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Summary
In this research, we will investigate both financial option pricing models and link the
theory to real market performance studies. By combining traditional option pricing
theory and real market data analysis, we propose that, in the real world, some behaviour
of the financial option price is strongly associated with the local maximum or minimum

of asset price.

Firstly, we analyse some mathematical formulas and theorems to understand how to
simulate the random process of asset price movement. Based on these foundations we
discuss Black-Scholes option pricing model, stochastic volatility models and numerical

methods to price options.

Secondly, we utilise Monte-Carlo simulation to learn about the mechanisms of
European option pricing with different models. Subsequently, regression analysis is

presented in preparation for studying real market data analysis.

Thirdly, we use nine years of real market data to reveal the relationship among variables
involved in pricing European options. It will be concluded that the implied Black-
Scholes risk calculated using real world call options and put options correlates with
asset prices in opposing ways. For call options: with dominant probability, the
instantaneous implied option risk and the asset price have a negative correlation;
whereas with dominant probability, one-day earlier implied option risk and the asset

price have a positive correlation. Put options are the exact opposite.

Finally, we conclude that when the real market option prices are undervalued, they have

the ability to catch local extreme values of asset prices statistically.
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1 Introduction

In this dissertation, we study real world financial option prices and their corresponding
Black-Scholes implied volatilities. It is apparent that these real world implied
volatilities, if plotted along the strike price and time to maturity as a surface, the
structure becomes coarse and do not follow the theory of standard volatility surface
which is assumed to be smooth according to standard text books. It is therefore
interesting for us to investigate how these implied volatilities interact with the

underlying asset prices.

In the subsections 1.1-1.4 of the introduction, we discuss the standard definition and
related properties of financial options. In Section 2, we discuss financial backgrounds
and related mathematical tools required for our study. In Section 3, we discuss the
Black-Scholes option pricing model and some stochastic volatility models presented in
various studies. We also examine the corresponding numerical methods for pricing
options. In Section 4, we demonstrate Monte-Carlo simulation of different models and
regression analysis. In Section 5, we discuss some properties of the implied volatility of
real world option data, establishing links between implied volatility and asset price

movements.

1.1 Introduction to financial derivatives

Financial market instruments (Etheridge, 2004) can be divided into two distinct types.
The first type consists of those representing a fraction of a real underlying asset: shares
(fraction of a company), bonds (a nominal sum of money), commodity contracts (a
certain quantity of a particular metal, agricultural product etc.), and foreign currencies.
The second type consists of their derivatives, mostly comprising promises to deliver
some kind of value in the future dependent on the behaviour of the corresponding

underlying assets.

A statement in the cover story of The Economist magazine on the 14 May 1994 expertly
describes the concept of financial derivatives: financial derivatives are contracts, which

give one party a claim on an underlying asset or the cash value of the underlying asset at



some point in the future, and bind a counter-party to meet the corresponding liability.
The contract might be described by a nominal amount of currency, a number of units of
a security, a defined quantity of a physical commodity, a stream of cash payments, or
the value of a market index. It might bind both parties equally, or offer one party an
option to exercise it or not. It might provide for assets or obligations to be swapped in a
predefined formula. It might also be a bespoke derivative combining several elements.
Derivatives can be traded either on the stock exchanges or simply over the counter
between two or several counter parties; their current market prices usually depend partly

on the movement of the prices of the underlying assets after the contracts are created.

From a mathematical perspective, the price of a financial derivative is a function of the
underlying asset price as well as a possible number of other variables, such as interest

rates, time to maturity, volatility of markets or other factors.

Financial derivatives can be classified into four categories: forwards, futures, options

and swaps. In this paper, options will be examined.

Definition 1.1.1: Financial options

A financial option is a contract written on an underlying asset. This contract gives the
buyer the right but not the obligation to buy or sell the underlying asset on a specified
price, K, before/on specified time, T, and gives the seller the obligation to fulfill the
corresponding rights of the buyer.

Option buyers need to pay option premiums to the sellers (writers) to compensate the
option sellers’ duty to fulfill the obligation when the underlying price moves in the
favour of the buyers, while allowing the buyers to abandon the contract should the

underlying price move against them.

If an option is written to buy the underlying asset, it is called a call option. If an option

1s written to sell the underlying asset, it is called a put option.

The differences between call options and put options are given in Table 1.1.1.



Expectation
Trade for Maximum Maximum
Type _ . Premium Duty
side underlying profit loss
asset
Right, no ‘ ‘
Buyer Increase Pay o Infinite Premium
obligation
Call
Obligation,
Seller Decrease Collect ‘ Premium Infinite
no right
Right, no . '
Buyer | Decrease Pay o Infinite Premium
obligation
Put
Obligation, ' .
Seller Increase Collect . Premium Infinite
no right

Table 1.1.1 Differences between call and put options

The difference between a European option and an American option is that a European

option written at t = 0 can only be exercised at the maturity time t = T. An American

option written at t = 0 can be exercised at any time betweent =0 andt = T.

Hence, a European call (put) option gives the buyer the right, but not the obligation to

purchase (sell) one unit of the underlying asset at a specified time, 7, for a specified

price, K.

In the real financial world, only European options have comprehensive data available

because they have well defined OE (option expiring) days. Thus, we focus on European

options in this dissertation.

Definition 1.1.2: The exercise date/the maturity

The exercise date or the maturity is the time T at which the option contract expires.

Definition 1.1.3: The strike price

The strike price is the price K on which the option holder has the right to buy or sell.




A call option is defined to be in the money, if the spot price is greater than the exercise
price K, it is at the money if the spot price is equal to K, and it is out of the money if the

spot price is less than K.

For a put option, it is in the money if the stock price is lower than the exercised price K,
it is at the money if the spot price is equal to K, and it is out of the money if the spot

price is greater than K.

Call options Put options
In-the-money Strike price<Asset price Strike price>Asset price
At-the-money Strike price=Asset price Strike price=Asset price
Out-of-the-money Strike price>Asset price Strike price<Asset price

Table 1.1.2 Classification of options in(out)-of-the-money

1.2 History of option trading

Thompson (2007) stated that the Dutch parliament considered a decree (originally
sponsored by the Dutch tulip investors who had lost money because of a German
setback during the Thirty Years' War) that changed the way tulip contracts functioned:
on 24 February 1637, the self-regulating guild of Dutch florists, in a decision that was
later ratified by the Dutch Parliament, announced that all futures contracts written after
30 November 1636 and before the re-opening of the cash market in the early Spring,
were to be interpreted as option contracts. They did this by simply relieving the futures
buyers of the obligation to buy the future tulips, forcing them merely to compensate the

sellers with a small fixed percentage of the contract price.

Before this parliamentary decree, the purchaser of a tulip contract — known in modern
finance as a futures contract — was legally obliged to buy the bulbs. The decree changed
the nature of these contracts, so that if the current market price fell, the purchaser could
opt to pay a penalty and forgo the receipt of the bulbs, rather than pay the full contracted
price. This change in law meant that, in modern terminology, the futures contracts had

been transformed into options contracts.



Alexander (2008, p. 137) highlights that the first exchange listed options in the world
were on the Marche a Prime in France. At that time, about 10 per cent of trading on
shares was carried out in this market, where shares were sold accompanied with a three-
month at-the-money put option. Due to the existence of this market, in 1900 Louis
Bachelier devised a formula to evaluate options premiums based on arithmetic
Brownian motion. Subsequently, during the 1930s, gold options were independently
traded in Germany. However as they are difficult to value, these options were not

popular during the period.

Decades later in 1973, the Chicago Board of Options Exchange (CBOE) was founded
and became the first modern, comprehensive marketplace for trading listed options. In
the same year, Black and Scholes published a price formula (Black and Scholes, 1973;
Merton, 1973, p. 639) revealing how to value a financial option based on geometric
Brownian motion. It was the first systematical tool that received the public’s approval

and is still widely used as a referencing valuation tool today.

In recent years, financial options are traded either over the counter (OTC) or on official

stock exchanges.

1.3 The use of financial options

1. Speculation

If an investor believes that a particular share price is going to rise within a period T’
to a level much higher than K, he/she can buy a call option with exercise price K
and expiry date 7 with the intention to make a profit. For example we suppose K is
25, the share price S, today is 25, an option on K =25 and T =1 year costs 1. If
the share price at the expiry date S, goes up to 27, then the investor who buys this
option for K =25 and holds it until ¢ = T will make a 100 per cent profit (profit =

2, cost = 1, by ignoring minor factors such as trading costs and interest costs).
ii. Hedging

Suppose that an investor already owns a particular share as a long-term investment

and maybe in a situation which is inconvenient to sell (e.g. the holding is large). In



this case, the investor may wish to insure against a temporary fall in the share
price. Accordingly they can buy a put option to protect financial losses caused by
the asset price decreasing. If the underlying asset price decreases, the investor can
make a profit from the put option to compensate the loss from holding the

underlying asset.

1.4 Introduction to Black-Scholes implied volatility on

European options

Option volatility is a measure of the rate and magnitude of the change of underlying
prices. Black-Scholes implied volatility is calculated by inverting the Black-Scholes

formula (Black and Scholes, 1973) when option price and all other factors are provided.

According to this perspective, suppose that the fixed risk-free interest rate is r, strike
price is fixed at K, and maturity is fixed at 7, then the market price f(S,0,t) of a
standard European call or put option can be calculated from the market price S of the

underlying asset using the following formula:

f(S,0,t) = woN(wd;)S — wN(wd,)Kexp(—r(T —t)) , (1.4.1)
. 1 S o’
with d, =———|In| = |+|r+— |T—t)| and d, =dy — VT —t, where =1
oNT —t K 2
for a call option and w = —1 for a put option, and N(+) is the cumulative normal

distribution density function. The unknown value of o that satisfies Equation (1.4.1) is

the implied volatility. It is straightforward to find this value using MATLAB.

The Black-Scholes model (Black and Scholes, 1973) assumes that the variance rate of
the return on the stock is constant for all possible values of strike price and maturity
dates. Meanwhile, implied volatility using real world option prices always show
different values for different strikes and maturity dates (Chen and Xu, 2013). Rubinstein
(1994, p. 776) and Bakshi et al. (1997, p. 2022) used real world Standard & Pool’s 500
(S&P) option data to calculate implied volatility and confirmed that implied volatility is
not constant. They concluded that the implied volatility of S&P 500 options show a

‘smile’ pattern across the strike price. Thereafter, some researchers explored further this



phenomenon (Bates 1996, p. 169, Dumas, Fleming & Whaley 1998, p. 2061) and found
that, after 1987, the implied volatility of S&P 500 options was monotone with the
moneyness or the strike price, and therefore it exhibited a so-called volatility ‘sneer’

instead of a volatility ‘smile’.

Considering the aforementioned observations, an increasing number of researchers
began to investigate implied volatility for financial options determined by option prices.
In recent years, researchers have introduced some alternative volatility models which
have demonstrated that implied volatility had some mathematical forms other than a
constant. The models include, for example, the jump diffusion model devised by Merton
(1976, p. 132), the stochastic volatility models (Hull and White 1987, p. 288; Chesney
and Scott 1989, p. 268; Stein and Stein 1991, p. 744; Heston 1993, p. 331), and the
deterministic local volatility model (Dupire, 1994, p. 128; Derman and Kani 1994;
Rubinstein 1994, p. 785).



2 Background and foundation

In this chapter, concepts concerning financial options will be introduced on two fronts
— the mathematical theory front and the financial theory front. As will be explained, the
value of financial options is a function of the underlying price, volatility of the
underlying assets, exercise price, interest rate and time to maturity. In Section 2.1, the
necessary mathematical tools that are needed to derive the formula for evaluating values
of financial options is introduced. In Section 2.2, financial terminologies and concepts

for defining option values are discussed.

2.1 Mathematical background

In this section we introduce some mathematical definitions. Firstly, random walk and
Brownian motion or Wiener process, which are used to simulate the movement of the
underlying asset price, will be presented. By applying It6’s formula (It6, 1944) to the
random walk model, we deduce the mathematical formula of geometric Brownian

motion, which plays a pivotal role in analysing and simulating stock prices.

Definition 2.1.1: Random Walk

A random walk 1s a mathematical description of a path that consists of a succession of

random steps. Feller (1971, p. 24) described it as follows:

Let X(1),X(2), ..., X(N) be independent random variables with values -1 or I in equal

probability. A random walk is the sequence of random variables
$(0)=0,S(n) =Y+, X({),n=12,..,N. (2.1.1)

We simulate a random walk for 100 steps in the following graph so that we can

understand intuitively what it means.



-5 I 1 I I 1 | 1 | |
0 10 20 30 40 50 60 70 80 90 100

Step (n)

Figure 2.1.1 Random Walk
The steps range from 0 to 100 means n varies from 0 to 100.

Now we introduce the mathematical definitions required to describe random walk in a

rigorous setting:

First, we specify a probability triple (£, F, P), where ( is a set, called the sample space;
F is a collection of subsets of (1, called events; and IP specifies the probability of each
event A € F. The events collection F is a o —field, that is, ) € F and F i1s closed under
the operations of countable union and taking complements. The probability P must

satisfy the usual axioms of probability (Etheridge, 2002):

.
O

P[A] <1forallA€EF,
Q] =1,
* P[AUB] = P[A] + P[B] for any disjoint A, B € F,

.
l—|

 if A, €F for alln € N and 4; € 4, C -+ then P[4,,] — P[U, 4,] asn —

0,

A collection of {F,};5o Where F, € F, ;1 € -+ € F is called a filtration and if a
filtration is given, the quadruple (Q, F, {F, }n>0, P) is called a filtered probability space
(Etheridge, 2002).
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Definition 2.1.2: Random variables (Etheridge, 2002)

A real-valued random variable X is a real-valued function on (2 that is F —measurable.

In the case of a discrete random variable this simply means that for any x € R,
{weN:X(w)=x}ETF,

so that P assigns a probability to the event {X = x}. For a general real-valued random

variable, we require that for any x € R
{we:X(w)<x}EF,

so that we can define the distribution function, F(x) = P[X < x].

Definition 2.1.3: Stochastic processes

A real-valued stochastic process is just a sequence of real valued functions, {X,, }ns0, 0N
0. We say that it is adapted to the filtration {F, } ;50 if Xy, is F,, —measurable for each n
(Etheridge, 2002).

Definition 2.1.4: Brownian Motion/ Wiener process

A real-valued stochastic process {W (t)}1so is a P —Brownian motion (or P —Wiener

process) if for some real constant a, under P (Etheridge, 2002),

* for each s = 0 and t > 0 the random variable W (t + s) — W (s) follows the
normal distribution with mean zero and variance o°t,

* for each n =1 and any time sequence 0 <ty <ty < -+ <t,, the random

variables {W (t,) — W (t,_1)} are independent,

w(0) =0,

W (t) is continuous in t = 0, which means lim E W)Wl ] =
s—t 1+|W(s)—W(t)|

We simulate a Brownian motion in Figure 2.1.2 for 1000 steps so that we can

understand intuitively what it means.



11

0.8 T T T

0.4} .

0.2 —

W(n)

—0.4} .

| 1 | | 1 | | I |
0 100 200 300 400 500 600 700 800 900 1000
Step(n)

Figure 2.1.2 Brownian motion/Wiener process

Definition 2.1.5: Stochastic differential equation
A typical stochastic differential equation is of the form (Bichteler, 2002)
dX(t) = u(X(t),t)dt + o(X(t), t)dW (¢t), (2.1.2)

where the function | is referred to as the drift coefficient; the function o is called the

diffusion coefficient; W denotes a Brownian motion/Winner process.

The integral form of the differential equation (2.1.2) can be written as

X(8) — X(0) = [J u(X(s),8)ds + [ o(X(s),s)dW (s).

Definition 2.1.6: Ito’s Formula

If X, is a stochastic process, satisfying dX, = pdt +o,dW,, and f is a deterministic

twice continuously differentiable function, then Y, == f (X;,t) is also a stochastic

process and the differential equation of Yy is given by
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Definition 2.1.7: Geometric Brownian motion

Geometric Brownian motion is a continuous-time stochastic process in which the

logarithm of the random variable follows a Brownian motion with drift.

A stochastic process S(t) is said to follow a Geometric Brownian motion if it satisfies

the following stochastic differential equation
dS(t) = uS(t)dt + aS(t)dW (t), fort > 0, (2.1.4)

with a constant drift u, and a constant volatility o, where W is a Wiener process (also

called Brownian motion).

For an arbitrary initial value Sy the above stochastic differential equation has the

analytic solution (Hull, 2009, p. 271)

S(t) = Seexp <(# -Z2)e+ aW(t)). 2.1.5)

We simulate two geometric Brownian motions with different drifts and volatilities so

that we can understand intuitively what it means. The simulation is displayed as below:

S0=100,mu=1,sigma=0.2
S0=100,mu=0.5,sigma=0.4
120} .

110} —
100} 5 by —

90 |- -

s()

60 L 1 L L 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T=1, n=1000

Figure 2.1.3 Geometric Brownian motion
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2.2 Financial background

In this section, a brief introduction to some key financial terms is presented in order to
make them more meaningful, including no-arbitrage argument for the derivation of
option price formula, option contracts, some relationships between call options and put

options and the bounds on prices of options.

2.2.1 No-arbitrage argument

Schachermayer(2002) argues that, ‘the principle of no-arbitrage formalises a very
convincing economic argument: in a financial market it should not be possible to make

a profit with zero net investment or without bearing any risk’.

For the purposes of this study, no-arbitrage is divided into weak no-arbitrage and strong

no-arbitrage. They are introduced with the following definitions and examples.

Definition 2.2.1: Weak no arbitrage

In an investment scheme, let p be the price to pay at time t = 0, Cy, be the payoff at time
k =1,2,...T. Weak no arbitrage assumption means that when C;,, = 0, for allk > 1, we

must have p = 0.

Justification: Suppose p < 0.

Since €}, = 0 for all k > 1, the buyer receives —p > 0 at time t = 0, and then does not
lose money thereafter. This brings potential profit for no investment (receiving money at
the beginning). The seller can increase p as long as p < 0, and still have buyers

available because the riskless profit opportunity still exists.

Hence p could not be less then zero.

Definition 2.2.2: Strong no arbitrage

In an investment scheme, let p be the price to pay at time t = 0, Cy, be the payoff at time
k=1,2,..T. Strong no arbitrage assumption means that when C;, = 0 for all k > 1

and C; > 0 for some | = 1, we must have p > 0.
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Justification: Suppose p < 0.

Since C, = 0 for all k > 1, and for some [l > 1, C; > 0, which means that the buyer

makes profit at some time when C; > 0. The buyer receives -p = 0 at time t = 0, and
then makes profits thereafter. This brings potential profit for no investment (receiving
money at some time t = [). The seller can increase p as long as p < 0, and still have

buyers available because the riskless profit opportunity still exists.

Hence p must be greater than zero.

Type A and Type B arbitrage

Definition 2.2.3: Type A arbitrage is a security or portfolio that produces immediate

positive reward at t = 0 and has non-negative value at t = 1.

Example 2.2.1: Suppose V; is price of a security at time 7. The security with initial cost

Vo < 0 and at time t = 1 value V; > 0 is an example of type A arbitrage.

Definition 2.2.4: Type B arbitrage is a security or portfolio that has a non-positive
initial cost which has positive probability of yielding a positive payoff at t = 1 and zero
probability of producing a negative payoff at t = 1.

Example 2.2.2: Suppose V; is price of a portfolio at time ¢. The portfolio with initial
cost Vo < 0,and V; = 0 and E[V;] # O is an example of type B arbitrage.

2.2.2 Price of options

In this section, we discuss the price of a European option. Theoretically, the option price

includes two components: the intrinsic value and the time value.
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Intrinsic value

The payoff of a European call option at expiration 7" depends on the spot price of the
underlying asset at t = T. If the spot price S, is not greater than K, the buyer does not
exercise the option, because it is cheaper for him/her to buy in the spot market. The
payoft from the option is going to be zero. If the price at t = T is strictly greater than K,
the buyer then exercises the option, and the option allows him/her to buy the underlying
asset at price K which is cheaper, and the buyer can immediately sell that in the spot
market to get S;. Therefore the payoff from a European call option, at expiration 7 is
going to be max(Sr — K, 0). The intrinsic value of a call option at some time ¢, less than

expiration 7, is simply defined as max(S; — K, 0) (Lin, Zheng, Cai & Xiong, 2012).

For a put option, the buyer exercises when the price St is less than K, because it allows
the buyer to sell at a higher price. The payoff that he/she receives is the difference
between the exercise price K and spot price Sy. If Sp is greater than or equal to K, then
the buyer does not exercise the option. It is better for him/her to sell in the spot market
meaning that the payoff that the buyer gets is 0. Therefore the payoft from the European
put option at expiration T is max(K — Sz, 0). The intrinsic value of a put option at some

point t < T is defined as max(K — S, 0) (Lin, Zheng, Cai & Qiu, 2012).
Intrinsic value for call option can be written as:

St_K St>K’ OStST
nmm&—Kﬁ)={ if (2.2.1)
0 S, <K, 0<t<T.

Intrinsic value for put option can be written as:
0 S:>K, 0<t<T

max(K — S5;,0) = { if (2.2.2)
K-S, S,<K, 0<t<T.

Time value

The market price of a financial option is usually greater than its intrinsic value. The

difference between market price and the intrinsic value is called the time value.

The time value is related to the expected value of the underlying asset. For a call option,
the higher the probability of spot price at expiry date is greater than the strike price, the

higher the time value of the call option has. For put options, it is the exact opposite.
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The time value is also related to the length of time until the expiry date. The longer the
time remaining until expiration, the higher the time value is. The time value becomes
smaller as the expiry date approaches. Finally, at the expiry date, the time value is

reduced to zero.

So, before the expiry date, the option price can be written as
Option price = Intrinsic value + Time value.

At the expiry date the option price can be written as

Option price = Intrinsic value.

2.2.3 Put-call parity
Proposition 2.1: European put-call parity at time t for non-dividend paying stock is
P(S,t) +S(t) = C(S,t) + Ke "T~0,

where P (S, t) is the European put option price with strike price K and maturity T’
C(S,t) is the corresponding European call option price; S(t) is the underlying share

price at time .
Proof: Construct the following trading strategy as a portfolio:

* Buy one unit of the underlying asset with price S(t) at time t and sell it back at time

T with price S(T).

* Buy a European put option with strike K and expiration 7, pay option price P(S,t)

at time t and keep to maturity.
 Sell a European call option with strike K and expiration 7 and keep to maturity.

« Borrow cash amount Ke 7T~ with continuously compounded interest rate r at

time t, repay K at time 7.
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Portfolio Cash flow at Cash flow attime t =T
constituents time ¢ S(T)Y<K S(T) =K
Buy a stock =5(t) S(T) S(T)

Buy a put option —P(S,t) +(K -S (T)) 0

Sell a call oprion C(S,t) 0 —(K-5(T))
Debit Ke T(T-8) -K —K
Total 0 0 0

Table 2.2.4 Cash flow of portfolio
It is interesting to observe that:
Cash flow at time T: max(S(T) — K,0) — max(K — S(T),0) + S(T) — K = 0.

According to no-arbitrage argument, cash flow at time ¢ should be equal to the cash flow

at time T'. It gives that cash flow at t equals zero. Hence, we have:
Cash flow at time t: —S(t) — P(S,t) + C(S,t) + Ke "7~ = 0.
Thus,

P(S,t) +S(t) =C(S,t) + Ke T(T-t)

2.2.4 Bounds on prices of European options

Proposition 2.2: Upper bound on the price of a European call/put option price at time ¢

are
C(S,t) < S(t) for call options,
P(S,t) < Ke "(T=1 for put options.

Proof: Since the European call option gives the buyer the right to buy one share of
underlying asset for a certain price, the option can never be worth more than the asset.

Hence, we have

C(S,t) <S(b).
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For a European put option, the option price at the maturity cannot be worth more than
strike price K, it means that the European put option price cannot be worth more than

the present value of K today.
Hence, we have
P(S,t) < Ke™"TD,
Proposition 2.3: Lower bound for a European call/put option price are
C(S,t) = max{S(t) — Ke "1, 0} for call options,
P(S,t) = max{Ke T~ — §(t), 0} for put options.
Proof: Using put-call parity, we have:
C(S,t) = max{P(S,t) + S(t) — Ke™"T~9,0}
> max{S(t) — Ke™"T=9,0}.
P(S,t) = max{C(S,t) + Ke ""~D — §(¢), 0}

> max{ Ke 7T~ — §(t), 0}.



19

3 Models

Option pricing models are systematic mathematical approaches (closed form formulas,
partial differential equation problems or a system of equations with restrictive
conditions) that can be used to calculate a theoretical value for financial option
contracts. The most widely known work for valuing financial options with a closed
mathematical formula is by Black and Scholes (1973) who established the so-called
Black-Scholes formula. After the B-S formula, several other approaches were proposed
(for example, Garman, 1976; Cox, Ingersoll and Ross, 1985, p. 379) incorporating

different features or assumptions on option pricing.

In this chapter we introduce some of these option pricing models. In Section 3.1, we
study the Black-Scholes equation and the corresponding closed form solution (Black
and Scholes, 1973). In Section 3.2, we consider stochastic volatility and introduce the
Hull-White (H-W) model (Hull and White, 1987) and the Heston model (Heston, 1993).
Subsequently we present some numerical methods (binomial methods and finite

difference methods) for computing option prices.

3.1 Black-Scholes option pricing model

In this section, Black-Scholes differential equation (Black and Scholes, 1973) and the

corresponding closed form solutions are presented.

3.1.1 Black-Scholes model

To derive the Black-scholes option value formula (Black and Scholes, 1973), we make

the following assumptions:

* The interest rate is a known constant through time.

* The instantaneous log return of the stock price is an infinitesimal random walk with
drift; more precisely, it is a geometric Brownian motion, and it is assumed that its
drift 4 and volatility o are constants.

* The stock pays no dividends.
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* The option is a European option, that is, it can only be exercised at maturity.

* There is no arbitrage opportunity.

* It is possible to borrow and lend any amount, even fractional, of cash at the riskless
rate. It is possible to buy and sell any amount, even a fraction of a share of the

underlying stock. There are no transaction fees and taxes.

Under these assumptions, the value of the European option depends only on the stock

price, strike price and time to maturity.

Assume that S is the stock price. Suppose that the stock price follows a geometric

Brownian motion, as described by (2.1.4) we have
dS(t) = uS(t)dt + aS(t)dW (),

where u is the constant drift of the asset returns, and o is the constant volatility of the

asset returns.

Suppose V is the value of the financial option with strike price K and maturity 7, which
is a function of the underlying asset price S and time ¢, V (S, t). From Ito’s formula, we

have

dv aValt+aValS+1 2SZ—aZthO<S< 0<t<T 3.1.1
- — — 0o d.
ot as 2977 952 %Y ’ o (BLD)

In the following, we follow the argument of Hull (2009, p. 287). Construct a portfolio ¥
by buying a unit of ¥ and selling (short)  units of S

F=V(S,t)—86S, (3.1.2)
According to Hull (2009, p. 287), we obtain,

dF =dV —6dS,
combine with (3.1.1), it implies

dF ant+anS+1 2Sz—azvdt 0dS,0 < S <o0,0<t<T. (3.13
- - — — 0 . (o.1.
ot as 29> 352 ’ ’ (3.1.3)

Choose 6, such that F is a riskless asset, that is, /" is independent of S, we achieve this

by letting
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anS 65 =0 3.1.4
in (3.1.3) and obtain
0 = v 3.1.5
=35 (3.1.5)
av 1 0%V
= dF = —dt + -0%S? —dt. (3.1.6)

ot 2 052

In finance, 8 defined by (3.1.5) is the so called delta hedging ratio.

Since the new portfolio F is a riskless asset, it should satisfy dF'=rFdt, combining this
with (3.1.6), we obtain

6V+ Sav+1 ZSZ—aZV V=00<S<00<t<T 3.1.7
—_ J— —_ —_ = (0)0) . 1.
ot TP as 29 sz TV T ’ (3.1.7)

This partial differential equation (3.1.7) is called the Black-Scholes partial differential
equation or Black-Scholes equation for short. We make three remarks about this

equation (Wilmott, Howison & Dewynne, 1995):

* The Black-Scholes equation (3.1.7) is a linear backward parabolic partial differential
equation.

* The delta hedging ratio given by (3.1.5) is the rate of change of the value of the
option with respect to the underlying asset price S.

* The Black-Scholes equation (3.1.7) does not contain the growth rate u of the

underlying share.

The next step is to solve the Black-Scholes equation (3.1.7) and obtain solutions for the

European call and put options.

3.1.2 Formulas for the European call and put options prices

For European call options, we have the equation

aC+ SaC+1 252_626 C=00<S5<00,0<t<T 3.1.8
—_ R —_ j— = (0e] i
ot TP s 29 gz T VT Y ’ ’ (3.1.8)
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where C (S, t) is the value of the European call option with strike price K and maturity

T. The final condition for Equation (3.1.8) is

_(S—-K, if S>K, 0<S<ow»
€GD= { 0, if S<K, 0<S§<oo. (3.1.9)
And the boundary condition is
{C(S,t)"'S, asS -0, 0<t<T. (3.1.10)

According to the final condition in (3.1.9) and the boundary condition in (3.1.10), the
equation (3.1.8) can be explicitly solved (e.g. Wilmott, Howison & Dewynne, 1995) and

the explicit solution is called the B-S pricing formula for European call options:
C(S,t) = N(d;)S — N(dy)Ke"T-9, (3.1.11)
with

1
oVvVT —t

dy = [ln (%) + <r + %2> (T — t)l,dz =d,—oVT—¢t, (3.1.12)

where N (+) is the cumulative distribution function of the standard normal distribution.
For European put options, the Black-Scholes equation (3.1.7) becomes

0P s L 220 L 0cS<wo<t<T 3.1.13
—_— N — J— = (0/e] A,
ot 1709529 G52 T ’ ’ ’ ( )

where P(S,t) is the value of a European put option with strike price K and maturity 7.

We have the final condition for equation (3.1.13)

K-S, if S<K, 0<S§S<x

P(S'T)={ 0, ifS=K 0<S<oo, (3.1.14)
And the boundary conditions
— -r(T—-t)
{P(O,t) Ke , 0<t<T (3.1.15)
P(S,t)~0, asS >, 0<t<T.

Solving (cf. Wilmott, Howison & Dewynne, 1995) the equation in (3.1.13) with the

final condition in (3.1.14) and the boundary condition in (3.1.15), we obtain

P(S,t) = Ke "TN(—d,) — SN(—d,), (3.1.16)
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where d; , are the same as (3.1.12) .

3.2 Stochastic volatility models

Two typical stochastic volatility models will be introduced in this section. The first is
Hull-White stochastic model (Hull and White, 1987), whilst the second is the Heston
model (Heston, 1993). In this section, we only study the concepts of the models.
Because explicit solutions are no longer available as in Black-Scholes case, the Monte-

Carlo simulations for both models are presented in Section 4.
3.2.1 Hull-White stochastic model

Hull and White (1987) considered a derivative asset f with a price that depends upon
some security price S, time to maturity T, and its instantaneous variance, V = ¢2, which

are assumed to obey the following stochastic processes:
dS(t) = uS(t)dt + a(t)S(t)dW;(t), (3.2.1)
dV(t) = @V (t)dt + EV(t)dW,(t), (3.2.2)

The variable u is dependent on S, and t. The variables ¢ and & depend on o and t. dW;
and dW, are Brownian motions/ Wiener processes and they are correlated with the

correlation coefficient p.
There are several assumptions for Hull-White model:

* The volatility V is uncorrelated with the stock price S.
« S, T and o2 are the only state variables which affect the price of the derivative
security f.

* The risk-free rate, r, must be a constant or at least deterministic.

3.2.2 Heston model

The Heston model (Heston, 1993) assumes that the stock price S(t) and its

instantaneous variance V(t) satisfy the following stochastic differential equations

(SDEs):

dS(t) = uS(t)dt + V(O SO dW, (o), (3.2.3)
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dv(t) = —AV(t) — 8)dt + nyV (t)dW, (1), (3.2.4)
The parameters in the above equations represent the following:

* W is the drift coefficient of stock price returns

* 0 is the long-term mean of price variance

* Ais the speed of reversion of V(t) to its long-term mean 6

* 1 is the volatility of volatility

* p is the correlation between Brownian motions

* dW,and dW, are Brownian motions/ Wiener processes and they are correlated with

the correlation coefficient p

This process (3.2.3) uses the instantaneous variance V(t), which is defined by the
theory proposed in Cox, Ingersoll and Ross (1985, p.399). It is usually referred to as
CIR process.

There are two assumptions for the Heston model (Heston, 1993):

* The interest rate is constant.

* There is no dividend payment.

3.3 Numerical methods

3.3.1 Binomial methods

Using discrete random walk models, we attempt to emulate the price movement of the
underlying asset. Once the movement pattern of the underlying asset is set, we can use
this pattern to price the derived option price. If the random walk consists of two
possibilities, one is up and the other is down, then the model is a binomial model and
the method is classified as binomial method. There are two assumptions (Wilmott,

Howison and Dewynne, 1995) underlying the binomial methods:
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* Suppose that the lifetime of the option is T, which is divided up into M time-steps of
size At = T/M. The continuous random walk can be approximately utilised by a
discrete random walk. The asset price S changes only at the discrete times
At, 2At,...,MAt = T. We suppose that the asset price is S at time t = mAt, then
the asset price at time t = (m + 1) At, has two possibilities: moving up to uS with
probability p (0 < p < 1) or moving down to dS with probability 1-p (u>1>
d > 0). The binomial tree is constructed by starting with the given value S, which is
the asset price at t = 0, generating two possible asset prices at the first time step t =
At, three possible values at the second time step t = 2At until the maturity time of

the security. Consequently at time t = mAt, there are m + 1 possibilities for asset

prices.

Suuu

Suu /
Su / \ Suud

S / \ Sud /
\ Sd / \ Sudd

\ Sdd /
\ Sddd

Figure 3.3.1 Binomial tree

* Assume it is a risk-neutral world (Wilmott, Howison & Dewynne, 1995) and thus
the stochastic differential equation (2.1.4) is replaced by
ds(t)
S()

where 7 is the risk-free interest rate.

= rdt + odW (t), (3.3.1)

With these assumptions, we observe that the option value V™ at time t = mAt is the
expected value of the option value at time t = (m + 1) At, discounted by the risk-free

interest rate .
VY™ = E[e TAty™MHL, (3.3.2)

Choosing the probability p of asset price moving up and 1 - p of asset price moving

down, the moving up magnitude u and moving down magnitude d is such that the
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discrete random walk presented by the binomial tree and the continuous random walk

(3.3.1) have the same mean and variance (Wilmott, Howison and Dewynne, 1995).

This means that the expected values and variances of a time-step under the continuous

risk-neutral random walk (3.3.1) and the discrete binomial model are equal.

Sm+1

We have the expected value and the variance of , given S™, under the continuous

random walk (3.3.1):
Ec[S™HS™] = [°S'p(S™, mAL; ', (m + 1)AD) dS' = e™8S™,  (3.3.3)
Varc[S™HS™] = e2rAt(e77A — 1)(S™)?, (3.3.4)

where p(S,t; S',t") is the probability density function

2
Lol oy — 1 ~(10g(s"/5)-(r—30)(t'-1)) /2% (t"~1)
P(S, 65", t) = s 2 ,  (335)

for the risk-neutral random walk (3.3.1) (Wilmott, Howison & Dewynne, 1995).
For the discrete binomial random walk, the expected value of S™*! under S™ is
Eg[S™t1S™] = (pu + (1 —p)d)S™, (3.3.6)
Varg[S™1|S™] = (pu? + (1 — p)a? — e?"8)(s™)2, (3.3.7)
Let Ec[S™1|S™] = Eg[S™*Y|S™], Varc[S™11|S™] = Varg[S™1|S™], we obtain,
pu+ (1—p)d =e™, (3.3.8)
pu? + (1 — p)o? = e@r+aAc, (3.3.9)

For the three unknown values u, d and p, we have two equations (3.3.8) and (3.3.9). We
require three equations to determine three unknown values. Hence, we need another
equation. The choice of the third equation is somewhat arbitrary. Two frequently

selected options for the third equation are:
u=-, (3.3.10)
or

(3.3.11)
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In the case of (3.3.10), the unknown values u, d and p are determined by the equations

(3.3.8), (3.3.9) and (3.3.10). We obtain

e
u=A+JA2-1,d=A-JA2-1,p= u

A

—d’

<

(3.3.12)
where 4 = + (et + e(”"z)M).
2

Since u = %, Sud in Figure 3.3.1 becomes S. It is easy to observe that the binomial tree

is vertically symmetrical.

Suppose the asset price at the beginning time is S = 100, u = % =0 the binomial tree

is shown in Figure 3.3.2.

244
95 _—
156 / \ 156
s _— T~ 15_—
00— T~—_10_— T~_100
\ 80 / \ 80 /
\ 64 / \ 64
\ 51 /
T~ 4

Figure 3.3.2: Binomial tree of underlying asset price when u = %

In the case of (3.3.11), the unknown values u, d and p are determined by the equations

(3.3.8), (3.3.9) and (3.3.11). We obtain

u=e (1+eo™ —1),d =™ (1 -yer8 1) ,p = % (3.3.13)

Onlyifu-d =1, Sud = S. In general, the binomial tree will be slightly upwardly
adjusted if u-d > 1, or downwardly adjusted ifu - d < 1.

Let p=05,r=02,At=1,0=0.2. We have u =1.9772, d = 04656, u-d =
0.9206 < 1. With asset price S = 100 at the beginning, according to the above
discussion about u-d < 1, we have a downwardly adjusted binomial tree which is

shown in Figure 3.3.3.
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4.7

Figure 3.3.3: Binomial tree of underlying asset price when p = % andu-d < 1.

Let p=05,r=03,At=1,0=0.2. We have u = 2.1851, d = 0.5146, u-d =
1.1244 > 1. With asset price S = 100 at the beginning, according to the above

discussion about u - d > 1, we have a upwardly adjusted binomial tree which is shown

in Figure 3.3.4.

TT—_13.6

Figure 3.3.4: Binomial tree of underlying asset price when p = % andu-d > 1.

3.3.2 Pricing European option with binomial methods

Suppose V;M is the value of the European put option at t = T = MAt, and the payoff
function for the option depends only on the values of the underlying asset at maturity.

The value of the European put option at the maturity can be priced as:

VM = max(K —S¥,0),n = 0,1,.. , M, (3.3.14)
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where V;M is the n-th possible value of the European put option at time-step M, K is the
strike price and S denotes the n-th possible value of the underlying asset at time-step

M.

Since we have the binomial tree of the underlying asset price (Figure 3.3.1), we can
calculate all values of S}', n=0,1,...,m, m=0,1,...,M and the corresponding
probability p which represents the probability of SM*~1 moving up to S/, and the
probability 1 — p which is the probability of S7*~! moving down to S™.

With the option price and the prices of underlying assets at maturity, we can calculate
the expected value of the option at the time-step prior to the maturity (M — 1)At by

discounting the values of maturity with the risk-free interest rate 7.
e™MtyM-1 = pyM + 1-pUM,0<n<M-1,
for the time-step mAt, 0 < m < M, we have
e™tym = pymil 4 (1 —p)™L0<m<M,0<n<m. (3.3.15)
This gives
Y =e A (pymil 4+ 1 —p)V),0<m<M,0<n<m. (3.3.16)

We can calculate the values of ;" for each n and m, at last arriving at the current

option price V.

Su

83 S5

S1 St sy

S9 St S? sy

Figure 3.3.2: The binomial tree of underlying asset price
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We simulate the option pricing process using both (3.3.12) and (3.3.13) with different
time to maturity and time steps. Thereafter researchers can compare the B-S option

price with the price calculated by binomial option pricing methods (Table 3.3.1 and

Figure 3.3.3: The binomial tree of European put option price

Table 3.3.2).
T Black- Binomial Method (p =)
Scholes

M=16 M=32 M=64 | M=128 | M=256
0.25 487578 | 48.7578 | 48.7578 | 48.7578 | 48.7578 | 48.7578
0.5 475310 | 47.5310 | 47.5310 | 47.5310 | 47.5310 | 47.5310
0.75 463197 | 463195 | 463195 | 463196 | 463196 | 46.3196
1 45.1253 | 45.1241 | 45.1246 | 45.1249 | 45.1252 | 45.1253

Table 3.3.1 Comparison of Black-Scholes values and binomial method (p = %) for a

European put option with K = 100, S = 50, r = 0.05, and o = 0.2. Expiry time 7 is

measured in years.
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T Black- Binomial Method (u = =)
Scholes
M=16 M=32 M=64 | M=128 | M=256
0.25 487578 | 48.7578 | 48.7578 | 48.7578 | 48.7578 | 48.7578
0.5 475310 | 47.5310 | 47.5310 | 47.5310 | 47.5310 | 47.5310
0.75 463197 | 463194 | 463195 | 463196 | 463196 | 46.3196
1 45.1253 | 45.1236 | 45.1245 | 45.1249 | 45.1251 | 45.1252

Table 3.3.2 Comparison of Black-Scholes values and binomial method (u = %) for a
European put option with K = 100, S = 50, r = 0.05, and o = 0.2. Expiry time 7 is

measured in years.



32

4 Simulation and regression

In this chapter we present the methods used to analyse the real market data. Boyle
(1977, p. 329) and Boyle, Broadie, and Glasserman (1997, p. 1268) utilized Monte-
Carlo simulation in derivative pricing and Michael, Fu and Laprise (1999, p. 57)
conducted empirical testing to compare the different algorithms. We revisit Monte-Carlo

simulation to explore how this method can be used for pricing options in Section 4.1.

In Section 4.1, we apply Monte-Carlo simulation in pricing European options, using a
standard random walk model, the Hull-White model and the Heston model for the
underlying stock prices. We compare the results using Monte-Carlo simulation with the
Black-Scholes price obtained using the Black-Scholes formula. In Section 4.2, the

regression method will be introduced.
4.1 Monte-Carlo simulation for pricing European options

Monte-Carlo simulation is one of the mathematical methods for pricing financial
derivatives. Here we give three examples to understand the application of Monte-Carlo

simulation on pricing European options.
4.1.1 Monte-Carlo simulation using standard Brownian model

Firstly, we use the standard random walk model to simulate the underlying asset price.
We assume that the stock has no dividends and the price follows a geometric Brownian

motion (cf. (2.1.4)):

dS(t) = uS(t)dt + oS(t)dW (t), for t > 0.
Here S, is the stock price at time #, W is a Brownian motion, u is the assumed constant

drift, o is the assumed constant volatility.

The solution of the geometric Brownian motion is (cf. (2.1.5)):

S(t) = Spexp ((# ~ e+ aW(t)).

If we rewrite the above equation as a discrete time process:

S(t + At) = S(t)exp <(u - "72) t+ as(t)\/A_t>, 4.1.1)
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where £(t) is a random value that is normally distributed.

We assume that the underlying asset is a stock and the risk-free interest rate is r.
Suppose that the lifetime of the option is T, Strike price is K. Then the Monte-Carlo

simulation steps for this model are as follows:

a. Divide the lifetime of the option into M time-steps of the size At = T/M. Then
simulating the stock price at every discrete times At,2At,...,MAt =T using

formula (4.1.1).

b. Calculate the payoff at maturity date. The payoff for European call option and put
option at maturity date is max (St — K, 0), and max (K — S, 0) respectively. Here

St 1s the stock price at maturity T simulated in Step a.
c. Repeat steps a and b n times, and obtain n payoff values at the maturity date.
d. Calculate the average payoff value at the maturity date.

e. Discount the payoff value with interest rate r, and take the result as the simulated

value of the financial option.

Simulation 4.1.1. Assume that the underlying stock price at time t =0 is S, =100 ;

interest rate is v = 0.02, u = 0.02; the European call option has mature time of half a

year: T'=0.5; Strike Price is K = 100; the constant volatility is o = 0.2.

First of all, we divide the life-time of the option into 20 time steps, which gives M =
20, and At = % = %. Then we simulate the stock price using (4.1.1).

Secondly, we calculate the payoff p of the maturity. p = max(S; — K, 0)

Thirdly, we repeat the previous two steps for 1000 times, so we have 1000 stock price

paths and 1000 payoffs.
Fourthly, we calculate the average value of the payoffs and we name it as a.

At last, the value of the call option is the discounted average payoff value with constant

interestrater: C = a-e” "7,



34
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Figure 4.1.1 Simulation of stock price using standard random walk model

The average payoff at f=7 as we simulated using MATLAB is 5.9367, and its
discounted value is 5.8777 which is the fair value of the option at t = 0. The simulation

of stock price using standard random walk model is shown in Figure 4.1.1.
4.1.2 Monte Carlo simulation using Hull-White model

As we discussed in Chapter 3, the Hull-White stochastic model on stock price is (cf.
(3.2.1),(3.2.2))

dS(t) = uS(t)dt + oS(t)dW, (t),
AV (t) = @V ()dt + EV(£)dW, (L),

where S(t) is the stock price, V(t) = a(t)? is the instantaneous variance of stock price.
The parameter u depends on stock price S, o and ¢. The variables ¢ and ¢ depend on o
and 7. dW,(t) and dW,(t) are Brownian motions/Wiener processes and they are

correlated with each other with the correlation coefficient p.
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Assuming that u, ¢, and & are constants, the solutions of the Equations (3.2.1) and

(3.2.2) are (Hull, 2009, p. 271)
S(£) = Spexp <(u — e+ J(t)W1>, (4.12)
and

V(£) = Vyexp (((p -+ §W2>. 4.1.3)

If we rewrite above equations as discrete time processes, we have

S(e +A6) = S expl (1 — Z5) At + o(0)ey (OVEL ), (4.1.4)
V(e +A6) = V(D) exp[ (9 —£) At + Eep(OVET ], 4.1.5)

where V(t) = o(t)?, &(t) and &,(t) are random values that are normally distributed.

And satisfies &,(t) = & (t)p + €(t)y/1 — p?, where £(t) is a normally distributed

random value.

We assume that the underlying asset is a stock and the risk-free interest rate is r.
Suppose the lifetime of the option is T, Strike price is K. Then the Monte-Carlo

simulation steps are as follows:

a. Divide the lifetime of the option into M time-steps At = T/M. Then simulate the
stock price at every discrete times At, 2At, ..., MAt = T using formulas (4.1.4) and
(4.1.5).

b. Calculate the payoff at the maturity date. The payoff for European call option and
put option at maturity date is max (St — K, 0), and max (K — Sr, 0) respectively.
Here St is the stock price at the maturity T simulated in Step a.

c. Repeat Steps a and b n times, and obtain » numbers of payoff at the maturity date.

d. Calculate average payoff value at the maturity date.

e. Discount payoff value with interest rate r, and take the result as simulated value of

the financial option.

Simulation 4.1.2. Assume that the underlying stock price at time =0 is S, =100 ;

interest rate is r = 0.02; the constant drift ¢ = 0.02; the European call option has half
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year life-time 7'=0.5; the strike price K is 100; the other parameters of this model are

setasp =0.1,§ =0.1, p =0.1.

First of all, we divide the life-time of the option into 20 time steps, which gives M =
20, and At = % = Z;s. Then we simulate the stock price using (4.1.4) and (4.1.5).
Secondly, we calculate the payoff p of the maturity: p = max(Sy — K, 0).

Thirdly, we repeat the previous two steps for 1000 times, so we have 1000 stock price

paths and 1000 payoffs.

Fourthly, we calculate the average value of the payoffs a = %

At last, the value of the call option is the discounted average payoff value with interest

rater,C=a-e T,

180

~— Mean value of the simulated stock price |

60 | 1 L | 1 | 1 L 1 J

Figure 4.1.2 Simulation of stock price using Hull-White model

The average payoff at t=7 as we simulated using MATLAB is 6.3106, and its
discounted value is 6.2478 which is the fair value of the option price att = 0. The

simulation of stock price using Hull-White model is shown in Figure 4.1.2.
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4.1.3 Monte-Carlo simulation using Heston model

As we discussed in Chapter 3, the Heston stochastic model is given by (cf. (3.2.3),
(3.2.4)):

dS(t) = uS(t)dt + /V(£)S(t)dW, (t),
dv(t) = —A(V(t) — 8)dt + nyV (t)dW, (1),
(AW, dW,) = pdt,

where S(t) is the stock price, V(t) = o(t)? is the instantaneous variance of stock price;
the parameter pu is the drift coefficient of stock price returns, 6 is long-term mean of
price variance, A is the speed of reversion of V to its long-term mean 6, n is the
volatility of volatility; dW,; and dW, are Brownian motions/ Wiener processes and they

are correlated with the correlation coefficient p.

Assuming that y is a constant, the solution of Equation (3.2.3) is (Hull, 2009, p. 271):

2
S(t) = Soexp <(u -2+ o(t)W1>. (4.1.6)
The differential equation of the volatility is

dv(t) = —AV(t) — 8)dt + n/V (£)dW,, (4.1.7)

If we rewrite above equations as discrete time processes, we have

S(¢ +A) = S expl (u — 22 At + o (D) (OVAL, (4.1.8)
V(t+ At) = V(t) — A(V(t) — 8)At + n/V ()&, (VAL (4.1.9)

where V() = a(t)?, &,(t) and &,(t) are random values that are normally distributed.
And they satisfy &,(t) = &;(t)p + £(t) /1 — p?, where &(t) is a normally distributed

random value.

We assume that the underlying asset is a stock and the risk-free interest rate is r.
Suppose that the lifetime of the option is T'; the strike price is K. Then the Monte-Carlo

simulation steps are as follows:
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a. Divide the lifetime of the option into M time-steps of the size At = T/M. Then
simulate the stock price at every discrete time At, 2At,..., MAt =T using the
formulas (4.1.8) and (4.1.9).

b. Calculate the payoff at maturity date. The payoft for European call option and put
option at maturity date is max (St — K, 0), and max (K — S, 0) respectively. Here
St 1s the stock price of maturity T simulated in Step a.

c. Repeat Steps a and b # times, and obtain » numbers of payoff at the maturity date.

n oo,
d. Calculate average payoff value at maturity date a = %.
e. Discount payoff value with interest rate r, and take the result as simulated value of

the option price C = a-e™"T.

Simulation 4.1.3. Assume that the underlying stock price at time ¢ =0 is S, =100 ; the
interest rate is ¥ = 0.02, u = 0.02; the European call option has half year life-time
T =0.5; the strike price K is 100; and all the other constant parameters are set as 0.1.

First of all, we divide the life-time of the option into 20 time steps, which gives M =
20, and At = % = 2—5. Then we simulate the stock price with the formulas in (4.1.8) and

(4.1.9).
Secondly, we calculate the payoff at the maturity. p = max(Sr — K, 0).

Thirdly, we repeat the previous two steps for 1000 times, so that we have 1000 stock
price paths and 1000 payoffs.

Fourthly, we calculate the average value of the payoffs.

Finally, the value of the call option is the discounted average payoff value with interest

rater,C =a-e T,
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Figure 4.1.3 Simulation of stock price using Heston model

The average payoff at t =7 as we simulated in MATLAB is 6.3435, and its discounted

value is 6.2803 which is the fair value of the option price at t = 0.

Therefore, the option prices for the European call option with the underlying stock price
attime t =05, = 100, the interest rate r = 0.02, u = 0.02, half year life-time T = 0.5,
the strike price K = 100 calculated by different models are listed in Table 4.1.1.

Model Option price
B-S model 6.1207
Binomial tree model 6.0541
Standard Brownian model 5.8777
Hull-White model 6.2478
Heston model 6.3435

Table 4.1.1 Comparison of the option price calculated by different models
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4.2 Regression

In the real world, the majority of asset pricing information can be expressed by
economical variables such as risk, interest rate, price, sales volume, investment
amounts. All of these are connected in some way. The most straightforward methods to
describe their numerical relationships are regression analysis, correlation analysis and

variance analysis. In this section, we mainly focus on regression analysis.

4.2.1 Linear regression

If the value of the dependent variable y is anticipated to have a relationship with the

independent variable x or a set of independent variables (x4, x5, ..., X;,), the relationship

between y and x or (x4, X5, ..., X, ) can be expressed by a function
y=fxuw,
or
Y = f(X1, X2, e, Xp, U).
where u is the error term.

For a set of different observed values (x¢, y;) or (X1¢X2¢) oo Xne, Vi), t = L2, .0, k, we

have
Ve = f(xe,up), t =12, ...k,

or

Ve = [ (X16, X2t oor X, Ug), t = 1,2, .. k.
where u, is the corresponding stochastic error term.
The simplest form of regression is a linear regression with one variable

Ye = bg + byxy + uy.
The general linear regression formula with multiple variables are
Yt = bo + b11X1¢ + b1aXoe + o+ + binXpne + U

Parameter estimation

For a one-variable linear regression model
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Ye = by + bix¢ + ug, (4.2.1)

we should have E (u,;) = 0, which means that the expectation or mean of the random

error term is zero.
Under above conditions, we take expectation on both sides of (4.2.1) to get

E(y:) = by + b1 E(xy), (4.2.2)
with byand b, being regression parameters.

We need to answer the question that how can we estimate the values by and b, in (4.2.2)

to get the best possible approximation.

The most frequently used method is the Ordinary Least Squares Estimation (OLS).

Definition 4.2.1:Ordinary least squares (OLS)

The ordinary least square estimation method serves to estimate unknown parameters in
a linear regression model, with the goal of minimising the differences between the
observed responses in the observed response dataset y and responses predicted by the
linear approximation of the data. In order to let observed regression function to be as
close as possible to the real population observation, for each observed dataset (x;, y;),
we let the difference between the fitted value J, of the regression function ¥, = by +
b x, and the observed value y,, e, = y, — J, to be as small as possible. As e, has both
positive and negative values, the sum ) e, will not give an estimate of its size.
Therefore mathematicians use residual sum of square Y, e? instead of Y, e,. The specific

steps of OLS are as follows.
minz ef = min Z(Yt —¥:)% = min Z(Yt — by — byx;)?,
To minimize Y, e?, the undetermined coefficient b, and b, should satisfy

(X ef)
ab,

(X ef)
\ b,

= Z 2(y: — Bo - let)(_l) = -2 Z(}’t - Bo - let) =0

= 200~ by = Bix)(=x) = =2 ) e = by — b)) = 0,
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thus,

Z)’t = nb, + Blzxt
th% = Bozxt +Blzx§’
where 7 is the sample size.

This system can be solved as

BO :37_31)?’

5 S D0 =)
! (e —0)?*
Hence the regression function should be

9¢ = b + byxe.

Since the residual error is e; = y; — ¥, we have

yt = Bo + let + et.

4.2.2 Measure goodness of fit

Equation y, = by + by x; + e, can be written as

Ve—V=V:—yV+te,

where Y is the mean value of the observed data y,.

So

D= =D Ge-THe) =) Q=9+ ) e 42) e —7).(423)

Since

2 ec(Jr —y) = Z et(by + byx, —¥) = Z et(by — ¥) + Blz erxy = 0.

Equation (4.2.3) becomes
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D= = ) G-+ ) et (424

The terms Y.(y, — ¥)%, (P — ¥)?, X, e? have their own explanations as follows:

Total sum of squares (TSS): square value of difference between observed value y, and

mean value y;

TSS = Y(v, — ¥)2. (4.2.5)

Explained sum of squares (ESS): square value of difference of fitted value ¥y, and

mean value y

ESS =Y, — y)2. (4.2.6)

Residual sum of squares (RSS): square value of errors, which is the square of

difference between observed value y; and the fitted value y;:

RSS =Y el =X(v: — 91 (4.2.7)
(4.2.4) can now be written as
TSS = ESS + RSS. (4.2.8)
Rewrite (4.2.8), we have
1= §+@ (4.2.9)
TSS TSS

Now. E5S _ L@e—9)?

TS5 = Sriy)? is defined as the Coefficient of determination: R? (R squared)
—

, _ESS_ RSS_ Y e? 4210
TSS T TSS (Ve — ¥)?° (4.2.10)

Here, R? represents the goodness of fit of the regression. With smaller error Y, eZ,

coefficient of determination R? has a larger value. It means that when R? — 1, Y eZ —

0.

So we have:



44

- 0<R*<1.
« IfR? =1, then Y eZ = 0. In this case, the regression is perfectly fitted.
« IfR? =0, then Y e? = Y.(y; — ¥)?. In this case, x and y have no linear relationship

with each other.
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S Real life data analysis

In this chapter we analyse option volatility using real market data of SPY options. The
discussions concentrate on five aspects: In Section 5.1, we explain the reasons why we
choose the SPY option and the necessary steps required to filter and process data. In
Section 5.2, we discuss the correlation between implied volatility and asset price. We
mainly look at the results on the same time level and on different time levels (data with
lags) in the corresponding data. In Section 5.3, we conduct the regression analysis to
determine how real world data depends on various factors such as strike price, time to
maturity and share price. The main purpose is to explain how the Black-Scholes implied
volatility impact on real world data depends on its inputs in a linear pattern, i.e., to
understand if volatility is positively or negatively proportional to the variables. In
Section 5.4, we study what statistical character the underlying asset prices have when
real world options are seriously undervalued (Black-Scholes formula implies that the
risk is incalculable, or equivalently, implies negative volatility as discussed in (Gatheral,
2006, p. 21), what statistical character the underlying asset prices has. The results and

implications are discussed in Section 5.5.

5.1 Introduction to data used

Choice of study object

We choose the S&P 500 (the Standard & Poor’s 500) as our object of study. The S&P
500 is an American stock market index based on the market capitalisations and share
prices of the 500 largest companies. SPY is an S&P 500 Exchange Traded Fund (ETF)
and is the largest and most popular ETF tracking S&P 500. SPX is the S&P 500 Index.
Although both SPY and SPX can be traded as the underlying asset for financial options,
we choose SPY and its derived options as our object of study. The reason for this

decision was the difference of the trading volume (popularity among traders).
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Period SPX trading SPY trading Volume Ratio
volume volume SPY/SPX
Pre-Crisis (Year 332,599,157 279,524,781 0.84

2005- Bear Stein)

During Crisis (Bear 233,942,487 547,829,314 2.34
Stein- end of year
2009)
After Crisis (Year 527,382,841 1,705,122,316 323

2010- Year 2013

Overall 1,093,924,485 2,532,476,411 2.32

Table 5.1.1 Trading volume comparison between SPY & SPX

From Table 5.1.1, it is clear that the trading volume in SPY is much larger when

compared to that of SPX options in recent years.

All data concerned, such as asset price, strike price, option price (including last (the last
trading price in a trading day), bid and ask), and expiry date come from
www.deltaneutral.com, whom, according to the corporate website, is the data provider

for The Wall Street Journal.

Other data such as interest rate (USD 1 year LIBOR), SPY end of day share price,

dividend rate were downloaded from the Thompson Reuters Data Service.
Data filter

In principle, we used last option price to calculate implied volatility. However, there are
a few exceptions (due to the large number of options, many were not traded for many
consecutive days). Specifically, we considered the following abnormal situations and

made the adjustments described below:

1) If the recorded last price is zero, and the corresponding ask price is less than asset

bid+ask

price, last price is replaced by —
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2) If the recorded last price is zero, and the corresponding ask price is greater than
asset price, the whole option is deleted (options prices should be lower than the

corresponding underlying asset prices).
Observation of negative risk

As we discussed in Chapter 2, the upper bound and lower bound of European call

options are
max(S; — Ke"T=0,0) < C, < S,.

Hence, for in the money options, when the asset price is greater than strike price, the
lower bound of the call option price is greater than zero. We drew a picture of option
price according to the B-S formula with underlying asset price S = 100, strike price
K = 90, interest rate r = 0.2, time to maturity T = 0.2, volatility changes from 0 to 10

to view the relationship between volatility and option price:

Call In the Money
110 T T T

S5=100,K=80

100

a0
80
70
B0
50

Option Price

40
30
20

10

D 1 1 1 1 1
“olatility

Figure 5.1.1. In the money volatility and option price relationship

From Figure 5.1.1 we see that the B-S option price is bounded form below by the zero
risk price, a positive number, and bounded from above by the asset price. However, if
we use real world data, it is often observed that the prices will fall below the theoretical
‘zero risk value’. In this case, we cannot define the volatility because volatility is a
monotonic increasing function of option price. Moreover, in the Black-Scholes formula,

volatility is sigma squared which has to be positive. Therefore, we have to use a formula
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to estimate the volatility for contracts whose option price is less than the theoretical

‘zero risk value’:

We denote V as the B-S option price, V, as zero risk B-S option price, V. as real world
recorded option price, R, as risk of the option when the option price is V, Ry as

negative risk. Then we define
V=Vy+ |V =V, (5.1.1)
Ry = —Ry
to produce an artificial ‘negative risk’ for the B-S undervalued options.

The negative risk phenomenon has also been observed and commented by Gatheral

(Gatheral, 2006, p. 21) as well as a number of other authors.

For out-of-the-money call options, since strike price is greater than asset price, which
implies that max(S, — Ke~"("=1,0) = 0, the range of option price is from zero to the
asset price, so there is no possible negative risk for out-of-the-money call option
contracts. We drew a picture with strike price K = 110, whilst keeping asset price,
interest rate and volatility the same as in Figure 5.1.1. The result is shown in Figure

5.1.2 below:

Call Out of the Money
110 T T T

S=100,K=110

100

90 -

80 —

70+ -

60 =

50 F —

Option Price

40 b -

30 F =

20 F —

10 .

U 1 1 1 1 1
0 1 2 3 4 5 B 7 g 9 10

Yolatility

Figure 5.1.2 Out-of-the-money volatility and option price
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For put options, there is a similar situation.
5.2 Correlation between implied volatility and asset returns

We arrange date, asset price and average risk in three columns as Table 5.2.1.

Date Asset Price Average Risk
10-01-2005 119 0.1822
11-01-2005 118.18 0.2069
12-01-2005 118.57 0.1417
13-01-2005 117.62 0.2294
14-01-2005 118.24 0.1998
18-01-2005 119.47 0.0618
19-01-2005 118.22 0.2812
20-01-2005 117.5 0.3574
21-01-2005 116.78 0.4419
24-01-2005 116.55 0.1888
25-01-2005 116.88 0.1806
26-01-2005 117.23 0.1586
27-01-2005 117.43 0.1473
28-01-2005 117.43 0.1370
31-01-2005 118.16 0.0618
01-02-2005 118.91 -0.0107
23-12-2013 182.53 0.1015
24-12-2013 182.93 0.0998
26-12-2013 183.855 0.0588
27-12-2013 183.845 0.0766
30-12-2013 183.82 0.0809
31-12-2013 184.69 0.0401

Table 5.2.1: Data structure of asset and risk

We use correlation coefficient to obtain the intuitive relationship between implied

volatility and the underlying asset returns.

The correlation coefficient r between two vectors x and y is defined as
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. Yt=1(xe =) —¥)
\/Z?:l(xt —X)? Y= (Ve — )_’)2’

(5.1.2)

where x and y are the variables; n is the size of the variables; x; is the ith element of
variable x; x is the mean value of x; y; is the ith element of variable y; y is the mean

value of y.

We calculate the frequency percentage for the correlation of option risk and asset price
by rolling the observed data over-time. Every observed data has 5 or 10 elements. For
example, we let the asset price and the option risk between the dates 10-01-2005 and
14-01-2005 be variables x and y, respectively. We have the variable size n = 5. We
calculate the correlation coefficient before moving the data forwards one working day,
so that asset price and option risk are now between the dates 11-01-2005 and 17-01-
2005 (weekend has been excluded) and repeat the same computation as in previous
dates and count frequency correspondingly. This is the ‘Delay 0’ case in Table 5.2.1

below.

For the ‘Delay -1’ case in Table 5.2.1 below, we select asset prices between the dates 11-
01-2005 and 17-01-2005; option risk between 10-01-2005 and 14-01-2005 as variables
x and y respectively. We then carry out the same time rolling regression as in the case

with ‘Delay 0°.

After the process is finished, we calculate the frequency percentage for the sign of

correlation coefficient. The results are summarised in Table 5.2.2 below.
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Call option

Total frequency percentage for

negative correlation

Total frequency percentage for

positive correlation

Delay 0 Delay -1 Delay 0 Delay -1
2-months 5-day 92.99% 20.51% 7.01% 79.49%
2-months 10- 99.29% 19.35% 0.71% 80.65%
day
3-months 5-day 94.19% 18.60% 5.81% 81.40%
3-months 10- 99.29% 18.28% 0.71% 81.72%
day
4-months 5-day 94.19% 17.80% 5.81% 82.20%
4-months 10- 99.51% 17.35% 0.49% 82.65%
day

Table 5.2.2 The correlation between implied volatility and asset returns for call options

Table 5.2.2 shows that, for call options, the instantaneous asset price has a negative

correlation with the instantaneous option risk while the one-day delayed asset price has

a positive correlation with the instantaneous option risk.

We conduct the same process for put options, the results of which are shown in Table

5.2.3 below:
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Put options Total frequency percentage for Total frequency percentage for
negative correlation positive correlation

Delay 0 Delay -1 Delay 0 Delay -1

2-months 5-day 15.14% 75.72% 84.86% 24.28%

2-months 10- 7.25% 72.38% 92.75% 27.62%
day

3-months 5-day 13.49% 76.43% 86.51% 23.57%

3-months 10- 6.14% 73.31% 93.86% 26.69%
day

4-months 5-day 13.23% 76.83% 86.77% 23.17%

4-months 10- 5.96% 73.89% 94.04% 26.11%
day

Table 5.2.3 The correlation between implied volatility and asset returns for put options

Table 5.2.3 shows that, for put options, the instantaneous asset price has a positive
correlation with the instantaneous option risk, while the one-day delayed asset price has

a negative correlation with the instantaneous option risk

Remark 5.2.1 Here, X-month Y-day means that we use all options with time-to-
maturity up to X months to calculate every day’s algebraic average risk and take Y days

of risk to correlate with Y days of returns of the underlying asset

Remark 5.2.2 ‘Delay 0 " means risk and underlying asset returns are calculated
simultaneously. ‘Delay — 1’ means that risk is taken one day earlier than underlying
asset returns. Therefore ‘Delay — 1’ means to investigate predictive ability of risk on

the underlying asset returns (Tang & Zhang, 2014).

5.3 Variance capture

Although correlation confirms the relationship between risk and underlying asset return,

it is apparent that if we carry out regression analysis between risk and return, the R’
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statistic is very poor. Thus, correlation may not reflect the true relationship between risk

and returns (Tang & Zhang, 2014).

In order to overcome this limitation, we carry out a regression of the simple average risk
against various combinations of underlying prices or underlying returns, time to

maturity and strike prices.

We arrange date, averaged implied volatility, averaged strike price, averaged time to

maturity, asset price and asset return values for each day in six columns, see Table 5.3.1:

Date Averaged | Averaged | Averaged | Asset Price | Asset
Implied Strike T Return
Volatility
11-02-2005 0.02838 120.50 127.00 120.77 0.00860
14-02-2005 0.04255 120.50 124.00 120.68 -0.00075
15-02-2005 0.06080 122.10 133.10 121.13 0.00373
16-02-2005 -0.02066 121.00 122.00 121.21 0.00066
17-02-2005 0.07913 120.50 121.00 120.23 -0.00809
18-02-2005 0.05307 120.50 120.00 120.39 0.00133
22-02-2005 0.13599 118.50 131.17 118.60 -0.01487
23-02-2005 0.09574 119.50 130.17 119.45 0.00717
26-11-2013 0.10377 173.18 124.59 180.68 0.00028
27-11-2013 0.09379 173.18 123.59 181.12 0.00244
29-11-2013 0.10337 173.18 121.59 181.00 -0.00066
02-12-2013 0.12519 173.18 118.59 180.53 -0.00260

Table 5.3.1: Data structure of averaged K, T, implied volatility, asset return and price
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We obtain very good R* by using 5-day historical data rolling statistics. In particular,

for call options the results are shown in Figure 5.3.1.

R2 Statistic
1200 | 1 T | T 1 1 1 1
— K SPrice
K SReturn
1000 F T SPrice -
—— T Sreturn
—K T SPrice
800 | ——— K T SReturn 4
B00 —
400 + B
200 e
—_——ee
0 N — 1

0 0.1 02 03

Figure 5.3.1 R’ statistic for multi-regressed call options
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For put options, the results are shown in Figure 5.3.2.

R2 Statistic
1000 . . T . T T . . .
— K SPrice
900 - K SReturn |7
T SPrice
800 -T Sreturn
— KT SPrice
mor KT SReturn ||

600

500

400

300

200

100

Figure 5.3.2 R’ statistic for multi-regressed put options

Remark 5.3.1: Here, the horizontal axis represents the R*> value of regression, the

vertical axis represents the frequency that such R* has been achieved.
Remark 5.3.2: Other notations in the Figures 5.3.1 and 5.3.2:

* K SPrice —risk regresses against strike K and share price S

« K SReturn — risk regresses against strike K and share return

* T SPrice — risk regresses against time to maturity T and share price S

* T SReturn — risk regresses against time to maturity T and share return

* KT SPrice —risk regresses against strike K, maturity T and share price S

« K T SReturn —risk regresses against strike K, maturity T and share return
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Since regression against ‘K T SPrice’ and ‘K T SReturn’ are particularly good, we
summarise the statics on the signs of regression coefficients in Table 5.3.2 for call

options and in Table 5.3.3 for put options.

K+,T+,SPrice+ 0.026 K+,T+,SReturn+ 0.008
K+,T+,SPrice+ 0.017 K+,T+,SReturn+ 0.035
K+,T-,SPrice+ 0.025 K+,T-,SReturn+ 0.008
K+,T-,SPrice- 0.017 K+,T-,SReturn- 0.034
K-,T+,SPrice+ 0.001 K-,T+,SReturn+ 0.023
K-,T+,SPrice- 0.462 K-,T+,SReturn- 0.440
K-,T-,SPrice+ 0.008 K-,T-,SReturn+ 0.015
K-,T-,SPrice- 0.441 K-,T-,SReturn- 0.434

Table 5.3.2 Frequency of signs for call options

K+,T+,SPrice+ 0.291 K+,T+,SReturn+ 0.287
K+,T+,SPrice+ 0.001 K+,T+,SReturn+ 0.005
K+,T-,SPrice+ 0.55 K+,T-,SReturn+ 0.491
K+,T-,SPrice- 0.016 K+,T-,SReturn- 0.076
K-,T+,SPrice+ 0.027 K-,T+,SReturn+ 0.045
K-,T+,SPrice- 0.027 K-,T+,SReturn- 0.009
K-,T-,SPrice+ 0.022 K-,T-,SReturn+ 0.057
K-,T-,SPrice- 0.064 K-,T-,SReturn- 0.029

Table 5.3.3 Frequency of signs for put options
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Remark 5.3.3: The notation in the third row, first column for example,
K+,T-,SPrice+

means that the regression coefficients are positive regarding K (strike price), negative
regarding T (time to maturity), and positive regarding SPrice (asset price). In the third
column, SReturn stands for the underlying asset return. The numbers in the second and
the fourth columns are the probability of the corresponding situations. (Tang and Zhang,

2014).

Remark 5.3.4: The highlighted areas in Tables 5.3.1 and 5.3.2 above are the dominating
phenomena in terms of probability, as it can be clearly seen that they amount for more

than 70 per cent of the possibilities.

Conclusion: Call option risk is negatively correlated to underlying price or asset
returns. Put option risk is positively correlated to underlying price or returns just as was

expected.

5.4 Negative risk study

As we mentioned in Section 5.1, when the option price is underpriced in the real
market, the volatility can be counted as negative. We undertake a further study for the
negatively priced options and find that they have different characteristics in call and put
options. For call options, when the option price is undervalued, we discover that the
stock price achieves a local maximum with dominant probability. When the call option
prices are undervalued for several days continuously, the first local extreme value of
stock price within that interval is most likely a maximum. On the contrary, for put
options, when the option price is undervalued, the stock price achieves a local minimum
with dominant probability. If the option prices are undervalued for several days

continuously, the first local extreme value of stock price is most likely a local minimum.

We conducted real data testing with SPY option data from 2005 to 2013. The results of
our testing are listed in Table 5.4.1 for call options and Table 5.4.2 for put options.
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Number of intervals Number of Possibility for
v where only intervals where |Number of intervals catching
ear
Call maximum or minimum appears | which cannot catch| maximum or
a
maximum appears | first followed by max maximum appears
first maximum first
2005 2225 45 460 81.50%
2006 2370 108 659 75.55%
2007 2319 49 679 76.11%
2008 1597 56 621 70.23%
2009 1367 33 634 67.21%
2010 1321 12 461 73.63%
2011 1405 16 603 69.42%
2012 1102 10 521 67.48%
2013 1694 19 773 68.14%
Overall 15400 348 5411 72.78%

Table 5.4.1 Catching maximum for underpriced call options
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Number of intervals Number of
. Possibility for
where only intervals where |[Number of intervals . o
Year . catching minimum
minimum or maximum appears| which cannot catch o
Put or minimum
minimum appears | first followed by min
appears first
first minimum
2005 1220 24 213 83.73%
2006 469 9 82 83.75%
2007 617 5 106 84.75%
2008 1882 56 1145 61.04%
2009 1194 44 684 62.12%
2010 1550 82 650 67.92%
2011 2366 158 1096 65.36%
2012 1861 143 1061 60.72%
2013 1912 186 583 71.32%
Year 13071 707 5620 67.38%

Table 5.4.2 catching minimum for underpriced put options

5.5 Results and discussions

When we use the real world option prices to calculate B-S implied volatility, we find

that the correlation between Black-Scholes implied volatility and spot price is high.

The Black-Scholes implied volatility has a negative linear relationship with the asset
price for call options and a positive linear relationship with the asset price for put

options instantaneously.
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From the real world option data, we conclude that it is possible that the option trading
price is less than the Black-Scholes zero risk option price. Consequently, we cannot
obtain a possible value of volatility. Hence, we created an artificial formula to calculate
the B-S implied volatility — called negative risk. We confirmed that when the B-S
implied volatility of the corresponding real world option price falls below zero, the
underlying asset price achieves a local extreme value with dominant probability: for call
options, local maximum asset prices are caught with dominant probability, whereas for

put option, local minimum asset prices are caught with dominant probability.

The study of implied volatility is of great interest in an effort to better understand
financial options. Moreover, it enables researchers to explore the significant links with

underlying asset price movements.
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