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The role of cognitive, sensory and nutrient interactions in satiation and satiety: 

considering consumers 

Summary 

Previous research from the Sussex Ingestive Behaviour Group suggests that satiety 
beliefs generated by product information and satiety-relevant sensory characteristics 
(thick consistency and creamy flavours) can enhance the satiety response to covertly 
added energy in beverages. However these characteristics in low-energy beverages can 
generate rebound hunger effects. This thesis explored whether this enhanced-satiety 
concept can be translated to real consumers. Study 1 examined the extent of energy 
reduction that could be tolerated without rebound hunger effects. The original enhanced 
satiety concept was not replicated, although there was tentative evidence that energy 
compensation was more accurate for small energy additions. Study 2 explored whether 
enhanced satiety would prevail following repeated exposures in consumers’ own homes. 
Enhanced satiety was found before and after exposure. Additionally focus groups 
suggested that diet-concerned consumers may be particularly interested in such 
products. Therefore in Study 3 this population, represented in the literature by those 
reporting high dietary restraint, was studied suggesting that those high in restraint and 
disinhibition compensated more accurately for energy in unenhanced beverages. A final 
complication for consumers is that believed healthy foods are often overconsumed. Two 
final studies demonstrated that health labels generated beliefs about the sensory 
experience and expected satiation and satiety of beverages. Tasting overrode the effects 
of these beliefs, although expectation-experience congruency led to assimilation of 
healthy beliefs, and indulgent-based fullness. Portion size selection was unaffected. 
Together the findings from these studies suggest that the enhanced satiety concept may 
have some utility in the real world, although it remains unclear as to how little caloric 
content can be tolerated whilst still enhancing satiety, and whether diet concerned 
consumers would benefit. Finally whilst health information may have a role in appetite 
expectations the interaction with sensory experience is important for generating overall 
product evaluations, and sensory experience is likely to override label information in 
dictating portion size selection.



5 

 

Contents 

1! General Introduction ............................................................................................ 16!

1.1! A multifaceted approach to appetite control ................................................... 16!

1.1.1! Peripheral post-ingestive and post-absorptive feedback ......................... 20!

1.1.2! Cognitive and sensory influences on satiety ........................................... 22!

1.1.3! Expectations and satiation ....................................................................... 34!

1.2! Misrepresenting real consumers ..................................................................... 43!

1.2.1! Issues with common laboratory approaches ........................................... 44!

1.2.2! Relevant study populations: cognitive restraint and disinhibition .......... 47!

1.3! Summary and rationale ................................................................................... 55!

2! Paper 1: The effects of energy content on satiety in beverages with satiety-

predicting sensory properties ....................................................................................... 58!

2.1! Abstract ........................................................................................................... 58!

2.2! Introduction ..................................................................................................... 59!

2.3! Method ............................................................................................................ 62!

2.3.1! Design ..................................................................................................... 62!

2.3.2! Participants .............................................................................................. 63!



6 

 

2.3.3! Materials ................................................................................................. 64!

2.3.4! Procedure ................................................................................................ 69!

2.3.5! Analysis................................................................................................... 71!

2.4! Results ............................................................................................................. 73!

2.4.1! Intake ....................................................................................................... 73!

2.4.2! Appetite Ratings ...................................................................................... 75!

2.4.3! Preload sensory characteristics ............................................................... 77!

2.5! Discussion ....................................................................................................... 78!

2.6! Author contributions ....................................................................................... 81!

3! Paper 2: Sensory-enhanced beverages: effects on satiety following repeated 

consumption at home ................................................................................................... 82!

3.1! Abstract ........................................................................................................... 83!

3.2! Introduction ..................................................................................................... 84!

3.3! Method ............................................................................................................ 86!

3.3.1! Design ..................................................................................................... 86!

3.3.2! Participants .............................................................................................. 87!

3.3.3! Test Beverages ........................................................................................ 88!



7 

 

3.3.4! Preparation of test beverages .................................................................. 88!

3.3.5! Laboratory Satiety Measurement ............................................................ 89!

3.3.6! Procedure ................................................................................................ 90!

3.3.7! Focus Group ............................................................................................ 92!

3.3.8! Discussion Guide: ................................................................................... 93!

3.3.9! Data Analysis .......................................................................................... 94!

3.4! Results ............................................................................................................. 94!

3.4.1! Test-meal intake ...................................................................................... 95!

3.4.2! Rated appetite .......................................................................................... 96!

3.4.3! Laboratory Measured Expected Satiety .................................................. 99!

3.4.4! Beverage characteristics ........................................................................ 100!

3.4.5! Focus Group .......................................................................................... 101!

3.5! Discussion ..................................................................................................... 103!

3.6! Acknowledgements ....................................................................................... 107!

4! Paper 3: The effect of dietary restraint and disinhibition on sensory-enhanced 

satiety ......................................................................................................................... 108!

4.1! Abstract ......................................................................................................... 108!



8 

 

4.2! Introduction ................................................................................................... 109!

4.3! Method .......................................................................................................... 113!

4.3.1! Design ................................................................................................... 113!

4.3.2! Participants ............................................................................................ 113!

4.3.3! Test foods .............................................................................................. 115!

4.3.4! Visual analogue scale ratings ................................................................ 119!

4.3.5! Procedure .............................................................................................. 119!

4.3.6! Analysis................................................................................................. 121!

4.4! Results ........................................................................................................... 123!

4.4.1! Intake ..................................................................................................... 123!

4.4.2! Energy Compensation ........................................................................... 124!

4.4.3! Appetite Ratings .................................................................................... 126!

4.4.4! Expected satiation and satiety ............................................................... 128!

4.4.5! Sensory analysis .................................................................................... 129!

4.5! Discussion ..................................................................................................... 132!

4.6! Author contributions ..................................................................................... 137!



9 

 

5! Paper 4: Assimilation of healthy and indulgent impressions from labelling 

influences fullness but not intake or sensory experience ........................................... 138!

5.1! Abstract ......................................................................................................... 139!

5.1.1! Background ........................................................................................... 139!

5.1.2! Results ................................................................................................... 139!

5.1.3! Conclusions ........................................................................................... 139!

5.2! Background ................................................................................................... 140!

5.3! Results Study 1 ............................................................................................. 142!

5.3.1! Baseline ratings ..................................................................................... 142!

5.3.2! Healthiness and indulgence ratings ....................................................... 143!

5.3.3! Expected appetite .................................................................................. 145!

5.3.4! Expected and actual pleasantness and sensory ratings ......................... 145!

5.3.5! Actual and estimated intake .................................................................. 145!

5.3.6! Appetite ratings ..................................................................................... 145!

5.3.7! Summary ............................................................................................... 146!

5.4! Results Study 2 ............................................................................................. 149!

5.4.1! Baseline Appetite .................................................................................. 149!



10 

 

5.4.2! Manipulation check and label ratings ................................................... 150!

5.4.3! Healthy and indulgent ratings ............................................................... 151!

5.4.4! Sensory characteristics .......................................................................... 154!

5.4.5! Expected appetite .................................................................................. 154!

5.4.6! Intake ..................................................................................................... 154!

5.5! Discussion ..................................................................................................... 155!

5.6! Conclusion .................................................................................................... 159!

5.7! Study 1 Method ............................................................................................. 160!

5.7.1! Design ................................................................................................... 160!

5.7.2! Participants ............................................................................................ 160!

5.7.3! Materials ............................................................................................... 161!

5.7.4! Procedure .............................................................................................. 164!

5.7.5! Analysis................................................................................................. 165!

5.8! Study 2 method ............................................................................................. 166!

5.8.1! Design ................................................................................................... 166!

5.8.2! Participants ............................................................................................ 166!

5.8.3! Materials ............................................................................................... 166!



11 

 

5.8.4! Procedure .............................................................................................. 168!

5.8.5! Data Analysis ........................................................................................ 169!

5.9! Author contributions ..................................................................................... 169!

5.10! Appendix A – Control Word List ................................................................. 170!

6! General discussion ............................................................................................. 171!

6.1! Summary of aims, findings and relationship with literature ......................... 171!

6.1.1! Study 1: The effect of energy reductions on sensory enhanced satiety 172!

6.1.2! Study 2: Sensory-enhanced beverages and the effects on satiety 

following repeated consumption at home ............................................................. 173!

6.1.3! Study 3: The effect of dietary restraint and disinhibition on sensory-

enhanced satiety .................................................................................................... 175!

6.1.4! Study 4 & 5: Assimilation of healthy and indulgent impressions from 

labelling influences fullness but not intake or sensory experience ....................... 177!

6.2! Broader theoretical context and potential mechanisms ................................ 179!

6.3! Implications of findings for consumers ........................................................ 185!

6.3.1! Implications for enhanced-satiety product development and use ......... 186!

6.3.2! Implications for consumer experience .................................................. 189!

6.3.3! Implications for product marketing ...................................................... 189!



12 

 

6.4! Methodological implications ........................................................................ 191!

6.5! General limitations ........................................................................................ 193!

6.6! Future directions ........................................................................................... 195!

7! Conclusion ......................................................................................................... 196!

8! References .......................................................................................................... 198!

 

 

Figure 1.1 the satiety cascade diagram adapted from Blundell et al (2010). .................. 17!

Figure 1.2 a simplified (non-exhaustive) illustration of neural control of appetite. 

Particular focus on the interactions between homeostatic mechanisms (in green) 

and representations for food, including reward and learning. Adapted from 

Berthoud (2012). ..................................................................................................... 19!

Figure 2.1  test day procedure, repeated for each preload on non-consecutive days in a 

counterbalanced order. Participants first completed attended a test session and 

consumed a standardised breakfast followed by a 3-hour interval. Following this, 

appetite ratings were completed, and a preload was tasted and its sensory 

characteristics rated. The preload was consumed in full and appetite ratings 

completed before a 30-minute interval. Following further appetite ratings, a test 

lunch was administered. The session finished with final appetite ratings. This 

procedure was completed for each of six beverage preloads. ................................. 70!

Figure 2.2 A) Preloads varying in energy content and sensory characteristics differed in 

test meal intake (Kcal). There were significant effects of preload energy content, 



13 

 

but not sensory characteristics, on lunch intake between the high and low sensory 

and energy preloads. Effects were larger for ice cream intake (dark grey bars). The 

intermediate-energy (HS33 and HS66) preloads did not differ from each other or 

other preloads. B) There were no significant differences between preloads in 

energy compensation relative to LSLE and HSLE preloads. The HE preloads, but 

not the HS33 or HS66 preloads, differed significantly from 100% compensation, 

Bayes factors indicated insensitivity to determine a difference from 100% 

compensation for the HS33 and HS66 preloads. Error bars indicate SEM. ........... 75!

Figure 2.3 There were differences across the test session, but not between preloads in 

mean VAS appetite ratings throughout the session (error bars represent ± SEM. 

Panels: A) hunger B) fullness C) desire to eat D) thirst). ....................................... 76!

Figure 3.1 Procedure timeline for satiety testing ............................................................ 92!

Figure 3.2 Ad Libitum energy intake (kcal) following the three test beverages pre- (dark 

grey bars) and post-repeated exposures (light grey bars). Data are mean ± SEM. 

*significant difference between all beverage conditions and main effect of 

exposure time (p < .05). .......................................................................................... 96!

Figure 3.3 VAS ratings of hunger (A and B) and fullness (C and D), and composite 

satiety ratings (Figures E and F), before and after repeated exposures to each 

beverage. Solid line represents HEHS, dots represent HELS and dashes represent 

LEHS. Data are mean ± SEM. ................................................................................ 98!

Figure 4.1 test day procedure, repeated for each preload on non-consecutive days in a 

counterbalanced order. Participants first completed the TFEQ before the test 

session. At the test session participants consumed a standardised breakfast 

followed by a 3-hour interval. Appetite ratings were completed following the 

interval and throughout the session. A preload was consumed and sensory, appetite 

expectation ratings and actual appetite ratings were completed before a 30-minute 



14 

 

interval. A test meal was then administered with further appetite and sensory 

ratings. ................................................................................................................... 121!

Figure 4.2 There was an interaction between preload and restraint status on 

compensation for covertly added energy in the HELS and HEHS preloads (% of 

covert energy addition accounted for by reduction in test meal intake). HRHD 

participants compensated significantly more accurately for HELS preload than 

HEHS). Bayes factors show insensitivity to observe greater compensation for 

HEHS preload in HRLD and LRLD groups. Error bars are ± SEM. .................... 126!

Figure 4.3 Mean VAS composite satiety score, hunger and fullness ratings across the 

test session by restraint status grouping. Solid lines represent HS beverages, 

dashed lines are LS beverages, markers represent HE beverages. Error bars are ± 

SEM. Appetite tended to decrease following intake of the preload and test lunch, 

recovering over time after both. The composite satiety measure showed no 

f=differences between beverage energy content or sensory characteristic and no 

differences between restraint groups. Hunger tended to be higher following low-

energy preloads than high-energy. Fullness was higher following low-energy 

preloads but the mean differences were negligible. No other differences were 

significant. ............................................................................................................. 130!

Figure 5.1 Brief outline of Study 1 design and procedure: a between-subjects one-way 

design (label condition: healthy, indulgent, no information). ............................... 142!

Figure 5.2 Ratings of healthiness (a) and indulgence (b) of a beverage pre and post taste 

in three different healthiness information contexts (+/- 1 SEM). ......................... 144!

Figure 5.3 Brief outline of Study 2 design and procedure: a mixed three (information 

condition: congruent, incongruent or no information; between subjects) by two 

(beverage: actual healthy or actual indulgent; within subjects) design. ............... 149!



15 

 

Figure 5.4 Healthy (a) and indulgent (b) ratings of each beverage following congruent, 

incongruent and no label information (+/- 1 SEM). ............................................. 152!

Figure 5.5 A) Intake (Kcal) and B) discrepancy between actual and estimated intake 

following congruent, incongruent or no label information (+/- 1 SEM). ............. 155!

Figure 5.6 selected healthy (a) and indulgent (b) labels. .............................................. 162!

 

 



16 

 

1! General Introduction 

1.1! A multifaceted approach to appetite control 

Contemporary approaches to appetite control consider a range of interacting influences, 

from the metabolic consequences of ingestion, to cognitive processes and sensory 

mechanisms. It has long be assumed that the primary driver of appetite and food intake 

is the homeostatic need to stabilise variables such as glucose, lipid, or amino acid 

availability, or body weight and temperature, as a requirement for life in a dynamic 

environment (Brobeck, 1948; Kennedy, 1953; Mayer, 1955; Mellinkoff, Frankland, 

Boyle, & Greipel, 1956; Nisbett, 1972). Animals are motivated to intake food during 

states of depletion and cease that motivation when replete, in the service of regulating 

such a parameter (see Berridge, 2004; Toates, 1981; Woods & Ramsay, 2007). 

However, contemporary approaches to appetite acknowledge the role of cognitive and 

sensory aspects of appetite control that may operate independently of, and in interaction 

with, the metabolic consequences of ingestion. Some of these factors are reviewed in 

the course of this chapter, in particular the role of information that generates beliefs and 

expectations about the satiating capacity of foods.  

The satiety cascade described by Blundell and colleagues (Blundell & Tremblay, 1995; 

Blundell, 1991, 2001; Blundell et al., 2010; Blundell, Gibbons, Caudwell, Finlayson, & 

Hopkins, 2015; Blundell, Hill, & Rogers, 1988) is a framework that describes how 

cognitive, sensory, post-ingestive and post-absorptive factors excite and inhibit appetite 

(Figure 1.1). The satiety cascade differentiates processes which bring about the 

cessation of feeding (satiation) from those which suppress further eating (satiety). 

Satiation is often measured by the caloric value of food consumed ad libitum on one 

particular occasion. Satiety is represented as the amount of an ad libitum test meal 

consumed following ingestion of a fixed portion (preload) of a test food (Blundell et al., 

2010). Laboratory studies testing satiety often covertly measure the amount of food 

eaten following a preload using a concealed balance. The studies in this thesis used the 

Sussex Ingestion Pattern Monitor (SIPM; Yeomans, 2000), a universal eating monitor. 
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The SIPM integrates software which presents ratings and questions to participants and 

guides them through the experimental procedure, with a concealed balance beneath a 

placemat which records the weight of food every two seconds. This allows 

measurement of the final amount consumed (by subtracting final weight from starting 

weight of food). It also allows a feature used throughout this thesis whereby weight 

recording is paused and the participant instructed to call the experimenter for a refill 

when a certain amount of food has been consumed. In this way the participant can 

receive an unlimited amount of food, limiting the cues available to terminate eating 

other than as manipulated by the experimenter. A commonly used measure of satiety is 

energy compensation, which is calculated as the decrease in intake of a test meal 

relative to a control, expressed as a percentage of the difference in preload energy 

contents. The measure demonstrates the degree of response to ingestion of an energy 

load by decreasing the amount consumed at the next meal. Self-reported appetite ratings 

are also used to assess the intensity of appetite under different conditions before, during 

and after consumption of test foods. This thesis adopts these conceptualisations of 

satiation and satiety.  

Figure 1.1 the satiety cascade diagram adapted from Blundell et al (2010). 
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The satiety cascade suggests that cognitive and sensory factors contribute to food 

choice, meal initiation, satiation, and the early stages of satiety; post-ingestive feedback 

contributes to satiation and satiety; and post-absorptive feedback contributes to the later 

stages of satiety. This view represents categories of signals about the state of the body 

and the nutritional consequences of ingestion, thus fulfilling homeostatic requirements, 

as well as using higher order beliefs and mental processes, learned consequences of 

ingestion, and sensory innervation of appetite control systems, to motivate and inhibit 

feeding behaviour. This paints a picture of an interacting system of signals (see Figure 

1.1) that work together to influence decisions about what and how much to eat, and how 

the body responds to what has been eaten by suppressing subsequent feeding behaviour 

for a certain amount of time. 

This view is supported by research into the neural representation of appetite control 

signals (e.g. Figure 1.2). Post-ingestive gastrointestinal (GI) signals converge and 

feedback to the brain via vagal afferents which project to the nucleus of the solitary tract 

(NTS) in the brainstem. The NTS projects to the hypothalamus which is also sensitive 

to circulating hormonal and nutritional (e.g. glucose) signals. These areas are typically 

associated with homeostatic control of energy demands (Berthoud, 2012) but are also 

linked to the reward circuitry (the prefrontal cortex, nucleus accumbens, ventral 

tegmental area and mesolimbic dopamine system), areas of the brain linked to executive 

control (the prefrontal cortex), representations of food stimuli (sensory cortex), and 

learning and memory (the hippocampus, e.g. Berthoud, 2004, 2012; Chambers & 

Sandoval, 2013; Myers & Olson, 2014; Zheng, Lenard, Shin, & Berthoud, 2009). 

Importantly this neural integration suggests a role for top down modulation of 

homeostatic metabolic signals by cognitive, sensory and reward regions, and conversely 

bottom up modulation of food representations and motivational properties by metabolic 

signals (Berthoud, 2012). For example, in their review Chambers and Sandoval (2013) 

report evidence that metabolic signals of nutritional state (e.g. leptin, a hormone 

produced in the adipose tissue as a signal of long-term energy stores) are linked to 

inhibition of dopaminergic neurons, suggesting that nutritional state can modify the 
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rewarding value of food. Overall homeostatic control of appetite is modulated by 

multiple cognitive, sensory and reward factors (Berthoud, 2012). 

   

Figure 1.2 a simplified (non-exhaustive) illustration of neural control of appetite. Particular focus on the 
interactions between homeostatic mechanisms (in green) and representations for food, including reward 
and learning. Adapted from Berthoud (2012). 

This integration illustrates the multifaceted nature of signals for appetite control and 

provides a rationale for a role of signals arising from multiple origins in determining 

satiation and satiety. Although not intended to be an exhaustive account, the following 

subsections highlight some of the signals involved, and how those signals interact. To 

begin, section 1.1.1 briefly describes the signals that arise in the GI tract as a result of 

ingestion, which inform the brain about the quantity and nutritional value of ingested 

food. 
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1.1.1! Peripheral post-ingestive and post-absorptive feedback  

A key aspect of appetite control is the response of the body to a nutritional challenge 

(i.e. ingestion). Homeostatic control of food intake relies on negative feedback loops 

which inhibit appetite in response to the metabolic consequences of ingestion and the 

long term nutritional state of the body (e.g. Berridge, 2004). Ingesting food causes 

responses in peripheral physiological mechanisms which provide feedback to the brain 

via mechanoreceptor and chemoreceptor innervation of the vagus nerve, and through 

direct action of hormones in the circulation on the central nervous system (see Woods, 

2004; Figure 1.2). Following is a brief overview of the role of gastric distention, 

hormonal signals of ingestion and long-term signals of energy stores. The work in this 

thesis does not directly impinge upon these mechanisms and therefore this account is 

not exhaustive (comprehensive reviews are available elsewhere e.g Kissileff & Van 

Itallie, 1982; Woods, 2004). Rather this is intended to demonstrate that the body is 

equipped to respond to nutritional delivery and modify appetite accordingly.  

When food is consumed it arrives in the stomach resulting in gastric distention which 

stimulates mechanoreceptors innervating vagal afferents (Wang et al., 2008). Gastric 

balloon studies have demonstrated that gastric distention induced by inflation of a 

balloon in in the stomach was related to the sensation of fullness (Oesch, Rüegg, 

Fischer, Degen, & Beglinger, 2006) and the degree of inflation was related to decreased 

simultaneous intake (Geliebter, Westreich, & Gage, 1988). Moreover the volume of 

food consumed is related to fullness independently of energy density (Rolls et al., 

1998), suggesting that distention of the stomach is important for generating satiety 

(although volume effects could also be attributed to cognitions about the amount of food 

consumed, see section 1.1.2). This signal for satiety is mediated by the rate at which the 

stomach empties: a slow rate of emptying will lead to longer sensations of fullness 

caused by longer periods of gastric distention (Marciani et al., 2001). However, another 

gastric balloon study demonstrated that the qualitative sensations generated by 

distension by a gastric balloon were modified by specific nutritional infusion to the 

duodenum. Maltodextin (a soluble carbohydrate) infusions generated sensations 
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reported to be more meal-like (Feinle, Grundy, & Read, 1997). Thus whilst gastric 

distention provides an important signal that food has entered the GI tract, the metabolic 

products of ingestants are likely to be important for generating appropriate appetite 

control signals.                                                                                                                                                                                                 

Accordingly a cascade of hormonal signals provides feedback via chemoreceptors 

which innervate vagal afferents. These signals are relayed to the nucleus of the solitary 

tract where they are integrated and relayed to the hypothalamus. These signals also 

operate through direct action on the central nervous system (CNS) through the 

circulation (Woods, 2004). Hormonal signals arising from the gut include: 

cholecystokinin (CCK), glucagon-like peptide (GLP-1), polypeptide YY (PYY), 

pancreatic polypeptide (PP), gastrin releasing peptide, neuromedin B, enterostatin, 

somatostatin, apolipoprotein, amylin, glucagon, adiponectin and ghrelin (Woods, 2004). 

It is beyond the scope of this thesis to review these signals in detail, but several 

comprehensive reviews are available (e.g. de Graaf, Blom, Smeets, Stafleu, & Hendriks, 

2004; Verdich et al., 2001; Woods, Decke, & Vasselli, 1974; Woods, 2004). As an 

example however, one much researched peptide hormone is CCK which is released in 

the duodenum in response to the presence of fat and protein and is thought to be related 

to the control of gastric emptying rate and therefore gastric distention during feeding, as 

well as intestinal motility and digestive enzyme secretion (Blundell, 2001; Chambers & 

Sandoval, 2013; Greenough, Cole, Lewis, Lockton, & Blundell, 1998). Endogenous 

CCK release, studied through CCK receptor antagonists (Dourish, Rycroft, & Iversen, 

1989), and exogenous CCK infusion (Gibbs, Young, & Smith, 1973) has been linked to 

a dose dependent effect on hunger suppression and decreased food intake. Additionally 

infusions of CCK are associated with decreased pre-meal hunger ratings, increased 

fullness ratings and decreased intake that is unaffected by nausea and anxiety associated 

with the infusions (Greenough et al., 1998). Plasma levels of CCK are also correlated 

negatively with hunger and positively with fullness ratings, suggesting a post-absorptive 

role (French, Murray, Rumsey, Sepple, & Read, 1993).  
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These short-term signals are integrated in the brain with longer term signals of 

nutritional state relating to adiposity levels (Berthoud, 2012; Woods, 2004). For 

example, in the 1990s the protein leptin was discovered. Leptin is produced in the 

adipose tissue, acts peripherally and centrally and is correlated with adiposity (Blundell 

& Gillett, 2001; Margetic, Gazzola, Pegg, & Hill, 2002) suggesting it may act as a 

signal of energy stores. Whilst leptin infusion does not seem to influence appetite 

ratings related to short-term intake studies it has been shown to correlate with 

negatively with hunger ratings in 2-4 days food deprived participants (Mars, De Graaf, 

De Groot, Van Rossum, & Kok, 2006). It is likely that leptin is a signal for long-term 

energy stores.  

The detection of these peripheral signals suggests that the GI tract (and adipose tissue), 

is equipped to feedback to the brain about the quantity of food ingested and the short 

and long-term nutritional state of the body. However, the ability to anticipate as well as 

react to the consequences of ingestion provides a survival advantage by removing the 

need to linger near food to determine whether it delivers satiety (Booth, Lee, & 

McAleavey, 1976), preparing the body for optimal digestion allowing greater quantities 

to be consumed (Power & Schulkin, 2008), and because integration of sensory and 

cognitive processes would facilitate adaptation to changing environments (Berthoud, 

2012). The next sections overview some of the research which highlights pre-ingestive 

sensory and cognitive signals that influence portion size selection, satiation and early 

satiety.      

1.1.2! Cognitive and sensory influences on satiety 

The satiety cascade (e.g. Blundell et al., 2010) suggests that cognitive and sensory 

processes contribute to satiation and satiety through their action prior to and during 

ingestion. These facets of appetite control are considered in the next sections of this 

chapter. Firstly, it is acknowledged that a number of studies have observed effects of 

processes that could reasonably be categorised as cognitive and sensory on satiation and 

satiety. For example recent reviews have explored the roles of attention (Robinson et 
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al., 2013), memory (Higgs, Robinson, & Lee, 2012) and social cognition (De Castro & 

Plunkett, 2002) as top down modulators of appetite control mechanisms. Additionally, 

the idea of sensory specific satiety (SSS) suggests that appetites are inhibited for 

specific flavours (indicated by decrease in pleasantness ratings for a specific flavour but 

not for untasted flavours), suggesting that sensory signals influence appetite 

independently of nutritional signalling (Rolls, Rolls, Rowe, & Sweeney, 1981). There 

has also been significant attention to the role of sensory properties in stimulating 

appetite (for example see Yeomans, Blundell, & Leshem, 2007, for a review of the role 

of palatibility in appetite control). A full discussion of these valuable insights is largely 

beyond the scope of this thesis, although it is worth noting the breadth of evidence that 

has examined appetite control beyond metabolic consequences of ingestion per se. The 

work in this thesis focusses on pre-ingestive orosensory factors and beliefs which result 

in anticipation of an influx of nutrients into the body, as well as how expectations 

influence decisions about portion size selection (this aspect discussed in more detail in 

section 1.1.3). Additionally, as explored in greater detail throughout the next section the 

strict distinction between signals as cognitive or sensory is not always justified. 

Accordingly here I use the terminology “cognitive and sensory” to relate to pre-

ingestive cues that lead to explicit or implicit expectations of satiation or satiety, and 

discuss the role of orosensory factors and beliefs under this umbrella. The first 

discussions relate to how expectations and beliefs from cognitive and sensory sources 

could influence satiety, beginning with a mechanism through which these pre-ingestive 

factors could operate.  

1.1.2.1! The role of cephalic phase responses 

Cognitive and sensory signals could influence appetite control by acting on 

physiological mechanisms. Section 1.1.1 above demonstrates that the body is equipped 

to generate signals about its short-term and long-term nutritional state, contributing to a 

homeostatic control of appetite and food intake. This section explores evidence that 

physiological control of appetite also occurs in anticipation of ingestion. This class of 

peripheral feedback relies on learned associations between sensory stimulation and 
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post-ingestive consequences (as well as some automatic responses) in anticipation of 

ingestion.   

Cephalic phase responses (CPRs) are learned and automatic physiological reactions to 

cues to ingestion that occur prior to, or at the beginning of, ingestion (de Graaf et al., 

2004; de Graaf, 2011; Smeets, Erkner, & de Graaf, 2010). The term ‘cephalic’, meaning 

pertaining to the head, relates to the role of receptors in the brain which are activated by 

sensory stimulation, rather than through gastric, post-ingestive feedback. CPRs operate 

through the activation of sensory pathways involved in the sight, smell, taste and 

thought (perhaps by stimulating sensory pathways through activation of learned 

associations) of food, ultimately activating the vagus nerve. This results in salivary 

responses, gastric acid secretions, pancreatic enzymes, insulin, glucagon, leptin, 

pancreatic polypeptide, CCK, and ghrelin release (for comprehensive overviews see 

Power & Schulkin, 2008; Smeets et al., 2010). These anticipatory responses may be 

useful for enhancing the efficiency with which the digestive system processes 

nutritional loads, minimizing the disruption caused to homeostatic states and optimizing 

digestive and absorptive processes (Woods, 1991; Woods & Ramsay, 2007). The CPR 

action of physiological signals for satiation and satiety suggests a mechanism through 

which pre-ingestive cues can influence appetite control. The next sections provide an 

overview of these factors.  

1.1.2.2! Orosensory influences on satiety 

The influence of orosensory stimulation on appetite control has been explored in detail, 

with findings suggesting that sensory feedback is important for modulating the satiating 

effects of nutritional loads. Evidence for this assertion comes from studies in which 

orosensory stimulation is bypassed through direct infusion of nutrients at various stages 

of the GI tract. Findings from such studies suggest that the combination of orosensory, 

gastric and intestinal feedback generates greater satiety (Cecil, Francis, & Read, 1998, 

1999; French & Cecil, 2001). Pertinently, sensory feedback is an influential component 

in generating satiety.  
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When energy is consumed in food contexts that do not promote adequate sensory 

feedback satiation and satiety may be weakened. Specifically, there is now substantial 

evidence that food form and texture influence satiation and satiety. One key finding is 

that energy consumed as a beverage is less satiating than an equal energy-load 

consumed as a solid meal. For example apples generate greater satiety than apple juice 

or puree as measured by subsequent intake and subjective fullness (Flood-Obbagy & 

Rolls, 2009). In one study self-reported dietary intake whilst using a supplementary 

liquid load was higher than when the supplement was a solid – participants 

compensated accurately for the increase in the energy in their diet when provided as a 

solid, but compensated poorly when the extra energy was in liquid form (DiMeglio & 

Mattes, 2000). Similarly Hulshof, De Graaf, & Weststrate (1993) demonstrated that 

solid preloads (as manipulated by additions of locust bean gum and gelatine to the 

liquid version) generated higher subsequent satiety ratings than liquid versions. This 

effect has been demonstrated in liquid and solid forms of high fat, protein and 

carbohydrate test foods (Mattes, 2005; Mourao, Bressan, Campbell, & Mattes, 2007), 

and alcoholic and non-alcoholic preloads (Mattes, 1996). Other studies have 

demonstrated that ad libitum intake of liquid products was greater than a semi-solid 

equivalent both before and after repeated-exposures, and reported satiety was lower for 

the liquid product (Hogenkamp et al., 2012).  

Relatedly, textural characteristics influence the extent to which liquids are satiating. 

Increasing evidence now suggests that viscosity and creamy flavours predict expected 

and actual satiating capacity (Hogenkamp, Mars, Stafleu, & de Graaf, 2012; 

McCrickerd, Chambers, Brunstrom, & Yeomans, 2012). McCrickerd and colleagues 

(2012) showed that additions of tara gum, a soluble viscous fibre, increased the 

viscosity of beverages, as tested by rheological measurements. Viscosity was highly 

correlated with participants’ ratings of textural characteristics, including thickness. This 

demonstrates that consumers can identify subtle differences in viscosity and represent 

this using thickness ratings. A number of studies have explored the relationship between 

perceptions of such textural characteristics and satiety. For example one study has 

suggested that whilst protein is considered to be the most satiating macronutrient these 
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effects may depend on the thick and creamy sensory properties of protein-rich 

beverages such that when controlling for these characteristics a protein beverage was no 

more satiating than and equicaloric carbohydrate based beverage (Bertenshaw, Lluch, & 

Yeomans, 2013). Similarly the viscosity of a beverage was negatively related to 

subsequent hunger in another study (Mattes & Rothacker, 2001). This finding has been 

supported by Zijlstra and colleagues who found that intake of a liquid was greater than a 

semi-liquid, which in turn was greater than a semi-solid, suggesting that increased 

solidity increases satiation (Zijlstra, Mars, de Wijk, Westerterp-Plantenga, & de Graaf, 

2008). Additionally this study tested participants in a ‘real-life’ setting, a cinema, in an 

attempt to explore these orosensory effects outside of the laboratory. In a test of the 

influence of food form on subjective and physiological appetite markers, subjective 

ratings of satiety were higher following a semi-solid than a liquid product, although no 

effect of hormonal changes was observed, other than an unexpected increase in ghrelin 

levels following the semi-solid (Zijlstra, Mars, et al., 2009). Whilst not all studies have 

demonstrated a reduced satiating effect of liquids (Almiron-Roig, Flores, & 

Drewnowski, 2004; Drewnowski, Flores, & Almiron-Roig, 2004), recent systematic 

reviews have found that compensation for energy additions to preloads was weaker 

when consumed in liquid form, if consumed at volumes of less than 600ml and with 

inter-meal intervals of over 30 minutes (Almiron-Roig et al., 2013; Almiron-Roig, 

Chen, & Drewnowski, 2003).  

One key theory is that liquids, particularly low viscous ones, are related to shorter oral-

exposure time which may be associated with lesser satiety-related sensory feedback 

(Hogenkamp & Schiöth, 2013). Liquids are considered to be “fast foods” in the sense 

that they require less oral transit time (de Graaf, 2011). In studies which have 

manipulated eating rate, and thus oral exposure time (Forde, van Kuijk, Thaler, de 

Graaf, & Martin, 2013), through varying consumption with either a straw or spoon, ad 

libitum intake was greater in the shorter exposure (straw) condition (Hogenkamp, Mars, 

Stafleu, & Graaf, 2010). Other studies have demonstrated that increasing the number of 

chews or eating rate, thus influencing oral processing time, decreased satiation with 

decreased oral exposure time (Smit, Kemsley, Tapp, & Henry, 2011) and also increased 
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GLP 1 levels with increased exposure time (Cassady, Hollis, Fulford, Considine, & 

Mattes, 2009; Li et al., 2011). Oral processing time has also been shown to correlate 

positively with expected satiation, suggesting an anticipatory component (Forde et al., 

2013). These findings could be explained through the increased influence of CPRs 

given increased pre-ingestive feedback (de Graaf, 2011). Additionally this reduced 

orosensory feedback may be related to reduced efficacy in nutritional learning. A study 

by Mars, Hogenkamp, Gosses, Stafleu, and De Graaf, (2009) demonstrated that over 

repeated exposures energy intake of a high energy yoghurt was only reduced in a high-

viscosity condition, suggesting that nutritional learning only took place when 

orosensory feedback was sufficient. In addition to oral transit time, food representations 

stimulated by sensory characteristics may be related CPRs via learning. In relation to 

food texture it is likely that viscosity is a good predictor of energy delivery. Studies 

have demonstrated that breast milk viscosity is positively correlated with nutritional 

content (McDaniel, Barker, & Lederer, 1989; Picciano, 1998). Thus humans may learn 

from an early age that viscosity is related to energy delivery. Indeed it has been 

suggested that there is a critical period for dietary learning in humans (Brunstrom, 

2005), in which case it is likely that human infants learn early that viscous liquids are 

likely to deliver satiety. It is likely also that humans have a lifetime of learning a 

relationship between viscous foods and satiating consequences. Viscous foods often are 

more nutrient-rich than fluids or low viscous foods (Chambers, 2015, Davidson & 

Swithers, 2005) making texture a reliable cue for nutritional content (Davidson & 

Swithers, 2005). Therefore early experiences and continual associations align viscosity 

with satiating consequences. It is plausible then that encounter with viscous liquids 

could lead to learned preparatory changes in physiology to prepare for nutritional 

delivery. According to these perspectives sensory cues from foods may be related to 

anticipating satiating consequences, and influencing actual satiety, through modulating 

feedback. 
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1.1.2.3! The influence of beliefs from product framing and context on satiety 

The discussion of orosensory factors above suggests that nutritional loads are 

anticipated by association with sensory properties, generating sensory feedback that 

influences appetite control mechanisms. Similarly, consumers’ beliefs about foods may 

influence anticipation and growing evidence suggests that this influences satiety. These 

beliefs derive from explicit information relating to the energy or nutritional content of a 

particular food through product labelling or framing. For example, an interesting study 

has demonstrated the influence of beliefs generated from product information on 

appetite. The study investigated the hormonal response to consuming products 

presented as “low-calorie” and “sensible”, or “high-calorie” and “indulgent”, finding 

that the indulgent labelled beverage suppressed ghrelin response following consumption 

whereas the sensible product generated little change in ghrelin response, despite 

participants having consumed an identical beverage (Crum, Corbin, Brownell, & 

Salovey, 2011). Crum and colleagues’ study provided interesting insights into how 

product framing can modulate the response of peripheral appetite controls. However the 

study did not provide a neutral message control group making it difficult to determine 

whether the effect could be attributed to high-calorie, satiety-relevant, or low calorie, 

hunger-relevant, expectations. Additionally, whilst the information presented to 

participants in this study may have generated specific nutritionally relevant beliefs the 

terminology used to manipulate those beliefs could reasonably relate to sensory 

expectations. In particular the term “indulgent” conjures thoughts of a product with a 

particular sensory profile (perhaps sweet and creamy characteristics). It is conjecture 

then, but plausible, that these findings also relate to sensory effects.     

Consumer beliefs that influence appetite control may also be derived from less overt 

references to caloric content. Foods which are considered more substantial or more like 

a food than a beverage may be associated with higher satiety. An early study 

demonstrated that presenting a beverage as a high calorie product suppressed 

subsequent appetite and intake of a test meal to a greater extent than when the beverage 

was presented as a diet product (Wooley, 1972). The manipulation in this study 
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influenced consumer beliefs by altering the sensory properties of the preload as well as 

label information. The believed high calorie preload was designed to resemble an 

indulgent milkshake whereas the believed low calorie version had a thinner consistency. 

Whilst the authors attribute the findings to a cognitive effect it is unclear whether 

specifically sensory processes, such as increased oral exposure time of the believed high 

calorie preload, could account for the findings. Similarly another study demonstrated 

that despite their liquid form, which, as described above, is thought to be related to 

lower satiety, soups deliver relatively high satiety (Mattes, 2005). The author attributes 

this effect to cognitive factors involved in eating a soup, such as the use of a spoon, 

which frames it as an activity for suppressing hunger rather than thirst. Again the use of 

a spoon to consume a soup would also be likely to increase oral exposure time 

(Hogenkamp et al., 2010), thus making it difficult to separate cognitive and sensory 

effects. Relatedly, a recent study (Cassady, Considine, & Mattes, 2012) manipulated 

consumers’ beliefs such actual liquids and solid were shown to participants to become 

liquids or solids once consumed, thus creating an actual and believed liquid group, an 

actual and believed solid group, a liquid believed turning to solid group and a solid 

believed turning to liquid group. Both the actual and believed liquid groups reported 

greater subsequent hunger and lower fullness, faster gastric emptying rate, suppressed 

insulin and GLP-1 release (see section 1.1.1) and lesser suppression of ghrelin release, 

than the believed solid groups. Additionally, believed liquid consumption was 

associated with greater subsequent intake. This study demonstrates that consumers’ 

beliefs about a food can influence subjective appetite, intake and physiological response 

to ingestion, although again the expectations generated ultimately related to sensory 

aspects (the stimuli generated expectations about food form). Two other studies have 

demonstrated satiety effects purely by altering the context in which a food is consumed. 

One study manipulated the belief that a food was either a meal or a snack by arranging 

an ordinary meal context (eating with a knife and fork at a table). When the food was 

presented as a meal participants ate less subsequently (Pliner & Zec, 2007). Meanwhile 

Capaldi, Owens, & Privitera (2006) demonstrated that presenting a preload as a snack 

also led to increased subsequent intake. It is plausible again that this framing relates to 

the activation of sensory feedback mechanisms. It may be that a “snack” conjures 
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beliefs about a smaller amount of food than a meal, and therefore less gastric distention. 

These studies demonstrate that beliefs about foods generated by the way in which they 

are framed can influence satiety responses, although it is unclear whether this ultimately 

relates to sensory representations. This is plausible given that retrieval of knowledge 

activates cortical areas involved in sensory processing (Goldberg, 2006), and thus could 

activate CPRs in the absence of actual sensory stimulation (Smeets et al., 2010). 

Nonetheless the above suggests that satiety relevant beliefs (whether through sensory 

mechanisms or otherwise) can contribute to actual satiety, modulating the peripheral 

appetite control mechanisms involved. This demonstrates the links between sensory and 

cognitive processes (and the awkward terminology which separates them) and the 

integration of multiple levels of feedback in satiety.  

The majority of the above studies investigated beliefs by manipulating the context in 

which foods are consumed. However a few gave explicit information through labelling 

(Crum et al., 2011; Wooley, 1972). Other studies have investigated the role of labelling 

in satiety, finding no effects of labels above actual nutritional content or orosensory 

effects (Chambers, Ells, & Yeomans, 2013; Yeomans, Lartamo, Procter, Lee, & Gray, 

2001). One reason could be that people fail to believe the authenticity of labels 

presented in laboratory contexts thus reducing their effects. Another possibility is that 

label effects can be overridden in situations where nutritional or sensory cues are strong. 

This is supported by a recent study which demonstrated a greater effect of sensory cues 

than providing information about the satiating potential of a beverage (McCrickerd, 

Chambers, & Yeomans, 2014b).  

Overall the research discussed in this section suggests that the sensory context and 

beliefs related to consuming nutritional loads can modulate the behavioural, subjective 

and physiological satiety response. Following is an overview of research which has 

explored the specific interactions between cognitive, sensory and nutritional 

components of satiety.   
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1.1.2.4! The cognitive-sensory enhancement of satiety   

The above sections argue that intake and appetite control are governed by a combination 

of post-ingestive feedback, and feedback from sensory stimulation and beliefs about 

foods. However one key challenge for researchers adopting this integrated approach is 

to explore the specific ways in which the different signals interact.  

A series of studies by Yeomans’ laboratory has looked into interactive effects between 

cognitive, sensory and nutritional factors on satiation and satiety. These studies tested 

the idea that providing sensory cues that might predict the presence of energy would 

enhance the satiety response to covert energy loads in the context of smoothie-like 

beverages. Creamy flavour notes and particularly viscosity were found to be related to 

expected satiety in this context (McCrickerd et al., 2012), suggesting that these 

properties could be used to anticipate satiety. Similarly in another study reducing 

emulsion oil droplet size increased perceptions of creaminess and this was related to 

increased palatability and increased expected satiety (Lett, Yeomans, Norton, & Norton, 

2016). Importantly, thickening beverage preloads with tara gum, a viscous fibre, and 

enhancing creamy flavours has been robustly demonstrated to enhance actual satiety 

relative to beverages devoid of these characteristics, but only when sufficient energy 

was delivered (Chambers, Ells, & Yeomans, 2013; McCrickerd, Chambers, & 

Yeomans, 2014; Yeomans & Chambers, 2011; Yeomans, McCrickerd, Brunstrom, & 

Chambers, 2014). In the first of these studies covert additions of 200kcal of 

maltodextrin (a soluble carbohydrate) and whey protein was compensated for more 

accurately in sensory-enhanced contexts. Conversely the presence of these 

characteristics in low-energy beverages led to increased hunger (Yeomans & Chambers, 

2011). The authors explain these findings in that the satiety-relevant sensory 

characteristics led to anticipation of nutritional delivery due to increasing cognitive and 

sensory feedback. When delivered the nutritional load is noticed and feedback is 

efficient, leading to enhanced satiety, whilst anticipation of energy which does not 

arrive leads to activation of preparatory responses that are not satisfied, leading to 

hunger (Chambers, McCrickerd, & Yeomans, 2015).   
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A follow-up study assessed the effects of repeated exposure to the sensory-enhanced 

beverages (Yeomans et al., 2014). Sensory enhanced and non-enhanced versions of high 

and low-energy beverages were consumed seven times in total, with satiety testing 

occurring after the first and sixth exposure, and one month later. The findings suggested 

that compensation for the covertly added energy was enhanced by sensory cues at the 

first exposure, however the sensory cues did not influence satiety following the 

exposure period. These findings suggest that participants were able to learn about the 

energy content of the beverages and adjust their intake accordingly after repeated 

exposure, thus diminishing the influence of sensory cues. These ideas have also 

received support from other laboratory groups. A similar study demonstrated that satiety 

predictive sensory properties (viscosity) generated reduced intake of high energy 

beverage whereas following repeated exposure only the energy content influenced 

satiety (Hogenkamp, 2014).   

Similarly, recent research has investigated the integration of contextual cues with 

sensory cues and post-ingestive cues in determining satiety. In one study high and low-

energy versions of a beverage were presented as either thirst quenching, filling or no 

information and were compared to a sensory-enhanced product. Compensation for the 

extra energy in the high energy products was improved by presenting it as filling 

relative to thirst quenching or no information (McCrickerd et al., 2014b). However the 

sensory enhanced condition in this study generated the greatest compensation 

suggesting that sensory cues are more potent in generating enhanced satiety than are 

beliefs generated by information prior to ingestion. This idea is supported by an earlier 

study which found that whilst sensory cues generated enhanced compensation, 

additional information provided by labels which presented the beverage as filling or 

light found no additional influence (Chambers et al., 2013). Similarly, in another study 

framing a product as high-energy (by stating the caloric content) did not enhance the 

satiating capacity of a high-energy version (Hogenkamp et al., 2013). However this may 

be because the preload used contained a far greater energy density (530kcal/300g) than 

Yeomans’ laboratory’s studies (270kcal/300g), suggesting ceiling effects based on the 

consumption of large amounts of energy. These studies suggest that there may be 
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something of a hierarchy in the influence of predictive cues to satiety: orosensory cues 

may override information from labels or explicit beliefs about foods, but in cases of 

large energy loads predictive cues may be ineffective at generating greater satiety. It is 

also worth noting that the results of McCrickerd et al.’s (2014) study were influenced by 

greater intake following the enhanced sensory low energy preload, thus increasing 

compensation scores (given that compensation is calculated as the relative difference in 

intake following low and high-energy preloads). This increased intake supports the idea 

of “rebound” effects (Yeomans & Chambers, 2011), as described above, whereby 

anticipation of energy delivery is not met. However, whilst this is a plausible 

explanation, increases in intake in these low-energy conditions that are essentially used 

as control conditions influence compensation scores. Further work is therefore needed 

to establish the degree to which sensory effects override cognitive influences on 

appetite control and whether rebound effects exaggerate differences in enhanced low-

energy conditions.    

Finally a related experiment tested the idea that the umami taste predicts the presence of 

protein, and can influence protein rich foods’ satiating power. The study demonstrated 

that additions of monosodium glutamate which generated umami tastes enhanced 

compensation for protein rich soups (Masic & Yeomans, 2014). This again suggests that 

sensory properties can influence the satiety response to hidden nutritional loads by 

providing predictive cues. In this case the effect seemed to be macronutrient specific 

(umami flavours predicted protein delivery). However the previous studies used 

viscosity and creamy flavours as cues, finding effects in mixed carbohydrate and protein 

based preloads (Chambers et al., 2013; Yeomans & Chambers, 2011) as well as high-

carbohydrate based preloads (McCrickerd, Chambers, & Yeomans, 2014a; Yeomans et 

al., 2014). Therefore the macronutrient specificity of predictive cue effects on satiety 

remains unclear.         

In general, the above described studies demonstrated that cues improve satiety 

responses to energy-containing beverages. However when the cues are present in low-

energy beverages rebound hunger can occur. One question which arises from this is to 
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what extent can energy be reduced from sensory-enhanced beverages whilst 

maintaining enhanced satiety effects? This is particularly important given that a 

systematic review of factors which influence compensation demonstrated that lower 

energy preloads were related to more accurate compensation. However this was only the 

case in semi-solid and solid preloads, whilst liquid preloads generated poor 

compensation in most contexts (Almiron-Roig et al., 2013). As such it is unclear as to 

whether providing sensory cues in liquid preloads would generate greater compensation 

for small covert energy additions. This question is important to consider if satiety 

benefits can be transferred to real consumers. Presently a common design strategy for 

diet products is to minimise caloric content whilst attempting to match the sensory 

profile of palatable high-energy products (Yeomans, 2015). According to the sensory-

nutrient interaction research this is clearly counterproductive. However it is plausible, 

but unknown, whether small energy additions in products with sensory cues would be 

compensated for. Other possibilities for exploring how the enhanced-satiety concept can 

be translated to consumers are reviewed in section 1.2.      

1.1.3! Expectations and satiation 

The discussions of sensory influences and beliefs so far have demonstrated that 

expectations about the satiating potential of foods can influence the physiological 

response to ingestion and the behavioural satiety response. The discussion now turns to 

the control of meal size within one eating occasion – satiation. There may be situations 

in which post-ingestive feedback is insufficient to terminate eating (for example due to 

the rate of eating) at an appropriate level (Brunstrom, 2005; Illius & Jessop, 1995), and 

it is not necessarily the case that people consume and stop consuming in response to 

internal appetite cues in all contexts (Blundell et al., 2010). Therefore external cues are 

recruited to influence the termination of eating. The following sections consider the role 

of expected satiation and satiety, and the implications of expectation-experience 

mismatches. Firstly however, one particular case in which expectations may influence 

satiation, with real consumer-relevance, is considered: the role of health beliefs.  
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1.1.3.1! The case of health halos 

The work in this thesis is concerned with how an integrated approach to appetite 

control, involving the influence of expectations, can benefit consumers. The case of 

health halos highlights a potential problem that consumers face due to the effects of 

these expectations. It is broadly communicated that the developed world faces an 

obesity crisis and that obesity has severe health consequences (Mozaffarian et al., 

2015). Consequently there is significant public attention to dietary healthfulness, for 

example the well-known United Kingdom public health campaign ‘Five a Day’ which 

encourages the consumption of five portions of fruit and vegetables per day (Ashfield-

Watt, Welch, Day, & Bingham, 2004). Additionally marketers have used this 

opportunity to promote the health-benefits of their products, and studies support the 

idea that promoting health-relevant properties of foods facilitates choice for those foods 

(Grabenhorst, Schulte, Maderwald, & Brand, 2013; Kozup, Creyer, & Burton, 2003). 

However it is possible, bearing in mind the role of expectations in appetite control, that 

these health beliefs could influence appetite and intake.    

Halo effects in socio-cognitive psychology refer to the idea that favourable information 

concerning a stimulus may be overgeneralised to the whole stimulus leading to overall 

enhanced favourable impressions not grounded in the actual available evidence. 

Additionally, favourable beliefs are related to the attribution of additional favourable 

characteristics to the stimulus in the absence of explicit substantiating information 

(Nisbett & Wilson, 1977). Therefore in the food context believed healthy foods could 

promote over-generalised beliefs. For example consumers interpret low fat claims as 

low calorie (Andrews, Netemeyer, & Burton, 1998). This is supported by findings that 

in believed healthy foods caloric content is underestimated (Carels, Harper, & Konrad, 

2006), appropriate serving size and intake norms are increased (Chandon & Wansink, 

2007), and guilt associated with eating actual caloric foods is reduced (Brian Wansink 

& Chandon, 2006). Additionally in one study it was found that health labels on 

supermarket products led to more positive summaries of the product, higher evaluations 

of unmentioned positive characteristics, and attribution of unmentioned health benefits 
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to the product (Roe, Levy, & Derby, 1999). Similarly, in another study health labelling 

led to holistic, stereotyped judgements and binary good or bad evaluations (Oakes & 

Slotterback, 2001; Oakes, 2005). Thus health labels may be involved in promoting 

holistic judgements about products which over-emphasise their healthfulness and 

attribute unwarranted positive characteristics. 

Related research on the influence of value based claims has demonstrated similar halo 

effects. For example over two studies Schuldt, Muller and Schwarz (2012) presented 

dark chocolate with fair trade labels, and even merely a description that the chocolate 

was produced ethically (i.e. without reference to the recognised Fair Trade brand). 

Despite no reference to caloric content in these labels the fair trade and ethically 

produced chocolate was estimated to have lower caloric content. Similarly other studies 

have demonstrated that labelling products as organic lead to lower calorie estimations, 

higher estimations of acceptable consumption frequency, and higher acceptability of 

missing exercise (Lee, Shimizu, Kniffin, & Wansink, 2013; Schuldt & Schwarz, 2010). 

The findings of these studies are particularly striking given that the fair trade and 

organic labelling has little logical resemblance to caloric content. The authors attribute 

the effects to the use of heuristic processing, a phenomenon described by dual process 

theories of cognition, whereby certain contexts lead to rapid associative processing of 

stimuli using rules of thumb (e.g. Kahneman, 2003). This can lead to small errors, as in 

the case of believing healthy, fair trade or organic products to be less caloric despite 

inadequate information to support this belief. This is supported by the additional finding 

from Lee and colleagues (2013) that the effects of the organic label were more 

pronounced in those who do not ordinarily appraise food labels or engage in pro-

environmental activities. This is purportedly because automatic, heuristic processing 

was more likely in those who did not interrogate the labels thoroughly.  

Additionally food descriptions, including health-related descriptions, likely influence 

sensory evaluations of foods (Brian Wansink, Payne, & North, 2007; Brian Wansink, 

van Ittersum, & Painter, 2005). For example reduced salt labels on soups lead 

consumers to report lower saltiness and add more salt to the soup compared to soups 
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without the label, even though salt content was not actually reduced (Liem, Miremadi, 

Zandstra, & Keast, 2012). Similarly eco-friendly labels have been found to increase 

palatability ratings for bananas, grapes and raisins (Sörqvist et al., 2015), coffee and 

chocolate (Lotz, Christandl, & Fetchenhauer, 2013), and organic labels increase 

palatability ratings of wine (Wiedmann, Hennigs, Henrik Behrens, & Klarmann, 2014).     

These studies offer interesting insight into biases in the evaluation of foods and food 

choices, but fewer studies have investigated the extent to which this influences actual 

intake or satiety responses. Given the findings discussed in section 1.1.2 that contextual 

factors and information generating beliefs about foods can influence the amount of food 

people serve themselves, the amount they consume and the satiety that the food 

delivers, it is plausible that health labelling and the over-generalised beliefs that it 

promotes could influence appetite control and intake. Indeed, Provencher, Polivy, & 

Herman (2009) found that participants consumed 35% more of an ad libitum cookie 

meal when the cookies were described as healthy than unhealthy. In this particular case 

no non-label control group was assessed making it difficult to determine whether these 

effects were due to over-eating of the believed-healthy cookies or whether the unhealthy 

information provided generated satiety cues. Another study has demonstrated that 

overweight consumers overate snack foods described as low-fat relative to those 

omitting health information (Brian Wansink & Chandon, 2006). Furthermore fast food 

restaurants who market themselves as healthy may promote underestimation of the 

caloric content of their meals, and are associated with higher calorie side dish orders 

(Chandon & Wansink, 2007). However this study interpreted healthiness from the 

researchers’ interpretation of the restaurants’ marketing strategies, rather than the 

consumers’ beliefs (consumers were recruited on leaving the restaurants and the caloric 

value of the foods they had purchased was calculated). Therefore it is unclear as to 

whether healthiness beliefs per se contributed to the purchase decisions. A final study 

demonstrated the influence of healthy-framing on satiety. In this study participants 

consumed a 50kcal snack bar described as a new healthy option filled with “protein, 

vitamins and fibre”, a “tasty” chocolate option or consumed nothing. The results 

suggested that participants reported higher levels of hunger following consumption of 
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the healthy snack than either the no snack or indulgent snack conditions (Finkelstein & 

Fishbach, 2010a). However the use of a no snack control group in this study makes it 

difficult to assess the independent impact of the label and of the energy load. 

Specifically in this case, and with reference to the rebound hunger effects described in 

section 1.1.2.4, the intended healthy description included the addition of protein and 

fibre, both known to be highly satiating (e.g. Blundell, Green, & Burley, 1994). 

However the snack only delivered 50kcal. It is possible that this effect reflects a 

rebound hunger effect, rather than a health-halo effect. A further limitation of all of the 

above studies is that they fail to consider the role of sensory characteristics in 

generating health beliefs, focussing instead on explicit information. However as 

discussed earlier, a number of studies have noted a greater role for sensory 

characteristics in influencing appetite and intake (Chambers et al., 2013; McCrickerd et 

al., 2014b). Expectation matching between health information and product experience is 

also a potential factor (see section 1.1.3.3). The above studies do not take into account 

situations in which health information is provided about products, but the sensory 

experience of those products disconfirms the expectations. The outcome of this 

expectation matching is likely to influence the degree to which a halo effect is observed 

(as discussed in greater detail in the following sections).  

Overall the health halo research suggests that consumers face a problem related to the 

health benefits promoted by marketers in the wake of food-related public health 

concerns such as obesity. However the above analysis suggests a number of issues with 

the current research. Namely that control groups are often inadequate for determining 

whether intake effects can be attributed to health halo type effects, or satiety cues. 

Additionally it is currently unclear as to whether expectation matching effects might 

influence intake and product evaluations in health halo type studies.    

1.1.3.2! Explicit satiation and satiety expectations – an influence on satiation? 

An additional possible influence of expectations comes from findings that people hold 

explicit expectations about the satiation and satiety that foods will deliver, and these 
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expectations can influence portion size selection (Brunstrom, Collingwood, & Rogers, 

2010; Brunstrom, 2014; Fay et al., 2011). Given that intake is strongly influenced by 

portion size, regardless of energy density, and even if the entire portion is not consumed 

(Rolls, Morris, & Roe, 2002; Rolls, Roe, & Meengs, 2006; Brian Wansink & Cheney, 

2005; Brian Wansink, Painter, & North, 2005; Brian Wansink & van Ittersum, 2007), 

factors which influence portion size selection are likely to influence intake. Some 

researchers have examined the relative expected satiation and satiety delivered by foods 

using pictorial stimuli. For example Brunstrom and colleagues have used a method of 

constant stimuli whereby a pictured target food is compared to a succession of 

comparison foods which vary in energy content. Participants are required to report 

which of the foods would be more satiating such that over repeated trials a point of 

equality between the foods is established and the relative caloric content of equally 

satiating meals can be compared (Brunstrom, Shakeshaft, & Scott-Samuel, 2008). 

Additionally, in a modified version of the task known as the method of adjustment, 

participants can gradually alter the depicted portion size of a range of reference foods 

until it represents an expected equally satiating portion to the target food (Brunstrom, 

Collingwood, et al., 2010).  

Findings from these studies suggest that, calorie for calorie, foods are not necessarily 

expected to be equally as satiating (Brunstrom et al., 2008). Expected satiation is 

influenced by the familiarity of the foods, such that more familiar foods are expected to 

be more satiating (Brunstrom, Shakeshaft, & Alexander, 2010; Brunstrom et al., 2008; 

Irvine, Brunstrom, Gee, & Rogers, 2013), which suggests that learning about the actual 

satiating consequences of ingestion of particular foods influences expectations about 

that food. Additionally one study (Wilkinson & Brunstrom, 2009) demonstrated that 

exposure to a high energy novel desert increased expected satiation (measured using the 

method of adjustment). This suggests that expected satiation is based on previous post-

ingestive consequences in familiar foods. This reflects the idea of learned satiation 

whereby the sensory properties of foods are associated with sensations that occur 

towards the end of a meal. In future the sensory properties of the food generate 

expectations about the amount needed to generate satiety (e.g. Booth & Davis, 1973; 
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Booth, Lee, & McAleavey, 1976; Booth, 2009). In unfamiliar foods expectations may 

be guided by physical characteristics such as volume (Brunstrom, Collingwood, et al., 

2010), and weight (Piqueras-Fiszman & Spence, 2012). Another study demonstrated 

that satiety expectations were generated by beliefs about a presented food. Participants 

were shown a small or large portion of fruit purportedly to make a smoothie. The 

smaller portion was associated with lower expected satiety (as indicated by responses 

using the method of adjustment) and increased hunger ratings for three hours following 

consumption of a smoothie that was actually identical (Brunstrom, Brown, Hinton, 

Rogers, & Fay, 2011). These studies suggest that people hold expectations about the 

extent of satiation and satiety a food will deliver, and that this can influence the way 

they report their ideal portion size and subjective appetite.  

Some studies have used an adapted version of the method of adjustment whereby 

participants consumed a sample of the test products with reference to a real version of 

the test product to control expected volume. These studies found that thick and creamy 

orosensory characteristics were related to higher expected satiety (Hogenkamp et al., 

2012; Hogenkamp, Stafleu, Mars, Brunstrom, & de Graaf, 2011; McCrickerd et al., 

2012; Yeomans et al., 2014). Other studies have used visual analog scales (VAS) to 

examine expectations in the context of actually consuming foods, demonstrating that 

expected satiation is related to sensory attributes such as ‘chewiness’ (Forde et al., 

2013) and creaminess (Lett et al., 2016; McCrickerd, Lensing, & Yeomans, 2015). 

These adaptations of the expected satiation and satiety measurement procedure allow 

expectations to be measured based on the sensory profile of test foods, demonstrating 

that properties which generate sensory feedback are related to expected satiety. 

The important element of explicit expectations for this thesis is the degree to which they 

contribute to appetite control and intake. Other studies using the method of adjustment 

have found that expected satiety is a better predictor than expected liking of portion size 

selection, measured by indicating an ideal portion size using computerised pictures of 

foods (Brunstrom, Collingwood, et al., 2010; Brunstrom & Rogers, 2009). One 

limitation of these studies is that they have not demonstrated the ability of expected 



41 

 

satiation and satiety to influence satiation per se. Although implied through the role of 

expectations on portion size selection, these results remain unclear. The studies 

described above (Brunstrom et al., 2011; Brunstrom, Collingwood, et al., 2010; 

Brunstrom & Rogers, 2009; Irvine et al., 2013) measured ideal portion size pictorially 

which fails to represent the rich sensory experience associated with real food cues. One 

study attempted to address this criticism, demonstrating that expected satiety measured 

using the method of adjustment predicted actual portion size selection of a real food 

(Wilkinson et al., 2012). However expectations were rated using computerised pictures, 

thus limiting the sensory experience of the comparison foods. Additionally the prior 

ratings of ideal portion size may have influenced actual portion size by priming 

representations of appropriate portion size. Overall there are limitations with the method 

of constant stimuli and method of adjustment in measuring portion size selection, and 

moreover these studies fail to measure whether initial portion selection accounts for the 

amount consumed ad libitum. Thus the exact role of expected satiation and satiety in 

satiation per se remains largely unclear.    

1.1.3.3! A role for explicit expectation matching 

An additional factor which is overlooked by this approach is the effect of matching 

expectations with experience. The studies described above demonstrate that both 

external information (e.g. physical characteristics) and sensory characteristics can 

contribute to expected satiation and satiety. However the extent to which these 

influences interact is unclear from this literature. Expectation matching has been studied 

widely in the literature on food acceptance and hedonics (see Cardello, 1994; Deliza & 

MacFie, 1996). The assimilation-contrast model (Hovland, Harvey, & Sherif, 1957) 

predicts two types of outcomes: assimilation effects are indicated by enhanced ratings in 

the same direction as initial expectations, and occur when expectations and experience 

are congruent; contrast effects are indicated by a change in ratings away from the initial 

expectation and occur when expectations and experience are incongruent. This 

implicates the degree of disconfirmation of prior expectations whereby small and 

unnoticed discrepancies might lead to assimilation whereas larger, noticeable 
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discrepancies lead to contrast. This idea has also been related to more modern dual 

process theories of cognition (e.g. Evans, 2008; Kahneman, 2003). The strength and 

accessibility of expectations determine the depth of cognitive processing and therefore 

the likelihood of assimilation and contrast effects. In cases where there is no 

expectation, or weak expectation, participants process the stimulus in great detail in 

order to form an opinion. When there is a strong expectation however, and initial 

evaluation of the stimulus is consistent with the expectation, little processing is required 

to generate overall evaluations. These cases lead to assimilation of evaluations with 

expectations. On the other hand, when expectations and experience are incongruent, and 

the discrepancy is noticed, effortful processing must occur in order to evaluate the 

stimulus as confirmatory biases cannot be engaged to resolve the discrepancy. In this 

case contrast effects are most likely to occur given that the stimulus is evaluated in great 

detail. In this context the likelihood of rapid or effortful processing is predicted by 

certain aspects of a stimulus evaluation context that influence the likelihood of effortful 

processing, such as the degree of discrepancy between expectations and stimulus 

quality, the ambiguity of the stimulus, and the strength of prior expectations (Wilson & 

Klaaren, 1992).  

These expectation congruency effects have been explored in the ingestive behaviour 

domain in relation to food acceptability. Cardello and Sawyer (1992) demonstrated that 

a neutrally liked commercial juice (represented by a mean acceptability score of 5 on a 

9 point scale) was considered more acceptable when positive expectations were 

generated (by written information that other consumers had found it to be highly likable 

product) than no expectations. This supported an assimilation effect. Meanwhile in the 

same experiment a neutrally bitter solution was rated as less bitter than control when 

expected to be highly bitter, demonstrating a contrast effect. Assimilation of hedonic 

and sensory expectations has been described in a number of studies employing various 

ways of generating expectations, such as dining context, food preparation methods and 

label information (e.g. Cardello, 2003; Di Monaco, Cavella, Di Marzo, & Masi, 2004; 

Kähkönen & Tuorila, 1998; Liem et al., 2012; Tuorila, Cardello, & Lesher, 1994). It 

seems that congruency between expectations and experience (or small incongruences) 
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are likely to generate assimilation effects. Some authors have noted that even 

experiments in which expectations were disconfirmed contrast effects are rare 

(Cardello, 1994). However in another study participants were provided with a smoked 

salmon ice cream described either as a savoury mousse or as ice-cream. The findings 

suggested that hedonic evaluation was diminished to a greater extent when participants 

expected to experience ice cream, and other sensory ratings such as saltiness were also 

altered (Yeomans, Chambers, Blumenthal, & Blake, 2008). Similarly, Zellner, 

Strickhouser, and Tornow (2004) demonstrated that hedonic contrast effects were 

dependent upon the degree of certainty participants had in their expectations. The 

results suggested that participants disliked the taste of an unfamiliar Japanese sweet 

more when it was presented as a “candy” than a “mouth cleanser” or with no 

information, suggesting a contrast effect. However, when a separate group of 

participants were told that the sweet was rated by other Americans as positive or 

negative, thus generating more certain expectations, assimilation was observed. These 

findings support the idea that large, noticeable expectation-experience mismatches 

generated contrast, but smaller mismatches or congruencies promoted assimilation of 

expectations.  

Whilst these studies demonstrate clear effects of mismatching between expectations and 

experience they all relate to hedonic and sensory evaluations of products. Meanwhile 

the above suggests that the degree to which people expect satiation and satiety, or 

healthiness, from a product can influence portion size selection. However this literature 

has not examined the circumstances in which those expectations are confirmed or 

disconfirmed, and what effects that has on portion size selection.    

1.2! Misrepresenting real consumers 

In summary, the above discussions suggest that the interaction between energy content 

and satiety-relevant cues determines satiety and satiation. Sensory cues are able to 

enhance the satiety response to covertly added energy loads, although, when these cues 

are present in low energy beverages increased hunger ratings are reported. However, it 
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is unclear as to the extent of nutritional delivery that is required to generate efficient 

energy compensation without risking rebound hunger effects in sensory-enhanced 

beverages. This is clearly an important question to consider if the benefits of the 

enhanced satiety hypothesis can be translated to consumers. In particular this is 

pertinent as structural manipulations to beverages (reducing oil droplet size) which 

produce satiety-relevant cues are associated with increased palatability, which could be 

useful for generating beneficial consumer products (Lett et al., 2016). Additionally, it is 

likely that expectations influence satiation, and a contributing factor may be the degree 

to which products are considered healthy. However design limitations in the health halo 

literature make it unclear whether health beliefs do relate to increased intake, whether 

they relate to expectations of satiation and satiety and whether mismatches between 

expectations and sensory experience modulate these effects. These are all important 

problems to consider if benefits of enhanced satiety and problems with health marketing 

are to be communicated to consumers.  

A recent review suggested that benefits of satiety to consumers are far reaching, 

including: aiding dietary control strategies through reducing attentional biases to food 

associated with hunger, and enhancing self-efficacy; by reducing hunger-related 

dysphoria; and by enabling intake of palatable foods whilst minimising over-eating, 

given that expected satiety is a better predictor of portion size selection than palatability 

(Hetherington et al., 2013). Providing products which deliver enhanced satiety could 

therefore provide significant benefits to consumers. However the literature on cognitive-

sensory-nutritional interaction effects on satiety to date should not be generalised 

beyond the laboratory, making it unclear as to whether this enhanced satiety concept 

can indeed be beneficial to consumers. This contention is substantiated in the next 

sections.     

1.2.1! Issues with common laboratory approaches 

The first contention that consumers are not represented appropriately in the literature is 

that the reaction to food stimuli may be different outside of a laboratory setting. It is 
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clear from the research discussed earlier that the situational context in which foods are 

consumed can generate strong effects on evaluations of those foods. For example 

studies have demonstrated that identical foods vary in acceptability based on the context 

in which they were consumed. Identical foods from a restaurant were considered more 

acceptable than from laboratories, cafeterias, or institutions such as hospitals (Edwards, 

Meiselman, Edwards, & Lesher, 2003; Meiselman, Johnson, Reeve, & Crouch, 2000). 

Additionally the perceived suitability of a food for a context influences liking 

evaluations (Cardello, Schutz, Snow, & Lesher, 2000; King, Weber, Meiselman, & Lv, 

2004). Similarly one study demonstrated an interaction between context and perceived 

suitability in soldiers, where there was a high correlation between liking ratings of 

snack foods consumed in the field compared to the laboratory, there was little 

correlation for foods considered as a meal (de Graaf et al., 2005). These studies clearly 

demonstrate that the context in which foods are consumed can effect evaluations of 

those foods. In particular consuming foods in laboratories may lead to differential 

evaluations compared to more realistic meal settings, particularly if the products are 

deemed unsuitable for that eating context.     

Additionally, contextual differences between the laboratory and ordinary eating 

situations could influence intake. In order to control potential extraneous variables 

ingestive behaviour studies typically take place in a laboratory where the variables of 

interest can be isolated. However focussing on individual or small numbers of variables 

does not represent the context in which foods are consumed by real consumers 

(Meiselman, 1992a, 1992b; Rozin & Tuorila, 1993). The real context in which foods are 

consumed consists of many competing sources of sensory stimulation, contextual, and 

social factors which contribute to product evaluations and intake (Rozin & Tuorila, 

1993; Stroebele & De Castro, 2004a; Brian Wansink, 2004). For example contextual 

influences unrelated to the consumed food per se such as listening to music (Bellisle, 

Dalix, & Slama, 2004; Stroebele & de Castro, 2006), watching television (Bellisle et al., 

2004; Stroebele & De Castro, 2004b), and the presence of other people (Bell & Pliner, 

2003; De Castro, 1990) have been demonstrated to increase intake. Importantly these 

contextual variables are likely to represent real-world eating behaviour, although would 
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largely be controlled in typical studies assessing sensory and nutritional influences on 

intake. Whilst assessing these variables in isolation in the laboratory is valuable for 

establishing their influence on intake, it is likely that outside of the laboratory these 

factors would be experienced simultaneously with the experience of the food and its 

post-ingestive effects. Therefore true representations of real-world effects must aim to 

study naturalistic eating contexts as well as laboratory contexts (Meiselman, 1992a, 

1992b).  

The above examples relate to influences on intake in satiation studies. It is contended 

here that contextual variables that could represent differences between the laboratory 

and ordinary eating environments could also influence satiety. Recent studies have 

investigated the effects of distraction during eating by watching television (Higgs & 

Woodward, 2009), or playing computer games (Brunstrom & Mitchell, 2006; Oldham-

Cooper, Hardman, Nicoll, Rogers, & Brunstrom, 2011). These studies have all 

demonstrated that being distracted whilst consuming a food reduces its satiating effects, 

indicated by increased intake of subsequent food and decreased subjective satiety 

ratings. One possibility for this effect is cognitive controls including memories of 

previous intake are integrated in the brain with bottom up physiological controls (as 

argued here in section 1.1). However distraction limits the ability to encode memory for 

food intake (Higgs, Dolmans, Humphreys, & Rutters, 2015; Higgs et al., 2012; Higgs & 

Woodward, 2009; Robinson et al., 2013). This idea is consistent with the present 

integrated approach to satiety. However here it is argued that this could contribute to 

differences between laboratory-based satiety studies to the experience of satiety beyond 

the laboratory. This is because there are likely to be greater sources of distraction in 

less-controlled environments. Some such distractions have already been documented 

(e.g. watching television, listening to music, the presence of other people). Whilst this 

requires substantiation it is plausible that realistic eating environments entail more 

numerous distractions than controlled satiety studies, and therefore could limit the 

generalisability of laboratory findings to real consumers. As such again this thesis 

agrees with Meiselman’s contention that a balance between laboratory and naturalistic 
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studies is required in order to assess how food manipulations generalise to real-world 

populations (Meiselman, 1992b).       

To summarise, researchers have noted contextual effects on product evaluations, 

satiation and satiety measures, suggesting that findings from laboratory studies may not 

necessarily represent real-world eating behaviour. In particular the less controlled 

environment beyond the laboratory is likely to involve multiple, simultaneously 

experienced, influences on appetite, which are often isolated in the laboratory. Whilst 

the interactive approach of Yeomans and colleagues has begun to assess the interaction 

between cognitive, sensory and nutritional variables rather than viewing these cues in 

isolation (Chambers et al., 2013; McCrickerd et al., 2014b; Yeomans & Chambers, 

2011; Yeomans et al., 2014), these methods still do not represent all of the cues that 

could influence eating behaviour in the ‘real-world’. This thesis contends that in order 

to assess whether the benefits of the enhanced satiety concept can be translated to 

consumers Meiselman’s approach (Meiselman, 1992a, 1992b) of exploring the findings 

using real consumers in real eating contexts, alongside laboratory studies, should be 

adopted.    

1.2.2! Relevant study populations: cognitive restraint and disinhibition 

Meiselman’s contention discussed above (Meiselman, 1992a, 1992b) suggests that, 

alongside laboratory studies, real people should be studied in real contexts. Section 

2.2.1 argued that the enhanced-satiety concept needs to be explored in a naturalistic 

context. Here the other part of Meiselman’s suggestion is supported: that effects on 

eating behaviour should be assessed on ‘real people’. There is reason to believe, given 

that one benefit of satiety may be to help to adhere to dietary goals (Hetherington et al., 

2013), that those who are concerned about their diets may be a suitable population for 

whom enhanced satiety may benefit. This population is represented in the literature by 

those who report high levels of dietary restraint (discussed below). However, typically, 

enhanced satiety studies screen for, and recruit, those reporting low restraint (e.g. 

Chambers et al., 2013; Mccrickerd et al., 2012; McCrickerd et al., 2014; Yeomans & 
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Chambers, 2011; Yeomans et al., 2014). This is generally to guard against floor effects 

where participants may exercise restraint during the test meal and fail to respond to 

manipulations. However, in order to explore whether the enhanced satiety concept can 

be useful outside of the laboratory it must be studied on individuals who would most 

likely be consumers of products claiming this benefit. The literature regarding this 

population is discussed in the next sections.      

1.2.2.1! Early restraint theory 

Dietary restraint concerns the conscious attempts by some individuals to restrict intake 

due to concerns with health and body image. This idea, originally conceived by Herman 

and Mack (1975), was a development of Schachter’s (1968) externality theory and 

Nisbett’s (1972) set point theory of body weight. Schachter had suggested that obese 

individuals overate because they were less responsive to internal intake cues and more 

responsive to external intake cues (such as sensory cues and food availability). 

Meanwhile, Nisbett suggested that individuals have genetically predisposed body 

weight set points which drive the individual to maintain a particular body weight, where 

obese individuals have higher set points. Consequently, Nisbett suggested that 

individuals could overeat according to societal conceptions of appropriate intake and 

body weight, whilst under-eating relative to their biological set points. In this case, 

many obese individuals could actually be below their biological weight disposition, 

albeit overweight relative to societal views of ideal weight. Herman and Mack (1975) 

extended these ideas in suggesting that individuals (lean and obese) vary in the degree 

to which they attempt to restrict their intake, due to societal and health pressures related 

to body weight, at a level below their biological set point, effectively leaving them food 

deprived. Thus behaviours that appeared counter-regulatory (such as over-

responsiveness to external intake cues), previously explained as obese characteristics, 

were posited as a consequence of restraint status rather than obesity per se. Due to this 

putative food deprivation, relative to biological set-points, restrained individuals would 

be prone to overeating if the restraint was broken (an effect known as disinhibition).  
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A key development of restraint theory was the boundary model (Herman & Polivy, 

1983) which suggested that intake is constrained within limits (rather than an absolute 

set point) by biological necessity, where hunger and satiety promote and inhibit intake 

respectively. One prediction of the boundary model was that for restrained eaters’ 

greater deprivation and intake are required before hunger or satiety, respectively, are 

reported. This idea resonates with Schachter’s (1968) externality theory although highly 

restrained, rather than obese, individuals were viewed as being less sensitive to internal 

appetite cues. An additional prediction of the boundary model was that restrained eaters 

cognitively impose a diet boundary representing the desired amount of intake, which 

resides between the limits determined by hunger and satiety cues. Thus a restrained 

individual would be predicted to initiate eating at a greater degree of deprivation than a 

non-restrained individual and terminate eating at a cognitively imposed limit before 

satiety is reached. Finally, the model predicts that if the diet boundary is breached 

disinhibition occurs and the individual eats until satiety is reached. Disinhibition is also 

promoted by other challenges to the capacity for cognitive restraint such as stress, 

depleted self-control, inability to monitor intake, social influence or alcohol intoxication 

(see Herman & Polivy, 2005; Ruderman, 1986 for reviews). 

1.2.2.2! Early empirical support 

In the first empirical studies of the restraint hypothesis and the predictions of the 

boundary model individual variations in cognitive restraint were measured using the 

restraint scale (Herman & Mack, 1975; later revised in Polivy, Herman, & Warsh, 

1978). The restraint scale (RS) is a questionnaire consisting of ten items assessing 

individuals’ weight fluctuations and concern for dieting generating a single restraint 

score. Early studies using the RS to categorise high and low restrained individuals 

provided some support for the restraint hypothesis. For example, Herman and Mack 

(1975) administered either one, two or no milkshake preload to non-obese female 

participants and measured subsequent intake of an ad libitum ice cream course 

disguised as a taste test. The results suggested that the unrestrained participants reduced 

their intake following the preloads demonstrating a degree of compensatory response. 
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However, the restrained participants increased their intake following the preload relative 

to no preload, and to the greatest extent following two preloads. This study supported 

the prediction that when restrained participants break a self-imposed dietary boundary 

they are likely to overeat. Another study using the RS demonstrated that there was no 

difference between obese and lean participants in intake following a preload, but high 

scorers on the restraint scale ate more and low scorers ate less following the preload 

(Hibscher & Herman, 1977). Additionally, free fatty acid levels (a marker of 

deprivation previously shown to be elevated in obese participants) were higher in 

restrained than unrestrained participants. These findings supported the idea that 

overeating is caused by the disinhibition of dietary restraint rather than obesity and that 

this may be due to relative food deprivation caused by intake restriction. Additionally, 

several other early studies using the RS support this disinhibition effect in various 

contexts that limit the capacity for restraint. For example, inducing dysphoric mood led 

to overeating in restrained but not unrestrained participants (Herman & Polivy, 1975; 

Ruderman, 1985). Similarly, consuming a believed high calorie (Mills & Palandra, 

2008; Polivy, 1976; Spencer & Fremouw, 1979), high volume (Polivy, Herman, & Deo, 

2010), or alcoholic (Polivy & Herman, 1976) preload led restrained but not unrestrained 

participants to consume more regardless of actual preload energy content. Early (and 

some more recent) studies using the RS therefore suggested that dietary restraint is 

characterised by overeating (due to food deprivation) when restraint is broken by a 

disinhibitor.   

1.2.2.3! Measurement problems 

One major criticism of the early work on restraint (amongst others beyond the scope of 

this thesis, but reviewed in Ruderman, 1986 and Heatherton et. al. 1988) is that 

restraint, as measured by the RS, is not a unitary concept. The restraint scale generates a 

restraint score based on two categories of items – weight fluctuation and dietary 

concern. Therefore, those scoring highly on the restraint scale are likely to be those 

susceptible to periodic weight gain, making it unsurprising that they overeat in 

laboratory experiments. In other words the restraint scale identified a particular type of 



51 

 

restrained eater who is likely to be susceptible to disinhibit (Heatherton, Herman, 

Polivy, King, & McGree, 1988; Wardle, 1986). It is noteworthy that the connection 

between restraint and the conditions which promote disinhibition were established on 

the basis of research using the RS (Heatherton et al., 1988), nonetheless the RS is likely 

to identify those individuals with a propensity to do so by examining weight fluctuation 

as part of the measure.          

Consequently, two other (now commonly used) questionnaires were developed which 

measure dietary restraint and tendency to disinhibit on separate scales. The Three Factor 

Eating Questionnaire (TFEQ; Stunkard & Messick, 1985), and the Dutch Eating 

Behaviour Questionnaire (DEBQ; Van Strien, Frijters, Bergers, & Defares, 1986). The 

TFEQ consists of 51 items pertaining to three subscales measuring susceptibility to 

hunger (which, due to validity issues rarely features in the contemporary literature, see 

Bond, McDowell, & Wilkinson, 2001) along with restraint and disinhibition. The TFEQ 

therefore generates a separate score for the degree to which individuals attempt to 

restrain their intake (TFEQ-R) and the degree to which they are susceptible to disinhibit 

that restraint (TFEQ-D). The factor structure generated by the design of the TFEQ 

allowed any one person to score on a restraint subscale and a disinhibition subscale 

independently. Similarly the DEBQ is a 33 item questionnaire comprised of three 

subscales allowing individuals to score on measures of restrained eating, emotional 

eating and external eating. The restraint scales of the TFEQ and DEBQ have been 

shown to measure restraint similarly, although the relationships between the other 

factors of the questionnaires are less clear (Van Strien et al., 1986). 

Several studies failed to support the hypothesis that a forced preload would lead to 

overconsumption in restrained eaters reported restraint scores, using the TFEQ or 

DEBQ (Dritschel, Cooper, & Charnock, 1993; Jansen, Oosterlaan, Merckelbach, & van 

den Hout, 1988; Lowe & Kleifield, 1988; Ouwens, Van Strien, & Van Der Staak, 2003; 

Wardle & Beales, 1987; Westenhoefer, Broeckmann, Münch, & Pudel, 1994). One 

reason for the inconsistency with the early support for the disinhibition of restraint the 

RS conflated restraint with the tendency to overeat (as described above) whereas the 
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TFEQ and DEBQ measured attempts to restrain intake and the tendency to disinhibit 

separately. As such a high restraint score on these scales did not necessarily predict the 

tendency to disinhibit. Supporting this notion, a study of the validity of the RS, TFEQ 

and DEBQ found that the RS represented two factors equivalent to the restraint and 

disinhibition factors of the TFEQ (Williamson et al., 2007). Additionally Williams and 

colleagues’ study found that energy balance (measured by comparing a body fat 

composition measure to the level of energy required to maintain stable weight at 

baseline) was negatively correlated with changes in TFEQ-R in dieting participants 

(over a 6 month period), suggesting that changes in TFEQ-R are a genuine measure of 

relative dietary restriction. On the other hand studies have failed to find associations 

between TFEQ-R and BMI (Dykes, Brunner, Martikainen, & Wardle, 2003). Therefore 

it is more accurate to consider TFEQ-R a measure of the intent to restrict intake (and a 

measure of individuals’ changes in intake restriction), rather than successful restriction 

of intake (e.g. Lawson et al., 1995). There is also evidence to suggest that TFEQ-D is a 

valid measurement of the tendency to overeat. This is indicated by positive relationships 

between TFEQ-D and BMI (Dykes et al., 2003; French et al., 2014; Gallant et al., 

2010), and episodic intake (Lawson et al., 1995; Ouwens et al., 2003).    

The above evidence suggests that TFEQ-R and TFEQ-D are likely to represent different 

constructs measuring the intent to restrict intake and the tendency to overeat 

respectively. However, it is important to note that the constructs may interact to 

influence eating behaviour. For example in a modification of the original forced preload 

experiments (Herman & Mack, 1975) Westenhoefer and colleagues found evidence that 

counter-regulation was only demonstrated in participants high in restraint and 

disinhibition, measured by the TFEQ (Westenhoefer et al., 1994). Similarly, overeating 

in dysphoric states have been reported to a greater degree for individuals scoring high in 

TFEQ-R and TFEQ-D compared to other combinations of restraint and disinhibition 

scores (Haynes, Lee, & Yeomans, 2003; Yeomans & Coughlan, 2009). Moreover one 

study has suggested that the relationship between disinhibition and BMI is moderated 

by greater TFEQ-R scores (Williamson et al., 1995).  
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In summary, the evidence described above suggests that contemporary measures of 

dietary restraint, such as TFEQ-R, measure the intent to restrict intake, whereas the 

tendency to overeat, TFEQ-D, represents a separate, but interacting, construct. As such 

the early findings that restrained eaters overeat following forced consumption of a 

preload may actually represent specific individuals with a tendency to overeat as well as 

attempt to restrict their intake. As this thesis is concerned with how sensory and 

contextual information can influence satiation and satiety, the next subsection considers 

how restraint and disinhibition might influence individuals’ reactions to foods 

exhibiting such cues.   

1.2.2.4! The influence of restraint and disinhibition of response to external cues 

The initial conception of restraint theory was built upon the idea that restrained 

individuals would be under-responsive to internal appetite cues and over-responsive to 

external cues related to foods and the context they are consumed in (Herman & Mack, 

1975; Herman & Polivy, 1983). The findings discussed above that restrained eaters, and 

later restrained eaters who also score highly on TFEQ-D, overeat following a preload or 

dysphoric mood demonstrate one way in which such individuals fail to respond to 

internal cues. However there are other examples in which variations in restraint and 

disinhibition lead to differences in responding to specific attributes or information about 

foods. Early studies using the RS supported this idea. For example, one study had 

participants ingest a placebo pill that was presented as hunger or satiety promoting. The 

results suggested that restrained but not unrestrained participants responded to the false 

effects by consuming more in the hunger pill condition (Heatherton, Polivy, & Herman, 

1989). This study used a no expectation control group, but effects were only found for a 

difference between the hunger and satiety placebos, making it unclear whether this 

heightened response to external cues was relevant for enhanced hunger or satiety cues. 

Additionally unrestrained participants responded in contrast to the placebo message by 

consuming more in the satiety than the hunger pill condition. This could be related to 

expectation contrast effects as described above (Yeomans et al., 2008; Zellner et al., 

2004). Similarly, Fedoroff, Polivy, & Herman (1997) found that individuals who scored 
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highly on the RS responded to a greater extent to olfactory (the smell of cooking pizza) 

and cognitive (the thought of pizza) cues by increasing their intake relative to non-cue 

conditions. Unrestrained eaters on the other hand did not increase their intake in the cue 

conditions. Given the above discussions regarding the RS the results of these studies do 

not represent a clear picture as to whether restraint per se or the tendency to disinhibit 

predict this over-response to external cues. Studies using the TFEQ and DEBQ have 

produced different results. Yeomans, Tovey, Tinley, & Haynes (2004) demonstrated 

that individuals scoring highly on TFEQ-R but low on TFEQ-D did not increase their 

intake in response to palatability cues, whereas those low in restraint but high in 

disinhibition did. Meanwhile, all groups consumed similar amounts of a bland version 

of the test meal. These findings suggest that propensity to overeat without restraint, as 

measured by the TFEQ, may be a risk factor for overeating palatable foods. On the 

other hand Ogden & Wardle (1990) found that restrained individuals (defined using the 

DEBQ) reported lower hunger following a believed high calorie preload and higher 

hunger following a believed low calorie preload, whereas unrestrained eaters responded 

to the actual energy content. With no measure of disinhibition used here it is unclear as 

to whether this reactivity to false information about the caloric content consumed would 

be differentiated by disinhibition status. It appears then that there may be an interaction 

between dietary restraint and disinhibition on the response to external appetite cues, but 

their role in satiety response is unclear.   

1.2.2.5! An influence of restraint and disinhibition in enhanced satiety? 

To summarise the above, it appears that individuals vary in the extent to which they 

attempt to restrict their intake, and also in the extent to which they are successful in 

doing so. Moreover, those reporting high dietary restraint, and in some cases only those 

with a tendency to disinhibit, have been demonstrated to respond to external cues such 

as palatability, olfactory cues, thoughts of food and information the hunger inducing 

effects of consuming food, by increasing their intake. Additionally, highly restrained 

individuals with a propensity to disinhibit may respond to consuming a preload by 

subsequent overeating rather than reducing intake appropriately. On one hand these 
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studies demonstrate that variations in restraint and disinhibition are likely to influence 

how people react to a preload. However, what is considered less often is whether 

variations in restraint and disinhibition could contribute to enhanced satiety. Studies 

using explicit messages that could contribute to satiety have failed to use a neutral 

caloric belief condition making it difficult to determine whether the restrained 

participants responded differentially to satiety cues, increased appetite cues or both 

(Ogden & Wardle, 1990). Meanwhile, one study which did use a no message condition 

only reported differences between hungry and full message conditions, and confounded 

the contemporary concepts of restraint and disinhibition by using the RS (Heatherton et 

al., 1989). Thus, it remains unclear as to whether satiety messages may be responded to 

differentially by individuals varying in restraint and disinhibition. If highly restrained 

individuals are indeed likely to be over-responsive to sensory and contextual 

information about foods they may also be more responsive to satiety-relevant 

information. How restrained individuals with a propensity to disinhibit would react to 

these cues is unclear.  

To date the literature on the cognitive-sensory enhancement of satiety has recruited low 

restrained participants (e.g. Chambers et al., 2013; Mccrickerd et al., 2012; McCrickerd 

et al., 2014; Yeomans & Chambers, 2011; Yeomans et al., 2014). However it is 

contended here that high restrained populations may be likely to react differently to the 

enhanced-satiety effects, and indeed variations in disinhibition may also influence the 

effects. Moreover it is likely that those individuals who are concerned about diet control 

(i.e. restrained eaters) may be more interested in using enhanced-satiety products. This 

claim needs substantiation, but nonetheless in order to apply the enhanced-satiety 

concept to real consumers, as suggested by Meiselman (Meiselman, 1992a), it must be 

assessed in these populations. 

1.3! Summary and rationale  

The above overview demonstrates that appetite control depends upon specific 

interactions between beliefs about products, the sensory context in which they are 
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consumed, the post-ingestive effects of the nutritional content and individual 

characteristics which predict response to satiety cues. Specifically, the match between 

cognitive and sensory cues that predict satiety and the nutritional content is key for 

generating satiety. However it is unclear as to whether small energy loads would 

generate enhanced satiety in the presence of such cues, or whether this would lead to 

rebound hunger effects. Additionally, limitations of laboratory studies and the 

populations upon which enhanced-satiety studies have been performed limit our 

understanding of whether benefits of the enhanced satiety concept would translate to 

consumers. Finally, satiation is influenced by expectations. One specific case relates to 

beliefs about the healthiness of products. It has been suggested that believed healthy 

products are over-consumed, although design limitations of such studies necessitate 

further research. It is also unclear how healthiness relates to explicit satiety expectations 

and whether its effects depend on matching expectations with sensory experience. The 

literature on food acceptability demonstrates clear effects of expectation 

disconfirmation, but whether this influences intake by modifying expectations about 

characteristics of products such as healthiness is yet to be explored. Over five studies 

the present thesis explored these questions, with regards to how benefits of the 

enhanced satiety concept can be translated to consumers, and the role of expectations in 

health halo effects.      

Study 1 investigated the extent to which sensory enhancements generated enhanced 

satiety in beverages varying in energy density.  

Study 2 investigated the role of sensory enhanced satiety over repeated exposures 

experienced in consumers’ own homes, and assessed consumers’ reactions to the 

enhanced satiety concept.  

Study 3 followed the assertions of the focus group from study 2, and investigated how 

specific groups of consumers would react to enhanced satiety. Specifically this study 

explored the enhanced satiety concept in a group that has previously been excluded: 

those reporting high restraint, and varying in the disinhibition dimension. This was 
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particularly important given that these consumers are most likely to benefit from the 

enhanced satiety concept yet may react differently to non-restrained individuals.  

Finally studies 4 and 5, based on the health-halo concept, assessed whether health 

information generates beliefs and expectations about the satiating capacity of foods, and 

whether this influences intake. Additionally these studies explored how health-based 

expectations are influenced by confirmation or disconfirmation of health information by 

sensory experience.  
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2! Paper 1: The effects of energy content on satiety in beverages 

with satiety-predicting sensory properties  

 

2.1! Abstract 

Recent research suggests that by providing satiety cues (viscosity and creamy flavours) 

in beverages can enhance satiety. This is pertinent given that beverages are thought to 

be associated with weak satiety responses, yet this research offers insight into how 

beverage products with a high satiety value might be developed. However the research 

has also demonstrated that the presence of these satiety cues in beverages with low 

energy content does not enhance satiety and can even lead to greater hunger (rebound 

effects). The present study aimed to assess the extent of covert energy addition required 

to deliver enhanced satiety in beverages with orosensory cues. This study used a within-

subjects preload design to test behavioural and subjective satiety responses to enhanced 

and non-enhanced beverages varying in energy content. The results failed to replicate 

earlier enhanced satiety results as enhanced beverages did not deliver greater subjective 

satiety or decreased subsequent intake. However energy compensation for lower-energy 

content beverages did not clearly differ from perfect (100%; as assessed by a Bayes 

factor). This is taken as preliminary, tentative evidence that lower-energy sensory 

enhanced beverages can deliver appropriate compensatory intake adjustments and avoid 

rebound effects. Given the unclear findings this needs to be further substantiated, 

although can be considered a possibility for future research.      
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2.2! Introduction  

Understanding the factors that influence satiety, the system involved in suppressing 

appetite following ingestion (Blundell, Lawton, Cotton, & Macdiarmid, 1996), has 

become an increasingly important area of study as researchers attempt to understand the 

growing obesity crisis (Mozaffarian et al., 2015). Additionally, satiety potentially has 

many benefits to consumers including promoting adherence to dietary goals and 

reducing hunger-related dysphoria which may contribute to a wider range of factors that 

dissuade overeating (see Hetherington et al., 2013 for a review). According to 

Blundell’s Satiety Cascade (e.g. Blundell et al., 1996) cognitive and sensory cues can 

influence satiety along with post-ingestive and post-absorptive factors. However, it is 

less clear how these factors interact to generate the satiety experience, and whether the 

satiety delivered can be optimized for maximal satiety benefits to consumers.  

Animals possess a complex of physiological mechanisms which respond to the 

ingestion of nutrition to generate satiety responses (as reviewed by Woods, 2004). 

However, laboratory studies often report that people do not compensate accurately for 

consumed energy by reducing their subsequent intake appropriately. For example, a 

recent systematic review of 253 studies demonstrated a median compensation score of 

62% of the energy consumed accounted for by reduced intake at a subsequent meal 

(Almiron-Roig et al., 2013). In particular, studies exploring the role of food form in 

satiety and satiation have demonstrated a relatively poor compensatory response to 

calories consumed in beverages and semi-solid foods compared to equicaloric solid 

equivalents (DiMeglio & Mattes, 2000; Flood-Obbagy & Rolls, 2009; Mattes, 1996; 

Mourao et al., 2007). Moreover, weaker subjective reports of satiety have been 

demonstrated following liquid preloads than solids or semi-solids (Hulshof et al., 1993). 

Whilst some studies have not found this weaker satiety effect following liquid preloads 

(e.g. Almiron-Roig, Flores, & Drewnowski, 2004; Drewnowski, Flores, & Almiron-

Roig, 2004), Almiron-Roig and colleagues’ (2013) review found a weaker median 

compensation score (43%) in studies using beverage preloads than solids or semi-solids. 
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One explanation for this effect is that beverages are associated with a relatively short 

oral exposure time (de Graaf, 2011, 2012). This may be associated with a poorer ability 

to learn the association between sensory properties and the consequences of ingestion 

(Mars et al., 2009), and weaker satiety relevant feedback from anticipatory (cephalic 

phase) physiological responses (de Graaf, 2011). These findings and theories suggest 

that beverages provide a context for ingestion of energy that does not predict satiety.  

Conversely, evidence suggests that consuming beverages in contexts that predict satiety 

generates stronger actual satiety. For example: liquids framed as soups deliver greater 

satiety than the same ingredients consumed as beverages (Mattes, 2005), beliefs that a 

beverage is thirst-quenching result in weaker compensation than when framed as filling 

(McCrickerd et al., 2014b), and the belief that a food would become or remain liquid in 

the gut decreased ghrelin suppression, and reduced glucagon-like peptide 1 and insulin 

release to a greater degree than if people believed that it would become or remain solid 

(Cassady et al., 2012). Additionally sensory properties that predict satiety are associated 

with greater satiety. This has been demonstrated by the finding that the enhanced 

satiating capacity of protein relative to other macronutrients was dependent on sensory 

properties predicting protein content such as viscosity and creamy flavours (Bertenshaw 

et al., 2013), and umami flavours which may signal protein content (Masic & Yeomans, 

2014). Viscosity in particular has been posited as an important cue for satiety given that 

breast milk viscosity is associated with energy density (Picciano, 1998) so humans may 

learn this association early in life (Chambers et al., 2015). Several studies support the 

relative satiating capacity of more viscous liquids (Zijlstra, De Wijk, Mars, Stafleu, & 

De Graaf, 2009; Zijlstra et al., 2009; Zijlstra, Mars, Stafleu, & de Graaf, 2010), and 

viscosity is associated with greater expected satiety, suggesting this characteristic could 

be involved with anticipating satiety (Hogenkamp et al., 2011; McCrickerd et al., 2012). 

These studies suggest that beliefs about satiety and predictive satiety cues may generate 

greater satiety responses.  
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A recent series of studies however has suggested that the extent to which satiety-

relevant cues generate greater satiety is dependent upon the match with appropriate 

energy delivery. When sensory cues (enhanced viscosity and creamy flavours) are 

provided consumers compensate more accurately by reducing their intake of a 

subsequent meal (Chambers et al., 2013; McCrickerd et al., 2014b; Yeomans & 

Chambers, 2011; Yeomans et al., 2014). However, if these cues are present in the 

absence of energy higher hunger ratings and intake can occur (McCrickerd et al., 2014b; 

Yeomans & Chambers, 2011). One explanation for this is that preparatory satiety 

responses are generated in expectation of nutrient delivery which does not arrive, 

leaving the body prepared to ingest (see Chambers et al., 2015). Thus whilst this 

cognitive-sensory enhancement of satiety could be beneficial to consumers by reducing 

hunger dysphoria and increasing the chance of adherence to dietary goals (see 

Hetherington et al., 2013) it is unclear whether this is achievable in low-energy 

products. The typical strategy for diet product development, to maximise sensory 

similarity with higher energy products whilst minimizing caloric content, may therefore 

be counter-productive in the light of these arguments and may fail to benefit consumers 

(see Yeomans, 2015).  

In order to explore the extent to which sensory cued satiety does benefit consumers the 

present study examined the effects of small energy additions to beverages with 

enhanced orosensory cues. The previous studies from Yeomans’ laboratory observed 

enhanced satiety effects with a lower and upper energy limit of 78 kcal and 279 kcal 

respectively. Sensory cues provided for the 78 kcal beverage failed to reduce intake, and 

even generated ‘rebound’ hunger effects (Yeomans & Chambers, 2011). In the present 

study, we introduced two intermediate energy-containing beverages in order to explore 

the extent of energy reduction that can be tolerated in sensory-enhanced beverages 

whilst maintaining satiety. Almiron-Roig and colleagues’ (2013) systematic review 

found a negative correlation between energy compensation and preload energy content, 

suggesting that people compensate more accurately for smaller energy loads. However, 

this effect was driven by studies using solid and semi-solid preloads and not liquid 
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preloads. Thus, it is unclear whether compensation for small energy additions to 

beverages would be more accurate than high-energy loads when presented in an 

enhanced sensory-context. Therefore, we hypothesised that satiety could be maximised 

by the presence of enhanced-sensory characteristics in high-energy beverage preloads, 

and we explored whether two intermediate energy beverages would generate satiety in 

this enhanced sensory-context.  

2.3! Method  

2.3.1! Design 

A within-participants design tested the effect of six beverage preloads differing in the 

combination of energy and sensory characteristics on subjective satiety ratings and 

subsequent intake of a two-course ad libitum test meal. The preloads were consumed in 

two sensory contexts: High (enhanced) sensory (subsequently written as HS; thick 

texture and creamy flavours), and low (non-enhanced) sensory (LS), and four energy 

loads: High-energy (HE), low-energy (LE), 33% (33) and 66% (66) of the energy 

difference (Table 2.1). The LE and HE preloads were consumed in both sensory 

contexts, and the 66% and 33% preloads were only consumed in the HS context. 

Participants consumed the preloads in a counterbalanced order using a Williams Square 

design. 
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Table 2.1 Six beverage preloads were consumed by participants. These varied in energy content and 
sensory context. Four preloads were presented with thick and creamy sensory characteristics and low 
and high energy control preloads were presented without these sensory enhancements.   

Non enhanced Enhanced sensory 

Low energy (LE) High sensory / Low energy (HSLE) 

 High sensory/ 33% energy (HS33) 

 High sensory/ 66% energy (HS66) 

High energy (HE) High sensory/ High energy (HSHE) 

  

2.3.2! Participants 

Eighteen males and 18 females were recruited for a study of food and mood. This 

sample size was based on an a priori power analysis, which suggested that 28 

participants would be sufficient to observe a medium effect size (f = .25) with strong 

power (β = .95, α = .05). Previous studies have reported medium within-participants 

energy compensation effects between high and low sensory conditions (f = .29 in 

Yeomans & Chambers, 2011), but presently a more conservative estimate was 

employed to account for intermediate energy conditions. Exclusion criteria were: high 

restraint (greater than seven on pre-test Three Factor Eating Questionnaire (TFEQ; 

Stunkard & Messick, 1985); current dieting; smoking > five cigarettes per week or 

using nicotine replacements; taking prescription medicines other than the contraceptive 

pill; allergies or aversions to the test ingredients; pregnancy or lactating women; 

diabetes or diagnosed eating disorders. Informed consent was obtained, and course 

credits or £60 were offered for participation.   
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2.3.3! Materials 

2.3.3.1! Visual Analogue Scales 

Subjective satiety ratings were collected using computerised 100pt visual analogue 

scales (VAS), presented using the Sussex Ingestion Pattern Monitor (SIPM) software 

(Yeomans, 2000). Appetite and dummy mood ratings (hunger, fullness, desire to eat, 

thirst, anxious, calm, clear-headed, energetic, happy, headachey, nauseous, and tired) 

were collected pre and post-preload, pre-lunch, post-taste of the ad libitum test meal 

course one, post-test meal course one, post-taste of the test meal course two, and post-

test meal course two. The rating questions were presented in the format “how <rating> 

do you feel?” anchored by “not at all <rating>” and “extremely <rating>”. Following 

preload tasting sensory ratings (thick, creamy, pleasant, sweet, fruity, familiar, sour, and 

filling) were collected in the format “how <rating> is the beverage?” anchored as above. 

Additionally, sensory ratings (course one: bitter, sweet, salty, sour, spicy, familiar and 

pleasant; course two: bitter, sweet, creamy, familiar and pleasant) of the test meal were 

presented as “how <rating> is the pasta/ ice cream?” anchored as above. The rating 

order in each section was randomised.    

2.3.3.2! Standardised Breakfast  

A standard breakfast of commercially available cereal (Crunchy Nut Cornflakes: 

Kellogg’s UK.) served in a white ceramic bowl, a serving of semi-skimmed milk 

(Sainsbury’s Plc. UK) served in a white ceramic mug, and a glass of smooth orange 

juice (Sainsbury’s Plc. UK) was provided (see Table 2.2). Participants consumed the 

entire breakfast in a laboratory waiting room. 

2.3.3.3! Beverage Preloads 

Six beverage preloads based on previous satiety studies that demonstrated reliable rating 

differences between high and low sensory characteristics (Yeomans & Chambers, 2011; 
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Yeomans, Chambers & Ells, 2012; McCrickerd et al., 2012) were piloted. Participants 

adhering to the inclusion criteria above (n = 12) rated the sensory characteristics (thick, 

creamy, pleasant, sweet, fruity, sticky, filling, familiar and sour) of 20g portions of the 

beverages using the VAS format as above. Ratings were conducted twice on each 

beverage in a random order. No significant differences between preloads or rating time 

(first or second taste) were found for pleasant, sweet, sour, or fruity (all p >.05). A main 

effect of preload, but not rating time was found for filling (p <.001). LS beverages were 

rated as less filling than HS beverages (p <.05), but did not differ from each other, and 

the HS beverages did not differ from each other (all p > .05). Effects of rating time and 

preload, were found for familiar (p < .05), but no interaction and no differences between 

the preloads were found (all p >.05). There was an effect of preload (p <.05) but not 

rating time (p >.05) for sticky with HS beverages tending to be rated as stickier than 

low sensory beverages, but contrasts found no differences between beverages (all p 

>.05). A main effect of preload was found for creamy (p <.05), with HS beverages rated 

as creamier. There were no differences between LS (p >.05) or HS beverages (p <.05) 

except that the HSHE beverage differed from the HS33 (p < .05). An effect of preload 

but not time was found for thickness (p <.05), and the interaction was significant (p 

<.05). All HS beverages differed from the non-enhanced beverages (p <.05). The HSHE 

preload was rated as less thick than other HS preloads on the second rating (p < .05) but 

not the first rating (p >.05). The piloted beverages were selected for the main study 

given that this subtle effect was only present on second tasting. 

In the main study the preloads were served in 320g portions in a transparent glass, and 

consisted of a base containing Tropicana Mango Peach and Papaya Juice (PepsiCo, 

UK), Robinson’s peach squash (Britvic, UK), Normandy Natural Fromage Frais 

(Sainsbury’s Plc. UK) and water. Sensory enhancements were achieved by the addition 

of tara gum (Kaly’s Gastronomie, FR): a soluble thickening agent, milk caramel 

flavouring (Symrise GMbH), and vanilla extract (Nielsen-Massey, NL) to enhance 

thickness and creaminess. Energy manipulations were achieved through the addition of 

maltodextrin (Cargill): a soluble carbohydrate. A graded addition of aspartame 
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(Ajinomoto Sweeteners, Europe) was added to the LE, HS33 and HS66 beverages 

accounting for the subtly sweet taste of maltodextrin to match the beverages for 

sweetness. The beverages were colour-matched by adding red and yellow food 

colourings (Silverspoon, UK) (Table 2.3).  

2.3.3.4! Test lunch 

An ad libitum test lunch of Conchiglie pasta shells (Sainsbury’s Plc. UK) with tomato 

and basil sauce (Sainsbury’s Plc. UK), followed by Carte D’or vanilla ice cream 

(Unilever, UK) was provided (Table 2.2). The pasta was cooked for 12 minutes in 

boiling water, washed and left to stand before portions of 200g sauce and 250g cooked 

pasta were heated for three minutes in a microwave prior to serving. The pasta was 

presented in white ceramic bowls which were refilled every time participants consumed 

350g such that the bowl could never be consumed entirely. Ice cream was served in 

white ceramic bowls, initially in a 150g portion, followed by 100g refills following 

consumption of 100g. The weight of food consumed was calculated by the Sussex 

Ingestion Pattern Monitor (SIPM) software that takes stable weight recordings from a 

concealed balance every two seconds (Yeomans, 2000).  
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Table 2.2 - macronutrient breakdown of a standardised breakfast consumed at the beginning of each test 
day, and the 2 course test lunch consumed 30 minutes following the preload. The test lunch was 
consumed ad libitum and therefore the below figures relate are per 100g. 

 Amount (g) Kcal Carbohydrate Protein Fat 

Standardised breakfast 

Crunchy Nut 
Cornflakes 

60 241 49 4 3 

Semi-
Skimmed Milk 

160 77 7 6 3 

Orange Juice 200 84 17 1.2 1 

Total  402 73 11.2 7 

Test lunch  per 100g     

Pasta (cooked 
weight) 

 160 34 4.4 0.6 

Tomato Sauce  58 7 1.6 2.5 

Total  per 100g 115 22 3.2 1.4 

Ice cream  per 100g 197 30 2.6 7.4 
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Table 2.3– Ingredients and macronutrients for six beverage preloads consumed by participants prior to a 
test meal (grams per beverage). The preloads varied in sensory characteristics (achieved through 
additions of tara gum, vanilla essence, and milk caramel) and energy content (maltodextrin).

 HSHE HSLE HS33 HS66 LSHE LSLE 

Ingredients       

Mango Peach and Papaya Juice 100 100 100 100 100 100 

Peach Squash 35 35 35 35 35 35 

Fromage Frais 30 55 47 38 30 55 

Tap Water 98 128 118 109 100 130 

Maltodextrin 55 0 18.15 36.3 55 0 

Tara Gum 1.3 1.4 1.4 1.3 0 0.2 

Vanilla Essence       

Milk Caramel Flavouring 0.8 0.8 0.8 0.8 0 0 

Aspartame 0 0.03 0.02 0.01 0 0.03 

Macronutrients       

Carbohydrates 63.8 12.6 29.5 46.4 63.8 12.6 

Protein 3.0 5.0 4.3 3.6 3.0 5.0 

Fat 0 0.1 0.1 0 0 0.1 

Energy Content (Kcal) 271.9 75.4 140.3 204.8 271.9 75.4 
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2.3.4! Procedure 

Eligible participants were contacted by email and invited to take part in a food and 

mood experiment. They were instructed to consume nothing but water from 23.00hrs 

the evening before each session. Participants attended the laboratory at an arranged time 

between 08.30hrs and 10.30hrs to consume the standard breakfast in full, before a three-

hour interval in which they refrained from eating, drinking (excluding water), or 

engaging in exercise. Upon returning to the laboratory mood and appetite was rated and 

one of the beverage preloads was tasted and rated on sensory dimensions, and 

subsequently consumed fully in no longer than ten minutes. Further mood and appetite 

ratings were then completed, before participants waited in the laboratory waiting room 

for 30 minutes: an inter-meal interval that has previously been effective in generating 

sensory and energy effects in beverages (see Almiron-Roig et al., 2013 for a review). 

Participants then completed mood and appetite ratings before tasting and rating a 

sample of pasta and tomato sauce (20g) on sensory characteristics, and further appetite 

ratings. A 450g bowl of pasta and sauce was then provided for participants to consume 

ad libitum which was placed on top of a balance concealed by a place mat. Following 

consumption of 350g the SIPM software instructed participants to stop eating and call 

the experimenter for a refill. This 350g refill procedure repeated until participants 

indicated that they were comfortably full. Mood and appetite ratings were then 

administered. A sample of vanilla ice cream (15g) was then tasted and rated on sensory 

characteristics, and further appetite and mood ratings were made. A 150g bowl of ice 

cream was consumed ad libitum, following the same refill procedure as course one, 

refills of 100g were provided following consumption of 100g. Final mood and appetite 

ratings were then administered to end the session. This procedure was repeated on non-

consecutive days, with no more than two sessions in one week, with only the beverage 

preload differing on each occasion until each beverage condition had been completed 

(Figure 2.1).  
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Figure 2.1  test day procedure, repeated for each preload on non-consecutive days in a counterbalanced order. 
Participants first completed attended a test session and consumed a standardised breakfast followed by a 3-hour 
interval. Following this, appetite ratings were completed, and a preload was tasted and its sensory characteristics 
rated. The preload was consumed in full and appetite ratings completed before a 30-minute interval. Following 
further appetite ratings, a test lunch was administered. The session finished with final appetite ratings. This 
procedure was completed for each of six beverage preloads.   
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2.3.5! Analysis 

The analysis aimed to explore two key questions: were previous findings that sensory 

enhancements improved satiety in high-energy beverages replicated, and to what extent 

did intermediate energy additions to enhanced sensory beverages generate satiety. The 

satiety generated by sensory enhancements was tested by a two-way two (sensory: HS 

and LS) by two (energy: HE and LE) repeated-measured analysis of variance 

(ANOVA). In order to measure the influence of intermediate-energy in HS beverages 

total and within course ad libitum intake was compared between preload conditions 

using a one-way ANOVA (preload: LE, HSLE, HS33, HS66, HSHE, HE). The 

intermediate-energy beverages (HS33 and HS66) were compared to the HSLE and 

HSHE as negative and positive controls respectively to assess the extent of intake 

suppression by these energy loads in the HS context. Additionally, energy 

compensation was calculated as the reduction in intake following each energy-added 

preload relative to the LE preloads, as a percentage of the energy difference between the 

preloads. Previous studies have reported compensation values relative to the context in 

which the drink was consumed (Chambers et al., 2013; McCrickerd et al., 2014b; 

Yeomans & Chambers, 2011), however given our hypothesis that the high sensory 

context may increase intake following low energy beverages this would inflate the 

HSHE compensation score. As a result, it would be difficult to separate the effect of 

increased intake following the sensory enhanced low-energy beverages from decreased 

intake following sensory enhanced high-energy beverages. Thus, the results report 

compensation relative to both sensory contexts of the low energy preloads for 

comparison. Compensation was contrasted across beverage conditions using a one-way 

repeated measures ANOVA (preload: HS33, HS66, HSHE, HE). Additionally one-

sample t tests compared compensation for each preload to 100% (a score that would 

indicate perfect compensation). For these analyses Bayes Factors (B) were calculated. 

This statistic quantifies the relative likelihood of the null versus the experimental 

hypothesis given the data, thus guiding interpretation of the extent to which non-

significant results support the null hypothesis (see Dienes, 2014). Dienes suggests that 
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values of ≤ 0.3 constitute support for the null hypothesis, whilst values of ≥ 3 support 

the experimental hypothesis (values between suggest insensitivity to distinguish 

between the hypotheses). Prior estimates of values that would support the experimental 

hypothesis are required in order to assess its support from the data. Presently we based 

this on previous differences from 100% by HS preloads found in Yeomans and 

Chambers’ (2011) study (M = 13%). We introduced a little more leeway (to 20%) as it 

is not clear whether 13% is a true difference from 100%. Therefore the Bayes factor 

indicates the strength of support for the hypothesis that the beverages differed by ± 20% 

from perfect compensation. Additionally for differences between the preloads previous 

studies have found differences between sensory conditions of between 50-70% (e.g. 

Yeomans & Chambers, 2011; Chambers, Ells & Yeomans, 2013) so this was used to 

estimate likely values for Bayes factors with key non-significant compensation 

differences. VAS appetite ratings were contrasted across preloads using a two-way six 

(rating time: excluding post-lunch) by six (preload) ANOVA, and the sensory 

characteristics of the preloads were contrasted using a one-way ANOVA in order to 

establish whether the key manipulations were successful and that the beverages were 

matched in other sensory dimensions. Sex was included as a factor in analyses and is 

reported where it influenced the effects. The standard errors reported were adjusted for 

repeated-measures variation. The analysis excluded outliers falling two standard 

deviations from mean intake scores within beverage conditions and gender group. In 

this study, and throughout the thesis, statistical analyses were conducted using IBM 

SPSS 22. Bayes factors were conducted using Dienes’ online Bayes factor calculator 

(http://www.lifesci.sussex.ac.uk/home/Zoltan_Dienes/inference/Bayes.htm; see Dienes, 

2014). This calculator computes the likelihood of the observed mean difference given 

the researchers’ suggested prior estimates of meaningful effect size and probability 

distribution predicted by the theory at test. The estimates researchers input specify the 

range of plausible values that are consistent with the theory and therefore allow analysis 

of the likelihood that the observed value (given its standard error) is consistent with the 

theory.  
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2.4! Results 

Eight outliers (five females and three males) were removed, leaving n = 28. 

Subsequently all intake scores within sex groups were normally distributed.   

2.4.1! Intake   

2.4.1.1! Sensory-nutrient interactions 

Sensory-enhancements did not enhance satiety response (Figure 2.2). This was 

supported statistically across courses by a large effect of preload energy, F (1, 26) = 

12.16, p = .002, η2
p = .32, but not of sensory context, F (1, 26) = 0.48, p = .493, η2

p = 

.02, and no interaction, F (1, 26) = 0.32, p = .576, η2
p = .01, on total lunch intake. Intake 

was lower following the HE beverage in the high sensory context, t (27) = 2.26, p = 

.032, and the low sensory context, t (27) = 3.18, p = .004. Males consumed more than 

females, F (1, 26) = 23.26, p < .001, η2
p = .47, but this did not interact with energy or 

sensory context, (both p < .486, η2
p < .02). The same pattern emerged for the first and 

second course. There was a significant effect of preload energy on amount consumed of 

the pasta course, F (1, 26) = 4.55, p = .042, η2
p = .15, and a larger effect for the ice 

cream course, F (1, 26) = 12.99, p = .001, η2
p = .33, but no effects of sensory context 

(both p ≤ .432, η2
p ≤ .02), and no interactions (both p ≤ .48, η2

p ≤ .02).    

2.4.1.2! Lunch Intake following energy-reduced preloads 

Across all preloads ad libitum intake differed depending on which preload was 

consumed (Figure 2.2a), F (5, 130) = 2.37, p = .043, η2
p = .08. However, intake 

following the HS33 and HS66 preloads did not differ from each other or the HSLE or 

HSHE preloads, (all p ≥.137). A significant effect of sex was found, F (1, 26) = 20.67, p 

<.001, η2
p = .44, with males consuming more than females, but this did not interact with 

preload, F (5, 130) = .65, p = .66, η2
p = .02. When pasta intake was analysed 
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individually no significant effect of preload was found, F (5, 130) = 1.01, p = .41, η2
p = 

.04. However ice cream intake depended on preload, F (5, 130) = 2.86, p <.05, η2
p = 

.10. Intake was significantly higher following the HS33 than the HSHE, t (27) = 2.22, p 

=.035, and following the HSLE than the HS66, t (27) = 1.41, p = .047, but neither 

intermediate beverage differed from any other beverages (all p ≥.149).  

2.4.1.3! Energy Compensation 

Unexpectedly, the high sensory context did not enhance compensation for the covert 

energy additions, and whilst reducing the energy to 33% generated greater 

compensation, the preloads did not differ statistically (Figure 2.2b). There was no 

significant effect of preload, on energy compensation relative to the LSLE preload, F 

(1.59, 41.22) = 0.26, p = .72, η2
p = .01, or the HSLE preload, F (1.64, 42.67) = 0.46, p = 

.60, η2
p = .02. A Bayes factor of 0.19 tended towards support for no difference between 

compensation scores of the HE preloads, calculated relative to their sensory-matched 

LE controls. However, whilst the HSHE, and LSHE preloads differed significantly to 

100% compensation relative to both LE preloads (all p ≤.05), the HS33 preload did not, 

relative to the LSLE, t (27) = .58, p =.555, B = 0.99, or the HSLE, t (27) = .46, p =.65, 

B = 0.98. The HS66 was trending towards significantly different to 100% relative to the 

LSLE and HSLE (p = .075 and p = .072; B = 1.14 and B = 1.17 respectively). These 

Bayes factors indicate no clear support for the null hypothesis (i.e. that compensation 

differed from 100%), but also no support for the hypothesis that the difference was as 

great as previous studies (estimated as 20%).   

2.4.1.4! Test meal pleasantness  

Neither the first or second course differed by preload condition in pleasantness ratings 

(both p ≥.085, η2
p ≤ .07), suggesting that palatability did not drive intake effects. 
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Figure 2.2 A) Preloads varying in energy content and sensory characteristics differed in test meal intake 
(Kcal). There were significant effects of preload energy content, but not sensory characteristics, on lunch 
intake between the high and low sensory and energy preloads. Effects were larger for ice cream intake 
(dark grey bars). The intermediate-energy (HS33 and HS66) preloads did not differ from each other or 
other preloads. B) There were no significant differences between preloads in energy compensation 
relative to LSLE and HSLE preloads. The HE preloads, but not the HS33 or HS66 preloads, differed 
significantly from 100% compensation, Bayes factors indicated insensitivity to determine a difference 
from 100% compensation for the HS33 and HS66 preloads. Error bars indicate SEM.   

2.4.2! Appetite Ratings  

As suggested by Figure 2.3, participants reported different hunger, fullness, desire to eat 

and thirst levels at different times throughout the session (all p ≤.001, η2
p ≥ .33), but this 

did not differ by preload condition, (all p ≥.159, η2
p ≤.06), and there were no 

interactions (all p ≥.171, η2
p ≤ .05) for any rating.  
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Figure 2.3 There were differences across the test session, but not between preloads in mean VAS appetite ratings throughout 
the session (error bars represent ± SEM. Panels: A) hunger B) fullness C) desire to eat D) thirst). 

0
10
20
30
40
50
60
70
80
90
100

Ba
se
lin
e

Po
st!
Pr
elo
ad Pr
e

Po
st!
Ta
ste Po
st

Po
st!
Ta
ste Po
st

Pasta Ice!Cream

VA
S+
H
un
ge
r+R

at
in
g

ES33
ES66
ESHE
ESLE
LE
HE

0
10
20
30
40
50
60
70
80
90
100

Ba
se
lin
e

Po
st!
Pr
elo
ad Pr
e

Po
st!
Ta
ste Po
st

Po
st!
Ta
ste Po
st

Pasta Ice!Cream

VA
S+
Fu
lln
es
s+R

at
in
g

0
10
20
30
40
50
60
70
80
90

Ba
se
lin
e

Po
st!
Pr
elo
ad Pr
e

Po
st!
Ta
ste Po
st

Po
st!
Ta
ste Po
st

Pasta Ice!Cream

VA
S+
D
es
ir
e+
to
+E
at
+R
at
in
g

0

10

20

30

40

50

60

70

80

Ba
se
lin
e

Po
st!
Pr
elo
ad Pr
e

Po
st!
Ta
ste Po
st

Po
st!
Ta
ste Po
st

Pasta Ice!Cream

VA
S+
Th
ir
st
+R
at
in
g

A B  

C D 



77 

 

 

2.4.3! Preload sensory characteristics 

The key sensory characteristics of the preloads were compared (Table 2.4). As expected 

the preloads differed appropriately in key domains and did not differ where designed to 

match. No differences were found between the preloads for pleasantness or familiarity 

(both p ≥.431, η2
p ≤ .03). There were differences between the preloads in filling ratings, 

F (2.97, 80.24) = 10.42, p <.001, η2
p = .28. The HSHE was more filling than the LSHE, 

t (27) = 2.63, p <.014, and the HSLE was more filling than the LSLE, t (27) = 3.61, p 

=.001. The HS33 was no more filling than the HSLE, t (27) = 0.80, p =.430, but the 

HS66 was rated as more filling, t (27) = 2.51, p =.018, and both the HS33 and HS66 

were more filling than the LSLE, t (27) = 3.87, p =.001, and, t (27) = 5.66, p <.001, 

respectively but did not differ from one another, t (27) = 1.67, p = .106. The preloads 

also differed in creaminess, F (5, 135) = 20.48, p <.001, η2
p

 =.43. As expected the 

HSHE was creamier than the LSHE, t (27) = 6.34, p <.001, and the HSLE was creamier 

than the LSLE, t (27) = 4.95, p <.001. Additionally, the HS33 and HS66 did not differ, t 

(27) = .72, p = .477, and neither differed from the HSLE, t (27) = 1.79, p = .085 and, t 

(27) = 0.79, p = .439, respectively, and both were creamier than the LSLE, t (27) = 2.81, 

p <.001, and, t (27) = 3.99, p <.001. As predicted the preloads differed in thickness 

ratings, F (2.63, 71.05) = 28.90, p <.001, η2
p

 = .52. The HSHE was thicker than the 

LSHE, t (27) = 6.17, p <.001, and the HSLE was thicker than LSLE, t (27) = 4.45, p 

<.001. The HS33 and HS66 did not differ, t (27) = 0.44, p = .662, but unexpectedly the 

HS33, t (27) = 3.03, p = .005, and the HS66, t (27) = 3.64, p =.001, were thicker than 

the HSLE, but both were thicker than the LSLE, t (27) = 6.54, p <.001, and t (27) = 

6.18, p <.001, respectively. 
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Table 2.4 - VAS rated preload sensory characteristics (SEM). There were no differences between the 
preloads in terms of familiarity, pleasantness, fruitiness, sourness or sweetness. The sensory-enhanced 
beverages were rated as creamier, thicker and more filling than their unenhanced controls but not the 
other sensory-enhanced beverages (other than the HSLE which was thicker than the intermediate-energy 
beverages).  

 Creamy* Thick* Filling* Familiar Pleasant Fruity Sour  Sweet 

LE 61.1 (3.3) 56.2 (3.6) 52.2 (2.1) 76.6 (3.5) 84.3 (2.1) 84.1 (1.8) 33.6 (3.0) 77.4 (1.4) 

HSLE 81.8 (2.1) 77.8 (2.2) 64.5 (1.8) 78.3 (3.9) 84.2 (1.4) 78.6 (2.0) 28.4 (2.4) 75.6 (1.9) 

HE 43.1 (3.5) 43.1 (3.7) 48.0 (3.2) 81.4 (2.9) 87.3 (1.9) 85.7 (1.5) 24.8 (2.3) 80.0 (1.2) 

HSHE 76.4 (2.1) 78.3 (2.6) 61.8 (2.2) 80.3 (3.3) 84.5 (1.5) 83.0 (1.8) 27.7 (2.4) 80.5 (1.2) 

HS33 75.1 (2.5) 85.1 (1.5) 66.4 (1.4) 83.8 (2.8) 83.9 (1.7) 79.7 (1.6) 23.7 (2.0) 77.2 (1.4) 

HS66 78.8 (2.7) 86.1 (1.9) 71.2 (2.1) 77.9 (3.6) 81.3 (1.8) 76.5 (2.2) 27.9 (2.9) 76.7 (1.2) 

 * significant effect of preload condition (p <.05) 

2.5! Discussion  

The present study examined the degree to which small carbohydrate energy additions to 

beverage preloads would generate satiety when consumed in an enhanced sensory 

context. This was designed to shed light on whether consumers can benefit from 

enhanced satiety in products which deliver a smaller energy loads and thus may be 

useful for dietary management. The logic behind this question was that whilst energy 

compensation in general is more accurate for lower-energy preloads this is not the case 

for beverages (see Almiron-Roig et al., 2013). However compensation in beverages can 

be improved by providing orosensory cues to the presence of energy (Chambers et al., 

2013; McCrickerd et al., 2014b; Yeomans & Chambers, 2011; Yeomans et al., 2014), 

although the same cues in low-energy preloads can lead to increased hunger and intake 
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(McCrickerd et al., 2014; Yeomans & Chambers, 2011). Presently we found that whilst 

higher-energy preloads suppressed intake the sensory enhancements failed to modulate 

this effect and there was no evidence of rebound effects in the low-energy beverage. 

The reduced intake following covert high-energy beverages supports a role of post-

ingestive feedback generating satiety (see Woods, 2004 for a review). However, energy 

compensation was inaccurate. The 33% energy enhanced sensory beverage generated 

greater compensation than higher-energy preloads, but not significantly so. Neither of 

the intermediate-energy beverages differed significantly from 100% (perfect) 

compensation. Bayes factors demonstrated that the difference from 100% compensation 

was not clearly present or absent. Therefore, it remains a tentative possibility that 

compensation for small energy additions in sensory-enhanced beverages is relatively 

accurately. Satiety-relevant orosensory characteristics did not improve compensation for 

high-energy preloads, and a low Bayes factor further supported this. Similarly, there 

were no differences between the preloads on subjective appetite ratings. Given the 

similar nature of the participants, stimuli and procedure to former studies which 

demonstrated an enhanced satiety or satiation effect Chambers et al., 2013; McCrickerd 

et al., 2012, 2014a, 2014b; Yeomans & Chambers, 2011; Yeomans et al., 2014), the 

present study is an anomalous finding compared to otherwise reliable effects.     

Given that sensory ratings indicated that the enhanced-sensory preloads were rated as 

thicker and creamier than the non-enhanced beverages, and that these were rated as 

more filling it is unlikely that the sensory manipulation was unsuccessful. Indeed the 

preload formulation was based largely on preloads which have found a robust effect of 

sensory-enhanced satiety in previous studies (Chambers et al., 2013; Yeomans & 

Chambers, 2011; Yeomans et al., 2014) and were piloted to ensure that minor 

formulation adjustments achieved equivalent sensory ratings. The original studies of 

sensory-enhanced satiety used mixed carbohydrate and protein based formulations 

(Chambers et al., 2013; Yeomans & Chambers, 2011). There is an argument that these 

sensory-enhancement effects could be due to a cue for protein content, thus enhancing 

protein related satiety (Bertenshaw et al., 2013). However more recent studies have 
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demonstrated similar effects using carbohydrate based preloads (Yeomans et al., 2014). 

Thus, the present preloads had macronutrient profiles consistent with previous sensory-

enhanced satiety effects.    

Additionally, the present study measured how “filling” participants thought the preloads 

were following one taste. This is related to measures of expected satiety explored 

elsewhere (Brunstrom et al., 2011, 2008; Brunstrom, 2011). These studies demonstrated 

that people have explicit expectations about the satiety and satiation a particular product 

is likely to deliver, this may depend on physical characteristics rather than actual caloric 

content, and may be related to pre-meal planning of intake (Brunstrom, Collingwood, et 

al., 2010; Fay et al., 2011). Recent research has demonstrated that viscosity is related to 

expected satiety (Hogenkamp et al., 2011; McCrickerd et al., 2012; Yeomans et al., 

2014) and our findings support this given that the enhanced sensory products were rated 

as more filling following the first taste. One explanation for this could be that people 

learn that viscosity is a salient cue for satiety from experience with milk feeding 

(Davidson & Swithers, 2004) with this learned relationship persisting to adulthood. 

However, in the present study this did not translate into differences in intake or 

subjective appetite. Additionally this method may not be appropriate for measuring 

expected satiety - the question itself could have been confusing as to whether the first 

taste was filling or a specified reference amount to consume later. Future studies should 

clarify the parameters if measuring expected satiety through VAS. 

One limitation of the present study is that the intermediate energy preload conditions 

did not have equivalent non-enhanced control groups. This meant that the relative 

satiety enhancement generated by sensory cues compared to the absence of those cues at 

each energy level was unclear. In the present design the intermediate energy beverages 

were compared to the low and high energy beverages to assess the extent of satiety 

generated by these energy additions in enhanced-sensory beverages, and compensation 

relative to the low energy beverages was compared across preloads. However it is 

unclear whether compensation would have been weaker or greater in the absence of 
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sensory-enhancements given that rebound appetite and intake effects have previously 

been documented (McCrickerd et al., 2014b; Yeomans & Chambers, 2011). Future 

studies should use energy matched unenhanced control groups at these intermediate 

energy levels in order to make this comparison.  

In conclusion, the present study highlights the idea that the ingestion of covert energy 

reduces subsequent intake, although in beverages compensation at the next meal is not 

accurate (see Almiron-Roig et al., 2013). Contrarily to our hypothesis, although 

providing sensory cues increased post-taste filling ratings, it did not enhance 

compensation for high-energy preloads. There was tentative evidence that compensation 

for lower energy, sensory-enhanced beverages was more accurate than high-energy 

versions. It is still largely unclear however whether the enhanced satiety concept can be 

used to benefit consumers by providing minimal energy content in beverages with 

satiety-predicting characteristics. Further studies using energy-matched non-enhanced 

control groups are needed in order to compare the satiating or rebound effect of sensory 

cues in intermediate-energy beverages.   

2.6! Author contributions 

The study was designed by PH and MY. PH was responsible for data collection and 

analysis and manuscript writing, with supervisory input from MY.  

 



82 

 

 

3! Paper 2: Sensory-enhanced beverages: effects on satiety 

following repeated consumption at home  

P. Hovarda, L. Chambersab, S. Hullc, R. Rec, M.S.J. Wickhamd and M.R. Yeomansa. 

 

aSchool of Psychology, University of Sussex  

bBritish Nutrition Foundation  

cLeatherhead Food Research 

dReacta Biotech Ltd. 

 

Published as:  

Hovard, P., Chambers, L., Hull, S., Re, R., Wickham, M. S. J., & Yeomans, M. R. 

(2015). Sensory-enhanced beverages: effects on satiety following repeated consumption 

at home. Nutrition Bulletin, 40 (3), 187-198.! !



83 

 

 

3.1! Abstract 

Growing research suggests that a consumer’s experience of satiety is influenced by 

information that is present at the time of, or before, food consumption. For example, 

making small modifications to the sensory characteristics of a high-energy beverage 

(specifically thickness and creaminess) enhances the impact it has on subsequent 

satiety. Previous research has examined these sensory-enhanced satiety effects solely in 

the laboratory and not in the ‘real-world’. Therefore, the present study, using a cross-

over design, compared the effects of ‘real-world’ consumption of two high energy 

versions of a beverage (sensory-enhanced and unenhanced) and a low-energy control 

beverage on satiety responses. Thirty-four volunteers were provided with shelf-stable 

dry powder mixes for the three test beverages, which varied in energy content and 

sensory characteristics, to which they added a commercially available juice. The 

volunteers prepared and consumed each beverage on eight occasions over a 3-week 

period in their normal home environment. Controlled satiety testing occurred either side 

of this exposure period in the laboratory. To further assess consumer acceptability of 

‘enhanced-satiety’ products, two focus groups discussed attitudes towards satiety claims 

and products. Results of the satiety study indicate that appetite sensations and 

subsequent food intake were lower following consumption of the sensory-enhanced 

high-energy beverage relative to the unenhanced and control versions, and that these 

effects were maintained following repeated consumption of the product in the ‘real-

world’. The focus groups highlighted that consumers are aware of sensory and cognitive 

influences on enhancing satiety, though noted that dieting populations might benefit 

most from satiety-enhanced products. Implications for further research and the role of 

satiety for consumers and manufacturers are discussed.      
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3.2! Introduction 

In the context of a global obesity epidemic (Mozaffarian et al. 2015) and public concern 

over food intake control (Röhr, Lüddecke, Drusch, Müller & Alvensleben 2005) 

understanding the factors that influence eating motivation is relevant for regulators, 

product developers and for consumers.  

Calorie for calorie nutritionally similar foods are not necessarily equally satiating. 

Evidence suggests that this is because the satiating power of a food is dependent not 

only on the physiological post-ingestive effect of its nutrients but also on the 

consumer’s experience of consumption, which can be modulated by a food’s sensory 

characteristics, for example (Cassady, Considine, & Mattes 2012; Chambers, 

McCrickerd, & Yeomans 2015; Crum, Corbin, Brownell & Salovey 2011; DiMeglio & 

Mattes 2000; Mattes 1996; Mattes 2005; McCrickerd, Chambers & Yeomans 2014b; 

Mourao, Bressan, Campbell & Mattes 2007a; Yeomans 2015).  

Increasing evidence supports an interactive effect between the sensory characteristics of 

a beverage and its nutritional content on satiety (Chambers, Ells & Yeomans 2013; 

Yeomans & Chambers 2011; Yeomans, McCrickerd, Brunstrom & Chambers 2014). 

Satiety-relevant sensory characteristics of beverages, such as thick texture and creamy 

flavour, can enhance the satiating capacity of a beverage relative to an equi-caloric 

beverage devoid of these characteristics (Bertenshaw, Lluch & Yeomans 2013).  

However, such an effect is observed only when the product contains sufficient energy; 

when satiety-relevant sensory characteristics are present in beverages with low energy 

content subsequent food intake may be increased (Chambers et al. 2013; Yeomans & 

Chambers 2011). One explanation for these effects is that viscosity and creamy flavours 

predict the delivery of energy resulting in preparatory physiological responses and 

enhanced detection of nutrients, thus leading to an enhanced satiety response, provided 

energy was consumed (Yeomans & Chambers 2011). The relationship between food 
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viscosity and satiety might be learnt early in life during milk feeding with this learning 

tracking into adulthood (Davidson & Swithers 2004). Furthermore, viscous beverages 

are associated with longer oral exposure time than non-viscous equivalents, which may 

promote learning about their nutritional consequences (Mars, Hogenkamp, Gosses, 

Stafleu & De Graaf 2009) making viscosity a salient cue for satiety (McCrickerd, 

Chambers, Brunstrom & Yeomans 2012). Indeed, in adults, ratings of viscosity and 

creaminess are associated with explicit expectations of satiety (Hogenkamp, Stafleu, 

Mars, Brunstrom & de Graaf 2011; McCrickerd et al. 2012; McCrickerd, Chambers & 

Yeomans 2014) suggesting that consumers can predict how satiating a food will be by 

assessing its sensory characteristics (e.g. Yeomans 2012; Brunstrom 2007). Anticipating 

the effect a food will have on satiety may have biological utility because it allows for 

minimal disruption to homeostasis (Woods 1991) and for the selection of foods 

appropriate for energy needs.   

There is evidence that repeatedly consuming a product can change consumer 

expectations of satiety (Brunstrom, Shakeshaft & Alexander 2010), perhaps because 

expectations become more accurate with experience (Wilkinson & Brunstrom 2009). A 

recent study using sensory-enhanced and non-enhanced beverages demonstrated that, at 

first exposure, consumers’ satiety responses depended on both the sensory 

characteristics and energy content of a beverage, whereas following repeated exposure 

only the energy-content affected satiety (Yeomans, McCrickerd, Brunstrom & 

Chambers 2014). This suggests that when a product is novel consumers estimate its 

satiety value through evaluation of its sensory properties, but, over time, as the product 

becomes familiar consumers are able to make more accurate predictions about its satiety 

value based on their actual experiences.  

Previous research on sensory enhancements of satiety has taken place in controlled 

laboratory environments that do not represent ‘real-world’ conditions where other 

factors such as distraction (Brunstrom & Mitchell 2006), environmental visual and 

olfactory appetite cues (Scheibehenne & Wansink 2010; Yeomans 2006) and food 
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accessibility (Wansink, Painter & Lee 2006) might interfere with learning (Yeomans 

2012). This could mean that, on the one hand, sensory enhancements of satiety might be 

less effective in real-world settings but also that learning about the actual energy content 

of products may be less robust.  

In the present study we assessed whether repeated consumption of a sensory-enhanced 

beverage in the home environment conferred benefits of improved satiety to the 

consumer. Satiety responses were assessed in a controlled fashion in the laboratory 

before and after the home exposure period. Consumers added a commercially available 

juice to a powder formulation creating beverages differing in energy content and 

satiety-relevant sensory characteristics. We hypothesised that a sensory-enhanced 

version of the high-energy beverage would deliver greater satiety than an equi-caloric 

high-energy beverage without the sensory enhancements. Previous laboratory evidence 

suggests that sensory effects on satiety may diminish following repeated exposure 

(Yeomans et al. 2014). We expected that outside of the laboratory these learning effects 

would not be as robust thus allowing sensory effects to persist following repeated 

exposures. Additionally, we conducted a focus group to examine consumer attitudes to 

the concept of ‘enhanced-satiety’ and its related claims in order to better understand 

how these types of products might be received by the consumer.   

3.3! Method 

3.3.1! Design 

A repeated-measures design tested the effect of a beverage’s sensory properties and 

energy content (Table 3.1) on satiety before and after repeated-exposures in the home- 

environment. Three novel beverages were used: a high-energy high-sensory (HEHS), 

high-energy low-sensory (HELS), and low-energy high-sensory (LEHS), where ‘high-

sensory’ refers to the enhancement of satiety-relevant sensory characteristics (thick 

texture and creamy flavours). Participants consumed each beverage 10 times in total. 
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Eight exposures took place in the consumers’ ordinary environments and laboratory 

satiety testing took place before and after these exposures. Satiety responses were 

examined by measuring energy intake (kcal) of a subsequent test-meal and subjective 

appetite ratings in the inter-meal interval. Thus, the study was designed to have a 

naturalistic exposure period in order to assess environmental influences on repeated 

exposure effects and controlled pre- and post-exposure laboratory testing to accurately 

examine satiety responses. A 2-week washout period was administered in between the 

consumption of each of the three beverages. Beverage consumption order was 

counterbalanced using a Williams Square design. Additionally, consumer analysis of 

the beverages and attitudes to satiety claims was generated through follow-up focus 

groups. The focus groups were designed to facilitate broad conversation around a 

discussion guide (e.g. Parker & Tritter 2006).!

3.3.2! Participants 

Based on a previous study (Yeomans & Chambers 2011) demonstrating an effect size of 

F = 0.25 for differences in satiety responses to high and low sensory beverages, power 

analysis suggested an appropriate sample size of n = 30 (α= 0.05, 95% power). Twelve 

males and 27 females (in order to account for counterbalancing and predicted attrition) 

were recruited for a study of  ‘beverages and satiety’ (recent evidence suggests that 

awareness of satiety testing does not influence intake, e.g. Thomas, Dourish & Higgs 

2013). Exclusion criteria were: Dutch Eating Behaviour Questionnaire (Van Strien, 

Frijters, Bergers & Defares 1986) restraint score > 3, smokers of > 5 cigarettes per week 

(e.g. Yeomans & Chambers 2011; Yeomans et al. 2014), consumption of > 14 units of 

alcohol per week, self-reported significant weight-change in the previous 6 months or 

those on a specific weight change diet, with diagnosed eating disorders, diabetes or 

gastro-intestinal disorders, those taking prescription medicine, pregnant or lactating 

women, BMI <18 or >30 (actual BMI range = 18 – 30), or age < 18 or > 65 (actual age 

range = 19 – 61).Volunteers were eligible to participate in the study if their answers to 

an online screening questionnaire indicated that they did not meet any of the exclusion 
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criteria. All participants were invited to attend the focus group session one month later. 

Ten participants (six females) from the original cohort attended the focus group session.  

3.3.3! Test Beverages  

The three test beverages were designed to deliver different combinations of energy 

content and sensory characteristics (thick texture and creamy flavour). Previous recipes, 

which have reliably demonstrated sensory-nutrient interaction effects on satiety 

(Chambers et al. 2012; McCrickerd, Chambers & Yeomans 2014; Yeomans & 

Chambers 2011), were adapted to produce novel shelf-stable powdered mixes that the 

participants could take home and combine with juice when required (Table 3.1). The 

dry powder mixes contained maltodextrin (HEHS and HELS), tara gum (HEHS and 

LEHS), milk caramel flavouring (HEHS and LEHS) vanilla cream flavouring (HEHS 

and LEHS) and aspartame (LEHS), to which participants added no added sugar mango 

juice (J. Sainsbury’s Inc.). The powdered beverages were presented in transparent 500 

ml containers marked with a randomly generated three digit code used for identification 

of the beverage type by the experimenters. A marker on the side of the container 

indicated the correct amount of juice to add.  

3.3.4! Preparation of test beverages  

Participants were provided with containers of the dry powder mixes and sufficient juice 

to prepare eight beverages at home. Ingredients were dispensed to participants 

following pre-exposure laboratory satiety test sessions. Participants were instructed to 

pour juice into the containers, up to a marker denoting the correct amount on each 

container, then shake the container in order to disperse the powder and refrigerate until 

consumption the following day. The beverages were consumed mid-morning on 

Mondays, Wednesdays and Fridays at least one hour following and prior to 

consumption of other foods or caloric beverages (exact time not specified). A calendar 

was provided to ensure adherence to the schedule and for recording deviations. For the 
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laboratory satiety testing (before and after home-exposures) the beverages were 

prepared by the experimenters, in an identical manner as instructed to participants. 

Table 3.1 Test beverage ingredients and macronutrient composition 

Ingredients (g) LEHS HELS HEHS 

No added sugar mango juice a 317 265 262 

Maltodextrin b 0 55 55 

Aspartame c 0.03 0 0 

Tara gum d 1.0 0 1.0 

Milk caramel e 0.8 0 0.8 

Vanilla cream e 1.0 0 1.0 

Total (g) 320 320 320 

Total carbohydrates 30.8 79.9 78.0 

Total protein 1.6 1.3 1.3 

Total fat 0 0 0 

Total kcal 41.2 243.3 243.2 

a J. Sainsburys, Inc, UK; b Cargill, UK.; c Aspartame Powder, Ajinomoto Sweeteners Europe; d Kaly’s 
Gastronomie, FR; e TH Geyer, DE. 

3.3.5! Laboratory Satiety Measurement 

An ad libitum test-meal was administered one hour after consumption of the test 

beverage. The test-meal contained 620 g (cooked weight) of penne pasta (J. Sainsbury’s 

plc.) with 650 g of Dolmio tomato original bolognaise pasta sauce (Mars Inc.) plus 30 g 

vegetable oil (J. Sainsbury’s plc.) and 100 g medium cheddar cheese (J. Sainsbury’s 

plc.). Per gram, the test-meal delivered 1.53 kcal, 0.5 g carbohydrate, 0.1 g protein and 

0.1 g fat. The meal was pre-prepared by boiling the pasta and adding the remaining 

ingredients before refrigerating. The meal was baked for 30 minutes at 175 degrees 

Celsius before consumption. The meal was served in an aluminium tray and participants 

were provided with 150 ml of drinking water.  
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Participants’ appetite, appetite expectations, and sensory evaluations of the test 

beverages and test-meal were measured using 100 point visual analogue scales (VAS) 

presented using a hand-held computer [iPad mini, Apple Inc.: see Brunger et al. 

(2014)]. These were operated by dragging a pointer across a horizontal line using the 

computer’s touch-screen. Appetite ratings of hungry, full and thirsty, and appetite 

expectations ratings of hungry and full immediately and one hour later, were 

administered in the format: ‘how <rating> are you/ would you expect to be 

immediately/one hour after consuming the beverage?’ anchored by: ‘not at all’ and 

‘extremely’. Additionally, prospective consumption was measured in the format: ‘how 

much do you think you could eat right now?’ using anchors: ‘nothing at all’ and ‘a very 

large amount’, and desire to eat was measured in the format: ‘how strong is your desire 

to eat?’ anchored by ‘very weak’ and ‘very strong’ (e.g. Hill, Magson & Blundell 

1984).  

All three beverages were rated for familiarity, pleasantness, thickness and creaminess to 

check that they differed in the intended dimensions (thickness and creaminess) and were 

similar in other sensory dimensions (familiarity and pleasantness). Additionally, 

participants rated the familiarity and pleasantness of the pasta test-meal on all satiety 

test days. Ratings followed the format: ‘how <rating> is the beverage/ pasta?’ anchored 

by: ‘not at all’ and ‘extremely’. 

3.3.6! Procedure 

On all satiety testing days, participants were instructed to fast from 20.00 the evening 

before; consume the same meal on all evenings prior to test sessions; avoid significant 

dietary changes; avoid strenuous exercise and alcohol for 24 hours prior to test session; 

and use the same mode of transport to attend the laboratory for each test session. Self-

reported compliance with these procedures was checked.   
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On satiety test days, participants consumed a standardised breakfast at 09.00 in 

individual concealed booths (as were all meals and test beverages). Following breakfast, 

they returned to the laboratory waiting room where 150 ml of water was provided at 

10.00 and 11.00. At 12.00 iPad Mini computers were given to participants. As well as 

being the method for collecting ratings, the iPads provided timed instructions that lead 

the participant through the experimental procedure. Baseline appetite ratings were then 

completed before they consumed the relevant test beverage in the concealed booths. 

One mouthful of the beverage was consumed and sensory and appetite-expectation 

ratings were completed. Participants then consumed the remaining beverage and 

completed further appetite ratings.  

Thirty minutes after consumption of the beverage further appetite ratings were 

measured. After a further 30 minutes, pre-meal appetite ratings were completed. 

Participants then returned to the testing booths where the ad libitum test-meal was 

provided with a 150 ml cup of drinking water. One mouthful of the test-meal was 

consumed and appetite and sensory ratings were completed. Next, participants were 

instructed to consume the test-meal until comfortably full, such that the extent of satiety 

generated by the beverage could be measured. Final appetite ratings were administered 

when consumption ceased (see Figure 3.1 for laboratory test day schematic).  

Each satiety test session followed an identical procedure. Participants were then 

provided with the beverage ingredients and instructions to prepare and consume the 

beverage eight times (three times per week and twice in the last week) as a mid-morning 

snack. A 2-week washout period was observed between beverage condition phases. 

Ethical approval to run the study was obtained from Reading Independent Ethics 

Committee.  
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Figure 3.1 Procedure timeline for satiety testing 

3.3.7! Focus Group 

One month following the main study two focus groups were conducted to explore 

consumer attitudes to satiety claims and enhanced satiety products. All participants 

from the main study were invited to take part (participants remained naïve about the 

aims of the study and the manipulations). Ten participants were recruited. The group 

followed a discussion guide agreed by the researchers (see below), which broadly 

covered issues relating to consumer understanding and acceptability of satiety claims 

and manipulation of products to promote satiety, and allowed free discussion on the 

topic [see focus group method discussion in Parker & Tritter (2006)]. One experimenter 

guided discussion, which was video-recorded for analysis; all participants consented to 

the video recording. Broad themes relating to consumer experiences of enhanced satiety 

were identified from discussion around these structured topics for analysis. Data 

saturation was not achieved. 



93 

 

 

3.3.8! Discussion Guide: 

Consumers General Trends 

First, general trends in familiar product claims were discussed. The topics discussed 

were which claims and products come to mind, and whether participants had ever 

purchased one. Following this, an energy drink, a smoothie, a yoghurt drink, a 

carbonated beverage, a fruit juice and a bottle of water were presented and participants 

were prompted to discuss the relative purpose of each product, claims associated with it 

and whether it was likely to promote satiety.  

Appetite Claims 

Some specific claims: ‘reduces hunger’, ‘increased fullness’, ‘helps you eat less at your 

next meal’ were discussed in terms of how easy they were to understand, whether 

consumers would like to experience the state that the claims promoted, what type of 

products suited each claim, and whether any would be appropriate for a beverage. 

Participants were then asked the factors they consider when thinking about how full 

they would feel following consumption and whether sensory factors played a role in this 

state.  

Sensory Characteristics of Enhanced-Satiety Beverages 

The discussion then focused on whether sensory enhancements of beverages to promote 

satiety would be desirable. The claims ‘optimised texture’, ‘enhanced sensory 

properties’, ‘thickened’ and ‘added tara gum’ were discussed in terms of their 

acceptability, ease of understanding, and what type of products would be associated 

with such claims. Participants were also prompted to discuss the merits of beverages in 

the promotion of satiety and whether they could be regarded as a ‘snack’.  



94 

 

 

Experience of Diet Products 

Participants then discussed diet products and the characteristics that determine an 

effective diet product. The idea of ‘making the most of your calories’ was also 

discussed in term of how to maximise the satiety experienced from consuming a certain 

energy load. Finally, participants discussed whether they believed that claims regarding 

satiety would be relevant for consumers in the future.  

3.3.9! Data Analysis 

Intake was analysed using three (beverage: HEHS, HELS, LEHS) by two (exposure: 

pre-exposure, post-exposure) repeated measures analysis of variance (ANOVA). One-

tailed p values were used, given the hypothesis that test-meal intake would be lower 

following consumption of the HEHS beverage compared to the HELS and LEHS 

beverages, and that intake would be lower in the HELS than the LEHS condition. 

Additionally, gender was included as a factor, and BMI and dietary restraint score 

(DEBQ) were entered as covariates and are reported where significant. 

Appetite ratings were analysed using three-way three (beverage condition) by two 

(exposure) by five (rating time: baseline, post-beverage, 30 minutes post-beverage, pre-

test-meal, post-taste of test-meal) repeated measures ANOVAs. Planned contrasts were 

used to further explore differences between beverage conditions. A composite satiety 

score was generated by reversing hunger, desire to eat and prospective consumption 

ratings and averaging these along with fullness ratings (e.g. Brunger et al. 2014). All 

error bars presented were corrected for repeated-measures variance. 

3.4! Results  

Five participants failed to complete the study and their data were excluded. The 

following analyses were conducted with n = 34. Participants’ mean age was 43.4 years 
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(SEM = 2.0), with a mean BMI of 24.0 (SEM = 0.4) and a mean DEBQ restraint score 

of 2.1 (SEM = 0.1).  

3.4.1! Test-meal intake 

Figure 3.2 suggests that ad libitum intake of the test-meal was lower following the 

HEHS beverage than the HELS and LEHS versions respectively, and that intake was 

higher following repeated exposure to the beverages in all conditions. This was 

confirmed by the analyses: there were significant main effects of beverage [F (2, 66) = 

10.85, p <.001, η2
p = .24] and exposure [F (1, 33) = 8.09, p = .008, η2

p = .20] but no 

interaction [F (2, 66) = 0.85, p = .43, η2
p = .03]. Overall, test-meal intake following the 

HEHS beverage was significantly lower than following the HELS version [p = .043 

(one-tailed)]. Intake was significantly lower following the HEHS than LEHS [p <.001 

(one tailed)] and following the HELS than the LEHS [p =.005 (one tailed)]. This 

suggests that the HEHS beverage was the most satiating and that this effect persisted 

followed repeated exposure. Potential effects of BMI, restraint score and beverage order 

were not significant. There was a significant effect of gender [F (1, 32) = 11.24, p 

=.002, η2
p = .26] with men eating more than women, as expected, but there were no 

interactions between gender and beverage condition or exposure (all p > .05). The test-

meal did not differ in pleasantness between beverage conditions [F (2, 66) = 0.83, p = 

.439, η2
p = .03] or exposures [F (1, 33) = 0.27, p = .61, η2

p = .01].  
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Figure 3.2 Ad Libitum energy intake (kcal) following the three test beverages pre- (dark grey bars) and 
post-repeated exposures (light grey bars). Data are mean ± SEM. *significant difference between all 
beverage conditions and main effect of exposure time (p < .05).!

3.4.2! Rated appetite  

Figure 3.3 shows participants’ appetite throughout the test day. In summary, hunger was 

lower and satiety greater following the HEHS beverage, and this pattern persisted 

following exposure. There was a significant main effect of beverage on hunger [F (2, 

66) = 2.81, p = .034, η2
p =.08 (one-tailed)], which was lower following the HEHS 

beverage than following the HELS [p =.022 (one-tailed)] and the LEHS versions [p = 

.032 (one-tailed)].  A significant main effect of exposure [F (1, 33) = 5.00, p = .032, η2
p 

=.13] indicated overall lower hunger at pre-exposure compared to post-exposure. 

However, there was no interaction between beverage condition and exposure (p >.05). 
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There was also a significant main effect of beverage on fullness [F (2, 66) = 3.1, p 

=.026, η2
p = .09 (one-tailed)] and desire to eat [F (2, 66) = 2.68, p =.038, η2

p = .08 (one-

tailed)], which tended to be lower in the HEHS condition compared with the HELS 

condition (p = .067) and the LEHS condition (p = .058). There were significant main 

effects of beverage condition on prospective consumption [F (2, 66) = 2.94, p =.03, η2
p 

=.08 (one-tailed)], which was significantly lower following the HEHS beverage than the 

HELS (p = .022), and LEHS (p = .025) versions. Likewise, there was a significant main 

effect for composite satiety score [F (2, 66) = 3.13, p = .025, η2
p =.09 (one-tailed)], 

which was greater in the HEHS condition than the HELS [p =.056 (one-tailed)] and the 

LEHS conditions [p = .017 (one-tailed)].  
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Figure 3.3 VAS ratings of hunger (A and B) and fullness (C and D), and composite satiety ratings 
(Figures E and F), before and after repeated exposures to each beverage. Solid line represents HEHS, 
dots represent HELS and dashes represent LEHS. Data are mean ± SEM.!
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3.4.3! Laboratory Measured Expected Satiety 

Unexpectedly there were no significant effects of beverage condition or exposure on 

appetite expectations either immediately or one hour after beverage consumption (all p 

>.05, means in Table 3.2). This is inconsistent with our hypothesis, as satiety-relevant 

sensory characteristics of beverages are thought to increase expected satiety. Moreover, 

evidence suggests that expected satiety becomes more aligned to the actual energy 

content of a product following repeated exposure (Wilkinson & Brunstrom 2009) and 

thus we predicted that post-exposure expected satiety would increase for the high-

energy versions of the beverages. The present data do not support this hypothesis. 

Table 3.2 Mean (SEM) VAS ratings of appetite expectations across beverage condition and exposure 
times 

 

 HEHS HELS LEHS 

 Pre-

exposure 

Post- 

exposure 

Pre- 

exposure 

Post-

exposure 

Pre-

exposure 

Post-

exposure 

Expected 

hunger 

immediate 

40.3 (4.1) 34.9 (3.3) 35.2 (3.7) 41.7 (3.5) 33.4 (3.9) 42.1 (3.6) 

Expected 

hunger later 

48.4 (4.0) 46.8 (3.0) 47.7 (3.4) 55.1 (3.1) 49.9 (3.2) 49.9 (3.2) 

Expected 

fullness 

immediate 

62.1 (3.5) 63.2 (3.5) 60.0 (3.2) 56.9 (2.8) 60.5 (3.5) 65.2 (2.8) 

Expected 

fullness later  

52.6 (3.8) 54.7 (2.7) 48.5 (2.6) 48.5 (3.6) 51.2 (3.0) 47.0 (3.7) 
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3.4.4! Beverage characteristics  

Table 3.3 indicates that the beverages differed in key domains (thickness and 

creaminess) confirming that the sensory manipulations were successful. This was 

confirmed by a significant main effect of beverage condition on thickness ratings [F (2, 

66) = 33.45, p <.001, η2
p = .50] but no main effect of exposure [F (1, 33) = 1.72, p 

=.199, η2
p = .05]. The HEHS beverage was rated as thicker than the HELS (p < .001) 

but not different from the LEHS (p = .14) and the LEHS was rated as thicker than the 

HELS (p < .001). There was a main a main effect of beverage condition on rated 

creaminess [F (2, 66) = 6.974, p =.002, η2
p = .17] but no effect of exposure [F (1, 33) = 

2.88, p = .099, η2
p = .08]. The HEHS and LEHS beverages were rated creamier than 

HELS version (p = .001 and p = .057 respectively) and the HEHS and LEHS versions 

did not differ (p = .751). For pleasantness ratings, there was a significant main effect of 

beverage condition [F (2, 66) = 3.479, p = .037, η2
p = .10] but not exposure [F (1, 33) = 

1.72, p = .199, η2
p = .05]. The HEHS beverage was rated as less pleasant than the HELS 

version (p = .04) but there was no difference between the HEHS and the LEHS (p 

>.999) versions or the HELS and the LEHS versions (p = .175). 

 Table 3.3Mean (SEM) VAS ratings of beverage characteristics!

  
 HEHS HELS LEHS 

 Pre -

exposure 

Post-

exposure 

Pre-

exposure 

Post-

exposure 

Pre-

exposure 

Post-

exposure 

Thick 72.5 (1.8) 71.2 (2.0) 44.7 (3.5) 55.0 (1.9) 66.7 (1.8) 65.0 (2.4) 

Creamy 51.1 (2.9) 54.9 (3.2) 38.9 (3.5) 41.7 (2.7) 45.2 (2.6) 52.0 (2.7) 

Pleasant 62.1 (2.0) 60.0 (2.1) 68.7 (2.4) 66.2 (2.1) 64.0 (2.7) 61.1 (2.0) 

Familiar 56.2 (4.8) 78.9 (3.5) 66.9 (3.3) 77.8 (2.8) 56.4 (4.3) 79.4 (3.2) 
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3.4.5! Focus Group 

The key themes emerging from discussion around the topics presented in the discussion 

guide are reported below. 

3.4.5.1! Appetite Claims 

A commercially available yoghurt-based beverage, smoothie, carbonated beverages and 

fruit juice were presented. The yoghurt-based beverage was regarded as the most likely 

to be filling because it was ‘more of a food than a drink’ although ‘it wouldn’t be thirst-

quenching’. Consumers indicated that if they ‘had to skip breakfast’ the smoothie or the 

yoghurt beverage would be most appropriate replacement because of the ‘thickness’, 

because they ‘were more like food…because of the fruit’ and because ‘(they have) more 

bulk’. Participants then discussed the claims ‘reduced hunger’, ‘increased fullness’ and 

‘helps you eat less at your next meal’. The latter was unanimously noted to be the most 

difficult to understand. Some participants claimed that it ‘(did not) make sense’ because 

‘the next meal would be too far away’ and that such a product would not be calorific 

and would be consumed immediately before the meal. Participants suggested that this 

claim would be appealing to those wishing to lose weight. In terms of ‘reducing hunger’ 

some participants were suspicious of the claim because ‘it would have to be artificial (in 

order to) trick the body’ and that ‘reduced is a negative term’. Other participants 

claimed that they would like to experience reduced hunger ‘if you know there will be a 

gap between meals’. Increased fullness was regarded as unacceptable as it ‘sounds like 

bloating’ and the word ‘filling’ was suggested as a more appropriate term. Both groups 

commented that ‘substance’ and ‘thickness’ were important characteristics of beverages 

with ‘reduced hunger’ and ‘increased fullness’ claims and that yoghurt-based beverages 

would suit such claims because ‘they’re made from food’ and that ‘(thickness) makes a 

drink more of a snack’. Participants also noted dynamic effects: ‘(carbonated beverages) 

would fill you up immediately but it would wear off in half an hour’.  
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3.4.5.2! Sensory Characteristics of Enhanced Satiety Beverages 

Caloric content was not regarded as important a characteristic as texture for ‘filling’ 

beverages. Considering two hypothetical products that were equally calorific but one 

which was more filling “(participants’) first thought would be ‘what’s in it?’”. 

Specifically, exploring the idea of thickening a beverage to achieve this ‘enhanced-

satiety’ effect, reaction was mixed as some participants were concerned about 

‘associations with artificial thickener’ because it would ‘not be as pleasant’ if thickened, 

although others were generally receptive. Four more claims were discussed: ‘optimised 

texture’, ‘enhanced sensory properties’, ‘thickened’, and ‘added tara gum’. Both groups 

agreed that ‘thickened’ was the easiest claim to understand, although one participant 

was concerned about: ‘thickened with what?’ and suggested that ‘thicker’ was more 

acceptable than ‘thickened’ due to associations with artificial additives. ‘Optimised 

texture’ and ‘enhanced sensory properties’ were regarded as ambiguous. ‘Added tara 

gum’ was easy to understand although treated with suspicion as tara gum was an 

unfamiliar ingredient and ‘added…sounds synthetic’. One participant suggested that 

‘with’ would be a more acceptable term than ‘added’. Participants suggested that 

beverages could ‘help to manage appetite…but not as much as food’ and some 

considered beverages to be ‘equivalent to a snack’. Both groups suggested that ‘milky 

drinks’ or ‘milk-based drinks’ could help to manage appetite ‘because they contain 

protein’ and ‘thickness’ was ‘a tipping point between a drink and a snack’. Regarding 

smoothies, participants suggested that healthy snacks could be filling but ‘it depends on 

the portion size’.  

3.4.5.3! Experience with Diet Products 

Participants were asked about whether ‘making the most out of calories’ was important. 

The reaction was mixed with some participants reacting positively, particularly as they 

would use a filling product in a ‘modern lifestyle’ in which meals are arranged around 

busy schedules. Other participants suggested that it would be more useful for weight 
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loss than everyday use and that it would be ‘more of a bonus than something driving 

purchasing’. Some suggested that feeling full was ‘not important to people’, although 

healthy snacking is ‘something for the future’ and ‘people want to buy into it’. 

3.5! Discussion 

The study hypothesis that satiety responses to a high-energy beverage would be 

enhanced by the addition of satiety-relevant sensory characteristics is supported by the 

present findings. Additionally, we hypothesised that repeated exposures to the beverage 

in consumers’ natural environments would lead to less robust learning and thus less of a 

diminished response to the sensory enhancements than observed in laboratory-based 

learning studies (e.g. Yeomans et al. 2014). Whilst repeated exposure to the beverages 

appeared to decrease satiety responses overall, the sensory enhanced high-energy 

beverage continued to generate the greatest satiety. This suggests that in naturalistic 

environments a product’s sensory cues remain important for satiety even when the 

product is repeatedly consumed. This pattern was observed both in terms of subsequent 

energy intake and rated subjective appetite.   

The present findings differ to previous research, which investigated sensory-nutrient 

interactions following repeated exposures in a laboratory (Yeomans et al. 2014). This 

study found that whilst sensory manipulations enhanced satiety before repeated 

exposures, satiety was dictated by energy content alone following repeated exposures. 

Yeomans and colleagues’ results suggest that learning about the energy content of the 

beverages over repeated exposures resulted in a change in satiety responses consistent 

with the energy consumed. No such interaction was observed in the present study. 

Instead, while satiety responses decreased overall following repeat exposures, the 

superior satiating effect of the enhanced sensory high-energy beverage was maintained. 

The differences between these findings may be due to contextual influences during the 

exposure period. The laboratory presents a controlled environment in which attention to 

the test product is emphasised. Distraction during consumption of a test product has 
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been shown to reduce satiety by modulating the influence of pre-absorptive satiety-

relevant signals (Brunstrom & Mitchell 2006). It is plausible, therefore, that 

uncontrolled influences in the consumers’ environments diminished the attention paid to 

consuming the beverages during the exposure phases, thus modulating learning about 

the satiety value of the beverages. If this is the case, this study highlights the differential 

response that may be obtained in a laboratory and outside of it, with important 

implications for behavioural science. Indeed, other studies that examined food-based 

learning effects in the real world have failed to find an effect (Mela, Trunck & Aaron 

1993). The literature regarding learned influences on appetite and food preferences 

presents a complex picture of the conditions that allow learning effects to be realised 

(Mela 1999; Yeomans 2012). Given the relatively uncontrolled conditions beyond the 

laboratory, it is plausible that learning in the ‘real-world’ is less robust than within the 

laboratory. Thus, for research findings to be applied to consumer contexts situational 

variables must be considered; this means that consumer-focused studies may be 

required in addition to experimental research, particular for substantiation of a health 

claim. For manufactures, these findings imply that sensory-enhanced products may be 

effective at enhancing satiety when consumed repeatedly in real-world environments, 

but also, more generally, that long-term effects of products observed in the laboratory 

may not be instantly generalizable to the consumer environment. 

The present study gathered qualitative data regarding consumer awareness and attitudes 

towards enhanced satiety products. The focus groups indicate that a product with thick 

sensory properties would be a desirable characteristic with regards to enhancing satiety, 

as would characteristics that frame the product more as a food than a beverage, such as 

‘bulk’ and ‘substance’. Food form (Kissileff 1985; Mourao, Bressan, Campbell & 

Mattes 2007b) as well as beliefs about the purpose of the food are known to influence 

satiety (Crum et al. 2011; McCrickerd et al. 2014b) suggesting that cognitions 

generated by information about products can modulate later food consumption and 

appetite. Participants in the current study regarded a product’s sensory characteristics 

more important than its caloric content for the delivery of ‘enhanced satiety’. These 
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observations support our quantitative data, showing that external satiety cues influence 

actual satiety responses. Importantly, these qualitative findings demonstrate that 

consumers are influenced by external satiety cues both within and outside of an eating 

episode. This has important implications for food manufacturers as product 

modifications, such as the subtle sensory enhancements tested in the present study, may 

offer appetite-related benefits for consumers concerned with satiety.  

In the present study, whilst there were clear effects of the beverage’s sensory 

characteristics on the participants’ experienced satiety this was not reflected by reports 

of their expectations of satiety. Previously, ratings of expectations of satiety have been 

shown to either increase with familiarity (Brunstrom, Shakeshaft et al. 2010) or become 

more aligned with actual satiety (Wilkinson & Brunstrom 2009). We found no evidence 

that satiety expectations differed from pre- to post-repeated exposures with any of the 

products, despite differential satiety responses. This suggests that either explicit reports 

of increased expected satiety are not a prerequisite for sensory-enhanced satiety or that 

self-reports of this measure are not adequately sensitive to capture small shifts in 

participants’ beliefs.  

The sensory ratings suggest that the sensory manipulations were successful in terms of 

generating increased thickness and creaminess in the enhanced-sensory versions of the 

beverage. However, ratings of creaminess were relatively low in all of the beverages. 

This might mean that the perceived thickness of the beverages is the main driver of the 

sensory-enhanced satiety effect. This is consistent with previous findings that found that 

thickening beverages reduced intake whereas adding creamy flavours had no additional 

effect (McCrickerd et al. 2014). Thickness might be a particularly salient satiety cue 

because the viscosity of breast-milk is directly related to its energy density (Davidson & 

Swithers 2004), indicating that a learned predictive relationship between this 

characteristic and satiety is established early in life.  
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The present data indicate that whilst satiety-enhancing beverages are effective when 

prepared by consumers and consumed repeatedly in a naturalistic way, the effects on 

satiety are subtle. Overall there was a mean test-meal intake difference between the 

sensory enhanced and unenhanced high energy beverages of 43.9 kcal, representing 

1.8% of men’s and 2.2% of women’s daily intake guidelines (NHS Choices 2015) 

respectively. But whilst subtle, these effects are robust. The satiety ratings generated 

small standard errors and the data are consistent with previous accounts regarding the 

sensory enhancement of satiety (Bertenshaw et al. 2013; Chambers et al. 2013; 

Yeomans & Chambers 2011; Yeomans et al. 2014). Another limitation is that the 

HEHS beverage was rated as slightly less pleasant than the other versions. This is a 

concern because there is some suggestion that palatability of a preceding food, beverage 

or meal is positively related to desire to eat and hunger for two hours following 

consumption (Hill et al. 1984), in which case the relatively reduced appetite ratings 

following the HEHS beverage may be because participants found it less palatable. On 

the other hand, there is some debate as to whether food palatability can affect 

consumption at a later test-meal (Sørensen, Møller, Flint, Martens & Raben 2003).  

The focus group data in the present study suggest that consumers perceive that those 

most interested in weight loss would benefit most from enhanced satiety products. It is 

therefore important to consider that dieting and highly restrained populations tend to be 

more responsive to external satiety cues and less to internal cues relative to unrestrained 

individuals (Ogden & Wardle 1990) and to date the sensory-nutrient interaction 

literature has focused on unrestrained participants (e.g. Chambers et al. 2012; Yeomans 

& Chambers 2011). Thus, our focus group data urges research into restrained 

populations in order to assess whether they would benefit from sensory-enhanced 

products.  

In conclusion, this study provides further evidence that a sensory-enhanced high-energy 

beverage is more satiating than the same high-energy beverage without the sensory 

enhancements, and provides new evidence that this satiety benefit is maintained 
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following repeated consumption of the product in the ‘real-world’.  Furthermore, this 

study provides information on consumers’ perspectives of ‘enhanced satiety’ and 

indicates that they are receptive to products that deliver this benefit. The results of this 

‘real-world’ study differed slightly to those generated in the laboratory demonstrating 

the need to explore research findings in consumer-relevant environments, if the 

intention is to extrapolate findings to appetite management products.  
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4! Paper 3: The effect of dietary restraint and disinhibition on 

sensory-enhanced satiety 

 

4.1! Abstract 

Recent research has demonstrated that by providing satiety-relevant sensory cues 

(viscosity and creamy flavours) in beverages satiety can be enhanced. However these 

effects interact with the energy content of the beverage such that insufficient energy 

delivery can lead to greater hunger. These studies offer valuable insight into potentially 

useful high-satiety product design concepts. However to date this research has not 

considered the role of dietary restraint status – an omission which limits the ability to 

generalise the findings to consumers, particularly given that highly-restrained 

consumers are likely to be a key market for such products. The present study explored 

sensory-nutrient interactions using a classic preload technique, and compared subjective 

and behavioural satiety measures between individuals varying in restraint status (pre-

measured using the TFEQ). The results suggested that highly restrained participants 

with a propensity for disinhibition compensated more accurately for the energy in non-

enhanced beverages (a finding contrary to those from previous research using non-

restrained individuals). Meanwhile differences between the enhanced and unenhanced 

preloads with restrained individuals with low disinhibition scores, and those scoring low 

in both, did not reach significance. There were no meaningful effects on subjective 

appetite ratings. Overall these findings suggest that sensory-enhanced satiety might not 

benefit highly restrained consumers with a propensity to disinhibit. Whilst the findings 

from both low disinhibited groups were unclear this was likely due to power issues.   
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4.2! Introduction 

Foods which have been optimised to generate satiety have been identified as potentially 

beneficial to consumers due to their utility in maintaining dietary goals and reducing 

hunger-related dysphoria (Hetherington et al., 2013). However, in order to understand 

whether these benefits can truly be realised, satiety studies which assess whether the 

apparent enhancement of satiety seen in laboratory based studies are also evident in 

consumer-relevant contexts, using representative study populations (Meiselman, 

1992a). Following from a previous study which assessed whether satiety enhancements 

persist over repeated exposures to the test products in home-consumer contexts (Hovard 

et al., 2015), the present study attempted to address enhanced satiety in a consumer-

relevant population.   

The enhanced satiety concept is rooted in the presently accepted theory that appetite 

control is a multi-faceted construct involving metabolic, sensory and cognitive signals 

(e.g. Berthoud, 2006, 2012; Blundell, 1991; Blundell et al., 2010; Blundell, Green, & 

Burley, 1994; Blundell, Lawton, Cotton, & Macdiarmid, 1996). According to this 

conceptualisation homeostatic control of energy requirements is modulated by sensory 

mechanisms, cognitive processes and representations of food stimuli (Berthoud, 2012). 

Indeed studies which introduce energy loads at various stages of the gastro-intestinal 

tract have found that satiety is greatest when a combination of cognitive, oral and 

gastric feedback is possible (Cecil et al., 1998; S J. French & Cecil, 2001). The 

influence of cognitive and sensory factors in satiety has been demonstrated by 

numerous studies which report greater satiety for foods presented as filling (Capaldi et 

al., 2006; Crum et al., 2011; McCrickerd et al., 2014b; Pliner & Zec, 2007; Wooley, 

1972), and lower satiety associated with liquid preloads (Almiron-Roig et al., 2013; 

DiMeglio & Mattes, 2000; Flood-Obbagy & Rolls, 2009; Hulshof et al., 1993; Mattes, 

1996; Mourao et al., 2007), particularly those that are low in viscosity  (Bertenshaw et 

al., 2013; Mattes & Rothacker, 2001; Zijlstra et al., 2010; Zijlstra, Mars, et al., 2009). 

Meanwhile, despite their liquid form, soups tend to deliver relatively high satiety 
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(Mattes, 2005), and beliefs about the physical state of ingested foods can influence the 

physiological and subjective reaction, where foods believed to become liquid in the 

stomach generated weaker satiety (Cassady et al., 2012). These pre-ingestive influences 

on satiety likely involve cephalic phase responses (CPRs) – learned physiological 

responses generated by food cues (such as the sight, smell, taste and even thought of 

food) which enhance the efficiency of digestive processes, and consequently, satiety 

responses (Power & Schulkin, 2008; Smeets et al., 2010; Woods, 1991). Liquids are 

associated with shorter oral-exposure time than solids, more viscous liquids, or liquids 

consumed more slowly (for example soups consumed with a spoon). Therefore the pre-

ingestive feedback that non-viscous liquids generates may be weaker, hence limiting 

their satiating capacity (de Graaf, 2012). Additionally given that the relationship 

between viscosity and energy delivery may be learned early in life through exposure to 

breast-milk (Picciano, 1998) viscosity may be an important learned cue for energy 

delivery. Together, these findings suggest that beliefs about foods and their sensory 

characteristics can influence the satiety that they deliver by modulating nutritionally-

relevant feedback.  

Accordingly, a recent series of studies examined the extent to which cognitive and 

sensory cues interact with nutritional factors interact to determine satiety. In the first of 

these studies participants consumed liquid preloads with and without additional covertly 

added 200kcal energy loads, and with and without satiety-relevant sensory cues 

(viscosity and creamy flavours: Yeomans & Chambers, 2011). The findings suggested 

that participants compensated more accurately for covert energy additions, and reported 

higher satiety, when the beverages were consumed in the enhanced-sensory context. 

However when the beverages were enhanced with viscosity and creamy flavours, but 

without the 200 kcal energy addition higher hunger ratings were reported. The authors 

explained this rebound effect as a consequence of mismatching between the satiety cues 

and energy delivery which caused the body to prepare for energy which did not arrive 

(see Chambers, McCrickerd, & Yeomans, 2015). These findings have been supported 

by studies which also found no additional effects of satiety-relevant labelling 
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(Chambers et al., 2013) and a greater effect of sensory cues than framing the preload as 

filling through pre-ingestive explicit information (McCrickerd et al., 2014b). 

Additionally a follow-up study found that when consumed over repeated exposures 

initial enhanced satiety effects diminished, with the energy content dictating satiety 

responses following the exposure period (Yeomans et al., 2014). These studies suggest 

that satiety-relevant characteristics interact with the nutritional content and learning 

processes to determine satiety responses.  

These findings have clear potential utility for consumers, and offer insight into the 

development of diet products. Yeomans has noted that a common strategy for 

manufacturing diet products is to aim to match the sensory profile of low-energy 

products to their high-energy equivalents in order to maintain product acceptance 

(Yeomans, 2015). This strategy is clearly counter-productive given the risks of rebound 

hunger and the necessity of sensory cues and energy delivery for generating satiety 

(Yeomans & Chambers, 2011). Thus this sensory-enhanced satiety literature has 

potentially important implications for consumers. A recent study aimed to explore the 

concept in a consumer-relevant manner by administering repeated exposures to the 

beverages in a home-consumer trial, with controlled satiety testing before and after the 

exposure period (Hovard et al., 2015). The results suggested that satiety was enhanced 

before and after repeated exposures by enhanced sensory characteristics, suggesting that 

the concept could have utility for real consumers outside of the laboratory. Additionally, 

focus groups suggested that diet-conscious, and time-limited, consumers would be 

particular beneficiaries of the enhanced satiety concept (Hovard et al., 2015). This 

finding is significant given that the enhanced satiety literature to date has screened for, 

and excluded, individuals reporting high dietary restraint, thus limiting the real-world 

application of the findings (Chambers et al., 2013; Hovard et al., 2015; McCrickerd et 

al., 2014b; Yeomans & Chambers, 2011; Yeomans et al., 2014). 

Dietary restraint refers to the attempts of individuals to restrict their intake (Herman & 

Mack, 1975; Herman & Polivy, 1983), and is quantified by responses to questionnaires 
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such as the three factor eating questionnaire restraint scale (TFEQ-R). The TFEQ also 

measures the extent to which individuals are likely to be subject to disinhibition of 

restraint (TFEQ-D: Stunkard & Messick, 1985). Some individuals (identified by high 

scores on TEFQ restraint and disinhibition scales) attempt to restrict their intake but 

overeat when that restraint is disinhibited by breaking a perceived diet boundary, 

through forced consumption of a preload (Westenhoefer et al., 1994), or other stimuli 

which reduce the capacity for restraint such as dysphoric moods (Haynes et al., 2003; 

Yeomans & Coughlan, 2009). Meanwhile other studies have found that those reporting 

high restraint and disinhibition (but not those reporting low tendency to disinhibit) 

overeat palatable foods relative to bland foods (Yeomans et al., 2004). These results 

suggest that individuals vary in the extent to which they attempt to restrict their intake 

and the extent to which they are successful in doing so, as well as the extent to which 

these individuals respond to external rather than internal appetite cues. However to the 

present author’s knowledge there are no studies which have examined the influence of 

restraint and disinhibition status on foods with cues for enhanced satiety. Given that 

those attempting to restrict their intake are the group most likely to benefit from the 

enhanced satiety concept it is important to investigate whether they respond differently 

to sensory-enhanced preloads (Hovard et al., 2015).  

The present study therefore aimed to further explore whether the enhanced satiety 

concept is relevant for consumers by investigating how individuals varying in restraint 

and disinhibition status respond to sensory-enhanced preloads. Given that previous 

studies have reliably demonstrated that individuals low in restraint and disinhibition 

tendencies compensate more accurately for energy added to beverages with enhanced 

sensory characteristics, and report greater satiety (Chambers et al., 2013; Hovard et al., 

2015; McCrickerd et al., 2014b; Yeomans & Chambers, 2011; Yeomans et al., 2014) 

we predicted that this group would respond accordingly in the present study. However, 

the evidence above suggests that forced preloads may induce disinhibition of restraint in 

highly restrained participants with a high tendency to disinhibit (Westenhoefer et al., 

1994). Given that the typical preload sensory enhancements (viscosity and creamy 
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flavours) are designed to represent high-calorie, indulgent products, it is plausible that 

they may induce disinhibition, thus reducing the satiating capacity of sensory-enhanced 

beverages in those reporting high but not low disinhibition tendencies. As such we 

anticipated that sensory-enhanced satiety effects may depend on dietary restraint and 

disinhibition status. This hypothesis was explored using a preload design varying 

energy content and sensory enhancements, and contrasting the responses of individuals 

high in restraint and disinhibition, high in restraint but low in disinhibition, and low in 

both.   

4.3! Method    

4.3.1! Design 

A mixed design tested the effect of preload energy content (within subjects; high energy 

and low energy), and sensory characteristics (within subjects; high sensory and low 

sensory, where high refers to enhanced sensory characteristics) and restraint and 

disinhibition status (between subjects; high restraint and high disinhibition, high 

restraint and low disinhibition, and low restraint and low disinhibition) on subjective 

and behavioural satiety responses. Expected satiation and satiety were also measured. 

The preload condition order was counterbalanced using a Williams Square design, 

within restraint status groups.     

4.3.2! Participants 

An a priori power analysis suggested an appropriate sample size of 28 participants ((β = 

.95, α = .05) in order to observe a medium sized effect of sensory enhancement on 

energy compensation as previously reported (f = .29 in Yeomans and Chambers, 2011). 

We were more conservative with our sample size estimate in order to account for 

interactions between sensory and energy conditions, and restraint status groups, and 

intended to recruit 20 participants for each restraint group. Participants were recruited 
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based on their responses to the TFEQ. Upper and lower tertiles of the restraint (R) and 

disinhibition (D) scales represented cut offs to form high restraint high disinhibition 

(HRHD; R ≥ 15, D ≥ 10), high restraint low disinhibition (HRLD; R ≥15, D ≤ 5) and 

low restraint low disinhibition (LRLD; R ≤ 7, D ≤ 5) groups. Pre-selection according to 

these cut-offs was employed to represent extreme values of restraint and disinhibition 

and thus a true representation of high and low restraint and disinhibition status. By 

excluding middling scores we reduced the possibility of quasi-arbitrary assignment to 

groups. Additionally as participants were contacted based on their previous responses 

they were unaware that the study concerned their dietary habits thus reducing the 

possibility of demand effects.  

Overall 49 participants were recruited, although the HR groups were not fully recruited, 

possibly because those concerned with their dietary behaviour are less willing to 

participate in food studies. This idea was supported by an exploratory analysis of the 

response frequency to the TFEQ at our laboratory. During this study a total of 684 

TFEQ respondents were identified as eligible for either the HRHD, HRLD or LRLD 

groups (out of a total of 3602 respondents). Of these eligible participants 24% were 

HRHD, 14% HRLD and 62% LRLD, frequencies found to be significantly different by 

a chi-square test (Χ2 (2) = 265.2, p <.001). Of those contacted 17 HRHD, 7 HRLD and 

25 LRLD participants were recruited. A further chi square test found no difference in 

the proportion of those recruited relative to those contacted from each group (p = .239). 

However this is most likely due to the completion of the intended LRLD sample, and 

thus the cessation of recruitment for this group (whereas if recruitment had continued 

more of these participants may have been recruited). Overall it is clear that those 

reporting high restraint are less likely to agree to participate in ingestive behaviour 

studies. Consequently these groups, in particular the HRLD group, were under-recruited 

relative to the aims of this study.       

Other than relevant restraint status scores, exclusion criteria for the present study were: 

smoking ≥ five cigarettes per week or using nicotine replacements; taking prescription 
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medicines other than the contraceptive pill; allergies or aversions to the test ingredients; 

pregnancy or lactating women; diabetes or diagnosed eating disorders, and self-reported 

body mass index (BMI) ≤18 or ≥25. 

4.3.3! Test foods 

4.3.3.1! Standardised Breakfast  

A fixed breakfast was served in order to standardise baseline appetite (Table 4.1). The 

breakfast consisted of 60g commercially available cereal (Crunchy Nut Cornflakes: 

Kellogg’s UK.), a 160g serving of semi-skimmed milk (Sainsbury’s Plc. UK), and a 

200g glass of smooth orange juice (Sainsbury’s Plc. UK). The breakfast was consumed 

in entirety in the laboratory waiting room. 

4.3.3.2! Beverage Preloads 

Four beverage preloads based on previous sensory-enhanced satiety studies (Yeomans 

& Chambers, 2011; Yeomans, Chambers & Ells, 2012; McCrickerd et al., 2012) were 

used as preloads (see Table 4.2). The beverages consisted of a base of Tropicana Mango 

Peach and Papaya Juice (PepsiCo, UK), Robinson’s peach squash (Britvic, UK), 

Normandy Natural Fromage Frais (Sainsbury’s Plc. UK) and water. Covert energy 

additions to the high energy (HE) beverages were made by adding maltodextrin 

(Cargill): a soluble carbohydrate. Sensory enhancements to the high-sensory (HS) 

versions were made by adding tara gum (Kaly’s Gastronomie, FR): a soluble thickening 

agent, milk caramel flavouring (Symrise GMbH), and vanilla extract (Nielsen-Massey, 

NL) to enhance thickness and creaminess. Aspartame (Ajinomoto Sweeteners, Europe) 

was added to the LE beverages to match the subtly sweet taste of maltodextrin. The 

beverages were colour-matched by adding red and yellow food colourings (Silverspoon, 

UK). The preloads were served in 320g portions in a transparent glass, and were 

consumed in entirety.  
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4.3.3.3! Test lunch 

An ad libitum test lunch of Conchiglie pasta shells (Sainsbury’s Plc. UK) with tomato 

and basil sauce (Sainsbury’s Plc. UK) was provided (Table 4.1). The pasta was cooked 

for 12 minutes in boiling water, washed and left to stand before portions of 250g sauce 

and 250g cooked pasta were heated for three minutes in a microwave prior to serving. 

The pasta was presented in white ceramic bowls which were refilled every time 

participants consumed 350g such that the bowl could never be consumed entirely. The 

weight of food consumed was calculated by the Sussex Ingestion Pattern Monitor 

(SIPM) software every two seconds using a concealed balance (Yeomans, 2000). 
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Table 4.1 macronutrient breakdown of a standardised breakfast consumed at the beginning of each test 
day, and the test lunch consumed 30 minutes following the preload. The test lunch was consumed ad 
libitum and therefore the below figures relate are per 100g. 

 Amount (g) Kcal Carbohydrate Protein Fat 

Standardised breakfast 

Crunchy Nut 
Cornflakes 

60 241 49 4 3 

Semi-
Skimmed Milk 

160 77 7 6 3 

Orange Juice 200 84 17 1.2 1 

Total  402 73 11.2 7 

Test lunch  per 100g     

Pasta (cooked 
weight) 

 160 34 4.4 0.6 

Tomato Sauce  58 7 1.6 2.5 

Total  per 100g 109 21 3 1.5 
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Table 4.2 Formulations and macronutrient breakdown (grams per beverage) for four beverage preloads 
varying in energy content (achieved through maltodextrin additions) and sensory characteristics (tara 
gum, vanilla essence, milk caramel). H refers to high, L low, E energy, S sensory characteristics. 

  

 LELS LEHS HELS HEHS 

Ingredients     

Mango Peach and Papaya Juice 100 100 100 100 

Peach Squash 35 35 35 35 

Fromage Frais 55 55 30 30 

Tap Water 130 128 100 98 

Maltodextrin 0 0 55 55 

Tara Gum 0.2 1.4 0 1.3 

Vanilla Essence 0 1 0 1 

Milk Caramel Flavouring 0 0.8 0 0.8 

Aspartame 0.03 0.03 0 0 

Macronutrients     

Carbohydrates 12.6 12.6 63.8 63.8 

Protein 5.0 5.0 3.0 3.0 

Fat 0.1 0.1 0 0 

Energy Content (Kcal) 75.4 75.4 271.9 271.9 
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4.3.4! Visual analogue scale ratings 

Visual analogue scales (VAS) were used to collect subjective appetite ratings, sensory 

ratings relating to the preloads, and expected satiation and satiety ratings. The VAS 

were presented using the Sussex Ingestion Pattern Monitor (SIPM) software (Yeomans, 

2000) and appeared on a computer screen as a continuous bar upon which participants 

were required to drag a pointer to indicate their rating. This generated a score between 0 

-100. Appetite and dummy mood ratings were collected pre and post-preload, pre-lunch, 

post-taste of the ad libitum test meal, and post-test meal. ). The rating questions were 

presented in the format “how <rating> (hungry, full, thirsty, anxious, calm, clear-

headed, energetic, happy, headachey, nauseous, and tired) do you feel?” anchored by 

“not at all <rating>” and “extremely <rating>”. Additionally prospective consumption 

was collected in the format “how much do you think you could eat right now?”, 

anchored by “nothing at all” and “a great deal”, and desire to eat in the format “how 

much of a desire to eat do you feel right now”, anchored by “no desire to eat at all” and 

“extremely strong desire to eat”. Following preload tasting sensory ratings (thick, 

creamy, pleasant, sweet, and familiar) were collected in the format “how <rating> is the 

beverage?” anchored by “not at all <rating>” and “extremely <rating>”. Expected 

satiation and satiety ratings were measured in the format “how hungry/ full would you 

expect to be immediately/ one hour later after consuming a glass of the drink the size of 

the one in front of you?”, anchored by “not at all hungry/ full” and extremely 

hungry/full”. The rating order in each section was randomised.    

4.3.5! Procedure 

The procedure for each test session is illustrated in Figure 4.1. Participants were invited 

by email, through a university online recruitment system and through distribution of 

flyers on the university campus to complete an on-line version of the TFEQ. 

Respondents also completed demographic questions and questions regarding food 

allergies and aversions. Those who were eligible based on negative matches to the 
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exclusion criteria and falling into one of the HRHD, HRLD or LRLD restraint status 

groups were then contacted by email and invited to take part in a food and mood 

experiment. Participants attended the laboratory for testing on four non-consecutive 

days, and were instructed to consume nothing but water from 23.00hrs the evening 

before each session. Participants attended the laboratory at an arranged time between 

08.30hrs and 10.30hrs to consume the standard breakfast in full, before a three-hour 

interval in which they refrained from eating, drinking (excluding water), or vigorous 

exercise. They then returned to the laboratory where the SIPM software was used to 

guide participants through the remaining study procedure. They first completed baseline 

(pre-preload) mood and appetite ratings. One of the beverage preloads was then 

presented and participants were instructed to taste and rate the beverage on sensory 

dimensions, and expected satiation and satiety, before consuming the beverage in full 

within ten minutes. Further mood and appetite ratings were then completed, before 

participants waited in the laboratory waiting room for 30 minutes. Participants returned 

to the cubicle and completed mood and appetite ratings before a sample of pasta and 

tomato sauce (20g) was tasted and appetite was rated again. Additionally sensory 

ratings were presented to check that test meal pleasantness was equal across preload 

conditions. A 500g bowl of pasta and sauce was then presented and participants were 

informed that they could consume it ad libitum and that the software would prompt 

them to obtain a refill before the bowl was finished (and that this would repeat 

indefinitely until they indicated that they were comfortably full). The pasta was placed 

on top of a balance concealed by a place mat which measured the weight of the pasta 

every two seconds. Following consumption of 350g the SIPM software instructed 

participants to stop eating and call the experimenter for a refill. Following participants’ 

indication that they were comfortably full final mood and appetite ratings were 

administered. Participants completed no more than two sessions in one week, with only 

the beverage preload differing on each occasion. Participants were awarded £40 or 

course credit as compensation for their time. 
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4.3.6! Analysis 

The data were analysed using analysis of variance (ANOVA). Participants’ intake of the 

ad libitum test meal was analysed using a three-way mixed ANOVA comparing main 

effects and interactions between energy content, sensory context and restraint status. A 

key question was the extent to which the sensory enhancements would improve 

compensation for the covertly added energy and whether this differed between restraint 

status groups. An energy compensation measure was calculated. This measure 

represents the reduction in energy intake of the test meal following HE preloads, 

relative to the LE control preloads, represented as a percentage of the original difference 

in energy between the preloads. In other words it is the degree to which participants 

respond to the energy additions by reducing their intake later. A compensation score of 

100% would suggest a reduction in subsequent intake exactly equivalent to the extra 

energy consumed in the preload. These compensation scores were compared between 

the sensory variations of the HE beverage, and the extent to which this depended on 

restraint status was analysed using a two-way mixed ANOVA (sensory context and 

restraint status). Interpretation of non-significant effects for this analysis was 
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Figure 4.1 test day procedure, repeated for each preload on non-consecutive days in a counterbalanced order. 
Participants first completed the TFEQ before the test session. At the test session participants consumed a 
standardised breakfast followed by a 3-hour interval. Appetite ratings were completed following the interval and 
throughout the session. A preload was consumed and sensory, appetite expectation ratings and actual appetite 
ratings were completed before a 30-minute interval. A test meal was then administered with further appetite and 
sensory ratings.   
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supplemented by Bayes factors (B). This statistic represents the probability of the 

experimental and null hypotheses given the data, based on prior estimates of effects that 

would support the theory at test (Dienes, 2014). A B of ≤ 0.3 is generally considered as 

support for the null hypothesis, whilst a B of ≥ 3 is considered as support for the tested 

theory, and B between these scores suggests that the data do not sensitively distinguish 

between the null and experimental hypotheses (Dienes, 2014). This is in contrast to 

common interpretations of non-significance as a lack of meaningful effect (where 

contrarily it may suggest insensitivity rather than support for the null). In order to 

estimate meaningful effects the difference between HS and LS compensation scores 

found by Yeomans and Chambers (2011; 69%) was considered a plausible interesting 

effect. Thus the B reported here represents the relative support for a null hypothesis and 

the hypothesis that compensation differences between sensory context groups is 

equivalent to Yeomans and Chambers’ (2011) findings.  

Self-reported appetite was recorded throughout the test session using ratings of hunger, 

fullness, prospective consumption, desire to eat, and thirst. A composite satiety score 

was generated to summarise these ratings. This measure was the average of each 

participant’s appetite ratings (excluding thirst, and with hunger, prospective 

consumption and desire to eat reversed to interpret as satiety ratings). These ratings 

were analysed using four-way mixed ANOVAs comparing rating time, beverage 

sensory context and energy content and restraint status group. Where there were 

interactions only key points (baseline, post-preload and pre-lunch) were assessed in 

more detail by isolating the relevant effects with simpler ANOVAs. Expected satiation 

and satiety, and sensory ratings were analysed using two-way ANOVAs (energy and 

sensory context). All reported SEMs are adjusted for within-subjects variation.       
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4.4! Results 

Data from four participants with energy compensation scores two standard deviations 

above or below the mean were excluded from all analyses. Reported SEM is adjusted 

for within-subjects variation. 

4.4.1! Intake 

Overall intake was significantly lower following HE preloads, F (1, 42) = 11.43, p = 

.002, ηp
2 = .21: (Table 4.3). However, there were no overall significant effects of 

sensory context, F (1, 42) = 1.04, p = .313, ηp
2 = .02, or participants’ restraint status F 

(2, 42) = 0.49, p = .619, ηp
2 = .02. There was however a significant three-way 

interaction between energy, sensory context and restraint, F (2, 42) = 3.68, p = .034, ηp
2 

= .15. Closer inspection found that the HRHD group reduced their intake following HE 

preloads (p = .013), although this depended on the sensory context (p = .042). This 

group consumed least following the HELS and most following the LELS. In order to 

assess whether this constituted a rebound effect (which would be supported by greater 

intake following the LEHS than the LELS) the LE preloads were compared, although 

the differences were not found to be significant (p =.409). Additionally, the LRLD 

group responded to the energy in the beverages by consuming significantly less 

following HE preloads (p = .018), but this energy effect did not depend on sensory 

context (p = .749). 
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Table 4.3 – participants consumed less of a test meal following high-energy than low-energy preloads 
(mean kcal intake ± SEM) and this interacted with sensory characteristics and restraint status. 
Participants reporting high dietary restraint and disinhibition consumed less following the high-energy 
preload without sensory enhancements than the other preloads. Participants low in restraint and 
disinhibition consumed less following high-energy preloads but this did not depend on sensory 
characteristics. 

  LELS HELS LEHS HEHS 

HRHD 912 ± 58.3 608.7 ± 46.5 841.8 ± 40.5 819.8 ± 46.8 

HRLD 798.5 ± 36.6 788.8 ± 57 934.7 ± 107 729 ± 66.5 

LRLD 779.4 ± 34.2  685.9 ± 33.6 794.6 ± 33.1  676.9 ± 44.9 

 

4.4.2! Energy Compensation 

One key interpretation of the intake data is the degree to which participants respond to 

the covert energy additions by reducing their intake of a subsequent meal. The intake 

analysis above suggested differences in the way participants of different restraint 

statuses responded to energy consumed in different sensory contexts. This was explored 

further by assessing the percentage of additional energy consumed in the HE preloads 

that was compensated for by reducing subsequent intake. Figure 4.2 suggests that the 

HRHD group compensated more accurately for the energy added without enhanced 

sensory characteristics, whilst the HRLD and LRLD groups responded more accurately 

to the energy consumed in the HS contexts. This was partially supported statistically. 

There was no significant main effect of sensory context on compensation for the covert 

energy manipulation, F (1, 42) = 0.08, p = .783, ηp
2 = .002, and no significant main 

effect of restraint status F (2, 42) = 0.36, p = .702, ηp
2 = .02. However there was a 

significant interaction, F (2, 42) = 3.68, p = .034, ηp
2 = .15. On inspection of the 

differences in compensation within restraint groups the only significant difference was 
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in the HRHD group where the LS version was compensated for significantly better than 

the HS version, t (14) = 2.24, p = .042. This is the opposite effect to those found 

previously with unrestrained participants, who compensated more accurately for energy 

consumed in HS versions (Chambers et al., 2013; McCrickerd et al., 2014b; Yeomans 

& Chambers, 2011; Yeomans et al., 2014). Presently, the HRLD and LRLD groups both 

compensated more accurately for the HEHS preload, but these effects did not reach 

significance (both p ≥ .343). Bayes factors (B) demonstrated that the data did not 

sufficiently support the null hypothesis (B = 1.36 and 0.8 for the HRLD and LRLD 

groups respectively), suggesting that the data should be considered insensitive rather 

than support for no difference between the preload conditions for compensation scores 

(see Dienes, 2014). Given that potential rebound effects from the LEHS beverage could 

exaggerate compensation scores the HEHS scores were also compared to the LELS 

scores. In the HRHD group compensation was 46.8% (± 43.2), suggesting that the poor 

compensation for the HEHS beverage illustrated in figure 4.2 was partly driven by 

higher intake of the LEHS (a putative rebound effect, although as described above, the 

difference between the LE preloads in this group did not reach significance). Meanwhile 

compensation in HRLD group was 35.3% (± 26.5) and in the LRLD group 52.0% (± 

35.8), weaker than using the traditional control groups, suggesting again that the 

compensation scores are exaggerated by greater intake following LEHS than LELS 

preloads (although again these differences in intake did not reach significance, both p ≥ 

.346).  

There were no significant effects of sensory context, energy content or restraint status 

group (all p ≥ .150) on test-meal palatability, suggesting that this did not drive 

differences in intake or compensation.  
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Figure 4.2 There was an interaction between preload and restraint status on compensation for covertly 
added energy in the HELS and HEHS preloads (% of covert energy addition accounted for by reduction 
in test meal intake). HRHD participants compensated significantly more accurately for HELS preload 
than HEHS). Bayes factors show insensitivity to observe greater compensation for HEHS preload in 
HRLD and LRLD groups. Error bars are ± SEM. 

4.4.3! Appetite Ratings 

Analyses of all appetite ratings revealed significant differences over the course of the 

test session (all p ≤.001, ηp
2 ≥.32), with satiety increasing following the preload, 

decreasing over the course of the inter-meal interval, and peaking following ad libitum 

intake of the test meal (see Figure 4.3). There were no significant differences between 

energy, sensory or restraint status conditions at baseline for any rating (all p ≥.119), 

although participants were borderline-significantly hungrier in the HS conditions (p 

=.062).  

Figure 4.3 suggests that the HRHD group reported greater satiety following the HELS 

preload. However, there were no overall differences between energy, sensory or 

restraint status for the composite satiety measure (all p ≥.106). There was a borderline 

three-way interaction between restraint status, sensory condition and rating time, F (6, 

126) = 2.15, p = .052, ηp
2 = .09. Closer analysis of key time points (after the preload and 
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30 minutes later, before lunch) found no significant effect of sensory condition (both p 

≥.405), but there was a borderline significant effect of restraint status after consuming 

the preload (p =.059), with the LRLD group reporting higher satiety than the HRLD (p 

=.032) and trending towards higher satiety than the HRHD group (p =.110). 

The difference in hunger ratings over time depended on the preload energy content, F 

(3, 126) = 2.80, p = .043, ηp
2 = .06. There was also an interaction between the sensory 

condition, restraint status and rating time F (6, 126) = 2.76, p = .015, ηp
2 = .12. Closer 

inspection of the key time points suggested neither the sensory, energy nor restraint 

groups differed following the beverage, or 30 minutes later (all p ≥.181). 

Similarly fullness ratings over time depended on preload energy content, F (3, 126) = 

4.57, p = .004, ηp
2 = .10. Unexpectedly there was a trend for higher fullness in the LE 

conditions after the preload (p = .086), but the mean difference was negligible (M= 3.3, 

for example Sadoul, Schuring, Mela, & Peters, 2014, suggest a difference of at least 15 

VAS points to correspond to differences in intake), and there was no difference 30 mins 

later (p = .161).  

Similarly the time effect for desire to eat ratings depended on preload energy content, F 

(3, 126) = 5.09, p = .002, ηp
2 = .11. There were no differences following the preload (p 

= .392). There was a trend for higher desire to eat following LE preloads 30 minutes 

later (p = .062), but again the mean difference was negligible (M = 3.8). 

Prospective consumption depended on restraint status, F (2, 42) = 2.80, p = .072, ηp
2 = 

.12, with the LRLD group reporting lower ratings than the HRLD group (p = .044) and 

trending towards lower ratings than the HRHD group (p = .104).  

Finally thirst ratings were also compared demonstrating that they changed over the test 

session, F (3, 126) = 23.47, p < .001, ηp
2 = .36. There was also an overall effect of 

sensory context (p = .031) which depended on restraint status, F (2, 42) = 3.58, p = 
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.037, ηp
2 = .15. The HRLD group reported higher thirst in the LS conditions (M = 45.2, 

SEM = 5.24) than the HS conditions (M = 33.92, SEM = 6.4). Mean differences in the 

other restraint status groups were negligible (M = 3.2, and -1.7 for differences in thirst 

between the LS and HS beverages by the HRHD and LRLD groups respectively.  

4.4.4! Expected satiation and satiety 

Expected satiation (expected fullness and hunger immediately following the beverage) 

and satiety (expected fullness and hunger one hour after consuming the beverage) were 

compared across the preloads by restraint status groups (see Table 4.4). There were no 

main effects of energy content, sensory context or restraint status on immediate fullness 

(all p ≥.423), but there was an interaction between energy content and sensory context, 

F (1, 42) = 5.13, p = .029, ηp
2 = .11. Greater immediate fullness was expected in the 

HEHS than HELS condition, but also, unexpectedly, in the LELS than the LEHS 

condition.  

There were also no main effects on expected later fullness (all p ≥.140) other than a 

borderline effect of sensory context, F (1, 42) = 3.69, p = .062, ηp
2 = .08. However, 

unexpectedly, the LS conditions were expected to deliver greater fullness. This was 

likely driven by a borderline-significant interaction with restraint status F (2, 42) = 2.91, 

p = .065, ηp
2 = .12, with the HRLD group reporting lower expected later fullness for the 

HS preloads, with all other ratings across groups similar.  

There were no effects of energy content, sensory context or restraint status on expected 

immediate or later hunger (all p ≥ .128). There were no interactions other than between 

energy content and restraint status for expected later hunger, F (1, 42) = 3.77, p = .031, 

ηp
2 = .15. The HRHD group expected greater hunger following HE preloads, although 

the HRLD group expected greater hunger following LE preloads.  
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4.4.5! Sensory analysis 

Key sensory characteristics of thickness, creaminess and pleasantness were compared, 

demonstrating that the manipulations were largely rated as designed (see Table 4.4). As 

expected the HS context generated greater creaminess ratings. This was backed up by 

an effect of sensory context, F (1, 44) = 10.75, p = .002, ηp
2 = .20, but not energy 

content F (1, 44) = 0.18, p = .677, ηp
2 = .004, and no interaction F (1, 44) = 0.91, p = 

.347, ηp
2 = .02. Additionally, the HS context preloads were reported as being thicker 

than the LS context preloads, F (1, 44) = 43.55, p < .001, ηp
2 = .50. However 

unexpectedly there was also a borderline effect of energy content F (1, 44) = 3.90, p = 

.055, ηp
2 = .08, and an interaction, F (1, 44) = 17.65, p < .001, ηp

2 = .29. Closer analysis 

found that the HELS was considered thicker than the LELS, t (44) = 4.19, p <.001, 

although, as designed, the HS beverages did not differ, t (44) = 1.68, p =.100. There 

were no differences between energy and sensory conditions for pleasantness, and no 

interaction (all p ≥ .088). Unexpectedly the beverages differed in rated sweetness based 

on their energy content, F (1, 44) = 10.34, p = .002, ηp
2 = .19, but not their sensory 

context, F (2, 44) = 1.46, p = .234, ηp
2 = .03. The HE beverages were rated as sweeter 

than the LE beverages although the mean difference was small (M = 6.2). The 

beverages did not differ by sensory context or energy content on ratings of familiarity 

(both p ≥ .201). There were no effects of restraint status (all p ≥ .261) on any rating 

apart from pleasantness, F (2, 42) = 3.65, p = .034, ηp
2 = .15. Here the HRHD 

participants rated all of the beverages as less pleasant than the HRLD participants (p 

=.015), and borderline significantly less pleasant than the LRLD participants (p =.063)
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Figure 4.3 Mean VAS composite satiety score, hunger and fullness ratings across the test session by restraint status grouping. Solid lines represent HS beverages, dashed lines 
are LS beverages, markers represent HE beverages. Error bars are ± SEM. Appetite tended to decrease following intake of the preload and test lunch, recovering over time 
after both. The composite satiety measure showed no f=differences between beverage energy content or sensory characteristic and no differences between restraint groups. 
Hunger tended to be higher following low-energy preloads than high-energy. Fullness was higher following low-energy preloads but the mean differences were negligible. No 
other differences were significant.  
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Table 4.4 Mean (± SEM) expected satiation (full and hungry immediately) and satiety (full and hungry one hour later) and sensory ratings of the beverages by restraint status 
groups. There were no main effects between energy content, sensory characteristics or restraint group on appetite expecctations. The HS preloads were rated as thicker and 
cremier than LS preloads. Unexpectedly the HELS beverage was rated as thicker than the LELS. There were no differences between the preloads on pleasantenss or 
familiarity ratings.Unexpectedly the HE preloads were rated as sweeter than LE preloads, but the differences were small.  

    Full Immediately Full Later Hungry Immediately Hungry Later Thick Creamy Pleasant Sweet Familiar 

HRHD 

LELS 67.5±2.5 69.7±4.9 67.5±3.7 63.5±2.7 41.5±3.1 59.1±2.5 59.5±3.3 75.9±1.6 70.1±4.2 

HELS 46.2±3.2 46.6±5.9 45.8±5.1 44±4.4 53.5±3.4 66.1±2.7 53.7±2.5 81.3±2.7 83.1±2.6 

LEHS 40.7±3.6 40.6±4.8 35.8±3.1 42±4.5 70.2±2.9 72.4±3 50.5±2.9 67.3±4.4 70.1±4.5 

HEHS 61.1±4.7 68.9±5.7 52.8±3.8 64.3±4.9 62.7±3.7 64.9±4.2 56±4.7 80.4±2.4 73.9±4.4 

HRLD 

LELS 52.8±6.9 67.7±11.5 69.8±10.3 55.8±6 62.3±2.4 58.5±7.1 76.8±3.5 67.8±2.6 76.5±10.3 

HELS 39.3±5.6 43.8±11.4 17.3±9.8 21.5±5.4 73±3.7 52.8±8.8 85±3.7 71.8±1.8 48.7±7.6 

LEHS 44.8±6.5 47.2±4 39.3±10.3 27.5±3.5 73.2±3.7 64.8±7.6 76.2±4.1 67±2.3 63.5±8.3 

HEHS 78.5±5.2 54.5±4.4 69±7.3 64.7±4.6 68±3.2 62.8±3.3 81.7±1.5 71.2±1.3 67.5±5 

LRLD 

LELS 72.6±2.3 72.8±3.4 72.9±4.6 64.6±3.2 45.7±2.9 64.1±1.6 63.4±2.2 71.8±1.7 74.3±3.1 

HELS 42.9±2.6 40.9±3.5 47±2.9 40.3±3.5 58.3±2.3 63.6±2.1 72.6±1.8 78.9±1.8 69.5±3.3 

LEHS 34.2±3.5 29.9±3.4 32.3±4.2 26.6±3.9 67.8±2.2 71.7±2.3 67.3±1.9 73.6±2.1 69.3±3.7 

HEHS 53.4±3.9 53±4.1 54.4±4.3 55.5±3.2 65.4±2.2 71.8±1.8 67.6±1.8 76.1±1.7 63.1±4.3 
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4.5! Discussion 

The present study aimed to assess whether sensory-enhanced satiety can be beneficial to 

real consumers by measuring its efficacy in consumers varying in dietary restraint and 

disinhibition. A previous study suggested that those concerned with their dietary 

behaviour would be more likely to be interested in the enhanced satiety concept 

(Hovard et al., 2015), although all prior studies of the concept have actively excluded 

such individuals in order to guard against floor effects (Chambers et al., 2013; Hovard 

et al., 2015; McCrickerd et al., 2014b; Yeomans & Chambers, 2011; Yeomans et al., 

2014). Thus it was necessary to explore whether enhanced satiety effects generalise to 

these individuals. We hypothesised that the LRLD group would, as previously 

documented (Chambers et al., 2013; Hovard et al., 2015; McCrickerd et al., 2014b; 

Yeomans & Chambers, 2011; Yeomans et al., 2014), experience greater satiety and 

compensate more accurately for energy loads consumed in an enhanced sensory 

context. However restraint theory suggests that a challenge to restrained individuals’ 

ability to restrict their intake may result in overeating if those individuals also have a 

tendency to disinhibit (Haynes et al., 2003; Westenhoefer et al., 1994; Yeomans & 

Coughlan, 2009). Therefore, given that the enhanced satiety manipulation presents 

preloads with sensory characteristics that allude to high caloric content it was 

hypothesised that such individuals might overeat following this preload, thus reducing 

the effect of enhanced satiety. The present findings partially support these hypotheses as 

the HRHD group compensated more accurately for the energy consumed in the non-

enhanced sensory context. The intake data suggest that this effect was driven by 

decreased intake of the HEHS beverage and increased intake of the LELS beverage. If 

the enhanced sensory characteristics acted as a disinhibiting stimulus this would be the 

case for both HS preloads, however whilst the results suggest elevated levels of intake 

of the HEHS relative to the other restraint status groups, this group did not consume 

more of the LEHS beverage. Thus whilst HRHD participants behaved contrarily to 

effects found previously, it is unclear as to whether this was due to a disinhibition effect 

caused by the preload characteristics. Meanwhile the HRLD and LRLD groups 
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compensated more accurately for energy consumed with enhanced-sensory cues 

although these effects did not reach statistical significance. Bayes factors suggested that 

the data did not distinguish between support for null effects and compensation 

differences. Thus this should be considered as insensitive data rather than evidence for 

minimal compensation differences (e.g. Dienes, 2014).  

There were few meaningful effects in the subjective appetite data, although immediately 

following the preload the LRLD reported higher satiety than the other groups. This is 

consistent with early conceptions of restraint theory which suggested that low restrained 

participants were more adept at responding to internal satiety cues (Heatherton et al., 

1989). However later ideas about restraint theory suggested that this notion is limited by 

early conflation of restraint and disinhibition concepts (e.g. Heatherton, Herman, 

Polivy, King, & McGree, 1988; Westenhoefer et al., 1994; Westenhoefer, 1991). A later 

study which separated restraint and disinhibition concepts found greater responsiveness 

palatability (i.e. an external food cue), by those high in restraint and disinhibition 

(Yeomans et al., 2004). Similarly, the present data suggest that low scores in both 

dimensions are related to higher sensitivity to fullness sensations following intake of a 

preload, indicated by greater VAS satiety ratings.  

The clarity of the present results is limited by power issues. Whilst there was sufficient 

power to observe overall effects, difficulty with recruiting the high restrained 

participants lead to low numbers in these groups (particularly in the HRLD group). This 

is a clear limitation of the present study and may have influenced some effects. For 

example, there was a large increase in compensation accuracy in the HRLD group for 

the HS preloads, as predicted. However, the compensation effect did not reach 

significance, possibly as a result of insufficient power. This is supported by closer 

analysis using a Bayes factor. This statistic quantifies the level of support for the 

experimental hypothesis and the null hypothesis given the data (Dienes, 2014). Based 

on suggested interpretation guidelines (Dienes, 2014) the present analysis suggested 

insufficient evidence to distinguish support for the null hypothesis or the experimental 
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hypothesis. Therefore rather than evidence of limited differences in compensation 

between sensory contexts, these findings should be considered preliminary explorations 

of a potentially interesting effect: that high restraint and disinhibition counters enhanced 

satiety, whilst high and low restraint groups with low disinhibition tendencies display 

enhanced satiety for enhanced sensory context beverage preloads. In other words 

disinhibition status may be an important factor in determining the efficacy of the 

enhanced satiety concept for restrained participants. This needs to be explored with 

greater numbers of participants for substantiation.  

Relatedly, exploratory analysis of responses to the study recruitment process 

demonstrated a significantly higher frequency of TFEQ responses by LRLD participants 

than either HR group. This may reflect a lower willingness to participate in ingestive 

behaviour studies by highly restrained participants. This hypothesis is plausible given 

that such participants are characterised by concern for dietary issues (Herman & Polivy, 

1983), and therefore may not wish to engage in studies which could involve pressure to 

consume high calorie foods which would break a diet rule. This hypothesis would have 

implications for recruitment to ingestive behaviour studies, whereby if not controlled, 

study samples are likely to be biased towards recruiting low restrained participants. 

A further limitation of the present study is that although the HS beverages were 

matched for key sensory attributes (thickness and creaminess) as intended, the HE 

version of the LS beverages was considered thicker than the LE version. This is likely 

due to the addition of maltodextrin to generate the covert energy addition. The preload 

formulations attempted to counter this by introducing a small addition of tara gum to the 

LE version to match the thickness. However this appears to have been unsuccessful in 

the present study. One implication of this non-match for perceived viscosity is that it 

may have generated a sensory cue for enhanced satiety in the HELS preload, relative to 

the LE version. However if this was the case it would be predicted that energy 

compensation would be enhanced for the HELS beverage. This was the case for the 

HRHD participants, but compensation for this preload was poor in the other groups. 
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This finding along with that the HS preloads were rated as significantly thicker and 

creamier than both LS preloads make it unlikely that this unexpected greater thickness 

in the HELS preload influenced satiety effects.  

More generally this study also demonstrated that energy compensation scores can be 

exaggerated by increased intake of low energy preloads with enhanced sensory 

characteristics. This has previously been interpreted as a rebound effect (Yeomans & 

Chambers, 2011). In the present study whilst all groups consumed more following the 

low energy beverages in the enhanced sensory context, intake did not differ 

significantly, and so a true rebound effect was not supported. Nonetheless this increased 

intake of the LEHS preloads exaggerated compensation scores for the HEHS preloads 

(a difference of nearly 70% in the HRLD group). Therefore it is important to assess the 

most appropriate control groups for compensation analyses. In many studies 

compensation has been calculated within sensory condition groups (Chambers et al., 

2013; McCrickerd et al., 2014b; Yeomans & Chambers, 2011; Yeomans et al., 2014) 

however this makes it unclear whether compensation effects are driven by reduced 

intake of HE preloads, or increased intake of LE preloads consumed in an enhanced 

sensory context.   

The present study has implications for the utility of sensory enhanced satiety to 

consumers. Those high in restraint and disinhibition appear to compensate more 

accurately for covert energy loads designed to appear as low calorie than high calorie, 

which could be interpreted as a disinhibition effect. Meanwhile, although unclear in the 

present study, previous findings suggest that participants reporting low restraint and 

disinhibition produce enhanced compensatory responses for beverages designed to 

appear as highly-caloric (Chambers et al., 2013; Hovard et al., 2015; McCrickerd et al., 

2014b; Yeomans & Chambers, 2011; Yeomans et al., 2014). Therefore whilst previous 

studies have suggested that those concerned with their dietary behaviour would be more 

likely to benefit from the enhanced satiety concept (Hovard et al., 2015) the present 

study suggests that enhanced sensory preloads may generate undesired, poor 
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compensatory responses in those individuals. The focus group from the previous study 

also suggested that consumers with time pressures may be interested in the enhanced 

satiety concept. On the basis of the present results these consumers may be a more 

viable target for enhanced satiety. Future studies need to substantiate whether enhanced 

satiety is relevant when preloads are consumed in situations characterising time-limited 

consumers. For example, high eating rate (de Graaf, 2011) and distraction (Brunstrom 

& Mitchell, 2006; Higgs & Woodward, 2009; Oldham-Cooper et al., 2011; Robinson et 

al., 2013) are both factors which may limit satiety, and are likely to be features of time-

limited consumers’ eating contexts. Whether sensory-enhanced satiety can counter these 

satiety-limiting effects is currently unclear.     

In conclusion this study provides preliminary evidence that differences in restraint and 

disinhibition status reflect differences in response to the enhanced satiety concept. Most 

clearly participants who report high levels of restraint and disinhibition compensate 

poorly for covert energy consumed with enhanced sensory characteristics. A tentative 

explanation for this is that as the enhanced sensory beverages are designed to appear as 

high-calorie they may produce a disinhibition effect in participants with a tendency 

towards disinhibition. Whilst the highly restrained and non-restrained participants 

reporting low disinhibition responded by compensating more accurately for enhanced 

sensory beverages these findings did not reach significance. This was probably due to 

power issues, and analysis using Bayes factor suggested that these findings did not 

support a null effect either. Therefore this preliminary finding needs further exploration. 

Importantly these findings suggest that whilst participants who are concerned with their 

dietary behaviour are more likely to be interested in enhanced satiety products they may 

produce unwanted poor compensation effects. Therefore it may be more fruitful to 

consider the enhanced satiety concept as a means to tackling unwanted hunger for the 

time-pressured consumer, not relying on diet concerned participants per se. the effects 

of sensory-enhanced satiety in such consumers is currently unclear. A final exploratory 

finding from this study is that highly restrained participants may be underrepresented in 
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ingestive behaviour study recruitment drives. Therefore future studies should endeavour 

to control this variable to ensure unbiased samples. 
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5.1! Abstract 

5.1.1! Background 

Recent evidence suggests that products believed to be healthy may be over consumed 

relative to indulgent or highly caloric products. The extent to which these effects relate 

to expectations from labelling, oral experience, or assimilation of expectations is 

unclear. Over two experiments we tested the hypotheses that healthy and indulgent 

information could be assimilated by oral experience of beverages and influence sensory 

evaluation, expected satiety, satiation and subsequent appetite. Additionally we 

explored how expectation-experience congruency influenced these factors.  

5.1.2! Results 

Results supported some assimilation of healthiness and indulgent ratings – study one 

showed that indulgent ratings enhanced by the indulgent label persisted post-tasting, 

and this resulted in increased fullness ratings. In study two congruency of healthy labels 

and oral experience promoted enhanced healthiness ratings. These healthiness and 

indulgent beliefs did not influence sensory analysis or intake – these were dictated by 

the products themselves. Healthy labels, but not experience, were associated with 

decreased expected satiety.  

5.1.3! Conclusions 

Overall labels generated expectations, and some assimilation where there were 

congruencies between expectation and experience, but oral experience tended to 

override initial expectations to determine ultimate sensory evaluations and intake. 

Familiarity with the sensory properties of the test beverages may have resulted in the 

use of prior knowledge, rather than the label information, to guide evaluations and 

behaviour. 



140 

 

 

5.2! Background 

Amid concerns regarding obesity rates and the related disease risks (Mozaffarian et al., 

2015) attention has turned to healthfulness. Consequently a common marketing strategy 

is to highlight products’ health-relevant properties. However it is unclear whether 

consumers benefit from these marketing methods. Cognitive and sensory cues influence 

various dimensions of eating behaviour from initial food choice decisions (Grabenhorst 

et al., 2013) to sensory evaluation (Shankar, Levitan, Prescott, & Spence, 2009; 

Yeomans et al., 2008), intake decisions (Fay et al., 2011; McCrickerd et al., 2014a) and 

satiety response (Chambers et al., 2013; Crum et al., 2011; McCrickerd et al., 2014b; 

Wooley, 1972; Yeomans & Chambers, 2011; Yeomans et al., 2014). Thus it is plausible 

that marketing healthiness may influence eating behaviour.  

Several studies suggest that products believed to be healthy are over-consumed relative 

to believed indulgent or highly caloric products despite decreased palatability 

expectations (Chandon & Wansink, 2007; Crum et al., 2011; Provencher et al., 2009; 

Brian Wansink & Chandon, 2006; Brian Wansink, Van Ittersum, & Painter, 2004; 

Wooley, 1972). These findings have been attributed to “Halo” effects - positive 

attitudes towards an aspect of a stimulus resulting in overall positive evaluation, or 

overgeneralizations of positivity to other aspects of that stimulus (Nisbett & Wilson, 

1977). In the context of believed-healthy foods this results in lowered calorie 

estimations (Carels et al., 2006), increased intake norms (Chandon & Wansink, 2007), 

attribution of additional, unmentioned, healthy characteristics to products (Roe et al., 

1999) and holistic judgments of products as healthy or unhealthy (Oakes & Slotterback, 

2001).  

Additionally, expectations can influence eating behaviour and experience. For example 

sensory expectations and consequently experience are influenced by available 

information prior to tasting (Kuenzel, Zandstra, Deredy, Blanchette, & Thomas, 2011; 

Siegrist & Cousin, 2009; Brian Wansink et al., 2007; Brian Wansink, van Ittersum, et 
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al., 2005; Yeomans et al., 2008). Consumers also have explicit expectations about 

foods’ satiating potential (Brunstrom et al., 2008), which can influence portion-size 

selection (Brunstrom et al., 2011; Brunstrom & Shakeshaft, 2009). In familiar foods 

appetite expectations are generated by learned associations between products and actual 

satiety (Brunstrom, Shakeshaft, et al., 2010), however in novel foods satiety 

expectations may be driven by external cues such as physical appearance (Hardman, 

Mccrickerd, & Brunstrom, 2011). It is plausible therefore that labels and health 

information can influence expected and experienced sensory characteristics and appetite 

of believed novel products.  

However sensory properties, which may be experienced in conjunction with label 

information in the “real world”, also provide appetite cues (Bertenshaw et al., 2013; 

McCrickerd et al., 2012). Expectations are tested against experience and quickly 

assimilated (ratings move in a direction consistent with the initial expectation) when 

discrepancies are small or not noticed, whereas if discrepancies are noticed stimuli are 

systematically analysed and contrast effects (ratings move in the opposite direction to 

initial expectations) can occur (Klaaren, Hodges, & Wilson, 1994; Wilson, Lisle, Kraft, 

& Wetzel, 1989; Yeomans et al., 2008; Zellner et al., 2004). This implicates a role for 

the extent of confirmation of pre-taste expectations by oral experience (and cues) 

provided by foods’ sensory properties in eating experience and behaviour. Existing 

health information studies (Provencher et al., 2009; Brian Wansink & Chandon, 2006) 

did not assess ratings differences between pre and post-tasting making it difficult to 

differentiate effects of prior expectations and oral experience on health halo-type 

effects. It is therefore unclear whether beliefs about products from pre-taste information 

generate health halos or whether products’ sensory properties override these beliefs in 

ultimate evaluations and meal decisions.  

In the first of two experiments we tested the hypothesis that health information labelled 

on a beverage would influence the rated healthiness of the beverage after tasting, 

decrease its expected satiating power and increase intake. We also predicted that the 
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label would influence ratings of the sensory characteristics. In a second study we 

explored how these factors were influenced by the congruence between label 

information and oral experience. We predicted that congruence in a health-label context 

would lead to assimilation, and thus facilitate the health halo-type factors measured in 

study one, relative to incongruently and unlabelled beverages.  

5.3! Results Study 1  

 

Figure 5.1 Brief outline of Study 1 design and procedure: a between-subjects one-way design (label 
condition: healthy, indulgent, no information). 

Outliers classed as two standard deviations above or below the mean intake of the 

beverage within condition groups were excluded from analyses (n = 4). Two 

participants were excluded due to a computer error. Analyses were performed on 60 

participants. Three Factor Eating Questionnaire (TFEQ; Stunkard & Messick, 1985) 

dietary restraint and disinhibition and Body Mass Index (BMI) were non-significant as 

covariates on all analyses. 

5.3.1! Baseline ratings 

At baseline there were no condition differences in rated hunger, thirst, or desire to eat 

(all p >.079). There was an unexpected effect of condition on baseline fullness, F (2, 

57) = 3.84, p =.027, ηp
2 = .119, which was higher in the control condition than the 
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indulgent condition, (p = .045), although the other conditions did not differ significantly 

(both p > .072, Table 5.1). However, although baseline fullness was subsequently 

entered as a covariate in analyses, it was not found to co-vary significantly on any 

analysis.  

Table 5.1 -Baseline VAS appetite ratings (+/- SEM) *significant effect of condition p =.027. 

 Hunger Fullness*  Desire to Eat  Thirst 

Healthy 41.6 (4.6) 45.2 (4.5) 43.4 (4.6) 56.7 (4.3) 

Indulgent 39.7 (5.5) 31.6 (4.1) 47.5 (4.7) 57.8 (3.7) 

Control 54.1 (4.4) 30.7 (3.8) 55.7 (3.9) 51.4 (4.8) 

 

5.3.2! Healthiness and indulgence ratings 

The labels generated appropriate healthiness or indulgent beliefs but tasting overrode 

initial impressions, shown by convergence towards the control ratings. However label 

effects on indulgent impressions persisted after tasting (Figure 5.2 A and B). This was 

supported by significant main effects of condition, F (2, 57) = 3.98, p = .024, ηp
2 = .12, 

and rating time on healthiness ratings, F (1, 57) = 4.98, p = .03, ηp
2 = .08, and an 

interaction, F (2, 57) = 10.32, p <.001, ηp
2 = .01. Before tasting the healthy group rated 

the beverage as healthier than the indulgent and control groups, t (29.0) = 3.94, p = 

.002, t (38) = 2.60, p = .015, respectively, and healthiness ratings trended towards being 

lower in the indulgent than control condition, t (33.46) = 1.87, p = .070. After tasting 

there were no differences between conditions (all p >.05), suggesting that impressions 

converged towards the control group following tasting.  
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There were also significant main effects of condition, F (2, 57) = 13.35, p <.001, ηp
2 = 

.32, and rating time, F (1, 59) = 9.67, p = .003, ηp
2 = .15, on indulgent ratings, and an 

interaction, F (2, 57) = 6.99, p = .002, ηp
2 = .20. Before tasting the indulgent group rated 

the beverage as more indulgent than the healthy and control groups, t (37) = 5.86, p 

<.001, t (39) = 5.69, p <.001, respectively. The healthy and control groups did not 

differ, t (37) = 0.36, p = .722. Post-tasting the indulgent group rated the beverage as 

more indulgent than the healthy group, t (35) = 2.30, p =.027, but did not differ from the 

control, t (39) = 1.20, p = .238. The healthy and control groups did not differ 

significantly, t (38) = 0.94, p = .351. These findings suggest some persistence of 

indulgent label effects to post-tasting.  

  

Figure 5.2 Ratings of healthiness (a) and indulgence (b) of a beverage pre and post taste in three 
different healthiness information contexts (+/- 1 SEM). 
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5.3.3! Expected appetite  

There were no significant effects of condition or rating time on appetite expectations 

(all p >.05; Table 5.2).  

5.3.4! Expected and actual pleasantness and sensory ratings 

Expected pleasantness was influenced by label condition but tasting generated 

convergence with the control (Table 5.2). There were significant effects of condition, F 

(2, 57) = 4.03, p =.022, ηp
2 = .13, and rating time, F (1, 57) = 39.61, p <.001, ηp

2 = .41, 

and a significant interaction, F (2, 57) = 9.04, p <.001, ηp
2 = .24. Before the beverage 

was tasted the healthy and indulgent conditions did not differ, t (37) = 0.21, p = .834, 

and both were expected to be more pleasant than the control, t (38) = 3.58, p =.001, and, 

t (39) = 3.52, p =.001, respectively. After tasting there were no differences between 

conditions (all p >.05). Label condition did not influence the sensory experience 

associated with the beverage (all p >.05; Table 5.2).  

5.3.5! Actual and estimated intake 

Unexpectedly actual intake of the beverage did not differ between label conditions (p 

>.05, Table 5.3). However, in all conditions intake was over-estimated. The discrepancy 

was significantly greater than 0 in the indulgent and control groups, t (20) = 2.53, p = 

.020, t (21) = 2.57, p = .018, respectively. However the healthy group did not differ 

significantly from 0, t (20) = 1.42, p = .170, and there was no effect of condition on 

estimated intake (p >.05; Table 5.3). 

5.3.6! Appetite ratings  

After controlling for intake as a covariate there were no differences between groups for 

hunger, thirst or desire to eat ratings either thirty minutes or sixty minutes following 

consumption (all p >.05; Table 5.3). After thirty minutes there was an effect of 
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condition on fullness, F (2, 59) = 3.69, p = .031, ηp
2 = .12. Participants in the indulgent 

condition reported greater fullness than the control (p = .011) but the other groups did 

not differ (p > .05).  

5.3.7! Summary 

Study one found that label information generated healthiness, indulgent and palatability 

expectations of a beverage but tasting largely overrode these expectations. Indulgent 

ratings persisted following tasting in the indulgent group compared to the healthy group 

suggesting partial assimilation. Label information did not influence expected appetite, 

estimated or actual intake or sensory evaluation. However the indulgent group reported 

higher fullness ratings after 30 minutes, perhaps related to assimilation of the label 

information.  
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Table 5.2 - Pre and post taste VAS sensory and expected appetite ratings (SEM). 

Rating 

Time 

Label condition Pleasant* 

** 

Familiar Thick Creamy Sweet Expected 

hungry 

immediate 

Expected 

hungry later 

Expected 

full 

immediate 

Expected 

full later 

Pre-taste Healthy 75.4 (3.9)  - 29.8 (4.6) 50.5 (4.3) 70.6 (2.7) 50.7 (4.0) 

Indulgent 54.4 (3.8) 26.8 (3.3) 48.8 (5.1) 67.9 (4.3) 48.6 (5.2) 

No Label 73.8 (3.7) 31.9 (3.9) 52.4 (4.2) 67.6 (3.0) 45.5 (4.3) 

Post-taste Healthy 77.7 (4.7) 73.3 (3.3) 62.9 (4.5) 69.5 (3.1) 75.6 (4.0) 34.2 (4.8) 53.4 (4.7) 66.4 (4.8) 50.2 (4.9) 

Indulgent 81.4 (2.8) 77.0 (4.8) 56.1 (4.7) 68.6 (3.7) 78.3 (3.5) 28.4 (4.8) 51.6 (5.4) 65.8 (3.8) 48.7 (5.5) 

No Label 82.7 (3.3) 71.1 (4.1) 59.6 (4.7) 65.2 (4.0) 75.0 (2.7) 33.1 (4.6) 50.4 (4.3) 67.4 (4.5) 45.5 (4.8) 

*Significant difference between rating times (p <.001), ** significant difference between label groups (p = .022). 
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Table 5.3 - Intake, estimated intake and the discrepancy between the two (kcal) and VAS appetite ratings 30 and 60 minutes following intake by label condition. 

  Rating at 30 mins Rating at 60 mins 

 Intake  Estimated  Discrepancy  Hunger Fullness** Desire  Thirst Hunger Fullness Desire  Thirst 

Healthy 159.00 

(29.56) 

195.79 

(36.79) 

36.79 (14.82) 31.1 

(4.4) 

63.5 (3.5) 31.5 (5.0) 45.6 (5.6) 37.8 (5.4) 54.3 (4.9) 37.8 (5.7) 46.9 (5.3) 

Indulgent 169.52 

(26.69) 

225.56 

(31.41) 

56.03 (25.37)* 28.8 

(5.4) 

65.6 (4.9) 32.6 (5.5) 29.4 (5.5) 36.7 (6.2) 57.3 (5.5) 40.1 (6.7) 35.9 (6.2) 

Control 183.03 

(27.36) 

218.42 

(25.19) 

35.39 (19.49)* 41.5 

(5.7) 

55.5 (4.7) 42.0 (5.6) 31.9 (5.0) 42.6 (6.4) 52.1 (6.1) 43.9 (6.0) 33.1 (5.5) 

*Significantly different from 0 (p <.020), ** significant difference between label conditions (p = .031) 
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5.4! Results Study 2 

 

Figure 5.3 Brief outline of Study 2 design and procedure: a mixed three (information condition: 
congruent, incongruent or no information; between subjects) by two (beverage: actual healthy or actual 
indulgent; within subjects) design. 

One explanation of the effects found in study one is that consumers form hypotheses 

from available information that are tested against oral experience. In this case 

experience refuted some of those hypotheses and confirmed others – that the indulgent-

labelled beverage was indeed indulgent, which lead to higher fullness. To explore this 

further study two tested the hypothesis that label-experience congruence would lead to 

assimilation of initial impressions and incongruence would lead to contrast. Two 

products, one overtly healthy and the other overtly indulgent, were combined with the 

labels congruently and incongruently and the effects on expected and experienced 

product impressions, appetite and intake were examined (Figure 5.3). 

5.4.1! Baseline Appetite  

There were no differences between the beverages, or conditions on ratings of baseline 

hunger, fullness, desire to eat or thirst (all p >.144: Table 4).  
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Table 5.4 - Baseline mean (SEM) VAS appetite ratings by label and beverage conditions. 

Beverage Label 

Condition 

Hunger Fullness Desire to Eat Thirst 

Healthy Congruent 52.7 (4.4) 35.2 (4.6) 54.8 (4.3) 57.0 (3.2) 

Incongruent 52.8 (5.2) 34.6 (4.1) 57.1 (5.1) 57.5 (4.0) 

No Label 54.6 (4.9) 39.5 (4.8) 58.2 (4.5) 67.8 (2.7) 

Indulgent Congruent 51.4 (5.3) 31.4 (3.7) 50.4 (5.1) 59.2 (4.4) 

Incongruent 54.6 (4.8) 30.0 (5.1) 55.2 (4.8) 63.7 (4.0) 

No Label  54.3 (5.0) 34.8 (4.5) 56.2 (5.4) 64.2 (4.5) 

 

5.4.2! Manipulation check and label ratings 

Manipulation check ratings found the healthy label to be healthier than the indulgent 

label, t (51) = 14.33, p <.001, and the indulgent label more indulgent than the healthy 

label, t (51) = 9.42, p <.001. There were no differences in expectations of product 

pleasantness, t (51) = 0.61, p = .546, but based on the healthy label the product was 

expected to be less thick, t (51) = 4.58, p <.001, less creamy, t (51) = 11.25, p <.001, 

and less sweet, t (51) = 5.75, p <.001, than the product described by the indulgent label. 

The healthy label was associated with higher expected hunger and lower expected 

fullness than the indulgent label. This was confirmed by paired samples t tests for 

expected immediate and one hour later hunger ratings, t (51) = 2.46, p = .017; t (51) = 

4.42, p <.001, and fullness ratings, t (51) = 5.18, p <.001; t (51) = 4.34, p <.001, 

respectively (Table 5.5).     
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5.4.3! Healthy and indulgent ratings 

The beverages differed in healthiness and indulgence and there were subtle effects of 

the congruency of the label information (Figure 5.4). This was confirmed by a 

significant effect of beverage, F (1, 75) = 165.31, p <.001, ηp
2 = .69, with the healthy 

beverage rated as healthier than the indulgent (p <.001). There was no significant main 

effect of label, F (2, 75) = 0.17, p =.844, ηp
2 = .01, but there was a significant 

interaction, F (2, 75) = 3.99, p =.023, ηp
2 = .10. There was a borderline significant effect 

of label on the healthy beverage, F (2, 75) = 3.03, p =.054, with healthiness rated higher 

in the congruent than the incongruent condition (p = .017) but no other differences 

between conditions (both p >.144). There was no effect of condition for the indulgent 

beverage, F (2, 75) = 1.10, p =.34.  

Similarly there was a significant effect of beverage on indulgent ratings, F (1, 68) = 

89.88, p <.001, ηp
2 = .55, with the indulgent beverage rated more indulgent than the 

healthy (p <.001). The overall effect of label was not significant, F (1, 68) = 0.17, p 

=.68, ηp
2 = .003, and nor was the interaction, F (1, 73) = 0.80, p =.373, ηp

2 = .01. There 

was a significant beverage order effect, F (1, 68) = 7.78, p =.007, ηp
2 = .10, which 

interacted with beverage, F (1, 68) = 4.79, p =.032, ηp
2 = .07. With the healthy beverage 

first indulgent ratings were higher (p = .02), but there was no order effect for the 

indulgent beverage (p = .366).  
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Figure 5.4 Healthy (a) and indulgent (b) ratings of each beverage following congruent, incongruent and 
no label information (+/- 1 SEM). 

0

10

20

30

40

50

60

70

80

90

Healthy Indulgent

VA
S$
H
ea
lth
in
es
s$
Ra
tin
g

Beverage

A

0

10

20

30

40

50

60

70

80

90

Healthy Indulgent

VA
S$
In
du
lg
en
t$R
at
in
g

Beverage

BCongruent

Incongruent;

No;Label



153 

 

 

Table 5.5 - Mean (SEM) VAS ratings of the labels (Part A) and beverages by label condition (Part B) 

Beverage 

condition 

Label 

condition 

Healthy Indulgent Pleasant** Familiar** Thick** Creamy** Sweet** Expected 

hungry 

immediate 

Expected 

hungry 

later 

Expected 

full 

immediate 

Expected 

full later 

A) Pre-

taste – 

Label 

ratings 

Healthy 80.9 

(2.2)* 

45.2 (3.5)* 73.5 (2.5) - 59.3 

(3.1)* 

30.5 (3.7)* 61.2 (2.2)* 37.1 

(3.2)* 

57.5 (2.9)* 53.2 

(3.5)* 

39.7 (3.5)* 

Indulgent 27.0  

(3.2) 

84.7  

(2.5) 

75.6  

(3.0) 

- 78.6  

(2.1) 

85.6  

(2.4) 

78.1 

(2.2) 

26.8 

(2.6) 

41.3 

(3.1) 

74.0 

(2.7) 

58.3 

(3.4) 

B) Healthy Congruent (Figure 5.5a) 62.6 (5.6) 59.0 (5.4) 69.4 (3.2) 43.3 (6.5) 71.1 (4.4) 29.6 (3.8) 45.1 (5.0) 70.3 (3.8) 49.9 (4.4) 

Incongruent 63.2 (6.4) 57.0 (6.0) 71.4 (2.9) 41.6 (6.5) 71.4 (4.2) 35.7 (4.4) 55.1 (4.9) 61.5 (3.3) 46.7 (4.6) 

No Label 61.2 (4.3) 52.1 (5.6) 74.1 (2.1) 41.7 (5.3) 62.2 (4.1) 31.2 (4.2) 49.6 (4.0) 71.0 (3.9) 51.9 (3.9) 

Indulgent Congruent (Figure 5.5b) 87.1 (2.5) 86.5 (2.4) 44.0 (4.2) 72.8 (3.8) 75.8 (3.5) 30.9 (4.7) 56.2 (4.7) 73.6 (3.8) 53.2 (5.0) 

Incongruent 86.4 (3.7) 83.0 (3.6) 49.2 (5.3) 66.5 (5.4) 81.4 (2.6) 36.0 (5.5) 51.4 (5.3) 68.5 (4.9) 54.9 (5.3) 

No Label  84.6 (2.8) 80.2 (3.7) 53.4 (5.0) 65.3 (4.2) 78.4 (2.0) 27.4 (4.7) 47.6 (4.5) 70.8 (4.6) 48.8 (5.5) 

* Significant difference between label ratings (p <.017), **significant difference between beverage conditions (p < .001), no effects of label 

condition (Part B) 
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5.4.4! Sensory characteristics 

There were sensory differences between the beverages, with the healthy beverage rated 

as less familiar, F (1,75) = 55.05, p <.001, ηp
2 = .42, creamy, F (1,75) = 30.21, p <.001, 

ηp
2 = .29, sweet, F (1,75) = 14.52, p <.001, ηp

2 = .16, and pleasant, F (1,75) = 46.14, p 

<.001, ηp
2 = .38, but thicker, F (1,75) = 49.01, p <.001, ηp

2 = .40 than the indulgent 

beverage. There were no significant effects of label (all p >.200, Table 5.5).  

5.4.5! Expected appetite 

There were no significant effects of beverage, F (1,75) = 0.06, p =.815, ηp
2 = .001, F 

(1,75) = 0.42, p =.518, ηp
2 = .006, or label condition, F (2,75) = 0.95, p =.393, ηp

2 = .03, 

F (2,75) = 0.33, p =.722, ηp
2 = .01 on ratings of expected immediate or one-hour-later 

hunger respectively. Similarly there were no significant effects of beverage, F (1,75) = 

1.65, p =.203, ηp
2 = .02, F (1,75) = 0.81, p =.370, ηp

2 = .01, or label condition, F (2,75) 

= 1.20, p =.308, ηp
2 = .02, F (2,75) = 0.02, p =.978, ηp

2 = .001, on ratings of expected 

immediate or one-hour-later fullness respectively (Table 5.5).  

5.4.6! Intake 

Intake of the indulgent beverage was higher than that of the healthy beverage (Figure 

5.5a), F (1,75) = 12.84, p <.001, ηp
2 = .15, but labelling had no significant effect on 

intake, F (2,75) = 0.97, p =.385, ηp
2 = .03, and there was no interaction, F (2,75) = 4.23, 

p =.018, ηp
2 = .10. Healthy beverage intake was underestimated (Figure 5.5b), differing 

from 0 in the congruent (t (25) = 4.55, p <.001), incongruent (t (25) = 3.90, p =.001) and 

control groups (t (25) = 3.07, p =.005), but not for the indulgent beverage (all p >.124). 

The beverages differed in discrepancy, F (1,75) = 27.06, p <.001, ηp
2 = .27, but not the 

label groups, F (1,75) = 0.42, p =.662, ηp
2 = .01, and there was no interaction, F (1,75) = 

1.80, p =.173, ηp
2 = .05. 
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Figure 5.5 A) Intake (Kcal) and B) discrepancy between actual and estimated intake following congruent, 
incongruent or no label information (+/- 1 SEM). 

5.5! Discussion 

Over two studies we tested the hypotheses that healthy labelling of a beverage would 

increase healthiness impressions, appetite and intake (and vice versa for indulgent-

labelled beverages) and influence sensory ratings. Additionally we hypothesised that 

label-experience congruency would result in assimilation of healthiness impressions and 

ultimately enhance health halo effects. We found that whilst the labels themselves were 

associated with differential healthiness impressions and sensory characteristics, intake 

and experienced sensory-characteristics were unaffected by labelling or the label-

experience congruency. We found subtle evidence of assimilation of label information. 

Study one found that indulgent impressions were partially assimilated, which increased 

short-term fullness, supporting evidence that cognitive cues can influence appetite 

(Cassady et al., 2012; Crum et al., 2011; McCrickerd et al., 2014b). Congruency 

between the healthy label and oral experience in study two also led to assimilation. One 
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explanation of assimilation is that minor discrepancies or those that go unnoticed 

promote rapid evaluation of a stimulus and adoption of consistent elements into the 

overall evaluation (Kuenzel et al., 2011; T D Wilson et al., 1989; Zellner et al., 2004). 

This is consistent with the present data given that the congruent conditions likely did 

not generate large discrepancies between expectations and experience. However, despite 

this assimilation of healthiness ratings, across two studies we found little evidence of 

assimilation of pre-taste appetite and sensory expectations associated with the labels.  

Incongruence between the label and experience was designed to be extreme in the 

incongruent conditions, however there was no evidence of contrast effects – 

incongruently labelled beverages did not differ from unlabelled beverages in healthiness 

and indulgent ratings despite initial label rating differences. Some studies have reported 

contrast effects using food stimuli although contrast effects may be rare (Yeomans et 

al., 2008; Zellner et al., 2004). One possibility preventing contrast effects in the present 

study is that familiarity with the beverages promoted use of schemas rather than 

expectations to guide evaluations and behaviour. This is consistent with previous 

studies demonstrating that the influence of expectation congruency depends on prior 

knowledge – where detailed prior knowledge was available existing schemas were 

employed to guide product evaluations and were unaffected by information congruency 

(Peracchio & Tybout, 1996). Moreover the labels in the present studies were able to 

generate pre-taste rating differences in expected satiety and sensory properties but not 

post-taste differences. Thus this supports the idea that these initial differences were 

overridden by tasting, perhaps suggesting that the sensory properties guided evaluations 

due to prior knowledge of the product types.  

The health halo concept predicts that health beliefs lead to lowered calorie estimations 

and increased intake norms (Carels et al., 2006; Chandon & Wansink, 2007; Brian 

Wansink & Chandon, 2006; Brian Wansink et al., 2004). The two studies here suggest 

that despite assimilation of healthiness impressions intake was influenced little. Study 

two suggested that healthy-labelling generated lower expected satiety, although neither 
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label congruency nor oral experience differentiated post-taste expected satiety. There is 

evidence that appetite expectations may be driven by physical characteristics, such as 

volume, which could have driven ratings overriding the labels’ influence (Brunstrom, 

Collingwood, et al., 2010). Actual intake was influenced little by label information or 

congruency, but was greater for the indulgent beverage, despite energy matching. It is 

likely that this beverage effect was driven by the greater palatability of the indulgent 

beverage (De Castro, 2001), is thought that health halo effects can occur despite 

expectation of lowered palatability (Brian Wansink et al., 2004). Additionally high 

familiarity of the test products may have again overridden the label influences on intake 

as consumers were able to employ schema-based intake decisions (Peracchio & Tybout, 

1996). Overall whilst health beliefs were assimilated intake did not increase. 

However, consistent with the health halo idea, intake of the healthy beverage was 

underestimated. This could be explained as a generalization of healthy-aspects to the 

whole stimulus (Nisbett & Wilson, 1977) such that experiencing it as healthy resulted in 

the impression that it was lower in energy content. An alternative explanation is that 

ordinarily smoothies are relatively less energy dense than presented here (for example 

the smoothie used here ordinarily delivers 47 kcal/ 100 g). Given that there was no 

effect of label information on intake estimations it is likely that the estimations were 

guided by sensory properties and thus previous experience of similar, relatively low 

energy, beverages. This suggests that label information was overridden by oral 

experience, perhaps because of high familiarity, in guiding health halo type behaviour. 

Previous studies paint a mixed picture of the potential of labels to influence eating 

behaviour. Several studies have demonstrated that label information can alter sensory 

and hedonic evaluations, satiation and satiety (Caputo & Mattes, 1993; Crum et al., 

2011; McCrickerd et al., 2014b; Provencher et al., 2009; Brian Wansink et al., 2004). 

However other studies found that labels did not alter the eating experience and that 

ultimately foods’ actual sensory properties and the post-ingestive experience determined 

product evaluations and appetite (Chambers et al., 2013; Yeomans et al., 2001). The 
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present data support some subtle label effects on healthiness impressions and appetite 

but even when the label information generated expectations and was assimilated the 

ultimate sensory and hedonic evaluations were unaffected by the health labelling and 

were determined by actual oral experience. This questions the conditions in which label 

information can influence eating behaviour. As discussed above it is possible that 

familiarity with the oral stimuli may limit the extent to which expectations and labels 

are recruited in framing evaluations and behaviour. In which case it may be that 

familiarity with foods’ sensory characteristics promotes use of prior knowledge rather 

than label influences in determining product evaluations and behaviour.  

A limitation of the present study is that whilst we initially separated label believers and 

non-believers for analysis we did not measure confidence or strength of the expectations 

that the labels created per se. It has been argued that assimilation occurs if expectations 

are strong, promoting rapid accommodation of expectation-experience consistencies 

(Klaaren et al., 1994). It is possible, but unclear, that in the present study a lack of 

confidence in expectations generated by the health information limited the possibility of 

assimilating appetite or sensory expectations. Indeed it is possible that the context of 

consuming the product in a laboratory with experimental labels rather than a genuine 

consumer product with professional marketing may have influenced the confidence in 

the authenticity of the labels and product, thus affecting the likelihood of assimilation. 

A further limitation of the study is that it is unclear whether the assimilated healthy and 

indulgent beliefs and increased fullness represented a change in experience or merely a 

rating change. It may be that overall evaluation of the products was framed by initial 

evaluation rather than a change in actual experience (Siegrist & Cousin, 2009).  

Given the consistent explanation here that familiarity of the test products could override 

expectations future studies could manipulate the familiarity of the test products to assess 

whether this variable interacts with health impressions to mediate the influence of 

expectations in intake decisions. It is possible that in less familiar products external 

sources of information may be more likely to influence expectations (Hardman et al., 
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2011), and perhaps experience. Additionally other sources of information such as visual 

and olfactory cues may contribute to product expectations and experience (Shankar, 

Levitan, & Spence, 2010). Another potential avenue for future research could be to 

investigate whether these cues are more likely to guide impressions and behaviour than 

labels in the same way that oral cues did in the present study. Again it is possible that 

the familiarity of these cues may be a factor mediating whether label information is 

recruited in decision-making. Finally individual differences in eating behaviour may 

influence the extent to which external information can modulate appetite experience. 

Individuals classified as highly restrained may rely more on external cues to assess their 

appetite experience than those who report low dietary restraint (Ogden & Wardle, 

1990). Therefore it may be useful for future studies to assess how dietary restraint status 

mediates the influence of health impressions on appetite, intake and product 

impressions.    

These findings have implications for marketing healthy products, primarily that honest 

marketing (or that which matches oral experience) is most likely to influence 

consumers’ evaluations of whether a product is healthy. However in the context of the 

present findings these impressions are unlikely to alter the oral or post ingestive 

experience of a familiar product. This could imply that health marketing alone may not 

be responsible for elevated intake of believed healthy products. It may be difficult to 

alter the experience of a familiar tasted product through health relevant marketing.     

5.6! Conclusion 

In summary the two studies reported here suggest that beliefs about healthiness and 

indulgence in beverages can be assimilated when oral-experience is congruent, that 

assimilated indulgence may enhance short-term fullness, that healthy labels generate 

decreased expected satiety and that orally-experienced healthy products generate 

lowered intake estimations. However despite assimilation of healthiness beliefs and 

clear pre-tasting rating differences there was little evidence of label influences on most 
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actual appetite ratings, actual sensory characteristics or intake, or post-taste expected 

satiety. It may be that oral experience of the familiar products dictated these 

evaluations, rather than labelling or expectations, by recruiting prior knowledge as an 

evaluation framework. 

5.7! Study 1 Method 

5.7.1! Design 

A mixed three (label: healthy, indulgent or no information; between subjects) by two 

(rating time: pre and post-tasting; within subjects) design tested the effect of labelling a 

beverage as healthy, indulgent or providing no explicit information on expected and 

experienced satiation and satiety expectations, and healthiness impressions. Subsequent 

intake, estimated intake, sensory characteristics and actual appetite were compared 

between label conditions.  

5.7.2!  Participants 

A power calculation based on data from Provencher and colleagues (Provencher et al., 

2009) who reported an effect size of d = 0.46 for intake between label conditions 

suggested a sample size of n = 63 with �= .05 and power of .9. Females (n = 66) were 

recruited for a study investigating consumer perceptions and memory. Exclusion criteria 

were: self-reported BMI≥ 30 or ≤18, smokers of >5 cigarettes per week, pregnant or 

lactating women, those taking prescription medicine other than the contraceptive pill, 

diabetes, eating disorders or other gastro-intestinal disorders, allergies or aversions to 

fruit smoothies, those taking part in ingestive behaviour studies at the University of 

Sussex or who had taken part in an earlier pilot study with the test products. Participants 

were randomly assigned to label conditions.  
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5.7.3! Materials 

5.7.3.1! Visual Analogue Scale ratings 

Participants rated their appetite, expected appetite, the beverage’s sensory 

characteristics and their impressions of the beverage’s healthiness using computerised 

100 pt. visual analogue scales (VAS) (Hill et al., 1984), presented using the Sussex 

Ingestion Pattern Monitor software (SIPM; Yeomans, 2000). Appetite ratings were 

presented in the format: “How <rating> do you feel?” anchored with “not at all” and 

“extremely”. The ratings were: hungry, full, thirsty and desire to eat (presented as “how 

much of a desire to eat do you feel?”). Expected immediate and one-hour-later appetite 

ratings (hungry and full) were presented as: “How <rating> would you expect to feel 

immediately/one hour after consuming a bottle the size of the one in front of you?” 

respectively, anchored as above. The sensory, expected and actual pleasantness and 

healthiness impressions ratings were presented as “How <rating> is the beverage/ 

would you expect a beverage with this label to be?” respectively, anchored as above. 

The ratings were pleasant, familiar, creamy, fruity, sweet, thick, healthy and indulgent.     

5.7.3.2! Labels 

The study needed to use product labels that were believable as either healthy or 

indulgent products.  Initially, twelve potential labels (six healthy, six indulgent) were 

designed, varying in wording name and layout. In a pilot study, female volunteer 

participants (n = 12) ordered these labels from healthiest to most indulgent and the most 

often ranked at either extreme were selected for use in the main study (Figure 5.6 A and 

B). 
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Figure 5.6 selected healthy (a) and indulgent (b) labels. 

 

5.7.3.3! Beverages 

To identify a product that met the study criteria, a pilot was conducted with four 

commercially available smoothies (all Sainsbury’s Plc. UK) which were each rated 

twice, by volunteer female participants (n =12) using VAS for indulgence, healthiness, 

pleasantness, familiarity, novelty, creaminess and thickness. Of these products, the 

Strawberry and Banana Smoothie was selected as believably healthy or indulgent 

(ratings did not differ from 50, all p >.05, Table 5.6). 
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Table 5.6 - Mean (SEM) ratings of piloted beverage characteristics. Beverages: 1) Mango Passion Fruit 
and Goji Berry Smoothie, 2) Strawberry and Banana Smoothie, 3) Pineapple Banana and Coconut 
Smoothie, 4) Orange Mango and Passion Fruit (all Sainsbury’s Plc. UK). 

 Beverage Healthy Indulgent Pleasant Familiar Novel Creamy Thick 

Taste 

1 

1 57.5 

(8.5) 

50.3 (8.2) 74.6 

(3.6) 

76.9 (4.7) 21.4 

(6.5) 

41.2 

(9.3) 

53.0 

(8.6) 

2 53.8 

(6.3) 

51.3 (8.3) 57.1 

(8.4)  

44.2 (10.7) 54.3 

(10.8) 

58.4 

(9.0) 

66.2 

(7.6) 

3 44.6 

(6.2) 

65.4 (5.1) 66.9 

(7.7) 

61.4 (7.6) 43.5 

(8.4) 

67.3 

(7.8) 

70.8 

(3.4) 

4 52.3 

(7.9) 

47.5 (9.2) 67.5 

(5.6) 

50.6 (9.8) 43.4 

(9.4) 

56.0 

(7.4) 

70.5 

(5.3) 

Taste 

2 

1 47.3 

(8.0) 

54.7 (9.1) 74.1 

(7.4) 

74.8 (4.4) 24.7 

(8.1) 

41.8 

(7.9) 

54.3 

(7.1) 

2 51.5 

(5.9) 

54.1 (7.8) 48.8 

(8.1) 

50.9 (8.5) 43.3 

(10.1) 

51.1 

(11.1) 

82.2 

(4.4) 

3 41.7 

(8.4) 

70.9 (8.7) 66.9 

(8.8) 

59.3 (8.9) 47.9 

(8.6) 

73.9 

(5.4) 

69.3 

(7.5) 

4 58.6 

(7.5) 

49.3 (10.1) 71.7 

(5.2) 

63.9 (8.8) 38.7 

(8.2) 

61.9 

(6.8) 

65.9 

(6.8) 

  

5.7.3.4! Beverage and label 

Finally, to ensure that the combination of the selected labels and beverage were rated 

appropriately in terms of healthiness and indulgence, a third pilot study was conducted. 

Participants (n = 12) were divided randomly into healthy and indulgent label groups to 

taste the beverage. The healthy group rated the beverage as healthier than the indulgent 

group (healthy M = 74.0, SEM = 11.2, indulgent M = 51.3, SEM = 7.0, although not 

significant, p >.05). Unexpectedly the healthy group (M = 70.2, SEM = 7.0) rated the 

beverage as more indulgent than did the indulgent group (M = 48.7, SEM = 4.1, p 

=.024). The original beverage was therefore deemed inappropriate for the study as it 

was perceived as too indulgent even when labelled as healthy. A secondary test with 
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separate participants (n = 10) was conducted using a second drink, the Pineapple, 

Banana and Coconut Smoothie (originally neutral in healthiness and novelty but 

comparatively indulgent, Table 5.6). This beverage with the healthy label was rated as 

healthier (M = 81.2, SEM = 3.9) than with the indulgent label (M = 56.4, SEM = 12.2), 

and was rated as more indulgent with the relevant label (M = 72.8, SEM = 14.1) than 

with the healthy label (M = 62.8, SEM = 5.3). This beverage was selected as believably 

healthy or indulgent. The chosen beverage delivered 68Kcal, 0.5g protein, 12.7g 

carbohydrates, and 1.6g fat per 100g.   

5.7.3.5! Control materials 

A word list of 28 food-unrelated words (Appendix A) was presented to the control 

group to control for the time taken between commencing the study and being presented 

with the beverage, as well as providing material for the false memory-test detailed 

below.  

5.7.4! Procedure 

Participants attended the laboratory between 10.30hrs and 13.00hrs having fasted for 2 

hours prior, aware that the procedure lasted for 90 minutes and that intake other than the 

test product was prohibited.  

Participants completed baseline VAS appetite ratings before two minutes of studying 

the assigned label or the control word list. Participants were also provided with an 

example of the beverage in a 250ml reference bottle. The label groups were reminded 

that the information was prototype marketing material for a new product and recall 

would be tested and the control group were told that the word list was for a later recall 

test and that the bottle would be required for answering subsequent questions about 

beverages.  
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Participants then completed VAS expected appetite, sensory and healthiness 

impressions ratings (see above). A 20g sample of the beverage was provided for tasting 

and further expected appetite, sensory, and healthiness ratings were completed. An 800g 

opaque jug of the beverage and a transparent 300ml glass were then provided and 

participants were instructed to serve and consume as much or as little as they would 

like, and were told that more was available on request. VAS appetite ratings were 

completed and participants estimated their intake (Kcal), with reference to information 

that an equal glass-full amount of orange juice contained 120 kcal.  

Participants then waited in the laboratory for sixty minutes completing VAS appetite 

ratings at thirty-minute intervals before a free recall test was administered to uphold the 

cover story. Finally participants completed questions assessing whether they believed 

the label manipulation, height and weight were recorded and they were fully debriefed.  

Ethical approval to run the study was granted by the University of Sussex Life Sciences 

and Psychology Research Ethics Committee. Informed consented was gained for 

participation and use of data. 

5.7.5! Analysis 

Mixed three by two analyses of variance (ANOVAs) were used to contrast the label 

conditions (between subjects) and pre and post-taste rating times (within subjects) on 

impressions of healthiness, expected appetite, and expected and actual sensory 

characteristics. One-way ANOVAs assessed the effect of label condition on intake, 

estimated intake and the discrepancy between the two. The discrepancy was also 

compared to 0 (being perfect estimation). Finally one-way ANOVAs were conducted on 

post intake appetite ratings by label condition, controlling for intake as a covariate. All 

analyses were conducted on the whole dataset as well as splitting believers and non-

believers (n = 11). This was found to have no effect so the results reported contain the 

entire dataset.  
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5.8! Study 2 method 

5.8.1! Design 

A mixed three (congruency condition: congruent, incongruent or no information; 

between participants) by two (beverage received: healthy or indulgent; within 

participants) design explored the effect of label congruency on product impressions, 

expected and experienced appetite, sensory characteristics and intake. As in study one 

labels were presented with a beverage for rating and subsequent tasting and ad libitum 

intake. Study two’s manipulation differed in that two beverages were consumed, one 

overtly healthy and one overtly indulgent, on different days, combined with either a 

congruent, incongruent or no label. Participants were randomly assigned to congruent, 

incongruent and unlabelled-control groups and beverage order was counterbalanced.   

5.8.2! Participants 

Females (n = 75) adhering to the same criteria as study one, with the additional 

requirement that they had not participated in study one, were recruited.  

5.8.3! Materials  

5.8.3.1! VAS ratings 

Participants completed identical VAS ratings to study one measuring appetite, expected 

appetite and the sensory and healthiness profile of the beverages. Study two also 

introduced evaluations of sensory characteristics associated with the labels using the 

same VAS format.  
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5.8.3.2! Labels and control word list 

The study one labels were used (Figure 5.6) either congruently or incongruently with 

the beverages and the study one word list was used for a control group.  

5.8.3.3! Test Products  

A pilot taste test was conducted using six equicaloric beverages: three milkshakes and 

three smoothie beverages (Table 5.7). Participants tasted 30g samples and completed 

VAS sensory ratings (Table 5.7). Chocolate and caramel milkshakes were significantly 

lower and higher than 50 on VAS healthiness and indulgence respectively. The 

chocolate milkshake was significantly higher than 50 in familiarity which was 

considered an advantage for testing expectations against experience. The milkshake was 

37.5g Chocolate and Vanilla Ice Cream (Sainsbury’s plc.) and 62.5g Semi-Skimmed 

Milk (Sainsbury’s plc.) per 100g, and delivered 100.4kcal, 13.5g carbohydrates, 3.6g fat 

and 3.5g protein per 100g. None of the beverages were deemed appropriate as overtly 

healthy, so a further three beverages were tested on new participants (n = 9, Table 5.7). 

The apple, kiwi and lime smoothie was significantly healthier than 50, and was selected 

as the typical healthy beverage. The beverage contained 84.5g Innocent Apple, Kiwi 

and Lime Smoothie (Coca Cola Co.), and 15.5g maltodextrin (Cargill, UK) per 100g 

energy-matched to the milkshake and delivered 100.3kcal, 23.6g carbohydrates, 0.1g fat 

and 0.3g protein per 100g.  
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Table 5.7 - Mean (SEM) VAS ratings of piloted beverage characteristics -  

Beverages: 1) chocolate and vanilla ice cream milkshake, 2) caramel ice cream milkshake, 3) strawberry 
ice cream milkshake, 4) Apple Peach and Pear Juice (Sainsbury’s Plc. UK), 5) Raspberry and 
Pomegranate Smoothie (Sainsbury’s Plc. UK), 6) Strawberry and Blackberry Smoothie (Sainsbury’s Plc. 
UK), 7) Orange Carrot and Ginger Juice (Sainsbury’s Plc. UK), 8) Innocent Apple Kiwi and Lime 
Smoothie (Coca Cola Co.), 9) Orange and Mango Juice (Sainsbury’s Plc. UK). *p <.05. 

 

5.8.4! Procedure  

The procedure was identical to study one except that the reference bottle was empty. 

This was because some participants received an incongruent label-beverage 

combination and the sight of the actual beverage may have generated expectations that 

challenged the label manipulation.  

  Healthy Indulgent Pleasant Familiar Novel 

Pilot 1 1 9.5 (3.6)* 88.6 (3.6)* 90.1 (4.0)* 86.7 (4.7)* 10.4 (3.8)* 

2 12.9 (3.8)* 79.7 (4.0)* 72.6 (9.1)* 62.8 (8.5) 47.8 (10.5) 

3 54.0 (7.1) 71.5 (8.4) 81.7 (7.8)* 65.9 (7.6) 29.7 (10.2) 

4 56.2 (9.4) 42.5 (8.2) 71.5 (6.8)* 66.1 (9.4) 28.6 (7.1)* 

5 56.9 (10.4) 36.1 (6.5) 59.4 (10.1) 49.2 (10.8) 46.6 (10.3) 

6 57.5 (9.4) 51.6 (5.0) 70.0 (8.2)* 56.6 (10.4) 46.4 (9.0) 

Pilot 2 7 46.9 (8.1) 37.1 (7.1)* 58.4 (5.8) 48.1 (6.2) 61.9 (7.0) 

8 68.6 (4.5)* 55.9 (6.2) 81.8 (2.0)* 54.3 (8.3) 56.1 (7.2) 

9 31.2 (7.0)* 43.4 (9.3) 49.4 (7.2) 56.7 (7.1) 37.2 (9.0) 
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Ethical approval to run the study was granted by the University of Sussex Life Sciences 

and Psychology Research Ethics Committee. Informed consented was gained for 

participation and use of data. 

5.8.5! Data Analysis 

Three by two ANOVAs compared the effects of label congruency (between 

participants) and actual beverage (within subjects) on expected appetite, intake, 

estimated intake and sensory and healthiness impressions. Pre-taste VAS ratings of 

appetite expectations, healthiness, indulgence and sensory characteristics were analysed 

as manipulation checks. In study one the beverage was in view and thus expectations 

could be rated. However here the label was not linked to the product at the point of 

rating and ratings were considered for the labels rather than expectations of the 

beverage. For these ratings those who saw the healthy label (congruent healthy and 

incongruent indulgent) and the indulgent label (congruent indulgent and incongruent 

healthy) were grouped respectively. Analyses initially included beverage order, BMI 

and dietary restraint and disinhibition but were removed as non-significant covariates, 

except where stated. Analyses were run separately with reported believers and non-

believers as in study one, but there were no differences so analyses reported here 

contain the entire dataset.   

5.9! Author contributions 

PH designed the study with comments from MRY. Materials were generated and data 

was collected by PH and analysed by PH with comments from MRY. The manuscript 

was drafted by PH with comments from MRY. 
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5.10!Appendix A – Control Word List 

Boot, Brace, Brown, Bulb, Currency, Invoice, Parallelogram, Raven, Russia, Triangle, 

Afterthought, Bus, Cougar, Ethiopia, Gondola, Hardcover, Michelle, Priest, Save, 

Butane, Colt, Cylinder, Fang, Font, Organisation, Spring, Step-mother, Unit 
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6! General discussion 

6.1! Summary of aims, findings and relationship with literature 

This thesis adopted a contemporary approach to appetite control according to which 

feedback from cognitive and sensory processes modulates homeostatic energy-sensing 

mechanisms, as outlined in detail in chapter one (e.g Berthoud, 2006, 2012; Blundell, 

Hill, & Rogers, 1988; Blundell, Lawton, Cotton, & Macdiarmid, 1996; Blundell & 

Macdiarmid, 1997; Blundell, 1991). The effects of interactions between orosensory 

characteristics, representations of foods (e.g. healthiness) and post-ingestive factors on 

satiation and satiety were of particular interest in the present studies. Previously this 

framework has led to fruitful attempts to examine how satiety can be enhanced in 

beverage contexts by providing sensory and cognitive satiety cues, and how satiety cues 

can lead to rebound effects if insufficient energy is delivered (e.g. Bertenshaw, Lluch, & 

Yeomans, 2013; Chambers, Ells, & Yeomans, 2013; Hogenkamp, Mars, Stafleu, & de 

Graaf, 2012; McCrickerd, Chambers, Brunstrom, & Yeomans, 2012; McCrickerd, 

Chambers, & Yeomans, 2014a, 2014b; Yeomans & Chambers, 2011; Yeomans, 

McCrickerd, Brunstrom, & Chambers, 2014). The same multimodal appetite control 

framework also implicates unwanted effects of food representations, such as the over-

consumption (and over-generalising of healthy attributes) of foods believed to be 

healthy (Andrews et al., 1998; Carels et al., 2006; Chandon & Wansink, 2007, 2012; 

Finkelstein & Fishbach, 2010a; Lee et al., 2013; Oakes & Slotterback, 2001; 

Provencher et al., 2009; Roe et al., 1999; Schuldt et al., 2012; Schuldt & Schwarz, 

2010). The work in this thesis aimed to further explore these consequences of an 

integrated approach to appetite control, focussing on two broad issues: 1) the extent to 

which earlier findings regarding sensory-enhanced satiety could benefit consumers, 2) 

the extent to which expectation matching influences health halo-related satiation effects. 

The following sections outline the logic, findings and putative explanations of each of 

the studies. This is a summary of key points and readers are referred to the relevant 

chapters for exhaustive accounts.  
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6.1.1! Study 1: The effect of energy reductions on sensory enhanced satiety 

Study 1 explored satiety responses to various amounts of covertly added energy in 

sensory-enhanced beverages. The logic behind this question was that whilst in general 

energy compensation is more accurate for small compared to large covert energy loads 

(Almiron-Roig et al., 2013) compensation for energy consumed in liquid form is 

generally poor (Almiron-Roig et al., 2013). Much recent research now supports the idea 

that by providing orosensory cues such as viscosity and creamy flavours, the satiety 

generated by energy in liquids can be improved (Bertenshaw et al., 2013; Chambers et 

al., 2013; Hogenkamp, 2014; McCrickerd et al., 2014b; Yeomans & Chambers, 2011; 

Yeomans et al., 2014). On the other hand if these sensory cues are present in beverages 

providing low energy content, rebound effects of higher hunger and subsequent intake 

may occur (McCrickerd et al., 2014b; Yeomans & Chambers, 2011). A common 

strategy in existing diet products is to match the sensory profile of minimally caloric 

products to those of rewarding high-calorie original versions (Yeomans, 2015). In the 

context of potential rebound effects and minimal satiety without the combination of 

sensory cues and energy content, this approach is likely to be counterproductive. 

However the original studies of the enhanced satiety concept used differences of 

200kcal between high and low energy conditions, producing enhanced satiety or 

rebound hunger in sensory enhanced versions respectively (Yeomans & Chambers, 

2011). Considering all of the above it remained unclear whether smaller energy 

additions to beverages would be compensated for accurately when consumed in a 

sensory enhanced context, as found with solid preloads (Almiron-Roig et al., 2013), or 

whether this would generate rebound hunger effects (Yeomans & Chambers, 2011). 

This was a potentially valuable question for the development of high-satiety products.  

A preload design was used with beverages containing 75 kcal, 140 kcal, 205 kcal and 

270 kcal consumed in an enhanced sensory context, and the highest and lowest energy 

versions consumed without sensory enhancements. The previously reliable sensory-

enhanced satiety effect (see Chambers, McCrickerd, & Yeomans, 2015) was not 
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replicated by the intake data, energy compensation or appetite ratings. Additionally, a 

Bayes factor analysis of the outcomes demonstrated that the results tended towards 

support for the null hypothesis. Additionally, the intermediate-energy preloads did not 

differ from the high and low energy preloads in the satiety they delivered. One potential 

insight here however was that the intermediate preloads did not differ significantly from 

perfect compensatory behaviour. Bayes factors indicated indifferent support for the null 

hypothesis (that the beverages did not differ from 100% compensation) or the 

hypothesis that that compensation scores differed from 100%. Therefore this result 

requires further substantiation as it could reflect  previous findings of a strong satiating 

capacity of small energy loads in solid and semi-solid preloads (Almiron-Roig et al., 

2013). Additionally, the sensory enhancements generated increased filling ratings after 

one taste. Whilst this measure is limited as an explicit measure of expected satiety (see 

chapter 2) the finding is consistent with previous reports that viscosity and creamy 

flavours are associated with expected satiety (Hogenkamp et al., 2011; McCrickerd et 

al., 2012, 2015; Yeomans et al., 2014). Overall these findings present an unclear picture 

of the utility of the enhanced satiety concept in minimally caloric beverages, but there 

was subtle support for greater satiety expectations for sensory-enhanced beverages, and 

accurate compensation for small energy loads. One limitation was the lack of non-

enhanced control preloads for the intermediate beverages, a design feature which would 

allow interpretation of the sensory effect independently. Presently the effects with these 

preloads were compared to high and low energy versions. Therefore it is unclear 

whether the sensory cues generated enhanced satiety relative to beverages without the 

cues at these energy levels.                  

6.1.2! Study 2: Sensory-enhanced beverages and the effects on satiety following 

repeated consumption at home 

Study 2 assessed whether sensory-enhanced satiety persists following repeated 

exposures in a home-consumer trial, and also assessed consumers’ attitudes to the 

enhanced satiety concept. This study was an important extension of the enhanced satiety 
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concept as the situation in which foods are consumed can influence affective responses 

(Cardello et al., 2000; Cardello, 1995; Edwards et al., 2003; King et al., 2004; 

Meiselman et al., 2000). Additionally factors which may be prominent outside of the 

controlled laboratory environment such as social influences (Bell & Pliner, 2003; De 

Castro, 1990), distraction (Brunstrom & Mitchell, 2006; Higgs & Woodward, 2009; 

Oldham-Cooper et al., 2011) and even ambient lighting and the presence of music 

(Bellisle et al., 2004) can influence intake. Therefore if the enhanced-satiety concept 

could be useful to consumers it needed to be explored within a quasi-naturalistic 

context.  

Consumers were provided with shelf-stable, powdered versions of the test beverages 

and were instructed to prepare (by adding a commercially available juice) and consume 

them as part of their ordinary routine. Controlled satiety testing was conducted either 

side of this exposure period. The study found evidence for sensory-enhanced satiety 

before and after the exposure period, indicated by decreased intake at both testing 

points. This enhanced satiety effect was further supported by decreased subjective 

appetite ratings associated with the enhanced high-energy preload, both before and after 

the exposure period. Unexpectedly there were no differences between the beverages on 

expected satiation or satiety, and no effects of exposure. Additionally the enhanced 

sensory beverage was found to be less pleasant than the other beverages.  

This study also used two exploratory focus groups to assess consumers’ attitudes to the 

enhanced satiety concept. Key findings from these discussions included that consumers 

considered substance and thickness to be key attributes of filling products (specifically 

as thickness makes a beverage more food-like), to a greater extent than caloric content. 

This is consistent with experimental data on the satiating capacity of viscous beverages 

(e.g Bertenshaw et al., 2013; McCrickerd et al., 2012, 2014a, 2015; Zijlstra, Mars, de 

Wijk, Westerterp-Plantenga, & de Graaf, 2008) and those made to appear more food-

like (McCrickerd et al., 2014b). Interestingly the participants also noted that healthy 

snacks can be considered filling, depending on the portion size. In terms of 
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acceptability, focus group participants confirmed the experimental findings that 

thickness is linked to lower pleasantness. Additionally the focus groups treated satiety 

claims with suspicion, in particular being wary of artificial additives used to generate 

viscosity, a factor which could limit the acceptability of such a product (Cardello, 

2003). The consumers also noted the groups most likely to benefit from the enhanced 

satiety concept were those time-limited consumers requiring a quick, filling snack, and 

consumers who are concerned with dieting. Finally the consumers suggested that 

healthy snacking is a growing trend that will be useful in the future.     

6.1.3! Study 3: The effect of dietary restraint and disinhibition on sensory-enhanced 

satiety 

Study 3 further explored how the satiety concept can be applied to consumers by 

assessing its utility in participants who vary in their attempts to restrict their intake. This 

followed from the exploratory analysis in study 2 which suggested that such 

individuals, along with time-limited consumers may be most likely to benefit from the 

enhanced satiety concept. However it was predicted that variations in restraint and 

disinhibition may be linked to differential response to the sensory-enhanced preloads. 

This prediction was based on previous research suggesting that those high in restraint 

and disinhibition may respond to a challenge to their attempts at intake restriction, or 

external appetite cues, by overeating (Westenhoefer et al., 1994; Yeomans & Coughlan, 

2009; Yeomans et al., 2004). This is particularly pertinent given that the traditional 

sensory-enhanced preloads are designed to appear high-calorie in order to provide a 

satiety-relevant cue (Chambers et al., 2013; McCrickerd et al., 2014b; Yeomans & 

Chambers, 2011; Yeomans et al., 2014), and so may provide a particular challenge to 

dietary restraint, yet these studies all excluded highly restrained participants. This idea 

was tested using a preload design, similar to study 1 and 2, where the effects of preload 

sensory context and energy content were compared across restraint status groups (high 

restraint, high disinhibition; high restraint, low disinhibition; and low in both) defined 

using the TFEQ (Stunkard & Messick, 1985).  
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The results demonstrated that consumers who reported high restraint and disinhibition 

compensated more accurately for energy consumed in the unenhanced sensory context, 

a finding counter to that found previously in low restrained participants (Chambers et 

al., 2013; McCrickerd et al., 2014b; Yeomans & Chambers, 2011; Yeomans et al., 

2014). One explanation of this effect could be that the sensory characteristics of the 

enhanced preload generated a disinhibition effect, attenuating compensation for the 

enhanced preload. However the strong compensation for the unenhanced preload was 

driven by both greater intake of the unenhanced low energy preload and reduced intake 

of the unenhanced high energy preload. Therefore it is unclear whether this was a true 

disinhibition effect. Nonetheless this provides evidence that highly restrained 

participants who also have strong tendencies to disinhibit respond more accurately to 

unenhanced than enhanced preloads. Meanwhile those high in restraint but low in 

disinhibition and those low in both responded with greater compensation for the 

enhanced preloads, a finding consistent with the previous literature (Chambers et al., 

2013; McCrickerd et al., 2014b; Yeomans & Chambers, 2011; Yeomans et al., 2014). 

Whilst these effects did not reach significance, closer analysis using a Bayes factor 

demonstrated a lack of sensitivity in the data, rather than support for the null hypothesis. 

The failure to reach statistical significance is therefore likely to be due to power issues, 

particularly in the high restraint, low disinhibition group where participant recruitment 

was problematic. Whilst previous studies have reliably demonstrated strong 

compensation effects in low restrained participants (Chambers et al., 2013; McCrickerd 

et al., 2014b; Yeomans & Chambers, 2011; Yeomans et al., 2014), more research is 

needed to substantiate the compensatory effects for those high in restraint but low in 

disinhibition.  

Further interesting findings from this study were subtly greater subjective satiety ratings 

by those low in restraint and disinhibition following preloads, than the high restraint 

groups. Previous research has demonstrated a greater response by low restrained than 

high restrained participants to internal appetite cues (Heatherton et al., 1989; Ogden & 

Wardle, 1990; Yeomans et al., 2004). However differences in the internal validity of the 
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scales used to measure restraint across these studies (particularly the conflation of 

restraint and disinhibition concepts by the RS, see chapter 1) make it unclear how 

restraint and disinhibition interact to influence responses to internal and external cues 

(Westenhoefer, 1991). Presently the data support a greater subjective satiety response to 

ingestion of a preload by those low in restraint and disinhibition. Additionally, an 

exploratory analysis of the frequency of respondents to the study recruitment drive 

found that those who reported high levels of restraint were significantly 

underrepresented. This has important implications for study recruitment, as discussed 

below, but also explains the smaller samples from these populations in the present 

study.   

6.1.4! Study 4 & 5: Assimilation of healthy and indulgent impressions from labelling 

influences fullness but not intake or sensory experience 

Study 4 and 5 explored the nature of the health halo effect. This was particularly 

important given the suggestion from the focus group in study 3 that healthy snacking is 

likely to be important to consumers. Additionally the focus group suggested that healthy 

foods can be filling, a finding seemingly at odds with increased intake of believed 

healthy foods (Chandon & Wansink, 2007; Finkelstein & Fishbach, 2010a; Provencher 

et al., 2009). Therefore this contention required experimental substantiation. The first of 

the two studies attempted to address flaws in the previous health halo research, firstly 

by directly manipulating health-relevant expectations, as opposed to inferring them 

from restaurant marketing strategies (e.g Chandon & Wansink, 2007), and by including 

a no information control group so that potential health halo effects could be 

distinguished from satiety-relevant cues generated by ‘indulgent’ messages (as opposed 

to Finkelstein & Fishbach, 2010; Provencher et al., 2009). Additionally this study 

measured consumers’ evaluations prior to and following tasting the products to assess 

the contributions of prior expectations and sensory experience.  
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The findings suggested that whilst the label information generated relevant beliefs about 

the healthiness of the beverages post-tasting ratings converged with the unlabelled 

control beverage. This suggested that orosensory experience overrode prior expectations 

in determining evaluations. There was some evidence of assimilation of the indulgent 

beliefs, suggesting that the beverage was more believable as an indulgent product, 

explaining the lack of assimilation of healthiness ratings. Interestingly both labels 

generated greater expected pleasantness than the control. However again these ratings 

were not assimilated – tasting overrode initial beliefs. The labels did not influence 

intake, although there were differences in the discrepancy between estimated and actual 

intake. The indulgent and control groups both overestimated their intake, whilst the 

healthy group did not. Participants in the indulgent group also experienced greater 

subsequent fullness, perhaps linked to the assimilation of the label information to the 

experience.  

Based on these findings the follow up study explored the degree to which differences 

between expectations and experience influence the likelihood of assimilation of health 

messages, and subsequent effects on appetite, intake and sensory analysis. An overtly 

healthy and overtly indulgent beverage were consumed by participants who had been 

given congruent, incongruent or no information about the products.  

This study found that based on the label the healthy beverage was expected to be less 

sweet, thick, and creamy, and to deliver lower satiety. After tasting the healthy beverage 

was rated as healthier when labelled congruently, suggesting an assimilation effect. 

However intake, sensory and expectation effects were driven by actual beverage 

condition rather than by the label information, and following tasting there was no effect 

of label on appetite expectations. Overall these findings suggest that whilst labels might 

generate some assimilated expectation effects when congruent with sensory experience, 

tasting was more likely to dictate evaluations and intake decisions. Intake of the healthy 

beverage was underestimated in all conditions. This is consistent with the health halo 

concept (Carels et al., 2006) even if actual intake was not affected. However given the 
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lack of response to label conditions it suggests again that the orosensory properties of 

the beverage were important for evaluations, rather than pre-taste information alone.  

Overall these two studies suggest that whilst health labels can generate expectations 

about healthiness, satiety and sensory characteristics, the extent to which these beliefs 

influence post-taste ratings depends on oral experience of the foods. In particular the 

degree of congruency between expectations and oral experience may influence the 

effect of prior expectations on post-taste ratings. Consequently health halo effects might 

be more likely reflect orosensory characteristics than label-based pre-taste expectations. 

This idea adds nuance to previous health halo research which has not measured the 

effect of differences between prior health-relevant beliefs and oral experience (Chandon 

& Wansink, 2007; Finkelstein & Fishbach, 2010a; Provencher et al., 2009; Brian 

Wansink & Chandon, 2006).   

6.2! Broader theoretical context and potential mechanisms  

Fundamentally, the enhanced-satiety concept is based on an integrated view of appetite 

whereby the effect of post ingestive feedback is modulated by cognitive and sensory 

cues, as represented by the satiety cascade (e.g. Blundell et al., 1988, 1996; Blundell & 

Macdiarmid, 1997; Blundell, 1991). Most clearly, the present results demonstrated that 

ingestion of a carbohydrate energy load resulted in decreased subsequent intake (Papers 

1-3). In Papers 1 - 3 intake of 270 kcal reduced subsequent intake to a greater degree 

than intake of 70 kcal. This was nuanced in Paper 1 whereby intermediate energy loads 

(140 kcal and 205 kcal) reduced intake to a greater degree than the low energy versions, 

but less than the high energy versions. This supports the well-established hypothesis 

that the body is equipped to respond to energy challenges from carbohydrates (as 

outlined in section 1.1.1), and consequently modify appetite and intake (e.g. Blundell, 

Green, & Burley, 1994; Blundell & Tremblay, 1995; Gray, French, Robinson, & 

Yeomans, 2002; Yeomans, Gray, & Conyers, 1998). However, despite this response to 

the covert energy additions, energy compensation (the adjustment in subsequent intake 
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to account for added preload energy) was rarely found to be accurate in the present 

studies (with the exception of the intermediate preloads in Paper 1 and of the 

unenhanced version by high restrained and high disinhibition participants in Paper 3). A 

recent systematic review found high variability in compensation scores with the 

variance explained primarily by the time between the preload and test meal, preload 

form (solid, semi-solid or liquid), and preload energy content (Almiron-Roig et al., 

2013). The overall median compensation score in Almiron-Roig and colleagues’ review 

was 62%, although it was only 43% for liquids. Therefore the largely inaccurate 

compensation in the present studies supports the view that compensation for energy 

additions consumed in liquid preloads is weak. This has been explained previously by 

increased rate of intake and therefore shorter oral transit time of liquids, leading to 

weaker orosensory feedback compared to solid foods or those requiring greater oral 

processing (de Graaf, 2011, 2012). Additionally this shorter oral exposure has been 

shown to weaken learned satiation (Mars et al., 2009) suggesting a poorer ability to 

learn satiating consequences of liquids. Therefore liquids may be associated with poorer 

satiety and compensatory responses due to weaker orosensory feedback. Whilst this was 

not explicitly tested in the present studies the incomplete compensatory behaviour in 

studies 1 and 3 supports these ideas.  

The present studies also tentatively support the idea that compensation is more accurate 

for low energy contents (Almiron-Roig et al., 2013). Whilst the preloads did not differ 

from each other clearly in study 1 the lower energy preloads were less clearly different 

from accurate compensatory behaviour. This supports the idea that whilst intake is 

reduced to a greater degree by large energy loads the extent to which this accounts for 

the original preload energy is greater for small energy additions.     

The key hypothesis explored in studies 1-3 was that satiety-relevant sensory cues are 

able to improve the weak satiety response to beverages. This effect has been observed 

reliably with viscosity and creamy flavour cues for energy consumed as carbohydrate 

and protein (Bertenshaw et al., 2013; Chambers et al., 2013; McCrickerd et al., 2014b; 
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Yeomans & Chambers, 2011; Yeomans et al., 2014), MSG flavours as a specific cue for 

protein energy (Masic & Yeomans, 2014), and by presenting beverages as filling using 

product information (McCrickerd et al., 2014b). The present studies provide mixed 

support for this hypothesis, with only study 2 clearly demonstrating this effect of 

perceived thickness and creaminess in high-energy preloads. Meanwhile study 3 found 

mean differences between preloads which were consistent with this hypothesis (in the 

low restraint low disinhibition, and high restraint low disinhibition groups) but these 

effects did not reach significance. This was not found to be evidence against the theory 

by a Bayes factor however, and most likely reflects power limitations. Study 1 on the 

other hand was anomalous, finding no differences in intake or appetite consistent with 

effects of sensory cues. Taken together with previous studies into the enhanced satiety 

concept (Bertenshaw et al., 2013; Chambers et al., 2013; McCrickerd et al., 2014b; 

Yeomans & Chambers, 2011; Yeomans et al., 2014) the work in this thesis offers some 

support for sensory-enhanced satiety. 

A putative mechanism for these effects is the interaction between pre and post-ingestive 

feedback. Pre-ingestive feedback, in the form of CPRs, is represented by physiological 

responses to the sight, smell, taste and even thought of food which prepare the body for 

ingestion (Power & Schulkin, 2008; Smeets et al., 2010; Woods, 1991). CPRs rely on 

learned associations between sensory characteristics and post-ingestive consequences 

and thus link sensory stimulation to satiety-relevant responses. Given that viscosity and 

creamy flavours may be reliable predictors of energy content, learned from a young age 

through experience with breast milk (Picciano, 1998), they may be important cues for 

satiety. Whilst the present studies did not measure any physiological responses, such 

mechanisms could underlie the behavioural effects observed here. The present data, 

along with previous findings discussed above, support the idea that pre-ingestive cues 

interact with post-ingestive responses to actual energy content delivered to determine 

the experience of satiety.    
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An additional perspective on this mechanism is that previously repeated exposures to 

the beverages have resulted in greater importance of the energy content in determining 

satiety (Yeomans et al., 2014). This was explained within the framework of flavour-

nutrient learning, whereby the sensory properties of a food come to predict it’s post-

ingestive consequences (see Brunstrom, 2007; Yeomans, 2012 for reviews). 

Accordingly satiety responses to covert energy can be adjusted appropriately following 

repeated exposures. However in the present study 2 no such adjustment was observed 

and the orosensory cues continued to influence satiety following the exposure period. It 

is plausible that the lack of learning effects in this study could be due to contextual 

differences between the laboratory and the home environment. Yeomans (2012) has 

noted the specific and highly controlled conditions in which studies should be designed 

in order to observe flavour-nutrient learning effects. It is possible therefore that the 

purposeful lack of control outside of the laboratory could account for the lack of dietary 

learning. Indeed one study has demonstrated that preference for abstract stimuli 

rewarded with chocolate was curtailed by the simultaneous performance of a complex 

counting task (Brunstrom & Higgs, 2002). This implies that attention has a role in 

learning phenomena, perhaps by influencing contingency awareness (Brunstrom, 2004). 

It may be that the less controlled environment outside of the laboratory contains greater 

likelihood of distraction and lower contingency awareness, possibly explaining the 

differences in learning effects. If so this is an important nuance of sensory-enhanced 

satiety concept for consumer use. 

A further issue informed by this thesis is that the effect of orosensory satiety cues was 

dependent on individual differences in attitudes to food restriction (Paper 3). Based on 

these findings it is plausible that the putative interaction between pre and post-ingestive 

satiety cues described above is further modulated by attempts at executive control over 

intake. The more accurate compensatory behaviour following the unenhanced preload 

by restrained participants with a propensity for disinhibition could be explained by a 

disinhibition effect (Westenhoefer et al., 1994). This explanation is based on the idea 

that satiety-cues (in this case thickness and creaminess) are designed to predict caloric 
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delivery in order to maximise conditioned pre-ingestive feedback. However restraint 

theory suggests that those who attempt to restrict their intake could react to a challenge 

to that restriction by eating to satiety (Herman & Mack, 1975; Herman & Polivy, 1983). 

Later conceptions argued that individuals also differ in their propensity for disinhibited 

eating (Westenhoefer, 1991) and that those scoring high in restraint and disinhibition 

would be susceptible to such effects (Westenhoefer et al., 1994). The cues for high-

caloric content could present such a challenge to restrained eating. The present data 

partially support this theory, although this group did not over-consume following a low 

energy version of the beverage with orosensory cues. Nonetheless this is a plausible 

mechanism for the differential effect of individuals scoring highly on restraint and 

disinhibition scales of the TFEQ and suggests a further nuance to the sensory-enhanced 

satiety concept.      

Another element of the integrated perspective of appetite control is the influence of 

cognitive processes mediating meal-based decisions and food representations. For 

example satiety cues generate explicit expectations about the satiating potential of foods 

which could dictate portion size decisions (e.g. Brunstrom, 2011, 2014; Fay et al., 

2011). The present results demonstrated that information about healthiness could reduce 

expected satiety, however these did not influence portion size selection and satiation. 

Additionally following tasting there was no longer an effect of label information on 

these expectations. Recent studies have noted a stronger effect of sensory cues 

compared to label-based expectations on satiety responses (Chambers et al., 2013; 

McCrickerd et al., 2014b). This could be taken as evidence that orosensory experience 

provides a stronger cue than label effects (although it is worth noting that in study 4 

presently higher fullness ratings were generated by indulgent labels). Additionally, it 

has previously been demonstrated that consumers compare novel products to familiar 

versions in order to guide evaluations (Tuorila, Meiselman, Bell, Cardello, & Johnson, 

1994). It is plausible therefore that orosensory characteristics which can be linked to 

familiar products generate evaluations and behaviours according to existing schemas 

without requiring interpretation from label-based expectations (e.g. Peracchio & 
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Tybout, 1996). The influence of expectations on shifts in subsequent experience is often 

interpreted by an assimilation-contrast model (Hovland et al., 1957). This model 

suggests that when discrepancies between expectations and experience are small or not 

noticed evaluations shift in the direction of the prior expectation, but large, noticeable 

discrepancies result in shifts in evaluations in the opposite direction from the 

expectation. Presently, subtle rating shifts towards greater indulgent ratings (study 4) 

and towards greater healthiness ratings when congruently labelled (study 5) support an 

assimilation model. One possible mechanism for assimilation effects is that strong 

expectations and small or unnoticed discrepancies promote rapid, shallow processing of 

a stimulus (e.g. Kahneman, 2003; Zellner, Strickhouser, & Tornow, 2004) requiring 

little cognitive effort and thus leading to automatic adoption of the expectation (Geers & 

Lassiter, 1999). It is possible that for many of the ratings in the present studies 

expectations from the labels were weak (perhaps due to limited belief in their 

authenticity in a laboratory context) but those from the orosensory experience were 

strong. This might have dictated the use of an appropriate schema for guiding 

evaluations and behaviour based on orosensory characteristics rather than label 

information.  

The specific ability of healthiness expectations to modify product evaluations and intake 

behaviour was of interest to this thesis. Previous accounts have interpreted such effects 

as expressions of over-generalised beliefs regarding healthiness (Andrews et al., 1998; 

Carels et al., 2006; Schuldt et al., 2012; Schuldt & Schwarz, 2010; Brian Wansink & 

Chandon, 2006; Brian Wansink et al., 2004). The present data support these 

overgeneralisations through the finding that intake of a healthy beverage was 

underestimated. However in contrast to previous findings (Finkelstein & Fishbach, 

2010b; Provencher et al., 2009) these effects were not dictated by label information. 

Rather, they were dictated by the actual beverage type, suggesting that the orosensory 

experience guided these judgements. This again supports the idea that in familiar 

products, or those which can be related to familiar products (Tuorila, Meiselman, et al., 

1994), orosensory properties provide stronger cues than label information. However the 
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specific conditions in which this is the case merits further investigation, given that the 

laboratory may not be a context which generates strong beliefs in the authenticity of the 

labels. Nonetheless these intake underestimations could also be explained by the 

adoption of heuristic processing (Kahneman, 2003) as result of activation of appropriate 

schemas following the ‘healthy’ orosensory experience. For example even though the 

products were energy-matched participants may have used a schema which associated 

healthy products with low caloric content, despite inadequate information to make this 

judgement accurately based solely on the orosensory experience of the product. This 

heuristic processing offers an explanation for over-generalised healthy beliefs, activated 

in this case by orosensory experience rather than label information.      

Overall the studies in this thesis support an integrated approach to appetite control 

whereby orosensory cues can modulate nutrient-generated satiety responses when 

consumed in a real-world context, although the effects may be influenced by individual 

differences in restraint and disinhibition. Orosensory cues also exert a strong influence 

on cognitive processes involved in meal decisions and evaluations, such as 

overgeneralised healthy beliefs related to ‘healthy’ orosensory experience. Congruency 

of these cues with prior label information can lead to assimilation of expectations, 

although ultimately the orosensory experience may be more important in guiding food 

representations and appropriate intake behaviour. It is plausible that the strength of 

expectations generated by label information could influence the degree to which 

orosensory cues override label effects.    

6.3! Implications of findings for consumers 

One key aim of the present studies was to assess whether the enhanced satiety concept 

could be translated to genuine consumer benefits, and the extent to which health halos 

might be pitfalls for consumers navigating a food environment with an abundance of 

health-relevant advice. The implications of the present findings in a consumer context 

are discussed next.  
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6.3.1! Implications for enhanced-satiety product development and use 

The findings from the present studies 1-3 could be used to inform the design of satiety-

enhancing beverage products. Although in general the findings provided mixed support 

for the effects of sensory enhancements there were some nuances to previous findings 

that could be valuable insights into effective product development. Firstly, it is possible 

that intermediate energy loads (currently tested between 140 kcal – 205 kcal) may 

generate accurate compensation. This is based on finding no clear difference from 

perfect compensation presently in study 1, whilst high-energy equivalents generated 

clearly sub-optimal compensation. Overall the results of this study did not provide a 

clear picture of enhanced-satiety, and when compared between preloads there was no 

clear difference in compensatory response. Therefore, the findings should be treated 

with caution and a need for further substantiation. However, a recent systematic review 

demonstrated that compensation for solid and semi-solid preloads was greater for 

smaller energy loads (Almiron-Roig et al., 2013). Whilst the present research did not 

find a clearly stronger compensatory response for the smaller energy loads, these were 

less clearly different to perfect compensation. Thus this may indicate that when 

consumed in a sensory-enhanced context, small energy loads provide strong 

compensation in beverages too. Yeomans (2015) has noted that a common strategy for 

developing diet products is to match the sensory profile of minimally caloric products to 

rewarding, high-energy equivalents. This has previously been considered counter-

productive due to rebound effects (McCrickerd et al., 2014b; Yeomans & Chambers, 

2011). However the present data support the idea that strong compensation can be 

achieved in beverage products with intermediate energy contents. Therefore small 

energy additions could be considered an improvement to this current strategy. The 

present thesis considers it a possibility that optimal compensatory behaviour is observed 

for small energy additions to sensory-enhanced beverages. However this warrants 

further research to clarify the present unclear findings. 
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A clearer finding implicating product design and use was that the enhanced satiety 

concept has utility as a genuine consumer product. Study 2 demonstrated that the 

sensory enhancements are able to promote satiety in a home-consumer environment 

over repeated exposures. This is clearly an important step given that the less-controlled 

environment outside of the laboratory contains many additional cues which could affect 

intake in the ‘real-world’. For example potential influences on satiety responses that 

would typically be controlled in a laboratory setting include the presence of other 

people (Bell & Pliner, 2003; De Castro, 1990), distraction from television and computer 

games (Brunstrom & Mitchell, 2006; Higgs & Woodward, 2009; Oldham-Cooper et al., 

2011), lighting and music (Bellisle et al., 2004). Additionally this study required 

participants to prepare the test beverages themselves using a powder formulation. One 

initial concern here was that the powder ingredients would generate expectations that 

could pre-empt enhanced satiety effects, particularly given that the non-enhanced 

version contained a very similar volume of powdered ingredients to the enhanced and 

that perceived volume can influence expected satiety (Brunstrom, Collingwood, et al., 

2010). Additionally participants were required to add a commercially available juice to 

the powder. This particular juice was packaged in a container which claimed low sugar 

content. This may have countered enhanced satiety effects by generating low-caloric 

expectations (e.g. Crum, Corbin, Brownell, & Salovey, 2011; Wooley, 1972) or health 

halo effects (Chandon & Wansink, 2007; Finkelstein & Fishbach, 2010a; Provencher et 

al., 2009). However enhanced satiety prevailed based on the enhanced sensory profile of 

the beverage. Thus this study demonstrated that despite the home-consumer 

environment and a novel formulation of the beverages which required powdered 

ingredients and preparation by the consumers themselves the enhanced satiety concept 

may deliver satiety benefits outside of the laboratory. Products can therefore be 

designed which cater to consumer convenience and still deliver satiety benefits.  

On the other hand, study 2 also suggested that artificially thickened beverages are 

considered less palatable. The study demonstrated convincing evidence that the sensory-

enhanced preload was considered less palatable, as indicated by lower VAS 
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pleasantness ratings and also in the focus group discussions. Consumers here considered 

the idea of thickened products unpalatable, particularly with reference to the possibility 

of use with artificial thickening agents. This idea resonates with findings from Cardello 

(2003) who found that consumers rated products as less acceptable if they were told a 

novel production method had been used. Therefore the decreased acceptability of 

beverages with artificial ingredients could partly reflect expectation effects rather than 

direct sensory effects. However given that VAS pleasantness ratings also indicated 

lower pleasantness of the enhanced beverages considerable sensory testing may be 

required to create acceptable products with characteristics that promote satiety and are 

also palatable. Recent research has demonstrated that reducing the oil droplet size of 

emulsions, by processing them at a higher rotational shear mixing speed, increased 

palatability and ratings of creaminess as well as expected fullness (Lett et al., 2016). 

This demonstrates that manipulating foods’ sensory characteristics through processing 

methods rather than using additives can lead to satiety-relevant effects without 

compromising palatability. In the context of Cardello’s findings that novel food 

processing technologies are associated with lower palatability (Cardello, 2003) the 

marketing of the methods used to generate the sensory differences would need to be 

carefully considered. Additionally, the enhanced satiety concept relates to various cues 

that promote beliefs that a beverage is satiating. For example McCrickerd demonstrated 

that framing a beverage as satiating rather than thirst quenching increased satiety 

responses (McCrickerd et al., 2014b). This finding is supported by growing evidence 

that framing products as filling without changing actual sensory properties can increase 

their satiating potential (Capaldi et al., 2006; Crum et al., 2011; Pliner & Zec, 2007), as 

well as the findings from the present study 4 that assimilated indulgent information lead 

to greater fullness ratings. Therefore it is possible that manipulating beliefs in this way 

could also generate enhanced satiety effects without compromising palatability related 

to viscosity. However it is worth noting that the present studies 4 and 5 as well as 

previous studies (Chambers et al., 2013; McCrickerd et al., 2014b) suggest that 

orosensory cues are more effective than label information as satiety cues.      
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6.3.2! Implications for consumer experience 

A further implication of the present research regards the way consumers might 

experience the effects of orosensory and health label induced beliefs. Interestingly there 

was relatively little evidence in studies 1 and 2 that the different preloads generated 

differential appetite ratings, however this is most likely related to the unclear intake 

effects. However in study 2 where there was a clear effect of the sensory enhancement 

on subsequent intake this was reflected by higher subjective satiety ratings. This 

suggests that the influence of orosensory cues on satiety is tangible to consumers. This 

is important, particularly as one benefit of satiety is its ability to reduce hunger-related 

dysphoria (Hetherington et al., 2013). For consumers for whom this is the primary 

benefit of satiety it is clearly important that enhanced satiety is expressed not only in 

reduced intake but also in the subjective sensation of fullness, and the absence of 

hunger.  

Studies 4 and 5 explored the extent to which health-relevant labelling might influence 

sensory experience of beverages. Neither study found evidence that the health labels 

could influence sensory experience despite influencing expectations, although this was 

possibly due to the familiarity of the test products. Labelling did however influence 

abstract impressions of healthiness and indulgence when congruent with the orosensory 

experience. This suggests that consumers may experience abstract representations of 

healthiness more clearly when marketing strategies and product characteristics are 

congruent.    

6.3.3! Implications for product marketing 

The present findings also have implications for product marketing. One important 

finding of the present studies is that different groups of consumers are likely to 

experience the enhanced satiety concept differentially (study 3). This is particularly 

important given that study 2 found that consumers considered the concept to be useful 
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for dieters and those with limited time who require a fast, filling snack. Presently it was 

found that a population of those concerned about their dietary behaviour (attempting to 

restrict their intake) and with a propensity for disinhibition respond with more accurate 

compensation to non-enhanced preloads. This has implications for product marketing as 

it may be counter-productive to market enhanced satiety products to this population. 

However satiety has further-reaching benefits for consumers than only aiding 

maintenance of dietary rules, including reducing hunger-related dysphoria 

(Hetherington et al., 2013). It may perhaps be more fruitful to market enhanced satiety 

products as alleviating unwanted hunger effects for time-limited consumers, in the 

context of the present findings. However to the author’s knowledge there are no 

investigations of enhanced satiety in time-limited consumers. There are reasons to 

believe that time limiting factors could influence enhanced satiety effects. For example 

higher eating rate is associated with reduced satiety (Hogenkamp et al., 2010; Zijlstra, 

de Wijk, et al., 2009). Consumers with limited time may be more likely to consume 

products rapidly and thus experience reduced satiety. Additionally distraction while 

eating can limit satiety (Brunstrom & Mitchell, 2006; Higgs & Woodward, 2009; 

Oldham-Cooper et al., 2011). Again this may be more likely in time-limited consumers 

with multiple tasks to complete (for example whilst getting ready for work, or before a 

meeting). It is plausible therefore that time-limited consumers could experience satiety 

differently to those with sufficient time to avoid distraction and prolong eating rate. 

Whether this would influence sensory-enhanced satiety is unclear but warrants further 

investigation. Nonetheless, the present work does suggest that it would be problematic 

to market sensory-enhanced beverages to highly restrained consumers, if those 

consumers have a propensity to disinhibit.    

Additionally the findings from studies 4 and 5 explicitly explored one possible effect of 

product marketing – health halo effects. Generally these studies demonstrated that 

marketing materials were able to generate expectations of healthiness, satiety and 

sensory experience. However there were only subtle effects of the labels on post-taste 

ratings when experience was congruent. One explanation of these findings was that the 
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test products were familiar and therefore schemas for appropriate responses based on 

the sensory properties of the beverages drove evaluations rather than label-based prior 

expectations. This has two major implications for the role of product marketing. Firstly 

honest marketing may be more likely to generate desired effects (the products were 

considered healthier when labelled as such and oral experience was congruent). 

Meanwhile indulgent products were more filling when labelled and orally experienced 

as indulgent. In general this supports an assimilation model (Hovland et al., 1957), 

which may be important for generating enhanced satiety effects, and promoting 

perceived health benefits of beverages. Secondly, the present findings suggest that it is 

unlikely that label information is sufficient to generate intake effects or alter sensory 

experience alone, particularly if the oral experience of the products is familiar (or 

potentially if label expectations are weak). Therefore it may be possible to market 

health-benefits of products without risking unwanted overconsumption. More work is 

needed to establish exactly what oral experience is likely to generate health halo effects 

as it is likely that a combination of strong label-based health expectations and oral 

experience could lead to overconsumption. 

6.4! Methodological implications 

The present studies also hold implications for the methodology of future studies. The 

introduction to this thesis argued that in order to claim effects of ingestive behaviour 

studies as existing outside of the laboratory real world participants and contexts should 

be examined alongside laboratory studies. This contention is consistent with arguments 

previously made by Meiselman (Meiselman, 1992a, 1992b). The present studies’ 

findings also support this view given that they presented subtly different results to 

previous laboratory versions. Firstly, study 2 found that enhanced satiety effects 

endured following repeated exposures in a home-consumer context, whereas previously 

in the laboratory enhanced satiety has been found to diminish following exposure 

(Hogenkamp, 2014; Yeomans et al., 2014). Similarly, study 3 investigated previously 

reliable effects of enhanced satiety with relevant consumers (i.e. those likely to use such 
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products in the real world). The effects observed here were the reverse of previous 

enhanced satiety effects (Chambers et al., 2013; McCrickerd et al., 2014b; Yeomans & 

Chambers, 2011; Yeomans et al., 2014). In general the discrepancies between these 

laboratory findings with a homogenous group of consumers, and the present findings, 

support the contention that in order to generalise laboratory findings to the consumer 

domain careful selection of relevant populations and relevant contexts should be 

employed. One factor for consideration here is that highly restrained participants may 

be underrepresented in studies that are open to participants from across the entire range 

of restraint scores (see Paper 3). Samples which do not attempt to control for restraint 

are likely to under-represent restrained participants due to unwillingness to engage with 

food studies.    

Additionally a general point for consideration, as discussed throughout, is the 

identification of appropriate control groups for compensation values when 

hypothesising interaction effects. Presently we hypothesised that the enhanced sensory 

characteristics would increase satiety for the high energy beverage and decrease satiety 

for the low energy beverage. Therefore compensation scores could be expressions of 

either, or both, of these effects. As such when comparing compensation scores they 

represent satiety effects relative to preloads of the same sensory profile and comparison 

to beverages with a different profile is more problematic. For example identical intake 

following the enhanced and non-enhanced high energy preloads would show enhanced 

compensation for the enhanced version if intake of the low energy version was 

increased, as hypothesised. In the present studies compensations values calculated 

relative to both low energy preloads were provided for comparison. This demonstrated 

the highly differential effects that can be produced based on which control is used (in 

particular see study 3). The implication here is that there is no perfect control group to 

calculate relative compensation scores for enhanced satiety effects, and the scores 

should be considered with reference to the profile of the food which generated the score. 
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Finally the findings from studies 4 and 5 show clear differences between pre and post-

taste expectations ratings. Many studies of expectation and health-labelling effects do 

not consider these differences (e.g. Chandon & Wansink, 2007; Provencher et al., 2009; 

Schuldt et al., 2012; Sörqvist et al., 2015). In such situations it is not clear whether pre-

taste information influences the measured experience or behaviour, or whether this is 

more strongly related to post-taste expectations. It is suggested that to fully understand 

expectation effects measurements of pre and post-taste expectations should be 

measured.   

6.5! General limitations 

Specific limitations of each study are outlined in the relevant chapters. Here more 

general limitations of the present studies are outlined.  

The idea that satiety can be enhanced by the presence of orosensory cues is based on the 

idea that these cues operate by generating expectations and pre-ingestive feedback. One 

possible limitation relating to testing this theory is that rather than generating pre-

ingestive expectations the findings could be explained by post-ingestive effects. 

Specifically in order to generate viscosity tara gum, a soluble fibre, was added to the 

beverages. Several studies report a satiating effect of fibre, possibly through slowing 

gastric emptying rate (Slavin & Green, 2007). However some authors have attributed 

these findings to perceived increases in viscosity independently of actual fibre content 

(Juvonen et al., 2009; Vuksan et al., 2009), suggesting an expectation effect consistent 

with the present hypothesis. Therefore it is unclear whether the small doses of fibre used 

in the beverages in this thesis could have had a post-ingestive satiety effect independent 

of orosensory expectation effects. Additionally any independent effect of tara gum 

would also have influenced responses to the enhanced low-energy preloads. In the 

present studies which found differential satiety effects between preloads (study 2 and 3) 

satiety responses were not consistent with decreased intake of thickened low energy 
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preloads. Therefore if there is a post-ingestive effect of tara gum it is likely to interact 

with energy content.  

A further limitation of the present work is that macronutrient-specific effects were not 

considered. Much research has explored the differential roles of the macronutrients in 

generating satiety. For example protein is often considered the most satiating 

macronutrient (Westerterp-Plantenga & Lejeune, 2005). However presently the 

enhanced satiety studies used preloads with energy added as carbohydrate 

(maltodextrin). Previous versions of the sensory-enhanced satiety paradigm have used 

mixed carbohydrate-protein preloads (Chambers et al., 2013; Yeomans & Chambers, 

2011), although the effect has also been demonstrated using carbohydrate-based 

preloads (McCrickerd et al., 2014b; Yeomans et al., 2014) as in the present studies. One 

explicit comparison of viscosity and creaminess found equivalent satiety effects in high 

protein and carbohydrate beverage preloads (Bertenshaw et al., 2013). Therefore it is 

likely that these sensory characteristics generally enhance satiety across beverages of 

various nutritional compositions. There is however some evidence that sensory-cued 

satiety is macronutrient specific, with umami flavours improving satiety for protein-

based soup preloads (Masic & Yeomans, 2014). Therefore whilst it is possible that 

specific sensory characteristics could cue satiety for particular macronutrients, and 

satiety in general could be stronger for protein-based preloads, the present studies can 

only support this effect for carbohydrate-based preloads.          

Finally, in the final two studies of this thesis the effect of health beliefs, as generated by 

label information and sensory characteristics, on intake, appetite and sensory 

evaluations was measured. The results demonstrated some subtle assimilation effects 

when orosensory experience was congruent with prior beliefs but no effects on intake, 

appetite or sensory ratings. As discussed earlier, one factor which could influence the 

degree to which assimilation of expectations is likely is the strength of those 

expectations and the confidence in them (e.g. Cardello, 1994; Hovland, Harvey, & 

Sherif, 1957; Klaaren, Hodges, & Wilson, 1994; Zellner et al., 2004). Given that these 
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studies were conducted in an experimental laboratory with labels created by the 

researchers (rather than a professional marketing team) the strength and confidence of 

expectations may have suffered. Meanwhile several studies have demonstrated that the 

situation and perceived appropriateness of a food for the situation can influence product 

evaluations (de Graaf et al., 2005; Edwards et al., 2003; Meiselman et al., 2000). 

Together these ideas suggest that the laboratory may not provide the ideal context for 

assessing health halo effects. It is suggested that in exploring expectations generated by 

real-world relevant stimuli such as product labels a naturalistic context may be more 

appropriate given that it could influence confidence in expectations. In particular for the 

present studies the laboratory context could have attenuated the effects of expectations. 

We found that post-taste ratings tended to dictate product evaluations. Whether this 

findings would be equivalent using a more naturalistic context is unclear.  

6.6! Future directions 

Pertaining to sensory enhanced satiety there are a number of remaining questions, other 

than those already discussed. Here and elsewhere (Chambers et al., 2015) sensory-

enhanced satiety has been explained in part by the role of CPRs. These responses are 

generated by sensory modalities other than orosensory properties, such as sight, smell 

and the thought of food (Smeets et al., 2010). Similarly contextual information (i.e. that 

a beverage is filling rather than thirst-quenching) has been shown to influence satiety 

(McCrickerd et al., 2014b). Additionally, flavour is represented by converging inputs 

from multiple sensory and cognitive domains (Auvray & Spence, 2008; Parma, 

Ghirardello, Tirindelli, & Castiello, 2011; Spence, Levitan, Shankar, & Zampini, 2010; 

Spence, 2015; Zampini, Sanabria, Phillips, & Spence, 2007; Zampini, Wantling, 

Phillips, & Spence, 2008), suggesting that people use information from multiple sensory 

and cognitive domains to represent food stimuli. Together this evidence suggests that it 

is plausible that cues from multiple sensory modalities, beyond orosensory, could 

influence the enhanced satiety concept. It would be interesting to explore whether 

certain visual, olfactory or even auditory stimuli are able to predict satiating 
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consequences of foods and enhance the satiety delivered. Indeed, dining in the dark, 

thus removing visual cues, has been shown to reduce satiety (Scheibehenne et al., 

2010). Whether specific visual cues contribute to foods’ satiating consequences is 

unclear and warrants investigation.  

Conversely the present studies demonstrated the stronger influence of tasting than prior 

expectations on ratings of product attributes such as healthiness in studies 4 and 5. It 

would be interesting to see whether specific sensory characteristics are associated with 

healthiness, in terms of taste and other sensory modalities. The present study 5 found 

that that the healthy label was associated with lower levels of thickness, creaminess and 

sweetness. It would be interesting to see whether these specific properties are related to 

assimilation of health-labels and whether this influences health-halo type effects. 

Additionally it is plausible that stimuli from other sensory modalities could influence 

the evaluation of healthiness, and therefore the degree of perceived congruency with 

health information. For example colour may be important in generating representations 

of foods (see Shankar, Levitan, & Spence, 2010). Whether specific visual cues relate to 

the perceived healthiness of food products is unclear. This is a further potential avenue 

for future research which could identify and isolate characteristics from different 

sensory modalities which provide cues for healthiness, and explore the extent to which 

these integrate with orosensory experience to generate health halo effects. 

7! Conclusion 

This thesis indicates that consumers can benefit from orosensory satiety cues, even 

when self-prepared and consumed repeatedly in their own. However diet-concerned 

consumers may not benefit. This has implications for the development and marketing of 

satiety-relevant consumer products: it is clear that consumer satiety products could be 

produced, with some attention to avoiding compromising palatability, although diet-

concerned populations may not be an ideal market. Time-limited consumers are a 

potential target market for enhanced satiety, although the utility of sensory-enhanced 
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beverages in this population is yet to be studied. The extent of energy delivery required 

to achieve enhanced satiety effects remains unclear, although there was tentative 

evidence that smaller energy challenges are associated with greater intake adjustment. 

This requires clarification but is a potentially useful factor for designing satiating 

products with minimal caloric challenges. Finally label information which positioned 

products as healthy was able to generate expectations about healthiness, sensory 

characteristics and appetite, and this influenced healthiness ratings and appetite (an 

indulgent beverage was associated with higher fullness) when congruent. However 

overall these studies suggested that orosensory characteristics are stronger cues for 

health halo effects and intake decisions. Together these findings suggest strong effects 

of orosensory properties on appetite control and cognition associated with dietary 

behaviour, which is potentially useful for the design and marketing of appetite-relevant 

consumer products.  
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