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Summary 

Contemporary models of declarative memory state that when initially learned, all novel information 

is encoded by the hippocampal system before being consolidated or transformed to depend on 

neocortical structures subserving semantic memory. Based on observations with functional 

magnetic resonance imaging (fMRI), this thesis presents evidence that novel associations may be 

directly encoded by the semantic system in humans. While the hippocampus is often involved in 

information processing at the early stages of learning, the semantic system is seen to encode 

associative memory traces in the first instance (chapter 2). Furthermore, it is proposed that the 

hippocampus is not involved in learning when associative information is gradually accumulated 

across a series of ambiguous events. This is characteristic of cross-situational learning (xSL) which 

allows for the acquisition of word-object associations (i.e. nouns) during infancy. It is shown that 

xSL is not well accounted for by a prominent model of contextual learning - the temporal context 

model (chapter 3). Additionally, fMRI data suggest that neocortical structures rather than 

components of the hippocampal system are preferentially involved in xSL compared to traditional 

methods of training (chapter 4). Finally, it is suggested that rapid hippocampal learning 

mechanisms rely on specialised neuronal-microglial interactions. The administration of a microglial 

inhibitor (minocycline) was found to modulate hippocampal function and bias its use when other 

learning systems would have been more advantageous (chapter 5). Collectively, these findings 

suggest that the hippocampal system is specialised for rapidly encoding information that is 

explicitly provided, yet may not be recruited when associative information is collated across 

ambiguous events. At the same time, the neocortical semantic system may be able to learn new 

information at faster rates than previously thought. As such, it is hypothesised that amnestic 

patients may be able to acquire some forms of declarative material if presented in an 

appropriate manner. 
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Chapter 1 

General introduction 

1.1   The declarative memory hypothesis 

Humans possess a remarkable ability to quickly encode large amounts of information and access it 

on demand. Importantly, learning and memory functions are not unitary. Classic 

neuropsychological evidence highlights that different types of information are represented in 

memory by different brain systems. For instance, amnesia resulting from damage to the 

hippocampal system has been characterised as a strong dissociation between spared non-

declarative memory (e.g. procedural learning and priming) and impaired declarative memory 

(learning for consciously accessible information; Cohen & Squire, 1980). Observations such as 

these led to the declarative memory hypothesis. This states that the hippocampal system is 

specialised for encoding declarative material (Squire, Knowlton, & Musen, 1993). Critically 

however, the hypothesis postulates a time-limited role of the hippocampal system as it is clear that 

not all declarative information is continually represented by the region. Amnestic patients often 

show a temporal gradient to their memory dysfunction; memories for distant events are relatively 

intact compared to memories for more recent events (e.g. Squire, Slater, & Chace, 1975). 

Furthermore, whilst new vocabulary acquisition appears very difficult, patients with amnesia still 

retain premorbid levels of language function (e.g. Corkin, 1984). Given this, the declarative 

memory hypothesis suggests that while all declarative details are initially encoded by the medial 

temporal lobe (MTL), they eventually become independent of this system by a slow and gradual 

process of memory consolidation. 

1.2   System consolidation and memory transformation 

According to standard consolidation theory (SCT; McClelland, McNaughton, & O’Reilly, 1995; 

Squire & Alvarez, 1995), neocortical learning mechanisms are characterised by a slow rate of 

acquisition. As such, multiple repeated instantiations of a particular activation pattern are required 

to form stable memory traces. This is thought important as the neocortex is responsible for coding 

all accumulated knowledge and rapid learning would result in catastrophic interference - that is, the 

abolition of previously established memory traces (O’Reilly & McClelland, 1994; McClelland & 

Goddard, 1996). In place of rapid learning by the neocortex, the hippocampal system is thought to 

underpin an initial learning mechanism which quickly records a compressed form of neocortical 

activation patterns. During encoding, pattern separation processes within the hippocampus may 

act to avoid interference (see Yassa & Stark, 2011). SCT further suggests that compressed 

patterns coded by a hippocampal-neocortical ensemble may be repeatedly reactivated over long 
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periods (weeks to years). Each reactivation results in minor synaptic changes within the neocortex 

thereby enabling consolidation. Importantly, this process avoids catastrophic interference as 

neocortical patterns that could potentially interfere with one another are activated in an interleaved 

manner. Such interleaving means that overlaps between cortical patterns is adequately encoded 

rather than causing interference. 

Similar to SCT, the transformation hypothesis (TH) also states that hippocampally mediated 

memory traces gradually become independent of the hippocampus (Winocur & Moscovitch, 2011). 

However, when this happens, memories are stripped of their contextual detail becoming 

“schematized”. This transformation of memory structure is thought to occur because the 

hippocampus is specialised for coding contextually rich information while the neocortex represents 

information in a gist-like manner (Wiltgen & Silva, 2007; Winocur, Moscovitch, & Sekeres, 2007; 

Winocur, Frankland, Sekeres, Fogel & Moscovitch, 2009). As such, recalling mnemonic information 

with a contextual component (e.g. episodic recall) always requires the hippocampus since 

contextual details cannot be represented by neocortical structures alone. In support of this, 

amnestic patients do not always show a temporal gradient to their memory dysfunction, particularly 

when memory assessments involve contextual recall (e.g. Warrington & Duchen, 1992). 

The TH further states that when a hippocampal memory trace is reactivated, a new representation 

of that memory is formed by a distinct hippocampal-neocortical enable (so-called multiple trace 

theory; Nadel & Moscovitch, 1997). These multiple traces are thought to play an important role in 

memory transformation. Specifically, because multiple traces may code similar units of information, 

the process by which they form may result in the development of neocortical representations that 

are hippocampally independent. Furthermore, because memory traces relating to the same 

information are likely formed within different contexts, the neocortex may only encode information 

common across traces (i.e. the conceptual structure, or ‘gist’) while contextual details are 

disregarded. 

1.3   Schema-assisted learning 

As discussed above, SCT and the TH suggest that neocortical learning processes are slow, 

requiring hippocampal codes to be repeatedly re-activated before neocortical traces are fully 

formed. Recently however, evidence has emerged to suggest that the neocortex is capable of 

more rapid learning than previously thought. Tse et al. (2007) observed that when rats learn novel 

smell-location associations in a well-known environment, the newly learned associations become 

hippocampally independent within 24 hours. Furthermore, these rapidly consolidated associations 

did not require multiple learning instances - acquisition occurred during a single rewarded trial. This 

phenomenon has been termed “schema-assisted learning” and is where pre-existing knowledge 
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acts as a cognitive model (i.e. a schema) that facilitates fast neocortical acquisition. Although 

seemingly at odds with the aforementioned models, this finding can be incorporated into the pre-

existing consolidation framework. Specifically, when new information is consistent with pre-

established schemas, its encoding may not necessarily cause catastrophic interference meaning 

that neocortical learning can take place sooner (McClelland, 2013). Furthermore, the medial 

prefrontal cortex has been implicated in detecting schema-consistent information in aid of 

accelerated neocortical acquisition (van Kesteren, Ruiter, Fernandez, & Henson, 2010). As such, 

the critical role of the hippocampus in learning may be limited to the acquisition of information that 

is completely novel where no pre-established schema of relevance exists. 

1.4   Aims of this thesis 

1.4.1   Chapter 2 

While the declarative memory hypothesis appears well suited to account for amnesia, the model 

suffers a major pitfall. Specifically, it lacks a high degree of specificity and predictive power as the 

concept of “declarative memory” is poorly defined. It is often found that learning which may fit this 

general label need not depend on the hippocampus at all. For example, while trace conditioning in 

rodents is sensitive to hippocampal damage, delay conditioning is not (Thompson & Kim, 1996; 

McEchron, Bouwmeester, Tseng, Weiss & Disterhoft, 1998; Clark et al., 2002). Despite this, it is 

not clear why the former should be more declarative than the latter. Other models have attempted 

to provide more specific definitions regarding the types of information that the hippocampal system 

is critical for. These include the relational memory hypothesis which suggests that the 

hippocampus is specialised for coding associative relationships between separate items (Cohen & 

Eichenbaum, 1993; Eichenbaum, Otto & Cohen, 1994). Additionally, the dual-process model of 

MTL function suggests that the hippocampus underpins episodic recollection which supports the 

retrieval of contextual details (Aggleton & Brown, 1999, 2006). While these more specific construct 

definitions represent an improvement over the declarative memory hypothesis, they too encounter 

problems associated with a lack of specificity. Not all relational learning or recollective memory 

processes are found to be critically dependent on the hippocampus (e.g. Saksida, Bussey, 

Buckmaster, & Murray, 2007; Cipolotti et al., 2006). 

An alternative approach to the characterisation of hippocampal function is to define the precise 

contribution of the region in operational terms - that is, definitions stipulating the differences 

between tasks that necessarily require the hippocampus, and tasks that do not. In doing so, 

hypotheses founded on this approach offer greater specificity and predictive power. One such 

attempt was made by Rudy and colleagues who posited that the hippocampus forms a vital part of 

the configural learning system (Sutherland & Rudy, 1989; Rudy & Sutherland, 1995). Configural 
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memories are defined as representations that bind separate and distinct stimulus elements in 

memory to form a unique stimulus array. Importantly, they contrast with elemental (or featural) 

memories which simply code for the occurrence of a single item. As such, tests of configural 

learning have the defining property that they cannot be subserved via elemental means (that is, by 

simply learning the significance of single items). In operational terms, this entails learning that a 

given stimulus is predictive of an event (e.g. reward) when it occurs in some circumstances (e.g. 

the presence of an accompanying stimulus), but not others. 

Initially, lesion studies in rats provided some evidence in favour of the configural hypothesis by 

showing that hippocampal damage produces a dissociation between spared elemental and 

impaired configural learning (e.g. Alvarado & Rudy, 1995). However, it was also found that both 

animals and humans with hippocampal lesions can sometimes acquire configural tasks at normal 

rates (Gallagher & Holland, 1992; Barense et al., 2005). One study even showed that hippocampal 

damage can actually aid configural learning by reducing proactive interference from competitor 

contingencies (Han, Gallagher, & Holland, 1998). Given this, the hypothesis that configural 

learning depends on the hippocampus is now considered falsified. More recent investigations have 

implicated the perirhinal cortex as the critical structure underpinning configural learning (Bussey, 

Saksida & Murray, 2002; Saksida, Bussey, Buckmaster & Murray, 2007; Eacott, Machin, & Gaffan, 

2001). Furthermore, it has been suggested that the hippocampus is specialised for a particular 

class of configural learning referred to as structural learning (Aggleton, Sanderson & Pearce, 

2007). More than simply representing the conjunction of stimulus features, structural memory 

codes specify the spatial or temporal arrangement of stimuli. As such, tests of structural learning 

require discriminating stimuli composed of the same elemental features that are ordered distinctly 

in space or time. Some initial evidence for this structural hypothesis has been provided from 

studies in rodents (Sanderson, Pearce, Kyd & Aggleton, 2006), However, no formal tests have 

been conducted in humans. As such, the experiment in chapter 2 used fMRI to investigate how 

structural learning is underpinned by the brain in comparison to configural learning that does not 

have a structural component. 

1.4.2   Chapters 3 and 4 

While SCT is able to account for rapid neocortical learning in the context of a pre-established 

schema, there is evidence to suggest that learning completely novel associations can take place 

independently of the hippocampal system altogether. Patients with developmental amnesia (i.e. 

having hippocampal damage at birth) are able to acquire semantic knowledge sufficient to support 

normal levels of language function (Martins, Guillery-Girard, Jambaqué, Dulac, & Eustache, 2006; 

Vargha-Khadem, Gadian, & Mishkin, 2001). Furthermore, patients with acquired amnesia are able 

to learn new labels for unfamiliar shapes when the labels are decided on through collaborative 
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discussion (Duff, Hengst, Tranel & Cohen, 2005). Recently, it has been suggested that an 

incidental learning procedure termed “fast mapping” (FM) may be particularly able to elicit 

hippocampally independent semantic learning (Sharon, Moscovitch & Gilboa, 2011). 

On each trial of the FM procedure, two objects or animals are simultaneously presented, only one 

of which is previously known. Participants are then asked a simple yes/no question regarding the 

visual appearance of one of these items. If the question refers to the unknown stimulus by name, 

the name-item association must be deduced in order to respond (Carey & Bartlett, 1978; see 

Figure 1-1A). Sharon et al. reported that four amnestic patients with hippocampal system damage 

were capable of learning novel word-referent associations via FM and retaining them over the 

course of a week. At the same time, these patients were severely impaired at learning other word-

referent associations using standard learning instructions. As a result, it was proposed that FM 

may be a direct route to neocortical semantic learning that is independent of the hippocampus - 

perhaps because the novel association is learned in the context of a previously known association. 

Despite the findings by Sharon et al., at least two attempted replications have failed to find any 

evidence that learning via FM is spared in amnesia (Smith, Urgolites, Hopkins & Squire, 2014; 

Warren & Duff, 2014). Additionally, Greve, Cooper and Henson (2014) have reported that healthy 

adults with reduced hippocampal volume do not exhibit a relative sparing of FM when compared to 

standard associative learning techniques. In light of this, it seems unlikely that FM is sufficient to 

induce neocortical learning independent of the hippocampus. Nevertheless, 16 month old infants 

can use FM to rapidly acquire word-object associations despite not having a fully developed 

hippocampal system (Friedrich & Friedrich, 2008; Bauer, 2008). This observation formed part of 

the original motivation for testing FM in amnesia. However, while infants are indeed able to deduce 

novel associations through FM, even 24 month olds exhibit very poor rates of retention for delays 

as little as 5 minutes (Horst & Samuelson, 2008). This raises the possibility that other learning 

procedures that operate in infancy may be better suited to evoke neocortical learning as long as 

they confer higher rates of retention. One learning procedure with such a potential is known as 

cross-situational learning (xSL; see Yu & Smith, 2007). 

Like FM, xSL involves acquiring associations that are not explicitly given but must be extracted by 

the learner. On each xSL trial, multiple unknown word-object pairs (typically 3 or 4) are presented 

simultaneously (see figure 1-1B). Because of this, there is a high degree of “referential ambiguity” 

regarding the correspondences between words and objects. However, trials are constructed so 

that each word-object pair is repeatedly presented, each time alongside different non-

corresponding stimuli. As such, learners may be able to extract the word-object co-occurrences 

across trials in order to infer the underlying mappings. Investigations have shown that adults (Yu & 
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Smith, 2007), and 12 month old infants (Smith & Yu, 2008) can quickly acquire multiple word-

object associations via xSL. Additionally, this learning method is known to support the acquisition 

of one-to-many and many-to-many mappings which are the basic cognitive structures necessary to 

support linguistic categories (Gangwani, Kachergis & Yu, 2010). Given this, xSL has been 

implicated as a primary route to semantic memory formation in infancy. 
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Figure 1-1. Examples of fast mapping (FM; panel A), and cross-situational learning (xSL; panel B). 

During FM, two objects (or animals) are simultaneously presented, only one of which is known by 

name. A yes/no question is then posed. If the question refers to the novel object by name, the 

object-name association must be deduced in order to respond. This can lead to incidental learning 

(see Carey & Bartlett, 1978). During xSL, each study instance (or situation) simultaneously 

presents two or more unknown objects alongside their corresponding names. Since each object is 

unknown, there is referential ambiguity regarding the object-name mappings. However, each 

learning instance will tend to present object-name pairs in the context of different, non-

corresponding stimuli. Learners can therefore extract the object-name mappings by tracking co-

occurrences across trials (see Yu and Smith, 2007).  
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Importantly, xSL differs from FM in that it requires associative information to be maintained across 

study events and involves more demanding inference operations. Due to this greater processing 

demand, xSL is likely to result in higher rates of long-term retention for the inferred mappings. 

Since it is also thought to play a role in semantic memory formation by infants, we hypothesised 

that xSL may offer a direct route to neocortical learning that is independent of the hippocampus. As 

noted above, current models suggest that the neocortical system learns by abstracting statistical 

regularities across multiple hippocampal traces (Winocur & Moscovitch, 2011). One reason why 

xSL may engage neocortical learning mechanisms directly is that it requires approximately tracking 

co-occurrence information in a statistical manner (see Kachergis, Yu & Shiffrin, 2012a/b). 

Furthermore, because xSL involves a high degree of referential ambiguity, individual study events 

convey a relatively small amount of referential information which the hippocampus may not be 

suited to encode. 

In chapter 3, we first examined whether a model of hippocampal associative learning is able to 

account for performance during xSL. Specifically, we tested a behavioural prediction regarding the 

way in which word-object co-occurrence information is accumulated as described by the temporal 

context model (TCM; Howard & Kahana 2002; Howard, Fotedar, Datey, & Hasselmo, 2005; 

Howard, 2004). If this prediction is found to be accurate, it would constitute good evidence that xSL 

is not independent of the hippocampus. In chapter 4, we examined the brain regions involved in 

xSL using fMRI. Participants were scanned as they acquired word-object associations through the 

learning procedure. Learning rates were tracked with intermittent test trials in order to identify brain 

regions showing increases in activity corresponding to information acquisition. 

1.4.3   Chapter 5 

Regardless of whether associative information can be learned in the absence of hippocampal 

function, amnesia clearly demonstrates that the hippocampus draws on specialised mechanisms 

for rapid encoding. This leads to the question of what particular processes in the hippocampus 

enable rapid synaptic changes. Recently, immune functions within the brain have been implicated 

in underpinning learning and memory operations (Yirmiya & Goshen, 2011). In particular, microglia 

are thought to regulate long-term potentiation/depression (LTP/LDP; Zhong et al., 2010) and adult 

neurogenesis (Ekdahl et al. 2009), both of which are believed to be critical for pattern separation 

operations and synaptic plasticity (Yassa & Stark, 2011; Deng et al., 2010; Leuner & Gould, 2010). 

In support of this, peripheral inflammation (which modulates microglial function) is known to impair 

hippocampally dependent memory while leaving other learning systems unaffected (Harrison, 

Doeller, Voon, Burgess, & Critchley, 2014). However, peripheral inflammation affects many 

immune cells within the brain (e.g. astrocytes; Carson, Thrash, & Walter, 2006) and also increases 
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the concentration of immunological signalling proteins (cytokines; Woodroofe, 1995). Because of 

this, it remains unclear whether the influence of inflammation on memory really reflect altered 

microglial function. 

In chapter 5 we investigated whether a pharmacological manipulation of microglial activity was 

sufficient to induce selective changes in hippocampal memory function. Minocycline is an antibiotic 

known to inhibit the activity of microglia via mechanisms distinct from its antimicrobial action 

(Hinwood et al., 2012; He, Appel, & Le, 2001; Sriram, Miller, & O’Callaghan, 2006). We 

hypothesised that microglial inhibition by minocycline would result in selective changes in 

hippocampal function as measured behaviourally and using fMRI. 
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Chapter 2 

Configural learning in the human brain 

2.1   Abstract 

Configural learning entails forming a conjunctive representation of features. Structural learning, a 

configural learning subtype, additionally specifies the temporal or spatial arrangement of features. 

These processes are thought to be critical to the formation of episodic memories that link multiple 

mnemonic elements into a contextually rich memory code. While non-structural configural learning 

may be subserved by the perirhinal cortex, lesion studies in rodents suggest that structural learning 

is dependent on the hippocampus. However, as yet, this hypothesis remains to be adequately 

tested in humans. We used event-related fMRI to investigate the brain regions involved in 

structural and non-structural configural learning. Fifteen right-handed participants engaged in a 

virtual reality trial-and-error learning task with spatial-structural and non-structural trials. The 

inferior temporal lobes (bilaterally), left angular gyrus and basal forebrain (bilaterally) all exhibited 

monotonic increases in BOLD activity alongside both structural and non-structural memory 

acquisition. Contrary to predictions, no areas within the medial temporal lobes (including the 

hippocampus and perirhinal cortex) exhibited similar effects or the predicted learning effects for 

structural trials alone. Nonetheless, a multi-voxel pattern analysis indicated that the hippocampal, 

parahippocampal, perirhinal, and entorhinal cortices did contain trial relevant information both 

before and after learning had taken place. Furthermore, the strength of this information predicted 

subsequent behavioural performance towards the end of the task. Finally, in a test of discrimination 

transitivity (i.e. generalisation) for the structural associations, behavioural performance positively 

correlated with BOLD activity in the right posterior hippocampus. Taken together, these findings 

suggest that humans rapidly encode configural information into neocortical semantic areas. As well 

as being involved in visually processing such information prior to acquisition, the hippocampus may 

reintegrate learned configurations when generalising between them. 
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2.2   Introduction 

Configural learning is a fundamental process supporting the formation of episodic memories. It 

entails binding separate and distinct mnemonic elements in memory to form conjunctive 

representations of sensory features (Sutherland & Rudy, 1989). Importantly, this contrasts with 

featural learning which simply requires encoding information about single items. As such, tests of 

configural learning require discriminating stimuli that share elemental features (e.g. stimuli 'AB' and 

‘CD’ are rewarded, but 'AC' and ‘BD’ are not). Structural learning, a sub-type of configural learning, 

additionally specifies the spatial or temporal arrangement of features in a configuration (Aggleton, 

Sanderson & Pearce, 2007). As such, tests of structural learning require discriminating stimuli 

composed of the same elements that are ordered distinctly in space or time (e.g. stimulus ‘XY' is 

rewarded but 'YX' is not). 

The perirhinal and hippocampal cortices may be principally responsible for coding non-structural 

and structural configurations respectively (Saksida & Bussey, 2010; Aggleton, Sanderson & 

Pearce, 2007). Perirhinal damage impairs non-structural configuration learning but not structural 

learning (Bussey, Saksida & Murray, 2002; Aggleton, Albasser, Aggleton, Poirier & Pearce, 2010). 

In contrast, damage to the hippocampus of rats has been observed to elicit the opposite 

dissociation, impaired structural but not non-structural learning (Sanderson, Pearce, Kyd & 

Aggleton, 2006). Additionally, various lines of evidence further implicate the hippocampus in 

generalising across previously learned configural contingencies, e.g. transitively inferring 

associations that were not explicitly trained (e.g. Eichenbaum, 1999; DeVito, Kanter, Eichenbaum, 

2010; Aggleton et al., 2007). 

Despite this evidence, the contribution of each medial temporal lobe (MTL) subregion to configural 

learning and generalisation remains controversial. Some investigations have failed to find any 

configural learning deficits in rodents with perirhinal damage (Davies, Machin, Sanderson, Pearce 

& Aggleton, 2007). Furthermore, the findings from studies of humans are also mixed. For example, 

Kumaran et al. (2007) found that hippocampal damage disrupted all forms of configural learning. 

However, other studies suggest that if stimuli are sufficiently meaningful, configural learning can be 

supported by neocortical structures associated with semantic memory, even in the context of 

hippocampal amnesia (Moses, Ostreicher, Rosenbaum & Ryan, 2008; Moses et al., 2009). 

While information that is consistent with pre-existing semantic knowledge may be assimilated 

relatively quickly (Tse et al., 2007; McClelland, 2013), prominent models suggest that neocortical 

learning for completely novel information occurs much more gradually (McClelland, McNaughton, & 

O’Reilly, 1995). In particular, multiple repeated instances of an activation pattern are thought 

required to form stable synaptic changes in the neocortex. Nonetheless, it remains unclear 
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precisely how quickly neocortical learning can take place for novel configurations. Furthermore, 

while the hippocampus may be involved in mnemonic generalisation, there has been much debate 

concerning how this process is underpinned. Some accounts suggest that the hippocampus 

principally acts to encode generalised memory representations at the point of encoding (e.g. 

Howard & Kahana, 2002). In contrast, other accounts suggest that the hippocampus pattern 

separates representations at encoding and then engages in ‘on-the-fly’ generalisation processes at 

the point of retrieval (e.g. Kumaran & McClelland, 2012). 

Using event-related fMRI in humans, we aimed to identify the brain regions involved in structural 

and non-structural configural learning and generalisation. Participants learned structural and non-

structural contingencies (termed structural- and transverse- patterning respectively) for novel 

stimuli via a trial-and-error task. Performance was analysed with a state-space smoothing 

algorithm to produce learning curves of each configural sub-type (Smith et al., 2004). Learning-

curve information was then used to identify brain regions showing monotonic increases in activity 

indicative of greater involvement at retrieval. Additionally, using a multi-voxel pattern analysis 

(MVPA), we probed whether regions of the MTL exhibited distinct BOLD patterns to structural and 

non-structural stimuli at various stages of learning. The presence of distinct BOLD patterns would 

indicate that a region is representing some form of stimulus specific information and is thus is 

functionally involved in the task. Finally, an inference test for the structural configurations was 

administered to reveal areas involved in configural generalisation. 
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2.3   Methods 

2.3.1   Subjects 

Twenty-three right-handed students were recruited from the University of Sussex (UK) by way of 

online advertisement. All gave written informed consent to take part and were compensated for 

their time. Subjects had either normal or corrected-to-normal vision and reported no history of 

neurological or psychiatric illness. Of those who participated, 8 did not exhibit sufficient levels of 

learning to be included in analyses with the remainder of the sample (see Data Analysis section 

below). As such, analyses reported here used data from 15 subjects (7 male) with a mean age of 

23.8 years (SD = 4.14). The study was approved by the Brighton and Sussex Medical School’s 

Research Governance and Ethics Committee. 

2.3.2   In-scanner Task 

A forced-choice trial-and-error learning task was developed to concurrently probe structural and 

non-structural configural learning. Unreal Development Kit (Epic Games, 2012) was used to 

generate a number of unique scenes within a first-person virtual reality environment (see 

Figure 2-1 for examples). On each trial, one of these scenes was presented displaying two 

buildings positioned equidistantly from a start location. One building concealed a pile of virtual gold 

(reinforcement) and the only features that predicted the rewarded location were the wall textures 

rendered onto the towers of each building. In total, six different wall textures were used and these 

were combined to form 6 binary concurrent discriminations; 3 non-structural configural and 3 

structural (see Figure 2-1). Importantly, each rewarded texture combination was rendered onto the 

left and right buildings an equal number of times. This ensured that the use of non-target strategies 

(e.g. relying on the absolute rather than the relative locations of wall textures) would not result in 

above chance performance. 

A schematic illustration of the experimental procedure is shown in figure 2-2. All trials started with 

the presentation of a still image taken at a scene’s start location for a maximum of 3 seconds. 

During this time subjects were required to select the building they believed contained the gold via a 

left/right button press (decision period). Immediately following a response, a 5 second animation 

was played depicting the subject approaching their chosen building and opening its central door to 

reveal whether or not it contained gold (feedback period). If no response was made within the 3 

second response window, a 5 second red fixation cross was shown in place of the feedback video. 

Subsequently, a variable (uniformly distributed) inter-trial interval (ITI) occurred for between 300 

and 1300 ms. 
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In all, the task consisted of 144 structural and 144 non-structural trials with each discrimination 

listed in Figure 2-1 being repeated 48 times. Additionally, 24 non-memory control discriminations 

were included (location of gold visible at trial onset). All trials progressed in a semi-random 

permuted block structure where no more than 8 trials of any one type occurred consecutively. This 

design was chosen to provide an effective trade-off between BOLD signal estimation and detection 

(see Liu, 2004). Finally, 12 ‘transitivity trials’ were run to tap cross-discrimination integration of the 

structural contingencies. Here, the texture combinations used in structural trials were rearranged to 

produce discriminations between rewarded and unrewarded combinations that had not been 

previously paired together (see figure 2-3; note: this could not be done with the non-structural 

discriminations since every possible stimulus pairing was explicitly trained). As such, these trials 

involved the generalisation of stored memory representations that had been previously learned in 

parallel. All experimental periods were carried out in the scanner. Prior to scanning, participants 

were briefed on the experimental procedure but were not given any details regarding the number 

or type of discriminations that they would be required to learn. Instead, they were simply told that 

(excluding control trials) the wall textures were the only features that predicted reward. 
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Figure 2-1. Left: Examples of the virtual-reality reality environment on non-structural (top) and 

structural (bottom) trials. Right: Lists of the configural contingencies and wall texture used in the 

task. Each row of the contingency list corresponds to a unique discrimination and vertical bars 

(i.e. |) indicate spatial arrangements (“X | Y” = “X” to the left of “Y”). The “+” column denotes wall 

texture combinations that were rewarded while the “-” column denotes wall texture combinations 

that were unrewarded. Note: Each rewarded texture combination was rendered onto the left and 

right buildings an equal number of times. 

 

 

Figure 2-2. Structure of each trial. 
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Figure 2-3. Transitive inference discriminations. 

 

2.3.3   MRI Acquisition 

All images were acquired in a 1.5 Tesla Siemens Avanto scanner equipped with a 32-channel 

phased array head coil. During the task, gradient-echo T2*-weighted scans were acquired using 

echo-planar imaging (EPI) recording 34 axial slices (approximately 30° to AC-PC line; ascending 

interleaved) and the following parameters; TR = 2520 ms, TE = 43 ms, flip angle (FA) = 90°, slice 

thickness = 3 mm, inter-slice gap = 0.6 mm in-plane resolution = 3 x 3 mm & acquisition matrix = 

64 x 64. To allow for T1 equilibrium, the first 5 EPI volumes were acquired before the task started 

and then discarded. A field map scan was also acquired to correct inhomogeneity-based 

distortions (see Image Preprocessing section below). Finally, for purposes of coregistration and 

image normalisation, a whole-brain T1-weighted structural scan was acquired with a 1mm³ 

resolution using an MP-RAGE pulse sequence. 

2.3.4   Image Preprocessing 

Image preprocessing was performed in SPM8 (www.fil.ion.ucl.ac.uk/spm) and using custom written 

code in MATLB. First, each subject's EPI volumes were corrected for inter-slice acquisition delay 

and spatially realigned to the first image in the time series. At the same time, images were 

corrected for field inhomogeneity based geometric distortions (as well as the interaction between 

motion and such distortions) using the Realign and Unwarp algorithms in SPM (Andersson et al. 

2001; Hutton et al. 2002). For the univariate analyses, EPI time series data were warped to MNI 

space with transformation parameters derived from the structural scans (using the DARTEL 

toolbox; Ashburner, 2007). Subsequently, the EPI volumes were spatially smoothed with an 

isotropic 8 mm FWHM Gaussian kernel prior to GLM analysis. For the MVPA, data were not 

normalised or smoothed but were detrended with motion parameters and a vector coding for drift in 

http://www.fil.ion.ucl.ac.uk/spm
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the MR signal (computed as mean white matter intensity after voxel-wise z-scoring). Prior to MVPA 

classifier training/test, volumes acquired when the structural/non-structural decision period HRF 

was above 40% of maximum were averaged together and z-scored producing a single input 

volume per trial. This threshold guaranteed there to be at least two EPI volumes per trial that could 

be averaged together. 

2.3.5   Data Analysis 

2.3.5.1   Behavioural data 

Behavioural outputs were reaction times and binary correct/incorrect responses for each trial. 

Trials were coded as incorrect when no response was made within the 3 second response window. 

Responses to experimental trials were separated into two ordered binary strings according to trial 

type (i.e. non-structural and structural). These were then converted into learning curves giving trial-

by-trial estimates of memory strength using a logistic regression algorithm developed by Brown 

and colleagues (Smith & Brown, 2003; Smith et al., 2004; and as used by Law et al. 2005). Here 

learning curves are defined as the probability of a correct response (pC) as a function of trial 

number and are estimated by a state-space smoothing algorithm using expectation maximization 

to compute a maximum likelihood estimate of the learning curve along with its associated 

confidence intervals (see figure 2-4 for an example). All subjects selected for analysis produced 

learning curves demonstrating a highly significant and persistent level of memory acquisition that 

was similar for both structural and non-structural contingencies (i.e. the lower 95% confidence 

bound of each learning curve exceeded chance level [pC = 0.5] for at least 50 trials). For purposes 

of analysing the imaging data, trial-by-trial learning curve statistics were then categorised into one 

of three memory strengths relative to chance level - Str1 (pC ≤ 33% of max), Str2 (pC between 

33% and 66% of max), and Str3 (pC ≥ 66% of max) – similar to Law et al. (2005). 

2.3.5.2   Analysis of univariate BOLD activations 

For the univariate analyses, first-level general linear models of the fMRI data were produced. 

These separately modelled the decision periods of structural and non-structural trials for each level 

of memory strength. Additionally, the decision periods of control and transitivity trials were included 

as their own event types. Separate regressors modelling periods of feedback for each type of 

decision were also included in the model but were not analysed. As well as HRF amplitude 

estimates, temporal and dispersion derivatives pertaining to all of these periods were modelled. 

Nuisance regressors included motion parameters and a vector coding for drift in the MR signal. To 

examine group-wide BOLD differences as a function of structural and non-structural learning, a two 

factor model was generated at second-level. Here, the HRF amplitude estimates of structural and 

non-structural trials for each memory strength were entered into a 3x2 repeated measures ANOVA 
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(factor 1: memory strength; factor 2: trial type). Further to this, HRF amplitude estimates of the 

transitivity trials were correlated with participants’ behavioural performance on these trials (i.e. 

proportion correct) in a between-subject linear regression analysis (note: for these transitivity 

analyses, data from one participant had be excluded due to problems with fMRI data acquisition 

during the generalisation test). 

Based on our strong a priori hypotheses that effects of interest would be observed in the medial 

temporal lobes, a region of interest (ROI) encompassing the hippocampal, parahippocampal, 

perirhinal and entorhinal cortices was generated by combining binary masks of these structures 

(Tzourio-Mazoyer et al., 2002; Holdstock et al., 2009). Within this ROI, reported activations survive 

an uncorrected height threshold of p < .001 and a spatial extent threshold of 5 contiguous voxels 

(135 mm3). We also report activations that survive a map-wide height threshold of p < .001 

(uncorrected) and a spatial extent threshold of 30 contiguous voxels (810 mm3). Where fMRI 

activations are plotted graphically, percent signal change was calculated by scaling beta estimates 

with the corresponding GLM regressor heights, and normalising the resultant values with the 

constant term (as implemented in the MarsBaR toolbox; Brett, Anton, Valabregue & Poline, 2002). 

2.3.5.3   Multi-voxel pattern analysis 

For the MVPA, an equal number of structural and non-structural input volumes were generated (as 

described above) for memory strengths Str1 and Str3. Data from Str2 were not used as this 

category contained too few trials (commonly less than 20). To examine whether multivariate BOLD 

patterns within distinct MTL subregions could significantly discriminate the two trial types, input 

volumes were separately masked with bilateral hippocampal, parahippocampal (Tzourio-Mazoyer 

et al., 2002), perirhinal (Holdstock et al., 2009) and entorhinal (Maldjian, Laurienti, Kraft & Burdette, 

2003) ROIs that had been warped to native space for each subject. Subsequently, for Str1 and 

Str3 data separately, input patterns were grouped into 5 equally sized chunks. Following a t-test 

based feature selection (p < .05), these chunks were then entered into 5 N-minus-1 training-test 

iterations (4 chunks for training, 1 chunk for test) using an SVM classifier running in the Princeton 

MVPA toolbox (csbmb.princeton.edu/mvpa). Classifier performance was then taken as the mean 

classification accuracy across the five iterations. To ensure that above chance classifier 

performance actually depended on differential BOLD patterns rather than some arbitrary property 

of the ROI under test, we performed a control MVPA analysis. This was run in the same way as 

discussed above except that the trial type labels (i.e. non-structural vs structural) for data in the 

training set were randomly shuffled prior to each training-test iteration. 

http://www.csbmb.princeton.edu/mvpa
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2.3.5.4   Bayesian methods 

Where statistical tests are non-significant and the absence of an effect is of theoretical interest, we 

report the results of follow-up a Bayesian analysis as described by Masson (2011). This tests the 

relative strength of evidence in favour of the null hypothesis (H0) compared to the alternative 

hypothesis (H1) by computing a Bayesian information criterion (BIC). The BIC statistic is calculated 

by contrasting the total variance in the data against the variance accounted for by the effect of 

interest. In comparison to other Bayesian methods (e.g. Dienes, 2011), this has the advantage that 

a prior expectation regarding the size of the effect need not be specified. Both H0 and H1 are 

assumed to be equally likely a priori. 

 

 

Figure 2-4. An example learning curve displaying trial-by-trial pC estimates along with associated 

confidence intervals. 
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2.4   Results 

2.4.1   Behavioural data 

To quantify the peak level of behavioural performance achieved by each subject, maximum pC 

statistics (max_pCs) were taken from both structural and non-structural learning curves. Despite 

structural trials being more computationally demanding, the numerical difference in max_pCs 

between trial types did not reach significance; t(14) = 1.875, p = .082. However, the correlation 

between structural and non-structural max_pCs was highly significant; r(13) = .779, p < .001, 

indicating that levels of performance across trial types were strongly related. 

Reaction times to correct responses as a function of memory strength and trial type are displayed 

in figure 2-5. A 3x2 (‘memory strength’ x ‘trial type’) repeated-measures ANOVA revealed a trend 

towards a main effect of memory strength; F(2,28) = 2.841, p = .075. Closer examination of this 

reveals that mean reaction times to Str1 and Str2 trials were fairly similar and then dropped in Str3. 

This pattern is consistent with previously reported data (Law et al, 2005) and suggests more rapid 

processing once memory codes had been fully formed. Given the small size and nonlinear nature 

of this effect, and that reaction times decreased in the condition where BOLD signals are predicted 

to be strongest, any observed learning effects in the fMRI data that follow the predicted pattern are 

highly unlikely to be the results of differences in reaction time. 

The ANOVA further revealed a strong main effect of trial type, F(1,14) = 28.231, p < .001, 

indicating greater processing times to structural trials (mean difference = 209 ms). Importantly 

however, there was no significant memory strength by trial type interaction; F(2,28) = 0.049, 

p = .952, and a Bayesian analysis revealed substantially more evidence in favour of the null 

hypothesis for this interaction term; p(H0|Data)  = .936. Again, this suggests that the predicted 

interactions between trial type and memory strength are unlikely to be the results of differences in 

reaction time. Furthermore, the result suggests that as structural and non-structural memory codes 

gradually form, differential processing times in memory activation do not emerge. It therefore 

follows that the greater response latencies for structural trials are reflective of differences in 

processing occurring before learning has taken place (i.e. at the level of visual encoding rather 

than at the level of memory activation). 
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Figure 2-5. Reaction times to correct responses grouped by memory strength and trial type. Errors 

bars indicate 95% confidence intervals corrected for the within subject-error term. 

 

2.4.2   Univariate imaging results 

2.4.2.1   Main effect of memory strength 

The 3x2 repeated-measures ANOVA on the imaging data initially revealed a wide range of brain 

regions demonstrating a main effect of memory strength (suprathreshold activations listed in table 

2-1). Examination of model parameter estimates showed the majority of these regions (but not the 

left angular gyrus, left inferior temporal and left mid orbital cortices) exhibited heightened BOLD 

activity in Str1 which either dropped to a consistent level in Str2 and Str3, or systematically 

decreased across memory strengths. These BOLD patterns do not accord with our hypothesised 

learning effects (i.e. gradually strengthening memory representations). Instead, they likely 

represent generalised task difficulty or familiarisation processes. In order to identify regions 

showing increases in BOLD activity in accordance with learning, we performed a t-contrast to 

highlight areas showing higher activity in Str3 over Str1 (i.e. “Str3 > Str1” averaged across 

structural and non-structural trial types). This revealed four suprathreshold clusters (listed in table 

2-2 and displayed in figure 2-6). An ANOVA trend analysis across Str levels 1, 2 and 3 confirmed 

that each of these clusters exhibited a strong linear relationship between memory strength and 

BOLD activity (see table 2-2). 
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Table 2-1. Regions showing a main effect of memory strength. Asterisks denote significance at 

p(peak-FWE) < .05. Daggers denote significance at p(cluster-FWE) < .05.

 

 

Table 2-2. Regions revealed by the “Str3 > Str1” contrast. Daggers denote significance at 

p(cluster-FWE) < .05.
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Figure 2-6. Clusters revealed by the “Str3 > Str1” contrast. Error bars indicate 95% confidence 

intervals corrected for the within subject-error term. 

 

2.4.2.2   Main effect of trial type 

A main effect of trial type was detected in eight clusters which all exhibited greater BOLD activity to 

structural trials (suprathreshold activations listed in table 2-3). Of these clusters, the left inferior 

parietal, right superior frontal and right supramarginal activations also demonstrated a strong main 

effect of memory strength (all F’s > 5.32, uncorrected p’s < .01) where BOLD activity systematically 

decreased across memory strengths. Given that structural discriminations are more 

computationally demanding than their non-structural counterparts, and processing demands to 
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both trial types are likely vary as a function of learning stage, activations showing a main effect of 

each factor, such as these, likely reflect differences in task difficulty or attentional processing. In 

contrast, the right middle occipital and right inferior frontal activations both showed greater BOLD 

activity to structural trials which remained relatively consistent across memory strengths; 

p(H0|Data) > .933 for the main effect of memory strength in each cluster. As such, these effects 

may be indicative of fundamental differences in processing between the two the trial types. 

 

Table 2-3. Regions showing a main effect of trial type. Asterisks denote significance at p(peak-

FWE) < .05. Daggers denote significance at p(cluster-FWE) < .05. 

 

 

2.4.2.3   ‘Memory strength’ x ‘trial type’ interaction 

No areas demonstrated a significant memory strength by trial type interaction. However, for 

completeness, we conducted the above mentioned “Str3 > Str1” t-contrast separately for structural 

and non-structural trials to identify learning effects that may be specific to each trial type. The 

resultant activation maps are presented in figure 2-7 and show that the gradual learning effects for 

each trial type are highly overlapping. 
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Figure 2-7. “Str3 > Str1” broken down by trial type. 

 

2.4.2.4   Analysis of transitivity data 

Although each subject included in the analysis showed a high degree of learning on the structural 

contingencies, performance on the transitivity trials (which directly relates to these contingencies) 

was highly variable; mean proportion correct: 0.732, range: 0.333 - 0.916. Nonetheless, there was 

a significant correlation between max_pCs for structural discriminations and transitive 

performance; r(13) = .541, p = .019. The correlation between transitivity trial performance and 

BOLD amplitude estimates revealed one suprathreshold activation in the right posterior 

hippocampus (see figure 2-8); t(12) = 7.62, p(peak-FWE) = .005 (within the MTL ROI), k = 21. In 

this analysis, the performance of one subject was numerically below chance (i.e. less than 0.5). 

Given that any level of at or below chance performance should be equally indicative of a lack 

memory activation, we wished to examine whether the observed effect was robust to capping 

performance scores at the 0.5 level. Even when proportion correct scores were adjusted in this 

way, the hippocampal activation remained; t(12) = 6.59, p(peak-FWE) = .019, k = 14. 

This brain-behaviour correlation may reflect the online integration of distinct structural 

representation as required for generalisation (Kumaran & McClelland, 2012; DeVito, Kanter & 

Eichenbaum, 2010; Zalesak & Heckers, 2009; Heckers, Zalesak, Weiss, Ditman & Titone, 2004; 

Preston, Shrager, Dudukovic & Gabrieli, 2004). Alternately, the effect may result from the 

activation of hippocampal memory codes that were instantiated during learning, but not identified in 

the aforementioned ANOVA (see Frank, Rudy & O’Reilly, 2003; Shohamy & Wagner, 2008; 

Zeithamova & Preston, 2010; Greene, Gross, Elsinger & Rao, 2006; Van der Jeugd et al., 2009). 
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To address this possibility, we focused on the peak voxel in the hippocampal cluster in two follow-

up analyses. Firstly, we tested whether transitive performance (behaviour) correlated with BOLD 

activity during learning (structural trials only) – that is, did hippocampal activity at encoding predict 

subsequent transitive performance. A positive association was indeed found across all memory 

strengths together, F(1,13) = 6.647, p = .023, and individually; Str1 [r(13) = .543, p = .018], Str2 

[r(13) = .595, p = .010], Str3 [r(13) = .172, p = .270]. The differences in these regression slopes 

were statistically nonsignificant; F(2,26) = 1.325, p = .283, p(H0|Data) = .879. Secondly, we 

examined whether the hippocampal cluster exhibited monotonic learning effects in the main task 

after accounting for (i.e. partialling out) subsequent transitive performance. To do this we 

contrasted the Str1, Str2, and Str3 parameter estimates (for structural trials alone) in a one-way 

ANCOVA with a z-scored transitive performance covariate. This returned a non-significant effect of 

memory strength, F(2,26) = 0.734, p = .490. Moreover, a Bayesian analysis revealed substantially 

more evidence in favour of the null hypothesis for this effect, p(H0|Data) = .909 and the tested 

BOLD pattern constituted neither a monotonic increase or decrease. Taken together, these results 

suggest that hippocampal activity at encoding is associated with subsequent transitive 

performance even though the region does not appear to store configural codes in memory. 

 

 

Figure 2-8. Correlation between transitive performance and right hippocampal activity. Error bars 

indicate 95% confidence intervals for each signal change statistic. 
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2.4.3   MVPA results 

As well as examining whether each MTL ROI contained trial relevant information in Str1 and Str3, 

we wished to explore whether an overall measure of ‘learning success’ predicted the decodability 

(i.e. classifier performance) of multivariate BOLD patterns. Given the strong association between 

structural and non-structural max_pCs reported above, this was done by averaging max_pCs 

across trial types and dichotomizing them by median split to produce a between-subjects 

categorical variable denoting low vs high subsequent performance. For the hippocampal, 

parahippocampal, perirhinal and entorhinal data separately, MVPA classification accuracy scores 

were then entered into a 2x2x2 mixed-measures ANOVA (factor 1: data integrity [i.e. shuffled vs 

unshuffled data labels]; factor 2: memory strength [i.e. Str1 vs St3]; factor 3: learning success [low 

vs high subsequent performance]). Figure 2-9 displays MVPA classification accuracy scores 

broken down by each factor of interest and table 2-4 displays ANOVA output statistics for the four 

model parameters of interest. These were; 1) the main effect of data integrity [whether the ROI 

contained trial-relevant BOLD information], 2) the memory strength by data integrity interaction 

[whether the level of trial-relevant BOLD information differed between memory strengths], 3) the 

learning success by data integrity interaction [whether the level of trial-relevant BOLD information 

was related to participants subsequent behavioural performance], and 4) the three-way interaction 

between memory strength, learning success, and data integrity [whether the association between 

trial-relevant BOLD information and memory strength depended on participants subsequent 

behavioural performance]. 

 

Table 2-4. 2x2x2 ANOVA output statistics for MVPA classification accuracy scores. 

All model terms have degrees of freedom (1,13). 
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The ANOVAs revealed a very similar pattern of results for each ROI. All four ROIs demonstrated a 

significant main effect of data integrity indicating that, overall, each region did contain trial-relevant 

information. Moreover, excluding the entorhinal cortex, all ROIs exhibited a significant learning 

success by data integrity interaction. This indicated that MVPA classifier accuracy was generally 

higher for participants who achieved a greater level of behavioural performance (see figure 2-9). 

Although the memory strength by data integrity interaction was consistently nonsignificant across 

regions, both the hippocampus and the entorhinal cortex showed a significant three-way interaction 

between memory strength, learning success, and data integrity. Examination of this effect revealed 

that, within memory strength Str1, the hippocampus and entorhinal cortex only displayed significant 

levels of trial-relevant information for participants who subsequently showed a greater level of 

behavioural performance in Str3. In other words, for hippocampal and entorhinal data, greater 

levels of trial-relevant information at the early stage of the experiment predicted better behavioural 

performance at the end of the experiment. 
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Figure 2-9. MVPA classification accuracy scores broken down by memory strength, data integrity 

(blue bars) and learning success (red bars). Error bars indicate 95% confidence intervals corrected 

for the within subject-error term. 
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2.5   Discussion 

We investigated the brain regions involved in configural memory formation and generalisation. 

Using trial-and-error, participants gradually acquired two different types of configural contingency; 

non-structural configurations (learning feature conjunctions) and structural patterning (learning 

feature conjunctions and spatial arrangements). We observed clear monotonic increases in BOLD 

activity as a function of both learning types in the inferior temporal lobes (bilaterally), left angular 

gyrus and left orbital gyrus. Learning of this sort has been hypothesised to depend on regions 

within the MTL (namely the perirhinal and hippocampal cortices for non-structural and structural 

respectively; Saksida & Bussey, 2010; Aggleton, Sanderson & Pearce, 2007), yet we observed no 

gradual learning effects in these areas. Nonetheless, an MVPA highlighted that both of these 

structures, and the parahippocampal and entorhinal cortices, did contain task relevant information 

that was present both before and after the contingencies had been learned. Furthermore, during 

the early stages of learning, the strength of this information in the hippocampus and entorhinal 

cortex was predictive of subsequent behavioural performance - a finding which indicates that the 

decoded BOLD patterns are functionally relevant to learning. Finally, in a test of cross-

discrimination transitivity requiring generalising between the structural discriminations, participants’ 

performance was strongly related to BOLD activity in the right posterior hippocampus. This 

suggests that even after configural representations have been well learned, the hippocampus may 

be required to integrate and generalise between them. 

Both the left inferior temporal gyrus and the left angular gyrus (lAG) are commonly co-activated in 

fMRI studies tapping semantic knowledge and semantic processing (Binder Desai, Graves & 

Conant, 2009). As such, they are assumed to be key components of the semantic memory system 

and so we suggest that that humans can use this system to store and retrieve configural 

contingencies. Specifically, the inferior temporal gyrus has been implicated in the storage of 

semantic facts. Evidence for this has come from neuropsychological observations that damage to 

this region results in substantial category-specific deficits in semantic knowledge (Warrington, 

1975; Warrington & Shallice, 1984; Lambon Ralph, Lowe & Rogers, 2007; Noppeney et al., 2007). 

Given this, we propose that configural contingencies can be encoded by this region in the form of 

explicit rule-like (i.e. semantised) memory representations. 

In contrast, the lAG has been implicated in integrating semantic and perceptual elements during 

schema retrieval and comprehension (e.g. Wagner et al., 2015; Humphries, Binder, Medler & 

Liebenthal, 2007). The region has also been associated with stimulus-driven (i.e. bottom-up) 

attentional mechanisms that aid episodic memory retrieval (Cabeza, Ciaramelli, Olson & 

Moscovitch, 2008). Notably, the lAG may be particularly involved in selectively mapping perceptual 

feature conjunctions to specific memory representations when there is interference from 
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overlapping representations (see Ansari, 2008; De Visscher, Berens, Kidel, Noël & Bird, 2015). 

This represents a core operation when making configural discriminations as, by definition, 

configural learning entails forming a number of distinct representations with overlapping features. 

As a result, non-target memory representations may be erroneously activated during discrimination 

if they share common features with the target. For instance, in a non-structural task, while the 

target memory representation may be “A > B”, non-target representations “B > C” and “C > A” may 

be activated given the featural overlap. Consequently, it may be necessary to have a retrieval 

control process which only selects memory codes containing features that wholly or maximally 

intersect with the perceptually presented configuration (i.e. “A ∩ B”). 

The proposed role of the angular gyrus in semantic and perceptual integration makes it a prime 

candidate for such a retrieval control process. In support of this view, the angular gyrus is thought 

to play a part in selectively retrieving arithmetic facts (learned arithmetic rules such as “2 x 2 = 4”; 

van Eimeren et al., 2010). Arithmetic facts are memory traces for configurations that contain 

overlapping features (i.e. the digits 0 - 9), and so these memory codes are susceptible to 

interference at retrieval (De Visscher & Noël, 2014). Previous work has shown the left angular 

gyrus to be activated when retrieving arithmetic facts and to be modulated by the level of digit 

interference specifically (Grabner et al., 2009; De Visscher, Berens, Kidel, Noël & Bird, 2015). 

Concordant with this, the symbol-referent mapping hypothesis posits that the left angular gyrus 

acts to map multiple perceptual features to overlapping memory representations (Ansari, 2008). 

The final region that showed monotonic increases in BOLD activity as a function of configural 

memory strength was the left orbital gyrus. Studies of reinforcement learning have shown BOLD 

activity within this area to be positively correlated with participants’ expectations of how rewarding 

a stimulus is predicted to be (Wunderlich, Rangel, & O’Doherty, 2010; Glascher, Hampton, & 

O’Doherty, 2009; Tanaka et al., 2004). Given that expectations of reward should directly relate to 

task proficiency and thus configural memory strength, our observed increases in orbital BOLD 

activity may be indicative of increasing reward anticipation. However, as well as encoding the value 

of an expected reward, the orbitofrontal region is known to signal reward value per se (i.e. positive 

feedback once as decision has actually been made; Sescousse et al., 2010). Since decision 

periods were always directly followed by feedback periods during the in-scanner task, we are not 

able to distinguish between these two processes with the current dataset. In any case, these 

reward-related signals are likely to provide an input to credit assignment and memory update 

processes that facilitate learning (Rushworth, Noonan, Boorman, Walton & Behrens, 2011). 

The view that configural learning can make use of the semantic memory system is at odds with 

studies of learning in non-human animals. Most of the previous literature has focused on rodents 
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and rhesus monkeys and has emphasised the roles of MTL structures (e.g. Aggleton et al., 2007; 

Bussey, Saksida, Murray, 2002). In the present study, the only univariate BOLD effect in the MTL 

occurred in the left parahippocampal cortex. However, this area exhibited an activation pattern 

indicative for gaining initial familiarity with the task environment rather than learning the configural 

contingencies themselves. As discussed above, the angular gyrus did show involvement in 

configural learning yet this structure is phylogenetically recent and so not present in non-humans 

other than the higher primates (Brodmann, 1994/1909). This suggests that humans can employ a 

fundamentally different brain system to most animals when acquiring configural contingencies. 

Consistent with this, Moses et al. (2008) has shown that configural learning in the context of 

hippocampal amnesia can be supported by semantic processes as evidenced by spared 

performance when using semantically meaningful stimuli. Additionally, magnetoencephalography 

has demonstrated that increasing the semantic meaningfulness of configural stimuli leads to 

reduced reliance on the hippocampus and increasing reliance on brain regions associated with 

semantic knowledge (namely the anterior temporal, left prefrontal and inferior frontal cortices; 

Moses et al., 2009). Here we further demonstrate that semantic system may be involved in 

configural learning even when there is no semantic component. 

A further point of divergence between previous work and the present study lies in the cognitive 

models suggested by each. Models of configural learning in animals often assume that memory 

representations are built up hierarchically (see Saksida & Bussey, 2010). On this view, a network 

of cytoarchitecturally specialised brain modules are arranged so that simple configural codes (e.g. 

that underpin non-structural memory representations in the perirhinal cortex) are critically required 

for underpinning more complex representations in upstream brain regions (e.g. structural memory 

codes in the hippocampus). The behavioural findings of the present investigation challenge this 

assumption in one important respect. As expected, response times to the more demanding 

structural configurations were longer than that of non-structural configurations. However, a 

Bayesian analysis revealed that this difference did not vary as a function of memory strength. In 

the lowest memory strength (Str1), processes controlling the retrieval of configural information 

should be minimally engaged as there is little information to actually retrieve. Consequently, 

reaction time differences that emerge between trial types in Str1 should be primarily driven by 

differences in visual processing. However, if configural memory codes are represented 

hierarchically, the processing latencies between trial types should increase with memory strength 

reflecting the emergence of more complex memory codes from higher level processing modules. 

The observation that reaction time differences between trial types remained constant across Str 

levels is inconsistent with hierarchically organised models of configural information coding. In 

contrast, the observed pattern is wholly consistent with the view that configural contingencies are 

represented by rule-like semantic representations. 
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Our suggestion that configural information is encoded by the semantic system does not exclude 

the possibility that the MTL are critical for initially processing configural information. To address 

this, we carried out an MVPA on regions within the MTL for data recorded at different memory 

strengths. This indicated that a number of MTL regions (namely the hippocampal, 

parahippocampal, perirhinal and entorhinal cortices) did exhibit distinct BOLD patterns to structural 

and non-structural stimuli both before and after high levels of learning had taken place. Based on 

this result we cannot say whether each region is coding for either structural-, or non-structural-

information, or indeed both. However, it does suggest that these regions do code for some form of 

configural information online, even before that information has been fully learned. Moreover, the 

finding that the strength of this information was predictive of subsequent performance shows that it 

is functionally relevant to the learning process. These findings do therefore support the notion that 

the MTL processes configural information even if such information is subsequently encoded into 

brain regions associated with the semantic system. Accordingly, the MTL are often viewed as an 

extension to the visual ventral stream specialised for perceptually processing high-level visual 

representations (e.g. Saksida & Bussey, 2010; Lee, Yeung, Barense, 2012). Damage to 

hippocampus and other MTL structures has been observed to result in perceptual impairments for 

complex stimuli (e.g. Lee et al., 2005; Barense, Gaffan, Graham, 2007). 

Another hypothesis that was tested as part of the current study concerned whether the 

hippocampus is involved in generalising between learned configurations. The term generalisation 

can refer to any processes requiring the transfer, integration or flexible expression of previously 

learned information in the support of untrained behaviour. As such, different forms of mnemonic 

generalisation exist and not all are critically dependent on the hippocampus (see Kumaran, 2012 

for a review). One form of generalisation that is thought to be hippocampally dependent is 

inference. This has been previously studied using the paired associates inference (PAI) paradigm 

(Bunsey & Eichenbaum, 1996; Preston, Shrager, Dudukovic & Gabrieli, 2004; Zeithamova & 

Preston, 2010), acquired equivalence paradigm (Shohamy & Wagner, 2008) and transitive 

inference discriminations (DeVito, Kanter & Eichenbaum, 2010; Zalesak & Heckers, 2009; 

Heckers, Zalesak, Weiss, Ditman & Titone, 2004; Greene, Gross, Elsinger & Rao, 2006; Van der 

Jeugd et al., 2009). All of these tasks share the central feature that they require the integration of 

two or more previously learned associative relationships that were initially formed at different times. 

Early evidence emerged that while not necessarily critical for acquiring simple stimulus-stimulus 

associations, the hippocampus is critical for integrating such associations in support of mnemonic 

inference (Bunsey and Eichenbaum, 1996; Dusek & Eichenbaum, 1997). Given this, Eichenbaum 

(1999) posited that a primary role of the hippocampus is in underpinning the systematic 

organisation and flexible expression of memory to support behaviours that were never explicitly 
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trained. Classically, there are two classes of models that can account for the role of the 

hippocampus in generalisation; encoding based models (e.g. the temporal context model, Howard 

& Kahana, 2002; Polyn & Kahana, 2007; Howard, Fotedar, Datey & Hasselmo, 2005), and retrieval 

based models (e.g. REMERGE, Kumaran & McClelland, 2012). Encoding models propose that 

individual study episodes sharing common features are linked in memory at the point of encoding 

by the formation of unitary or overlapping memory representations. Consequently, activating one 

representation can result in the activation of another and this supports the integration of 

information across training episodes as required for inference. On the other hand, retrieval models 

pose that the overlap between related study events is not explicitly encoded at the time of study 

but can be inferred at the point of retrieval via the implementation of reciprocal connections 

between representational layers (e.g. Kumaran and McClelland, 2012). 

While both encoding and retrieval models implicate the hippocampus, they make different 

predictions regarding at what stage the hippocampus is involved. Encoding models predict that 

hippocampal activity at the time of study should uniquely contribute to (and therefore correlate 

with) subsequent inference performance (even after controlling for the trace memory strength of 

the directly learned associations). In contrast, retrieval models suggest that any hippocampal 

involvement at the time of encoding should purely reflect encoding operations for the directly 

learned associations - on this view, memory integration processes are only ever invoked at the 

point of inferential test. Initial investigations directly testing these differential predictions produced 

conflicting results. Animal studies have shown that hippocampal damage acquired after initial 

associative training both does (DeVito, Kanter & Eichenbaum, 2010) and does not (Van der Jeugd 

et al., 2009) impair inference performance. Results from human neuroimaging studies are equally 

ambiguous. Some investigations have shown hippocampal involvement at the point of inferential 

retrieval alone (Preston, Shrager, Dudukovic & Gabrieli, 2004; Heckers, Zalesak, Weiss, Ditman & 

Titone, 2004), while other report inference-related operations to occur at encoding (Greene, 

Spellman, Elsinger & Rao, 2006; Shohamy & Wagner, 2008). 

In view of these conflicting data, a subtler view has emerged positing that encoding and retrieval 

models are not mutually exclusive (see Zeithamova, Schlichting & Preston, 2012). Specifically, it 

can be hypothesised that the hippocampus contributes to both encoding- and retrieval-based 

generalisation via the same fundamental pattern completion mechanism (see Rolls, 2013), and 

that the dominant route to generalisation depends on how well learned the directly trained 

configurations are. Initially, associations with overlapping features may be encoded as distinct, 

pattern separated representations. As such, when it comes to integrate these representations at 

inferential test, the hippocampus may be recruited to pattern complete and retrieve the overlapping 

representations to support ‘on-the-fly’ inference (e.g. Kumaran & McClelland, 2012). However, 
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when an association is encoded by the hippocampus, automatic retrieval processes have been 

observed to activate previously encoded and overlapping representations (Zeithamova, Dominick 

& Preston, 2014). Given this, after a sufficient number of learning instances, it is likely that the 

representations of overlapping events will become fully integrated into a unitary memory code; so-

called ‘retrieval-mediated learning’. In support of this hypothesis, one neuroimaging study using a 

single-trial learning procedure observed hippocampal and parahippocampal involvement in 

generalisation both at encoding and test (Zeithamova & Preston, 2010). Furthermore, it is 

noteworthy that previously discussed reports highlighting no hippocampal involvement at inferential 

test tended to train directly learned associations to ceiling (93% mean accuracy in the case of 

Shohamy & Wagner, 2008). 

In the present study, we showed that right-lateralized posterior hippocampal activity at the time of 

inferential test was strongly related to transitive performance. In examining this region's activity 

during initial configural acquisition, much weaker correlations between learning-related activity and 

subsequent transitive performance were detected, even at the very lowest trace-memory strength 

(Str1; i.e. before the configural representations had been fully formed). As such, these data do lend 

support to a mixed retrieval/encoding-based hypothesis of hippocampal inference. Nonetheless, it 

is noteworthy that the hippocampal region did not exhibit any BOLD modulations across memory 

strengths, even after controlling for individual differences in transitive performance. Given this, it is 

unlikely that the hippocampus was functionally representing an integrated representation formed 

via ‘retrieval-mediated learning’. Instead, we suggest that hippocampal involvement in transitive 

inference primarily took place at test and involved integrating well learned, rule-like configural 

contingencies that had been encoded by the semantic system. 

In summary, the findings reported here support the role of MTL structures in representing visual 

configurations online. While these online representations do appear to be relevant to learning, we 

suggest that well learned configural memory codes may be underpinned by the semantic memory 

system. Nonetheless, even when represented in this way, we have demonstrated that the 

hippocampus is still used to integrate between configural memory codes when generalising 

across them. 

  



46 
 

Chapter 3 

Applying the temporal context 

model to cross-situational learning 

3.1   Abstract 

Cross-situational learning (xSL) has been implicated as a primary route to semantic memory 

formation in infants. It allows for the concurrent acquisition of multiple word-object associations by 

integrating information across a series of ambiguous study events. Current models suggest that all 

semantic information initially depends on the episodic memory system. In line with this, we 

hypothesised that word-object bindings in xSL are underpinned by overlapping contextual 

representations as described by the temporal context model. This hypothesis makes the specific 

prediction that errors in naming stimuli after xSL are influenced by the temporal arrangement of 

those stimuli during study. This prediction was tested in a standard xSL experiment involving 32 

healthy adults. The results revealed no evidence that xSL is subserved by contextual learning 

mechanisms and a Bayesian analysis weighted the null effect as more probable than the predicted 

effect. As such, we suggest that xSL is not subserved by the development overlapping contextual 

representations yet further research will be required to establish this. 
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3.2   Introduction 

Since Tulving (1972) made the distinction between episodic and semantic memory, there has been 

much debate regarding how these types of memory interact. Primary language acquisition by 

infants is one form of learning that exhibits both episodic and semantic characteristics. In 

particular, language acquisition occurs rapidly (Schafer & Plunkett, 1998) and is subject to 

mnemonic generalisations (e.g. overextensions; Rescorla, 1980) - traits indicative of episodic 

memory. At the same time, language is retained throughout life with great stability (Cohen, 1979) - 

a quality more associated with the semantic system. Dominant theories account for this mix of 

features by suggesting that all learned information initially depends on the episodic system before 

being consolidated (McClelland, McNaughton, & O’Reilly, 1995) or transformed (Winocur & 

Moscovitch, 2011) to become reliant on the semantic system. As such, these theories predict that 

language learning mechanisms are fundamentally underpinned by episodic memory functions. 

Importantly, models of how infants acquire new nouns (i.e. word-object associations) must 

accommodate the observation that such learning can take place when word-object associations 

are never explicitly communicated. Specifically, given a series of ambiguous study episodes, each 

presenting multiple unknown words and objects, learners can still acquire the underlying 

associations by keeping track of word-object co-occurrences across time. For example, if a learner 

hears the words fork and sink whilst simultaneously viewing each of their referents, it may be 

ambiguous which word refers to which object. However, if that learner subsequently studied the 

words fork and plate alongside their associated objects, enough information has been supplied to 

infer the word-object mappings across all three pairs. This is termed cross-situational learning 

(xSL) and has been demonstrated experimentally in both infants and adults (Yu & Smith, 2007; 

Smith & Yu, 2008). 

To date, two broad types of model for describing xSL mechanisms have been proposed. On one 

account, word-referent mappings are acquired by associative means where all word-object co-

occurrences are traced simultaneously (Kachergis, Yu, & Shiffrin, 2012a; McMurray, Horst, & 

Samuelson, 2012).  In contrast, Medina, Snedeker, Trueswell and Gleitman (2011) have 

suggested that xSL is facilitated by the generation of a single hypothesised referent for each word 

that is retained across learning trials unless the hypothesis is falsified (i.e. unless a word is absent 

in a scene where its hypothesised referent is present or vice versa). Few studies have directly 

tested the differential predictions of these two types of models. Nonetheless, better support for an 

associative account has come from comparing computational implementations of learning via 

associations versus via single hypotheses. In particular, associative accounts are thought to more 

readily reproduce empirical data of xSL in humans (Kachergis, Yu, & Shiffrin, 2012b), especially 

when referential ambiguity is high (Smith, Smith & Blythe, 2011). Despite this, it remains unclear 
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exactly what information learners draw on when engaging in xSL and how this information is 

integrated across situations. One hypothesis might be that the word-object associations are 

tracked by an effortful working memory process that roughly counts the number of stimulus co-

occurrences. However, this seems unlikely. XSL can occur incidentally, without a conscious 

intention to learn (Kachergis, Yu, & Shiffrin, 2010a). Also, the limited capacity of working memory 

means that its use in xSL appears unreasonable (Medina et al., 2011), especially in the context of 

language acquisition by infants. Here we propose that an existing model of episodic and 

associative learning, the Temporal Context Model (TCM; Howard & Kahana 2002; Howard, 

Fotedar, Datey, & Hasselmo, 2005; Howard, 2004), may be able to accommodate xSL. 

The TCM was initially formulated to account recency and contiguity effects observed in free recall 

paradigms but has also been shown to readily account for the emergence of incidental associative 

learning, such as during the paired-associates inference paradigm (see Kumaran, 2012 for a 

review). Recency refers to the phenomenon where items that are encountered towards the end of 

a study list are better remembered than those that are encountered earlier. Contiguity refers to the 

effect where study items that are encountered closer together in time tend to be recalled adjacently 

as well. The TCM explains these effects by specifying the presence of two representational layers 

which are interconnected and interact with each other during learning; 1) a feature layer 

representing individual study items (e.g. objects and words) and, 2) a contextual layer representing 

the encoding context for each item. Content in the contextual layer changes gradually over time 

and is influenced by information in the feature layer (i.e. the study memoranda). This therefore acts 

as a slowly changing frame of reference against which memories are formed. During learning, 

connections between the feature and context layers are updated such that items presented close 

together in time are bound to similar contextual representations. Because of this, the recall of any 

one item has the ability to cue its associated encoding context. Likewise, when an encoding 

context is reactivated, it can cue feature layer representations that were encountered around the 

same time. Given this, recency occurs because the state of temporal context at the time of recall is 

most similar to the encoding context of later list items thereby facilitating their retrieval. Similarly, 

contiguity occurs because when recalled, each item activates its associated encoding context 

which then goes on to cue other items encountered around the same time. 

Mathematically, the feature and context layers of the TCM correspond to high dimensional vectors 

where 𝐹 is the feature space and 𝑇 is the context space (see figure 3-1). The state of these two 

vectors at time 𝑖 is denoted as 𝑓𝑖 and 𝑡𝑖 respectively. Inputs from the feature layer to the context 

layer (𝑡𝑖
𝐼𝑁) result from the product of feature-to-context connections defined in the matrix 𝑀𝑖

𝐹𝑇: 

𝑡𝑖
𝐼𝑁  =  𝑀𝑖

𝐹𝑇  ×  𝑓𝑖           (Eq. 1) 
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With this input, content in the context layer evolves gradually over time as a weighted sum of the 

input (𝑡𝑖
𝐼𝑁) and the previous state of the context layer (𝑡𝑖−1): 

𝑡𝑖 = (𝜌𝑖  ×  𝑡𝑖−1) + (𝛽 ×  𝑡𝑖
𝐼𝑁)        (Eq. 2) 

Here, 𝛽 is a free parameter reflecting the relative influence of new inputs to the context layer. The 

parameter 𝜌𝑖 defines the rate of contextual drift and is chosen at each time-point as a value 

between 0 and 1 such that the absolute magnitude of 𝑡𝑖 is unity. During learning, feature-to-context 

connections (i.e. 𝑀𝑖
𝐹𝑇) are updated via a Hebbian learning rule so that featural representations can 

cue their associated encoding context. The TCM further suggests that context-to-feature 

connections defined in the matrix 𝑀𝑖
𝑇𝐹 provide inputs to the feature layer (𝑓𝑖

𝐼𝑁): 

𝑓𝑖
𝐼𝑁 =  𝑀𝑖

𝑇𝐹  ×  𝑡𝑖          (Eq. 3) 

Connections in 𝑀𝑖
𝑇𝐹 are also updated during learning thereby enabling contextual states to 

activate their associated feature states. As such, if a given item was encoded at time 𝑖 and then its 

associated context was later reactivated at time 𝑟, inputs to the feature layer will drive an activation 

pattern for the item. This activation pattern (𝑎𝑖) can be represented as the dot product of 𝑓𝑟
𝐼𝑁 and 

the feature state at the time of encoding (𝑓𝑖): 

𝑎𝑖 =  𝑓𝑟
𝐼𝑁  ×  𝑓𝑖           (Eq. 4) 

 

 

Figure 3-1. A graphical illustration of the temporal context model. 
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These properties of the TCM powerfully afford item-to-item associative learning. For instance, if 

two items are simultaneously presented at study, the shared feature state they result in will drive a 

common contextual representation. Learning in the matrices 𝑀𝐹𝑇 and 𝑀𝑇𝐹 will enable this feature 

state to cue the context state and vice versa. Subsequently, if one of the items is later represented 

in isolation, the contextual state that results may go on to cue featural representations of the non-

presented item. Notably, this effect will also occur for items that are presented sequentially instead 

of simultaneously because the context state evolves gradually (c.f. Eq. 2). Considering these 

associative mechanisms, it is easy to see how the TCM may account for xSL. On this view, word-

object associations are acquired because the context layer input at each study instance for a word 

always contain information derived from its associated object. After a sufficient number of 

instances, updates in feature-to-context connections will mean the contextual information evoked 

by that word contains more information about its corresponding object than any non-corresponding 

stimulus. Likewise, updates in context-to-feature connections will mean that this overlapping 

contextual information will have a strong ability to cue the associated object. 

It is noteworthy that one existing adaptation of the TCM, the predictive TCM, has suggested that 

new word learning and the formation of semantic associations can take place when an unknown 

word is used in a context which predicts the occurrence of a known word (Howard, Karthik, 

Shankar, & Jagadisan, 2011). For example, if a learner encountered the sentence, “The baker 

reached into the oven and pulled out a taftoon.”, the words “bread” and “taftoon” may become 

associated even if “taftoon” is unfamiliar. This is because contextual cues within the sentence 

predict and activate “bread”. As such, the encoding context for “taftoon” now contains information 

derived from the word “bread”. To date, this model has not been empirically tested. However, 

support for the TCM more generally has come from neuroimaging studies demonstrating that the 

recall of an item reinstates the pattern of brain activity that was present during its encoding (Polyn, 

Natu, Cohen, & Norman, 2005; Sederberg et al., 2007; Johnson & Rugg, 2007). In one of these 

studies, multivariate pattern analysis of fMRI data showed that brain activity specific to the 

encoding of three classes of pictorial stimuli (famous faces, landmarks and objects) was reinstated 

at least 5.4 seconds prior to the recall of an item (Polyn et al., 2005). Additionally, intracranial 

electroencephalography (EEG) has highlighted that gamma band oscillatory activity originating 

from the hippocampus predicts the successful encoding of items and is reinstated during recall 

(Sederberg et al., 2007). 

Importantly, the hypothesis that xSL is underpinned by temporal context coding mechanisms leads 

to a specific prediction not made by any other model. If word-object associations are trained via 

xSL and then tested using an alternative-forced-choice (AFC) paradigm, the TCM predicts that 

erroneous pairings made between non-corresponding stimuli should, at least in part, be influenced 
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by the temporal arrangement of those stimuli during study. Specifically, the closer together in time 

that any two non-corresponding stimuli are presented, the higher the likelihood they will be 

erroneously matched at test - this can be viewed as a form of contiguity effect for word-object 

associations. Importantly, other models of xSL (e.g. the single hypothesis account) may predict 

that non-corresponding stimuli presented on the same study trial have a higher likelihood of being 

erroneously matched at test. However, because temporal context evolves gradually, only the TCM 

predicts that sequential presentations of stimuli also increase the likelihood that those stimuli will 

be erroneously matched. 

In the present investigation we set out to test this prediction. Healthy adult participants learned 

associations between 9 novel objects and 9 pseudowords. Throughout study, the trained 

associations were intermittently tested on 9-AFC test trials. We examined whether the number of 

times that a pair of stimuli were presented on successive study trials predicted why some stimuli 

were erroneously matched over others. 
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3.3   Methods 

3.3.1   Subjects 

Thirty-nine native English speaking students were recruited from the University of Sussex, UK. All 

gave written informed consent to take part. To ensure that all subjects entered into the analysis 

were effectively learning via xSL, we only included data when at least half of the trained 

associations had been acquired by the end of the task. Given this threshold, data from 7 subjects 

were discarded owing to insufficient levels of learning. This left a final sample of 32 subjects (15 

female) with a mean age of 23.72 years (SD = 5.14). The study was approved by a local ethics 

committee (C-REC, University of Sussex). 

3.3.2   Stimuli 

9 colour photographs of obscure objects (e.g. rocket air blower) and 9 four-letter pseudowords 

(e.g. "Ospi") were selected from the NOUN Database (Horst, 2009). Prior to each experimental 

session, these stimuli were randomly paired together to form the trained word-object associations. 

During the task, both the pseudowords (140 x 240 pixels) and obscure objects (black text; 240 x 

240 pixels) were presented on a computer monitor (1280 x 1024 pixels; 38.60 x 28.96 cm) 

positioned approximately 60 cm in front of the subject. 

3.3.3   Procedure 

The xSL task consisted of 8 blocks of study trials each followed by a block of test trials. On each 

study trial, 3 of the 9 word-object pairs were randomly selected for presentation such that 

corresponding stimuli were consistently presented together whereas non-corresponding co-

occurrences occurred randomly. Of the 3 selected pairs, objects were presented at random 

positions to the left of the display and words were presented at random positions to the right (see 

figure 3-2A). There was no indication of which object went with which word. Study trial 

presentations lasted for 6 seconds and were followed by a 2 second inter-trial interval. There were 

12 study trials to a block and across these trials all 9 word-object pairs were presented 4 times (32 

presentations per pair within the entire experiment). 

Test blocks consisted of 9 trials, one for each of the trained associations. On these trials, a single 

object was cued by being presented to the left of the display (see figure 3-2B). Alongside this 

image, a 3x3 grid of all 9 words was shown with a red cursor being randomly positioned around 

one of them. Using a standard computer keyboard, participants could move the cursor around the 

grid in order to select the word associated with the cued object (i.e. a 9-AFC test). Tests occurred 

in a random order and were entirely self-paced. Blocks of study and test were separated from one 

another by a 6 second inter-block interval. Before taking part, subjects were fully informed of the 
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task procedure and told that they would be learning one-to-one correspondences between 9 

objects-word pairs. 

 

 

Figure 3-2. Example trials at study (A) and at test (B). 
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3.4   Results 

All analyses were implemented in MATLAB (Mathworks) using the statistics toolbox. The primary 

behavioural outputs were binary correct vs incorrect statistics relating to accuracy on each 9-AFC 

test trial. Correct responses were coded as 1’s and incorrect responses were coded as 0’s. In 

order to confirm that xSL was actually taking place, we first computed a subject-specific block-wise 

measure of word-object matching accuracy. To do this, the binary performance statistics were 

independently averaged within blocks and the result was taken as a block-wise trajectory of 

performance. Figure 3-3 displays the sample average performance trajectory showing significant 

above chance performance in all 8 blocks, minimum t(31) = 6.836, p < .001. Furthermore, there 

was a significant change in performance across blocks, F(17,217)  = 55.26, p < .001, with both 

linear (F = 151.01) and quadratic (F = 18.88) trends. The mean number of errors made by each 

subject was 18.72 (SD = 12.84). 

 

Figure 3-3. Sample average performance trajectory. Error bars indicate 95% confidence intervals 

corrected for the within subject-error term. 
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In order to test our principal hypothesis, we counted the number of times that erroneously matched 

objects and words were presented on the same trial (same-trial occurrences), and successive trials 

(successive-trial occurrences) during the preceding study block (see figure 3-4). Along with these 

frequency statistics for errors that had actually been made (actual errors), we also computed 

equivalent statistics for erroneous matches that could have been made in place of the actual error 

(hypothetical errors). Histograms plotting the distribution of these statistics across all subjects are 

shown in figure 3-5. A mixed effects logistic regression model was then specified which attempted 

to differentiate actual errors from hypothetical errors using the number of same-trial and 

successive-trial occurrences. Data from all subjects were included in the model together. The 

outcome variable was error type (i.e. actual vs hypothetical) with actual errors being coded as 1’s 

and hypothetical errors being coded as 0’s. Fixed effects predictor variables included the constant 

term, the number of same-trial occurrences and the number of successive-trial occurrences. 

Additionally, due to statistical dependencies relating to repeated measurements from subjects and 

individual test trials, random intercepts for subjects and trials were included as random effects 

predictors. The model utilised a logit link function and was estimated via maximum likelihood 

estimation. 

 

Figure 3-4. Illustration of how same-trial and successive-trial occurrence statistics were calculated 

for an actual error. Upper-case letters denote objects; lower-case letters denote words. At test, 

object “A” was erroneously matched to word “b”. Over the preceding study block, the number of 

times that “A” and “b” were presented on the same/successive trials is counted. The same 

procedure was also carried out for “hypothetical errors”, i.e. A-c, A-d, etc. 
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Figure 3-5. Histograms plotting the frequencies of same-trial occurrences (blue bars) and 

successive-trial occurrences (green bars) for actual and hypothetical errors (top and bottom rows 

respectively). 

 

Along with their associated significance values, estimates for each fixed effects term are listed in 

table 3-1. Critically, while this shows that same-trial occurrences did predict the incidence of errors, 

the estimate for successive-trial occurrences was not significant. We therefore wished to examine 

whether there was more evidence in favour of the null hypothesis for this model term. To do this, a 

Bayesian analysis was run as described by Dienes (2011). Here, the strength of evidence in favour 

of the null (H0) is compared to that of the alternative hypothesis (H1). Our prior for H1, (i.e. the 

range of plausible effect size assuming H1 to be true) was set as a uniform distribution between 0 

and 0.2854 (that is, ranging from no effect to the same effect size returned for same-trial 
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occurrences). Based on this prior, a Bayes factor in favour of H0 was return as 3.57 

[p(H0|Data) = .781] which suggests that there was over 3.5 times more evidence in favour of H0 

compared to H1. This value represents substantial evidence for of the null hypothesis (see 

Jeffreys, 1961). 

 

Table 3-1.  Outputs from the mixed effects logistic regression. 
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3.5   Discussion 

We hypothesised that xSL is subserved by the acquisition of overlapping contextual 

representations as described by the TCM (Howard & Kahana, 2002). This predicts that erroneous 

pairing made during xSL should be more frequent for non-corresponding stimuli that have been 

studied closer together in time. Using data from a xSL experiment, we tested this prediction by 

examining whether presentations of stimuli on successive trials was associated with an increased 

incidence of mispairing errors for those stimuli. The results suggested this not to be the case. 

Successive trial presentations did not significantly influence subsequent errors and a Bayesian 

analysis revealed greater evidence a null effect in our data. 

In light of this result, it is possible that xSL is underpinned by mechanisms other than learning to a 

gradually changing contextual representation. This leaves open the possibility that propositional 

logic and inference play a major role in xSL as described by the single hypothesis account (Medina 

et al., 2011). However, given our highly specific prediction, the current study is unable to provide 

any evidence that would corroborate or falsify this theory. Nonetheless, there are notable reasons 

why learning via temporal context may be unsuitable for xSL. For instance, if the rate of contextual 

drift was too slow (i.e. the parameter 𝜌𝑖 in Eq. 2 was too large), then the encoding context at each 

study event may have contained too much of information about non-corresponding stimuli for 

contextual states to adequately activate unique feature representations. This may therefore render 

context learning mechanism inadequate over the time-scales at which xSL takes place meaning 

that other learning mechanisms are recruited. 

Importantly however, there are also some extreme circumstances in which our prediction of 

increased error incidences would not have borne out despite the use of temporal context learning 

mechanisms. With further reference to Eq. 2, it is noteworthy that the drift rate parameter (𝜌𝑖) is 

dependent on the magnitude of context inputs (𝑡𝑖
𝐼𝑁). As mentioned above, this parameter is 

selected so that the magnitude of the resultant context state does not exceed 1 (Howard & 

Kahana, 2002). Consequently, if the magnitude of the context inputs was sufficiently large, it is 

possible that the contextual state on any one trial would have been entirely driven by the current 

state of the feature layer. In this case, while contextual information would be utilised for binding 

stimuli presented concurrently, it does not act to associate stimuli presented on concurrent trials 

since contextual information does not leak from one trial to the next. This possibility limits the 

conclusions that can be drawn here and so further investigations will be required to examine the 

role of contextual learning in xSL. One potential avenue of future investigation could examine 

neuroanatomical predictions of the TCM. As noted in the introduction, context reinstatement effects 

have been observed in the brain during free recall (Polyn, Natu, Cohen, & Norman, 2005), source 

memory judgments (Sederberg et al., 2007), and episodic retrieval (Johnson & Rugg, 2007). As 
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such, if temporal context plays a role in xSL, it may be possible to observe such effects during 

study. Furthermore, neuroanatomical models of temporal context learning unequivocally suggest 

that feature and context layer representations are bound together by the hippocampus (Polyn & 

Kahana, 2008; Howard, Fotedar, Datey, & Hasselmo, 2005). Given this, further evidence for or 

against a role of contextual learning in xSL may be provided by neuroimaging studies examining 

hippocampal activity during noun acquisition. 

In summary, we tested the hypothesis that xSL is underpinned by learning associations between 

featural representations and slowly changing contextual states. No evidence of this was found and 

so we suggest that temporal context learning mechanisms are unlikely to be employed in xSL. 

However, further work will be required to fully establish this.  
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Chapter 4 

The brain systems underpinning 

Cross-Situational learning 

4.1   Abstract 

Prominent models suggest that all associations between novel stimuli are initially encoded by the 

hippocampal system before being consolidated or transformed to depend on the neocortex. 

However, some evidence suggests that amnestic patients with hippocampal damage may be able 

to gradually learn new associative information. Additionally, infants are able to rapidly acquire new 

word-object associations (i.e. nouns) despite having an underdeveloped declarative memory 

system. Here we hypothesised that a method of statistical learning implicated in primary language 

development (cross-situational learning; xSL) may be principally dependent on neocortical learning 

mechanisms rather than the hippocampus. During event-related fMRI, nineteen right handed 

participants learnt a set novel word-object associations as trained via xSL. At the same time, a 

different set of word-object associations were passively viewed having been pre-learned via a 

standard explicit encoding procedure. During periods of xSL, cortical areas associated with 

semantic processing, attention, and reasoning exhibited increases in activity that scaled 

proportionally with the amount of learning taking place. Furthermore, at the same stages of 

acquisition, a PPI analysis highlighted that BA22 (implicated in speech processing) showed 

increased functional connectivity with the left temporal pole. In contrast, the hippocampus showed 

greater in activity when processing the pre-learned associations (relative to xSL) as well as 

enhanced connectivity with BA22 and the occipital cortex. These results suggest that the semantic 

memory system is directly engaged in xSL yet the hippocampus is more involved in processing 

explicitly trained associations. However, whilst we suggest that xSL may be hippocampally 

independent altogether, neuropsychological data will be required to properly test this. 
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4.2   Introduction 

Long-standing models of declarative memory suggest that neocortical learning for novel semantic 

information is slow and gradual (McClelland, McNaughton, & O’Reilly, 1995; McClelland, 2013). 

Supposedly, this is because the rapid acquisition of new information would result in catastrophic 

interference – the destruction of previously established memory codes and the impaired formation 

of others (see McCloskey & Cohen, 1989). As such, the hippocampal system is thought to encode 

all novel information in the short term before repeated activations of hippocampal traces allow 

uptake by the neocortical system. This process has been characterised as system consolidation 

(McClelland et al., 1995), and memory transformation (Winocur & Moscovitch, 2011). In support of 

this, many reports suggest that patients with hippocampal amnesia retain crystallised semantic 

memories formed well before neuropsychological insult but appear unable to learn any new 

semantic information (e.g. Squire & Alvarez, 1995). 

Despite these findings, it has been suggested that new semantic learning can occur independently 

of the hippocampal system. Patients with an amnestic syndrome from birth are able to acquire 

semantic knowledge sufficient to support good levels of language function (Martins, Guillery-

Girard, Jambaqué, Dulac, & Eustache, 2006; Vargha-Khadem, Gadian, & Mishkin, 2001). 

Additionally, patients with acquired amnesia have been observed to learn new labels for unfamiliar 

shapes when the labels are decided on through collaborative discussion (Duff, Hengst, Tranel, & 

Cohen, 2006). Learning information that is related to previously established semantic knowledge 

(so-called schema-assisted learning) appears to be particularly spared in amnesia (O’Kane, 

Kensinger, & Corkin, 2004; Skotko et al., 2004). 

At the very least, schema-assisted learning is known to speed up consolidation. Tse et al. (2007) 

observed that newly learned smell-location associations in rats can become hippocampally 

independent within 24-hours if learning takes place in a well-known environment. Moreover, these 

rapidly consolidated associations were attained within a single rewarded trial. This suggest that as 

well as accelerating consolidation, schema assisted learning can facilitate the formation of 

associative memories in the first place. In line with this, earlier studies have demonstrated higher 

rates of learning and retention for information that is presented within an appropriate contextual 

framework (Bransford & Johnson, 1972). 

While the findings by Tse et al. appear inconsistent with consolidation theory, the model can 

accommodate accelerated neocortical learning for schema-consistent information. This is because 

rapid learning via schema modification may not result in catastrophic interference (McClelland, 

2013). Complementary to this, the medial prefrontal cortex has been implicated in detecting 

schema-consistent information in aid of rapid neocortical acquisition (van Kesteren, Ruiter, 
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Fernandez, & Henson, 2010). However, consolidation theory remains unable to account for the 

aforementioned reports of learning by patients with developmental amnesia. Furthermore, Sharon, 

Moscovitch and Gilboa (2011) have suggested that encoding novel word-object associations is 

possible in acquired amnesia using a learning procedure called “fast mapping” (FM). 

On each trial of the FM procedure, two objects or animals are simultaneously presented, only one 

of which is previously known (see figure 1-1A). Participants are then asked a simple yes/no 

question regarding the visual appearance of one of these items. If the question refers to the 

unknown item by name, participants must deduce the item-name association in order to respond. 

Sharon et al. observed that four amnestic patients with hippocampal system damage were capable 

of learning new word-object associations via FM and retaining them over the course of a week. At 

the same time, these patients were severely impaired at learning other word-object associations’ 

trained using standard associative learning instructions (referred to as explicit encoding; EE). This 

suggest that FM may provide a direct route to neocortical semantic learning that is independent of 

the hippocampus. In support of this, Sharon et al. further reported that two patients with damage to 

the left temporal pole were impaired at FM. Furthermore, 14 month old infants can learn via FM 

despite not having a fully developed hippocampal system (Friedrich & Friedrich, 2008; Bauer, 

2008). 

Despite this, consensus is still lacking as to whether FM is entirely independent of the 

hippocampus. At least two studies using a number of amnestic patients have failed to replicate the 

findings by Sharon et al. (Smith, Urgolites, Hopkins & Squire, 2014; Warren & Duff, 2014). 

Furthermore, Greve, Cooper and Henson (2014) highlighted that there was no evidence for a 

relative sparing of FM in a group of healthy adults with reduced hippocampal volume. Additionally, 

it remains unclear exactly what features of FM underlie it proposed ability to facilitate learning in 

amnesia. FM differs from traditional methods of paired-associate learning in three respects; 1) 

associative links are not explicitly conveyed but have to be actively deduced through syllogistic 

reasoning; 2) novel associations are presented within the context of a pre-learned and semantically 

relevant association; and 3) the learning of associations is not deliberate (Sharon et al., 2011). 

Like FM, “cross-situational learning” (xSL) also involves acquiring associations that are not 

explicitly given but must be extracted by the learner (see Chapter 3 and Yu & Smith, 2007). As 

previously discussed, a number of unfamiliar word-object pairs (typically 3 or 4) are simultaneously 

presented. However, because each trial will tend to present pairs in the context of different non-

corresponding stimuli, learners can extract the underlying associations by tracking the co-

occurrences between objects and words. Investigations, have shown that adults (Yu & Smith, 

2007) and 12 month old infants (Smith & Yu, 2008) can acquire word-referent associations via 



63 
 

cross-situational means given very few learning instances. Following 36 trials, Yu and Smith (2007) 

reported an average acquisition rate of 14 out of 18 associations when 3 word-object pairs were 

presented on each trial. Like FM, xSL has also been implicated as a primary route vocabulary 

acquisition during infancy. Again, giving the underdeveloped hippocampal system in infants, this 

raise the question of whether xSL is independent of the hippocampus.  

Importantly, xSL differs from FM in several key ways. Firstly, as mentioned above, it involves a 

high degree of referential ambiguity with multiple to-be-learned associations being presented 

simultaneously. Because of this, each individual study event conveys a relatively small amount of 

information which may not be amenable to hippocampal encoding. Indeed, the experiment in 

chapter 3 of this thesis showed that xSL cannot be accounted for by a prominent model of 

hippocampal learning, the temporal context model. Instead, it is likely that word-referent mappings 

learned via xSL are acquired by approximately tracking stimulus co-occurrences in a statistical 

manner (Kachergis, Yu & Shiffrin, 2012b; Smith, Smith, & Blythe, 2011). Importantly, these studies 

found that statistical learning strategies appear to be used even when adult learners hold a 

conscious learning intention. Since the neocortical learning system is also thought to rely on the 

extraction of statistical regularities (Winocur & Moscovitch, 2011; McClelland et al., 1995), we 

hypothesised that xSL constitutes a pure form of semantic learning - that is, it should show heavy 

reliance on neocortical learning mechanisms and independence from the hippocampus. Aside from 

the high degree of referential ambiguity, two further differences between FM and xSL are notable; 

novel associations are not learned in the context of pre-established knowledge, and a specific 

learning intention is often in force (although not necessary for learning to take place; Kachergis, Yu 

& Shiffrin, 2010). These aspects of xSL are also characteristic of more traditional pair-associate 

learning via EE. As such, if xSL is indeed a direct route to neocortical learning, it may suggest that 

acquisition under a high degree of referential ambiguity is the key feature that functionally 

distinguishes the neocortical and hippocampal learning systems. 

To date, no studies have directly investigated the brain mechanisms involved in xSL. Here we used 

event-related functional magnetic resonance imaging (fMRI) to test the hypothesis that xSL 

preferentially engages neocortical learning mechanisms rather than the hippocampus. Over the 

course of 6 in-scanner study blocks, participants used xSL to learn associative links underlying 9 

unfamiliar word-object pairs (words were aurally presented and objects were visually presented). 

Between study blocks, test trials tapped knowledge for the word-object associations thereby 

yielding information regarding learning rate. To serve as a comparison condition, a matched set of 

9 word-object associations had been pre-learned through EE and were also presented during 

training and test in the same manner. This paradigm thereby allowed us to examine BOLD effects 

indicative of xSL at study and activation differences corresponding to the retrieval of xSL- versus 



64 
 

EE-trained associations. Additionally, by modelling psychophysiological interactions (PPIs) during 

study (Friston et al., 1997), we explored whether the hippocampus and a neocortical region 

involved in speech processing (BA22) exhibited differential patterns of functional connectivity with 

other areas depending on how word-object associations were trained. BA22 was chosen as a 

neocortical seed due to its known involvement in the processing of auditory stimuli, particularly 

speech (DeWitt & Rauschecker, 2011; DeWitt & Rauschecker, 2013; Demonet et al., 1992), as 

well as the cross-modal integration of such information (e.g. Foxe et al., 2002). 

Four key predictions were under test; 1) during periods of study and test, xSL-trained associations 

will activate regions of the neocortical semantic memory system (e.g. the anterior temporal lobes) 

but not the hippocampus, 2) during periods of study and test, the hippocampus will be activated 

when processing EE-trained associations but not when processing xSL-trained associations, 3) 

during periods of study, functional connectivity between BA22 and semantic association areas will 

be increased for xSL-trained associations relative to EE-trained associations, and finally, 4) during 

periods of study, the automatic retrieval of word-object mappings learned via EE will result in 

increases in functional connectivity between the hippocampus and cortical representations of 

words and objects. 
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4.3   Methods 

4.3.1   Subjects 

Twenty-three right-handed, native English speaking students were recruited from the University of 

Sussex by way of online advertisement. All gave written informed consent to take part and were 

compensated for their time. Subjects had either normal or corrected-to-normal vision and reported 

no history of neurological or psychiatric illness. Of those who took part, data from four participants 

could not be included in for analysis due to problems with fMRI data acquisition (1 subject), and a 

failure to fully learn all associations to ceiling (3 subjects). As such, analyses included data from 19 

subjects (11 males) with a mean age of 25.42 (SD = 4.03). The study was approved by the 

Brighton and Sussex Medical School’s Research Governance and Ethics Committee. 

4.3.2   Stimuli 

18 colour photographs of obscure objects (e.g. rocket air blower) and 18 four-letter pseudowords 

(e.g. "Ospi") were selected from the NOUN Database (Horst, 2009) to be used as stimuli during the 

in-scanner task. Prior to each testing session, these stimuli were randomly paired together to form 

the trained word-object associations. Each pair was then randomly allocated to one of two groups 

(a "pre-learned" set and a "to-be-learned" set) consisting of 9 word-object pairs each. Additionally, 

9 other obscure objects and pseudowords were drawn from the NOUN database to be used as lure 

stimuli during a pre-scanner recognition memory task (described below). All images had a 

resolution of 240 x 240 pixels and were taken against a well-lit, white background. High quality, 

uncompressed recordings of each pseudoword spoken by the same, neutral female voice were 

produced and underwent digital processing to equate them for perceived loudness. Throughout 

training and test, these recordings were presented binaurally (using headphones). 

4.3.3   Procedure 

4.3.3.1   Pre-scanner training 

Prior to scanning, word-object associations for pairs in the pre-learned stimulus set were trained 

using an explicit encoding paradigm; following a 2 second inter-trial interval, a single object was 

centrally presented for 6 seconds and during this time, the object's corresponding pseudoword was 

played (figure 4-1A). There were 5 such study trials for each of the 9 word-object pairs in the pre-

learned set (i.e. 45 in total) and these progressed in a random order. Subsequently, participants 

were tested on the trained associations with a single 9-alternative forced choice (9-AFC) test trial 

for each pair; on each of these, a 3x3 grid of all the pre-learned objects was displayed and after 

being cued with a single pre-learned pseudoword, a randomly positioned red cursor appeared 
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around an object in the grid (see figure 4-1B). Using a computer keyboard, participants could then 

move the cursor around the grid in order to select the cued object. 

To equate the level of familiarity between pre-learned and to-be-learned stimuli, participants also 

engaged in a simple familiarisation phase for the to-be-learned objects and words. This took the 

form of a recognition memory test which ran in a similar way to the explicit encoding procedure 

described above with the key difference that each study trial only presented one type of stimulus 

(i.e. either a pseudoword or an object but not both simultaneously; figure 4-1C). There were 5 

study trials for each of the 18 to-be-learned stimuli (i.e. 90 in total) and these progressed in a 

random order. A two-alternative forced choice recognition test then followed where a single to-be-

learned stimulus (the target) was presented alongside a same-modality, unstudied lure. For 

pseudoword test trials, the target and lure words were serially presented in a random order before 

the text strings "First" and "Last" were displayed on screen with a red cursor placed randomly 

around one of them (figure 4-1D). Using the computer keyboard, participants were tasked with 

selecting the text strings that indicated whether the target was heard before or after the lure. 

During object test trials, the target and lure images were themselves displayed on screen and 

made selectable with the red cursor. There was a single test trial for each of the 18 to-be-learned 

stimuli and these were sequenced at random. 

The order of the above pre-scanner tasks was counterbalanced between participants and each 

was fully described to participants prior to being run. 
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Figure 4-1. Pre-scanning procedure. A: Explicit encoding trials for pre-learned stimuli. B: 9-AFC 

test trials. C: Familiarisation phase for to-be-learned stimuli. D: Recognition memory test for to-be-

learned stimuli. 

 

4.3.3.2   In-scanner task 

The in-scanner task consisted of 6 blocks of study trials each followed by a block of test trials. After 

a variable (uniformly distributed) inter-trial interval of between 3 and 7 seconds, individual study 

trials followed lasting for 6 seconds in total. During this time, 3 objects randomly sampled from 

either the pre-learned or to-be-learned stimulus sets were displayed simultaneously (that is, each 

of the 3 objects in any one trial originated from the same stimulus set; figure 4-2). The objects were 

positioned randomly in one of three on-screen locations and within the 6 second presentation 

window, their corresponding pseudowords were aurally presented, one after another, in a random 

order. There was no indication of which object went with which word. Both pre-learned and to-be-

learned trials occurred in a random, intermixed order and trials were constructed so that no 

stimulus was presented on consecutive trials as to limit the use of working memory (e.g. 

Kachergis, Yu, & Shiffrin, 2012b). Given that previous studies have successfully trained up to 18 

word-objects pairs via xSL (e.g. Yu & Smith, 2007), we do not expect that the addition of pre-

learned trials had a significant effect on performance. Within study blocks, each pair from the pre-

learned and to-be-learned sets was repeated 3 times meaning that there were 18 trials per 

study block. 
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Each test block consisted of 18 trials, one for each of the pre-learned and to-be-learned pairs. 

Individual test trials occurred in a similar way to the aforementioned 9-AFC tests performed during 

pre-scanner training; on trials testing a to-be-learned association, a 3x3 grid of all the to-be-learned 

objects was displayed. After being aurally cued with a single to-be-learned pseudoword, a 

randomly positioned red cursor appeared around an object in the grid (as in figure 4-2B). 1100 ms 

post-pseudoword onset, participants could move the cursor around the grid and select the cued 

object with an MRI compatible button box. Pre-learned test trials ran identically with the exception 

that the 3x3 grid was composed of pre-learned objects. All test trials occurred in a random order 

and were spaced with a variable (uniformly distributed) inter-trial interval of between 2 and 4 

seconds. Study and test blocks were separated from one another with an inter-block interval of 6 

seconds. 

 

 

Figure 4-2. Illustration of xSL procedure. 
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4.3.4   MRI Acquisition 

All images were acquired in a 1.5 Tesla Siemens Avanto scanner equipped with a 32-channel 

phased array head coil. First, while the main task was under-way, gradient-echo T2*-weighted 

scans were acquired using echo-planar imaging (EPI) recording 34 contiguous axial slices 

(approximately 30° to AC-PC line; ascending interleaved) and the following parameters; repetition 

time (TR) = 2520 ms, echo time (TE) = 43 ms, flip angle (FA) = 90°, slice thickness = 3.6 mm, in-

plane resolution = 3 x 3 mm, acquisition matrix = 64 x 64, & Field of View (FoV) = 192 x 192 mm. 

To allow for T1 equilibrium, the first 5 EPI volumes were acquired before the task started and then 

discarded. Subsequently, a field map was captured to allow the correction of geometric distortions 

caused by field inhomogeneity (see the Image Preprocessing section below). Finally, for purposes 

of co-registration and image normalisation, a standard whole-brain T1-weighted structural scan 

was captured with a 1mm3 resolution using a magnetization-prepared rapid gradient echo (MP-

RAGE) pulse sequence. 

4.3.5   Image Preprocessing 

All image preprocessing and statistical analyses were performed in SPM8 

(www.fil.ion.ucl.ac.uk/spm). First, each subject's EPI volumes were corrected for inter-slice 

acquisition delay. Images were then spatially realigned to the first image in the time series while 

simultaneously correcting for inhomogeneity-based geometric distortions (as well as the interaction 

between motion and such distortions) using the Realign and Unwarp algorithms in SPM (Anderson 

et al. 2001; Hutton et al. 2002). Following this, the EPI volumes were coregistered to the relevant 

structural scan which was then used to calculate a set of native-space to MNI-space transformation 

parameters. These parameters were subsequently applied to the functional images in order to 

normalise them to MNI-space using the DARTEL toolbox (Ashburner, 2007). Finally, the resultant 

EPI volumes were spatially smoothed with an isotropic 8 mm full-width at half-maximum Gaussian 

kernel prior to statistical analysis. In order to visualise statistical data, the structural scans were 

themselves normalised with the DARTEL toolbox and a mean T1 image was computed to serve as 

an anatomical underlay for group level statistics. 

4.3.6   Data Analysis 

4.3.6.1   Behavioural data 

The primary behavioural outputs from the in-scanner task were binary correct vs incorrect statistics 

relating to accuracy on each of the 9-AFC test trials. Correct responses were coded as 1’s and 

incorrect responses were coded as 0’s. To inform the imaging analyses, we wished to compute a 

subject-specific block-wise measure of word-object matching accuracy for both pre-learned and to-

be-learned associations individually. To do this, the binary performance statistics relating to each 

http://www.fil.ion.ucl.ac.uk/spm
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trial type were independently averaged within blocks thereby generating proportion correct values. 

This values were taken as a block-wise trajectory of performance (hereafter referred to as pre-

learned and to-be-learned “Pc” values). In addition to this measure, we wished to quantify the 

degree of subject-specific learning (i.e. an individual's change in performance) that was occurring 

within study blocks. As such, the first order derivatives (i.e. the rates of change) for pre-learned 

and to-be-learned Pc values were computed (hereafter referred to as “ΔPc” values), and taken as 

an index of the amount learnt within each study block. 

4.3.6.2   Analysis of univariate BOLD activations 

Following image preprocessing, a primary first-level general linear model (GLM) of the fMRI data 

was produced for each subject. Movement parameters derived from the image realignment 

procedure were included in each as nuisance regressors and a white matter signal indexing the 

normalised mean white matter intensity per volume was used to account for nuisance fluctuations 

such as scanner drift and aliased biorhythms. In total, the model included 15 event-related 

regressors of interest. Twelve of these specified study trial events as 6 second boxcar functions 

grouped according to trial type (pre-learned vs to-be-learned) and block (i.e. blocks 1 - 6). The 

remaining 3 regressors related to test trials which modelled 1) correctly answered to-be-learned 

tests, 2) incorrectly answered to-be-learned tests, and 3) correctly answered pre-learned test trials 

as separate event types. Where applicable, incorrectly answered pre-learned tests were also 

modelled yet, as few subjects made pre-learned errors (see behavioural results below), estimates 

of this regressor were not analysed in any way. All test events were specified as boxcar functions 

with an onset corresponding to that of the aurally presented cue and a length of 1100 ms (that is, 

the time between the cue and when the object selection cursor became visible). An additional 

regressor of no interest modelled periods of key pressing that followed each test trial. As there 

were many key presses per trial, these periods were specified as a single boxcar function for each 

test trial with its onset at the first key press and it’s offset as the final key press of the trial (roughly 

equivalent to modelling each key press with a unique delta function). All event-related regressors 

were convolved with SPM's canonical hemodynamic response function (HRF) before HRF 

amplitude estimates (β values), and temporal and dispersion derivatives, were calculated for each 

on a voxel-wise basis. 

To examine group-wide BOLD differences in study trials a function of trial type, block and their 

interaction, a 2x6 (trial type x block) ANOVA model of the HRF amplitude estimates was specified 

at second-level. Along with the 12 (2x6) categorical predictors denoting trial type & block number, 

four continuous predictors were included in the model. These independently specified the 

correlation between HRF estimates and; 1) to-be-learned Pc values for to-be-learned trials, 2) to-

be-learned Pc values for pre-learned trials, 3) to-be-learned ΔPc values for to-be-learned trials, 
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and 4) to-be-learned ΔPc values for pre-learned trials. Note, pre-learned Pc and ΔPc values were 

not included owing to no significant non-zero variance across these vectors. This model thereby 

allows the examination of BOLD correlations with to-be-learned Pc and ΔPc measures over and 

above any nonspecific BOLD effects not directly related to the to-be-learned trials (i.e. the 

interactions between Pc/ΔPc and trial type). Since the study had a repeated measures design, 

regressors coding for within-subject effects were included in the model and parameters were 

estimated with SPM8’s nonsphericity modelling algorithms using restricted maximum likelihood 

estimation (Henson & Penny, 2003; Friston, Stephan, Lund, Morcom & Kiebel, 2005). 

We also wished to examine group-wide BOLD difference across the three test trial events of 

interest; 1) correctly answered to-be-learned tests, 2) incorrectly answered to-be-learned tests, and 

3) correctly answered pre-learned tests. To do this, the HRF amplitude estimates of these events 

were entered into a one-way repeated measure ANOVA which also included within-subject effects 

and was estimated using the same nonsphericity modelling algorithms mentioned above. Where 

fMRI activations are plotted graphically, percent signal change was calculated by scaling beta 

estimates with the corresponding GLM regressor heights, and normalising the resultant values with 

the constant term (as implemented in the MarsBaR toolbox; Brett, Anton, Valabregue & Poline, 

2002). 

4.3.6.3   Psychophysiological Interactions 

Finally, we specified two PPI models to test our hypotheses that, during study events, the 

hippocampus and BA22 would show differential patterns of functional connectivity depending on 

trial type, word-object match accuracy (i.e. Pc) and the amount of learning taking place (i.e. ΔPc). 

Each seed region was defined with bilateral, anatomical masks in MNI-space as provided by the 

AAL Atlas for the hippocampus (Tzourio-Mazoyer et al., 2002) and the WFU Pick Atlas for BA22 

(Maldjian, Laurienti, Kraft & Burdette, 2003). Then, the two first-level PPI models (one for each 

seed region) were produced using the Generalized PPI Toolbox (McLaren, Ries, Xu & Johnson, 

2012). Both of these models included all the same event-related and nuisance regressors as 

specified in the primary first-level GLM described above. However, the PPI models included an 

additional 13 regressors; one coding the overall BOLD time course of the seed region, and the 

remaining 12 representing the interaction between this time course and each study event regressor 

of interest (i.e. all 2x6 study events). The BOLD time course of each seed was extracted as the first 

eigenvariate resulting from a principal component analysis (PCA) on voxels contained within the 

seed’s mask. This time course was then deconvolved with the HRF, multiplied by each event-

related regressor and then re-convolved with the HRF to compute the PPI interaction terms. 
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To examine psychophysiological interactions at the group level, we specified second-level models 

similar to that used in analysis of study-related BOLD activations (described above). For each seed 

region separately, estimates of the PPI interaction terms relating to the 12 study event regressors 

were entered into 2x6 (trial type x block) ANOVA model. As before, along with the 12 (2x6) 

categorical predictors denoting trial type & block number, four continuous predictors were included 

in the model. These independently specified the correlation between the PPI interaction terms and; 

1) to-be-learned Pc values for to-be-learned trials, 2) to-be-learned Pc values for pre-learned trials, 

3) to-be-learned ΔPc values for to-be-learned trials, and 4) to-be-learned ΔPc values for pre-

learned trials. Again, the model included within-subject effects was estimated with SPM8’s 

nonsphericity modelling algorithms using restricted maximum likelihood estimation. 

4.3.6.4   Bayesian methods 

Where statistical tests are non-significant and the absence of an effect is of theoretical interest, we 

report the results of follow-up a Bayesian analysis as described by Masson (2011). This tests the 

relative strength of evidence in favour of the null hypothesis (H0) compared to the alternative 

hypothesis (H1) by computing a Bayesian information criterion (BIC). The BIC statistic is calculated 

by contrasting the total variance in the data against the variance accounted for by the effect of 

interest. In comparison to other Bayesian methods (e.g. Dienes, 2011), this has the advantage that 

a prior expectation regarding the size of the effect need not be specified. Both H0 and H1 are 

assumed to be equally likely a priori. 

4.3.6.5   Imaging thresholds 

Across all imaging analyses, reported activations survive whole-brain, family wise error (FWE) 

corrected thresholds at either the peak- or cluster-level (cluster defining threshold: p < .001). 

Additionally, given our strong a priori hypotheses that effects of interest may be observed in the 

hippocampus, we report activations surviving a small volume correction for voxels falling within a 

bilateral hippocampal mask taken from the AAL Atlas (Tzourio-Mazoyer et al., 2002).  
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4.4   Results 

4.4.1   Behavioural performance 

Regarding the stimulus familiarisation and pre-learning phases administered prior to scanning, all 

participants correctly recognised each of the to-be-learned stimuli and all but one performed at 

ceiling on the 9-AFC tests of pre-learned associations. The participant who did not achieve perfect 

performance only made two errors across the nine pre-learned test trials and reached ceiling for 

these associations by the second block of the in-scanner task. 

Figures 4-3A and 4-3B display mean Pc and ΔPc statistics (respectively) for both pre-learned and 

to-be-learned word-object pairs as tested across the 6 in-scanner block. All participants showed a 

high degree of learning on the to-be-learned associations as performance increased from a little 

over chance in test block 1, to ceiling in test block 5. In contrast, performance on the pre-learned 

associations varied very little across blocks with only seven of the nineteen participants failing to 

show perfect performance across all the test blocks. A 2x6 (trial type x block) repeated measures 

ANOVA on the Pc statistics revealed significant main effects of trial type, F(1,90) = 44.785, 

p < .001, and block F(5,90) = 59.924, p < .001 which were superseded by the interaction between 

these two factors, F(5,90) = 59.712, p < .001. Importantly, a one-way ANOVA contrasting between 

block performance statistics for the pre-learned associations alone showed that Pc scores did not 

vary significantly across blocks, F(5,90) = 1.487, p = .202. Additionally, a Bayesian analysis 

highlighted substantially greater evidence in favour of the null hypothesis for a between-block 

difference in pre-learned performance, p(H0|Data) = .999. 

 

 

Figure 4-3. For the in-scanner task, block-wise measures of performance (proportion correct: A), 

and learning (change in proportion correct: B) broken down ‘trial type’. Error bars indicate 95% 

confidence intervals corrected for the within subject-error term. 
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4.4.2   Study trials: Univariate BOLD activations 

4.4.2.1   Main effect of trial type 

The 2x6 ANOVA model on the study trial imaging data revealed a wide range of brain regions 

exhibiting a main effect trial type (see table 4-1). Most of these regions, showed greater activity 

when processing to-be-learned trials relative to pre-learned trials and so may be involved in the 

acquisition of new word-object associations. However, a network of nine regions displayed the 

opposite pattern; BOLD increases on pre-learned relative to the to-be-learned trials. These 

activations may be indicative of selective involvement in processing associations acquired via 

explicit encoding. Alternatively, because the pre-learned associations were likely to have a greater 

overall trace-memory strength than the to-be-learned associations, such effects could reflect the 

overall strength of word-object associations. To discriminate between these possibilities, we ran a 

follow up analysis examining whether each of these regions displayed between block differences in 

BOLD activity for the to-be-learned trials alone; i.e. a one-way repeated measures ANOVA with 6 

levels. If a region exhibited significant BOLD modulations across to-be-learned study blocks (i.e. as 

trace-memory strength increased), the activation likely reflects the overall strength of word-object 

associations. In contrast, if there is more evidence in favour of no block-wise BOLD modulation (as 

revealed by the Bayesian information criterion), the data better support the interpretation that the 

region is selectively involved in processing explicitly encoded stimuli. 
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Table 4-1. Regions showing a main effect of ‘trial type’ on study trials. Asterisks denote 

significance at p(peak-FWE) < .05. Daggers denote significance at p(cluster-FWE) < .05. 

Superscript characters indicate activations in the same cluster. 
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Of the nine regions showing greater activity on pre-learned trials, all but the ventromedial prefrontal 

cortex (vmPFC) and the left hippocampal region showed significant BOLD modulations across the 

6 blocks of to-be-learned study trials; all F’s > 4.00, all p’s < .003. Additionally, between block 

changes in BOLD activity within the vmPFC were approaching significance; F(5,90) = 2.253, p = 

.063. These effects may therefore reflect the suppression of task irrelevant activity when rates of 

learning were at their highest (see Fox et al., 2005). Similarly, greater activity on pre-learned trials 

in the hippocampus may be indicative of greater default-mode deactivation during periods of 

learning. However, this appears less likely given the observation that the hippocampal cluster 

produced substantially more evidence in favour of the null hypothesis for a between-block 

difference in to-be-learned BOLD estimates; F(5,90) = 0.4001, p = .8419, p(H0|Data) > .999 (see 

figure 4-4). This indicates that the left hippocampal cluster exhibited greater BOLD activity to pre-

learned study events that was unmodulated during periods of xSL. It is possible, therefore, that the 

region is involved in processing explicitly encoded associations alone. 

 

 

Figure 4-4. Left hippocampal cluster exhibiting a main effect of ‘trial type’ on study trials. Error bars 

indicate 95% confidence intervals corrected for the within subject-error term. 

 

4.4.2.2   Main effect of block and correlations with to-be-learned “Pc” 

No regions showed a significant main effect of block. Additionally, we tested for where to-be-

learned Pc positively correlated with BOLD activity on to-be-learned study trials over and above the 

same correlation for pre-learned study trials; that is the one-sided interaction between Pc and trial 

type. This contrast also did not reveal any significant effects. 

4.4.2.3   Trial type x block interaction and correlations with to-be-learned “ΔPc” 

The interaction between trial type and block was significant in number of brain regions including; 

the inferior frontal gyrus (IFG) and the intraparietal sulcus (IPS) bilaterally (see table 4-2, and figure 
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4-5). On inspection of the parameter estimates from each of these regions, it is clear that all these 

effects reflect selective increases in to-be-learned BOLD activity during blocks where xSL was 

greatest (c.f. figure 4-3B). As such, these regions do appear to be involved in xSL. However, in 

order to test this more formally, we then looked for where to-be-learned ΔPc positively correlated 

with BOLD activity on to-be-learned study trials over and above the same correlation for pre-

learned study trials; that is the one-sided interaction between ΔPc and trial type. This revealed a 

group of 9 regions demonstrating significant effects (see table 4-3, and figure 4-6); IFG bilaterally, 

IPS bilaterally, caudate bilaterally, left MFG, superior medial gyrus (SMG) bilaterally, and the left 

fusiform gyrus. It is notable that, with the exception of the left and right caudate, all of these regions 

were also highlighted by the “trial type x block” interaction test; mean peak voxel displacement: 

8.91 mm. Instead, the left and right caudate nuclei were highlighted by the main effect of trial type; 

mean peak voxel displacement: 10.81 mm. 

 

Table 4-2. Regions showing a ‘trial type’ by ‘block’ interaction on study trials. Asterisks denote 

significance at p(peak-FWE) < .05. Daggers denote significance at p(cluster-FWE) < .05. 

Superscript characters indicate activations in the same cluster. 
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Figure 4-5. Top: Clusters exhibiting a ‘block’ by ‘trial type’ on study trials. 

Bottom: % signal change estimates for these effects. Error bars indicate 95% confidence intervals. 

Abbreviations: Fus = fusiform gyrus, IFG = inferior frontal gyrus, IPS = intraparietal sulcus, aPFC = 

anterior prefrontal cortex, SMG = superior medial gyrus, MFG = middle frontal gyrus. Error bars 

indicate 95% confidence intervals corrected for the within subject-error term. 

 

Table 4-3. Regions showing a one-sided interaction between ‘ΔPc’ and ‘trial type’. Asterisks 

denote significance at p(peak-FWE) < .05. Daggers denote significance at p(cluster-FWE) < .05. 

Superscript characters indicate activations in the same cluster. 
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Figure 4-6. Top: Clusters exhibiting a one-sided interaction between ‘ΔPc’ and ‘trial type’. Bottom: 

Plots displaying % signal change estimates on to-be-learned study trials against ΔPc statistics. 

Abbreviations: Fus = fusiform gyrus, IFG = inferior frontal gyrus, IPS = intraparietal sulcus, 

MFG = middle frontal gyrus, SMG = superior medial gyrus, Cau = caudate. 

 

4.4.3   Test trials: Univariate BOLD activations 

The one-way ANOVA model contrasting to-be-learned test trials (correct vs incorrect) along with 

correctly-answered pre-learned tests revealed a set of brain regions showing some form of BOLD 

difference across the 3 event types (see table 4-4). All these effects were then classified by their 

activation pattern based on planned follow-up contrasts; 1) “correct > incorrect” (collapsed across 

trial types), 2) “to-be-learned > pre-learned” (regardless of accuracy), and 3) “pre-learned > to-be-

learned” (regardless of accuracy). 
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4.4.3.1   Correct > incorrect 

Six regions showed greater activity to on correct relative to incorrect test trials. Of these, a 

conjunction analysis revealed that the left hippocampal cluster partially overlapped with the 

hippocampal/parahippocampal region showing a “pre-learned > to-be-learned” study trial effect 

(discussed above, peak voxel displacement: 15.588 mm). On the test trials, this region showed 

significantly greater BOLD signals on both types of correctly answered tests (to-be-learned and 

pre-learned) relative to incorrectly answered tests; minimum t(18) = 5.452, maximum p < .001. 

There was no significant difference between to-be-learned (correct) and pre-learned (correct) trials 

with substantial evidence in favour of the null hypothesis for this effect; t(18) = 0.758, p = .458, 

p(H0|Data) = .764. Of the remaining activations highlighted by the test trial analysis, all but the right 

inferior temporal gyrus (ITG) showed significant BOLD differences between all 3 test events such 

that; “pre-learned (correct) > to-be-learned (correct) > to-be-learned (incorrect)”, minimum 

t(18) = 2.155, maximum p = .045. Effects such as these may reflect the activation strength of a 

word-object trace since the memory associations for pre-learned pairs were most likely stronger 

than those of to-be-learned pairs (owing to the greater number of learning instances). While the 

right ITG also demonstrated BOLD effects following this same pattern, the difference between pre-

learned and correctly-answered to-be-learned trials was not significant; t(18) = 1.573, p = .133. 

Despite this, a Bayesian analysis proved insensitive when comparing the strength of evidence in 

favour of the null vs the alternative hypothesis; p(H0|Data) = .564. 

4.4.3.2   To-be-learned > pre-learned 

Nine regions showed greater activity to on to-be-learned relative to pre-learned test trials. Of these, 

a conjunction analysis revealed that clusters, all occurring bilaterally, in the inferior parietal lobule 

(IPL), IFG, SMG and anterior prefrontal cortex (aPFC), overlapped with previously reported effects 

implicating their involvement in xSL during periods of study (c.f. tables 4-1, 4-2 and 4-3). With the 

exception of the right MFG, each cluster displayed significantly greater BOLD responses on both 

correct and incorrect to-be-learned test trials relative to pre-learned test trials (minimum 

t(18) = 4.397, maximum p < .001). Additionally, again with the exception of the right MFG, BOLD 

responses in each cluster did not significantly differ between correct vs incorrect to-be-learned 

tests (maximum t(18) = 1.723, maximum p = .102). Moreover, a Bayesian analysis revealed 

substantially greater evidence in favour of the null hypothesis for this difference in the left IPL, right 

IPL, and left aPFC; p(H0|Data) = .783, .791, .813 for each region respectively. In contrast, the right 

MFG activation showed a significant “incorrect > correct” BOLD difference for both to-be-learned 

[t(18) = 3.731, p = .002] and pre-learned [t(18) = 8.106, p < .001] test trials. There was no 

significant difference between correct to-be-learned and pre-learned test trials; t(18) = 1.449, 

p = .165, p(H0|Data) = .604. 
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4.4.3.3   Pre-learned > to-be-learned 

Only the left vmPFC exhibited increased BOLD activity on pre-learned test trials relative to to-be-

learned test trials. Importantly, this region showed no significant BOLD difference between correct 

vs incorrect to-be-learned test trials; t(18) = 0.634, p = .534, and a Bayesian analysis revealed 

substantially more evidence in favour of the null for this effect; p(H0|Data) = .779 (see figure 4-7). 

Furthermore, in the previously reported analysis of study trial BOLD activations, this region 

demonstrated a main effect of trial type producing greater BOLD estimates on pre-learned study 

trials relative to to-be-learned study trials, peak voxel displacement: 8.49 mm. 

Table 4-4. Regions identified in the analysis of test trial. Asterisks denote significance at p(peak-

FWE) < .05. Daggers denote significance at p(cluster-FWE) < .05. Superscript characters indicate 

activations in the same cluster. 
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Figure 4-7. The vmPFC exhibiting a main effect of ‘pre-learned > to-be-learned’ on test trials. Error 

bars indicate 95% confidence intervals corrected for the within subject-error term. 

4.4.4   Study trials: PPI analyses 

Similar to the study trial analysis reported above, the 2x6 ANOVA models on psychophysiological 

interaction estimates examined changes in seed-to-voxel connectivity during study trials as a 

function of; 1) the “main effect of trial type”, 2) the “main effect of block”, 3) the “trial type x block” 

interaction, 4) the “Pc x trial type” interaction, and 5) the “ΔPc x trial type” interaction. For both 

seed regions, neither Pc or ΔPc interactions with trial type yielded significant effects. However, for 

completeness, we further tested the simple correlations between Pc/ΔPc statistics and connectivity 

estimates on to-be-learned trials alone. These did produce significant effects and so are reported 

below along with results for each of the other model terms. 

4.4.4.1   Hippocampal seed 

For the hippocampal PPI, a main effect of trial type was detected in the right middle occipital gyrus 

such that connectivity between this region and the seed was greater overall on pre-learned relative 

to to-be-learned study trials (see figure 4-8); F(1,212) = 18.72, p(cluster-FWE) = .010, k = 78, MNI 

= [+30, -96 +06]. While this effect may be indicative of increased levels of hippocampal 

connectivity on the pre-learned trials per se, it may instead reflect higher levels hippocampal 

connectivity when processing associations with a greater overall trace-memory strength (which 

pre-learned pairs were likely to have). In order to discriminate between these possibilities, we ran a 

follow up analysis examining whether connectivity estimates differed between blocks for the to-be-

learned trials alone; i.e. a one-way repeated measures ANOVA with 6 levels. This revealed no 

such modulation, F(5,90) = 1.100, p = .365, and a Bayesian analysis revealed substantially more 

evidence in favour of the null hypothesis for this effect; p(H0|Data) > .999. Of all remaining model 

terms, no other significant effects were detected. 
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Figure 4-8. Results of hippocampal PPI. Right middle occipital gyrus showing increased 

connectivity with the hippocampus on pre-learned study trials. Error bars indicate 95% confidence 

intervals corrected for the within subject-error term. 

 

4.4.4.2   BA22 seed 

For the BA22 PPI, a main effect of trial type was also detected in the right middle occipital gyrus 

such that connectivity between this region and the seed was greater overall on pre-learned 

relativity to to-be-learned study trials (see figure 4-9A); F(1,212) = 18.78, p(cluster-FWE) = .004, k 

= 95, MNI = [+33, -90, +15]. This cluster extensively overlapped with the equivalent effect identified 

by the hippocampal PPI reported above (peak voxel displacement = 11.225 mm). As before, we 

ran a one-way ANOVA on the to-be-learned connectivity estimates to determine whether these 

increased levels of seed connectivity reflected an effect of the pre-learned trials per se or 

differences in trace-memory strength between trial types. This returned a non-significant effect, 

F(5,90) = 0.916, p = .468, and a Bayesian analysis revealed substantially more evidence in favour 

of the null hypothesis; p(H0|Data) > .999. Of all remaining model terms, only two other significant 

effects were detected. Both of these reflected a correlation between connectivity estimates on to-

be-learned trials and to-be-learned ΔPc statistics. The left temporal pole showed a positive 

correlation, t(212) = 4.39, p(cluster-FWE) = .015, k = 71, MNI = [-39, +06, -24], while a cluster in 

the left hippocampus showed a negative correlation, t(212) = 3.85, p(peak-FWE) = .028 (corrected 

within the hippocampal ROI), k = 5, MNI = [-36, -21, -18], see figure 4-9B & 4-9C. The hippocampal 

cluster extensively overlapped with the analogous effect revealed by the hippocampal PPI reported 

above (peak voxel displacement = 3 mm). 
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Figure 4-9. Results of BA22 PPI. A: Right middle occipital gyrus showing increased connectivity 

with BA22 on pre-learned study trials. B: Left temporal pole cluster showing increased connectivity 

with the hippocampus as a function of ΔPc. C: Left hippocampal cluster showing reduced 

connectivity with BA22 as a function of ΔPc.  Error bars indicate 95% confidence intervals 

corrected for the within subject-error term. 
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4.5   Discussion 

We investigated the brain regions involved in xSL which requires the abstraction of statistical 

regularities across a series of ambiguous events. During periods of acquisition, increases in activity 

were observed within the IFG, IPS, caudate, SMG (all bilaterally), and the left MFG. Each of these 

activations scaled proportionally with amount of information encoding actually taking place. 

Furthermore, a subset of these areas also exhibited increased activation when accessing xSL 

associations at test. In contrast, the hippocampal formation only showed greater study-related 

activity when processing associations that had been previously learned via EE; that is, where 

word-object mappings were explicitly given rather than having to be inferred. Notably however, the 

correct retrieval of both xSL- and EE-trained associations elicited equally high levels of 

hippocampal activity. 

Models of memory consolidation predict that the hippocampal system is involved in rapidly learning 

all novel associations, including via xSL. This is inconsistent with our finding that the left 

hippocampus showed greater study-related activity on pre-learned trials yet no effects related to 

the acquisition of xSL-trained associations. Furthermore, our results leave open the possibility that 

xSL is facilitated by neocortical learning mechanisms alone. Consistent with this, acquisition via 

xSL was associated with decreases in functional connectivity between BA22 (implicated in speech 

processing) and the hippocampus, yet increases in connectivity between BA22 and the left 

temporal pole. This latter finding is significant since the temporal poles are known to be a key part 

of the semantic system (Binder, Desai, Graves & Conant, 2009) and contribute to the long-term 

storage of category-specific semantic knowledge (Warrington, 1975; Warrington & Shallice, 1984; 

Lambon Ralph, Lowe & Rogers, 2007; Noppeney et al., 2007). In contrast, the right occipital cortex 

demonstrated increased functional connectivity with both the hippocampus and BA22 when 

processing pre-learned associations. This mirrors similar findings suggesting that increased 

connectivity in these regions (and a range of other cortical areas) is a signature of episodic 

recollection (King, de Chastelaine, Elward, Wang & Rugg, 2015). 

The observation that the hippocampus was equally activated in response to retrieving both pre-

learned and to-be-learned associations may suggest that it was involved in the storage of each. 

This is a possibility that we cannot rule out. Nonetheless, it is noteworthy that correctly retrieving 

any word-object association at test is very similar to an EE-encoding instance for the tested pair. 

As such, the test-related increases in hippocampal activity may be indicative of hippocampal (re-) 

encoding processes rather than the activation of a pre-established memory trace. This principle of 

hippocampal re-encoding is a central tenant of multiple trace theory (MTT) which states that each 

time an episodic memory is activated, a new trace of that memory is added to the hippocampal 

ensemble (Nadel & Moscovitch, 1997). 
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As noted, we suggest that xSL is a direct route to neocortical semantic learning that is independent 

of the hippocampus, perhaps because of the way in which information is gradually acquired from a 

series of ambiguous events. In particular, xSL involves repeated presentations of multiple to-be-

learned associations that are interleaved with one another; precisely the conditions in which the 

neocortical system is thought to encode information (McClelland et al., 1995). As to why the 

hippocampus shows a lack of involvement in xSL altogether, it is notable that a high degree of 

referential ambiguity is key feature of this learning method. Each individual study event conveys a 

relatively small amount of referential information which may not be amenable to encoding by the 

hippocampal system. Instead, it is possible that the hippocampus can only encode associations 

when relational mappings are explicitly known and unambiguous from the outset (as is in the case 

for EE). In line with this, xSL share features common to other types of hippocampally independent 

learning, e.g. non-declarative skill acquisition (Cohen & Squire, 1980). During such learning, 

associations between visual inputs, motor commands, lexical representations, etc. are gradually 

accumulated and refined by feedback-related information provided across multiple study events. 

Since the hippocampus is known to be involved in cross-episode binding when associations are 

explicitly given (e.g. Zeithamova, Schlichting & Preston, 2012; Staresina & Davachi, 2009), we 

hypothesise that the degree of referential ambiguity during information integration is the one 

feature that principally determines whether or not learning is hippocampally dependent. 

Our suggestion that neocortical regions are principally responsible for xSL leads to the question of 

which particular brain areas are involved. As mentioned, the left temporal pole may be involved in 

semantic storage yet our data strongly suggest that other regions also play a role. With the 

exception of the caudate nucleus these regions have been implicated in the so-called “task-positive 

network”. Nodes within this network exhibit a high level of functional integration and are commonly 

activated in tasks requiring top-down attention and working memory (Fox et al., 2005; Corbetta & 

Schulman, 2002). Nonetheless, the potential contribution of each specific region to xSL is 

discussed in context of previous evidence. 

4.5.1   Inferior frontal gyrus 

Neuroimaging studies have implicated the IFG, particularly the left IFG (lIFG), in a wide range of 

language related functions. These include; phonological processing (Strand et al., 2008; 

Costafreda et al., 2006), syntactic operations (Tettamanti et al., 2009; Bahlmann, Schubotz & 

Friederici, 2008; Musso et al., 2003; Maess, Koelsch, Gunter & Friederici, 2001), and semantic 

processing (Obleser et al., 2007; Binder, Desai, Graves & Conant, 2009). In light of this, the lIFG 

has been proposed to act as a unification space integrating linguistic information across the 

phonological, semantic, and syntactic domains (Hagoort, 2005). Evidence for this has come from 

an fMRI study examining the learning of phonological to semantic mappings (Eisner, McGettigan, 
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Faulkner, Rosen, & Scott, 2010). Eisner et al., trained participants to understand spoken sentences 

distorted to match the sensory output of a cochlear implants. In a procedure not dissimilar to that of 

the current study, this form of perceptual learning was tracked across a series of test blocks. The 

lIFG showed activations at both study and test when processing to-be-learned stimuli - a finding 

that mirrors the effect reported here. Furthermore, BOLD increases in the region positively 

correlated with performance increases during learning, and participants working memory scores. 

Together with the results presented above, these finding suggest that lIFG supports a working 

memory process that acts to map between perceptual and semantic representations while learning 

is ongoing. 

4.5.2   Intraparietal sulcus and Inferior parietal lobule 

The IPS/IPL are part of the dorsal parietal cortex which has implicated in top-down attentional 

control (Corbetta & Shulman, 2002; Beauchamp, Petit, Ellmore, Ingeholm & Haxby, 2001; Nobre, 

Gitelman, Dias & Mesulan, 2000). Moreover, the attentional functions subserved here have been 

implicated in supporting a variety of perceptual functions including perceptual organisation, cross-

modal integration and auditory stream selection (Calvert, 2001; Shafritz, Gore & Marois, 2002; 

Donner et al., 2002; Wardak, Olivier & Duhamel, 2002; Cusack, 2005). Given this, it is possible 

that the IPS/IPL activations reported here simply reflect the attentional selection of perceptual 

inputs in aid of learning/retrieval. Recently however, the role of the dorsal parietal cortex has been 

extended to cover attention to memory processes (Cabeza, Ciaramelli, Olson & Moscovitch, 2008; 

also see: Cabeza, 2008; Ciaramelli, Grady & Moscovitch, 2008). Specifically, this region is 

proposed to maintain goal-based information online in order to guide the retrieval of memory traces 

in a top-down manner. Based on this, IPS/IPL involvement in xSL at both study and test could be 

indicative of memory retrieval mechanisms. 

4.5.3   Caudate 

Caudate activations are commonly reported in learning tasks with probabilistic reinforcement 

contingencies or when such contingencies change over time (e.g. Aron et al., 2004; Poldrack, 

Prabhakaran, Seger & Gabrieli, 1999; Poldrack et al., 2001; Cools, Clark, Owen & Robbins, 2004; 

Rogers, Andrews, Grasby, Brooks & Robbins, 2000). The caudate has also been implicated in 

learning more generally, as long as performance can be made reliant a single error-related signal 

informed by feedback (Doeller, King, & Burgess, 2008). Additionally, Seger and Cincotta (2005) 

showed that activity in the head of the caudate (at the same site reported above) mainly reflected 

the receipt of positive feedback and increased when feedback was most critical to learning. In line 

with this, the caudate is known to receive input from dopaminergic cells in the midbrain and to form 

a corticostriatal loop with other regions involved in feedback-informed learning (Swanson, 1982; 

Fiorillo, Tobler & Schultz, 2003; Middleton & Strick, 1996; Hornak et al., 2004). While the xSL task 
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used here did not provide explicit feedback, it is likely that feedback related signals were generated 

endogenously when word-object mappings became unambiguous. As such, caudate involvement 

in xSL may reflect the relay of these feedback signals to the cortex. 

4.5.4   Superior medial gyrus 

Anatomically, the SMG lies anterior to the supplementary motor area (SMA) and so is often 

denoted as pre-SMA. However, much evidence has accumulated to suggest that this region is both 

structurally and functionally interconnected with the prefrontal cortex to a much larger extent than 

the SMA itself (Luppino, Matelli, Camarda & Rizzolatti, 1993; Lu, Preston & Strick, 1994; Zhang, 

Ide & Li, 2012). Activations in the SMG have been reported when engaging in deductive reasoning 

operations such as logical transformations (e.g. negation), displacing variables, and logical 

connectives (e.g. conjunctions; Monti, Osherson, Martinez & Parsons, 2007; Monti, Parsons, & 

Osherson, 2009; Rodriguez, Moreno & Hirsch, 2009). It is noteworthy that deductive reasoning has 

been proposed to play a central role in xSL (Medina, Snedeker, Trueswell & Gleitman, 2011; 

Trueswell, Medina, Hafri, & Gleitman, 2013). On one account, xSL is facilitated by the generation 

of a single hypothesised referent for each word and retaining it across learning trials unless the 

hypothesis is falsified. As such, deductive reasoning operations underpinned by the SMG may 

support xSL by acting to test hypothesised associations. However, while hypothesis testing may 

indeed play a role in xSL, it is clear that associative mechanisms involved in tracking co-

occurrences more generally are also used, especially when referential ambiguity is high (Smith, 

Smith, & Blythe, 2011; Kachergis, Yu, & Shiffrin, 2012b). 

In summary, we report evidence that xSL provides a means by which the neocortical memory 

system can rapidly acquire novel associative information independent of the hippocampus. 

Neuropsychological studies testing xSL in hippocampally amnesic patients will be required to fully 

support this or falsify this hypothesis, yet to date, no such studies have been carried out. 

Nonetheless, the results of our fMRI experiment do suggests that xSL principally relies on a 

network of brain regions implicated in semantic processing, attention, and reasoning. 
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Chapter 5 

The effect of minocycline on hippocampal 

and non-hippocampal memory systems 

5.1   Abstract 

Neuronal-microglial interactions in the medial temporal lobe (MTL) are believed to regulate learning 

and memory processes such as LTP and neurogenesis. Minocycline (a tetracycline antibiotic) 

crosses the blood-brain barrier and is known to inhibit microglial activity via mechanisms distinct 

from its antimicrobial action. Aberrant microglial over-activity has been implicated in various 

neurodegenerative conditions (e.g. Alzheimer's disease) and minocycline is currently being 

investigated for its therapeutic potential. However, models of immune influences in the brain 

predict that microglial inhibition by the drug will also affect healthy cognitive functions yet this has 

not been examined. We used fMRI to test if minocycline can modulate healthy memory processes, 

and whether such effects are principally mediated by MTL memory systems. 20 healthy male 

subjects (mean age = 24.2) were recruited into a 2x2 repeated measures design; factor 1, 

minocycline vs placebo (100mg twice daily for 3 days prior to testing); factor 2, hippocampal 

dependent vs non-hippocampal dependent memory. Two in-scanner tasks were used; a virtual 

reality (VR) task constructed to simultaneously tap hippocampal- (boundary) and striatal- 

(landmark) based spatial learning/navigation, and a source memory (SM) task designed to assess 

item recognition (hippocampally independent) and source-memory (hippocampus dependent). 

While no modulations of memory performance were observed in the SM task, VR task 

performance indicated that minocycline biased subjects towards using hippocampally mediated 

navigation strategies which resulted in an impairment when learning to landmark. During periods of 

memory encoding, this corresponded to inappropriate activation increases in the right 

parahippocampal gyrus when on minocycline. This finding lends support to models implicating 

microglial function in learning and memory processes but suggest that the precise functional 

contributions of these cells remain poorly understood.  
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5.2   Introduction 

The immune system plays a central role in cognition, particularly with regards to memory functions 

subserved by the medial temporal lobes (MTL). Numerous studies have demonstrated that 

peripheral inflammation impairs hippocampal function (e.g. Harrison, Doeller, Voon, Burgess, & 

Critchley, 2014; Bilbo et al., 2005). Furthermore, several lines of evidence suggest that some 

neurodegenerative conditions (e.g. Alzheimer's disease, AD) have their aetiologies based in 

aberrant inflammatory activity (Perry, Cunningham & Holmes, 2007). Microglia are immune cells 

within the brain that underpin many immune influences on cognition and the over-activity of these 

cells may contribute to neurodegeneration in AD (Domercq & Matute, 2004). Classically microglia 

are thought to be in one of two states at any one time; a quiescent (resting) state, or an activated 

state resulting from systemic inflammation or tissue damage (Stence, Waite & Dailey, 2001). In the 

healthy brain, resting microglia are highly branched (ramified), produce motile projections and 

partake immune surveillance and the clearance of cell debris (Nimmerjahn, Kirchhoff & Helmchen, 

2005; Kreutzberg, 1996). In contrast, activated microglia become deramified, develop an amoeboid 

shape and are phagocytic towards damaged neurons (Stence, Waite & Dailey, 2001; 

Raivich et al., 1999). 

To date, a number of studies have attempted to alleviate damaging microglial activity in 

neurodegenerative conditions by attenuating microglial activation. Minocycline is a tetracycline 

antibiotic that is known to inhibit the function of microglia via mechanisms distinct from its 

antimicrobial action (Hinwood et al., 2012; He, Appel, & Le, 2001; Sriram, Miller, & O’Callaghan, 

2006). In non-humans this drug has been seen to provide neuroprotection against ischemia 

(Yrjänheikki, Keinänen, Pellikka, Hökfelt, & Koistinaho, 1998), glutamate excitotoxicity (Tikka & 

Koistinaho, 2001; Tikka, Fiebich, Goldsteins, Keinanen, & Koistinaho, 2001), and 

methamphetamine induced neurotoxicity (Hashimoto et al, 2007). However, while it is clear that 

minocycline does attenuate microglial activity in humans (Dodel et al., 2010), other studies have 

failed to find any neuroprotective benefit of the drug (Diguet, Goss, Tison, & Bezard, 2004; Sriram, 

Miller, & O’Callaghan, 2006). As such, consensus is lacking regarding the clinical efficacy of 

minocycline but despite this, the drug is currently being trialled as a neuroprotective agent for the 

treatment of AD (Minocycline in Alzheimer’s Disease Efficacy trial, UKCRN, 2014). 

Aside from the potential neuroprotective properties of minocycline, it is also known to inhibit the 

function of resting microglia (Hinwood et al., 2012). Because of this, models of immune influences 

in the brain predict that microglial inhibition by minocycline should modulate healthy MTL memory 

functions, even in the absence of neurodegeneration or inflammation. Specifically, these models 

suggest that resting microglia play a central role in hippocampally mediated learning through the 

regulation of long term potentiation (LTP) neural plasticity, and neurogenesis (Yirmiya & Goshen, 
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2011). In support of this, various investigations have shown that microglial derived cytokines 

(immunological signalling proteins) directly modulate neuronal activity in the hippocampus. 

Interleukin 1β (IL-1β) is a cytokine expressed by microglia that aids LTP by increasing neuronal 

spiking through NMDA receptor agonism (Viviani et al., 2003; Avital et al., 2003). Memory functions 

of the MTL are thought to be particularly sensitive to this since the region exhibits especially high 

densities of both IL-1 receptors and microglia (Ericsson, Liu, Hart, & Sawchenko, 1995; Lawson, 

Perry, Dri & Gordon, 1990). Furthermore, Tumour Necrosis Factor-α (TNFα), another cytokine 

expressed by microglia, has been observed to continually maintain synaptic strength in 

hippocampal neurons by adjusting the number of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole 

propionic acid) receptors (Beattie et al., 2002). Finally, one study showed that hippocampal LTP in 

mice can be disrupted by minocycline-induced microglial inhibition (Zhong et al., 2010). 

Microglia may also promote adult neurogenesis (Ekdahl et al. 2009) - a process which is thought to 

only occur within the olfactory bulb and the dentate gyrus of the hippocampus (Rakic, 2002; 

Alvarez-Buylla & Garcia-Verdugo, 2002). When healthy rats are subject to environmental 

enrichment, increased hippocampal neurogenesis is associated with microglial proliferation (Ziv et 

al., 2006). In contrast, inflamed rats show attenuated levels of neurogenesis (Ekdahl et al., 2003; 

Monje, Toda, & Palmer, 2003). These effects may be mediated by altered microglial expression of 

insulin growth factor-1 (IGF-1) and transforming growth factor β1 (TGF-β1) - hormones responsible 

for inducing neuronal stem cell differentiation (Battista et al., 2006). Microglial-mediated 

neurogenesis is significant to cognition as it has been functionally implicated in learning and 

memory (Deng et al., 2010; Leuner & Gould, 2010; Kempermann, Wiskott & Gage, 2004; Lledo, 

Alonso & Grubb, 2006). Newly formed neurons exhibit hyperexcitability and an increased 

propensity for LTP which aids plasticity (Ge, Yang, Hsu, Ming, & Song, 2007; Schmidt-Hieber et 

al., 2004; Deisseroth et al., 2004). Consistent with this, mice demonstrating enhanced hippocampal 

neurogenesis performed better on spatial tasks such as the Morris water maze and contextual fear 

conditioning (Saxe et al., 2006; van Praag, Shubert, Zhao, & Gage, 2005). As such, it would be 

expected that microglial inhibition by minocycline would adversely affect learning. 

Despite the above findings, the hypothesis suggesting that minocycline selectively modulates 

hippocampal memory functions has yet to be tested. Here we explicitly examined this. Healthy 

adult participants received a 3-day course of both minocycline and a placebo at two time points 

(counterbalanced order, double-blind). Following each administration period, participants were 

scanned as they engaged in two memory tasks; a spatial navigation task implemented in virtual 

reality (VR; as used by Doeller, King, & Burgess, 2008) and a source memory task (e.g. Gaffan, 

1994). Each of these allowed for the concurrent assessment of hippocampal and non-hippocampal 

memory performance. It was predicted that relative to the placebo, minocycline would selectively 
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modulate hippocampally dependent memory function in each task. Given that effects of microglia 

are commonly reported in the parahippocampal cortex and MTL more generally (e.g. Harrison et 

al., 2014), we additionally hypothesised that effects of minocycline would also be observed in these 

regions. 
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5.3   Methods 

5.3.1   Subjects 

Twenty non-smoking, unmedicated, right-handed students were recruited from the University of 

Sussex (UK) by way of online advertisement. All were male owing to the potential teratogenic 

effects of minocycline (Joint Formulary Committee & Royal Pharmaceutical Society of Great 

Britain, 2012). Each gave written informed consent to take part and all were compensated for their 

time. Subjects had either normal or corrected-to-normal vision and reported no history of 

neurological, psychiatric or inflammatory illness. Of those who participated, VR task data obtained 

from 2 subjects was discarded due to technical problems. As such, the VR analyses reported 

below include data from 18 subjects with a mean age of 24.55 years (SD = 5.03). All data obtained 

for the SM task was used in the SM analyses giving a sample with a mean age of 24.75 years 

(SD = 4.80). The study was approved by the Brighton and Sussex Medical School’s Research 

Governance and Ethics Committee. 

5.3.2   Design 

A double-blind, repeated measures design was used in which all subjects were tested twice; once 

following a course of minocycline, and once following a placebo. Minocycline (100mg twice daily) 

and the placebo (identical protocol & appearance) were administered 3 days prior to their 

respective study sessions (spaced by at least 14 days). The order of minocycline vs placebo 

administration was counterbalanced between subjects. 

5.3.3   Virtual Reality Task 

The VR task (modified from Doeller, King, & Burgess, 2008) was designed to simultaneously tap 

two learning systems supporting spatial navigation; one coding spatial locations relative to 

environmental boundaries and another coding spatial locations relative to a single landmark. 

Previous work with the task has shown learning associated with each navigation cue is 

differentially reliant on the hippocampus and dorsal striatum respectively (Doeller et al., 2008). The 

virtual reality environment (figure 5-1A) was constructed in Unreal Engine 2 (Epic Games). It 

consisted of a circular grassy plain (arena) surrounded by a steep bank (boundary) and a traffic 

cone placed non-centrally (landmark). A backdrop of mountains, clouds and the sun was visible 

outside of the arena being projected to infinity - this served as an orientation cue without providing 

any location information that could be inferred by proximity or parallax. Conversely, both the 

boundary and landmark were rotationally symmetric as not to provide orientation information. 

Using trial-and-error, the goal of the task was to learn the location of four everyday objects (e.g. 

clock, top hat) that appeared within the arena. Subjects were initially familiarised with the location 
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of these object across a series four “initial collection” trials. Here participants entered the arena 

with the relevant object already in place and collected it by walking over it. After this, spatial 

learning took place within 3 blocks of trials. Each block consisted of 16 trials (4 per object) 

progressing in a pseudorandom order. An illustration of the task procedure is displayed in figure 5-

1B. Trials started with an object being cued by its presentation against a grey background (cue 

phase; fixed at 2 seconds). Next, the object was removed and the grey background remained over 

a variable delay period (2 - 6 seconds, uniformly distributed). Subsequently, subjects were placed 

into the VR environment at a random location - no objects were visible at this time. Subjects were 

then required to indicate the location of the cued object by walking up to that position and pressing 

a button (replace phase). Immediately following this, the true location of the object was revealed 

and participants re-collected the object by walking over it (feedback phase). This period of 

feedback allowed subjects to refine their memory regarding the location of that object for use in 

future trials. 

In order to experimentally manipulate the use of different navigation strategies (i.e. boundary vs 

landmark based navigation), two objects were assigned to a “boundary-related” condition (B-

related), and the remaining two were assigned to a “landmark-related” condition (L-related). 

Unbeknownst to participants, the landmark shifted its position at two time points during training; 

first at the start of block 2 (middle of northwest quadrant to middle of southwest quadrant), and 

second at the start of block 3 (middle of southwest quadrant to middle of southeast quadrant). 

Given this landmark shift, B-related objects maintained a fixed position relative to the boundary 

whereas L-related objects maintained a fixed position relative to the landmark (that is, their location 

shifted in line with the landmark, see figure 5-1C). Consequently, the boundary and landmark 

became differentially informative when learning the locations of B-related and L-related objects 

during feedback. Object assignments to navigation conditions and the order of landmark shifts was 

counterbalanced across participants. As subjects completed the VR task on two occasions, 

different objects, backdrops, and trained locations were used in each testing session thereby 

limiting carryover effects. The task ran identically to that reported by Doeller et al. (2008) with the 

exception that the original study involved 4 learning blocks rather than the three used here. 
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Figure 5-1. Virtual reality task. A: Examples of the VR environments. B: A schematic illustration of 

the task procedure. C: Examples of the how the landmark, boundary and their associated objects 

moved relative to each other over the course of 3 blocks in order to train landmark vs boundary 

based navigation. Within each block, there were four learning trials for each object. 
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5.3.4   Source Memory Task 

The SM task sought to examine differences in brain activation at the time of memory encoding that 

corresponded to later remembering vs. forgetting (so-called subsequent memory effects). Subjects 

were scanned as they passively attended to a series of 100 trials, each presenting one object 

(source: Hemera Photo Objects, Focus Multimedia Ltd) superimposed onto a background image 

(e.g. sandy beach; retrieved from www.gettyimages.co.uk). In each study session, four background 

images were used and these were display behind an equal number of objects. Trials started with a 

presentation of the background image alone (500 ms), followed by the object on top of the 

background (2500 ms), and then the background alone once again (500 ms). Finally, a variable 

inter-trial interval (ITI) occurred for between 2 and 8 seconds (uniformly distributed, see figure 

5-2A). Prior to scanning, subjects were asked to remember the background scene for each object 

as they would be tested on them later. 

Approximately 20 minutes after study, subjects underwent the source memory test phase outside 

of the scanner. Here, the 100 study object (targets) had to be discriminated against 100 novel 

object that had not been seen before (lures). On each trial, a single object was presented in 

isolation (against a white background) and a visual analogue scale (VAS) was displayed 

underneath. On the VAS, subjects were asked to rate their confidence regarding whether or not 

they had seen the object before (item judgment phase). Extreme left and right ends of the VAS 

represented the highest confidence level for target and lure judgments respectively (see figure 5-

2B). If subjects responded over half way towards the left end of the scale (i.e. more confidence that 

the item is a lure), the screen blanked and the next test trial advanced. Otherwise, a second 

display showed the test object surrounded by each of the four background images and subject 

were required to select the background against which the object appeared, i.e. a four-alternative 

forced choice test (4-AFC; source judgment phase). Following this, a final screen displayed the 

chosen background image above another VAS scale where subjects were required to indicate their 

confidence in the background choice; not at all confident to most confident (source confidence 

phase). The test procedure was entirely self-paced with all responses being made via a computer 

mouse cursor/button. Test object progressed in a pseudorandom order and since the task was to 

be completed on two occasions, different object and background images were used in 

each session. 

 

http://www.gettyimages.co.uk/
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Figure 5-2. Source memory task. A: Examples of 2 in-scanner study trials separated by an inter-

trial interval. B: Source memory test procedure that took place outside of the scanner. 

 

5.3.5   MRI Acquisition 

All images were acquired in a 1.5 Tesla Siemens Avanto scanner equipped with a 32-channel 

phased array head coil. During both VR and SM tasks, gradient-echo T2*-weighted scans were 

acquired using echo-planar imaging (EPI) recording 34 axial slices (approximately 30° to AC-PC 

line; ascending interleaved) and the following parameters; TR = 2520 ms, TE = 43 ms, flip angle 

(FA) = 90°, slice thickness = 3 mm, inter-slice gap = 0.6 mm in-plane resolution = 3 x 3 mm & 

acquisition matrix = 64 x 64. To allow for T1 equilibrium, the first 5 EPI volumes were acquired 

before the start of each task and then discarded. Finally, for purposes of coregistration and image 

normalisation, a whole-brain T1-weighted structural scan was acquired with a 1mm³ resolution 

using an MP-RAGE pulse sequence. 

5.3.6   Image Preprocessing 

Image preprocessing was carried out identically for each task and performed in SPM8 

(www.fil.ion.ucl.ac.uk/spm). Initially, each subject's EPI volumes were spatially realigned to the first 

image in the time series. Following this, EPI time series data were warped to MNI space with 

transformation parameters derived from the structural scans (using the DARTEL toolbox; 

Ashburner, 2007). Subsequently, the EPI volumes were spatially smoothed with an isotropic 8mm 

FWHM Gaussian kernel prior to GLM analysis. 

http://www.fil.ion.ucl.ac.uk/spm
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5.3.7   Data Analysis 

5.3.7.1   Virtual reality task 

5.3.7.1.1   Behavioural data 

Behavioural outputs on the VR task were Cartesian coordinates denoting location estimations 

made on each trial of the replace phase (so-called “replaced locations”). We first computed “drop 

error” statistics (in virtual meters) corresponding to the distance between replaced locations and 

the correct locations as revealed during feedback. Additionally, as has been done in previous 

studies (Doeller et al., 2008), we wished to generate a metric (“LB-influence”) quantifying the 

relative influence of each navigation cue (boundary vs landmark) on replacement performance. To 

do this, we first calculated the distance between each replaced location and object location as 

predicted by both the boundary (𝑑𝐵) and the landmark (𝑑𝐿). For example, for an L-related object, 

𝑑𝐿 was simply the drop error and 𝑑𝐵 was the distance between the replaced location and the B-

related location that would have been correct prior to the most recent landmark shift. Given these 

distances, we then calculated LB-influence as the ratio of 𝑑𝐿 to the sum of 𝑑𝐵 and 𝑑𝐿: 𝑑𝐿 ÷ (𝑑𝐵 +

𝑑𝐿). The resultant metric varies between 0 and 1 with low values (i.e. close to 0) indicating a 

reliance on the landmark, and high values (close to 1) indicating reliance on the boundary. Note: 

LB-influence score could not be computed for trials blocks 1 since the distinction between B- and 

L-related objects was only instantiated at the start of block 2. 

5.3.7.1.2   Imaging data 

In the imaging analyses, we wished to examine memory encoding processes when differentially 

learning to landmark vs boundary. To do this, we quantified the level of memory encoding taking 

place on each replace phase by calculating the change in drop error (“Δ drop error”) occurring from 

one trial to the next for each particular object. Thus, Δ drop error reflects the improvement in object 

replacement with high and low values indicating a high and low level of learning respectively. 

These statistics were then dichotomised by median split to divide both L-related and B-related trials 

into two categories; low versus high learning level. 

First level general linear models of the fMRI time series data were specified. These included a 

single regressor for all object cue events, and separate regressors for the replace and collect 

phases in block 1. Replace phases in blocks 2 and 3 were modelled as a single event type 

parametrically modulated by LB-influence scores. The collect phases in blocks 2 and 3 were 

modelled with 4 separate regressors; 1) low learning level for L-related objects, 2) low learning 

level for B-related objects, 3) high learning level for L-related objects, and 4) high learning level for 

B-related objects. As well as HRF amplitude estimates, temporal and dispersion derivatives 

pertaining to all these periods of interest were modelled. Motion parameters were modelled as 



99 
 

nuisance regressors and the data were subject to a high-pass filter (cut-off = 1/128 Hz). This 

imaging analysis is highly similar to that reported by Doeller et al. (2008), the principal difference 

being that we split Δ drop error into 2 categories (low vs high) rather than 4. Since our task 

involved one block fewer than that reported by Doeller et al., this analysis difference ensured 

comparable numbers of trials were used when estimating BOLD signals at each level of learning. 

5.3.7.2   Source memory task 

5.3.7.2.1   Behavioural data 

At test, behavioural outputs were VAS ratings ranging from -400 (confidently a lure) to +400 

(confidently a target). When VAS ratings were above zero, responses to the 4-AFC test were 

recorded as either correct (1’s) or incorrect (0’s) along with a VAS rating reflecting confidence in 

the background choice (ranging from -400 to +400). As well as evaluating differences in confidence 

level, we wished to examine whether minocycline had differential effects on item versus source 

memory accuracy. To do this, we first dichotomised item VAS ratings as either “old” (rating > 0), or 

“new” (rating ≤ 0). Given this, we then classified each response into one of 5 categories and 

recorded their frequencies; 1) correctly recognised targets with a correct background response 

[“Hit+”], 2) correctly recognised targets with an incorrect background response [“Hit-”], 3) missed 

targets [“Miss”], 4) falsely recognised lures [“false alarm”], and correctly rejected lures [“correct 

rejection”]. It is noteworthy that the category frequencies relating to source memory accuracy (i.e. 

“Hit+” versus “Hit-”) are dependent on item responses. Additionally, as they were tested via 4-AFC, 

correct background selections should occur 25% of the time by chance alone. In order to account 

for these issues when estimating memory performance, joint-multinomial process tree (JMPT) 

modelling was used to analyse the category frequency data (see Batchelder & Riefer, 1999). This 

approach is consistent with previous studies that have tested a similar source memory task 

(Simons, Verfaellie, Galton, Miller, Hodges & Graham, 2002). 

Here, two tree structures (one for targets, the other for lures) modelled the psychological 

processes underlying item and source memory judgments (see figure 5-3). The tree for target 

stimuli contained 3 free parameters; the probability that a studied item will be correctly recognised 

(parameter A), the conditional probability that a recognised item will have its background retrieved 

(parameter B), the probability that an unrecognised target will be accepted as old (i.e. the bias for 

responding old, parameter C). Parameter C was also present in the second tree which categorised 

lures as either false alarms or correct rejections. These parameters were estimated for each 

subject and session individually via an expectation maximisation (EM) algorithm running in 

multiTree v0.45 (Moshagen, 2010). 
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Previous studies have shown that while source memory performance (i.e. parameter B) is heavily 

depended on hippocampal memory function, item memory performance (parameter A) is not 

(Davachi, Mitchell & Wagner, 2003; Cansino, Maquet, Dolan & Rugg, 2002; Bachevalier & 

Nemanic, 2008; Barker & Warburton, 2011). Given this, when evaluating the effect of minocycline, 

we took source and item memory performance to be indices of hippocampal and non-hippocampal 

memory function respectively. However, it is noteworthy that JMPT models assume the retrieval of 

both item and source memories to be a high-threshold process - that is, retrieval results in an ‘all-

or-nothing’ memory signal that is not graded by memory strength (see Wixted, 2007). While this 

assumption is often thought to hold for source memory judgments, item memory judgments may be 

made on the basis of a combination of two distinct processes; 1) a graded familiarity signal that is 

produced independently of the hippocampus, and 2) a high-threshold recollective process that is 

hippocampally dependent, a (Aggleton & Brown, 1999, 2006; Yonelinas, 1999). 

Considering this, in addition to using the JMPT models, we estimated item memory performance 

via the analysis of receiver operating characteristics (ROC) in the context of the dual-process 

signal detection model (see Yonelinas, Boddins, Szymanski, Dhaliwal & King, 1999). Here, hit rate 

(i.e. the probability of responding ‘old’ to a target item) is plotted against false alarm rate (the 

probability of responding ‘old’ to a lure item) as a function of response confidence (i.e. VAS ratings 

binned into 6 levels). This results in an ROC curve (see figure 5-4) which is decomposed into two 

recognition components; recollection (parameterised by the statistic R0), and familiarity 

(parameterised by the statistic d’). R0 corresponds to the y-axis intercept on the ROC curve and 

models the high-threshold process, principally indicative for high-confidence hits. D’ corresponds to 

the degree of ROC curvature and models the continuous difference in memory strength between a 

Gaussian distribution for targets and Gaussian distribution for lures. The values of Ro and d’ are 

estimated together via a Gauss-Newton algorithm that minimises the sum of squares error 

between the observed data and the fitted ROC curve. 

5.3.7.2.2   Imaging data 

For the source memory study phase, first level general linear models of the fMRI time series data 

were specified. These included separate regressors for study events that were subsequently 

classified as; Hit+, Hit-, and Misses. As well as HRF amplitude estimates, temporal and dispersion 

derivatives pertaining to these periods of interest were modelled. Motion parameters were 

modelled as nuisance regressors and the data were subject to a high-pass filter (cut-off = 1/128 

Hz). Where fMRI activations are plotted graphically, percent signal change was calculated by 

scaling beta estimates with the corresponding GLM regressor heights, and normalising the 

resultant values with the constant term (as implemented in the MarsBaR toolbox; Brett, Anton, 

Valabregue & Poline, 2002). 
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5.3.7.3   Imaging thresholds 

Given our a priori hypotheses that effects of interest would be observed in the MTL (for both the 

VR and source memory task) and the dorsal striatum (for the VR task alone), two regions of 

interest (ROIs) were generated using the automated anatomical labelling atlas (Tzourio-Mazoyer et 

al., 2002). The MTL ROI included both hippocampal and parahippocampal cortices (bilaterally), 

and the striatal ROI included the caudate and putamen (bilaterally). Within this ROI, reported 

activations survive an uncorrected height threshold of p < .001 and a spatial extent threshold of 5 

contiguous voxels (135 mm3). We also report activations that survive a map-wide height threshold 

of p < .001 (uncorrected) and a spatial extent threshold of 30 contiguous voxels (810 mm3). 
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Figure 5-3. Joint-multinomial process tree model used to analyse behavioural data from the source 

memory task. The model consists of two trees (top and bottom). The top tree specifies the 

proportion of target stimuli that are either remembered with their background (Hit+), remembered 

without their background (Hit-), or missed (Miss). The bottom tree specifies the proportion of lure 

stimuli are classified as old (i.e. false alarm, FA), or correctly rejected (CR). Category frequencies 

(i.e. numbers of Hit+’s, Hit-‘s, etc.) are calculated from behavioural outputs. While, some branch 

probabilities can be assumed (blue digits), the branch probabilities corresponding to memory 

performance (orange digits) must be estimated, typically via EM (see Batchelder & Riefer, 1999). 
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Figure 5-4. Example ROC curve used to model item memory performance in the source memory 

task. The ROC plots hit rate (y-axis) against false alarm rate (x-axis) as a function of response 

confidence (individual points). The recollection parameter (R0) corresponds to the y-axis intercept 

and reflects a high-threshold memory process. The familiarity parameter (d’) corresponds to the 

degree of ROC curvature and reflects a continuous level of trace memory strength. Both 

parameters are estimated via a Gauss-Newton algorithm that minimises the sum of squares error 

between the observed data and the fitted ROC curve.  
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5.4   Results 

5.4.1   Virtual reality task 

5.4.1.1   Behavioural data 

Both LB-influence and drop error statistics were split by navigation condition (i.e. B-related vs 

L-related), and trial (4 per block) before being averaged across blocks 2 and 3. Note: data from 

block 1 could not be included as the distinction between B- and L-related objects was only 

instantiated at the start of block 2. These metrics were then entered into two separate 2x2x4 

repeated measures ANOVA; factor 1 = drug (minocycline vs placebo), factor 2 = navigation 

condition (B-related vs L-related objects), factor 3 = trial number. 

LB-influence scores are displayed in figure 5-5A. The ANOVA output showed a main effect of 

navigation condition indicating that LB-influence score were significantly higher for B-related 

objects overall; F(1,17) = 193.761, p < .001. Furthermore, there was a significant navigation 

condition by trial interaction such that as trials progressed, LB-influence scores increased for B-

related objects but decreased for L-related objects; F(3,51) = 42.129, p < .001. Note: the difference 

in LB-influence scores on trial 1 are to be expected given that the analysis only included trials that 

occurred after object locations were differentially trained. Finally, there was a significant main effect 

of drug indicating that LB-influences scores were overall higher when on minocycline; 

F(1,17) = 5.325, p = .034. This indicated that when on the drug, minocycline may have biased 

participants towards using a boundary based strategy. No remaining model terms were significant.  

Drop error statistics are displayed in figure 5-5B. The ANOVA output showed a main effect of trial 

such that as trials progressed drop error scores across both L-related and B-related objects 

decreased; F(3,51) = 41.646, p < .001. Furthermore, there was a significant drug by navigation 

condition interaction indicating that minocycline increased drop errors for L-related objects, but not 

B-related objects; F(1,17) = 6.413, p = .021. This effect demonstrates that the increased 

LB-influence score observed when on minocycline (reported above) corresponded to an 

impoverished or attenuated use of landmark based information during navigation. No other model 

terms in the drop error ANOVA were significant. 
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Figure 5-5. Behavioural performance on the VR task. LB-influence scores (A) and drop error 

statistics (B) broken down by drug, navigation condition, and trial number. Error bars represent 

+/-1 standard error corrected for the within subject-error term. Abbreviation: VM = virtual meters. 

 

5.4.1.2   Imaging data 

5.4.1.2.1   LB-Influence 

Initially, beta estimates for the parametric modulation of BOLD amplitude by LB-influence during 

the replace phase were averaged across placebo and minocycline sessions for each subject. The 

resultant estimates were then entered into a group-wide one-sample t-test against zero thereby 

testing for significant correlations between LB-influence and BOLD. This revealed three regions 

showing positive correlations above threshold (i.e. activity increases with greater boundary 

reliance) as listed in table 5-1. We next examined whether any regions showed significant 

differences in the LB-influence correction between placebo and minocycline sessions by 
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contrasting the beta estimates in a paired samples t-test (i.e. a drug by LB-influence interaction). 

This revealed no suprathreshold effects. 

 

Table 5-1. Regions showing positive BOLD correlations with LB-influence during the replace 

phase. Dagger denotes significance at p(cluster-FWE) < .05. 

 

 

5.4.1.2.2   Effect of minocycline on learning to boundary vs landmark 

To examine BOLD activity indicative of learning to boundary vs landmark, and whether such 

effects are modulated by minocycline, a three factor model was specified at second-level. Here, 

HRF amplitude estimates relating to the collect phase were grouped by drug (placebo vs 

minocycline), navigation condition (boundary vs landmark) and learning level (high vs low) and 

entered into a 2x2x2 repeated measures ANOVA. All suprathreshold activations for this analysis 

are listed in table 5-2. A region in the left hippocampus showed a main effect of navigation 

condition such that BOLD activity was overall greater on B-related trials compared to L-related 

trials (see figure 5-6). Despite this, it is noteworthy that activity in the hippocampal cluster was not 

modulated by learning level. Three regions (the putamen, fusiform gyrus, and anterior middle 

frontal gyrus, all on the left side) exhibited a drug by learning level interaction. On the placebo, 

these clusters produced a BOLD pattern indicative of increased activity when learning to both 

boundary and landmark, but the reverse pattern when on minocycline (see figure 5-7). Finally, four 

regions showed a three-way interaction between drug, navigation condition and learning level; the 

left superior frontal gyrus, left anterior insula, right superior temporal gyrus, and right 

parahippocampal gyrus. On the placebo, BOLD patterns in each of these areas indicates 

increased activity when learning to boundary but not when learning to landmark. However, when 

on minocycline this pattern appears disrupted (see figure 5-8). 
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Table 5-2. Regions identified in the 2x2x2 ANOVA examining the effect of drug on learning to 

landmark vs boundary. Asterisks denote significance at p(peak-FWE) < .05. Daggers denote 

significance at p(cluster-FWE) < .05. § denotes p(peak-FWE) < .05 corrected within a priori 

anatomical ROIs. 

 

 

 

Figure 5-6. A cluster in the left hippocampus exhibiting a main effect of navigation condition during 

the collect phase; “boundary > landmark”. Error bars indicated 95% confidence intervals corrected 

for the within subject-error term. 
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Figure 5-7. Clusters showing a ‘drug’ by ‘learning level’ interaction during the collect phase. Error 

bars indicated 95% confidence intervals corrected for the within subject-error term. Abbreviations: 

Fus = fusiform gyrus, aMFG = anterior middle frontal gyrus, Put = putamen. 
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Figure 5-8. Clusters showing a three-way interaction between ‘drug’, ‘navigation condition’, and 

‘learning level’ during the collect phase. Error bars indicated 95% confidence intervals corrected for 

the within subject-error term. Abbreviations: Ins = insular cortex, SFG = superior frontal gyrus, 

PHG = parahippocampal gyrus, STG = superior temporal gyrus. 
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5.4.2   Source memory task 

5.4.2.1   Behavioural data 

We first examined whether the JMPT model parameters relating to item and source memory 

performance were differentially affected by minocycline. The JMPT model showed that both the 

item memory (A), and source memory (B) parameters were significantly non-zero for all subjects 

and sessions. These were then entered into a 2x2 repeated measure ANOVA model; 

factor 1 = drug, factor 2 = parameter (A vs B). This revealed a significant main effect of parameter 

such that the probability of positively recognising a target was higher than the probability of 

correctly retrieving an item's background image; F(1,19) = 11.675, p < .003. Aside from this, there 

was neither a significant main effect of drug or a significant drug by parameter interaction; 

F(1,19) = 0.454 and 0.302 respectively. Given outputs of the dual-process signal detection model, 

we also tested whether item familiarity (d’) and recollection (R0) differed between placebo and 

minocycline conditions. Paired samples t-tests indicated no significant differences; t(18) = 0.915, 

0.637 for d’ and R0 respectively. 

Next we examined whether minocycline affected subjective confidence ratings for either item or 

source memory decisions. To do this for item confidence, VAS ratings made on Hit+, Hit-, Miss, 

False alarm and Correct rejection trials were entered into separate paired samples t-tests (placebo 

vs minocycline). These revealed no effect of minocycline across all response categories; 

t(19)’s < 0.614, p’s > .547. For source memory confidence, VAS ratings made on Hit+, Hit-, and 

False alarm trials were also entered into separate paired sample t-test (placebo vs minocycline). 

Again, this revealed no effect of minocycline across each response category; t(19)’s < 1.447, 

p’s > .164.  

5.4.2.2   Imaging data 

To examine group-wide BOLD differences in item/source memory encoding, and whether such 

effects were modulated by minocycline, HFR amplitude estimates for Hit+, Hit-, and Miss trials 

were entered into a 2x3 repeated measures ANOVA (factor 1: drug, factor 2: trial type). This 

revealed a set of 17 suprathreshold clusters which were then classified by BOLD pattern into five 

groups based on post-hoc contrasts; 1) “Miss > Hit+/-”, 2) increases with encoding success [“Hit+ > 

Hit- > Miss”], 3) decreases with encoding success [“Miss > Hit- > Hit+”], 4) “Hit+/- > Miss”, and 5) 

“Hit+ > Hit-/Miss” (see table 5-3). No regions exhibiting a main effect of drug or a drug by trial type 

interaction were detected. 
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Table 5-3. Regions exhibiting BOLD differences between source memory study trials grouped by 

subsequent accuracy. Asterisks denote significance at p(peak-FWE) < .05. Daggers denote 

significance at p(cluster-FWE) < .05. 
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5.5   Discussion 

We investigated the functional consequences of minocycline, a microglial inhibitor, on human 

memory. While both on and off minocycline, participants learned the locations of objects in virtual 

reality (VR) relative to either a single landmark (reliant on striatal learning mechanisms) or an 

environmental boundary (reliant on the hippocampus). Additionally, a source memory (SM) task 

examined both item recognition (independent of the hippocampus), and object-scene bindings 

(hippocampally mediated). It was predicted that microglial inhibition via minocycline would result in 

modulations of hippocampal memory function alone. 

No effects of the drug were detected in the SM task data. Nonetheless, behavioural outputs of the 

VR task showed that minocycline promoted reliance on boundary-based information for both 

landmark- and boundary-related objects. While this did not significantly affect errors when 

navigating to boundary, it selectively disrupted landmark-based navigation. Given that the 

hippocampal and striatal systems are known to compete with one another during learning (Doeller, 

King, & Burgess, 2008), this finding implies one of two possibilities; 1) minocycline selectively 

impairs landmark-related learning resulting in a greater influence of boundary-related information, 

or 2) minocycline directly increases the strength or weighting of boundary-related information 

thereby positively biasing its use and increasing errors when navigating to landmark. Our 

behavioural data cannot distinguish between these two possibilities alone. 

Neuroimaging analyses highlighted that, when on the placebo, a region of the dorsal striatum 

(specifically the left putamen) exhibited increased activity during both landmark- and boundary-

based learning, but the reverse pattern on minocycline. Because this interaction was not specific to 

either navigation condition (i.e. it occurred for both landmark- and boundary-related learning), the 

finding may reflect processes that are downstream of altered mnemonic functions (e.g. integration 

processes for combining hippocampal- and striatal- information). In contrast, the right 

parahippocampal cortex exhibited an activation pattern indicative of selective boundary-based 

encoding when on the placebo, but inappropriate over activity when learning to landmark on 

minocycline. Considering this, we tentatively suggest that minocycline modulates learning 

processes in the MTL, perhaps biasing their use relative to other learning systems. 

While this interpretation requires further investigation, findings of the present study do lend support 

to models suggesting that microglia play a central role in underpinning healthy learning and 

memory functions (Yirmiya & Goshen, 2011). Nonetheless, it remains unclear exactly what 

contribution these cells make. As noted above, microglia are thought to aid LTP, synaptic scaling 

and neurogenesis by the expression of inflammatory cytokines and hormones (Viviani et al., 2003; 

Avital et al., 2003; Beattie et al., 2002; Ziv et al., 2006). Based on this, it may be expected that 
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resting microglial inhibition would result in impaired MTL memory function. Instead, our data 

suggest that MTL mediated processes were unimpaired but inappropriately active at times where 

other learning strategies were optimal. As such, it is possible that microglia may contribute to 

learning and memory functions in ways that are yet to be defined. One potential hint of this may 

come from the role of IL-6 which is another cytokine expressed by microglia (see Erta, Quintana, & 

Hidalgo, 2012). During spatial learning, IL-6 is expressed in the hippocampus of rats and has been 

observed to limit the duration of LTP - effectively acting as a potentiation stop signal (Balschun et 

al., 2004). In light of this, our suggestions of inappropriate MTL involvement in landmark-based 

navigation may be a consequence of LTP dysregulation within the MTL system. On a related note, 

hippocampal concentrations of IL-6 are known to increase with age (Ye & Johnson, 1999), and 

age-related changes in LTP are associated with microglial activation (Griffin et al., 2006). Since, 

LTP decreases are believed to contribute to neurodegeneration in AD (Koffie, Hyman, & Spires-

Jones, 2011), the potential neuroprotective qualities of minocycline may be mediated by reductions 

in IL-6 expression by microglia. 

Along with effects in the putamen and parahippocampal gyrus, the VR task also highlighted a 

number of other regions demonstrating modulations by learning and minocycline. Both the left 

fusiform gyrus and left anterior middle frontal gyrus showed activation patterns similar to that of the 

putamen (increased activity during both landmark- and boundary-based learning, but the reverse 

pattern on minocycline). As is suggested, these effects may reflect processes that are downstream 

of altered mnemonic functions. In line with this, each region is known to support process that are 

critical to learning the locations of objects. The fusiform gyrus is involved in visual processing and 

object recognition (e.g. Gauthier, Tarr, Anderson, Skudlarski, & Gore, 1999) and the anterior 

middle frontal gyrus has been implicated in the sustainment of items by working memory 

(Courtney, Ungerleider, & Keil, & Haxby, 1997). Showing effects mirroring that of the 

parahippocampal gyrus, three clusters in the left superior frontal gyrus, left anterior insula and right 

superior temporal gyrus were sensitive to minocycline in that they produced BOLD patterns 

indicative of over activity when learning to landmark. The superior frontal gyrus has been 

implicated in working memory processes (du Boisgueheneuc et al., 2006) whilst the anterior insula 

is associated with attentional control (Nelson et al., 2010), and the right superior temporal cortex 

with visual search (Gharabaghi, Berger, Tatagiba, & Karnath, 2006). As before, although the 

functional significances of these effects remains unclear, it is plausible that each are a 

consequence of altered memory function occurring in upstream brain regions. 

Contrary to what has been reported by Doeller et al. (2008), the VR task did not highlight any 

caudate activations indicative of landmark based navigation or learning. Additionally, while a region 

in the left hippocampus did show greater BOLD activity on boundary-related trials, the 



114 
 

hippocampus was not significantly modulated by the level of boundary-related learning. This may 

be due to differences in statistical power and alternative methods of data modelling - while Doeller 

et al. principally examined behaviour-BOLD correlations, we were interested in absolute BOLD 

differences reflecting the behavioural effects of minocycline. Considering that we did not replicate 

many of the effects reported in the original study, further work will be required to fully evaluate the 

impact of the minocycline on the striatal and hippocampal systems. Also noteworthy is the failure to 

detect MTL activations in the SM task. Numerous fMRI and lesion studies have demonstrated that 

object-in-place bindings heavily involve the hippocampal and parahippocampal cortices (Davachi, 

Mitchell & Wagner, 2003; Cansino, Maquet, Dolan & Rugg, 2002; Bachevalier & Nemanic, 2008; 

Barker & Warburton, 2011). Given this, it is likely that the lack of effects in the current study reflect 

insufficient statistical power. 

In summary, we suggest that microglial inhibition by minocycline leads to activation increases in 

the healthy MTL memory system thereby modulating mnemonic performance. This observation 

lends support to theories implicating microglia in learning and memory functions but suggests that 

the precise contribution of these cells is yet to be adequately characterised. Future studies probing 

the effects of minocycline on other hippocampally mediated processes (e.g. object perception; Lee 

& Rudebeck, 2010) will be required to support our findings. Furthermore, given that changes in 

microglial activation have been imaged in humans using [11C] (R)-PK11195 positron emission 

tomography (Dodel et al., 2010; Cagnin et al., 2001a/b), it should be possible to investigate 

whether the cognitive effects of minocycline directly correspond to microglial activity.  
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Chapter 6 

General discussion 

This thesis aimed to characterise the roles of hippocampal and neocortical subdivisions during the 

learning of different types of associative information. The following section summarises the findings 

of this thesis, discusses their theoretical implications, and puts forward novel hypotheses that 

require further examination. 

Configural discriminations involve learning associations that are operationally defined to ensure 

that above chance performance cannot be supported by attending to single features (Sutherland & 

Rudy, 1989). As such, they necessarily require learning associative relationships between stimuli 

that have overlapping elements. Previous research has implicated different MTL subregions in the 

coding of configural contingencies with varying degrees of complexity. Configurations devoid of 

any intrinsic spatial structure are thought to depend on the perirhinal cortex (Saksida & Bussey, 

2010). At the same time, lesion studies in rodents have implicated the hippocampus in 

underpinning configurations with a spatial element (Aggleton, Sanderson, & Pearce, 2007). In 

chapter 2, we investigated whether such dissociations occur in humans using fMRI. It was found 

that while a number of MTL subdivisions (including the perirhinal and hippocampal cortices) did 

process configural information throughout learning, they did not appear to represent this 

information once fully learned. Instead, the inferior temporal lobes (ITLs) and left angular gyrus 

(AG) exhibited BOLD patterns indicative of greater involvement as a function of configural memory 

strength. Both of these areas are key components of the semantic memory system (Binder, Desai, 

Graves, & Conant, 2009). Based on previous research, we proposed that the ITLs may store 

configural associations while the AG acts to selectively retrieve these representations at test (see 

Lambon Ralph, Lowe, Rogers, 2007; Ansari, 2008). 

Prominent models suggest that all learned information for declarative material is initially encoded 

by the hippocampal system before being consolidated or transformed to depend on the neocortex 

(McClelland, McNaughton, & O’Reilly, 1995; Winocur & Moscovitch, 2011; Nadel & Moscovitch, 

1997; McClelland, 2013). Contrary to this, the above result implies that humans can rapidly encode 

novel associations using their semantic system. Critically however, we do not suggest that the 

hippocampal system is never recruited to store configural associations in humans. Instead we 

propose that whether or not information is represented by the hippocampus depends on how 

information is presented at study. The experiment in chapter 2 required participants to learn 

multiple configural discriminations simultaneously - that is, at the outset of training, overlapping 

discriminations were interleaved with one another. This is not typical of the aforementioned animal 
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studies which train subjects to acquire configurations by progressively introducing the overlapping 

discriminations as each one is learned (e.g. Sanderson, Pearce, Kyd, & Aggleton, 2006). 

Consequently, the discrepancy between the rodent data and our fMRI data may be down to how 

discriminations are trained. 

Classically, the hippocampus is thought critical for new learning because of its ability to pattern 

separate - i.e. form non-overlapping representations for similar events in order to avoid 

catastrophic interference (O’Reilly & McClelland, 1994; McClelland & Goddard, 1996). However, 

we suggest that if overlapping units of information are acquired across multiple “interleaved” 

episodes rather than being learned “progressively”, pattern separation processes may be less 

effective at resolving hippocampal interference. This may be because, when interleaved, each to-

be-learned unit has no pre-established hippocampal trace to be separated against. In such 

situations, we hypothesise that configural representations are encoded by the neocortical semantic 

system. At the same time, the hippocampal system may still contribute to the online processing of 

configural information in a manner that is functionally relevant to learning. Consistent with this, the 

hippocampus is often implicated in performing visual operations that occur online (Lee, Yeung, & 

Barense, 2012; Lee et al., 2005; Barense, Gaffan, & Graham, 2007). Yet in contrast to standard 

consolidation theory (SCT), our hypothesis implies that memory representations need not form in 

the hippocampal system before neocortical learning can take place. Additionally, while we agree 

that neocortical learning is more gradual than learning in the hippocampus, we suggest that it can 

take place more rapidly than previously thought. 

The experiment in chapter 2 also showed that performance when transitively inferring across 

learned discriminations was strongly related to hippocampal activity at test and, to a lesser extent, 

during study. This provides some insight into the nature of the learned associative representations. 

Specifically, it highlights that the semantic encoding of configural information may not entail the 

formation of an integrated memory trace where all associations are coded in relation to each other. 

Instead, multiple overlapping configural contingencies in the semantic system may be represented 

separately and require extra processing to support inference performance. This contrasts with 

findings from other studies. When the directly trained associations are learned as well as they were 

in our study, transitive performance is most strongly related to hippocampal activity at encoding, 

not at test (e.g. Shohamy & Wagner, 2008). This has been taken to indicate that the hippocampus 

can represent an integrated trace of all associations which only needs to be activated at inference. 

Given this, we hypothesise that how transitive inference is subserved depends on whether 

information is encoded by the hippocampal or neocortical systems. As discussed above, this may 

in turn depend on how training takes place. If discriminative training progresses in an interleaved 

manner thereby resulting in semantic storage, the hippocampus may always be involved in 
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performing inference operations at test. However, if training occurs in a progressive manner 

resulting in hippocampal storage, the contingencies may be represented by a unitised trace which 

is not required to undergo any further inferential processing. 

Since we suggest that neocortical learning for configural associations can take place in the 

absence of a pre-established hippocampal trace, it was next investigated whether the neocortical 

system can learn simpler, non-overlapping, associations independent of the hippocampus 

altogether. When learning concerns item-item associations that are repeated multiple times, this 

may be possible if the neocortical system draws on item-based information represented in sensory 

areas. Cross-situational learning (xSL) is a form of training which enables the acquisition of word-

object associations through repeated presentations of word-object co-occurrences. Furthermore, 

associations between words and objects are never explicitly given in xSL because multiple 

unknown word-object pairs are presented simultaneously. This results in a high degree of 

“referential ambiguity” on any one trial and so learning mechanisms must acquire the associations 

by integrating information across trials. Behavioural studies have suggested that referential 

ambiguity in xSL may be addressed by gradually accumulating co-occurrence statistics in an 

associative manner (Kachergis, Yu, & Shiffrin, 2012b; Smith, Smith & Blythe, 2011). As the 

neocortex is often thought to extract statistical patterns in order to learn (Winocur & Moscovitch, 

2011), we hypothesised that xSL may be principally supported by neocortical learning mechanisms 

rather than the hippocampus. 

To test this, the experiment in chapter 3 first examined whether xSL is accounted for by 

hippocampally dependent contextual learning mechanisms as described by the temporal context 

model (TCM; Howard & Kahana 2002; Howard, Fotedar, Datey, & Hasselmo, 2005; Howard, 

2004). The TCM states that associative learning can be facilitated when item representations are 

bound to a slowly changing representation of environmental context. Because of this, the model 

predicts that errors made when mismatching words and objects in xSL would depend on the 

temporal arrangement of stimuli at study. This prediction was not supported. We next examined 

xSL using fMRI with the hypothesis that neocortical learning mechanisms rather the hippocampal 

system would be principally involved in word-object acquisition (chapter 4). The results highlighted 

that periods of xSL corresponded to increased activity in a number of neocortical regions which 

have been implicated in semantic processing, attention and reasoning. Critically however, the 

hippocampus was more activated for associations that had been pre-learned via an explicit 

encoding procedure. This is consistent with the hypothesis that xSL draws on neocortical learning 

mechanisms, perhaps independently of the hippocampus. 
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Nonetheless, as alluded to in chapter 2, even if neocortical learning progresses quickly, information 

processing by the hippocampal system may still be functionally supportive. Considering this, it 

could very well be that hippocampal activity, while not detected in the experiment, is still required 

for xSL to take place. However, there is one important distinction between the word-object 

associations in xSL and the configural discriminations of the previous study. In particular, 

configural learning involves the simultaneous acquisition of overlapping memory codes while xSL 

involves one-to-one mappings between to-be-learned features. As such, it could be that the 

hippocampus is always critical when learning overlapping associations which, as suggested, may 

perform pattern separation operations. In contrast, the hippocampus may not be needed when 

associations are orthogonal with respect to one another thereby allowing neocortical learning to 

take place in the absence of hippocampal activity. This hypothesis will need to be tested in the 

context of hippocampal pathology that is sufficient to cause amnesia. However, if supported, it will 

force an adjustment of SCT stipulating that schema inconsistent information can be learned 

independently of the hippocampal system as long as to-be-learned associations are non-

overlapping. 

Chapter 5 explored the question of how the hippocampal system is specialised to underpin rapid 

learning. Models of immune influences in the brain have implicated a variety of immuno-controlled 

functions in supporting hippocampal learning mechanisms (Yirmiya & Goshen, 2011). In particular, 

hippocampal microglia are thought to regulate LTP and adult neurogenesis (Viviani et al., 2003; 

Avital et al., 2003; Ekdahl, Kokaia & Lindvall, 2009), both of which are thought to be important for 

rapid learning (e.g. Deng et al., 2010). Given this, we tested a prediction of these models by 

examining the effect of microglial inhibition induced by minocycline on two different navigation 

strategies: learning to landmark vs learning to boundary. With a virtual reality task similar to that 

used in chapter 5, Doeller and colleagues (Doeller & Burgess, 2008; Doeller, King, & Burgess, 

2008) have demonstrated that learning spatial locations relative to an environmental boundary 

occurs incidentally and is reliant on the hippocampal system. In contrast, learning locations relative 

to a single landmark conforms to rules of associative reinforcement and is dependent on activity in 

the dorsal striatum. Based on the assumption that hippocampal learning mechanisms are 

contingent on microglial controlled processes, it was predicted that minocycline would selectively 

modulate learning to boundary. The results showed that minocycline did indeed modulate 

navigation performance but not in the way that was expected. Since microglia are thought to aid 

memory function, their inhibition should have caused an impairment when learning to boundary. 

Instead, we observed an over-recruitment of boundary-based strategies and a corresponding 

increase in hippocampal activity. This suggests that the precise functional roles of microglia in 

underpinning fast hippocampal learning mechanisms are not well understood. However, the study 
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does support the proposal that the immune system functionally contributes to hippocampal learning 

mechanisms. 

To conclude, this thesis has provided evidence that the neocortical system in humans can encode 

novel information within shorter periods of time than previously thought. Additionally, we suggest 

that the learning of novel, non-overlapping associations may be hippocampally independent if that 

training requires the extraction of statistical regularities across a series of ambiguous events. 

Finally, we provide evidence that hippocampal learning mechanisms are dependent on immune 

functions within the brain which may account for why the hippocampal system is specialised for 

rapid incidental learning. 
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