sherbro-Bullom types, from the turn of the 20th century. It has a high vertical forehead, and a chequered hairstyle.
ObjectType: Masks, headresses

. ‘ small medium large media

small medium large media

. ‘ small medium large media

TN

. [NOIMAGE
| AvalLABLE

N A

DR R I R

|small medium large media

Figure A.7 The SierralLeoneHeritage result page

190

Google Maps APIs

Google Maps APIs offer a broad range of service APIs for location, maps and places
processing that support client application on every platform. Users have to create an

account and register to get a key for a particular API.

{) Google Developers Q. (Google Maps APIs) Search

Products > Google Maps APls

@ Google Maps APIs

Millions of websites and apps use Google Maps APIs to power location experiences for their
users.

GET STARTED VIEW PRICING AND PLANS

SEND FEEDBACK

Google Maps for every platform <tq > 05 @ @

Google Maps APIs are available for Android, i0S, web browsers and via HTTP web services. .) N
Android ios Web Web services

GET STARTED

Latest updates

Premium Plan with Maps APIs Credits

When you use the Google Maps APIs together, you bring the

best of Google Maps to everything you build. With our [
Premium Plan, a single usage quota makes it easier to use -
Maps APIs together to help scale your business.

BLOG_PRICING AND PLANS L4, SN . bl L

Figure A.8 Google Maps APIs

The following describes Google Maps APIs that have been implemented into the
SOMARA-based mobile AR application.

Google Places API Web Service

After selecting the HTTP (Web services) button, the system presents a list and details of

services available for developers.

191

{) Google Developers Q. (Google Maps Web Servic...) Search

Products > Google Maps APls > Web Services

@ Google Maps Web Service APls

Implement highly scalable server-side APIs for any app or website.

GET AKEY VIEW PRICING AND PLANS

SEND FEEDBACK

K New Release: Travel time in current and future traffic is now available through both the Standard and Premium Plan of Google Maps Distance Matrix APl and Google Maps Directions API.

VIDEO DIRECTIONS API DISTANCE MATRIX API

Your toolkit for the real world

Access HTTP interfaces, providing geographic data such as geocoding, directions, elevation,
place and time zone information.

:‘m@ Google Maps Geocoding API
Convert between addresses and geographic coordinates.
_& Google Places API Web Service
and add up-to-date i ion about millions of locations

to your site or app.

»& Google Maps Elevation API ‘é Google Maps Directions API
»

Elevation data for anv noint in the world Calculate directions amona multinle location:

Figure A.9 Google Maps Web Service APIs

Google Places API Web Service provides processing for application clients that require

information of a specific place, a list of places based on a specific location, etc.

[Search

) Google D s Q (Google Places API Web

Products > Google Places API > Google Places API Web Service

Q Google Places API Web Service

HOME GUIDES SUPPORT SEND FEEDB,

- Contents.

Developers uide The Google Places API Web Service

Introducing the API
intrecliction Usage Limits and
GetaKey Requirements.
Premium Data Y The Google Places API Web Service is for use in server applications. If you're building a client-side application, take a
Place Search look at the Google Places API for Android and the Places Library in the Google Maps JavaScript API.
Place Details
Place Add

The Google Places APl Web Service is a service that returns information about places — defined within this APl as
establishments, geographic locations, or prominent points of interest — using HTTP requests.

Place Photos
Place Autocomplete
Query Autocomplete

Overviews Introducing the API

Place IDs

Place Types The following place requests are available:

Policies and Terms ® Place Searches return a list of places based on a user's location or search string.

Usage Limits and Billing
Zagat Attribution
Places API Policies
Terms of Service e Place Photos gives you access to the millions of Place related photos stored in Google's Place database.

o Place Details requests return more detailed information about a specific Place, including user reviews.

o Place Add allow you to supplement the data in Google's Places database with data from your application.

® Place can be used to { fill in the name and/or address of a place as you type.
* Query Autocomplete can be used to provide a query prediction service for text-based geographic searches, by
returning suggested queries as you type.

Each of the services is accessed as an HTTP request, and returns either an JSON or XML response. All requests to a
Places service must use the https:// protocol, and include an API key.

Tho Ganala Placac API Wah Serviea iicac a nlaca I ta uniausly identifu a nlaca_Eor dataile ahait tha farmat and ucana

Figure A.10 Google Places API Web Services

192

Place Searches has been implemented into the SOMARA-based mobile AR application
in order to acquire the location (latitude, longitude) of a museum selected by a user. The

module that provide detailed information of a specific place is Text Search Requests

O Google Developers Q_ (Google Places APIWeb... €9) Search
HOME GUIDES SUPPORT SEND FEEDBACK
Text Search Requests Contents

Developer's Guide Nearby Search Requests
Introducti "

roduction The Google Places API Text Search Service is a web service that returns information about a set of places based on a Text Search Requests
Getake X P "o .

L0 string — for example "pizza in New York" or "shoe stores near Ottawa". The service responds with a list of places Radar Search Requests
P Dat . . - e .

remium bata matching the text string and any location bias that has been set. The search response will include a list of places, you Search Responses
Place Search .

acesene can send a Place Details request for more information about any of the places in the response. Status Codes
Place Details

Error Messages
Place Add Search Results
Place Photos The Google Places search services share the same usage limits. However, the Text Search service is subject to a 10~ Premium Data
Place Autocomplete times multiplier. That is, each Text Search request that you make will count as 10 requests against your quota. If you've Accessing Additional
Query Autocomplete purchased the Google Places AP as part of your Google Maps APIs Premium Plan contract, the multiplier may be Results
different. Please refer to the Google Maps APIs Premium Plan documentation for details. The sensor Parameter

Overviews
Place IDs
Place Types A Text Search request is an HTTP URL of the following form:

Policies and Terms

https://maps.googleapis.com/maps/api/place/textsearch/output?parameters

Usage Limits and Billng

Zagat Attributon where output may be either of the following values:
Places API Policies
Terms of Service * json (recommended) indicates output in JavaScript Object Notation (JSON)

* xml indicates output as XML

Certain parameters are required to initiate a search request. As is standard in URLs, all parameters are separated using
the ampersand (&) character.

Required parameters

* query — The text string on which to search, for example: “restaurant’. The Google Places service will return
candidate matches based on this string and order the results based on their perceived relevance. This parameter
becomes optional if the type parameter is also used in the search request.

* key — Your application's AP| key. This key identifies your application for purposes of quota management and so
that places added from your application are made immediately available to your app. See Get a key for Google
Places API Web Service to see how to create an API Project and obtain your key.

Figure A.11 Text Search Requests

The create URL used to acquire the location of British Museum is:

https://maps.googleapis.com/maps/api/place/textsearch/json?query=British%20Museum
&key=AlzaSyC3GtYIgNylldA29Enfyg YM5uS{fjnHm94

A JSON response of the service quest above is presented below.

{

"html_attributions" : [],
"results" : [
{
"formatted address" : "Great Russell St, London WC1B 3DG, United Kingdom",
"geometry" : {
"location" : {
"lat" : 51.5194133,
"Ing" : -0.1269566

H
s

"icon" : "https://maps.gstatic.com/mapfiles/place api/icons/museum-71.png",
"id" : "ad6aaec7b7b0fa2¢97a127c¢24845d76135¢760ae",

"name" : "The British Museum",

"opening_hours" : {

193

"open_now" : false,
"weekday text" : []
¥
"photos" : [
{
"height" : 1067,
"html_attributions" : [

"u003ca
href=\"https://maps.google.com/maps/contrib/101073730345618386482/photos\"\u003eCarlos
Lopez\u003c/a\u003e"

I8

"photo_reference" : "CmRJAAAANFms W7GBoiodzoFq j5-
3bK33hEnHBGgQpEJsQQX9UDem-MY fgjOrL8i4ZINQI1-
ZULQQ_RyBHBS5rZ8mix2L98KM60DHA9DPLHHxkBrqsOtzFMfAzt4rZ9PthpPQQf7EhAJD
Pj10P4iZ2p7NVWpB2bFGhTKjb93zBGL kz6R6Fs05M8Lob-yQ",

"width" : 1600
}
1,
"place_id" : "ChIJBOOTMDIbdkgRp0JWbQGZsS8",
"rating" : 4.6,

"reference” : "CnRIAAAAWeVJIBpEKNEbdHjIJwAUVnmP7id9B3REOB-
LMXjWiGLIqx94YdaqfuevL3Sb2LL90S6xqIAY TWZoZhmmndVBs6UiKJ3UIZ2 QSFxC8G
Xeb-4iuu-
bFJy2uy2Rwvt7Av5Tvp4 9 RttA3mBRxM8s0axIQPASWPWHEG70e5Lp2JNNrGhoUOX7u
QlipJmMZaaHtUCOPnjvprfl",

nn

"types" : ["museum", "point_of interest", "establishment"]

H
I,
"status" : "OK"
}
Google Static Maps API

Google Static Maps API provides a static map of a location (latitude, longitude) that can
be presented on a website or used by any application. The SOMARA-based Mobile AR
application requires a static map to present the position of a selected museum or the

origin of a selected object.

194

{) Google Dev: Q[Google Static Maps API €)) Search

Products > Google Maps APIs > ForWeb > Google Static Maps API

Google Static Maps API

Implement maps as images in your apps and sites.

GET A KEY VIEW PRICING AND PLANS

HOME GUIDES SUPPORT SEND FEEDBACK

Fast and lightweight.

Create your map based on URL parameters sent through a standard HTTPS request. Display
the map as an image.

)

Yoy,
T

v &

Maps Location Customization

Integrate base maps, styled maps or satellite imagery. Use addresses or coordinates to specify locations. Add custom markers, shapes and polylines.

Figure A.12 Google Static Maps API

The URL request includes the location of a particular place, the size of the map, the

marker indicating the position of the place, etc.

e Maps AP1

Google Static Maps API

HOME GUIDES AT

P Google Static Maps Developer Guide e
catymisipon poe
Ungelns Yourweb g a |
r—
e sontoiT e
JavaScpt AP Parameter Usage
et Vewimage 4 k. Note: Th GoageStatc Maps Al Usag i have change. resting an APIkey andncluding nyour eqest lws Seotyogocatons
Places APl Javaserp Ly Youtotrack usage nthe Google Developers Consale and o ddidonal quota f equire. ZoomLesl
mesies
skt
This document details the Google Static Maps API 2. To update your v1 URLs, please consult the Upgrade Guide. Image Fomats
orTes
syt
A Quick Example Markers
Gogestes
Pl image of downtown New York City, which s APipatrs

dislayed below: Viewpors
plctPosonngf

Troubeshootg and

147,74, 11614, 74,01
rierszcolor et Clabel CH7CHD. 716217,-73.998284
ey YOUR_APLKEY,

3
i A o
[RE S FERET &5
| RSN ol
Goggle! | My, % = lsp s 2016 Gonge
Noticethat you dont need o do anything ‘special” D N
Allwe needed cings tag. Pl

anywhere onyour webipage where you can place an image.

Figure A.13 The Google Static Maps URL request

195

A service request for a static map that presents the location of British Museum in the

center 1s:

https://maps.googleapis.com/maps/api/staticmap?center=51.5194133,-
0.1269566&zoom=13&s1ze=600x600&maptype=roadmap&markers=color:red|label:S|5
1.5194133,-0.1269566&key=AlzaSyDpBmBxxtpSrDyGBKOPR 1glbefdgiH Q7E

The location of British Museum is Latitude: 51.5194133, Longitude: -0.1269566.

196

B. Tracking Configuration for
Home-based Learning
Scenario

197

<?xml version="1.0" encoding="UTF-8"?>
<TrackingData>
<Sensors>
<Sensor Type="FeatureBasedSensorSource" Subtype="ML3D">
<SensorID>FeatureBasedSensorSource 0</SensorID>
<Parameters>
<featureorientationassignment>gravity</featureorientationassignment>
<MaxObjectsToDetectPerFrame>5</MaxObjectsToDetectPerFrame>
<MaxObjectsToTrackInParalle]>1</MaxObjectsToTrackInParallel>
</Parameters>
<SensorCOS>
<SensorCosID>fb23be3415c¢00141a340d36b2766f610</SensorCosID>
<parameters>
<numextensiblefeatures>0</numextensiblefeatures>
<mintriangulationangle>6</mintriangulationangle>
<map>1b23be3415c¢00141a340d36b27661610.f3b</map>
<MinMatches>15</MinMatches>
<NumExtensibleFeatures>250</NumExtensibleFeatures>
</parameters>
</SensorCOS>
<SensorCOS>
<SensorCosID>88320ad8a0b8d7fb9ccdd466217b1d69</SensorCosID>
<parameters>
<numextensiblefeatures>0</numextensiblefeatures>
<mintriangulationangle>6</mintriangulationangle>
<map>88320ad8a0b8d7tb9ccdd466217b1d69.f3b</map>
<MinMatches>15</MinMatches>
<NumExtensibleFeatures>250</NumExtensibleFeatures>
</parameters>
</SensorCOS>
</Sensor>
</Sensors>
<Connections>
<COS>
<Name>cos1</Name>
<Fuser Type="SmoothingFuser">
<Parameters>
<AlphaRotation>0.8</AlphaRotation>
<AlphaTranslation>1.0</AlphaTranslation>
<GammaRotation>0.8</GammaRotation>
<GammaTranslation>1.0</GammaTranslation>
<KeepPoseForNumberOfFrames>0</KeepPoseForNumberOfFrames>
</Parameters>
</Fuser>
<SensorSource>
<SensorID>FeatureBasedSensorSource 0</SensorID>
<SensorCosID>fb23be3415c¢00141a340d36b2766f610</SensorCosID>
<HandEyeCalibration>
<TranslationOffset>
<x>0.0</x>
<y>0_0</y>
<z>0.0</z>
</TranslationOffset>
<RotationOffset>
<x>0.0</x>

<y>0_0</y>
<z>0.0</z>
<w>1.0</w>
</RotationOffset>
</HandEyeCalibration>
<COSOffset>
<TranslationOffset>
<x>0.0</x>
<y>0.0</y>
<z>0.0</z>
</TranslationOffset>
<RotationOffset>
<x>0.0</x>
<y>0_0</y>
<z>0.0</z>
<w>1.0</w>
</RotationOffset>
</COSOffset>
</SensorSource>
</COS>
<COS>
<Name>cos2</Name>
<Fuser Type="SmoothingFuser">
<Parameters>
<AlphaRotation>0.8</AlphaRotation>
<AlphaTranslation>1.0</AlphaTranslation>
<GammaRotation>0.8</GammaRotation>
<GammaTranslation>1.0</GammaTranslation>
<KeepPoseForNumberOfFrames>0</KeepPoseForNumberOfFrames>
</Parameters>
</Fuser>
<SensorSource>
<SensorID>FeatureBasedSensorSource 0</SensorID>
<SensorCosID>88320ad8a0b8d7fb9ccdd466217b1d69</SensorCosID>
<HandEyeCalibration>
<TranslationOffset>
<x>0.0</x>
<y>0_0</y>
<z>0.0</z>
</TranslationOffset>
<RotationOffset>
<x>0.0</x>
<y>0.0</y>
<z>0.0</z>
<w>1.0</w>
</RotationOffset>
</HandEyeCalibration>
<COSOffset>
<TranslationOffset>
<x>0.0</x>
<y>0_0</y>
<z>0.0</z>
</TranslationOffset>
<RotationOffset>
<x>0.0</x>

198

<y>0_0</y>
<z>0.0</z>
<w>1.0</w>
</RotationOffset>
</COSOffset>
</SensorSource>
</COS>
</Connections>
</TrackingData>

199

200

C. Tracking Configuration for
Home-based Learning
Scenario

<?xml version="1.0"?>
<TrackingData>
<Sensors>
<Sensor Type="FeatureBasedSensorSource" Subtype="Fast">
<SensorID>FeatureTrackingl</SensorID>
<Parameters>
<FeatureDescriptorAlignment>regular</FeatureDescriptorAlignment>
<MaxObjectsToDetectPerFrame>5</MaxObjectsToDetectPerFrame>
<MaxObjectsToTrackInParalle]>1</MaxObjectsToTrackInParallel>
<SimilarityThreshold>0.7</Similarity Threshold>
</Parameters>
<SensorCOS>
<SensorCosID>Patch1</SensorCosID>
<Parameters>
<Referencelmage>Nomoli.jpg</Referencelmage>
<SimilarityThreshold>0.7</Similarity Threshold>
</Parameters>
</SensorCOS>
<SensorCOS>
<SensorCosID>Patch2</SensorCosID>
<Parameters>
<Referencelmage>Nomolil .jpg</Referencelmage>
<SimilarityThreshold>0.8</Similarity Threshold>
</Parameters>
</SensorCOS>
<SensorCOS>
<SensorCosID>Patch3</SensorCosID>
<Parameters>
<Referencelmage>bowll .jpg</Referencelmage>
<SimilarityThreshold>0.8</Similarity Threshold>
</Parameters>
</SensorCOS>
<SensorCOS>
<SensorCosID>Patch4</SensorCosID>
<Parameters>
<Referencelmage>render.jpg</Referencelmage>
<SimilarityThreshold>0.8</Similarity Threshold>
</Parameters>
</SensorCOS>
</Sensor>
</Sensors>
<Connections>
<COS>
<Name>cos1</Name>
<Fuser Type="SmoothingFuser">
<Parameters>

201

<KeepPoseForNumberOfFrames>2</KeepPoseForNumberOfFrames>

<GravityAssistance></Gravity Assistance>
<AlphaTranslation>0.8</AlphaTranslation>
<GammaTranslation>0.8</GammaTranslation>
<AlphaRotation>0.5</AlphaRotation>
<GammaRotation>0.5</GammaRotation>

<ContinueLostTrackingWithOrientationSensor>false</ContinueLostTrackingWithOrient

ationSensor>
</Parameters>

202

</Fuser>
<SensorSource>
<SensorID>FeatureTrackingl</SensorID>
<SensorCosID>Patch1</SensorCosID>
<HandEyeCalibration>
<TranslationOffset>
<X>0</X>
<Y>0</Y>
<7>0</7Z>
</TranslationOffset>
<RotationOffset>
<X>0</X>
<Y>0</Y>
<7>0</Z>
<W>1</W>
</RotationOffset>
</HandEyeCalibration>
<COSOffset>
<TranslationOffset>
<X>0</X>
<Y>0</Y>
<7>0</Z>
</TranslationOffset>
<RotationOffset>
<X>0</X>
<Y>0</Y>
<7>0</7Z>
<W>1</W>
</RotationOffset>
</COSOffset>
</SensorSource>
</COS>
<COS>
<Name>cos2</Name>
<Fuser Type="BestQualityFuser">
<Parameters>
<KeepPoseForNumberOfFrames>2</KeepPoseForNumberOfFrames>
<GravityAssistance></GravityAssistance>
<AlphaTranslation>0.8</AlphaTranslation>
<GammaTranslation>0.8</GammaTranslation>
<AlphaRotation>0.5</AlphaRotation>
<GammaRotation>0.5</GammaRotation>
<ContinueLostTrackingWithOrientationSensor>false</ContinueLostTrackingWithOrient
ationSensor>
</Parameters>
</Fuser>
<SensorSource>
<SensorID>FeatureTracking1</SensorID>
<SensorCosID>Patch2</SensorCosID>
<HandEyeCalibration>
<TranslationOffset>
<X>0</X>
<Y>0</Y>
<7>0</7Z>
</TranslationOffset>

<RotationOffset>
<X>0</X>
<Y>0</Y>
<7>0</7Z>
<W>1</W>
</RotationOffset>
</HandEyeCalibration>
<COSOffset>
<TranslationOffset>
<X>0</X>
<Y>0</Y>
<7>0</Z>
</TranslationOffset>
<RotationOffset>
<X>0</X>
<Y>0</Y>
<7>0</Z>
<W>1</W>
</RotationOffset>
</COSOffset>
</SensorSource>
</COS>
<COS>
<Name>cos3</Name>
<Fuser Type="BestQualityFuser">
<Parameters>

<KeepPoseForNumberOfFrames>2</KeepPoseForNumberOfFrames>

<GravityAssistance></Gravity Assistance>

<AlphaTranslation>0.8</AlphaTranslation>
<GammaTranslation>0.8</GammaTranslation>

<AlphaRotation>0.5</AlphaRotation>
<GammaRotation>0.5</GammaRotation>

203

<ContinueLostTrackingWithOrientationSensor>false</ContinueLostTrackingWithOrientationS

ensor>
</Parameters>
</Fuser>
<SensorSource>
<SensorID>FeatureTracking1</SensorID>
<SensorCosID>Patch3</SensorCosID>
<HandEyeCalibration>
<TranslationOffset>
<X>0</X>
<Y>0</Y>
<7>0</Z>
</TranslationOffset>
<RotationOffset>
<X>0</X>
<Y>0</Y>
<7>0</Z>
<W>1</W>
</RotationOffset>
</HandEyeCalibration>
<COSOffset>
<TranslationOffset>
<X>0</X>

<Y>0</Y>
<7>0</Z>
</TranslationOffset>
<RotationOffset>
<X>0</X>
<Y>0</Y>
<Z7>0</Z>
<W>1</W>
</RotationOffset>
</COSOffset>
</SensorSource>
</COS>
<COS>
<Name>cos4</Name>

<Fuser Type="BestQualityFuser">

<Parameters>

<KeepPoseForNumberOfFrames>2</KeepPoseForNumberOfFrames>
<GravityAssistance></GravityAssistance>
<AlphaTranslation>0.8</AlphaTranslation>
<GammaTranslation>0.8</GammaTranslation>
<AlphaRotation>0.5</AlphaRotation>
<GammaRotation>0.5</GammaRotation>

204

<ContinueLostTrackingWithOrientationSensor>false</ContinueLostTrackingWithOrientationS

ensor>
</Parameters>
</Fuser>
<SensorSource>

<SensorID>FeatureTracking1</SensorID>
<SensorCosID>Patch4</SensorCosID>

<HandEyeCalibration>
<TranslationOffset>
<X>0</X>
<Y>0</Y>
<7>0</Z>
</TranslationOffset>
<RotationOffset>
<X>0</X>
<Y>0</Y>
<7>0</Z>
<W>1</W>
</RotationOffset>
</HandEyeCalibration>
<COSOffset>
<TranslationOffset>
<X>0</X>
<Y>0</Y>
<7>0</Z>
</TranslationOffset>
<RotationOffset>
<X>0</X>
<Y>0</Y>
<7>0</Z>
<W>1</W>
</RotationOffset>
</COSOffset>

205

</SensorSource>
</COS>
</Connections>
</TrackingData>

206

D. The 3D Maps of Reference
Objects

207

Figure D.1 presents the Metaio Toolbox on iPad used to create a map of a physical

reference object. Users select the 3D Maps icon in order to create a new 3D tracking

map of an object.

NoSIM 9 “u 1 Not Changing D | No S ¥ “u Net Chgey; D
& Toolbox A 3D Maps
- 3D Maps New 30 Mag /
AREL Scenarios
(4
ol y
a Camera calibration

o File Management

o Record Test Data

Figure D.1 Metaio Toolbox on iOS

After the Start button is touched, the application shows a camera view that allow users
to point the camera on the mobile device at the targeted object and move around in
order to create a good quality map of the object. Figure D.2 illustrates the application

creating a 3D map of a sample object. The application learns the environment and then

tracks the features of the object that can be seen on the camera view.

208

Figure D.2 The created map of a sample object

The 3D map can be saved to the mobile device and then transferred to Metaio Creator
running on a PC or MAC where the map file is loaded and exported to two separate
files including a map file and a tracking configuration file in XML format. The tracking
configuration file and 3D map file are specifically created for a particular reference
object and these need to be stored in the library of the novel mobile AR application.
Figure D.3 shows Creator used to create an AR environment of a reference object that
could be a physical object, image, environment, human face or marker. The process
starts by selecting a 3D map file of a reference object. For physical object tracking,
developers have to import or open a 3D map of the reference object that has been

created by Metaio Toolbox.

209

© Crsior Fie Eat View Ewot G Hep TRNBG A < ® Vs nm Q

Figure D.3 Metaio Creator on Mac

The saved 3D map file transferred from the mobile device is opened in Creator,
presenting a 3D map of the physical object. Figure D.4 shows the selected 3D map file

created and saved by Metaio Toolbox that is loaded into the Creator.

@ Crestor Fle €t Vew ©pot G twp TS G A+« ®wnmmnz Q=

Figure D.4 A selected 3D map file of a sample object

Figure D.5 shows the 3D map of a sample object on the Creator. The 3D map is

exported to a tracking configuration file and a tracking map.

210

TS0 Ai v mmnmne Q= |

o PN

W D

T E

¥ @€ B

n sy

mmmmm

Figure D.5 The 3D map of a sample object

Figure D.6 presents the 3D map exported to a tracking configuration file and a 3D
tracking map that is saved and copied into the iOS project for building marker-less

tracking components.

| NN J "7 TrackingData

< = [0 ol v VAR - B Q
Favorites

& Al My Files -

¢ iCloud Drive XL

@) AirDrop fb23be3415c00141 Tracking.xm|

a340d36...1610.f3b
#: Applications

[& Desktop
@ sasithornrattanarungrot
@ Documents
2} Dropbox
B Progress report-Form.docx
Tags
Managed Objects
® Red
Orange

Yellow

LY

Figure D.6 The tracking configuration files exported from a 3D map

211

The figures below present the map file of another reference object installed into the

mobile AR client for the museum-based learning scenario.

Figure D.7 The 3D map of a sample object

eoce “New project - metaio Creator

45

Ak - o) - [Fer

Quick preview

Upload to metaio Cloud

Ul Designer Instant Tracking

Figure D.8 The 3D map on Metaio Creator

212

@ @ ['9 TrackingData_Box

< M = [0 ol 2= v P Q
Favorites

E All My Files -

¢™ iCloud Drive .

q 88320adB8a0b8d7fb Tracking.xml

™)

@ Airrop 9ccdd46...1d69.13b

/3 Applications

= Desktop

ﬁj sasithornrattanarungrot
@ Documents
3,3 Dropbox

D Progress report-Form.docx

Shared
[david-pc
[juliet
[E] workgroup

Tags

Figure D.9 The 3D map file and tracking configuration file

213

E. Installing the Metaio
Augmented Reality SDK

214

In order to build a mobile AR application, the development framework requires an AR
SDK for performing AR tasks including object tracking, recognition and content
visualization. In this research, the mobile AR application uses Metaio’s native AR SDK
that can be downloaded from the Metaio website. After installing the SDK into the
computer and opening the SDK folder, the developer sees the existing libraries for the
development frameworks it supports. Figure E.1 presents the provided libraries and

frameworks for developing environments including Android, 10S and Unity.

| NON | metaioSDK

< > = [0 ol #- v % v Q
Favorites

2} Dropbox

E All My Files

"\ iCloud Drive Android i0S Unity doc

@ AirDrop

/> Applications

[Desktop

@ Documents printouts templatesContent tutorialContent_cro
0 Downloads crossplatform ssplatform

H Movies

ﬂ Music

Pictures

Devices

:;’; LocalDataHD

P "

Figure E.1 The Metaio development frameworks

Developers are able to choose the SDK specifically created for each platform in order to
build a mobile AR application based on their needs. Figure E.2 shows the components

for developing a mobile AR application on 10S SDK.

215

:

G00

% v

If

o ol

£ _ioS

Favorites
‘.3 Dropbox
£ All My Files
<™ iCloud Drive
@ AirDrop
73 Applications
[Desktop
@ Documents
0 Downloads
H Movies
ﬂ Music

Pictures

Examples_CloudPI
ugin

Tools

Devices

L:; LocalDataHD

Examples_SDK

metaioSDK.framew
ork

Templates_SDK

Figure E.2 10S development framework

After creating a new project in XCode, the metaioSDK.framework file has to be copied

and pasted into the folder of the created mobile AR application. Figure E.3 shows the

folder of the application and development environment inside including the

metaioSDK. framework.

Favorites
:} Dropbox
& Al My Files
¢ iCloud Drive

@ AirDrop

ARMuseumResearc ~ ARMuseumResearc
h h.xcodeproj

#3: Applications
= Desktop

[Hj Documents
0 Downloads
H Movies

ﬂ Music
Pictures

Devices

; LocalData...

O el

metaioSDK.framew
ork

ARMuseumResearc
hTests

Figure E.3 The mobile AR application development environment

216

The developer opens the i10S project in the XCode IDE and adds the
metaioSDK.framework and other necessary libraries into the Linked Frameworks and
Libraries in the General Menu. Figure E.4 illustrates the framework and libraries

required in the development environment.

£S5 AssetsLibrary.framework Required

=5 metaioSDK.framework Required

<

@ CoreGraphics.framework Required
@ MobileCoreServices.framework Required
@ Corelocation.framework Required
@ CoreData.framework Required
libxmi2.dylib Required
libz.dylib Required
=5 CoreMotion.framework Required
@ OpenGLES.framework Required
=5 AudioToolbox.framework Required
=5 QuartzCore.framework Required
£S5 CoreVideo.framework Required
@ CoreMedia.framework Required
@ AVFoundation.framework Required
@ MediaPlayer.framework Required
@ CFNetwork.framework Required
ES9 EventKit.framework Required £
£S5 Security.framework Required
=3 Corelmage.framework Required
<

<

£S5 UIKit.framework Required
=5 Foundation.framework

-+

1
]
2
€
5
0
Q

>

Figure E.4 The frameworks and libraries in the development environment

The next step is to register the application in the Metaio Developer Portal; the system
then creates an SDK signature for each application. The developer must copy the
signature and pass it into the MetaioLicenseString in the Info menu. Figure E.5 shows

the application registration in the portal that can be done after logging into the system.

217

App registration

roorers: [- [

Register your App

ﬂ Type here to search... Type here to search... v
Registration Date Name Identifier
1 2015/03/05 Example ac.uk.sussex.rattanarungrot. Example @ (4]
2 2014/07/30 ARMusuemResearch ac.uk.sussex.juliet ARMusuemResearch @
3 2014/07/30 ARMuseumResearch ac.uk.sussex.juliet ARMuseumResearch @
4 2014/07/29 ac.uk.sussex.juliet. ARResearchMuseum ARResearchMuseum Q|-
5 2014/07/29 ARResearchMuseum ac.uk.sussex.juliet ARResearchMuseum @
6 2014/07/28 AF ac.uk.sussex. gl @
7 2014/05/23 JunaioPluginTemplate ac.uk.sussex.juliet. JunaioPluginTemplate ol
8 2014/05/23 junaioplugin.template ac.uk.sussex.juliet.ji i @
9 2014/05/23 ARTestAppMetaio ac.uk.sussex.rattanarungrot. ARTestAppMetaio @
10 2013/12/06 ARMuseumSingleView ac.uk.sussex grot. i @ =
15 applications found
SDK Signatures
ARMuseumResearch (ac.uk.sussex.rattanarungrot. ARMuseumResearch)
Type here to search... Type here to search... Type here to search... 7
License Version
1 Metaio SDK Free 6.x Di4UKUCcSKJRf/wnyhikitBwOXYH+h9K7HLMwSWoQYE= Eh
2 Metaio SDK Free 5. jagO2/XUcTVWWnMSZHWIAT/ai0m98IAaN8b+UXcNSlo= B
3 Metaio SDK Free 4x UKWQ/cMOiolxE20D4UEVMnIajjSWmXbcen9KI7/AXP8= B

Figure E.5 The application registration page on the Metaio developer portal

The Metaio SDK version 5.X signature is copied and pasted into the XCode iOS Target

Properties. Figure E.6 presents the SDK signature and other necessary keys in the

development environment. The signature is used to identify the member or user of the

SDK installed in the system.

218

Bundle name ${PRODUCT_NAME}

Bundle identifier ac.uk.sussex.rattanarungrot.$(PRODUCT_NAME:rfc1034identifier)

InfoDictionary version 6.0

Main storyboard file base name Main_iPhone

Bundle version 1.0

Main storyboard file base name (iPad) Main_iPad

Executable file S) ${EXECUTABLE_NAME}

Application requires iPhone environment Boolean YES :

» Required device capabilities (1 item)

» Supported interface orientations

(4 items)

Bundle display name String ${PRODUCT_NAME}

AP AP AP AP AP AP AP AP AP AP AP AP AP AP AP A a»

MetaioLicenseString String ja@02/XUcTVWWnMSZHWIAT/ai0m98IAaN8b+UXcNSlo=

Bundle OS Type code String APPL

Bundle creator OS Type code 2?7?

Localization native development region en .
» Supported interface orientations (iPad) (4 items)

Bundle versions string, short 1.0

Figure E.6 The MetaioLicenseString in the development environment

In the Metaio SDK folder, the developer must copy MetaioSDKViewController files
and EAGLView files and paste them into the application development folder. Then
these files have to be added into the project in the XCode. Figure E.7 presents the
Metaio SDK folder containing the required files.

eoce Demo
< B=ow s 0o o ° % Q
Favorites
& Al My Files
& iCloud Drive .l m h “mm h mm et pch
@) Airdrop Delegate.n AppDelegatem AREL : troller AREL m; troller AREL x; trol en.iproj Example-info.plist Example-Prefix.pch
7 Applications : ’
[Desktop
{3} sasithornrattanarungrot .m h .mm h .mm
[Documents main.m NonAREL Resources ViewController.n ViewController.mm
ntrollerh ntroller.mm
23 Dropbox

[Progress report-Form.docx
Shared
@ david-pc
juliet
Tags
Managed Objects
® Red
Orange
Yellow
® Green

® Biue

Figure E.7 The Metaio SDK folder containing the required files

The MetaioSDKViewController and EAGLView files utilise the
MetaioSDK.framework in order to create a sensor interface and perform object tracking
and rendering. Figure E.8 presents the project of the mobile AR application in XCode

and the Metaio SDK’s view controller and its supporting files.

L]
8

e » 7 ARMuseumRassarch)) Phone 6 Plus ARMussumRessarch | Buld ARMuseumResearch: Succeeded | 20/07/2015 at 0308 /) 8 ® < O i
R Q& < 8 < [ARMuseumResearch)[4 ARMuseumResearch) i EAGLView.h) No Selection <a> 0D e
7
XMLContentParserh A Quick Heip
h LContentParser 7/ EAGLView.h
m XMLContentParsormm A 7 metaio SOK
lement h "
i) BifbourdSincleEiement A // Copyright 2007-2013 metaio GmbH. AlL rights reserved.
m BilsoardSingieElomentm A 7
i) X0A.Slementh A #import <UIKit/UIKit.h>
@ XMLElemont.mm A | sinport <opencles/esial.n>
X Finport <0penGLES/ES1/glext.h>
h ImagesElementh A | sinport <opencLes/es2/al.h>
m ImagesElement mm A t <OpenGLES/ES2/glext.h>
h MuseumContentElementh A
m MuseumContentElement.mm A @class EAGLContext;
h XMUMuseumContentParsecn A
@ XMUMuseumContentParsormm A
/7 This class wrops the CAEAGLLayer from CorcAnimation into a convenient UIView subclass.
[Assotst 77 The view content is basically an EAGL surface you render your OpenGL scene into.
= / r-opaque will only work if the EAGL surfoce has an alpha channcl.
A
A :
he pixel dinensions of the CAEAGLLayer.
A GLint franebufferwidtn;
= A GLint franebutferteignt
B AopDolegate.n // The OpenGL ES nanes for the francbutfer and renderbuffer used to render to this view.
e . GLuint depthAenderbutfer;
Main iPhone storyboard " 0L supporthntialias ing;
Main_iPad.storyboard ™ //Ant1-al1asing buffers
 ViewControllerh ™ GLuint msaaFranebuf fer;
GLuint msaaRenderBuffer
m VewControlormm A GLuint msaaDepthauffe.
Images xcassets epublic
< GLuint defaultFramebuffer, colorRenderbuffer;
9 Supportng Fios ™
h Protogramme...ewControlierh A ¥
 Protogramme...Controllormm A eproperty (nonatomic, retain) EAGLContext mcontext;
motogramme...Controlier i
oDl = O = (void)setFramebuffer;
CameraView.xib A = (BOOL)presentFramebuffer;
. A | - (8000 devicesupportsantiatiasing;
® CollectionViewCell.m A
N - (GLuint) getDefaultFraneButfer;
Tl s = (GLuint) getColorRenderBuffer;
B ARMuseumViewControlleth A Y £
eend 0 0ooean
® ARMuseumViewControllocmm A
h BilboardContentParsech A
® BilboardContentParsorm A
ARMuseumViewControllerxd A
i ModelContontsParsorh A No Matct
o Matches
m ModoContentsParserm A lo Matche
K ARMuseumW...iewControllerh A
@ ARMusoumW...Controliocmm A
ARMuseumW...wControllerxib A
. ReforancaObjoctio.n A
O ©

Figure E.8 The project of the mobile AR application and the
MetaioSDKViewController

220

F. Object Tracking

221

Vision-based tracking

Real-time vision-based tracking is typically implemented in mobile AR systems
because new generation mobile devices already have a high quality camera that can be
used as a sensor. Vision-based tracking uses computer vision methods for processing
video streams and images. Performing vision-based tracking on mobile AR results in
low computational requirements, higher accuracy, flexibility, robustness and cost
savings in operations when compared to other sensing techniques [19]. In addition,
there are some advantages of vision-based tracking such as higher precision, less
sensitivity to intervention and more compact systems [110]. Most of the currently

available tracking techniques are composed of feature-based and model-based tracking
[111].

For indoor AR applications, vision-based tracking is particularly suitable for
implementation because of its hardware requirements, robustness and accuracy.
Computer vision does not rely on the volume of sensitizers, unlike magnetic,
mechanical or ultrasonic sensors [61]. In addition, only computer vision can guarantee
an accurate alignment between real objects and virtual objects. Vision-based tracking
requires cameras, which are equipped in mobile devices or connected to computers as
its optical sensor. Registration in an AR system has to be accurate in order to maintain
the user’s perception of virtual objects related to real objects in the same environment.
In addition, there is a close-loop AR system that can dynamically measure registration
errors and correct the cause of any mis-registration such as camera orientation or

position [112].

The closed-loop system can correct temporal errors in video-based AR systems that are
analogous to vision-based tracking systems [24]. Nevertheless, registration is the most
crucial component in AR systems. Virtual objects have to be adjusted with the 3D
location and orientation of real objects when users move their viewpoint. Adjustment is
based on precisely estimating a real-world viewing pose that is six degrees of freedom
(6DOF): three degrees of freedom for position and three for orientation. The accuracy
of tracked objects posed correctly defines the projection of 3D virtual objects into the

real world scene[113].

222

Feature-based tracking

Feature-based tracking uses fiducials that are easily recognizable landmarks [27] or
known artificial patterns [110] as a marker for tracking and overlaying with virtual
objects using registration techniques or camera pose estimation. The fundamental
characteristic of feature-based tracking is to discover 2D image features and the
relationship with the 3D graphic objects or scenes relevant to their features. Another
feature is camera pose calculation of 2D features and finding the 3D coordinates of
markers for object registration. In addition, feature-based tracking can be divided into

two groups: visual marker-based and visual marker-less tracking [24][27].

Marker-based tracking

Mobile AR applications typically use original printed markers that are in square or
circular shapes. Markers or fiducial markers are more easily tracked and processed by
cameras and computer vision approaches when they are placed on specific or general
positions around the environment such as tabletops, books or walls. The fiducial
markers offer feature points that are tracked and 2D image coordinates are identified
and calculated for 3D object coordinates. There is a new marker technique that is less
obtrusive than the usual black and white squares, called Studierstube Tracker. The
Studierstube Tracker is a new marker-tracking library for mobile AR that supports
frame markers, split markers and dot markers [114]. Figure F.1 illustrate a frame

marker, split marker and dot marker that can be tracked by the Studierstube Tracker.

?prdcr width /- N e () e [
C_,Ode e I).llla End Start)
Orientation
Check
Data
(] (] () []
Data
Check
Orientation
Start End 5) \ A A
\ /
(a) Frame marker (b) Split marker (c) Dot marker

Figure F.1 Markers for Studierstube Tracker [114]

Marker-based tracking has been found in multiple AR applications. Fiducial markers

are still useful as they can be tracked with high accuracy, robustness and low

223

computational power. In contrast, printed markers have to be installed in the real
environment where good visualization and interaction with users is not guaranteed. Due
to the functionality in computer vision methods, mobile AR applications are not limited
to use in indoor environments. In addition, applying marker-based AR in some
environments may cause occlusion of markers by real objects; this will affect the quality
of view and appearance. Applying fiducial markers is inconvenient because they have to
be placed in the real environment and the system can track only those markers in the
view. Moreover, markers have specific shapes and colors while image-processing
algorithms have much more potential to track a variety of shapes, colors and textures
found in the natural feature extraction of real objects [115]. Furthermore, markers are
useless or inconvenient to present and track in some outdoor applications such as
location-based AR, gaming or travel guides that offer graphics, media content and
location-based user interfaces. Applying hybrid tracking such as GPS, Radio-Frequency
Identification (RFID) and tracking sensors with marker-less techniques can be done

effectively to improve the usability and functionality of the services.

The implementation of marker-less tracking is more complicated and consumes more
processing power than marker-based tracking. However, marker-less tracking leads to
further advanced developments in computer vision and image processing methods,
allowing the system to track real objects in the real environment without the use of any

fiducial markers.

Marker-less tracking

Trends in mobile AR applications have recently focused on marker-less tracking that
uses computer vision for tracking the natural features of objects to create highly
miscellaneous and flexible applications. Marker-less tracking improves usability and
ubiquity in AR, especially in complex environments, because it does not require any
markers to be placed on real world scenes. The systems can utilize natural features in
the real environment and track any part of the scene as a marker [110]. Marker-less AR
effectively enhances the user’s experience in 3D visualization and interaction with the
virtual objects in the real world scenes. Marker-less tracking extracts natural features of
real objects such as points, lines, edges and textures [24] by using natural feature
extraction methods. The system performs detecting and tracking in any part of the real

environment and overlays 3D virtual models at the calculated pose by using optical

224

sensors and registration techniques. These methods make the development of mobile
AR applications much more flexible and scalable for indoor or outdoor use by

implementing marker-less tracking with other sensing techniques.

The difference between marker-based and marker-less tracking is in the methods that
are used to track and register the computer-generated virtual objects. In addition,
performing tracking in complex environments such as those involving moving objects,
occlusion of objects and illumination increases complexity in processing. Because of
these factors, marker-less tracking is obviously more complicated and has greater
computational requirements than marker-based tracking. Advanced applications in
marker-less AR at the moment can be found in interactive prints, shopping guides,
advertising, maintenance tools, AR magazines, travel guides, augmented cities, AR

kiosks, etc.

Marker-less tracking applications enhance the AR experiences of users by augmenting
computer-generated virtual objects from real objects in the real environment and
presenting in different ways, rather than relying on fiducial markers. Figure F.2 presents

the example of marker-less tracking by augmented a targeted object [45].

Figure F.2 Marker-less tracking

Real-time natural feature tracking has been studied and developed continuously for

tracking or detection techniques [113][116][117][118][119] and implementation

225

techniques [120]. The following research proposes advanced development and

technologies in natural feature tracking.

One of the architectures for marker-less tracking is detecting and tracking natural
features such as points and regions occurring in video images or unprepared
environments by using a multistage tracking algorithm. The architecture is composed of
natural feature detection and selection, multistage motion estimation and feedback
evaluation. Additionally, the applications can perform image sequence annotation, pose
stabilization and tracking range extension. The system is implemented in a closed-loop
architecture that maintains performance and accuracy [113]. Figure F.3 shows the

natural feature tracking that present tags of detected positions.

Figure F.3 Natural feature tracking [113]

Scale Invariant Feature Transform (SIFT) and Fast Keypoint Recognition Algorithm
(FERN) are natural feature tracking techniques in which the main tasks of natural
feature extraction are composed of feature detection, feature tracking, feature extraction
and pose calculation in real-time. These techniques are modified to perform real-time
6DOF tracking and pose refinement on mobile phones. SIFT performs feature detection,
feature tracking, descriptor creation, descriptor matching, outlier removal and target
data acquisition, while FERN performs feature detection, classification, training, active
search and outlier rejection [116]. In addition, there is another real-time architecture for
feature tracking in which its operations are performed in a synchronized multithread
framework composed of video frame capture, optical-flow feature tracking, distinctive

feature detection and virtual object rendering. The system also performs recognition on

226

different stored scenes by matching SIFT features [117]. Figure F.4 presents the Handy

AR using feature-based maker-less tracking.

Figure F.4 Handy AR [117]

The structure-from-motion technique is a marker-less real-time tracking technique for
AR applications using a fisheye lens on a camera for tracking 3D scene points and 2D
feature points, and a tracker is used to track 2D image features. The system utilizes the
structure-from-motion technique for tracking geometric data and estimating camera
pose and 3D features online. Feature matching is also an efficient technique for

achieving real-time feature tracking and object registration [25].

Natural feature tracking can be implemented on many different platforms as they are
currently presented in mobile AR applications. There is a natural feature tracking
pipeline on web browsers that is cross-platform with AR solutions. The system is
implemented by JavaScript and embedded in a plugin-free web technology-based AR
pipeline in which all tracking tasks such as video access, detection and tracking and 3D
rendering are implemented in HTMLS, JavaScript and WebGL platforms [120].
Moreover, marker-less tracking has recently been adapted to 6DOF hand-tracking
techniques. Hand-tracking techniques track the position and orientation of a user’s
hands. Tracking determines the user’s hand gestures such as grabbing as a virtual user

interface for AR systems [28][121].

Model-based tracking

One current approach is model-based tracking, a trend in vision-based tracking that uses

the natural features of real objects such as lines, edges and textures for tracking and

227

calculating camera positions in real time. Model-based tracking methods use models of
the extracted features of the objects such as a Computer-Aided Design (CAD) model or
2D template [24]. The models are usually created from features including edges and
lines but edges are most frequently used because of the ease in finding them and their
robustness to lighting changes. Textures are also useful features for creating models and
they can be combined with edge information or feature points by performing edge
detection or extraction to obtain more robustness and accuracy [122]. Figure F.5

presents the model-based tracking using 2D feature points.

Figure F.5 Model-based tracking [123]

Model-based tracking is a marker-less tracking technique, which is the most recent
technique in computer vision-based tracking. Lines, edges and textures are features that
can be used to build models. Edges and textures are the most useful features and some
applications integrate both to build models [24]. Model-based tracking is a powerful
technique for determining 3D location, pose of objects and feature models of image
sequences. However, tracking complex objects that have high DOF articulated models
is still complicated because small components lack good visual features, include clutter
and there may be occlusion between components. Possible solutions are to base feature
models on multiple views or to increase the reliability of particular feature models
[124]. The main advantage of model-based tracking is that knowledge about the scene
or 3D information leads to improvements in robustness and performance by predicting
hidden movements of the object, and actions to reduce the effects of outlier data can be

found in the tracking process [62] .

Model-based tracking techniques consist of recursive tracking and tracking by detection
on natural features of tracked objects, composed of edges, textures and optical flow.

Therefore, when considering features of objects used for tracking including edge-based,
texture-based and optical-flow based methods, model-based tracking can be categorized

into two methods: tracking-by-detection and recursive tracking.

228

* Tracking-by-detection
o View based (edge-based)
o Keypoint based (texture-based)
* Recursive tracking
o Point sampling (edge-based)
o Optical flow based
o Template matching (texture-based)

o Interest point based (texture-based)
Tracking-by-detection

Tracking-by-detection calculates the current camera pose from the tracked objects
without any previous pose estimation or knowledge of scene geometry [125]. Tracking
by detection can be implemented to track features of objects and create models from
edges and textures. This technique extracts feature points from video frames and
matches them into a database of models and 3D locations of objects. A 3D pose is then
estimated from the correspondences. The implementation of a tracking by detection
approach creates specific difficulty because of the image database and the input frames
that may be obtained from many different viewpoints [61]. Figure F.6 shows the result

of the tracking-by-detection technique.

Figure F.6 Tracking-by-detection [61]

Edge-based tracking by detection techniques are developed and implemented in several
approaches because edges are efficient and robust to detection. The edge-based tracking
method extracts the edges of an object and matches the 3D object model to the database,
then estimates the pose of the object. The main tasks are typically composed of tracking
objects, generating models, recognition and calculation of poses and projecting virtual
objects onto the scene [126]. Recent research on edge-based tracking-by-detection
approaches mostly focus on developing algorithms for real-time tracking, recognition

and matching object models [62][125][126][127].

229

One of the model-based tracking techniques is a real-time 3D model-based tracking
algorithm for a video-see-through monocular vision system on a visual servoing system.
The goal of visual servoing is to move a camera in order to detect an object at a defined
position in the image. Visual servoing uses techniques composed of a moving edge
tracker, feature matching, uncertainty propagation and M-estimator in order to achieve
robust real-time tracking [62]. The system architecture for fully automated marker-less
AR utilizes a sparse metric model and the SIFT algorithm in order to generate stable
natural features of objects and determine the pose of a virtual object. The system
performs in two stages. The first stage is extracting SIFT features for creating a metric
model of objects, conducting model recognition and current camera pose computation.
The second stage is matching detected features in the current video frames with the

world model. The matching is used to compute the current camera pose [125].

There are some methods implemented using 3D object tracking and recognition for 3D
object pose calculation. A 3D model-based tracking and model-based recognition
technique can be done using a 3D CAD model of an object for training. The method
performs training with models based on the geometry information of a 3D CAD model
of an object and then processes an exhaustive search and hierarchical search to match
the models and calculate a 3D object pose [127]. Another method performs a visibility
test on visible edges of the model and extracts the sample points of visible 3D model
lines, then minimizes the distances between projection of all sample points and the

sample points in the image [126].

The tracking by detection technique still has some challenges in implementation and
there is an approach that is efficient enough to improve tracking performance [61]. It
can be achieved by using a classifier to recognize the feature points, which relies on a
texture-based tracking method. The texture-based tracking method relies on texture
information found on real objects [125]. A classification method is implemented by
utilizing a FERN for generating models and estimating object poses [128]. This
algorithm is based on a naive Bayesian classification framework for accuracy and
robustness. The classifier is used to recognize the patches surrounding key points.
Furthermore, the classifier uses hundreds of simple binary features and models class
posterior probabilities. The system uses SIFT to compare computational times with the

FERN algorithm.

230

For improving the robustness and accuracy in tracking by detection methods, edge-
based and texture-based can be combined together to perform real-time model-based
tracking and pose estimation. There is a real-time, robust and efficient 3D model-based
tracking algorithm that utilizes a virtual visual servoing approach to estimate the pose
between the camera and the object and to integrate texture information to edge-based

extraction and pose computation [111].

Recursive tracking

Recursive tracking is used for tracking 3D objects with fast camera movements so the
system uses the last camera pose to estimate the current pose. Edge-based recursive

tracking uses a point sampling method that samples some control points along the edges
of the 3D model and compares the projection with strong gradients in the image. In
addition, texture-based recursive tracing is classified into two subcategories: template
matching, which recovers object movement by applying a distortion model to a
reference image, and interest point-based, which localizes features in the camera pose
estimation. Each tracking technique is suitable for different scenarios and environments
such as moving objects or moving cameras. Edge-based methods are suitable when
tracked objects are polygonal or have strong contours. Optical flow-based techniques
work with textured objects and a texture-based method is the best solution if the optical

flow-based techniques do not solve the problem.

Model-based visual tracking has recently attracted attention in many areas such as
robotics and AR where object recognition tasks are quite commonly combined with

visual tracking [129]. Figure F.7 presents shape augmentation using recursive tracking.

Figure F.7 Shape augmentation using recursive tracking [129]

231

Real-time 3D tracking is an important module in mobile AR for performing computer
vision tasks in both indoor and outdoor environments. However, integrating 3D marker-
less tracking with computer vision techniques is still a challenge to enhance the tracking
mechanism in video frames for example, creating 3D models from tracked objects.
Object recognition is a new technique incorporating maker-less tracking to improve the
proficiency in tracking and pose estimation that allows the system to increase its

perception in a real environment.

Object recognition

Vision-based tracking has now been incorporated effectively with object recognition to
perform visual tasks on AR platforms. Real-time object recognition has recently been
applied to perform object detection, object tracking, feature extraction, recognition and
augmentation with real environments such as planar surfaces, images and 3D objects.
Object recognition is a complicated task in computer vision because there are various
kinds of real object in the environment. Each object has their own size, shape, pose and
occlusion with other objects. Object recognition is a method in computer vision that can
be effectively developed to improve advanced features in some AR applications and
robot vision such as face, object and logo recognition. Most of the recent advances in
computer vision have focused on machine learning techniques in object recognition
[61]. The object recognition field has made significant progress and is often a solution
to current limitations. Most AR applications today rely on working with recognition

target objects such as sketches, images and video frames [130].

3D object recognition is a powerful method for identifying physical objects, because
when a particular object is recognized it can trigger relevant services such as the display
of associated virtual objects or loading of new graphical user interfaces to access more
features. The tracking method in video streams is composed of two phases: learning and
tracking for pose estimation [19]. The system can recognize and identify real objects
after being trained with sample objects. 3D object recognition in AR works together
with marker-less tracking in order to detect and track real objects and then performs
real-time recognition and pose estimation. As an adaptive learning system, the first
stage is training the system with new objects by using feature extraction and machine
learning techniques. The system is then able to track real scenes and identify the objects

in the scenes by using pattern or shape-matching techniques. Performing object

232

recognition requires a database for maintaining the sample shapes or models that have
been trained. The machine learning applied in object recognition techniques consist of
neural networks, support vector machines and boosting. The following sections
introduce the recognition technique for shapes, 2D images and 3D objects. These are
described by research that has implemented object recognition with different

techniques.

Planar surfaces recognition

Recognition systems for AR have recently been studied and developed for a variety of
scenarios. One of the approaches used is real-time recognition and pose estimation for
planar surfaces or 2D images. The research in this approach are Nestor [129] and

Scalable Triangulation-based Logo recognition [130].

Nestor is a system for recognizing and tracking shape contours in real-time on a mobile
phone. The system can track hand sketches and overlays 3D virtual content onto a real
scene. The process starts training the system by presenting new shapes to the camera;
the system analyses and stores the learned shapes in its library. Two main tasks in the
system are model-based recognition and 3D pose estimation. For model-based
recognition, the system performs shape recognition by analyzing the contour structures
and then generating the projective invariant signatures from their concavities that are
further used to accomplish feature extraction for pose estimation and tracking. In
addition, the geometric invariant constructions are used to calculate the signatures for

the shapes that can then be recognized across different viewpoints.

Another research in the shape recognition area is Scalable Triangulation-based Logo
Recognition. The objective of this research is to recognize logos in a query image by
applying a bag-of-words model because logos normally contain useful information such
as text and geometric shapes for detection processes. Moreover, most logos emerge on
planar surfaces that are used to facilitate the process of feature detection and extraction.
The research uses a class database to collect the sample logos separated into each class
or brand in the database. The local features of each sample are grouped by using multi-
scale triangulation, then the local features are applied by a Delaunay triangulation that is
directed by the scales from the feature detector. A signature from each triangle is
extracted and the signatures of all samples in the class are used to represent each class.

The signatures are extracted from a query image during the recognition process and then

233

they are matched to the samples in the class database. Finally, an inverted index

response is used to rank the class models and provide a sub-linear search.

3D object recognition

3D object recognition is the next advanced step in an object recognition system in an
AR environment. Current research on recognition have focused on object detection,
object tracking, feature extraction, pattern matching and generating virtual content
relevant to real 3D objects and environments at the estimated pose. Research on 3D
object recognition is mainly focused on face and object detection as well as recognition
by implementing machine-learning techniques. Currently much research and
applications concentrate on recognizing 3D objects in photographs or image sequences
with samples or training input images such as personal photo collections, location
recognition, intelligent photo editing and image search. These are developed from the
area of recognition including face recognition, instance recognition, category
recognition and context and scene understanding. The following are the techniques used

to perform 3D object recognition.

Image-based recognition

An example of tracking and image-based recognition for mobile AR is AR-PDA. The
AR-PDA project effectively provides services to customers by presenting AR
technology on a high-end mobile phone or PDA. The goal of this project is to support
customers by providing AR as an interactive tool for their domestic equipment, such as
a virtual user manual and maintenance tasks. The project is developed on client-server
architecture that relies on a mobile network. The server receives live video streams that
are taken by an integrated camera and recognizes the objects by analyzing the images.
The specific relevant information or multimedia is assigned to the video stream and sent
back to the AR-PDA. The image-based recognition and tracking in this project uses 3D-

geometrics of the objects and requires information created from a 3D-CAD file [131].

2D shape similarity metric

A 2D shape similarity metric is a technique for comparing an unknown view with
prototypical views and measuring the similarity by evaluating the distance between the
segmented shapes of 3D objects and the prototypical views. The shape similarity metric

is used to rank the similarity between unknown objects in unknown views and samples

234

that are stored in the metric to recognize real objects and their pose. An aspect graph is
implemented to specify the viewing sphere area. The aspect is produced by evaluating
the similarity of each 2D shape and grouping its views, then each aspect is represented
by a prototypical view. The system identifies a prototype view from a database of all
views of objects that stores views in five-degree increments. The prototypical views
help the system decrease the search time by indexing. The testing process starts by
randomly selecting an object from the database and then generating views from the
selected object at random angles. The unknown views are compared to the prototypical
views and the results from matching are sorted and reported to the unknown object

[132].

3D model recognition

The 3D model recognition technique creates 3D metric models from images of an object
that are taken by a camera. The system then recognizes new images by matching with
the 3D models and accurately calculates object poses for superimposing a virtual object
onto the new images. The research specifies a solution for accurate 3D pose calculation
so that a virtual model is superimposed on recognized objects at the correct pose. First,
the system processes SIFT feature extraction from the sample images and implements
indexing by linking images to create a spanning tree. The correspondences are utilized
to create a matrix model of the real objects. Moreover, the system calculates the camera
calibration parameters and camera poses relevant to the image viewpoints. The next
process detects features of the video frame and matches the features with the real model
using a Best-Bin-First (BBF) algorithm. Then the system calculates the current pose of
the real object and presents the virtual object superimposed on the objects using a

RANdom SAmple Consensus (RANSAC) and Levenberg-Marquardt algorithm [133].

Figure F.8 shows 3D object recognition using the 3D model recognition technique.

Figure F.8 3D object recognition using 3D model recognition [133]

235

Neural network for 3D object recognition

Another research that implements machine-learning techniques is a multiple feature
extraction method of 3D objects from 2D images to increase the performance of an
appearance-based 3D object recognition system. The 2D image features to be extracted
include texture, color, Hu’s moment and affine moment invariants. Hu’s moment
invariants represent the invariant rotation, scale and translation properties. Affine
moment invariants represent the invariant transformation properties. For each 2D image
of a 3D object, these characteristics are mapped to a 1D feature vector of 23
components of the 2D image. The vector is used to train a back propagation neural
network and the trained neural network is used to identify 3D objects. In addition, the

color moments and texture characteristics are used to recognize 3D objects of the same

shape [134].

The concept for developing an object recognition system can be applied to unloading
processes in order to organize and detect the pose of universal packaged goods in a
container unit by using sensor data. The unloading process is challenging because the
object recognition system for goods in undefined shapes is complicated and requires
robustness and reliability. Moreover, the unloading process requires a proper sensor
system to acquire shape and depth information of the goods in packaging scenarios. The
system uses time-of-flight cameras that can work with the specific environment inside
the containers. The system needs many range images from the cameras to improve the
efficiency in sensor detection. Then, the system analyses the range images to extract the
important features and creates a class of the packaged goods relevant to the features

[135].

There are algorithms for 3D object recognition including the Clonal Selection
Algorithm (CLONALG) and Particle Swarm Optimization (PSO). The modeling
process evaluates the 2D image appearance of a 3D object and creates a 3D model. The
first stage is segmenting the 2D image with Otsu’s threshold method. The second stage
is extracting a set of invariant features. The third stage is assigning the neural network
weights by utilizing CLONALG and PSO. Finally, the neural network is trained by
implementing a Levenberg-Marquardt (LM) algorithm. The experiment outputs show
that the CLONALG-LM algorithm has higher efficiency and performance compared to
PSO-LM and other traditional algorithms [136].

236

3D modeling, rendering and reconstruction

In the area of 3D modeling and reconstruction, model-based reconstruction is developed
by implementing 3D model-based tracking and 3D object recognition such as whole
body modeling and tracking. Tracking humans, modeling their shape and appearance
and recognizing their activities are all applications in development. Therefore, the idea
of integrating 3D modeling and tracking by generating 3D models or shapes from the
tracked objects in real time is a possible development for an AR environment. In
addition, model reconstruction and rendering techniques can be incorporated. These can
be used to enable new mobile interactive applications in the area of mixed reality that
combines virtual objects with real objects and a real world scene. One research in this
area is an online interactive primitive modeling technique that enables a user to
reconstruct and label geometry relative to a marker in a scene. The research uses object-
based tracking incorporating a feature tracker for tracking the movement of the camera
relative to the object. Its outcome is a lightweight and fast approach to scene modeling

that might be suitable for use on mobile computer devices [137].

	PhD Coversheet
	Rattanarungrot, Sasithorn

