

A University of Sussex PhD thesis

Available online via Sussex Research Online:

http://sro.sussex.ac.uk/

This thesis is protected by copyright which belongs to the author.

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

Please visit Sussex Research Online for more information and further details

Secure File Sharing

Rakan Alsowail

Submitted for the degree of Doctor of Philosophy

University of Sussex

February 2016

iii

UNIVERSITY OF SUSSEX

RAKAN ALSOWAIL, Doctor of Philosophy

Secure File Sharing

Summary

File sharing has become an indispensable part of our daily lives. The shared files might
be sensitive, thus, their confidentially, integrity and availability should be protected. Such
protection might be against external threats that are initiated by unauthorised users or
insider threats that are initiated by authorised users. Our main interest in this thesis
is with insider threats. Protecting shared files against insiders is a challenging problem.
Insiders enjoy various characteristics such as being trusted and authorised, in addition to
being inside the network perimeter and having knowledge of information systems. This
makes it di�cult to prevent or detect policy violation for these users. The goal of this
thesis is to protect shared files from the perspective of insider security with language-based
techniques.

In the first part of the thesis, we define what we mean by an insider and the insider
problem precisely, and propose an approach to classify the insider problem into di↵erent
categories. We then define and focus on one category that is related to file sharing. Namely,
protecting the confidentiality and integrity of the shared files against accidental misuse
by insiders. Furthermore, we classify the activity of file sharing into di↵erent categories
that describe all possible ways of performing the activity of file sharing. These categories
represent policies that describe how files should be propagated and accessed by insiders.
We show that enforcing these policies can protect the files against accidental misuse by
insiders while allowing the activity of sharing to be performed as desired. Thus our interest
can be summarised as keeping honest users safe.

In the second part of the thesis, we develop a security type system that statically
enforces information flow and access control policies in a file system. Files are associated
with security types that represent security policies, and programs are sets of operations to
be performed on files such as read, copy, move, etc. A type checker, therefore, will statically
check each operation to be performed on a file and determine whether the operation
satisfies the policy of the file. We prove that our type system is sound and develop a type
reconstruction algorithm and prove its soundness and completeness. The type system we
developed in this thesis protects the files against accidental misuse by insiders.

iv

Acknowledgements

Firstly, I would like to express my sincere gratitude to my supervisor Dr. Ian Mackie, for

the continuous support of my Ph.D study and related research, for his patience, motivation,

and immense knowledge. His guidance helped me in all the time of research and writing

of this thesis. I could not have imagined having a better supervisor and mentor for my

Ph.D study.

Besides my supervisor, I would like to thank Prof. Ian Wakeman, Dr. Dan Chalmers,

Prof. Maribel Fernandez, Dr. Abubakar Hassan, and Dr. Nikolaos Siafakas, for their

insightful comments and encouragement, but also for the hard question which urged me

to widen my research from various perspectives.

My sincere thanks also goes to my friends from Sussex, for their support, patience and

words of advice. In particular I am grateful to Dr. Renan Krishna and Dr. Shinya Sato.

Thanks also to all my friends for being the lovely and supportive people they are.

I would like to thank my deceased father, who I am sure would have been proud of

my work, and my mother for their great role in my life and their numerous sacrifices for

me and for giving me the courage and strength to face obstacles that come my way. I

would also like to thank my brothers and sisters for supporting me spiritually throughout

writing this thesis and my life in general.

Lastly but most importantly, A big thank you to my daughters Hala and Leen, and

my wife Rabab for their love and for standing with me during the hard times. I would

also like to thank them for tolerating my long working hours in the lab and time spend

away from them. I would specially like to thank my wife for her encouragement over the

years and for not letting me give up on my dream, without her love, support, and belief

in me, I would have never completed my Ph.D studies.

v

Contents

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Introduction . 1

1.2 Level of Trust and Protection . 2

1.3 Problem Statement . 5

1.3.1 Untrusted individuals - Strongest protection (D) 5

1.3.2 Trusted individuals - No protection (A) 8

1.4 Approach . 9

1.5 Summary of Contributions . 10

1.6 Thesis Organisation . 11

2 Background and related work 14

2.1 Introduction . 14

2.2 File sharing . 15

2.2.1 The history of file sharing . 17

2.2.2 Methods of file sharing and people’s practices 19

2.3 Security . 28

2.3.1 The goals of information security . 28

2.3.2 Communication security . 30

2.3.3 Perimeter security . 32

2.3.4 Insider security . 33

2.4 Access control . 39

2.4.1 Access control components . 39

2.4.2 Identification . 40

2.4.3 Authentication . 40

vi

2.4.4 Authorisation . 41

2.4.5 Traditional access control models . 41

2.4.6 Trust management model . 44

2.4.7 Digital Rights Management (DRM) model 44

2.5 Information flow control . 47

2.5.1 Security type systems . 48

2.6 Summary . 56

3 The Insider threat problem 58

3.1 Introduction . 58

3.2 Classifying the insider threat problem . 60

3.3 Protecting the shared files . 63

3.3.1 Protecting the shared files in transit 63

3.3.2 Protecting the shared files at the recipient 64

3.4 Summary . 71

4 Characterising the activity of file sharing 72

4.1 Introduction . 72

4.2 How files are propagated . 73

4.2.1 Publish vs. Share: . 73

4.2.2 Static vs. Dynamic vs. Transfer mode 75

4.2.3 Distributed Memory vs. Shared Memory 77

4.3 How files are accessed . 78

4.3.1 Types of access . 78

4.3.2 Restriction on access types . 80

4.4 Taxonomy based on the characterisation of file sharing 83

4.4.1 Classifying the activities of file sharing in an organisation. 85

4.4.2 Classifying file sharing methods . 86

4.5 Discussion . 98

4.6 Summary . 101

5 Secure file system 102

5.1 Introduction . 102

5.2 Notations . 103

5.3 Security types and policies . 104

5.4 Language syntax and semantics . 108

vii

5.5 Security errors . 112

5.5.1 Syntactical errors . 112

5.5.2 Types errors . 113

5.6 Syntactical correctness . 113

5.6.1 Atomic commands . 114

5.6.2 Sequence of commands . 116

5.7 Type system . 122

5.7.1 Typing rule for file names . 123

5.7.2 Typing rule for cp command . 123

5.7.3 Typing rule for rm command . 125

5.7.4 Typing rule for mkf command . 125

5.7.5 Typing rule for rd command: . 126

5.7.6 Typing rule for cat command . 126

5.7.7 Typing rule for mv command . 127

5.7.8 Typing rule for copy command . 127

5.7.9 Typing rule for append command 128

5.7.10 Typing rule for move command . 129

5.7.11 Typing rule for sequences of commands 129

5.8 Properties of the type system . 131

5.8.1 Progress . 131

5.8.2 Preservation . 134

5.9 Type inference algorithm . 139

5.9.1 Algorithm T . 139

5.9.2 Soundness of T . 141

5.9.3 Completeness of T . 143

5.10 Summary . 145

6 Future extension and discussion 149

6.1 Introduction . 149

6.2 Accessing files . 150

6.2.1 Security access types . 150

6.2.2 Language and typing rules . 152

6.3 Security copy and access types . 156

6.3.1 Language and typing rules . 157

6.3.2 Typing algorithm . 157

viii

6.4 Ownership and authorisation . 160

6.4.1 Label structure . 161

6.4.2 Language and typing rules . 165

6.5 Downgrading and upgrading of policies . 170

6.5.1 Language and typing rules . 172

6.5.2 Typing algorithm . 175

6.6 Discussion . 179

6.7 Summary . 184

7 Conclusion 186

Bibliography 190

ix

List of Tables

2.1 Recommendations for the design of access control systems 24

2.2 Categories of recommendations . 26

2.3 Summary of previous studies on file sharing 27

4.1 Types of file propagation . 78

4.2 Types of access and restriction . 81

4.3 Types of files propagation and access . 82

4.4 Classification of file sharing methods . 86

5.1 Constraints of operations applied to � . 113

5.2 Constraints of operations applied to types 113

5.3 Constraints for atomic commands . 115

5.4 File creation and erasure by commands . 118

5.5 Constraints for sequence of commands . 119

x

List of Figures

1.1 Types of content . 2

1.2 Trust vs. Protection vs. cost . 3

1.3 The optimal level of protection . 4

2.1 Security fields . 31

2.2 The common DRM architecture [adopted from 64] 46

3.1 Classifying the insider problem . 61

3.2 Types of protection of the shared files . 69

4.1 How files can be published and shared . 76

4.2 Framework for classifying the activity of file sharing 84

5.1 Security copy types . 106

5.2 Single-step semantics . 110

5.3 Small-step semantics . 111

5.4 Big-step semantics . 111

5.5 Typing rules . 124

6.1 Security access types . 151

6.2 Typing rules for security access types . 154

6.3 Typing rules for security copy and access types 158

6.4 Typing rules . 170

6.5 Typing rules for changing policies . 175

1

Chapter 1

Introduction

This chapter gives an overview of the thesis, explains its rationale and describes the con-

tributions to knowledge that it makes. The overall structure of the thesis is also presented.

1.1 Introduction

With the advent of Web 2.0, Internet users have become more active than ever before.

They have changed from being passive users that consume content to active users that

produce on-line content. Web 2.0 allows Internet users’ to be producers and consumers

of on-line content at the same time. Examples of internet users content are blogs, wikis,

documents (such as Google Docs), multimedia (i.e. pictures, videos, music), and personal

bibliographical information. One of the prominent characteristics of Web 2.0 is that users

are able to generate and share content on the Web without special technical skills [118].

This characteristic has led the majority of Internet users to generate and share their

content on-line with one another. According to Mendelsohn and Mckenna [67], 75% of

people are somewhat or highly likely to share content they like on-line with friends, co-

workers or family, and 49% share content on-line at least once a week. The authors point

out that more than 30 million pieces of content (web links, news stories, blog posts, notes,

photo albums, etc.) are shared each month on Facebook alone. In this thesis we will use

the term file sharing instead of content sharing where a file can be a picture, an audio, a

video, or text, etc.

Files can be classified into commercial and non-commercial, where noncommercial files

can be further classified into confidential and non-confidential (See Figure 1.1). Commer-

cial and non-commercial but confidential files are sensitive which means that they need

to be protected from potential attacks or misuses. Such attacks might lead to unauthor-

2

ised disclosure (Confidentiality attacks), unauthorised modification (Integrity attacks), or

unauthorised withholding (Availability attacks). These di↵erent types of attacks can be

performed on files while they are being transferred, stored, or used by either authorised

or unauthorised users. As a result, protections for these types of attacks stem from three

distinct fields of security which are: Communication security which is concerned with pre-

venting di↵erent types of attacks on data transmitted over a network; Perimeter security

which is concerned with preventing attacks on data stored inside a trusted internal net-

work; and Insider security which is concerned with preventing attacks on data by those

who have been authorised with access.

Figure 1.1: Types of content

This chapter discusses issues arising with protecting commercial and confidential files

from the perspective of insider security. In particular, issues arising with protecting the

shared files against attacks that are performed by users who are authorised to access the

files.

1.2 Level of Trust and Protection

The goal of protecting commercial files is di↵erent from that of protecting confidential

files. In commercial files, the goal is to prevent access to the files by users who do not

pay for access, while the goal of protecting confidential files is to prevent access to the

files by users who are not authorised by the files’ owners, whether they pay to access the

files or not. Although the two types of files might require the same type of protections

(i.e. confidentiality, integrity, and availability protections), the strength level of the re-

quired protection is di↵erent. This is due to the fact that users who are authorised to

access commercial files have di↵erent trust levels from those who are authorised to access

confidential files.

The required strength level of the protection mechanisms for commercial and confid-

ential files is determined by the level of trust that is maintained by those with whom the

file is shared. That is, low trust implies that a stronger level of protection mechanism is

3

needed, whereas high trust implies a weaker level of protection mechanism. This is because

it is perceived that trusted parties will not violate the file policy, hence, protection is not

required, whereas untrusted parties might violate the file policy, hence, a strong protection

is required. Those who are neither trusted nor untrusted might require a moderate level

of protection to avoid unnecessary costs incurred by excessive protection mechanisms.

It should be noted that while low trust implies the need for a stronger protection

mechanism, the stronger the protection mechanism is, the more cost is incurred. By cost

we do not only mean the monetary cost, but also the cost of usability and privacy as

implementing a strong protection mechanism makes the usage inconvenient [120], and

might require the collection of information about the usage such as in Digital Rights

Management systems (DRM) [58] and Intrusion Detection Systems (IDS) [56]. Figure 1.2

illustrates that the less trust there is, the stronger the security mechanism is required which

entails more cost, whereas the more trust there is, the weaker the security mechanism is

required which entails less cost.

Figure 1.2: Trust vs. Protection vs. cost

Deciding whether to implement a particular level of protection mechanism is determ-

ined by evaluating the cost of the level of the protection against the value of the content

which needs to be protected. Such evaluation helps in finding out whether the cost is

worth protecting the content or not.

Since the commercial files are shared with users based on payment, the authorised users

of commercial files are considered untrustworthy and usually referred to in the literature as

adversaries. Therefore, the strongest possible level of protection is required. On the other

4

hand, confidential files are shared with users based on a certain level of trust. However,

levels of trust might range from trusted to entirely untrusted and which entails disparate

levels of protections that range from no protection to the strongest level of protection.

Figure 1.3 illustrates the various levels of trust and protection that might be required to

protect commercial and confidential files.

Figure 1.3: The optimal level of protection

As shown in Figure 1.3, the blue arrow across the area Trusted - No protection and

Untrusted - Strongest protection is used to identify the di↵erent optimal levels of protec-

tion based on di↵erent degrees of trust. The area between Untrusted - No protection and

Trusted - Strongest protection is usually perceived as to describe inappropriate levels of

protection, and therefore is omitted. For instance, providing the strongest level of protec-

tion against trusted individuals results in unnecessary costs, while providing no protection

against untrustworthy individuals is risky.

The four red points on the blue arrow indicate four levels of protection that are required

by the four levels of trust. Level A illustrates the case where individuals are trusted

and therefore no protection is required. On the other hand, level D illustrates the case

where individuals are untrusted and therefore the strongest level of protection is required.

Between level A and D, various levels of trust might exist, each requiring a particular level

of protection (e.g. level B and C). In the next section, two issues of trust and protection

are illustrated.

5

1.3 Problem Statement

This thesis is concerned with the problem of protecting the shared files against authorised

users in a Unix-like file system. Users in the file system manipulate files through issuing

various commands such as mv, cat, and cp. In the file system, sharing is performed through

commands that cause information to flow between files which are accessed by di↵erent

users. For example, copying a file which can only be accessed by Alice into another file

which can be accessed by Bob and Carol is considered sharing. This thesis aims to apply

a language-based technique, particularly a type system, to protect the shared files against

commands issued to manipulate them by authorised users.

Authorised users can be classified into trusted and untrusted users. In this section, we

present two issues of trust and protection. The first is concerned with protecting the shared

files against untrusted authorised users. Whereas the second is concerned with protecting

the shared files against trusted authorised users. The focus of this thesis is on protecting

the shared files against trusted authorised users. However, we first present the issue of

protection against untrusted authorised users to highlight and show the significance of the

protection against trusted authorised users. In Section 1.4 we discuss the approach taken

in this thesis to solve the above problem in detail.

1.3.1 Untrusted individuals - Strongest protection (D)

At one end of the blue arrow in Figure 1.3 are untrusted individuals where the strongest

level of protection is required. This is usually the case with commercial files and some

cases of confidential files (e.g. military and intelligence settings).

Providing a protection mechanism that completely prevents file misuse by entirely un-

trusted individuals is a dilemma. Research and history have shown that such a mechanism

does not exist and is an impossibility, as there is no system which is 100% secure against

all deliberate attacks or misuse [87, 103, 46, 94]. A brief look at the approach taken to

protect commercial content, justifies this principle. Commercial content is protected by

the use of DRM systems that dictate how the content must and must not be used by each

individual. Examples of DRM systems are Windows Media DRM [136], Apple FairPlay

[32], Adobe PDF DRM [31], and SecuRom [105], that provide protection for di↵erent types

of files such as video, music, documents, or games.

Although these systems are in place to protect the commercial files and they are sup-

posed to prevent all possible misuses, the files can still be obtained illegally in unprotected

form. This cause stems from two reasons as follows.

6

Systems vulnerabilities:

Each system has its own vulnerabilities and there is no system without vulnerabilities

[103, 5]. A system’s vulnerabilities can be easy or hard to find and, of course, vulnerabilities

of DRM systems are hard to find as much e↵ort is dedicated to produce a highly secure

system. It is hard for an average user to find such vulnerabilities in DRM systems, however,

a more sophisticated and determined attacker who has the time and knowledge might

spend days, weeks, or even months to ultimately circumvent the system. Once the system

is circumvented by that sophisticated attacker, the content becomes unprotected, and can

then be provided to average users freely without protection by various means such as peer-

to-peer networks [40]. Worse, the attacker might develop an automated tool to launch his

attack and distribute it to average users so that they can circumvent their systems without

the need to learn any sophisticated technical skills [46]. In fact, DRM systems rely on

the concept of security-through-obscurity which is a principle in security engineering that

means the security of a system is provided by the secrecy of its design or implementation.

Therefore, once the sophisticated attacker has figured out the inner design of the system,

he will be able to circumvent it [114, 69, 115, 58]. Studies have shown that all DRM

systems can be circumvented [94, 12]. Various successful attacks on DRM systems are

discussed in detail in [46, 69]

The same thing is applied to other systems that are used to protect confidential files

from misuse by entirely untrusted individuals. For instance, the recent leak of more than

200,000 classified documents by the former NSA contractor Edward Snowden [133], is

evidence that regardless of the protection system in place, a determined attacker will still

be able to circumvent it.

The analog hole:

One of the easiest ways to circumvent any protection system used to protect commercial

or confidential files is by exploiting the analog hole [138]. The analog hole is the inevitable

vulnerability in any file protection system that makes the protection of content from

untrusted individuals unfeasible [115, 12]. Any digital file must eventually be converted

to human-perceptible form, which is known as the analog form, in order to be consumed

by the users. Once the digital file is converted to analog form, it will be in an unprotected

form, and thus, susceptible to unauthorised uses [40, 138].

For instance, protected music played in a computer is converted to sound waves

whereby a user can record the audio coming out of the computer speaker without any

restriction. Also, a protected video, text and photo displayed on a computer screen are

7

converted to light patterns and can be video recorded, or captured by a digital camera

without any restriction. These are examples of exploiting the analog hole and include

memorising content as the human brain is able to memorise information for sometime.

Such exploitation of the analog form of protected digital files is hard or even impossible

to prevent and usually referred in the literature to as the analog hole problem [115, 138].

For these two reasons, any protection mechanism that protects files from entirely un-

trusted individuals will ultimately fail. Any commercial and confidential file has a time

value. The time value of a file might be days, weeks or months, after which the file will

lose its value. For instance, a commercial file which is sold now at a particular price will

decrease in value over time until it loses its value and becomes free. Also, a confidential

file which must be kept secret now, at later time might need to be publicly published and

thus loses its value and is no longer secret. Therefore, protection mechanisms might be

useful for protecting a file that has a short time value. This is because the time that is

needed to circumvent the protection mechanism might exceed the time value of the file.

In other words, by the time an attacker manages to circumvent the protection mechanism,

the file will have lost its value and little or no loss will be occurred if the file is misused.

However, by exploiting the analog hole, the protection mechanism can be circumvented

immediately. In case of protecting a commercial file, the quality of the content captured

in an analog form is usually degraded [12], and therefore, the media and entertainment

industry might be tolerant of such exploitation as long as there are people willing to pay

for a good quality content even if it is protected.

However, in case of protecting confidential files, degradation in the quality of the

content does not matter. What matters is the information in the file regardless of its

quality as long as it can be perceived by humans. Additionally, there exist confidential files

which have infinite time value, which means that the file will be of high value for the whole

of its lifecycle until it is destroyed. In other words, the file must be kept secret forever.

Based on the two reasons mentioned previously, protection mechanisms cannot guarantee

to protect such files that need to be protected forever. Rather, protection mechanisms can

only guarantee to make it harder for an attacker to circumvent the mechanism; perhaps

till the file loses its value. Therefore, protection mechanisms might be useful in protecting

files that have a short time value rather than content that has long or infinite time value.

Protecting confidential files that have long or infinite time value can only be achieved

by releasing the files only to trusted individuals who will not violate the content policy

deliberately.

8

1.3.2 Trusted individuals - No protection (A)

At the other end of the blue arrow in Figure 1.3 are trusted individuals where no protection

is required. Such individuals are entirely trusted to not violate the content policy, and

hence, no protection is usually in place. However, even if individuals are trusted to not

violate the content policy deliberately, there is a chance of their violating the policy

accidentally. According to a recent survey conducted by Infosecurity Europe and PwC

on 1,402 UK companies, 36% of the worst security breaches in the year were caused by

inadvertent human error [34]. Also, AngloSec conducted a survey on 197 network, security,

and compliance professionals, and found out that the greatest security concern of their

respondents was employees accidentally jeopardising security through data leaks or similar

errors (40.5%), followed by employees deliberately breaching the security (22.1%)[4].

Furthermore, the Ponemon Institute conducted a survey on 709 IT security practition-

ers in the United States, and found out that 78% of their respondents have experienced

a data breach as a result of negligent or malicious employees or other insiders [54]. Their

survey result shows that the root causes of data breach incidents in organisations are

loss of laptops or other mobile devices (35%), third party mishaps or flubs (32%), system

glitches (29%) mishandling of data at rest and in motion (27% and 23% respectively),

malicious employees or other insiders (22%), and external cyber attack (8%). Also, they

found out that even when misuses are unintentionally made by employees, most of these

misuses are discovered accidentally and rarely self-reported by the employees themselves.

Accidental breach in security can also occur during the activity of file sharing. For

example, a confidential file might be shared accidentally with unintended recipients, or

overwritten accidentally by irrelevant content. While such activity might not be the main

reason for the insider problem, it is considered a class of the insider the problem that must

be tackled.

Therefore, while confidential files which have long or infinite time value should only

be released to entirely trusted individuals to be fully protected, releasing confidential files

to entirely trusted individuals without any protection might result in accidental violation

of the file policy. There must be an appropriate level of protection that prevents such

accidental misuses by those trusted individuals. This appropriate level of protection should

prevent all possible violation of content policy that can happen accidentally but ignores

those who deliberately circumvent the system; this because we are dealing here with

trusted individuals, who are assumed to not violate the content policy deliberately. This

thesis focuses on this type of protection.

9

The broad problem statement that the work reported in this thesis addresses can thus

be expressed as follows:

To design a language that allows owners of files to express various polices which

define access and usage restrictions on their shared files, and a system that can

enforce these polices to prevent accidental misuses of the shared files by trusted

recipients.

1.4 Approach

The problem of protecting the shared files from authorised users is considered an instance

of the insider threat problem. Therefore, we explore the problem from the perspective of

the insider threat. However, the literature on the insider threat problem shows various

definitions and understandings of the terms insider and insider threat. There is no con-

sensus among researchers regarding who is an insider and what are the insider threats. In

fact, the insider threat problem is a significant issue, and there is no single definition of

the insider and insider threat can encompass the whole problem; though most researchers

attempt to provide one. Therefore, we propose an approach to classify the insider threat

problem into di↵erent categories that can be defined, studied, and solved independently

and which later can be combined to solve the problem as a whole. Based on this approach

we define a particular category of the insider threat problem that we study and solve

throughout this thesis; namely, preventing confidentiality and integrity attacks on files by

recipients during the activity of file sharing. However, confidentiality and integrity attacks

can be performed in di↵erent ways which require di↵erent types of protections. Therefore,

we investigate the di↵erent types of misuse that can be performed by insiders during the

activity of file sharing and we characterise the protection required against them. We focus

on accidental misuse that a↵ects the confidentiality and integrity of files by trusted in-

siders. We define our category of the insider problem precisely so as to prevent accidental

misuse of confidentiality and integrity of the shared files by trusted recipients during the

activity of file sharing.

Although our category of the insider problem and the misuse we need to prevent are

precisely defined, the activity of file sharing is still ambiguous. The activity of file sharing

can be performed in di↵erent ways. Designing a protection mechanism to protect the

shared files without taking into account how the activity of file sharing is performed might

prevent users from sharing their files as desired. There is a large body of work that

investigates the activity of file sharing; however, the majority of it is focused on specific

10

domains and applications. Works that investigate the activity of file sharing generally,

miss answers to two fundamental questions that lead to a better understanding of the

activity of file sharing; namely, how files can be propagated from owners to recipients

and how files can be accessed by the recipients. Therefore, we characterise the activity

of file sharing based on how files can be propagated and accessed after their propagation.

Based on this characterisation, we define a framework that classifies the activity of file

sharing into di↵erent categories. Each category specifies how files should be propagated

and accessed after their propagation. We show that these categories can be thought of

as policies that, if enforced, allow the provision of various types of protection against

accidental misuse.

We use a language-based technique to enforce these policies, particularly by the use

of a type system; developed to statically enforce information flow and access control re-

quirements of these policies in a file system. As a starting point, we focus on enforcing a

particular policy; namely, limiting the number of times a file can be read. Other policies

can be enforced similarly, as we discuss in Chapter 6. In the file systems, files are as-

sociated with security types that represent the security policies, and programs are sets

of operations to be performed on files such as read, copy, move, etc. The type system,

therefore, will statically analyse each operation to be performed on a file and determine

whether or not the operation satisfies the information flow and access control requirements

of the policy associated with the file. Therefore, a type checker which implements the type

system will intercept each operation to be performed in the file system and allow only those

operations which satisfy the policies of files the operation is performed on. In such a way,

the type checker can be thought of as a reference monitor that prevents accidental misuse

of the shared files.

1.5 Summary of Contributions

The following list summarises the contributions this research achieves.

• It provides a precise definition of the insider and the insider problem that makes

a clear distinction between insiders and outsiders, and between insider threats and

external threats, and that encompasses all classes of the insider problem.

• It proposes an approach to classify the insider threat problem into di↵erent categories

of sub-problems that can be defined, studied and solved independently, and that

enables insiders and their threats to be clearly identified in each category.

11

• It defines a particular class of the insider problem that is related to file sharing and

investigates the di↵erent types of misuse of the shared files that can be performed

by di↵erent types of insider, and characterise the protection required against them.

• It characterises the activity of file sharing based on how files can be propagated and

accessed after their propagation, and defines a framework based on this character-

isation that can classify the activity of file sharing into di↵erent categories that can

describe all possible ways of how file can be shared, and that can be used to specify

policies of files to describe how files should be propagated and accessed after their

propagation.

• It develops a language that allows owners of files to express various policies which

define access and usage restrictions on their shared files, and a type system that

can enforce these policies to prevent accidental misuses of the shared files by trusted

recipients.

1.6 Thesis Organisation

The chapters of this thesis are structured in the following way.

Chapter 2: Background In this chapter, we provide the necessary background and

related work for topics discussed throughout the thesis. It is divided into three parts.

The first part is concerned with file sharing and reviews the history of file sharing and

the related work on the methods and people practices of file sharing. The second part

is concerned with security in general, and reviews the goals of information security, and

related work on communication security, perimeter security and insider security. Our focus

will be on insider security since it is relevant to our work. The third part is concerned

with language-based security, and reviews related work on access control, information flow

control and type systems that enforce information flow control and access control.

Chapter 3: The Insider Threat Problem In this chapter, we address two funda-

mental questions on the development of a protection mechanism against insider threats.

These questions are: ‘what is the insider problem?’ and ‘what is the insider misuse?’. We

propose a new approach for classifying the insider threat problem into di↵erent categories

which can be defined, studied and solved independently and which later can be combined

to solve the problem as a whole. Then, we define the insider and the insider problem pre-

cisely, and focus on one category that is related to file sharing. We investigate the di↵erent

12

kinds of misuse that can be performed by insiders during the activity of file sharing, and

characterise the protection required against them. We end the chapter by defining the

class of the insider problem that we tackle throughout the thesis; namely the prevention

of accidental misuse that a↵ects the confidentiality and integrity of sensitive files during

the activity of file sharing.

Chapter 4: Characterising the Activity of File Sharing In this chapter, we char-

acterise the activity of file sharing based on two factors: how files can be propagated from

owners to recipients, and how files can be accessed by the recipients after their propaga-

tion. Based on the characterisation of the activity of file sharing, we define a framework

that classifies the activity of file sharing into di↵erent categories. These categories can be

thought of as policies that describe how files should be propagated and accessed and that

satisfy di↵erent sharing scenarios. We show how the framework can be applied to clas-

sify the activity of file sharing in an organisation and also to classify existing file sharing

methods. We end this chapter by showing how these policies, if enforced, can protect the

shared files against the accidental misuse identified in Chapter 3.

Chapter 5: Secure File System In this chapter, we start designing a language that

allows owners to specify various policies identified in Chapter 4, and a type system to

enforce these policies. As a starting point, this chapter focuses on enforcing a particular

policy; namely, limiting the number of times a file can be read. Other policies can be

similarly enforced, as we discuss in Chapter 6. We start this chapter by showing the

security types that represent the policies to be enforced, and the language syntax and

semantics. Then, we define the security errors which can be syntactical errors or type

errors; develop an algorithm for statically checking syntactical correctness and then present

our type system which will check for both syntactical errors and type errors. We prove

the soundness of our type system and provide a type reconstruction algorithm and prove

its soundness and completeness.

Chapter 6: Future Extension and Discussion In this chapter, we discuss the ex-

tensions required to specify and enforce the other policies identified in Chapter 4. Firstly,

we extend our security types in Chapter 5 with additional security types that represent

policies for the di↵erent access types, and extend our type system accordingly to per-

form additional checks to enforce these policies. We then show how the label structure of

the Decentralised Label Model can be adopted, with a slight modification, to incorporate

13

our security types to specify the various policies and how they can be enforced by our

type system. We end this chapter by comparing our approach with others existing in the

literature. Finally, the thesis is concluded in Chapter 7.

14

Chapter 2

Background and related work

This chapter discusses related work and provides an overview of file sharing, communic-

ation security, perimeter security, insider threats, access control and information flow

control.

2.1 Introduction

In this chapter we review topics and related work discussed throughout this thesis. We

consider three research areas which are related to our work: (a) research that discusses

the activity of file sharing; (b) research that discusses insider threats and (c) research that

discusses access control and information flow control, in particular type-based approaches

for information flow control.

Our aim in this thesis is to protect the shared files against users who are authorised

to access them. Such authorised users are referred to as insiders in the literature. We

investigate research that focuses on the activity of file sharing to analyse how the sharing

activity is performed by di↵erent individuals. Such analysis is useful to consider when

designing a protection mechanism that will not interfere with people’s practices of file

sharing. We show that, despite the valuable answers the previous work provided to funda-

mental questions such as with whom the file is shared, what type of file is shared and how

the file is shared and protected, they do not provide an answer to a significant question,

which is how files can be propagated and accessed after propagation. Answering this ques-

tion leads to better understanding of the activity of file sharing, and thus, to designing a

protection mechanism that will not prevent users from sharing their files as they desire.

Chapter 4 characterises the activity of file sharing based on the answer to this question.

We investigate research that focuses on insider threats in order to analyse the threats

15

imposed by insiders during the activity of file sharing; as it is such threats that we are

aiming to prevent in this thesis. The literature on security is divided into three fields:

communication security, perimeter security, and insider security. We define each field;

present the protection mechanisms developed for it and show that the literature on insider

security is lacking a clear definition of what an insider is and what the insider threats are.

Consequently, we propose a classification of the insider problem in Chapter 3. Based on

the proposed classification, we define the insider and the insider problem, and focus on

one category that is related to file sharing.

Protection mechanisms to counter insider threats can generally be divided into detec-

tion and prevention approaches. Our interest is in prevention approaches which can be in

the form of access control or information flow control. We review the literature on these

approaches and focus on a type-based approach for information flow control which is the

approach that we adopt to tackle our particular class of insider problem in Chapter 5.

The rest of this chapter is organised as follows: in Section 2.2 we give an overview

of file sharing. We provide a definition of the activity of file sharing, show the history of

evolving file sharing methods and review previous work that investigate people’s practices

of file sharing. In Section 2.3 we give an overview of information security. We show the

security goals, services, and mechanisms of information security and discuss the security

tools developed to secure information in communication, perimeter, and insider security.

In Section 2.4 and Section 2.5 we give an overview of access control and information flow

control respectively, and focus on a type-based approach for information flow control.

Finally the chapter is summarised in Section 2.6.

2.2 File sharing

Most of the existing research on file sharing is focused on specific domains and applications

while little research has studied file sharing more broadly [130]. Despite the fact that file

sharing is a common activity, few studies of file sharing practices exist in the literature

[124]. The majority of research is focused on peer-to-peer file sharing [18, 38] and role-

based access control of shared resources [124], while others are focused on personal file

sharing, particularly, in the domains of music [123] or photography [3, 71], or professional

collaborations in corporations [26].

However, the term file sharing has been rarely defined in the literature, and where

defined, the definition is tailored to a specific method of sharing; in other words, the

activity of file sharing is often defined implicitly by defining the method of sharing under

16

consideration. For examples, in [3, 71] the activity of file sharing is defined implicitly

by defining Flicker, a popular photo-sharing website, in [123] by defining iTunes, a digital

jukebox software for organising, sharing and listening to music, in [18] by defining Napster,

a popular peer-to-peer application for sharing music and in [38] by defining Kazaa, a

popular peer-to-peer application for sharing di↵erent types of files. However, in these

papers and many others, a comprehensive definition of the activity of file sharing that is

not related to a particular method of sharing does not exist.

The Oxford English Dictionary defines file sharing as “the practice of making computer

files available to other users of a network, in particular the illicit sharing of music and video

via the Internet”. Although this definition describes the activity of file sharing clearly, it

is not completely comprehensive, as it confines the activity of sharing files to those carried

out by sharing methods that allow the sharing of files via the Internet and excludes other

physical methods of sharing files such as USB.

We are only aware of one study that defined file sharing comprehensively without

reference to any specific sharing method. The study is by Whalen et al. [130] who defined

file sharing as “the activity of making specified file(s) available to an individual or group,

with the option of granting specific right (e.g., ability to view, edit, delete) over those

files”. The authors identified four key elements in this definition which are the parties

who are sharing files (individuals and groups); the files themselves; the means of making

files available; and the rights over those files.

Although this definition is more general than the previous one, it has the following

drawbacks. Firstly, it confines the type of recipient in the file sharing activity to be either

an individual or group, whereas it could be several groups or an unbounded group (i.e.

all Internet users). Secondly, this definition makes no distinction between the physical

and digital activities of file sharing. However, such a distinction is of great importance

as each of these activities constitutes a unique field that has its own methods of sharing

and security tools and techniques. Thirdly, this definition makes no distinction between

sharing a file by lending a device which contains the file to others and sharing a file by

lending the file itself, which is then accessed by others using their devices. The former is

considered device sharing rather than file sharing as the device could contain software and

hardware to be shared with the file. The latter is considered file sharing as only the file

itself is shared.

The general definition of file sharing that we seek, should satisfy the following three

properties: Firstly, a clear distinction between physical and digital sharing should be made

17

in the definition. Secondly, the definition should not be restricted to a particular method of

sharing files. Thirdly, the definition should not restrict the type of recipient. Fourthly, the

definition should exclude those sharing activities performed by sharing the device which

contains the files with others. Therefore, we refined the definition by Whalen et al. [130]

to satisfy these four properties and define file sharing as follows:

Definition 2.2.1. File sharing is the activity of making specified digitally stored file(s),

(e.g. text, photo, video, audio or software) in a particular device available to others (e.g.

an individual, group, groups, or the public) to be accessed by their devices with the option

of granting specific rights (e.g. viewing, editing, deleting) over those files.

This definition excludes sharing files by lending a device which contains the files to

be shared with others as well as the sharing of physical files. However, it includes all the

methods of sharing digital files, as well as the di↵erent types of files and recipients. The

person who makes the files available to others will be referred to as the sender who is in

most cases the owner of the files; while the others, who the files are made available for,

will be referred to as the recipients. The methods that allow the sender to make the files

available to the recipients will be referred to as the file sharing methods which can be of

various types.

In the next section, we look at the history of file sharing and how the activity of file

sharing has been increased over the years by the rapid evolution of file sharing methods.

2.2.1 The history of file sharing

Sharing files is an activity that has been around almost since the infancy of computers.

The prevalence of file sharing activity nowadays is attributed to the existence of a variety

of methods that simplified this activity. These methods have gone through several stages

until they reached maturity at the present time to become fundamental to any Internet

user.

Initially, no actual storage media existed; and the only way to transfer information

from one computer to another was to type it in manually. Afterwards, the first magnetic

storage media which could contain data emerged; however, moving around this magnetic

storage was very di�cult [24]. The first time file sharing became an easy task to perform

was in 1971 when the 8-inch floppy disk was developed by IBM [53, 111, 79, 134]. Although

this method of sharing allowed files to be shared easily, the spreading of files went slowly, as

the files had to be moved physically from one place to another. In 1978 Ward Christensen

created a new method of file sharing which was the first online bulletin board system

18

(BBS) which allowed users to share files online by utilising their phone lines [134, 135].

A year later in 1979, Tom Truscott and Jim Ellis at the University of North Carolina at

Chapel Hill and Duke University created another file sharing method which was Usenet.

The main goal of creating Usenet was to facilitate focused discussion threads within topical

categories (Usenet newsgroups); however, the transfer of files was a feature of Usenet that

users took advantage of [134, 135, 62]. Usenet is considered to be the first network in

which users could share files with many other, unknown users [24].

Six years later in 1985, File Transfer Protocol (FTP), which allows files to be e�ciently

uploaded and downloaded from a central server, was standardised. FTP is still used today

as one of the most popular methods of file sharing among individuals and corporations

[111, 134, 135]. This was followed by the creation of Internet Relay Chat (IRC) in 1988

by Jarkko Oikarinen which allows users to chat in real-time as well as exchanging files via

a Direct Client-to-Client protocol.

A milestone in file sharing occurred in 1990 when the World Wide Web was formally

proposed by Tim Berners-Lee and Robert Cailliau [134]. During the nineties the World

Wide Web grew to become the largest file sharing network ever created [111]. In 1995,

Mosaic which is a graphical internet browser was created and brought more users to

the Internet through exciting visuals. Consequently, more information was published,

accessed and shared. In 1996, the Multi-Purpose Interment Mail Extensions (MIME) was

standardised which allows users to exchange files with each other via email [137]. In 1999,

Napster was created by Shawn Fanning and quickly became one of the most popular file

sharing methods in the history of computing. Napster is an unstructured centralised peer-

to-peer system and is generally cited as the first peer-to-peer file sharing system. However,

in 2001 Napster was shut down due to copyright infringement [24, 111, 79, 134, 135].

From 2000 up to the present time, a wide variety of peer-to-peer file sharing systems

emerged such as Guntella, eDonkey 2000, Kazaa, BitTorrent as well as web-based file

sharing services such as Dropbox, GoogleDocs, youSENDit, Streamfile, Wikisend, 4shared

and social networking sites such as Facebook, YouTube, Instagram and Flickr.

In the next section, we look at the previous studies that investigated people’s practices

of file sharing in order to find answers to several fundamental questions; such as what file

sharing methods people utilise, who people share files with, what type of files people share

and how people protect their shared files.

19

2.2.2 Methods of file sharing and people’s practices

There are a wide variety of file sharing methods that exist today, each of which has

particular features which make them suitable for specific purposes. In other words, based

on the features of the methods, a user selects the appropriate one for his sharing situation.

These methods range from peer-to-peer sharing applications like Napster, Guntella, and

cKaZaA to email, the web, various shared folder systems, application-oriented tools like

iTunes and Groove, and web-based sharing tools like BSCW, Wikis and Flicker. Although,

many methods exist for sharing files, they all perform the same basic process that requires

the users to specify the following information: what should be shared, with whom it should

be shared, and how that sharing will take place. However, they di↵er from one another in

the ways of allowing the users to control the what, how, and with whom to share [124].

Olson et al. [82, 81] conducted a pilot study and a more formal survey to explore prefer-

ences for general information sharing by investigating what information people are willing

to share and with whom. Their findings indicated that people’s willingness to share di↵ers

from one another, and it depends on who they are sharing the information with; therefore,

a one-size-fits-all permission structure for sharing is inappropriate. The authors found

that people deal with particular types of information similarly when assessing whether

or not to share it with others (examples of categories include, work email and telephone

number, pregnancy, health information, email content and credit card number). Also,

they found that people deal with particular types of individuals similarly when assessing

whether or not to share information with them (examples of categories include, spouse,

manager, trusted co-worker, the public and competitors).

The authors believe that their findings can provide guidance on the design of access

control and interfaces, that could simplify the policy specification process to the end user.

For example, users could be allowed by a preference-specification tool to specify their

permissions generally per category of person (e.g., the public, high level people in your

organization, co-workers, your family, your manager, your spouse, etc.), while making

an exception for one particular person or a particular information type. Furthermore,

augmenting such preference-specification tool with some content analysis to detect people’s

email addresses, social security numbers, or personal facts in the documents, will allow

the appropriate permission to be set automatically. For example, people requesting access

to a file will be identified by the tool and then based on who they are or which category

they belong to they might be denied or granted access.

Voida et al. [124] conducted a survey and follow-up interviews at a medium-sized

20

research organisation to explore users’ current practices and needs around file sharing. The

authors stated that the understanding the what, with whom and how of sharing will lead

us to understand users’ current file sharing practices. The results of their study indicated

that almost a third of the respondents shared files with groups or classes of individuals,

and in many cases these classes mapped directly onto the categories identified by Olson

et al. [82, 81]. Also, their survey respondents reported sharing files at work regularly

with an average of 7 individuals or groups. With respect to the types of files shared,

their respondents reported they shared 34 di↵erent types of file or electronic information,

which ranged from business documents and paper drafts to music, ideas, schedules, and

TV shows. In terms of how the sharing took place, they found that email was the most

common method used for sharing files by their respondents (43% of all responses), followed

by shared network folder (16%), followed by posting content to a website (11%).

Additionally, the authors point out that all of their survey respondents expect to

apply read or full control privileges to their shared files, except for cases where the sharing

method o↵ers a set of particular privileges (e.g., iTunes allows sharing recipients to use but

not duplicate shared music). Also, their findings indicated that there are three main classes

of di�culties and breakdowns that people encounter in sharing, which are: forgetting

what file had been shared with who; di�culties in selecting a sharing method with desired

features that was also available to all sharing participants; and problems in knowing when

new content was made available. Their respondents usually fell back on using the most

universal method, which is email, in order to share their files when they were uncertain

about the tools available to their intended recipients.

Based on their findings, they identified a number of critical characteristics of file sharing

methods including universality, addressing, visibility, notification, and the di↵erentiation

between push-and-pull-oriented sharing. Push-oriented sharing is described as actively

pushing the file from the sender to the recipient (e.g. email), while pull-oriented sharing

is described by simply making the file available for it to be retrieved or pulled at the

recipient’s convenience (e.g. a shared folder). The authors also developed a prototype

of a set of user interface features called a sharing palette which provides a platform for

exploration and experimentation with new modalities of sharing. The sharing palette

provides a simple and fast way for users to specify the visibility of and permissions for files

without the need to maintain access control lists. Also, it provides a various notifications

features, which are designed to promote users’ awareness of the files they have shared with

others.

21

Whalen et al. [129] conducted an online survey and follow up interviews at a medium-

sized industrial research laboratory to address the issue of users’ experience of file sharing

and access control by gathering information on how and why people share files; the type of

information shared; and how, when and why people limit access to those files. The results

of the survey showed that email attachments were the most commonly used method for

sharing files (98% of all responses), followed by network files sharing (55%), followed

by commercial content management system (25%) and removable media (25%). Also

their results indicated that 37% of respondents protect their shared files from friends and

colleagues, and the methods used for restricting access to their sensitive files are: pass-

words; permissions/access control lists; physical controls (e.g.,safeguard in o�ce or on

person); encryption; obscurity (e. g, giving files innocuous names and hidden directories);

and deleting/relocating sensitive files. Based on the results of the study, the authors

suggest guidelines to improve methods for appropriate content protection (Table 2.1).

Whalen et al. [130] conducted a web-based survey at a medium-size university to invest-

igate the fundamental issues regarding how files are shared and the di�culties encountered

when managing files in collaborative environments. They explored the problem by sur-

veying a group of people regarding the extent of their file sharing, their use of di↵erent

sharing methods, and the problems they encountered with file sharing in their personal

and professional lives. From the results of their survey, they found that file sharing is a

common activity, with over 70% of respondents sharing professional and personal files at

least once per week. The file sharing methods used by their respondents were email at-

tachments, physical devices (e.g., USB token, CD), networks file share, instant messenger

(e.g., MSN, Yahoo), Web server (e.g., webpage, wiki), peer-to-peer (e.g., KaZaa) and file

copy protocols (e.g., scp,ftp). The most commonly used file sharing method was email

(42.7%) followed by network file share (14.7%) followed by peer-to-peer and file copy pro-

tocols (10.3%). This corresponds with the findings of Voida et al. [124] and those of their

previous study [129].

Their results also show that there are a number of positive and negative factors that

have an impact on people’s choice of file sharing methods. The positive factors are: the

convenience and the ease of use of the method, the widespread availability of the method in

order to reach all recipients and the suitability of the method for the organisation or task

at hand. The negative factors are: the limit on file space or file size, lack of access control

or security features and the inability to reach all recipients. Furthermore, the results show

that the majority of respondents share files between two and four groups, and 80% of

22

respondents have sensitive files. These sensitive files were shared as the results indicated

that 44% of respondents shared sensitive professional files and 11% of respondents shared

sensitive personal files such as financial or medical information. The authors found that

people utilise various methods to control access to their sensitive files, some are technical

(passwords, permissions) and others are socially controlled, such as hiding files.

Unlike the study of Voida et al. [124] and Whalen et al. [130, 129] which focused on

subjects within a single organisation, all of whom had access to similar, established file

sharing methods. Dalal et al. [26] conducted in-depth interviews with respondents across

various domains in their homes, home o�ces, or in cafes where people worked to examine

how file sharing and access controls are used, not used or circumvented in order to get

work done. The results of their study show that 80% of respondents shared files with

overseas collaborators or clients in Europe and the Asia-Pacific region and 100% shared

files with colleagues across the US. Their results also showed di↵erences between personal

and professional sharing, as they found that in professional sharing, people concentrate

on sharing files that are related to project work, such as shared documents including

technical specifications, meeting minutes and action items, proposals and reports. On

the other hand, they found that in personal sharing, people concentrate on sharing their

experiences with others, and the content being shared (primarily multimedia) is relational

in nature, such as sharing photographs with family members who live overseas. Email was

used by all respondents in their survey, and 80% of them used various social software such

as wiki, blogs, social networking sites (including MySpace and Facebook), public websites

for sharing images and multimedia files (including Flickr and YouTube), and online forums

and games.

Moreover, their respondents made distinctions between two types of sharing, namely

sharing with oneself and sharing with others. Sharing files with oneself is very useful as it

allows the individual to synchronise activities regardless of location, accessibility, or what

devices are at hand. They found that USB drives and email are considered convenient

and are the preferred methods for sharing with oneself. Based on their analysis of their

results, they derived a set of design criteria for a more e↵ective file sharing system (Table

2.1) [26].

In contrast to previous studies which have focused on asking users themselves to report

on how they share and protect files, Smetters and Good [110] conducted an automated

survey of access control in a medium-sized corporation to collect behavioural data over

time by analysing digital records of actual user behaviour as they believe that users’ self-

23

descriptions of their own behaviour can be incomplete or inaccurate. They used automated

data mining to examine how users in a medium-sized corporation utilised two common ac-

cess control features: the definition of access control groups, and the permissions settings,

or ACLs, that users set on folders and documents. They found that access control policies

which are applied by users to their content are quite complex. Based on the results of

their study, they derived a number of suggestions for the design of both access control

systems themselves, and the interfaces used to manage them (Table 2.1) [110].

Mazurek et al. [65] conducted semi-structured interviews with 33 non-technical com-

puter users in 15 households to examine the current practices, needs and attitudes to

access control of home users when they share files inside and outside their homes. They

found that people utilise a wide range of measures to restrict access to their files, some of

them are standard access-control tools while others are ad-hoc tools. These tools are the

same as those reported in [129] which are user accounts, passwords, encryption, limiting

physical access to devices, and hiding and deleting sensitive files. Also, They found that

people have complex policies that change continuously over time, and which are inad-

equately addressed in current file sharing and access control methods; a finding supported

by Olson et al. [82, 81], Whalen et al. [129, 130], and Voida et al. [124]. Based on the

results of their study, the authors have generated several guidelines for developers of access

control systems aimed at home users (Table 2.1).

Hart et al. [45] surveyed 23 blogging and social networking sites such as Blogger,

Facebook, Flickr ,YouTube, and MySpace to determine what access control and privacy

features are currently available. They found that a lot of content-sharing sites provide

primitive access control mechanisms which make a file entirely private or public while oth-

ers allow more flexible control by o↵ering a private/friends/public access control model.

The authors asserted that these models failed to support people’s needs, and thus, pro-

posed a method of access control for content-sharing sites that specify access control polices

in terms of the content being mediated. For example, “Blog posts about my home-town

are visible to my high school friends”. Therefore, based on the posts’ contents, the system

should automatically specify the policy rules for that post. The authors advocate policy

rules that can be applied automatically.

Whalen et al. [131] pointed out that a potential solution for file sharing problems,

such as exposing sensitive files accidentally, is to provide the user with clear information

about file sharing settings and activities. Therefore, they explored existing research on

awareness in collaborative environments, and used it to develop a framework for file sharing

24

awareness. The authors used this awareness framework to develop a prototype for a file

manager that facilitates file sharing by making sharing activity and settings more visible

to the user. The file manager displays file sharing activities such as sends and accesses

as icons with files details and permissions. Also, it includes a sharing console that allows

users to view more detailed sharing information about a specific file, to search for files

matching certain criteria, and to set and view alerts on shared files.

Table 2.1 summarises the recommendations of the previous studies for the design of

access control systems. These recommendations generally fall into three categories, which

are visibility, usability, and suitability recommendations as shown in Table 2.2.

Authors Guidelines and Recommendations for Access Control System Design

Whalen et al.

[129]

1. Fit access control management into the user’s task. 2. Make access control decisions visible.

3. Make the controls themselves simple to manage. 4. Support, rather than replace, social

controls. 5. Design for sharing across organisational and file system boundaries. 6. Allow

users to choose from a palette of sharing and security tools.

Dalal et al. [26] 1. No impedance matching: (a) The system should work for all types and sizes of data.

(b) Responders in particular should be required to have no more than minimal, readily avail-

able tools (e.g. email and a web browser). 2. Support ad-hoc sharing: (a) Use universal

identifiers, such as email addresses; people should be able to share with anyone, inside or

outside of their organisation, with equal facility. (b) Minimise setup e↵ort as users will not

know upfront whether they will share with a particular group or use a specific mechanism

enough times to make the e↵ort worthwhile. (c) Require no a priori preparation by respon-

der. 3. No oversharing: (a) Content shared only with intended recipients. (b) Transient

access management. 4. Simple and self-contained: (a) Interactions should be lightweight and

familiar. (b) One-step sharing (i.e. additional coordination, such as follow-up emails should

not be necessary).

Smetters and

Good [110]

- Simplify access control models: 1. Only allow positive grants of access. 2. Simplify the

inheritance model for access control changes 3. Limit the types of permissions that can be

granted. 4. Group Definitions. -Improve Tools For Managing Access: 1. Tools for group

management that reduce redundancy and error in group definitions, and track the intended

relationship between groups 2. Tools for ACL management that maximise the use of groups,

and help generate concise ACL statements granting only necessary rights. 3. Tools for admin-

istrators to manage access policy, directly focused on “cleaning up” outdated users, groups

and permissions. 4. Activity-based folksonomies of groups and users to help users choose the

right principals with whom to share among potentially similar groups, and make old groups

“fade away” naturally. 5. Visualisations to enable users to see who has access to the content

they are sharing, and what content is impacted by a change in policy.

Mazurek et al.

[65]

1. Allow fine-grained control. 2. Plan for lending devices. 3. Include reactive policy cre-

ation. 4. Include logs. 5. Reduce or eliminate up-front complexity. 6. Acknowledge social

conventions. 7. Support iterative policy specification. 8. Account for users’ mental models.

Table 2.1: Recommendations for the design of access control systems

Visibility recommendations such as making access control decisions visible to users, is

a very useful concept design for access control systems. It promotes users’ awareness of the

sharing activities, and thus reducing the possibility of accidental exposure of sensitive files

as indicated by Whalen et al. [131]. One of the main classes of di�culties people encounter

in sharing, pointed out by Voida et al. [124], is forgetting what file had been shared with

who. Therefore, by making the activity of file sharing visible, mistakes made during

25

the activity of file sharing can be identified easily and rectified immediately (e.g. revoke

permissions granted to unauthorised users accidentally). Usability recommendations such

as minimise setup e↵ort and reduce or eliminate up-front complexity is another concept

design for access control systems, which contribute to the availability of the method. This

is because one of the positive factors which have an impact on people’s choice of file

sharing methods is the convenience and ease of use [130]. Therefore, complicated methods

will be less preferred to be used by users, and thus its availability will be reduced among

participants. Suitability recommendations such as design for sharing across organisational

and file system boundaries, and content shared only with intended recipients is the third

concept design for access control systems, which also contribute to the availability of the

method. A method is suitable if the method provides people with all the desired features

they need to accomplish their tasks. These features can be divided into features that

facilitate information sharing such as allowing files to be shared across organisational

boundaries, and features that secure information sharing such as disallowing files to be

shared with unintended recipients. Both kinds of features must be considered by the

sharing method to be suitable. For example, lack of the former features lead to a file

sharing method that is secure but does not allow files to be shared as people prefer, while

lack of the latter features lead to a file sharing method that allows files to be shared as

people prefer but is not secure. Therefore, considering one kind of features and ignoring

the other will result in a file sharing method that is not suitable.

Although the three categories of recommendations mentioned above are equally im-

portant and must be considered when designing access control systems, in this thesis we

are only concerned with the suitability of the method for the task of sharing. This is

because our aim is to protect the shared files, and thus we must ensure such mechanism

is suitable for di↵erent tasks of sharing and does not interfere with people’s practices of

the activity of file sharing. However, the suitability recommendations shown in Table 2.2

are quite general. For example, fitting access control management into the user’s task and

content should be shared only with intended recipients require the task and recipients to

be known in advance. To design a suitable protection mechanism, we need to investigate

people’s practices of the activity of file sharing. Such investigation is a very useful step

towards characterising the activity of file sharing into di↵erent categories. These categor-

ies can be thought of as policies that must be enforced. In this way, the enforcement

mechanism will not only protect the shared files, but also allow users to share their files

as desired.

26

Recommendations

Visibility 1. Make access control decisions visible. 2. Visualisations to enable users to see who has

access to the content they are sharing, and what content is impacted by a change in policy.

3. Include logs.

Usability 1. Make the controls themselves simple to manage. 2. Use universal identifiers, such as email

addresses; people should be able to share with anyone, inside or outside of their organisation,

with equal facility. 3. Responders in particular should be required to have no more than

minimal, readily available tools (e.g. email and a web browser). 4. Minimise setup e↵ort as

users will not know upfront whether they will share with a particular group or use a specific

mechanism enough times to make the e↵ort worthwhile. 5. Require no a priori prepara-

tion by responder. 6. Interactions should be lightweight and familiar. 7. One-step sharing

(i.e. additional coordination, such as follow-up emails should not be necessary). 8. Only

allow positive grants of access. 9. Simplify the inheritance model for access control changes

10. Limit the types of permissions that can be granted. 11. Group Definitions. 12. Tools for

group management that reduce redundancy and error in group definitions, and track the in-

tended relationship between groups 13. Tools for ACL management that maximise the use of

groups, and help generate concise ACL statements granting only necessary rights. 14. Tools

for administrators to manage access policy, directly focused on “cleaning up” outdated users,

groups and permissions. 15. Activity-based folksonomies of groups and users to help users

choose the right principals with whom to share among potentially similar groups, and make

old groups “fade away” naturally. 16. Reduce or eliminate up-front complexity.

Suitability 1. Fit access control management into the user’s task. 2. Design for sharing across organ-

isational and file system boundaries. 3. Allow users to choose from a palette of sharing and

security tools. 4. The system should work for all types and sizes of data. 5. Content shared

only with intended recipients. 6. Support, rather than replace, social controls. 7. Transient

access management. 8. Allow fine-grained control. 9. Plan for lending devices. 10. Account

for users’ mental models. 11. Support iterative policy specification. 12. Include reactive

policy creation. 13. Acknowledge social conventions.

Table 2.2: Categories of recommendations

Previous studies reviewed in this section provided valuable answers to fundamental

questions that could lead to unsderstand the activity of file sharing, such as: with whom

is the file shared, what type of file is shared, and how the file is shared and protected

(Table 2.3). They found comprehensive results in terms of knowing with whom people

share their files, what type of files they share, and how they protect their shared files.

However, we believe that the question of how the file is shared has not been answered or

has not been answered properly. They merely answered the question of how people share

their files by enumerating the methods of sharing files that people utilised. Such an answer

applies only to the question of what methods people utilise to share their files rather than

how the files are shared.

Therefore, in Chapter 4, we investigate the question of how people share their files by

characterising the activity of file sharing based on two factors: how files are propagated,

and how files are accessed after their propagation. Our characterisation of the activity of

file sharing results in di↵erent categories of sharing activity that can describe all possible

ways of how users share files with each other.

27

With whom the file is

shared

What type of file is

shared

How the file is shared How the file is protec-

ted

Olson

et al.

[82]

-The public, co-

workers, managers and

trusted co-workers,

family and spouse.

-Email content, credit

card number, trans-

gression, work related

documents, work email

and desk phone num-

ber.

- -

Voida

et al.

[124]

-Similar to Olson et.

Al.-With an average of

7 individuals or group

-34 di↵erent types of

files e.g. business doc-

uments, paper drafts,

music, ideas, schedules,

and TV show

-Email (43%), shared

network folders (16%)

and posting content to

a web site (11%)

-

Whalen

et al.

[130]

-Over 69% shared with

two to four groups such

as friends, family, re-

search group, general

public and colleagues.

-25% shared with five

to twenty groups.

-Only focused on

sensitive files, such

as email, personal

financial or medical in-

formation, professional

data or documents

of an organisation,

professional data or

documents governed

by law.

-Email (42%), shared

network folders

(14.7%), peer-to-

peer program (10.3%)

and file copy protocol

(10.3%)

Various methods to

control access to their

sensitive files, some

are technical (pass-

words, permissions)

and others are socially-

controlled such as

hiding files.

Whalen

et al.

[129]

- - -Email (98%), shared

network folder (55%),

commercial content

management systems

(25%) and portable

devices (25%)

Passwords; permis-

sions/ access control

lists; physical controls

(e.g., safeguard in

o�ce or on person);

encryption; obscur-

ity (e.g., given files

innocuous names, hid-

den directories); and

deleting/relocating

sensitive files.

Dalal

et al.

[26]

-With employees in

professional sharing

-With friends and

family in personal

sharing.

-In professional shar-

ing: revolve around

project work such

as technical spe-

cifications, meeting

minutes, and action

items, proposals,

reports.-In personal

sharing: revolve

around multimedia

relational in nature

such photograph and

video.

Email (100%), - 80%

used a wide variety of

social software, such

as wikis, blogs, social

networking sites (in-

cluding MySpace and

Facebook) hosted ser-

vices (such as Yahoo!

Briefcase) public web-

sites for sharing image

and multimedia files

(including Flickr and

YouTube) and online

forums and games.

-

Mazurek

et al.

[65]

-Family, friends, co-

workers and strangers.

-Music, photo, video,

private documents,

school work, work files,

and other personal

documents.

- -User accounts, pass-

word, encryption, lim-

iting physical access to

devices, and hide and

delete sensitive files.

Table 2.3: Summary of previous studies on file sharing

28

2.3 Security

Due to the widespread sharing of digital information and the rise in threats associated

with it, the security of digital information has become one of the biggest concerns for

governments, corporations and ordinary individuals; each of which is searching for tools to

protect their sensitive information. As a result, the field of information security has become

one of the hottest topics in the recent past. However, information security is much more

than just protecting digital information sharing, it means “protecting information and

information systems from unauthorised access, use, disclosure, disruption, modification, or

destruction in order to provide confidentiality, integrity and availability” [101]. Therefore,

information security is not only concerned with protecting the information itself, but

also with protecting each component of the information system. The components of an

information system are the entire set of software, hardware, data, people, procedures, and

networks [132]. Di↵erent components may require di↵erent types of protection which can

be divided into technical protection, physical protection, and awareness-based protection.

For instance, software, data, and networks are protected by technical protection such

as encryption and firewall. Hardware is protected by physical protection such as locks

and keys that restrict access to the area where the hardware components are located.

People and procedures are protected by awareness-based protection such as educating and

training individuals to prevent them from accidental abuse of information; alternatively,

they could be protected by technical protection to prevent individuals from intentionally

misusing information.

Hence, in order to protect digital information, each component of the information sys-

tem must also be protected as well by a combination of physical, technical and awareness-

based protections. However, in this thesis we are only concerned with technical protections.

In the next section, we look at the goals of information security and the security services.

2.3.1 The goals of information security

As mentioned above, the goals and the concept that underlie information security are to

achieve confidentiality, integrity and availability of information. Confidentiality means pre-

venting unauthorised disclosure of information. Integrity means preventing unauthorised

modification of information. Availability means preventing unauthorised withholding of

information so that information should be accessible and usable upon appropriate demand

by an authorised user. It can be seen that each goal is met by allowing only authorised

people to perform the action while disallowing the actions of unauthorised people. For in-

29

stance, confidentiality is met if only authorised people can view or access the information;

integrity is met if only authorised people can modify the information; and availability is

met if only authorised people can withhold the information. Hence, in order to achieve

these goals, there must be a method to di↵erentiate authorised from unauthorised people.

To solve this issue, three steps must be performed as follows: Firstly, each person must

have a unique identity to identify him/herself to the system; this step is known as iden-

tification. Secondly, each person must prove that he/she is really who they claim to be

to the system; this step is known as authentication. Finally, the system must define what

the authenticated person can or cannot do with the information; this step is known as

authorisation. These three steps constitute what is called access control which in turn

provides the confidentiality, integrity and availability of the information. Access control

is discussed in more detail in Section 2.4.

The three main goals of information security which are confidentiality, integrity, and

availability along with authentication, authorisation (or access control), and non-repudiation

(which means preventing a person from denying later that he/she participated in a trans-

action) are security services that are defined by ITU-T Recommendation X.800 [19]. X.800

defines a security service as “a service provided by a protocol layer of communicating open

systems, which ensures adequate security of the systems or of data transfers”. A clearer

definition is found in RFC 2828, which defines a security service as “processing or commu-

nication service that is provided by a system to give a specific kind of protection to system

resources; security services implement security policies, and are implemented by security

mechanisms” [106]. Security mechanisms are techniques designed to detect, prevent, or

recover from a security attack. The aforementioned security services are implemented

through various security mechanisms as there is no a single security mechanism that can

provide all the security services.

There are a wide variety of security mechanisms, that each of which provides di↵erent

security services, and many of which are based on cryptographic techniques. For instance,

encryption is used to achieve information confidentiality, whereas hash algorithms are used

to achieve information integrity. A digital signature, based on public key cryptography, is

used to achieve non-repudiation by identifying the source of the information. Authentic-

ation can be achieved through public key cryptography, where the public key of the key

pair can be signed by a trusted third party, often called the Certificate Authority (CA),

and becomes an electronic authenticated identity for a specific person or organisation. Al-

though authenticating identities over networks, which can be seen as machine-to-machine

30

authentication, is necessary; human-to-machine authentication is of great importance as

well. This type of authentication can be achieved by various mechanisms which range

from something the user knows (such as password), and something the user has (such as

token devices and smart cards) to something the user is (such as biometrics).

Despite the fact that each security mechanism provides one or a few security ser-

vices, real world scenarios often require combination of multiple security services working

together to meet specific security goals. Consequently, available security tools seek to

combine several security mechanisms to provide multiple security services that satisfy

particular requirements. One example of this is access control. The term access control

is often used as a synonym for authorisation. However, in this thesis, we define access

control broadly as a tool that requires multiple security services which are implemented

by several security mechanisms to satisfy a particular goal which is controlling access to

and interaction with system resources. The security services required by access control

are confidentiality, integrity, availability, authentication, authorisation, and occasionally

non-repudiation. As a result, many mechanisms are used in access control to achieve these

security services. Other examples of such security tools are cryptographic protocols, in-

trusion detection systems, and firewalls. It must be taken into account that these tools

can be divided into either intrusion prevention or intrusion detection tools. The former

are tools that prevent an attack while the latter are tools that detect an attack; and they

complement rather than replace each other. For instance, once an intrusion prevention

tool fails to prevent an attack, an intrusion detection tool comes in to play an important

role in detecting the attack and taking another action.

The wide range of security tools that exist today is the result of extensive e↵orts in the

security literature to counter various attacks. Generally speaking, the literature on security

can be divided into three fields which are (i) communication security, (ii) perimeter

security, and (iii) insider security. Each of these fields has developed security tools to

counter particular types of attack. In the next sections, we review each field and focus

on insider security as it is the most relevant to our work. Figure 2.1 illustrates the three

fields of security and their domains.

2.3.2 Communication security

The literature on communication security is concerned with preventing di↵erent types of

attacks on data transmitted over a network. In other words, the field of communication se-

curity deals with attacks that target the communication link between two entities that are

31

Figure 2.1: Security fields

sending and receiving data. The purpose of these attacks is to violate the confidentiality,

integrity, and availability of data transmitted over networks.

Most of the work in communication security is dedicated to developing tools to pro-

tect the transmission of data over a network [108, 41, 57, 36, 104]. Such tools are known

as cryptographic protocols which utilise di↵erent cryptographic mechanisms to provide

security services which in turn counter the di↵erent security attacks. Cryptographic pro-

tocols (also known as security protocols) are implemented at di↵erent layers of the network

architecture. For instance, PGP [140],S/MIME [93] and Kerberos [10] are cryptographic

protocols at the application layer; SSL/TLS [36] at the transport layer; IPsec [57] at

the network layer; PPTP [41] at the data link layer, to name but a few. The reason

behind implementing cryptographic protocols at di↵erent layers of the network architec-

ture is that cryptographic protocols at one layer o↵er di↵erent degrees of protection from

cryptographic protocols at another layer [127]. As a consequence, there exist many cryp-

tographic protocols implemented at di↵erent layers in order to protect network resources

from di↵erent types of attacks [78, 39].

The cryptographic protocols implemented at the di↵erent layers of the network, play

an important role in protecting the shared files. Due to the speed and ease of use, most

of the file sharing activity is performed through networks; hence, for a file to be shared, it

must be transmitted over the network to the recipients. Therefore, while the shared file is

transmitted, it will be susceptible to attacks if none of the aforementioned cryptographic

protocols is implemented. Furthermore, for files sharing activities that are not performed

through networks, for example through removable devices, the shared files will be sus-

ceptible to loss or theft. Therefore, encryption mechanisms can be of great importance

in such situations, so that only authorised users can decrypt the file rather than any one

who possesses the removable device. To summarise, these protocols are needed to provide

protection to the shared files when they are moved from one location to another.

32

2.3.3 Perimeter security

The literature on perimeter security is concerned with protecting the data while it is

being stored. Unlike the field of communication security which is focused on protecting

data transmitted over an untrusted network, the field of perimeter security is focused on

protecting data stored in a trusted internal network. In the literature, perimeter is defined

as “the fortified boundary of the network” [80], and it is understood as a way of protecting

internal networks, which are considered safe, from attacks coming from external networks

such as the Internet which is considered unsafe.

Therefore, most of the work in perimeter security is dedicated to developing tools to

protect the boundary of the internal network where most of the valuable resources reside,

so that attackers cannot get into the internal network and violate the confidentiality,

integrity and availability of the stored data. Such tools are Firewall, Intrusion Detection

Systems (IDS), and Intrusion Prevention Systems (IPS).

Firewall

A firewall is the most widely used security tool to protect an internal network from

external attacks. It is placed between the internal network and the external network as

a barrier to determine what tra�c can get into or out of the internal network. Firewalls

can be seen as an access control for networks that can be used to protect Local Area Net-

works (LANs), Personal Area Networks (PANs), Wireless Local Area Networks (WLANs),

Wireless Sensor Networks (WSNs) or even a single host. According to [116], even though

there is no standard firewall terminology, there are three main types of firewalls, each of

which examines data up to a specific layer in the OSI reference model. These types are as

follows (i) A packet filter is a firewall that operates at the network layer. (ii) A stateful

packet filter is a firewall that operates at the transport layer. (iii) An application proxy is,

as the name suggests, a firewall that operates at the application layer where it functions

as a proxy. Each type has its own advantages and disadvantages. More details about the

di↵erent types can be found in [113, 127, 116]

IDS

IDS are the second line of defence that protects the internal network from attackers who

have already managed to pass through the firewall. As the firewall works at the boundary

of the internal network, it cannot prevent malicious activities inside the internal network.

Hence, an IDS plays an important role in detecting such attacks that the firewall is not

able to prevent. It is usually used as a complementary tool to the firewall such that if the

33

firewall fails to identify or prevent an attack, the IDS will detect the attack and report it

to the network administrators. There are two types of IDS which are Host-based IDS and

Network-based IDS. The former operates on a single host and monitors tra�c at that host

by utilising the resources of its host to detect attacks. The latter operates as a stand-alone

devices on a network and monitors tra�c on the network to detect attacks [116, 80, 56].

Additionally, IDS utilises two methods for detecting attacks which are Signature-based

IDS and Anomaly-based IDS. The former detects attacks based on known signatures

or patterns which is similar to signature-based virus detection. The latter defines the

normal behaviour of a system and reports attack whenever the system behaves abnormally

[116, 80, 56].

IPS

IPS is similar to IDS except that IPS is not only able to detect attacks and report it to

administrators, but also able to block those attacks when they have been detected without

direct involvement of the administrators. Therefore, such tools combine the functionality

of a firewall and an IDS to o↵er detective and preventive solution that block actions which

have been detected as an attack [80].

Eventually the shared files will be stored in a location (e.g. a recipient device or central

server) to facilitate access to them by the recipients. Such a location will be a target for

attacks from the outside. Therefore, the security tools reviewed in this section, can be

used to protect the shared files in such situations.

2.3.4 Insider security

The literature on insider security is the most relevant to our work. It is concerned with

preventing attacks performed inside the perimeter of the trusted internal network. Al-

though perimeter security prevents network attacks on stored data, other attacks can be

performed without using a network connection by gaining access to a local device to view,

modify, or destroy the stored data. Also, viruses and Trojan horses can be introduced to

a local machine by inserting an a↵ected optical disc into it without the need to propagate

them through the networks. Therefore, protecting stored data is an area where network

security and computer security overlap [113].

In contrast to communication and perimeter security which deal with attacks per-

formed by external attackers, insider security deals with attacks performed internally by

those who are authorised to access the data. The features of being inside the perimeter of

the internal network and an authorised person di↵erentiate insider attacks from external

34

attacks and make such attacks di�cult to tackle.

According to the 2011 CyberSecurity Watch Survey, conducted by the U.S. Secret

Service, the CERT Insider Threat Center, CSO Magazine, and Deloitte [55], 58% of the

attacks are caused by outsiders (those who are unauthorised to access network systems

or data) while 21% of the attacks are caused by insiders (those who are authorised to

access network systems or data), and 21% are from unknown sources. Even though the

percentage of insider attacks is less than the external attacks, the consequences of insider

attacks can be more severe. The survey indicated that 33% of respondents consider insider

attacks to be more costly and damaging. Consequently, insider attacks are a serious danger

and should be paid similar attention to that paid to external attacks.

Hunker [50] indicated that there exists a large body of work in the literature to address

the insider threats problem; however, a little progress has been made to reduce the insider

threat problem. The author attributed the slow progress in the field to the absence of clear

answers to fundamental questions. One of these questions is “What is an insider threat?”.

The author noted that “if we cannot rigorously define the problem we are seeking to solve,

then how can we approach it? or even know when the problem has been solved” [50].

The terms insider and insider threat have been defined in many di↵erent contexts by

di↵erent authors. Some authors have focused on the trust relationship when defining the

term insider. For instance, the RAND report [6] defined the insider as “an already trusted

person with access to sensitive information and information systems”. Bishop [14] defined

the insider as “a trusted entity that is given the power to violate one or more rules in a

given security policy”. Other authors have focused on the abuse of given access privileges.

For instance, Chinchani et al. [22] defined the insiders as “legitimate users who abuse

their privileges”. The CERT report [68] defined the insider as “individuals who were, or

previously had been, authorised to use the information systems they eventually employed

to perpetrate harm”.

Others defined the insider very broadly. For instance, Predd et al. [88] defined the

insider as “someone with legitimate access to an organisation’s computers and networks”.

The RAND report [6] defined the insider again as “anyone with access, privilege, or know-

ledge of information system and services”. The former definition might include masquer-

aders who stole the credentials of a legitimate user to get access to the computer or the

network. The latter definition eliminates the need for trust and includes those who have

knowledge of the system or the service even if they do not have access privileges.

In 2008, a cross-disciplinary workshop on “Countering Insider Threats” [89] concluded

35

that

“an insider is a person that has been legitimately empowered with the right

to access, represent, or decide about one or more assets of the organisation’s

structure”

With regard to insider threat, Predd et al. [88] defined insider threat as “an insider’s

action that puts an organisation or its resources at risk”. The RAND report [6] defined it

as “malevolent (or possibly inadvertent) actions by an already trusted person with access

to sensitive information and information systems”. Hunker and Probst [51] defined it as

follows “an insider threat is [posed by] an individual with privileges who misuses them or

whose access results in misuse”. The CERT Insider Threat Center’s current definition of

insider threats is as follows:

“A malicious insider threat to an organization is a current or former em-

ployee, contractor, or other business partner who has or had authorized access

to an organization’s network, system, or data and intentionally exceeded or

misused that access in a manner that negatively a↵ected the confidentiality,

integrity, or availability of the organization’s information or information sys-

tems”. [20]

The CERT definition of insider threats is focused on intentional misuse and excludes

accidental misuse. It can be clearly seen that there exists a wide variety of definitions

of insider and insider threat. Bishop et al. [15] and Bishop and Gates [16] point out

that each author who discussed the insider problem, has made his/her own definition of

the insider or the insider threat. This matter has complicated the research in insider

threats as one solution to the insider problem might not be applicable to another insider

problem. The authors also point out that di�culty in defining the term insider stems from

the fact that the perimeter of the organisation network can be defined as well, such that

anyone inside the perimeter is therefore an insider. However, with the increased usage of

mobile computing, outsourcing and contracting, the concept of a distinct border around

an organisation has become blurred.

Due to the di↵erences and contradictory definitions of insider and insider threats that

complicate the problem to be solved, many authors are urging the community to establish

a framework or taxonomy for distinguishing among di↵erent types of insider threats [89,

51, 90]. They mentioned that each determining factor for an insider can be used for a

taxonomy, for example based on distinctions between:

36

• Malicious and accidental threats;

• Doing something intentionally (for malicious or good reasons which nonetheless may

result in damage) versus events that occur accidentally.

• Obvious and stealthy acts.

• Acts by masqueraders (e.g, an individual with a stolen password), traitors (malicious

legitimate users) and naive or accidental use that results in harm.

• A combination of factors such as access types; aim or intentionality or reason for

misuse; level of technical and the system consequences of insiders threats. [89, 51, 90]

Bellovin [11] identified three di↵erent types of insider attack which are misuse of access,

defence bypass, and access control failure.

• Misuse of access: the insider missuses the system’s resources through the privileges

he/she was given. This form of attack is the hardest to detect or prevent by purely

technical means as the insider already has legitimate access. The best solution is

to monitor unusual patterns or quantities of requests, detailed logging can be used

when a person falls under suspicion for other reasons.

• Defence bypass: insiders are generally inside the perimeter which means that they

are already past some layers of defence. This makes the insider able to commit

mischief to the system’s resources easily compared to external attackers who need

to pass several layers of defence. Also, this form of attack is hard to conceive

of in purely technical means. Reliance on technical or non-technical detection of

anomalous behaviour or actual attacks is required.

• Access control failure: the insider should not have access to specified system re-

sources. Unlike misuse of access and defence bypass attacks, access control failure

attack is a technical problem. While prevention is straightforward, detection of

access-control failures is di�cult for the same reasons as with access-control misuse

[11].

It can be seen that not all of the attacks can be countered by purely technical means;

thus, other non-technical means are important to solve the insider threat problem. Hunker

and Probst [51] identified three di↵erent approaches to solve the insider threat problem

and which current works in the field scattered among them. These approaches are the

technical approach, the socio-technical approach, and the sociological approach. The

37

authors note that technical approaches are focused on policy languages, access control

and monitoring, while socio-technical approaches are focused on policy, monitoring and

profiling, prediction, forensics and response work. Sociological approaches are focused on

motivation, organisational culture, human factors and privacy and legal aspects.

Silowash et al. [107] analysed cases of insider threat from the CERT insider threat

database, which contains more than 700 cases of insider threat, and observed that malicious

insider activities can be classified into four classes as follows.

• IT sabotage: an insider’s use of IT to direct specific harm at an organisation or an

individual. Examples of this are destroying critical data, or planting a logical bomb

to delete data at critical times, etc.

• Theft of Intellectual Property (IP): an insider’s use of IT to steal IP from the organ-

isation. This category includes industrial espionage involving outsiders. Examples

of usually stolen IP assets are proprietary software, business plans, product details,

and customer information.

• Fraud: an insider’s use of IT for the unauthorised modification, addition, or deletion

of an organisation’s data (not programs or systems) for personal gain, or theft of

information that leads to an identity crime (e.g., identity theft or credit card fraud).

• Miscellaneous: cases in which the insider’s activity was not for IP theft, fraud, or

IT sabotage.

Technical approaches for encountering insider threats can be divided into detection or

prevention tools. The former is based on monitoring while the latter is based on access

control. Sinclair and Smith [109] note that most of the work on insider threat space is

focused on detection tools. The reason behind this, is that most of the authors believe that

insider attacks cannot be prevented as those insiders are operating within their privileges,

but rather it is feasible to observe the patterns of information use to detect attacks and

respond to them. For instance, with regard to the two types of insider attacks which are

misused of access and defence bypass; such attacks are di�cult to prevent due to the fact

that the insider is not using more than just the privileges he/she has legitimately acquired

to perform the attack. However, it is easier to detect anomalous insider behaviour or to

monitor an already suspected insider.

Nevertheless, detection tools su↵er from several drawbacks similar to those of intru-

sion detection systems, because insider detection tools utilise the same method of detection

(e.g, signature-based and anomaly-based) but with extensions to counter insider threats.

38

For instance, signature-based detection tools can only detect attacks if their signatures

are already known, otherwise the attacks go undetected. Anomaly-based detection tools

may lack accurate descriptions of normal behaviours which will be used to define anom-

alous behaviours. Also, if an attack occurred during the phase of monitoring the normal

behaviour, the attack will not be detected later as it will be assumed to be a normal

behaviour. Hunker and Probst [51] indicated that the lack of data about insider attacks,

made it hard to find out whether monitoring is e↵ective in this space or not. They noted

that monitoring is beneficial if an insider attack is already suspected.

Access control as a prevention tool is rarely discussed in the literature to address the

insider threat problem. It is usually mentioned to illustrate its drawbacks and to promote

detection tools in the insider threat space. However, Sinclair and Smith [109] stated that

“better prevention can simplify the problem space that detection must address”. The

authors surveyed existing research and development in access control, focusing on the

applicability of this work in preventing insider attacks in large organisation environments.

Although they found that the theory behind access control and the systems that implement

it seem to be well-developed, the insider threat problem is still there. Consequently,

they raised several challenging questions in terms of access control and the insider threat

problem. Such questions are: “Have the basic principles of access control overlooked

something?”; “Would a practically correct access control system even reduce the incidence

of insider attack?” “Is such an access control system possible?”; “Can all insider threat

be prevented with well-designed access control mechanisms?”.

From our perspective, the problem is not with the prevention tool, but rather with

the ambiguous definitions of the insider problem and threats. For prevention tools to

be used e↵ectively to tackle the insider problem, the problem and the threats must be

defined precisely. However, a single definition for the insider problem and its threats as

attempted by previous work is not suitable. We suggest that the insider problem should

be divided into smaller problems that can be defined, studied and solved independently.

Consequently, in Chapter 3 we propose a classification of the insider threat problem,

and focus on one category that is related to file sharing. We define the threats that are

imposed by insiders in this category; as in this thesis we are concerned to prevent threats

such as these. Since the threats are precisely defined, we follow a prevention approach to

preventing such threats rather than a detection approach.

Generally, a prevention approach falls into two forms which are access control and

information flow control. Our interest in this thesis is with information flow control,

39

particularly type-based approach to information flow control. This is because software is

the major cause of many breaches in security, and a promising approach to create a secure

software is to write it in a typesafe programming language. Therefore, we take a type-

based approach to enforce information flow policies which is a language-based technique

to provide security in programs. However, information flow control is a complementary

approach to access control, since the latter restrict the release of information whereas the

former restrict its propagation. Therefore, in the next sections we give a brief overview

of access control by showing its components and the advantages and disadvantages of

well-known access control models. Then, we focus on type-based information flow control

which is the approach that we adopt to tackle our particular class of insider problem in

this thesis.

2.4 Access control

Access control regulates access to resources, and has become one of the central themes

of security. The major function of access control is to manage the access rights of users

when fully sharing the system’s resources, and to ensure that illegal uses and access to

the network resources cannot occur. Access control limits the access of the subject to the

object and controls the subject’s access according to its identity authentication. Qing-hai

and Ying [92] indicate that access control is an important measure in providing protection

for the system’s resources; and it is considered the most important security mechanism in

a computer system; and one of the most important measures to achieving confidentiality

and integrity of data. In the this section, the components of access control are described

first, and then di↵erent models of access control are discussed in detail.

2.4.1 Access control components

Access control is comprised of three important components, which are identification, au-

thentication and authorisation. Each of which complements the others, and which must be

implemented in order. For instance, a subject must first be identified then authenticated

and finally authorised to access an object [43]. It is worth taking into consideration that

authentication and authorisation techniques play an important role in defining the level

of security in an application. Therefore, on the basis of the security level required for each

application type, authentication and authorisation techniques must be selected carefully

in order to reach the desired level of security. In the following subsections, each of the

access control components is discussed in more detail.

40

2.4.2 Identification

Identification is the first step in access control. Stewart et al. [117] defined identification

as “The process by which a subject professes an identity and accountability is initiated”.

Hence, the identification process is established when a user provides a user-name, a log-on

ID, a personal identification number (PIN), or smart card. Once a subject has identified

himself, his identity will be accountable for further actions undertaken by him. Identifica-

tion is about providing a public piece of information (user-name, account number), and it

might be known by a subject’s friends or family [43]. Thus, identification does not play an

important role in making the application more or less secure. However, it is only the first

step and the starter point that facilitates, introduces, and is relied on by the two most

important steps which are authentication and authorisation.

2.4.3 Authentication

Authentication is the second step in access control, and it relies on the identification step.

While identification is about providing a public piece of information, authentication is

about providing a private piece of information that is known solely by a certain subject

[43]. Stewart et al. [117] defined authentication as “the process of verifying or testing that

a claimed identity is valid”. They state that in the authentication step, additional inform-

ation is needed from a subject and it must correspond exactly to the identity professed.

A well-known example of authentication is a password.

Harris [43] argues that authentication techniques can be classified intro three types

based on their characteristics as follows: Type 1: subject must prove something he knows

(e.g. password). Type 2: subject must prove something he has (e.g. smart card). Type

3: subject must prove something he is (e.g. fingerprint). He indicates that authentication

techniques having just one of these characteristics are referred to as one-factor authen-

tication. Authentication techniques having two of these characteristics are referred to

as two-factor authentication, whereas authentication techniques having all three of the

characteristics are referred to as three-factor authentication. Therefore, in order to have

a strong authentication process, the authentication should utilise at least two-factors or

more. An example of utilising two-factors is when a subject uses a debit card at a shop;

he must swipe the card (something he has) and enter a PIN (something he knows) to

complete the transaction.

It is worth mentioning that more than one technique can be associated with a one-

factor approach of the same type. For instance, in type 3, where a subject must prove

41

something he is, there are several techniques used to achieve the authentication process

such as a fingerprint, finger scan, palm scan, retina scan, iris scan and so on. Also, it should

be borne in mind that these techniques provide various levels of security, which means that

some of them are more reliable, secure and accurate than others. Therefore, the level of

security in an application is not only determined by the number of authentication factors

used, but also by the techniques used in each type of the authentication process.

2.4.4 Authorisation

Authorisation is the third and final step of access control, it is performed after a subject

has been identified and authenticated. Harris [43] defined authorisation as “A process

of assigning authenticated subjects access and the right to carry out specific operations,

depending upon their preconfigured access rights and permissions outlined in an access

criteria”. It must be noted that not every identified and authenticated subject can use all

resources; and after a subject is identified and authenticated, the subject must be checked

to find out what accesses and operations he can perform. In other words, by performing

the authorisation step, we can determine what an identified and authenticated subject can

actually access and what operations can be carried out.

According to Harris [43] and Stewart et al. [117] authorisation is provided by a system

through access control models which manage the type and extent of the subjects’ access

to objects. An access control model is “A framework that dictates access control using

various access control technologies” [91]. Harris [43] indicates that the main objective

of access control models is to enforce the rules and objectives of certain security policies

and to dictate how objects must be accessed by subjects. There are di↵erent types of

access control models, and each model has its own advantages and disadvantages. Each of

the existing access control models serves di↵erent organisational needs, according to their

culture, the nature of business, security policy, and so on [91, 117]. Access control models

can be broadly categorised into three main categories; namely, traditional access control

models, the trust management model and the Digital Rights Management (DRM) model.

In the following sections, we briefly review these three categories.

2.4.5 Traditional access control models

Traditionally, access control came into existence to address the needs of two major fields:

the military and the commercial. The former focuses on confidentiality of data, whereas

the latter focuses on flexible models for data integrity [25]. These two needs have led to the

42

emergence of two distinct access control models which are mandatory and discretionary

access control models. However, the limitations of these two models of access control has

led to further research in this area that has resulted in the emergence of role-based and

task-based access control models [98].

The mandatory access control model (MAC), discretionary access control model (DAC),

and role-based access control model (RBAC) are regarded as the most widely accepted

access control models [92, 8]. Therefore, they are covered in this section.

Mandatory access control In mandatory access control models, each object is at-

tached to a security label and each user is assigned to a security clearance. Access restric-

tion in this model is based on the security clearance of users and security labels of objects.

In order for a subject to access an object, the subject’s clearance level must be equal to

or greater than the object’s label level. For instance, if an object in an organisation is

considered very confidential and it has been assigned a “Very confidential” security level,

a subject who has been assigned the security level “Confidential”, cannot access the ob-

ject as his/her security level is lower than that of the object. As the name of this model

suggests, it does not allow a subject or a program of the subject to modify the security

levels, instead they are enforced by the system and only the administrators of the system

can modify them. This has led this model to be stricter and more secure than DAC but

neither as flexible nor as scalable; and also made this model suitable for applications that

require a high level of security to protect the confidentiality of their data, as in military

applications [98, 91, 92, 43, 117].

Discretionary access control In contrast to MAC, DAC gives the owner or the creator

of an object the freedom to specify who can access the object and what operations can be

performed on the object. For instance, if a subject creates a file on his system and wants

to share it with other subjects, the subject can control and specify who can access the

file. In other words, the access control is based on the discretion or the decision of the

owner. DAC is often implemented using access control list (ACL) for objects, where each

ACL defines the types of access granted or restricted to individuals or groups of subjects

[60]. Unlike MAC, DAC is suitable for applications that do not require the high level of

protection that MAC provides and enforces [43, 117]. In DAC, a subject is permitted to

access an object based on the identity of the subject and some subjects can also delegate

their own access authorities to other subjects. This is regarded as one main di↵erence

between DAC and MAC; whereby in DAC a subject with a particular access permission

43

is able to pass that permission to other subjects. However, this has led this model to be

complex as well as flexible [92, 91, 60].

In building operating systems, the decision to select MAC or DAC depends on what

functionality an operating system intends to provide. For instance, windows-based plat-

forms provide DAC access structures rather than MAC. However, specially developed

operating systems such as those created for government agencies and the military, provide

a MAC access structure to enforce the level of security needed [43, 117]. Many operating

systems such as Linux, Unix and windows NT/SERVER use a DAC access structure [92].

Role-based access control Ferraiolo and Kuhn [35] proposed the RBAC model to

overcome the complexity problem associated with the previous two models. In this model,

access to objects is restricted based on the business function or role that subjects perform.

Unlike DAC, access permissions in RBAC are assigned to roles rather than to subjects’

identifiers [98]. In this model, groups of users are created by the administrators who then

assign access rights and permissions to the groups; and a user in a group will be able

to utilise the access rights and permissions of the group they are placed in [43]. This

model is more appropriate for large organisations that are required to change the access

rights and permissions more often. This because of the fact that this model allows the

administrators to add a subject, an object, or can change access rights and permissions

very easily by altering centralised roles without having to manipulate any subject or object

in the system. For instance, in a company the administrator can add a new employee to

a role rather than creating access rights and permissions for every person who joins the

company [43, 117].

All the three models described above, can control access to objects in closed systems

but cannot control access to objects in open distributed systems. Salim et al. [98] indicate

that the failure of MAC, DAC, and RBAC models to control access to objects in open

distributed systems stems from several factors. Firstly, these models require that subjects

and objects must already be known before access is granted. Secondly, these models

rely on an access control list (ACL) to express policies which are usually stored in a

central server under the control of a trusted administrator. Thirdly, users in distributed

systems need their rights to be delegated to other users in order for tasks to be shared

and accomplished. Finally, the trustworthiness of clients’ software/hardware in traditional

access control models is questionable.

In order to solve these problems, many studies have been carried out and have resulted

in the emergence of newer access control models which are trust management and DRM

44

models. These models are discussed in the following sections.

2.4.6 Trust management model

Generally, this model is intended to solve the problem of traditional access control models

that require subjects and objects to be previously known and before access is granted.

Hence, this model allows administrators to authorise previously unknown users by the use

of PKI and credential based systems [98]. The main di↵erence between traditional access

control models and the trust management model is that traditional access control models

are centralised and operate under a closed system, where all the parties are known; whereas

trust management systems operate in open distributed systems where some parties could

be unknown[128]. In the trust management model, each subject is bound to authorisations

referred to as credentials which help in determining and judging the capabilities of subjects

based on the relevance of subjects’ credentials to the local policy of objects’ provider.

Each subject in the trust management model can be an authoriser, a credential issuer, or

a requester [98].

Although the trust management model addresses the problem of dealing with previ-

ously unknown subjects in distributed systems, it fails to control access to objects that are

sent from the authoriser domain to the requester domain. This is due to the fact that the

trust management model, like other traditional access control models, operates on objects

within server systems and does not control access to objects that are locally stored at the

client-side. Therefore, studies in solving this problem have led to the emergence of the

DRM model.

2.4.7 Digital Rights Management (DRM) model

All the access control models that are mentioned so far focus on controlling access to

objects within a defined boundary that is either a system or an organisation. However,

the DRM model focuses on controlling access to objects regardless of their location which

means across systems and organisations. In other words, the DRM model provides an

access control mechanism for objects that are already sent from the authoriser domain

to the requester domain and which are locally stored in the requester’s machine. DRM

is commercially-oriented as the authorisation process is based on payment, in the sense

that a subject will be authorised to use an object if the subject has paid for it, other-

wise the authorisation will be denied. In fact, DRM has emerged to eliminate copyright

infringement that caused a huge revenue loss to the owners of copyrighted content.

45

Liu et al. [64] defined DRM as “A system to protect high-value digital assets and

control the distribution and usage of those digital assets”. Harinarayana et al. [42] state

that DRM refers to the “technologies and processes that are applied to describe the digital

content and to identify the user. Further it refers to the application and enforcement of

usage rules in a secure manner”. Hence, DRM may look similar to traditional access

control. However, Safavi-Naini and Sheppard [97] assert that unlike traditional access

control, DRM protects the content beyond the boundary of systems that controlled by the

content owner. Thus, they defined DRM as “persistent access control” to distinguish it

from traditional access control models which are unable to prevent users from conforming

to any particular usage policy once they have gained access to the content.

DRM systems are a promising solution to prevent copyright infringement, they allow

an owner of a digital content to choose who will be consuming the content and how the

content will be consumed. More importantly, DRM systems have made the owners of

digital content able to control their content in such a way that is impossible to do in

physical contents. For instance, an owner of a digital music file can use many restrictions

over the music file such as a number of times the music can be played, include an expiry

date in which the music file will not operate when it reaches a particular time, prevent

copying or allow copying but for a limited number etc. These controls have impressed

content owners and introduced a wide range of new business models such as pay-per-

download, subscription, pay-per-play, try-before-you-buy and rental.

A DRM protected content is useless by itself. In order to make use of it, consumers

must obtain a licence that makes the content operable. Safavi-Naini and Sheppard [97]

state that DRM systems associate a content with a license which sets out all rights that

is granted to a user by the content owner. The licenses are in a machine-readable and

machine-enforceable fashion. The user can only access the content by using hardware and

software which are trusted to the content owner, and which will only allow the user to

make use of the content according to the rights granted by a license.

In spite of the fact that all DRM systems rely on the approach of associating a license

with each content, they have di↵erent architectures [42, 9, 86]. Liu et al. [64] point out

that although each DRM vendor has di↵erent DRM implementation, names and ways

to specify the content usage rules from one another, the basic DRM process is the same

which often composed of four parties: the content provider, the distributor, the clearing-

house (license issuer) and the consumer (see Figure 2.2). Safavi-Naini and Sheppard [97]

illustrate DRM architecture as follows: a provider creates content and then sends it to

46

a user in an encrypted form via some distribution channels. The user obtains a license

from a license issuer to be able to access the protected content. Licenses are written by

Right Expression Language that is a machine-readable and it is used to set out the terms

of use of the content and the information required to access the protected content. One

of the most important security requirements for a DRM system is that the hardware and

the software which the user utilise to access protected content must be guaranteed by its

manufacturer to behave in accordance with licenses. However, consumer’s device is not

trustworthy and this is the major problem of DRM systems and it is apparent since the aim

of the DRM system is to prevent consumers from violating copyrighted contents [112]. As

a result, each DRM system uses its own proprietary player applications to protect digital

contents, which leads to the problem of interoperability.

Figure 2.2: The common DRM architecture [adopted from 64]

It is worth taking into consideration that each of the access control models mentioned

earlier has focused on their targeted issues. For instance, traditional access control models

have focused on controlling access to objects within a closed system that knows the identity

and the attributes of the users or processes in advance. The trust management model has

also focused on controlling access to objects within a closed system, but it authorises

unknown users based on their capabilities and properties. DRM models have focused

on controlling access to and usage of objects even after the objects are disseminated.

However, as the DRM model is a promising solution for commercial industry, all current

DRM systems focus on controlling payment-based dissemination.

As a result, Park and Sandhu [84] defined a model called Usage Control that encom-

passes traditional access control models, the trust management model and DRM model

and goes beyond in its definition and scope. “Usage Control (UCON) is a conceptual

framework that covers these areas in a systematic manner to provide a general-purpose,

unified framework for protecting digital resources” [85, 83]. In UCON, subjects and ob-

jects are associated with attributes which can be updated as a result of subjects’ actions

47

on objects. Examples of a subject’s attributes are user identity, security clearance or role,

whilst object’s attributes are security labels, owner id, classification or cost. Subjects’ and

objects’ attributes can be updated before usage starts (pre-update), during the usage (on-

update), and after the usage is terminated or usage right is revoked (post-update). Access

decisions can be evaluated before the requested right is exercised or continuously while

the usage right is being exercised. The ability of updating attributes at di↵erent stages

and evaluating access decisions before or during exercising the usage right make UCON

model more expressive than other access control models. However, the UCON model is a

conceptional general purpose model that provides no explicit enforcement mechanisms.

The main problem with access control in general is that access rights of programs are

only verified at the point of access. At the access point, a program might be denied or

granted access to information. Once a program is granted access to information, no further

steps are taken to ensure that this program which is given access to information is going to

handle the accessed information correctly and securely. Unlike access control, information

flow control ensures that a program which is given access to information is going to handle

the accessed information securely by tracking how information propagates through the

program during execution. In the next section we give an overview of information flow

control and focus on type-based approach to information flow control.

2.5 Information flow control

The most widely used technique to prevent information leakage is access control such

as Discretionary Access Control (DAC) [60, 44] and Role-based Access Control (RBAC)

[100]. Although access control is useful to specify who can access which information, it

cannot protect sensitive information against legitimate users. Access control is concerned

with the release of information but not its propagation. It provides a guarantee that

information is released only to authorised users. However, once information is released

to authorised users, it might be leaked maliciously or accidentally to unauthorised users

without any further control.

Information flow control is a promising complementary approach to access control to

prevent information leakage. It tracks how information propagates through a program

during execution to ensure the program does not leak sensitive information. There are

various language-based techniques to enforce information flow control statically or dynam-

ically. The former analyses information flow within a program prior to execution while the

latter analyses information during execution. Each type of analysis has its own strengths

48

and weaknesses. For example, dynamic analysis has the benefit of permissiveness but

incurs run-time overheads, while static analysis has the benefit of reducing run-time over-

heads but might reject programs that are safe. Detailed discussion about the strength

and weakness of both approaches, and suggestions for a hybrid approach can be found

in [33]. This thesis focuses on static analysis for secure information flow by the use of

type systems. Therefore, the remaining part of this chapter briefly reviews various type

systems that are developed to statically analyse information flow in programs. Such type

systems are well-known as security type systems which enforce information flow policies.

A comprehensive survey of the large body of work on language-based information flow

control, can be found in [95].

2.5.1 Security type systems

Denning [29] pioneered the use of static analysis to identify if the information flow of a

program satisfies an application-specific confidentiality policy. Following their work, many

security type systems have been developed [1, 52, 139] beginning with Volpano et al. [125]

and Volpano and Smith [126] who were the first to formulate Denning’s secure information

flow analysis [28, 29] as a type system and prove its soundness. The intuition is that secure

information flow is guaranteed for a program if the program is type-checked correctly.

In security type systems each variable in a program is associated with a security level

that represents a flow policy on the use of the value stored in the variable. The security

levels associated with programs’ variables form a lattice structure, ordered by , following

an early influential work by Denning [28] who proposed a lattice model of secure inform-

ation flow. In the lattice model, an information flow policy is defined by a lattice (SC,)

where SC is a finite set of security classes partially ordered by . For example, security

classes for confidentiality can be low and high where low  high, and for integrity can

be trusted and untrusted where trusted  untrusted. Information is allowed only to flow

upwards in the lattice. That is information flow from variable x to variable y is allowed

if l
x

 l
y

. Security type systems enforce such conditions through type checking where

the compiler type-checks a program, which contains variables associated with security

levels, before execution and ensures that the type-checked program will not violate the

information flow policy at run-time.

Information flow in a program might be explicit or implicit [28, 29]. Explicit flow results

from assignment operations that assign a variable to another variable. For example, the

assignment statement (x =: y) contains an explicit flow of information from y to x. On the

49

other hand, implicit flow results from the control structure of a program. For example,

the following if-statement (if x = 0 then y := 0 else y := 1) contains an implicit flow

from x to y, since after executing the statement the value of y determines whether the

value of x is 0 or not. Other kinds of information flows might arise in a program through

covert channels [61] such as termination channels, timing channels, probabilistic channels,

resource exhaustion channels, and power channels [95]. Such channels are quite di�cult

to secure since it requires much knowledge of the underlying system and hardware.

A major advantage of security type systems, and static analysis in general, is that it

not only controls explicit flows, but also controls implicit flows precisely in all possible

execution paths including paths that are not taken at run-time. The typing rules of

security type systems control explicit and implicit flows as follows. To control explicit

flows as in the example above, the typing rule for assignments requires that l
y

v l
x

, which

means that the security level of variable x must be at least as restrictive as the security

level of variable y. To control implicit flows, program-counter, written as pc, which tracks

the security levels of control flow paths is introduced. In the implicit flow example above,

the branch taken depends on the value of x, therefore, the pc in the then and else clauses

will be joined with l
x

, written pc t l
x

, and the assignment to y is only allowed if pc v l
y

.

The majority of security type systems focus on enforcing a property known as non-

interference [37, 125, 95, 66]. Non-interference for confidentiality requires that public out-

put is independent from secret input, and for integrity requires that trusted output is inde-

pendent from untrusted input. Various flavours of non-interference exist in the literature to

deal with the di↵erent powers an attacker might have such as termination-insensitive non-

interference, termination-sensitive non-interference, progress-insensitive non-interference,

and progress-sensitive non-interference [47]. However, non-interference is a very restrictive

property that is hard to meet in practice. This is because non-interference does not allow

downgrading of security levels from high to low. In fact, declassifying security levels is

needed in many applications. Consequently, various approaches to declassification of in-

formation are investigated in the literature. These approaches are surveyed in [96], based

on what, where, when, and by whom information can be released. Furthermore, enfor-

cing non-interference can only control how information flows from one security level to

another; but cannot control how information at a particular security level is manipulated

[63, 13]. For example, regardless of the security level assigned to a variable, the variable

can be read, concatenated with itself and saved back as long as these operations only

manipulate the variable at the same security level assigned to it. An alternative notion

50

to non-interference based on a security error that can be enforced by a type system as a

safety property is proposed in [17].

Broadly, two kinds of information flow policies can be enforced, based on whether the

type system is flow-insensitive or flow-sensitive. In flow-insensitive type systems, such as

in [125], variables are assigned fixed security levels. Information can flow from variable y

to variable x if and only if l
y

v l
x

, that is the security level of x is at least as restrictive

as the security level of y. Illegal implicit flows are avoided by the use of pc as described

above, such that assignments to x that occur in loops and conditional branches is allowed

if and only if pc v l
x

. On the other hand, in flow-sensitive type systems [52], information

can flow from variable y to variable x without the restriction l
y

v l
x

. However, the

security level of x must be changed to be the same as the security level of y after the

flow of information. The lattice structure of security types in flow-sensitive type systems

is used to avoid illegal implicit information flow. For example, an assignment from y to

x that occurs in loops and conditional branches must cause the security level of x to be

changed to pc t l
y

. The flexibility of allowing variables to change their security levels at

di↵erent points of the program, makes flow-sensitive type systems more permissive, yet

secure, than flow-insensitive type systems. This is because flow-sensitive type systems

accept more programs, that otherwise would be rejected by flow-insensitive type systems,

without jeopardising security.

Myers and Liskov [75, 76, 74, 77] developed a decentralised model for information flow

known as the decentralised label model (DLM) which was implemented as the language

JFlow [73]. Programs written in JFlow can be type-checked statically by its complier to

eliminate illegal information flow. The model improves on earlier approaches to controlling

the flow of information. The DLM allows users to control the flow of their information by

defining their own security policies. In DLM, information is owned by, updated by, and

released to principals who are the users of the system. The security policies of principals

are expressed in labels. Each label consists of a set of components that express the security

policies by various principals. Each component has two parts, an owner and a set of

readers, and is written in the form owner: readers. The readers of a component are the

principals who this component permits to read the data. Thus, the owner is a source of

data whereas the readers are possible destinations for the data. An example of a label is

l = {o1 : r1, r2; o2 : r2, r3}. Here, o1, o2, r1, r2 denote principals. Semicolons separate two

policies (components) within the label l. The owners of these policies are o1 and o2, and

the reader sets of the policies are {r1, r2} and {r2, r3}, respectively. However, only r2 can

51

read the data because it is allowed by both policies of the label l. Therefore, information

can be released to a destination if every policy in the label of the information allows the

information to be released to the destination. That is all policies in the label must agree

to release the information to that destination.

In DLM every variable has a label, when a value is read from a variable it acquires the

label of the variable. However, when a value is stored into a variable, the label of the value

is forgotten and it acquires the label of that variable. Therefore, the assignment of a value

to a variable results in a relabeling of the copy of the value that is assigned. DLM allows

relabeling if it is a restriction, that is the new label must remove readers, add owners, or

both. More formally, a relabeling from l1 to l2 is a restriction, written as l1 v l2 if and

only if:

owners(l1) ✓ owners(l2) ^ 8O 2 owners(l1), readers(l1, O) ◆ readers(l2, O)

which means that all the policies in label l1 are guaranteed to be enforced in label l2.

Based on this, the following relabelings are restrictions:

{A : B,C} v {A : B}

{A : B} v {A :;D : E}

{A : B,C} v {A : B;A : C}

Another kind of relabeling can be performed through declassification which relaxes

overly restrictive policies. DLM allows declassification only by a process which is author-

ised to act on behalf of a principal whose policy is to be relaxed. Since principals can only

relax their own policies, other policies owned by other principals in a label will be safe.

Furthermore, DLM enforces all the policies of derived values that occur during computa-

tion. For example, when combining two values labeled l1 and l2, respectively, the result

must have the least restrictive label that maintains all the flow restrictions specified by

l1 and l2. Since a label is simply a set of policies, the least restrictive set of policies that

enforces all the policies in l1 and l2 is simply the union of the two sets of policies. This

least restrictive label is the least upper bound or join of l1 and l2, written as l1 t l2. For

example, the join of the labels: {A : B} and {C : A} is {A : B;C : A}. More details about

DLM can be found in [74].

Chothia et al. [23] introduced the Key-Based Decentralised Label Model (KDLM) for

distributed access control that combines a weak notion of information flow control with

cryptographic operations. They developed a type system to enforce access control in a

distributed environment while allowing applications to secure themselves by the use of

52

cryptographic techniques. KDLM is di↵erent from DLM in that it includes the notion of

key names. Unlike DLM where policies are enforced based on principals, KDLM enforces

policies based on key names. To reflect the notion of key names, the label format in KDLM

is di↵erent from DLM. Their approach is motivated by linking type-based approach for

confidentiality and integrity of information to the safe use of cryptographic operations.

The basic idea of KDLM is the addition of key names to the type system. Key names

are associated with types, similar to labels in DLM, that identify owners and sets of

principals that can access protected data. A key name might be either for encryption or

for signing. An example of encryption key name K that is generated by the principal P

and is accessible to principals P1 . . . Pm

has the kind: K : EKey
F

(P : P1 . . . Pm

). Each

key name is associated with public-private pair of cryptographic keys. The type of the key

name constrains which principals can access the private key for that key name, whereas

the private key in turn has a secrecy label that cannot allow access to any principals

outside those listed in the key name’s ACL. It is assumed that each encryption or signing

key has exactly one other corresponding key that is used for decryption or authentication,

respectively. The notations a+ and a� are used to denote the public and private parts of

such a key pair, respectively. Then, for the encryption key name K above, we have the

typings:

a+ : [EncKey(K)]L1

,L

0
1 , a� : [DecKey(K)]L2

,L

0
2

The kind of the key name K enforces the restriction that the secrecy label L2 of the

private key a� cannot allow any principal outside of P1 . . . Pm

to access the key. The

authors combined two ideas which are the notion of type-based cryptographic operations

to statically check some properties of those operation, and the notion of decentralised

labels that combine access control and some form of information flow control. However,

their interest was in access control aspect of decentralised labels.

Je↵rey and Zdancewic [122] used a variant of DLM and developed the language SImp

with primitive to enforce information flow policies with cryptographic operations. They

demonstrated that programs written in their language satisfy the standard non-interference

property. Their goal was to incorporate cryptographic operations with language-based in-

formation flow security. They asserted that little e↵orts has been made to develop a theory

to incorporate cryptography and information flow mechanisms. They pointed out that it

is essential to understand the relationship between cryptography and information flow,

particularly when protected data must leave the managed environment provided by the

language runtime.

53

The authors designed a programming language that meets the following three goals.

Firstly, the model of the programming language must have suitable abstractions for en-

forcing information flow policies specified in security labels cryptographically. Secondly,

the language should free the programmer from the burden of manually managing keys

and information flow policy labels. Thirdly, programs written in the language should be

proved to satisfy the standard noninterference properties.

Abadi [1] developed a type system for concurrent language, the spi calculus, to protect

the secrecy of data in security protocols. In his approach, each data and channel is

associated with a label which can be secret or public. Data associated with a secret

label should not be transmitted on channels that are associated with a public label; and

channels associated with a secret label should not be made available indiscriminately. The

type system provides a guarantee that secret inputs will not be leaked if the protocol is

type-checked.

The author mentioned that principles and rules developed in his work is not necessary

since, like most practical static typechecking disciplines, they are incomplete. Also, they

are not su�cient since they only focus on secrecy and ignore all other security issues.

However, they provide useful guidelines, and the typing rules are tractable and precise

which allow him study them in detail and to prove secrecy properties. In such a way the

author was able to establish the correctness of the informal principles within a formal

model.

Chaudhuri and Abadi [21] developed a type system for a pi calculus with file system

constructs to check access control and limit the dissemination of file names and content

in a fairly standard file system. They associate types with file names and with groups of

clients which represent the reach of the type. The reach of the type is the group of clients

that is allowed to share file names and contents among themselves. The type system

guarantees that file names and contents will not be leaked to anyone outside the reach of

their types.

For example, assume there is a client C1 who creates a secret m that must not be

shared with anyone. Then, if C1 writes m to a public file and another client C2 attempts

to read this public file, then m would not be secret to C1. This is because the public

file will contain the secret m. The authors approach is to analyse such a system and it

will only typecheck if C2 does not have read access to that file. More interestingly, it is

possible for such system to typecheck if C2 does not attempt to read the public file, even

if C2 has read access. The authors illustrate various examples which indicate that their

54

type system is fairly permissive. However, their type system will fail to typecheck any

process that violates secrecy intentions.

Takeuchi et al. [119] and Honda et al. [48] were the first to propose a formalism

to structure interaction and statically analyse communication protocols known as session

types. In session types, communication protocols are expressed as types to specify the

topic of conversation, the sequence, and the direction of the communicated messages.

The type system then statically analyses whether agents exchanging messages observe the

correct protocols or not.

Vasconcelos [121] presented an example of how session types can specify the interaction

in simplified distributed auction system with three players who are sellers that want to sell

items, auctioneers that sell items on their behalf, and bidders that bid for an item being

auctioned. The protocol for sellers is as follows: sellers can invoke only one operation on an

auctioneer which is selling. In invoking this operation, they must provide the auctioneer

with a description of the item to be sold (a string), and the minimum price they are willing

to sell the item for. This protocol can be specified as follows, where � denotes the choice

available to sellers, and ! denotes the output of a value.

�{selling : !String.!Price . . .}

Now, sellers should wait the outcome of their request, where two things can happen.

Firstly, the item was sold, and secondly, the item was not sold. The protocol continues as

follows, where & denotes the range of alternatives o↵ered by the seller at this point, and

? denotes input.

&{sold : ?Price . . . , notSold : . . .}

In both cases the protocols should halt. This is indicated by the mark end. The

complete protocol as seen by the seller can be concisely described.

�{selling : !String.!Price.& {sold : ?Price.end, notSold : end}}

The protocol for auctioneers is as follows: we know that auctioneers must o↵er a selling

alternative, and if such alternative is taken, then they must accept a string (the item be

sold) followed by the price the seller is asking.

&{selling : ?String.?Price . . .}

The auctioneer then puts the item on sale, and gets back to the seller with one of the

possible outcomes: sold or notSold.

55

�{sold : !Price . . . , notSold : . . .}

Putting everything together we have two session types, the first for the seller, the

second for the auctioneer.

�{selling : !String.!Price.& {sold : ?Price.end, notSold : end}}

&{selling : ?String.?Price.� {sold : !Price.end, notSold : end}}

The above description leads to safe interaction between sellers and auctioneers. It is

clear by the session types of the two partners that when seller selects the selling choice,

the auctioneer o↵ers that exact choice, and conversely for choices sold and notSold. Fur-

thermore, when the seller outputs a value, the auctioneer inputs a value of the same type,

and when the seller ends the protocol, so does the auctioneer. Such two session types is

said to be dual, a notion central to session types. A large body of work on session types

followed [119, 48]. For a good overview on session types and a survey of recent work we

refer to [30].

There are many security type systems exist in the literature to control the access to

and flow of information in programs, or to analyse security protocols. They are applied

in di↵erent problem domains to ensure di↵erent security properties in programs. Our aim

is not extend these type systems, but rather is to apply such static analysis technique to

our problem domain. In particular, we apply such static analysis technique to analyse

commands manipulating files in a Unix-like file system. We statically analyse these com-

mands before execution to protect shared files against possible misuse. Misuse of shared

files occur by commands that violate files policies. The novelty of our approach is to use a

type system which is a static analysis technique in a highly dynamic environment which is

a file system. Files policies are not static and they might change overtime. The dynamic

nature of files policies should be considered by the type system to prevent any possible

misuse.

Our type system enforces access control and information flow requirements. It enforces

access control by restricting commands to be issued on files based on files permissions.

That is, a command can be issued on a file only if the permission of that file allow such

command to be issued. It enforces information flow by restricting information in source

files to flow to destination files if and only if the permissions of the destination files are

the same or more restrictive than the permissions of the source files. In this way, we can

ensure that access control requirements are not violated by information flow between files.

56

In Chapter 5 we present our type system which can be thought of as a reference

monitor that check commands before execution, and only allow those commands which

do not cause misuse of files. We postpone discussion about our approach to the end of

Chapter 6, once concepts and techniques used in our approach have been clarified.

2.6 Summary

In this chapter, we provided the necessary background and related work for topics discussed

throughout the thesis. We defined the activity of file sharing and showed the evolving

history of file sharing methods. Previous studies that investigate people’s practices of the

activity of file sharing were reviewed, and we showed that while previous studies provided

valuable answers to fundamental questions that could lead to better design of file sharing

methods and access control models, they ignore a significant question, namely how files

can be propagated and accessed after their propagation. Characterising the activity of file

sharing based on how files can be propagated and accessed leads to better understanding

of how the activity of file sharing is performed. From such characterisation, various classes

of the activities of file sharing can be deduced, which can be thought of as policies for the

sharing activities. A protection mechanism enforces these policies, therefore, will not only

protect the shared files but also allows users to share their files as desired. In Chapter 4

we provide a characterisation of the activity of file sharing based on these two factors.

Policies can be enforced to counter various kinds of attack. We divided these attacks

into communication, perimeter and insider attacks. We defined each kind of attack and

reviewed the protection mechanisms developed to counter each of them. Our interest is to

protect the shared files from authorised users; therefore, the literature on insider threats is

the most relevant to our work. We showed that the literature on insider threats is lacking

a clear definition of what an insider is and of insider threats. This has complicated the

problem to be solved; and we believe that the slow progress in the field to counter the

insider threat is caused by the single definitions of the insider problem and its threats, as

attempted in previous work. We suggest that the insider problem should be divided into

smaller problems that can be defined, studied and solved independently. In Chapter 3 we

propose a classification of the insider threat problem; focus on one category that is related

to file sharing and define the threats imposed by insiders in this category. It is threats such

as these that we are concerned to prevent in this thesis. Since the threats are precisely

defined, we follow a prevention approach rather than a detection approach. Generally,

the prevention approach falls into two forms, namely: access control and information flow

57

control. We reviewed the literature on these approaches and focused on a type-based

approach for information flow control; which is the approach that we adopt to tackle our

particular class of insider problem in Chapter 5.

58

Chapter 3

The Insider threat problem

This chapter proposes an approach to classify the insider problem, and provides precise

definitions of the insider and the insider problem. Based on the proposed classification, it

defines and focuses on one class of the insider problem that is related to file sharing.

3.1 Introduction

Protecting the shared files from the perspective of insider security is a challenging problem.

It has always been recognised that preventing policy violation by authorised users is more

challenging than those who are not. Authorised users have access privileges that make it

hard to prevent or detect policy violation. Providing a mechanism to protect the shared

files from insiders requires an investigation into two fundamental questions, which we

address in this chapter.

• Firstly: What is the insider problem?

The problem with the insider security literature is that there is no widely accepted

definition of what is an insider; and there is no clear distinction between insiders and

outsiders. Who is considered an insider by someone might be an outsider for someone else.

Therefore, protecting the shared files from insiders without knowing who constitutes that

insider is meaningless. By surveying the previous work on insider security, we argue that

the insider problem is significant and that no single definition can encompass the problem

as a whole, which is what most researchers have attempted to do. Researchers approach

the problem of insider security by defining two terms which are insider and insider threats.

In the literature, insiders have always been defined and di↵erentiated from outsiders by

either being inside the network perimeter, trusted, authorised, or knowledgeable about

the information system, or possibly all of these. Definitions based on these factors are

59

either ambiguous or insu�cient. For instance, definitions based on trust exclude those

untrusted insiders who might be authorised to access an organisation’s assets; definitions

based on the network perimeter exclude those outsourced organisations and contractors

who might be authorised to access the internal network remotely; definitions based on

authorisation exclude those who illegitimately acquire authorisation credentials in order

to access an organisation’s assets as if they were authorised insiders and definitions based

on knowledge include previous insiders who are no longer working for the organisation.

Defining the insider is not as useful as defining the threats that an insider can pose for

an organisation. Definitions of insider in the literature attempt to di↵erentiate insider

attacks from outsider attacks. However, such di↵erentiation cannot be recognised by the

trust, knowledge or authorisation that the insider might have but rather by the types of

attacks and misuse of a particular asset of an organisation.

Definitions of insider threat in the literature have always relied on the definition of the

insider; as the insider threat is seen as the damage caused to an organisation by an insider.

However, the insider problem is huge and defining the insider threat based on all possible

attacks or misuse that insiders might perform in an organisation is rather complicated and

ambiguous. This approach to defining the insider problem based on a strict definition of

the insider and a broad definition of the insider threat is only helpful to get an idea about

the field, but will never help to solve the insider problem.

To make progress in the field and find a solution to the insider problem, we suggest

that the problem should be classified into several categories which can be defined, studied

and solved independently and which later can be combined to solve the problem as a

whole. The authors in [89, 51, 90] identified di↵erent factors for an insider that can be

used for defining a taxonomy of insider threats. One of these factors is the distinction

between the acts of masqueraders (e.g, an individual with a stolen password), traitors

(malicious legitimate users) and naive or accidental use that results in harm. Although

such distinction is useful in classifying types of insider based on their intentionality or

characteristics, it does not help in classifying the insider problem or di↵erentiating insider

from outsider attacks. However, such classification can be of great value if di↵erent types

of attacks and misuse are associated with each type of insider.

We believe that the classification of insider attacks by Silowash et al. [107] is the first

step towards a useful study of the insider problem. However, such classifications are rather

general and should be further classified into more details. For instance, IT sabotage can

be performed by an insider who initiates a Denial of Services Attack, deleting critical data

60

from an application he is authorised to use by his machine, planting a logical bomb in

software that other employees are using to delete data or making the software inoperable at

critical times etc. Also, theft of IP can be performed by an insider who accesses a database

in a server illegitimately in order to download IP or sensitive files to his machine; writes

down or memorises customers’ information that is rendered by an application which the

insider is using; or it can be the result of sharing IP and sensitive files with the insider

legitimately. Therefore, each class of attack indicated by Silowash et al. [107] should be

further classified into di↵erent categories that can be studied independently because it is

impossible to provide a single solution for all insider IT sabotage attacks.

• Secondly: What is the insider misuse?

Defining the insider problem and the insider precisely is the first step towards pro-

tecting shared files from insiders. What is more important is identifying the misuse that

can be performed by insiders. Misuse is any action taken by the insider that violates the

confidentiality, integrity or availability of a particular asset. By knowing the misuse that

the insider can perform on the shared files, we can derive the di↵erent types of protection

that are required to protect those shared files.

The rest of this chapter is organised as follows: in Section 3.2 we propose an approach

to classifying the insider problem, provide a precise definition of the insider and the insider

problem, and identify the class of insider problem we are concerned with in this thesis.

In Section 3.3 we investigate the di↵erent types of misuse that give rise to our class of

insider problem and characterise the protection requirements against them. We precisely

define the class of insider problem that we tackle throughout this thesis. In Section 3.4

we summarise this chapter.

3.2 Classifying the insider threat problem

There are three factors which play an important role in classifying the insider problem

which are: the type of activity that deals with an asset in an organisation; the type of

asset that needs to be protected; and the type of attack that targets the asset. Figure 3.1

illustrates how each factor helps us to classify the insider problem.

The activity: Activities are identified by the organisation for its partners, contractors,

and employees to perform a particular job, and might be di↵erent from one organisation

to another. Each activity will di↵erentiate insiders from outsiders, as an insider will be a

61

Figure 3.1: Classifying the insider problem

person who is legitimately given an activity by an organisation to perform a particular job.

Therefore, the activity will lead to identifying who is the insider and what that insider

is doing. The type of activity that insiders perform in an organisation are various and

organisation-specific. Examples of activities that are given to insiders are file sharing,

updating customer information, installing software onto an organisation’s devices, setting

up an organisation’s network or provisioning authorisation credentials for an organisation’s

employees, etc.

The asset: The assets that need to be protected are identified by an organisation based

on a clear description of activities in the organisation, such that each activity will involve

one or more assets to be dealt with. For example, if an activity in an organisation is em-

ployees sharing files with each other, the asset will be the file being shared, which contains

sensitive information. Other examples of activities and assets are: an IT administrator

who provisions authorisation credentials for an organisation’s employees, where the asset

62

is the authorisation credential; a software developer who writes software scripts for an

organisation’s computer, where the asset can be the software itself or the computers that

run the scripts; or, a network administrator who sets up the organisation’s network and

maintains it, where the asset is the network. Generally, the assets can be of three types

which are the network which connects devices together, the devices which contain the

data, or the data itself.

The attack. The attacks that target the asset can generally be of three types, which

are: availability attacks, confidentiality attacks and integrity attacks; each of which can

be performed in di↵erent ways which might require either physical security or IT security.

Choosing which type of attack to prevent is determined by the type of protection required

for the chosen asset. For instance, if the asset is the network which needs to be available all

the time, availability attacks should be prevented. On the other hand, if the asset is data

that needs to be secret, confidentiality attacks should be prevented and so on. Therefore,

the asset will determine which type of attack should be prevented.

Based on these three factors, we define the insider and the insider problem precisely

as follows.

Definition 3.2.1. An insider is a person who is legitimately given an activity by an

organisation that entails dealing with that organisation’s assets.

Definition 3.2.2. The insider problem is particular types of attack that are performed by

insiders on particular types of assets of an organisation during particular types of activity.

Therefore, we can classify the insider problem into several categories based on these

three factors such that each particular type of attack by insiders on a particular type of

asset of an organisation during a particular type of an activity will result in a unique class

of the insider problem which can be defined, studied and solved independently. For example,

one class of the insider problem is preventing confidentiality attacks on sensitive files by

employees when they share them with one another. Another class might be preventing

availability attacks on an organisation’s network by IT administrators when they maintain

it, or preventing integrity attacks on customers’ information by employees when they

update them etc.

Our concern in this thesis is not to classify the insider problem thoroughly; rather we

have provided an approach for such classification. However, we are interested in one class

of insider problem which is related to file sharing. The activity in this class of problem is

thus file sharing; the asset is the file being shared; and the attacks we are concerned with

63

are confidentiality and integrity attacks. Since file sharing is not only an activity that

is performed by an organisation’s employees but also one that can be performed among

friends, family members or colleagues; we will look at this class of insider problem from a

broader perspective to include any individuals performing such activity. In other words,

the insiders in our class will be the recipients, whether they are employees, friends or

family members.

3.3 Protecting the shared files

Although we defined our class of insider problem in the previous section, the attacks we are

concerned with (i.e. confidentiality and integrity attacks) are still vague. These attacks

can be performed in di↵erent ways, which in turn require di↵erent types of protection.

Claiming that a particular protection mechanism can protect the confidentiality of the

files is not enough. Instead, one should claim that a particular protection mechanism

can protect the confidentiality of the files under specific kinds of attack. Therefore, in

order to protect the confidentiality and the integrity of the shared files from insiders (i.e.

recipients), the di↵erent attacks and misuse that a↵ect the confidentiality and the integrity

of shared files must be identified. Generally, protection of the shared files can be realised

from two di↵erent angles: protecting the shared files while in transit, and protecting the

shared files when they are received by the recipients. In this section, we characterise the

protection required by the shared files against di↵erent types of attack and misuse that

can occur during the activity of file sharing.

3.3.1 Protecting the shared files in transit

This type of protection prevents attacks on the file while it is being transferred from the

owner to the recipients. We divided these attacks into confidentiality attacks and integrity

attacks as follows:

Confidentiality attacks. These attacks lead to the disclosure of the shared files to

unauthorised users and can occur in two ways. Firstly, someone eavesdrops or monitors

the communication between the owner and the recipient to obtain knowledge about the

files. We refer to such an attacker as an interceptor. Secondly, someone pretends to be

the original recipient in order to deceive the owner and obtain the files. We refer to

such an attacker as a masquerader. Therefore, there should be two types of protection

to prevent unauthorised disclosure of the shared files in transit as follows: Protecting the

64

confidentiality of files from interceptors; and protecting the confidentiality of files from

masqueraders.

Integrity attacks. These attacks lead to unauthorised modification of the shared files

by unauthorised users. The attacker in such attacks pretends to be the original owner to

deceive the recipient by sending them files as if they came from the original owner. These

files can either be entirely new files or a modified version of the original files. We refer

to such an attacker as a masquerader. Therefore, there should be one type of protection

to prevent unauthorised modification of shared files in transit which is protecting the

integrity of files from masqueraders.

3.3.2 Protecting the shared files at the recipient

This type of protection prevents misuse of the file after it has been received by legitimate

recipients. This misuse can a↵ect the confidentiality and integrity of the files; and can be

committed by three di↵erent entities which are: malicious recipients, naive recipients or

masqueraders. Below we define these three entities and describe the di↵erences between

them.

Definition 3.3.1. Malicious recipients are untrusted legitimate recipients who deliber-

ately misuse the shared files.

Definition 3.3.2. Naive recipients are trusted legitimate recipients who accidentally mis-

use the shared files.

Definition 3.3.3. Masqueraders are unauthorised users who claim to be legitimate re-

cipients to acquire their devices which contain the shared files and misuse these files.

The reason behind di↵erentiating these three entities is that files should be protected

against each of them di↵erently. For example, protecting the shared files against malicious

and naive recipients is di↵erent from protecting them against masqueraders. Malicious and

naive recipients are legitimate recipients who might or might not be allowed to view or

edit the files. However, masqueraders are unauthorised users who must not be allowed to

view or edit the files at all. Moreover, protecting the shared files against naive recipients

is di↵erent from protecting them against malicious recipients. The former are trusted to

not manipulate files in an unauthorised manner, while the latter are untrusted, and might

strive to circumvent any protection to misuse the files.

It should be noted that by definition masqueraders are not insiders, since they are

not legitimate recipients. However, from the system point of view they are considered

65

insiders, since they gain access to the system as if they were legitimate recipients. That

is, they claim legitimate recipients identities to deceive the system, and thus the system

cannot di↵erentiate them from legitimate recipients (i.e. insiders). However, masqueraders

usually present a vague area where insider and external attacks overlap. It is reasonable to

classify masqueraders misuse as external attacks, since they are not legitimate recipients

or more precisely they are not legitimately given an activity. Similarly, it is reasonable to

classify their misuse as insider attacks, since they gain access with identities of legitimate

recipients and the system will perceive them as legitimate recipients.

We eliminate this vague area by classifying the attacks of such unauthorised users

into attacks they perform to become masqueraders, and attacks they perform when they

have become masqueraders. The former attacks are performed to obtain the credentials

of legitimate recipients to claim their identities to the system, and thus perform the latter

attacks. These attacks are considered external attacks which can be in the form of fishing,

social engineering, brute-force, and spoofing attacks, to name a few. Once such attacks

are performed successfully, the attacker will become a masquerader and can perform the

latter attacks. The latter attacks are performed to misuse the privileges of the claimed

identities of legitimate recipients. These attacks are considered insider attacks since the

attacker will be recognised by the system as a legitimate recipient with the same privileges

as the victim legitimate recipient.

Since we are concerned with insider attacks we focus on the latter kind of attacks, and

thus, it is essential to remember that masqueraders have already obtained credentials to

access the system as legitimate recipients. We are only interested in whether that cre-

dentials are obtained with or without legitimate recipients cooperation. This is because

protecting the shared files against masqueraders who are cooperating with legitimate re-

cipients is di↵erent from those who are not. Therefore, we di↵erentiate between two kinds

of masqueraders, those who obtain credentials with legitimate recipients cooperation, and

those who obtain credentials without legitimate recipients cooperation. Based on this, we

classify masqueraders misuse into accidental misuse and deliberate misuse. Masqueraders

misuse is accidental if credentials are obtained without legitimate users cooperation. For

example, an unauthorised user stealing a legitimate user password will result in accidental

misuse since such misuse is unintended by the legitimate user. On the other hand, mas-

queraders misuse is deliberate if credentials are obtained with legitimate users cooperation.

For example, a legitimate user passing his passwords directly to an unauthorised user will

result in deliberate misuse since such misuse is intended by the legitimate user.

66

We assume that devices of legitimate recipients have unique identifiers that cannot

be forged, and shared files can only be accessed through legitimate recipients devices.

Therefore, the only way for unauthorised users to become masqueraders is through physical

acquisition of legitimate recipients devices. We divide misuse which can be committed by

the three entities defined above into confidentiality misuse and integrity misuse as follows:

Confidentiality misuse. Confidentiality misuse is that which leads to the disclosure

of the shared files to unauthorised users, and which can be done in the following way:

Firstly, the shared files can be viewed by a legitimate recipient who is not allowed to

view the files. The files can be viewed accidentally by a naive recipient or deliberately

by a malicious recipient. Secondly, the device of a legitimate recipient which contains

the shared file can be acquired by an unauthorised user, which we refer to here as a

masquerader, who discloses the shared files. Such acquisition can be either accidental, as

when an unauthorised user steals the device of a naive recipient; or deliberate, as when

a malicious recipient lends his device to an authorised user. Thirdly, the shared files

can be sent from a recipient device through a file sharing method to unauthorised users

who view the files. In this case, the file can be redistributed either accidentally by a naive

recipient, deliberately by a malicious recipient or accidentally by a masquerader who found

a legitimate recipient’s device unattended.

In view of this, there should be seven di↵erent types of protection to prevent unauthor-

ised disclosure of the shared files by the recipients as follows: Protecting the confidentiality

of files from accidental disclosure to a naive recipient; protecting the confidentiality of files

from deliberate disclosure to a malicious recipient; protecting the confidentiality of files

from accidental redistribution by a naive recipient; protecting the confidentiality of files

from accidental redistribution by a masquerader; protecting the confidentiality of files

from deliberate redistribution by a malicious recipient; protecting the confidentiality of

files from accidental disclosure by a naive recipient to a masquerader; and protecting the

confidentiality of files from deliberate disclosure by a malicious recipient to a masquerader.

Since the last two types of protection have a similar impact, which is disclosing the file to

masqueraders, we refer to them as protecting the confidentiality of files from accidental or

deliberate disclosure to a masquerader.

Integrity misuses. Integrity misuses are those misuses which lead to unauthorised

modification of the shared files. Such unauthorised modification can be either modify-

ing shared files that do not allow any modification; or modifying shared files that allow

67

partial modification, in an unauthorised manner. In both cases, the file can be modified in

three ways. Firstly, the file can be modified accidentally by a naive recipient. Secondly, the

file can be modified deliberately by a malicious recipient. Thirdly, the file can be modified

accidentally by a masquerader who finds a legitimate recipient’s device unattended.

Therefore, there should be three di↵erent types of protection to prevent unauthorised

modification of the shared files by the recipients as follows. Protecting the integrity of

files from accidental modification by a naive recipient; protecting the integrity of files

from accidental modification by a masquerader; and protecting the integrity of files from

deliberate modification by a malicious recipient.

Below we classify the aforementioned protections into two types; namely, protection of

files in transit and protection of the files at the recipients.

Protection of files in transit: This can be further divided into confidentiality

protection and integrity protection.

• Confidentiality protection

– Protecting the confidentiality of files in transit from interceptors

– Protecting the confidentiality of files in transit from masqueraders

• Integrity protection

– Protecting the integrity of files in transit from masqueraders

Protection of files at the recipients: This can be further divided into protection

against accidental misuse when sharing with trusted recipients and protection against

deliberate misuse when sharing with untrusted recipients.

Accidental misuse: this can be further divided into accidental misuse of confiden-

tiality and accidental misuse of integrity.

• Accidental misuse of confidentiality:

– Protecting the confidentiality of files at the recipients from accidental disclosure

to a naive

– Protecting the confidentiality of files at the recipients from accidental disclosure

to a masquerader

– Protecting the confidentiality of files at the recipients from accidental redistri-

bution by a naive

68

– Protecting the confidentiality of files at the recipients from accidental redistri-

bution by a masquerader

• Accidental misuse of integrity:

– Protecting the integrity of files at the recipients from accidental modification

by a naive

– Protecting the integrity of files at the recipients from accidental modification

by a masquerader

Deliberate misuse: this can be further divided into deliberate misuse of confidenti-

ality and deliberate misuse of integrity

• Deliberate misuse of confidentiality:

– Protecting the confidentiality of files at the recipients from deliberate disclosure

to a malicious

– Protecting the confidentiality of files at the recipients from deliberate disclosure

to a masquerader

– Protecting the confidentiality of files at the recipients from deliberate redistri-

bution by a malicious

• Deliberate misuse of integrity:

– Protecting the integrity of files at the recipients from deliberate modification

by a malicious

Figure 3.2 illustrates 13 types of protections that might be required to protect the files

in transit and at recipients. The protection of files in transit is concerned with preventing

external attacks, while the protection of files at the recipients is concerned with preventing

insider attacks.

69

P
ro
te
ct
io
n
ty
p
es

A
t
th
e
re
ci
p
ie
nt

U
nt
ru
st
ed

P
ro
te
ct
io
n
ag
ai
n
st

d
el
ib
er
at
e
m
is
u
se In

te
gr
it
y

m
is
u
se

D
el
ib
er
at
e

m
od

ifi
ca
ti
on

M
al
ic
io
u
s

C
on

fi
d
en
ti
al
it
y

m
is
u
se

D
el
ib
er
at
e

d
is
tr
ib
u
ti
on

M
al
ic
io
u
s

D
el
ib
er
at
e

d
is
cl
os
u
re

M
as
qu

er
ad

er
M
al
ic
io
u
s

T
ru
st
ed

P
ro
te
ct
io
n
ag
ai
n
st

ac
ci
d
en
ta
l
m
is
u
se

In
te
gr
it
y

m
is
u
se

A
cc
id
en
ta
l

m
od

ifi
ca
ti
on

M
as
qu

er
ad

er
N
ai
ve

C
on

fi
d
en
ti
al
it
y

m
is
u
se

A
cc
id
en
ta
l

d
is
tr
ib
u
ti
on

M
as
qu

er
ad

er
N
ai
ve

A
cc
id
en
ta
l

d
is
cl
os
u
re

M
as
qu

er
ad

er
N
ai
ve

N
o
p
ro
te
ct
io
n

In
tr
an

si
t

In
te
gr
it
y

M
as
qu

er
ad

er

C
on

fi
d
en
ti
al
it
y

M
as
qu

er
ad

er
In
te
rc
ep
to
r

F
ig
u
re

3.
2:

T
yp

es
of

p
ro
te
ct
io
n
of

th
e
sh
ar
ed

fi
le
s

70

The characterisation of the protections required by the shared files at recipients, illus-

trates the di↵erent ways files can be misused by di↵erent types of insider. This character-

isation makes it clear which type of insider misuse needs to be prevented in a particular

sharing scenario. For instance, misuse by a masquerader does not need to be prevented if

the machine containing the file resides in a locked room which unauthorised users cannot

access. Also, deliberate misuse by malicious insiders does not need to be prevented if the

file is shared with trusted recipients. A major advantage of this characterisation is the

avoidance of the chaos that exists in the literature with respect to distinguishing insider

attacks from external attacks, and between types of insider attacks.

The focus of this thesis is on accidental misuse that a↵ects the confidentiality and

integrity of sensitive files during the activity of file sharing. Therefore, the class of insider

problem which we investigate in this thesis can be defined as follows:

Definition 3.3.4. Our class of insider problem is to protect sensitive files against acci-

dental misuse of confidentiality and integrity by trusted recipients during the activity of

file sharing.

Our approach to protect files against accidental misuse is through controlling opera-

tions to be performed on them in a Unix-like file system, where users manipulate files by

issuing various commands such as cp, mv, and cat. Commands issued to manipulate files

are controlled by checking them before execution, and only those commands which do not

misuse the files are allowed to be executed. However, commands that misuse files cannot

be identified unless there are policies dictate what are and are not allowed to do with the

files. For example, such policies can dictate that a command which reads a file can only

be issued on a file that can be read, whereas a command which writes into a file can only

be issued on a file that can be written into. Then, issuing a read command on a file that

is not allowed to be read is consider misuse. Therefore, commands that misuse files are

those which violate files policies.

In the next chapter, we characterise the activity of file sharing, and from such char-

acterisation we derive a set of policies that is useful in practice. Such policies should

be enforced to prevent accidental misuse of shared files. In Chapter 5, we present our

approach to enforce these policies in a Unix-like file system. We focus on enforcing one

particular policy and discuss extensions to enforce other policies in Chapter 6.

71

3.4 Summary

In this chapter we have studied one category of insider threat problem that is concerned

with file sharing; in particular, protecting the shared files against insider misuse. We

investigated two fundamental questions for the design of a protection mechanism against

insider misuse. Since the insider problem is not well-defined in the literature and the insider

is not clearly identified, we have proposed a classification of the insider threat problem

and defined the insider and the insider threat problem more precisely. Defining the insider

problem and identifying the insider precisely are the first steps towards protecting shared

files against insiders. More importantly, misuse that insiders might perform on the shared

files should be identified. We have looked at di↵erent insider misuse of shared files and

characterised the protection requirements of the shared files against each of these. The

focus of this thesis is on the accidental misuse of shared files; in particular, protecting

shared files against accidental disclosure, distribution and modification by recipients.

72

Chapter 4

Characterising the activity of file

sharing

This chapter characterises the activity of file sharing based on how files can be propagated

and accessed after their propagation. It defines a framework based on this characterisation

that can be used to classify the activity of file sharing and available file sharing methods.

It shows how the di↵erent classes of the activity of file sharing can be enforced to avoid

the di↵erent types of accidental misuse identified in the previous chapter.

4.1 Introduction

Although the di↵erent types of misuse of the shared files and the protection requirements

are identified in the previous chapter, the activity of file sharing is still ambiguous. Some

people conceive the activity of file sharing as sending an email attachment, while others

conceive of it as making files available to others through peer-to-peer networks. Designing

a mechanism that provides the various types of protection without taking into account

how the activity of file sharing is performed, is not very useful. This is pointed out by

previous studies, which showed that some people might avoid secure methods of file sharing

and utilise insecure methods because they were more suitable for the task of sharing, even

though security was a concern for them. For instance, employees in organisations might be

forced to utilise particular sharing methods because they are secure. However, since these

methods have been built with only security in mind, they might not be suitable for the

task of sharing that employees need to get their job done. Hence, employees usually tend

to utilise other sharing methods that might be insecure to avoid obstacles found in secure

methods, and hence, putting the organisation’s confidential files at risk. To avoid such

73

issues, the di↵erent ways of file sharing should be considered when designing a protection

mechanism, so that it will not only protect the shared files, but also allow various sharing

tasks to be performed.

The activity of file sharing is performed by individuals for various purposes, be they

professional or personal. The purpose of performing the activity of sharing makes it

obvious with whom the files are to be shared (e.g. family, friends, colleagues, or anyone);

which type of file is to be shared (e.g. music, photo, video, business documents, etc.); and

which method of sharing is to be utilised as the most suitable for that sharing purpose

(e.g. secure, convenient, available to everyone etc.). These factors are discussed in the

literature and summarised in Table 2.3 in Chapter 2.

However, there are two factors that are clearly a↵ected by the purpose of sharing and

which have been overlooked by previous studies. These factors are file propagation and

access, which can be di↵erent according to sharing purpose. To the best of our knowledge,

we are not aware of any work that characterises the activity of file sharing based on these

two factors. Therefore, in this chapter we characterise the activity of file sharing according

to how files can be propagated and how files can be accessed after their propagation. Based

on this characterisation, we define a framework to classify the activity of file sharing into

di↵erent categories. We show that enforcing these categories, which can be thought of as

policies, can prevent various forms of accidental misuse of shared files, which are identified

in the previous chapter.

The rest of this chapter is organised as follows: in Section 4.2 we present the di↵erent

ways of how files can be propagated. In Section 4.3 we present the di↵erent ways of

how files can be accessed after their propagation. In Section 4.4 we define a framework

which can be used to classify both the activity of file sharing and the available file sharing

methods. We discuss the proposed framework in Section 4.5 and summarise this chapter

in Section 4.6.

4.2 How files are propagated

4.2.1 Publish vs. Share:

Files can be propagated in two main ways depending on their sensitivity. Confidential

files are only released to selected individuals while non-confidential files are released to

everyone. Available file sharing methods can either allow people to share files with selected

individuals (suitable for confidential files) or allow people to share files with everyone

74

(suitable for non-confidential files). A few file sharing methods provide both options. We

will use the term share to refer to a file that is released to selected individuals and the term

publish to a file that is released to everyone. Publishing or sharing files can be performed

in di↵erent scenarios.

In general, files can be released either to a person, a group of people or everyone, we

refer to them as One, Group, and Many respectively. However, the files received by the

recipients who can be One, Group and/or Many, might belong to One, Group or Many.

Therefore, including Group as a category of sharing we have 9 di↵erent categories that

can describe all the possible ways of how files are shared or published and are described

below.

1. OneToOne: This describes a situation when a particular owner of files wants to share

them with a particular recipient who is known in advance. For example, Alice wants

to share her file only with Bob.

2. OneToGroup: This describes a situation when a particular owner of files wants

to share them with a set of recipients whose number and identities are known in

advance, and who receive the same copies of the shared files. For example, Alice

wants to share her file only with her colleagues Bob, Carol, and Dave.

3. OneToMany: This describes a situation when a particular owner of files wants to

share them with a set of recipients whose number and identities are not known, and

who receive identical copies of the shared files. For example, Alice wants to share

her file with everyone on the Internet, regardless of who they are.

4. Group: This describes a situation when owners of files whose number and identities

are known in advance want to share their files with each other. For example, Alice,

Bob, and Carol want to share their files only with each other.

5. GroupToOne: This describes a situation when a set of owners of files whose number

and identities are known in advance, and who share their files with each other, want

to share these with a particular recipient who is known in advance. For example,

Alice, Bob and Carol who are sharing their files with each other want to share them

only with their colleague Dave.

6. GroupToGroup: This describes a situation when a set of owners of files whose number

and identities are known in advance and who share their files with each other, want

to share them with a set of recipients whose number and identities are known in

75

advance, and who receive identical copies of the shared files. For example, Alice,

Bob and Carol who are sharing their files with each other want to share them only

with colleagues in the same department.

7. GroupToMany: This describes a situation when a set of owners of files whose number

and identities are known in advance and who share their files with each other, want

to share them with a set of recipients whose number and identities are not known

and who receive identical copies of the shared files. For example, Alice, Bob and

Carol who are sharing their files with each other want to share them with everyone

on the Internet, regardless of who they are.

8. ManyToOne: This describes a situation when a set of owners of files whose number

and identities are not known in advance and who do not share their files with each

other, want to share them with a particular recipient who is known in advance. For

example, applicants for a particular job want to share their document files only with

Alice, who is the employer.

9. ManyToGroup: This describes a situation when a set of owners of files whose number

and identities are not known in advance, and who do not share their files with each

other, want to share them with a set of recipients whose number and identities are

known in advance, and who receive identical copies of the shared files. For example,

applicants for a particular job want to share their document files only with Alice,

Bob and Carol, who are the employees responsible for recruiting new sta↵.

Figure 4.1 illustrates these categories and classifies them into either publish or share.

Note that we exclude one situation that does not make sense which is M 0 !M , since any

of the owners can be one of the recipients and vice versa.

4.2.2 Static vs. Dynamic vs. Transfer mode

In any of the categories of file propagation described above, files can be moved from an

owner to a recipient in di↵erent ways. For instance, the original file can be moved physically

as an object in the real world, leaving no copies behind; or a copy of the original file can

be moved to the recipient. In the latter case, the moved copy can be either dynamic or

static. Below we describe each one of them.

Publishing or sharing in Static Mode: This describes a scenario where independent

copies of the original file are moved from the owner to the recipients. Any changes made

76

File sharing

Share

ManyToGroup

ManyToOne

GroupToGroup

GroupToOne

Group

OneToGroup

OneToOne

Publish

GroupToMany

OneToMany

Figure 4.1: How files can be published and shared

to the copies of the original file by the recipients or to the original file by the owner do not

reflect on one another. It is useful when the owner of the file does not want to receive a

new version of the published or shared files from the recipients or update the copies that

the recipients have. An example of a method that allows sharing in a static mode is an

email attachment, where neither the owner nor the recipients can observe changes made

on the copies of the shared files by others.

Publishing or sharing in Dynamic Mode: This describes a scenario where copies

of the original file (that are linked to the original file) are moved from the owner to the

recipients. Therefore, any changes made to the copies of the original file by the recipients

or by the owner do reflect on one another. This is useful for a collaborative project where

a group of members may work on a set of documents collectively. An example of a method

that allows sharing in a dynamic mode is Dropbox where a file can be shared and updated

by the owner or the recipients, such that both can observe changes made to the copies of

the shared files.

Publishing or sharing in Transfer Mode: This describes a scenario where the ori-

ginal file is moved, leaving no copies behind, from the owner to the recipients. The file is

treated as a real world object that cannot exist in two places at the same time. Hence, in

this mode, releasing a file to more than one recipient requires the file to be held by one

recipient at a time. We are not aware of any method that meets this mode of publishing

77

or sharing.

4.2.3 Distributed Memory vs. Shared Memory

Files can be moved from the owner to the recipients directly to their devices or indirectly

to a location where recipients can access them (e.g. server). We refer to the former as

sharing or publishing in distributed memory (DM), and the latter as sharing or publishing

in shared memory (SM). Each of these is described below:

Publishing or sharing in Distributed Memory: A file that is shared or published

in DM, will be stored in each recipient’s device, allowing them to access the file when they

are o↵-line. DM can be suitable for all sharing or publishing modes (i.e. static, dynamic,

and transfer). In the static mode, independent copies of the original files are moved to the

recipients’ devices, while in the transfer mode, the original file is moved to one recipient’s

device at a time. In the case of a dynamic mode, copies of the original files are also moved

to the recipients’ devices; however, the moved copies are linked to the original file, so that

any changes made on them will be communicated to other copies.

Publishing or sharing in Shared Memory: A file that is shared or published in SM,

will be stored in a central location which recipients must access each time they need to

access the file. Thus, unlike DM, a file in a SM requires the recipients to be online to

get access to the file. Similar to DM, SM can be suitable for all sharing or publishing

modes (i.e. static, dynamic, and transfer). Since the shared or published file is stored in a

location which the recipients can access, SM is best for situations where all recipients need

to access the same file rather than copies of it. Therefore, in the static mode only a single

independent copy of the original file is stored in a location that all recipients can access.

In the dynamic mode, a single copy that is linked to the original file is stored in a location

that all recipients can access. In the transfer mode, the original file is stored in a location

that all recipients can access. Since recipients have access to the same file, changes made

to that file will be observed by all recipients without the need to move copies of the file

with the new changes to them.

Table 4.1 illustrates 27 types of file propagation. Each cell in the table marked with

letter T indicates a way of propagating a file. For example, OneToOne sharing can be

performed in static (DM or SM), dynamic (DM or SM) or transfer (DM or SM) mode.

In other words, an independent copy of the original file can be moved to one particular

recipient’s device (static-DM), or to a location that one particular recipient can access

78

Types of propagation Static (DM or SM) Dynamic (DM or SM) Transfer (DM or SM)

OneToOne T T T

OneToGroup T T T

OneToMany T T T

Group T T T

GroupToOne T T T

GroupToGroup T T T

GroupToMany T T T

ManyToOne T T T

ManyToGroup T T T

Table 4.1: Types of file propagation

(static-SM). A linked copy to the original file can be moved to one particular recipient’s

device (dynamic-DM), or to a location that one particular recipient can access (dynamic-

SM). The original file is moved to one particular recipient’s device rather than a copy

(transfer-DM), or moved to a location that one particular recipient can access (transfer-

SM).

4.3 How files are accessed

Once files are propagated, recipients need to access them. An owner might need to grant

the recipients various types of access based on the sharing or publishing purposes. Fur-

thermore, the owner might need to place restrictions on the granted access for further

control. In this section we describe the di↵erent types of access that might be needed and

how each can be restricted.

4.3.1 Types of access

The type of access given to recipients determines the permissibility of two critical oper-

ations, which are read and write. An owner might need to disallow the recipients’ read

operation to protect the confidentiality of a file, or disallow the recipients’ write operation

to protect the integrity of a file. The owner might also need to allow both operations if

the confidentiality and integrity of a file need not to be protected from the recipients, or

to disallow both of them. Furthermore, the write operation is performed to edit a file by

either appending a new content to it, or removing content from it. Therefore, an owner

might need to allow editing of the file by appending but not removing content from it,

79

or allow both editing of the file by appending and removing content from it. Below we

describe six types of access that might be useful in di↵erent sharing or publishing scenarios

to protect either the confidentiality and/or the integrity of a file.

RO: This type of access allows the recipients of a file to view its content but not to edit

it. Therefore, only the read operation can be performed, but not the write operation, and

hence, only the integrity of the file is protected from the recipients.

WO�: This type of access allows the recipients of a file to edit its content by appending

and removing content from it, but not to view it. Therefore, only the write operation can

be performed, but not the read operation, and hence, only the confidentiality of the file is

protected from the recipients.

WO+: This type of access allows the recipients of a file to edit the content of the file

by appending content to it but not to remove content from it or view it. Therefore, only

the write operation can be performed, but not the read operation, and hence, only the

confidentiality of the file is protected from the recipients.

RW�: This type of access allows the recipients of a file to view and edit the content of

the file by appending and removing content from it. Therefore, both the read and write

operations can be performed, and hence, neither the confidentiality nor the integrity of

the file are protected from the recipients.

RW+: This type of access allows the recipients of a file to view and edit the content

of the file by appending but not removing content from it. Therefore, both the read and

write operations can be performed, and hence, neither the confidentiality nor the integrity

of the file are protected from the recipients.

NRW: This type of access does not allow the recipients of a file to view or edit the file,

but only to hold it. This type of access is useful, for example, when sharing a file with

cloud-storage providers. It should be noted that there is a di↵erence between having no

type of access at all and having an NRW type of access. The former disallows holding the

file, while the latter allows holding the file, but not viewing or editing it.

80

4.3.2 Restriction on access types

The di↵erent types of access described in the previous section might need to be further

controlled by an owner, such that an access type granted to the recipients can only be

exercised if certain conditions are satisfied. These conditions can be seen as restrictions

on the type of access granted to the recipients. We describe four restrictions that can be

placed on the granted access type for finer control as follows:

Limited number of times (Ln): This restriction allows the type of access to be exer-

cised for a limited number times. For example, an owner might grant the recipients RO

type of access and restrict it to be exercised only for 3 times, after which the file cannot

be viewed anymore.

Limited period of time (Lp): This restriction allows the type of access to be exercised

for a limited period of time. For example, an owner might grant the recipients RO type

of access and restrict it to be exercised only for three days, after which the file cannot be

viewed anymore.

Specific time (St): This restriction allows the type of access to be exercised only at

a specific time. For example, an owner might grant the recipients RO type of access and

restrict it to be exercised only on Monday from 9am to 3pm, but not on any other day or

time.

Specific location (Sl): This restriction allows the type of access to be exercised only

at a specific location. For example, an owner might grant the recipients RO type of access

and restrict it to be exercised only by sta↵ when they are in their o�ces, but not anywhere

else.

Although there might be other types of restriction that can be used to restrict the

di↵erent types of access, we focused on the minimum set of restrictions that meet the

purpose of using them. The purpose of restricting the types of access is not to protect

the files against the recipients, since such protection can be realised by the di↵erent types

of access and propagation mentioned earlier. However, the purpose of such restriction is

to protect the files against unauthorised users who acquired a device of a recipient which

contains the files. Therefore, such unauthorised users will acquire the type of access given

to the recipient, and thus the four types of restriction mentioned above can be used to

restrict the type of access given to the recipient to protect the files in such situation. We

81

discuss these restriction in detail in Section 4.5.

Types of access Ln Lp St Sl

RO T T T T

WO�
T T T T

WO+

T T T T

RW�
T T T T

RW+

T T T T

NRW F T F T

Table 4.2: Types of access and restriction

Table 4.2 illustrates 22 types of restricted access that might be granted to the recipients.

Each cell marked with letter T indicates a useful type of restricted access that owners of

files might need to grant to the recipients. In the table, two cells are marked with letter F

to indicate inadequate restriction on an access type. The two inadequate restrictions on

the access type are (NRW,Ln) and (NRW,St). This is because the NRW type of access

does not allow the recipients to view or edit the file; therefore, limiting the number of

times or the specific time to use this type of access is not sensible. However, the other two

restrictions on the NRW type of access (i.e. Lp and Sl) might be useful for some sharing

scenarios. For example, an owner might need to share files with cloud storage providers,

provided that the files are kept in the provider servers that are located at a particular

geographical area. Another owner might need the files to be kept in the provider servers

until a particular point of time, after which the provider will not be authorised to keep

the files in the servers, which must thus be removed.

It should be noted that the recipients can only be granted one type of access; however,

various restrictions can be used with that type of access. For example, an owner might

grant the recipients the following type of access: (RO, Lp, Sl) which allows the recipients

to perform a read operation on the file for a limited period of time and at a specific

location. These two restrictions should be satisfied in order for the recipients to view the

file.

Table 4.3 combines the di↵erent types of files propagation and access; and identifies

the useful combinations of these types. The term share and publish can be replaced with

any of the categories of file propagation depicted in Figure 4.1.

82

Table 4.3: Types of files propagation and access

83

4.4 Taxonomy based on the characterisation of file sharing

Based on the characterisation of the activity of file sharing discussed in the previous

section, we define a framework that can be used to classify this activity in a systematic

way. This framework, shown in Figure 4.2, will help classify the activity of file sharing by

distinguishing how files are propagated to and accessed by the recipients. Below is a brief

description of the proposed framework.

The framework has a tree-based structure, where each level represents either a way

of propagating files or accessing them. The paths of the tree are numbered; therefore,

specifying the path number for each level of the tree starting from the root downwards,

will result in a unique class of the activity of file sharing. The first four levels after the

root (i.e. paths from 1-18) represent types of file propagation, while the last two levels

(i.e. paths 19-28) represent types of file access. At each level of the framework, a unique

choice has to be made. In this way, every class of file sharing will form a single path in the

tree. However, there is one exception, namely level six -“restriction over access types”.

Any class of file sharing can utilise multiple restrictions or none (e.g. Ln and Lp at the

same time) over one type of access (e.g. RO), as described in the previous section.

To avoid redundant branches, the entire tree is not drawn. For instance, level two has

eleven types to choose from; two types belonging to path one and nine types belonging to

path two. Each of these types has the same three possibilities for level three (i.e. Static,

Dynamic and Transfer). Hence, at level three there are eleven identical groups of the three

possible values. Therefore, to avoid using redundant branches, the types at level three are

written once and can be used by all types at level two.

The framework, depicted in Figure 4.2, can be utilised in two ways: Firstly, the frame-

work can be applied to classifying the activity of file sharing, by showing di↵erent ways

that owners might want their files to be propagated and accessed for di↵erent sharing

scenarios. Secondly, it can be applied to classifying available file sharing methods, by

showing which method provides which class of sharing activity. In the next sections, we

illustrate how the framework can be applied to classifying both the activity of file sharing

in an organisation and some of the popular file sharing methods.

84

Figure 4.2: Framework for classifying the activity of file sharing

85

4.4.1 Classifying the activities of file sharing in an organisation.

Alice runs a company that consists of several departments which are Human Resources,

Marketing, Production and Finance. Each department contains several employees. Em-

ployees within the same department and between di↵erent departments need to share files

with each other to get their job done. Therefore, Alice wants to define how the activity

of file sharing should be performed among employees.

Alice knows the Marketing department is responsible for dealing with customers. The

Marketing department sends surveys to customers; however, Alice wants these surveys to

be approved by the manager of the department, who is then responsible for moving copies

of the surveys to customers’ devices, so that customers can read and edit them and return

these copies to the department, if they are willing to do so. Hence, Alice has specified the

following class of file sharing for this department: 1-3-12-15-20.

Also, Alice knows that employees of the Production department each have to write a

report and share it with other employees in the same department; so that each will be

aware of others’ work and able to modify other reports in the case of mistakes being found.

Alice wants employees to view and edit others’ reports when they are in their o�ces and

during working hours. Hence, Alice has specified the following class of file sharing for this

department: 2-7-13-16-20-(25 + 26).

With respect to the Finance department, Alice knows that employees of this depart-

ment write reports that are viewed by employees of the Human Resource department, in

order for them to make decisions about recruiting new employees. However, Alice wants

these reports to be approved by the manager of the department, who is then responsible

for moving copies of the reports to the company’s server that employees of the Human

Resources department can access. This will allow these reports to be updated by the man-

ager of the Finance department, while employees of the Human Resources department will

be able to view up-to-date reports. In addition, Alice wants employees of the Human Re-

sources department to view these reports for a limited period of time during working

hours. Hence, Alice has specified the following class of file sharing for this department:

2-6-13-16-17(24 + 25).

Finally Alice, who owns the company, needs to view monthly reports written by each

department manager. Alice does not want any manager to view reports written by other

managers. Therefore, Alice has specified the following class of file sharing among the

managers and herself as follows: 2-8-12-15-17.

86

4.4.2 Classifying file sharing methods

There are various methods of file sharing that exist today. Some of them have been

designed merely for sharing files such as File Hosting Services, FTP, and peer-to-peer file

sharing; while others are an added feature to the main purpose of applications such as

Emails and Social Networking Sites. In this section, some of the most popular file sharing

methods are classified in accordance with the taxonomy described in the previous section.

The classification is summarised in Table 4.4. Each cell in the table shows which path the

sharing method can take at each level of the framework. It should be noted that these

methods are classified according to their current features. However, existing features in a

file sharing method might be withdrawn and a new feature might be included at anytime,

in which case the table should be updated accordingly. Below we give a brief description

for each classified method, and show which types of access and propagation the method

o↵ers at the di↵erent levels of the framework depicted in Figure 4.2.

File sharing

methods
Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

Email 2
5, 6, 7, 8,

9, 10, 11
12 15 20 -

Peer-to-peer

file sharing
1 3 12 15 20 -

Anonymous

FTP
1 3,4 12 15 20 -

None-

anonymous

FTP

2 5,6,7,8,9 12 15 20 -

Cloud-storage

services
1, 2

3, 4, 5, 6,

7, 8, 9
12,13 15 17, 20 -

DFS 2
5, 6, 7, 8,

9
12, 13 16 17, 20 -

File hosting

services
1, 2

3, 4, 5, 6,

6, 7, 8, 9,

10, 11

12 15 20 -

Usenet 1 3 12 15 20 -

Instant

messaging
2

5, 6, 7, 8,

9
12 15 20 -

Wikis 1, 2
3, 4, 5, 6,

7, 8, 9
12 15 17, 20 -

Blogs 1, 2
3, 4, 5, 6,

7, 8, 9
12 16 17, 21 -

Social

networking

sites

1, 2
3, 4, 5, 6,

7, 8, 9
12 16 17, 21 -

Table 4.4: Classification of file sharing methods

87

Email: This is considered the most commonly-used method for sharing files. Although

there are a few drawbacks to sharing files via email, such as limitation on file size, it is still

a popular method for sharing files at present due to certain features. These features are

ease of use, widespread availability and suitability for various tasks. Almost anyone who

uses a computer owns an email account, and knows how to use it. Therefore, by using an

email to share files, the user will avoid all the di�culties associated with other methods of

file sharing, such as ensuring that all recipients have the same method to be able to share

the files or ensuring that all recipients know how to use the method of sharing, especially

if the method is quite complex and di�cult to learn. Examples of emails are Hotmail,

Yahoo, and Gmail.

• Level 1: Since email requires the owner of a file to enter the emails addresses of

the recipients, which means that recipients should be known in advance, it is only

suitable for sharing rather than publishing (i.e. path 2 in Figure 4.2).

• Level 2: Email allows the owner of a file to share it with a particular person or

group of people, hence, files can be shared as OneToOne or OneToGroup. A group

of owners can share their files with each other by email, as well as sharing them with

another person or group. Therefore, files can also be shared as Group, GroupToOne

and GroupToGroup. Also, email allows a group of owners who might not be known

in advance to the recipients and do not share their files with each other to share

them with a particular person or group of people. Therefore, files can be shared as

ManyToOne and ManyToGroup. Hence, all paths (i.e. 5,6,7,8,9,10,11 in Figure 4.2)

are applicable for sharing files by emails.

• Level 3: Email allows the owner of a file to only send a copy of it to the recipient

rather than the file itself. The copy received by the recipient is not linked to the

original; therefore, any changes to the copy by the recipient will not be reflected on

the original file. Hence, email allows sharing files in the static mode only (i.e. path

12 in Figure 4.2).

• Level 4: Since the copy that is sent to the recipient must be stored in the recipient’s

device in order to be accessed, email allows sharing files in distributed memory rather

than shared memory (i.e. path 15 in Figure 4.2).

• Level 5: Email provides only one type of access to recipients, which is RW� that

allows the recipients to view and edit the received files by appending or removing

content (i.e. path 20 in Figure 4.2).

88

• Level 6: Email provides no restrictions over the type of access that recipients have.

Peer-to-peer file sharing: Peer-to-peer (P2P) file sharing applications have gained

much attention in recent years. As its name suggests, P2P file sharing applications utilise a

P2P network. Unlike a client-server network, a P2P network consists of multiple computers

(nodes) that are able to act as client and server at the same time. For instance, a node

in a P2P network can send a request to another node in the network, while responding

to requests from other nodes. Therefore, in P2P file sharing applications, files are not

uploaded to a central server; instead, they are scattered across users’ devices, each of which

can act as client and server simultaneously. Examples of P2P file sharing applications are

Napster, LimeWire, Shareaza, Kazaa,and BitTorrent.

• Level 1: P2P file sharing requires an owner of a file to use a P2P client to register the

file to P2P network. Once the file is registered to the network, other users who use

clients that connect them to the same network will be able to search and download

that file. Therefore, it is suitable for publishing rather than sharing.

• Level 2: P2P file sharing allows the owner of a file to share it with everyone on the

network; therefore, files can be published only as OneToMany.

• Level 3: P2P file sharing allows the owner of a file to publish an independent copy

of the file to the recipients. Hence, it allows publishing in the static mode.

• Level 4: Since the sent copies to the recipients will be stored in their devices in order

to be accessed, P2P file sharing allows the publishing of files in distributed memory

rather than shared memory.

• Level 5: P2P file sharing provides only one type of access for recipients which is RW�

that allows the recipients to view and edit received files by appending or removing

content.

• Level 6: P2P file sharing provides no restrictions over the type of access the recipients

have.

FTP: This is an acronym that stands for File Transfer Protocol. It is the standard

Internet protocol for transferring files from one computer to another. It is not really

transferring as in moving files from one location to another, but rather is the copying of

files from one computer to another. FTP is an old, but still popular, method for sharing

89

files on the Internet. To share files through FTP, there must be an FTP server which holds

all the files to be shared and an FTP client who logs in to the FTP server to obtain file

copies. File transfer can occur in two directions as follows: Downloading is transferring

a file from an FTP server (the remote computer) to an FTP client (the local computer).

Uploading is transferring a file from the FTP client to the FTP server. There are two types

of FTP which are anonymous FTP and non-anonymous FTP. Each of these is examined

separately below:

Anonymous FTP: This allows anonymous access to the uploaded files on the FTP

server to anyone with an FTP client, even through a web browser. Most anonymous FTP

servers allow anonymous users to download files from the server, but no one can update

the directory except its owner.

• Level 1: Since the files uploaded to the server are publicly available, to be accessed

by anyone with an FTP client, anonymous FTP is suitable for publishing rather

than sharing.

• Level 2: Anonymous FTP allows the particular owner of files to publish them for

everyone; or for a group of owners of files, who share their files with each other, to

publish them for everyone. Therefore, files can be published only as OneToMany or

GroupToMany.

• Level 3: Anonymous FTP allows the owner of a file to only publish an independent

copy of the file to the recipients. Hence, it allows publishing in the static mode.

• Level 4: Since the copies sent to recipients must be stored in their devices in order

to be accessed, Anonymous FTP allows files to be published in distributed memory

rather than shared memory.

• Level 5: Anonymous FTP provides only one type of access to the recipients which

is RW� which allows the recipients to view and edit the received files by appending

or removing content.

• Level 6: Anonymous FTP provides no restrictions over the type of access the recip-

ients have.

Non-anonymous FTP: Unlike anonymous FTP, non-anonymous FTP does not allow

anonymous access to the uploaded files on the server. Users accessing a non-anonymous

90

FTP server will be prompted for a unique username and password which will be used as

a basis for making a decision about whether to allow or deny the user access to the files.

The di↵erences between anonymous FTP and non-anonymous FTP are only at levels 1

and 2.

• Level 1: Since the users in non-anonymous FTP (unlike anonymous FTP) are promp-

ted for a unique username and password, not everyone can access the files; therefore,

non-anonymous FTP is suitable for sharing rather than publishing.

• Level 2: Non-anonymous FTP allows the owner of a file to share it with a particular

person or group. Also, it allows a group of owners of files to share them with each

other as well as with a particular person or group; or a group of owners who might

not be known in advance to the recipients and do not share their files with each

other to share them with a particular person or group. Therefore, files in non-

anonymous FTP can be shared as OneToOne, OneToGroup, Group, GroupToOne,

GroupToGroup, ManyToOne, and ManyToGroup.

Cloud-storage services: These allow users to create storage accounts to store their

files. Users are able to perform several operations on their storage accounts such as

upload, download, delete, and to share files. These operations can be performed by the

users in two ways. Firstly, through a web browser from any device; and secondly, through

a proprietary software client installed into their devices. Cloud-storage services o↵er a

synchronisation service, which means operations on a storage account made through a

browser will be redirected in the installed client of that account and vice versa. Also,

users who own several devices (e.g., laptop, tablet, Smartphone) can install a client into

each device to synchronise the files stored in their storage accounts across their devices.

Examples of cloud-storage services are Dropbox, Google Drive and Microsoft’s Skydrive.

• Level 1: Cloud-storage services allow users to share their files either with users

subscribed to the same service or with users from the outside. Sharing files with

other users subscribed to the same service requires the owner of a file to select a

person or group of people from the same service to share the file with and specify

the operations that they can perform on the shared file (e.g., read and write). Since

the file will be released only to users from the same service who the owner has

selected, it is suitable for sharing. On the other hand, sharing files with other users

that are not subscribed to the same service requires the owner of the files to generate

91

a URL for that file and distribute the URL to others. The URL can be distributed

to everyone (e.g. posted in a public forum) or to a person or group (e.g. via email).

Therefore, Cloud-storage services are suitable for publishing and sharing.

• Level 2: Cloud storage services allow the owner of a file or group of owners of files

who are sharing them with each other to publish their files for everyone. Also,

it allows the owner of a file to share it with a particular person or group and a

group of owners to share their files with each other as well as sharing them with

a particular person or group. Therefore, files in cloud storage services can be pub-

lished or shared as OneToMany, GroupToMany, OneToOne, OneToGroup, Group,

GroupToOne, GroupToGroup.

• Level 3: Cloud storage services allow the owner of a file to publish or share an

independent or linked copy of the file with recipients. Hence, it allows publishing

and sharing in the static and dynamic modes.

• Level 4: The published or shared copies of the files must be stored in the recipients’

devices to be accessed. Therefore, Cloud-storage services allow the publishing and

sharing of files in distributed memory.

• Level 5: Cloud-storage services allow the recipients to have only RO and RW� types

of access.

• Level 6: Cloud-storage services provide no restrictions over the type of access that

recipients have.

Distributed file systems: These are file systems that allow and manage access to files

and folders from multiple computers through a network. They are similar to traditional

file systems but designed to provide file storage and controlled access to files over local

and wide area networks. In DFS, files are stored on one or more central servers that

can be accessed by any number of remote clients in the network. The remote clients can

retrieve the files from the server to work with them as if they were stored locally on their

computers.

To protect files, DFS utilises authentication and authorisation techniques. The former

is used to allow only authorised users to access the files; while the latter is used to spe-

cify the operations that authorised users are allowed to perform on the accessed files,

such as reading, writing, and deleting. Authentication is often implemented as a user-

92

name/password, symmetric key cryptography (e.g., Kerberos) or public key cryptography

(e.g., X.509) whereas authorisation is often implemented as an Access Control List (ACL).

Unlike other file sharing methods which are mainly focused on transferring the files

from one location to another, DFS provides other features that enhance the activity of

sharing; namely, users’ mobility, files’ availability and transparency. Users’ mobility means

that a user can store his/her files in a server and access these files in a uniform view from

any computer. This is very useful in environments where users do not have a particular

computer to work on, so that they can use any computer to access their files. Files’

availability means that the files will be available to access all the time, even if the computer

of the user has crashed due to software or hardware failure. This is because the files are

not stored locally, so the user can use another computer to access the files, which are

stored on the server. Even if a server in DFS has crashed, the files will be available as

DFS utilises replication techniques to spread the files to multiple servers and thus avoid

single points of failure. Transparency means that users will be able to access files over

a network as easily as if the files were stored locally. DFS is designed to be transparent

in di↵erent aspects including login, access, location, concurrency, failure, and replication,

which results in remote clients not being aware of any systemic complexity and only seeing

a system that is similar to a local file system.

DFS can be implemented as a client-server network or peer-to-peer (p2p) network.

Examples of the former are NFS [99], AFS [49], SMB [70], Coda [102], and xFS [7];

while examples of the latter are Ivy [72], Farsite [2], and OceanStore [59]. Although p2p

DFS utilises the same underlying techniques as a p2p file sharing application, the main

di↵erence between them is that p2p DFS provides persistent non-volatile storage with a

file system like interface. This interface provides a layer of transparency for the user and

to the applications which access it.

• Level 1: Since DFS requires clients who are recipients to authenticate themselves

with the system before accessing the files (i.e. only authorised users can access the

files), it is suitable for sharing rather than publishing.

• Level 2: DSF allows a particular person to share his files with another particular

person or group of people; and allows a group of people to share their files with

each other as well as sharing their files with a particular person or a group of people.

Therefore, files can be shared as OneToOne, OneToGroup, Group, GroupToOne and

GroupToGroup.

93

• Level 3: DFS allows the owner of a file to share an independent or linked copies

of the file with the recipients. Hence, it allows sharing in both static and dynamic

modes.

• Level 4: The shared copies of the files must be stored in a central server that need to

be accessible to the recipients. Therefore, DFS allows sharing files in shared memory.

• Level 5: DFS allows the recipients to have two types of access which are RO and

RW� .

• Level 6: DFS provides no restrictions over the type of access that the recipients

have.

File hosting services: This type of file sharing is also known as a one-click hosting

service. It has recently gained much popularity, as it provides easy steps to share files

compared to other types of file sharing methods. These easy steps are as follows: Firstly,

the user uploads any type of file to the server of the file hosting service through a basic

web interface. Secondly, the file hosting service provides the uploader with a URL for the

file. Thirdly, the uploader shares the URL with other people either privately, via email for

example, or publicly through posting the URL on any public sites. Originally this type

of file sharing was designed for file backup purposes and for uploading a file that was too

big to be sent as an email attachment. Examples of file hosting services are Rapidshare,

Hotfile, zSHARE, and Mediafire.

• Levels 1 and 2: Since file hosting services only generate a URL for the files to be

downloaded by the recipients, classifying it depends on how the URL is shared. The

URL can be shared using one or more of the other file sharing methods. However,

whatever method of sharing is used to share the URL, file hosting services will inherit

the characteristics of that method. For example, if the URL is shared by using email,

the file hosting service will inherit the characteristics of levels 1 and 2 of email, and

if the URL is shared using anonymous FTP, then it will inherit the characteristics

of levels 1 and 2 of anonymous FTP.

• Level 3: File hosting services allow the owner of a file to publish or share an inde-

pendent copy of the file with the recipients. Hence, it allows publishing or sharing

in the static mode.

• Level 4: The published or shared copies of the files must be stored in the recipients’

94

devices in order to be accessed. Therefore, file hosting services allow the publishing

and sharing of files in distributed memory.

• Level 5: File hosting services allow the recipients to only have RW� type of access.

• Level 6: File hosting services provide no restrictions over the type of access the

recipients have.

Usenet: This is a collection of newsgroups where users can post messages and files that

are distributed among multiple servers known as news servers, NNTP servers or news-

feeds. Unlike p2p file sharing applications which utilise p2p networks, Usenet utilises the

traditional client-server network. Therefore, instead of users searching and downloading

files directly from each other’s devices, as is the case in p2p file sharing applications, they

search and download files from a News server. In other words, the files must first be

uploaded to a News server, which will distribute them to other News servers that users

can connect to in order to search for and download the uploaded files.

• Level 1: In order for a file to be shared, the users must use a client called news-reader

that allows them to connect to a News server to upload their files and search for and

download files uploaded by other users. Once the owner of the files has uploaded his

files to a newsgroup in a News server using a newsreader, other users can use their

newsreaders to connect to any News server to search for and download these files.

Therefore, Usenet is suitable for publishing rather than sharing, as the files will be

shared with everyone using Usenet.

• Level 2: Usenet allows a particular person to share his files with everyone. Therefore,

Usenet allows files to be published only as OneToMany.

• Level 3: Usenet allows the owner of a file to publish an independent copy of the file

for the recipients. Hence, it allows publishing in the static mode.

• Level 4: The published copies of the files must be stored in the recipients’ devices to

be accessed. Therefore, Usenet allows files to be published in distributed memory.

• Level 5: Usenet allows the recipients to only have RW� type of access.

• Level 6: Usenet provides no restrictions over the type of access the recipients have.

95

Instant messaging: This is a form of online communication that allows real-time in-

teraction through personal computers or mobile computing devices. It allows people to

exchange messages with each other. In addition to exchanging messages, which is its main

function, IM allows people to exchange files. IM can be implemented as a Client-server

network or Peer-to-peer network. In the former, the client communicates with the IM

sever to locate other users and exchange messages. Messages are not sent directly from

the sender to the receiver, but are sent first to the IM server and then from the IM server

to the receiver. In the latter, the client only contacts the IM server to locate other clients.

Once the client has located its peer, it contacts the peer directly. For transferring files,

most systems transfer them directly among clients rather than through the IM server. Ex-

amples of IM are ICQ, AOL Instant Messenger, Skype, Paltalk, Google Talk and Yahoo

Messenger.

People often do not di↵erentiate between the terms chat and IM. Although both of

them allow users to send short messages to each other in real time, the two terms convey

di↵erent meanings. In IM, in order for a user to communicate with others, the user must

first add them to his list of contacts, called the Buddy List or Friend List. This list

allows the user to choose who he wants to communicate with. The user will be able to

communicate with only one person on his list of contacts at a time. Alternatively, he can

create a private chat room (also known as a group chat) and invite more than one user

from his list of contacts, so that other users can join the private room by invitation from

any of the existing members of the private chat room. On the other hand, chat does not

impose such lists of contacts and often occurs in a virtual public chat room consisting of

many di↵erent users who may or may not know each other, for the purpose of discussing

a particular topic of interest. Most IM service providers, such as Paltalk, ICQ, Skype and

AOL Instant Messenger, integrate public chat rooms and other features such as Voice and

Video chat to their IM services. However, file sharing can only occur in IM but not in

public chat rooms.

• Level 1: Since IM requires the users to add others to their list of contacts (or their

friends’ lists of contacts in the case of sharing files in a private chat room) before

sharing takes place, IM is suitable for sharing rather than publishing.

• Level 2: IM allows an owner of a file to share his file with a particular person or

group, and a group of owners to share their files with each other as well as sharing

their files with a particular person or a group of people. Therefore, files in IM can

be shared as OneToOne, OneToGroup, Group, GroupToOne, and GroupToGroup.

96

• Level 3: IM allows the owner of a file to share an independent copy of the file with

the recipients. Hence, it allows sharing in the static mode.

• Level 4: The shared copies of the files must be stored in the recipients’ devices to

be accessed. Therefore, IM allows the sharing of files in distributed memory.

• Level 5: IM allows the recipients to only have RW� type of access.

• Level 6: IM provides no restrictions over the type of access the recipients have.

Wikis: A wiki is a webpage or set of webpages that can be viewed and edited by anyone

who is allowed access. In wikis, users can create a webpage and add content to it; other

users can view this content and edit the page by modifying already existing content or

adding new content. While text is the primary content in wiki pages, users are able to

add photos, audios or videos to the pages, or put in links to other files that cannot be

displayed on the pages. Wikis can be public which means that webpages are available

to anyone on the Internet, or private, which means that webpages are only available to

selected individuals. A well-known example of a public wiki is Wikipedia and of a private

wiki is SamePage.

• Level 1: Since public wikis allow anyone to view their webpages, and private wikis al-

low only selected individuals to view their webpages, wikis are suitable for publishing

and sharing.

• Level 2: Although public and private wikis allow their webpages be viewed and ed-

ited by anyone who is allowed access, they can implement access control based on

username and password to restrict who can view and edit which pages. However,

such access control can only be implemented by the owner of the wiki itself but

not the users who access the wiki. Based on how access control is used in public

and private wikis, wikis can allow a particular person to share his files with an-

other particular person, a group of people, or everyone. Also, it allows a group of

people to share their files with each other, as well as with a particular person, a

group of people, or everyone. Therefore, wikis allow publishing and sharing files as

OneToOne, OneToGroup, OneToMany, Group, GroupToOne, GroupToGroup, and

GroupToMany.

• Level 3: Wikis allow the owner of a file to publish or share an independent copy of

the file with recipients. Hence, it allows publishing and sharing in the static mode.

97

• Level 4: The published and shared copies of the files must be stored in a webpage to

be accessed by recipients. Therefore, wikis allow the publishing and sharing of files

in shared memory.

• Level 5: Wikis allow the recipients to have two types of access, namely, RO and

RW� .

• Level 6: Wikis provide no restrictions over the type of access the recipients have.

Blogs: Blog is an abbreviated term for weblog which is a webpage or set of webpages

that are created and owned by a user for others to view and edit.

• Level 1: Similar to wikis, blogs can be public or private, and users can add text,

photos, videos or audios to their own webpages, or links to other files that cannot

be displayed on the pages. Public blogs allow the webpages created by the users to

be available to everyone on the Internet; and private blogs allow the webpages to

only be available for selected individuals. Hence, blogs are suitable for publishing

and sharing.

• Level 2: A blog can be owned by a single person or a group of people. If a blog is

owned by a single person, webpages can only be created by that person; whereas if the

blog is owned by a group of people, webpages can only be created by someone from

that group. Therefore, if a blog is public and owned by a single person, files can be

published as OneToMany, while if the blog is public and owned by a group of people,

files can be published as GroupToMany, On the other hand, if the blog is private

and owned by a single person, files can be shared as OneToOne and OneToGroup,

while if the blog is private, and owned by a group of people, files can be shared as

Group, GroupToOne and GroupToGroup.

• Level 3: Blogs allow the owner of a file to publish or share an independent copy of

the file with recipients. Hence, it allows publishing and sharing in the static mode.

• Level 4: The published and shared copies of the files must be stored in a webpage

to be accessed by recipients. Therefore, Blogs allow the publishing and sharing of

files in shared memory.

• Level 5: Blogs allow the recipients to have two types of access, namely, RO and

RW+ .

• Level 6: Blogs provide no restrictions over the type of access the recipients have.

98

Social networking sites Like blogs, social networking sites allow users to create and

own webpages for others to view and edit.

• Level 1: Unlike blogs, users who access the webpages created by others can edit

these pages by adding new content of any type (e.g. a photo, video, audio, text or

links). Like wikis and blogs, the webpages in social networking sites can be public or

private, and users can add texts, photos, videos or audios to their webpages or links

to other files that cannot be displayed on the pages. Therefore, social networking

sites are suitable for publishing and sharing.

• Level 2: Like blogs, files can be published and shared as OneToMany, GroupToMany,

OneToOne, OneToGroup, Group, GroupToOne and GroupToGroup.

• Level 3: Like wikis and blogs, social networking sites allow publishing and sharing

in the static mode.

• Level 4: : Like wikis and blogs, social networking sites allow publishing and sharing

files in shared memory.

• Level 5: Social networking sites allow the recipients to have two types of access

which are RO and RW+ .

• Level 6: Social networking sites provide no restrictions over the type of access the

recipients have.

4.5 Discussion

The classification framework of the activity of file sharing described in this chapter can be

thought of as a series of policies that describe how files should be propagated and accessed

for di↵erent sharing scenarios. Enforcing these policies provides the protection required

against the accidental misuse described in the previous chapter. In particular, the type of

access given to the recipient can be used to prevent accidental disclosure and modification

by a naive. The types of restriction on the various access types can be used to prevent

accidental disclosure and modification by a masquerader; and the types of propagation

can be used to prevent accidental redistribution by a naive and a masquerader. In this

section we discuss how these policies can be used to protect files against accidental misuse.

Protecting the confidentiality of files at the recipients from accidental disclos-

ure to a naive: Accidental disclosure of shared files to a naive occurs when legitimate

99

recipients view a file that they are not allowed to view. There are three types of access

that can be used to specify policies to control read operations in order to protect the file

against accidental disclosure to a naive. These types of access are NRW, WO� and WO+.

The NRW type of access is suitable when the recipient is only allowed to hold the file,

since read and write operations are not allowed with this type of access. The WO� type

of access is suitable when the recipient is only allowed to edit the file by appending or

removing content, but not to view it, since read operations are not allowed in this type

of access. The WO+ type of access is suitable when the recipient is only allowed to edit

the file by appending content, but not by removing or viewing it; since in this type of

access read operations are not allowed and write operations only allow editing of the file

by appending content, but not by removing content from it.

Protecting the integrity of files at the recipients from accidental modification

by a naive: Accidental modification of the shared files by a naive occurs when a legitim-

ate recipient edits a file that is not allowed to be edited, or edits a file in an unauthorised

manner. There are four types of access that can be used to specify policies that control

write operations in order to protect the file against accidental modification by a naive.

These types of access are NRW, RO, WO+ and RW+. The NRW type of access is suitable

when the recipient is only allowed to hold the file, since read and write operations are not

allowed with this type of access. The RO type of access is suitable when the recipient

is only allowed to read the file, since write operations are not allowed with this type of

access. The WO+ type of access is suitable when the recipient is only allowed to edit

the file by appending, but not removing content from it, since write operations are only

allowed to append content to the file with this type of access. The RW+ is type of access

is suitable when the recipient is only allowed to view and edit the file by appending, but

not removing content from it, since write operations are only allowed to append content

to the file with this type of access.

Protecting the confidentiality and integrity of files at the recipients from acci-

dental disclosure to and modification by a masquerader: Accidental disclosure to

and modification by a masquerader occurs when the device of a legitimate recipient, which

contains the shared file, is acquired by an unauthorised user. The masquerader in this

case will acquire the same type of access that is given to the recipient. Therefore, if the

file was protected against accidental disclosure to and modification by a naive, then it will

be protected against the masquerader as well. For example, if an NRW type of access was

100

given to the recipient, the confidentiality and integrity of the file will not be violated by

a masquerader. However, it is more challenging to prevent a masquerader from exercising

other types of access given to the recipient, such RO and WO+. The di↵erent types of

restriction on the type of access given to the recipient can be used to specify policies that

control read and write operations to protect the files against accidental disclosure to and

modification by a masquerader.

Limiting the number of times (Ln) and the period of time (Lp) to exercise a specific

type of access is useful when the owner knows that the recipient does not need to exercise

that type of access indefinitely on the shared file. Such restrictions are specified with the

hope that they will not be satisfied when a masquerader acquires the device from the

legitimate recipient; i.e. that the access has reached its limited number of times or period

of time, and thus cannot be exercised. Although there is a chance that a masquerader

acquires the device from legitimate recipient, while the restrictions are still satisfied, the

consequences of violating the access will be less than having no restriction at all.

Specifying a specific time (St) and location (Sl) to exercise a specific type of access

is useful when the owner knows that the recipient needs access indefinitely but not all

the time and in every location. Such restrictions are specified with the hope that the

device will be secure against access by a masquerader during the specified time and in the

specified location.

Specifying these restrictions altogether provides a strong protection against accidental

disclosure to and modification by a masquerader. However, there are situations where

some of these restrictions cannot be specified. For instance, Alice might not know how

many times Bob needs to view her report, However, she might know for how long Bob

needs view her report. Also, Alice might not know at which time Bob needs to view her

report, However, she might know that Bob needs to view her report from his o�ce etc.

It should taken into account that the more of these restrictions are specified, the fewer

chances a masquerader has to disclose or modify the shared files accidentally.

Protecting the shared of files at the recipients from accidental redistribution by

a naive or masquerader: Accidental redistribution of the shared files occurs when the

file is sent to an unauthorised user by a naive or by a masquerader who acquires the device

of a legitimate recipient. The di↵erent types of file propagation can be used to specify

policies that control send operations to protect the file against accidental redistribution.

For example, specifying a type of file propagation such as (Alice ! Bob - Static - DM),

will only allow the send operation to be performed if a copy of the file that is not linked to

101

the original file is sent by the owner Alice to the recipient Bob or by the recipient Bob to

the owner Alice. Specifying a type of file propagation such as (Alice ! {Bob,Carol,Dave}

- Transfer - SM), will only allow a send operation to be performed if the original file, and

not a copy, is sent by the owner Alice to a location which the recipients {Bob,Carol,Dave}

can access; or is sent by any of the recipients {Bob,Carol,Dave} to a location which

the owner Alice or any of the recipients can access. Since the types of file propagation

specify to whom the file can be sent, accidental redistribution by owners, recipients and

masqueraders will be prevented. This is because in all cases the file can only be sent to

the users specified in the policy. For example, even if a masquerader acquires the device of

the owner or recipients, the masquerader will only be able to send the files to authorised

recipients specified in the policies but to no one else.

4.6 Summary

In this chapter, we have characterised the activity of file sharing based on two factors:

how files can be propagated from owners to recipients; and how files can be accessed

by the recipients after their propagation. Based on the characterisation of the activity

of file sharing, we defined a framework that classifies the activity of file sharing into

di↵erent categories. These categories can be thought of as policies that describe how files

should be propagated and accessed in ways that satisfy di↵erent sharing scenarios. The

framework can be applied to the classification of available file sharing methods to find out

which method supports which categories of sharing. In such a way, users will choose the

appropriate method of sharing that supports the category of sharing needed. Enforcing

the di↵erent policies identified in the framework plays an important role in mitigating

accidental misuse of the shared files. In the next chapter, we present a novel approach for

enforcing these policies.

102

Chapter 5

Secure file system

5.1 Introduction

In this chapter we propose a novel approach to enforce the policies discussed in the previous

chapter. We follow a language-based technique to enforce these policies, particularly by

the use of a type system. We design a language of commands to manipulate files and

specify their policies in a Unix-like file system, and a type system to enforce these policies.

In this setting, files are associated with security types that represent security policies, and

programs are sets of commands to be issued on files such as read, copy, move, etc. The

type system plays the role of a reference monitor that intercepts and statically analyses

each command to be issued on a file and determines whether or not the command is safe to

be executed. Safe commands are those which do not cause errors during execution. Such

errors might be caused by commands that violate the security policies associated with the

files or violate its own requirements (e.g. a file must exist to be removed). Therefore, if

commands are type-checked, then files’ and commands’ policies are not violated and can

be executed safely.

In this chapter, we focus on enforcing a particular constraint of the policies discussed

in Chapter 4; namely, limiting the number of times a file can be read in a shared-memory

style. This is because the ideas developed in this chapter to enforce this constraint rep-

resent the basic building blocks of our approach which can be easily extended to enforce

the whole policies discussed in Chapter 4. We discuss extensions to enforce these policies

in Chapter 6.

The contribution of this chapter is not to provide a thoroughly secure file system,

but rather is to provide a security mechanism to secure file sharing which is performed

through issuing various commands on files such as read, copy, and move by various users

103

in a file system. The objective of the security mechanism is to protect shared files against

commands issued to manipulate them. Therefore, the notion of security we are concerned

with is that of file sharing, rather than the file system as a whole. In this chapter, we

focus on a small set of commands that manipulate files, and we present our approach to

secure files against them.

The rest of this chapter is organised as follows: in Section 5.2 we present the notations

that we use throughout this chapter. In Section 5.3 we define security types that represent

policies to regulate copy operations. These security types control the access to copy oper-

ations and the flow caused by all operations including copy, such that policies for copying

files are not violated. In Section 5.4 we present a language that enforces these policies,

and define its syntax and semantics. We define the language semantics as small-step and

big-step semantics, and we show they are equivalent. In Section 5.5 we define the security

errors that we aim to prevent in our language. We divide these errors into syntactical and

type errors and describe each of them. In Section 5.6 we discuss syntactical errors and

define an algorithm to check for the syntactical correctness of commands before execution.

In Section 5.7 we present our type system that prevents errors which might occur during

execution, whether syntactical or type errors. In Section 5.8 we prove the soundness of our

type system with respect to the language semantics. In Section 5.9 we follow the method

of Hindley-Milner [27] and define a type inference algorithm and prove its soundness and

completeness. Finally, we summarise this chapter in Section 5.10.

5.2 Notations

A file system is represented as a set of files and ranged over by Greek small letters. A file

has a name, content and a type, and we write f(c) : ⌧ for a file with name f , content c

and type ⌧ . The type ⌧ associated with a file will serve as a permission to manipulate the

file in accordance with the type. In this chapter we deal with three kinds of sets of files.

• The set of files with names, content and types, ranged over by Greek small letters

�, �, For example, � = {f1(c1) : ⌧1, f2(c2) : ⌧2, . . . , fn(cn) : ⌧
n

}. Therefore, it

represents the whole file system.

• The set of files with names and types but not content, ranged over by Greek capital

letters �,�, For example, � = {f1 : ⌧1, f2 : ⌧2, . . . , fn : ⌧
n

}.

• The set of file names only, ranged over by Roman capital letters H,N,E, For

example, H = {f1, f2, . . . , fn}.

104

Throughout this chapter, we sometimes need to compare two sets of di↵erent struc-

tures, such as H = � where we are only interested in the name part of the files in the sets,

or � = � where we are only interested in the name and type parts of the files in the sets.

Also, sometimes we are interested in the name part of the files in the set � and � to check

whether or not a particular file name exists in them, regardless of its type and content.

To facilitate this, we introduce the functions ec and et which are applied to the sets � and

�. The function ec takes the set � and erases the content of files in the set, whereas the

function et takes the set � or � and erases the types of files in the set. For example, if

� = {f1(c1) : ⌧1, f2(c2) : ⌧2} and � = {f1 : ⌧1, f2 : ⌧2}, then ec(�) = {f1 : ⌧1, f2 : ⌧2},

et(�) = {f1(c1), f2(c2)}, and et(�) = {f1, f2}. We apply these functions to sets to extract

the parts of files we are concerned with. For example, f1 2 et(�) ^ ec(et(�)), whereas

f5 62 et(�) ^ ec(et(�)), and if H = {f1, f2}, then H = et(�) = ec(et(�)). For simplicity,

in this chapter we do not write these functions explicitly, rather we assume they are ap-

plied to sets where appropriate. Therefore, instead of writing H = et(�) = ec(et(�)) and

f1 2 et(�) ^ ec(et(�)), we simply write H = � = � and f1 2 � ^ �, respectively. It should

be clear from the context which parts of the files in a set we are concerned with. We use

this convention for all set operations (e.g. ✓,[,\, . . .) rather than just equality.

5.3 Security types and policies

Our approach to limiting the number of times a file can be read is by limiting the number

of copies the file can produce. Therefore, in this section we define policies to regulate

copy operations on files. To control the access to copy operations on files we define three

security types which are UC, LCn, and NC each of which specifies a distinct policy of how

copy operations can be performed on them. We refer to such types as security copy types.

UC stands for Unrestricted Copy, which means that a file associated with this type can

be copied without restriction. The copied version of a file of type UC should be allowed

to be copied in the same way, so should also be of type UC. LCn stands for Linear Copy,

which means that a file associated with this type can be copied n number of times, after

which the file cannot be copied anymore. However, unlike UC, the copied version of a file

of type LCn should not be copied anymore. NC stands for No Copy, which means that a

file associated with this type cannot be copied at all. Hence, the copied version of a file

of type LCn should be of type NC. To formally state the above policies, we define the

following functions and notations on types. The function dst stands for destination, for a

given type of a file, the function dst finds the appropriate type for the copied version of

105

that file.

dst(UC) = UC dst(LCn) = NC () n > 0.

The function red stands for reduction, for a given type of a file, the function red reduces

that type if needed when it is copied. It is mainly useful for the type LCn to limit the

number of times the type can be copied.

red(UC) = UC red(LCn) = LCn�1 () n > 0

Let T (f) denote the type associated with the file f . Then the policies of security

copy types described above can be stated as follows: a file f can be copied if and only if

T (f) 2 {UC,LCn>0} and the copied version of f must have the type dst(T (f)) and f must

have the type red(T (f)) after it has been copied. For example, assume that T (f) = LC2,

then f can be copied since LC2 2 {UC,LCn>0} and once is copied, f must have the type

red(LC2) = LC1 and the copied version of f must have the type dst(LC2) = NC. Note

that we do not define dst(LCn0) nor dst(NC) or red(LCn0) and red(NC). This is because

files of these types do not satisfy the condition NC,LCn0 2 {UC,LCn>0}, thus cannot

be copied.

However, some operations other than copy might cause information to flow from a

file to another. Let f1 !o f2 denotes flow of information from f1 to f2 by operations

other than copy such as mv, cat, etc. Such a flow of information might violate the copy

policies of files. For example, assume T (f1) = NC and T (f2) = UC, then f1 !o f2, will

lead the file f1 to be copied indirectly without any restriction by copying f2. To control

the information flow among files, our security copy types form a lattice (⌧,v), where

⌧ = {NC,LCn,UC}, are partially ordered by v (see Figure 5.1). NC and UC are the

upper bound and the lower bound of the set ⌧ , respectively. The least restrictive type is

UC, while the most restrictive type is NC. Therefore, information is allowed only to flow

upwards in the lattice, which means from the less restrictive type to the more restrictive.

It should be noted that a type LCn is less restrictive than a type LCn

0
if and only if

n > n0. For example, LC4 is less restrictive than LC2, therefore, information is allowed to

flow from a file of type LC4 to a file of type LC2.

By having a lattice of security types, there are two kinds of information flow policies

that can be enforced based on whether the type system is flow-insensitive or flow-sensitive.

The policy enforced by flow-insensitive type systems is inappropriate when the security

types represent access permissions to operations. This might not be true for the current

security copy types we address in this chapter. However, when we discuss the additional

106

NC

LCn

UC

Figure 5.1: Security copy types

types to control access to other operations in Chapter 6 such inappropriateness will be

obvious. On the other hand, the policy enforced by flow-sensitive type systems is quite

promising to control the flow of information among files. However, our view is that each file

should have its own security policy which should be respected regardless of the information

flowed into it, and only allowed to change to a more restrictive policy.

Therefore, the information flow policy we need to enforce is somewhere in between the

flow policies enforced by flow-insensitive and flow-sensitive type systems. We follow the

idea of flow-insensitive type systems in that flow of information must only result in a more

restrictive type of information, while we follow the idea of flow-sensitive type systems

in that information can flow anywhere, and the security types can be changed during

computation. This can be achieved by allowing information to flow from a security type

⌧1 to any security type ⌧2, provided that the security type ⌧2 is changed to the least upper

bound of ⌧1 and ⌧2 (i.e. ⌧1t⌧2), after the flow of information. Since 8⌧, ⌧ 0 2 T , ⌧ v ⌧ t⌧ 0,

where T is lattice of security types, any information flow is considered a restriction as long

as the destination changes its type to the least upper bound of its type and the source

type. This is because the least upper bound of two types is always more restrictive than

each of them. In such way we benefit from the restrictiveness of flow-insensitive type

systems and the permissiveness of flow-sensitive type systems.

However, even if information flows to a destination file of type that is at least as

restrictive as the type of the source file, the copy policy of the source file might still be

violated. For example, assuming that T (f1) = NC and T (f2) = UC, then f1 !o f2 should

result in f2 changing its type to T (f1)tT (f2) = NC. However, now the information exists

in both the source file f1 and the destination file f2, and thus, f1 !o f2 has the same e↵ect

as copying f1 to f2 even though the copy policy of f1 does not allow it. Another example,

assuming T (f1) = LC4 and T (f2) = UC, then f1 !o f2 should result in f2 changing its

type to T (f1) t T (f2) = LC4. However, now the information exists in both the source

file f1 and the destination file f2, and thus, f1 can be copied directly 4 times and also

107

indirectly 4 more times by copying f2 even though the policy of f1 does not allow it. We

overcome this violation by the notion of resource consumption, that is a file is consumed

when it is used. Therefore, information flow such as f1 !o f2, will consume f1 and allow

only f2 to exist after the flow. In such a way, any information flow is a restriction and will

never violate the copy policies of files.

Therefore, information flow such as f1 !o f2 is always allowed, provided that f2

changes its type to T (f1) t T (f2) and f1 is consumed after performing the operation.

However, this is useful when f2 is associated with a type. Operations such as f1 !o f2

can be performed while f2 is not associated with a type. In such case, it is su�cient to

assign the type of f1 to f2, that is T (f2) = T (f1). Let f 2 types denotes a file f has a

type, and f 62 types denotes a file f does not have a type either because it does not exist,

and therefore, it must be created for the flow to proceed, or might not be associated with

any policy. Below we define the policies for performing operations other than copy.

Definition 5.3.1. 8f1, f2 2 types. f1 !o f2 is allowed, provided that f2 must change its

type to T (f1) t T (f2) and f1 is consumed after performing the operation.

Definition 5.3.2. 8f1 2 types ^ 8f2 62 types. f1 !o f2 is allowed, provided that f2 must

be assigned the type T (f1) and f1 is consumed after performing the operation.

The above definitions show the constraints on operations that cause flow of information

from a single source file to a destination file. However, some operations might cause flow

of information from multiple source files to a destination file. Let f1, f2 !o f3 denotes an

operation that causes flow of information from f1 and f2 to f3. In this case, if f3 2 types,

then the type of f3 must be changed to T (f1)t T (f2)t T (f3), whereas if f3 62 types, then

f3 must be assigned the type T (f1) t T (f2). We give the following definitions for such

cases as follows.

Definition 5.3.3. 8f1, f2, f3 2 types. f1, f2 !o f3 is allowed, provided that f3 must

change its type to T (f1) t T (f2) t T (f3) and f1, f2 are consumed after performing the

operation.

Definition 5.3.4. 8f1, f2 2 types ^ 8f3 62 types. f1, f3 !o f3 is allowed, provided that

f2 must be assigned the type T (f1) t T (f2) and f1, f2 are consumed after performing the

operation.

Similarly, copying f1 to f2 can be performed while f2 2 types or f2 62 types. If

f2 62 types, then it is su�cient to assign to it the type of dst(T (f1)). If f2 2 types,

108

then the type of f2 must change to dst(T (f1)) t T (f2). Let f1 !copy f2 denotes the flow

of information from f1 to f2 caused by copy operations, then we define the policy for

performing copy operations as follows.

Definition 5.3.5. 8f1, f2 2 types. f1 !copy f2 is allowed if and only if T (f1) 2 {UC,LCn>0},

and f2 must change its type to dst(T (f1))tT (f2) and f1 must change its type to red(T (f1))

after performing the operation.

Definition 5.3.6. 8f1 2 types ^ 8f2 62 types. f1 !copy f2 is allowed if and only if

T (f1) 2 {UC,LCn>0}, and f2 must be assigned the type dst(T (f1)) and f1 must change

its type to red(T (f1)) after performing the operation.

To illustrate the above definitions of policies, we give the following examples of oper-

ations performed on a set of files with names and types �. Based on the definition above,

we show which operation is allowed to be performed and which is not, as well as the

consequences of performing the operation on the set �. Let � = {f1 : UC, f2 : LC4, f3 :

LC2, f4 : NC}, then,

f1 !o f3 is allowed and � = {f2 : LC4, f3 : LC
2, f4 : NC}

f3 !o f1 is allowed and � = {f1 : LC2, f2 : LC
4, f4 : NC}

f4 !o f5 is allowed and � = {f1 : UC, f2 : LC4, f3 : LC
2, f5 : NC}

f3 !o f2 is allowed and � = {f1 : UC, f2 : LC2, f4 : NC}

f4, f3 !o f1 is allowed and � = {f1 : NC, f2 : LC4}

f4 !copy f2 is not allowed because T (f4) 62 {UC,LCn>0}.

f3 !copy f1 is allowed and � = {f1 : NC, f2 : LC4, f3 : LC
1, f4 : NC}

f1 !copy f5 is allowed and � = {f1 : UC, f2 : LC4, f3 : LC
2, f4 : NC, f5 : UC}

In the next section we present the language syntax and semantics.

5.4 Language syntax and semantics

Let hfi be a set of valid files names for a given file system. The syntax of the language is

given by the following grammar:

hpi ::= hcsi | hfi

hcsi ::= hci | hci; hcsi

hci ::= cp hfi hfi | rm hfi | mkf hfi hti | rd hfi | cat hfi hfi hfi | mv hfi hfi

| copy hfi hfi | append hfi hfi hfi | move hfi hfi

hti ::= NC | LCn | UC | void

109

The language above consists of phrases. A phrase is either a list of commands (cs) or a

file name (f). Commands can be either a single command (c) or a sequence of commands

(c ; cs). We include commands to copy, remove, make, read, concatenate and move files.

These commands operate on a file system � that we represent as a set of files. A file has

a name, content and a type, and we write f(c) : ⌧ for a file with name f , content c and

type ⌧ . For example, � = {f1(c1) : ⌧1, f2(c2) : ⌧2, . . . , fn(cn) : ⌧n}. We use the following

notations: C(f) and T (f) denote the content of file f and the type of file f , respectively.

C(f1) + C(f2) and T (f1) t T (f2) denote concatenating the content of f1 and f2, and the

join of the types of f1 and f2, respectively. We write �[f2 C(f1)] for updating f2 with

the content of f1 in the file system �, and �[f2 T (f1)] for updating f2 with the type of

f1 in �. Both operations require that f1 and f2 must exist in � and �[f2 C(f1)] requires

both files to have distinct names. We write �[�f] to remove f from � if f exists in �,

and �[+f] to add f to � if f does not already exist in �. We write �[f3 C(f1) + C(f2)]

for updating f3 with the concatenated content of f1 and f2, and �[f3 T (f1) t T (f2)]

for updating f3 with the join of the types of f1 and f2. Both operations require that f1,

f2 and f3 must exist in � and �[f3 C(f1) + C(f2)] requires both files to have distinct

names. Note that a sequence of operations can be applied to � in order from left to right.

For example, the notation �[+f,�f] denotes adding file f first and then removing the file

f from �. We can now put all these ideas together to give the semantics of commands in

terms of evaluation rules as shown in Figure 5.2.

We write he, �i ! �0 for evaluating the command e in � that yields a new file system

�0. For example, let � = {f1(c1) : ⌧1, f2(c2) : ⌧2, f3(c3) : ⌧3}, then

hcp f1 f2, �i ! {f1(c1) : red(⌧1), f2(c1) : ⌧2 t dst(⌧1), f3(c3) : ⌧3}

hrm f1, �i ! {f2(c2) : ⌧2, f3(c3) : ⌧3}

hmkf f4 t, �i ! {f1(c1) : ⌧1, f2(c2) : ⌧2, f3(c3) : ⌧3, f4(c4) : t}

hrd f1, �i ! {f2(c2) : ⌧2, f3(c3) : ⌧3}

hcat f1 f2 f3, �i ! {f3(c1 + c2) : ⌧3 t ⌧1 t ⌧2}

hmv f1 f2, �i ! {f2(c1) : ⌧2 t ⌧1, f3(c3) : ⌧3}

hcopy f1 f4, �i ! {f1(c1) : red(⌧1), f3(c3) : ⌧3, f4(c1) : dst(⌧1)}

happend f1 f2 f4, �i ! {f3(c3) : ⌧3, f4(c1 + c2) : ⌧1 t ⌧2}

hmove f1 f4, �i ! {f2(c2) : ⌧2, f3(c3) : ⌧3, f4(c1) : ⌧1}

We di↵erentiate between two kinds of commands as shown in the evaluation rules in

Figure 5.2. Commands that overwrite existing files and commands that do not overwrite

existing files. The commands cp, cat, and mv are those commands which overwrite existing

110

1. hcp f1 f2 , � i ! �[f2 C(f1)][f2 T (f2) t dst(T (f1))][f1 red(T (f1))]

2. hrm f, �i ! �[�f]

3. hmkf f t, �i ! �[+f][f t]

4. hrd f, �i ! �[�f]

5. hcat f1 f2 f3, �i ! �[f3 C(f1) + C(f2)][f3 T (f1) t T (f2) t T (f3)][�f1,�f2]

6. hmv f1 f2 , � i ! �[f2 C(f1)][f2 T (f1) t T (f2)][�f1]

7. hcopy f1 f2 , � i ! �[+f2, f2 C(f1)][f2 dst(T (f1))][f1 red(T (f1))]

8. happend f1 f2 f3, �i ! �[+f3, f3 C(f1) + C(f2)][f3 T (f1) t T (f2)][�f1,�f2]

9. hmove f1 f2, � i ! �[+f2, f2 C(f1)][f2 T (f1)][�f1]

Figure 5.2: Single-step semantics

files since they all require that the destination file must exist in �. On the other hand, the

commands copy, append, and move are those commands which do not overwrite existing

files since they all require that the destination file must be created first, and thus must

not exist in �. These commands are useful to prevent accidental overwriting of existing

files.

The evaluation rules reflect the definitions of policies given in the previous section.

The cp rule reflects Definition 5.3.5 while the copy rule reflects Definition 5.3.6. The cat

rule reflects Definition 5.3.3 while in the mv rule reflects Definition 5.3.1. The append rule

reflects Definition 5.3.4 while in the move rule reflects Definition 5.3.2.

From the single-step transitions, we can define the semantics of sequences of commands

in two di↵erent ways: we give the small-step semantics in Figure 5.3, and the big-step

semantics in Figure 5.4.

For the small-step semantics, we define)⇤ to be reflexive and transitive closure of)

i.e.:

1. if hc, �i) �0, then hc, � i)⇤ �0.

2. for any hc, �i, hc, �i)⇤ hc, �i.

3. if hc, �i)⇤ �0 and hc0, �0i)⇤ �00, then hc, �i)⇤ �00

We can now show that these two semantics are equivalent.

111

hc, � i) �0
(e

cs

)
hc; cs, �i) hcs, �0i

hc, � i ! �0
(e

c

)
hc, �i) �0

Figure 5.3: Small-step semantics

hc, � i + �0 hcs, �0 i + �00
(e

cs

)
hc; cs, �i + �00

hc, � i ! �0
(e

c

)
hc, �i + �0

Figure 5.4: Big-step semantics

Theorem 5.4.1. (Equivalence of semantics) For all commands e, stores � and �0, we have

If he, �i + �0 () he, �i)⇤ �0

Proof. We show each direction separately. If he, �i + �0, then he, �i)⇤ �0. We proceed

by induction on the structure of the command e. There are two cases, one for atomic

commands and one for the sequence of commands.

1. If e is an atomic command c, then the only rule whose conclusion matches the

configuration hc, �i + �0 is the big-step rule (e
c

). By the small-step rule (e
c

), we also

have hc, �i) �0. Thus, we conclude that hc, �i)⇤ �0 as required.

2. If e is a sequence of commands c; cs, then the only rule whose conclusion matches the

configuration hc; cs, �i + �0 is the big-step rule (e
cs

). Since the last rule used in the

derivation was (e
cs

), it must be the case that hc, �i + �0 and hcs, �0i + �00 hold as well.

By the induction hypothesis twice, we must have hc, �i)⇤ �0, and hcs, �0i)⇤ �00.

By the small-step rule (e
cs

) we have hc; cs, �i) hcs, �0i. Thus, we conclude that

hc; cs, �i)⇤ �00 as required.

We now look at the other direction. If he, �i)⇤ �0, then he, �i + �0. We proceed

by induction on the structure of the command e. There are two cases, one for atomic

commands and one for the sequence of commands.

1. If e is an atomic command c, then the only rule whose conclusion matches the

configuration hc, �i) �0 is the small-step rule (e
c

). By the big-step rule (e
c

), we also

havehc, �i + �0 as required.

2. If e is a sequence of commands c; cs, then the only rule whose conclusion matches

the configuration hc; cs, �i) hcs, �0i is the small-step rule (e
cs

). Since the last rule

used in the derivation was (e
cs

), it must be the case that hc, �i) �0 hold as well.

By the induction hypothesis, we must have hc, �i + �0. By the big-step rule (e
c

), we

have hc, �i + �0 as required.

112

In the next section we define the security errors that can occur during evaluation of

commands.

5.5 Security errors

A security error is a configuration which fails to evaluate, written as he, �i ! Err. Such

failure of evaluation results from two kinds of errors which we refer to as syntactical errors

and type errors. In this section we look at each of them independently.

5.5.1 Syntactical errors

Syntactical errors are those errors which occur when the constraints of an operation ap-

plied to � are not satisfied. These constraints are shown in Table 5.1. Evaluating the

configuration he, �i leads to an error if any of the constraints of an operation applied to �

during the evaluation is not satisfied.

For example, let � = {f1(c1) : ⌧1, f2(c2) : ⌧2}, then hmkf f1 t, �i ! Err, because the

operation �[+f1] requires f1 to not exist in �. Such error prevents accidental overwriting of

existing files by creating a file that already exists. hrm f3, �i ! Err, because the operation

�[�f3] requires f3 to exist in �. This is a reasonable error since a file needs to exist in order

to be removed. hmv f1 f1, �i ! Err, because the operation �[f1 C(f1)] requires both

files to have distinct names. If we allow the configuration hmv f1 f1, �i to evaluate without

an error, it will have the same e↵ect as hrm f1, �i, and hence, a file might be removed

accidentally. Similarly, hcat f1 f2 f1, �i ! Err for the same reason as the configuration

hmv f1 f1, �i. happend f1 f1 f3, �i ! Err, because the operations �[�f1,�f1] requires f1
to exist twice in � which cannot happen, and also the operation �[f3 C(f1) + C(f1)]

requires both files to have distinct names.

As shown in Figure 5.2, multiple operations are applied to � and in order from left to

right. In the above examples, we show the first operation that failed in each configuration,

which means that previous operations did not fail in the same configuration. For example,

in happend f1 f1 f3, �i ! Err, we have the following operations applied to � in order

�[+f3, f3 C(f1) + C(f1)][f3 T (f1) t T (f1)][�f1,�f1]. However, we showed only the

first operation failure, which is �[f3 C(f1) + C(f1)], as the operation [+f3] did not fail

because f3 62 � in the example above.

113

Operation Constraints

�[+f] f 62 �

�[�f] f 2 �

�[f2 T (f1)] f1, f2 2 �

�[f2 C(f1)] f1, f2 2 � ^ f1 6= f2

�[f3 T (f1) t T (f2)] f1, f2, f3 2 �

�[f3 C(f1) + C(f2)] f1, f2, f3 2 � ^ f1 6= f2, f1 6= f3, f2 6= f3

Table 5.1: Constraints of operations applied to �

5.5.2 Types errors

Types errors are those errors which occur when the constraints of an operation applied to

a type of a file are not satisfied. These constraints are shown in Table 5.2.. Evaluating

the configuration he, �i leads to an error if any of the constraints of an operation applied

to a type during the evaluation is not satisfied.

Operation Constraints

dst(⌧) ⌧ 2 {UC,LCn>0}

red(⌧) ⌧ 2 {UC,LCn>0}

Table 5.2: Constraints of operations applied to types

For example, let � = {f1(c1) : LC0, f2(c2) : NC}, then hcp f1 f2, �i ! Err, because

the operations dst(LC0) and red(LC0) are applied to LC0 where LC0 62 {UC,LCn>0}, and

hcopy f2 f3, �i ! Err, because the operations dst(NC) and red(NC) are applied to NC

where NC 62 {UC,LCn>0}.

5.6 Syntactical correctness

The occurrence of file names in a command determines whether or not the command can

be evaluated in a particular file system � without syntactical errors. It should be noted

that a guarantee of syntactical-free error of evaluating the command in a file system �

is not a guarantee of being error free. This is because there might be a type error even

if there is no syntactical error. In this section we are concerned with syntactical errors

and we assume no type errors can occur during evaluation. We write he, �i !s Err for a

114

configuration that fails to evaluate because of syntactical errors and he, �i 6!s Err for a

configuration that does not fail because of syntactical errors, and thus, should lead to a new

state �0. Below we discuss the atomic commands and sequence of commands separately,

and show when such commands can be evaluated in a state � without syntactical errors.

5.6.1 Atomic commands

Some atomic commands, such as (rm f), require the occurrence of file names to exist in � to

be evaluated without syntactical errors, while other commands, such as (mkf f t), require

them to not exist in �. For example, in a file system � where � = {f1(c1) : ⌧1, f2(c2) : ⌧2},

the configurations hrm f1, �i and hmkf f3 t, �i will not lead to syntactical errors if evaluated,

hrm f1, �i 6!s Err and hmkf f3 t, �i 6!s Err. This is because the constraints of both

commands are satisfied, that is f1 2 � and f3 62 �. On the other hand, the configurations

hrm f3, �i and hmkf f1 t, �i will lead to syntactical errors if evaluated, hrm f1, �i !s Err

and hmkf f3 t, �i !s Err. This is because the constraints of both commands are not

satisfied. To determine whether or not an atomic command will lead to a syntactical error

if evaluated in a particular file system �, we need to find out which file names must be in

� and which file names must not be in �.

Table 5.3 shows the constraints on file names that must be satisfied for each command

to be evaluated without syntactical errors. H denotes the set of file names that must exist

in � and N denotes the set of file names that must not exist in �. We define the function

C(e) that takes an atomic command e and returns the set of file names in e that must be

in � and the set of file names in e that must not be in �, if the file names in e are distinct

from each other. Therefore, we write C(e) = (H,N) if and only if the command e satisfies

the condition in the table, where (H,N) are the sets of file names of the command e as

shown in the table. For example, C(cp f1 f2) = ({f1, f2},?), since f1 6= f2. However,

C(cp f1 f1) should fail, since it is not the case that f1 6= f1. Below we give a proof of

that a configuration he, �i will not lead to a syntactical error if evaluated, he, �i 6!s Err,

if C(e) = (H,N) and H ✓ � and N \ � = ?.

Theorem 5.6.1. If C(e) = (H,N) and H ✓ � and N \ � = ?, then he, �i 6!s Err.

Proof. We proceed by cases on the atomic commands e. There are 9 cases, here we show

a selection of them.

1. If e is the command cp f1 f2, then we have C(cp f1 f2) = ({f1, f2},?) and {f1, f2} ✓

� and ? \ � = ?. Now we can apply rule (1) to obtain hcp f1 f2 , � i ! �[f2

115

Commands H N Condition

cp f1 f2 {f1, f2} ? f1 6= f2

rm f {f1} ? �

mkf f t ? {f1} �

rd f {f1} ? �

cat f1 f2 f3 {f1, f2, f3} ? f1 6= f2, f1 6= f3, f2 6= f3

mv f1 f2 {f1, f2} ? f1 6= f2

copy f1 f2 {f1} {f2} f1 6= f2

append f1 f2 f3 {f1, f2} {f3} f1 6= f2, f1 6= f3, f2 6= f3

move f1 f2 {f1} {f2} f1 6= f2

Table 5.3: Constraints for atomic commands

C(f1)][f2 T (f2) t dst(T (f1))][f1 red(T (f1))]. Since the operations �[f2

C(f1)][f2 T (f2) t dst(T (f1))][f1 red(T (f1))] require f1 2 � and f2 2 �, and we

have {f1, f2} ✓ �, then hcp f1 f2, �i 6!s Err as required.

2. If e is the command rm f , then we have C(rm f) = ({f},?) and {f} ✓ � and

? \ � = ?. Now we can apply rule (2) to obtain hrm f, �i ! �[�f]. Since the

operation �[�f] requires f 2 �, and we have {f} ✓ �, then hrm f, �i 6!s Err.

3. If e is the command mkf f ⌧ , then we have C(mkf f ⌧) = (?, {f}) and ? ✓ � and

{f}\� = ?. Now we can apply rule (3) to obtain hmkf f t, �i ! �[+f][f t]. Since

the operation �[+f] requires f 62 � and we have {f}\ � = ?, then the operation can

be successfully applied to �. Also, since the operation [f t] requires f 2 �, and

we have established that �[+f] can be applied to � successfully, it must be case that

f 2 � after applying the operation �[+f], therefore, hmkf f ⌧, �i 6!s Err.

4. If e is the command rd f , then we have C(rd f) = ({f},?) and {f} ✓ � and

? \ � = ?. Now we can apply rule (4) to obtain hrd f, �i ! �[�f]. Since the

operation �[�f] requires f 2 �, and we have {f} ✓ �, then hrd f, �i 6!s Err.

5. If e is the command copy f1 f2, then we have C(copy f1 f2) = ({f1}, {f2}) and

{f1} ✓ � and {f2} \ � = ?. Now we can apply rule (7) to obtain hcopy f1 f2 , � i !

�[+f2, f2 C(f1)][f2 dst(T (f1))][f1 red(T (f1))]. Since the operation �[+f2]

requires f2 62 �, and we have {f2} \ � = ?, then the operation can be success-

fully applied to �. Also, since the operations �[f2 C(f1)][f2 dst(T (f1))][f1

116

red(T (f1))] require f1 2 � and f2 2 �, and we have {f1} ✓ � and we have established

that the operation �[+f2] can be applied to � successfully, it must be the case that

f2 2 � after applying the operation, therefore, hcopy f1 f2 , � i 6!s Err.

5.6.2 Sequence of commands

Theorem 5.6.1 illustrates the constraints for an atomic command to be evaluated in a file

system � without syntactical errors. However, applying these constraints to commands

individually to determine whether or not a sequence of commands can be evaluated in

a file system � without syntactical errors does not work. In other words, even if atomic

commands can be evaluated individually in a file system � without syntactical errors,

evaluating them in a sequence in � might lead to syntactical errors. For example, let

� = {f1(c1) : ⌧1, f2(c2) : ⌧2}. Then, the configuration hrm f1; rm f1, �i 6!s Err, because

hrm f1, �i 6!s Err and hrm f1, �i 6!s Errr. This is because for both configurations the

constraints of the command are satisfied, that is C(rm f1) = ({f1},?) and {f1} ✓ � and?\

� = ?. However, by applying the small-step (e
cs

) rule to the configuration hrm f1; rm f1, �i

we have hrm f1; rm f1, �i) hrm f1, �0i where �0 = {f2(c2) : ⌧2} as evaluating the first

command removes f1 from �. Now by applying the small-step (e
c

) rule to the configuration

hrm f1, �0i we have hrm f1, �0i)s Err because f1 62 �0. Similarly, hmkf f3 t; mkf f3 t, �i 6!s

Errr, because hmkf f3 t, �i 6!s Errr and hmkf f3 t, �i 6!s Errr. This is because for both

configurations the constraints of the command are satisfied, that is C(mkf f3 t) = (?, {f3})

and ? ✓ � and {f3} \ � = ?. However, by applying the small-step (e
cs

) rule to the

configuration hmkf f3 t; mkf f3 t, �i we have hmkf f3 t; mkf f3 t, �i) hmkf f3 t, �0i where

� = {f1(c1) : ⌧1, f2(c2) : ⌧2, f3(c3) : ⌧3} as evaluating the first command creates f3 in

�. Now by applying the small-step (e
c

) rule to the configuration hmkf f3 t, �0i, we have

hmkf f3 t, �0i)s Err, because f3 2 �0.

One the other hand, even if atomic commands will lead to a syntactical error if eval-

uated individually in a file system �, evaluating them in a sequence in � might not lead

to syntactical errors. For example, the configuration hrm f1; mkf f1 t, �i !s Err, because

hmkf f1 t, �i !s Err. This because the constraints of the command in the configuration

hmkf f1 t, �i are not satisfied, that is C(mkf f1 t) = (?, {f1}) and ? ✓ � and {f1}\ � 6= ?.

However, by applying the small-step (e
cs

) rule to the configuration hrm f1; mkf f1 t, �i we

have hrm f1; mkf f1 t, �i) hmkf f1 t, �0i where �0 = {f2(c2) : ⌧2} as evaluating the first

command removes f1 from �. Now by applying the small-step (e
c

) rule to the configuration

117

hmkf f1 t, �0i, we have hmkf f1 t, �0i) �00, where �00 = {f1(c1) : ⌧1, f2(c2) : ⌧2} as evaluat-

ing the second command creates f1 in �. Similarly, hmkf f3 t; rm f3, �i !s Err, because

hrm f3, �i !s Err. This is because the constraints of the command in the configuration

hrm f3, �i are not satisfied, that is C(rm f3) = ({f3},?) and {f3} 6✓ � and ? \ � = ?.

However, by applying the small-step (e
cs

) rule to the configuration hmkf f3 t; rm f3, �i we

have hmkf f3 t; rm f3, �i) hrm f3, �0i where �0 = {f1(c1) : ⌧1, f2(c2) : ⌧2, f3(c3) : ⌧3} as

evaluating the first command creates f3 in �. Now by applying the small-step (e
c

) rule to

the configuration hrm f1, �0i, we have hrm f1, �0i) �00, where �00 = {f1(c1) : ⌧1, f2(c2) : ⌧2}

as evaluating the second command removes f3 from �0.

Since commands evaluation changes the state �, such changes must be considered

by subsequent commands when evaluated. Some evaluation of commands remove file

names from �, therefore, such file names can be created but not removed or used by

subsequent commands. For example, hrm f1; mkf f1 s⌧, �i 6!s Err but hrm f1; rm f1, �i !s

Err and hrm f1; cp f1 f2, �i !s Err. Other evaluations of commands create file names

in �, therefore, such file names can be removed or used but not created by subsequent

commands. For example hmkf f3 s⌧ ; rm f3, �i 6!s Err and hmkf f3 s⌧ ; cp f3 f2, �i 6!s Err

but hmkf f3 s⌧ ; mkf f3 s⌧, �i !s Err.

To find out whether a sequence of commands can be evaluated in a file system � without

syntactical errors, we must first find out whether the sequence of commands is consistent

or not. A sequence of commands is consistent if and only if each command in the sequence

satisfies the following two conditions. Firstly, any file name of a command that needs to

be in � must not have been removed by a previous command. Secondly, any file name of

a command that needs not be in � must not have been created by a previous command.

Table 5.4 shows the set of files that are removed or created by evaluating each command.

C denotes the set of files that are created by evaluating the command and E denotes the

set of files that are erased by evaluating the command.

We define an algorithm that given a sequence of commands, the algorithm succeeds if

the commands are consistent. Additionally, the algorithm finds the minimum set of file

names that must be in � and the minimum set of file names that must not be in � for the

sequence of commands to be evaluated without syntactical errors. For a given command

cs, we compute 4-tuple (H,N,C,E) that gives the constraints on a starting file system

� so that it can be evaluated without syntactical errors. H denotes the set of file names

that must exist in �, N denotes the set of file names that must not exist in �. C denotes

118

Commands C E

cp f1 f2 ? ?

rm f ? {f}

mkf f t {f} ?

rd f ? {f1}

cat f1 f2 f3 ? {f1, f2}

mv f1 f2 ? {f1}

copy f1 f2 {f2} ?

append f1 f2 f3 {f3} {f1, f2}

move f1 f2 {f2} {f1}

Table 5.4: File creation and erasure by commands

the set of file names that are created by the sequence of commands, such file names do not

necessarily have to be free in � initially. E denotes the set of file names that are erased

by the sequence of commands, such file names do not necessarily have to be in � initially.

Table 5.5 gives the heart of the algorithm. We write c(H,N,C,E) = (H 0, N 0, C 0, E0) if

an atomic command c satisfies the conditions in the table, where (H 0, N 0, C 0, E0) are the

sets updated by the command c. The algorithm starts with (?,?,?,?). For example,

cp f1 f2(?,?,?,?) = ({f1, f2},?,?,?). This means that the files {f1, f2} must be part

of the file system when this command is evaluated. When a command does not satisfy the

conditions in the table, the algorithm fails. For example, cp f1 f1(?,?,?,?) should fails

since the condition f1 6= f1 is not satisfied. Sequences of commands are then computed

by composition: c; cs(?,?,?,?) = cs(c(?,?,?,?)). Below we give several examples to

show how the algorithm works for sequences of commands.

Example 5.6.1. rm f1; rm f1(?,?,?,?)

rm f1(rm f1(?,?,?,?)) = rm f1({f1},?,?, {f1}) since f1 62 E

rm f1({f1},?,?, {f1}) = fails since f1 2 E

Example 5.6.2. mkf f1 t; mkf f1 t(?,?,?,?)

mkf f1 t(mkf f1 t(?,?,?,?)) = mkf f1 t(?, {f1}, {f1},?) since f1 62 C

mkf f1 t(?, {f1}, {f1},?) = fails since f1 2 C

119

Term H N C E Condition

cp f1 f2 H [({f1, f2} � C) N C E f1 /2 E, f2 62 E,

f1 6= f2

rm f H [({f} � C) N C � {f} E [{f} f /2 E

mkf f t H N [({f} � E) C [{f} E � {f} f /2 C

rd f H [({f} � C) N C � {f} E [{f} f /2 E

f1 /2 E, f2 62 E,

cat f1 f2 f3 H [({f1, f2, f3} � C) N C � {f1, f2} E [({f1, f2} f3 62 E, f1 6= f2,

f1 6= f3, f2 6= f3

mv f1 f2 H [({f1, f2} � C) N C � {f1} E [{f1} f1 /2 E, f2 62 E,

f1 6= f2

copy f1 f2 H [({f1} � C) N [({f2} � E) C [{f2} E � {f2} f1 /2 E, f2 62 C

f1 6= f2

f1 /2 E, f2 62 E,

append f1 f2 f3 H [({f1, f2} � C) N [({f3} � E) (C [{f3}) � {f1, f2} (E [({f1, f2}) � {f3} f3 62 C, f1 6= f2,

f1 6= f3, f2 6= f3

move f1 f2 H [({f1} � C) N [({f2} � E) (C [{f2}) � {f1} (E [({f1}) � {f2} f1 /2 E, f2 62 C

f1 6= f2

Table 5.5: Constraints for sequence of commands

Example 5.6.3. mkf f1 t; rm f1; mkf f1 t(?,?,?,?)

rm f1; mkf f1 t(mkf f1 t(?,?,?,?)) = rm f1; mkf f1 t(?, {f1}, {f1},?) since f1 62 C

mkf f1 t(rm f1(?, {f1}, {f1},?)) = mkf f1 t(?, {f1},?, {f1}) since f1 62 E

mkf f1 t(?, {f1},?, {f1}) = (?, {f1}, {f1},?) since f1 62 C

Example 5.6.4. rm f1; mkf f1 t; rm f1(?,?,?,?)

mkf f1 t; rm f1(rm f1(?,?,?,?)) = mkf f1 t; rm f1({f1},?,?, {f1}) since f1 62 E

rm f1(mkf f1 t({f1},?,?, {f1})) = rm f1({f1},?, {f1},?) since f1 62 C

rm f1({f1},?, {f1},?) = ({f1},?,?, , {f1}) sincef1 62 E

Example 5.6.5. mkf f2 t; move f1 f2(?,?,?,?)

move f1 f2(mkf f2 t(?,?,?,?)) = move f1 f2(?, {f2}, {f2},?) since f2 62 C

move f1 f2(?, {f2}, {f2},?) = fails since f2 2 C

We can relate these syntactical constraints with the operational semantics through the

following result which states that if the file system satisfies the constraints needed for a

120

command as set out above, then it will be evaluated without syntactical errors. Essentially,

this key result gives the constraints on the file system: which files must be present, and

which files must not be present.

Theorem 5.6.2. For any command sequence cs, if cs(?,?,?,?) = (H,N,C,E), then

for any file system �, if H ✓ � and N \ � = ?, then hcs, �i)⇤ �0.

Proof. We prove a stronger result. For any command sequence cs, if

cs(H,N,C,E) = (H 0, N 0, C 0, E0)

then for any file system �, if

(H 0 [C)� E ✓ � and (N 0 � C) [E \ � = ?

then

1. hcs, �i)⇤ �0, and

2. (H 0 [C 0)� E0 ✓ �0

3. (N 0 � C 0) [E0 \ �0 = ?.

There are 10 cases, here we show a selection of them.

1. If c is rm f , then assume

rm f(H,N,C,E) = (H [({f} � C), N,C � {f}, E [{f})

succeeds, and therefore f 62 E, and (H[({f}�C)[C)�E ✓ � and (N�C)[E\� =

?.

Now, to show that hrm f, �i ! �[�f], we need to show that f 2 �. We shall show

that f 2 (H [({f} � C) [C)� E.

First, note that f 62 E, so we can simplify the problem to check:

f 2 (H [({f} � C) [C).

There are two cases to consider:

Either f 2 C: (H [C), then f 2 �.

or f 62 C: (H [({f} � C) [C) = (H [{f} [C), and again f 2 �.

Therefore, f 2 �, and (N � C) [E \ � = ?, so the command succeeds.

121

Now, to show that (H [(C � {f})� (E [{f})) ✓ �[�f], we need to show that f 62

(H [(C �{f})� (E [{f})), which follows by set-theoretical arguments. Therefore,

(H [(C � {f})� (E [{f})) ✓ �[�f].

Now, we need to show that (N � (C � {f})) [(E [{f}) \ �[�f] = ?. This is true

by assumption(the [�f] does not change the result).

2. if c is mkf f , then assume

mkf f(H,N,C,E) = (H,N [({f} � E), C [{f}, E � {f})

succeeds, and therefore f 62 C, and (H[C)�E ✓ � and ((N[({f}�E))�C)[E\� =

?.

Now, to show that hmkf f, �i ! �[+f], we need to show that f 62 �. We shall show

that f 2 ((N [({f} � E))� C) [E.

First, note that f 62 C, so we can simplify the problem to check:

f 2 (N [({f} � E)) [E

There are two cases to consider:

Either f 62 E : (N [{f} [E), then f 62 �.

or f 2 E : (N [E), then again f 62 �.

Therefore, f 62 �, and (H [C)� E ✓ �, so the command succeeds.

Now, to show that (H [(C [{f}))� (E � {f}) ✓ �[+f], we need to show that f 2

(H [(C [{f}))� (E�{f}), which follows by set-theoretical arguments. Therefore,

(H [(C [{f}))� (E � {f}) ✓ �[+f].

Now, to show that ((N [({f} � E)) � (C [{f})) [(E � {f}) \ �[+f] = ?, we

need to show that f 62 ((N [({f} �E))� (C [{f})) [(E � {f}), which follows by

set-theoretical arguments.

Therefore, (N [({f} � E)� (C [{f}) [E � {f}) \ �[+f] = ?.

3. if c is copy f1 f2, then assume

copy f1 f2(H,N,C,E) = (H [({f1} � C), N [({f2} � E), C [{f2}, E � {f2})

succeeds, and therefore f1 62 E, f2 62 C, and f1 6= f2, ((H [({f1}�C))[C)�E ✓ �

and ((N [({f2} � E))� C) [E \ � = ?.

122

Now, to show that hcopy f1 f2 , � i ! �[+f2, f2 C(f1)][f2 dst(T (f1))][f1

red(T (f1))], we need to show that f1 2 � and f2 62 �. We shall sow that f1 2

((H [({f1} � C)) [C)� E and f2 2 ((N [({f2} � E))� C) [E.

Case f1 2 ((H [({f1} � C)) [C)� E:

First, note that f1 62 E, so we can simplify the problem to check:

f1 2 ((H [({f1} � C)) [C).

There are two cases to consider:

Either f1 2 C: (H [C), then f 2 �.

or f1 62 C: (H [({f1} � C) [C) = (H [{f1} [C), and again f1 2 �.

Case f2 2 ((N [({f2} � E))� C) [E.

First, note that f2 62 C, so we can simplify the problem to check:

(N [({f2} � E)) [E.

There are two cases to consider:

Either f2 62 E : (N [{f} [E), then f2 62 �.

or f2 2 E : (N [E), then again f2 62 �.

Therefore, f1 2 � and f2 62 �, so the command succeeds.

Now, to show that ((H [({f1} � C)) [(C [{f2})) � (E � {f2}) ✓ �0, we need to

show that f1, f2 2 ((H [({f1} � C)) [(C [{f2})) � (E � {f2}), which follows by

set-theoretical arguments.

Therefore, ((H [({f1} � C)) [(C [{f2}))� (E � {f2}) ✓ �0.

Now to show that ((N [({f2} � E)) � (C [{f2})) [(E � {f2}) \ �0 = ?, we need

to show that f2 62 ((N [({f2} � E)) � (C [{f2})) [(E � {f2}), which follows by

set-theoretical arguments.

Therefore, ((N [({f2} � E))� (C [{f2})) [(E � {f2}) \ �0 = ?.

5.7 Type system

In the previous section we presented the constraints that must be satisfied by commands

in order to be evaluated in a file system � without syntactical errors. However, even in

the absence of syntactical errors, there might be a type error that leads a configuration

123

to fail to evaluate. In this section, we develop a type system that determines whether or

not commands can be evaluated in a file system � without type errors as well as without

syntactical errors. Typing judgements have the form

� | �0 ` p : ⌧

where � is a set of files with names and types of the form f : ⌧ . We write ? for the empty

set. For example, � = {f1 : ⌧1, f2 : ⌧2, f3 : ⌧3, . . . , fn : ⌧
n

}. It should be noted that files

in the context � are unique and the symbol “,” is the disjoint union operation, so that

the set of files in � does not contain repetitions. The judgement � | �0 ` p : ⌧ means that

typing the phrase p of type ⌧ in the context �, will change the context to �0. In other

words, the contexts � and �0 represent the set of files before and after typing the phrase

p. Note that a phrase p could be a command, a file name, or a sequence of commands.

The typing rules are shown in Figure 5.5. In the next sections we present the typing rule

for each phrase individually and give examples to show which phrase is typable and which

is not. A phrase is typable if there exists a derivation for it, otherwise is not typable.

5.7.1 Typing rule for file names

(f)
�, f : ⌧ | � ` f : ⌧

The typing rule for a file name f says that typing a file from the context � consumes

the file from the context, provided that f 2 �.

Example 5.7.1. The file f1 is typable in the context � = {f1 : NC} since f1 2 � as shown

below.

(f)
f1 : NC | ? ` f1 : NC

Example 5.7.2. The file f2 is not typable in the context � = {f1 : NC} since f2 62 � as

shown below.

(?)
f1 : NC |? ` f2 :?

5.7.2 Typing rule for cp command

� | �0 ` f1 : ⌧ ⌧ v LCn>0 �0 | �00 ` f2 : ⌧
0

(cp)
� | �00, f1 : red(⌧), f2 : ⌧

0 t dst(⌧) ` cp f1 f2 : void

The typing rule for cp command says that if we can type f1 and f2 from the context

� and f1 is of type UC or LCn>0, then we can type the command cp f1 f2 of type void

and the type of f2 is changed to be the least upper bound of its type and the type of

dst(T (f2)), and the type of f1 is changed to be red(T (f1)).

124

(f)
�, f : ⌧ | � ` f : ⌧

� | �0 ` c : void �0 | �00 ` cs : void
(cs)

� | �00 ` c; cs : void

� | �0 ` f1 : ⌧ ⌧ v LCn>0 �0 | �00 ` f2 : ⌧
0

(cp)
� | �00, f1 : red(⌧), f2 : ⌧

0 t dst(⌧) ` cp f1 f2 : void

� | �0 ` f : ⌧
(rm)

� | �0 ` rm f : void
(mkf)

� | �, f : t ` mkf f t : void
� | �0 ` f : ⌧

(rd)
� | �0 ` rd f : void

� | �0 ` f1 : ⌧ �0 | �00 ` f2 : ⌧
0 �00 | �000 ` f3 : ⌧

00

(cat)
� | �000, f3 : ⌧ t ⌧ 0 t ⌧ 00 ` cat f1 f2 f3 : void

� | �0 ` f1 : ⌧ �0 | �00 ` f2 : ⌧
0

(mv)
� | �00, f2 : ⌧ t ⌧ 0 ` mv f1 f2 : void

� | �0 ` f1 : ⌧ ⌧ v LCn>0

(copy)
� | �0, f1 : red(⌧), f2 : dst(⌧) ` copy f1 f2 : void

� | �0 ` f1 : ⌧ �0 | �00 ` f2 : ⌧
0

(append)
� | �00, f3 : ⌧ t ⌧ 0 ` append f1 f2 f3 : void

� | �0 ` f1 : ⌧
(move)

� | �0, f2 : ⌧ ` move f1 f2 : void

Figure 5.5: Typing rules

Example 5.7.3. The command cp f1 f2 is typable in the context � = {f1 : LC2, f2 : UC}

since f1 2 � and f2 2 �, and T (f1) v LCn>0, as shown below.

(f)
f1 : LC

2, f2 : UC | f2 : UC ` f1 : LC
2 LC2 v LCn>0

(f)
f2 : UC | ? ` f2 : UC

(cp)
f1 : LC

2, f2 : UC | f1 : LC1, f2 : NC ` cp f1 f2 : void

Example 5.7.4. The command cp f1 f2 is not typable in the context � = {f1 : NC, f2 :

UC} since T (f1) 6v LCn>0 as shown below.

(f)
f1 : NC, f2 : UC | f2 : UC ` f1 : NC NC 6v LCn>0

(f)
f2 : UC | ? ` f2 : UC

(?)
f1 : NC, f2 : UC |? ` cp f1 f2 :?

Example 5.7.5. The command cp f1 f2 is not typable in the context � = {f1 : UC}

since f2 62 � as shown below.

125

(f)
f1 : UC | ? ` f1 : UC UC v LCn>0

(?)
? |? ` f2 :?

(?)
f1 : UC |? ` cp f1 f2 :?

5.7.3 Typing rule for rm command

� | �0 ` f : ⌧
(rm)

� | �0 ` rm f : void

The typing rule for rm command says that if we can type f from the context �, then

we can type the command rm f of type void.

Example 5.7.6. The command rm f1 is typable in the context � = {f1 : NC, f2 : UC}

since f1 2 � as shown below.

(f)
f1 : NC, f2 : UC | f2 : UC ` f1 : NC

(rm)
f1 : NC, f2 : UC | f2 : UC ` rm f1 : void

Example 5.7.7. The command rm f1 is not typable in the context � = {f2 : UC} since

f1 62 � as shown below.

(?)
f2 : UC |? ` f1 :?

(?)
f2 : UC |? ` rm f1 :?

5.7.4 Typing rule for mkf command

(mkf)
� | �, f : t ` mkf f t : void

The typing rule for mkf command says that typing the command mkf f t of type void

will add f of type t to the context �, provided that f 62 �.

Example 5.7.8. The command mkf f1 NC is typable in the context � = {f2 : UC} since

f1 62 � as shown below.

(mkf)
f2 : UC | f2 : UC, f1 : NC ` mkf f1 NC : void

Example 5.7.9. The command mkf f2 NC is not typable in the context � = {f2 : UC}

since f2 2 � as shown below.

(?)
f2 : UC | f2 : UC, ? ` mkf f2 NC :?

126

5.7.5 Typing rule for rd command:

� | �0 ` f : ⌧
(rd)

� | �0 ` rd f : void

The typing rule for rd command says that if we can type f from the context �, then

we can type the command rd f of type void.

Example 5.7.10. The command rd f1 is typable in the context � = {f1 : NC, f2 : UC}

since f1 2 � as shown below.

(f)
f1 : NC, f2 : UC | f2 : UC ` f1 : NC

(rd)
f1 : NC, f2 : UC | f2 : UC ` rd f1 : void

Example 5.7.11. The command rd f1 is not typable in the context � = {f2 : UC} since

f1 62 � as shown below.

(?)
f2 : UC |? ` f1 :?

(?)
f2 : UC |? ` rd f1 :?

5.7.6 Typing rule for cat command

� | �0 ` f1 : ⌧ �0 | �00 ` f2 : ⌧
0 �00 | �000 ` f3 : ⌧

00

(cat)
� | �000, f3 : ⌧ t ⌧ 0 t ⌧ 00 ` cat f1 f2 f3 : void

The typing rule for cat command says that if we can type f1, f2 and f3 from the

context �, then we can type the command cat f1 f2 f3 of type void and f1 and f2 will be

consumed from the context � while the type of f3 is changed to be the least upper bound

of its type, the type of f1 and the type of f2.

Example 5.7.12. The command cat f1 f2 f3 is typable in the context � = {f1 : UC, f2 :

NC, f3 : LC
4} since f1 2 � and f2 2 � and f3 2 � as shown below. To compress the proof,

let � = {f2 : NC, f3 : LC4}.

(f)
� | � ` f1 : UC

(f)
� | f3 : LC4 ` f2 : NC

(f)
f3 : LC

4 | ? ` f3 : LC
4

(cat)
� | f3 : NC ` cat f1 f2 f3 : void

Example 5.7.13. The command cat f1 f2 f3 is not typable in the context � = {f1 :

UC, f2 : NC} since f3 62 � as shown below.

(f)
f1 : UC, f2 : NC | f2 : NC ` f1 : UC

(f)
f2 : NC | ? ` f2 : NC

(?)
? |? ` f3 :?

(?)
f1 : UC, f2 : NC |? ` cat f1 f2 f3 :?

127

5.7.7 Typing rule for mv command

� | �0 ` f1 : ⌧ �0 | �00 ` f2 : ⌧
0

(mv)
� | �00, f2 : ⌧ t ⌧ 0 ` mv f1 f2 : void

The typing rule for mv command says that if we can type f1 and f2 from the context

�, then we can type the command mv f1 f2 of type void and f1 will be consumed from the

context � while the type of f2 is changed to be the least upper bound of its type and the

type of f1.

Example 5.7.14. The command mv f1 f2 is typable in the context � = {f1 : NC, f2 : UC}

since f1 2 � and f2 2 � as shown below.

(f)
f1 : NC, f2 : UC | f2 : UC ` f1 : NC

(f)
f2 : UC | ? ` f2 : UC

(mv)
f1 : NC, f2 : UC | f2 : NC ` mv f1 f2 : void

Example 5.7.15. The command mv f1 f2 is not typable in the context � = {f1 : NC}

since f2 62 � as shown below.

(f)
f1 : NC | ? ` f1 : NC

(?)
? |? ` f2 :?

(?)
f1 : NC |? ` mv f1 f2 :?

5.7.8 Typing rule for copy command

� | �0 ` f1 : ⌧ ⌧ v LCn>0

(copy)
� | �0, f1 : red(⌧), f2 : dst(⌧) ` copy f1 f2 : void

The typing rule for copy command says that if we can type f1 from the context �,

and f1 is of type UC or LCn>0, then we can type the command copy f1 f2 of type void

and the type of f1 is changed to be red(T (f1)), and f2 will added to the context � and

assigned the type dst(f1), provided that f2 62 �.

Example 5.7.16. The command copy f1 f2 is typable in the context � = {f1 : LC1}

since f1 2 �, f2 62 � and T (f1) v LCn>0 as shown below.

(f)
f1 : LC

1 | ? ` f1 : LC
1 LC1 v LCn>0

(copy)
f1 : LC

1 | f1 : LC
0, f2 : NC ` copy f1 f2 : void

Example 5.7.17. The command copy f1 f2 is not typable in the context � = {f1 : LC0}

since T (f1) 6v LCn>0 as shown below.

(f)
f1 : LC

0 | ? ` f1 : LC
0 LC0 6v LCn>0

(?)
f1 : LC

0 |? ` copy f1 f2 :?

128

Example 5.7.18. The command copy f1 f2 is not typable in the context � = {f1 :

LC1, f2 : UC} since f2 2 � as shown below.

(f)
f1 : LC

1, f2 : UC | f2 : UC ` f1 : LC
1 LC1 v LCn>0

(?)
f1 : LC

1 | f2 : UC, f1 : LC
1, ? ` copy f1 f2 :?

Example 5.7.19. The command copy f1 f2 is not typable in the context � = ? since

f1 62 � as shown below.

(?)
? |? ` f1 :? ? v LCn>0

(?)
? |? ` copy f1 f2 :?

5.7.9 Typing rule for append command

� | �0 ` f1 : ⌧ �0 | �00 ` f2 : ⌧
0

(append)
� | �00, f3 : ⌧ t ⌧ 0 ` append f1 f2 f3 : void

The typing rule for append command says that if we can type f1 and f2 from the

context �, then we can type the command append f1 f2 f3 of type void and f1 and f2 will

be consumed from the context � while f3 will be added to the context � and its type will

be the least upper bound of the type of f1 and the type of f2, provided that f3 62 �.

Example 5.7.20. The command append f1 f2 f3 is typable in the context � = {f1 :

UC, f2 : NC} since f1 2 �, f2 2 �, and f3 62 � as shown below.

(f)
f1 : UC, f2 : NC | f2 : NC ` f1 : UC

(f)
f2 : NC | ? ` f2 : NC

(append)
f1 : UC, f2 : NC | f3 : NC ` append f1 f2 f3 : void

Example 5.7.21. The command append f1 f2 f3 is not typable in the context � = {f1 :

UC, f2 : NC, f3 : LC
0} since f3 2 � as shown below.

(f)
� | f2 : NC, f3 : LC0 ` f1 : UC

(f)
f2 : NC, f3 : LC

0 | f3 : LC0 ` f2 : NC
(?)

� | f3 : LC0, ? ` append f1 f2 f3 : void

Example 5.7.22. The command append f1 f2 f3 is not typable in the context � = {f1 :

UC} since f2 62 � as shown below.

(f)
f1 : UC | ? ` f1 : UC

(?)
? |? ` f2 :?

(?)
f1 : UC |? ` append f1 f2 f3 :?

129

5.7.10 Typing rule for move command

� | �0 ` f1 : ⌧
(move)

� | �0, f2 : ⌧ ` move f1 f2 : void

The typing rule for move command says that if we can type f1 from the context �,

then we can type the command move f1 f2 of type void and f1 will be consumed from the

context � while f2 will be added to the context � and its type will be the same as the

type of f1, provided that f2 62 �.

Example 5.7.23. The command move f1 f2 is typable in the context � = {f1 : NC} since

f1 2 � and f2 62 � as shown below.

(f)
f1 : NC | ? ` f1 : NC

(move)
f1 : NC | f2 : NC ` move f1 f2 : void

Example 5.7.24. The command move f1 f2 is not typable in the context � = {f1 :

NC, f2 : UC} since f2 2 � as shown below.

(f)
f1 : NC, f2 : UC | f2 : UC ` f1 : NC

(?)
f1 : NC, f2 : UC | f2 : UC, ? ` move f1 f2 :?

Example 5.7.25. The command move f1 f2 is not typable in the context � = ? since

f1 62 � as shown below.

(?)
? |? ` f1 :?

(?)
? |? ` move f1 f2 :?

5.7.11 Typing rule for sequences of commands

� | �0 ` c : void �0 | �00 ` cs : void
(cs)

� | �00 ` c; cs : void

The typing rule for sequences of commands cs says that if typing the command c of

type void changes the context � to �0 and typing the command cs of type void changes

the context �0 to �00, then typing these commands in sequence changes the context � to

�00.

Example 5.7.26. The sequence of commands rd f1; rdf2; rd f3 is typable in the context

� = {f1 : UC, f2 : LC2, f3 : NC} as shown below. To compress the proof, let � = {f2 :

LC2, f3 : NC}.

(f)
� | � ` f1 : UC

(rd)
� | � ` rd f1 : void

(f)
� | f3 : NC ` f2 : LC

2

(rd)
� | f3 : NC ` rd f2 : void

(f)
f3 : NC | ? ` f3 : NC

(rd)
f3 : NC | ? ` rd f3 : void

(rd)
� | ? ` rdf2; rd f3 : void

(cs)
f1 : UC, f2 : LC

2, f3 : NC | ? ` rd f1; rdf2; rd f3 : void

130

E
x
a
m
p
le

5
.7
.2
8
.
T
h
e
co
m
m
an

d
s
m
k
f
f 1

L
C
2
;c
o
p
y
f 1

f 2
;a
p
p
e
n
d
f 1

f 2
f 3
;m
o
v
e
f 3

f 4
;r
d
f 4

ar
e
ty
p
ab

le
in

th
e
co
nt
ex
t
�
=

?
.
T
o
co
m
p
re
ss

th
e

p
ro
of

le
t,
�

=
{f

1
:
L
C
1
,f

2
:
N
C
}
an

d
�

0
=

{f
3
:
N
C
}.

(
m
k
f
)

?
|
f
1

:
L
C

2
`

m
k
f
f
1

L
C

2
:
v
o
i
d

(
f
)

f
1

:
L
C

2
|
?

`
f
1

:
L
C

2
L
C

2
v

L
C

N
>

0

(
c
o
p
y
)

f
1

:
L
C

2
|
�

`
c
o
p
y
f
1

f
2

:
v
o
i
d

(
f
)

�
|
f
2

:
N
C

`
f
1

:
L
C

1
(
f
)

f
2

:
N
C

|
?

`
f
2

:
N
C

(
a
p
p
e
n
d
)

�
|
�

0
`

a
p
p
e
n
d
f
1

f
2

f
3

:
v
o
i
d

(
f
)

�

0
|
?

`
f
3

:
N
C

(
m
o
v
e
)

�

0
|
f
4

:
N
C

`
m
o
v
e
f
3

f
4

:
v
o
i
d

(
f
)

f
4

:
N
C

|
?

`
f
4

:
N
C

(
r
d
)

f
4

:
N
C

|
?

`
r
d
f
4

:
v
o
i
d

(
c
s
)

�

0
|
?

`
m
o
v
e
f
3

f
4
;
r
d
f
4

:
v
o
i
d

(
c
s
)

�
|
?

`
a
p
p
e
n
d
f
1

f
2

f
3
;
m
o
v
e
f
3

f
4
;
r
d
f
4

:
v
o
i
d

(
c
s
)

f
1

:
L
C

2
|
?

`
c
o
p
y
f
1

f
2
;
a
p
p
e
n
d
f
1

f
2

f
3
;
m
o
v
e
f
3

f
4
;
r
d
f
4

:
v
o
i
d

(
c
s
)

?
|
?

`
m
k
f
f
1

L
C

2
;
c
o
p
y
f
1

f
2
;
a
p
p
e
n
d
f
1

f
2

f
3
;
m
o
v
e
f
3

f
4
;
r
d
f
4

:
v
o
i
d

E
x
a
m
p
le

5
.7
.2
7
.
T
h
e
se
qu

en
ce

of
co
m
m
an

d
s
c
o
p
y
f 1

f 2
;r
d
f 2
;r
m
f 1

is
ty
p
ab

le
in

th
e
co
nt
ex
t
�
=

{f
1
:
L
C
2
}
as

sh
ow

n
b
el
ow

.
T
o
co
m
p
re
ss

th
e

p
ro
of
,
le
t
�

=
{f

1
:
L
C
1
,f

2
:
N
C
},

�
0
=

{f
1
:
L
C
1
}
an

d
C

=
L
C
2
v

L
C
n
>
0
.

(f
)

�
|?
`
f 1

:
L
C
2

C
(c
o
p
y
)

�
|�
`
c
o
p
y
f 1

f 2
:
vo
id

(f
)

�
|�

0
`
f 2

:
N
C

(r
d
)

�
|�

0
`
r
d
f 2

:
vo
id

(f
)

�
0
|?
`
f 1

:
L
C
1

(r
m
)

�
0
|?
`
r
m
f 1

:
vo
id

�
|?
`
r
d
f 2
;r
m
f 1

:
vo
id

(c
s)

�
|?
`
c
o
p
y
f 1

f 2
;r
d
f 2
;r
m
f 1

:
vo
id

131

5.8 Properties of the type system

In this section we prove the soundness of our type system with respect to the operational

semantics. A type system is sound if well-typed programs compute without evaluation

errors. We defined evaluation errors to be syntactical and type errors. Syntactical errors

can occur by all commands while type errors can only occur by two commands which

are cp and copy. This is because cp and copy commands apply the operations dst(⌧)

and red(⌧) to the type of the source file and will cause a type error if their constraints

are not satisfied. Therefore, all well-typed commands evaluate without an error if they

can evaluate without syntactical errors and well-typed cp and copy commands evaluate

without an error if they can evaluate without syntactical errors as well as type errors. We

prove the soundness of our type system by proving two properties which are progress and

preservation.

5.8.1 Progress

Traditionally, the progress theorem states that a program is either a value or can take a

step of evaluation. However, in our case, programs are commands that operate on files in

a file system, and should always take a step of evaluation. Therefore, if a command e is

typable in a particular file system �, then the command e must take a step of evaluation.

Theorem 5.8.1 (Progress). If � = � and � | �0 ` e : ⌧ , then he, �i 6! Err

Proof. We proceed by cases on typing derivation of e. There are 9 cases as follows.

1. e = cp f1 f2

We know there is a typing derivation for e by using rule (cp) with conclusion: � |

�00, f1 : red(⌧), f2 : ⌧ 0 t dst(⌧) ` cp f1 f2 : void. We must also have subderivations

with conclusions: � | �0 ` f1 : ⌧ , ⌧ v LCn>0 and �0 | �00 ` f2 : ⌧ 0. Now we can

use rule (1) to obtain hcp f1 f2 , �i ! �[f2 C(f1)][f2 T (f2) t dst(T (f1))][f1

red(T (f1))]. Since the configuration hcp f1 f2 , �i require f1 2 � and f2 2 � and

f1 6= f2 to be evaluated without syntactical error, and we have f1 2 � and f2 2 �

and f1 6= f2 in �, because � does not allow repetition of file names, and � = �.

Then, hcp f1 f2 , � i 6!s Err. Also, since the operations dst(T (f1)) and red(T (f1))

requires (T (f1)) v LCn>0 in � and we have T (f1) v LCn>0 in � and � = �. Then,

hcp f1 f2 , � i 6! Err as required.

2. e = rm f

132

We know there is a typing derivation for e by using rule (rm) with conclusion: � |

�0 ` rm f : void. We must also have subderivation with conclusion: � | �0 ` f : ⌧ .

Now we can use rule (2) to obtain hrm f, �i ! �[�f]. Since the configuration hrm f, �i

requires f 2 � to be evaluated without syntactical error, and we have f 2 � and

� = �. Then hrm f, �i 6! Err.

3. e = mkf f t

We know there is a typing derivation for e by using rule (mkf) with conclusion:

� | �, f : t ` mkf f t : void. Now we can use rule (3) to obtain hmkf f t, �i !

�[+f][f t]. Since the configuration hmkf f t, �i requires f 62 � to be evaluated

without syntactical error, and we have f 62 �, because the symbol “,” in �, f : t does

not allow repetition of file names, and � = �. Then, hmkf f t, �i 6! Err.

4. e = rd f

We know there is a typing derivation for e by using rule (rd) with conclusion: � |

�0 ` rd f : void. We must also have subderivation with conclusion: � | �0 ` f : ⌧ .

Now we can use rule (4) to obtain hrd f, �i ! �[�f]. Since the configuration hrd f, �i

requires f 2 � to be evaluated without syntactical error, and we have f 2 � and

� = �. Then hrd f, �i 6! Err.

5. e = cat f1 f2 f3

We know there is a typing derivation for e by using rule (cat) with conclusion:

� | �000, f3 : ⌧ t ⌧ 0 t ⌧ 00 ` cat f1 f2 f3 : void. We must also have subderivations

with conclusions: � | �0 ` f1 : ⌧ , �0 | �00 ` f2 : ⌧ 0, and �00 | �000 ` f3 : ⌧ 00. Now

we can use rule (5) to obtain hcat f1 f2 f3, �i ! �[f3 C(f1) + C(f2)][f3

T (f1) t T (f2) t T (f3)][�f1,�f2]. Since the configuration hcat f1 f2 f3, �i requires

f1 2 �, f2 2 �, f3 2 �, and f1, f2 and f3 have distinct names to be evaluated without

syntactical error, and we have f1 2 �, f2 2 �, f3 2 �, and f1, f2 and f3 have distinct

names in �, because � does not allow repetition of file names, and � = �. Then,

hcat f1 f2 f3, �i 6! Err.

6. e = mv f1 f2

We know there is a typing derivation for e by using rule (mv) with conclusion: � |

�00, f2 : ⌧ t ⌧ 0 ` mv f1 f2 : void. We must also have subderivations with conclusions:

� | �0 ` f1 : ⌧ and �0 | �00 ` f2 : ⌧ 0. Now we can use rule (6) to obtain hmv f1 f2 , �i !

�[f2 C(f1)][f2 T (f1)tT (f2)][�f1]. Since the configuration hmv f1 f2 , �i requires

133

f1 2 �, f2 2 �, and f1 6= f2 in � to be evaluated without syntactical error, and we

have f1 2 �, f2 2 �, and f1 6= f2 in �, because � does not allow repetition of file

names, and � = �. Then, hmv f1 f2, �i 6! Err.

7. e = copy f1 f2

We know there is a typing derivation for e by using rule (copy) with conclusion:

� | �0, f1 : red(⌧), f2 : dst(⌧) ` copy f1 f2 : void. We must also have subderivation

with conclusion: � | �0 ` f1 : ⌧ and ⌧ v LCn>0. Now we can use rule (7) to obtain

hcopy f1 f2 , �i ! �[+f2, f2 C(f1)][f2 dst(T (f1))][f1 red(T (f1))]. Since the

configuration hcopy f1 f2 , �i requires f1 2 �, f2 62 � and f1 6= f2 in � to be evaluated

without syntactical error, and we have f1 2 �, f2 62 � and f1 6= f2 in �, and � = �.

Then, hcopy f1 f2 , �i 6!s Err. Also, since the operations dst(T (f1)) and red(T (f1))

requires (T (f1)) v LCn>0 in � and we have T (f1) v LCn>0 in � and � = �. Then,

hcopy f1 f2 , � i 6! Err as required.

8. e = append f1 f2 f3

We know there is a typing derivation for e by using rule (append) with conclusion:

� | �00, f3 : ⌧ t ⌧ 0 ` append f1 f2 f3 : void. We must also have subderivations with

conclusions: � | �0 ` f1 : ⌧ and �0 | �00 ` f2 : ⌧ 0. Now we can use rule (8) to obtain

happend f1 f2 f3, �i ! �[+f3, f3 C(f1) + C(f2)][f3 T (f1) t T (f2)][�f1,�f2].

Since the configuration happend f1 f2 f3, �i requires f1 2 �, f2 2 �, f3 62 �, and f1,

f2 and f3 have distinct names in � to be evaluated without syntactical error, and we

have f1 2 �, f2 2 �, f3 62 �, and f1, f2 and f3 have distinct names in �, because �

does not allow repetition of file names, and � = �. Then, happend f1 f2 f3, �i 6! Err.

9. e = move f1 f2

We know there is a typing derivation for e by using rule (move) with conclusion:

� | �0, f2 : ⌧ ` move f1 f2 : void. We must also have subderivation with conclusion:

� | �0 ` f1 : ⌧ . Now we can use rule (9) to obtain hmove f1 f2, � i ! �[+f2, f2

C(f1)][f2 T (f1)][�f1]. Since the configuration hmove f1 f2, � i requires f2 62 �,

f1 2 �, and f1 6= f2 in �, and we have f2 62 �, f1 2 �, and f1 6= f2 in �, and � = �.

Then, hmove f1 f2, �i 6! Err.

134

5.8.2 Preservation

Traditionally, the preservation theorem states that as we evaluated a program, its type

is preserved at each evaluation step. As we mentioned above, in our case, programs are

commands which are all of type void. However, programs manipulate files and their types,

and we need to ensure that types of files are preserved during evaluation. Therefore, if a

command is typable in a particular file system �, then types of files we obtain by typing

the command must be preserved in the file system we obtain by evaluating the command.

This property shows the consistency of the type system with the operational semantics,

that is not only typed commands evaluate without errors, but also the types of files in the

file system after evaluating the command correspond to the types of files resulted from

typing the commands.

Theorem 5.8.2 (Preservation). If � = � and � | �0 ` e : ⌧ , and he, �i ! �0, then �0 = �0.

Proof. We proceed by cases on he, �i ! �0. There are 9 cases as follows.

1. e = hcp f1 f2 , � i ! �[f2 C(f1)][f2 T (f2) t dst(T (f1))][f1 red(T (f1))]

We know there is a typing derivation for e by using rule (cp) with conclusion: � |

�00, f1 : red(⌧), f2 : ⌧ 0 t dst(⌧) ` cp f1 f2 : void. We must also have subderivations

with conclusions: � | �0 ` f1 : ⌧ , ⌧ v LCn>0 and �0 | �00 ` f2 : ⌧ 0. To compress

the proof let �0 = �[f2 C(f1)][f2 T (f2) t dst(T (f1))][f1 red(T (f1))]. Now we

have the following cases based on typing f1 and f2.

(a) : � | �0 ` f1 : LC
n>0 �0 | �00 ` f2 : UC

In this case, the typing derivation of emust have the form � | �00, f1 : LC
n�1, f2 :

NC ` cp f1 f2 : void. Let �0 = �00, f1 : LCn�1, f2 : NC. Now we know that

� 6= �0 because �(f1) 6= �0(f1) and �(f2) 6= �0(f2), that is LC
n>0 6= LCn�1 and

UC 6= NC, respectively. We also know that � 6= �0 because �(f1) 6= �0(f1)

and �(f2) 6= �0(f2), that is LCn>0 6= LCn�1 and UC 6= NC, respectively.

Since � 6= �0 because �(f1) 6= �0(f1) and �(f2) 6= �0(f2), and � 6= �0 because

�(f1) 6= �0(f1) and �(f2) 6= �0(f2), and �0(f1) = �0(f1) that is LCn�1 = LCn�1

and �0(f2) = �0(f2) that is NC = NC, and � = �. Then, �0 = �0 as required.

(b) : � | �0 ` f1 : LC
n>0 �0 | �00 ` f2 : LC

n>0.

In this case, the typing derivation of emust have the form � | �00, f1 : LC
n�1, f2 :

NC ` cp f1 f2 : void. Let �0 = �00, f1 : LCn�1, f2 : NC. Now we know that

� 6= �0 because �(f1) 6= �0(f1) and �(f2) 6= �0(f2), that is LC
n>0 6= LCn�1 and

135

LCn>0 6= NC, respectively. We also know that � 6= �0 because �(f1) 6= �0(f1)

and �(f2) 6= �0(f2), that is LCn>0 6= LCn�1 and LCn>0 6= NC, respectively.

Since � 6= �0 because �(f1) 6= �0(f1) and �(f2) 6= �0(f2), and � 6= �0 because

�(f1) 6= �0(f1) and �(f2) 6= �0(f2), and �0(f1) = �0(f1) that is LCn�1 = LCn�1

and �0(f2) = �0(f2) that is NC = NC, and � = �. Then, �0 = �0 as required.

(c) : � | �0 ` f1 : LC
n>0 �0 | �00 ` f2 : NC

In this case, the typing derivation of emust have the form � | �00, f1 : LC
n�1, f2 :

NC ` cp f1 f2 : void. Let �0 = �00, f1 : LCn�1, f2 : NC. Now we know that

� 6= �0 because �(f1) 6= �0(f1), that is LCn>0 6= LCn�1. We also know that

� 6= �0 because �(f1) 6= �0(f1), that is LCn>0 6= LCn�1. Since � 6= �0 because

�(f1) 6= �0(f1), and � 6= �0 because �(f1) 6= �0(f1), and �0(f1) = �0(f1), that is

LCn�1 = LCn�1 and � = �. Then, �0 = �0 as required.

(d) : � | �0 ` f1 : UC �0 | �00 ` f2 : UC

In this case, the typing derivation of e must have the form � | �00, f1 : UC, f2 :

UC ` cp f1 f2 : void. Let �0 = �00, f1 : UC, f2 : UC. Now we know that � = �0

and � = �0. Since � = �0 and � = �0 and � = �, then �0 = �0.

(e) : � | �0 ` f1 : UC �0 | �00 ` f2 : LC
n>0

In this case, the typing derivation of e must have the form � | �00, f1 : UC, f2 :

LCn>0 ` cp f1 f2 : void. Let �0 = �00, f1 : UC, f2 : LCn>0. Now we know that

� = �0 and � = �0. Since � = �0 and � = �0 and � = �, then �0 = �0.

(f) : � | �0 ` f1 : UC �0 | �00 ` f2 : NC

In this case, the typing derivation of e must have the form � | �00, f1 : UC, f2 :

NC ` cp f1 f2 : void. Let �0 = �00, f1 : UC, f2 : NC. Now we know that � = �0

and � = �0. Since � = �0 and � = �0 and � = �, then �0 = �0.

2. e = hrm f, �i ! �[�f]

We know there is a typing derivation for e by using rule (rm) with conclusion: � | �0 `

rm f : void. We must also have subderivation with conclusion: � | �0 ` f : ⌧ . We

know that � 6= �0 because f 62 �0. We also know that � 6= �[�f] because f 62 �[�f].

Since � 6= �0 because f 62 �0 and � 6= �[�f] because f 62 �[�f], and � = �. Then,

�0 = �[�f] as required.

3. e = hmkf f t, �i ! �[+f][f t]

We know there is a typing derivation for e by using rule (mkf) with conclusion:

� | �, f : t ` mkf f t : void. Let �0 = �, f : t and �0 = �[+f][f t]. We know that

136

� 6= �0 because f : t 2 �0. We also know that � 6= �0 because f : t 2 �0. Since � 6= �0

because f : t 2 �0, and � 6= �0 because f : t 2 �0, and �0(f) = �0(f), and � = �.

Then, �0 = �0 as required.

4. e = hrd f, �i ! �[�f]

We know there is a typing derivation for e by using rule (rd) with conclusion: � | �0 `

rd f : void. We must also have subderivation with conclusion: � | �0 ` f : ⌧ . We

know that � 6= �0 because f 62 �0. We also know that � 6= �[�f] because f 62 �[�f].

Since � 6= �0 because f 62 �0 and � 6= �[�f] because f 62 �[�f], and � = �. Then,

�0 = �[�f] as required.

5. e = hcat f1 f2 f3, �i ! �[f3 C(f1)+C(f2)][f3 T (f1)tT (f2)tT (f3)][�f1,�f2]

We know there is a typing derivation for e by using rule (cat) with conclusion:

� | �000, f3 : ⌧ t ⌧ 0 t ⌧ 00 ` cat f1 f2 f3 : void. We must also have subderivations

with conclusions: � | �0 ` f1 : ⌧ , �0 | �00 ` f2 : ⌧ 0, and �00 | �000 ` f3 : ⌧ 00. Let

�0 = �[f3 C(f1)+C(f2)][f3 T (f1)tT (f2)tT (f3)][�f1,�f2]. Now we have the

following cases based on typing f1, f2, and f3.

(a) � | �0 ` f1 : NC �0 | �00 ` f2 : LC
n>0 �00 | �000 ` f3 : UC

In this case, the typing derivation of e must have the form � | �000, f3 : NC `

cat f1 f2 f3 : void. Let �0 = �000, f3 : NC. We know that � 6= �0 because

f1 : NC 62 �0, f2 : LCn>0 62 �0 and �(f3) 6= �0(f3), that is UC 6= NC. We also

know that � 6= �0 because f1 : NC 62 �0, f2 : LCn>0 62 �0 and �(f3) 6= �0(f3),

that is UC 6= NC. Since � 6= �0 because f1 : NC 62 �0, f2 : LCn>0 62 �0

and �(f3) 6= �0(f3), and � 6= �0 because f1 : NC 62 �0, f2 : LCn>0 62 �0 and

�(f3) 6= �0(f3), and �0(f3) = �0(f3), that is NC = NC, and � = �. Then,

�0 = �0.

Other cases are similar.

6. e = hmv f1 f2 , � i ! �[f2 C(f1)][f2 T (f1) t T (f2)][�f1]

We know there is a typing derivation for e by using rule (mv) with conclusion: � |

�00, f2 : ⌧ t ⌧ 0 ` mv f1 f2 : void. We must also have subderivations with conclusions:

� | �0 ` f1 : ⌧ and �0 | �00 ` f2 : ⌧ 0. Let �0 = �[f2 C(f1)][f2 T (f1)tT (f2)][�f1].

Now we have the following cases based on typing f1 and f2.

(a) � | �0 ` f1 : NC �0 | �00 ` f2 : UC

137

In this case, the typing derivation of e must have the form � | �00, f2 : NC `

mv f1 f2 : void. Let �0 = �00, f2 : NC. Now we know that � 6= �0 because

f1 : NC 62 �0 and �(f2) 6= �0(f2), that is UC 6= NC. We also know that � 6= �0

because f1 : NC 62 �0 and �(f2) 6= �0(f2), that is UC 6= NC. Since � 6= �0

because f1 : NC 62 �0 and �(f2) 6= �0(f2), and � 6= �0 because f1 : NC 62 �0 and

�(f2) 6= �0(f2), and �0(f2) = �0(f2), and � = �. Then, �0 = �0.

Other cases are similar.

7. e = hcopy f1 f2 , �i ! �[+f2, f2 C(f1)][f2 dst(T (f1))][f1 red(T (f1))]

We know there is a typing derivation for e by using rule (copy) with conclusion:

� | �0, f1 : red(⌧), f2 : dst(⌧) ` copy f1 f2 : void. We must also have subderivation

with conclusion: � | �0 ` f1 : ⌧ and ⌧ v LCn>0. Let �0 = �[+f2, f2 C(f1)][f2

dst(T (f1))][f1 red(T (f1))]. Now we have the following cases based on typing f1.

(a) � | �0 ` f1 : LC
n>0

In this case, the typing derivation of emust have the form � | �00, f1 : LC
n�1, f2 :

NC ` cp f1 f2 : void. Let �0 = �00, f1 : LCn�1, f2 : NC. We know that � 6= �0

because �(f1) 6= �0(f1), that is LC
n>0 6= LCn�1 and f2 : NC 2 �0. We also know

that � 6= �0 because �(f1) 6= �0(f1), that is LCn>0 6= LCn�1 and f2 : NC 2 �0.

Since � 6= �0 because �(f1) 6= �0(f1) and f2 : NC 2 �0, and � 6= �0 because

�(f1) 6= �0(f1) and f2 : NC 2 �0, and �0(f1) = �0(f1), that is LCn�1 = LCn�1,

and �0(f2) = �0(f2), that is NC = NC, and � = �. Then, �0 = �0.

(b) � | �0 ` f1 : UC

In this case, the typing derivation of e must have the form � | �00, f1 : UC, f2 :

UC ` cp f1 f2 : void. Let �0 = �00, f1 : UC, f2 : UC. We know that � 6= �0

because f2 : UC 2 �0. We also know that � 6= �0 because f2 : UC 2 �0.

Since � 6= �0 because f2 : UC 2 �0, and � 6= �0 because f2 : UC 2 �0, and

�0(f2) = �0(f2), that is UC = UC, and � = �. Then, �0 = �0.

8. e = happend f1 f2 f3, �i ! �[+f3, f3 C(f1)+C(f2)][f3 T (f1)tT (f2)][�f1,�f2]

We know there is a typing derivation for e by using rule (append) with conclusion:

� | �00, f3 : ⌧ t ⌧ 0 ` append f1 f2 f3 : void. We must also have subderivations

with conclusions: � | �0 ` f1 : ⌧ and �0 | �00 ` f2 : ⌧ 0. Let �0 = �[+f3, f3

C(f1)+C(f2)][f3 T (f1)tT (f2)][�f1,�f2]. Now we have 6 cases based on typing

f1 and f2, we show two of them.

138

(a) : � | �0 ` f1 : UC �0 | �00 ` f2 : NC

In this case, the typing derivation of e must have the form � | �00, f3 : NC `

append f1 f2 f3 : void. Let �0 = �00, f3 : NC. We know that � 6= �0 because

f1 : UC 62 �0, f2 : NC 62 �0, and f3 : NC 2 �0. We also know that � 6= �0 because

f1 : UC 62 �0, f2 : NC 62 �0, and f3 : NC 2 �0. Since � 6= �0 because f1 : UC 62 �0,

f2 : NC 62 �0 and f3 : NC 2 �0, and � 6= �0 because f1 : UC 62 �0, f2 : NC 62 �0

and f3 : NC 2 �0, and � = �. Then, �0 = �0.

(b) : � | �0 ` f1 : UC �0 | �00 ` f2 : LC
n>0

In this case, the typing derivation of e must have the form � | �00, f3 : LC
n>0 `

append f1 f2 f3 : void. Let �0 = �00, f3 : LC
n>0. We know that � 6= �0 because

f1 : UC 62 �0, f2 : LCn>0 62 �0, and f3 : LCn>0 2 �0. We also know that � 6= �0

because f1 : UC 62 �0, f2 : LCn>0 62 �0, and f3 : LCn>0 2 �0. Since � 6= �0

because f1 : UC 62 �0, f2 : LCn>0 62 �0 and f3 : LCn>0 2 �0, and � 6= �0 because

f1 : UC 62 �0, f2 : LC
n>0 62 �0 and f3 : LC

n>0 2 �0, and � = �. Then, �0 = �0.

Other cases are similar.

9. e = hmove f1 f2, � i ! �[+f2, f2 C(f1)][f2 T (f1)][�f1]

We know there is a typing derivation for e by using rule (move) with conclusion:

� | �0, f2 : ⌧ ` move f1 f2 : void. We must also have subderivation with conclusion:

� | �0 ` f1 : ⌧ . Let �0 = �[+f2, f2 C(f1)][f2 T (f1)][�f1]. Now we have the

following cases based on typing f1.

(a) � | �0 ` f1 : NC

In this case, the typing derivation of e must have the form � | �0, f2 : NC `

move f1 f2 : void. Let �0 = �0, f2 : NC. Now we know that � 6= �0 because

f1 : NC 62 �0 and f2 : NC 2 �0. We also know that � 6= �0 because f1 : NC 62 �0

and f2 : NC 2 �0. Since � 6= �0 because f1 : NC 62 �0 and f2 : NC 2 �0, and

� 6= �0 because f1 : NC 62 �0 and f2 : NC 2 �0, and �0(f2) = �0(f2), and � = �.

Then, �0 = �0.

Other cases are similar.

139

5.9 Type inference algorithm

In this section we present a type inference algorithm T for typing phrases. The type

inference algorithm T finds the type of a phrase within a given type environment if any

such type exists. That is, for a given phrase e and initial type environment A, the type

inference algorithm computes a type ⌧ of e if e is typable or fails if e is not typable.

We prove two properties of the algorithm T which are soundness and completeness. The

algorithm T is sound if it only computes types of phrases that are typable in the given

type environment. This property is useful to show that the algorithm T will not give false

positive results. The algorithm T is complete if it only fails to compute types of phrases

that are not typable in the given type environment. This property is useful to show that

the algorithm T will not give false negative results.

5.9.1 Algorithm T

The algorithm T is defined as a recursive function. The main function T (A, e), takes a type

environment A and a phrase e, and computes (⌧, A0) which is the unique type ⌧ of e and

the new environment A0. The algorithm fails if any of the recursive invocations of T (A, e)

fails or any of the invocations of the helper functions defined below fails. Such failure

indicates a typing error. We define a number of helper functions: check(↵, �) returns

true if the types are compatible. Note that any two base types are not compatible, e.g.

check(LC, void) will fail, and type variable and base type will always succeed. less(⌧, ⌧ 0)

returns true if ⌧ v ⌧ 0. lub(⌧, . . . , ⌧
n

) returns the least upper bound of all its parameters

i.e. ⌧ t . . .t⌧
n

. It should be noted that unification is not needed in our case, since we need

to check for base types rather variable types. Using these functions, we can now define

the type inference algorithm T :

T (A, e) = (⌧, A0)

where:

1. If e is the filename f , and f : ↵ 2 A then ⌧ = ↵, A0 = Ar {f : ↵}.

2. If e is a sequence of commands, c; cs let

(�,A1) = T (A, c)

check(�, void)

(↵,A2) = T (A1, cs)

check(↵, void)

then ⌧ = void, A0 = A2.

140

3. If e is the command cp f1 f2 let

(�,A1) = T (A, f1)

less(�, LCn>0)

(↵,A2) = T (A1, f2)

then if f1, f2 62 A2, then ⌧ = void, A0 = A2 [{f1 : red(�), f2 : lub(↵, dst(�))}.

4. If e is the command rm f let

(↵,A1) = T (A, f)

then ⌧ = void, A0 = A1.

5. If e is the command mkf f t, then if f 62 A, then ⌧ = void, A0 = A [{f : t}.

6. If e is the command rd f let

(↵,A1) = T (A, f)

then ⌧ = void, A0 = A1.

7. If e is the command cat f1 f2 f3 let

(�,A1) = T (A, f1)

(↵,A2) = T (A1, f2)

(�, A3) = T (A2, f3)

then if f3 62 A3, then ⌧ = void, A0 = A3 [{f3 : lub(�, ↵, �)}.

8. If e is the command mv f1 f2 let

(�,A1) = T (A, f1)

(↵,A2) = T (A1, f2)

then if f2 62 A2, then ⌧ = void, A0 = A2 [{f2 : lub(�, ↵)}.

9. If e is the command copy f1 f2 let

(�,A1) = T (A, f1)

less(�, LCn>0)

then if f2 62 A and f1 62 A1, then ⌧ = void, A0 = A1 [{f1 : red(�), f2 : dst(�)}.

141

10. If e is the command append f1 f2 f3 let

(�,A1) = T (A, f1)

(↵,A2) = T (A1, f2)

then if f3 62 A, then ⌧ = void, A0 = A2 [{f3 : lub(�, ↵)}.

11. If e is the move command, move f1 f2 let

(�,A1) = T (A, f1)

then if f2 62 A, then ⌧ = void, A0 = A1 [{f2 : �}.

5.9.2 Soundness of T

In this section we show that the algorithm T is sound with respect to the formal typing

system. The algorithm T is sound if for any given type environment A and phrase e, if

the algorithm T on input A and e computes the new environment A0 and the type ⌧ , then

there is a derivation for e such that A | A0 ` e : ⌧ in the type system:

T (A, e) = (⌧, A0)) A | A0 ` e : ⌧

Theorem 5.9.1 (Soundness of T). If T (A, e) succeeds with (⌧, A0), then there is a deriv-

ation ending in A | A0 ` e : ⌧ .

Proof. We proceed by induction on the structure of the prhase e. There are 11 cases as

follows.

1. If e is the filename f and f : ⌧ 2 A [{f : ⌧}, then T (A [{f : ⌧}, f) succeeds

immediately with (⌧, A). Using the (f) rule, there is a derivation ending in A, f : ⌧ |

A ` f : ⌧ as required.

2. If e is the sequence of commands c; cs, then T (A, c) succeeds with (�,A1), check(�, void)

succeeds, T (A1, cs) succeeds with (↵,A2), and check(↵, void) also succeeds. Now,

by the inductive hypothesis twice, there are derivations A | A1 ` c : void and

A1 | A2 ` cs : void. Using the (cs) rule, there is a derivation A | A2 ` c; cs : void as

required.

3. If e is the cp command cp f1 f2, then T (A, f1) succeeds with (�,A1) and T (A1, f2)

succeeds with (↵,A2). By the inductive hypothesis twice, there are derivations

ending in A | A1 ` f1 : � and A1 | A2 ` f2 : ↵. Since less(�,LCn>0), we have

� v LCn>0 and now we can use the (cp) rule to give a derivation of A | A2, f1 :

red(�), f2 : ↵ t dst(�) ` cp f1 f2 : void as required.

142

4. If e is the rm command rm f , then T (A, f) succeeds with (↵,A1). By the inductive

hypothesis, there is a derivation of A | A1 ` f : ↵. Now we can use the (rm) rule to

give a derivation of A | A1 ` rm f : void as required.

5. If e is the mkf command mkf f t and f 62 A, then T (A, (mkf f t)) succeeds im-

mediately with (void, A [{f : ⌧}). Using the (mkf) rule, there is a derivation

A | A, f : t ` mkf f t : void as required.

6. If e is the rd command rd f , then T (A, f) succeeds with (↵,A1). By the inductive

hypothesis, there is a derivation ending in A | A1 ` f : ↵. Using the (rd) rule, there

is a derivation A | A1 ` rd f : void as required.

7. If e is the cat command cat f1 f2 f3, then T (A, f1) succeeds with (�,A1), T (A1, f2)

succeeds with (↵,A2), and T (A2, f3) succeeds with (�, A3). Now, by the inductive

hypothesis triple, there are derivations ending in A | A1 ` f1 : �, A1 | A2 ` f2 : ↵,

and A2 | A3 ` f3 : �. Using the (cat) rule, there is a derivation A | A3, f3 : �t↵t� `

cat f1 f2 f3 : void as required.

8. If e is the mv command mv f1 f2, then T (A, f1) succeeds with (�,A1) and T (A1, f2)

succeeds with (↵,A2). By the inductive hypothesis twice, there are derivations

ending in A | A1 ` f1 : � and A1 | A2 ` f2 : ↵. Now we can use the (mv) rule to give

a derivation of A | A2, f2 : � t ↵ ` mv f1 f2 : void as required.

9. If e is the copy command copy f1 f2, then T (A, f1) succeeds with (�,A1). By

the inductive hypothesis, there is a derivation ending in A | A1 ` f1 : �. Since

less(�,LCn>0), we have � v LCn>0 and now we can use the (copy) rule to give a

derivation of A | A1, f1 : red(�)f2 : dst(�) ` copy f1 f2 : void as required.

10. If e is the append command append f1 f2 f3, then T (A, f1) succeeds with (�,A1)

and T (A1, f2) succeeds with (↵,A2). By the inductive hypothesis twice, there are

derivations ending in A | A1 ` f1 : � and A1 | A2 ` f2 : ↵. Now by using the

(append) rule, there is a derivation of A | A2, f3 : � t ↵ ` append f1 f2 f3 : void as

required.

11. If e is the move command move f1 f2, then T (A, f1) succeeds with (�,A1). By the

inductive hypothesis, there is a derivation ending in A | A1 ` f1 : �. Using the

(move) rule, there is a derivation of A | A1, f2 : � ` move f1 f2 : void as required.

143

5.9.3 Completeness of T

In this section we show that the algorithm T is complete with respect to the formal typing

system. The algorithm T is complete if for any given type environment A and phrase e, if

there is a derivation for e such that A | A0 ` e : ⌧ in the type system, then the algorithm

T on input A and e will compute the new environment A0 and the type ⌧ .

A | A0 ` e : ⌧) T (A, e) = (⌧, A0)

Theorem 5.9.2 (Completeness of T). If there is a derivation ending in A | A0 ` e : ⌧ ,

then T (A, e) succeeds with (⌧, A0).

Proof. We proceed by induction on the structure of the prhase e. There are 11 cases as

follows.

1. If e is the file name f and f : ⌧ 2 A[{f : ⌧}, then by (f) rule, there is a derivation

ending in A, f : ⌧ | A ` f : ⌧ . Now, T (A [{f : ⌧}, f) succeeds with (⌧, A) as

required.

2. If e is the sequence of commands c; cs, then by (cs) rule there is a derivation ending

in A | A2 ` c; cs : void which consists of two derivations: A | A1 ` c : void and

A1 | A2 ` cs : void. By the induction hypothesis twice, T (A, c) succeeds with

(void, A1) for the first derivation and T (A1, cs) succeeds with (void, A2) for the

second derivation. Now T (A, (c, cs)) succeeds with (void, A2) as requied.

3. If e is the cp command cp f1 f2, then by (cp) rule, there is a derivation ending

in A | A2, f1 : red(�), f2 : ↵ t dst(�) ` cp f1 f2 : void which consists of two

derivations: A | A1 ` f1 : � and A1 | A2 ` f2 : ↵. By the induction hypothesis twice

and since � v LCn>0 we have less(�,LCn>0), T (A, f1) succeeds with (�,A1) for

the first derivation, and T (A1, f2) succeeds with (↵,A2) for the second derivation.

Now T (A, (cp f1 f2)) succeeds with (void, A2 [{f1 : red(�), f2 : lub(↵, dst(�))}) as

required.

4. If e is the rm command rm f , then by (rm) rule there is a derivation ending in

A | A1 ` rm f : void which consists of one derivation: A | A1 ` f : �. By the

induction hypothesis, T (A, f) succeeds with (�,A1). Now T (A, (rm f)) succeeds

with (void, A1) as required.

5. If e is the command mkf f t and f 62 A, then by (mkf) rule, there is a derivation

ending in A | A, f : ⌧ ` mkf f t : void. Now, T (A, (mkf f t)) succeeds with

(void, A [{f : ⌧}) as required.

144

6. If e is the command rd f , then by (rd) rule there is a derivation ending in A | A1 `

rd f : void which consists of one derivation: A | A1 ` f : �. By the induction hypo-

thesis, T (A, f) succeeds with (�,A1). Now, T (A, (rd f)) succeeds with (void, A1)

as required.

7. If e is the cat command cat f1 f2 f3, then by (cat) rule, there is a derivation

ending in A | A3, f3 : � t ↵ t � ` cat f1 f2 f3 : void which consists of three

derivations: A | A1 ` f1 : �, A1 | A2 ` f2 : ↵, and A2 | A3 ` f3 : �. By the

induction hypothesis triple, T (A, f1) succeeds with (�,A1), T (A1, f2) succeeds with

(↵,A2), and T (A2, f3) succeeds with (�, A3). Now, T (A, (cat f1 f2 f3)) succeeds

with (void,A3 [{f3 : lub(�, ↵, �)}) as required.

8. If e is the mv command mv f1 f2, then by (mv) rule, there is a derivation ending in

A | A2, f2 : � t ↵ ` mv f1 f2 : void which consists of two derivations: A | A1 ` f1 : �

and A1 | A2 ` f2 : ↵. By the induction hypothesis twice, T (A, f1) succeeds with

(�,A1) and T (A1, f2) succeeds with (↵,A2). Now, T (A, (mv f1 f2)) succeeds with

(void, A2 [{f2 : lub(�, ↵)}) as required.

9. If e is the copy command copy f1 f2, then by (copy) rule, there is a derivation

ending in A | A1, f1 : red(�), f2 : dst(�) ` copy f1 f2 : void which consists of one

derivation: A | A1 ` f1 : �. By the induction hypothesis and since � v LCn>0

we have less(�,LCn>0), T (A, f1) succeeds with (�,A1). Now T (A, (copy f1 f2))

succeeds with (void, A1 [{f1 : red(�)f2 : dst(�)}) as required.

10. If e is the append command append f1 f2 f3, then by (append) rule, there is a

derivation ending in A | A2, f3 : � t ↵ ` append f1 f2 f3 : void which consists of

two derivations: A | A1 ` f1 : � and A1 | A2 ` f2 : ↵. By the induction hypothesis

twice, T (A, f1) succeeds with (�,A1) and T (A1, f2) succeeds with (↵,A2). Now,

T (A, (append f1 f2 f3)) succeeds with (void, A2 [{f3 : lub(�, ↵)}) as required.

11. If e is the move command move f1 f2, then by (move) rule, there is a derivation

ending in A | A1, f2 : � ` move f1 f2 : void which consists of one derivation:

A | A1 ` f1 : �. By the induction hypothesis, T (A, f1) succeeds with (�,A1). Now,

T (A, (move f1 f2)) succeeds with (void, A1 [{f2 : �}}) as required.

145

5.10 Summary

In this chapter we presented our approach to enforce a particular constraint of the policies

identified in Chapter 4; namely, limiting the number of times a file can be read. We

enforced this constraint by limiting the number of copies a file can produce. We achieved

this by defining security types that regulate copy operations on files. These security types

control the access to copy operations and the flow caused by all operations including copy,

such that policies for copying files are not violated. The file system we consider is based

on the notion of resource consumption, that is a file is a resource which is consumed when

it is used, unless the file is explicitly copied. Therefore, a file can be read as much as it

can be copied. If the file cannot be copied, then it can be read only once. We designed

a language of commands to enforce these policies in a file system. The commands of the

language can be issued to manipulate files according to their policies. We showed that

these commands might result in execution errors. We divided these errors into syntactical

and type errors. The former occur when the constraints of an operation applied to the

file system are not satisfied while the latter occur when the constraints of an operation

applied to a type of a file are not satisfied. We discussed syntactical errors and define

an algorithm to check for syntactical correctness of commands before execution. While

this su�ces to prevent syntactical errors before execution, type errors might still occur.

Therefore, we developed a type system that enforces the policies of files and prevents both

syntactical errors and type errors of commands before execution. That is, a type-checked

commands are guaranteed to not cause errors during execution. We proved the soundness

of the type system with respect to the operational semantics of the language. Finally,

we define a type inference algorithm for typing phrases in our language, and proved its

soundness and completeness.

The type system developed in this chapter can be thought of as a reference monitor

that intercepts each command to be performed on files and checks if the command is

allowed by the types of the files and enforces the flow policies of these files. Types of files

are not necessarily stored with file names and contents in the file system �. They can

be separated from � and stored in a di↵erent location (e.g., �) and fetched upon request

by the type system. For example, � will be the set of file names with contents (e.g.,

{f1(c1), . . . , fn(cn)}) and � will be the set of file names with types (e.g., {f1 : ⌧1, . . . , fn :

⌧
n

}). For checking commands that need to be executed, the type system makes � to

be the typing context to begin with. Once all the commands are type-checked correctly,

the resulting typing context after the checking (e.g., �0) should replace the types of files

146

stored in �. In this way, we could have an untyped operational semantics that relies solely

on the safety guarantee given by the type system. In fact, the reason for having typed

operational semantics is just to simplify the soundness proof of the type system—once we

have established this result, we can optimise these out.

Unlike conventional security type systems where security types only represent inform-

ation flow policies, our security types can be thought of as files permissions that represent

both access control and information flow policies. They represent access control policies

as they dictate which commands can be issued on which types of files. They also represent

information flow policies as they form a lattice structure which dictates where informa-

tion is allowed to flow. For example, information flow from a file f1 to f2 is allowed if

and only if the permission of f2 is at least as restrictive as the permission of f1. Since

flow of information can only be caused by issuing commands on files, such commands are

subject to access control checks by the type system as well as information flow checks.

That is, the type system enforces access control policies by checking whether or not the

commands issued on files are allowed by their types, and enforces information flow policies

by checking whether or not the information flow caused by the commands, if any exists,

satisfies the lattice structure of the types associated with the files. Although the security

types presented in this chapter only regulates copy operations, other operations can be

regulated in the same way as we discuss in the next chapter.

The language and the type system presented in this chapter is kept to a minimum

to avoid complexity in presenting our approach. Various extensions useful in practice

including conditionals, loops, recursion, and variables are left for future work. We aimed

to start this line of research with a very simple language with the desired properties and

then extending it while ensuring these properties are still preserved. Therefore, we focused

on a small set of commands that are essential to perform the activity of file sharing in

a multi-user system such as Unix. In future work we aim to extend the language with

various features and the type system to enforce di↵erent kinds of policies useful in practice.

In this chapter we presented a small set of atomic commands that manipulate files.

These atomic commands can be grouped together to form macro commands. Such macro

commands can do the functionality of several atomic commands. An example of a useful

macro command is that which combines copy and rd commands. For example if we

introduce read as a macro command and define it as follows:

read f = copy f f 0; rd f 0

then, users will be relieved from having to issue copy command on a file each time they

147

need to read it to retain a copy of it after reading it. That is, limiting the number of times

a file can be read is automatically handled by the macro command read. In this case,

users will have two options, either issuing read command to read a file and retain a copy

of it after reading it, or issuing rd command to read a file and consume it. Of course, if

the file cannot be copied, then it can only be read and consumed by issuing rd command.

At this stage, a program can either be a single command or a sequence of commands.

In a single command, the type system checks the command before executing it, to find out

whether the command will cause an error or not if it is executed. As mentioned above,

we can have untyped operational semantics and rely only on the type system such that

type-checked commands can only be executed. This is because it is guaranteed that type-

checked commands will not cause an error. In this case, therefore, the usefulness of our

approach is that a user cannot execute a command that violates files or system policies.

For example, the type system will prevent executing a command that removes a file that

does not exist, creates a file that already exists, copies a file that must not be copied,

or reads a file more than the allowed number of times. This is because such commands

violate our policies, and thus, will cause an error if executed.

On the other hand, in a sequence of commands, the type system checks every command

in the sequence before executing them, to find out whether any of them will cause an error

during execution. In this case, the usefulness of our approach is that a program which

consists of a sequence of commands can be either executed as a whole or nothing will be

executed. If we rely on typed operational semantics only, then a sequence of commands

will not be executed fully if there is a command, for example in the middle of the sequence,

causes an error. That is, some commands might be executed and others might not, and

thus, the program will not complete its job.

However, our type system will type-check such program which consists of a sequence

of commands, and only allow it to be executed if it is guaranteed that the program will

complete its job. That is, every command in the sequence will not cause an error during

execution. Having a program completing its job or nothing should be done is of great

importance in many scenarios. One of these scenarios is a program which consists of a

sequence of commands for copying each file in a file system for a backup purpose. If we

execute such program without type-checking, and if there is a copy command in the middle

of the sequence which copies a file of type NC. Then, this will cause an error and the

result of the program will be incomplete, because files will be copied up to the point of

the error and not all of them. However, our type system will reject this program because

148

it contains an error, and thus, cannot be executed. Therefore, either the whole backup is

completed or nothing should be copied.

In fact, the importance of a program to complete its job applies to any program consists

of a sequence of commands which contains commands to be executed mainly for successful

execution of other commands. For example, copy f1 f2; rd f2 should not be executed if

the user issuing this sequence of commands is not allowed to read the file. This is because

the file f1 is copied in order to be read, however, if it cannot be read, then it should not

be copied in the first place.

Therefore, our type system helps users to execute correct programs that are not only

secure but also guaranteed to complete their jobs without any interruption as a result of

an error. Once the current language is extended with conditionals, loops, recursion, and

variables, type-checking programs will become essential for successful execution.

149

Chapter 6

Future extension and discussion

6.1 Introduction

The type system presented in the previous chapter is focused on enforcing a particular

constraint which is limiting the number of times a file can be read in a file system (shared

memory). This is achieved by controlling the access to copy operations and the flow of

information caused by any operations, such that policies for copying files are not violated.

There are a number of ways in which the type system in the previous chapter can be

extended to enforce the various policies identified in Chapter 4. For example, the type

checker might not only enforce the number of times a file can be read, but also the di↵erent

types of access and propagation identified in Chapter 4. In this chapter we investigate

some of these possible extensions. The extensions discussed in this chapter require further

investigation and proofs of their properties which is our aim for future work. However, a

significant step towards realising these extensions is taken in this chapter.

This chapter is organised as follows: in Section 6.2 we define security access types

that represent security policies to regulate read and write operations. We discuss these

policies and show how the type system in the previous chapter can be used to enforce

the new policies with slight modification to the typing rules. In Section 6.3 we extend

the type system presented in the previous chapter to enforce both policies that regulate

copy, read, and write operations, and extend the typing algorithm for typing phrases

according to the revised type system. In Section 6.4 we extend policies of files to include

ownership and authorisation information. We present a revised type system that not only

enforces which operations can be performed on which types of files, but also which user

can perform these operations. In Section 6.5 we extend the language with commands

that manipulate policies of files, and present typing rules for these commands. We revise

150

the typing algorithm presented in Section 6.3 for typing phrases according to the typing

rules presented in Sections 6.4 and 6.5. We discuss these extensions in Section 6.6 and

summarise the chapter in Section 6.7.

6.2 Accessing files

The security policies imposed by the security types described in the previous chapter

are only concerned with the copy operations. Such security types regulate how the copy

operation can be performed on the original files as well as the copy version of these files.

Although copy is a crucial operation such that controlling it will limit the number of times

a file can be read in our system, it is not concerned with accessing the files. Accessing

the files can be made either by reading or modifying the files which are performed by the

two critical operations read and write, respectively. Similar to copy, the operations read

and write must be governed by the security policies to prevent unauthorised access to the

files. In this section we investigate additional security types which we refer to as security

access types that represent security policies to regulate read and write operations.

6.2.1 Security access types

We define six security access types to control read and write operations which are NRW,

RO, WO�, WO+, RW�, and RW+ each of which specifies a distinct policy of how read

and write operations can be performed on them. NRW stands for NoReadOrWrite, which

means that a file associated with this type cannot be read or written into it. RO stands

for ReadOnly, which means that a file associated with this type can only be read but

not written into it. WO� stands for WriteOnly, which means that a file associated with

this type can only be written into it by either appending or removing content from it.

WO+ stands for WriteOnly, which means that a file associated with this type can only

be written into by appending content but not removing content from it. RW� stands for

ReadWrite, which means that a file associated with this type can be read or written into

it by appending or removing content from it. RW+ stands for ReadWrite, which means

that a file associated with this type can be read or written into it by appending content

but not removing content from it.

Similar to the copy security types described in Chapter 5, the security access types form

a lattice (⌧,v) where ⌧ = {NRW,RO,WO�,WO+,RW�,RW+}, are partially ordered by

v (see Figure 6.1). NRW and RW� are the upper bound and the lower bound of the set

⌧ , respectively. The least restrictive type is RW�, while the most restrictive type is NRW.

151

NRW

RO WO+

WO�RW +

RW �

Figure 6.1: Security access types

In the previous chapter we dealt with copy security types and di↵erentiate between flow

of information caused by copy operations, such as cp and copy, and by other operations,

such as cat, mv, append etc. This is because we added more constraints on performing copy

operations such as the source file must be of type UC or LCn>0 and the destination file

must change its type to be the join of its type and the dst of the source type. In this way,

we control the access to copy operations and the flow caused by all operations including

copy. In this section we ignore the additional constraints imposed by the copy operations

and focus on the general policy introduced in the previous chapter and the security access

types introduced in this chapter. The policy of information flow generally stated that flow

of information from f1 to f2 is always allowed, provided that f2 must change its type to

T (f1) t T (f2) and f1 is consumed after performing the operation, if the operation is not

copy. Otherwise, f1 must not be consumed. If f2 62 Types, then it will be assigned the

join of the source types.

This policy violates the meaning of the security access types described above. For

example, assume that 8f 2 Types, T (f) 2 {NRW,RO,WO�,WO+,RW�,RW+}; i.e.

that is, types of files are those of security access types only. Now, the typing rules in

the previous chapter which reflects the policies described above, violates the policies of

the security access types as follows. Assume that T (f1) = RO and T (f2) = NRW, then

mv f1 f2 will result in f2 changes its type to T (f1) t T (f2) = NRW. Although the new

type of f2 will always be at least as restrictive as both types of f1 and f2, the policy of f2

is violated. This is because the type of f2 is NRW which requires that such a file cannot

be written into it. Now assume that T (f1) = NRW and T (f2) = WO+, then cp f1 f2

will result in f2 changing its type to T (f1) t T (f2) = NRW. Again the policy of f2 is

violated because cp f1 f2 overwrites the content of f2 by the content of f1 whereas the

type of f2 is WO+ which requires such a file can be written into it by appending but not

152

removing content from it. Finally, assume that T (f1) = RO, T (f2) = RO T (f3) = WO�,

then cat f1 f2 f3 will result in f3 changing its type to T (f1) t T (f2) t T (f3) = NRW.

While the policy of f3 is not violated because its type allows its content to be overwritten,

the policies of f1 and f2 are violated. This is because cat f1 f2 f3 will append f1 and f2

together to overwrite f3, whereas the types of f1 and f2 is RO which requires such files to

be read only but not written into.

To avoid this violation to the security access types, we need to add constraints to

control the access to write operations in addition to the flow policies defined in the previous

chapter. Thus, we need to enforce the following three policies. a) A file f can be

read if and only if T (f) 2 {RW�,RW+,RO}. b) A file f can be overwritten if and

only if T (f) 2 {RW�,WO�}. c) A file f can be appended to it if and only if T (f) 2

{RW�,RW+WO�,WO+}. In the next section we present the language and the typing

rules to enforce the policies described above.

6.2.2 Language and typing rules

The syntax of the language will be the same as described in the previous chapter. However,

the only di↵erence is in the types which represent the security access types only. That is,

hti ::= NRW | RO | WO� | WO+ | RW� | RW+ | void

Below we describe the constraints that must be satisfied for each command to be

executed successfully, and present the revised typing rule as follows:

cp: To successfully execute the command cp f1 f2 , the following constraints must be

satisfied: a) The source file f1 and the destination file f2 must already exist in the

system. b) The destination file f2 must be either of type RW� or WO�. c) The source

and destination files must exist in the system after executing the command. d) The type

of the destination file f2 must be changed to be the join of its type and the source type

after executing the command. This leads to the following typing rule:

� | �0 ` f1 : ⌧ �0 | �00 ` f2 : ⌧
0 ⌧ 0 vWO�

(cp)
� | �00, f1 : ⌧, f2 : ⌧

0 t ⌧ ` cp f1 f2 : void

rd: To successfully execute the command rd f , the following constraints must be sat-

isfied: a) The file f must already exist in the system. b) The file f must be either of

type RW�, RW+, or RO. c) The file f must not exist in the system after executing the

command. This leads to the following typing rule:

153

� | �0 ` f : ⌧ ⌧ v RO
(rd)

� | �0 ` rd f : void

cat: To successfully execute the command cat f1 f2 f3 , the following constraints must

be satisfied: a) The source files f1 and f2 and the destination file f3 must already exist in

the system. b) The source files f1 and f2 must be either of type RW�,RW+, WO� or WO+.

c) The destination file f3 must be either of type RW� or WO�. d) The source files f1

and f2 must not exist in the system after executing the command. e) The destination file

f3 must exist in the system after executing the command. f) The type of the destination

file f3 must be changed to be the join of its type and the types of the source files after

executing the command. This leads to the following typing rule:

� | �0 ` f1 : ⌧ �0 | �00 ` f2 : ⌧
0 �00 | �000 ` f3 : ⌧

00 ⌧, ⌧ 0 vWO+ ^ ⌧ 00 vWO�

(cat)
� | �000, f3 : ⌧ t ⌧ 0 t ⌧ 00 ` cat f1 f2 f3 : void

mv: To successfully execute the command mv f1 f2 , the following constraints must be

satisfied: a) The source file f1 and the destination file f2 must already exist in the system.

b) The destination file f2 must be either of type RW� or WO�. c) The source file f1 must

not exist in the system after executing the command. d) The destination file f2 must exist

in the system after executing the command e) The type of the destination file f2 must be

changed to be the join of its type and the source type after executing the command. This

leads to the following typing rule:

� | �0 ` f1 : ⌧ �0 | �00 ` f2 : ⌧
0 ⌧ 0 vWO�

(mv)
� | �00, f2 : ⌧ t ⌧ 0 ` mv f1 f2 : void

append: To successfully execute the command append f1 f2 f3 , the following constraints

must be satisfied: a) The source files f1 and f2 must already exist in the system. b) The

destination file f3 must not exist in the system. c) The source files f1 and f2 must be either

of type RW�,RW+, WO� or WO+. d) The source files f1 and f2 must not exist in the

system after executing the command. e) The destination file f3 must exist in the system

after executing the command. f) The type of the destination file f3 must be the join of the

types of the source files after executing the command. This leads to the following typing

rule:

� | �0 ` f1 : ⌧ �0 | �00 ` f2 : ⌧
0 ⌧, ⌧ 0 vWO+

(append)
� | �00, f3 : ⌧ t ⌧ 0 ` append f1 f2 f3 : void

The remaining typing rules are unchanged and depicted with the modified typing rules

in Figure 6.2. It can be seen that the type system shown in Figure 6.2 is similar to the

154

type system presented in Chapter 5 which focuses on regulating copy operations. The only

di↵erence is that the checking performed by the type system presented in this section is

to control read and write operations and enforce their flow policies, whereas the checking

performed by the previous type system is to control copy operations and enforce their

flow policies. The typing algorithm for the previous system, therefore, can be used with

a slight modification for checking the new types. We present a new version of the typing

algorithm when we discuss combining the two type systems in the next section.

(f)
�, f : ⌧ | � ` f : ⌧

� | �0 ` c : void �0 | �00 ` cs : void
(cs)

� | �00 ` c; cs : void

� | �0 ` f1 : ⌧ �0 | �00 ` f2 : ⌧
0 ⌧ 0 vWO�

(cp)
� | �00, f1 : ⌧, f2 : ⌧

0 t ⌧ ` cp f1 f2 : void

� | �0 ` f : ⌧
(rm)

� | �0 ` rm f : void
(mkf)

� | �, f : t ` mkf f t : void
� | �0 ` f : ⌧ ⌧ v RO

(rd)
� | �0 ` rd f : void

� | �0 ` f1 : ⌧ �0 | �00 ` f2 : ⌧
0 �00 | �000 ` f3 : ⌧

00 ⌧, ⌧ 0 vWO+ ^ ⌧ 00 vWO�

(cat)
� | �000, f3 : ⌧ t ⌧ 0 t ⌧ 00 ` cat f1 f2 f3 : void

� | �0 ` f1 : ⌧ �0 | �00 ` f2 : ⌧
0 ⌧ 0 vWO�

(mv)
� | �00, f2 : ⌧ t ⌧ 0 ` mv f1 f2 : void

� | �0 ` f1 : ⌧
(copy)

� | �0, f1 : ⌧, f2 : ⌧ ` copy f1 f2 : void

� | �0 ` f1 : ⌧ �0 | �00 ` f2 : ⌧
0 ⌧, ⌧ 0 vWO+

(append)
� | �00, f3 : ⌧ t ⌧ 0 ` append f1 f2 f3 : void

� | �0 ` f1 : ⌧
(move)

� | �0, f2 : ⌧ ` move f1 f2 : void

Figure 6.2: Typing rules for security access types

It can be seen from the typing rules in Figure 6.2 that if there is information flow

from a source file to a destination file, then the security type of the source file is always

transferred to the destination file and joined with its security type. This could occur even

when the security type of the destination file is di↵erent from the source file. For example,

155

if T (f1) = RO and T (f2) = RW�, then the command cp f1 f2 will type check and will

result in f2 changes its type to be RO t RW� = RO. This might seem to be inconsistent

with standard notions of integrity which are intended to preserve validity of an association

between specific objects and their contents. For example, a file of type RW� should only

store information of type RW�, and a file of type RO should only store information of type

RO. However, our security types represent policies that dictate what can be done with

files, and the standard notions of integrity contradict the policies imposed by our security

types. For example, the security type RO dictates that a file associated with this type can

only be read but not written into it. This is useful to avoid accidental overwriting of a file

that is created to be read only. Therefore, if T (f1) = RO and T (f2) = RO, then cp f1 f2

must not be allowed, even through the types of the source and destination files are the

same. This is because the policy imposed by the security type RO will be violated if such

command is executed. The only security types that allow a file to be overwritten are RW�

and WO�. However, if we allow a file of type RW� or WO� to only store information of

the same type, then copying a file of type RO, for example, will not be possible. This is

because RO 6= RW� _WO�. We avoid this by allowing a file of type RW� or WO� to

store information of any type. However, to preserve the integrity constraints of both the

source and destination files, we require the destination file to change its type to be the

join of the security type of the source file and the security type of the destination file.

In this way, the destination file will only store information of the same type or more

restrictive type. In case of the information to be stored in a destination file is associated

with less restrictive type than the type of the destination file, then the information will

acquire the type of the destination file. For example, if T (f1) = RW� and T (f2) = WO�,

then the command cp f1 f2 will type check and will result in f2 changes its type to be

RW�tWO� = WO�. On the other hand, if the information to be stored in a destination

file is associated with more restrictive type than the type of the destination file, then

the destination file will acquire the type of the information to be stored. For example, if

T (f1) = NRW and T (f2) = RW�, then the command cp f1 f2 will type check and will

result in f2 changes its type to be NRW t RW� = NRW.

Therefore, changing the type of the destination file to be the join of the type of the

information to be stored and the type of the destination file plays an important rule in

preserving the integrity of files. This is because the integrity constraints of the informa-

tion to be stored and the integrity constraints of the destination file can only change to

constraints that is at least as restrictive as both of them.

156

6.3 Security copy and access types

In this section we combine the two systems introduced so far to enforce their policies in

one system. In the previous systems we assumed each file is associated with a type ⌧

where ⌧ 2 {UC,LCn,NC} _ {NRW,RO,WO�,WO+,RW�,RW+}. The type system in

Chapter 5 controls the access to copy operations and the flow caused by all operations

including copy; while the type system in the previous section controls the access to read

and write operations and the flow caused by all operations. In the system we introduce

in this section we need to control the access to copy, read, and write operations as well as

the flow caused by them. To achieve this we need to combine both lattices of the security

types such that each file should be associated with two types. One type regulates copy

operations and the other type regulates read and write operations. Therefore, we assume

that each file in the system is associated with an ordered pair type of the form f : (↵, �)

where ↵ is a security copy type and � is a security access type. This leads to the following

definition of a pair type:

Definition 6.3.1. 8f 2 types, T (f) = (↵, �),

where ↵ 2 {UC,LCn,NC} ^ � 2 {NRW,RO,WO�,WO+,RW�,RW+}.

Based on this definition, the types (UC,RO) and (NC,NRW) are allowed because

(UC,RO) ! UC 2 {UC,LCn,NC} ^ RO 2 {NRW,RO,WO�,WO+,RW�,RW+}, and

(NC,NRW)! NC 2 {UC,LCn,NC}^NRW 2 {NRW,RO,WO�,WO+,RW�,RW+}. On

the other hand, the types (UC,LC) and (WO,RO) are not allowed because (UC,LC) !

UC 2 {UC,LCn,NC} ^ LC 62 {NRW,RO,WO�,WO+,RW�,RW+}, and (WO,RO) !

WO 62 {UC,LCn,NC}^RO 2 {NRW,RO,WO�,WO+,RW�,RW+}. It should be noted

that all possible pair types that we could instantiate of the form f : (↵, �) are useful in

particular scenarios. The type ↵ controls access to copy operations and controls the flow

of information caused by all operations including copy. The type � controls access to

read and write operations and control the flow of information caused by all operations

including read and write. Considering the two security types ↵ and � as an ordered

pair type, allows us to control the access to the three operations copy, read, and write

and control the flow of information caused by them and all other operations. In the next

section we present the language and the typing rules to enforce the policies of both systems

described previously.

157

6.3.1 Language and typing rules

In this section we revise the language and typing rules. The only di↵erence in the revised

language is in the command mkf and the type ⌧ which is now a pair type (↵, �). The

command mkf now takes a file f , a security copy type ↵, and a security access type �, and

creates a file f of type (↵, �). The syntax of the language is as follows.

hpi ::= hcsi | hfi

hcsi ::= hci | hci; hcsi

hci ::= cp hfi hfi | rm hfi | mkf hfi h↵i h�i | rd hfi | cat hfi hfi hfi | mv hfi hfi

| copy hfi hfi | append hfi hfi hfi | move hfi hfi

hti ::= (h↵i, h�i) | void

h↵i ::= NC | LCn | UC

h�i ::= NRW | RO | WO� | WO+ | RW� | RW+

Figure 6.3 shows the new type system that enforces both policies presented in each

previous system. This type system will not only enforce the number of times a file can be

read, but also enforce the di↵erent types of access of the policies identified in Chapter 4.

For example, based on the security types of files, the type system enforces which file can

or cannot be read or written into it. In the next section we revise the typing algorithm

presented in the previous chapter to accommodate the new version of the typing rules.

6.3.2 Typing algorithm

In this section we present a type inference algorithm T for typing phrases according to the

new type system depicted in Figure 6.3. It is similar to the typing algorithm presented in

the previous chapter, however, with slight modification to accommodate the new checking

in the revised type system. We define the following functions: check(⌧, ⌧ 0) returns true

if the types are compatible. less(⌧, ⌧ 0) returns true if ⌧ v ⌧ 0. lub(⌧, . . . , ⌧
n

) returns the

least upper bound of all its parameters i.e. ⌧ t . . . t ⌧
n

. Note that if ⌧ = (⌧1, ⌧2) and

⌧ 0 = (⌧ 01, ⌧
0
2), then lub(⌧, ⌧ 0) = (⌧1 t ⌧ 01, ⌧2 t ⌧ 02). ⇡1(⌧) and ⇡2(⌧) returns the security copy

type and access type of ⌧ , respectively. That is, if ⌧ = (⌧1, ⌧2), then ⇡1(⌧) = ⌧1 and

⇡2(⌧) = ⌧2. Finally, the functions red and dst are as defined before, however, for simplicity

when applied to a pair type, they should be understood as applying to the security copy

type of the pair only. For example, if ⌧ = (⌧1, ⌧2), then red(⌧) = (red(⌧1), ⌧2). Using these

functions, we can now define the type inference algorithm T as follows:

The Type Reconstruction Algorithm T :

158

(f)
�, f : (↵, �) | � ` f : (↵, �)

� | �0 ` c : void �0 | �00 ` cs : void
(cs)

� | �00 ` c; cs : void

� | �0 ` f1 : (↵, �) ↵ v LCn>0 �0 | �00 ` f2 : (↵0, �0) �0 vWO�

(cp)
� | �00, f1 : (red(↵), �), f2 : (dst(↵) t ↵0, � t �0) ` cp f1 f2 : void

� | �0 ` f : (↵, �)
(rm)

� | �0 ` rm f : void

(mkf)
� | �, f : (↵, �) ` mkf f ↵ � : void

� | �0 ` f : (↵, �) � v RO
(rd)

� | �0 ` rd f : void

� | �0 ` f1 : (↵, �) �0 | �00 ` f2 : (↵0, �0) �00 | �000 ` f3 : (↵00, �00) �, �0 vWO+ ^ �00 vWO�

(cat)
� | �000, f3 : (↵ t ↵0 t ↵00, � t �0 t �00) ` cat f1 f2 f3 : void

� | �0 ` f1 : (↵, �) �0 | �00 ` f2 : (↵0, �0) �0 vWO�

(mv)
� | �00, f2 : (↵ t ↵0, � t �0) ` mv f1 f2 : void

� | �0 ` f1 : (↵, �) ↵ v LCn>0

(copy)
� | �0, f1 : (red(↵), �), f2 : (dst(↵), �) ` copy f1 f2 : void

� | �0 ` f1 : (↵, �) �0 | �00 ` f2 : (↵0, �0) �, �0 vWO+

(append)
� | �00, f3 : (↵ t ↵0, � t �0) ` append f1 f2 f3 : void

� | �0 ` f1 : (↵, �)
(move)

� | �0, f2 : (↵, �) ` move f1 f2 : void

Figure 6.3: Typing rules for security copy and access types

T (A, e) = (⌧, A0)

where:

1. If e is the filename f , and f : ↵ 2 A then ⌧ = ↵, A0 = Ar {f : ↵}.

2. If e is a sequence of commands, c; cs let

(↵,A1) = T (A, c)

check(↵, void)

(�,A2) = T (A1, cs)

check(�, void)

then ⌧ = void, A0 = A2.

159

3. If e is the cp command, cp f1 f2 let

(↵,A1) = T (A, f1)

less(⇡1(↵),LC
n>0)

(�,A2) = T (A1, f2)

less(⇡2(�),WO�)

then if f1, f2 62 A2, then ⌧ = void, A0 = A2 [{f1 : red(↵), f2 : lub(dst(↵), �)}.

4. If e is the rm command, rm f let

(↵,A1) = T (A, f)

then ⌧ = void, A0 = A1.

5. If e is the mkf command, mkf f ↵, then if f 62 A, then ⌧ = void, A0 = A [{f : ↵}.

6. If e is the rd command, rd f let

(↵,A1) = T (A, f)

less(⇡2(↵),RO)

then ⌧ = void, A0 = A1.

7. If e is the cat command, cat f1 f2 f3 let

(↵,A1) = T (A, f1)

(�,A2) = T (A1, f2)

(�, A3) = T (A2, f3)

less(⇡2(↵),WO+)

less(⇡2(�),WO+)

less(⇡2(�),WO�)

then if f3 62 A3, then ⌧ = void, A0 = A3 [{f3 : lub(↵, �, �)}.

8. If e is the mv command, mv f1 f2 let

(↵,A1) = T (A, f1)

(�,A2) = T (A1, f2)

less(⇡2(�),WO�)

then if f2 62 A2, then ⌧ = void, A0 = A2 [{f2 : lub(↵, �)}.

160

9. If e is the copy command, copy f1 f2 let

(↵,A1) = T (A, f1)

less(⇡1(↵),LC
n>0)

then if f2 62 A, then ⌧ = void, A0 = A1 [{f1 : red(↵), f2 : dst(↵)}.

10. If e is the append command, append f1 f2 f3 let

(↵,A1) = T (A, f1)

(�,A2) = T (A1, f2)

less(⇡2(↵),WO+)

less(⇡2(�),WO+)

then if f3 62 A, then ⌧ = void, A0 = A2 [{f3 : lub(↵, �)}.

11. If e is the move command, move f1 f2 let

(↵,A1) = T (A, f1)

then if f2 62 A, then ⌧ = void, A0 = A1 [{f2 : ↵}.

6.4 Ownership and authorisation

In the previous section we presented a type system to control the access to copy, read,

and write operations and the flow of information that is caused by all operations. The

type system in the previous section is missing two important aspects that are related to

each other. These two aspects are ownership and authorisation. The former indicates the

owners of files while the latter indicates the users authorised by the owners to perform

particular operations on their files. Although the security copy and access types presented

in the previous sections o↵er some sort of authorisation by controlling which operations

can be performed on which types of files, they are not concerned with who can perform

these operations. For example, consider the case where Alice is a user and has two private

files f1 and f2. Alice wants f1 to be read only by Bob and wants f2 to be read only by

Carol. To prevent these two files from any modification, Alice can give the following type

to her files (NC,RO), so that only read operations can be performed on them. However,

although Alice is not willing to allow Carol to read f1, Carol can read f1 by issuing the

command rd f1 since the type of the f1 allows such operation to be performed. Therefore,

Alice will not be able to specify these policies and the two files can be read by any user.

161

The security copy types and security access types can control which operations can be

performed on which types of files, but not which users can perform which operations on

which types of files. For Alice to specify her policy in the above example, the ownership

and authorisation aspects should be incorporated into the type, such that an owner of a

file can specify which user is allowed to perform the operations allowed by the type of

the file. In this section we augment the security copy types and the security access types

with ownership and authorisation aspects. The users authorised to perform the allowed

operations on files must be specified by the owners of the files. Files are owned by users

who created them. To control the allowed operations so that only the authorised users

can perform them, the type of the file must contain the owners and the authorised users

of that file. Our approach to incorporate the ownership and the authorisation information

into the types of the files is inspired by earlier work of Myers and Liskov [75, 76, 74, 77]

who develop a decentralised model for information flow known as the decentralised label

model (DLM).

6.4.1 Label structure

Our security types of files which represent the security policies will be expressed in a label.

Similar to DLM, a label consists of one or more components; each component representing

a file type which is a policy. However, the structure and the interpretation of labels are

di↵erent from the conventional structure and interpretation of DLM. A label with one

policy has the following form.

l1 = {↵, �, �}

where ↵ and � are a security copy type and a security access type, respectively, which are

discussed in the previous sections. � represents the ownership and authorisation informa-

tion for this policy. It has exactly the same structure as the entire label of DLM, however,

with di↵erent interpretation. � has the following form.

o : u1, u2, u3

where o is the owner and u1, u2, u3 are the authorised users specified by the owner. Thus,

the label l1 is expressed as follows.

l1 = {↵, �, o : u1, u2, u3}

the interpretation of such label is that the file owner o authorises the users u1, u2, u3 to

perform operations on the file that are allowed by the security types ↵ and �. Therefore,

162

users will not be able to perform any operations arbitrarily, rather the operations to be

performed must be authorised by the security types and the information flow caused by

them must not violate the lattice structure of either of the security types. In other words,

� controls which users are allowed to perform operations on the file, while ↵ and � control

which operations can be performed on the file and control the flow of information that

results from these operations. A concrete example for a label with one policy is the

following.

l2 = {UC, RO, Alice : Bob, Carol,Dave}

the single policy in label l2 states that the owner Alice allows Bob, Carol, and Dave to

only copy and read the file associated with this label. If there is another user Eve who

issues read or copy operations to copy or read the file, these will fail. This is because Eve

is not one of the authorised users who are specified by the owner Alice to perform these

operations.

The single policy label that is described above is assumed to be attached to a file

at the time of creation. That is the single policy label will be attached to a file when

the command mkf is issued by a user. Therefore, each file in the system is assumed to

be attached with a label. The owner of such a policy will be the user who issued the

command mkf. However, a label might contain multiple policies as a result of information

flow caused by any operation. For example, if f1 ^ f2 2 Types, which means both files are

associated with a label, then flow of information from f1 to f2, must result in f2 changing

its label to enforce all the policies of its label and the label of f1. To formally define the

components and properties of our label we use the following notations. o�(J) denotes the

owner of the policy J . u�(J) denotes the set of authorised users of the policy J including

the owner. ↵(J) denotes the security copy type of the policy J . �(J) denotes the security

access type of the policy J . Hence, if we assume J is the following single policy label:

l3 = {NC, WO�, Alice : Bob, Carol}

then, o�(J) = Alice, u�(J) = Alice,Bob, Carol, ↵(J) = NC, �(J) = WO. However, as

a result of information flow between two files, two single label policies are combined and

lead to a label that consists of more than one policy. For simplicity we assume that label

l consists of two polices J and K, however, this can be applied to any number of policies.

Below we define the properties of our label more generally to encompass a multiple policy

label. We assume the following label as running example for the definitions below:

l4 = {LC3,RO, Alice : Bob; UC,WO�, Bob : Carol}

163

Definition 6.4.1. The set of owners of a label l denoted as o�(l) is the union of all owners

of each policy in the label l.

o�(l) = o�(K) t o�(J)

The owner set of a label is the owner of each policy in the label. For example o�(l4) =

o�(Alice)to�(Bob) = (Alice,Bob). Therefore, only Alice and Bob are the owners of label

l4.

Definition 6.4.2. The set of e↵ective authorised users of a label l denoted as u�(l) is the

intersection of all authorised users of each policy in the label l.

u�(l) = u�(K) u u�(J)

The set of e↵ective authorised users are those who are agreed by each policy owner as

authorised users. That is, each policy owner must specify these users as authorised users

in his policy. For example, u�(l4) = u�(Alice,Bob) u u�(Bob, Carol) = (Bob). Therefore,

only Bob is the e↵ective authorised user in label l4 as both policies agree on this.

Definition 6.4.3. The e↵ective security copy type of a label l denoted as ↵(l) is the join

of all security copy types of each policy in the label l.

↵(l) = ↵(K) t ↵(J)

The e↵ective security copy type is the type that is at least as restrictive as the security

copy type of each policy in the label l. That is, the least upper bound or join of the security

copy types of every policy in the label l. For example, ↵(l4) = ↵(LC3) t ↵(UC) = (LC3).

Therefore, LC3 will be the security copy type of label l4.

Definition 6.4.4. The e↵ective security access type of a label l denoted as �(l) is the

join of all security access types of each policy in the label l.

�(l) = �(K) t �(J)

The e↵ective security access type is the type that is at least as restrictive as the

security access type of each policy in the label l. That is, the least upper bound or

join of the security access types of every policy in the label l. For example, �(l4) =

�(RO) t �(WO�) = (NRW). Therefore, NRW will be the security access type in label l4.

Definition 6.4.5. The e↵ective policy of a label l denoted as ep(l) is the intersection of

all authorised users in each policy of l, the join of all security copy types in each policy of

l, and the join of all security access types in each policy of l.

ep(l) = ↵(l) ^ �(l) ^ u�(l)

164

The e↵ective policy is the policy that is derived from a label of multiple policies. This

policy is the only one to consider when evaluating a multiple policy label. For example,

ep(l4) = ↵(l4) ^ �(l4) ^ u�(l4) = (LC3; NRW;Bob).

Definition 6.4.6. The union of two labels l and l0, written as lt l0, is the set of all policies

that exist in both l and l0.

l t l0 = l [l0

For example, if l = {LC2,RW+, Alice : Bob, Carol; UC,RO, Bob : Carol} and l0 =

{NC,RO, Bob : Carol}, then l t l0 = {LC2,RW+, Alice : Bob, Carol; UC,RO, Bob :

Carol; NC,RO, Bob : Carol}.

Definition 6.4.7. The e↵ective authorised users of a label l0 is a subset of the e↵ective

authorised users of a label l, written as u�(l) v u�(l0), if and only if every e↵ective

authorised user in l0 is also an e↵ective authorised user in l.

u�(l) v u�(l0) = u�(l0) ✓ u�(l)

For example, if l = {LC2,RW+, Alice : Bob, Carol} and l0 = {NC,RO, Alice : Bob},

then (Alice,Bob, Caro) v (Alice,Bob).

Definition 6.4.8. The function red if applied to label l, written as red(l), changes the

security copy type ↵ in each policy in l to be red(↵(l)).

red(l) = 8J 2 l, ↵(J) = red(↵(l))

For example, red(l4) = {LC2,RO, Alice : Bob; LC2,WO�, Bob : Carol}.

Definition 6.4.9. The function dst if applied to label l, written as dst(l), changes the

security copy type ↵ in each policy in l to be dst(↵(l)).

dst(l) = 8J 2 l, ↵(J) = dst(↵(l))

For example, dst(l4) = {NC,RO, Alice : Bob; NC,WO�, Bob : Carol}.

Based on these definitions, previous policies to control copy, read, and write opera-

tions can be stated straightforwardly by only considering the e↵ective policies of labels.

For example, a file f associated with label l can be read if �(l) 2 {RW�,RW+,RO}, over-

written if �(l) 2 {RW�,WO�}, appended to it if �(l) 2 {RW�,RW+WO�,WO+}, or

copied if ↵(l) 2 {UC,LCn>0}. Our aim for introducing the label structure in this section

165

is not to change previous policies, but rather to restrict who can exercise them. There-

fore, we extend the previous policies to control copy, read, and write operations with the

following: a) Operations can be performed if and only if the user issuing them is one

of the e↵ective authorised users of all the label associated with the files the operations

applied to. b) Flows of information from a source file to a destination file caused by any

operation is allowed if and only if the e↵ective authorised users of the label associated with

the destination file is a subset of the e↵ective authorised users of the label associated with

the source file. c) Flows of information from a source file to a destination file caused by

any operations must change the label associated with the destination file to be the union

of its label and the label associated with the source file. d) A newly created file should

be assigned the user who created it to be the owner and the only authorised user of the

policy associated with the created file. e) Files can be deleted or renamed if and only if

the user issuing these operations is one of the owners of the label associated with the files

the operations applied to.

In the next section we present the revised language and typing rules to enforce the

policy described above

6.4.2 Language and typing rules

The syntax of the language is given by the following grammar:

hpi ::= hui.hcsi | hfi

hcsi ::= hci | hci; hcsi

hci ::= cp hfi hfi | rm hfi | mkf h↵i h�i | rd hfi | cat hfi hfi hfi | mv hfi hfi

| copy hfi hfi | append hfi hfi hfi | move hfi hfi

h⌧i ::= hli | void

hli ::= hpli | hpli; l

hpli ::= h↵i, h�i, h�i

h↵i ::= NC | LCn | UC

h�i ::= NRW | RO | WO� | WO+ | RW� | RW+

h�i ::= hui : hui, hui, hui, . . .

It can be seen that commands are unchanged and the same as described in the previous

section. The only di↵erence is in the hui which ranges over the set of users’ names for a

given file system and the structure of file types which are represented as labels hli. A label

can be of a single policy pl, or multiple policies pl1, pl2, pl3, pln. Each policy consists of a

security copy type ↵, a security access type �, and an ownership and authorisation type

166

�. The new typing judgements have the following form:

� | �0 ` u.cs : ⌧ � | �0 ` f : ⌧

where � is a set of files with labels of the form f : l. For example, � = {f1 : l1, f2 : l2, f3 :

l3, . . . , fn : l
n

}. The judgment � | �0 ` u.cs : ⌧ means that typing a single or a sequence of

commands of type ⌧ in the context � by user u, will change the context to �0. Similarly,

the judgement � | �0 ` f : ⌧ means that typing a file in the context � will change the

context to �0. The typing rules for a file name and a sequence of commands are the same

as follows:

(f)
�, f : l | � ` f : l

� | �0 ` u.c : void �0 | �00 ` u.cs : void
(cs)

� | �00 ` u.c;u.cs : void

The remaining revised typing rules are given together with a description of the addi-

tional constraints for each of the commands below:

cp command: To successfully execute the command cp f1 f2, the following constraints

must be satisfied: a) The source file f1 and the destination file f2 must already exist in

the system. b) The e↵ective security copy type of the label associated with the file f1

must be either of type UC or LCn>0. c) The user who issues the command must be one

of the e↵ective authorised users of the labels associated with f1 and f2. d) The e↵ective

authorised users of the label associated with the file f2 must be a subset of the e↵ective

authorised users of the label associated with the file f1. e) The e↵ective security access

type of the label associated with the file f2 must be either of type RW� or WO�. f) The

source and destination files must exist after executing the command. g) After executing

the command, the security copy type of each policy in the label associated with the file

f1 must be changed to be the same as the type resulted from applying the function red

to the the e↵ective security copy type of the label associated with the file f1. h) After

executing the command, the label associated with the file f2 must be changed to be the

union of its label and the label of the file f1, where the security copy type of each policy in

the label associated with the file f1 must be changed to be the same as the type resulted

from applying the function dst to its e↵ective security copy type before taking the union.

This leads to the following typing rule:

� | �0 ` f1 : l ↵(l) v LCn>0 �0 | �00 ` f2 : l
0

u 2 u�(l) ^ u�(l0)

u�(l) v u�(l0) �(l0) vWO�

(cp)
� | �00, f1 : red(l), f2 : l

0 t dst(l) ` u.cp f1 f2 : void

167

rm command: To successfully execute the command rm f , the following constraints

must be satisfied: a) The file f must already exist in the system. b) The user who issues

the command must be one of the owners of the label associated with the file f . c) The file

f must not exist in the system after executing the command. This leads to the following

typing rule:

� | �0 ` f : l u 2 o�(l)
(rm)

� | �0 ` u.rm f : void

mkf f ↵ � command: To successfully execute the command mkf f ↵ �, the following

constraints must be satisfied: a) The file f must not exist in the system. b) The file f

must exist in the system after executing the command. c) The file f must be associated

with a label of the form (↵, �, �), where ↵ and � must be the security copy type and the

security access type, respectively, that are specified at the time the command mkf is issued.

Whereas � is the ownership and the authorisation component of the label that must be of

the form u : u, where u must be the user who issued the command. In other words, the

command mkf f ↵ � will automatically set the user who executed it to be the owner and

the only authorised user. This leads to the following typing rule:

(mkf)
� | �, f : (↵, �, u : u) ` u.mkf f ↵ � : void

rd command: To successfully execute the command rd f , the following constraints

must be satisfied: a) The file f must already exist in the system. b) The user who issues

the command must be one of the e↵ective authorised users of the label associated with

the file f . c) The file f must not exist in the system after executing the command. This

leads to the following typing rule:

� | �0 ` f : l u 2 u�(l) �(l) v RO
(rd)

� | �0 ` u.rd f : void

cat command: To successfully execute the command cat f1 f2 f3, the following con-

straints must be satisfied: a) The source files f1 and f2, and the destination file f3 must

already exist in the system. b) The user who issues the command must be one of the

e↵ective authorised users of the labels associated with the files f1, f2, and f3. c) The

e↵ective authorised users of the label associated with the file f3 must be a subset of the

e↵ective authorised users of both labels associated with the files f1 and f2. d) The e↵ective

security access type of the labels associated with the source files f1 and f2 must be either

of type RW�,RW+, WO� or WO+. e) The security access type of the label associated

with the destination file f3 must either be of type RW� or WO�. f) The source files f1

168

and f2 must not exist in the system after executing the command. g) The destination file

f3 must exist in the system after executing the command, and its label must be changed

to be the union of its label and the labels of the source files f1 and f2. This leads to the

following typing rule:

� | �0 ` f1 : l �0 | �00 ` f2 : l0 �00 | �000 ` f3 : l00

u 2 u�(l) ^ u�(l0) ^ u�(l00)

u�(l) ^ u�(l0) v u�(l00)

�(l) ^ �(l0) vWO+

�(l00) vWO�

(cat)
� | �000, f3 : l t l0 t l00 ` u.cat f1 f2 f3 : void

mv command: To successfully execute the command mv f1 f2, the following constraints

must be satisfied: a) The source file f1 and the destination file f2 must already exist in

the system. b) The user who issues the command must be one of the owners of the label

associated with the source file f1, and one of the authorised users of the label associated

with the destination file f2. c) The e↵ective authorised users of the label associated with

the file f2 must be a subset of the e↵ective authorised users of the label associated with

the file f1. d) The e↵ective security access type of the label associated with the file f2

must be either of type RW� or WO�. e) The source file must not exist after executing the

command. f) The destination file must exist after executing the command and its label

must be changed to be the union of its label and the label associated with the file f1, after

executing the command. This leads to the following typing rule:

� | �0 ` f1 : l �0 | �00 ` f2 : l
0 u 2 o�(l) ^ u�(l0) u�(l) v u�(l0) �(l0) vWO�

(mv)
� | �00, f2 : l

0 t l ` u.mv f1 f2 : void

copy command: To successfully execute the command copy f1 f2, the following con-

straints must be satisfied: a) The source file f1 must already exist in the system. b) The

destination file f2 must not exist in the system. c) The e↵ective security copy type of the

label associated with the file f1 must be either of type UC or LCn>0. d) The user who

issues the command must be one of the e↵ective authorised users of the label associated

with f1. e) The source and destination files f1 and f2 must exist after executing the

command. f) After executing the command, the security copy type of each policy in the

label associated with the file f1 must be changed to be the same as the type resulting from

applying the function red to the e↵ective security copy type of the label associated with

the file f1. g) After executing the command, the file f2 must be assigned the union of the

label associated with the file f1 applied to it dst function, and a label where its security

copy type is the e↵ective security copy type of the label associated with the file f1 applied

to it dst function, and its security access type is the e↵ective security access type of the

label associated with the file f1, and the owner and the authorised users are the only user

169

who issues the command. This leads to the following typing rule:

� | �0 ` f1 : l ↵(l) v LCn>0 u 2 u�(l)
(copy)

� | �0, f1 : red(l), f2 : dst(↵(l), �(l), u : u) t dst(l) ` u.copy f1 f2 : void

append command: To successfully execute the command append f1 f2 f3, the following

constraints must be satisfied: a) The source files f1 and f2 must already exist in the

system. b) The destination file f3 must not exist in the system. c) The user who issues

the command must be one of the e↵ective authorised users of the labels associated with

the files f1, and f2. d) The e↵ective security access type of the labels associated with

the source files f1 and f2 must be either of type RW�,RW+, WO� or WO+. e) The

source files f1 and f2 must not exist in the system after executing the command. f) The

destination file f3 must exist in the system after executing the command, and must be

assigned the union of the labels of the source files f1 and f2, and a label where its security

copy type is the join of the e↵ective security copy type of the label associated with the

files f1 and f2, its security access type is the join of the e↵ective security access type of

the label associated with the files f1 and f2, and the owner and the authorised users are

the only user who issues the command. This leads to the following typing rule:

� | �0 ` f1 : l �0 | �00 ` f2 : l
0 u 2 u�(l) ^ u�(l0) �(l) ^ �(l0) vWO+

(append)
� | �00, f3 : (↵(l) t ↵(l0), �(l) t �(l), u : u) t l t l0 ` u.append f1 f2 f3 : void

move command: To successfully execute the command move f1 f2, the following con-

straints must be satisfied: a) The source files f1 must already exist in the system. b) The

destination file f2 must not exist in the system. c) The user who issues the command

must be one of the owners of the label associated with the source file f1. d) The source

file must not exist after executing the command. e) The destination file must exist after

executing the command and must be assigned the label associated with the file f1. This

leads to the following typing rule.

� | �0 ` f1 : l u 2 o�(l)
(move)

� | �0, f2 : l ` u.move f1 f2 : void

The typing rules are shown together in Figure 6.4. In the next section we introduce

new commands along with their typing rules for manipulating file policies.

170

(f)
�, f : l | � ` f : l

� | �0 ` u.c : void �0 | �00 ` u.cs : void
(cs)

� | �00 ` u.c;u.cs : void

� | �0 ` f1 : l ↵(l) v LCn>0 �0 | �00 ` f2 : l0

u 2 u�(l) ^ u�(l0)

u�(l) v u�(l0) �(l0) vWO�

(cp)
� | �00, f1 : red(l), f2 : l0 t dst(l) ` u.cp f1 f2 : void

� | �0 ` f : l u 2 o�(l)
(rm)

� | �0 ` u.rm f : void

(mkf)
� | �, f : (↵, �, u : u) ` u.mkf f ↵ � : void

� | �0 ` f : l u 2 u�(l) �(l) v RO
(rd)

� | �0 ` u.rd f : void

� | �0 ` f1 : l �0 | �00 ` f2 : l0 �00 | �000 ` f3 : l00

u 2 u�(l) ^ u�(l0) ^ u�(l00)

u�(l) ^ u�(l0) v u�(l00)

�(l) ^ �(l0) vWO+

�(l00) vWO�

(cat)
� | �000, f3 : l t l0 t l00 ` u.cat f1 f2 f3 : void

� | �0 ` f1 : l �0 | �00 ` f2 : l0 u 2 o�(l) ^ u�(l0) u�(l) v u�(l0) �(l0) vWO�

(mv)
� | �00, f2 : l0 t l ` u.mv f1 f2 : void

� | �0 ` f1 : l ↵(l) v LCn>0 u 2 u�(l)
(copy)

� | �0, f1 : red(l), f2 : dst(↵(l), �(l), u : u) t dst(l) ` u.copy f1 f2 : void

� | �0 ` f1 : l �0 | �00 ` f2 : l0 u 2 u�(l) ^ u�(l0) �(l) ^ �(l0) vWO+

(append)
� | �00, f3 : (↵(l) t ↵(l0), �(l) t �(l), u : u) t l t l0 ` u.append f1 f2 f3 : void

� | �0 ` f1 : l u 2 o�(l)
(move)

� | �0, f2 : l ` u.move f1 f2 : void

Figure 6.4: Typing rules

6.5 Downgrading and upgrading of policies

In this section we introduce several commands to manipulate file policies. Unlike previous

commands which a↵ect the files themselves, the commands introduced in this section

a↵ect the labels associated with the files. Such commands might downgrade or upgrade

a file policy. Downgrading a policy, referred to as declassification in the literature, is the

process of making the policy less restrictive, while upgrading a policy is the process of

making the policy more restrictive. Although upgrading might occur implicitly as a result

171

of information flow from a file with a less restrictive policy to a file with a more restrictive

policy; performing it explicitly might be useful in some situations. For example, an owner

might find out later that a file should not be written into it anymore, and allow it only

to be read. On the other hand, downgrading cannot occur as a result of information flow.

However, downgrading might be useful in some situations, for example, the owner of a file

might find out later that a file need not be confidential anymore and allow it to be read.

Downgrading policies is a critical operation and leads to policy violation if it used

improperly. For example, a user who is allowed to only write to a file, might downgrade

the policy of a file to allow himself to read and write to the file. To prevent such violation

of policies, we allow only owners of files to issue commands that manipulate policies.

Therefore, only the owner of a file can change the policy associated with that file. Since a

file might be associated with several policies that belong to di↵erent owners, we allow the

commands that manipulate policies to a↵ect only the policy that belongs to the owner who

issues that command. Because only the e↵ective policy will be taken into account when

evaluating a label associated with the file, the other polices belonging to other owners

will not be a↵ected. That is, downgrading a single policy in a label consisting of multiple

policies, will not change the overall policy of the label if there is another policy that is

more restrictive than the downgraded policy.

As explained in the previous section, a label l might consist of a single policy (e.g.

pl), or multiple policies (e.g. pl1, pl2, pl3, . . . , pln), where each policy belongs to an owner.

Below we define functions useful for typing commands presented in the next section.

Definition 6.5.1. The function sp(l, u, pl), takes a label l, a user u, and a policy pl, and

swaps every policy in l owned by the user u with the policy pl.

sp(l, u, pl) = (8k 2 l ^ o�(k) = u! swap(k, pl))

Definition 6.5.2. The function ap(l, pl), takes a label l and a policy pl and appends the

policy pl to the label l.

ap(l, pl)! pl t l

Definition 6.5.3. The function s↵(l, u, ↵), takes a label l, a user u, and a security copy

type ↵, and swaps every security copy type in every policy in l owned by the user u with

the security copy type ↵.

s↵(l, u, ↵) = (8k 2 l ^ o�(k) = u! swap(↵(k), ↵))

172

Definition 6.5.4. The function s�(l, u, �), takes a label l, a user u, and a security access

type �, and swaps every security access type in every policy in l owned by the user u with

the security access type �.

s�(l, u, �) = (8k 2 l ^ o�(k) = u! swap(�(k), �))

Definition 6.5.5. The function s�(l, u, �), takes a label l, a user u, and an ownership and

authorisation type �, and swaps every ownership and authorisation type in every policy

in l owned by the user u with the ownership and authorisation type �.

s�(l, u, �) = (8k 2 l ^ o�(k) = u! swap(�(k), �))

Definition 6.5.6. The function ru(l, u1, u2), takes a label l and two users u1 and u2, and

removes the user u2 from the authorised users of every policy in the label l owned by the

user u1.

ru(l, u1, u2) = (8k 2 l ^ o�(k) = u1 ^ u2 2 u�(k)! remove(u2, k))

Definition 6.5.7. The function au(l, u1, u2), takes a label l and two users u1 and u2, and

adds the user u2 to the authorised users of every policy in the label l owned by the user

u1.

au(l, u1, u2) = (8k 2 l ^ o�(k) = u1 ^ u2 62 u�(k)! add(u2, k))

In the next section, we present the commands for manipulating file policies along with

descriptions and their typing rules.

6.5.1 Language and typing rules

We extend the syntax of the language presented in the previous section with the following

commands:

hci ::= chmod↵ hfi h↵i | chmod� hfi h�i | chmod� hfi h�i | chmodp hfi hpli |

| addp hfi hpli | rmuser hfi hui | adduser hfi hui

The rest of the language remains unchanged. The additional commands presented

above allow owners of files to manipulate their file policies in di↵erent ways. Owners

can change a particular type of policy they own by issuing chmod↵, chmod�, or chmod�.

Owners can also change the whole policy by issuing the command chmodp, or can add a

new policy by issuing the command addp. Finally, owners can add or remove users from

the policies they own by issuing the commands adduser and rmuser, respectively. Below

we give a brief description of each command with its typing rule.

173

chmod↵: The command chmod↵ f ↵ changes the security copy type ↵ of the policies

owned by the user who issues the command that exist in the label associated with the

file f . To successfully execute the command chmod f ↵, the following constraints must

be satisfied: a) The file f must already exist in the system. b) The user who issues the

command must be an owner of a policy in the label associated with the file f . c) After

executing the command, the security copy of the policies owned by the user who issued

the command must be changed to the new type ↵ that is provided to the command

chmod↵ f ↵. This leads to the following typing rule:

� | �0 ` f : l u 2 o�(l)
(chmod↵)

� | �0, f : s↵(l, u, ↵) ` u.chmod↵ f ↵ : void

chmod�: The command chmod� f � changes the security access type � of the policies

owned by the user who issues the command that exist in the label associated with the file f .

To successfully execute the command, the following constraints must be satisfied: a) The

file f must already exist in the system. b) The user who issues the command must be an

owner of a policy in the label associated with the file f . c) After executing the command,

the security access type of the policies owned by the user who issued the command must

be changed to the new type � that is provided to the command chmod� f �. This leads

to the following typing rule:

� | �0 ` f : l u 2 o�(l)
(chmod�)

� | �0, f : s�(l, u, �) ` u.chmod� f � : void

chmod�: The command chmod� f � changes the ownership and authorisation type � of

the policies owned by the user who issues the command that exist in the label associated

with the file f . To successfully execute the command, the following constraints must be

satisfied: a) The file f must already exist in the system. b) The user who issues the

command must be an owner of a policy in the label associated with the file f . c) After

executing the command, the ownership and authorisation type of the policies owned by

the user who issued the command must be changed to the new type � that is provided to

the command chmod� f �. This leads to the following typing rule:

� | �0 ` f : l u 2 o�(l)
(chmod�)

� | �0, f : s�(l, u, �) ` u.chmod� f � : void

chmodp: The command chmodp f pl changes the all policies owned by the user who issues

the command that exist in the label associated with the file f . To successfully execute the

command, the following constraints must be satisfied: a) The file f must already exist

in the system. b) The user who issues the command must be an owner of a policy in the

174

label associated with the file f . c) After executing the command, the policies owned by

the user who issued the command must be changed to the new policy pl that is provided

to the command chmodp f pl. This leads to the following typing rule:

� | �0 ` f : l u 2 o�(l)
(chmodp)

� | �0, f : sp(l, u, pl) ` u.chmodp f pl : void

addp: The command addp f pl adds a new policy by the user who issues the command

to the label associated with the file f . To successfully execute the command, the following

constraints must be satisfied: a) The file f must already exist in the system. b) The

user who issues the command must be an owner of a policy in the label associated with

the file f . c) After executing the command, the policy that is provided to the command

addp f pl must be appended to the label associated with the file f . This leads to the

following typing rule:

� | �0 ` f : l u 2 o�(l)
(addp)

� | �0, f : ap(l, pl) ` u.addp f pl : void

adduser u: The command adduser f u1 adds a new authorised user to the policies

owned by the user who issues the command that exist in the label associated with the

file f . To successfully execute the command, the following constraints must be satisfied:

a) The file f must already exist in the system. b) The user who issues the command must

be an owner of a policy in the label associated with the file f . c) After executing the

command, the user u1 that is provided to the command adduser f u1 must be appended

to the authorised users of the policies owned by the user who issued the command. This

leads to the following typing rule:

� | �0 ` f : l u 2 o�(l)
(adduser)

� | �0, f : au(l, u
,

u1) ` u.adduser f u1 : void

rmuser u: The command rmuser f u1 removes an existing authorised user from the

policies owned by the user who issues the command that exist in the label associated

with the file f . To successfully execute the command, the following constraints must be

satisfied: a) The file f must already exist in the system. b) The user who issues the

command must be an owner of a policy in the label associated with the file f . c) After

executing the command, the user u1 that is provided to the command rmuser f u1 must

be removed from the authorised users of the policies owned by the user who issued the

command. This leads to the following typing rule:

� | �0 ` f : l u 2 o�(l)
(rmuser)

� | �0, f : ru(l, u
,

u1) ` u.rmuser f u1 : void

175

The typing rules presented above are depicted in Figure 6.5; which is an extension to

the typing rules depicted in Figure 6.4. In the next section we revise the typing algorithm

to reflect the new version of the type system shown in Figures 6.4 and 6.5.

� | �0 ` f : l u 2 o�(l)
(chmod↵)

� | �0, f : s↵(l, u, ↵) ` u.chmod↵ f ↵ : void

� | �0 ` f : l u 2 o�(l)
(chmod�)

� | �0, f : s�(l, u, �) ` u.chmod� f � : void

� | �0 ` f : l u 2 o�(l)
(chmod�)

� | �0, f : s�(l, u, �) ` u.chmod� f � : void

� | �0 ` f : l u 2 o�(l)
(chmodp)

� | �0, f : sp(l, u, pl) ` u.chmodp f pl : void

� | �0 ` f : l u 2 o�(l)
(addp)

� | �0, f : ap(l, pl) ` u.addp f pl : void

� | �0 ` f : l u 2 o�(l)
(adduser)

� | �0, f : au(l, u
,

u1) ` u.adduser f u1 : void

� | �0 ` f : l u 2 o�(l)
(rmuser)

� | �0, f : ru(l, u
,

u1) ` u.rmuser f u1 : void

Figure 6.5: Typing rules for changing policies

6.5.2 Typing algorithm

In this section we present a type inference algorithm T for typing phrases according

to the new type system depicted in Figures 6.4 and 6.5. In addition to the functions

check, less, red and dst defined in the previous typing algorithm, we define the following

functions. If ⌧ = l, then ⇡1(⌧) = ↵(l), ⇡2(⌧) = �(l), ⇡3(⌧) = o�(l), and ⇡4(⌧) = u�(l).

auth(u, ⌧) returns true if u 2 ⇡4(⌧), and own(u, ⌧) returns true if u 2 ⇡3(⌧). If ⌧ = l and

⌧ 0 = l0, then lub(⌧, ⌧ 0) = lt l0. Using these functions, we can now define the type inference

algorithm T as follows:

The Type Reconstruction Algorithm T :

176

T (A, e) = (⌧, A0)

where:

1. If e is the filename f , and f : ↵ 2 A then ⌧ = ↵, A0 = Ar {f : ↵}.

2. If e is a sequence of commands, u.c;u.cs let

(↵,A1) = T (A, c)

check(↵, void)

(�,A2) = T (A1, cs)

check(�, void)

then ⌧ = void, A0 = A2.

3. If e is the cp command, u.cp f1 f2 let

(↵,A1) = T (A, f1)

less(⇡1(↵),LC
n>0)

(�,A2) = T (A1, f2)

auth(u, ↵)

auth(u, �)

less(⇡2(�),WO�)

less(⇡4(↵), ⇡4(�))

then if f1, f2 62 A2, then ⌧ = void, A0 = A2 [{f1 : red(↵), f2 : lub(dst(↵), �)}.

4. If e is the rm command, u.rm f let

(↵,A1) = T (A, f)

own(u, ↵)

then ⌧ = void, A0 = A1.

5. If e is the mkf command, u.mkf f ↵ �, then if f 62 A, then ⌧ = void, A0 = A [{f :

↵, �, u : u}.

6. If e is the rd command, u.rd f let

(↵,A1) = T (A, f)

less(⇡2(↵),RO)

auth(u, ↵)

then ⌧ = void, A0 = A1.

177

7. If e is the cat command, u.cat f1 f2 f3 let

(↵,A1) = T (A, f1)

(�,A2) = T (A1, f2)

(�, A3) = T (A2, f3)

auth(u, ↵)

auth(u, �)

auth(u, �)

less(⇡4(↵), ⇡4(�))

less(⇡4(�), ⇡4(�))

less(⇡2(↵),WO+)

less(⇡2(�),WO+)

less(⇡2(�),WO�)

then if f3 62 A3, then ⌧ = void, A0 = A3 [{f3 : lub(↵, �, �)}.

8. If e is the mv command, u.mv f1 f2 let

(↵,A1) = T (A, f1)

(�,A2) = T (A1, f2)

less(⇡2(�),WO�)

own(u, ↵)

auth(u, �)

less(⇡4(↵), ⇡4(�))

then if f2 62 A2, then ⌧ = void, A0 = A2 [{f2 : lub(↵, �)}.

9. If e is the copy command, u.copy f1 f2 let

(↵,A1) = T (A, f1)

less(⇡1(↵),LC
n>0)

auth(u, ↵)

then if f2 62 A, then ⌧ = void, A0 = A1 [{f1 : red(↵), f2 : lub(dst(⇡1(↵), ⇡2(�), u :

u), dst(↵))}.

178

10. If e is the append command, u.append f1 f2 f3 let

(↵,A1) = T (A, f1)

(�,A2) = T (A1, f2)

auth(u, ↵)

auth(u, �)

less(⇡2(↵),WO+)

less(⇡2(�),WO+)

then if f3 62 A, then ⌧ = void, A0 = A2[{f3 : lub((lub(⇡1(↵), ⇡1(�)), lub(⇡2(↵), ⇡2(�)), u :

u), ↵, �)}.

11. If e is the move command, move f1 f2 let

(↵,A1) = T (A, f1)

own(u, ↵)

then if f2 62 A, then ⌧ = void, A0 = A1 [{f2 : ↵}.

12. if e is the chmod↵ command, u.chmod↵ f ↵ let

(↵,A1) = T (A, f)

own(u, ↵)

then if f 62 A1, then ⌧ = void, A0 = A1 [{f : s↵(↵, u, ↵)}

13. if e is the chmod� command, u.chmod� f � let

(↵,A1) = T (A, f)

own(u, ↵)

then if f 62 A1, then ⌧ = void, A0 = A1 [{f : s�(↵, u, �)}

14. if e is the chmod� command, u.chmod� f � let

(↵,A1) = T (A, f)

own(u, ↵)

then if f 62 A1, then ⌧ = void, A0 = A1 [{f : s�(↵, u, �)}

15. if e is the chmodp command, u.chmodp f pl let

(↵,A1) = T (A, f)

own(u, ↵)

then if f 62 A1, then ⌧ = void, A0 = A1 [{f : sp(↵, u, pl)}

179

16. if e is the addp command, u.addp f pl let

(↵,A1) = T (A, f)

own(u, ↵)

then if f 62 A1, then ⌧ = void, A0 = A1 [{f : ap(↵, pl)}

17. if e is the adduser command, u.adduser f u1 let

(↵,A1) = T (A, f)

own(u, ↵)

then if f 62 A1, then ⌧ = void, A0 = A1 [{f : au(↵, u, u1)}

18. if e is the rmuser command, u.rmuser f u1 let

(↵,A1) = T (A, f)

own(u, ↵)

then if f 62 A1, then ⌧ = void, A0 = A1 [{f : ru(↵, u, u1)}

6.6 Discussion

In the last revision of the type system where types of files are labels and the typing rules

are extended to control which operations can be performed on which label of the file and by

whom; various policies identified in Chapter 4 can be specified and enforced. Particularly,

the di↵erent types of access and propagation in a shared memory style can be enforced.

For example, a file with a label such as {NC,RO, Alice : Bob} describes a file that is

shared as OneToOne in a shared memory and the file can be read only once. While a file

with a label such as {UC,WO+, Alice : Bob, Carol,Dave} describes a file that is shared

as OneToGroup in a shared memory and the file can be appended to it only. Other types

of propagation such as Group, GroupToOne, and ManyToOne are built of atomic types.

For example, Group describes a situation where each one of the group is sharing his file as

OneToGroup. That is, if Alice,Bob, and Carol want to share their files as Group, then any

file created by each of them should specify the others as authorised users. This will make

more sense if we extend our system with directories which we aim for in future work. For

example, a directory of type GroupToOne such as {Alice,Bob, Carol}To{Dave}, should

only store files of types {Alice : Dave}, {Bob : Dave}, or {Carol : Dave}. By having

directories in the system, a distinction between publishing and sharing in static, dynamic,

180

and transfer modes becomes obvious. That is copying a file from one directory to another

by cp or copy commands is publishing or sharing in a static mode, while moving a file

from one directory to another by mv or move commands is publishing or sharing in transfer

mode. Publishing or sharing in dynamic mode, which is another extension we aim for in

future work, can be achieved in the same way as in the static mode, except that a reference

to a file is copied from one directory to another rather than the file itself.

The developed type system in the previous chapter and the extensions discussed in

this chapter are focused on enforcing the di↵erent types of access and propagation in a

shared memory style, represented as a file system. Other possible future extensions are

to enforce restrictions over types of access other than limiting the number of times a file

can be read, such as limiting the period of time, the location and the specific time for a

particular access type to be exercised, and enforcing these policies in a distributed memory

style where files are moved from the owner device to the recipient device to be accessed

locally rather than stored in a particular place that must be accessed by all recipients.

The type system developed in this thesis is not confined to enforcing the policies

identified in Chapter 4. Other policies that we have not looked at in this thesis can

be enforced similarly with the basic idea of the type system which is based on resource

consumption and intercepting commands. For example, the Bell-LaPadula model of multi-

level security can be enforced by our type system if we associate users and files with security

levels such as top secret, secret, confidential, and unclassified. The simple security property

(no read up) which requires that a user at a given security level may not read a file at a

higher security level, can be achieved by extending the typing rule for u.rd f command

to check for l(f) v l(u), that is the security level of the user is at least as restrictive as

the security level of the file. The star property (no write down) which requires that a user

at a given security level may not write to file at a lower security level, can be achieved by

extending the typing rule for u.mkff l command to check for l(u) v l, that is the security

level assigned to the file to be created is at least as restrictive as the security level of the

user creating the file. The typing rules for other commands that writes to files such as

cat, mv and append, need not to be extended. This is because they change the security

level of files only to be more restrictive, and thus the star property will be satisfied.

The policies enforced by our type system are a sort of discretionary access control, in

the sense that owners can specify any policies they prefer to their files. For example, the

command u.mkf f l allows the user u to create a file f associated with label l. The typing

rule for the command u.mkf has no constraint over the label to be associated with the

181

file. However, mandatory access control where system-wide policies must be enforced and

owners have no discretion over file policies might be useful in some situations. For example,

in an organisation, Alice might only be allowed to write reports and share them only with

her manager Bob who can only read them. Because these reports are confidential, the

organisation need to ensure that they cannot be shared accidentally with anyone else

except Bob. While Alice can create these reports with the label {UC,RO, Alice : Bob}

to ensure that only Bob can read them, there is a chance that Alice might accidentally

create them with another label that allows others to read them. To enforce this sort of

mandatory access control in our type system, we need to associate users in the system with

labels that are identical to the labels associated with the files. User labels represent the

maximum policy which can be associated with the files they create. Therefore, mandatory

access control can be simply enforced by extending only the typing rule for the command

u.mkf f l to check for l v u(l) which ensures that the label to be associated with the

created file is less or equal to the maximum policy the user can specify.

Our type system enforces both access control and information flow policies. Access

control is enforced by checking which operations can be performed on which file and by

whom, while information flow is enforced by tracking file policies and allowing them to be

changed only to more restrictive policies. The flow policies enforced by our type system lie

somewhere between the flow policies enforced by flow-insensitive type systems and flow-

sensitive type systems. This is because of the following two reasons. Firstly, types of files

in our system are not just security levels but they also represent permissions that dictate

which operations are allowed to be performed on them. Information flow between files in

our system can only occur by performing operations on these files and are allowed if and

only if the operations are permitted by the types of files. In flow-insensitive type systems

flow of information from f1 to f2 is allowed if and only if T (f1) v T (f2). That is, if

T (f1) = RO and T (f2) = NRW, then flow-insensitive type systems will allow information

to flow from f1 to f2 because RO v NRW. However, this will violate the policy of f2

because the type of f2 is NRW which requires that such a file cannot be read or written

into it. More interestingly, if T (f1) = NRW and T (f2) = RW�, then flow-insensitive type

systems prevent flow of information from f1 to f2 since NRW 6v RW�. However, such flow

is allowed in our type system because the type of f2 is RW� which allows such a file to be

overwritten. Secondly, our view is that each file is associated with a policy that must be

enforced. A file must enforce its own policy and the policy of the information flowed into

it. In flow-insensitive type systems the flow of information from a source to a destination

182

causes the information to acquire the policy of the destination. On the other hand, in

flow-sensitive type system the flow of information from a source to a destination causes

the destination to acquire the policy of the source of the information. However, both ways

will violate the file policies. For example, assume that T (f1) = NRW and T (f2) = RW�

and there is information flow from f1 to f2. If we let the information flowing to acquire the

type of f2, then f1 can be read indirectly by reading f2 where the type of f1 is NRW which

requires that such a file cannot be read. Now assume that T (f1) = RO and T (f2) = WO�

and there is information flow from f1 to f2. If we let f2 acquires the type of the source of

information, then f2 can be read where the type of f2 is WO� which requires that such a

file can be only written into but not read.

The flow policy enforced by our type system follows the idea of flow-insensitive type

systems in that the flow of information must only result in a more restrictive type of

information; as well as the idea of flow-sensitive type systems in that information can flow

anywhere and the security types can be changed during computation. In such a way we

may benefit from the restrictiveness of flow-insensitive type systems and the permissiveness

of flow-sensitive type systems.

Our approach to extend file policies with ownership and authorisation information and

represent them as a label is inspired by the work on DLM. However, our label structure,

interpretation, and flow policy is di↵erent from DLM. In DLM, a policy in a label consists of

two components which are an owner and a reader set, whereas a policy in our label consists

of four components which are a security copy type, a security access type, an owner, and

authorised users. Labels in DLM represent policies that dictate where the information

can flow, whereas labels in our system represent permissions of files that dictate which

operations can be performed and by whom. In DLM, the flow of information from a source

to a destination causes the information to acquire the label of the destination, referred to as

information relabeling. That is, it enforces the flow policy of flow-insensitive type systems.

Such relabeling is only allowed if it is a restriction, that is the new label must only remove

readers, add owners, or both. However, in our system such flow causes the destination

label to change its label to enforce all the policies in both its label and the source label.

This is similar to how derived values are treated in DLM. Therefore, relabeling occurs

to the destination rather than to the information flowing to that destination. Unlike

DLM, relabeling in our system is only allowed if the operation that causes such relabeling

is permitted by both labels of the source and destination, and the authorised users of

the destination label is a subset of the authorised user of the source label. A major

183

di↵erence between our work and the work on DLM is the idea of consumption of resource

and intercepting commands that manipulate files. In DLM, the flow of information from a

source to a destination causes a copy of the information stored in the source to be assigned

to the destination. However, in our work such a flow causes the source to be consumed

and stored in the destination unless otherwise the source is explicitly copied. DLM is a

general model that only restricts how information can flow between di↵erent parts of the

system, whereas our work is focused on file sharing that intercepts each command to be

performed on files and checks for access control requirements and enforces the information

flow requirements. In DLM, users of a label are considered either readers or writers of the

information of that label. Whereas in our work, users of a label are considered authorised

to perform operations that are specified by the label, which might not allow them to read

or write to the information of that label.

The current labels associated with files divide users into owners and authorised users.

Each label assigns the same permissions to all authorised users. This might not be desirable

in situations where di↵erent users require di↵erent permissions for the same file. For

example, if Alice needs to read the file f1 and Bob needs to write to the file f1, then our

labels cannot specify this policy. That is, our label cannot grant di↵erent permissions to

di↵erent users for the same file. In fact, in Unix-like file systems, where traditional file

permissions model is used, each file can grant di↵erent permissions to three di↵erent types

of users: owner, group, and others. Moreover, Access Control List (ACL) can be used

as an extension to traditional file permissions model to avoid its limitations, and allow

permissions to be granted to individual users or groups even if these do not correspond to

the original owner or the owning group.

However, our label is useful in situations where all authorised users need to have the

same permissions for the same file. For situations where two groups of users need to

have di↵erent permissions for the same file, then two linked copies of the file must exist

where each copy is associated with a label that specifies the permissions needed for one

group. For example, if there are two groups of users group1 and group2, where group1

need to read the file f1 and group2 need to write to the file f1. Then, a reference to the

file f1 should be copied into f2, and f1 should be associated with a label to specify the

permissions for group1, and f2 should be associated with a label to specify the permissions

for group2. In this way, any changes made to f2 will be reflected into f1, and thus, it will

have the same e↵ect as assigning di↵erent permissions to di↵erent users for the same file.

Implementing the type system developed in this thesis in a real file system is one

184

thing that we are aiming for in future work. Such implementation is useful to show

the practicality of our approach to prevent accidental misuse of shared files, and also

to obtain feedback on using the system for possible improvements. Various choices for

implementation have to be made; for example, di↵erent choices available to associate

types with files. Firstly, they can be attached to files as described in the file system �.

Secondly, they can be stored along with file names in a di↵erent location internal to the

file system. Thirdly, they can be stored with file names in a di↵erent location external to

the file system. Although each of them might have advantages and disadvantages, the role

of the type system will be the same which is to intercept each command to be performed

on files and fetch the types of these files to check for access control and information flow

requirements.

6.7 Summary

In this chapter we have looked at possible future extensions to the type system presented

in Chapter 5. In particular, we showed that the type system can be easily extended

to regulate other operations than copy in order to enforce the various policies identified

in Chapter 4. We have taken a significant step towards realising these extensions. We

began by defining additional security types to control read and write operations, which

we refer to as security access types. We showed that if files were associated only with the

security access types, then the same typing rules presented in Chapter 5 with additional

constraints can be used to control the access to read and write operations and the flow

caused by all operations. Then, we defined security types of files as pairs that consist of

a security copy type and a security access type. The former type represents a policy to

control the access and flow of copy operations; and the latter type represents a policy to

control the access and flow of read and write operations. We extended the type system to

enforce these policies along with a typing algorithm. The extended type system controls

the access to copy, read and write operations and the flow caused by all operations. Next,

we defined security types of files as labels that not only consist of a security copy type and

a security access type, but also of ownership authorisation information. The ownership

and authorisation information in a label indicates the owners and the authorised users of

a file associated with the label. Such labels represent policies to specify which operations

can be performed on which types of files and by whom. Based on the definition of labels,

we extended the type system to not only control the access and flow of operations but also

control which user can perform these operations. Finally, we extended the commands in

185

our language to include commands that manipulate file policies. We extended the type

system with typing rules for these commands along with a typing algorithm for typing

phrases in accordance with the last extension of the type system.

186

Chapter 7

Conclusion

File sharing has been a topic of interest in computer science, ever since files were created.

One of the most challenging problems researchers face is protecting the shared files from

various attacks that violate their confidentiality, integrity and availability. These attacks

can be launched by unauthorised users, referred to as external threats, or by author-

ised users, referred to as insider threats. In this thesis, we have investigated the insider

threat problem with respect to file sharing and developed a novel approach to preventing

accidental threats to the shared files.

There exists a large body of work in the literature on addressing the insider threat

problem. The problem of the insider threat is not only confined to attacks on shared

files, but rather it encompasses various types of attack that target di↵erent assets of an

organisation. As a result of the broad scope of the problem, various definitions of the

insider threat problem exist. Researchers have described the insider threat problem by

defining who the insiders are and what threats they constitute. Their definitions contradict

one another; and what is considered an insider for some researchers might be considered

an outsider for others. Also, they have generally always described insider threats based

on a definition of the insider, such that the insider threats are the damages caused to an

organisation by an insider. Due to the fact that there is no clear definition of the problem,

little progress has been made in addressing the insider threat problem. From our point

of view, better progress can be made if the problem is classified into several categories

which can be defined, studied and solved independently and which later can be combined

to solve the problem as a whole. Therefore, we proposed an approach to classifying

the insider problem into di↵erent categories and providing precise definitions of who the

insider is and what is the insider problem. Based on the proposed classification, we defined

our class of insider problem; namely, preventing confidentiality and integrity attacks on

187

sensitive files by recipients during the activity of file sharing. Although the insiders and

the assets that we need to protect are clearly identified in our class of insider problem,

the attacks and the activities are still vague. Files can be shared and attacked by insiders

in di↵erent ways which must be identified. Di↵erent types of attack by insiders require

di↵erent types of protection. Claiming that a particular protection mechanism can protect

file confidentiality is not enough. Instead, one should claim that a particular protection

mechanism can protect file confidentiality under specific types of attack. Identifying these

types of attack makes it clear which protection mechanism we need to develop, and allow

us to validate it against the types of attack it claims to prevent. Therefore, we investigated

the di↵erent types of misuse of the shared files that can be performed by insiders during

the activity of file sharing, and we characterised the protection required against them.

We focused in this thesis on the protection required to prevent accidental misuse that

a↵ects the confidentiality and integrity of files by trusted insiders. This is because files

can only be entirely protected if shared with trusted insiders. System vulnerabilities and

the analogue hole problem have made protection against untrusted insider unfeasible.

Untrusted malicious insiders will always find a way to bypass the protection mechanism

in place. Also, accidental misuse of the shared files by insiders is a highly cited problem in

the literature [34, 4, 54], and if this cannot be solved, then neither can deliberate misuse.

Protecting the shared files is a topic that has been studied in two di↵erent fields with

di↵erent interests, namely, information sharing and security. The former focuses on facilit-

ating information sharing and provides sharing tools that are suitable for various sharing

tasks but not secure. The latter focuses on securing information sharing and provides

sharing tools that are secure but not suitable for every sharing task. Considering both

fields will help us to design a protection mechanism that will not only protect the shared

files against accidental misuse by insiders; but will also not interfere with people’s prac-

tices of file sharing. Therefore, in addition to identifying the misuse we need to prevent,

we investigate how the activity of file sharing can be performed. We characterised the

activity of file sharing according to how files can be propagated from owners to recipients

and how files can be accessed by the recipients after their propagation. Based on this

characterisation, we defined a framework that classifies the activity of file sharing into

di↵erent categories. Each category specifies how files should be propagated and accessed

after their propagation. We showed that these categories can be thought of as policies that,

if enforced, allow the provision of various types of protection against accidental misuse.

We enforced these policies by the use of language based techniques; and designed

188

a language to manipulate files and specify their policies in a file system, and a type

system that enforces these policies. In the file system, policies are represented as security

types which are associated with files, and programs are set of operations to be performed

on files. The security types represent both access control and information flow policies.

They represent access control polices as they dictate which operations are allowed to be

performed; and represent information flow policies as they dictate where the information

can flow. The role of the type system is to intercept each command to be performed on

files, and enforce the access control and information flow policies of these files. That is,

the type system will first check whether or not the operations to be performed on files are

allowed by the types of the files, and secondly will check whether or not the information

flow between files caused by the command satisfies the flow policies of the files.

As a starting point, we focused on enforcing a particular constraint of the policies;

namely, limiting the number of times a file can be read. We achieved this by limiting the

number of copies of a file that can be produced, and by the notion of resource consumption;

that is a file is a resource which must be consumed when it is used unless if it is explicitly

copied. Therefore, we define security types to control the access to copy operations and

the flow caused by all operations including copy, such that the copy policies of files are not

violated. However, other constraints can be enforced similarly by controlling the access

to and the flow caused by other operations, as we discussed in Chapter 6. We proved the

soundness of the developed type system that enforces these policies and defined a type

reconstruction algorithm and proved its soundness and completeness.

The approach taken in this thesis to tackle accidental insider threats to file sharing is

not yet completed. However, we have developed the basic elements of the system which

are capable of showing the usefulness and practicality of our approach to tackle accidental

insider threats to file sharing, and which can be built upon easily to realise the complete

picture of our approach. Various extensions are left for future work as pointed out in

Chapter 6. Some of them are discussed in detail with minimal work left to complete

them, while others require further investigation. Implementing the system developed in

this thesis is one of the things that we aim for in future work. Such implementation is

useful to obtain feedback from users using the system about our approach that could be

used to improve and refine the current system.

In conclusion, this thesis has proposed a novel approach to prevent accidental insider

threats to file sharing. I hope that this thesis will inspire current researchers who study

insider threats, file sharing, and language-based security, to work together towards devel-

189

oping a common secure language that allows secure file sharing against accidental insider

threats, by refining and extending the approach taken in this thesis to suit their purpose

and need.

190

Bibliography

[1] Abadi, M. (1999). Secrecy by typing in security protocols. J. ACM, 46(5):749–786.

48, 53

[2] Adya, A., Bolosky, W. J., Castro, M., Cermak, G., Chaiken, R., Douceur, J. R., Howell,

J., Lorch, J. R., Theimer, M., and Wattenhofer, R. P. (2002). Farsite: Federated, avail-

able, and reliable storage for an incompletely trusted environment. In PROCEEDINGS

OF THE 5TH SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLE-

MENTATION (OSDI, pages 1–14. 92

[3] Ahern, S., Eckles, D., Good, N. S., King, S., Naaman, M., and Nair, R. (2007). Over-

exposed?: privacy patterns and considerations in online and mobile photo sharing. In

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI

’07, pages 357–366, New York, NY, USA. ACM. 15, 16

[4] AlgoSec (2013). The state of network security 2013: Attitudes and

opinions. http://www.algosec.com/resources/files/Specials/Survey%20files/

State%20of%20Network%20Security%202013_Final%20Report.pdf. 8, 187

[5] Alhazmi, O. H., Malaiya, Y. K., and Ray, I. (2004). Vulnerabilities in major operating

systems. Technical report, Department of Computer Science, Colorado State University.

6

[6] Anderson, R. and Brackney, R. (2004). Understanding the insider threat. In Proceed-

ings of a March 2004 Workshop. Prepared for the Advanced Research and Development

Activity (ARDA). http://www. rand. org/publications/CF/CF196. 34, 35

[7] Anderson, T. E., Dahlin, M. D., Neefe, J. M., Patterson, D. A., Roselli, D. S.,

and Wang, R. Y. (1995). Serverless network file systems. SIGOPS Oper. Syst. Rev.,

29(5):109–126. 92

[8] Arnab, A. and Hutchison, A. (2007). Persistent access control: a formal model for

http://www.algosec.com/resources/files/Specials/Survey%20files/State%20of%20Network%20Security%202013_Final%20Report.pdf
http://www.algosec.com/resources/files/Specials/Survey%20files/State%20of%20Network%20Security%202013_Final%20Report.pdf

191

drm. In Proceedings of the 2007 ACM workshop on Digital Rights Management, DRM

’07, pages 41–53, New York, NY, USA. ACM. 42

[9] Arsenova, E. (n.d). Technical aspects of digital rights management. 45

[10] Baliello, C., Basso, A., Giusto, C. D., Khalil, H., and Machancoses, D. (2002). Ker-

beros protocol: an overview Distributed Systems. 31

[11] Bellovin, S. M. (2008). The Insider Attack Problem Nature and Scope. In Stolfo,

S. J., Bellovin, S. M., Keromytis, A., Hershkop, S., Smith, S. W., and Sinclair, S.,

editors, Insider Attack and Cyber Security - Beyond the Hacker, volume 39 of Advances

in Information Security. Springer. 36

[12] Bhatt, S., Sion, R., and Carbunar, B. (2009). A personal mobile drm manager for

smartphones. Computers & Security, 28(6):327–340. 6, 7

[13] Birgisson, A., Russo, A., and Sabelfeld, A. (2010). Unifying facets of information

integrity. In Jha, S. and Mathuria, A., editors, ICISS, volume 6503 of Lecture Notes in

Computer Science, pages 48–65. Springer. 49

[14] Bishop, M. (2005). Position: “insider” is relative. In Proceedings of the 2005 workshop

on New security paradigms, NSPW ’05, pages 77–78, New York, NY, USA. ACM. 34

[15] Bishop, M., Engle, S., Peisert, S., Whalen, S., and Gates, C. (2009). Case studies of

an insider framework. page 817. 35

[16] Bishop, M. and Gates, C. (2008). Defining the insider threat. pages 1–3, New York,

NY, USA. ACM. 35

[17] Boudol, G. (2008). Secure information flow as a safety property. In Degano, P.,

Guttman, J. D., and Martinelli, F., editors, Formal Aspects in Security and Trust,

volume 5491 of Lecture Notes in Computer Science, pages 20–34. Springer. 50

[18] Brown, B., Sellen, A. J., and Geelhoed, E. (2001). In Proceedings of the seventh con-

ference on European Conference on Computer Supported Cooperative Work, ECSCW’01,

pages 179–198, Norwell, MA, USA. Kluwer Academic Publishers. 15, 16

[19] CCITT (Consultative Committee on International Telegraphy and Telephony) (1991).

Recommendation X.800: Security Architecture for Open Systems Interconnection for

CCITT Applications. 29

[20] CERT (2013). The CERT Insider Threat Center @ONLINE. 35

192

[21] Chaudhuri, A. and Abadi, M. (2006). Secrecy by typing and file-access control. In

Proceedings of the 19th IEEE Computer Security Foundations Workshop (CSFW’06),

pages 112–123. IEEE. 53

[22] Chinchani, R., Iyer, A., Ngo, H. Q., and Upadhyaya, S. (2005). Towards a theory

of insider threat assessment. In Proceedings of the 2005 International Conference on

Dependable Systems and Networks, DSN ’05, pages 108–117, Washington, DC, USA.

IEEE Computer Society. 34

[23] Chothia, T., Duggan, D., and Vitek, J. (2003). Type-based distributed access control.

In In Proc. IEEE Computer Security Foundations Workshop, pages 170–186. IEEE. 51

[24] Christensen, S. (Accessed on [20/8/2013]). Introduction to file sharing services: An

it-forensic examination of p2p clients. 17, 18

[25] Clark, D. D. and Wilson, D. R. (1987). A Comparison of Commercial and Military

Computer Security Policies. In 1987 IEEE Symposium on Security and Privacy, pages

184–194. IEEE Computer Society Press. 41

[26] Dalal, B., Nelson, L., Smetters, D., Good, N., and Elliot, A. (2008). Ad-hoc guesting:

when exceptions are the rule. In Proceedings of the 1st Conference on Usability, Psycho-

logy, and Security, UPSEC’08, pages 9:1–9:5, Berkeley, CA, USA. USENIX Association.

15, 22, 24, 27

[27] Damas, L. and Milner, R. (1982). Principal type-schemes for functional programs. In

Proceedings of the 9th ACM SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages, POPL ’82, pages 207–212, New York, NY, USA. ACM. 103

[28] Denning, D. E. (1976). A lattice model of secure information flow. Commun. ACM,

19(5):236–243. 48

[29] Denning, D. E. and Denning, P. J. (1977). Certification of programs for secure in-

formation flow. Commun. ACM, 20(7):504–513. 48

[30] Dezani-Ciancaglini, M. and De’Liguoro, U. (2010). Sessions and session types: An

overview. In Proceedings of the 6th International Conference on Web Services and

Formal Methods, WS-FM’09, pages 1–28, Berlin, Heidelberg. Springer-Verlag. 55

[31] DRM, A. http://www.adobe.com/manufacturing/resources/drm/. [Accessed:

2013-11-28]. 5

http://www.adobe.com/manufacturing/resources/drm/

193

[32] DRM, A. F. http://www.apple.com/itunes. [Accessed: 2013-11-28]. 5

[33] Ernst, M. D. (2003). Static and dynamic analysis: Synergy and duality. In WODA

2003: ICSE Workshop on Dynamic Analysis, pages 24–27, Portland, OR. 48

[34] Europe, I. and PwC (2013). 2013 information security breaches survey. Technical

report, Department for Business, Innovation & Skills. 8, 187

[35] Ferraiolo, D. and Kuhn, R. (1992). Role-based access control. In In 15th NIST-NCSC

National Computer Security Conference. 43

[36] Freier, A. O., Kariton, P., and Kocher, P. C. (1996). The SSL protocol: Version 3.0.

Internet draft, Netscape Communications. 31

[37] Goguen, J. A. and Meseguer, J. (1982). Security policies and security models. In

IEEE Symposium on Security and Privacy, pages 11–20. 49

[38] Good, N. S. and Krekelberg, A. (2003). Usability and privacy: a study of kazaa p2p

file-sharing. In Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems, CHI ’03, pages 137–144, New York, NY, USA. ACM. 15, 16

[39] Goudar, R. and More, P. (2011). Multilayer Security Mechanism in Computer Net-

work. International Journal of Computer Networks and Wireless Communications

(IJCNWC), 1(1). 31

[40] Haber, S., Horne, B., Pato, J., Sander, T., and Tarjan, R. E. (2003). If piracy is the

problem, is drm the answer? In Becker, E., Buhse, W., Gnnewig, D., and Rump, N.,

editors, Digital Rights Management, volume 2770 of Lecture Notes in Computer Science,

pages 224–233. Springer. 6

[41] Hamzeh, K., Pall, G. S., Verthein, W., Taarud, J., Little, W. A., and Zorn, G. (1999).

Point-to-point tunneling protocol (PPTP). Internet RFC 2637. 31

[42] Harinarayana, N. S., Somu, C. S., and Sunil, M. V. (2009). Digital rights management

in digital libraries: An introduction totechnology, e↵ects and the available open source

tools. In 7th International CALIBER-2009, Pondicherry University, Puducherry, Feb-

ruary 25-27, 2009. 45

[43] Harris, S. (2002). Mike Meyers’ Cissp(r) Certification Passport. McGraw-Hill Prof

Med/Tech, 2002. 39, 40, 41, 42, 43

http://www.apple.com/itunes

194

[44] Harrison, M. A., Ruzzo, W. L., and Ullman, J. D. (1976). Protection in operating

systems. Commun. ACM, 19(8):461–471. 47

[45] Hart, M., Johnson, R., and Stent, A. (2006). More content-less control: Access control

in the web 2.0. Control, pages 1–3. 23

[46] Hauser, T. and Wenz, C. (2003). Drm under attack: Weaknesses in existing systems.

In Becker, E., Buhse, W., Gnnewig, D., and Rump, N., editors, Digital Rights Manage-

ment, volume 2770 of Lecture Notes in Computer Science, pages 206–223. Springer. 5,

6

[47] Hedin, D. and Sabelfeld, A. (2011). A perspective on information-flow control. 49

[48] Honda, K., Vasconcelos, V. T., and Kubo, M. (1998). Language primitives and type

discipline for structured communication-based programming. In In ESOP?98, volume

1381 of LNCS, pages 122–138. Springer-Verlag. 54, 55

[49] Howard, J. H. (1988). An overview of the andrew file system. In in Winter 1988

USENIX Conference Proceedings, pages 23–26. 92

[50] Hunker, J. (2008). Taking Stock and Looking Forward - An Outsider’s Perspective

on the Insider Threat. In Stolfo, S. J., Bellovin, S. M., Keromytis, A., Hershkop, S.,

Smith, S. W., and Sinclair, S., editors, Insider Attack and Cyber Security - Beyond the

Hacker, volume 39 of Advances in Information Security. Springer. 34

[51] Hunker, J. and Probst, C. W. (2011). Insiders and insider threats: An overview of

definitions and mitigation techniques. Jounral of Wireless Mobile Networks, Ubiquitous

Computing, and Dependable Applications, 2(1):4–27. 35, 36, 38, 59

[52] Hunt, S. and Sands, D. (2006). On flow-sensitive security types. SIGPLAN Not.,

41(1):79–90. 48, 50

[53] IBM (Accessed on [20/8/2013]). The floppy disk. 17

[54] Institute, P. (2012). The human factor in data protection. http:

//www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/

reports/rpt_trend-micro_ponemon-survey-2012.pdf. 8, 187

[55] Institute, S. E. (2011). 2011 CyberSecurity Watch Survey. Software Engineering

Institute, Carnegie Mellon University. 34

http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/reports/rpt_trend-micro_ponemon-survey-2012.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/reports/rpt_trend-micro_ponemon-survey-2012.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/reports/rpt_trend-micro_ponemon-survey-2012.pdf

195

[56] Karthikeyan, K. and Indra, A. (2010). Intrusion Detection Tools and Techniques – A

Survey. International Journal of Computer Theory and Engineering, 2(6). 3, 33

[57] Kent, S. and Atkinson, R. (1998). Security architecture for the internet protocol.

Internet RFC 2401. 31

[58] Ku, W. and Chi, C. H. (2004). Survey on the technological aspects of digital rights

management. In Zhang, K. and Zheng, Y., editors, ISC, volume 3225 of Lecture Notes

in Computer Science, pages 391–403. Springer. 3, 6

[59] Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaton, P., Geels, D., Gummadi,

R., Rhea, S., Weatherspoon, H., Weimer, W., Wells, C., and Zhao, B. (2000). Ocean-

store: An architecture for global-scale persistent storage. SIGPLAN Not., 35(11):190–

201. 92

[60] Lampson, B. W. (1971). Protection. In In Proceedings of the 5th Annual Princeton

Conference on Information Sciences and Systems Princeton University, pages 437–443.

42, 43, 47

[61] Lampson, B. W. (1973). A note on the confinement problem. Commun. ACM,

16(10):613–615. 49

[62] Lee, A. (2012). The history of file-sharing. 18

[63] Li, P., Mao, Y., and Zdancewic, S. (2003). Information integrity policies. In Proceed-

ings of The Workshop on Formal Aspects in Security and Trust (FAST). 49

[64] Liu, Q., Safavi-naini, R., and Sheppard, N. P. (2003). Digital rights management for

content distribution. x, 45, 46

[65] Mazurek, M. L., Arsenault, J. P., Bresee, J., Gupta, N., Ion, I., Johns, C., Lee, D.,

Liang, Y., Olsen, J., Salmon, B., Shay, R., Vaniea, K., Bauer, L., Cranor, L. F., Ganger,

G. R., and Reiter, M. K. (2010). Access control for home data sharing: Attitudes, needs

and practices. In CHI 2010: Conference on Human Factors in Computing Systems, CHI

’10, pages 645–654, New York, NY, USA. ACM. 23, 24, 27

[66] Mclean, J. (1990). Security models and information flow. In In Proc. IEEE Symposium

on Security and Privacy, pages 180–187. IEEE Computer Society Press. 49

[67] Mendelsohn, J. and Mckenna, J. (2010). Social sharing research report: How, why,

and what content people share online. 1

196

[68] Michelle, K. and Kowalski, E. (2005). Insider Threat Study: Computer System

Sabotage in Critical Infrastructure Sectors. 34

[69] Michiels, S., Joosen, W., Truyen, E., and Verslype, K. (2005). Digital rights manage-

ment - a survey of existing technologies. CW Reports CW428, Department of Computer

Science, K.U.Leuven. 6

[70] Microsoft (2016). Microsoft smb protocol and cifs protocol overview. https://msdn.

microsoft.com/en-gb/library/windows/desktop/aa365233(v=vs.85).aspx. Ac-

cessed: 2016-6-1. 92

[71] Miller, A. D. and Edwards, W. K. (2007). Give and take: a study of consumer photo-

sharing culture and practice. In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, CHI ’07, pages 347–356, New York, NY, USA. ACM.

15, 16

[72] Muthitacharoen, A., Morris, R., Gil, T. M., and Chen, B. (2002). Ivy: A read/write

peer-to-peer file system. SIGOPS Oper. Syst. Rev., 36(SI):31–44. 92

[73] Myers, A. C. (1999a). Jflow: Practical mostly-static information flow control. In

Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-

gramming Languages, POPL ’99, pages 228–241, New York, NY, USA. ACM. 50

[74] Myers, A. C. (1999b). Mostly-static decentralized information flow control. Technical

report. 50, 51, 161

[75] Myers, A. C. and Liskov, B. (1997). A decentralized model for information flow

control. SIGOPS Oper. Syst. Rev., 31(5):129–142. 50, 161

[76] Myers, A. C. and Liskov, B. (1998). Complete, safe information flow with decent-

ralized labels. In IEEE Symposium on Security and Privacy, pages 186–197. IEEE

Computer Society. 50, 161

[77] Myers, A. C. and Liskov, B. (2000). Protecting privacy using the decentralized label

model. ACM Trans. Softw. Eng. Methodol., 9(4):410–442. 50, 161

[78] Niemi, A. (2003). End-to-end web security protocols overview. 31

[79] Nistor, C. (2009). File sharing - history. 17, 18

https://msdn.microsoft.com/en-gb/library/windows/desktop/aa365233(v=vs.85).aspx
https://msdn.microsoft.com/en-gb/library/windows/desktop/aa365233(v=vs.85).aspx

197

[80] Northcutt, S., Zeltser, L., Winters, S., Kent, K., and Ritchey, R. W. (2005). Inside

Network Perimeter Security (2nd Edition) (Inside). Sams, Indianapolis, IN, USA. 32,

33

[81] Olson, J. S., Grudin, J., and Horvitz, E. (2004). Toward understanding preferences

for sharing and privacy. MSR Technical Report 2004–138. 19, 20, 23

[82] Olson, J. S., Grudin, J., and Horvitz, E. (2005). A study of preferences for sharing

and privacy. In Proceedings of CHI 05, pages 1985–1988. ACM Press. 19, 20, 23, 27

[83] Park, J. and Sandhu, R. (2002a). Originator control in usage control. In Proceedings

of the 3rd International Workshop on Policies for Distributed Systems and Networks

(POLICY’02), POLICY ’02, pages 60–, Washington, DC, USA. IEEE Computer Soci-

ety. 46

[84] Park, J. and Sandhu, R. (2002b). Towards usage control models: Beyond traditional

access control. In In Proceedings of 7th ACM Symposium on Access Control Models and

Technologies. 46

[85] Park, J. and Sandhu, R. (2004). The uconabc usage control model. ACM Trans. Inf.

Syst. Secur., 7(1):128–174. 46

[86] PATRICIU, V.-V., BICA, I., TOGAN, M., and GHITA, S.-V. (2011). A generalized

drm architectural framework. Advances in Electrical and Computer Engineering, 11:43–

48. 45

[87] Paxson, V. (2013). Principles for building secure systems. University of California,

Berkeley. Lecture notes. 5

[88] Predd, J., Pfleeger, S. L., Hunker, J., and Bulford, C. (2008). Insiders behaving badly.

IEEE Security & Privacy, 6(4):66–70. 34, 35

[89] Probst, C. W., Hunker, J., Bishop, M., and Gollmann, D. (2008). 08302 summary –

countering insider threats. In Bishop, M., Gollmann, D., Hunke, J., and Probst, C. W.,

editors, Countering Insider Threats, number 08302 in Dagstuhl Seminar Proceedings,

Dagstuhl, Germany. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany. 34,

35, 36, 59

[90] Probst, C. W., Hunker, J. A., Gollmann, D., and .M, B. (2010). Insider threats in

cyber security. Advances in Information Security, 49. Springer US. 35, 36, 59

198

[91] Purohit, V. (2007). Authentication and access control the cornerstone of information

security. 41, 42, 43

[92] Qing-hai, B. and Ying, Z. (2011). Study on the access control model in information

security. IEEE, pages 830–834. 39, 42, 43

[93] Ramsdell, B. and Turner, S. (2004). Secure/multipurpose internet mail extensions

(s/mime) version 3.1 message specification”, rfc 3851. 31

[94] Rump, N. (2003). Digital rights management - technological, economic, legal and

political aspects. In Becker, E., Buhse, W., Gnnewig, D., and Rump, N., editors, Digital

Rights Management, volume 2770 of Lecture Notes in Computer Science. Springer. 5, 6

[95] Sabelfeld, A. and Myers, A. C. (2003). Language-based information-flow security.

IEEE Journal on Selected Areas in Communications, 21(1):5–19. 48, 49

[96] Sabelfeld, A. and Sands, D. (2009). Declassification: Dimensions and principles. J.

Comput. Secur., 17(5):517–548. 49

[97] Safavi-Naini, R. and Sheppard, N. P. (n.d). Digital rights management. 45

[98] Salim, F., Reid, J. F., and Dawson, E. (2010). Towards authorisation models for secure

information sharing : a survey and research agenda. ISeCure, The ISC International

Journal of Information Security, 2. 42, 43, 44

[99] Sandberg, R., Goldberg, D., Kleiman, S., Walsh, D., and Lyon, B. (1985). Design

and implementation or the sun network filesystem. 92

[100] Sandhu, R. S., Coyne, E. J., Feinstein, H. L., and Youman, C. E. (1996). Role-based

access control models. Computer, 29(2):38–47. 47

[101] Sattarova, F. Y. and Kim, T. (2007). IT Security Review: Privacy, Protection,

Access Control, Assurance and System Security. International Journal of Multimedia

and Ubiquitous Engineering, 2(2). 28

[102] Satyanarayanan, M. (2002). The evolution of coda. ACM Trans. Comput. Syst.,

20(2):85–124. 92

[103] Scarfone, K. and Mell, P. (2010). The common configuration scoring system (ccss):

Metrics for software security configuration vulnerabilities. Technical Report 7502, Na-

tional Institute of Standards and Technology. 5, 6

199

[104] Secure Electronic Transaction LLC (1997). SET secure electronic transaction spe-

cification — version 1.0. 31

[105] SecuROM, C. P. ([Accessed: 2013-11-28]). http://www.encrypt.ro/

cd-encryption/cd-protection-securom.html. 5

[106] Shirey, R. W. (2000). Internet Security Glossary. Internet RFC 2828. 29

[107] Silowash, G., Cappelli, D., Moore, A., Trzeciak, R., Shimeall, T. J., and Flynn, L.

(2012). Common Sense Guide to Mitigating Insider Threats 4th Edition. 37, 59, 60

[108] Simpson, W. A. (1994). The point-to-point protocol (PPP). Internet RFC 1661. 31

[109] Sinclair, S. and Smith, S. W. (2008). Preventative Direction For Insider Threat

Mitigation Via Access Control. In Stolfo, S. J., Bellovin, S. M., Keromytis, A., Hershkop,

S., Smith, S. W., and Sinclair, S., editors, Insider Attack and Cyber Security - Beyond

the Hacker, volume 39 of Advances in Information Security. Springer. 37, 38

[110] Smetters, D. K. and Good, N. (2009). How users use access control. SOUPS ’09.

ACM. 22, 23, 24

[111] Smith, M. S. (2011). The history of file sharing: Where did it begin? 17, 18

[112] Spiridonov, D. (2006). Digital rights management. 46

[113] Stallings, W. (2011). Network Security Essentials - Applications and Standards (4.

ed, internat. ed.). Pearson Education. 32, 33

[114] Stamp, M. (2003). Digital Rights Management: The Technology Behind the Hype.

Journal of Electronic Commerce Research, 4(3):102–112. 6

[115] Stamp, M. (2005). Information security - principles and practice. Wiley. 6, 7

[116] Stamp, M. (2006). Information security - principles and practice. Wiley. 32, 33

[117] Stewart, J. M., Tittel, E., and Chapple, M. (2008). CISSP: Certified Information

Systems Security Professional Study Guide. SYBEX Inc., Alameda, CA, USA, 4th

edition. 40, 41, 42, 43

[118] Sun, S.-T. and Beznosov, K. (2009). Open problems in web 2.0 user content sharing.

1

http://www.encrypt.ro/cd-encryption/cd-protection-securom.html
http://www.encrypt.ro/cd-encryption/cd-protection-securom.html

200

[119] Takeuchi, K., Honda, K., and Kubo, M. (1994). An interaction-based language and

its typing system. In In PARLE?94, volume 817 of LNCS, pages 398–413. Springer-

Verlag. 54, 55

[120] Vacca, J. (2010). Network and System Security. Elsevier Science. 3

[121] Vasconcelos, V. T. (2009). 9th International School on Formal Methods for the

Design of Computer, Communication and Software Systems, volume 5569 of LNCS,

chapter Fundamentals of Session Types, pages 158–186. SPRINGER. 54

[122] Vaughan, J. A. and Zdancewic, S. (2007). A cryptographic decentralized label model.

2014 IEEE Symposium on Security and Privacy, 0:192–206. 52

[123] Voida, A., Grinter, R. E., Ducheneaut, N., Edwards, W. K., and Newman, M. W.

(2005). Listening in: practices surrounding itunes music sharing. In Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems, CHI ’05, pages 191–200,

New York, NY, USA. ACM. 15, 16

[124] Voida, S., Edwards, W. K., Newman, M. W., Grinter, R. E., and Ducheneaut, N.

(2006). Share and share alike: Exploring the user interface a↵ordances of file sharing.

In In Proc. of CHI 2006 (April 2227, pages 221–230. ACM Press. 15, 19, 21, 22, 23,

24, 27

[125] Volpano, D., Irvine, C., and Smith, G. (1996). A sound type system for secure flow

analysis. J. Comput. Secur., 4(2-3):167–187. 48, 49, 50

[126] Volpano, D. M. and Smith, G. (1997). A Type-Based Approach to Program Security.

In TAPSOFT, pages 607–621. 48

[127] Wang, J. (2009). Computer Network Security - Theory and Practice. Springer

London, Limited. 31, 32

[128] Weeks, S. (2001). Understanding trust management systems. In Proceedings of the

2001 IEEE Symposium on Security and Privacy, SP ’01, pages 94–, Washington, DC,

USA. IEEE Computer Society. 44

[129] Whalen, T., Smetters, D., and Churchill, E. F. (2006). User experiences with sharing

and access control. In In CHI 06: CHI 06 extended abstracts on Human factors in

computing systems, pages 1517–1522. ACM Press. 21, 22, 23, 24, 27

201

[130] Whalen, T., Toms, E., and Blustein, J. (2008a). File sharing and group information

management. Workshop on Personal Information Management (PIM 2008). 15, 16, 17,

21, 22, 23, 25, 27

[131] Whalen, T., Toms, E. G., and Blustein, J. (2008b). Information displays for man-

aging shared files. In Proceedings of the 2nd ACM Symposium on Computer Human

Interaction for Management of Information Technology, CHiMiT ’08, pages 5:1–5:10,

New York, NY, USA. ACM. 23, 24

[132] Whitman, M. and Mattord, H. (2011). Principles of Information Security. Course

Technology Ptr. 28

[133] Wikipedia ([Accessed: 2013-11-28]). Edward snowden. http://en.wikipedia.org/

wiki/Edward_Snowden. 6

[134] Wikipedia (Accessed on [20/8/2013]b). Timeline of file sharing. 17, 18

[135] Wikipedia (Accessed on [22/8/2013]a). File sharing. 18

[136] windows media player DRM, M. ([Accessed: 2013-11-

28]). http://windows.microsoft.com/en-gb/windows-vista/

windows-media-player-drm-frequently-asked-questions. 5

[137] Yousendit (Accessed on [23/8/2013]). The history of file sharing. 18

[138] Zhang, X. (2011). A survey of digital rights management technologies. http://www.

cs.wustl.edu/

~

jain/cse571-11/ftp/drm/index.html. [Accessed: 2013-11-28]. 6, 7

[139] Zheng, L. and Myers, A. C. (2007). Dynamic security labels and static information

flow control. Int. J. Inf. Sec., 6(2-3):67–84. 48

[140] Zimmermann, P. R. (1995). The O�cial PGP User’s Guide. MIT Press, Cambridge,

MA, USA. 31

http://en.wikipedia.org/wiki/Edward_Snowden
http://en.wikipedia.org/wiki/Edward_Snowden
http://windows.microsoft.com/en-gb/windows-vista/windows-media-player-drm-frequently-asked-questions
http://windows.microsoft.com/en-gb/windows-vista/windows-media-player-drm-frequently-asked-questions
http://www.cs.wustl.edu/~jain/cse571-11/ftp/drm/index.html
http://www.cs.wustl.edu/~jain/cse571-11/ftp/drm/index.html

	PhD Coversheet
	ALSOWAIL, R PhD
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Introduction
	1.2 Level of Trust and Protection
	1.3 Problem Statement
	1.3.1 Untrusted individuals - Strongest protection (D)
	1.3.2 Trusted individuals - No protection (A)

	1.4 Approach
	1.5 Summary of Contributions
	1.6 Thesis Organisation

	2 Background and related work
	2.1 Introduction
	2.2 File sharing
	2.2.1 The history of file sharing
	2.2.2 Methods of file sharing and people's practices

	2.3 Security
	2.3.1 The goals of information security
	2.3.2 Communication security
	2.3.3 Perimeter security
	2.3.4 Insider security

	2.4 Access control
	2.4.1 Access control components
	2.4.2 Identification
	2.4.3 Authentication
	2.4.4 Authorisation
	2.4.5 Traditional access control models
	2.4.6 Trust management model
	2.4.7 Digital Rights Management (DRM) model

	2.5 Information flow control
	2.5.1 Security type systems

	2.6 Summary

	3 The Insider threat problem
	3.1 Introduction
	3.2 Classifying the insider threat problem
	3.3 Protecting the shared files
	3.3.1 Protecting the shared files in transit
	3.3.2 Protecting the shared files at the recipient

	3.4 Summary

	4 Characterising the activity of file sharing
	4.1 Introduction
	4.2 How files are propagated
	4.2.1 Publish vs. Share:
	4.2.2 Static vs. Dynamic vs. Transfer mode
	4.2.3 Distributed Memory vs. Shared Memory

	4.3 How files are accessed
	4.3.1 Types of access
	4.3.2 Restriction on access types

	4.4 Taxonomy based on the characterisation of file sharing
	4.4.1 Classifying the activities of file sharing in an organisation.
	4.4.2 Classifying file sharing methods

	4.5 Discussion
	4.6 Summary

	5 Secure file system
	5.1 Introduction
	5.2 Notations
	5.3 Security types and policies
	5.4 Language syntax and semantics
	5.5 Security errors
	5.5.1 Syntactical errors
	5.5.2 Types errors

	5.6 Syntactical correctness
	5.6.1 Atomic commands
	5.6.2 Sequence of commands

	5.7 Type system
	5.7.1 Typing rule for file names
	5.7.2 Typing rule for cp command
	5.7.3 Typing rule for rm command
	5.7.4 Typing rule for mkf command
	5.7.5 Typing rule for rd command:
	5.7.6 Typing rule for cat command
	5.7.7 Typing rule for mv command
	5.7.8 Typing rule for copy command
	5.7.9 Typing rule for append command
	5.7.10 Typing rule for move command
	5.7.11 Typing rule for sequences of commands

	5.8 Properties of the type system
	5.8.1 Progress
	5.8.2 Preservation

	5.9 Type inference algorithm
	5.9.1 Algorithm T
	5.9.2 Soundness of T
	5.9.3 Completeness of T

	5.10 Summary

	6 Future extension and discussion
	6.1 Introduction
	6.2 Accessing files
	6.2.1 Security access types
	6.2.2 Language and typing rules

	6.3 Security copy and access types
	6.3.1 Language and typing rules
	6.3.2 Typing algorithm

	6.4 Ownership and authorisation
	6.4.1 Label structure
	6.4.2 Language and typing rules

	6.5 Downgrading and upgrading of policies
	6.5.1 Language and typing rules
	6.5.2 Typing algorithm

	6.6 Discussion
	6.7 Summary

	7 Conclusion
	Bibliography

