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THESIS SUMMARY 
The notion that unconscious Bayesian inference underlies perception is gaining 

ground. Predictive coding approaches posit that the state of the world is inferred 

by integrating, at each level of the perceptual hierarchy, top-down prior beliefs 

about sensory causes and bottom-up prediction errors. In this framework, 

percepts correspond to a top-down stream of beliefs that best 'explain away' 

sensory signals. Although such frameworks are gathering empirical support, 

subjective facets of perception remain unexplained from these perspectives. 

This thesis combines behavioural, computational and neuroimaging methods to 

examine how subjective visual confidence can be accounted for in a predictive 
coding framework.  

Experiment one shows that, behaviourally, perceptual expectations about target 

presence or absence both liberalise confidence thresholds and increase 

metacognitive accuracy. These results are modelled in a signal detection-

theoretic framework as low-level priors shifting the posterior odds of being 

correct. Using EEG, experiment two reveals that influence of expectations on 

decision and confidence oscillates with the phase of pre-stimulus alpha 

oscillations. This means that prior to target onset, both objective and subjective 

decisions have been rhythmically biased by the periodic recruitment of 

expectations to visual areas. Using fMRI, experiment three shows that in the 

post-stimulus period, expectations and sensory signals are integrated into 

confidence judgements in right inferior frontal gyrus (rIFG). Furthermore, this 

process recruits orbitofrontal cortex and bilateral frontal pole, which represent 

top-down influences, and occipital lobe, which represents bottom-up signals. 

Together, these results suggest that expectations shape subjective confidence 
by biasing the posterior probability of the perceptual belief.   
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1 
INTRODUCTION 
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1.1 OVERVIEW 

Accompanying our perceptual content is a sense of confidence in what we see. 

Sometimes our perceptual content is clear, and we feel able to identify the 

source of our sensory signals. However under sensory uncertainty, for example 

in the dark or when looking out the corner of our eye, we may become unsure. 

Subjective perceptual confidence is an important facet of our visual experience, 

that often reflects our conscious content (Kanai, Walsh, & Tseng, 2010; 

Sandberg, Timmermans, Overgaard, & Cleeremans, 2010; Seth, Dienes, 

Cleeremans, Overgaard, & Pessoa, 2008), but that also indicates an ability to 
evaluate our own judgements. 

In many cases we are able to accurately judge the correctness of our perceptual 

inferences, that is, we demonstrate reasonably high metacognitive accuracy 

(Fleming & Dolan, 2012; Kentridge & Heywood, 2000; Yeung & Summerfield, 

2012). We know when we know, and we know when we do not, meaning that 

our confidence correlates with our perceptual performance. However, 

confidence is subject to specific biases, such as a systematic underestimation 

of uncertainty in our environment (Zylberberg, Roelfsema, & Sigman, 2014) and 

a tendency to avoid evidence for unselected perceptual inferences (Maniscalco, 

Peters, & Lau, 2016; Zylberberg, Barttfeld, & Sigman, 2012). Despite such 

biases, little is known about how non-sensory influences shape our sense of 
confidence. 

For objective perception, research increasingly points to a more complicated 

picture than simple feature extraction, revealing that non-sensory influences 

such as motivation and beliefs exert powerful, shaping effects. There is now a 

wealth of evidence showing that perceptual prior expectations about the 

probable causes of sensation bias perceptual inference, and are associated 

with a suppression of ERP and BOLD activity (den Ouden, Kok, & de Lange, 

2012; Gilbert & Li, 2013; Summerfield & de Lange, 2014). These influences, of 

“seeing what we believe”, can be formulated in Bayesian terms. Bayesian 

frameworks propose that perception can be modelled as an integration of prior 
expectations and sensory data, where the ‘winning’ inference is that with the 
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 highest posterior probability (see section 1.2.2). In this way, we will perceive 

that which best explains our incoming sensory data. ‘Predictive coding’ 

frameworks extend this notion, proposing that the brain refines and shapes top-

down predictions until most of the bottom-up sensory data has been explained 
away (for a review, see Spratling, 2016).  

Predictive frameworks are increasingly being applied to high-level cognition, for 

example cognitive control (Pezzulo, 2012), theory of mind (Koster-Hale & Saxe, 

2013) and sense of agency (Friston, 2014). These frameworks are even being 

extended to try and explain conditions such as autism (Van de Cruys et al., 

2014) and schizophrenia (Horga, Schatz, Abi-Dargham, & Peterson, 2014). In 

many ways this is not surprising: as will be described in Section 2.2, these 

frameworks are very rich. Remarkably, subjective facets of perception remain 

largely unexplored from this perspective, despite a considerable body empirical 

work on objective perceptual decision-making. There has been some work, both 

theoretical and empirical, that has examined effects of expectation on the 

contents of visual consciousness (Hohwy, Roepstorff, & Friston, 2008; Jakob 

Hohwy, 2012; Melloni, Schwiedrzik, Müller, Rodriguez, & Singer, 2011), on 

sense of presence (Seth, Suzuki, & Critchley, 2011) and even on synaesthetic 

experience (Seth, 2014b). However, the extension of predictive processing 

frameworks to the domain of consciousness remains in its infancy. The feeling 

of confidence that accompanies perceptual judgements has been particularly 
neglected.  

This neglect persists despite confidence being particularly amenable to 

Bayesian frameworks. Confidence is often conceived as a subjective probability 

that a decision was correct (Meyniel, Sigman, & Mainen, 2015; Pouget, 

Drugowitsch, & Kepecs, 2016), and accordingly, it must involve some inference 

on internal states or sensory representations. Recent theoretical work has 

suggested that constructing our sense of confidence involves reading out the 

posterior probability of the perceptual choice made (Meyniel, Sigman, et al., 

2015). Alternatively, confidence could be conceived as a meta-decision, in 
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which the probability of the decision having been correct is inferred in a manner 
analogous to objective decision-making.  

This thesis attempts to bridge research on subjective perceptual confidence and 

on predictive influences on objective decision-making. It will investigate how 

top-down influences of prior perceptual expectations, controlling for influences 

of top-down attention, shape the construction of subjective visual confidence. 

Using a novel paradigm, work here uses visual psychophysics, EEG and fMRI 

to show that we are more likely to assign high confidence to predicted percepts 

This process of integrating expectations into confidence recruits both sensory 

and frontal brain regions, and begins prior to stimulus onset. Therefore, the 

work here reveals that predictive processing frameworks can be naturally 
extended to the domain of subjective decision-making.  

This Chapter will briefly introduce perceptual decision-making and 

metacognition, with the goal of outlining underlying principles of the work in this 
thesis and prefacing the subsequent Chapters. 

1.2 PERCEPTION AS A DECISION 

Perception is often regarded as decision-making, in that the processing of 

sensory signals leads to changes in the evidence for one perceptual inference – 

or decision – over another. In common to many perceptual decision-making 

(PDM) models is the notion of a decision threshold, which determines the point 

at which enough evidence has been accumulated for alternatives to be 

distinguished. On this account, top-down effects of expectation may push 

decisions towards one or another alternative by reducing the evidence required 

for selection. The specifics of these models do not form the focus of this thesis, 

but they motivate the theoretical foundation of this work. Accordingly, this 

section will give a broad overview of perceptual decision-making models and 
decision theory.  
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1.2.1 SERIAL SAMPLING 

Normative models describe PDM as a process of serial sampling evidence 

accumulation, whereby noisy evidence accumulates linearly towards a decision 

bound, and a decision is made when either the relative evidence (diffusion 

models, for reviews see Forstmann, Ratcliff, & Wagenmakers, 2016; Ratcliff, 

Smith, Brown, & McKoon, 2016) or absolute evidence (race models, e.g. Brown 

& Heathcote, 2008; Vickers, 1979) reaches the bound. These are illustrated in 
figure 1.1. 

These serial sampling frameworks model the accumulated evidence over time, 

stating that at each time point, the change in evidence is equal to some 

accumulated evidence and some noise. Evidence accumulation begins at the 
baseline level x(0) = x0, where x0 is taken to be zero in the absence of prior  

 

Figure 1.1 Evidence accumulation 

On the left, noisy evidence is accumulated to a decision threshold, or bound, 
separately for each response type. Whichever accumulator reaches the bound 
first is selected as the decision. On the right, the relative evidence between the 
two choices is accumulated. The starting point of evidence accumulation may be 
biased towards one of the decisions (see left), or the thresholds might be 
unequal, meaning that one choice needs less evidence than the other for 
selection (see right). 
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information. Race models are defined in the same way, except that the 

evidence for each choice is considered separately, and is accumulated under 

distinct drift rates with distinct starting points. 

In these models, top-down influences could be modelled as a change in x0, but 

also as a change in the drift rate, or as a change in the decision bounds, which 

determine the point at which evidence accumulation should halt (Summerfield & 
Egner, 2009). Alternatively, priors could simply add noise to the evidence  

 

Figure 1.2 Effect of priors in serial sampling frameworks 

Here, the participant has to determine the mean direction of motion (‘up’ or 
‘down’) in a random dot kinematogram (RDK). There are four points in the 
decision-making process at which priors could shape decision-making: (A) 
The baseline evidence could increase for the choice with higher prior 
probability. This would occur in the anticipatory stage, prior to stimulus 
onset and is modelled as a change in initial evidence; (B) Following stimulus 
onset, expectations could change the gain, or signal to noise ratio, which 
would be modelled as an increase in drift rate for the expected choice; (C) 
Internal noise could be added, artificially pushing evidence accumulation in 
favour of the expected choice; (D) Expectations could alter response 
biases, which would be modelled as a lower decision threshold for expected 
choices. Adapted from Summerfield & Egner (2010).  
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accumulation process so that ‘false’ evidence in favour of the preferred option is 

collected. Thus, these models offer four key targets at which top-down 

influences could act, and this is illustrated in figure 1.2. 

1.2.2 STATISTICAL DECISION MAKING 

An alternative formulation for PDM models describes perception in Bayesian 

terms. Here, for sensory evidence x, evidence for one choice, P(C1|x), is 

compared against that for  the alternative, P(C2|x), in the form of the log-
likelihood ratio, LLR. This is defined as: 

𝐿𝐿𝑅 = log
𝑃 𝐶! 𝑥)
𝑃 𝐶! 𝑥)

. 

When sensory evidence for C1 exceeds that for C2, R will take positive values 

whereas in the opposite case, R will be negative. Accordingly, we can 

determine a decision rule that determines which choice C should be made given 
the evidence: 

𝐶 =  𝐶!    𝑖𝑓 𝑅 > 0
𝐶!    𝑖𝑓 𝑅 < 0 

In this framework the decision rule does not usually change in the presence of 

expectations. Rather, to model expectations we simply consider prior odds of C1 
relative to C2 and add this to the LLR. Now, LLR becomes 

𝐿𝐿𝑅 = log
𝑃 𝐶! 𝑥)
𝑃 𝐶! 𝑥)

+  log
𝑃 𝐶!
𝑃 𝐶!

 

The addition of these prior odds pushes R towards positive or negative values 

and thus towards the response that the prior favours. By Bayes' rule, LLR is 

now equivalent to the posterior odds ratio: the relative probability of the two 
decisions, conditioned upon the evidence and prior odds. 

We can also incorporate uncertainty into Bayesian decision theory. Under 

uncertainty, both the sensory data (modelled as the likelihood) and the prior are 

represented as Gaussians. The degree of uncertainty about each of these 
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variables can be represented as the respective variances of these distributions. 
When combined, the posterior will also be Gaussian, with mean 

µ!"#$%&'"& =  
µ!"#$%"!!!"  σ!"#$"! +  µ!"#$"  σ!"#$%"!!!"!

σ!"#$%"!!!"! +  σ!"#$"!  

Here, the mean of the likelihood and the mean of the prior are weighted by the 

variance of the other variable. This is important, because the posterior odds 

(and therefore the decision) will be weighted according to relative sensory 

uncertainty. High sensory uncertainty will push the posterior mean towards the 

prior mean, whereas low sensory uncertainty will push it towards the mean of 

the likelihood. Accordingly, Bayesian decision theory predicts that decisions will 

be based upon expectations more when sensory uncertainty is high, and less 

so when sensory uncertainty is low. Similarly, if there is high uncertainty about 

the prior, for example if the environment is volatile and rules frequently change, 
expectations will carry greater weight upon the decision.  

1.3 DECISION CONFIDENCE 

In the decision-making literature – in perception, or learning and memory - 

participants are generally asked to make a forced choice about stimuli 

presented to them: ‘is this word old or new?’ (a yes/no task), or ‘was the target 

presented on the left or on the right?’ (2AFC). Answers to these decisions tell us 

about how stimuli are processed and reported, but these decisions are also 

accompanied by a sense of subjective confidence in our choice. These 

confidence judgements represent the subject’s probabilistic belief that they have 

made the correct decision, and usually correlate with decision accuracy 

(Grimaldi, Lau, & Basso, 2015). This tells us that we are not just good 

perceptual decision-makers, but are able to evaluate those decisions 
appropriately: we ‘know when we know’. 

Understanding how these confidence judgements are constructed informs us 

about how we make and evaluate our decisions, for example about how we are 

able to learn from our mistakes (Yeung & Summerfield, 2012). Determinants of 

high confidence may also help us understand the way in which knowledge or 
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perceptual content becomes conscious (Seth et al., 2008; Wierzchoń, 

Paulewicz, Asanowicz, Timmermans, & Cleeremans, 2014). Confidence has 

post-decisional benefits as well. For example, confidence can guide perceptual 

learning (Guggenmos, Wilbertz, Hebart, & Sterzer, 2016), it may act as a 

‘common currency’ between perceptual inferences, facilitating the integration of 

several information sources (de Gardelle, Le Corre, & Mamassian, 2016; de 

Gardelle & Mamassian, 2014), and communicating decision confidence with 

peers improves group decision-making (Bahrami et al., 2010; Zarnoth & 
Sniezek, 1997). 

The notion that we can ‘know that we know’ – that metacognition is intimately 

tied to knowledge – has a long tradition in philosophy. It can be traced back to 

Aristotle, who posited that memory requires reflection or conception (Sorabji & 

Aristote, 1972), and Augustine, who proposed that the mind continually reflects 

upon itself to understand and develop (Perricone, 2011). In psychology, 

introspection – the process of evaluating or reflecting upon one’s internal states 

– was revisited by Peirce and Jastrow in 1884, who revealed that decisions on 

stimuli associated with very low signal strength (small changes in weight) can 

be above chance, yet be reported with no confidence (Peirce & Jastrow, 1884). 

They claimed, as we still do, that decision confidence reveals current states of 
knowledge, concluding with the observation that sensation can be unconscious: 

“[This set of findings] gives new reason for believing that we gather what is 

passing in one another's minds in large measure from sensations so faint that 

we are not fairly aware of having them, and can give no account of how we 
reach our conclusions about such matters.” 

Though now we know that confidence is not purely a function of signal intensity 

(see Chapter 2), Peirce and Jastrow crucially showed that accuracy and 

confidence can dissociate, revealing that conscious knowledge or awareness 
seems to be a ‘privileged’ state that not all sensations are granted.   
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1.5 THESIS OVERVIEW 

This thesis will empirically address the question of whether and how perceptual 

prior expectations shape subjective judgements of perceptual confidence using 

visual psychophysics, signal detection theory, scalp electroencephalography 
(EEG) and functional magnetic resonance imaging (fMRI).  

Chapter 2 presents an overview of the theoretical and empirical literature on 

Bayesian brain frameworks and subjective confidence judgements that 

motivates this thesis. The ways in which confidence and metacognition can be 

studied empirically are detailed in Chapter 3. Chapter 4 presents a 

comprehensive analysis of behavioural data, showing that prior expectations 

increase subjective confidence and improve metacognitive sensitivity. 

Furthermore, it presents a Bayesian signal detection theoretic framework that 

accounts for these results. Using EEG, Chapter 5 shows that perceptual priors 

begin to bias objective and subjective judgements prior to stimulus onset. Using 

fMRI, Chapter 6 combines general linear modelling (GLM), psychophysiological 

interaction analysis (PPI) and voxel-based morphometry (VBM) to reveal a 

functional network in which confidence is shaped by perceptual priors. Chapter 

7 consolidates these findings with respect to the literature and presents a 

simple hierarchical Bayesian scheme that offers one plausible solution for how 
confidence could be modelled in a hierarchical predictive coding framework.       
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2.1 OVERVIEW 

What we perceive is not only a function of the external world, but also of what is 

expected by the observer (Gilbert & Li, 2013). Such expectations may be in the 

form of contextual information, or on previous experience in similar 

environments. One might imagine that these top-down influences act at late 

response stages of perceptual processing, however evidence increasingly 

points to expectations exerting effects at very early stages (Rauss, Schwartz, & 

Pourtois, 2011). This means that these top-down influences cannot simply arise 

from post-hoc reasoning, but rather, that perceptual inference is constrained by 

prior beliefs. These prior beliefs can pertain to knowledge of natural scene 

statistics, for example, that luminance changes at the edges of an object. 

Alternatively, they can reflect the probability of a given object in the current 

environment, or even beliefs passed down by evolution. This influence of prior 

beliefs on perception has led to growing interest in formulating perception in 

Bayesian terms (see Friston, 2012b; Knill & Pouget, 2004). Here, perceptual 

content corresponds to the hypothesised cause of sensation that is most 

probable, given the sensory signals and priors. Under these frameworks, 

probable causes are more likely to be selected, and unlikely causes are more 

likely to be suppressed. These ‘Bayesian Brain’ frameworks motivate the work 

presented in this thesis, though the work here neither directly tests them, nor 
depends upon them.  

This overview chapter will describe process models that attempt to explain how 

perception is shaped by top-down influences. Next, it will outline the current 

state of knowledge on how top-down influences shape perceptual decisions, 

including the neural substrates underlying subjective decisions. Finally, this 

section will bring these findings together and give a brief overview of how top-

down expectations might shape confidence judgements. This final question 
forms the topic of the present thesis.  
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2.2 THE BAYESIAN BRAIN HYPOTHESIS 

How can the brain infer the state of the world from only indirect, ambiguous 

sensory signals for which there is no one-to-one mapping between sensation 

and cause? A shadow, as depicted in figure 2.1A, may appear to have only one 

plausible sensory cause – a guitar – however there are many alternative 

causes, such as that depicted in figure 2.1B. We can also perceive, at distinct 

points in time, multiple perceptual interpretations of the same stimulus. This is 

made apparent in bistable phenomena such as Ruben's face/vase illusion (fig. 

2.1C), which can be perceived either as two faces or as a vase. Yet despite 

these conflicts, our survival indicates that we are able to infer the causes of our 
sensations with high degree of accuracy. 

Bayesian brain frameworks propose that perception is achieved via Bayesian 

inference, that is, in a manner consistent with Bayesian statistical decision 

making. Here, perceptual content is said to be the hypothesised cause of 

sensation that has maximum posterior probability, given the data and prior 

beliefs. Sensory signals and prior beliefs are combined into the posterior belief 
using Bayes’ rule, which states: 

𝑃 𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠  𝐷𝑎𝑡𝑎) =
𝑃 𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠  × 𝑃 𝐷𝑎𝑡𝑎  𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠)

𝑃(𝐷𝑎𝑡𝑎)  

However, the probability of the data is just a constant as it is invariant to the 
hypothesis. Therefore, we get:  

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 ∝ 𝑃𝑟𝑖𝑜𝑟 × 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑. 

This arises via a process of hypothesis testing, in which decisions are 

unconsciously guided by learned regularities in the world (Helmholtz, 1860). By 

simulating the expected probabilistic outcomes (posterior) under each 

perceptual hypothesis, the most explanatory hypothesis can be determined 

(Gregory, 1980). Thus, perceptual content arises from this process of iteratively 

testing sensory signals against hypotheses until as much of the sensory data as 

possible are ‘explained away’. The most explanatory perceptual hypothesis is 
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that which maximally explains the sensory signals, given context-dependent 
prior beliefs.  

This account assumes that the brain represents internal models that represent 

both these learned regularities (prior beliefs on sensory causes), and mappings 

between sensory causes and sensory data (likelihoods). That is, it must 

represent rules that govern sensory effects. However, in order to calculate the 

posterior the brain must infer unknown (hidden) causes from known, internally 

modelled effects, that is, perform ‘backwards’ inference. More formally, this is 
referred to as inverting the generative model.  

If perception is achieved by hypothesis testing, where do the priors come from? 
How should, and why can, perception arise in this way? These questions are 

 
Figure 2.1. Multiple perceptual interpretations  

A. The most probable sensory cause of this shadow is a guitar, however as shown in 
B. there are also unlikely sensory causes (a cat holding a toilet brush). This image 
illustrates how we often constrain our inferences according to prior probabilities.  
C. Ruben’s face/vase illusion. This image is considered bi-stable because it has two 
possible interpretations: the black shape can be perceived as a vase, or the negative 
space can be perceived as two people facing each other.  
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arguably best addressed in a biologically plausible fashion in the free-energy 

principle (FEP; Friston, Adams, Perrinet, & Breakspear, 2012; Friston, 2009, 

2010). In FEP, the Bayesian brain hypothesis is a corollary that follows from a 
unifying explanation of why living organisms operate or behave as they do.  

This principle starts with the premise that the goal of any living organism is to 

maintain its homeostasis, and that this is achieved by maximising the probability 

that the organism will remain in a small set of possible states (minimising 

entropy). In order to remain in a small set of possible states, the agent must 

minimise its long-term average surprise. What is surprising depends on the 

organism. For example, a fish out of water would be in a surprising state for a 
fish (Friston, 2010), but this would not be surprising for a human.  

How can surprise be minimised? FEP recruits the fact that free-energy is an 

upper-bound on surprise to propose that organisms maintain their homeostasis 

by minimising free-energy, that is, maximising their internal model evidence. 

With some assumptions (see 2.2.1), all the organism has to do is minimise the 

discrepancy between its sensory states and expected sensory causes (beliefs, 

or expectations). Minimising this discrepancy will minimise free energy, thereby 

minimising surprise and supporting homeostasis. The discrepancy between 

sensory states and expectations can be minimised in two ways. One possibility 

is to act upon the world to change sensation; another is to change internal 

states by altering beliefs (figure 2.2). More informally, one can think of the brain 

as a sophisticated but corrupt scientist, who over time tweaks his predictions 
and manipulates his data in order to consistently support his own larger theory. 

 

Figure 2.2 The perception-action loop 

under the free-energy framework 

The brain has only indirect access to the 

world, achieved via action and sensation. 

The agent can change sensation via 

action, or change perception by altering its 

prior beliefs. 
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2.2.1 VARIATIONAL BAYES AND HIERARCHICAL PREDICTIVE CODING 

Under this theoretical foundation for why the brain is a Bayesian hypothesis 

tester, we can ask how this might be achieved. How is the posterior belief 

inferred? The free-energy principle (FEP) relies upon a form of Variational 

Bayesian inference, implemented by the brain in the form of hierarchical 

predictive coding (for a technical formulation, see Friston & Kiebel, 2009). Note 

that there those who are proponents of predictive coding as a functional 
architecture who do not necessarily subscribe to FEP (e.g. Spratling, 2008).  

FEP takes a Variational Bayesian approach to approximating the posterior 

density P(cause | data). Here, the posterior is approximated by a recognition 

density Q(cause). The goal is to minimise the discrepancy between P and Q. In 

perception the data do not change (data change via action); the priors (i.e. the 

recognition density) must be optimised to minimise the distance between these 

distributions. FEP assumes that the brain uses the Laplace approximation, 

meaning that (i) these densities are Gaussian and (ii) the variance of these 
Gaussians is a function of their mean.  

Recall that the brain is thought to use hierarchical generative models. These 

furnish a stream of empirical priors, that is, conditionally dependent beliefs 

about sensory causes. In the brain, this maps well onto modular or hierarchical 

processing. We can imagine priors for edges in V1, for object shape in lateral 

occipital complex (which are dependent upon edges), and for semantic 

recognition of the object in fusiform gyrus (which are dependent upon edges 

and shape). Within this hierarchical scheme, optimising the recognition density 

entails optimising interdependent priors across the cortical hierarchy. Together, 

this process gives an approximation of the true posterior. FEP proposes that the 

brain performs Variational Bayesian approximation by implementing a 

hierarchical predictive coding scheme with the Laplace approximation (for a 
review, see Spratling, 2016).  

Hierarchical predictive coding is a message-passing algorithm that optimises 

sufficient statistics in each level of the hierarchy by minimising the discrepancy 
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between top-down priors and bottom-up prediction errors, until all prediction 

errors converge within some small margin of error (figure 2.3). Prediction error 

corresponds to the discrepancy between the prior and the data. The idea here is 

that separate units (in the brain, neurons) will represent priors and prediction 

errors. Each task-relevant region of the perceptual hierarchy receives top-down 

priors and bottom-up prediction errors, and from these, estimates the posterior. 

This posterior forms the prior for the level below, and any unexplained data that 

remains is communicated to the hierarchical level above as prediction error, to 

be 'explained-away' at increasing levels of abstraction. In parallel, prediction 

error will be used to update the generative model such that predictions are 
optimised in the longer-term as well.  

Thus, predictive coding assumes that perceptual inference is achieved via a 

cascade of reciprocal exchanges of predictions and prediction errors, which 

minimises prediction error across the cortical hierarchy. In this way, (some) 

priors are empirical, meaning that they do not have an origin, but rather are 
constrained by inferences across the brain, as well as across timescales.  

2.2.2 ATTENTION AS PRECISION WEIGHTING 

Crucial to Bayesian statistical decision theory, independently of neural 

implementation, is the notion of precision. Here, priors and data can be 

represented as Gaussian probability distributions, which means that they will be 

associated with a precision (variance) representing their reliability. In volatile 

environments, where governing rules frequently change, or if these rules are 

unclear (you are in a novel environment, say) it would be unwise for inference to 

place too much weight on the prior belief. Its precision will be low. Similarly, if 

sensory uncertainty is expected to be high – say it is a dark night and you are 

outside – it would be unwise for inference to place too much weight on these 

sensory signals. Bayes rule ensures that priors and likelihoods (sensory 

signals) will be combined with respect to their precisions (see section 1.2.2 and 
figure 2.4). 
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Figure 2.3 Hierarchical inference. 

(A) Hierarchical Bayesian inference of a forest scene. Top-down 
prior beliefs (blue) and bottom-up sensory signals (red) are 
combined at each hierarchical level into a posterior belief using 
Bayes rule. At higher levels of the hierarchy, inference 
corresponds to  more abstract or global representations. Here, 
inference moves from perception of edges, to perception of 
objects, to perception of the wider environment.  
(B) Hierarchical predictive coding. This is similar to hierarchical 
Bayesian inference. The crucial difference is that the bottom-up 
information is prediction error (PE), not sensory signals. At each 
level of the hierarchy, top-down priors are received from the level 
above and bottom-up PEs are received from the level below (and 
in lateral connections).The inference at each stage constrains 
that at the level below by becoming the prior. It also constrains 
the level above, by feeding-forward remaining PE. 
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Figure 2.4 Combining priors and likelihoods 

The top panel shows that when the prior distribution is wide relative to 
the likelihood function, i.e. there is high prior uncertainty, the posterior 
will be weighted more by (i.e. look more similar to) the likelihood. In 
the bottom panel the prior is very precise. Accordingly, the posterior is 
weighted more by the prior than the likelihood. Picture taken from 
(Edwards, Adams, Brown, Pareés, & Friston, 2012). 
 

So, within the free-energy principle what is the role of top-down attention, for 

example selective attention? One intriguing proposal is that attention is the 

process of adjusting precision weightings according to top-down goals and 

motivations, like tuning a radio or tweaking an amplifier (Clark, 2015; Kanai, 

Komura, Shipp, & Friston, 2015). In this way, the relative contributions of top-

down priors and bottom-up prediction errors can be adjusted by top-down 

beliefs on precisions, accentuating the signals that are most relevant to the 

agent. To illustrate, imagine you are on an Easter egg hunt, and desperate to 

win. You will be looking hard for anything remotely egg-shaped, but anything 

irrelevant to the task (even if it is usually motivationally salient), you will try to 

ignore. Within the free-energy framework, this would be modelled as an 
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expectation that you will win the hunt – that prior represents the motivation. This 

belief (motivation) shapes second-order prior beliefs on the precisions in 

stimulus-relevant sensory and association cortices. These beliefs are that egg-

coloured or egg-shaped objects have high precision, and anything else has low 

precision. The result of these beliefs is that information that is consistent with 

the sensory causes that are relevant to your goals – Easter eggs – will be 

prioritised, and all other information will be suppressed. In figure 2.4, this would 

mean changing the variance of the prior and likelihood functions, so that the 
posterior distribution is biased towards the more reliable evidence. 

This concept has received only preliminary and circumstantial support, primarily 

from modelling work (Brown & Friston, 2012; Feldman & Friston, 2010; Kanai et 

al., 2015; Vossel et al., 2014), however its utility is primarily in the explanatory 

power it affords. Under this framework, predictive processing governs not only 

perception, but a host of high-level cognitive processes (Clark, 2015) such as 
motivation and value (Friston & Ao, 2012; Friston et al., 2015).  

2.2.3 NEURAL ARCHITECTURE UNDERLYING A BAYESIAN BRAIN? 

So far, it has been proposed that interactions between the brain and its 

environment are mediated by perception and action, such that perception 

optimises predictions and action changes the sensory inputs. Together these 

processes maximise an agent's internal model evidence. As yet, much of the 

neuroanatomical and neurobiological evidence for such a framework is 

circumstantial, though plausible neural architectures have been proposed in 

considerable detail (Bastos et al., 2012; Friston & Kiebel, 2009a; Kanai et al., 

2015). One prediction of these architectures is that priors are communicated in 

beta band oscillations, precision-weighted prediction errors are communicated 

in the gamma band, and precision-weighted priors are communicated in the 

alpha band. This hypothesis has received recent support from model-based 
analyses on human electrocorticography (eCoG) data (Sedley et al., 2016).  

However, evidence for the existence of neurons that signal perceptual 

prediction error remains elusive. Their existence is not implausible, given 
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evidence for the existence of reward prediction error neurons in midbrain (Bayer 

& Glimcher, 2005; Nakahara, Itoh, Kawagoe, Takikawa, & Hikosaka, 2004; 

Schultz & Dickinson, 2000), but this assumption – of prediction error neurons – 

renders FEP particularly controversial. So, what are alternative neural codes for 

Bayesian inference, if not priors and prediction errors? One possibility is that 

neurons, at least in visual cortex, represent the entire posterior probability 

distributions (Fiser, Berkes, Orbán, & Lengyel, 2010; Hoyer & Hyvarinen, 2003; 

Paulin, 2005). This idea is lent circumstantial support from the fascinating 

finding that visual cortex neurons vary in the degree to which their activity is 

correlated with their neighbours’ (Okun et al., 2015). This is what we would 

expect if probability distributions were represented at the group level: most 

neurons signal similar information (are close to the peak), while fewer neurons 

signal deviant information (are close to the tails). Alternatively, some 

frameworks propose that neurons encode the sufficient statistics, that is, the 

mean and standard deviation of the posterior density functions (Knill & Pouget, 
2004), or that their activity reflects the inference itself (Lee & Mumford, 2003).  

The ideas summarised in this section – of the brain as a Bayesian inference 

machine, and particularly the free-energy principle – are not argued to be ‘true’, 

and are not presented in order to introduce work aiming to lend support to this 

framework. Rather, this framework offers us a set of unifying principles under 

which to consider cognition, and allows us to conceptualise processes from 

perception to attention, expectation, value, motivation and more, in terms of just 

a small set of concepts common to all function: hierarchy, priors, prediction 

errors and precision. This set of unifying principles, which, in its free-energy 

formulation, has been proposed as a unifying theory of the brain (Friston, 2010), 

motivates a key question which forms the focus of this thesis: if all brain function 

can be described in terms of priors and precision, consciousness should be 

explicable in these terms too. Thus, this thesis focuses on the role of priors in 

one particular facet of consciousness that is relatively amenable to 
quantification: subjective perceptual confidence.  
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2.3 ATTENTION AND EXPECTATION SHAPE PERCEPTION  

The way in which priors and precisions should shape perceptual content is 

largely consistent with empirical work on expectations and top-down attention. 

These top-down influences are usually studied separately, yet many paradigms 

thought to manipulate one may additionally manipulate the other. For example, 

Posner cueing (see figure 2.5) should divert attention towards the location at 

which the stimulus should appear. However, while this paradigm is used to look 

at attentional effects on reaction time, the cue concurrently induces a 

probabilistic expectation that the probe will appear in a particular location 

(Summerfield & Egner, 2009). Therefore, before considering how attention and 

expectation might shape confidence, it is important to determine how they 
shape objective perceptual judgements. 

 

Figure 2.5 Posner cueing paradigm 

Here, a spatial cue (usually with 75% validity) is presented before stimulus onset so 
that covert attention can be allocated to the task-relevant spatial location. A probe is 
then presented, either in the cued or uncued location. Here, the probe appears in the 
cued location. After the probe has been removed from the screen participants are 
asked to report the side on which the target appeared as fast as possible. The critical 
comparison in this task is reaction time differences between cued (attended) and 
uncued (unattended) probes.  

2.3.1 TOP-DOWN ATTENTION  

The multiple forms of attention are generally divided into two categories: one is 

stimulus-driven attention, often termed attentional capture; the other is top-down 

attention, which is driven by the agent’s goals or desires, and is under volitional 
control (Theeuwes, 2010).  
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Behaviourally, top-down attention improves the quality of information, adjusting 

the signal to noise ratio for relevant targets by determining features that should 

receive priority versus those that should be suppressed (Knudsen, 2007). 

Accordingly, attention increases the responsiveness of early visual cortex 

neurons to task-relevant signals (Martinez-Trujillo & Treue, 2004; McAdams & 

Maunsell, 2000; Saenz, Buracas, & Boynton, 2002). One popular idea is that 

top-down attention acts after a feedforward ‘sweep’ so that goals and motivation 

can target appropriate regions of the visual field (Bar et al., 2006; van Gaal & 

Lamme, 2012) and bias competition in favour of more important targets (Beck & 
Kastner, 2009; Desimone & Duncan, 1995; Hickey & Theeuwes, 2011).  

While attention tends to target signals in sensory and parietal cortices, its 

deployment seems to originate in the dorsal attention network: the frontal areas 

frontal eye fields (FEF) and intraparietal sulcus (IPS, see figure 2.6). Both FEF 

and IPS are candidate regions for representing salience or priority ‘maps’, 

representing regions of space according to their behavioural relevance, that can 
be read by perceptual or oculormotor regions (Serences & Boynton, 2007). 

 

Figure 2.6. Dorsal and ventral attention networks. 

Both networks are connected with visual cortex (V). The dorsal 

attention network consists of frontal eye fields (FEF) and 

intraparietal sulcus, (IPS), whereas the ventral network consists of 

ventral frontal cortex (VFC) and temporoparietal junction (TPJ). 

Figure from Vossel, Geng & Fink (2014). 
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Stimulus-driven attentional processes, particularly the detection of behaviourally 

relevant but unexpected targets, have been associated with a second network - 

the ventral attention network. This consists of temporoparietal junction (TPJ) 

and ventral prefrontal cortex (VPF; Corbetta & Shulman, 2002). These two 

networks most likely interact, deploying attention according to both top-down 
and bottom-up influences (Vossel, Geng, et al., 2014).  

In summary, top-down attention is conceived as a prioritisation process, which 

improves the quality of goal-relevant signals. Predictive processing frameworks 

model these effects as top-down modulation of precision-weighting, adjusting 

neural gain according to those signals that are of most importance.  

2.3.2 PRIOR EXPECTATION 

Top-down attention and prior expectations are conceptually distinct: while 

attention is allocated to signals or processes on the basis of priority or 

relevance, expectations tell us about what those signals are most likely to be 

(Summerfield & Egner, 2016). Their effect on perception is undoubtedly 

powerful (Gilbert & Li, 2013; Rauss et al., 2011; Sarter, Givens, & Bruno, 2001; 

Theeuwes, 2010). When a target is expected, for example it is predicted by a 

cue, because it is associated with the context, or because it occurs frequently, 

reaction times substantially decrease (Coste, Sadaghiani, Friston, & 

Kleinschmidt, 2011; Eickhoff, Pomjanski, Jakobs, Zilles, & Langner, 2011; 

Jaramillo & Zador, 2011), even after controlling for response preparation or 

anticipation (Umbach, Schwager, Frensch, & Gaschler, 2012). These findings 

are often interpreted as evidence that priors shape evidence accumulation, 

either by changing the initial evidence for more probable inferences, or by 

lowering decision thresholds for expectation-congruent choices (see section 

1.2.1). 

Whether expectations about perceptual content also increase perceptual 

sensitivity is a matter of debate. Accuracy and sensitivity measures tend to 

remain unaffected by expectation manipulations (e.g. Kok, Brouwer, van 

Gerven, & de Lange, 2013; Kok, Rahnev, Jehee, Lau, & de Lange, 2011; 
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Morales et al., 2015), but reverse correlation analyses suggest that 

expectations may increase signal to noise ratio (Cheadle, Egner, Wyart, Wu, & 

Summerfield, 2015; Wyart, Nobre, & Summerfield, 2012). These positive results 

are consistent with a role of expectations in facilitating the evidence 

accumulation process, for example, by adjusting neural gain, or precision, such 

that the neural response to probable features is amplified (Summerfield & 

Egner, 2016). While the role of expectations in perceptual sensitivity remains 

unclear, we know that expectations can bias decisions in favour of the more 

probable sensory cause, consistent with Bayesian principles (den Ouden, Kok, 

& de Lange, 2012; Summerfield & de Lange, 2014; Summerfield & Egner, 
2009).  

Indeed, there is now a wealth of evidence showing that a lot of perceptual 

decision-making is Bayes-optimal, in the sense that sources of information are 

combined in such a way that the influence of the most reliable information is 

maximised (see Chapter 1). For example, de Gardelle and Summerfield (2011) 

presented participants with a circular array of hues and asked participants to 

report the average hue. They factorially manipulated the mean (i.e. expected) 

hue and the variability of hues, and found that high means and low variances 

independently improved accuracy and sped decisions on task-relevant feature 

dimensions. Crucially, hues that were closer to the mean hue carried greater 

weight in participants’ averaging than outliers. This appropriate use of summary 

statistics when down-weighting outliers can be interpreted as optimal Bayesian 

inference (Feldman, Griffiths, & Morgan, 2009). Bayes-optimal incorporation of 

priors has been evidenced in a wide range of domains, including the estimation 

of motion trajectories (Körding & Wolpert, 2004), the application of force 

(Koerding, Ku, & Wolpert, 2004; Singh & Scott, 2003), object perception 

(Kersten, Mamassian, & Yuille, 2004), and cross-modal cue integration, such as 
across the visual and haptic domains (Ernst & Banks, 2002).  

The Bayes optimal observer provides a benchmark against which human 

performance can be compared. When behaviour is fit well by Bayesian decision 

theory, minimal conditions for the brain being Bayesian, or engaging in 
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predictive processing, have been met. However, non-Bayesian or suboptimal 

inference does not necessarily refute the Bayesian brain hypothesis. Rather, 

suboptimal inference may reveal constrains on the cognitive system, or reflect 

non-trivial priors and/or utility functions that we hold but that are not modelled, 

such as learned preferences and goals. For example, the size-weight illusion, 

where larger items are perceived as lighter than smaller items, is considered 

‘anti-Bayesian’, because inference goes in the opposite direction from the prior 

expectation that larger objects are heavier (Brayanov & Smith, 2010). The 

potential to accommodate anti-Bayesian phenomena in Bayesian schemes has 

led to criticisms that the framework is unfalsifiable (e.g. Bowers & Davis, 2012). 

One recent proposal has put forward the idea that the perceptual system does 

behave according to Bayesian principles, but uses an efficient coding scheme 

that maximises mutual information between the stimulus and the sensory 

representation. The authors show that under certain loss functions and when 

there is internal noise, this efficient coding scheme can lead to skewed 

likelihood functions, resulting in posteriors that are pushed away from the prior: 

‘anti-Bayesian’ effects (Wei & Stocker, 2015). This model illustrates how 

apparently suboptimal behaviour can arise from constraints on the cognitive 
system – here, the requirement of data compression.  

The notion that probabilistic information shapes perception is not in doubt 

(Firestone & Scholl, 2015), however it remains unclear how this occurs. For 

example, how are expectations encoded? How are expectations compared to 

sensory signals, and at what stage in the decision-making stream do they act? 

A key question addressed in this thesis that also remains unstudied is: to what 

extent do these influences carry over into subjective facets of perception? If 
they do carry over, how does this occur? 

2.3.2.1 NEURAL CORRELATES OF PREDICTION 

A key region implicated in predicting the sensory consequences of an action is 

cerebellum (Blackwood et al., 2004; Paulin, 2005). Cerebellar activity correlates 

with the discrepancy between predicted and actual sensory consequences of 

action (Blakemore, Frith, & Wolpert, 2001). Accordingly, monkeys with 
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cerebellar legions show impairments in predicting future states on the basis of 

current motor states (Ebner & Pasalar, 2008), and human patients with 

cerebellar legions are impaired in their ability to update predictive models about 

sensory consequences of action (Roth, Synofzik, & Lindner, 2013; Synofzik, 
Lindner, & Thier, 2008).  

With regard to how these priors shape sensory processing, it has been 

hypothesised that priors are communicated across cortical areas via oscillatory 

activity in either the alpha or beta bands (Arnal & Giraud, 2012; Andre M Bastos 

et al., 2012; Engel, Fries, & Singer, 2001; Engel & Fries, 2010). Alpha-band 

oscillations tend to be associated with top-down influences in the perceptual 

domain (Klimesch, Sauseng, & Hanslmayr, 2007; Mayer, Schwiedrzik, Wibral, 

Singer, & Melloni, 2015; Zumer, Scheeringa, Schoffelen, Norris, & Jensen, 

2014), whereas these effects move to the beta-band in motor tasks (de Lange, 

Rahnev, Donner, & Lau, 2013; Engel & Fries, 2010; van Ede, Jensen, & Maris, 

2010). In accordance with predictive frameworks, there is accumulating 

evidence for a crucial role of anticipatory (i.e. prestimulus) activity in these 

frequency bands associated with feedback signalling (van Kerkoerle et al., 

2014), in representing expectations of both ‘what’ (Mayer et al., 2015) and 

‘when’ (Samaha, Bauer, Cimaroli, & Postle, 2015), as well as in updating rules 

in accordance with cues (Cooper, Darriba, Karayanidis, & Barceló, 2016). Thus, 

8-20Hz neural oscillations are a strong candidate mechanism for the 
communication of priors.  

It also seems apparent that these priors are communicated to, if not 

represented in, sensory areas. When a portion of the visual field is occluded, 

the content of that occluded portion can be predicted from its surrounding 

context, such that in V1 non-stimulated regions are ‘filled-in’ (Petro, Vizioli, & 

Muckli, 2014; Smith & Muckli, 2010) by feedback signals (Morgan, Petro, & 

Muckli, 2016; Muckli et al., 2015). In V1, predicted stimuli are also more easily 

decoded, suggesting that their representation might be more precise (Kok, 

Jehee, & de Lange, 2012). However, there is relatively little convergent 

evidence for how and where (and whether) priors are encoded, which is 
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unsurprising given that priors will be specific to the task and stimuli at hand. It is 

therefore unclear whether findings from under one design would be 

generalisable to another. To illustrate, in simple low-level perceptual tasks, 

middle occipital gyri and fusiform gyri may represent relevant prior information 

(Summerfield & Koechlin, 2008), whereas priors for visual categorisation might 

be represented in medial frontal gyrus activity (Hansen, Hillenbrand, & 

Ungerleider, 2012). Orbitofrontal cortex may represent delusional perceptual 

beliefs (Schmack et al., 2013) and expected reward, while prior beliefs about 

expected reward may be represented in striatum (d’Acremont, Schultz, & 
Bossaerts, 2013).  

Brain regions that are thought to represent the prior may instead represent the 

posterior, as these two quantities are tightly associated. To address this 

concern, Ting and colleagues (2015) used a value-based learning paradigm, in 

which participants had to estimate the signalled value on each trial by 

integrating information from two cues: one which reflected the prior probability of 

reward and the other, the likelihood. Using model-based fMRI, they found 

posterior probabilities represented in medial prefrontal cortex (mPFC). 

Furthermore, mPFC also represented prior and likelihood. These results render 

mPFC a plausible candidate for computing the posterior belief in this task. On a 

similar vein, Vilares and colleagues (2012) orthogonally manipulated the prior 

and the likelihood, and found representations of prior information in putamen, 

insula and amygdala, of the likelihood in occipital cortex, and of the weighting 

function of prior and likelihood (precision weighting) in superior mPFC. Shifts in 

baseline evidence induced by priors were reflected in a fronto-parietal network, 

including medial frontal gyrus, but also superior and inferior frontal gyri and 

anterior cingulate. Though these findings exhibit variability in where Bayesian 

quantities are represented, they suggest that priors are generally represented in 

frontal regions, particularly mPFC, whereas the likelihood is represented in 

stimulus-specific areas.  
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2.3.2.2 NEURAL CORRELATES OF EXPECTATION VIOLATION (‘PREDICTION ERROR’) 

There are many experimental paradigms that can be used to test how prior 

knowledge or expectations shape perceptual responses, including 

manipulations of context, priming, oddball tasks, and probabilistic learning, yet 

responses to violations of expectation are largely robust across measures and 
tasks.  

First, fMRI has shown that unexpected visual targets are associated with an 

increase in BOLD amplitude over stimulus-specific sensory cortices (den 

Ouden, Friston, Daw, McIntosh, & Stephan, 2009; Eickhoff et al., 2011; Iglesias 

et al., 2013; John-saaltink, Utzerath, Kok, & Lau, 2015; Kok et al., 2011) that 

cannot be explained as repetition suppression (Larsson & Smith, 2012; 

Summerfield, Monti, Trittschuch, Mesulam, & Egner, 2009). For example, 

unexpected presentations of face stimuli are associated with an increased 

BOLD response in fusiform face areas (FFA) but not parahippocampal place 

area (PPA), whereas unexpected presentations of house stimuli are associated 

with increased BOLD in PPA but not FFA (Egner, Monti, & Summerfield, 2010). 

While these responses tend to occur in stimulus-specific regions, they can also 

be observed across cortex (Bubic, von Cramon, Jacobsen, Schröger, & 

Schubotz, 2009) and, remarkably, this pattern is seen in sensory cortices even 

when a target is unexpectedly absent (e.g. Todorovic, van Ede, Maris, & de 

Lange, 2011). Predictive processing or Bayesian brain approaches interpret 

these mismatch, or ‘surprise’ responses as reflecting perceptual ‘prediction 
error’.  

We see the same expectation violation, or mismatch, response in ERP 

research. One particularly relevant example is the mismatch negativity (MMN), 

elicited in oddball tasks when rare, deviant tones are presented within standard 

auditory sequences. Because this evoked response reflects a mismatch 

between expectation (the more frequent tones) and sensation (the deviant), the 

MMN has been interpreted in predictive coding terms as a neural signature of 

prediction error (Stefanics et al., 2014; Wacongne, Changeux, & Dehaene, 

2012). In a variant of the oddball task, individual tones can be local oddballs 
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and standards, but also entire sequences can be global oddballs or standards, 

depending on whether they rarely or commonly occur. For example, suppose 

the experimenter plays two tones: A and B. If they are presented in the 

sequences AAAAB AAAAB AAAAB AAAAA, the final ‘A’ tone is a local standard 

because it is preceded by a series of 'A's, but it is embedded in the sequence 

AAAAA, which is a global deviant. Using this design, Chennu and colleagues 

(2013) lent (indirect) support for another prediction of hierarchical predictive 

coding: that mismatch responses at higher regions of the cortical hierarchy are 
associated with violations of more abstracted or complex rules.  

Violations of expectation are associated with an increased ERP and BOLD 

response, but also an increase in high frequency, gamma-band oscillatory 

activity. Gamma oscillations have long been associated with stimulus-driven 

processing (Börgers & Kopell, 2008; Buzsáki & Wang, 2012; Donner & Siegel, 

2011; Kopell, Kramer, Malerba, & Whittington, 2010), and predictive processing 

frameworks hypothesise this frequency channel to be the mechanism by which 

prediction errors are fed forward up the cortical hierarchy (Bastos et al., 2012). 

Consistent with this view, evoked gamma-band oscillations are predominately 

communicated via feedback connections (Bastos et al., 2015; van Kerkoerle et 

al., 2014; von Stein, Chiang, & König, 2000). Furthermore, convergent evidence 

from both model-based analyses and experimental manipulations of prior 

probability have revealed that increased evoked gamma power is positively 

associated with the violation of expectations (Arnal, Wyart, & Giraud, 2011; 

Brodski, Paasch, Helbling, & Wibral, 2015; Brunet et al., 2014; Pelt et al., 2016; 

Summerfield & Mangels, 2006). Recently, the association between gamma 

oscillations and prediction error has received support from model-based 

electrocorticography, Sedley and colleagues show that local field potentials in 

the gamma band show a robust (albeit small) correlation with prediction error, 

but that gamma oscillations are better explained as precision-weighted 

prediction error (Sedley et al., 2016). 
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2.3.3 THE RELATIONSHIP BETWEEN TOP-DOWN ATTENTION AND PRIOR 

EXPECTATION 

The data reviewed so far suggests that both prior expectations and top-down 

attention shape perception. At the behavioural level, attention primarily seems 

to target sensitivity, while expectations primarily seem to bias judgements 

towards those that are more likely to be correct. There is also converging 

evidence from a range of techniques that suggests attention increases the 

neural response to task-relevant features, whereas expectations suppress 

responses to stimuli that have been predicted. This motivates the important 
question of whether and how they interact.  

Bayesian decision theory proposes that priors should carry greater weight on 

decision under uncertainty (see Chapter 1), but this does not seem to hold 

empirically. At the level of behaviour, expectations decrease reaction times and 

bias responses independently of attention (Kok et al., 2012), though under 

inattention priors are incorporated into decision sub-optimally (Morales et al., 

2015). Evidence from functional neuroimaging and EEG may also lie contrary to 

the hypothesised relationship between priors and attention. Some research 

shows that inattention decreases the effects of expectation. For example, 

perceptual ‘prediction error’ responses to unexpected faces and houses are 

attenuated or absent under inattention (Jiang, Summerfield, & Egner, 2013; 

Larsson & Smith, 2012, but see Kok et al., 2011), and attention is necessary for 

face and house priors to be decoded from category-specific areas (Jiang et al., 
2013).  

By contrast, some research that shows expectations shape neural responses 

independently of attention. For example, priors about stimulus orientation can 

be decoded from V1 independently of attention (Kok et al., 2012), and deviant 

tones are associated with increased amplitude of early components of visual 

evoked potentials (VEPs) independently of attention (Hsu, Hämäläinen, & 

Waszak, 2014b). While further research is needed to understand the 

relationship between attention and expectation, it may be that the interaction 

between attention and expectation is dependent on the stimuli. Surprising 



  

	

46 

gratings and pure tones seem to induce mismatch responses independently of 

attention, whereas these responses seem to require attention when using face 

and house stimuli. Thus, it may be that the dependence of expectation on 

attention is associated with the extent to which stimulus-selective processing 

can be achieved pre-attentively: the detection of low-level features (for which 

there exist specialised neurons) can be achieved without attention, whereas 

more complex perceptual tasks, such object categorisation, cannot (VanRullen 

& Thorpe, 2001). Importantly, if this account can explain why some studies find 

a dependence of expectation and some do not, it cannot explain why results 
consistently deviate from Bayesian principles.  

2.4 SUBJECTIVE PERCEPTUAL CONFIDENCE 

Having seen that top-down attention and top-down expectation have dissociable 

effects on perception, sharpening versus biasing perceptual decisions, we can 

ask how subjective perception may be influenced by these processes. 

Subjective decision confidence is constructed from an introspective process, in 

which the subject estimates the probability that their decision was correct (see 

Chapter 3 for how this can be measured and formal treatments of decision and 

confidence). For example, I may be able to identify a person in front of me in 

daylight easily, but at night their features may be harder to detect, and I become 

unsure of whom I have encountered. In the former case, I will estimate my 

chance of having correctly identified the person at close to 100%, while in the 

latter it will likely reduce substantially in the absence of non-visual cues. 

Confidence (my estimate) differs from uncertainty (daytime or night-time), 

because while confidence is defined with respect to a decision, uncertainty is 

not (Pouget et al., 2016). Rather, uncertainty pertains to variability, and can be 

conceived as a distributional property of a state (the degree of ‘internal noise’ or 

the reliability of the representation), the stimulus (e.g. stimulus noise), the 

environment (volatility, that is, changes in the statistics of the world), or action-
outcome mappings (Bach & Dolan, 2012).  

We know that reports of subjective confidence reflect meaningful estimates of 

decision accuracy, because they strongly correlate with task performance (for a 
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review, see Grimaldi, Lau, & Basso, 2015) and task difficulty (Baranski & 

Petrusic, 1998; Maniscalco & Lau, 2012; Vickers, 1979). However, it is not clear 

how we are able to estimate our decision accuracy well, especially in the 
absence of external feedback. How do we know what we see? 

2.4.1 PERCEPTUAL DECISION AND CONFIDENCE ARE TIGHTLY RELATED BUT 

DISSOCIABLE 

It is clear that confidence is constructed, in part, from the same evidence used 

for the objective decision. First, if a subject is probed for a response during 

evidence accumulation, confidence increases with time, reflecting increased 

accumulation of evidence (Baranski & Petrusic, 1998; Festinger, 1943; Vickers 

& Packer, 1982). However, for un-speeded responses, high confidence is 

associated with faster reaction speeds, possibly reflecting faster evidence 

accumulation (Vickers & Packer, 1982; Douglas Vickers, Smith, Burt, & Brown, 

1985). We are also more confident in decisions when sensory uncertainty is 

low, or when the target is easier to discriminate (Baranski & Petrusic, 1998; 

Maniscalco & Lau, 2012; Peirce & Jastrow, 1884; Spence et al., 2015). Finally, 

confidence and decision evidence share common neural signatures at early 

stages of the decision-making stream, suggesting that they arise from the same 

information source (Fetsch, Kiani, Newsome, & Shadlen, 2014; Gherman & 
Philiastides, 2015; Kiani, Corthell, & Shadlen, 2014; Kiani & Shadlen, 2009).  

While decision and confidence are tightly related, confidence must incorporate 

additional evidence. We know this because decision accuracy and 

metacognitive accuracy (the correspondence between confidence and 

accuracy) can dissociate. For example, we can have above chance 

performance, yet no confidence our decisions (Marcel, 1993; Overgaard & 

Sandberg, 2012), which is best illustrated in blindsight patients (Ko & Lau, 2012; 

Leopold, 2012). These patients can respond to objects in their visual field, yet 

are not conscious of those objects. We can also ‘know that we do not know’, 

that is, be at chance accuracy while constructing confidence judgments that are 

sensitive to that lack of evidence (Scott, Dienes, Barrett, Bor, & Seth, 2014). In 

this latter example, if a subject has insight to their lack of knowledge that is 
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purely based upon objective decision evidence, they ought to have selected the 
alternative response. 

These findings refute models that assume confidence to be a read-out of 

decision evidence (e.g. Ratcliff & Starns, 2013; Vickers, 1979). Adaptations of 

these models allow evidence to accumulate after the objective decision has 

been made (e.g. Pleskac & Busemeyer, 2010). In these models, dissociations 

between decision and metacognitive accuracy are easier to accommodate. 

Furthermore, they are supported by evidence for ERP signatures of the decision 

variable, the error positivity (Pe), that continue to evolve after erroneous 

decisions such that evidence for subjective uncertainty is accumulated (Murphy, 
Robertson, Harty, & O’Connell, 2015).  

Although these models are promising, they are not particularly adept in 

accounting for asymmetries in how evidence is accumulated across objective 

and subjective decisions. For example, confidence is more sensitive to 

uncertainty than the objective judgement (Spence et al., 2015), and while 

uncertainty tends to be optimally weighted in objective judgements, it is 

underestimated in confidence judgements (Zylberberg et al., 2012). In a similar 

vein, nonconscious decision evidence can shape objective decisions but not 

subjective decisions (Vlassova, Donkin, & Pearson, 2014). Speculatively, it may 

be that uncertainty is incorporated into confidence judgements twice: first, 

sensory noise may primarily shape evidence accumulation, and second, 

confidence may additionally incorporate estimates of internal noise. However, 

other findings, such as the invariance of confidence judgements to evidence for 

un-chosen decisions remains problematic (Maniscalco et al., 2016; Zylberberg 
et al., 2012). 

2.4.2 NEURAL CORRELATES OF CONFIDENCE 

In humans, prefrontal and frontal areas seem to play a particularly important 

role in confidence and metacognitive monitoring (Fleming & Dolan, 2012; 

Grimaldi et al., 2015; Yeung & Summerfield, 2012). In particular, dorsolateral 

prefrontal cortex (DLPFC, e.g. Lau & Passingham, 2006; Rounis, Maniscalco, 
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Rothwell, Passingham, & Lau, 2010), rostrolateral prefrontal cortex (rlPFC, De 

Martino, Fleming, Garrett, & Dolan, 2013; Fleming, Huijgen, & Dolan, 2012; 

Fleming, Weil, Nagy, Dolan, & Rees, 2010), and orbitofrontal/ventromedial 

prefrontal cortex (OFC/vmPFC, e.g. De Martino et al., 2013; Lebreton, Abitbol, 

Daunizeau, & Pessiglione, 2015; Rolls et al., 2010b; Yokoyama et al., 2010) are 

frequently implicated in metacognitive tasks. The default mode network has also 

been implicated in decision confidence (White, Engen, Sørensen, Overgaard, & 
Shergill, 2014).  

However, distinguishing confidence from its antecedents, such as the decision 

variable, modulators of confidence, such as expected reward, and ensuing 

processes, such as action plans, has proved difficult. Accordingly, many 

prefrontal regions implicated in confidence are also implicated in processes 

such as response preparation and evidence accumulation, particularly DLPFC 

(Mulder, van Maanen, & Forstmann, 2014). Fleming and colleagues isolated the 

process of introspecting on one’s decision accuracy from motor plans, by 

comparing conditions in which participants reported their confidence and 

decisions in which participants gave the confidence report presented on-screen 

(Fleming et al., 2012). This manipulation implicated rostrolateral prefrontal 

cortex (rlPFC) in the construction or communication of confidence, a claim 

further supported by the findings that rlPFC grey matter volume predicts 

metacognitive accuracy (Fleming et al., 2010; McCurdy et al., 2013), and that 

patients with legions in this area exhibit domain-specific metacognitive 

impairments while leaving sensitivity unimpaired (Fleming, Ryu, Golfinos, & 

Blackmon, 2014). These results implicate rlPFC in a role that is distinguished 

from report and the objective choice. However what is unclear is whether 

confidence is ‘computed in’ rlPFC, that is, whether rlPFC integrates all relevant 

sources of information into confidence, or whether rlPFC exists within a post-
decisional stream that iteratively refines the confidence estimate.   

While processes that are distinct from objective decision-making must shape 

confidence, it is not clear what these processes are. One plausible candidate is 

error detection, potentially arising in anterior cingulate cortex and reflected in 
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ERP components ERN and Pe. Error detection may provide information on how 

likely the decision is to have been correct, given experienced response conflict 

or additional evidence accumulation (Boldt & Yeung, 2015; Charles, Van Opstal, 

Marti, & Dehaene, 2013; Steinhauser & Yeung, 2010). This is supported by 

recent evidence that the Pe component, represented in posterior medial frontal 

cortex, evolves after an erroneous decision has been made, reflecting post-

decision evidence accumulation about decisional accuracy (Murphy et al., 

2015). While confidence may be shaped by error detection systems, an 

explanation of confidence in terms of error detection alone does not explain how 

the brain is able to infer the accuracy of its decision, especially in tasks that do 
not induce high response conflict.  

At least in part, this process appears to be domain-specific because 

metacognitive decisions in the memory and perceptual domain are subserved 

by distinct functional networks (Baird, Smallwood, Gorgolewski, & Margulies, 

2013), where perceptual metacognition primarily recruits anterior prefrontal 

cortex, as well as anterior cingulate cortex, putamen, caudate and thalamus. 

This domain-specificity is consistent with evidence that patients with anterior 

prefrontal lesions show selective impairments in perceptual metacognition 
(Fleming et al., 2014).   

Studies, especially those which implement model-based analyses, sometimes 

find representations of confidence in reward-related subcortical regions, 

especially striatum (Braunlich & Seger, 2016; Daniel & Pollmann, 2012; Hebart, 

Schriever, Donner, & Haynes, 2014), even in the absence of external feedback 

(Guggenmos et al., 2016). However activity in these regions might reflect 

implicit reward associated with believing a correct decision has been made, 

their association with surprise (Domenech & Dreher, 2010), task-difficulty 

(Green et al., 2013) or fluctuations in decision thresholds (Mansfield, 

Karayanidis, Jamadar, Heathcote, & Forstmann, 2011) that simply covary with 
changes in confidence.  
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2.4.2 DO TOP-DOWN INFLUENCES SHAPE CONFIDENCE, METACOGNITION AND 

AWARENESS? 

The key question addressed in this thesis asks whether top-down influences of 

expectation can shape subjective confidence. Little work has addressed 

whether top-down attention influences perceptual metacognition. Kanai and 

colleagues have shown that in attentional blink and dual-task paradigms, where 

attention is diverted either by the rapid presentation of distractors (attentional 

blink) or by a concurrent task (dual-task), participants are still able to detect 

attentional failures of awareness (Kanai et al., 2010). However when giving 

prospective confidence ratings, participants overestimate the cost of diverting 
attention from the primary task (Finley, Benjamin, & Mccarley, 2014). 

The role of spatial attention in confidence judgements is also unclear. Work has 

both shown that confidence is invariant to spatial attention (Wilimzig & Fahle, 

2008) and increases with spatial attention (Zizlsperger, Sauvigny, & Haarmeier, 

2012). Surprisingly, Rahnev and colleagues found that subjective visibility 

ratings disproportionately decrease with attention (Rahnev et al., 2011). 

However, their data also revealed an interesting relationship between attention 

and subjective visibility and stimulus contrast: with attention, subjective visibility 

increases with stimulus contrast, as would be expected. However, visibility 

ratings under inattention are relatively invariant to stimulus contrast. This 

suggests that under inattention, the integration of sensory uncertainty into 

subjective judgements is impaired. The authors capture this in a signal detection 

model, where inattention leads to more variable perceptual representations 

(Gaussians with a larger variance). They show that using the same confidence 

thresholds for attended and unattended targets results in fewer attended than 

unattended targets being reported as highly visible. These empirical results are 

difficult to interpret from predictive processing perspectives, as invariance of 

judgements to uncertainty cannot be accommodated by changes in precision-

weighting; rather, it suggests that prediction error arising from these unattended 

targets receives no precision-weighting at all. Alternatively, it may be that only 
goal-relevant targets are subject to context-sensitive gain control.    
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Indirect evidence from studies on visual awareness suggests that expected 

targets would be associated with higher confidence. This follows from work 

showing that expected targets receive preferential access to awareness 

(Chang, Kanai, & Seth, 2015; Pinto, van Gaal, de Lange, Lamme, & Seth, 

2015). We also know that prior exposure to a stimulus increases both 

behavioural reports of subjective visibility, and neural correlates of subjective 

visibility such as ERP component N2 (Melloni et al., 2011). Prior experience 

with a stimulus also seems to have a stronger effect on subjective than 

objective decisions, because training participants on a perceptual task in one 

spatial location leads to increased subjective visibility at untrained locations, 
while leaving sensitivity unaffected (Schwiedrzik, Singer, & Melloni, 2011).  

Interestingly, trial-by-trial confidence judgements seem to be shaped by 

expected confidence as well. Rahnev and colleagues showed that 

independently of spatial attention and stimulus contrast, confidence on one trial 

is positively associated with confidence on previous trials, but decision accuracy 

is not. Moreover, this ‘confidence leak’ persists when the task on previous trials 

differed from that on the current trial (Rahnev, Koizumi, Mccurdy, Esposito, & 

Lau, 2015). Consistent with this, Guggenmos and colleagues showed that 

confidence on a trial can be predicted from confidence on previous trials, and 

that the discrepancy between current and recent confidence may be associated 

with left ventral striatum (Guggenmos et al., 2016). Together, these results 

show that confidence cannot simply be a product of sensory processes, but 
must incorporate additional, confidence-specific influences.  

2.5 OUTSTANDING QUESTIONS 

This chapter has shown that top-down attention and top-down priors robustly 

shape objective perception, and that evidence for the perceptual choice is 

integrated into subjective confidence judgements. However, the relationship 

between top-down attention and expectation on confidence remains 

understudied, and the extant literature suggests that subjective judgements may 

not be affected by attention and expectation in the same way as objective 

judgements. The neural mechanisms underlying top-down influences on 
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subjective judgements also remain largely unknown. This thesis investigates 

whether and how top-down priors and top-down attention shape metacognitive 

confidence judgements, orthogonally manipulating these two key processes in 
order to separate their respective effects.  

In order to examine how perceptual priors influence confidence, this thesis 

implements a novel dual-task paradigm. Here, the critical task involves 

detecting a faint, peripheral Gabor target, and each block of trials is associated 

with a different prior probability of its presentation. Participants are informed of 

this prior probability before trials begin, however because the expectancy cues 

are valid ('true') they will be corroborated by the visual information sampled on 
each trial.  

This manipulation of priors is contextual, in the sense that they do not pertain to 

within-trial probabilities (for example cue-target associations, e.g. Kok et al., 

2011), but across-trial probabilities. This is important because trial-wise 

probabilistic information increases the risk of a trivial confidence attribution, 

especially for explicit cues, such that the participant may consciously derive 
their confidence report from the prior information.  

Recent work has begun to delineate between effects of prior expectations and 

of attention on perceptual decision-making, and for this reason, all empirical 

chapters here manipulated attention and expectation orthogonally, while 

keeping detection sensitivity constant across conditions. The attentional 

manipulation used throughout the thesis was dual-task, where attention was 

either fully allocated to the critical target detection task, or shared with a central 

visual search task. Motivational salience associated with expecting Gabor 

presence should be minimised when attention is diverted. In Chapters 4 and 6, 

the Gabor target has a gradual onset and offset, minimising the chances of 
attentional capture.   
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3 
INFERENCES ABOUT CONSCIOUSNESS 

USING SUBJECTIVE REPORTS OF 

CONFIDENCE 
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3.1 OVERVIEW 

An important aspect of consciousness is the ability to reflect upon one’s own 

thoughts, an insight which can be traced back to John Locke, who stated that 

“consciousness is the perception of what passes in a man’s own mind” (Locke, 

1700). This definition of consciousness forms the basis of Higher Order Thought 

(HOT) theories of phenomenal consciousness (Gennaro 2004; Lau & Rosenthal 

2011; Rosenthal 1986), which posit that it is those states for which we have 

some representation or conceptualisation that we have phenomenology for. It is 

not necessary to subscribe to this account of consciousness to appreciate that 

our ability to reflect upon our own thoughts and decisions taps into an important 

facet of awareness. We can operationalise the ability to evaluate these 

decisions as metacognitive sensitivity or metacognitive accuracy, terms used 

interchangeably here. These are defined as the ability to judge the correctness 

of one’s own decisions. We say that metacognitive accuracy is high when 

decision confidence exhibits a positive association with decision accuracy. So, a 

subject with high metacognitive accuracy ‘knows when they know’, and will 

largely ascribe high confidence to correct decisions and low confidence to 

incorrect decisions. This Chapter will discuss ways in which confidence reports 

can be collected and ways in which confidence and metacognition can be 
measured. 

First, this Chapter will present a brief overview of type 1 Signal Detection 

Theory (SDT), used throughout this thesis to characterise objective task 

performance and decision biases. A more thorough account is given in 

Macmillan & Creelman (2004) and Green & Sweets (1966). This Chapter will 

also cover ways in which the researcher may want to measure confidence, and 

what we ultimately need from a good metacognitive measure. Next, it will move 

to a discussion of measures of metacognition and confidence. These quantify 

metacognitive accuracy by examining the correspondence between decision 

accuracy and decision confidence. Specifically, it will first cover correlation 

measures Pearson’s r and the phi correlation coefficient, and then move to 
measures type 2 D’, type 2 ROC curves, and finally meta-d’.  
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3.2 CHARACTERISING OBJECTIVE PERFORMANCE 

3.2.1 TYPE 1 SDT 

Signal detection theory (SDT. Green & Swets 1966; Macmillan & Creelman 

2004) models the way in which we make binary choice perceptual decisions. 

Here, the participant has to choose whether they should attribute stimulation to 

just noise, or to a noisy signal. Alternatively, the model can capture the choice 

between a noisy 'type A' signal and a noisy 'type B' signal. In this Chapter, we 

will consider the 'absent' versus 'present' scenario. However, all the methods 

work equally well for `A’ versus `B’: “yes” can simply be replaced by “left 

orientation” or “old word”, and “no” can simply be replaced by “right orientation”, 
“new word”, and so on.  

The signal detection model is illustrated in figure 3.1. SDT assumes that we can 

represent the probability of some decision evidence having been caused by 

target absence as a Gaussian probability density function (depicted in red). We 

can do the same for the target present case (depicted in blue). This evidence, 

represented on the x-axis, corresponds to an internal state induced by the 

signal. In this way, stronger internal representations of the signal, for example of 

stimulus contrast, will be associated with a higher probability of target presence 

and a lower probability of target absence. SDT assumes that the evidence 

required to report either option is determined by the decision threshold, which 

bifurcates the decision axis into evidence that will result in a “yes” versus a “no” 
response.  

This decision threshold, or criterion, is modelled as a horizontal intercept called 

c or θ. An unbiased observer will set their decision threshold at the intersection 

of the ‘target absent’ and ‘target present’ Gaussians, as is the case in figure 3.1. 

If the decision axis is aligned so that the peak of the ‘target absent’ Gaussian is 

at zero and has a standard deviation of 1 we will get c = 0.5. In this Chapter we 
will place the distributions such that an unbiased criterion gives c = 0. 

 



  

	

57 

 

Figure 3.1. Type 1 signal detection theory. 

Top panel. Probability of the internal representation having been 
caused by target absence (red Gaussian) or target presence (blue 
Gaussian). Sensitivity d’ is defined as the separation between the 
peak of the two Gaussians. Decision threshold c is represented as a 
black dashed line. If decision evidence exceeds the threshold then the 
participant will make report “yes”, and if it is less then they will report 
“no”. Here c is equally placed between the two Gaussians and 
therefore responses are unbiased. 
Bottom panel. These figures illustrate how we can predict choices 
from this model. On the bottom left the target is absent. ‘No’ 
responses in this case are correct rejections, whereas ‘yes’ responses 
are false alarms. On the bottom right panel the target is present. Here, 
reporting ‘yes’ is a hit and reporting ‘no’ is a miss.  
 
 
 
 
Table 3.1 SDT responses 

 Respond 
“present” Respond “absent” 

 Signal present Hit Miss 
 Signal absent False Alarm Correct Rejection 
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In this way, positive values of c are conservative, corresponding to a bias 

towards reporting “no”. Negative values are liberal, corresponding to a bias 

towards reporting “yes”.  

Detection sensitivity d’ is defined as the difference between the peaks of the two 

Gaussians, and is given in units of the standard deviation of the target absent 

distribution. Higher values of d’, indicated by a greater separation between the 

two distributions, correspond to higher sensitivity because there is a smaller 

portion of decision evidence that can support both choices. We can also 

compute relative c, denoted c’ and defined as c /d’. Here, c is taken relative to 

the distance between the two Gaussians. This measure quantifies how extreme 
the criterion is, relative to performance. 

If the assumptions of SDT are met, sensitivity d' will be invariant to decision bias 

c. The first assumption is that the two probability density functions are indeed 

Gaussian. In low-level perceptual tasks this assumption holds, because by the 

central limit theorem, the distribution of activity of a large body of sensory 

neurons responding to the target will approach normality. The second 

assumption is that the two Gaussians have equal variances. It is this second 

assumption that tends to be problematic in psychology research; however if an 

unequal variances model fits better, then the corrected d’a (see below) can be 

used instead. For example, yes/no tasks are thought of as being fit best by an 
unequal variances model. 

In order to calculate d’ the researcher collects data in a 2 x 2 design such that a 

signal is present or absent and the participant can be correct or incorrect. This 

leads to a table of response variables as shown in Table 3.1 and the bottom 
panel of figure 3.1. We can then calculate the following:  

𝐻𝑖𝑡 𝑟𝑎𝑡𝑒 =  
𝐻𝑖𝑡𝑠

(𝐻𝑖𝑡𝑠 +𝑀𝑖𝑠𝑠𝑒𝑠) 

𝐹𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚 𝑟𝑎𝑡𝑒 =  
𝐹𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠

(𝐹𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠 + 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑟𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠) 
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From these, task performance d’ and decision threshold c can then be 
calculated as 

𝑑′ = ф!! ℎ𝑖𝑡 𝑟𝑎𝑡𝑒  −  ф!! 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚 𝑟𝑎𝑡𝑒  

𝑐 =  !ф
!! !!" !"#$  ! ф!!(!"#$% !"!#$ !"#$) 

!
 , 

where ф!! is the inverse cumulative probability density function of the standard 

Gaussian distribution (also commonly known as the Z-statistic). These statistics 

are in the units of the standard deviation of the noise distribution when its mean 
is set to zero.  

If the researcher is assuming an unequal variance model, adjusted d’a can be 
calculated as 

𝑑′! = 𝑠ф!! ℎ𝑖𝑡 𝑟𝑎𝑡𝑒 − ф!! 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚 𝑟𝑎𝑡𝑒 , 

where s is the ratio of the standard deviation of the signal-plus-noise distribution 

to that of the noise distribution.   

By collecting confidence ratings, we can estimate s from data. From these, the 

researcher can obtain hit and false alarm rates for multiple decision thresholds 

(as described below in the section 3.1).  Subsequently, s and d’a can be 

computed from the best-fit values for the above equation for all hit rates and 

false alarm rates. However, if s has not been estimated to a good degree of 

accuracy we cannot assume that d’a and c are (approximately) independent 

(Macmillan & Creelman 2004). Furthermore, it may be problematic to infer s 

from confidence ratings that are subsequently used for further SDT analyses on 
confidence (Maniscalco & Lau, 2014).  

3.2.2 TRANSFORMING DATA WITH ZERO OR UNITY HIT RATE OR FALSE ALARM 

RATE.  

There are occasions when one obtains hit rates or false alarm rates of zero or 

one. In these cases, data have to be transformed to avoid infinities in the 

equation for d’. These arise from the ф!! function going to plus/minus infinity at 
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1/0. For d' to be finite, the hit and false alarm rates always lie strictly between 0 

and 1. For this reason, extreme hit and false alarm rates, that is, hit rate > 0.95 

or false alarm rate < 0.05, may generate unstable estimates of d’ and c’.  

In most cases, these situations can be avoided by ensuring that one collects a 

large number of trials per condition (at least 50) and that manipulations that may 

affect the decision criterion, for example performance-related reward or 

punishment, are not too strong. However, such a manipulation may be the focus 

of the experiment (as is the case in this thesis). In this case, extreme data are 

obtained then the researcher can use one of two main transformations. In one, 

the researcher only adapts problematic data. Here, in an experimental set-up 

with n signal present trials and (N - n) signal absent trials, a zero hit or false 

alarm rate would be replaced with 1/2n or 1/2(N - n) respectively. A hit or false 

alarm rate equal to one would be replaced with 1-(1/2n) or 1-(1/2(N - n)) 

respectively. Thus, each of these variables is transformed proportionately to the 

number of trials across which it is computed. For example, in the case that 25% 

of 100 trials are signal trials, a 0 or 1 hit rate would be shifted by 1/50 and a 0 or 

1 false alarm rate by 1/150. This method is called the 1/2N rule (Macmillan & 
Kaplan 1985).  

An alternative transformation, the log-linear transformation, was proposed by 

Snodgrass & Corwin (1988). Here, all data cells (total hits, false alarms, correct 

rejections and misses), regardless of whether they are problematic or not, have 

0.5 added to them. This is advantageous in that all data are treated equally, and 

in that it impossible to have zero or one hit or false alarm rates. This correction 

can be considered a (Bayesian) prior on a d' and c of zero (Barrett, Dienes, & 
Seth 2013; Mealor & Dienes 2013).  

Hautus (1995) modelled the effects of both of these transformations on d' and 

found that both transformations can bias d' measures. While the log-linear rule 

systematically underestimated d', the 1/2N rule was more biased, and could 

distort d' in either direction. Therefore, although the log-linear rule is 

recommended over its counterpart, minimising the risk of collecting data with 
empty cells is preferable.  
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3.2.3 TYPE 1 ROC CURVES 

If the assumptions of SDT have been violated we can create a model-free 

receiver operating characteristic (ROC) curve, which plots hit rate against false 

alarm rate for possible type 1 thresholds. Accordingly, the area under the ROC 

(AUC or AROC) gives us a measure of detection sensitivity that is also invariant 

to response biases. Plotting the ROC curve requires participants to select a 

stimulus class (S1, versus S2), for example from 1 = definitely S1 to 6 = definitely 

S2. Then, the researcher plots hit rate against false alarm rate via hypothetical 

decision criteria based on different thresholds of the responses. If a response 

scale of length n has been used then there are n - 1 ways to partition responses 

into hypothetical levels of decision criterion. Each partition determines the 

boundary between S1 and S2. For example, first we would partition the data such 

that a rating of 1 indicates an S1 response and a rating of 2-6 indicates S2.  

 

 

Figure 3.2. Type 1 ROC curve. 

Each red circle corresponds to a (Hit rate, False alarm rate) pair, 
derived from a different partition of the response scale. These 
pairs shown us how the relationship between hit rate and false 
alarm rate change as decision threshold varies. The black dashed 
line indicates chance performance. The area under the curve 
(AUC) is the area between the chance line and the ROC function. 



  

	

62 

Then, one would partition such that a rating of 1 or 2 indicates an S1 response 

and 3 to 6 indicates S2, continuing until a rating of 1-5 indicates an S1 response 

and a rating of 6 indicates an S2 response. Therefore, for each hypothetical 

decision threshold one obtains different numbers of hits and false alarms. From 

these, hit and false alarm rates can be computed. As shown in figure 3.2, these 

are plotted against each other, producing a curve that characterises sensitivity 

across a range of decision biases without making assumptions about the 

underlying signal and noise distributions. The diagonal on the graph represents 

chance performance. The more than the ROC curve extends above the 

diagonal, the greater the sensitivity, in that for any given false alarm rate the 

corresponding hit rate is higher. Thus, the area under the ROC curve represents 
task performance.  

It should be noted that because it does not rely on the assumptions of SDT, 

ROC curve analysis is not technically SDT. If one does assume that decisions 

are made based on an SDT model (without necessarily assuming an equal 

variance model), then the Z-transform of the ROC curve can be taken. This is a 

straight line, and the area under the (non-transformed) ROC curve can be 

obtained from a simple formula in terms of the slope and intercept of the Z-
transform: 

𝐴! =  Φ
𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡
1+  𝑠𝑙𝑜𝑝𝑒!

 

One potential problem with estimating type 1 ROC curves from confidence 

ratings is that they may conflate type 1 and 2 performance (Galvin, Podd, Drga, 

& Whitmore, 2003; Maniscalco & Lau, 2014). Additionally, if the researcher 

wants to examine changes in decision bias this will not be an appropriate 

analysis. However, a benefit of plotting an ROC curve or using SDT's d', is that 

task performance can be decomposed into possible drivers of the change: hit 

rate and false alarm rate. For example, some empirical questions might 

hypothesise a change in hit rate but not false alarm rate.  Kanai, Muggleton & 

Walsh (2008) found that transcranial magnetic stimulation (TMS) over 

intraparietal sulcus induces perceptual fading by demonstrating such an 
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asymmetry: Although d’ reduced with TMS, this was driven by a decrease in hit 

rate only. If false alarm rate (reduced sensitivity on target absent trials) had also 

increased with TMS then the d’ effect could not have been driven by perceptual 

fading, which by definition only affects target present trials. Rather, a concurrent 

reduction in false alarm rate would have implicated intraparietal sulcus in 
general perceptual performance.  

3.3 MEASURING METACOGNITION: PRECURSORS  

3.3.1 MEASURING METACOGNITIVE ACCURACY 

In order to investigate metacognitive judgements the researcher needs to collect 

both an objective judgement and a subjective judgement. Typically, 

experimental designs include some objective task, such as target detection or 

word recall, in which objective performance can be measured. To measure 

metacognitive judgements we use what is known as a ‘type 2 task’, a term first 

coined by Clarke, Birdsall & Tanner (1959) and Pollack (1959), and so-called in 

reference to the aforementioned type 1 task of making decisions or judgements 

about the ‘state of the world’. The type 2 task requires the participant to 

evaluate the accuracy of their decision. Galvin, Podd and Whitmore (2003) 
discuss the type 2 task and argue that  

“…The fact that the second decision [confidence that the trial was a signal trial] 

is a rating and follows a binary type 1 decision does not make it a type 2 

decision. If the second decision is a rating of confidence in the signal event 

rather than in the correctness of the first decision then it is a type 1 rating, no 
matter when it occurs.” 

Following this, it is advised that the confidence judgement requested refer to the 

accuracy in the participant’s decision. However from the perspective of 

consciousness science it seems counterintuitive to assume a distinction 

between asking for confidence in the signal and asking for confidence in the 

participant’s judgement; this suggests an asymmetry in the trustworthiness of 

the objective (type 1) and subjective (type 2) responses. If we instead assume 
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type 1 decisions refer to the state of the world (e.g. target presence versus 

absence), we can take type 2 decisions as probing the mental state or 

representation the subject has of the target. In this sense the prompt 

“Confidence” should be equivalent to the prompt “Confidence that you are 
correct”, though this has not been addressed empirically.  

3.3.2 COLLECTING CONFIDENCE RATINGS 

The traditional method of collecting confidence ratings is in two-steps: the 

judgement is made and then confidence is given, either in a binary fashion or on 

a scale. Whether confidence is collected on a scale or in a binary fashion will 

dictate the metacognitive measures available to use. Confidence scales (e.g. 

from 1 to 4) have the advantage of being more sensitive and they can later be 

collapsed into a binary scale, reducing the chance of getting 0 or 100% 

confident responses. However importantly, if conclusions about consciousness 

are to be drawn, we can only infer unconscious knowledge or unconscious 

perception from those trials where participants have reported no confidence. We 

cannot infer this from low confidence. Therefore, a rating scale should only be 

symmetrically collapsed into a binary scale if no conclusions are to be drawn 
about awareness.  

If the question of interest relates only to perceptual awareness and does not 

wish to use SDT methods, the Perceptual Awareness Scale is an alternative 

method of collecting subjective reports. This scale asks participants to rate the 

subjective visibility of their percept on a scale of one (no perceptual content) to 

four (clear perceptual content). Because the conscious content itself is not 

probed, the scale is more effective for simple (e.g. detection) than complex (e.g. 
discrimination) designs (Dienes & Seth 2010; Sandberg et al. 2010). 

These methods of collecting subjective ratings thus far have been ‘two-step’ 

procedures, which first request a type 1 report (e.g. yes/no) and then a type 2 

report (e.g. confident/guess). An alternative method is to use a one-step 

procedure, whereby participants are asked to choose between two responses 

S1 and S2 and high and low confidence at the same time. For example, a rating 
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scale could be used where the lowest value indicates high confidence in S1 and 

the highest value indicates high confidence in S2. This has the benefit of being a 

faster reporting procedure. Furthermore, because both decisions are reported at 

the same time this method may be preferable if the researcher wishes to 

minimise the difference in decision evidence available for the type 1 and 2 

reports. Indeed, in the perceptual domain, reaction times between one-step and 

two-step procedures differ while leaving the confidence-accuracy correlation 
unchanged (Wilimzig & Fahle 2008).  

3.3.3 WHAT MAKES A GOOD MEASURE OF METACOGNITION? 

In order to assess the ability of an individual to monitor the accuracy of their 

decisions we need to be able to separate the information on which their decision 

is based from the insight into that information that they hold. Accordingly, 

Maniscalco and Lau distinguish between absolute and relative metacognitive 

sensitivity (Maniscalco & Lau, 2012). Absolute metacognitive sensitivity refers 

only to the relationship between confidence and accuracy, whereas relative 

sensitivity refers to the efficacy of the metacognitive evaluation, with no 
confound of information quality.  

To illustrate, suppose that a participant shows higher metacognitive accuracy in 

task A than task B. It may be that this occurs because the participant has more 

decision evidence in task A. In this first scenario, both d’ and metacognition will 

change. Alternatively, metacognition may have increased over and above any 

changes in d’. In the former example absolute metacognitive accuracy has 

changed, whereas in the latter relative metacognitive accuracy has changed. If 

one wants to measure relative rather than absolute metacognitive sensitivity, 

objective performance should be equated across conditions. This is also 

important if the researcher wants to measure subjective confidence, because 

confidence will generally increase with increasing task performance (Grimaldi et 

al., 2015). Similarly, if the researcher is interested in metacognitive bias, that is, 

the tendency of the participant to report with high confidence, evidence should 
also stay constant across conditions and participants.  
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Many measures of metacognition are biased by objective performance, decision 

thresholds and/or metacognitive bias (discussed later in this Chapter). We 

therefore need a metacognition measure that is invariant to these factors, or at 

least allows us to separate them. For example, by demonstrating reduced 

perceptual metacognition after theta-burst transcranial magnetic stimulation to 

prefrontal cortex, Rounis et al. (2010) were able to implicate this area in 

metacognitive sensitivity. They used bias-invariant (type 2) meta-d’ (to be 

discussed later) as their measure, which allowed them to rule out the alternative 
interpretation that PFC is involved in determining confidence bias.  

It is important to note that dependence on decisional or confidence biases is not 

problematic if one is aiming more simply to rate the subject’s performance on 

the type 2 task. Viewed this way, metacognition may be facilitated because of 

shifts in metacognitive bias. Signal detection theoretic methods are useful 

because they allow us to consider the above points. By enabling the calculation 

of response and confidence biases as well as type 1 and 2 performance one 

can see how measures of task performance and decision bias interact. Further, 

one can see whether improvements in metacognitive performance can be 

attributed (at least in part) to specific changes in behaviour, for example, 
increased confidence specifically for correct reports. 

One also has to consider whether to obtain a single measure of metacognition 

across all trials, or whether to assess metacognition separately for each 

possible class of type 1 response, i.e. to use a so-called `response-conditional’ 

measure of metacognition. For example, in a target detection experiment, one 

has the classes “respond present” and “respond absent” (see table 3.3). Kanai, 

Walsh & Tseng (2010) defined the Subjective Discriminability Index (SDI) as a 

measure of subjective unawareness of stimuli, based on response-conditional 

metacognitive measures. Specifically, by using only trials where subjects 

reported absence of a target (type 1 correct rejections and misses) in the type 2 

calculation, they obtained a measure of metacognition for perception of 

absence. Their logic was that chance metacognitive accuracy implies blindness 

to the stimulus, whereas above chance metacognitive accuracy implies that, 
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although the subject reported the target as unseen, some perceptual awareness 

must have been present (inattentional blindness). This follows from participants’ 

ability to modulate their post-decisional confidence according to their accuracy.  

3.4 CONFIDENCE-ACCURACY CORRELATIONS 

The most intuitive measure of metacognition would tell us whether accuracy and 

confidence are significantly, and highly, correlated. Two main alternatives are 

available: Pearson’s r and phi. These are equal in the binary case, but distinct 

for the non-binary case (that is, if confidence is reported on a scale, the former 
can be used). 

For paired variables X and Y corresponding to confidence and accuracy values 

for n participants, the correlation r between confidence and accuracy is 
calculated as 

r = !
!!!

(!!!!
!!
)(!!!!

!!
)!

!!!  

where 𝑠! and 𝑠! are the sample standard deviations of X and Y respectively. 

Alternatively, the phi correlation coefficient is calculated as 

φ! =
𝒳!

𝑛   

where χ2 is the chi-squared statistic and n is the number of participants.  

When X and Y are binary, e.g. X equals 0 for low confidence and 1 for high 

confidence, and Y equals 0 for incorrect and 1 for correct, phi and r are equal to 
each other, and can be calculated from the formula 

φ =  
𝑛!,!𝑛!,!! 𝑛!,!𝑛!,!
𝑛.,!𝑛.,!𝑛!,.𝑛!,.

 

where nx,y is the total number of trials on which X = x and Y = y, and n.,y and nx,. 

are respectively the total number of trials for which Y = y and X = x. Though 

simple, the problem with such a measure (and indeed, with any non-signal 
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detection theoretic measure) is that r and φ can be inflated by bias without there 

being a true improvement in metacognitive accuracy. To illustrate, imagine a 

stimulus detection paradigm in which all participants perform at 70% accuracy. 

If one participant has a bias towards being confident whereas another tends to 

say they are guessing, the first of these participants will have a higher 

correlation between confidence and accuracy than the second without 
necessarily having increased insight into their own decision accuracy.  

3.5 GOODMAN-KRUSKAL GAMMA COEFFICIENT 

The Goodman-Kruskal Gamma coefficient, G (Goodman & Kruskal 1954)  is a 

non-parametric analogue of the signal detection theoretic measure d’.  Its 

appeal lies in its straightforward probabilistic operationalization, which 

overcomes problems surrounding assumptions about equal variance or 

normality. In its original form it is computed via the same 2 x 2 factors as d’ and 

it can be extended to cases in which ratings are given on a response plus 

confidence scale (e.g. 1 = very confident no, 6 = very confident yes). By being 

distribution-free it hoped to also be a flexible measure of metacognitive 

accuracy when applied to type 2 data (Nelson 1984). Task performance V is 

characterised as follows for a 2 x 2 design, the construction aimed at eliminating 

dependence on overall response bias. Suppose there are two trials and one of 

them is `stimulus present’ and one of them is `stimulus absent’, and the subject 

responds `present’ on one trial and `absent’ on the other. Then V is the 

probability that these responses match the stimulus.  The estimate of this 
(obtained from the data from all trials) is given by:  

𝑉 =  
Σ ℎ𝑖𝑡𝑠 × Σ 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑟𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠

Σ ℎ𝑖𝑡𝑠 ×  Σ 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑟𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠 + (Σ 𝑚𝑖𝑠𝑠𝑒𝑠 × Σ 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠) 

The Gamma coefficient is then given by  

𝐺 = 2𝑉 − 1 =  
(Σ ℎ𝑖𝑡𝑠 × Σ 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑟𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠)− (Σ 𝑚𝑖𝑠𝑠𝑒𝑠 ×Σ 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠) 
Σ ℎ𝑖𝑡𝑠 ×  Σ 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑟𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠 + (Σ 𝑚𝑖𝑠𝑠𝑒𝑠 ×Σ 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠) 

To assess metacognitive performance, pairs of responses (on the confidence 

scale) are combined to produce an analogue of V. There is no simple formula 
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for the general (non 2 x 2) case, so for a thorough explanation we refer the 
reader to Masson & Rotello (Masson & Rotello, 2009). 

In order to verify G’s supposed invariance to bias and distributional 

assumptions, Masson & Rotello (2009) simulated datasets in which 

metacognitive sensitivity was fixed and calculated G. More specifically, a 2AFC 

task was modelled as two probability distributions representing each choice. 

The difference between the means of these distributions was adjusted on 

simulation runs such that “population gamma”, calculated by randomly sampling 

from the distributions in order to approximate the proportion of cases where 

A>B, was fixed. It was then compared to the Gamma obtained when 

considering decision biases. Indeed, they found that G does get distorted by 

decisional biases. Moreover, this distortion increased when data were simulated 

from an unequal variance model, suggesting that the invariance under 
reasonable changes to distributional assumptions may not hold.  

3.6 TYPE 2 D’ 

Type 2 signal detection theory extends the logic of its type 1 counterpart by 

using confidence reports to map onto detection accuracy (Kunimoto et al. 2001; 

Macmillan & Creelman 2004). It assumes that correct and incorrect responses 

can be plotted on a ‘type 2’ decision axis as Gaussian random variables, 

analogously to the signal and noise distributions in type 1 SDT. Under the 

assumption that confidence is based on the same evidence as the type 1 

decision, the type 2 axis is a transformation of the type 1 axis. The distance 

between the peaks of the distributions gives us our measure of metacognitive 
sensitivity, type 2 D’.  

As shown in figure 3.2, type 2 variables are computed analogously to type 1 

variables, but instead of examining the correspondence between signal and 

response, response accuracy and confidence are compared. We define a type 2 

hit as a confident and correct response, a type 2 false alarm as a confident but 

incorrect response, a type 2 miss as a correct but unconfident response and a 

type 2 correct rejection as an appropriately unconfident, incorrect response. 
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Metacognitive accuracy measure type 2 D’ is then calculated analogously to 

type 1 d’. We subtract the normalised type 2 hit rate from the normalised type 2 

false alarm rate. The type 2 criterion, denoted C, represents metacognitive bias. 

This quantity reflects the extent to which the subject is over or under-confident. 

We may wish to quantify metacognitive accuracy or metacognitive bias 

separately for “yes” and “no” decisions (as is done in Chapters 4, 5 and 6). To 

do this trials are further be separated according to whether the participant’s type 
1 decision was “yes” or “no”.  

 

 
Figure 3.2. Type 2 D’. 

These figures depict the probability of the response having been 
correct  (green) or incorrect (purple). The separation between the two 
Gaussians gives us metacognitive sensitivity measure type 2 D’. The 
decision threshold type 2 C is placed somewhere on the decision axis. 
If the evidence strength is greater than this value the subject will 
respond ‘confident’, else the subject will respond ‘guess’. On the 
bottom left the decision was incorrect. ‘Guess’ responses in this case 
are type 2 correct rejections, whereas ‘confident’ responses are type 2 
false alarms. On the bottom right panel the response was correct. 
Here, reporting ‘confident’ is a type 2 hit and reporting ‘guess’ is a type 
2 miss.  
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Then, we can calculate separate measures of type 2 C and D’ using separate 
sets of trials: “yes” trials and “no” trials (see table 3.2).  

When the type 2 D’ measure was proposed by Kunimoto et al. (2001) it 

generated much excitement, because it was thought to be invariant to bias like 

type 1 d’. Unfortunately, this is not the case. Kunimoto tested this measure with 

a wagering paradigm, where confidence was assessed by the magnitude of 

participants’ wager on each trail. Crucially, the total wager they could place was 

fixed for each session meaning that confidence biases were artificially fixed by 

the nature of the authors’ paradigm. Indeed, the claim that D’ is invariant to 

metacognitive bias has been found to neither hold empirically (Evans & 

Azzopardi 2007) nor theoretically (Barrett et al 2013) when type 1 and 2 
decisions are made based on the same evidence.  

Table 3.2. Response-conditional type 2 response types 

 Report “yes” Report “no” 
 Correct Incorrect Correct Incorrect 
 Type 1 hit Type 1 FA Type 1 CR Type 1 miss 

Confident Type 2 Hit Type 2 FA Type 2 Hit Type 2 FA 
Guess Type 2 Miss Type 2 CR Type 2 Miss Type 2 CR 

FA false alarm, CR correct rejection 

Barrett et al. (2013) found that under certain circumstances D' is highly 

unstable. For example, if the type 1 criterion is placed where the noise and 

signal and noise distributions intersect (i.e. c is unbiased) then D' is maximised 

when the observer is maximally unconfident, which would be a nonsensical and 

mal-adaptive strategy. By varying decision and confidence thresholds, Barrett 

and colleagues also found that D’ can range from being negative (which is 

difficult to interpret in a meaningful way) to being greater than type 1 d’. 

Importantly, these analyses demonstrate a high reliance of D' on decision and 

confidence thresholds. The behaviour of type 2 D', then, does not suggest it to 
be a reliable measure of metacognition. 



  

	

72 

As well as being biased by decision and confidence thresholds, the validity of 

the underlying statistical assumptions of type 2 D' is also questionable. 

Specifically, the evidence for correct and incorrect responses cannot be 

represented as Gaussian distributions along a single decision axis (Maniscalco 

& Lau 2012). Galvin and colleagues have shown that no transformation of the 

type 1 decision axis will lead to the probability of correct and incorrect 

responses being normally distributed (Galvin et al., 2003). Therefore, if a single 

pathway underlies both type 1 and 2 decisions then D’ is not a measure of 
metacognition that arises naturally from SDT modelling. 

Despite these problems, in some scenarios type 2 D’ can still be useful as a 

basic measure of type 2 performance, especially if response bias is small. For 

example, if there is an insufficient number of trials to use more robust measures 

then the researcher may wish to use D'. However, strong conclusions from 
analyses under type 2 D’ and type 2 C should not be drawn.  

3.7 TYPE 2 SDT 

Type 2 D’ is not the only way to envisage a type 2 signal detection theoretic 

model of metacognition. An alternative way to capture type 2 decisions is to 

overlay confidence thresholds onto the type 1 decision axis. As shown in figure 

3.3A, confidence thresholds τ+ and τ- flank the type 1 decision threshold such 

that confidence is high when evidence X is less than τ- or greater than τ+ and 

low otherwise. Although this renders type 2 D’ an unprincipled measure, it 

invites certain promising alternatives, namely type 2 ROC curves and meta-d’, 
as described in sections 3.5.2 and 3.5.3 respectively. 

3.7.1 CONFIDENCE THRESHOLDS OVER THE TYPE 1 DECISION AXIS 

As mentioned in section 3.4, type 2 C gives us a measure of confidence as a 

function of decision accuracy. However, the probability of making a correct 

response and the probability of making an incorrect response cannot be 

represented as Gaussians under any transformation of the type 1 SDT decision 

axis (Galvin et al., 2003). An alternative way in which we can model 

metacognitive decisions is to examine the type 1 evidence required for a 
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decision to be reported with confidence. This entails placing two confidence 

thresholds onto the type 1 decision axis: one for “yes” responses, on the 

positive side of the type 1 decision threshold, and one for “no” responses which 

is placed on the negative side (Maniscalco & Lau, 2014). As these flanking 

thresholds approach the type 1 decision threshold θ (or c), that is, are tighter, 

less additional evidence is required for that decision to be reported with high 

confidence. So, tighter thresholds represent a more liberal metacognitive bias. 

This model can easily accommodate confidence scales with more than two 

points. One simply places more thresholds - one for each additional point on the 

scale. These must satisfy the assumption that the threshold for the lowest level 

of confidence extends the furthest out from θ, and increasing levels of 
confidence are associated with thresholds that are closer to θ.  

The confidence threshold on the left of θ, τ-, tells us the type 1 evidence for 

absence needed to report ‘confident’, given that the subject has reported “no”. 

To estimate this we can reclassify trials on which the subject reported “no” with 

high confidence as simply “no” trials and all others as “yes” trials. Then, we 

recompute type 1 d’ and c from these reclassified responses, which we call d’- 

and c - = τ-. Similarly, the threshold τ+ tells us the type 1 evidence needed for a 

“yes” response to be reported with confidence. This is computed analogously to 

τ-, but trials are reclassified as “yes” if the participant has reported target 
presence with confidence and “no” otherwise. 

As shown in figure 3.3B and C, if the subject has responded “yes” or “no” the 

underlying probability distributions may drastically differ, which leads to 

differences in sensitivity for these two decisions. Indeed, we would expect the 

evidence for target presence to be higher if the subject responded “yes” than if 

they responded “no”.  Because these distributions can differ, we cannot 

compare the response-specific confidence thresholds to θ. We need to 

normalise these thresholds by their respective response-specific d’s d’+ and d’-. 
We define the following: 

𝐶!!!  =  
𝜏!
𝑑!!

    𝐶!!!  =  
𝜏!
𝑑′!
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where 𝐶!!! is the normalised confidence threshold for negative responses over 

the type 1 axis, and where 𝐶!!! is the normalised confidence threshold for 

positive responses over the type 1 axis. These values 𝐶!!! and 𝐶!!! tell us how 

extreme the confidence threshold is, in turn informing us of how over- or under-
confident decisions are.  

Now suppose the researcher wishes to determine the distance between each of 
𝐶!!! and 𝐶!!! and θ (depicted in fig. 3.3A as distance A and B respectively). 

These distances are computed in empirical Chapters 4, 5 and 6 in order to 

measure effects of expectation on confidence after controlling for shifts in the 
type 1 decision threshold. For θ to be comparable to normalised values 𝐶!!!and 

𝐶!!! we also need to normalise θ. Thus, we can take c’ = c / d’, and compute the 

absolute difference between c’ and each normalised confidence threshold. 

Taking the absolute difference is important because “no” decisions will have 

less “yes” evidence for than “yes” decisions, and accordingly always be placed 
to the left of θ. We do not want negative distances. 

An important caveat here is that experimental manipulations that change 𝐶!!! 
and 𝐶!!! may be driven by changes in the variance of the type 1 distributions 

rather than by true metacognitive differences. This problem also arises when 

response-condition type 2 ROC curves are calculated (Maniscalco & Lau, 

2014), and so this problem may similarly plague these confidence thresholds. 
Results using this measure should therefore be interpreted with caution. 

3.7.2 TYPE 2 ROC CURVES 

While the type 1 ROC curve plots the probability of type 1 hits against the 

probability of type 1 false alarms for each level of criterion θ, the type 2 ROC 

curve plots the probability, for some fixed type 1 decision criterion c, type 2 hit 

rate against type 2 false alarm rate for all possible confidence thresholds. Just 

as type 1 ROC curves are robust to type 1 thresholds, so type 2 ROC curves 

should be robust to type 2 (and type 1) thresholds. However, because at the 

type 2 level there are two thresholds, τ+ and τ-, two parameters are left to vary 
freely (τ+ and τ- ). This means that the type 2 ROC is not unique.  



  

	

75 

 

 
Figure 3.3 Type 2 signal detection theory 

A. As opposed to the model illustrated in figure 3.2, flanking confidence 
thresholds are placed over the type 1 decision axis on either side of decision 
threshold θ. The confidence thresholds for “yes” and “no” responses are 
denoted τ+ and τ- respectively.These need not be symmetric. As is the case 
for θ, the confidence thresholds indicate the type 1 evidence for the decision 
that is needed to report with high confidence. Given that the participant 
reports “no”, the letter A between τ- and θ shows the additional evidence 
required for this judgement to be reported with confidence. The letter B 
shows the same but for “yes judgements.   B. Here, the participant has 
reported “No”. We see that the target present and absent distributions are 
very different to those in the top panel. As a result, even though the 
thresholds occupy the same points on the decision axis they will lead to 
different proportions of correct and incorrect responses. C. As for B, but for 
“Yes” responses. 
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The current literature posits three potential solutions to this. Galvin et al. (2003) 

suggested collapsing the two confidence thresholds into one likelihood function: 

the likelihood ratio of being correct versus incorrect. This enables a unique 

solution for fixed θ and is straightforward to compute. However, the authors still 
found a strong dependence of the area under the curve (AUC) on θ.  

An alternative measure, proposed by Clifford et al. (2008) recommends 

comparing the type 1 ROC curve based on a confidence rating scale with the 

ROC curve obtained by manipulating c experimentally. That is, if we manipulate 

the physical properties of the stimulus such that response threshold changes 

(e.g. threshold contrast) then we can plot the false alarm rate/hit rate trade-off 

across artificially induced criterion shifts. This is the traditional type 1 ROC 

curve. We can compare this with an alternative type 1 ROC in which changes in 

criterion are modelled by differentially bisecting into "signal" and "noise", an n 

point rating scale all n-1 ways. If metacognition is SDT-optimal, these two ROCs 

should be the same. This point follows from the assumption that an optimal 

observer would fully use the same information for the type 1 and the type 2 

decision. Thus, Clifford et al. proposed their divergence as a measure of 

metacognition. Again though, the degree of divergence is generally dependent 
on type 1 response bias. 

Finally, Barrett et al. (2013) constructed the SDT-optimal type 2 ROC curve; the 

type 2 ROC curve that, for fixed θ and fixed type 2 false alarm rate (F), gives us 

the greatest type 2 hit rate (H), Hmax (and therefore type 2 performance).  Like 

the formulation above, this describes the performance of the SDT-optimal 

observer. Unfortunately this curve was also found to be vulnerable to distortions 

from θ however because it describes SDT-expected performance it can be used 

to check whether data conform to SDT. If the researcher wishes to measure 

metacognitive bias (confidence), type 2 ROC curves will not be appropriate 
because they attempt to eliminate bias by design. 
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3.7.3 META-D’ AND META-D’-BALANCE 

Meta-d' measures  (Barrett et al., 2013; Maniscalco & Lau, 2012) are the current 

gold-standard in measures of metacognition. Meta-d' is the type 1 sensitivity 

that would be expected from the SDT-optimal observer, given the type 2 level 

information. In other words, meta-d’ answers the question ‘what level of type 1 

sensitivity would the optimal SDT observer need in order to obtain this 

confidence-accuracy relationship?’ Because meta-d’ is in d’ units, it can be 

compared to empirically observed values of d’ to quantify how suboptimal the 

participant is, or how this sub-optimality is changed by experimental 

manipulations. The difference between meta-d’ and d’ has a clear interpretation 

in units that correspond to the standard deviation of the noise distribution. Type 

2 D’ on the other hand is formulated in different units from type 1 d’, making it 

hard to compare these two measures directly. 

One assumes the participant has optimal metacognitive performance if meta-d' 

is equal to d'. Like the optimal SDT observer, they are using all of the evidence 

available. If meta-d’ is lower than d’, the optimal observer could show the same 

degree of metacognitive accuracy shown empirically, but will use less type 1 

information than the participant had. The ideal observer therefore outperforms 

the subject and the subject’s metacognitive accuracy is suboptimal.  It is 

assumed that meta-d' will never be higher than d', as this would suggest the 

participant performed "super-optimally". In practice, this would support a model 

in which the observer has more information when making the type 2 decision 

than when making the type 1 decision, for example, after having had feedback 
on the type 1 decision, or having had to make a speeded type 1 decision. 

There are several possible operational definitions of meta-d’, all of which rely on 

solving two pairs of equations, one pair obtained by considering type 2 

performance following a positive type 1 response (e.g. “yes”) and the other 

obtained by considering type 2 performance following a negative type 1 

response (e.g. “no”). All existing approaches fix the type 1 response bias (the 

relative type 1 threshold c’) to the empirical value, for the purposes of solving 

the equations for meta-d’. In general, the two pairs of equations cannot be 
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solved simultaneously. Maniscalco & Lau (2012) adopt a data-driven approach, 

by proposing two methods for finding the best fit: minimising the sum of the 

squares of the errors leads to meta-d'SSE, while maximum likelihood estimation 
leads to meta-d’MLE. 

Maniscalco and Lau's meta-d' formulation assumes symmetrical confidence 

thresholds. By contrast, meta-d’ balance (meta-d'b, Barrett et al., 2013) permits 

response-conditional meta-d’ for positive and negative responses to differ.  

They propose this as a theory-driven rather than data-driven approach which 

affords an alternative calculation of meta-d'. They derive formulae for both 

positive and negative response-conditional meta-d', but rather than solving 

these simultaneously, they take their mean solution, weighted according to the 

number of positive versus negative type 1 responses. Barrett et al. (2013) noted 

that the response-conditional meta-d’ measures do not on their own provide 

stable, bias-invariant measures of metacognition; stability only comes when 
they are combined into a single measure.  

Barrett et al. (2013) assessed how both meta-d'b and Maniscalco & Lau's meta-

d'SSE behave under non-traditional SDT models. In practice, empirical data are 

messy and the paradigm may induce certain changes in how we envisage the 

statistical distributions of signal and noise. Importantly, Barrett and colleagues 

found that under an unequal variance model, even when departing from 

standard SDT (i.e. when the signal is enhanced or degraded between the type 1 

and 2 levels, or when type 1 criterion is jittered across trials, representing 

fluctuations in attention) both versions remain relatively robust, especially when 

the type 1 threshold is varied. In these cases, however, meta-d'b seems slightly 

more consistent than meta-d'SSE, which is unsurprising given that meta-d'b 

permits differences between the response-conditional metacognitive measures. 

When variances are equal, both measures are largely invariant to changes in 

type 1 and 2 thresholds under signal-degradation, signal-enhancement and 
criterion jitter.  

Barrett et al. (2013) also looked at the behaviour of both meta-d' measures on 

finite data sets, and found that with small numbers of trials (approximately 50 
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trials per subject) both showed statistical bias and had higher variance than d'. 

However when 300 trials per subject were included in the analysis, bias 

approached zero and variance dropped substantially. Therefore to get the most 
out of these measures high numbers of trials per condition should be obtained. 

The calculation of meta-d' is optimal when no type 1 or 2 hit or false alarm rate 

is too extreme, and not possible when any of these take the value zero or one. 

This leaves one with two possible sets of data exclusion criteria to consider. 

The `narrow exclusion criteria’ only exclude a subject if any of the type 1 or 

response-conditional type 2 hit rates or false alarm rates are zero or one. These 

obviously maximise the number of subjects retained. An alternative choice is to 

use `wide exclusion criteria’ which exclude subjects if any of the type 1 or 

response-conditional type 2 hit or false alarm rates lie at the extremities (<.05 or 

>.95).  Simulations found narrow exclusion criteria to lead to greater variance of 
meta-d’ but smaller bias than wide exclusion criteria.  

In summary, both versions of meta-d' invert the calculation of type 2 

performance from type 1 performance into a calculation of estimated type 1 

performance given type 2 performance. Therefore, this method avoids many 

conceptual and theoretical problems related to computing an overall measure of 

metacognition. Moreover, these problems also seem to be avoided in practice. 

Although there is, as yet, no single, optimal computation for meta-d' it looks like 

meta-d'b is more robust to non-traditional SDT models whereas meta-d'SSE is 
less biased in small samples.  

The main drawbacks of the meta-d’ measures are that they are noisier than the 

alternative measures discussed above, and that response-conditional versions 

may be unstable. Nevertheless, these measures are most promising for 

capturing metacognition independently of response biases. In summary, these 

measures will give stable and meaningful results when sufficient trials are 

obtained and the standard assumptions of SDT hold to reasonable 
approximation.  
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3.8 MEASURING CONSCIOUSNESS USING TYPE 2 SIGNAL DETECTION 

THEORY 

The literature now offers robust measures of metacognition. So, how can we 
use measures of metacognition to deepen our understanding of consciousness?  

There are arguments in the literature for using metacognition as a robust 

measure of visual awareness (Kunimoto & Miller 2001; Persuade et al 2007). 

These arguments claim that decision confidence taps in to the subjective states 

that underlie awareness. In many cases, it would indeed seem reasonable to 

assume that confidence will correspond with accuracy only when a target has 

been consciously perceived. However, this presumption was violated in 

blindsight patient GY. GY demonstrated above chance metacognition (Evans & 

Azzopardi, 2007), yet is clearly unaware of visual stimuli in the blind field 

(Persaud et al. 2007). Metacognition and awareness can also dissociate, such 

that metacognitive accuracy as measured by meta-d’ is above chance for 

subliminally presented stimuli (Jachs, Blanco, Grantham-Hill, & Soto, 2015). 

Together, these results suggest that under certain circumstances we might 

(carefully) be able to use metacognition as a proxy measure of visual 

awareness or conscious knowledge. However, for a more rigorous assessment 

of unawareness we would hope to see a convergence with other measures that 

indicate unawareness – absence of EEG correlates such as the P300, for 
example.  

There is a debate to be had about how we should interpret a metacognitive 

measure with relation to awareness. Imagine participants A and B take part in a 

psychophysical detection task. If A's meta-d' is twice that of B, are they "twice 

as aware" of the stimulus? Are they twice as often aware or twice as likely to be 

aware of the stimulus? When metacognition is at chance it is much easier to 

interpret the results in relation to awareness than when making relative 

judgements between above-chance values. By contrast, subjective confidence 

may tell us more about the subject’s experience of the stimulus. High 

confidence in a perceptual task corresponds to a high subjective probability of 

having correctly reported the target, whereas low confidence corresponds to 
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uncertainty about the subject’s (task-relevant) perceptual content. Thus, these 

reports inform us about how the subject experiences the stimulus, rather than 

comparing this experience against the objective state of the world. 
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4 
PRIOR EXPECTATIONS FACILITATE 

METACOGNITION FOR PERCEPTUAL 

DECISION 
The influential framework of ‘predictive processing’ suggests that prior 

probabilistic expectations influence, or even constitute, perceptual contents. 

This notion is evidenced by the facilitation of low-level perceptual processing by 

expectations. However, whether expectations can facilitate high-level 

components of perception remains unclear. We addressed this question by 

considering the influence of expectations on perceptual metacognition. To 

isolate the effects of expectation from those of attention we used a novel 

factorial design: expectation was manipulated by changing the probability that a 

Gabor target would be presented; attention was manipulated by instructing 

participants to perform or ignore a concurrent visual search task. We found that, 

independently of attention, metacognition improved when yes/no responses 

were congruent with expectations of target presence/absence. Results were 

modelled under a novel Bayesian signal detection theoretic framework that 

integrates bottom-up signal propagation with top-down influences, to provide a 

unified description of the mechanisms underlying perceptual decision and 
metacognition. 
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4.1 INTRODUCTION 

Metacognition, or ‘cognition about cognition’, reflects the knowledge we have of 

our own decision accuracy and comprises an important, high-level component 

of decision making in both perceptual and cognitive settings. In perceptual 

decision, metacognition is often operationalised as the trial-by-trial 

correspondence between (objective) decision accuracy and (subjective) 

confidence. A key question in perceptual metacognition is how, and indeed 

whether, metacognition is affected by top-down influences such as attention and 

expectation. In the case of attention, it has long been known that it can improve 

visual target detection (Posner, 1980). However, the relationship between 

attention, confidence, and metacognition remains unclear. While Kanai and 

colleagues found that perceptual metacognition persists when attention is 

diverted (Kanai et al., 2010), other studies suggest that the absence of attention 
can lead to overconfidence (Rahnev et al., 2011; Wilimzig & Fahle, 2008).  

Inspired by the growing influence of ‘predictive processing’ or ‘Bayesian brain’ 

approaches to perception and cognition (Clark, 2013; Gilbert & Li, 2013; Gilbert 

& Sigman, 2007; Summerfield & de Lange, 2014; Summerfield & Egner, 2009), 

empirical work on top-down attention is now complemented by a growing focus 

on the role of top-down expectations in decision making. In Bayesian terms, 

expectations can be conceived as prior beliefs that constrain the interpretation 

of sensory evidence.  It has been shown that prior knowledge, either of stimulus 

timing ('when') or of stimulus features ('what'), facilitates low-level processing, 

as reflected in measures such as reaction time (Stefanics et al., 2010) and 

contrast sensitivity (Wyart et al., 2012). Such improvements are often 

accompanied by the attenuation of both the BOLD responses and ERP 

amplitude following expected relative to unexpected perceptual events (Egner et 

al., 2010; Melloni et al., 2011; Wacongne et al., 2011). As well as facilitating 

low-level perception, expectations may influence conscious content. This idea is 

supported by evidence for expectations inducing subjective directionality in 

ambiguous motion (Sterzer, Frith, & Petrovic, 2008) and lowering the threshold 

of subjective visibility for previously seen versus novel visual stimuli (Melloni et 
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al., 2011). These effects are similar to those exerted by top-down attention. 

However, while it has been argued that attention and expectation reflect similar 

processes (Desimone & Duncan, 1995; Duncan, 2006), orthogonal 

manipulations of attention and expectation have demonstrated that, although 

they are tightly intertwined, they can have separable effects on neural activity 

(Hsu, Hämäläinen, & Waszak, 2014a; Jiang et al., 2013; Kok et al., 2011; Wyart 
et al., 2012).  

One influential process theory within the Bayesian Brain framework is predictive 

coding (Beck, Ma, Kiani, & Hanks, 2008; Clark, 2013; Desimone & Duncan, 

1995; Friston, 2009;  Hohwy, 2013; Lee & Mumford, 2003). Predictive coding 

also posits that efficient processing is achieved by constraining perceptual 

inference according to the prior likelihood of that inference (‘expectations’). 

Here, the predictive models underlying perception are generally assumed to be 

multilevel and hierarchical in nature (Clark, 2013; Friston et al., 2012), 

incorporating priors related both to low-level stimulus features, and to high-level 

features representing object-level invariances. Plausibly, priors concerning 

subjective confidence for perceptual decisions may be implemented at high 

levels of the hierarchy. Based on this possibility, we set out to investigate 

whether the top-down influences of attention and prior expectation modulate 
perceptual metacognition.  

To address whether expectation can improve metacognition we orthogonally 

manipulated both attention and expectation. This separated their effects, and 

was achieved by adopting a dual-task design. In a Gabor detection task, 

expectation was manipulated by informing participants of the probability of 

Gabor presence or absence as it changed over blocks. In this way, certain 

blocks induced an expectation of Gabor presence and others, of absence. In 

half of the blocks, participants were instructed to additionally perform a 

concurrent visual search task that diverted attention away from the detection 
task.  

Objective performance can be assessed by using type 1 signal detection theory 

(SDT). By comparing signal type (e.g. present, absent) and response (present, 
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absent), type 1 SDT enables a computation of independent measures of 

objective sensitivity and decision threshold (d’ and c, respectively). We used 

type 2 SDT to assess metacognitive sensitivity (see Chapter 3). By obtaining 

trial-by-trial retrospective confidence ratings, metacognitive sensitivity and 

confidence thresholds can be computed from response accuracy and decision 

confidence. We used two such methods – type 2 D’, which is a direct analogue 

of type 1 d’ (Kunimoto et al., 2001), and meta-d’ (see Section 4.3.5.2 or Barrett, 

Dienes, & Seth, 2013; Maniscalco & Lau, 2012; Rounis, Maniscalco, Rothwell, 

Passingham, & Lau, 2010). Given that prior expectations have been shown to 

facilitate low-level processing, we hypothesise that expectations would also 

improve metacognitive sensitivity. We tested this hypothesis by considering the 

congruency between participants’ yes/no decision and the block-wise 

expectation of Gabor presence or absence. Specifically, we hypothesised that 

metacognitive sensitivity would be greater following expectation-congruent type 

1 decisions (e.g. reporting target presence when expecting target presence), 

than following expectation-incongruent decisions (e.g. reporting presence when 
expecting absence).   

4.2 METHODS 

4.2.1 PARTICIPANTS 

Twenty-one participants (14 female) completed the experiment. All were healthy 

students from the University of Sussex, aged 18 to 31 (M = 20.4, SD = 3.2) and 

had normal or corrected-to-normal vision. The sample size for adequate power 

was computed using GPower 3.1 (Faul, Erdfelder, Lang, & Buchner, 2007), with 

estimated effect sizes derived from pilot studies. Data from one participant were 

excluded because their visual search task performance deviated by more than 

1.5 SD from the mean (98.6% correct) and another, for having no variability in 

their confidence reports (100% confident). This left data from 19 participants for 

analysis, all of whom demonstrated, averaging over conditions, a Gabor 

detection d’ and visual search accuracy that was within 1.5 SD from the mean. 

Participants were offered course credits for participating and informed, written 
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consent was obtained. The experiment was approved by the University of 
Sussex ethics committee (C-REC).  

4.2.2 STIMULI AND SETUP 

Stimuli were generated using the Psychophysics toolbox for Matlab (Brainard, 

1997; Kleiner, D., & Pelli, 2007) and presented on a 20 inch Dell Trinitron CRT 

display (resolution 1048x768; refresh rate 85 Hz). Participants were tested 

individually in darkened rooms and were seated 60cm away from the screen. 

Both stimuli and background were linearised using a Minolta LS-100 photometer 
(γ = 2.23607, Weibull fit). The background was greyscale and uniform.  

4.2.3 DESIGN AND PROCEDURE. 

This experiment implemented a novel dual-task design, which is depicted in 

figure 4.1. The critical task was to report the presence or absence of a near-

threshold Gabor patch (which indeed, was either present or absent). The 

second task was a visual search task, in which it had to be determined whether 

a target (the letter ‘T’), had been present or absent amongst distracters (letter 

‘L’s).  

 

Figure 4.1. Trial sequence. 

Across both staircases and experimental trials. In this trial, both the visual search 
and detection targets (T and Gabor, respectively) are present. Participants are 
prompted to respond to the visual search display in diverted attention trials (final, 
bottom) but not full attention trials (final, top). δ  signifies the time that the visual 
search Ls and Ts were presented for. This time was titrated for each participant 
individually. 
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Trials began with the presentation of a white central fixation cross (0.38°x 0.38°, 

random duration between 500 and 1,500 ms). This was followed, on Gabor 

present trials only, by the appearance of the peripheral Gabor patch (spatial 

frequency 2c/°, Gaussian SD = 2°) in the lower-right quadrant of the screen. On 

each presentation, the phase was either 45° or 225° (50% chance of each). To 

reduce sensory adaptation effects, the precise location in which it was 

presented was jittered in both the horizontal and vertical direction from a 

baseline position of 25.2° x 21.08°. On each trial the jitter for each direction was 

randomly sampled from the interval [0.66°, 1.24°]. The contrast of the Gabor 

was titrated for each participant so that hit rate was 79.4% (see section 4.3.4, 

Staircases). In total it was presented for 388ms and had a gradual onset and 

offset. Immediately following the offset of the fixation cross, the central visual 

search array also appeared. On Gabor present trials, the Gabor and the array 

were therefore presented simultaneously. The array consisted of four white 

letters (1.43° x 1.43°) – either 3 ‘L’s and a ‘T’ (visual search target present, 50% 

chance) or 4 ‘L’s (visual search target absent, 50% chance) - arranged around 
fixation at 0°, 90°, 180° and 270°. 

Trial-by-trial, the orientation of each letter took a random value between 0° and 

359°. The time for which the letters remained on-screen was adjusted for each 

participant so that visual search percent correct was 79.4% (M = 254 ms, SD = 

75 ms. See section 4.3.4, Staircases). To ensure that the task was difficult 

enough to divert attention, the array of letters was backwards-masked by an 

array of ‘F’s that remained on screen for 300ms. This masking array was 

followed by a series of on-screen response prompts, requesting un-speeded, 

key-press responses to: first, the Gabor task (Gabor present or absent); 

second, binary confidence in the accuracy of that report (confident or guess); 

finally, and in diverted attention conditions only (see next paragraph), the visual 
search task (T present or absent).  

Expectation was manipulated in the Gabor task by changing the probability that 

it would be present versus absent over blocks of trials (25%, 50% or 75% 

probability of target presence). In the 25% condition, where Gabor presence 
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was unlikely, an expectation of absence was induced. The 50% condition was a 

control, and in the 75% condition an expectation of presence was induced. 

Orthogonally to this expectation manipulation, attention was manipulated over 

blocks of trials by instructing participants to either perform or ignore the 

concurrent visual search task. When participants were in a ‘perform visual 

search’ block, their attention was diverted from the critical Gabor detection task, 

whereas when they were instructed to ignore the visual search array, their 

attention was fully focused on Gabor detection. In the diverted attention 

condition, participants were instructed to prioritise the visual search task. Thus, 

each block was associated with an expectation of Gabor presence or absence 

and a degree of attentional resource for the Gabor task (full/diverted). Before 

each block began, both the probability of Gabor presentation and instructions to 

either perform both tasks or ignore the Gabor were presented on-screen. At the 

end of each block, if visual search accuracy had dropped below 60% on-screen 

feedback reminded participants to maintain their concentration on the visual 

search task. Participants completed 36 blocks in total (6 of each of the 6 

conditions, counterbalanced) and each block had 12 trials. This gave a total of 
432 trials.  

Before data collection began, instructions for the tasks were presented on-

screen. The on-screen instructions were additionally read to the participant to 

ensure that they were fully understood. These explained that the probability of 

target presentation in the upcoming block would be given (25%, 50% or 75%) 

and that the information was correct and would help them complete the difficult 

task. Participants were instructed to fixate centrally throughout and to be as 

accurate as possible in all of their (un-speeded) responses. Next, participants 

completed a set of practice trials for each type of task (staircases and 

experimental conditions). Next, three psychophysical staircase procedures were 

completed (see section 4.2.4) and finally, the experimental trials. Once all 

experimental trials had been completed, participants were debriefed. 
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4.2.4 STAIRCASES.  

We required performance in the Gabor detection task to be equated across 

levels of attention and across participants. Furthermore, the difficulty of the 

visual search task also had to be controlled across participants. To this end, 

three adaptive staircase procedures were completed prior to the experimental 

trials. The first staircase adjusted Gabor contrast under full attention, the 

second, the time for which visual search ‘L’s and ‘T’s were presented and the 

third, Gabor contrast under diverted attention. The staircases set performance 

(percentage correct for the visual search task and hit rate for the Gabor task) in 

each task at 79.4%. Each of the three procedures consisted of two interleaved, 

identical staircases, which terminated after 8 reversals. The visual display was 

identical to that in experimental trials (see section 4.2.3 and figure 4.1), however 

the reports requested from participants varied across procedures. During these 

procedures, confidence judgments were not requested and there was a 50% 
chance of Gabor presentation. 

In staircase 1, Gabor detection was performed under full attention (i.e. ignore 

visual search). Participants were instructed to fixate centrally, ignore the visual 

search display and report peripheral Gabor presence or absence. The initial 

contrast of the attended target Gabor was 5% and this was titrated by the 

staircases. The (ignored) visual search ‘L’s and ‘T’s were presented for 300 ms 
before they were masked.  

In staircase 2, the visual search task was performed but the Gabor task was 

not. Participants were instructed to ignore the Gabor and only perform the visual 

search task. Here, they reported whether a target ‘T’ was present or absent in 

an array of distracter ‘L’s. The visual search array of ‘L’s and ‘T’s were initially 

presented for 300 ms before being masked, and this duration was titrated by the 

staircases. The (ignored) Gabor, if present, had the contrast determined in 
staircase 1.  

In staircase 3, both tasks were performed. Participants were instructed to 

prioritise the visual search task while concurrently performing the Gabor 
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detection task. Visual search letters were presented for the duration determined 

in staircase 2. The Gabor was initially presented at 1.05 times the contrast level 

acquired in staircase 1. The contrast of the unattended Gabor was titrated over 

the course of the procedure. Participants responded to the Gabor task first and 

the visual search task second (as in the experimental trials). If participants’ 

mean visual search accuracy across the staircase dropped below 60% they 

received on-screen instructions to maintain concentration on the visual search 
task.  

4.2.5 ANALYSIS 

4.2.5.1 STATISTICAL ANALYSES.  

Objective detection performance for the Gabor detection task was assessed 

using type 1 signal detection theory (SDT; Green & Swets, 1966) measures d’ 

(detection sensitivity) and c (decision threshold). A negative/positive c reflects a 

bias towards reporting target presence/absence. Visual search performance 

was also assessed using d’ and c. Because we required d’ and c values to 

remain independent of each other, adjusted type 1 d’ was not used. Unless 

otherwise stated, alpha is set at 5%, the assumption of sphericity has been met 

and post-hoc tests are FDR corrected (Banjamini & Hochberg, 1995) 
throughout. 

 4.2.5.2 TYPE 2 SIGNAL DETECTION THEORY. 

 Metacognitive sensitivity was measured by obtaining trial-by-trial confidence 

ratings and using type 2 SDT to assess the relationship between confidence 

and accuracy (Barrett, Dienes, & Seth, 2013; Galvin, Podd, Drga, & Whitmore, 

2003; Kunimoto et al., 2001; Macmillan & Creelman, 2004). Type 2 measures 

are calculated analogously to the type 1 case: type 2 hits (correct and confident) 

and correct rejections (incorrect and guess) are compared with type 2 misses 

(correct and guess) and false alarms (incorrect and confident). From these, type 

2 D’ (metacognitive sensitivity) and type 2 C (confidence threshold) can be 

computed (Kunimoto et al., 2001). Type 2 hit rate (HR) and type 2 false alarm 
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rate (FAR) are calculated as follows (where the subscript ‘2’ indicates type 2 
SDT outcomes):  

𝐻𝑅 =  
𝐻!

𝐻! +  𝑀!
 , 𝐹𝐴𝑅 =  

𝐹𝐴!
𝐹𝐴! +  𝐶𝑅!

 

Thus, HR reflects confidence for correct responses and FAR reflects confidence 
for incorrect responses. 

 Type 2 D’ and type 2 C are defined as: 

𝐷! = 𝑍 𝐻𝑅 − 𝑍 𝐹𝐴𝑅 , 𝐶 =
−(𝑍 𝐻𝑅 + 𝑍 𝐹𝐴𝑅 )

2  

where Z is the standard Z-score, i.e. the inverse cumulative density function of 

the standard normal distribution. To distinguish type 2 variables from their type 

1 counterparts we denote type 1 variables in lower-case (e.g. type 1 d’) and 
type 2 in upper case (e.g. type 2 D’).   

It is known that type 2 D’ is highly biased by both type 1 and 2 thresholds 

(Barrett et al., 2013; Evans & Azzopardi, 2007; Galvin et al., 2003). An 

alternative measure is the ‘bias-free’ meta-d’. This is an estimate of the type 1 d’ 

an SDT-optimal observer would need to have to generate the type 2 

performance shown (for an in-depth explanation see Barrett et al., 2013 or 

Maniscalco & Lau, 2012). Importantly, meta-d’ is measured in the same units as 

d’. This permits a direct comparison between objective and subjective 

sensitivity. Considering meta-d’ as a proportion of d’ gives us metacognitive 

efficiency, or the amount of type 1 information that is carried forward to the type 

2 level. To take advantage of this feature we additionally analysed our results 

using meta-d’/d'. We calculated meta-d’-balance from freely available online 

code (Barrett et al., 2013). This calculation was supplemented by a maximum 

likelihood estimation of SDnoise:SDsignal+noise from the group-level data, also using 

freely available online code (columbia.edu/~bsm2015/type2sdt; Maniscalco & 
Lau, 2012). 

As described in the introduction, we hypothesised that metacognitive 

performance would be improved when type 1 decisions are based on prior 
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expectations. Testing this hypothesis requires comparing decisions that were 

based on (i.e. congruent with) prior expectations with those that were not. In the 

25% condition, target absence is most probable meaning that an ‘absent’ report 

would be expectation-congruent and a ‘present’ report would be incongruent. 

The opposite would be true for the 75% condition. We therefore computed, for 

each condition, type 2 D’ following ‘present’ responses (hits and false alarms) 

and type 2 D’ following ‘absent’ responses (misses and correct rejections). 

Analogous response-conditional meta-d’ estimates were obtained from freely 

available online code (see Barrett et al., 2013, supplementary materials). 

Unfortunately, response-conditional meta-d' is unlikely to be robust to criterion 
shifts like its response-unconditional counterpart (Barrett et al., 2013). 

For all type 2 measures, a significant response by expectation interaction would 

demonstrate an effect of congruency. Note that we could not use a standard 

(i.e. response-unconditional) D' or meta-d' measure, because in this case 

degraded metacognition following one response could cancel out the improved 
metacognition following the alternative response. 

4.3 RESULTS 

4.3.1 EXPECTATION CAN BE SEPARATED FROM ATTENTION 

To verify that the concurrent visual search task successfully manipulated 

attention we compared the contrast thresholds obtained in the full and diverted 

attention staircases. As expected, a one-tailed paired t-test revealed a 

significant increase in contrast in the dual-task (M = 0.080, SE = 0.011) relative 

to the single-task (M = 0.032, SE = 0.002) conditions, bootstrapped t(18) = 4.64, 

p = .001, 95% CI = [-0.06, -0.03], dz = 1.06. Thus, the paradigm successfully 
manipulated attention.  

Next, the effects of expectation and attention on each of (Gabor) detection 

sensitivity d' and (Gabor) decision threshold c were examined. These analyses 

addressed three questions: first, whether d' had been successfully equated 

across levels of attention and expectation; second, whether the expectation 
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manipulation successfully biased c; third, whether expectation and attention 

were successfully separated at the type 1 level (i.e. did not interact under d' or 

c).  

First, we performed a repeated-measures Expectation (0.25, 0.5, 0.75) x 

Attention (full, diverted) analysis of variance (ANOVA) on type 1 d'. This 

revealed that sensitivity did not significantly differ across the full (M = 2.39, SE = 

0.16) and diverted (M = 2.00 SE = 0.18) attention conditions, F(1, 18) = 3.03, p 

= .099, ηp
2

 = .144, or across Expectation conditions (M.25 = 2.15, SE0.25 = 0.11, 

M.50 = 2.28, SE.50  = 0.15, M.75 = 2.14, M.75  0.13), F(2, 36) = 2.12, p = .124, ηp
2

E 

= .101 (Figure 4.2 A). Type 1 sensitivity was therefore successfully equated 

across all six conditions. This means that any changes in type 2 sensitivity 

cannot be attributed to changes in the amount of type 1 information. There was 

no significant interaction between Attention and Expectation under d', F(2, 36) = 

1.12, p = .34, ηp
2

 = .059, suggesting that the two factors were successfully 
separated with respect to type 1 detection performance.  

A repeated-measures Expectation (0.25, 0.5, 0.75) x Attention (full, diverted) 

analysis of variance (ANOVA) under decision threshold c revealed a significant 

main effect of Expectation, F(2, 36) = 9.18, p = .001, ηp
2

 = .338. A trend analysis 

demonstrated that decision threshold linearly liberalised (more likely to report 

target present) as the probability of target presence increased, F(1, 18) = 15.72, 

p =.001, ηp
2

 = .466. The paradigm therefore successfully manipulated 

expectation. Attention had no significant main effect on decision threshold, 

F(1,18) = 3.14, p =.093, ηp
2

 = .148 and did not significantly interact with 

Expectation, F(2,36) = 0.85, p = .434, ηp
2

 = .045 (Figure 4.2B). Therefore, 

attention and expectation were separated with respect to type 1 decision 
threshold, as well as type 1 sensitivity. 
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Figure 4.2. Effects of expectation and attention on sensitivity and bias  

A. Type 1 d’ as a function of expectation and attention. B. Type 1 criterion c as a 
function of expectation and attention. Error bars represent within-subjects SEM. 
 *** p < .001,  ** p < .01, * p < .05, n.s. non-significant. 

In the diverted attention condition, participants were instructed to perform the 

detection and the visual search task simultaneously, prioritising visual search. 

However, if participants were unable to divide their attention across the two 

tasks then we would expect a significant negative correlation between trial-by-

trial Gabor detection and visual search accuracy. To address this question we 

computed the Spearman's correlation coefficient between trial-by-trial detection 

accuracy scores on the two tasks for each participant. A one-sample 

bootstrapped t-test against zero revealed that at the group-level there was no 

significant trade-off in performance between the two tasks, M = 0.02, SD = 0.09, 

t(18) = 0.94, p = .361, 95% CI [-.023, .059]. Thus, participants were able to 
perform the two perceptual tasks simultaneously. 

Participants were able to perform the tasks simultaneously, but if the visual 

search task interfered with Gabor detection sensitivity, we might expect a 

significant negative correlation between experiment-wise performance in the 

two tasks. To address this concern we calculated d’ and c for the visual search 

responses and correlated them with their Gabor detection counterparts. Across 

participants there was no significant (Pearson's) correlation between visual 

search d’ and (diverted attention) Gabor d’, r(19) = .250, p = .302, bootstrapped 

95% CI [-.326, .623]. Similarly, there was no significant (Pearson's) correlation 

between type 1 decision thresholds for the two tasks, r(19) = .359, p = .131, 

bootstrapped 95% CI [-.043, .723]. These results suggest that performing the 

visual search task did not significantly interfere with performing the Gabor 



  

	

95 

detection task. This, combined with the absence of a negative correlation 

between trial-by-trial accuracy on the two tasks and with the absence of 

attention by expectation interactions under d' and c, demonstrates that attention 
and expectation were sufficiently separated at the type 1 level. 

The results so far indicate that the paradigm successfully influenced both 

expectation (participants were more likely to report target absence when the 

probability of target presentation was low than when it was high) and attention 

(contrast sensitivity was reduced when attention was diverted). Furthermore, 

they indicate that expectation and attention did not significantly interact. Given 

this, we were able to examine how metacognitive sensitivity is specifically 
affected by expectation and attention, without confounds of task difficulty. 

4.3.2 EXPECTATION IMPROVES METACOGNITIVE PERFORMANCE 

Our main hypothesis was that metacognition would be improved following an 

expectation-congruent response. In the 25% condition, where target absence is 

expected, misses and correct rejections ('no') would be expectation-congruent 

responses and false alarms and hits ('yes') would be incongruent. The reverse 
is true for the 75% condition, where target presence is expected.  

To test our hypothesis, response-conditional type 2 D’s (see Methods) were 

subjected to a repeated-measures Expectation (0.25, 0.5, 0.75) x Attention (full, 
diverted) x Report (present, absent) analysis of variance (ANOVA).  

Critically, the ANOVA revealed a significant two-way interaction between 

Expectation and Report, F(2,36) = 5.60, p =.008, ηp
2 = .238. To further probe 

this effect we collapsed across attention conditions and performed a priori trend 

analyses. D’ for target present reports exhibited a significant linear trend with 

Expectation, F(1,18) = 13.85, p = .001 (1-tailed), η2
 = .435 such that as the 

probability of target presentation increased from 25% (target presence 

improbable) to 75% (target presence probable), type 2 D’ increased (Figure 

4.3A). Similarly, when participants reported the Gabor as absent there was a 

significant linear trend with Expectation in the opposite direction, F(1,18) = 3.83, 
p = .033 (1-tailed),  η2

 = .175: as the probability of target presentation  
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Figure 4.3. Response-conditional type 2 D’ as function of expectation and attention.  

Black lines indicate linear changes in D’ with expectation, independently of attention. 
A. Type 2 D’ for reports of target presence increases with expectation of presence B. 
Type 2 D’ for reports of target absence increases with expectation of absence. Error 
bars are with-subjects SEM. * p < .05 ** p < .01, *** p < .001. 

decreased from 75% (target absence improbable) to 25% (target absence 

probable), type 2 D’ increased (Figure 4.3B). This congruency effect supports 
our hypothesis that expectation improves metacognition. 

As well as a significant Report x Expectation interaction, there was a significant 

interaction between Report and Attention, F(1,18) = 5.61, p = .029, ηp
2

 = .238. 

This interaction was driven by the presence of a significant difference between 

D' for absent and present reports under diverted attention (M = 0.49, SE =  0.13 

and M = 1.20, SE =  0.19, respectively) , F(1,18) = 6.32, p = .022, η2= .260, but 

not under full attention (M = 0.75, SE =  0.11 and M = 0.92, SE = 0.16, 

respectively), F(1,18) = 0.84, p = .372, η2= .045. This unexpected result 

suggests that inattention impairs metacognition for unseen but not seen targets. 

The ANOVA did not reveal a significant main effect of Expectation on D’, 

F(2,36) = 0.64, p = .533, ηp
2

 = .034. This is unsurprising, because the influence 

of expectation is seen by comparing expectation-congruence relative to 

incongruence. There was also no significant main effect of Attention on type 2 

D’, F(1,18) = 0.01, p = .953, ηp
2

 = .001, and no significant  Report by Attention 

by Expectation interaction, F(1.60,28.81) = 0.11, p = .858, ηp
2

 = .006 (ԑ = .748, 
Huynh-Feldt corrected). 

In summary, these data under type 2 D' indicate that metacognitive 

performance improved when reports of target absence or presence were 

congruent with participants’ expectation (25% or 75% condition, respectively), 
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as compared to when they were incongruent (75% or 25% condition 
respectively).  

4.3.3 EXPECTATION LIBERALISES CONFIDENCE JUDGMENTS 

Given that expectation improved metacognitive performance, did expectations 

also increase subjective confidence? Type 2 confidence threshold can be 

interpreted as a proxy measure of the strength of the perceptual experience 

(Fleming & Lau, 2014). We therefore asked whether expectation-congruent 

reports were associated with higher confidence ratings than their incongruent 

counterparts. Such a result could be interpreted as expectations strengthening 
the associated perceptual experience. 

We tested this possibility by asking whether expectation and report interacted 

under confidence threshold C. Confidence threshold is analogous to type1 

decision threshold, signalling over-confidence when it is negative and under-

confidence when it is positive. Therefore, if expectation liberalises confidence 

judgments we would expect confidence thresholds for 'present' responses to 

liberalise with increased expectation of presence. Following an 'absent' 

response, we would expect confidence to liberalise with increasing expectation 
of target absence (i.e. decreasing expectation of target presence). 

To test this possibility we ran a repeated-measures Expectation (0.25, 0.5, 0.75) 

x Attention (full, diverted) x Report (present, absent) analysis of variance 

(ANOVA) on C. This revealed a significant three-way interaction, F(2,36) = 4.69, 

p = .015, ηp
2

 = .207, which was not found in the ANOVA on type 2 D’. We 

analysed this interaction by performing simple effects analyses separately for 

the full and diverted attention conditions. Under full attention, Report and 

Expectation significantly interacted, F(2,36) = 15.95, p < .001, ηp
2 = .470. The 

pattern was the same as that found under type 2 D’. With increasing probability 

of target presence, there was a linear decrease in type 2 C (more likely to report 

high confidence) when the target was reported as present, F(1,18) = 11.48, p = 

.002, (one-tailed) η2 = .272. However there was a linear increase in type 2 C 

(more likely to report low confidence) when the target was reported as absent, 
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F(1,18) = 25.29, p < .001 (one-tailed), η2= .584. Thus, expectations liberalise 
subjective confidence judgments under full attention.  

By contrast, under diverted attention there was neither a significant main effect 

of Expectation, F(1,18) = .339, ηp
2

 = .051, nor a significant interaction between 
Expectation and Report, F(2,36) = 2.84, p = .082, ηp

2
 = .136.  

The ANOVA under C, revealed no significant main effect of Attention, F(1,18) = 

0.83, p = .374, ηp
2

 = .044, and no significant interactions between Attention and 

Report, F(1,18) = 4.09, p = .058, ηp
2

 = .185, or Attention and Expectation 
F(1,18) = 0.83, p = .444,  ηp

2
 = .044. 

While type 2 C quantifies confidence relative to accuracy, the probability of 

correct and incorrect responses cannot be represented as Gaussian 

distributions over any transformation of the type 1 axis (Galvin et al., 2003). This 

means that we cannot determine whether expectations change the evidence 

needed to report decisions with high confidence, or whether confidence 

changes because of bias at the level of objective report. To address this point, 

confidence thresholds for ‘yes’ and ‘no’ reports over the type 1 axis were 

computed (see Chapter 3). These thresholds are placed over the type 1 

decision axis and reflect the evidence required to report decisions with high 

confidence. We divided each threshold by its respective d’ to account for 

differences in sensitivity when making confident versus guess decisions. We 

denote these normalised confidence thresholds for yes and no responses C1’+ 

and C1’- respectively. To determine the separation of each threshold from the 

type 1 decision threshold we took the log absolute distance between each of 

C1’+ and C1’- and c’ = c/d’. These values quantify the separation, in type 1 

evidence units, between the confidence threshold and decision threshold, and in 
turn reflect metacognitive bias.  

Metacognitive bias was subjected to an Expectation (0.25, 0.5, 0.75) x Attention 

(full, diverted) x Report (present, absent) analysis of variance which revealed a 

significant Expectation by Report interaction, F(2,36) = 4.93, p = .013, ηp
2

 = 
.215. As shown in figure 4.4, metacognitive bias for ‘yes’ responses linearly  
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Figure 4.4. Response-specific confidence thresholds C1’+ 
(red) and C1’- (blue) as a function of attention and 
expectation.  
Under full attention (left), the normalised log distance 
between the type 1 decision threshold and the confidence 
threshold for ‘yes’ responses (red) becomes smaller as target 
presence is increasingly probable. Simiarly, this distance 
becomes smaller for ‘no’ responses (blue) as target absence 
is increasingly probable. This effect of expectation is 
lessened under diverted attention.    

liberalised with expectation of presence, F(2,36) = 5.21, p = .010, ηp
2

 = .224, 

and for ‘no’ reports, marginally liberalised with increasing expectation of 

absence, F(2,36) = 2.84, p = .082, ηp
2

 = .136. There was a marginal three-way 

interaction (p = .079) such that, consistent with results under type 2 C, 

congruence shaped confidence under full attention (p = .010) but only 

marginally so under diverted attention (p = .063). Together, these results 

indicate that expectations biased confidence over and above effects on type 1 

decision, such that expected percepts may have required less evidence to be 
reported with high confidence.  

Summarising so far, metacognition improved for expectation-congruent 

perceptual decisions, independently of whether attention was focused on or 

diverted from the task. This effect was mirrored under confidence thresholds, 

but primarily under full attention. Under these conditions, the perceptual 
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experience associated with expectation-congruent decisions may be stronger 
than that for expectation-incongruent decisions.    

4.3.4 REPORT-EXPECTATION CONGRUENCY INCREASES META-D’. 

To assure the robustness of our findings under type 2 D’, we re-analysed the 

data using response-conditional meta-d’. As mentioned in section 2.5.2, given 

the type 2 performance observed, meta-d’ is the type 1 d’ that would be 

expected from the SDT-optimal observer who used all of the available type 1 

information. Meta-d’/d’ is therefore the proportion of type 1 information used in 

the type 2 decision. We expected to find the same pattern of results as those 

obtained under D’ – a Report by Expectation interaction whereby meta-d’/d’ 

increases with response-expectation congruency.  Only 1/19 of our participants 

fully met the criteria for assuring reliable meta-d’ estimates (for all 6 conditions, 

0.05 ≤ hr, far, HR+, FAR+, HR-, FAR- ≤ 0.95; see Barrett et al., 2013). We 

therefore retained participants who met these criteria in at least 3/6 conditions. 
This left us with 12 participants for the analysis. 

 

Figure 4.5. Meta-d’/d’ as function of expectation and type 1 

report.  

Significant interaction between expectation and report, where 
meta-d’/d’ increases with expectation-response congruence. 
Error bars are with-subjects SEM. * p < .05, ** p <  .01, *** p < 
.001. 
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As for the previous analyses, a repeated-measures Expectation (0.25, 0.5, 

0.75) x Attention (full, diverted) x Report (present, absent) analysis of variance 

(ANOVA) was conducted, but this time using meta-d’/d as the dependent 
variable.  

Consistent with our previous result, the analysis revealed a significant 

Expectation x Report interaction, F(2,22) = 8.75, p = .002, ηp
2

 = .443. A priori 

trend analyses revealed that following a ‘present’ response, meta-d’/d’ linearly 

increased with expectation of target presence, F(1,11) = 5.12, p = .022 (one-

tailed), η2
 =.318. Following an ‘absent’ response there was a significant 

decrease in meta-d’/d’ as the probability of target presence increased, F(1,11) = 

4.22, p = .032 (one-tailed), η2
 =.277. These patterns are illustrated in figure 4.5. 

We found no other significant main (all F < 2.37, all p > .15, all ηp
2

 < .29) or 

interaction (all F < 0.99, all p > .32, all ηp
2

 < .09) effects. This pattern of results 

held under slightly narrower and broader exclusion criteria (i.e. proportion of 
stable conditions).  

Summarising, report-expectation congruency improves metacognitive 

performance when measured by response-conditional meta-d’, as well as when 
measured by response-conditional D’.  

4.3.5 A TYPE 2, BAYESIAN SIGNAL DETECTION THEORETIC MODEL OF 

EXPECTATION AND TOP-DOWN ATTENTION 

To model the influence of top-down expectation on metacognitive sensitivity we 

extended standard signal detection theory (SDT) to incorporate prior 

expectations (Figure 4.6). In our model, the evidence is the internal variable X in 

SDT (the internal representation of Gabor contrast) and the expectation is the 

probability of Gabor patch presentation. The ‘signal’ and ‘noise’ distributions 

were reformulated as posterior distributions of the cases of target present and 

absent, given both the evidence X and the expectation. Therefore the primary 

effect of expectations is to change the internal representation of the stimulus 

(the probability distributions), which in turn will induce apparent shifts in type 1 
and 2 criteria.  
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Type 1 and 2 decision criteria (c and C) were formulated as distinct thresholds 

for the posterior ratio of probabilities of present (S=1) to absent (S=0). For 

probability p of stimulus present and evidence x, this ratio, which we denote by 
R, is given by 

𝑅 =
𝑃(𝑆 = 1|𝑥)
𝑃(𝑆 = 0|𝑥) =

𝑃 𝑥 𝑆 = 1 𝑃(𝑆 = 1)
𝑃 𝑥 𝑆 = 0 𝑃(𝑆 = 0) =

𝜑!!,!(𝑥)×𝑝
𝜑!,!(𝑥)×(1− 𝑝)

 

where 𝜑!,! is the probability density function of a normal distribution with mean µ 

and standard deviation s. Assuming the SDT model, this ratio monotonically 
increases with the evidence x.  

To model the effect of diverted attention we implemented the solution proposed 

by Rahnev et al. (2011), in which inattention increases the trial-by-trial internal 

noise. To assess whether this model could account for our data we computed 

the response-conditional type 2 D’s predicted by the model at varying, 

continuous levels of prior expectation of patch present. This was done 
separately for the full and diverted attention cases. 

Parameters were determined in the following way: Type 1 d’ was set to 2.39 and 

2.00 for the full and diverted attention conditions respectively, reflecting the 
mean empirical values we obtained.  

For each level of attention, the type 1 and 2 thresholds for R were based on the 

mean empirical type 1 and 2 hit and false alarm rates in the respective 50% 

expectation condition. For the full attention case, the obtained type 1 threshold 

was R =1.88, and the upper and lower type 2 thresholds were R = 4.27 and R = 
0.68 respectively.  

For the diverted attention case, these were respectively R = 2.52, R = 4.06 and 

R=0.86. For full details on obtaining type 1 and 2 decision thresholds from type 

1 and 2 hit and false alarm rates, see Barrett et al. (2013). Notice that, since 

contrast was increased in the experiment for diverted attention, the models for 

full and diverted attention were approximately the same; only the threshold 
values (R) differed slightly.  
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Figure 4.6. A Bayesian signal detection theoretic model of prior 

expectation.  

Each panel plots the posterior likelihood of a perceptual event against 
the evidence given distinct prior probabilities (P) of stimulus present. 
The blue curve represents the event of stimulus absence and the red 
curve, stimulus presence. Type 1 d' (the distance between the blue 
and red Gaussians) is held at 1. The curves are aligned so that 
criterion is unbiased when p = .50. The dashed lines show the 
decision (c) and confidence (τ+, τ -) thresholds. These are each 
determined by a fixed posterior likelihood ratio R for stimulus present 
to stimulus absent. These plots illustrate that detection, as well as 
confidence about detection, liberalises with increased prior 
expectation on Bayesian SDT. 

Figures 4.7A-D compare the predicted and empirical D’s across levels of report 

and attention. In agreement with the empirical data, predicted D’ for positive 

responses increased with prior expectation for target present (Figures 4.6A and 

4.6B), while D’ for negative responses, it decreased (Figures 4.6C and 4.6D). 

As was the case for the empirical results, this decrease demonstrates an 

increase in D’ with increased prior expectation for target absent. The model 

predicted slight attentional modulations of D’, which reflect numerical 
differences in empirical type 1 d’.  
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Figure 4.7. Modelling of empirical results.  

Solid lines represent stimulated results over continuous probabilities of 
target present. Dashed lines are the corresponding empirical results 
collected over 25, 50 and 75% of target presence. The top and bottom 
rows show results for reported present and absent trials, respectively. The 
leftward and rightward columns show results for full and diverted attention  

Simulated D’ values for ‘absent’ responses also took substantially higher values 

than those collected empirically. Moreover, simulated D’ was higher for absent 
than for present responses, whereas the reverse trend was found empirically. 

These two features persisted for variant models on which signal and noise 

distribution variances were unequal. They are likely attributable to asymmetries 

in the degradation of type 1 evidence available for metacognition, an 

investigation of which is beyond the scope of this chapter. In summary, our 

modelling analyses demonstrate that the observed dependencies of 

metacognitive performance on prior expectation are consistent with a signal-

detection theory model extended according to Bayesian principles to 
incorporate expectations as priors. 

4.3.6 EFFECT OF EXPECTATION ON A CONCURRENT VISUAL SEARCH TASK  

So far we have shown that expectations of Gabor presence or absence improve 

metacognition for the Gabor detection task. Given this, could expectations of 
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Gabor target presence or absence also facilitate perceptual decisions for the 

visual search task? The expectations induced by the paradigm pertained to the 

Gabor target, however the influence of these expectations may free perceptual 
and cognitive resources for other tasks. 

To address this question, we first asked whether expectation affects decisions 

made on the visual search task (i.e. T presence or absence). This was achieved 

by computing type 1 c for the visual search task as a function of expectation. 

Visual search data from the full attention condition could not be analysed 
because the required responses were not collected. 

A one-way Expectation (.25, .50, .75) repeated measures ANOVA under visual 

search criterion cvs revealed a significant effect of Expectation, F(2,36) = 6.17, p 

= .005, η2 = .255. However, rather than expectation of Gabor presence inducing 

a liberal criterion shift under the visual search task, as it did under the Gabor 

task, there was a significant quadratic trend, F(1,18) = 11.74, p = .003, η2 = 

.395. This trend was such that participants were more likely to report that a T 

was present (liberal shift) in the 50% condition (M = 0.19, SE = 0.09) than when 

they had a task-irrelevant prior expectation of Gabor presence or absence (25% 

and 75% conditions, M = 0.35, SE = 0.09, M  = 0.32, SE =  0.08, respectively). 

Therefore the task-irrelevant expectation of Gabor presence or absence did not 

bias participants towards reporting presence or absence on the visual search 

task. Rather, expectations induced a conservative shift in c relative to the 
neutral (50%) condition. 

Given that expectation of Gabor presence or absence biased decisions made in 

the visual search task, they may also have affected sensitivity. To test this, we 

calculated visual search d’ as a function of Gabor detection accuracy and 

expectation-Gabor response congruence. The factor Congruence was formed 

by grouping trials according to whether the response to the Gabor task (present 

or absent) was congruent or incongruent with the prior expectation (75%, where 

they expect presence, 50%, which is neutral, 25%, where they expect absence). 

This factor represents the influence of expectation on Gabor decision. If visual 
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search performance is modulated by the effect of expectation on the Gabor task 
then there should be an effect of this factor.  

A repeated-measures Gabor accuracy (correct, incorrect) x Gabor congruence 

(incongruent, neutral, congruent) ANOVA on visual search d’vs revealed a 

significant main effect of Gabor accuracy, F(1,18) = 4.80, p = .015, ηp
2

 =.288, 

whereby d’vs was higher following a correct (M = 1.72, SE =  0.16) than an 

incorrect (M = 1.31, SE =  0.18) response on the Gabor detection task. 

Therefore high perceptual sensitivity for the Gabor was associated with high 

perceptual sensitivity for the visual search task as well. The ANOVA also 

revealed a marginally significant interaction between accuracy and congruence, 

F(2,36) = 2.95, p = .065, ηp
2

 =.141. Post-hoc trend analyses revealed that d’vs 

linearly increased with expectation-Gabor response congruence following a 

correct response on the Gabor task, F(1,18) = 4.49, p = .048, η2
 =.200 and 

linearly decreased with congruency following an incorrect Gabor response, 

F(1,18) = 5.27, p = .034, η2
 =.226. This result suggests that visual search 

sensitivity improved when the (Gabor) expectation had been valid (i.e. met in 

the stimulus-conditional sense). This follows from the observation that the 

expectation was only valid in trials where correct and congruent or incorrect and 

incongruent responses were made. To illustrate, in the 25% condition, correct 

responses were correct rejections (congruent, valid expectation) or hits 

(incongruent, invalid expectation). The former was associated with a higher d’vs 

than the latter. Incorrect responses were misses (congruent, invalid expectation) 

or false alarms (incongruent, valid expectation). Here, the latter was associated 

with a higher d’vs than the former. Thus perceptual sensitivity for the attended 

task was facilitated by valid (task-irrelevant) expectations for the unattended 
task.  

4.4 DISCUSSION 

In this paper we have shown that the facilitatory effects of prior expectation on 

perceptual decision also manifest their influence in metacognitive judgments. 

We developed a target detection paradigm in which the probability of target 

presence was manipulated block-wise. This probability, of which participants 
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were informed, significantly biased decision thresholds in the expectation-

congruent direction, while leaving sensitivity d’ unaffected (as ensured by our 

staircase procedure). In this way we avoided confounding increased type 2 

sensitivity with increased type 1 sensitivity (Lau & Passingham, 2006), and were 

able to assess metacognition, indexed by both type 2 D’ and meta-d’, as a 

function of perceptual decision and prior expectation. Our main finding was that 

metacognitive sensitivity increased for expectation-congruent as compared to 

expectation-incongruent perceptual decisions. Metacognitive sensitivity is 

determined according to the trial-by-trial correspondence between confidence 

and accuracy. Importantly, because we offered no trial-by-trial information about 

the probability of target occurrence, our results cannot be attributed to a trivial 

relationship between an expectancy cue and the subsequent report. Rather, we 

found a shift in type 1 threshold with expectation, and a liberalisation of type 2 

threshold following an expectation-congruent response to an attended target. 

This suggests that basing decisions on prior expectations induced a superior 
placement of type 1 and 2 thresholds for metacognition.  

Our effect of expectation on confidence required attention, consistent with some 

previous work in type 1 tasks (Chennu et al., 2013; Hsu et al., 2014; Jiang et al., 

2013; but also see. Kok, Jehee, & de Lange, 2012). However, attention was not 

required for expectations to shape metacognitive accuracy, and showed no 

main effect on metacognition either (though under diverted attention, 

metacognition differed as a function of report). Though perhaps counter-

intuitive, this invariance of metacognition to attention is broadly consistent with 

recent work showing that metacognition is preserved for visual sensory 

memory, which does not require attention (Vandenbroucke et al., 2014). It is 

also consistent with research demonstrating above-chance metacognitive 
accuracy for unattended and unseen target stimuli (Kanai et al., 2010). 

4.4.1 MEASURING METACOGNITION 

To assess how metacognition is affected by expectation we used the type 2 

signal detection theory (SDT) measure D'. However, the type 2 SDT model 

underlying D’ assumes that the probability of making a correct or an incorrect 
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response can be modelled as Gaussian distributions over a type 2 decision 

axis. This formulation is problematic because such distributions are usually 

impossible to achieve (Evans & Azzopardi, 2007; Galvin et al., 2003). This issue 

means that D' will not be invariant to type 1 or type 2 criterion shifts (Barrett et 

al., 2013; Evans & Azzopardi, 2007).  In the present study, expectation induced 

both type 1 and type 2 criterion shifts. As a result, we cannot distinguish 

between two possible reasons for why D' may have increased for expectation-

congruent responses. One possibility is that expectation increased the quantity 

of information available for the type 2 judgment (metacognitive efficacy, Fleming 

& Lau, 2014). Alternatively, the increase in D' could have been driven by a 
change in criteria placement that indirectly optimised metacognitive sensitivity.  

We have modelled and interpreted the results in terms of the latter. Specifically, 

our model predicts that expectations change the evidence distributions and the 

criteria shift along the decision axis accordingly. The liberalisation of confidence 

threshold by expectation, though a source of bias in the numerical value D' will 

take, can be interpreted as reflecting the strength of the perceptual experience 

(Fleming & Lau, 2014). Therefore rather than being unequivocally problematic, 
type 2 criteria shifts speak to subjective components of perception. 

Our finding that expectation increased D' was replicated using the measure 

meta-d' (see section 4.3.5.2. Barrett et al., 2013; Maniscalco & Lau, 2012). 

Meta-d’ is robust to changes in type 1 and 2 criteria, however response-

conditional meta-d’ – as required by the analyses presented in this paper - is 

not (Barrett et al., 2013). The invariance is lost because meta-d’ measures 

remove bias by taking a weighted average of the (biased) response-conditional 

measures. Therefore while we replicated our effect using meta-d', we remain 

unable to ascertain whether expectation improves metacognitive efficacy or not. 

Nevertheless, our results under type 2 D’ and meta-d’ together provide 
converging evidence for the facilitatory effect of expectation on metacognition.  
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4.4.2 MODELLING METACOGNITION 

 The framework of SDT applied to visual perception emphasises the importance 

of ‘bottom-up’ processing, whereby afferent sensory signals are repeatedly 

transformed to generate perceptual decisions at both objective (type 1) and 

subjective (type 2) levels. However, our data add to an increasing body of work 

which has demonstrated the importance of top-down processes in shaping 

perceptual decisions (Bar et al., 2006; Gilbert & Li, 2013; Wacongne et al., 

2011). Together, these data pose a challenge to bottom-up models of 
perception and are difficult to reconcile with standard expressions of SDT.  

To formally account for these top-down effects within SDT, we developed a type 

2 Bayesian signal detection model which models prior expectations by defining 

decision threshold as the posterior odds of a target being present. This model 

successfully predicted an increase in type 2 D’ following expectation-congruent 

responses. Diverted attention was modelled by increasing internal noise - as 

recently proposed by Rahnev et al. (2011). This successfully predicted that the 
influence of expectation on D' would be independent of attention. 

We recognise that our model did not capture all aspects of the observed data. In 

particular, the model predicted an improvement in metacognition following a 

“no” response, but this was not found empirically. This discrepancy is likely to 

have arisen from influences on metacognition that were not included in our 

model, such as the incorporation of additional sources of information relevant to 

perceptual decision. Nonetheless, by accounting for the main effects of (top-

down) prior expectations on D’, we have demonstrated the scope for formal 

synthesis between the traditionally ‘bottom-up’ signal detection theory and ‘top-

down’ influences characteristic of alternative frameworks like ‘predictive coding’ 

or the Bayesian brain (Beck et al., 2009; Clark, 2013; Friston, 2009; Hohwy, 
2013; Lee & Mumford, 2003). 

4.4.3 FROM SDT TO THE BAYESIAN BRAIN 

The increasingly influential predictive coding framework views the brain as a 

Bayesian hypothesis-tester, and explains perceptual decision as an inference 
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about the most likely cause of incoming sensory input (Clark, 2013; Rao & 

Ballard, 1999; Seth, 2014a). In this view, top-down expectations constrain 

perceptual decision according to the prior likelihood of that decision. The 

sensory input remaining unexplained is termed prediction error, and only this 

percolates upwards in the sensory hierarchy (Friston, 2010; Rao & Ballard, 

2004; Spratling, 2008). The eventual perceptual choice will be the perceptual 

hypothesis with the highest posterior probability. This framework fits comfortably 

with our novel finding that under dual-task conditions, sensitivity for the attended 

(visual search) task was increased when participants held valid expectations 

pertaining to the unattended (Gabor) task: when prior expectations facilitate 

decision for the unattended Gabor task, additional processing resources should 
be available for the attended visual search task (Hohwy, 2012).  

Certain predictive coding formulations also explicitly model the importance of 

the reliability (or 'precision') of the bottom-up signal to perception (e.g. Feldman 

& Friston, 2010). In this paper we have shown that expectations liberalised 

subjective confidence judgments for attended (i.e. high precision) targets. 

Previous work has shown that confidence judgments are a function of both 

sensory evidence and internal noise (Kepecs, Uchida, Zariwala, & Mainen, 

2008; Yeung & Summerfield, 2012; Zylberberg et al., 2012, 2014). This 

relationship has been likened to a p-value, which quantifies the evidence for a 

hypothesis (mean) and scales with the reliability of that evidence (standard 

error; Kepecs & Mainen, 2012). In fact, such a formulation of confidence is 

highly compatible with predictive coding. Bringing these together, decisional 

confidence could be explained in predictive coding terms, where the mean is the 

posterior probability of a perceptual hypothesis, and the standard error is the 

precision of the evidence (Feldman & Friston, 2010). Such a conceptualisation 

of confidence would explain the congruency-attention interaction found in this 

paper. It is also consistent with work demonstrating that confidence evolves 

together with the decision variable (De Martino et al., 2013; Fetsch et al., 2014; 
Kepecs et al., 2008).  
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The above account may explain the construction of confidence judgments within 

a single level of the perceptual hierarchy. However, successful metacognitive 

evaluations and the subjective aspect of decisional confidence may be a 

function of uncertainty estimates over multiple hierarchical levels. We leave the 

theoretical and neural underpinnings of how expectation modulates 
metacognition open to future research.    

4.5 CONCLUSIONS 

In summary, we show for the first time that top-down prior expectations can 

influence metacognition for perceptual decision, illustrating the action of priors 

on complex cognitive functions. Specifically, we found that perceptual decisions 

which are congruent with valid perceptual expectations lead to increased 

metacognitive sensitivity, independently of attentional allocation. This finding 

motivated the development of an extended Bayesian signal detection theoretic 

model that incorporates top-down prior expectations, and moreover, formally 

integrates two previously distinct frameworks for perceptual decision: (top-

down) predictive coding and (bottom-up) signal detection theory. Finally, 

measures of metacognition are often used as an indirect measure of awareness 

(Kanai et al., 2010; Kunimoto et al., 2001; Seth et al., 2008). Therefore, by 

demonstrating increased metacognitive sensitivity for expected perceptual 

events, we provide evidence for the existence of a mechanism, based on prior 

expectations, that underpins metacognitive sensitivity and contributes to our 
understanding of the brain basis of visual awareness.  
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5 
RHYTHMIC INFLUENCE OF PRIORS IN THE 

PHASE OF ONGOING OCCIPITAL ALPHA 

OSCILLATIONS 
 

Prior expectations have a powerful influence on perception, biasing both 

decision and confidence. However, how this occurs at the neural level remains 

unclear. It has been suggested that spontaneous alpha-band neural oscillations 

represent rhythms of the perceptual system that periodically modulate 

perceptual judgements. We hypothesised that these oscillations instantiate the 

effects of expectations. While collecting scalp EEG, participants performed a 

detection task that orthogonally manipulated perceptual expectations and 

attention. Trial-by-trial retrospective confidence judgements were also collected. 

Results showed that independently of attention, pre-stimulus occipital alpha 

phase predicted the weighting of expectations on yes/no decisions. Moreover, 

phase predicted the influence of expectations on confidence. Thus, 

expectations periodically bias objective and subjective perceptual decision-

making together, prior to stimulus onset. Our results suggest that alpha-band 

neural oscillations periodically transmit prior evidence to visual cortex, changing 

the baseline from which evidence accumulation begins. In turn, our results 
inform accounts of how expectations shape early visual processing. 
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5.1 INTRODUCTION 

Perception is subject to powerful top-down influences. For example, a highly 

ambiguous figure can be easily identified following brief priming of object 

identity (Porter, 1954). Many believe that the feed-forward sensory input is 

shaped by feedback or recurrent connections from high-level cortical areas to 

lower-level regions (Gilbert & Li, 2013; Gilbert & Sigman, 2007; Lee, 2002) 

following a first pass up the sensory hierarchy (Bar, 2003). However, the 

neuronal mechanisms that integrate top-down and bottom-up signals remain 
largely unknown (Bar, 2003) 

Top-down influences, including priming, context effects and prior exposure, can 

be parsimoniously construed as a process that biases perceptual inference 

towards a plausible solution. In line with this, there has been renewed interest in 

framing top-down influences in terms of probabilistic prior beliefs, or 

'expectations' (Summerfield & de Lange, 2014) which, behaviorally, bias 

perceptual choice (see Chapter 4, or de Lange et al. 2013). It is suggested that 

expectations are represented in high-level cortical regions prior to the 

perceptual event, and entrain task-relevant neurons at lower levels to increase 

sensitivity (Engel et al., 2001). Spontaneous neural oscillations are therefore a 

promising candidate mechanism for how expectations shape perception.   

Oscillations in the alpha range are particularly relevant when considering how 

expectations influence perception. Theoretical models have associated top-

down processes with oscillations in the 8 to 14Hz range (Bastos et al., 2012; 

Friston, Bastos, Pinotsis, & Litvak, 2014) and recent neurophysiological findings 

suggest that occipital alpha oscillations primarily propagate in a top-down 

fashion (van Kerkoerle et al., 2014), supporting the notion that alpha power is 

intimately related to top-down control (Klimesch et al., 2007; Mathewson et al., 

2012; Palva & Palva, 2007). Recent work has revealed that the phase (in 

addition to power) of pre-stimulus alpha oscillations also predicts various 

components of perception. These include spatial attention (Busch & VanRullen, 

2010), saccadic reaction speed (Drewes & VanRullen, 2011), and perceptual 

awareness ratings (Mathewson, Gratton, Fabiani, Beck, & Ro, 2009). This has 
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been interpreted as reflecting cycles in the 'preparedness' of the perceptual 

system (Vanrullen, Busch, Drewes, & Dubois, 2011).  In Bayesian terms, prior 

beliefs (i.e. expectations) are available before stimulus onset. Accordingly, we 

hypothesised that this ‘preparedness’ should be modulated by expectations: 

anticipating a perceptual event should bias perceptual inference towards that 

event. This was tested by asking whether the extent to which decisions are 
biased by expectation oscillates with pre-stimulus occipital alpha phase.  

Perceptual decisions are additionally accompanied by a subjective degree of 

confidence, which represents belief in one’s decision accuracy and may arise 

from uncertainty about external (i.e. sensory) or internal noise. Recent work has 

shown that the decision variable and decision confidence may be encoded 

together (Kiani & Shadlen, 2009), and arise from the same sensory evidence 

(Fetsch, Kiani, Newsome, & Shadlen, 2014). In addition to expectations biasing 

decision, expected perceptual events are associated with greater subjective 

confidence (see Chapter 4). Following these findings, we additionally 

hypothesised that pre-stimulus alpha phase would predict the influence of 
perceptual priors on confidence.  

These two hypotheses were tested by adopting a dual-task Gabor detection 

paradigm which manipulated prior expectations while controlling for the (often 

conflated) influence of attention (Feldman and Friston 2010; Summerfield and 

Egner 2009). Prior expectations of target presence or absence were induced by 

manipulating (block-wise) the probability of Gabor appearance, presented at a 

contrast that yielded 70% accuracy. The probability was either 25%, such that 

absence was expected, or 75%, such that presence was expected. A 

concurrent visual search task diverted attention from the Gabor task in half of 

the blocks. Critically, the visual search array and Gabor were presented 

simultaneously following a jittered inter-stimulus interval (ISI; figure 5.1). This 

allowed us to time-lock our EEG analysis to both Gabor present and Gabor 

absent trials, and compute independent measures of decision threshold (bias) 
and detection sensitivity as a function of condition and pre-stimulus EEG phase.  
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Our first hypothesis was that pre-stimulus alpha phase would predict the extent 

to which decision threshold is biased by expectation. This would be shown if (1) 

decision threshold oscillates with pre-stimulus phase and (2) there is some 

phase angle that predicts ‘yes’ responses when expecting target presence (the 

75% condition) while predicting ‘no’ responses when expecting target absence 
(the 25% condition). 

Our second hypothesis was that pre-stimulus alpha phase would also predict 

expectancy effects on subjective confidence. This would be shown if (1) 

confidence oscillates with pre-stimulus phase and (2) the same phase that 

predicts high confidence when expectations are met will predict low confidence 
when expectations are violated. 

5.2 METHODS 

5.2.1 PARTICIPANTS 

Participants were 20 English-speaking subjects (13 female) aged between 20 

and 32 years (M = 25.6 SD = 3.3) with normal or corrected-to-normal vision. 

One participant’s data were excluded from analysis for being excessively noisy, 

and a second for having too few trials (<500 vs. mean of 1,100). This was due 

to excessively slow responding. This left 18 participants’ data for analysis. All 

participants gave informed, written consent and were reimbursed at 

£10.30/hour. On average, each session lasted 2.5 hours and two sessions were 

completed 24 hours apart. Ethical approval was awarded by the University of 

Sussex ethics committee (C-REC). 

5.2.2 STIMULI AND DESIGN 

The experiment was presented on a 21-inch CRT monitor (100Hz, 1048 x 700 

resolution) using Psychtoolbox for Matlab. The experiment was composed of 

two concurrent tasks: detection of a peripheral Gabor patch and a visual search 
task in the center of the screen (figure 5.1).  
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Figure 5.1. Trial sequence. 

Before the first trial of a block participants are informed of the experimental 
condition they are in. “25%” means that the participant is in the 25% of 
Gabor presence condition and “ignore letters” means that the participant 
should ignore the visual search array (i.e., they are in the full attention 
condition). During the trial, a target Gabor is either present (top) or absent 
(bottom). Similarly, a visual search target T is either present (bottom) or 
absent (top). Response prompt followed the offset of the masking array. 

Trials began with the onset of a white fixation cross. After a jittered inter-

stimulus interval (ISI; 1000 to 1500ms) the visual search array appeared. This 

consisted of four rotated (random orientation of 0° to 359°) white, capitalised 

letters arranged around fixation (1.43° x 1.43°) at 0°, 90°, 180° and 270°. On 

50% of trials the visual search target was absent and all letters were 'L's. On the 

other 50%, a target ‘T’ replaced one randomly designated ‘L’. To ensure that the 

task was sufficiently difficult to divert attention from the Gabor task, this array 

was backwards masked by an array of 'F's. The stimulus onset asynchrony 

(SOA) between the visual search and masking array was titrated for each 

individual to equated detection performance to 78% across participants (see 
Staircases).  

On Gabor ‘target present’ trials, a peripheral (3.85° x 4.10° visual angle) Gabor 

patch (SD 0.89°, sf 0.08c/°, phase 45°) was presented in the lower-right 

quadrant of the screen. On these trials the Gabor and the visual search array 

appeared simultaneously. The Gabor was presented for 10ms at the contrast 
resulting in a 70% hit rate (see Staircases). 

Following the offset of the visual search array a series of response prompts 

appeared. Using a key-press, participants made un-speeded judgments of first, 
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Gabor presence or absence, second, confidence that they were correct on an 

interval scale from 1(no confidence) to 4 (total confidence), and finally, the 

presence or absence of a ‘T’ in the visual search array. 

The experiment had four conditions, constructed in a blocked attention (full, 

diverted) by expectation (expect Gabor presence, expect Gabor absence) 

design. Under full attention participants fixated centrally but did not perform the 

visual search task, thereby allocating full attention to Gabor detection (visual 

search responses were not requested). Under diverted attention participants 

performed both tasks, prioritising visual search. Expectation was manipulated 

by informing participants of the true probability of Gabor presence (as well as 

the attention condition) before each block began. This was either 25% (expect 

absence) or 75% (expect presence). After each experimental trial a condition-

specific 2 down 1 up staircase titrated the contrast of the Gabor to maintain a 

consistent hit rate during the long experimental sessions. Expectation-specific 

staircases controlled for potentially greater levels of sensory adaptation to the 
Gabor in the 75% condition. 

Each block consisted of 12 trials from one of the conditions and blocks were 

completed in sets of 8 (2 of each condition, 96 trials). Blocks were fully 

counterbalanced.  Participants completed as many blocks as possible in each 

testing period (always equal numbers of each condition; 6 to 18 runs of each 

condition per session, M = 11.5). Across participants there was considerable 

variation in total trials completed due to the cumulative effect of reaction time 
differences.  

After explaining the task to participants they completed a set of practice trials. 

Next, they completed three staircase procedures (see Staircases) and finally, 

the experimental trials. Participants were encouraged to take regular breaks and 
were offered to leave the session early if they became too tired to continue. 

5.2.3 STAIRCASES 

Following a set of practice trials, participants completed 3 interleaved 2 down 1 

up psychophysical adaptive staircase procedures with 8 reversals in order to 
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equate task difficulty across conditions and participants. The visual display was 

always the same as that in the experimental trials but the instructions and 

response prompts differed. In the first staircase participants performed Gabor 

detection while ignoring the visual search array (full attention). Only Gabor 

present/absent responses were collected. Gabor contrast was titrated to 

achieve a 70% hit rate (contrast cannot be titrated in target absent trials) under 

full attention. In the second staircase (3 down 1 up) the Gabor was ignored and 

participants performed only visual search. Here, only responses to the visual 

search target were collected (T present/absent). The SOA between the visual 

search array and the masking array was titrated to achieve 78% accuracy in the 

visual search task. In the third staircase participants performed both Gabor 

detection and visual search simultaneously, prioritising visual search and 

reported both Gabor presence/absence and T presence/absence. Here, Gabor 

contrast was titrated to achieve a 70% hit rate under diverted attention. The 

SOA for the visual search display was set to that determined by the second 
staircase. Confidence judgements were not collected during the staircases. 

5.2.4 EEG ACQUISITION 

 EEG data were collected on an ANT system at a sample rate of 2048 Hz with 

no online filtering. Activity was measured continuously from 62 active electrode 

channels arranged according to the 10/20 system over the scalp. The ground 

electrode was placed on the forehead and data were averaged across the 

whole head online. Impedances were kept below 7 kΩ throughout the 

experimental session. Participants sat in an electrically shielded faraday cage 

with an external monitor viewed through shielding glass. Their head was 
stabilised with a chin rest. 

5.2.5 EEG PRE-PROCESSING 

EEG data were pre-processed using the EEGLAB toolbox for Matlab. During 

pre-processing EEG recordings were down-sampled to 256 Hz and high-pass 

(0.1Hz) filtered with a finite impulse response filter (EEGlab function ‘eegfilt’).  

EEG data were visually inspected for excessively noisy channels, which were 
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manually interpolated with their two neighbors on a block-wise basis. No 

participant required more than three channels interpolated (5 participants in 

total). No interpolated channels were included in analyses presented in this 

paper. After interpolation data were referenced to participants' average signal. 

Data were epoched from 1000ms before visual search array (and Gabor target, 

if present) onset to 500 ms after. Manual artifact rejection was performed on 

saccade, eye-blink and excessively noisy trials (5% of trials removed on 

average). For each participant, each electrode and each trial we computed the 

time-frequency wavelet decomposition of the EEG data. Window lengths of 1 

oscillatory cycle at low frequencies (starting at 2Hz) were used. This length 

linearly increased with frequency band to a maximum of 15 cycles at 50Hz. This 

decomposition method generated wavelet coefficients for 49 log-spaced 
frequencies and 242 time points.  

5.2.6 ANALYSIS 

5.2.6.1 EEG: ELECTRODE REGION OF INTEREST. 

We had an a priori hypothesis that top-down influences of prior expectation 

would be observable over occipital regions. Initial analyses were therefore 

restricted to the occipital electrodes O1, Oz and O2.  Because phase at some 

time-frequency point will differ across electrodes, analyses were further 

restricted to one electrode per participant and session. To control for differences 

in electrode placement, electrode ROIs (eROIs) were determined on a 

participant-by-participant and session-by-session basis according to their 

sensitivity to the Gabor detection task. The grand-averaged ERP indicated a 

negative deflection following hits relative to misses in the 75-200ms range. 

Each participant’s session-specific eROI was therefore chosen as the occipital 

electrode (i.e. O1, Oz or O2) that showed the greatest event-related potential 

(ERP) amplitude, as defined below. To compute the ERPs a 200ms pre-

stimulus baseline was subtracted from each epoch. Epochs in which hits 

(respectively, misses) were made were averaged together. For each response 

type (hit or miss) we obtained the maximal local peak amplitude (LPA) in the 

75ms-200ms period. LPA is defined as the greatest amplitude within a range of 
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time points such that this peak is greater than the average amplitude of the 

surrounding 7 time points (Luck, 2005). This method minimises the chance of 

selecting spurious spikes. The eROI for each participant was chosen as the 

occipital electrode that showed the greatest value for LPAhit – LPAmiss. 
Subsequent analyses on phase were restricted to these eROIs. 

5.2.6.2 EEG: PHASE OPPOSITION ANALYSIS.  

Next, we sought to determine if, for our eROI, spontaneous EEG phase differed 

at any time point and in any frequency band between 'reported present' (yes) 

and 'reported absent' (no) trials. This was done in order to isolate candidate 

time-frequency regions in which expectation might interact with the influence of 

EEG phase. The relationship between phase and response was quantified with 

the measure phase opposition (Vanrullen et al., 2011), which is defined as the 

mean of phase locking values (PLV) for yes and for no responses. Phase 

locking value measures the extent to which phase angle at some time-

frequency point over one electrode is predicted by either (A) phase at the same 

time-frequency point over another electrode or (B) a behavioural response (as 

in the present paper). Here, we used PLV as a measure of the relationship 

between ongoing phase and response. Because yes and no responses 

encompass all possible responses and because stimulus onset is unpredictable 

(randomised ISIs), the joint PLV across all trials is expected to be small (no 

different from chance). However, if EEG phases for a given behavioural 

response are clustered about some angle (necessarily different for yes vs. no) 

then the individual PLVs for both yes and no responses, and therefore the 

resulting phase-opposition value, will be high (up to 1 for perfect phase-

opposition; see Vanrullen, Busch, Drewes, & Dubois, 2011 for additional 

details). High (and statistically significant) values indicate that phase predicts a 

yes versus a no response. For a set of n trials where response R is given and 

where C(R) is the complex coefficients of the wavelet transform, PLVR and 
phase opposition PO for responses R1 and R2 are defined as follows: 

𝑃𝐿𝑉! =  
1
𝑛

𝐶 𝑅
𝐶 𝑅

!

                        𝑃𝑂!!,!! =  
𝑃𝐿𝑉!! +  𝑃𝐿𝑉!!  

2  
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This measure PO is similar to the phase bifurcation index (PBI; Busch, Dubois, 

& VanRullen, 2009). PBI is defined as (PLVR1 -PLVALL) X (PLVR2 - PLVALL), that 

is, the baseline-corrected product of phase locking values for response 1 and 

for response 2. We preferred the additive measure PO, because PBI can give 

unreliable results when taking the product over very small values. Moreover, 

because PO is additive it is robust to differences in trial counts between 'yes' 

and 'no' trials: any baseline correction applied to empirical PO values would be 
equally applied to bootstrapped PO values and cancel out. 

PO between yes and no responses was separately calculated for each level of 

attention and expectation. Separate calculation of PO for each level of 

expectation was necessary because we hypothesised that the phases 

predicting ‘yes’ (respectively, ‘no’) would differ as a function of expectation. The 

four PO time-frequency maps corresponding to each experimental condition 
were averaged together. 

At each time-frequency point, PO statistical significance was assessed by 

estimating the mean and standard deviation of the null distribution from 8000 

bootstrapped samples per participant. To obtain bootstrapped samples, 

responses were pseudo-randomly assigned to trials such that the number of 

yes and no responses stayed the same. PO was then recalculated. This method 

removed any relationship between the EEG signal and behaviour. Z-scores and 

p values were computed by comparing empirical PO values to the mean and 

standard deviation of the bootstrapped values. P values were false discovery 

rate (FDR) corrected for multiple comparisons over all frequencies and all pre-
stimulus time-points.  

 5.2.6.3 EEG: PHASE MODULATION OF PERCEPTUAL DECISION 

The time-frequency representation of phase opposition values revealed that 

phase is related to the subjects’ response (see above and fig. 5.3B). However, 

we did not know (and aimed to determine) whether the “optimal” phase for a yes 

response is comparable for the different expectation conditions.  To determine 

whether the influence of expectation on decision is predicted by pre-stimulus 
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phase in some frequency band, a follow-up analysis was run in which the data 

were restricted to a time-frequency region of interest. The time-frequency ROI 

was taken as the point of maximal phase opposition (PO) significance. Critically, 

there was no circularity in this analysis because PO values had been collapsed 
across levels of expectation.  

For each participant, each condition and each trial, the phase at the time-

frequency ROI was binned into one of 6 phase bins. For each bin we then 

computed within-subject signal detection theoretic (SDT) outcome variables d' 

(sensitivity), c (decision threshold/bias) confidence (percentage of trials reported 

with high confidence). This provided values of each SDT outcome as a function 

of condition and phase bin. Using 6 bins enabled a sufficient number of trials for 
SDT estimates to be reliable.  

 5.2.6.4 SIGNAL DETECTION THEORETIC (SDT) OUTCOMES.  

To obtain separate measures of detection sensitivity and decision bias, we used 

signal detection theory (SDT, see Chapter 3). For each experimental condition, 

trials were categorised into hits, misses, false alarms and correct rejections. Hit 
rate and false alarm rate are then defined as:  

𝐻𝑖𝑡 𝑟𝑎𝑡𝑒 =  
ℎ𝑖𝑡𝑠

ℎ𝑖𝑡𝑠 +𝑚𝑖𝑠𝑠𝑒𝑠 ,

𝐹𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚 𝑟𝑎𝑡𝑒 =  
𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠

𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠 + 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑟𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠 

 From these quantities, detection sensitivity for the Gabor target, d’, and 
decision threshold c are given by: 

𝑑! =  𝑍 𝐻𝑖𝑡 𝑟𝑎𝑡𝑒 − 𝑍 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚 𝑟𝑎𝑡𝑒 ,     𝑐 =  −  ! !"# !"#$ !!(!"#$% !"!#$ !"#$)
!

  

where Z is the inverse normal cumulative distribution function. Note that for 

decision threshold c, positive values represent a conservative bias (more likely 

to report Gabor absence) and negative values represent a liberal bias (more 
likely to report Gabor presence).  
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In computing these measures we used the log-linear rule, which adds 0.5 to the 

total number of hits, misses, false alarms and correct rejections. This ensures 

SDT outcome variables can be computed for all conditions and phase bins, and 
also acts as a Bayesian prior on a d’ of zero. 

5.2.6.5 CONFIDENCE.  

Confidence ratings were collected on a four-point scale. To account for 

individual differences in how the scale was used (mean confidence: 2.92, range: 

2.34 - 3.47) we collapsed ratings onto a binary scale. This was achieved by 

calculating each participant's mean confidence across all conditions then 

categorising each rating as high (greater than the mean) or low (lower than the 

mean). Note that we did not use a median split because here, the median is 
always an integer. 

 5.2.6.6 STATISTICAL ANALYSES 

Data were collected over two experimental sessions and collapsed across them. 

Session number did not significantly interact with any other factors under any 

behavioral dependent variable. For each participant reported confidence was 

collapsed onto a binary scale using a mean split (median split of a four-point 

integer response scale cannot be formed). Analyses were conducted using 

Matlab, CircStat toolbox for Matlab (Berens, 2009) for circular statistics, and 

SPSS. Where appropriate, p values were FDR (false discovery rate) corrected. 

Circular statistics were corrected for the binning of phase angles where 

appropriate. Unless otherwise specified, data subjected to within-subjects 
ANOVAs met the assumption of sphericity. 

5.3 RESULTS 

5.3.1 EXPECTATION AND ATTENTION SEPARATELY INFLUENCE CONTRAST 

SENSITIVITY 

To determine the success of our attention manipulation we asked whether 

diverting attention with the visual search task decreased contrast sensitivity (as 
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determined by the psychophysical staircases). Mean Gabor contrast was 

subjected to an Attention (full, diverted) x Expectation (25%, 75%) repeated-

measures ANOVA. This revealed a significant main effect of Attention, F(1,17) = 

22.60, p < .001, ηp
2

 = .57, such that contrast sensitivity was significantly greater 

(i.e. contrast threshold decreased) in the full (19.8%±1.2%) than diverted 

(25.7%±1.3%) attention condition. Our manipulation of attention was therefore 

successful. The ANOVA also revealed a significant main effect of Expectation, 

F(1,17) = 8.50, p= .010, ηp
2

 = .33, whereby contrast sensitivity was significantly 

greater in the 75% (22.3%±1.1%) than the 25% (23.3%±1.1%) condition. This is 

likely to be an outcome of more Gabor exposure in the 75% than the 25% 

condition, which was controlled by implementing running staircases during the 

experimental phase (see Staircases). The interaction between Attention and 

Expectation was not significant F(1,17) = 1.26, p = .278, ηp
2

 = .07. Results are 
represented in fig. 5.2A. 

5.3.2 EXPECTATIONS BIAS DECISION AND INCREASE SUBJECTIVE CONFIDENCE 

The main behavioral analyses presented here used Signal Detection theory (for 

details, see Methods). To ensure that our expectation manipulation successfully 

biased choice, decision threshold c was calculated as a function of condition. 

Here, c > 0 represents a conservative bias (i.e. towards reporting ‘no’) whereas 

c < 0 represents a liberal bias (i.e. towards reporting ‘yes’). An Attention (full, 

diverted) x Expectation (25%, 75%) repeated-measures ANOVA revealed that c 

was significantly affected by Expectation, F(1,17) = 70.33, p < .001, ηp
2

 = .80. 

As predicted, c was significantly more conservative in the 25% than the 75% 

condition (Mdiff = 0.21±0.03, figure 5.2B), meaning that decisions were more 

biased towards absence in the ‘expect absent’ (25%) than the ‘expect present’ 

(75%) condition. There was neither a significant main effect of Attention, F(1,17) 

= 0.01, p = .952, ηp
2

 < .01 nor a significant interaction between factors, F(1,17) 
= 1.45 p = .244, ηp

2
 = .08. 

To determine whether detection sensitivity had been successfully equated 

across conditions an Attention x Expectation repeated-measures ANOVA under 
detection sensitivity d’ was run. This revealed a significant main effect of  
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Figure 5.2. Behavioural results. 

 A Mean contrast at which the Gabor was presented over the course of the 
experiment in each condition. Significant main effects of both attention and 
expectation. B. Effects of attention and expectation on decision threshold c. 
Independently of attention, decision threshold in the 25% condition is significantly 
more biased towards ‘no’ responses than in the 75% condition. C. Effects of attention 
and expectation-report congruence on confidence. Congruent responses are reports 
of presence/absence in the 75%/25% condition, and vice versa for incongruent 
responses. Confidence is higher for congruent than incongruent reports in both 
attention conditions, but the effect of congruence is greater under full attention.  The 
main effects of both attention and congruence are also significant. D. Effects of 
accuracy and expectation-report congruence on confidence. Confidence is higher for 
congruent than incongruent reports for both correct and incorrect responses, but the 
effect of congruence is greater in the incorrect case.  The main effects of both 
accuracy and congruence are also significant.  Error bars represent within-subject 
SEM. *p < .05, ** p < .01, *** p ≤ .001. 
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Expectation, F(1,17)  = 52.85, p < .001, ηp
2

 = .76, such that d’ was greater in the 

25% (2.60±0.09) than the 75% (2.23±0.09) condition. This small difference was 

an unavoidable consequence of liberalising decision threshold while ensuring a 

constant hit rate. The main effect of Attention, F(1,17) = 0.46, p = .507, ηp
2

 = 

.03, and its interaction with Expectation, F(1,17)= 0.23, p = .655, ηp
2

 = .01, was 
not significant.  

Chapter 4 showed that expectations increase subjective confidence and 

improve metacognitive accuracy. On this basis, we hypothesised that pre-

stimulus phase would modulate the influence of expectations on confidence. To 

address this at the behavioral level, the next analyses determined whether this 
finding was replicated.  

In the 25% condition, where Gabor absence is expected, the expectation-

congruent report is 'no', whereas in the 75% condition, where Gabor presence is 

expected, the expectation-congruent report is 'yes'. The reverse defines 

expectation-incongruent reports. A within-subjects Attention (full, diverted) x 

Accuracy (correct, incorrect) x Congruence (expectation-congruent, 

incongruent) repeated-measures ANOVA under confidence was run. Results 

showed that confidence was higher under full than diverted attention, F(1,17) = 

17.67, p = .001,  ηp
2

 = .51, for correct than incorrect responses, F(1,17) = 42.22, 

p < .001,  ηp
2

 = .71, and for congruent than incongruent decisions, F(1,17) = 
19.07, p < .001,  ηp

2
 = .53.  

As shown in figure 5.2C, a significant attention x congruence interaction, F(1,17) 

= 14,83, p = .001,  ηp
2

 = .47, revealed that diverting attention reduced the effect 

of congruence on confidence (Mdiff = 4.6% SEdiff = 1.4%) relative to full attention  

(Mdiff = 14.1% SEdiff = 3.2%). Congruence still increased confidence in both 

attention conditions (diverted: t(17) = 3.25, bootstrapped p = .006; full: t(17) = 
4.41, bootstrapped p = .001).  

As shown in figure 5.2D, a significant accuracy x congruence interaction, 

F(1,17) = 8.48, p = .010,  ηp
2

 = .33, revealed that the influence of congruence on 

confidence was greater for incorrect (Mdiff = 12.0% SEdiff = 2.6%) than correct 
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(Mdiff = 6.7% SEdiff = 2.1%) responses. Crucially, congruence increased 

confidence in both cases (incorrect: t(17) = 4.67, bootstrapped p = .001; correct: 

t(17) = 3.29, bootstrapped p = .014) indicating that the influence of congruence 
on confidence is not confounded by differences in decisional accuracy. 

No other significant effects were found (attention x accuracy, p = .102, ηp
2

 = .15; 

attention x accuracy x congruence, p = .975, ηp
2

 < .01). Thus, effects under 

confidence reported in Chapter 4 were replicated: expectations liberalise 

confidence, and the effect was weaker (but present) under diverted than full 
attention. 

Are these changes in confidence associated with changes in metacognitive 

bias? To address this question we estimated each participant’s response-

specific confidence thresholds 𝜏! and 𝜏! for each level of attention and 

expectation (see section 3.6.1). These were scaled by d’ and subtracted from 
type 1 c. That is, we computed the measures 

𝐶!!!  =  
𝜏!
𝑑!!

    𝐶!!!  =  
𝜏!
𝑑′!

 

These tell us how far the confidence thresholds extend from the decision 

threshold. The further away they are, the more evidence the participants needs 

to assign high confidence to their choice (i.e. the more conservative their 

threshold). This measure of metacognitive bias was log-transformed (because 

raw values are bounded by zero) and subjected to an Attention by Expectation 

by Report repeated-measures ANOVA. Independently of attention, report and 
expectation interacted, F(1,17) = 12.17, p = .003,  ηp

2
 = .417 (figure 5.3).  

Follow-up bootstrapped t-tests revealed that for “no” reports, confidence 
threshold 𝐶!!! was significantly closer to c (i.e. more liberal) in the 25% (expect 

absent) than the 75% (expect present) condition, p = .004. However a 

congruence effect was not found for “yes” reports (p = .237). This may be due to 

a presence of floor effects: confidence for “yes” reports was already very liberal, 

probably because the Gabor target had an abrupt onset, leading to visual pop-
out’.  
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This analysis shows that confidence thresholds for reports of target absence 

were liberalised when absence was expected, such that less evidence was 

required to report the choice with high certainty. In turn, this means that 

expectations don’t only shape confidence indirectly (by shifting decision bias), 
but they also may target metacognitive thresholds. 

Finally, we determined whether expectations improved metacognitive accuracy 

as defined by type 2 D and meta-d’/d’. As in chapter 4, each measure of 

metacognition was subjected to separate Attention x Expectation x Report 
repeated-measures ANOVAs. Under both type 2 D’ and meta-d’/d’ a significant  

 

Figure 5.3 Metacognitive bias as a function of expectation and 

report.  

This panel depicts the log distance between type 1 criterion and 
type 2 confidence thresholds. Larger values mean that more 
evidence is needed to report ‘confident’. When participants 
reported “no” (blue circles), confidence was more liberal, i.e. took a 
lower value, in the 25% than the 75% condition. That is, when 
expecting target absence, perceived absence required less 
evidence to be reported with high confidence. For “yes” responses 
(red diamonds) there is no difference in thresholds between the 
25% and 75% conditions, however this appears to be driven by 
floor effects. Error bars represent within-subjects SEM. 
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3-way interaction was found (type 2 D’: F(1,17) = 2.25, p = .025,  ηp
2

 = .261. 
Meta-d’/d’: F(1,17) = 6.20, p = .023,  ηp

2
 = .267).  

Expectation-response congruence influenced metacognition under full attention  

(type 2 D’: F(1,17) = 6.74, p = .019,  ηp
2

 = .284. Meta-d’/d’: F(1,17) = 9.50, p = 

.007,  ηp
2

 = .358) but not diverted attention (type 2 D’: F(1,17) = 3.92, p = .540,  

ηp
2

 = .023. Meta-d’/d’: F(1,17) = 1.54, p = .700,  ηp
2

 = .009). Thus, we replicated 
the finding of Chapter 4 that expectations improved metacognitive accuracy.  

In summary, our paradigm successfully manipulated attention and expectation: 

contrast sensitivity increased in the presence of full attention, and expectation 

biased perceptual decisions. There was a small difference in d’ across levels of 

expectation but not across levels of attention. Expectation further increased 

confidence, such that participants were more confident in their Gabor detection 

reports when that report had been congruent with their prior expectations. For 

“no” reports, this was driven by changes in the threshold for reporting 
“confident”.  

While these effects of expectation were present at the behavioral level, they are 

not necessarily modulated by pre-stimulus brain oscillations. The next analyses 

first determined whether oscillatory phase predicts perceptual decision 

irrespective of expectation, and then determined whether the predictive value of 
oscillatory phase reflects prior expectations. 

5.3.3 PERCEPTUAL DECISION IS PREDICTED BY OCCIPITAL ALPHA PHASE 

Before addressing the question of whether the effect of expectation on decision 

is modulated by pre-stimulus phase over visual regions, we checked that pre-

stimulus phase predicted perceptual choice, irrespective of expectation.  

Analyses were restricted to the occipital electrode (O1, Oz or O2) that showed 

the greatest post-stimulus response to the Gabor task. This method gave, for 

each participant and for each of the 2 sessions, a single electrode (eROI) that 

was involved in early post-stimulus processing. eROIs were extracted by 

selecting the occipital electrode with the greatest event-related potential (ERP) 
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amplitude for hit relative to miss trials (Mdiff = 0.75µv, SDdiff = 0.64µv, see 
Methods for details).  

The predictive value of phase in perceptual decision was assessed using the 

measure phase opposition (PO). PO is the average of phase-locking values 

(PLV) for two responses – here, yes and no (Vanrullen et al., 2011) - and 

therefore reflects the extent to which pre-stimulus phase predicts subsequent 

choice (see Methods for details). For response R and complex wavelet 
coefficients C, PLV and PO are defined as: 

         𝑃𝐿𝑉! =  !
!

! !
! !!                         𝑃𝑂!!,!! =  !"#!!! !"#!!  

!
 

PO values for each time-frequency point were calculated separately for each 

level of attention and expectation and subsequently collapsed across 

expectation conditions. This was done because for this initial analysis we were 

seeking time-frequency regions in which EEG phase predicted decision, but not 

explicitly seeking time-frequency regions in which the influence of phase 

depended on expectation. Averaging over conditions means phase effects are 

still detectable if expectation changes (or even reverses) the preferred phase for 

yes or no responses. Interactions between phase and expectation were run in a 
separate follow-up analysis, thereby avoiding ‘double-dipping’.  

To obtain p-values, PO values were compared to the null distribution by 

pseudo-randomly allocating a behavioral response to each phase angle at each 

time-frequency point. This process was repeated for each session and each 

condition 2000 times (8000 in total), giving 1.8 x 1070 bootstrapped samples 

over all participants. The p-values were FDR-corrected over the entire pre-
stimulus region (-1000ms to stimulus onset) and over all frequencies. 

This analysis revealed a region of significant phase opposition in the pre-

stimulus alpha range over all trials, which reached maximum significance at 

10Hz, 119ms prior to stimulus onset, (p = 10-7, αFDR = 10-2.6, figure 5.4A,left). 

This means that pre-stimulus occipital alpha phase predicts yes versus no 

responses. Given that phase-modulation of perceptual hit rate has been shown 

to be dependent on attention (Busch & VanRullen, 2010), we then split phase 
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opposition values into two separate maps, one for each level of attention. 

Significant phase opposition was present under full attention (p-119ms, 10Hz = 10-4, 

αFDR = 10-2, figure 5.4A, center), and was indeed reduced in extent (but present) 

under diverted attention (p-119ms, 10Hz = 10-5, αFDR = 10-3, figure 5.4A, right), 
consistent with previous work.  

This result shows that pre-stimulus occipital alpha phase predicted decision, but 

we do not yet know whether decision bias or detection sensitivity was 
fluctuating. This question was addressed in the next section.  

5.3.4 PRE-STIMULUS OCCIPITAL ALPHA PHASE PREDICTS DECISION 

THRESHOLDS 

Previous studies on pre-stimulus phase have not been able to separate 

sensitivity from decision bias because phase analyses have only time-locked to 

target-present trials. Whereas target-absent trials usually have no obvious 

reference point for the phase analysis (when using a randomised inter-trial 

interval), here the onset of the search array served as a reference point for both 

Gabor-present and Gabor-absent phase determination. This allowed us to 

calculate the theoretically independent measures c (decision threshold) and d’ 
(detection sensitivity).  

Computing these values required binning phase angles from each trial. We 

needed data from just one time point, because pooling phase angles over time 

points results in associating multiple, systematically rotating phase angles with 

a single behavioral response. Similarly, phase angles from differing frequency 

bands cannot be compared in terms of their position in an oscillation. We 

extracted phase angles from each epoch from the eROIs at the -119ms, 10Hz 

time-frequency point: the point of maximal PO significance. Each phase angle 
was then binned into one of 6 phase bins.  

By considering responses on those trials this gave, for each participant, an 
associated set of hits, misses, false alarms and correct rejections as a function 
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Figure 5.4. EEG results.  

A. Time-frequency representation of phase opposition between yes and no reports over 
the eROI for (left) all trials, (middle) full attention, and (right) diverted attention. The 
vertical dashed line represents stimulus onset. The colour scale represents log-
transformed p-values. Regions that survive FDR correction are outlined in white.  
B. Relationship between decision threshold c and binned occipital 10Hz phase at -
119ms. The blue phase-criterion function represents results from the 25% (expect 
absent) condition and the red phase-criterion function represents results from the 75% 
(expect present) condition. Grey shading indicates the phase values which maximally 
predict the influence of expectation on decision: decisions are maximally biased 
towards reporting ‘no’ in the expect 25% condition, but towards ‘yes’ in the 75% 
condition. Shaded outlines represent within-subjects SEM  
C. Relationship between confidence and pre-stimulus 10Hz phase at -119ms. 
Congruent responses are reports of presence/absence in the 75%/25% conditions and 
vice versa for incongruent responses. Confidence significantly fluctuates with phase for 
both congruent (green) and incongruent (red) reports. Shaded regions represent within-
subjects SEM.  
D. Relationship between detection sensitivity d' and pre-stimulus 10Hz phase at -
119ms for the full (left) and diverted attention (right) conditions. Sensitivity does not 
fluctuate with phase in either condition. Shaded regions represent within-subjects SEM. 
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of phase bin. Trials were further categorised according to experimental 

condition. In turn, for each participant we could calculate d' and c as a function 

of phase bin, attention and expectation. Note that in splitting trials according to 

bin, the resulting six values of c per condition will not average exactly to the 
single value of c per condition when computed irrespective of phase bin. 

First, we asked whether pre-stimulus phase predicts decision threshold by 

running an Attention (full, diverted) x Expectation (25%, 75%) x Phase bin (1 to 

6) repeated-measures ANOVA on decision threshold c. Only interactions with 

phase bin are reported. This analysis revealed no significant main effect of 

Phase, F(5,85) = 0.66, p = .670, ηp
2 = .04, no significant Attention by Phase bin 

interaction, F(5,85) = 0.38, p = .862, ηp
2 = .02, and no significant three-way 

interaction, F(5,85) = 0.66, p = .650, ηp
2 = .04. Critically, there was a significant 

two-way interaction between Expectation and Phase bin, F(5,85) = 2.64, p = 

.029, ηp
2 = .13. This interaction is depicted in figure 5.4B, and is such that, as 

hypothesised, (1) c appears to oscillate with phase in both expectation 
conditions and (2) the two phase-criterion functions appear to be in anti-phase.  

These curves being in anti-phase mean that the range of phase values related 

to highest c in the 25% condition (conservative, expectation-congruent) is 

similar to the minimum values for c in the 75% condition (liberal, expectation-
congruent). 

This range is consistent with what we would expect from the optimal phase for 

perceptual priors to influence perceptual decision. At π rad away from this 

range, phase predicted the most liberal responses in the 25% condition 

(incongruent) and the most conservative responses in the 75% condition 

(incongruent). This suggests that in this range of phase the top-down priors 

exert their weakest influence, and that the relative effect of perceptual priors is 

minimal. We assume that here, the influence of bottom-up signals is therefore 
maximal. 

Supporting part of our first hypothesis, this indicates that independently of 

attention, the extent to which pre-stimulus occipital alpha phase predicted 
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decision threshold differed in the 25% (expect absent) and 75% (expect 
present) conditions.  

Figure 5.4B suggests that c oscillates in both conditions (both functions are 

sinusoids), but that the same phases predict opposing responses (the functions 

are in anti-phase). However, we have not yet determined this statistically. This 
was the aim of our next two analyses.  

5.3.5 PRIOR EXPECTATIONS CHANGE THE RESPONSE PREDICTED BY PRE-

STIMULUS ALPHA PHASE 

Does phase predict c in both expectation conditions? To check whether the 

phase-criterion functions were sinusoids we tested whether the distance 

between the peak and trough of each function was π rad. We used a circular v-

test, which tests the hypothesis that a set of angles (here, the peak-to-trough 

distance) is significantly clustered about some specified angle (here, π rad). 

This analysis revealed that indeed, the peak-to-trough distance was 

approximately π rad in both the 25% (v = 43.98, p < .001) and the 75% (v = 

12.56, p = .044) conditions. This means that both functions are sinusoids, and 
therefore that phase predicts criterion in both the 25% and 75% conditions.  

Next we asked whether the two phase-criterion functions were in anti-phase. 

This was the final, key step in testing whether expectations were reflected in 

pre-stimulus phase. A circular v-test, testing whether the peak-to-peak 

difference between the two phase-criterion functions was significantly clustered 

about π rad, revealed this to be the case, v = 43.98, p < .001. Thus, the two 

functions are in anti-phase, and the same phases that predict ‘yes’ when 

expecting target presence predict ‘no’ when expecting target absence. These 

phases are therefore those at which expectations exert their greatest effect on 
decision.  

In summary, we have supported our first hypothesis: that the influence of 

expectations on decision is oscillating with pre-stimulus alpha phase. We do not 

claim that a decision threshold is set at or before stimulus onset, because 

clearly, sensory evidence is not yet available to the visual system. Rather, our 
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data show that prior to stimulus onset, ongoing alpha phase biased the position 
of a decision threshold that is set later in time. 

5.3.6 RHYTHMIC FLUCTUATIONS IN CONFIDENCE  

Our second hypothesis was that pre-stimulus alpha phase would also predict 

the influence of expectations on confidence. Behaviorally, confidence increases 

for expected percepts. Consistent with this, our behavioral analyses showed 

that confidence for expectation-congruent reports (i.e. reporting 'yes' in the 75% 

condition or reporting 'no' in the 25% condition) was higher than for incongruent 

reports (i.e. reporting 'no' in the 75% condition or reporting 'yes' in the 75% 

condition). Therefore, if phase predicts the influence of expectations on 

confidence then there should be a range of phase angles which predict high 

confidence when congruent reports were made, but low confidence when 

incongruent reports were made. This set of phases would be the optimal 
phases for expectations to shape confidence.  

The four-point scale was collapsed into a binary confident/guess reports by 

performing a mean split on individual participants' reports. Next, we computed 

participants’ percentage of decisions reported with high confidence, as a 
function of phase bin, attention, and expectation-response congruence.  

An Attention x Congruence x Phase bin repeated-measures ANOVA under 

confidence revealed a significant main effect of phase bin (p < .001), but the 

phase-confidence function was not sinusoidal and therefore does not reflect the 

existence of an optimal phase for high confidence. The three-way interaction 

was also non-significant (p = .198, ηp
2 = .08).  Crucially, the analysis did reveal 

a significant 2-way Congruence x Phase bin interaction, F(5,85) = 4.10, p = 
.002, ηp

2 =.19.  

To break down this interaction we tested whether confidence oscillated with 

phase at either level of congruence. As in the analysis under decision threshold, 

circular v-tests tested the peak-to-trough difference of the two phase-confidence 

functions against π. These revealed that subjective confidence oscillated with 
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pre-stimulus alpha phase for both expectation-incongruent, v = 34.56, p < .0001 
and expectation-congruent, v = 25.13, p < .001, responses (figure 5.4C).  

As was the case for the decision threshold analysis, visual inspection of the 

figure suggests that the two functions are in anti-phase: phases associated with 

relatively high confidence for congruent reports are associated with relatively 

low confidence for incongruent reports. This was confirmed statistically with a 

circular v-test that showed the peak-to-peak distance between the two phase-

confidence functions to be significantly clustered about π rad, v = 43.98, p < 
.0001. In turn, this analysis indicates that the two functions are in anti-phase.  

Interestingly, the phase at which congruent yes/no responses are most likely 

appears similar to that at which congruence maximally predicts confidence (see 

figure 5.4C and 5.4B, respectively): the peak of the phase-expectation function 

(the 25% minus the 75% sinusoid) appears associated with high confidence for 
congruent reports, but low confidence for incongruent reports.  

In summary, our results suggest that at phases where prior expectations 

exerted stronger influences on decision; confidence was high for the 

expectation congruent report, but low for expectation-incongruent reports. This 

means that when the influence of priors was strong, confidence increased for 

predicted perceptual events, but decreased when expectations were violated. 

Together with the results under decision threshold, these data suggest a 10Hz 

alternation in the extent to which perceptual priors bias both objective and 
subjective decision-making.  

5.3.7 ALPHA PHASE DOES NOT PREDICT PERCEPTUAL SENSITIVITY 

Confidence is typically correlated with accuracy, such that participants are more 

confident when they are correct than when they are incorrect. Previous work 

has implicated pre-stimulus alpha phase in the detection of perceptual stimuli 

(Dugué, Marque, & VanRullen, 2011; Mathewson et al., 2012; Rohenkohl & 

Nobre, 2011), however previous studies have not been able to time-lock the 

phase analysis to target-absent as well as target-present trials. In turn, it is 

unclear whether these results reflect alternations in decision biases or in 
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perceptual sensitivity. If sensitivity is predicted by pre-stimulus alpha phase, our 
results under confidence may simply reflect fluctuations in d’.  

Our results under c implicate alpha phase in decisional biases, however to 

ascertain whether alpha phase is also implicated in sensitivity we ran an 

Attention x Expectation x Phase bin rmANOVA under d'. This revealed no 

significant main effect of Phase bin, F(5,85) = 1.65, p = .156, ηp
2 = .09, nor any 

significant interactions (Attention x Phase: F(5,85) = 0.86, p = .507, ηp
2 = .05 

(figure 5.4D); Expectation x Phase F(5,85) = 0.37, p = .868, ηp
2 = .02;  Attention 

x Expectation x Phase,  F(5,85) = 0.88, p = .499, ηp
2 = .05).  

An analogous Bayesian repeated-measures Attention x Expectation x Phase 

bin ANOVA was run on JASP using a Cauchy prior of 0.8 HWHM. This revealed 

evidence for the null hypothesis of no main predictive effect of phase (BF = 

0.025), as well as no predictive effect of phase that depended on attention (BF 

= 0.003), expectation (BF = 0.001) or both attention and expectation (BF < 
.0001).   

Previous studies have found that it was useful to realign each participant’s 

phase-hit rate function in order to correct for individual differences in optimal 

phases for perceptual sensitivity (Busch & VanRullen, 2010). Even using this 

method, however, we found no evidence for phase predicting d’ under either full 
(p = .787) or diverted (p = .407) attention. 

Together, these data robustly show that pre-stimulus alpha phase does not 

predict detection sensitivity. Rather, the data support the interpretation that 
alpha phase reflects fluctuations in objective and subjective decisional biases. 

5.4 DISCUSSION 

The present experiment implemented a paradigm that both separated the 

influences of expectation from those of attention, and allowed pre-stimulus 

oscillations to be time-locked to both target-absent and -present trials. Critically, 

this design enabled us to compute signal detection theoretic measures as a 
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function of phase and condition, and in turn separate phase-modulation of 
detection sensitivity from phase-modulation of decision threshold.  

Our results show that top-down expectations rhythmically bias perceptual 

decision-making in the pre-stimulus period, such that the extent to which 

expectations biased decision was predicted by the phase of pre-stimulus 

occipital alpha oscillations. The data revealed that decision threshold was 

predicted by phase both when expecting target presence and when expecting 

target absence. However, expectation flipped the relationship between phase 

and criterion (decision threshold), that is, the phase-criterion functions were in 

anti-phase: the same phases that predicted biases towards reporting ‘no’ when 

expecting target absence predicted biases towards reporting ‘yes’ when 

expecting target presence. These phases correspond to the optimal phases for 
expectations to influence perception.  

Importantly, we do not claim that perceptual priors entrained alpha oscillations, 

as is the case for temporal predictions (e.g. Rohenkohl and Nobre 2011; 

Samaha et al. 2015). Rather, priors determined whether a specific phase angle 

facilitated a ‘yes’ or a ‘no’ judgment. This effect of pre-stimulus alpha phase is 

interpreted as evidence for fluctuations in state of the visual system prior to 

stimulus onset affecting the propensity to use prior evidence post-stimulus, at 

the decision stage. Speculatively, this could occur if prior evidence for or against 

target presence is periodically transmitted to visual areas, in turn resulting in 

periodic changes in the baseline from which evidence accumulation begins 
(Christopher Summerfield & Egner, 2009).  

Fluctuations in the influence of expectation on objective decisions were 

accompanied by fluctuations in subjective confidence. For incongruent reports, 

subjective violations of expectation were associated with degrees of confidence 

that tracked the influence of the prior expectation: when perceptual priors 

exerted greater effects on decision, subjective violations of expectation were 

associated with greater subjective uncertainty. Moreover, the phase-confidence 

functions for congruent and incongruent responses were in anti-phase: the 

phase that predicted greatest uncertainty for incongruent reports also predicted 
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highest confidence for congruent reports. Together, these results extend 

previous work demonstrating that confidence evolves with the decision variable 

at early processing stages (Fetsch, Kiani, Newsome, & Shadlen, 2014;  Kiani & 

Shadlen, 2009) by showing that decision and confidence are jointly shaped by 

top-down influences.  As is the case for yes/no decisions, we interpret these 

results as evidence for biases in the early processing of sensory signals (for 

example, changes in starting point of evidence accumulation) modulating 
reported subjective confidence at late stages of the decision-making stream.  

Consistent with previous work, we found that alpha phase-modulation of 

perception is greater with attention than without (Busch & VanRullen, 2010; 

Landau & Fries, 2012), though here, still present under diverted attention. 

Critically, while previous evidence has demonstrated alpha-modulation of 

perceptual hit rate (Busch et al., 2009; Dugué et al., 2011; Landau & Fries, 

2012; Mathewson et al., 2009), it has not been possible to ascertain whether 

changes in hit rate have been driven by changes in sensitivity or bias. Here we 

implicate alpha oscillations in biasing perceptual decisions, but not increasing 

sensitivity. Critically, the influence of alpha phase on decision is modulated by 

expectations. Our data also extend previous research that has revealed that the 

influence of expectation on decision is predicted by pre-stimulus beta-band 

power over both motor (de Lange et al., 2013) and somatosensory (van Ede et 

al., 2010) cortices, as well as by BOLD responses in a range of cortical areas 

(Hesselmann, Kell, & Kleinschmidt, 2008; Hesselmann, Sadaghiani, Friston, & 

Kleinschmidt, 2010; Rahnev, Bahdo, de Lange, & Lau, 2012; Christopher 

Summerfield & Koechlin, 2008). Pre-stimulus signals biasing decision at early 

stages of visual processing (i.e. in sensory cortices) has not, to our knowledge, 

been shown before. Our results therefore support an early, and critically, 
rhythmic, influence of expectations on decision.  

Top-down influences are increasingly modeled within Bayesian frameworks 

(Clark, 2013; Daunizeau et al., 2010; J. Hohwy, 2013; Kersten et al., 2004; Ma, 

Beck, Latham, & Pouget, 2006; Mathys et al., 2014). Here, perception is 

described as a Bayesian inference on sensory causes. A core tenet of these 
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frameworks is that the prior probability of sensory causes will constrain 

inference accordingly, and so probable or ‘expected’ sensory causes are more 

likely to be chosen and thus perceived (Knill & Pouget, 2004; Lee & Mumford, 

2003; Spratling, 2008; Yuille & Kersten, 2006a). A plausible implication of this 

view is that such prior probabilities should be reflected in the state of the brain 

in the pre-stimulus period. Consistent with this, we have shown that the 
influence of priors on decision oscillates with pre-stimulus alpha phase.  

One possible explanation for these findings is that alpha oscillations orchestrate 

the communication of prior expectations to visual cortex. On this view, rhythmic 

influences of expectation on decision threshold would reflect fluctuations in the 

prior probability of the reported perceptual decision. However, an alternative 

view is that our results reflect fluctuations in the weighting of priors on decision, 

rather than the prior probability itself. On this alternative view, alpha phase 

reflects the attentional state of the system, consistent with previous theoretical 

work (Jensen, Bonnefond, & VanRullen, 2012; Palva & Palva, 2007) , so that 

priors are assigned a greater weight on perceptual decision when sensory 

signals are expected to be unreliable. Here, perceptual expectations would 

increase or decrease the excitability of relevant neural populations, or gain, 

according to whether a target is expected to appear or not. In both cases, pre-

stimulus occipital alpha phase modulates the relative weighting of prior 

expectations and sensory data, however our data cannot discriminate between 
these two views, and we leave this question open to future research.  

In summary, we have described evidence indicating a periodic influence of 

perceptual priors on both objective (detection) and subjective (confidence) 

decisions, predicted by the phase of pre-stimulus occipital alpha oscillations. 

This rapid and periodic alternation between top-down and bottom-up influences 

in visual areas extends existing data implicating alpha oscillations in top-down 

processing (von Stein et al., 2000). Together, our data suggest that alpha 

oscillations may periodically transmit perceptual priors, and in turn reveal a 

plausible neural mechanism by which prior information may subserve top-down 
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modulation of early visual processing: alpha oscillations may orchestrate the 
reciprocal exchange of predictions and prediction errors.   
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6 
FUNCTIONAL NETWORK UNDERLYING TOP-

DOWN INFLUENCES ON CONFIDENCE  
It is clear that prior expectations shape perceptual confidence, yet how this 

occurs post-stimulus is unknown. Here we recorded fMRI data while 

participants made perceptual decisions and confidence judgements, controlling 

for potential confounds of attention. Results show that the relationship between 

expectations and subjective confidence increases BOLD activity in right inferior 

frontal gyrus (rIFG). Specifically, rIFG is sensitive to the discrepancy between 

expectation and decision (mismatch), and, crucially, higher mismatch responses 

are associated with lower decision confidence. Connectivity analyses revealed 

the source of top-down influences on confidence to be frontal areas right 

orbitofrontal cortex (OFC) and bilateral frontal pole (FP), and the source of 

sensory signals to be occipital pole. Altogether, our results indicate that 

predictive information is integrated into subjective confidence in rIFG, and 

reveal an occipital-frontal network that constructs confidence from top-down and 

bottom-up signals. This interpretation was further supported by exploratory 

findings that the white matter density of occipital pole and OFC predicted their 

respective contributions to the construction of confidence. These findings 

advance our understanding of the neural basis of subjective perceptual 

processes by revealing a functional network that integrates prior beliefs into the 
construction of confidence.  
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6.1 INTRODUCTION 

Perception is increasingly being seen as an active process, in which current or 

future sensory states are inferred from predictive information (Bar, 2007; Beck & 

Kastner, 2009; Engel et al., 2001; Fiser et al., 2010; Gilbert & Li, 2013; Lee, 

2002). These predictions can be modelled in Bayesian terms as prior beliefs, 

which bias perceptual inference towards solutions that are a priori more likely in 

a given context (Bülthoff, Bülthoff, & Sinha, 1998; Seriès & Seitz, 2013; Trapp & 

Bar, 2015). Predictions, or priors, can have striking effects on perception, 

especially under high sensory uncertainty. For example, ambiguous rotational 

motion can be subjectively disambiguated by prior exposure to rotation 

direction, such that a rotation direction is perceived despite none existing in the 

physical stimulus (Maloney, Dal Martello, Sahm, & Spillmann, 2005). In 

laboratory conditions, such behavioural effects of prediction are typically 

accompanied by increases in BOLD and ERP amplitude, as well as evoked 

gamma power, over sensory (Kouider et al. 2015; Egner et al. 2010; Saaltink et 

al. 2015; Kok et al. 2011; Jiang et al. 2013; Wacongne et al. 2011; Bauer et al. 

2014) and decision-related (Bubic et al., 2009) brain regions - a ‘prediction error’ 

response profile that reflects the discrepancy between internal templates and 
perceptual content.  

The perceptual content that forms the basis of our visual experience is 

accompanied by a degree of subjective confidence. Confidence reflects the 

estimated success of a perceptual choice, and can be seen as a gate for post-

perceptual processes, such as learning and belief-updating (Nassar, Wilson, 

Heasly, & Gold, 2010; Yeung & Summerfield, 2012). The communication of 

decision confidence can also facilitate group decision-making (Bahrami et al., 

2010). Yet, while subjective confidence is an integral part of perceptual 

experience that can be easily probed in human subjects (Fleming & Lau, 2014; 

Overgaard & Sandberg, 2012; Sandberg et al., 2010; Seth et al., 2008; 

Wierzchoń et al., 2014), the construction of confidence remains poorly 
understood. 
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It is clear that confidence increases with evidence in support of the decision 

(Fetsch, Kiani, & Shadlen, 2015; Gherman & Philiastides, 2015; Hebart et al., 

2014; Yeung & Summerfield, 2012). Decision and confidence are thought to 

evolve together until the first-order, objective decision has been made (Kepecs 

& Mainen, 2012; Ratcliff & Starns, 2009), and accordingly, there exists strong 

evidence for a common sensory signal underlying both types of report (Fetsch 

et al., 2014; Kiani et al., 2014; Kiani & Shadlen, 2009). Surprisingly, there has 

been much less research that considers the role of prior expectations on 

subjective confidence. There is converging behavioural evidence for subjective 

confidence increasing with prior evidence in favour of the associated choice 

(see Chapters 4 and 5, and Aitchison, Bang, Bahrami, & Latham, 2015; 

Meyniel, Schlunegger, & Dehaene, 2015), but the neural substrates of this have 
remained unexplored. 

Here we aimed to identify brain regions in which prior perceptual expectations 

are integrated into confidence judgements. Based on previous work, we 

reasoned that confidence should be high when decisions are supported by prior 

knowledge, that is, when the discrepancy between expectation and perceptual 

decision is low. We therefore sought to identify brain regions that, first, are 

sensitive to both prediction error and confidence, and second, in which 

confidence is negatively associated with prediction error. In such a region, 

confidence would be associated with the mismatch between internal templates 
and perceptual report. 

We further hypothesised that regions found to integrate prior expectations into 

confidence judgements (as described above) should be functionally connected 

with two information sources: one that represents the decision evidence, or 

sensory information; and one that represents the prior expectation. As 

confidence increasingly depends on prior expectations, functional connectivity 

with the source of the priors and sensory signals relevant to these judgements 
should increase.  
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6.2 MATERIALS AND METHODS 

6.2.1 PARTICIPANTS 

The study was approved by the Brighton and Sussex Medical School Research 

Governance and Ethics Committee. Twenty-four healthy, English speaking and 

right-handed subjects were tested (age 19-34, mean age = 25 years, 13 

females). Data from five participants were excluded: two whose thresholding 

failed (see section ‘Staircases’, Gabor hit rate = 2%, visual search d’ = -0.1); 

one for revealing abnormal vision only after scanning (and whose estimated 

contrast thresholds were accordingly > 2SD from the mean); one for excessive 

head movement in the scanner such that their T1 scan was unusable; and one 

for failing to respond on 33% of trials (relative to a mean of 3%). This left 19 

participants with normal or corrected-to-normal vision for analysis. All 

participants gave informed, written consent and were reimbursed £50 for their 
time. 

6.2.2 PROCEDURE 

The experiment was conducted over three sessions at least 2 hours apart (no 

participant completed all three on a single day). In session one informed 

consent was obtained. Participants were trained on all tasks before scanning, 

which consisted of on-screen instructions, followed by a minimum of 10 practice 

trials of each task. Participants were encouraged to continue training until the 
task was well understood and response mappings learned. 

To equate performance accuracy across conditions and subjects, participants 

subsequently completed three staircase procedures in the scanner but without 

acquiring echoplanar images (EPIs). Next, two 17 minute runs of experimental 

trials were completed while EPI scans were acquired. Session two did not 

include a training component but was otherwise identical to session one. 

Session three consisted of: 10 minutes for T1 acquisition; 15 minutes of 

retinotopy (data from which is not used in this paper); and, time permitting, one 
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more experimental run. After three sessions participants were compensated for 
their time and debriefed. 

6.2.3 EXPERIMENTAL DESIGN 

The paradigm used in the present study is adapted from that used in Chapter 4. 

The visual display was identical in all sections of the experiment (training, 

staircase and experimental). It consisted of a central visual search array and the 

presence or absence of a to-be-detected, Gabor patch in the periphery (see 
figure 6.1 and subsection 'Trial Sequence'). 

 In experimental trials, the principal task was Gabor detection and two factors 

were orthogonally manipulated: prior expectations of Gabor presence and 

attention to Gabor detection. Expectations were manipulated block-wise, by 
changing the probability of target Gabor presentation (P(Gabor present) = .25, 

 

 

Figure 6.1. Trial sequence. 

 Blocks began with instructions signalling the expectation and attention condition. 
Here, the block induces an expectation of target absence (Gabor presentation is 
unlikely) and the central visual search task should be ignored (diverted attention 
condition). On each trial a visual search target T was either absent (top) or present 
(bottom) with 50% probability. On each trial a target Gabor was either present (top) 
or absent (bottom) with probability determined according to condition. Response 
cues followed the offset of the stimuli. Staircase trials were identical, except there 
was no condition-specific instruction at the beginning and only task-relevant 
response cues were presented.  
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.50 or .75). The P(Gabor present) = .25 condition induced an expectation of 

Gabor absence, whereas the P(Gabor present) = .75 condition induced an 

expectation of Gabor presence. The P(Gabor present) = .50 condition acted as 

a control (flat prior). Attention was manipulated by instructing participants to 

either perform or ignore a visual search task presented concurrently to the 

Gabor target. This task consisted of detecting target ‘T’s amongst an array of 

distracter ‘L’s. Performing both tasks concurrently diverted attention from the 

Gabor detection task, allowing us to separate effects of expectation from those 
of attention. 

These conditions were manipulated block-wise, in groups of 12 trials. Each 

condition occurred once per scanning run in fully counter-balanced order. 

Before each experimental block began participants were informed of both the 

expectation and attention condition via the presentation of an instruction screen 

presented for 10 seconds. Participants were instructed to always maintain 
fixation at a central cross. 

6.2.4 TRIAL SEQUENCE 

The trial sequence was identical for training, staircasing and experimental trials 

and is shown in figure 6.1. Only instructions varied (see ‘Experimental design’). 

Trials began with a white fixation cross of random duration between 2.5 and 5 

seconds. Next, a visual search array appeared, which consisted of seven 

letters: all white, capital ‘L’s (50% chance), or a white, capital ‘T’ replacing an ‘L’ 

(50% chance). All letters were equidistant from fixation and took an 

independently random orientation. These were subsequently masked by a 

matching array of ‘F’s to increase task difficulty. In total the visual search array 

was present for 1.1 seconds. The stimulus onset asynchrony (SOA) between 

target and masking arrays was titrated for each participant such that accuracy 
was at 78% (see Staircases). 

On some trials a near-threshold (see section Staircases) peripheral Gabor patch 

(orientation = 135°, phase 45° on 50% of trials, 225° on 50% of trials, sf = 2c/°, 

Gaussian SD = 30) was additionally presented. On these trials the stimulus 
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appeared at the same time as the visual search array. To minimise attentional 

capture it was presented over 0.6 seconds in a Gaussian time envelope so that 

it had a gradual onset and offset. Stimulus contrast was titrated to equate 

performance across levels of attention and participants at 78% accuracy (see 
Staircases). 

The interval between offset of the masking array and onset of response prompts 

was jittered during scanning only (i.e. experimental trials) to minimise motor 

cortex activity reflecting response anticipation. Jitter was randomly selected 
from the discrete values 1.3s:0.3s:3.1s. 

Response prompts were presented at the end of the trial. The first prompt 

referred to the Gabor detection task. ‘Absent’ responses were recorded by 

pressing the outer left key and ‘present’ responses, the outer right key. This 

prompt was presented on all trials except those of the visual search staircase 

procedure (only visual search performed). The second prompt asked whether 

participants guessed (inner left) or were confident (inner right) in their Gabor 

detection response (not presented on staircasing trials). The third prompt was 

only presented on trials where participants performed the visual search task. 

This asked whether the visual search target ‘T’ was absent (outer left) or 

present (outer right). Response prompts remained onscreen for 2 seconds and 

responses were coded as missed trials if no response was given within the 
allowed time. 

6.2.5 STAIRCASES 

Prior to each experimental session, three separate adaptive 1-up-3-down 

psychophysical staircase procedures (9 reversals) were completed in the 

scanner. Trials were identical to those in staircase trials (see Trial structure) 

except: there was no manipulation of attention or expectation; the Gabor was 

always present, but randomly oriented either 45° to the left or to the right; the 

Gabor task was 2AFC orientation discrimination instead of target detection; 
confidence ratings were not requested.  
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Staircase 1 titrated Gabor contrast to achieve 78% accuracy under full attention. 

Initial contrast was 1.5%. The visual search array was masked after 0.5 

seconds. Participants were instructed to ignore the visual search array but still 
fixate centrally. 

Staircase 2 titrated the SOA between the visual search array and masking array 

to set performance at 78% (in the visual search task). Initial SOA was 500ms. 

Participants ignored the 2AFC task and performed the visual search task. Here, 
the ignored Gabor was presented at the contrast acquired in staircase 1.  

Staircase 3 titrated Gabor contrast to achieve 78% accuracy (in Gabor 

detection) under diverted attention. Initial contrast was set at that obtained in 

staircase 1 and visual search SOA was set at the value obtained by staircase 2. 

Here, participants performed both the Gabor and the visual search tasks. The 

visual search SOA was set at the value obtained in the previous staircase and 

initial contrast was set at that obtained in the first and titrated over the course of 
the staircase to obtain the diverted attention contrast level.    

6.2.6 STATISTICAL ANALYSES 

Gabor detection sensitivity and decision threshold were quantified by computing 

type 1 signal detection theoretic (SDT) measures d' and c respectively (see 

Chapter 3 for more detail). These are computed by classifying trials as hits (h), 
misses (m), false alarms (fa) or correct rejections (cr). Then, 

𝐻𝑅 =  
ℎ

ℎ +  𝑚  𝑎𝑛𝑑 𝐹𝐴𝑅 =
𝑓𝑎

𝑓𝑎 +  𝑐𝑟  

so that 

𝑑! =  𝑍 𝐻𝑅 − 𝑍 𝐹𝐴𝑅  𝑎𝑛𝑑 𝑐 = −
𝑍 𝐻𝑅 + 𝑍(𝐹𝐴𝑅)

2   

where Z is the inverse cdf of the normal distribution.    

Confidence was computed by calculating the proportion of trials on which each 
subject reported ‘confident’.  
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We also estimated metacognitive bias. In signal detection theory, we can 

represent confidence thresholds that fall on either side of the type 1 criterion, 

representing the additional evidence needed to report “confident no” or 

“confident yes”. These thresholds reflect metacognitive bias. These thresholds, 
are defined as follows: 

𝐶!!+ =  
𝑐 +
𝑑! +−  

𝑐
𝑑!  𝑎𝑛𝑑 𝐶!!− =  

𝑐 −
𝑑! −−  

𝑐
𝑑!   

The plus and minus signs correspond to metacognitive bias for “yes” and “no” 

responses respectively. The values c+ and d’+ are computed by reclassifying 

hits, misses, false alarms and correct rejections according to reported 

confidence. Confident “yes” reports are reclassified as simply “yes” and all 

others as “no”. From these, we obtain c+ and d+’ from the standard equations 

for d’ and c. This process is repeated for “no” responses by setting “no” to be 

“confident no” and “yes” otherwise. These values of metacognitive bias should 

be independent of decision accuracy. High values correspond to thresholds that 

extend far from the type 1 criterion, meaning that metacognitive bias is 

conservative (more likely to report “guess”). The reverse applied for small 
values. 

In the present Chapter, two participants had one extreme value of metacognitive 

bias ( > 20 times larger than their other estimates), resulting from dividing by a 

small response-conditional d’. For these participants, the extreme value was 
replaced with the subject’s mean across the other 11 estimates. 

Behavioural and follow-up statistical tests were run on JASP (Love, et al., 

2015). When the null hypothesis was predicted, Bayesian t-tests and repeated-

measures ANOVAs implemented the JASP default Cauchy prior of 0.7 HWHM 

centered on zero. All results presented were robust to reasonable adjustments 

of this value. Bayes factors greater than 1/3/10/100 are respectively interpreted 

as showing insensitive/moderate/strong/very strong evidence for the alternative 

hypothesis (Kass & Raftery, 1995). Bayes factors less than the reciprocal of 
these values are given the same labels, but refer to the null hypothesis.  
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Unless otherwise stated, all repeated-measures ANOVA results met the 

assumption of sphericity. Where sphericity was violated, corrected degrees of 

freedom and p-values are presented. The Greenhouse-Geisser correction is 

used for small violations (ԑ < .75) and the Huynh-Feldt correction for large 
violations (ԑ > .75).  

6.2.7 MRI ACQUISITION AND PRE-PROCESSING 

Functional T2* sensitive echoplanar images (EPIs) were acquired on a Siemens 

Avanto 1.5T scanner. Axial slices were tilted to minimise signal dropout from 

frontal and occipital cortices. 34 2mm slices with 1mm gaps were acquired (TR 

= 2863ms, TE = 50ms, FOV = 192mm x 192mm, Matrix = 64 x 64, Flip angle = 

90°). Full brain T1-weighted structural scans were acquired on the same 

scanner and were composed of 176 1mm thick sagittal slices (TR = 2730ms, TE 

= 3.57ms, FOV = 224mm x 256mm, Matrix = 224 x 256, Flip angle = 7°) using 
the MPRAGE protocol.  

Functional runs, each lasting 17 minutes, were collected per scanning session. 

Images were processed using SPM8 software 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm8/). The first four functional 

volumes of each run were treated as dummy scans and discarded. Images were 

pre-processed using standard procedures: anatomical and functional images 

were reoriented to the anterior commissure; images were slice-time corrected 

with the middle slice used as the reference; EPIs were aligned to each other 

and co-registered to the structural scan by minimising normalised mutual 

information. Next, EPIs were spatially normalised to MNI space using 

parameters obtained from the segmentation of T1 images into grey and white 

matter. Finally, spatially normalised images were smoothed with a Gaussian 

smoothing kernel of 8mm FWHM.  

6.2.8 FMRI STATISTICAL ANALYSIS 

At the participant level BOLD responses were time-locked to the onset of the 

visual search array (which appeared at the same time as the Gabor, if present), 

enabling us to examine BOLD responses to both target present and target 
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absent trials. BOLD responses were modelled in a GLM with regressors and 

their corresponding temporal derivatives for each combination of the following 

factors: Attention (full, diverted), Expectation (25%, 50%, and 75%), Stimulus 

(target present, target absent), Report (yes, no) and Confidence (confident, 

guess). If a certain combination of factors had no associated trials for a 

particular participant, that regressor was removed from the participant’s first 
level model and contrast weights rescaled.  

The reliability of the regression weights was maximised by entering data from all 

runs and sessions together, increasing the trial count per regressor. To avoid 

smearing artefacts, no band-pass filter was applied. Instead, low-frequency 

drifts were regressed out by entering white matter drift (averaged over the brain) 

as a nuisance regressor (Law et al., 2005). Nuisance regressors representing 
the experimental run and six head motion parameters were also included.  

Comparisons of interest were tested by running one-sample t-tests against zero 

at the participant level, then running group-level paired t-tests on the one-

sample maps. Unless otherwise stated, all contrasts at the group level were run 

with peak thresholds of p < .001 (uncorrected) and corrected for multiple 
comparisons at the cluster level using the FDR method.  

We wanted to control for possible confounds between reaction speed and 

confidence (which correlate, see e.g. Grinband, Hirsch, & Ferrera, 2006; 

Petrusic & Baranski, 2003), and between individual or condition-wise 

differences in Gabor contrast and confidence (which correlate, Rahnev et al., 

2011). To do this, a control GLM was computed. Here, each regressor was 

parametrically modulated by both Gabor contrast and reaction time. By design, 

in this model confidence was independent of reaction time and BOLD amplitude 

was independent of individual and condition-wise differences in stimulus 

contrast. The Results section reports analyses on our main model, i.e. the 

model without regressors for Gabor contrast and reaction speed. We did this 

because the control model has a four-fold increase in number of regressors, 

reducing statistical power. Nonetheless, all GLM analyses were replicated under 
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our control model when using a peak threshold of p < .005. Crucially, all results 
under rIFG were also replicated when using a peak threshold of p < .001.  

Functional ROIs were defined using the MarsBaR 0.42 toolbox 

(http://marsbar.sourceforge.net/download.html). Anatomical areas showing 

significant differences in BOLD were identified using the SPM Anatomy toolbox 

(Eickhoff et al., 2005) and Brodmann areas were identified using MRIcro 

(Rorden & Brett, 2000). Results of whole-brain analyses were plotted onto glass 

brains using MATcro (now called MRIcroS, 
https://www.nitrc.org/plugins/mwiki/index.php/mricros:MainPage). 

6.2.9 PSYCHOPHYSIOLOGICAL INTERACTION (PPI) ANALYSIS  

The psychophysiological interaction (PPI) analysis was performed using the 

CONN functional connectivity toolbox (http://web.mit.edu/swg/software.htm). 

The GLM comprised regressors for attention condition (full/diverted), confidence 

(confident/guess) and expectation-response congruence 

(congruent/neutral/incongruent). Nuisance regressors were identical to those 

used in the GLM on BOLD. Again, the signal was not band-pass filtered but 

instead the mean WM drift was entered as a nuisance regressor. The data were 

denoised by regressing out signal from white matter, from CSF and from each 

individual condition, plus signal associated with all nuisance regressors. The 

PPI was run on univariate regression weights to identify effective connectivity 

between a functionally defined seed (rIFG) and remaining voxels. These 

weights were examined in a second level model which used an uncorrected 
peak threshold of p < .005 and FDR cluster corrected threshold of p < .05. 

6.2.10 VOXEL-BASED MORPHOMETRY (VBM) 

T1-weighted structural scans were reoriented to the anterior commissure and 

segmented into grey matter (GM), white matter (WM) and CSF. These were 

normalised to MNI space using DARTEL with SPM defaults and a Gaussian 

smoothing kernel of 8mm FWHM (Ashburner & Friston, 2000). White matter and 

grey matter images were separately compared across participants in a multiple 

regression with age and total intracranial volume (GM + WM + CSF) as 
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nuisance regressors. Gender was not included because this resulted in 

multicollinearity between regressors (older participants were more likely to be 

male). Unless reported otherwise, clusters reported as significantly correlating 
with behaviour survived voxel-wise FWE correction. 

6.4 RESULTS 

6.3.1 EXPECTATIONS LIBERALISE DECISIONS AND ATTENTION INCREASES 

CONTRAST SENSITIVITY 

Our first analyses confirmed the efficacy of our paradigm. To equate difficulty 

across attention conditions and participants, adaptive psychophysical staircases 

identified the stimulus contrast required for 78% accuracy on the Gabor 

detection task (see Methods subsection Staircases). Comparing the acquired 

contrasts in the full and diverted attention conditions revealed that contrast 

thresholds were significantly lower under full than diverted attention, t(19) = 

2.95, p = .014, 95%CI [0.50%, 2.31%], dz = 0.70 (fig. 6.2A). Thus, our paradigm 
successfully manipulated attention. 

To ensure that our staircase procedure successfully equated detection 

sensitivity d’ across conditions we ran a within-subjects Attention (full, diverted) 

x Expectation (25%, 50%, 75%) ANOVA. This revealed no significant difference 

between d’ under full (M = 1.06, SE = 0.14) and diverted (M = 1.21, SE = 0.20) 

attention conditions, F(1,18) = 0.34, p = .569, ηp
2

 = .02 (fig. 6.2B), and was 

corroborated by a Bayesian repeated-measures ANOVA of the same design 

that revealed moderate evidence for the null hypothesis (BF = 0.240). There 

was also no significant effect of Expectation on d’, F(2,36) = 0.70, p = .505, ηp
2

 

= .04, BF = 0.07 (strong evidence for the null) and no significant interaction term 

F(2,36) = 0.76, p = .476, ηp
2

 = .04, BF = 0.016 (strong evidence for the null). 
Our staircases therefore successfully equated d’. 

To determine whether we had successfully manipulated priors, we compared 
signal detection theoretic decision thresholds (c, see Methods) across  
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Figure 6.2. Behavioural effects of expectation and attention on objective and subjective 

decision-making.  

A. Stimulus contrast as a function of attention condition. To achieve 78% correct on the 
Gabor detection task contrast had to be higher under diverted than full attention. 
B. Detection sensitivity d’ as a function of expectation and attention condition. No 
significant differences were found. 
C. Decision threshold c as a function of expectation and attention condition. 
Independently of attention, bias towards reporting ‘yes’ (lower values of c) increases 
with the prior probability of Gabor presence. 
D. Confidence as a function of expectation-report congruence and decision accuracy. 
Independently of accuracy, confidence is higher for congruent that incongruent reports. 
Untransformed data are presented for illustrative purposes.  
Error bars represent within-subjects SEM.  

expectation conditions (see Chapter 4, and also de Lange et al., 2013; Morales 

et al., 2015). As the expectation of Gabor presence over absence increases, 

decision threshold should become increasingly biased towards ‘yes’ responses 

(i.e. liberalised, shown by smaller values of c). This was confirmed in a within-

subjects Attention (full, diverted) x Expectation (25%, 50%, 75%) ANOVA, 

F(1.65, 29.72) = 18.10, p < .001, ηp
2

 = .50. LSD post-hoc tests revealed a 

greater bias towards reporting ‘yes’ in the 50% (neutral) than the 25% (expect 

absent) condition, p = .010, dz = 1.15, and greater still in the 75% (expect 
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present) than the 50% (neutral) condition, p < .001, dz = 1.39 (fig. 6.2C). We 

found no evidence for attentional effects on decision threshold, F(1, 18) = 3.38, 

p = .083, ηp
2

 = .16, and no Expectation x Attention interaction, F(2, 36) = 0.37, p 

= .693, ηp
2

 = .020. Summarising these results, our design successfully 

independently manipulated attention and expectation, while keeping detection 
sensitivity constant across conditions. 

6.3.2 EXPECTATIONS INCREASE CONFIDENCE 

In Chapters 4 and 5 it was shown that subjective confidence increases when 

perceptual decisions are congruent with prior expectations. On this basis, we 

hypothesised that confidence would relate to prediction error signals. To 

determine whether we had replicated this behavioural result, we compared 

confidence for perceptual decisions that were congruent with expectations 

against those that were incongruent. Congruent responses are ‘yes’ reports in 

the 75% (expect present) condition and ‘no reports in the 25% (expect absent) 
condition. The reverse applies for incongruent responses.  

The percentage of high confidence trials were Z-transformed (because 

otherwise confidence is bounded by 0 and 1) and subjected to an Attention (full, 

diverted) x Accuracy (correct, incorrect) x Congruence (congruent, neutral, 

incongruent) repeated-measures ANOVA. Participants appropriately showed 

lower confidence for incorrect than correct reports, F(1,18) = 5.70, p = .028, η2 = 

.241. Confidence was also higher for attended than unattended targets F(1,18) 

= 5.27, p = .034, η2 = .226. Importantly, confidence increased with expectation-

response congruence, F(1.10,19.86) = 6.67, p = .016, η2 = .270 (untransformed 

data plotted in figure 6.2D). Congruence additionally interacted with attention, 

F(2,36) = 6.51, p = .004, η2 = .266, such that inattention only lowered 

confidence when participants had an informative prior (congruent reports p = 

.023, incongruent reports, p = .006 vs. neutral reports, p = .280). There were no 
other significant main or interaction effects (all p > .107, all η2 < .138).  

Next we wanted to determine whether this effect reflected changes in 

metacognitive bias. For each level of attention and expectation, we computed 
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response-specific confidence thresholds over the type 1 SDT model (see 

Methods and Section 3.6.1). We wanted to determine whether confidence 

thresholds for congruent decisions were closer to the type 1 criterion than 

incongruent decisions. Values that are closer to zero indicate that the participant 

reports “confident” with less evidence, thereby indicating a more liberal 
metacognitive bias.  

As shown in figure 6.3, we found a significant expectation by report interaction, 

F(2,36) = 17.16, p < .001, η2 = .488, such that when participants reported “yes”, 

metacognitive bias linearly liberalised with increasing prior probability of target 

presence,  F(1,18) = 6.24, p = .022, η2 = .257, and when they reported “no”, 
metacognitive bias linearly liberalised with prior probability of absence, F(1,18) 

 

Figure 6.3 Response-specific metacognitive bias as a function of 

expectation.  

The red diamonds depict the distance of the normalised confidence 
threshold for ‘yes’ responses from the normalised type 1 threshold. This 
threshold is squeezed towards criterion with increasing probability of 
target presence, representing more liberal confidence. Similarly, for 
targets reported as absent (blue circles), the normalised confidence 
threshold is closer to the normalised criterion with increasing probability 
of target absence. Therefore, expectation-congruent responses require 
less type 1 evidence than incongruent responses to be reported with 
confidence. Error bars represent within-subject SEM.  
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= 24.00, p < .001, η2 = .571. These results indicate that over and above effects 

on type 1 decision threshold, expected percepts may require less type 1 

evidence to be reported with high confidence.  

Finally we asked whether the congruency effect on metacognition found in 

Chapter 4 was replicated. We ran the same analysis as that above, but on type 

2 D’ and meta-d’/d’. Results showed that while type 2 D’ increased with 

expectation-response congruence independently of attention, F(2,36) = 14.25, p 

< .001, η2 = .952, no effect on meta-d’/d’ was found (Expectation x Report,  p = 

.940, Expectation x Report x Attention, p = .284). Thus, we partly replicated 

findings from Chapter 4. 

6.3.3 TWO FORMS OF CONGRUENCY 

To unravel the neural correlates of predictive influences on confidence, we first 

needed to identify brain regions sensitive to perceptual expectations. We 

predicted, based on previous work, that areas sensitive to perceptual 

expectations would exhibit an increased BOLD amplitude for trials on which 

expectations were violated (Egner et al., 2010; Jiang et al., 2013; Kok et al., 
2011; Kouider et al., 2015; St. John-Saaltink et al., 2015). 

There are two possible ways to define expectancy violations here. Because the 

experimental design used near-threshold stimuli, leading to potential 

dissociations between percept and physical stimulus presentation, violations 

could occur with respect to either physical stimulus presentation, or perceptual 

report. We term the neural correlates of these types of incongruence PESTIMULUS 

and PEREPORT respectively. The former reflects the BOLD response to 

discrepancy between internal templates and stimulus presentation, whereas the 

latter reflects the BOLD response to discrepancy between internal templates 

and participants’ reported percept. PESTIMULUS is most often observed at lower 

levels of the perceptual hierarchy (Chennu et al., 2013; Jiang et al., 2013; Kok 

et al., 2011), whereas the decision-related PEREPORT signals are often reported 

in higher-level, decision-related areas (Bubic et al., 2009), though they can be 
observed in visual cortex as well (Pajani, Kok, Kouider, & de Lange, 2015).  
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6.3.4 REPRESENTATION OF PESTIMULUS IN VISUAL CORTEX 

In our first analysis, we searched for regions that are sensitive to discrepancies 

between expectation and stimulus presentation (PESTIMULUS) over whole brain. 

To do this, we computed the contrast unexpected stimulus presentation > 

expected stimulus presentation. Target presence is expected in the 75% 

condition but unexpected in the 25% condition. Target absence is expected in 

the 25% condition but unexpected in the 75% condition. Our analysis identified 

one PESTIMULUS-sensitive area in contralateral occipital cortex (V1 to V3, BA18, 

peak MNI x = -12, y = -80, z = 22, Zpeak = 4.09, 0.66cm3, cluster pFDR = .350, 

puncorr = .023) and one on the ipsilateral side (V1 to V3, BA18, peak MNI x = 8, y 

= -80, z = 18, Zpeak = 3.99, 1.01cm3, cluster pFDR = .205, puncorr = .007). Neither of 

these clusters survived cluster-level correction, so they will not be considered 

beyond this point. They are presented to simply to show consistency with 

previous studies, in which statistical power was improved by constraining the 

analysis with functional localisers (Jiang et al., 2013; Kok et al., 2012, 2011; 
Larsson & Smith, 2012; Smith & Muckli, 2010) .  

The whole-brain contrast PESTIMULUS, attended > PESTIMULUS, unattended yielded 

no significant or marginally significant clusters, indicating no evidence for a 

PESTIMULUS ⨉ attention interaction.  

Using a peak threshold of p < .005 both of these analyses were replicated under 

our control model, which included reaction speed and Gabor contrast as 

parametric modulators (unexpected > expected, contralateral: pFDR = .446, puncorr 
= .014, ipsilateral: pFDR = .446, puncorr = .011).  

6.3.5 REGIONS REPRESENTING PEREPORT 

Next, we searched for regions whose BOLD response reflects the discrepancy 

between expectation and perceptual report (PEREPORT). Expectation-congruent 

reports are 'yes' responses in the 75% (expect present) condition and 'no' 

responses in the 25% (expect absent) condition. The reverse applies for 

expectation-incongruent reports. These definitions differ from those in the 
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previous analysis, because they consider perceptual report instead of stimulus 
presence or absence. 

The contrast expectation-incongruent report > expectation-congruent report was 

computed over whole-brain. This revealed eight significant clusters, distributed 

throughout cortex (figure 6.4A and table 6.1). Our control analysis revealed that 

this difference was not driven by differences in Gabor contrast or reaction speed 
(all remained significant after cluster correction at the p < .05 level).  

We found no significant clusters for the reverse contrast, even with a more 
liberal peak threshold of p < .005 uncorrected.  

 Regions exhibiting a PEREPORT pattern should show heightened BOLD for 

incongruent responses irrespective of whether that response was a ‘yes’ or a 

‘no’ (Kok et al., 2011). To test this in the above ROIs, median regression 

coefficients were extracted as a function of attention, expectation and report, 

and subjected to separate repeated-measures ANOVAs. Results are depicted in 

figure 6.4B and statistics are presented in table 6.2. All regions exhibited a 

significant PEREPORT response for both ‘yes’ and ‘no’ judgements, except middle 

orbital gyrus and left inferior frontal gyrus. As a result these are not considered 

regions representing PEREPORT. All significant results here were replicated (at 

least at marginal significance) under our control model (for rIFG, our critical 

region, pFDR = .044). Results were fully replicated when using a peak threshold 

of p < .005. We have therefore identified six regions signalling PEREPORT. These 

are: right middle temporal gyrus (rMTG); right superior medial gyrus (rSMG), 

right inferior frontal gyrus (rIFG); right angular gyrus (rAG); and bilateral 

supramarginal gyrus (SG). These results implicate this set of regions as having 

sensitivity to the discrepancy between perceptual expectations and perceptual 
choice. 
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Figure 6.4. Report prediction error. 

 A. Results of contrast incongruent response > congruent response over whole 
brain. Only clusters surviving FDR cluster-correction are shown. B. PEREPORT 
(incongruent – congruent), by region and perceptual report. BOLD has been 
averaged over levels of attention. Stars represent whether PEREPORT is significantly 
different from zero. Error bars represent SEM * p < .05, ** p < .01,   *** p < .001  
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Table 6.1. Results of whole-brain analysis expectation-incongruent report > 

expectation-congruent report 

Region BA Side Volume 
(cm3) 

Peak 
Z pFDR 

Peak MNI 
x y z 

MTG 21 R 2.29 4.78 .007 54 -30 -2 
SMG 9/10 R 4.15 4.54 < .001 12 58 32 
IFG 47/48 R 2.70 4.45 .004 56 12 -2 

MOG 47/46 R 2.08 4.33 .009 40 50 -6 
AG 39 R 1.21 3.95 .044 46 -64 36 
SG 40 R 1.21 3.91 .044 58 -40 40 
IFG 47 L 1.90 3.79 .012 -38 26 -4 
SG 40/48 L 1.60 3.75 .021 -54 -46 34 

MTG = middle temporal gyrus, SMG = superior medial gyrus, IFG = inferior 
frontal gyrus, MOG = middle orbital gyrus, AG = angular gyrus, SG = 
supramarginal gyrus 

 

 

 

 

Table 6.2. Effect of expectation, separately for ‘yes’ and ‘no’ reports. Both 

effects should be significant for the region to be deemed a PEREPORT region 

Region 
Reported ‘no’ Reported ‘yes’ 

PEREPORT F P η2 F p η2 
Middle temporal gyrus 8.82 .008 3.29 5.83 .006 .245 Yes 
Superior medial gyrus 8.10 .001 .310 4.46 .014 .213 Yes 

Inferior frontal gyrus (R) 4.70 .015 .207 3.45 .041 .162 Yes 
Middle orbital gyrus 1.95 .157 .098 3.42 .044 .160 No 

Angular gyrus 3.52 .040 .164 4.07 .025 .185 Yes 
Supramarginal gyrus (R) 4.71 .044 .207 7.17 .015 .285 Yes 
Inferior frontal gyrus (L) 5.62 .008 .238 2.87 .070 .137 No 
Supramarginal gyrus (L) 5.39 .032 .230 6.04 .005 .251 Yes 
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6.3.6 HIGH CONFIDENCE IS ASSOCIATED WITH AN ATTENUATED PEREPORT 

RESPONSE IN RIGHT IFG 

Our main hypothesis was that high confidence would be associated with low 

PEREPORT. However, confidence can be also influenced by attention (Rahnev et 
al., 2011) and tracks accuracy (Dienes, 2008; Pleskac & Busemeyer, 2010). To  

test whether any PEREPORT region represented confidence after controlling for 

these potential confounds, median regression weights from each PEREPORT 

region were extracted as a function of confidence, attention and decision 

accuracy. These regression coefficients were then subjected to separate 

Bayesian repeated-measures ANOVAs. We were looking for regions whose 

BOLD response (in these regions, representing PEREPORT) differs with 

confidence. Note that we could not test for a PEREPORT x Confidence interaction 

because the participant has signalled low confidence yes/no decisions as 

unreliable, that is, their perception of Gabor presence or absence does not 
necessarily correspond to their report.  

Only one region exhibited a BOLD response (i.e. PEREPORT amplitude) that 

differed as a function of subjective confidence: rIFG. Here, supporting our 

hypothesis, BOLD amplitude was higher for guess than confident reports (figure 

6.5A). Crucially, the analysis revealed substantially more evidence for modelling 

rIFG BOLD as a function of confidence alone (BF = 13.620) than as a function 

of just accuracy (BF = 0.877), just attention (BF = 0.711), or as a combination of 

confidence and any other factors (BF = 0.003 - 2.069, see table 6.3 for 

summary of results from all ROIs). A frequentist ANOVA gave the same result: 

a significantly higher BOLD amplitude for guess than confident responses, 

F(1,18) = 6.04, p = .024, η2 = .251, 95% CI [0.10, 1.28]. These results are 
depicted in figure 6.5B. 

Next, we wanted to confirm that the effect of confidence on rIFG BOLD indeed 

reflects changes in PEREPORT. To do this, we restricted our analysis to confident 

responses and asked whether PEREPORT decreases as expectations exert 
stronger influences on behavioural confidence. This would show that high  
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Figure 6.5.The relationship between confidence and report prediction error.  

(A) BOLD as a function of confidence in each PEREPORT region. BOLD is 
significantly higher for guess than confident responses in rIFG only. (B) rIFG 
BOLD is higher for guess than confidence responses independently of attention 
and decision accuracy. (C) Brain-behaviour correlation. The higher the PEREPORT 
response (confident reports only), the less expectations increased confidence. 
Error bars represent SEM. * p < .05, ** p < .01, *** p < .001 

confidence is associated with low PEREPORT amplitude (i.e. a low expectation- 

report mismatch response). Furthermore, it would show that our behavioural 
effect of expectation on confidence is reflected in rIFG BOLD. 

To test this, we calculated the percentage increase in confidence when reports 

were congruent relative to incongruent. We denote this ΔConfidence. This 

quantity reflects the extent to which confidence judgements are shaped by 
expectations. Next, we computed the BOLD difference between incongruent  

 
Table 6.3. Results of Bayesian Confidence x Accuracy x Attention 

repeated-measures ANOVAS.  
Bayes factors correspond to the evidence for the listed model relative to the 
evidence for all other models 

 Bayes factors  
Region Confidence Accuracy Attention Confidence 

+ others 
Null 

MTG 0.14 0.68 4.96 0.01 - 2.26 1.00 
SMG 0.85 1.79 1.96 0.03 - 2.67 1.11 

IFG (R) 13.62 0.88 0.71 <  .01 - 2.07 3.96 
AG 1.35 9.83 0.53 0.01 - 3.42 3.47 

SG (R) 2.64 0.84 2.42 <  .01 - 1.13 10.07 
SG (L) 1.74 5.52 1.84 < .01 - 1.17 10.22 

MTG middle temporal gyrus, SMG superior medial gyrus, IFG right  
inferior gyrus, SG supramarginal gyrus, AG angular gyrus 
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and congruent reports (PEREPORT), restricted to confident responses. Results 

showed that these quantities were negatively correlated, ρ = -.512, p = .027 (fig. 

6.5C), confirming our finding that high confidence is associated with low 

PEREPORT in rIFG: the more expectation increased confidence behaviourally, the 
more confidence was associated with low rIFG PEREPORT.  

To ensure that these differences were not driven by differences in reaction 

speed or Gabor contrast, we extracted data from the cluster revealed by our 

control GLM. This revealed that even after controlling for these possible 

confounds, rIFG BOLD was significantly higher for guess that confident 

responses t(18) = 2.21, p = .041, dz = 0.44. The significant brain-behaviour 
correlation was also replicated, rho = -.575, p  = .014.  

Together, these analyses reveal that subjective confidence is reliably 

associated with PEREPORT in right IFG, even after controlling for attention, Gabor 
contrast, decision accuracy and reaction speed. 

6.3.7 SOURCES OF PRIORS AND SENSORY SIGNALS FOR CONFIDENCE.  

We have shown that rIFG activity associates response prediction error with 

confidence. Assuming a model in which decision confidence is a weighted 

function of top-down expectations and ‘bottom-up’ sensory signals (or decision 

evidence), we asked whether we could identify sources of these variables. To 

do this we ran a seed-to-voxel psychophysiological interaction analysis (PPI), 
with rIFG as a functionally defined seed.  

We were interested in regions communicating predictive information, and 

therefore regions of interest would demonstrate functional connectivity with rIFG 

that differs for congruent and incongruent reports. Furthermore, we wanted to 

determine the source of information that is used to shape confidence 

judgements. This can be captured by searching for regions whose congruence-

dependent connectivity with rIFG is predicted by the effect of expectations on 

confidence. We hypothesised that expectations would be represented in frontal 
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regions and sensory signals would be represented in visual cortex, and both of 
these information sources would be communicated to rIFG. 

To test this hypothesis we used a behavioural covariate of interest – the 

influence of expectations on metacognitive bias. As in section 6.3.2, we took as 

our measure the extent to which expectations induce a liberal shift in confidence 

thresholds (C’1+ and C’1-) over the type 1 axis. Specifically, we computed the 

(mean-centred) difference between metacognitive bias for congruent and 

incongruent reports. This measure quantifies the reduction in type 1 evidence 

required to report congruent (versus incongruent) decisions with high 

confidence. It is independent of decision bias and accuracy. We denote this 

variable ΔC1. Higher values signify that expectations liberalised metacognitive 
bias more.  

Sources of predictive information for confidence were identified by computing 

the contrast incongruent ≠ congruent, with ΔC1 as a between-subjects covariate 

of interest. As shown in table 6.4 and figure 6.6, the PPI analysis revealed four 

significant clusters: bilateral frontal pole (FP), right orbitofrontal cortex (rOFC), 

and right occipital pole (rOP). Increased functional connectivity between each of 

these regions and rIFG was associated with a stronger effect of expectations on 

metacognitive bias. Note that each correlation remained significant after 

excluding the four participants scoring highest on ΔC1. Next we determined what 

the role of these regions might be. We extracted median beta weights from each 
region and subjected them to separate repeated-measures ANOVAs.  

Table 6.4 PPI results. 

Regions exhibiting a significant congruence x ΔC1 interaction 

Region Side Volume 
(cm3) 

pFDR Peak MNI 
 X Y Z 

Frontal pole R 6.76 < .001 46 40 -20 
Orbitofrontal cortex R 5.64 < .001 20 26 -26 

Frontal pole L 3.58 .002 -40 44 -22 
Occipital pole R 3.05 .004 2 -94 20 
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Figure 6.6 Occipito-frontal network revealed by PPI analysis 

Regions revealed by PPI analysis. These are bilateral frontal pole (FP), right 
orbitofrontal cortex (rOFC) and right occipital pole (rOP). Each scatterplot 
depicts the brain-functional connectivity (FC) relationship for each region. 
Clockwise, these are lFP, rOP, rOFC and rFP. On the x-axis is the 
behavioural covariate of interest, ΔC1. On the y-axis is the difference in FC 
with rIFG and each region between congruent and incongruent responses. 
Each scatterplot shows that increasing connectivity with rIFG is associated 
increasing liberalisation of metacognitive bias by expectation. 
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Figure 6.7. Analyses on regions in occipito-frontal network  

(A) Significant attention by accuracy interaction in lFP. Correct but not incorrect 
decisions are associated with sensitivity to attentional state. (B) Significant effect of 
attention (left) and confidence by attention interaction (right) in rOFC. The left panel 
shows rOFC represents prior information. The right panel shows that attention 
reverses the relationship between confidence and BOLD. (C) Significantly greater 
rFP BOLD on guess than confident trias. (D) Significant confidence by accuracy 
interaction in right occipital pole. When confident, occipital pole BOLD is higher on 
correct than incorrect trials. There is no significant difference on guess trials. Error 
bars represent within-subjects SEM. 

In left frontal pole, attention and accuracy interacted, F(1,18) = 5.99, p = .025, 

ηp
2

 = .250, such that correct decisions were associated with sensitivity to 

attentional state, t(18) = 2.34, p =.031, but erroneous decisions were not, t(18) = 

1.27, p = .221 (fig. 6.7A). Thus, decision accuracy was predicted by this region’s 

sensitivity to attention.  

In right OFC, expectation demonstrated a ‘U’-shaped relationship with BOLD, 

F(1,18) = 5.33, p = .033, ηp
2

 = .228, meaning that this region represented the 

prior (fig. 6.7B, left). This follows because BOLD is higher when there is an 
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expectation (25% and 75% conditions) than in the control condition (50%). In 

this region there was also an attention by confidence interaction, F(1,18) = 7.67, 

p = .013, ηp
2

 = .299, such that attention reversed the BOLD response to 

confidence (fig. 6.7B, right). BOLD was higher on confident than guess trials 

under full attention, t(18) = .260, p =.018. This pattern was reversed under 

diverted attention, but did not reach significance, t(18) = 1.82, p = .085. This 

pattern is consistent with what would be expected from (reverse) uncertainty 

associated with attentional state. Finally, we found a significant attention by 

accuracy attention, F(1,18) = 6.72, p = .018, ηp
2

 = .272, whereby BOLD was 

higher for erroneous decisions under full, t(18) = 2.27, 95%CI [1.57, 2.28], p = 

.035, but not diverted, t(18) = 2.27, 95%CI [1.57, 2.28], p = .314, attention. 
Thus, rOFC represented prior information, attentional state and decision error.  

As shown in figure 6.7C, right FP represented confidence, such that high 

confidence was associated with lower BOLD amplitude than guess responses, 

F(1,18) = 6,63, p = .019, ηp
2

 = .269. Finally, in occipital pole, stimulus 

presentation and confidence interacted. Here, confident percepts were 

associated with a BOLD response that distinguished between correct and 

incorrect judgements, t(18) = 2.96, p = .008, whereas this was not the case for 

guess responses, t(18) = 1.11, p =.281. Thus, this region represents signals for 
perceptual sensitivity.  

One might wonder whether the frontal areas directly signal priors to occipital 

lobe, or vice versa for sensory signals. This was not the case. Re-running the 

PPI analysis in the same way, but with each cluster as our seed revealed no 

significant connectivity with any other. We also re-ran the analysis using the 

change in raw confidence by expectation-response congruence as our 

behavioural covariate. Results were broadly consistent with those in the present 

analysis, revealing an occipito-frontal network recruited when expectations are 

integrated into subjective judgements. Specifically, we found a significant cluster 

in right orbitofrontal cortex (MNI x = 10, y = 28, z = -18, pFDR = .024), left 

orbitofrontal cortex (MNI x = -36, y = 38, z = -18, pFDR = .008) and in 
intracalcarine sulcus (MNI x = 6, y = -58, z = 12, pFDR = .004).  
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Taken together, these results show that the integration of expectations into 

confidence judgements recruits an occipito-frontal network that represents top-

down influences of attention and expectation in frontal regions, and decision-
related signals in sensory cortex.  

6.3.7 THE CONTRIBUTION OF VISUAL REGIONS AND OFC TO CONFIDENCE IS PREDICTED 

BY WHITE MATTER DENSITY 

Our connectivity analyses revealed that OFC/FP and visual cortex represented 

top-down and bottom-up signals respectively, and that the recruitment of these 

regions was predicted by the effect of confidence on metacognitive bias. The 

presence of these individual differences motivated an exploratory follow-up 

analysis that asked whether they are reflected in brain structure. More 

specifically, we considered whether the weighting of top-down predictions and 

bottom-up signals was a function of white or grey matter (WM and GM 
respectively) density of the source regions. 

The BOLD response of our cluster in OFC reflected an effect of perceptual 

expectations on objective decision. The behavioural correlate of this is therefore 

Δ c = c25% - c75%, - the extent to which perceptual expectations bias (yes/no) 

decision. We performed a whole-brain multiple regression analysis on WM 

density, with total intracranial volume and participant age as nuisance 

covariates, and with Δc as the regressor of interest. This analysis revealed that 

propensity to incorporate low-level priors into decision-making, as measured by 

Δc, was negatively correlated with rOFC white matter density (fig 6.8A and B, 

peak MNI x = 23, y = 30, z = -14, 11.51cm3, Ppeak-FWE = .030, Z = 5.08). The 
same analysis for GM yielded no significant results. 

Given that both rOFC and rIFG BOLD predicted confidence we performed the 

same analysis, but this time with mean confidence as the regressor of interest. 

Mean confidence represents one’s overall belief in their perceptual 

performance, or self-efficacy. Higher values correspond to higher confidence in 

one’s decision-making ability (versus trial-by-trial performance). This revealed a 
significant cluster in contralateral occipital lobe. Here, increasing WM density  
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Figure 6.8. VBM results. 

 A. White matter density in right orbitofrontal cortex negatively predicts 
the effect of expectation on perceptual decision. B. White matter 
density in contralateral occipital pole is positively correlated with mean 
confidence across trials. 

significantly predicted greater confidence at the cluster, but not the peak level 

(figure 6.6C and D peak MNI x = 0, y = -87, z = 16, 6.40cm3, ppeak-FWE = .789, 
pFWE  = .028).  

Together these results suggest that the dependence of confidence on functional 

connectivity with source regions is reflected in anatomical indications of that 

connectivity: WM density in OFC was negatively predicted by its functional 

correlate; and increasing occipital pole WM density was associated with mean 
confidence, that is, beliefs of better perceptual performance.  

6.4 DISCUSSION 

In the present paper we have shown that behavioural confidence in perceptual 

decision increases when decisions are supported by (or congruent with) prior 
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expectations. Crucially, we show that this predictive information is, at least in 
part, integrated into confidence in right inferior frontal gyrus (rIFG).  

We have shown that unexpected percepts, taken with respect to the decision or 

report, are associated with a heightened BOLD response (termed here 

PEREPORT) in a distributed set of frontal, parietal and temporal decision-related 

regions. Interestingly, this expectation-sensitive set resembles those implicated 

in other forms of ‘top-down’ processing such as modality-independent sensory 

change detection (Downar, Crawley, Mikulis, & Davis, 2000), response inhibition 

(Criaud & Boulinguez, 2013; Verbruggen & Logan, 2008), and detection of 

behavioural salience (Jonathan Downar, Crawley, Mikulis, & Davis, 2002).  

Our crucial result was that the contribution of top-down expectations to 

subjective confidence judgements was reflected in fMRI BOLD, specifically in 

right inferior frontal gyrus (rIFG). Here, high confidence was associated with a 

lower prediction error response profile. Furthermore, the more that confidence 

was shaped by expectation behaviourally, the more that confidence was 

associated with low prediction error signals in this area. Our results therefore 

indicate a central role for rIFG in perceptual decision making in which the 

‘match’ between internal templates and perceptual content is integrated into 
subjective confidence judgements.  

Under an alternative account, the sensitivity of rIFG to confidence would be an 

indirect effect of sensitivity to task difficulty. For example, rIFG may infer task 

difficulty from the degree to which the percept is surprising. However, this 

interpretation was ruled out by control analyses, which showed that the 

PEREPORT-confidence relationship was not driven by choice accuracy.  These 

control analyses additionally excluded attention, stimulus contrast, and reaction 

speed as driving the observed relationship between PEREPORT and confidence in 
rIFG.   

This process of relating predictive information into confidence judgements 

recruited both occipital lobe and frontal regions bilateral frontal pole (FP) and 

right orbitofrontal cortex (rOFC). In left occipital lobe, decision-related signals 
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were represented. Interestingly, connectivity between rIFG and contralateral 

occipital lobe was not found. One possibility is that contralateral occipital lobe is 

functionally connected with rIFG independently of expectation effects; another 

possibility is that statistical power was too low to detect connectivity reflecting 

the neural response to a small stimulus in retinotopically-organised space. We 

interpret the functional connectivity with occipital lobe as the communication of 

sensory signals. By contrast, we found the representation of top-down 

influences in frontal regions. In particular, right OFC represented prior 

information, consistent with previous work (Schoenbaum & Roesch, 2005; 

Trapp & Bar, 2015; Wallis, 2007), and white matter density in this area even 

predicted behavioural effects of expectation on objective decision. Right OFC 

was also sensitive to attentional state.  Here, representation of the prior required 

attention, and furthermore, the BOLD response to decision confidence reversed 

with attention. Under full attention rOFC BOLD was higher for guess responses 

than confident responses, as is usually found (Fleming et al., 2012; Hilgenstock, 

Weiss, & Witte, 2014). However, under diverted attention this pattern reversed, 

possibly indicating that rOFC represents the uncertainty associated with 
attentional state: high under full attention, but low under diverted attention.  

Altogether, we interpret these results as showing that subjective confidence is 

represented in rIFG as a combination of both stimulus-driven signals, 

communicated from occipital lobe, and shaped by top-down perceptual 

expectations and attention, communicated from OFC and frontal pole. OFC has 

been repeatedly been shown to reflect reward expectations and beliefs (De 

Martino et al., 2013; Kepecs et al., 2008; Kim, Shimojo, & O’Doherty, 2011; 

Lebreton et al., 2015), however here we place OFC belief representations within 

a larger hierarchical structure for perceptual processing, generating predictions 

(Stalnaker, Cooch, & Schoenbaum, 2015; Trapp & Bar, 2015) that constrain 
subjective confidence judgements in perceptual decision.  

Importantly, our PPI analysis cannot determine the directionality of functional 

connections in this network. One possibility is that rIFG is involved in 

constructing confidence from an integration of PEREPORT signals and top-down 
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expectations. Here our occipito-frontal network would be sending signals to 

rIFG. However, another possibility is that bottom-up signals are passed from 

occipital lobe to rIFG, and an initial transformation of PEREPORT into confidence 

is signalled to the frontal regions of this network. Under such an account, the 

role of rOFC and/or frontal pole may be one which transforms the confidence 

estimate represented in rIFG into a reportable judgement, based on the 

mismatch between the estimate, expectations, and potentially, attentional state 

(Lebreton et al., 2015). Further studies will be needed to disambiguate these 
possibilities. 

Our results are readily interpretable from Bayesian brain perspectives (Clark, 

2013; Friston, 2009; Lee, 2002; Yuille & Kersten, 2006b). These propose that 

perceptual inference is a weighted integration of sensory evidence and prior 

beliefs about the cause of the sensation, such that the perceptual report 

corresponds to the belief with the greatest posterior probability. The posterior 

probability increases as the correspondence between prior and sensory signal 

increases. Therefore, inference is deemed ‘successful’, and so should be 

associated with high confidence, when we see a low ‘prediction error‘ response, 

as we saw here (Meyniel, Sigman, et al., 2015). Neuronal representations of 

prediction errors are well-established in the reward domain (Bayer & Glimcher, 

2005; Nakahara et al., 2004), but in the perceptual domain evidence remains 

restricted to BOLD correlates such as PEREPORT. Under such a Bayesian brain 

account, our connectivity results suggest that occipital lobe sulcus passes 

sensory signals to rIFG, and frontal pole/OFC passes top-down predictions and 

weightings of attentional state. In this view, the finding that PEREPORT amplitude 

in rIFG was lower for confident responses is consistent with the representation 

or construction of the posterior belief in this region. This in turn is in line with 

empirical evidence for rIFG encoding of the decision variable, either in Bayesian 

form (the posterior; d’Acremont et al. 2013) or as decision evidence (Hebart et 

al., 2014), which are mathematically equivalent, (Bitzer et al. 2014).   

Previous work has separately implicated rIFG in the representation of both the 

decision variable (Bubic et al., 2009; d’Acremont et al., 2013) and expectation 
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violation in a range of modalities, from speech perception (Clos et al., 2014) to 

the auditory (Garrido, Kilner, Kiebel, & Friston, 2009), visual (Bubic et al., 2009), 

and tactile (Allen et al., 2016) domains. Previous work has also implicated rIFG 

in the representation of subjective uncertainty (Fleck, Daselaar, Dobbins, & 

Cabeza, 2006; Fleming & Dolan, 2012). However, to our knowledge these 

functions of rIFG have not been related to each other before. Right IFG has also 

been implicated in a wide range of related executive processes such as novelty 

detection (Hampshire, Chamberlain, Monti, Duncan, & Owen, 2010), change 

detection (Beck, Rees, Frith, & Lavie, 2001), and behavioural relevance 

(Hampshire et al., 2010). Furthermore, it has been implicated in detecting or 

resolving response conflict (Casey et al., 2000; Hampshire et al., 2010), and is 

a key component of the response inhibition network (Criaud & Boulinguez, 

2013; Verbruggen & Logan, 2008). This raises the intriguing possibility of a 

functional overlap between resolution of response conflict and the formation of 
confidence. 

These roles could be unified by considering rIFG as the region in which the 

posterior is computed (at least for perceptual tasks), because the posterior 

belief on sensory causes affords a hypothesis space for adaptive, plausible 

actions (Mansouri, Tanaka, & Buckley, 2009). Such a view is consistent with 

evidence for rIFG in appropriately acting on perceptual choices (Suzuki & 

Gottlieb, 2013), computing behavioural significance (Sakagami & Pan, 2007) , 

computing action-outcome likelihoods that modulate motor cortex (Morris, 

Dezfouli, Griffiths, & Balleine, 2014), and representing the posterior (d’Acremont 

et al., 2013). It has even been shown that the rIFG BOLD response to decision 

errors is associated with both the valence of the decision outcome, and the 

optimism of the participant (‘self-belief’; Sharot et al. 2011), consistent with a 

view of rIFG in which high-level, abstracted posteriors are computed from 

beliefs and errors. Anatomical considerations support such a view, since the 

rIFG is directly connected with regions relevant for both cognitive and motor 

control (Petrides & Pandya, 2002). We leave open for future research the 

question of whether and how rIFG relates perceptual confidence to action 
outcomes.  
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6.5 SUMMARY 

In summary, we have shown that top-down expectations are integrated into 

decision confidence, and have shown that this occurs in a functional network 

consisting of rIFG, bilateral frontal pole, right OFC and occipital lobe. Here, top-

down perceptual expectations and bottom-up sensory inputs are integrated into 

a subjective sense of perceptual confidence. Together, our data reveal a crucial 

role of top-down influences in the mechanism by which perceptual decisions 
become available for conscious report. 
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7 
GENERAL DISCUSSION 
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7.1 OVERVIEW 

Subjective perceptual confidence is an integral component of visual 

consciousness, which in part reflects the strength of perceptual experience 

(Fleming & Lau, 2014). As such, understanding how confidence is constructed 

may help us to get closer to understanding the mechanisms underlying 

subjective experience. In parallel, by understanding how the correspondence 

between confidence and accuracy arises we can better understand the 

mechanisms underlying our ability to introspect upon and evaluate our 
decisions.  

A large portion of the literature on perceptual confidence considers how sensory 

information shapes these judgements, and the conditions under which 

confidence and accuracy dissociate. However, the contribution of top-down 

influences to the formation of subjective judgements has remained 

understudied. This is surprising, despite the fact that their contribution to the 

formation of objective decisions are of great interest. To this end, the work in 

this thesis has investigated how perceptual confidence is shaped by top-down 

perceptual expectations, or priors. A novel behavioural paradigm has been 

introduced, which consistently shows that confidence and metacognitive bias 

increase, and metacognition improves, for perceptual decisions that have a high 

prior probability, that is, are expectation-congruent. Using EEG and fMRI, 

Chapters 5 and 6 examined how these priors are integrated into confidence 

before and after target onset. This discussion chapter will consolidate the 

empirical findings presented, and suggest a plausible extension of Bayesian 
brain frameworks into the domain of subjective reports. 

7.2 KEY RESULTS 

7.2.1 SUBJECTIVE JUDGEMENTS ARE SHAPED BY EXPECTATIONS, NOT 

ATTENTION. 

Interest in how expectations shape visual consciousness is growing, and we 

now know that percepts receive preferential access to awareness when they 
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are predicted in either content (Chang et al., 2015; Melloni et al., 2011; Pinto et 

al., 2015; Sterzer et al., 2008) or time (Mathewson et al., 2012; Wyart & Tallon-

Baudry, 2009). These effects may arise at the level of objective perception, 

improving the fidelity of the perceptual representation itself. Alternatively (or 

additionally) effects of expectation could reflect changes in the threshold for 

awareness, such that more probable percepts are advantaged in their access to 

visual consciousness. Finally, given that attended objects are more likely to 

reach awareness (Kanai, Tsuchiya, & Verstraten, 2006; Kanai et al., 2010; 

Lavie, 2006; Wyart & Tallon-Baudry, 2008), top-down influences of expectation 

may simply reflect attentional effects. The work presented here has investigated 

subjective confidence judgements while factorially manipulating attention and 
expectation.  

Work here has shown that perceptual decisions that are more a priori probable, 

that is, are expectation-congruent, are associated with both liberalised 

metacognitive bias (confidence) and improved metacognitive accuracy. While 

attention exerts a strong effect on detection sensitivity (as measured by contrast 

thresholds), its relationship with subjective measures is less clear. 

Metacognitive bias, that is, the tendency to report decisions with high 

confidence (independently of accuracy) became more liberal with expectation 

independently of attention. However the relationship between attention, 

expectation and the proportion of confident trials was less stable. It may be that 

the dependence of expectation on attention depends on stimulus contrast. As 

shown in table 7.1, Chapters in which the effect of attention on contrast 

sensitivity was stronger revealed a dependence of expectation effects on 
attention. Such an explanation for the relationship between attention and  

Table 7.1 Interactions between attention and expectation by Chapter 

 Effect of inattention on 
expectation-confidence 

relationship 

Stimulus contrast (attended 
vs. unattended) 

Chapter 4  Eliminates relationship 8% vs. 3% (62% change) 
Chapter 5 Dampens relationship 19% vs. 25% (24% change) 
Chapter 6 Relationship still present 5% vs. 4% (20% change) 
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contrast would be consistent with recent work, which shows subjective visibility 

ratings of unattended targets to be largely insensitive to signal strength (Rahnev 

et al., 2011). Rahnev and colleagues’ data reveal that that as signal strength 

increases, attended targets will (unsurprisingly) be associated with higher 
confidence, yet confidence for unattended targets remain unaffected. 

We therefore see an effect of attention on confidence that increases in 

magnitude with stimulus contrast. Under such an account, expectations do not 

require attention to shape confidence as such. Rather, interactions between 

attention and expectation are driven indirectly, by failures to incorporate signal 

strength into confidence judgements under inattention. 

Consistent with this interpretation, the neural mechanisms underlying 

expectancy effects on confidence were largely independent of attention. Pre-

stimulus alpha oscillations, previously implicated in top-down attentional effects 

on sensitivity (Busch & VanRullen, 2010; Landau & Fries, 2012; Mazaheri, 

DiQuattro, Bengson, & Geng, 2011; Rohenkohl & Nobre, 2011; Zumer et al., 

2014), are here shown to be involved in effects of expectation, not attention. 

The phasic modulation of both objective and subjective perception by alpha 

oscillations persisted when attention was diverted from the task. Similarly, the 

neural response to violations of expectations – perceptual ‘prediction error’ – 
and its negative relationship with confidence is independent of attention. 

This does not mean that confidence is wholly independent of attention. For 

example, results showed that right orbitofrontal cortex exhibited opposing 

responses to confident versus uncertain decisions, depending on attentional 

state.  Neither do these results mean that attention and expectation do not 

interact. Indeed, Chapter 4 shows that perceptual sensitivity for task-relevant 

decisions is increased when perceptual decisions on a secondary task are 

shaped by valid priors, suggesting that correctly predicting unattended 

perceptual content reduces the associated processing load and frees up 

resources for primary tasks (Hohwy, 2012; Sy, Guerin, Stegman, & Giesbrecht, 
2014).  
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These results implicate top-down attention primarily in shaping objective 

perception, whereas the effects of top-down expectation appear to permeate 

into the domain of subjective perception as well. To the extent that perceptual 

metacognition can be used as a proxy for visual awareness (Dienes & Seth, 

2010a; Fernandez-Duque et al., 2000; Kentridge & Heywood, 2000; Kunimoto 

et al., 2001; Sandberg et al., 2010; Seth et al., 2008, but see Jachs et al., 2015), 

these results suggest that top-down attention may act at the level of sensory 

representation, while expectations bias objective and subjective thresholds so 

that probable perceptual inferences receive preferential access to visual 
consciousness. 

These conclusions about expectation and attention are more directly applicable 

to metacognition. The data presented here consistently reveal an interaction 

between expectation and perceptual decision, indicating that metacognition 

arises, at least in part, from some comparison process between the perceptual 

decision and its prior probability, akin to what is thought to occur for objective 

perception (Summerfield & de Lange, 2014), and consistent with evidence for 

confidence tracking posterior probabilities (Aitchison et al., 2015; Feldman & 

Friston, 2010; Meyniel, Schlunegger, et al., 2015). While the effects of 

expectation on subjective judgements are somewhat dampened under diverted 

attention, attention does not appear to be necessary for appropriately placing 
confidence thresholds.  

It is important to note that, while not the focus of this thesis, strong conclusions 

about whether metacognitive accuracy increases with expectations cannot be 

drawn. When estimating metacognition separately for yes and no reports, meta-

d’ is neither robust to changes in metacognitive bias (confidence) nor to 

changes in decision thresholds (Barrett et al., 2013; Evans & Azzopardi, 2007; 

Fleming & Lau, 2014). Type 2 ROC curves, though invariant to changes in 

metacognitive bias by design, are also inappropriate for the data presented here 
because they are biased by decision thresholds (Galvin et al., 2003).  

The effect of expectation-response congruence on confidence is easily 

accommodated by normative perceptual decision-making models. In evidence 
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accumulation terms, the prior on some perceptual choice is generally modelled 

as its initial evidence, C0.(Dunovan, Tremel, & Wheeler, 2014; Wyart et al., 

2012). This means that at point of decision, evidence for probable percepts will 

be higher if the initial evidence had favoured the unselected choice. To the 

extent that confidence can be formulated as decision evidence, expectation-

congruent reports will therefore be associated with higher confidence than their 

incongruent counterparts (Ratcliff & McKoon, 2008; Vickers, 1970; Wong, 

2006). This account is easily reformulated in Bayesian terms. To the extent that 

confidence can be modelled as a function of the posterior belief (Feldman & 

Friston, 2010; Hangya, Sanders, & Kepecs, 2016; Hebart et al., 2014; Meyniel, 

Sigman, et al., 2015; Pouget et al., 2016), confidence will increase with 

increasing prior probability of that decision. On both accounts, the behavioural 

and pre-stimulus effects of expectation on confidence presented in this thesis 

can be explained in terms of by biases at the beginning of the evidence 

accumulation process. However, this account cannot explain why confidence 

thresholds over the type 1 axis also changed with expectation. While further 

work is needed to assess the behaviour of this confidence measure in depth, 

results here suggest that the threshold for reporting decisions with confidence 
changed over and above changes in type 1 criterion.  

The extent to which this account can explain effects of congruence on 

metacognition is unclear. The analyses here largely used the measure meta-

d’/d’ to measure metacognitive accuracy, which should be invariant to 

differences in d’, decision threshold c, and metacognitive bias C (Barrett et al., 

2013; Maniscalco & Lau, 2012). In theory, this should mean that effects of 

expectation on metacognition cannot be explained by changes in confidence 

thresholds alone: meta-d’/d’ should be invariant to decision and confidence 

biases. One issue is that when meta-d’ is estimated separately for “yes” and 

“no” judgements, as was necessary here, the measure loses its invariance to 

bias (Barrett et al., 2013). Therefore the results found under metacognitive 

accuracy might in fact be biased by changes in decision and confidence 
thresholds. Indeed, this is how the results were modelled in Chapter 4.  
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A second possible issue is that expectations might have changed decision 

accuracy, despite seeing no differences in d’. By design, expectation-congruent 

decisions are more likely to be correct because the expectation is valid. To 

illustrate, ‘yes’ responses have an a priori 75% chance of being correct in the 

‘expect present’ condition but only a 25% chance of being correct in the ‘expect 

absent condition’. While meta-d’ can be computed separately for yes and no 

responses, d' cannot. This means that response-conditional meta-d’/d’ values in 

these studies may also be dependent on accuracy, because d’ cannot capture 

sensitivity on congruent versus incongruent trials. Future research could 

investigate these possibilities in a number of ways. The most straightforward 

approach would be to use a paradigm that manipulates expectation without 

relying on response-conditional measures, for example, by measuring 

metacognition while environmental statistics are learned. Alternatively, false 

perceptual beliefs could be induced. This latter manipulation should decouple 

accuracy from predictability, because expected percepts would be not be more 
likely to be correct.  

7.2.2 FRONTAL AND SENSORY CONTRIBUTIONS TO THE INTEGRATION OF 

TOP-DOWN INFLUENCES ON CONFIDENCE 

Chapters 5 and 6 investigated the neural mechanisms that underlie top-down 

effects on confidence. Chapter 5 showed that the influence of perceptual priors 

can be predicted by ongoing brain activity, such that sorting trials according to 

stages of the pre-stimulus alpha cycle reveals certain phases that are 

associated with stronger effects of expectation on both decision and on 

confidence. The phases at which decision thresholds were most biased by 

expectations were also those at which confidence thresholds were most biased 

by expectation-response congruence. This suggests that at the decision stage, 

confidence judgements incorporated the expectancy information that had been 

made available pre-stimulus: stronger prior evidence for the decision increased 

confidence, whereas stronger prior evidence against the decision decreased 
confidence. 
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In turn, these results show that the propensity to integrate priors into decisions 

is dependent on fluctuations in cortical excitability over visual regions (Lindsley, 

1952). Expectations maximally bias decisions by expectation every 100ms, and 

these 10Hz cycles in which top-down (versus bottom-up) signals dominate 

objective decision-making support the view that oscillations may carry prior 

information to task-relevant brain areas (Bastos et al., 2012; Engel et al., 2001; 
Friston, 2012; van Kerkoerle et al., 2014; von Stein et al., 2000).   

So, what process is reflected in the alpha cycle? One possibility is that alpha 

oscillations reflect the recruitment of prior evidence to visual regions. Such an 

account is consistent with proposed role of alpha oscillations in long-range 

communication across cortical areas and in top-down control (Arnal & Giraud, 

2012; Engel et al., 2001; Fries, 2005; Palva & Palva, 2007; Womelsdorf & Fries, 

2007). From an evidence accumulation stand-point, this could correspond to a 

shift in baseline evidence, such that the relevant neural populations need less 

sensory evidence to fire (Summerfield & de Lange, 2014). In Bayesian terms, 

this could correspond to fluctuations in the mean of the prior belief, itself leading 

to fluctuations in the posterior. On an alternative view of the alpha cycle, 

decision threshold fluctuations may correspond not to the availability of prior 

evidence, but to the weighting of prior evidence. Under this account, the prior 

probability would be constant with respect to alpha phase, however sensory 

precision would be subject to 100ms cycles. Phases at which sensory signals 

are represented with higher fidelity may be associated with a reduced effect of 

expectation. This model would be consistent with previous evidence for pre-

stimulus phase- modulation of visual attention using spatial cueing paradigms 

(Busch & VanRullen, 2010; Frey, Ruhnau, & Weisz, 2015; Landau & Fries, 
2012).  

Under both accounts there exist optimal levels of cortical excitability for the 

incorporation of priors into decision. Both accounts also suggest that 

expectations modulate cortical excitability in order to adaptively facilitate or 

inhibit neural responses to forthcoming signals, and both accounts propose the 

existence of an optimal level of cortical excitability that depends upon whether 
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stimulus presentation is expected or not. However the data presented here 

cannot distinguish between the fluctuation-in-mean and fluctuation-in-precision 

explanations. Future work could address this question by, for example, using 

model-based EEG to estimate trial-by-trial values of both mean and weighting 

(precision, e.g. modelling the data under the hierarchical Gaussian Filter, 

Mathys et al. 2014). Alternatively, these two variables could be manipulated 

orthogonally in the direction of dots presented in a random dot kinematogram 

(RDK), so that participants learn to expect a particular distribution of dot motion. 

If alpha phase reflects precision then it should predict the influence of expected 

variance (sensitivity), whereas if alpha phase reflects the prior then it should 
predict the influence of expected mean (bias). 

Using fMRI, Chapter 6 revealed a range of cortical regions that are sensitive to 

the mismatch between percept (decision) and prior, and one of these regions – 

right inferior frontal gyrus (rIFG) – represented a confidence signal that was 

dependent upon this signal. Here, lower mismatch responses (‘prediction error’) 

predicted higher confidence. This results is consistent with a role of rIFG in non-

spatially re-orienteering attention to targets whose improbability signals 

behavioural relevance (Corbetta & Shulman, 2002), and in integrating sensory 

and motivational information to drive goal-directed behaviour (Sakagami & Pan, 

2007). This process of integrating priors and sensory signals into confidence 

recruits occipital lobe, the source of bottom-up signals, bilateral frontal pole 

(FP), representing confidence and attentional state, and right orbitofrontal cortex 

(OFC), which represented both priors and representations of attentional state. 

Specifically, OFC activity for confident versus guess responses reversed under 

diverted attention, so that BOLD was higher for guess responses under full 

attention, but higher for guess responses otherwise. These results suggest that 

OFC may track the uncertainty arising with attentional state, either 
communicating this to rIFG or shaping confidence signals from rIFG.  

Do these findings – of pre-stimulus modulation by expectations in occipital 

areas, versus the representation of expectations in rIFG and OFC in the post-

stimulus period – conflict? One might imagine that OFC should have shown 
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functional connectivity with occipital lobe, reflecting the ongoing (i.e. pre-

stimulus) communication of priors that periodically shape decision-making. 

These results are interpreted as reflecting distinct processing stages. While the 

EEG results of Chapter 5 implicate priors in periodically altering baseline 

evidence for probable decisions, the fMRI results of Chapter 6 implicate OFC in 

communicating priors that are matched against the sensory signals (in sensory 

regions) by rIFG. Dunovan and colleagues have shown that priors are indeed 

incorporated into decision-making at two stages. First, baseline evidence is set 

according to perceptual priors, and weighted by the reliability of that prior. 

Secondly, evidence accumulation rate is determined dynamically, according to 

the correspondence between evidence and prior (Dunovan et al., 2014). 

Together, these results suggest that initial evidence may indeed be 

communicated to visual areas, possibly by OFC, prior to target onset, but 

following target onset, priors are continually compared against sensory 

evidence in rIFG, with evidence being accumulated faster for high match trials, 
i.e., expectation-congruent responses.  

7.3 CONFIDENCE IN THE BAYESIAN BRAIN: A FRAMEWORK 

How might perceptual priors shape confidence? The work in this thesis 

suggests that perceptual expectations bias the evidence for the chosen sensory 

hypothesis in favour of more probable sensory hypotheses, and that this is 

instantiated by both sensory and frontal regions. These results support the 

widely held view that decision and confidence are based, at least in part, upon a 

common evidence source (Kepecs & Mainen, 2012; Kiani et al., 2014; Ratcliff & 

Starns, 2013). However, the work in Chapter 6 suggests that the evidence 

source that is relevant for confidence is not just sensory information, but also a 

re-representation of the decision itself (Cleeremans, 2011): the discrepancy 
between expectation and choice.  

Computational models of decision-making make the intuitive proposition that 

perceptual choices will correspond to the option with the most decision 

evidence, the ‘balance of evidence hypothesis’. In Bayesian terms, this 

proposition corresponds to the sensory cause associated with the peak of the 
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posterior probability distribution, that is, the belief with the greatest posterior 

probability (Meyniel, Sigman, et al., 2015; Pouget et al., 2016). On one 

Bayesian account of confidence, confidence is the variance, or precision of this 

distribution (Meyniel, Sigman, et al., 2015). This ‘distributional confidence’ 

seems to capture uncertainty rather than choice confidence. The variance of the 

posterior pdf is orthogonal to the mean, so here, confidence is not defined in 

terms of the decision to which it pertains, going against common conceptions of 

choice confidence (Kvam, Pleskac, Yu, & Busemeyer, 2015; Pouget et al., 
2016).  

A popular alternative proposes that confidence corresponds to the posterior 

probability of the decision, given the evidence. This formulation captures the 

definition of choice confidence well: the subjective probability of the decision 

having been correct. Where confidence judgements are collected on a scale, 

the assumption is that there exists some threshold such that if the posterior 

probability exceeds the threshold confidence is reported as ‘high’, and otherwise 

it is deemed to be ‘low’. This process of bifurcating continuous representations 

of confidence onto a reportable scale has been linked to orbitofrontal cortex 

(Lebreton et al., 2015). But how is this threshold set? Modelling confidence in 

terms of the posterior belief alone does not address the question of how 
decision confidence is computed and made available for report. 

While the perceptual decision-making literature considers confidence as a 

product of the objective decision-making process, other domains conceive 

confidence as a ‘second-order’ decision-making process. Here, confidence 

judgements are considered to be 'meta-decisions' in the sense that they are 

inferences on the accuracy of one’s decision. Some previous attempts to 

explain confidence have indeed proposed a 'read-out' of first order evidence. 

For example, type 2 signal detection theory (Evans & Azzopardi, 2007; Galvin et 

al., 2003) assumes an internal representation of being objectively correct, while 

higher order thought theory posits that conscious states correspond to 'higher-

level representations' of first order states (Gennaro, 1996; Lau, 2007; 

Rosenthal, 2000; Timmermans, Schilbach, Pasquali, & Cleeremans, 2012). The 
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problem here is that such accounts require some monitoring or 'read-out' 

system, meaning that as representations become more abstracted, the system 

must accommodate an increasing number of monitoring layers. To illustrate, I 

may be confident in a choice I have made, but feel that my sense of confidence 

is not a good predictor of positive outcomes. While one monitoring layer (for 

confidence judgements) may be neurobiologically plausible, as more become 
necessary the plausibility of such a system decreases.  

Hierarchical Bayesian frameworks circumvent this issue of requiring specialised 

modules for decisions at each level of abstraction. When processing is 

hierarchically organised, it can move into increasing levels of abstraction and 

re-representation without requiring any additional mechanisms, because for any 

decision the output of each hierarchical stage (its inference) will be a function of 

its inputs (top-down priors and bottom-up data). Here, there is no ‘monitoring 

layer’, as such, because every layer in every processing stream both receives 

input from subordinate levels, but also constrains levels above: every layer is a 

monitoring layer. Crucially, there is no upper-most layer, because the topology 

of the predictive coding hierarchy is more akin to a torus (doughnut), 

instantiating interdependent inferences across the brain. Thus, hierarchical 

predictive coding implicitly incorporates monitoring layers, but here these layers 
are embedded within a neurobiologically plausible system. 

Higher-order decisions (‘meta-inference’) in a hierarchical Bayesian framework 

should be computationally and mechanistically analogous to lower-order 

decisions. They only require the capacity for representing the relevant prior.  For 

example, orientation discrimination requires the relative probability of leftwards 

orientation in V1. However for subjective confidence judgements, the relevant 

priors must pertain to that confidence judgement – the prior probability of the 
decision having been correct. 

 Figure 7.1 presents a broad overview of how the construction of confidence 

could be achieved in a hierarchical Bayesian scheme. The proposed model 

assumes a predictive coding scheme, in which priors are passed via feedback 
connections and prediction errors are passed feed-forward. Following previous  
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Figure 7.1. A model for subjective confidence in Bayesian schemes.  

The type 1 decision is constructed in the manner predicted by hierarchical 
predictive coding models. At level k of the perceptual hierarchy, top-down 
priors are received from level k+1, and bottom-up prediction errors are 
received from level k-1. The inference at level k corresponds to the 
hypothesis with maximal posterior probability, given the prediction error. 
This posterior belief will form an empirical prior on the inference at level k-
1. Bottom-up input to level k+1 will be the remaining prediction error. The 
type 2 decision is constructed from a top-down ‘meta-prior’ – the prior 
probability of making a correct report – and bottom-up prediction error, 
corresponding to the discrepancy between the perceptual decision (given 
by the posterior) and perceptual prior (prior probability of the selected 
sensory cause). 

work, the model assumes that each level within the perceptual hierarchy 

receives bottom-up signals (here, prediction errors) and relevant top-down 

priors, and integrates them in order to identify the hypothesis with maximal 

posterior probability.  This hypothesis (the posterior belief) becomes an 

empirical prior for the level below, and any remaining discrepancy between data 

and posterior belief becomes the prediction error for the level above. This part 

of the model is taken directly from previous work (Friston, 2009; Knill & Pouget, 
2004; Lee & Mumford, 2003; Spratling, 2016; Yuille & Kersten, 2006). 
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The extension of this framework into confidence judgements is straightforward. 

While yes/no reports are determined according to the posterior belief of target 

presence, confidence in that judgement is determined according to the posterior 

belief of being correct. Given that the goal is to infer the accuracy of a decision, 

the relevant prior will be the prior probability of making a correct decision. 

Similarly, the bottom-up information will be the prediction error from the level 
below: the sensory evidence unexplained by the reportable perceptual decision.  

This variable is simply a predictive coding formulation of ‘decision evidence’. So, 

while objective perceptual decisions pertain to the mean of the posterior belief 

on sensory causes, conditioned upon sensory evidence and perceptual priors, 

confidence will be the mean of the posterior belief on decision accuracy, 

conditioned upon decision evidence and expected task performance, or self-

efficacy. The framework presented here bears similarity to the Radical Plasticity 

Thesis of Cleeremans and colleagues (Cleeremans, 2011; Timmermans et al., 

2012), who propose that metacognitive processes arise from a subpersonal re-

representation of lower-order states. They propose that objective decisions are 

determined according to the activity of a first-order layer, and its outputs form 
the inputs of a second layer that learns to predict the errors in the first.  

It is important to note that because the empirical chapters of this thesis did not 

manipulate prior beliefs about performance, the data presented in this thesis 

cannot support or refute this model. The data in this thesis only support the 

notion that perceptual priors shape confidence, most likely at the level of the 

first-order inference (Chapters 5 and 6). Under the model proposed here, 

perceptual priors shape the posterior belief, and so only indirectly shape 

confidence. This model motivates the hypothesis that manipulating beliefs about 

perceptual performance, for example by giving blockwise feedback, would 

shape confidence more than sensitivity. It also motivates the hypothesis that 

trial-by-trial retrospective confidence can be modelled as an integration of 
prospective confidence and decision evidence. 

 Another way of probing beliefs about task performance is to estimate 

confidence thresholds, averaged over all conditions and responses. This 
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measure represents participants’ overall belief that they have given a correct 

response. Exploratory correlations on each node of the occipito-frontal network 

against mean confidence threshold (defined over the type 1 axis) revealed that 

left frontal pole and right orbitofrontal cortex may represent these ‘self-efficacy’ 
priors (figure 7.2), though this should be confirmed with further research. 

How might these self-efficacy priors – that is, expected decision accuracy – be 

learned? Hierarchical predictive coding recruits the notion of ‘empirical priors’, 
where each prior is constrained by the inferences at higher hierarchical stages. 

 

Figure 7.2 Self-efficacy (mean width of confidence thresholds) in left frontal 

pole. 

Exploratory correlations showing the relationship between self-efficacy, as 
defined by overall confidence bias (width of confidence thresholds), and BOLD 
responses in each node of the functional network revealed in Chapter 6. 
Relevant BOLD responses for confidence judgements are (i) the difference 
between guess and confident responses, (not shown – all n.s.) and (ii) the 
effect of attention (shown). The former reflects sensitivity to subjective 
judgement whereas the latter reflects sensitivity to uncertainty or task-
relevance (see Chapter 6). Results show that perceived self-efficacy is 
associated with attentional responses in left frontal pole, and marginally in right 
OFC. 
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Confidence is shaped by reward and value (De Martino et al., 2013; Hebart et 

al., 2014), which themselves are contextual and thus shaped by the perceptual 

systems. Thus, one possibility is that priors for confidence arise via interactions 
with decision-making mechanisms in seemingly parallel domains. 

Another possibility recruits counterfactual predictions and sensorimotor 

contingencies (Seth, 2014a) into an ‘error-detection’ mechanism. To illustrate, 

suppose I see a figure in the fog. If I believe that figure to be cause by a fox 

running towards me, I may have a counterfactual prediction that at time t + 1, 

the fox will have advanced towards me at a fox-like speed. My posterior belief 

inferred at time t + 1 can then be compared to the posterior belief I would have 

expected, had the figure indeed been a fox. My prior in my decision accuracy 

can then be updated with the outcome of this comparison process. More 

formally, this process can be described as one in which counterfactual 

predictions associated with the posterior belief are tested against the world, and 

if those counterfactual predictions hold, the aforementioned posterior belief is 
likely to have been correct. 

7.4 FUTURE DIRECTIONS  

The empirical work in this thesis has revealed that confidence is strongly 

shaped by the extent to which perceptual decisions are supported by prior 

expectations. Perceptual expectations begin to shape subjective confidence 

prior to the appearance of a stimulus, and are integrated into confidence 

judgements in rIFG by comparing the associated perceptual decision against 

the prior evidence in its favour. Section 7.3 has proposed a Bayesian brain 

model, in which confidence is constructed from a ‘second-order’ inference, and 

that posits a mechanism for the construction of confidence from decision 

evidence and expected ‘self-efficacy’. However, many questions pertaining to 

the role of top-down influences in construction of confidence remain. This 

section will outline some directions for future research, namely, on the role of 

attention in confidence judgements, on the difference between confidence and 
uncertainty, and on whether non-perceptual priors shape confidence. 
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First, while the primary aim of manipulating attention here was to isolate effects 

of expectation, understanding the construction of confidence requires 

understanding the role of attention as well. The work here did not find a strong 

effect of attention on the influence of expectations. However, we know that 

sensory uncertainty and perceptual sensitivity have powerful effects on 

subjective visibility. Moreover, we know that even though the ideal Bayesian 

observer will use expectations more when sensory signals are imprecise (under 

inattention), empirical work finds that attention amplifies or optimises 

expectancy effects (see section 2.2.3), if it has any effect at all. So, why did 
attention have so few effects on subjective perception here?  

One possibility is that the dual-task paradigm suppressed attentional effects that 

may otherwise have been present, because though the expected task demands 

were different, task difficulty was equated across trials. It may be that allowing 

top-down attention to shape the difficulty of the task leads to this perceived 

difficulty shaping decision confidence even after accounting for changes in 

perceptual sensitivity. Another possibility is that top-down attention is involved in 

inferring sensory noise, which was kept constant across participants in these 

studies. Recent work has shown that, as expected, confidence decreases with 

increasing sensory variance after equating sensitivity (Spence et al., 2015), yet 

variance is systematically underestimated (Zylberberg et al., 2014). This 

underestimation may be associated with changes in the reliability of prior 

evidence, as would be predicted by ideal Bayesian observer models. One 

avenue for future research could be to factorially manipulate the expected mean 

and variance of an RDK to determine how confidence is shaped by each of 

these predictive pieces of information. Investigating the role of top-down 

attention within such a factorial design may help elucidate its role in the 
construction of confidence. 

 It is clear that uncertainty – about the sensory signals, internal state or action 

outcomes – strongly shapes perceptual decision-making and confidence, and 

that these distinct forms of uncertainty are represented in process-specific brain 

regions (Bach & Dolan, 2012). The incorporation of uncertainty also tends to be 
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optimally incorporated into objective decisions (Knill & Pouget, 2004). The 

studies in this thesis show that confidence in perceptual decision-making under 

sensory uncertainty is shaped by prior expectations, such that in the post-

decision period confidence is represented as perceptual ‘prediction error’ in right 

inferior frontal gyrus. These results are explained by appealing to the notion that 

template-response matching contributes to the construction of confidence. 

However, on an alternative view expectations shape decision confidence only 

indirectly, with this effect being driven by changes in representational 

uncertainty (e.g. the variance of the posterior pdf). In other words, do 

expectations shape decision confidence over and above their effects on 

uncertainty, or can expectancy effects on decisional certainty account for all 

effects on decision confidence? Teasing apart choice confidence and decisional 

uncertainty may then reveal neural mechanisms that are implicated specifically 
in the construction of confidence, but not its antecedents or ensuing processes. 

Finally, future research could investigate the role of prior beliefs that are not 

perceptual in nature. The model presented in section 7.6 proposes a critical role 

for priors about perceptual performance, or ‘self-efficacy’, yet the empirical work 

in this thesis has not manipulated these priors explicitly.  Recent work has 

shown that optimism influences how priors are used in decision-making and 

updating beliefs: optimistic individuals are more prone to update beliefs on the 

basis of positive information (Sharot et al., 2011) and to have higher priors on 

reward (Stankevicius, Huys, Kalra, & Seriès, 2014). Similarly, encoding fluency 

– believing that a stimulus is easily learned - is associated with higher 

judgements of learning (the easily learned = easily remembered effect, Koriat 

2008). This suggests that task-specific beliefs about performance are 

associated with higher confidence, at least in the memory domain. This effect is 

further constrained by the finding that an even more abstracted beliefs: 

believing that effortful decisions are a result of task ability is associated with a 

stronger relationship between encoding fluency and judgements of learning 
(Miele, Finn, & Molden, 2011).  
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So, would priors on perceptual performance shape perceptual confidence? In 

the memory domain, prospective confidence judgements do correlate with 

retrospective trial-by-trial confidence judgements, even in non-human primates 

(G. Morgan, Kornell, Kornblum, & Terrace, 2014), indicating that we can model 

prior beliefs about performance. Moreover, recent work has used reinforcement 

learning models to capture the effects of expected confidence – a function of 

recent confidence judgements – on trial-by-trial confidence (Guggenmos et al., 

2016), revealing a key role of striatum in the representation of what is referred 

to here as  expected ‘self-efficacy’. Are prospective and retrospective perceptual 

confidence judgements represented in different brain areas? Can retrospective 

confidence be modelled as a function of perceptual prediction error and 

prospective confidence? Model-based fMRI could test these questions explicitly, 

by formulating retrospective confidence as a ‘second-order’ posterior: the 

probability of being correct, given the decision evidence (‘first order’ posterior) 
and prior (prospective confidence).  

7.5 CONCLUSIONS 

This thesis has addressed the question of whether and how perceptual prior 

expectations shape confidence judgements. Results show that subjective 

confidence increases with increasing prior probability of the decision. The 

process by which confidence is shaped by perceptual priors begins before 

stimulus onset, where the weighting of priors on decision and confidence is 

determined according to the phase of ongoing occipital alpha oscillations. Right 

inferior frontal gyrus then integrates neural responses to expectation-report 

mismatch into confidence signals, recruiting both visual and frontal regions. 

Together, these results show that top-down influences of expectation shape our 

perceptual experience in a similar manner to that seen in objective perception, 
such that we largely see what we believe to be true.  
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