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Abstract

This thesis is concerned with the spectral theory of the Laplacian on non-Euclidean spaces and
its intimate links with harmonic analysis and the theory of special functions. More specifically,
it studies the spectral theory of the Laplacian on the quotients M = Γ\G/K and X = G/K,
where G is a connected semisimple Lie group, K is a maximal compact subgroup of G and Γ is a
discrete subgroup of G. It builds upon the special cases of compact and noncompact hyperbolic
surfaces M = Γ\H where Γ ⊂ PSL(2,R) is a Fuchsian group and G̃ := PSL(2,R) is the
projective special linear group of all 2×2 real matrices with determinant 1 (the latter is the group
of orientation-preserving isometries of the Poincaré upper half-plane H = {z ∈ C : Im z > 0}
and by a Fuchsian group we mean a discrete cofinite subgroup of PSL(2,R) that acts properly
discontinuously on H) and it generalises these techniques to explicit constructions of various
spectral functions on n-dimensional symmetric spaces X , most notably, when X = the unit
sphere Sn; the Euclidean space Rn; the real projective space RPn; the complex projective space
CPn; the hyperbolic upper half-space Hn; and the hyperbolic unit ball Dn. The main tools in
contemplating this throughout are the use of various spectral estimates and identities, integral
representations and the indispensable trace formulae.

The thesis consists of six chapters including an introduction whose contents are summarised and
briefly outlined in the following paragraphs. The reader is referred to the main text for further
coverage and details.

We describe the action of the group G̃ on H and the construction of a hyperbolic Riemann
surface M as the quotient Γ\H. Also discussed are Eisenstein series as automorphic functions
on a hyperbolic surface M ; this is important because the continuous spectrum of a noncompact
hyperbolic surface M is well understood in terms of Eisenstein series.

Explicit trace formulae for compact and noncompact hyperbolic surfaces M are derived by
decomposing Γ into conjugacy classes of γ ∈ Γ . An important application of the trace formula
is the computation of the trace of the heat operator on M . Having successfully established the
trace formula for a noncompact M ; in particular for the modular surface M = SL(2,Z)\H,

we apply the trace formula to determine the determinant of the Laplacian ∆̃ − s(1 − s) (s ∈
C) on SL(2,Z)\H. Our results lead to new determinant expressions for the det ∆̃ − s(1 − s)
for some special values of s ∈ R, s > 0, in line with the works of P. Sarnak, A. Chang,
B. Osgood, K. Okikiolu. The general version of the Selberg spectral expansion formula for
automorphic functions f ∈ L2(M ), namely the Parseval inner product formula is computed
for nonholomorphic Eisenstein series for the modular group SL(2,Z), and this inner product
formula is new in the literature.

We compute explicitly the Poisson kernels on Sn, Bn, Hn and Dn, in terms of special functions;
we give explicit integral representations for the Euclidean Poisson kernel. These apart from being
interesting in their own right lead to various identities that are novel in the context of special
functions. We present fractional and integral representations of the heat kernels on compact
symmetric spaces X = Sn and X = CPn; the heat kernels on Sn which are obtained in terms
of series involving the Gegenbauer polynomial using the device of the Gegenbauer transform,
are transformed by applying the Riemann-Liouville fractional derivative formula. New integral
representations for the heat kernels on complex projective spaces CPn are obtained. We express
the traces of the heat kernels on these compact symmetric spaces in terms of the Euclidean
Poisson kernel.
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Indeed let KX be the heat kernel associated to the Laplacian ∆X on a compact symmetric
space X . We show that the Minakshisundaram-Pleijel asymptotic expansion

tr e−t∆X =

∫
X

KX (t, x, x) dVol(x)

=
1

(4πt)
n
2

(
an0 + an1 t+ an2 t

2 + · · ·+ ank t
k +O

(
tk+1

))
holds for the particular case of the sphere X = Sn. Using Jacobi’s theta functions we give a
precise and relatively simple description of the Minakshisundaram-Pleijel coefficients ank for the
Euclidean spheres Sn. Apart from giving a description of the heat trace coefficients in this case
it is nice to see that the expansion of the heat operator on symmetric spaces can be expressed
purely in terms of Jacobi’s theta functions and their higher order derivatives.

Finally, we discuss integral representations of spectral functions on a noncompact symmetric
space, namely we consider the generalised spherical functions, heat kernel, Green function and
Generalised Mehler-Fock integral formula for the real hyperbolic space X = Hn. Using the
Green function, the Poisson kernel and spectral resolutions of the Laplacian in Hn we derive
the generalised Mehler-Fock inversion formula, and in particular we extend the formula to the
heat kernel in Hn by appropriately choosing a spectral function. New integral representations
for general eigenfunctions of the Laplacian in Hn are obtained and these integral representations
turn out to be integral transforms of harmonic functions in the Euclidean unit ball.
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D Poincaré unit disc
Dn n-dimensional Poincaré unit ball
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Chapter 1

Introduction and Overview

1.1 Historical Background of Non-Euclidean Geometries

Non-Euclidean geometry was first discovered by N. Lobachevski, C. F. Gauss and J. Bolyai in

the 1820s. Later the mathematical works on non-Euclidean geometry was first published by N.

Lobachevski in 1829 and J. Bolyai in 1832. Perhaps because of the controversy surrounding the

idea of non-Euclidean geometry at that time, the results of Gauss were not published; this is

the reason some authors call the hyperbolic upper half-space the Lobatchevsky upper half-space.

Models for hyperbolic geometry, namely the upper half-space model, the unit disc model and

the projective disc model (i.e., the Kleinian model) of n-dimensional hyperbolic geometry were

first introduced by Liouville, then by E. Beltrami in 1868, and then by Klein in 1870; see e.g.,

Milnor et al. [110] for the exposition of the history of hyperbolic geometry, and Ratcliffe [139]

for a highly detailed introduction of the subject. The Liouville-Beltrami upper half-plane model

was later rediscovered by Poincaré in 1882, the reason some author refers to hyperbolic upper

half-plane the Poincaré upper half-plane (as we call it in this thesis). The upper half-space also

arises quite naturally in connection with the theory of binary Hermitian forms, see Elstrodt et al.

[57, Ch. 9] for an exposition of this topic.

The mystery of why Euclid’s parallel postulate could not be proved remained unsolved for over

two thousand years, until the discovery of non-Euclidean geometry and its Euclidean models

revealed the impossibility of any such proof (Greenberg [67]); see Greenberg [67] for a rigorous

treatment of the foundations of Euclidean geometry and an introduction to hyperbolic geometry

(with emphasis on its Euclidean models). According to Greenberg [67], Albert Eistein mentioned

that he would not have developed his theory of relativity without the discovery of hyperbolic

geometry. The discovered models of hyperbolic geometry were later used in the investigations

of discontinuous groups; see e.g. Poincaré [129], Riemann [140, pp. 272-287], Selberg [147],

Maass [105], Terras [167], Beardon [22] and the extensive list of references therein. With the

investigation of Lie groups and symmetric spaces by Lie, Cartan and others, further progress

was made from the 1880s to the 1930s.

The name “hyperbolic” which is due to Klein and comes from the Greek word hyperballein

(meaning to throw beyond) can be explained in two ways. The first explanation for the name

“hyperbolic” is that given two geodesic rays which originate from the ends of a geodesic segment

perpendicular to both of them, then the non-Euclidean distance between these two rays will

1



Chapter 1. Introduction 2

increase. The second justification for the name “hyperbolic” emanates from the fact that the

upper half-plane H has a constant Gaussian curvature −1 and thus H looks like a hyperboloid

of one sheet or a hyperbolic paraboloid (e.g. z = x2 − y2 at the origin). See Terras [167, Ch. 3]

for this description and the references therein.

1.2 Riemannian Symmetric Spaces

For analysis on Riemannian manifolds (see Appendix A for a discussion on Riemannian man-

ifolds) to be explicit we need to consider those Riemannian manifolds with symmetries; these

symmetric properties allow computations of spectral functions and spectral invariants associated

to the Laplace-Beltrami operator to be explicit. For instance, given a Riemannian manifold with

nontrivial topology the spectrum and eigenfunctions of the Laplacian are difficult to calculate,

we can improve this situation by putting symmetries on the manifold.

We proceed our discussion with the following definitions: (i) a Lie group is a group that is also

a smooth manifold, in which the group operations of multiplication and inversion are smooth

maps, (ii) a connected space is a topological space that cannot be represented as the union of two

or more disjoint nonempty open subsets, (iii) the Lie algebra g of a Lie group G is the tangent

space to G at the identity, provided with an operation called the Lie bracket, (iv) a Lie group

is called semisimple if its Lie algebra is semisimple; a Lie algebra is called semisimple if its only

commutative ideal is {0}. For example, the special linear group SL(n) and special orthogonal

group SO(n) (over R or C) are semisimple, (iv) the center of a group G consists of all those

elements x in G such that xy = yx for all y in G; this is a normal subgroup of G.

Let G be a connected semisimple Lie group with finite centre and K a maximal compact subgroup

of G. We call X a homogeneous space of a Lie group G, a group of transformation, or a group

of motion, if every point x ∈ X can be carried by motion into every other point. We also say

then that G acts transitively on X . The quotient X = G/K is then called a homogeneous space.

Let x0 be a fixed point in X . The set of transformations that carry x0 into x form a closed

subgroup K of G. This subgroup is called the stability group of x0. What is interesting in this

situation is that because the space X is homogeneous, the machinery for differential calculus

becomes readily available.

A symmetric space is a Riemannian manifold M such that for any p ∈ M , there is a symmetry

(geodesic-reversing isometry) τp : M → M , preserving the Riemannian metric. That is for any

x ∈ X = M , there is some τx ∈ G = isometry group of X with the property that τx(x) = x;

we call the isometry τx the symmery at x. So if X is any homogeneous space, (i.e., the group

of isometry of X acting transitively on X ), then X is symmetric if and only if there exists a

symmetry τx (i.e., an isometry satisfying τx(x) = x for some x ∈ X ). We can also say that a

homogeneous space is symmetric if the covariant derivative of the Riemann tensor vanishes, i.e.,

the curvature tensor is parallel.

There are 4 main types of symmetric spaces – the Euclidean spaces, compact Lie groups, quotients

of compact Lie groups, and quotients of noncompact semisimple Lie groups (see Terras [167] for

elaboration on this classification and Helgason [77, 78, 79, 80, 81, 82, 83, 84] for a thorough

discussion of harmonic analysis on these symmetric spaces). The differential operators on these

symmetric spaces are G-invariant.
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Examples of compact symmetric spaces include the sphere Sn = SO(n + 1)/SO(n), the real

projective space RPn = SO(n + 1)/ {±I} = SO(n + 1)/O(n), the complex projective space

CPn = SU(n + 1)/S(U(n) × U(1)) (of real dimension 2n), the quaternionic projective space

QPn = Sp(n + 1)/Sp(n) × Sp(1) (of real dimension 4n) and the Cayley projective plane

CayP2 = F4/Spin(9) (of real dimension 16); all these spaces are simply connected except

the real projective space RPn which is doubly connected. In the case of compact symmetric

spaces X = G/K, G (real or complex) and K (real or complex) are connected compact Lie

groups. Later in Chapter 5 of this thesis we shall discuss spectral functions on the sphere Sn,

the real projective space RPn and the complex projective space CPn.

Examples of noncompact symmetric spaces include the real hyperbolic space

Hn = SO0(n, 1)/SO(n), the complex hyperbolic space CHn = SU(n, 1)/S(U(n) ×U(1)), the

quaternionic hyperbolic space QHn = Sp(n, 1)/Sp(n)×Sp(1) and the Cayley hyperbolic plane

CayH2 = F∗4/Spin(9); in this case, G is a connected (real or complex) semisimple Lie group of

noncompact type, while K (real or complex) is compact. Chapter 6 of this thesis is devoted to

integral representations of spectral functions on the real hyperbolic space Hn.

Some of the Lie groups of Real and Complex Matrices are described below.

Let K = R or C.

GL(n,K)− the group of nonsingular n× n matrices with entries in K;

SL(n,R)− the group of real n× n matrices of determinant 1;

SL(n,C)− the group of complex n× n matrices of determinant 1;

U(n, 1; K)− the group of matrices in GL(n+ 1,K) which leave invariant

the Hermitian form a1b1 + · · ·+ anbn − an+1bn+1, aj , bj ∈ K;

O(n, 1) = U(n, 1; R), U(n, 1) = U(n, 1; C);

SO(n, 1) = O(n, 1) ∩ SL(n+ 1,R), SU(n, 1) = U(n, 1) ∩ SL(n+ 1,C);

SO0(n, 1)− the identity component of SO(n, 1);

U(n,K)− the group of matrices in GL(n,K) which stabilise the form (a, b)K;

O(n) = U(n,R)− the orthogonal group;

U(n) = U(n,C)− the unitary group;

SO(n) = O(n) ∩ SL(n,R)− the rotation group;

SU(n) = U(n) ∩ SL(n,C);

U(n)×U(1) =

{(
A 0

0 eiθ

)
: A ∈ U(n), θ ∈ R

}
;

S(U(n)×U(1)) = (U(n)×U(1)) ∩ SL(n+ 1,C).

References for these Lie groups include Baker [17], Curtis [46], Arvanitogeōrgos [4], Fegan [59],

Helgason [82, 83, 84], Flensted-Jensen [60], Terras [168], Volchkov and Volchkov [174], Faraut

[58].

Two closely related models of hyperbolic spaces, namely the upper half-space which we also

denote by Hn :

Hn =
{
w = (x, y) : x ∈ Rn−1, y > 0

}
, n ≥ 2, (1.1)
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and the Poincaré unit ball

Dn = {x ∈ Rn : |x| < 1} , n ≥ 2,

will be studied. The two-dimensional hyperbolic space (i.e., the case n = 2) is called the

hyperbolic plane of which there are two common models - the first is the Poincaré upper half-

plane denoted H2 = H and defined by

H = {z = x+ iy ∈ C : Im z = y > 0} ;

and the second is the Poincaré unit disc denoted D2 = D and defined by

D = {z ∈ C : |z| < 1} .

For details of these models of the hyperbolic space, see Sections 1.5 and 1.6. Other models of

the hyperbolic space include the Klein, hyperboloid, and hemisphere models (see Thurston [169],

Strichartz [157]).

In summary we shall discuss the spectral theory of the Laplacians on the following Riemannian

manifolds:

• the hyperbolic Riemann surfaces Γ\H (here Γ is the Fuchsian group of the first kind);

• the unit spheres Sn and the unit balls Bn in Rn;

• the real projective spaces RPn;

• the complex projective spaces CPn;

• the Poincaré unit ball Dn; and

• the hyperbolic upper half-space Hn.

Further discussions of spectral theory of a general rank one quotient Γ\G/K and the higher

rank case SL(n,Z)\SL(n,R)/SO(n) are contained in Awonusika and Taheri [8].

1.3 The Heat Kernels on Compact Symmetric Spaces

Let X = G/K be a compact symmetric space. Let ∆X be the Laplace-Beltrami operator

(Laplacian) on X , C(k) the k-th eigenvalue of ∆X and dk the multiplicity of the eigenvalue

C(k). Given two points x, y ∈ X , one of them can be translated to the origin by an action of

the group G, say x ∈ X ; the origin is held fixed while the other endpoint y ∈ X is rotated

about it on an orbit of K. The geodesic distance from any point y ∈X to the point x is denoted

by θ = d(x, y); a subspace orthogonal to the orbits of K is called a maximal torus. That is, a

maximal torus is a maximal, totally geodesic, flat submanifold passing through the origin. The

dimension of the maximal torus is called the rank of a compact symmetric space X .

Below we give a list of rank one compact symmetric spaces that are of interest to us, with their

corresponding spectral and geometric data.

• ∆X = − ∂2

∂θ2 −
(
m2α cot θ + 1

2mα cot(θ/2)
)
∂
∂θ ,
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• C(k) = k(k + 2ρ), ρ = 1
2 (m2α +mα),

• dk =
2(k+ρ)Γ(k+2ρ)Γ

(
m2β+1

2

)
Γ(k+N

2 )
k!Γ(2ρ+1)Γ(N2 )Γ(k+

m2α+1
2 )

,

• Vol(X ) = 2Nπ
N
2

Γ(m2α+1
2 )

Γ(N+m2α+1
2 )

,

• Sn : m2α = n− 1, mα = 0, N = n,

• RPn : m2α = n− 1, mα = 0, N = n, C(k) = 2k(2k + 2ρ),

• CPn : m2α = 1, mα = 2(n− 1), N = 2n.

If a groupG acts on a symmetric space X a number of invariance properties of the heat kernel can

be derived which give further information and suggest new geometrical approaches to the solution

of the associated heat equation. The orthonormalised eigenfunctions (called spherical functions)

of the Laplacian can be identified with suitable matrix elements of the finite-dimensional irredu-

cible unitary representations πk of the symmetric group G. We use spherical irreducible unitary

representation of G to transform the heat kernel (A.3) on an arbitrary compact Riemannian

manifold M to the heat kernel on a compact symmetric space X = G/K. Henceforth we shall

write C(k) = λk, bearing in mind that for the real projective space RPn, C(k) = λ2k, k ≥ 0. In

order to move from the heat kernel on an arbitrary compact Riemannian manifold to the heat

kernel on a compact symmetric space it is necessary to discuss the finite-dimensional irreducible

representation of a topological group G.

A representation of a topological group G is key in understanding the group G and its invariants.

We start with the definition of a representation of a topological group. Let V be a (finite-

dimensional) vector space and let G (V ) be the group of invertible continuous maps from V to

V .

Definition 1.1. A representation of a topological group G is a pair (π,V ) where V is a finite-

dimensional vector space and π : G → G (V ) is a continuous group homomorphism of G to the

group G (V ), such that the resulting map G× V → V , given by

(x, v) 7→ π(x)v,

is continuous.

For v ∈ V , the action of G on V is by right translation:

(π(x)v)(y) = v(yx), x, y ∈ G. (1.2)

Definition 1.2. The representation (π,V ) is unitary if

(π(x)u, π(x)v) = (u, v)

for all u, v ∈ V and every x ∈ G. The representation (π,V ) is said to be finite-dimensional if V

is finite-dimensional and the dimension of V , dim(V ) is the dimension of the representation. A

subspace V0 of V is called invariant or G-invariant if x ·V0 ⊂ V0 for all x ∈ G. A representation

π is called irreducible if V has no closed π-invariant subspaces.
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Remark 1.1. Any representation (π,V ) of G always has at least two invariant subspaces; these

are V0 = {0} and V0 = V , and they are called the trivial invariant subspaces of the representation

(π,V ) of G.

Definition 1.3. A finite-dimensional representation (π,V ) of G is completely reducible if

V = V1 ⊕ · · · ⊕ Vk,

where π(x)Vi ⊂ Vi, for all x ∈ G, provided that the representations (πi,Vi) of G obtained by

restricting π(x) to Vi are irreducible for all i = 1, · · ·, k. We say that π = π1 ⊕ · · · ⊕ πk is the

direct sum of the πi.

Definition 1.4. We call a function f defined on G a class function if f(yxy−1) = f(x) for all

x, y ∈ G. We also say that f is central.

Definition 1.5. The character χπ of a finite dimensional representation π of G is given by

χπ(x) = tr (π(x)), x ∈ G.

Definition 1.6. We say that two representations (π1,V1) and (π2,V2) are equivalent if there

exists a linear isomorphism S : V1 → V1 such that S(π1(x)v) = π2(x)(S(v)) for all x ∈ G and

v ∈ V1 (or simply Sπ1 = π2S); and we write π1
∼= π2.

Since V is finite-dimensional,

trπ(f) =

∫
G

(trπ(x))f(x) dx =

∫
G

χπ(x)f(x) dx, f ∈ L1(G).

Let (πj ,V ) be a finite-dimensional irreducible unitary representation of G, and C∞(K\G/K)

the space of smooth K-biinvariant functions on G, i.e., f(k1xk2) = f(x) for all x ∈ G, k1, k2 ∈ K.

Definition 1.7. A function ΦX
j ∈ C∞(K\G/K) is spherical. In addition

• ∆X ΦX
j (x) = λjΦ

X
j (x),

• ΦX
j (e) = I, e = identity element of G,

•
∫
K

ΦX
j (xky) dk = ΦX

j (x)ΦX
j (y), x, y ∈ G.

Definition 1.8. A unitary finite-dimensional irreducible representation (πj ,V ) of G is called

spherical if there exists a vector e ∈ V such that

πj(k)e = e for all k ∈ K.

Recall the heat kernel on a compact Riemannian manifold M :

KM (t, x, y) =

∞∑
k=0

e−λktφk(x)φk(y),

where the eigenfunctions (φk : k ≥ 0) form an orthonormal basis of L2(M), with associated

eigenvalues (λk : k ≥ 0).
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Let (πk,V ) be a spherical unitary finite-dimensional irreducible representation of G. Consider

the function

φk(x) =

(
dk

Vol(X )

) 1
2

(e, πk(x−1)e), x ∈ G, (1.3)

where Vol(X ) is the volume of X . By the symmetric properties of G, the function φk given by

(1.3) is spherical (see e.g. Helgason [83]). Thus the heat kernel on a compact symmetric space

X takes the form

KX (t, x, y) =
1

Vol(X )

∞∑
k=0

dk(e, πk(x−1y)e)e−λkt.

By the unitary nature of the representation πk the function

ΦX
k (x, y) := (e, πk(x−1y)e)

is spherical, observing that the vectors e ∈ V can be normalised such that (e, e) = 1. Hence,

ΦX
k (θ) are spherical functions (i.e., radial eigenfunctions satisfying ΦX

k (0) = 1), and we conclude

that

KX (t, ρ) =
1

Vol(X )

∞∑
k=0

dkΦX
k (ρ)e−λkt. (1.4)

It follows from the G-invariance of the Laplacian ∆X that the heat kernel KX is a two-point

invariant function, i.e., it satisfies

KX (t, gx, gy) = KX (t, x, y) for all g ∈ G.

Remark 1.2. When the symmetric space X = G/K is noncompact, the sum in (1.4) is re-

placed with an integral over X , while dk/Vol(X ) is replaced with the Harish-Chandra Plancherel

measure; as discussed in Chapter 6.

1.4 Eigenfunctions of the Laplacian on the Sphere

The standard model for the n-dimensional spherical geometry is the unit sphere Sn−1 of Rn

defined by

Sn−1 = {x ∈ Rn : |x| = 1} .

The Euclidean metric dRn on Sn−1 is defined by the formula

dRn(x, y) = |x− y|.

Let x, y be vectors in Sn−1 and let θ(x, y) be the Euclidean angle between x and y. The spherical

distance between x and y is defined by

dSn−1(x, y) = θ(x, y),

and so

cos θ(x, y) = (x · y).

The Laplacian on the sphere Sn−1. An important function in the study of harmonic analysis

on the sphere is the spherical harmonic. Spherical harmonics are the eigenfunctions of the
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Laplacian on the sphere (the Laplacian on the sphere is also called spherical Laplacian). They

are the analogues of exponentials for Fourier analysis on the sphere. These functions were

introduced by Laplace and Legendre in the 1780’s when studying gravitational theory.

Definition 1.9. A function f(x) defined on a domain in Rn is called harmonic if it satisfies

the differential equation (Laplace equation)

Dnf = −∂
2f

∂x2
1

− ∂2f

∂x2
2

− · · · − ∂2f

∂x2
n

= 0. (1.5)

Definition 1.10. A function f(x) is homogeneous of degree k (or k-homogeneous) if

f(tx) = tkf(x)

for any t > 0.

The sphere Sn−1 ⊂ Rn is a compact Riemannian manifold with a constant positive sectional

curvature 1. The equation for the Cartesian coordinates (x1, x2, · · ·, xn) of a point on the sphere

Sn−1 in terms of the angular coordinates (θ1, θ2, · · ·, θn−1) are

x1 = r sin θn−1 · · · sin θ2 sin θ1,

x2 = r sin θn−1 · · · sin θ2 cos θ1,

· ··

xn−1 = r sin θn−1 cos θn−2,

xn = r cos θn−1,

where r ≥ 0, 0 ≤ θ1 ≤ 2π, 0 ≤ θi ≤ π for i = 2, ..., n− 1. When r = 1, these are the coordinates

for the unit sphere Sn−1. For simplicity, throughout this thesis we shall consider the case where

a function u(r cos θ1, r sin θ1) = u(r cos θ, r sin θ) is independent of θ2, θ3, ..., θn−1.

The Laplace equation in Rn is given in polar coordinates by

Dnu = − 1

rn−1

∂

∂r

(
rn−1 ∂

∂r

)
u− 1

r2
∆Sn−1u = 0, (1.6)

where

∆Sn−1 = − ∂2

∂θ2
− (n− 2) cot θ

∂

∂θ
(1.7)

is the Laplacian on the sphere Sn−1. To solve (1.6), we look for the homogeneous harmonic

function

u(r, θ) = R(r)Θ(θ) = rkΘ(θ). (1.8)

Thus,

Dnu = − 1

rn−1

∂

∂r

(
rn−1 ∂

∂r
rkΘ

)
u− 1

r2
∆Sn−1rkΘ

= −rk−2 (k(k + n− 2)Θ + ∆Sn−1Θ) = 0. (1.9)
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So u is harmonic in Rn (i.e., its Laplacian vanishes identically) if and only if Θ is an eigenfunction

of ∆Sn−1 with associated eigenvalues

µ2 = k(k + n− 2), k = 0, 1, 2, · · · . (1.10)

That is, the harmonics on the sphere Sn−1 are the eigenfunctions Θ of the equation

∆Sn−1Θ = k(k + n− 2)Θ.

Spherical Harmonics. Let Pn−1
k denote the space of k-homogeneous polynomials of n vari-

ables, and

Hn−1
k =

{
Y ∈ Pn−1

k : DnY = 0
}

the space of homogeneous harmonic polynomials of degree k in n dimensions. By definition,

spherical harmonics are the restrictions of elements in Hn−1
k to the unit sphere Sn−1. If Y ∈ Hn−1

k ,

then

Y (x) = |x|kY (ξ), (1.11)

where x = |x|ξ ∈ Rn, ξ ∈ Sn−1. We shall call

hn−1
k =

{
S ∈ Pn−1

k : ∆Sn−1S = 0
}

the space of spherical harmonics of degree k in n dimensions.

Remark 1.3. We shall make no distinction between the two spaces Hn−1
k and hn−1

k .

Let x = rξ ∈ Rn, ξ ∈ Sn−1. Since Y ∈ Hn−1
k is homogeneous, Y (x) = rkY (ξ), and by (1.8) and

(1.9) it follows that

Theorem 1.11. The spherical harmonics Yk of degree k are eigenfunctions of the Laplacian

∆Sn−1 on the unit sphere Sn−1 with associated eigenvalues µ2
k = k(k + n− 2).

Thus a (surface) spherical harmonic Yk of degree k is the restriction to the unit sphere of a

polynomial from Hn−1
k .

Let L2
(
Sn−1

)
denote the space of square integrable functions on Sn−1. Then it is a classical

fact that L2
(
Sn−1

)
decomposes into the orthogonal sum of spaces Hn−1

k of degree k and thus

each f ∈ L2
(
Sn−1

)
has an expansion

f(ξ) =

∞∑
k=0

(πkf)(ξ), ξ ∈ Sn−1,

where πk is the orthogonal projection onto the space Hn−1
k . Let f, g ∈ L2

(
Sn−1

)
be two functions

defined on the sphere Sn−1. We define the (integral) inner product of f and g by

(f, g)L2(Sn−1) =
1

νn−1

∫
Sn−1

f(x)g(x) dνn−1(x),

where dνn−1 is the surface area measure and νn−1 the surface area of Sn−1:

νn−1 =

∫
Sn−1

dνn−1 =
2π

n
2

Γ
(
n
2

) . (1.12)
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Throughout this thesis, we shall use, for ξ ∈ Sn−1, 0 ≤ θ ≤ π,

dνn−1(ξ) = νn−2 sinn−2 θ dθ.

Remark 1.4. The use of ν as a parameter and νn−1 as the volume of the unit sphere Sn−1 will

not cause any confusion.

The dimension of the space Pn−1
k is given by

dimPn−1
k =

(
k + n− 1

n− 1

)
=

(
k + n− 1

k

)
=

(n+ k − 1)!

(n− 1)!k!
,

and thus

Mn−1
k := dimHn−1

k = dimPn−1
k − dimPn−1

k−2 (1.13)

=

(
k + n− 1

k

)
−

(
k + n− 3

k − 2

)

=
(2k + n− 2)(k + n− 3)!

k!(n− 2)!
, (1.14)

where Mn−1
k is also the multiplicity of the eigenvalues µ2

k = k(k+n−2) of the Laplacian ∆Sn−1 .

Theorem 1.12. If Yk, Yl ∈ Hn−1
k , with k 6= l, then

(Yk, Yl)L2(Sn−1) =
1

νn−1

∫
Sn−1

Yk(ζ)Yl(ζ) dνn−1(ζ) = 0.

Proof. For x = |x|ξ ∈ Rn, ξ ∈ Sn−1, let Pk(x) and Pl(x) be two homogeneous harmonic

polynomials of degrees k and l respectively. Then noting (1.11), i.e.,

Yk(ξ) =
1

rk
Pk(rξ) = Pk(ξ),

we have by Green’s theorem

0 =

∫
|x|≤1

(PkDnPl − PlDnPk) dx

=

∫
Sn−1

(
Pk(ξ)

∂

∂r
Pl(rξ)

∣∣∣∣
r=1

− Pl(ξ)
∂

∂r
Pk(rξ)

∣∣∣∣
r=1

)
dνn−1(ξ)

= (l − k)

∫
Sn−1

Pk(ξ)Pl(ξ) dνn−1(ξ).

Since l 6= k, we can divide both sides by l − k to obtain the result.

Zonal Harmonics. Let

πk : L2
(
Sn−1

)
→ Hn−1

k

denote the orthogonal projection from the Hilbert space L2
(
Sn−1

)
onto the subspace Hn−1

k ⊂
L2
(
Sn−1

)
. Let

(
Yj : 1 ≤ j ≤Mn−1

k

)
be an orthonormal basis of Hn−1

k ⊂ L2
(
Sn−1

)
and let

p ∈ Hn−1
k be arbitrary. Then from the theory of Fourier series, every p ∈ Hn−1

k can be expanded
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in an absolutely and uniformly convergent series of spherical harmonics

pk(ζ) =

Mn−1
k∑
j=1

p̃jYj(ζ),

where

p̃j = (p, Yj)L2(Sn−1) =
1

νn−1

∫
Sn−1

p(ξ)Yj(ξ) dνn−1(ξ).

Thus,

pk(ζ) =
1

νn−1

∫
Sn−1

p(ξ)

Mn−1
k∑
j=1

Yj(ξ)Yj(ζ) dνn−1(ξ)

=
1

νn−1

∫
Sn−1

p(ξ)Zj(ζ, ξ) dνn−1(ξ).

Definition 1.13. The kernel function

Zk(ζ, ξ) =

Mn−1
k∑
j=1

Yj(ζ)Yj(ξ) (1.15)

is called the zonal harmonic, where
(
Yj : 1 ≤ j ≤Mn−1

k

)
is an orthonormal basis of Hn−1

k .

Since πk ∈ Hn−1
k , it can be expanded in terms of the orthonormal basis

(
Yj : 1 ≤ j ≤Mn−1

k

)
of

Hn−1
k :

πkf(ζ) =

Mn−1
k∑
j=1

(f, Yj)L2(Sn−1) Yj(ζ) =

f,Mn−1
k∑
j=1

YjYj(ζ)


L2(Sn−1)

=
1

νn−1

∫
Sn−1

Zj(ζ, ξ)f(ξ) dνn−1(ξ). (1.16)

It follows from (1.16) the following addition formula for spherical harmonics (see also Dai and

Xu [47, Chapter 1]):

Zk(ζ, ξ) =

Mn−1
k∑
j=1

Yj(ζ)Yj(ξ) =
k + ν

ν
Cνk ((ζ · ξ))

=
Mn−1
k Cνk ((ζ · ξ))

Cνk (1)
:= Mn−1

k C ν
k ((ζ · ξ)),

(1.17)

where Cνk ((ζ · ζ ′)) (ν = (n − 2)/2, n ≥ 3) is the Gegenbauer polynomial (see Appendix B.6).

Moreover,

lim
ν↘0

(
k + ν

ν

)
Cνk (cosϑ) =

1, k = 0,

2 cos kϑ, k ≥ 1.
(1.18)

Now setting ζ = ξ in (1.15), we have

Zk(ζ, ζ) = Mn−1
k C ν

k (1) =

Mn−1
k∑
j=1

|Yj(ζ)|2 ,
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which is a constant for all ζ ∈ Sn−1. On integrating over Sn−1, we obtain

Mn−1
k C ν

k (1) =
1

νn−1

∫
Sn−1

Zk(ζ, ζ) dνn−1(ζ) =
1

νn−1

∫
Sn−1

Mn−1
k∑
j=1

|Yj(ζ)|2 dνn−1(ζ) = Mn−1
k .

It follows that

Cνk (1) =
ν

k + ν
Mn−1
k . (1.19)

Theorem 1.14 (Funk-Hecke Identity (Morimoto [115, Theorem 2.39, p. 32])). Let f be a

complex-valued continuous function on the interval [−1, 1]. Then for every spherical harmonic

Yk(ζ), ζ ∈ Sn−1, the following integral identity holds:

1

νn−1

∫
Sn−1

f(ζ · ζ ′)Yk(ζ ′) dνn−1(ζ ′) =
νn−2

νn−1
Yk(ζ)

∫ 1

−1

f(t)C ν
k (t)

(
1− t2

)ν− 1
2 dt, (1.20)

where C ν
k (t) :=

Cνk (t)
Cνk (1) , ν = n−2

2 .

The main statement of this section is the following.

Proposition 1.15. The functions

ΦSn−1

k (θ) = C
n−2
2

k (cos θ) (1.21)

are called the spherical functions on Sn−1. They satisfy the eigenvalue problem

∆Sn−1ΦSn−1

k (θ) = k(k + n− 2)ΦSn−1

k (θ)

with ΦSn−1

k (0) = 1, where ∆Sn−1 is the radial part of the Laplacian on the unit sphere Sn−1 given

by (1.7).

Proof. We shall use the substitution method. Consider the eigenvalue problem

d2Θ

dθ2
+ (n− 1)

cos θ

sin θ

dΘ

dθ
+ λΘ = 0. (1.22)

Making the substitution

Θ(θ) = sin1−n2 θη(θ)

with

dΘ

dθ
= cos θ sin−

n
2 θη − n

2
cos θ sin−

n
2 θη + sin1−n2 θ

dη

dθ
d2Θ

dθ2
= sin1−n2 θ

d2η

dθ2
+
[
2 cos θ sin−

n
2 θ − n cos θ sin−

n
2 θ
] dη
dθ

+

[
cos2 θ sin−

n
2−1 θ

(
−n

2
+
n2

4

)
− sin1−n2 θ

(
1− n

2

)]
η
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in (1.22) and multiplying the resulting equation by sin
n
2−1 θ, we obtain after some rearrangements

d2η

dθ2
+

[
2

cos θ

sin θ
− n cos θ

sin θ
+ (n− 1)

cos θ

sin θ

]
dη

dθ

+

[
cos2 θ sin−2 θ

(
−n

2
+
n2

4

)
−
(

1− n

2

)
+ (n− 1) cos2 θ sin−2 θ

]
η

+
[
(n− 1) cos2 θ sin−2 θ

(
1− n

2

)
+ λ
]
η = 0.

Further simplification gives

d2η

dθ2
+

cos θ

sin θ

dη

dθ
+

{
λ+

n

2
− 1−

(n
2
− 1
)2

cos2 θ sin−2 θ

}
η = 0. (1.23)

Again substituting

y(x) = η(θ), x = cos θ (1.24)

with
dη

dθ
= −dy

dx
sin θ,

d2η

dθ2
= (1− x2)

d2y

dx2
− xdy

dx

in (1.23) gives

(1− x2)
d2y

dx2
− 2x

dy

dx
+

{
λ+

n

2
− 1−

(
n
2 − 1

)2
x2

1− x2

}
y = 0. (1.25)

We simplify the expression inside the braces:

λ+
n

2
− 1−

(
n
2 − 1

)2
x2

1− x2

=
λ+ n

2 − 1− λx2 − nx2

2 −
n2x2

4 + nx2

1− x2

=

(
− 1

4 + λ+ (n−1)2

4

) (
1− x2

)
−
(
n
2 − 1

)2
1− x2

.

If we set

α(α+ 1) = −1

4
+ λ+

(n− 1)2

4
,

then we obtain a quadratic equation in α :

α2 + α+
1

4
− λ− (n− 1)2

4
= 0

whose solution is

α = −1

2
±
√
λ+

(n− 1)2

4
= −1

2
± n− 1 + 2k

2
. (1.26)

So, we obtain the associated Legendre equation

(1− x2)
d2y

dx2
− 2x

dy

dx
+

{
α(α+ 1)− σ2

1− x2

}
y = 0 (1.27)

of degree α given by (1.26) and order

σ = ±

√
(n− 2)

2

4
= ±n− 2

2
. (1.28)
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Hence,

Θn
k (θ) = sin1−n2 θP

2−n
2

k+n−2
2

(cos θ), (1.29)

where Pµν (z) is the associated Legendre function of the first kind with degree ν and order µ and

argument z (see Appendix B.5). The expression (1.29) can be expressed in terms of Gegenbauer

polynomials C
n−1
2

k (cos θ), we just apply the formula (B.114).

The hyperbolic version of Proposition 1.15 is Proposition 4.1 in Section 4.1.

The Special Case S1. We specialise to the case n = 2, M1
k = 2, µ2

k = k2. An orthogonal

basis of H1
k is given by the real and imaginary parts of

zk = (x1 + ix2)
k

= (r cos θ, r sin θ)k = rk cos kθ + irk sin kθ,

for z = (x1, x2) ∈ R2. That is,

Yk,1(ζ) = rk cos kθ, Yk,2(ζ) = rk sin kθ.

Hence, the spherical harmonics (eigenfunctions of the Laplacian ∆S1 = − d2

dθ2 on the circle S1)

are precisely the cosine and sine functions. In terms of the Chebychev polynomials Tk(ξ) and

Uk(ξ) (Gradshtejn and Ryzhik [66, pp. 993-996]), we have

Tk(cos θ) = cos kθ =
k

2
lim
ν↘0

1

ν
Cνk (cos θ), Uk(cos θ) =

sin(k + 1)θ

sin θ
= C1

k(cos θ),

and the orthogonal basis becomes

Yk,1(ζ) = rkTk

(x1

r

)
= rk

k

2
lim
ν→0

1

ν
Cνk

(x1

r

)
,

Yk,2(ζ) = rk−1x2Uk−1

(x1

r

)
= rk−1x2C

1
k−1

(x1

r

)
.

In this case the addition formula (zonal harmonic) (1.17) reduces to the addition formula

Zk(ζ, ξ) = C0
k(ζ · ξ) = Tk(ζ · ξ) = Y1(ζ)Y1(ξ) + Y2(ζ)Y2(ξ)

= cos kθ cos kϑ+ sin kθ sin kϑ = cos k(θ − ϑ).

It follows from Proposition 1.15 that

Proposition 1.16. The function

Θ(θ) = ΦS2

k (θ) = C
1
2

k (cos θ) = Pk(cos θ) =
1

2π

∫ 2π

0

(cos θ + i sin θ cosϑ)k dϑ,

satisfying ΦS2

k (0) = 1 is the spherical function on S2.

1.5 The Upper Half-Space Model of the Hyperbolic Space

We first consider the Poincaré upper half-plane model of the hyperbolic plane. On the upper

half-plane

H = {z = x+ iy ∈ C : Im z = y > 0}



Chapter 1. Introduction 15

the Laplace-Beltrami operator is simply the Laplacian given by

∆̃ := ∆H = −y2

(
∂2

∂x2
+

∂2

∂y2

)
(1.30)

with the associated Riemannian metric

g = ds2 =
dx2 + dy2

y2
,

and the hyperbolic area element

dµH(z) = dµ(z) =
dxdy

y2
.

For s ∈ C, the function f(z) = (Im z)s = ys, which we call the power function satisfies an

eigenvalue equation

∆̃ys = s(1− s)ys, (1.31)

where λ = s(1− s) is the eigenvalue corresponding to the eigenfunction f of ∆̃. The distance in

this upper half-plane is given by the Poincaré distance

cosh d(z, z′) = 1 +
|z − z′|2

2Im zIm z′
, z, z′ ∈ H, (1.32)

where coshx is the hyperbolic cosine function of x, and Im z denotes the imaginary part of the

complex number z.

In geodesic polar coordinates (r, θ), we have

ds2 = dρ2 + sinh2 ρ dθ2

dµ =
dxdy

y2
= sinh ρ dρ dθ

∆̃ = − 1

sinh ρ

∂

∂ρ

(
sinh ρ

∂

∂ρ

)
− 1

sinh2 ρ

∂2

∂θ2
,

where ρ = d(z, z′) denotes the distance between two points z, z′ ∈ H. The boundary of H is

∂H = R ∪ {∞}. Any point in ∂H is called a point at infinity. The spectrum of ∆̃ is absolutely

continuous and equal to
[

1
4 ,∞

)
(Lax and Phillips [99]), while the spectrum of the standard

Laplace operator (Euclidean Laplacian)

D = D2 = −
(
∂2

∂x2
+

∂2

∂y2

)
acting in L2

(
R2, dxdy

)
is the whole right half-line [0,∞), since D is positive and self-adjoint.
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We now present the general upper half-space Hn model of the hyperbolic space. For n ≥ 2,

Hn =
{
w = (x, y) : x ∈ Rn−1, y > 0

}
; (1.33)

ds2 =
dx2

1 + dx2
2 + · · ·+ dx2

n−1 + dy2

y2
, dµHn(x) =

dx1dx2 · · · dxn−1 dy

yn
; (1.34)

∆Hn = −y2
n−1∑
i=1

∂2

∂xi∂xi
− y2 ∂

2

∂y2
− (2− n)y

∂

∂y
; (1.35)

cosh d(w,w′) = 1 +
|w − w′|2

2yy′
, w = (x, y), w′ = (x′, y′) ∈ Hn, x, x′ ∈ Rn−1, y, y′ > 0. (1.36)

In geodesic polar coordinates,

ds2 = dρ2 + sinh2 ρ|dξ|2, dµHn = sinhn−1 ρ dρdνn−1; (1.37)

∆Hn = − ∂2

∂ρ2
− (n− 1)

cosh ρ

sinh ρ

∂

∂ρ
− 1

sinh2 ρ
∆Sn−1 , (1.38)

where |dξ|2 is the Riemannian metric on Sn−1. The radial part of the Laplacian in Hn is also

denoted by ∆Hn and is given by

∆Hn = − ∂2

∂ρ2
− (n− 1)

cosh ρ

sinh ρ

∂

∂ρ
. (1.39)

Remark 1.5. The use of µ as a parameter and µHn as the volume measure on the hyperbolic

space will not cause any confusion.

1.5.1 Eigenfunctions of the Laplacian in Cartesian Coordinates

Consider the eigenvalue problem

− y2

(
∂2

∂x2
+

∂2

∂y2

)
f = s(1− s)f (1.40)

on H. To solve (1.40), we assume a product solution of the form

f(x, y) = X(x)Y (y),

which when inserting into (1.40) gives two ODEs

Y ′′ − y−2s(s− 1)Y − αY = 0, (1.41)

X ′′ + αX = 0. (1.42)

Clearly, for α > 0,

X(x) = e2πimx with α = 4π2m2, m ∈ Z,

solves (4.37). Setting

Y (y) = y
1
2u(y)

in (1.41), we have

y2 d
2u

dy2
+ y

du

dy
−

((
s− 1

2

)2

+ 4π2m2y2

)
u(y) = 0,
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which is a modified Bessel equation of the form (B.42). The general solution, for arbitrary ν, of

(B.42) can be written in the form

f(z) = C1Kν(z) + C2Iν(z),

where Iν(z) is the modified Bessel function of the first kind given by (B.43) and Kν(z) the

modified Bessel function of the second kind given by (B.44). Hence,

f(x, y) =

e2πimxy
1
2Ks− 1

2
(2π|m|y), m 6= 0,

ys, m = 0,

where we have dropped the solution

f(x, y) = e2πimxy
1
2 Is− 1

2
(2π|m|y), m 6= 0,

because we expect f(z) (z = x + iy ∈ H) to have at most polynomial growth at infinity (see

(B.50)), i.e., we expect f to satisfy the inequality

|f(z)| ≤ Cyk, as y ↗∞

for constants C > 0 and k.

1.5.2 Eigenfunctions of the Laplacian in Geodesic Polar Coordinates

The eigenvalue problem

−y2

(
∂2

∂x2
+

∂2

∂y2

)
g = s(1− s)g

can be written in geodesic polar coordinates (ρ, ψ) as

∂2g

∂ρ2
+ coth ρ

∂g

∂ρ
+

1

sinh2 ρ

∂2g

∂2ψ
− s(s− 1)g = 0. (1.43)

Inserting a product solution of the form

g(ρ, ψ) = R(ρ)Ψ(ψ)

in (1.43), we obtain two ordinary differential equations

sinh2 ρ
∂2R

∂ρ2
+ cosh ρ sinh ρ

∂R

∂ρ
− s(s− 1)R sinh2 ρ− αR = 0, (1.44)

∂2Ψ

∂2ψ
+ αΨ = 0, α = a2, a2 is a constant. (1.45)

Equation (1.45) has the general solution

Ψ(ψ) = eiaψ + e−iaψ.

As Ψ(ψ) must obey the periodic boundary condition Ψ(ψ) = Ψ(ψ + 2π), a must be an integer,

namely a = 0,±1,±2, · · · . Hence

Ψ(ψ) = eiaψ. (1.46)
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Making the substitutions

R(ρ) = v(x), x = cosh ρ

in (1.44) we have

(1− x2)
d2v

dx2
− 2x

dv

dx
+

[
s(s− 1)− a2

1− x2

]
v = 0, (1.47)

which is the associated Legendre’s equation of the form (B.74) and its solution is called the

associated Legendre function of the first kind of degree µ and order ν. Hence,

ga,s(z) = ga,s(ρ, ψ) = R(ρ)Ψ(ψ) =

eiaψP a−s(cosh ρ), a 6= 0,

P−s(cosh ρ), a = 0,

where Pµν is the associated Legendre function of the first kind, namely (see (B.77), see (B.88)),

P a−s(cosh r) =
Γ(a− s+ 1)

2πΓ(1− s)

∫ 2π

0

eiaψ dψ

(cosh ρ+ sinh ρ cosψ)
s . (1.48)

1.5.3 The Heat Kernel

In this subsection we construct the heat kernel in the Poincaré upper half-plane H. The heat

kernel in H is the fundamental solution of the non-Euclidean Cauchy problem

∂u(t, z)

∂t
= −∆̃u(t, z), z ∈ H, t > 0,

u(0, z) = f(z), z ∈ H, f ∈ C∞(H).

(1.49)

Our approach involves the application of the Mehler-Fock transform and its inversion formula.

Definition 1.17. For any f ∈ C∞0 ([0,∞)) , the Mehler-Fock transform (of order zero) of f(ρ)

is defined by

M[f(ρ)](r) = f(r) =

∞∫
0

f(ρ)F

(
1

2
+ ir,

1

2
− ir; 1;− sinh2

(ρ
2

))
sinh ρ dρ. (1.50)

Theorem 1.18. The Mehler-Fock inversion formula (of order zero) is given by

M−1[f(r)](ρ) = f(ρ) =
1

2π

∞∫
0

f(r)F

(
1

2
+ ir,

1

2
− ir; 1;− sinh2

(ρ
2

))
r tanh πr dr. (1.51)

Proof. The proof of Theorem 1.18 and the higher order version will be given in Section 6.3.

We now apply the Mehler-Fock transform (1.50) to the initial value problem (1.49), to obtain

∂u(t, r)

∂t
= −∆̃u(t, r) = s(s− 1)u(t, r) = −

(
1

4
+ r2

)
u(t, r),

u(0, r) = f(r).

(1.52)

Solving (1.52), we obtain

u(t, r) = f(r)e−( 1
4 +r2)t. (1.53)
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Applying the Mehler-Fock inversion formula (1.51) to both sides of (1.53) to get

u(t, z) =
(
f ∗M−1

[
e−( 1

4 +r2)t
])

(ρ)

=

∫
H

f(z′)K̃(t, z, z′) dµ(z′), z = (ρ, θ), z′ = (ρ′, θ′), dµ(z′) = dµ(ρ′, θ′),

where

K̃(t, z, z′) := KH(t, z, z′) =
1

2π

∞∫
0

e−( 1
4 +r2)tF

(
1

2
+ ir,

1

2
− ir; 1;− sinh2

(ρ
2

))
r tanhπr dr.

(1.54)

Using the formula (B.86) with ν = − 1
2 + ir, α = ρ and noting that cothx = i cot ix, sinhx =

−i sin ix, we obtain

F

(
1

2
+ ir,

1

2
− ir; 1;− sinh2

(ρ
2

))
=

√
2

π
cothπr

∞∫
ρ

sin ru√
coshu− cosh ρ

du. (1.55)

Equation (1.54) becomes

K̃(t, z, z′) =
1√
2π2

∞∫
ρ

1√
coshu− cosh ρ

∞∫
0

e−( 1
4 +r2)tr sin ru drdu. (1.56)

For the last integral on the right hand side of (1.56), we use (Gradshtejn and Ryzhik [66, p. 502,

eq. 3.902(1)]) ∫ ∞
0

βe−b
2β2

sin aβ dβ =
a
√
π

4b3
e−

a2

4b2 (1.57)

to obtain

K̃(t, z, z′) =

√
2

(4πt)
3
2

e−
t
4

∞∫
ρ

ue−
u2

4t

√
coshu− cosh ρ

du, (1.58)

which is the heat kernel on the hyperbolic plane H.

1.5.4 The Resolvent Kernel

By definition, the spectrum σ(∆̃) of the Laplacian ∆̃ consists of those values of λ for which the

resolvent

Rλ =
(

∆̃− λ
)−1

fails to exist as a bounded operator (see Appendix A.5). In other words, the resolvent of a

self-adjoint positive operator ∆̃ is the bounded operator Rλ defined for λ /∈ [0,∞) . The aim

of this subsection is the construction of the integral kernel G̃s(z, z′) (z, z′ ∈ H, s ∈ C) of the

resolvent operator

Rs = (∆̃− s(1− s))−1,

or what is the same, the Green function of ∆̃. The Green function G̃s(z, z′) of ∆̃ is related to

the heat kernel K̃(t, z, z′), t > 0, by the formula

G̃s(z, z′) = L
[
K̃(t, z, z′)

]
(λ = s(1− s)) =

∫ ∞
0

e−s(s−1)tK̃(t, z, z′) dt,
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where Lf is the Laplace transform of the function f . By inserting the heat kernel (1.58) we have

G̃s(z, z) =

√
2

4π

∫ ∞
d(z,z′)

(
1√
4π

∫ ∞
0

e−(s− 1
2 )

2
tt−

3
2 e−

u2

4t dt

)
udu√

cosh u− cosh d(z, z′)

=
1√
22π

∫ ∞
d(z,z′)

e−(s− 1
2 )u√

coshu− cosh d(z, z′)
du =

1

2π
Qs−1(cosh d(z, z′)),

(1.59)

where we have used the integral formula (see (B.47))

1√
4π

∫ ∞
0

e−(s− 1
2 )

2
tt−

3
2 e−

u2

4t dt =
1

u
e−(s− 1

2 )u.

Setting

cosh ρ = cosh2
(ρ

2

)
+ sinh2

(ρ
2

)
= 2τ − 1, τ = cosh2 d(z, z′)

2
,

and applying (B.97) and (B.96) we have

Qs−1(2τ − 1) =
√
π

Γ(s)

22sΓ
(
s+ 1

2

)τ−sF (s, s; 2s; τ−1
)

=
1

2

Γ(s)2

Γ (2s)
τ−sF

(
s, s; 2s; τ−1

)
= Qs−1(cosh ρ).

(1.60)

Hence,

G̃s(z, z′) =
1

4π

Γ(s)2

Γ (2s)
τ−sF

(
s, s; 2s; τ−1

)
, (1.61)

which is the Green’s function in H.

1.5.5 The Wave Kernel

In this subsection we give an explicit formula for the wave kernel on the upper half-plane H by

first obtaining the easier three dimensional wave kernel and then using the method of descent to

construct the two-dimensional non-Euclidean wave kernel.

Let H3 be the 3-dimensional upper half-space, given by

H3 = {w = z + jy : z ∈ C, y > 0} ,

where

z = x1 + ix2, i2 = j2 = −1.

It is known that (see the upper half-space Hn model on p. 16) in H3

∆H3 = −y2

(
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂y2

)
+ y

∂

∂y
,

ds2 =
dx2

1 + dx2
2 + dy2

y2
, w = z + jy, w′ = z′ + jy′ ∈ H,

cosh dH3(w,w′) =
|z − z′|2 + y2 + y′2

2yy′
,

dH3(w) =
dx1dx2dy

y3
.
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We consider the initial value problem for the wave equation in H3 given by

∂2

∂t2
u (t, w) = −∆H3u(t, w) + u(t, w), t > 0, w ∈ H3

u (0, w) = 0,
∂

∂t
u (0, w) = f (w) , w ∈ H3, f ∈ C∞

(
H3
)
.

(1.62)

It is well known that the solution operator of the wave equation (1.62) is

u(t, w) =
sin
(
t
√

∆H3 − 1
)

√
∆H3 − 1

f(w). (1.63)

It is not difficult to see that

WH3(t, w,w′) =
sin
(
t
√

∆H3 − 1
)

√
∆H3 − 1

(w,w′) =
δ (ρ− t)
4π sinh t

is the wave kernel in H3, where ρ = d(w,w′) is the distance between w,w′ ∈ H3, and δ is the

Dirac delta function. Indeed noting that

δ (ρ− t)
4π sinh t

=
δ (ρ− t)
4π sinh ρ

,

and using the radial part ∆H3 , we see that

(∆H3 − 1)
δ (ρ− t)
sinh ρ

= − 1

sinh2 ρ

∂

∂ρ
[δ′(ρ− t) sinh ρ− δ(ρ− t) cosh ρ]− δ (ρ− t)

sinh ρ

= −δ
′′ (ρ− t)
sinh ρ

= − ∂2

∂t2
δ (ρ− t)
sinh ρ

.

Thus, we obtain the solution of the wave equation in H3, namely

u(t, w) =
1

4π sinh t

∫
ρ=t

f(w′) dµH3(w′). (1.64)

We now proceed to the solution of the wave equation in H:

∂2

∂t2
v (t, w) = −

(
∆̃− 1

4

)
v (t, w) (0,∞)×H

v (0, w) = 0,
∂

∂t
v (0, w) = f (w) , f ∈ C∞(H).

(1.65)

As we have mentioned earlier we use the method of descent to deduce the solution of the wave

equation in H from the solution of the wave equation in H3. The idea is that we regard H3 as

having the coordinates w = (x1, x2, y), y > 0, and at the same time H can also be regarded as

having the coordinates w = (x1, x2, y), y > 0 with the set {x2 = 0}. Thus the Laplacian in H in

this coordinate becomes

∆̃ = −y2

(
∂2

∂y2
+

∂2

∂x2
1

)
.

Making the substitution

u (x1, x2, y) =
√
yv (x1, y) ,
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where v is a function independent of x2, we see that

(∆H3 − 1)
√
yv (x1, y) =∆H3

√
yv (x1, y)−√yv (x1, y)

= −y2 ∂
2

∂x2
1

√
yv (x1, y)− y2 ∂

2

∂x2
2

√
yv (x1, y)

− y2 ∂
2

∂y2

√
yv (x1, y) + y

∂

∂y

√
yv (x1, y)−√yv (x1, y)

+ y

[
√
y
∂v

∂y
+

1

2
y−

1
2 v

]
−√yv (x1, y)

+ y
3
2
∂v

∂y
+

1

2
y

1
2 v −√yv

=
√
y

[
−y2 ∂

2v

∂x2
1

− y2 ∂
2v

∂y2

]
− 1

4
y

1
2 v

=

(
∆̃− 1

4

)
√
yv (x1, y) .

With this substitution, formula (1.64), which is the solution of the wave equation in H3 reduces

to the solution of the wave equation (1.65) in H, namely

v(t, w) =
1

4π
√
y sinh t

∫
dH3 (w,w′)=t

√
y′f(w′) dµH3(w′), (1.66)

where ρ = dH3(w,w′) is the distance between two points w,w′ ∈ H3. It remains to find an

explicit value for the volume element dµH3(w′). By definition,

cosh dH3(w,w′) =
(x1 − x′1)

2
+ (x2 − x′2)

2
+ y2 + y′2

2yy′

=
(x1 − x′1)

2
+ x′22 + y2 + y′2

2yy′
, x2 = 0;

(x1 − x′1)
2

+ x′22 + y2 + y′2 − 2yy′ cosh t = 0.

Setting x1 = 0 for convenience, we obtain

x′2 =
√

2yy′ cosh t− x′21 − y2 − y′2.

From the hyperbolic metric in H3, we obtain

dµH3(x′1, y
′) =

dx′1
d
dt

(√
2yy′ cosh t− x′21 − y2 − y′2

)
dy′

y′3

=
dx′1yy

′ sinh tdy′√
2yy′ cosh t− x′21 − y2 − y′2y′3

=
y sinh t√

2yy′ cosh t− x′21 − y2 − y′2
dx′1dy

′

y′2
.

Using the hyperbolic trigonometric identities

cosh t = 1 + 2 sinh2(t/2), 2yy′ cosh t = 2yy′ + 4yy′ sinh2(t/2),
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and the relation

sinh2

(
d(z, z′)

2

)
=
|z − z′|2

4 Im z Im z′
=
x′2 + y2 − 2yy′ + y′2

4yy′
, x = 0,

we see that

4yy′ sinh2

(
t

2

)
− 4yy′ sinh2 d(z, z′)

2
= 2yy′ cosh t− 2yy′ − x′2 − y2 + 2yy′ − y′2

= 2yy′ cosh t− x′2 − y2 − y′2.

Hence,

dµH3(x′1, y
′) =

y sinh t√
4yy′

(
sinh2

(
t
2

)
− sinh2

(
d(z,z′)

2

))dµ(z′).

We now replace the integral over a sphere in dµH3 in (1.66) with twice the integral over the

projection of this sphere to H to obtain

v(t, z) =
1

4π

∫
dH(z,z′)≤t

f(z′)√
sinh2

(
t
2

)
− sinh2

(
d(z,z′)

2

)dµ(z′),
(1.67)

for t > 0. We conclude that the wave kernel in H is given by

W̃ (t, ρ) := WH(t, ρ) =

sin

(
t
√

∆̃− 1
4

)
√

∆̃− 1
4

(z, z′) =
1

4π

1√
sinh2

(
t
2

)
− sinh2

(
ρ
2

) , t > 0. (1.68)

1.6 The Poincaré Unit Ball Model of the Hyperbolic Space

For n ≥ 2, the Poincaré unit ball Dn is the set

Dn = {x ∈ Rn : |x| < 1} ,

with the Poincaré metric

ds2 = 4
(
1− |x|2

)−2 |dx|2.

The volume element on Dn is

dµDn(x) = 2n
(
1− |x|2

)−n
dx1 · · · dxn.

The unit ball Dn has a boundary

∂Dn = Sn−1 = {x ∈ Rn : |x| = 1} .

One refers to points ω ∈ ∂Dn as points at infinity. The Laplace-Beltrami operator in this model

is given by

∆Dn = −
(
1− |x|2

)2
4

n∑
i=1

∂2

∂x2
i

− 2(n− 2)
(
1− |x|2

) n∑
i=1

xi
∂

∂xi
. (1.69)
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The non-Euclidean (hyperbolic) distance d(x, x′), x, x′ ∈ Dn, generated by the metric ds2 on

Dn has the form

cosh d(x, x′) = 1 +
2|x− x′|2

(1− |x|2) (1− |x′|2)
.

Noting that
n∑
i=1

xi
∂

∂xi
= r

∂

∂r
,

we have, in geodesic polar coordinates,

∆Dn = −1

4

(
1− r2

)n
rn−1

∂

∂r

[
rn−1

(1− r2)
n−2

∂

∂r

]
− 1

4

(
1− r2

)2
r2

(
∂2

∂ϑ2
+ (n− 2) cotϑ

∂2

∂ϑ

)
(1.70)

and

dµDn =
2nrn−1

(1− r2)
n−1 drdνn−1.

1.7 The Poisson Summation Formula as a Trace Formula

Prior to the explicit computation of the Selberg trace formula, we recall the Poisson summation

formula which provided the basic concept that Selberg initially sought to generalise.

Now, let S(Rn) be the Schwartz space of all infinitely differentiable functions f on Rn such that

for any integer N ≥ 0 and multiindex α = (α1, ..., αn), we have

(
1 + |x|2

)N
(Dαf) (x) <∞,

where Dβ = (−i)α1+...+αn (∂x1
)
α1 · · · (∂xn)

αn .

Suppose f ∈ S(Rn). Let L2(Rn/Zn) be the space of square integrable functions on the torus

Tn = Rn/Zn. Define an integral operator Tg acting on g ∈ L2(Rn/Zn) by the convolution

(Tfg) (x) = (f ∗ g)(x) =

∫
Rn

f(x− y)g(y) dy.

Since the exponential φm(x) = e2πi(x·m), m ∈ Zn, forms a complete orthonormal set of eigen-

functions of the Laplacian

∆Tn = −
(
∂2

∂x2
1

+
∂2

∂x2
2

+ · · ·+ ∂2

∂x2
n

)
on L2(Rn/Zn) with the corresponding eigenvalue λm = 4π2|m|2, φm(x) are also eigenfunctions

of the integral operator Tf with eigenvalue f̂(m):

Tfφm(x) = (f ∗ φm) (x) =

∫
Rn

f(x− y)φm(y) dy = f̂(m)φm(x),

where

f̂(ξ) =

∫
Rn

f(x)e−2πi(x·ξ) dx, ξ ∈ Rn, (1.71)

is the Euclidean Fourier transform of f , with the Fourier inversion formula

f(x) =

∫
Rn

f̂(ξ)e2πi(x·ξ) dx, x ∈ Rn. (1.72)
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Thus, if Tf is considered as an integral operator on the infinite dimensional Hilbert space

L2(Rn/Zn), its trace must be the infinite sum

tr Tf =
∑
m∈Zn

f̂(m).

By Mercer’s Theorem A.10, we can write the operator Tf as an integral operator over Rn/Zn

with the kernel

Kf (x, y) =
∑
m∈Zn

f(x− y −m).

Then, since

Rn =
⋃

m∈Zn
(m+ [0, 1)n) = a disjoint union,

we have

(Tfg) (x) =

∫
Rn/Zn

Kf (x, y)g(y) dy.

Again by Mercer’s Theorem A.10,

tr Tf =

∫
Rn/Zn

Kf (x, x) dx =

∫
Rn/Zn

∑
m∈Zn

f(x− x−m) dx =
∑
m∈Zn

f(m).

In summary we have the following statement.

Theorem 1.19 (Poisson summation formula).

∑
m∈Zn

f̂(m) =
∑
m∈Zn

f(m), (1.73)

for a Schwartz function f : Rn → C.

The basic idea of computing the trace of an appropriately-chosen integral operator in two different

ways shall prove quite fruitful in the development of more sophisticated versions of ‘the trace

formula’ - the Selberg trace formula.

1.8 The Selberg Trace Formula

Selberg theory is that area of spectral theory whose foundation consists of (Venkov [172, 173])

• theorems on expansion in automorphic eigenfunctions of the Laplacians defined on sym-

metric Riemann spaces and studying their spectra;

• the theory of Eisenstein series;

• the Selberg trace formula; and

• the theory of the Selberg zeta function.

The starting point in this direction is the celebrated Selberg trace formula. The central result

in the spectral theory of hyperbolic surfaces is the Selberg trace formula. It is a formula that

shows the equality of the spectrum of the Laplacian on a hyperbolic surface and the length

spectrum of the surface. In physical terms, it can be viewed as a connection between quantum
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and classical mechanics, with the quantum side representing the Laplace spectrum (spectral

theory) and classical mechanics representing the length spectrum (length of closed geodesics) on

the surface. The Selberg trace formula (Selberg [147]) was originally introduced by Atle Selberg

as an arithmetical relation, being a noncommutative generalisation of the Poisson summation

formula, and it is as such used in number theory and harmonic analysis (see e.g. McKean [108],

Hejhal [74, 75, 76], Terras [167], Buser [32], Iwaniec [87], Deitmar and Echterhoff [48], Müller

[119, 120]). In general, the Laplace spectrum and the length spectrum are both defined on a

configuration space of the form Γ\G/K, where G is a noncompact semisimple Lie group, Γ a

cofinite discrete subgroup of G and K a maximal compact subgroup of G (Faraut [58]). When

Γ is a cocompact subgroup Z of the real number G = R, the Selberg trace formula is essentially

the Poisson summation formula. The case when Γ\G/K is not compact is harder because the

spectrum is no longer purely discrete, there is a continuous spectrum which is described by

Eisenstein series (see Section 2.2). The quotient X = G/K is a covering (symmetric) space of

the Lie group G.

In this thesis we consider both compact and noncompact hyperbolic surfaces M = Γ\G/K,

where Γ is the Fuchsian group of the first kind (i.e., a discrete subgroup of G), G = SL(2,R)

and K = SO(2). By the Iwasawa decomposition (Subsection 2.1.2) the Poincaré upper half-

plane H can be identified with the quotient SL(2,R)/SO(2), and we say that SL(2,R)/ {±I}
is the group of orientation-preserving isometries of H; this identification realises the upper half-

plane H as a symmetric space of noncompact type. In this case the Selberg trace formula

describes the spectrum of the Laplacian on M in terms of geometric data involving the lengths

of closed geodesics on M , and also the trace formula is similar to the explicit formula relating

the zeros of the Riemann zeta function to prime numbers (Titchmarsh [170]), with the zeta

zeros corresponding to eigenvalues of the Laplacian, and the primes corresponding to closed

geodesics (Hejhal [74], Randol [134]). Motivated by the analogy, Selberg introduced the Selberg

zeta function of a hyperbolic surface whose analytic properties are encoded by the Selberg trace

formula (Subsection 3.4.2).

The Selberg zeta function (see also Selberg [147]) is analogous to the famous Riemann zeta

function (Titchmarsh [170])

ζ(s) =

∞∑
n=1

n−s =
∏
p∈P

1

1− p−s
, Re s > 1,

where P is the set of prime numbers. The Selberg zeta function uses the lengths of closed

geodesics instead of the prime numbers. If Γ is a subgroup of SL(2,R), then the Selberg zeta

function which is a meromorphic function defined in the complex plane by

Z(s) =
∏
p

(
1−N(p)−s

)−1
, or Z(s) =

∏
p

∞∏
n=0

(
1−N(p)−s−n

)
, Re s > 1,

where p runs over the prime congruent class and N(p) is the norm of the congruent class p. For

any hyperbolic surface of finite area there is an associated Selberg zeta function. The Selberg

zeta function is defined in terms of the spectra of the surface.

The special case of the modular surface M = SL(2,Z)\H is of special interest in number

theory. The spectral theory of the modular surface SL(2,Z)\H is deeply important and remains

exceedingly mysterious; the main tool used to study this theory is the Selberg trace formula.
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Trace formulae are also crucial for understanding finer points about the decomposition of the

spectrum of the Laplacian on hyperbolic surfaces, such as Weyl’s law. For the special case

SL(2,Z)\H, the Selberg zeta function is intimately connected to the Riemann zeta function. In

this case the determinant of the scattering matrix is given by (see Section 2.2)

ϕ(s) =
√
π

Γ
(
s− 1

2

)
ζ(2s− 1)

Γ(s)ζ(2s)
,

which is a consequence of the presence of the continuous spectrum of the Laplacian on SL(2,Z)\H.

The determinant of the scattering matrix ϕ(s) is a function appearing in the constant term of

the Fourier expansion of Eisenstein series. In particular, we see that if the Riemann zeta function

has a zero at s0, then the determinant of the scattering matrix has a pole at s0/2, and hence

the Selberg zeta function has a zero at s0/2.

1.9 Outline and Organisation of the Thesis

This thesis consists of six chapters including this introductory chapter. Chapters 2 and 3 discuss

the spectral theory of the Laplacian on compact and noncompact hyperbolic surfaces M = Γ\H
(where Γ is a discrete subgroup of SL(2,R) and H the Poincaré upper half-plane), while Chapters

4, 5, and 6 are devoted to spectral functions of the Laplacians on n-dimensional non-Euclidean

spaces. We outline in detail the plan and organisation of the thesis.

Chapter 2. We present some basic concepts in the study of spectral theory of hyperbolic

surfaces which are needed for the computations of the trace formulae in Chapter 3 and in the

remaining chapters. To be precise, in Section 2.1 we discuss the basics of the action of the group

G̃ = PSL(2,R) = SL(2,R)/ {±I} (the group of orientation-preserving isometries of the upper

half-plane H) on H. It turns out that the quotient M = Γ\H is a Riemann surface, and when it

is endowed with negative Gaussian curvature −1, then it is a hyperbolic surface. We also discuss

an important discrete subgroup of SL(2,R), the modular group SL(2,Z) as well as the modular

surface SL(2,Z)\H. Since the modular surface M = SL(2,Z)\H is noncompact, the continous

spectrum of the Laplaian on M is well studied in terms of Eisenstein series; we discuss these

Eisenstein series and establish their relevant properties in Section 2.2.

Chapter 3. Chapter 3 is devoted to the trace formulae for hyperbolic surfaces M and their

applications. Let K(z, z′), z, z′ ∈ H, be a Γ -automorphic kernel defined by

K(z, z′) =
∑
γ∈Γ

k(z, γz′) = k̃ [u(z, γz′)] , u(z, z′) =
|z − z′|2

Im zIm z′
, (1.74)

and let f ∈ L2(M ), f is automorphic, i.e., f(γz) = f(z) for all γ ∈ Γ , z ∈ H. The kernel k(z, z′)

is called a point-pair invariant (see Definition (3.1)). In Section 3.1 we derive the trace formula

for a compact hyperbolic surface (see Theorem 3.8) by decomposing Γ into conjugacy classes and

then taking the trace of the automorphic kernel defined by (1.74) (which includes the identity

and hyperbolic elements of Γ ) in two ways. The left-hand side of the formula is the contribution

of the Laplace spectrum, a spectral quantity, while the right-hand side is the contribution of the

length spectrum, a geometric quantity, which is the sequence of the lengths of closed geodesics

(see Definitions 2.20 and 2.21). A consequence of the trace formula for a compact hyperbolic

surface is that the length spectrum and Laplace (eigenvalue) spectrum are equivalent geometric
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quantities (see Buser [32, p. 229]). In order to derive the trace formula for a noncompact

hyperbolic surface M (see Theorems 3.16-3.18), we must compute the spectral expansion of

f ∈ L2(M ), and this is known as the Selberg spectral (expansion) decomposition of automorphic

functions f ∈ L2(M ), which decomposes f ∈ L2(M ) into a sum involving the contribution of the

discrete spectrum plus an integral involving the contribution of continous spectrum of M (see

Subsection 3.2.1, (3.24)). The trace formula then arises by computing the trace of an automorphic

kernel K(z, z′), with the corresponding discrete subgroup Γ having parabolic elements since M

is noncompact; and we take care of the contribution of the continuous spectrum (in terms of

the Eisenstein series) to obtain the trace formula for a noncompact hyperbolic surface M . We

follow Selberg [148] in evaluating the trace, without using the Poisson summation formula or

the Euler-Maclaurin summation formula of Kubota [97]. In Section 3.3, we compute the general

case of the Selberg spectral expansion formula for functions f ∈M , namely the Parseval inner

product formula for nonholomorphic Eisenstein series; this is given in Theorem 3.19.

An important application of the trace formula is in the computation of the determinant of the

Laplacian. The determinant of the Laplacian on a compact Riemann surface is computed in

Blau and Clements [29], D’Hoker and Phong [49], Sarnak [143], Steiner [156] and Voros [175],

while Randol [135, 136, 137] discuss some other applications of the trace formula for a compact

surface M . The much more difficult noncompact case, in which the Laplacian consists of both

discrete and continuous spectrum is considered by Efrat [56], Koyama [95], and Momeni and

Venkov [114].

Let (λk : k ≥ 0) be the discrete spectrum of the Laplacian ∆̃ on a hyperbolic surface M satisfying

0 = λ0 < λ1 ≤ λ2 ≤ · · ·; λk ↗∞.

Then for Rew > 1 we define the Minakshisundaram-Pleijel zeta function ζM (w) by

ζM (w) =

∞∑
k=1

1

λwk
. (1.75)

By the Weyl’s asymptotic law (2.15), ζM (w) can be meromorphically continued to all w ∈ C

with a simple pole at w = 1 (Randol [135]). In particular, ζM (w) is holomorphic at w = 0.

Now differentiating (1.75) with respect to w we have, for Rew > 1,

d

dw
ζM (w) =

d

dw

∞∑
k=1

e−w log λk = −
∞∑
k=1

log λk
λwk

,

and in paticular

d

dw
ζM (w)

∣∣∣∣
w=0

= −
∞∑
k=1

log λk = − log

∞∏
k=1

λk.

Formally,

det′∆̃ =

∞∏
k=1

λk,
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where the prime ′ means that λ0 = 0 has been omitted. Since ζM (w) is holomorphic at w = 0,

we can define the determinant of the Laplacian ∆̃ by

det′∆̃ = exp

(
− d

dw
ζM (w)

∣∣∣∣
w=0

)
. (1.76)

Remark 1.6. The infinite product

∞∏
k=1

λk = exp

(
− d

dw
ζM (w)

∣∣∣∣
w=0

)

does not converge, but ζM (s) has an analytic continuation to a neighbourhood of s = 0. Therefore,

definition (1.76) makes sense.

We now define for Rew > 1, s ∈ R, s > 1, the generalised Minakshisundaram-Pleijel zeta

function ζM (w; s) by

ζM (w; s) =

∞∑
k=0

1

(λk − s(1− s))w
.

As before,

d

dw
ζM (w; s)

∣∣∣∣
w=0

= −
∞∑
k=1

log (λk − s(1− s)) ,

and

det (∆̃− s(1− s)) =

∞∏
k=0

(λk − s(1− s)) . (1.77)

Thus

det (∆̃− s(1− s)) = exp

(
− d

dw
ζM (w; s)

∣∣∣∣
w=0

)
.

As we have earlier mentioned the determinant of the Laplacian on a compact hyperbolic surface

has been discussed by Blau and Clements [29], D’Hoker and Phong [49], Sarnak [143], Steiner

[156], and Voros [175]. Their basic result using different approaches is the following statement.

Theorem 1.20. Let Γ be a discrete subgroup of SL(2,R) such that M = Γ\H is compact, and

∆̃ the Laplacian on M = Γ\H. Then

det (∆̃− s(1− s)) = Z̃(s)ZI(s),

where

Z̃(s) = ec̃Z(s), c̃ =
µ(Γ\H)

2π

(
−1

2
log 2π − 1

4
+ 2ζ ′(−1)− s(s− 1)

)
.

In particular,

det ′ (∆̃) = eĉZ ′(1), ĉ =
µ(Γ\H)

2π

(
1

2
log 2π − 1

4
+ 2ζ ′(−1)

)
,

where Z(s) is the Selberg zeta function given by (3.103) and ZI(s) is the zeta function associated

to the identity contribution in the trace formula (3.20) and is given by (3.119).

The noncompact version of Theorem 1.20 is given by Efrat [56] (see also Momeni and Venkov

[114]), and their result is the following statement.
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Theorem 1.21. Let Γ be a Fuchsian group of the first kind such that M = Γ\H is noncompact,

and ∆̃ the Laplacian on M = Γ\H. Then

det (∆̃− s(1− s)) = Φ(s)Z(s)2ZI(s)2Γ

(
s+

1

2

)−2

(2s− 1)1−Φ( 1
2 )eB(2s−1)2−(2s−1) log 2+D,

where Φ(s) is the scattering determinant and B, D are computable constants.

The case of a congruence subgroup of SL(2,Z) is given by Koyama [95], namely

Theorem 1.22. Let Γ be a congruence subgroup of SL(2,Z) and let ∆̃ be the Laplacian on

M = Γ\H. Then

det (∆̃, s) = detD (∆̃− s(1− s))detC (∆̃, s),

where

detC (∆̃, s) =

(
s− 1

2

)−K0
2

Asπ−sΓ(s)
∏
χ

L(2s, χ) (1.78)

is the regularized determinant related to the continuous spectrum of the Laplacian ∆̃, and

detD (∆̃− s(1− s)) = exp

(
− ∂

∂w
ζM (w; s)

∣∣∣∣
w=0

)

is the regularized determinant related to the discrete spectrum of ∆̃.

The notation in (1.78) is as follows: A is a positive integer composed of the primes dividing

the positive integer N , K0 = ϕ
(

1
2

)
and L(s, χ) is the Dirichlet L-function (see e.g. Bump [31],

Terras [167]). In this case, the determinant of the scattering matrix ϕ(s) is given by

ϕ(s) = (−1)(1−K0)/2 Γ(1− s)
Γ(s)

(
A

π

)1−2s∏
χ

L(2− 2s, χ)

L(2s, χ)
.

It is the purpose of Subsection 3.4.3 to apply the trace formula for the modular surface SL(2,Z)\H
to prove Theorem 3.27, which is a special case of Efrat [56], Momeni and Venkov [114].

Chapter 4. From this chapter on we concentrate strictly on symmetric Riemannian manifolds

of the form X = G/K, where G is a connected semisimple Lie group and K a maximal compact

subgroup of G. We give explicit expressions for the Poisson kernels on the unit sphere Sn, the

Euclidean ball Bn; the real upper half-space Hn; and the hyperbolic unit ball Dn. Section

4.1 computes eigenfunctions of the Laplacian in the hyperbolic space Hn. In Section 4.2 we

determine the Poisson kernel on the real upper half-space Hn, while Section 4.3 is devoted to

the Poisson integral formula for the unit sphere Sn. Since a Riemannian manifold is locally

Euclidean, we obtain by asymptotics the Poisson kernel on the Euclidean ball Bn from the non-

Euclidean one, this is done in Section 4.4; in the same section various useful identities in the

context of special functions are established. Section 4.5 computes the Poisson integral formula

for the hyperbolic unit ball Dn.

In summary, in Sections 4.2-4.5 we obtain the following statement.

Theorem 1.23. Let X = Bn, Dn, Sn or Hn. Let ∆X be the Laplacian on X , and P a

harmonic function of class C2 on X . The spherical harmonic expansion of P is given by the
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spectral sum

PX (rζ, ζ ′) =

∞∑
k=0

Fk(r)Mn−1
k rkC

n−2
2

k (ζ · ζ ′) , ζ, ζ ′ ∈ Sn−1, r > 0,

• (X = Bn)

Fk(r) = 1;

• (X = Dn)

Fk(r) =
Γ
(
n
2

)
Γ(k + n− 1)

Γ
(
k + n

2

)
Γ(n− 1)

F
(
k,−n

2
+ 1; k +

n

2
; r2
)

satisfying

Fk(1) = 1;

• (X = Sn)

Fk(r) := Fk(%, %̃) =
tank

(
%̃
2

)
F
(
k, 1− n

2 ; k + n
2 ;− tan2

(
%̃
2

))
tank

(
%
2

)
F
(
k, 1− n

2 ; k + n
2 ;− tan2

(
%
2

)) ,
with 0 < %̃ < % <∞, %̃ = d(ζ, ζ ′);

• (X = Hn)

Fk(r) : = Fk(ρ, ρ̃) =
tanhk

(
ρ̃
2

)
F
(
k, 1− n

2 ; k + n
2 ; tanh2

(
ρ̃
2

))
tanhk

(
ρ
2

)
F
(
k, 1− n

2 ; k + n
2 ; tanh2

(
ρ
2

)) ,
with 0 < ρ̃ < ρ <∞, ρ̃ = d(w,w′).

The Poisson kernels which are expressed in terms of infinite series involving the hypergeometric

function, Legendre and Gegenbauer polynomials, lead to different identities in the context of

special functions. In fact letting the hyperbolic distance tend to infinity in the Poisson kernel on

Hn gives the Poisson kernel on Dn (see Theorem 4.12). The hyperbolic Poisson kernel is also

considered in Symeonidis [161, 162] using different methods. See also Cammarota and Orsingher

[36], Byczkowski and Ma lecki [34], Byczkowski et al. [33] for the hyperbolic Poisson kernels in

the context of Brownian motion.

Chapter 5. This chapter discusses fractional and integral representations of the heat ker-

nels on compact symmetric spaces Sn, RPn and CPn, as well as explicit computations of the

Minakshisundaram-Pleijel heat coefficients on Sn. The Gegenbauer transform approach (Section

5.1) is used to compute a series representation formula (involving the Gegenbauer polynomial)

for the heat kernel on Sn. The series representation is then transformed into fractional and

integral representations, using the Riemann-Liouville fractional derivative formula; this is con-

tained in Section 5.2 (see Theorem 5.3). According to Minakshisundaram and Pleijel [111], the

asymptotic expansion (as t↘ 0) of the heat kernel KM on an arbitrary n-dimensional compact

Riemannian manifold M satisfies the asymptotic expansion∫
M

KM (t, x, x) dVol(x) = tr e−t∆M =
1

(4πt)
n
2

(
an0 + an1 t+ an2 t

2 + · · ·+ ank t
k +O

(
tk+1

))
,

(1.79)
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where ank are the Minakshisundaram-Pleijel heat coefficients which give geometric information

about the manifold. For the computations of the Minakshisundaram-Pleijel heat coefficients

ank on an arbitrary compact Riemannian manifold see e.g., Berger et al. [26], Rosenberg [142],

Chavel [41], Gilkey [63]), Craioveanu et al. [45, Sec. 4.1], Rosenberg [142, p. 107]. Here using

Jacobi’s theta functions we give a precise and relatively simple description of these coefficients

for the Euclidean spheres Sn with n ≥ 1. Apart from giving a description of the heat trace

coefficients in this case, we follow Cahn and Wolf [35] to purely expand the trace of the heat

operators on the spheres Sn (n ≥ 1) in terms of Jacobi’s theta functions and their higher order

derivatives; these are contained in Sections 5.3 (see Theorem 5.5). In section 5.4 using integral

representations of spectral functions on the complex projective spaces CPn (n ≥ 1) we present

integral representations of CPn (see Theorems 5.7 and 5.8). Finally in Section 5.5 we express

the traces of the heat kernels on Sn, RPn and CPn in terms of the Euclidean Poisson kernel.

Chapter 6. Having computed eigenfunctions of the Laplacian in Hn in Section 4.1, we give

integral representation formulae for the generalised spherical functions in Hn in Section 6.1; a

spherical function is a radial and normalised eigenfunction of the Laplacian which has the value

one at the origin. We also obtain integral representation formulae for the general eigenfunctions

in Hn, which can simultaneously be viewed as integral transforms of harmonic functions defined

in the Euclidean unit ball (see Theorem 6.3). In Section 6.2 we obtain the integral heat kernel

in Hn using the hyperbolic wave equation; the main tool that relates the solution of the wave

equation to that of the heat equation is the Euclidean Fourier transform. Section 6.3 is devoted

to Green function in Hn. Lastly, using the Green function and the spectral theory for a self-

adjoint operator we establish the generalisation of the classical Mehler-Fock integral formula. We

thereafter extend the Mehler-Fock formula to the heat kernel in Hn by appropriately choosing a

spectral (test) function (see Theorem 6.7). We also establish the Mehler-Fock inversion formula

via the hyperbolic Poisson kernel (see Theorem 6.8).

Appendix. Appendix A discusses the basic elements of Riemannian geometry, namely the

Laplacian on Riemannian manifolds, the heat kernel on Riemannian manifolds and the spectral

theorem, while Appendix B contains special functions that are needed in this thesis.

Other material that is related to the topic of this thesis but is not presented here, is contained

in Awonusika and Taheri [8, 15] (see also Awonusika and Taheri [7, 9, 10, 11, 12, 13, 14, 16],

Awonusika [5, 6]).



Chapter 2

The Spectrum and Geometry of

Hyperbolic Surfaces

In this chapter we present some basic concepts in the study of non-Euclidean (hyperbolic) har-

monic analysis, which are needed to understand the rest of the topics in this thesis. We shall dis-

cuss the basics of the action of the group G̃ = PSL(2,R) = SL(2,R)/ {±I}, whereG = SL(2,R)

is a group of 2× 2 real matrices with determinant 1, and I is a 2× 2 identity matrix. We shall

also construct the upper half-plane H as a symmetric space H = G/K, where K = SO(2) is

the maximal compact subgroup of G; this construction is known as the Iwasawa decomposition

(Subsection 2.1.2).

Let Γ ⊂ G be a Fuchsian group of the first kind (Subsection 2.1.3). The quotient M = Γ\G/K
is a locally symmetric space. Let DΓ ⊂ H be a fundamental domain of Γ . Then

µ(M ) =

∫
DΓ

dµ <∞,

where dµ is the area form attached to the metric ds2 on G/K. So M is a locally symmetric

space of finite volume. The G-invariant Riemannian metric ds2 on G/K induces a canonical

Riemannian metric ds2 on M . The area of M with respect to this metric is finite. Then the

quotient M = Γ\G/K is a two-dimensional Riemannian manifold (called Riemann surface),

whose simply connected covering manifold is the symmetric space H = G/K. Since the upper

half-plane H is equipped with a Riemannian metric of constant negative curvature, the Riemann

surface Γ\H is called a hyperbolic surface.

Finally we discuss the nonholomorphic Eisenstein series as an example of automorphic forms for

the modular group SL(2,Z), the group of 2 × 2 matrices with entries in Z and determinant 1,

or what is the same, we treat the nonholomorphic Eisenstein series E(z, s), z ∈ H, s ∈ C, as an

SL(2,Z)-invariant eigenfunction of the Laplacian on the hyperbolic surface (modular surface)

SL(2,Z)\H. We shall present the Fourier expansion of the nonholomorphic Eisenstein series in

terms of the K-Bessel function. Then one can show through the Fourier expansion that E(z, s)

is meromorphic in the whole complex s-plane and satisfies a particular functional equation; all

these properties are discussed in Section 2.2. A new material on this subject is Bergeron [27].

33
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2.1 The Upper Half-Plane and the Group SL(2,R)

In this section we describe the action of the group SL(2,R) on the universal covering manifold

of a Riemann surface, namely the hyperbolic upper half-plane H.

The Poincaré upper half-plane is the Riemannian manifold

H = {z = x+ iy ∈ C : Im z = y > 0} ,

and

PSL(2,R) = SL(2,R)/ {±I} =

{
γ =

(
a b

c d

)
: a, b, c, d ∈ R ; ad− bc = 1

}
/ {±I}

is the projective special linear group of all 2×2 real matrices with determinant 1; it is a topological

group with respect to the metric induced by the norm

‖γ‖ =
(
a2 + b2 + c2 + d2

)1/2
.

The element

γ =

(
a b

c d

)
∈ G̃

operates on H by means of the fractional linear transformation

z → γz =
az + b

cz + d
.

Ordinarily we will make no distinction between the matrix γ and the transformation γz. If

γ =

(
a b

c d

)
∈ G̃,

we write

γz =
az + b

cz + d
, z ∈ H.

Let γz = ω. For any z ∈ H and γ ∈ Γ ,

ω =
az + b

cz + d
=

(az + b)(cz + d)

(cz + d)(cz + d)
=
acx2 + acy2 + bd+ bcx+ adx+ iy

(cx+ d)2 + c2y2
,

and so

Imω =
y

|cz + d|2
. (2.1)

This shows that if z ∈ H, then ω = γz ∈ H. Moreover, the action of the group G on H is

transitive since for any z, i ∈ H, γi = z, with

γ =

√y x√
y

0 1√
y

 .
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Also,
dω

dz
=

(cz + d)a− (az + b)c

(cz + d)2
=

ad− bc
(cz + d)2

=
1

(cz + d)2
. (2.2)

Next we show that the hyperbolic area and distance in H are PSL(2,R)-invariant, that is, they

do not change under the action of PSL(2,R). Indeed, if A is a set in H and γ ∈ PSL(2,R),

then µ(A) exists and

µ(γ(A)) = µ(A)

(see [8, Proposition 2.1], and also Anderson [2, Section 5.4]). So the hyperbolic area in H is

PSL(2,R)-invariant. We also recall that the hyperbolic plane H is endowed with the

metric ds =
|dz|
Im z

or ds2 =
dx2 + dy2

y2
, z = x+ iy ∈ H (2.3)

and the

Poincaré distance d(z1, z2) = cosh−1

[
1 +

|z1 − z2|2

2 Im z1 Im z2

]
, (2.4)

z1 = x1 + iy1, z2 = x2 + iy2 ∈ H. To see that (2.3) is G̃- invariant, we use (2.2) to see that

|d(γz)|
Im γz

=
|cz + d|2

y
|(γz)′dz| = |cz + d|2

y

|dz|
|cz + d|2

=
|dz|
y
.

For (2.4) we use (2.1) to get

d(γz1, γz2) = cosh−1

[
1 +

|γz1 − γz2|2

2 Im γz1 Im γz2

]
= cosh−1

[
1 +
|az1+b
cz1+d −

az2+b
cz2+d |

2

2 y1y2
|cz1+d|2|cz2+d|2

]

= cosh−1

[
1 +
|z1(ad− bc)− z2(ad− bc)|2

2y1y2

]
= cosh−1

[
1 +
|z1 − z2|2

2y1y2

]
= d(z1, z2).

A consequence of (2.4) is the following (Beardon [22, pp. 130-132]).

Corollary 2.1. For z1, z2 ∈ H,

(i) d(z1, z2) = ln |z1−z2|+|z1−z2||z1−z2|−|z1−z2| ;

(ii) sinh2 d(z1,z2)
2 = |z1−z2|2

4Im z2 Im z2
;

(iii) cosh2 d(z1,z2)
2 = |z−z2|2

4Im z1 Im z2
;

(iv) tanh2 d(z1,z2)
2 =

∣∣∣ z1−z2z1−z2

∣∣∣2.

2.1.1 Classifications of Isometries of the Upper Half-Plane

The transformation γ ∈ G̃ can be classified according to their fixed points and traces. We do

this as follows. For γ ∈ G̃, the fixed point equation z = γz is quadratic:

z =
az + b

cz + d
⇒ cz2 + (d− a)z − b = 0.
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Solving, we have

z =
−(d− a)±

√
(d− a)2 + 4cb

2c

=
a− d±

√
a2 + 2ad− 4ad+ d2 + 4cb

2c

=
a− d±

√
(tr γ)2 − 4

2c
.

If tr γ < 2, then
√

(tr γ)2 − 4 is imaginary and c 6= 0, so only one of the fixed points lies in the

upper half-plane H. In other words, γ has two fixed points in C which are complex conjugate,

and therefore, one fixed point in H.

If tr γ = 2, then
√

(tr γ)2 − 4 vanishes and so γ has one fixed point in R ∪ {∞} .

If tr γ > 2, then
√

(tr γ)2 − 4 is positive, so we have two separate real or infinite fixed points

in R ∪ {∞} , one repulsive and one attractive. We say that a fixed point z0 of a function f is

attractive if for any value of z in the domain that is close enough to z0, the iterated function

sequence z, f(z), f(f(z)), f(f(f(z))), · · · converges to z0, otherwise it is repulsive.

In summary,

Definition 2.2. A transformation γ ∈ G̃, γ 6= I, is

(i) hyperbolic if tr γ > 2;

(ii) elliptic if tr γ < 2;

(iii) parabolic if tr γ = 2.

We expatiate further on these classifications of symmetries of H. Let Γ be a subgroup of

SL(2,R).

Definition 2.3. Let a, b ∈ Γ. We say that a is conjugate to b if for every γ ∈ SL(2,R),

γaγ−1 = b.

Definition 2.4. For τ in Γ, the conjugacy class of τ in Γ is

Q = {τ} =
{
γτγ−1 : γ ∈ Γ

}
.

Definition 2.5. For τ ∈ Γ, the centralizer of τ in Γ is

Γτ = {γ ∈ Γ : γτ = τγ} .

• A hyperbolic transformation γhyp ∈ G has two fixed points 0 and ∞ if and only if it is a

diagonal matrix:

γhyp =

(
a 0

0 a−1

)
, a > 1.

Hence, every hyperbolic transformation γhyp can be conjugated to a dilation z 7→ γhypz =

a2z, a > 1.
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• An elliptic transformation γell ∈ G is conjugate to a rotation of the form z 7→ γellz = eiθz,

i.e.,

γell =


cos(θ/2) sin(θ/2)

− sin(θ/2) cos(θ/2)

 ∈ SO(2), θ ∈ R.

Remark 2.1. Let D = {ς ∈ C : |ς| < 1} be the Poincaré unit disk and γ̂ : H → D. Let

z0 ∈ H be a fixed point of γell such that γ̂(z0) = 0. Then γ̂γellγ̂
−1 has a fixed point 0 (the

origin) and so must be a rotation of the form z 7→ γellz = az for some a ∈ C with |a| = 1.

In our case, a = eiθ.

• A parabolic transformation γpar ∈ G can be conjugated to a horizontal translation z 7→
γparz = z + b, i.e.,

γpar =

(
1 b

0 1

)
, b ∈ R.

Remark 2.2. The horizontal translations z 7→ z+b, b ∈ R, are the only maps whose fixed points

are infinity.

Definition 2.6. A parabolic fixed point of Γ is also called a cusp of Γ.

Definition 2.7. A geodesic is a curve which is locally length minimising within the class of

piecewise smooth curves.

Definition 2.8. A unique geodesic in H joining the two fixed points of a hyperbolic transform-

ation γ is called the axis of γ, and is denoted hγ .

We shall see that for the upper half-plane H, the role of geodesics is played by straight lines

and semicircles orthogonal to the real axis R = {z ∈ C : Im z = 0} . Any two points in H can

be joined by a unique geodesic, and the distance between those points is measured along this

geodesic.

Let γ̃ : [0, 1]→ H be a piecewise differentiable curve

γ̃ = {z(t) = x(t) + iy(t) ∈ H : t ∈ [0, 1]} .

Then its hyperbolic length `(γ̃) is given by

`(γ̃) =

∫ 1

0

√(
dx
dt

)2
+
(
dy
dt

)2

y(t)
dt =

∫ 1

0

∣∣dz
dt

∣∣
y(t)

dt.

For z, z′ ∈ H, the function d(z, z′) is now defined by

d(z, z′) = inf `(γ̃),

where the infimum is taken over all γ̃ which joins z to z′ in H.

Proposition 2.9. If γ̃ : [0, 1] → H is a piecewise differentiable curve in H, then for any

γ ∈ PSL(2,R)

`(γ(γ̃)) = `(γ̃),

where γ̃ is given by

γ̃ = {z(t) = x(t) + iy(t) ∈ H : t ∈ [0, 1]} .
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Proof. Suppose the differentiable curve ω(t) is given by

ω(t) = γ(z(t)) = u(t) + iv(t).

In view of (2.1) and (2.2) we have
∣∣dω
dz

∣∣ = v
y . Hence,

`(γ(γ̃)) =

∫ 1

0

∣∣dω
dt

∣∣
v(t)

dt =

∫ 1

0

∣∣dω
dz

dz
dt

∣∣
v(t)

dt =

∫ 1

0

∣∣dz
dt

∣∣
y(t)

dt = `(γ̃).

By Proposition 2.9 and the G̃-invariance of both the hyperbolic distance d(z, z′) and the area

element µ(z), z, z′ ∈ H, and the fact that ±I acts on H the same way, we have the following

Proposition 2.10. The group PSL(2,R) of fractional linear transformations is the group of

orientation-preserving isometries of H.

Proposition 2.11. The geodesics, or curves minimizing the Poincaré metric in H, are straight

lines or circles orthogonal to the real axis.

Proof. Consider any piecewise differentiable path γ̃ : [a, b] → H joining z = ai ∈ H and z′ =

bi ∈ H (b > a) on the imaginary axis iR with γ̃(t) = z(t) = x(t) + iy(t). Then

`(γ̃) =

∫ b

a

√(
dx
dt

)2
+
(
dy
dt

)2

y(t)
dt ≥

∫ b

a

√(
dy
dt

)2

y(t)
dt

≥
∫ b

a

∣∣∣dydt ∣∣∣
y(t)

dt ≥
∫ b

a

dy
dt

y(t)
dt =

∫ b

a

dy

y
= log

(
b

a

)
,

and we obtain that

d(ai, bi) = log

(
b

a

)
, 0 < a < b,

is the hyperbolic length of the segment of the y-axis joining ai to bi. Hence the y-axis is the

geodesic joining ai and bi. We have also shown that

`(γ̃) = d(ia, ib),

that is, the minimum is achieved (or what is the same `(γ̃) is minimal) if and only if x′(t) = 0

(which implies x(t) = 0) and y′(t) > 0 for all t ∈ [a, b].

γz·

x axis

y axis

z·

Figure 2.1: Geodesics on the upper half-plane H.
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Let z ∈ H be a point on hγ . Then z is moved a distance `(γ) by γ, i.e., the distance between z

and γz on hγ is `(γ), where `(γ) is the translation (displacement) length of γ. Now since γ ∈ G
is hyperbolic, γ acts on H via the transformation

γz = a2z, a > 1.

If y is real, then γ(iy) = ia2y so that

d(iy, γ(iy)) = d
(
iy, ia2y

)
= log a2,

which is independent of y. This shows that we must have

`(γ) =
∣∣log a2

∣∣ > 0,

i.e.,

a = e
`(γ)
2 .

Hence, every hyperbolic matrix γ ∈ G is conjugate to the diagonal matrix

γhyp =

(
e
`(γ)
2 0

0 e−
`(γ)
2

)
: z 7→ γhypz = e`(γ)z, `(γ) > 0. (2.5)

It follows from (2.5) that the following relation between the trace of γ and the displacement

length of γ holds:

tr γ = 2 cosh
`(γ)

2
.

In general, the displacement length `(γ) satisfies

d(z, γz) = ` for all z ∈ hγ , d(z, γz) > ` for all z ∈ H− hγ .

2.1.2 The Iwasawa Decomposition

In this subsection we shall discuss the realisation of the upper half-plane H as a homogeneous

space H = G/K = SL(2,R)/SO(2). Note that SO0(2, 1) ≈ PSL(2,R).

Let M(2,R) be the group of 2 × 2 matrices with entries in R. Since the entries of a variable

2× 2 real matrix are 4 free parameters, M(2,R) is a 4-dimensional manifold.

In this subsection, we will construct a concrete image of SL(2,R) by deriving a product decom-

position for it. For

g =

(
a b

c d

)
∈ SL(2,R),

the group SL(2,R) which naturally lies in M(2,R) and defined by the single equation ad−bc = 1

inside M(2,R), is a 4− 1 = 3 dimensional connected Lie group.
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Let N,A,K given by

N =

{(
1 x

1

)
: x ∈ R, x 6= 0

}
; (2.6)

A =

{(
a

a−1

)
: a ∈ R, a 6= ±1, 0

}
; (2.7)

K =

{(
cos θ sin θ

− sin θ cos θ

)
: 0 ≤ θ < 2π

}
, (2.8)

be subgroups of G = SL(2,R). The Iwasawa decomposition (Iwasawa [88]) asserts that G =

SL(2,R) decomposes into G = NAK, or what is the same, every g ∈ G can be written as

g = nak, where n ∈ N , a ∈ A and k ∈ K. These three subgroups are each one-dimensional with

N ∼= R, A ∈ R+ = (0,∞), K ∼= S1. A consequence of this decomposition is that the subgroups

N , A and K fully account for the 3 dimensions of SL(2,R).

Now, we recall that, for

g =

(
a b

c d

)
∈ G,

the equality

Im (gz) =
Im (z)

|cz + d|2

shows that if g ∈ G and z ∈ H, then so is gz, and hence gz = az+b
cz+d is an action of the group

SL(2,R) on H. The upper half-plane H can be identified with the quotient G/K so that a point

z ∈ H corresponds to the coset gk, g ∈ G, k ∈ K, of all motions which send i to z. In such a

realisation of H the group G acts on itself by matrix multiplication. If

g =

(
a b

c d

)
∈ G

stabilises the point i ∈ H (i.e., gi = i), then (ai + b)/(ci + d) = i, or ai + b = −c + di, which

implies a = d and b = −c. We can therefore write a = cos θ and c = sin θ. So the stabiliser

Gi = {i ∈ H : gi = i} of the point i ∈ H is the set of matrices(
cos θ sin θ

− sin θ cos θ

)
;

because of this, the special orthogonal group of 2× 2 matrices of determinant 1

K = SO(2) =
{
g ∈ SL(2,R) : ggt = I

}
(2.9)

is called the stability group of i.

If we consider the unique decomposition of g ∈ G in the form

g = n(x)a(y)k(θ)
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with

n(x) =

(
1 x

1

)
, a(y) =

(√
y (√

y
)−1

)
, k(θ) =

(
cos θ sin θ

− sin θ cos θ

)
,

for x ∈ R, y > 0, 0 ≤ θ < 2π, then we have

z = n(x)a(y)i =

√y x√
y

0 1√
y

 i = x+ iy.

It follows that via the map

G/K = SL(2,R)/SO(2)→ H

gK 7→ gi,

the upper half-plane H can be identified with the quotient G/K. That is, the action of SL(2,R)

on H is transitive, since for y > 0, √y x√
y

0 1√
y


sends i ∈ H to z = x+iy ∈ H. In fact, one has gi = nai and so g−1na lies in K, which means that

there exists k ∈ K with g = nak. Thus G = NAK. By applying inversion to this decomposition,

we also have G = KAN . Hence, the existence of the Iwasawa decomposition is established. To

prove uniqueness, we assume nak = n′a′k′, and by the existence of the decomposition, we see

that k and k′ fix i, and so nai = n′a′i. Clearly nai = x + iy. In particular, knowing that nai

tells us the parameters determining n and a, we have n = n′, a = a′, and so k = k′.

In summary we have the following statement.

Theorem 2.12 (Iwasawa decomposition of SL(2,R)). Let N,A and K be given by (2.6),

(2.7), and (2.8) respectively. Then SL(2, R) = NAK, or equivalently, every g ∈ SL(2,R) can

be uniquely written as g = nak, where n ∈ N , a ∈ A and k ∈ K.

The Lie algebra sl(2,R) consists of all 2× 2 real matrices of trace zero, i.e.,

sl(2,R) = {p ∈M(2,R) : tr p = 0} ,

where M(n,R) is a set of all n× n matrices with coefficients in R. The matrices

p1 =

(
0 1

0 0

)
, p2 =

1

2

(
1 0

0 −1

)
, p3 =

(
0 1

−1 0

)

form a basis of sl(2,R).

Let p1, p2 and p3 be as given above. Set

n(x) = ep
x
1 , a(t) = ep

t
2 , k(θ) = ep

θ
3 ,
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where θ, t, x are arbitrary real numbers with px1 = xp1, p
t
2 = tp2, p

θ
3 = θp3. Then it is not difficult

to see that

n(x) =

(
1 x

0 1

)
, a(t) =

(
e
t
2 0

0 e−
t
2

)
, k(θ) =

(
cos θ sin θ

− sin θ cos θ

)
,

where G = SL(2,R) = NAK, with

N = {n(x) : x ∈ R} , A = {a(t) : t ∈ R} , K = {k(θ) : θ ∈ R} .

In summary, we have

Corollary 2.13. Any one-dimensional subgroup of SL(2,R) is conjugate to one of the following

subgroups:

N =

{
n(x) =

(
1 x

1

)
= exp

(
0 x

0

)
: x ∈ R

}
;

A =

{
a(t) =

(
e
t
2 0

0 e−
t
2

)
= exp

(
t
2 0

0 − t
2

)
: t ∈ R,

}
;

K =

{
k(θ) =

(
cos θ sin θ

− sin θ cos θ

)
= exp

(
0 θ

−θ 0

)
: 0 ≤ θ < 2π

}
.

For more on Iwasawa decomposition, see Iwasawa [88], Sugiura [160, Chapter V, Section 1], Lang

[98], Taylor [165].

Furthermore, in geodesic polar coordinates z = (ρ, θ) we have (see e.g. Terras [167, p. 141])

z =


cos(θ/2) sin(θ/2)

− sin(θ/2) cos(θ/2)


(
e−ρ/2 0

0 eρ/2

)
i, 0 ≤ θ < 2π, 0 ≤ ρ <∞, (2.10)

where

x =
sinh ρ sin θ

cosh ρ+ sinh ρ cos θ
, y =

1

cosh ρ+ sinh ρ cos θ
. (2.11)

2.1.3 Hyperbolic Riemann Surfaces

By a Riemann surface, we mean a one-dimensional complex manifold, i.e., a two-dimensional

analytic Riemannian manifold. The uniformisation theorem for Riemann surfaces tells us that a

Riemann surface M can be obtained as either the Riemann sphere Ĉ = C ∪ {∞} or a quotient

of C or H by a discrete group of isometries acting without fixed points on C or on H.

A subgroup Γ of PSL(2,R) is discrete if for every z ∈ H, the orbit Γz = {γz : γ ∈ Γ} has no

accumulation points in H. If Γ is any discrete group (where γ ∈ Γ has no fixed points in C or

H) acting on the complex plane C or on the upper half-plane H, then the quotient Γ\C or Γ\H
is a Riemann surface, in fact a smooth Riemann surface. The condition that Γ acts on C or H

without fixed points in C or H is equivalent to saying that Γ has no elliptic elements, bearing in

mind that only elliptic transformations have fixed points in H. If the discrete group Γ has elliptic

elements, then the resulting quotient is called an orbifold. We classify the only Riemann surfaces

of the form Γ\C as the plane C; the punctured disc C\ {0}; and the tori (T2 = Γ\C=Z2\R2).
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In order for the quotient Γ\H to give a reasonable (well defined) topological space, the action

of the discrete subgroup Γ ⊂ SL(2,R) must be properly discontinuous. We say that a discrete

subgroup Γ of SL(2,R) acts properly discontinuously on H if any compact subset of H contains

only finitely many orbit points γz, γ ∈ Γ , z ∈ H (i.e., the orbits Γz, z ∈ H, are locally finite);

such a group Γ is called a Fuchsian group.

If we equip the Riemann surface Γ\H with a complete Riemannian metric of constant Gaussian

curvature −1, then M = Γ\H becomes a hyperbolic surface.

Example 2.1. The group Γ = PSL(2,Z) = SL(2,Z)/ {±I} consists of all transformations of

the form

z 7→ γz =
az + b

cz + d
: a, b, c, d ∈ Z, ad− bc = 1,

and it is called the modular group. This group is obviously a Fuchsian group; that is, it is a

discrete subgroup PSL(2,Z) ⊂ PSL(2,R) that acts properly discontinuously on H and the cor-

responding quotient PSL(2,Z)\H is called a modular surface. The modular group Γ = SL(2,Z)

is generated by the matrices

S =

(
1 1

0 1

)
: Sz = z + 1, T =

(
0 −1

1 0

)
: Tz = −1

z

(see Apostol [3, pp. 28-30]).

Example 2.2. For N ∈ N, N ≥ 1, the principal congruence subgroup Γ̃ (N) ⊆ PSL(2,Z) of

level N defined by

Γ̃ (N) :=

{(
a b

c d

)
∈ PSL(2,Z) : a ≡ d ≡ ±1, b ≡ c ≡ 0 mod N

}
(2.12)

is a subgroup of PSL(2,Z) of finite index (see Example 2.4 below).

We introduce some terminologies. If the area of Γ\H is finite, that is,

µ(Γ\H) =

∫
Γ\H

dxdy

y2
<∞,

then the Fuchsian group Γ is called cofinite.

Let Γ be a Fuchsian group, the limit set ΠΓ ⊆ ∂H = R∪ {∞} of Γ is the set of all limit points

of the orbits Γz, z ∈ H.

Definition 2.14. A subgroup Γ ⊂ PSL(2,R) is a Fuchsian group if and only if Γ acts discon-

tinuously on H.

Definition 2.15. Let Γ ⊂ PSL(2,R) be a Fuchsian group. An open set DΓ ⊂ H is called a

fundamental domain of Γ if for γ, σ ∈ Γ ,

(i) γDΓ ∩ σDΓ = ∅,

(ii) the closure of
⋃
γ∈Γ

γDΓ coincides with H.

Any Fuchsian group Γ ⊂ PSL(2,R) admits a fundamental domain DΓ . The fundamental

domain DΓ is not unique, but all fundamental domains DΓ of Γ have the same positive hyperbolic
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area

µ (DΓ ) =

∫
DΓ

dµ(z) =

∫
DΓ

dxdy

y2
.

Indeed, let the identity element ±I fix the point z′ ∈ H. Then the set

DΓ = {z ∈ H : d(z, z′) ≤ d(z, γz′) for all γ ∈ Γ , γ 6= ±I}

is a fundamental domain for Γ called a Dirichlet domain.

Definition 2.16. A Fuchsian group Γ ⊂ PSL(2,R) is called the Fuchsian group of the first

kind if every point on the boundary ∂H = R ∪ {∞} is a limit point of an orbit Γz for some

z ∈ H.

Fuchsian groups Γ ⊂ PSL(2,R) of the first kind have the property that

µ (DΓ ) =

∫
DΓ

dµ(z) <∞;

and we say that Γ is cofinite (see, e.g., Katok [91, Section 4.5]).

Definition 2.17. A cofinite Fuchsian group is called cocompact if the quotient Γ\H is a compact

hyperbolic surface.

Example 2.3. A fundamental domain for the modular group Γ = PSL(2,Z) ⊂ PSL(2,R) is

an open subset DΓ ⊂ H given by

DΓ =

{
z ∈ H : |Re z| ≤ 1

2
, |z| ≥ 1, and if |z| = 1, then Re z ≥ 0

}
.

Indeed, by definition,

µ(Γ\H) =

∫
DΓ

dµ(z) =

∫ 1
2

− 1
2

(∫ ∞
√

1−x2

dy

y2

)
dx

=

∫ 1
2

− 1
2

dx√
1− x2

= sin−1(x) |
1
2

− 1
2

=
π

3
.

Therefore Γ = PSL(2,Z) ⊂ PSL(2,R) is a Fuchsian group of the first kind.

Example 2.4. From formulae for the finite index [Γ̃ (1) : Γ̃ (N)] of the principal congruence

subgroup of level N (see Shimura [151, p. 22]), we deduce that

µ
(
DΓ̃ (N)

)
=


π
6 ·N

3
∏
p|N

p prime

(
1− p−2

)
, N > 2,

2π, N = 2,

and therefore Γ̃ (N) is a Fuchsian group of the first kind.

For more examples of Fuchsian groups of the first kind, see Bergeron [27, Subsec. 2.3.2].

Throughout this thesis, Γ is a Fuchsian group of the first kind.

A Fuchsian group of the first kind Γ ⊂ PSL(2,R) is cocompact if and only if Γ has no parabolic

elements. In other words, the hyperbolic Riemann surface Γ\H is not compact if Γ possesses
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parabolic elements (see Katok [91, p. 90]). If there are no elliptic and parabolic elements, i.e., if

Γ has only hyperbolic elements, then the group Γ is said to be strictly hyperbolic

Let f satisfy the condition

(f, f) =

∫
Γ\H
|f(z)|2 dµ(z) <∞.

We define the Hilbert space

L2(Γ\H) = {f : f(γz) = f(z), for all γ ∈ Γ, z ∈ H}

as the vector space of all smooth automorphic functions f which are square integrable on Γ\H
with the inner product given by

(f, g) =

∫
Γ\H

f(z)g(z) dµ(z), (2.13)

for all complex-valued functions f, g ∈ L2(Γ\H).

Now let ∆̃ be the Laplacian in H, which is also the Laplacian on the hyperbolic surface M =

Γ\H. Then ∆̃ commutes with the action of G on H. Therefore, it descends to an operator in

C∞(M ). The Laplacian ∆̃ regarded as a linear operator

∆̃ : C∞0 (M )→ L2(M ),

is a symmetric, nonnegative operator on L2(M ), i.e., it satisfies

(∆̃f, g) = (f, ∆̃g), f, g ∈ C∞0 (M )

and

(∆̃f, f) ≥ 0, f ∈ C∞0 (M ).

It follows that ∆̃ is essentially self-adjoint, and the closure of ∆̃, which we also denote by ∆̃ is

self-adjoint. If f ∈ C∞(M ) viewed as a C∞ Γ -automorphic on H, then the function ∆̃f is again

Γ -automorphic on H.

If M = Γ\H is compact, then the spectrum of ∆̃ on Γ\H is discrete and real, with

0 = λ0 < λ1 ≤ λ2 ≤ · · ·; lim
n↗∞

λk =∞, (2.14)

and satisfies the Weyl’s asymptotic formula (see Subsection 3.4.1)

λk ∼
4πk

µ(Γ\H)
as k ↗∞. (2.15)

Since ∆̃ is self-adjoint and positive, we always have (λk : k ≥ 0) ⊂ [0,∞).

Next we discuss the concept of small eigenvalues of the Laplacian on M . Let sk be chosen so that

λk = sk(1− sk), where (λk : k ≥ 0) are the eigenvalues of the Laplacian on M corresponding to

the eigenfunctions (ϕk : k ≥ 0), which form an orthonormal basis of L2(M ). Define rk by setting

sk = 1
2 + irk. Then λk = 1

4 + r2
k, k ≥ 0. Thus there are two rk’s for each λk except when λk = 1

4

which corresponds to rk = 0. Indeed, if λk <
1
4 , then rk ∈ C and if λk >

1
4 , then rk ∈ R. For

instance, if λ0 = 0, then r0 = ± i
2 . The eigenvalues 0 ≤ λk < 1

4 (rk imaginary) are called small or

exceptional eigenvalues. The question of “small” eigenvalues is of great importance in number
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theory. In Maass [105], the eigenvalues of the Laplacian are written in the form λ = r2 + 1
4

in order to explain the Γ-factors Γ
(
s+ir

2

)
Γ
(
s−ir

2

)
and Γ

(
s+1+ir

2

)
Γ
(
s+1−ir

2

)
occurring in the

functional equation of certain Dirichlet series. The above notation for the eigenvalues was later

developed by Selberg [147] and some other notable number theorists and lead to various number

theoretic and geometric results, which depend on the eigenvalues in the interval
[
0, 1

4

]
(see e.g.,

Lax and Phillips [99], Wolfe [178], Patterson [126], Levitan [102], Phillips and Rudnick [127],

and Hill and Parnovski [85] for such results).

If M = Γ\H is not compact, then ∆̃ has both discrete and continuous spectrum (see Section

3.2). We lift the eigenfunctions (ϕk : k ≥ 0) of the Laplacian ∆̃ on M to H in order to obtain

automorphic eigenfunctions (φk : k ≥ 0) on H. Recall that the eigenfunction φ is automorphic

if φ(γz) = φ(z), ∀γ ∈ Γ, z ∈ H.

By a classical application of the Gauss-Bonnet theorem (see Anderson [2, Section 5.5]), we have

κµ (Γ\H) = 2πχ (Γ\H) , κ = −1, (2.16)

where χ (Γ\H) is the Euler characteristic of Γ\H and κ is the Gaussian curvature. The Euler

characteristic of the g-holed torus is 2− 2g. Then

µ (Γ\H) = −2πχ (Γ\H) = −2π(2− 2g) = 4π(g − 1).

We again introduce some terminologies. If ν = γm, m ∈ Z − {0}, we shall write γ̃ν = γ̃mγ and

say that γ̃ν is the m-fold iterate of γ̃mγ .

Definition 2.18. An element ν ∈ Γ−{0} is primitive if it cannot be written in the form ν = γm

with γ ∈ Γ and m ≥ 2; correspondingly we say that the conjugacy class {ν} is primitive and

denoted {ν}p . Similarly, a closed geodesic γ̃ν on M is primitive if it is not the m-fold iterate

(with m ≥ 2) of another closed geodesic γ̃γ on M ; correspondingly we call the set of lengths `(γ̃)

of primitive γ̃ the primitive length spectrum.

Proposition 2.19. For every γ ∈ Γ−{I} there exits a unique primitive ν ∈ Γ such that γ = νm

for some m ≥ 1. Similarly, for every nontrivial closed geodesic γ̃ on M , there exists a unique

primitive closed geodesic γ̃0 such that γ̃ = γ̃m0 for some m ≥ 1. The centraliser of γ ∈ Γ is

Γγ = {νn : n ∈ Z} .

Proof. A proof can be found in Buser [32, p. 128]. See also Borthwick [30, pp. 32-33].

We recall that points in the quotient (topological space)

Γ\H = {Γz : z ∈ H}

correspond to orbits of Γ with the topology in which the natural projection

π : H→ Γ\H (2.17)

given by

π(z) = Γz
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is continuous. A function on M can be thought of being a function on H that is Γ -automorphic.

If γ ∈ Γ is hyperbolic, then the axis hγ connecting two fixed points of γ is preserved by γ and

so projects to a closed geodesic under (2.17). This gives a 1-1 correspondence between the closed

geodesics of Γ\H and the conjugacy classes of the hyperbolic elements γ ∈ Γ (see Borthwick [30,

p. 32]). Thus

`(γ) = ` (π (hγ)) = `(γ̃).

Next we define the concept of free homotopy class and the length spectrum on a compact

hyperbolic surface M . Let X = R/[t 7→ t+ 1] and M be a compact hyperbolic surface.

Definition 2.20. Two closed curves α, β : X →M are called freely homotopic, if there exists

a continuous map q : [0, 1]× X→ X such that

q(0, t) = α(t), q(1, t) = β(t), t ∈ X.

In each free homotopy class [γ̃] of closed curves on M , there exists a geodesic γ̃ whose length is

minimal among the curves in [γ̃]. Thus on compact hyperbolic surfaces or, more generally, on

compact manifolds with negative curvature, the free homotopy classes and the closed geodesics

are in one-to-one correspondence.

Definition 2.21. The length spectrum of M is the collection LM of lengths of closed geodesics

`(γ̃) given by

LM = {`(γ̃) : γ̃ is a closed geodesic on M }

repeated according to multiplicity. The multiplicity of the length is the number of free homotopy

classes of closed curves containing a geodesic of the given length. The corresponding length

counting function is given by

NM (t) = # {` ∈ LM : ` ≤ t} . (2.18)

2.2 Automorphic Forms for the Modular Group SL(2,Z)

When a group acts discontinuously on a topological space, it is natural to study a function

defined on the topological space and that are invariant under the group. In this section we

study functions f : H→ C that are invariant under the discrete subgroup SL(2,Z) ⊂ SL(2,R);

that is we study functions that satisfy f(γz) = f(z) for all γ ∈ SL(2,Z), z ∈ H. We shall

investigate an important example of functions of this type, the nonholomorphic Eisenstein series.

Before going to the details of the nonholomorphic Eisenstein series as an essential example of

automorphic forms, it becomes pertinent to first briefly discuss, in general, automorphic forms

for SL(2,Z), which are eigenfunctions of the Laplacian on SL(2,Z)\H; specifically, we give the

Fourier expansion of automorphic forms for SL(2,Z). We also call these eigenfunctions Maass

waveforms because they were first systematically considered by Maass [105]. The modular surface

SL(2,Z)\H is not compact, and therefore the spectrum of the Laplace-Beltrami operator admits

a continuous part spanned by Eisenstein series; as discussed in Section 3.2. The discrete part

of the spectral decomposition of L2 (Γ\H) is spanned by Maass cusp forms; as discussed in

Subsection 3.2.1.

Through out this section, Γ = SL(2,Z) is a discrete subgroup of SL(2,R).
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Definition 2.22. Let f : H −→ C be a smooth function. We say that f is of polynomial growth

at infinity if for fixed x ∈ R and z = x+ iy ∈ H, f(z) is bounded by a fixed polynomial in y as

y ↗∞. We say f is of rapid decay if for any fixed N > 1,
∣∣yNf(z)

∣∣↘ 0 as y ↗∞. We say f

is of rapid growth if for any fixed N > 1,
∣∣y−Nf(z)

∣∣↗∞ as y ↗∞.

Definition 2.23. A function f : H −→ C is a nonholomorphic modular (or automorphic) form

or Maass waveform if

(i) f is an eigenfunction of the hyperbolic Laplacian, i.e.,

∆̃f = −y2

(
∂2

∂x2
+

∂2

∂y2

)
f = s(1− s)f, s ∈ C;

(ii) f is invariant under the modular group, i.e.,

f(γz) = f(z) for all γ ∈ Γ = SL(2,Z) and all z ∈ H;

(iii) f has at most polynomial growth at infinity.

Furthermore, if ∫ 1

x=0

f(x+ iy) dx = 0,

then we call f a Maass cusp form.

The vector space of all automorphic forms with respect to Γ = SL(2,Z) is denoted by

C (SL(2,Z), s(1− s)) = C.

Theorem 2.24 (Fourier Expansion of Maass Waveform). An automorphic form f ∈ C

has a Fourier series expansion given by

f(z) = a0y
s + ã0y

1−s +
∑
n 6=0

an
√
yKs− 1

2
(2π|n|y)e2πinx, (2.19)

where a0, ã0, an ∈ C, and Ks(z) is the Bessel function of imaginary argument (see Appendix B.3).

Proof. Let H be the upper half-plane and f ∈ C. Since the element

(
1 1

0 1

)
is in SL(2,Z) it

follows that f(z) satisfies

f(z) = f(γz) = f(z + 1), γ =

(
1 1

0 1

)
∈ SL(2,Z), z ∈ H.

Thus f(z) is a periodic function of x and therefore admits a Fourier expansion of the form

f(z) =
∑
n∈Z

cn(y)e2πinx, z = x+ iy,

where

cn(y) =

∫ 1

0

f(z)e−2πinx dx, z = x+ iy.

Since

−y2

(
∂2

∂x2
+

∂2

∂y2

)
f − s(1− s)f = 0,
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it follows that
∂2

∂y2
f = − ∂2

∂x2
f − s(1− s)fy−2.

Thus

c′′n(y) =

∫ 1

0

∂2

∂y2
fe−2πinx dx =

∫ 1

0

[
− ∂2

∂x2
f − s(1− s)fy−2

]
e−2πinx dx

= −s(1− s)
y2

cn(y)−
∫ 1

0

∂2

∂x2
fe−2πinx dx.

By the periodicity of f , it follows that ∂
∂xf is also periodic and by integration by parts, we obtain

c′′n(y) +
s(1− s)
y2

cn(y) = −
∫ 1

0

∂2

∂x2
fe−2πinx dx

= 4π2n2cn(y).

Hence, cn(y) satisfies the differential equation

c′′n(y) +

[
s(1− s)
y2

− 4π2n2

]
cn(y) = 0. (2.20)

Now setting

cn(y) = y
1
2un(y), (2.21)

equation (2.20) becomes

y2 dun
dy

+ y
du

dy
−

[(
s− 1

2

)2

+ 4π2n2

]
un = 0. (2.22)

Equation (2.22) is a modified Bessel’s equation with the general solution

un(y) = anKs− 1
2
(2π|n|y) + bnIs− 1

2
(2π|n|y), (2.23)

where Ks(y) and Is(y) are the Bessel functions of imaginary argument (see Appendix B.3). We

rule out the second solution Is− 1
2
(2π|n|y), by the polynomial growth of f(z) as y ↗∞, i.e., we

set bn = 0. Thus, by (2.21) we have

cn(y) = any
1
2Ks− 1

2
(2π|n|y).

For n = 0, equation (2.22) reduces to

y2 du0

dy
+ y

du0

dy
−
(
s− 1

2

)2

u0 = 0. (2.24)

Thus, the solution of (2.24) is

u0(y) = a0y
s− 1

2 + ã0y
1
2−s,

and we obtain

c0(y) = y
1
2

(
a0y

s− 1
2 + ã0y

1
2−s
)

= a0y
s + ã0y

1−s.
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Therefore,

f(z) = c0(y) +
∑
n6=0

any
1
2Ks− 1

2
(2π|n|y)

= a0y
s + ã0y

1−s +
∑
n 6=0

any
1
2Ks− 1

2
(2π|n|y).

This completes the proof of the theorem.

We next discuss an important example of automorphic forms for the modular group SL(2,Z),

namely the nonholomorphic Eisenstein series.

2.2.1 The Fourier Expansion of Nonholomorphic Eisenstein Series

Eisenstein series, first studied by Selberg [147, 148], are an essential ingredient in the theory

of automorphic functions and automorphic forms with numerous applications to number theory

and arithmetic geometry.

We recall from Section 1.5 that the power function Fs(z) = f(z) = (Im z)s = ys, s ∈ C, is an

eigenfunction of the Laplacian ∆̃ on H, and from Subsection 1.5.2, the averaged integral (see

(1.48))

Fs(r) = P−s(cosh r) =
1

2π

∫ 2π

0

(
1

cosh r + sinh r cosψ

)s
dψ, y = cosh r + sinh r cosψ,

is also an eigenfunction on H; this is an integration over the appropriate subgroup of SL(2,R),

bearing in mind that by the Iwasawa decomposition, y = y(r, ψ) = cosh r + sinh r cosψ. In

the present situation, the integration must be replaced with summation because SL(2,Z) is a

discrete subgroup of SL(2,R). Towards this end we note that

Im (γz) =
y

|cz + d|2
for all γ =

(
a b

c d

)
∈ SL(2,R), z ∈ H,

and we make the following definition.

Definition 2.25. The nonholomorphic Eisenstein series for the modular group SL(2,Z) is

defined, for s ∈ C, Re s > 1, by

E(z, s) =
∑

γ∈Γ∞\Γ

Im (γz)s =

∞∑
c,d∈Z

(c,d)=1

ys

|cz + d|2s
, (2.25)

and has meromorphic continuation to the whole complex plane, with a simple pole at s = 1 as

its only singularity (as we shall see in Subsection 2.2.2).

We shall see shortly (in Subsection 2.2.2) that this analytic continuation and the functional

equation for E(z, s) can be obtained through the Fourier expansion of the Eisenstein series. For

a complex variable s ∈ C, the nonholomorphic Eisenstein series E(z, s) in Definition 2.25 was

first systematically studied by Maass [105].
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The notation in (2.25) means that the sum runs over the representatives γ ∈ Γ for the quotient

Γ∞\Γ =

{(
∗ ∗
c d

)
: (c, d) = 1

}
, Γ∞ =

{
±

(
1 b

0 1

)
: b ∈ Z

}
, (2.26)

where (m,n) is the greatest common divisor of c and d. Since y(z), the imaginary part of

z = x+ iy ∈ C is SL(2,Z)-invariant, i.e., for s ∈ C

y(γz)s = y(z)s for all γ ∈ Γ∞, z ∈ H, (2.27)

the sum in (2.25) is well-defined and is automorphic with respect to SL(2,Z). Since on the other

hand, ys, s ∈ C, satisfies

−y2

(
∂2

∂x2
+

∂2

∂y2

)
ys = s(1− s)ys,

and since the hyperbolic Laplacian

∆̃ = −y2

(
∂2

∂x2
+

∂2

∂y2

)
is SL(2,Z)-invariant in the sense

∆̃(f(γz)) = (∆̃f)(γz) for every γ ∈ SL(2,Z),

we see at once that

−y2

(
∂2

∂x2
+

∂2

∂y2

)
E(z, s) = s(1− s)E(z, s), z = x+ iy ∈ H.

That

E(γz, s) = E(z, s), ∀ γ =

(
a b

c d

)
∈ SL(2,Z)

follows easily from the fact that for every γ ∈ SL(2,Z), we have γ (SL(2,Z)\H) = SL(2,Z)\H.

The sum in (2.25) is absolutely and uniformly convergent on compact subsets of H (Sarnak

[145]). In contrast to the holomorphic Eisenstein series of weight k (Sarnak [145], Bergeron [27,

p. 100]), the Eisenstein series E(z, s) is not a complex holomorphic function with respect to

z, but real holomorphic for Re s > 1. The most significant property of E(z, s) is its analytic

continuation and functional equation (Subsection 2.2.2).

If we multiply both sides of (2.25) by ζ(2s) =
∞∑
k=1

k−2s, and write m = kc, n = kd, the Eisenstein

series E(z, s) becomes

ζ(2s)E(z, s) =
1

2

∞∑
m,n=−∞

(m,n) 6=(0,0)

ys

|mz + n|2s
.

Theorem 2.26. For z = x + iy ∈ H, Re s > 1, E(z, s) defined by (2.25) has the Fourier

expansion

E(z, s) = ys + ϕ(s)y1−s +
2
√
yπs

ζ(2s)Γ(s)

∑
n6=0

σ1−2s(|n|)|n|s−
1
2Ks− 1

2
(2π|n|y)e2πinx, (2.28)
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where

ϕ(s) =
√
π

Γ(s− 1
2 )

Γ(s)

ζ(2s− 1)

ζ(2s)
, σk =

∑
d|n

dk = the sum of the kth powers of divisors n. (2.29)

Remark 2.3. The use of (ϕk : k ≥ 0) as eigenfunctions of the Laplacian on M = Γ\H and ϕ

as scattering determinant (2.29) will not cause any confusion.

Proof of Theorem 2.26. We shall proceed by using the equality

E(z, s) = ZQ(s)/2ζ(2s),

where

ZQ(s) =

∞∑
m,n=−∞

(m,n)6=(0,0)

(Qz(m,n))−s =

∞∑
m,n=−∞

(m,n)6=(0,0)

ys|mz + n|−2s, z = x+ iy ∈ H,

is the Epstein zeta function (Bateman and Grosswald [21], Selberg and Chowla [149]). Indeed,

ZQ(s) = 2

∞∑
n=1

(Q(0, n))−s + 2
∞∑
m=1

∞∑
n=−∞

(Qz(m,n))−s

= 2ys
∞∑
n=1

n−2s + 2ys
∞∑
m=1

∞∑
n=−∞

|mz + n|−2s

= 2ysζ(2s) + 2ys
∞∑
m=1

∞∑
n=−∞

|mz + n|−2s, Re s > 1.

(2.30)

By the Poisson summation formula (1.73), we have

∞∑
n=−∞

1

|z + n|2s
=

∞∑
n=−∞

∞∫
−∞

e−2πinu

|u+ z|2s
du =

∞∑
n=−∞

∞∫
−∞

e−2πinu

[(u+ x)2 + y2]
s du

= 2y1−2s

∫ ∞
0

du

(1 + u2)
s + 4y1−2s

∞∑
n=1

e2πinx

∫ ∞
0

e−2πinuy

(1 + u2)
s du. (2.31)

We next evaluate the two integrals on the right-hand side of (2.31). To this end, we use (B.48)

to obtain

∞∑
n=−∞

1

|z + n|2s
= y1−2s

√
πΓ
(
s− 1

2

)
Γ(s)

+ 4y
1
2−s

πs

Γ(s)

∞∑
n=1

e2πinxns−
1
2Ks− 1

2
(2πny).

Thus,

ZQ(s) = 2ysζ(2s) + 2y1−sζ(2s− 1)

√
πΓ
(
s− 1

2

)
Γ(s)

+ 8y
1
2
πs

Γ(s)

∞∑
m=1

m1−2s
∞∑
n=1

e2πimnx(mn)s−
1
2Ks− 1

2
(2πmny)

= 2ysζ(2s) + 2y1−sζ(2s− 1)

√
πΓ
(
s− 1

2

)
Γ(s)

+ 8y
1
2
πs

Γ(s)

∞∑
k=1

σ1−2s(k)e2πikxks−
1
2Ks− 1

2
(2πky).
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Definition 2.27. Any f ∈ L2 (SL(2,Z)\H) that is in C is said to be a nonholomorphic cusp

form (Maass waveform) for SL(2,Z) if

f(z) =
√
y
∑
n 6=0

anKs− 1
2
(2π|n|y)e2πinx. (2.32)

That is f(z) is a cusp form if the constant term in the Fourier expansion in (2.19) vanishes:∫ 1

x=0

f(x+ iy) dx = 0 = a0y
s + ã0y

1−s y > 0.

2.2.2 Analytic Continuation and Functional Equation of E(z, s)

We now discuss the meromorphic continuation and functional equation of E(z, s) through the

Fourier expansion of E(z, s). To this end, we write

E∗(z, s) := ZQ(s) = 2ζ(2s)E(z, s) = 2ζ(2s)ys + 2
√
π

Γ(s− 1
2 )

Γ(s)
ζ(2s− 1)y1−s

+ 2 · 4√y πs

Γ(s)

∞∑
n=1

σ1−2s(n)ns−
1
2Ks− 1

2
(2πny)e2πinx. (2.33)

The function ζ(2s)E(z, s) has better analytic properties than E(z, s); in particular, it has a

meromorphic continuation to all s except for a simple pole at s = 1. The precise statement is

the following

Theorem 2.28. The Eisenstein series E∗(z, s) can be meromorphically continued to the whole

complex plane, with a simple pole at s = 1 as its only singularity. Moreover,

ResE∗(z, s)

∣∣∣∣
s=1

= π. (2.34)

Proof. The sum of the first two terms in (2.33) has a removable singularity at s = 1
2 , we show

this as follows. By (B.21) and by setting z = 2s, we have

lim
s→ 1

2

2

(
s− 1

2

)
ζ(2s)ys = 2 · 1

2
lim
z→1

(z − 1)ζ(z)y
z
2 = y

1
2 . (2.35)

Similarly,

lim
s→ 1

2

2

(
s− 1

2

)√
π

Γ
(
s− 1

2

)
Γ (s)

ζ(2s− 1)y1−s = 2 lim
z→1

√
π

Γ
(
z
2

) (z − 1

2

)
Γ

(
z − 1

2

)
ζ(z − 1)y1− z2

= 2

√
π

Γ
(

1
2

)Γ

(
2

2

)
ζ(0)y

1
2

= −2
1

2
y

1
2 = −y 1

2 . (2.36)

We easily see that the sum of (2.35) and (2.36) vanishes, as advertised. Therefore, s = 1 is the

only singularity of E∗(z, s), which arises as a simple pole from the second term 2
√
π

Γ(s− 1
2 )

Γ(s) ζ(2s−
1)y1−s of (2.33) due to the factor ζ(2s− 1). Since H(s) is an entire function of s (Bateman and

Grosswald [21]), it follows that E∗(z, s) has a meromorphic continuation in the whole finite

complex plane except for a simple pole at s = 1.
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The residue of E∗(z, s) at s = 1 can be evaluated as follows. Setting z = 2s− 1, we have

lim
s→1

(s− 1)2
√
π

Γ
(
s− 1

2

)
Γ (s)

ζ(2s− 1)y1−s = lim
z→1

(
z − 1

2

)
2
√
π

Γ
(
z
2

)
Γ
(
z+1

2

)ζ(z)y
1
2−

z
2

= (z − 1)
√
π

Γ
(

1
2

)
Γ
(

2
2

) ( 1

z − 1

)
y0

=

√
π ·
√
π

Γ(1)
= π.

We turn now to the functional equation of E(z, s).

Theorem 2.29. The Eisenstein series E(z, s) satisfies the functional equation

Λ(2s)E(z, s) = Λ(2− 2s)E(z, 1− s), Λ(s) = π−
s
2 Γ
(s

2

)
ζ(s).

Proof. We can write (2.33) as

π−sΓ (s)E∗(z, s) = 2ysπ−sΓ (s) ζ(2s) + 2y1−sπ
1
2−sΓ

(
s− 1

2

)
ζ(2s− 1) + 2

√
yH(s), (2.37)

where

H(s) = 4

∞∑
n=1

ns−
1
2σ1−2s(n)Ks− 1

2
(2πny)e2πinx. (2.38)

Since Kν is an even function of ν and

k−
ν
2 σν(k) = k−

ν
2

∑
d|k

dν = k−
ν
2

∑
d|k

(
k

d

)ν
= k

ν
2 σ−ν(k),

each term of the sum in (2.38) is unchanged if we replace s by 1− s. Hence,

H(s) = H(1− s). (2.39)

Replacing s with 2s− 1 in the Riemann’s functional equation (B.19), we have

ζ(2s− 1) = 2(2π)2s−2 sin

(
s− 1

2

)
πΓ(2− 2s)ζ(2− 2s). (2.40)

Also, replacing s with 1− s in the Legendre duplication formula (B.3) and using (B.4) gives

Γ(2− 2s) =
Γ(1− s)Γ

(
3
2 − s

)
√
π22s−1

=
Γ(1− s)√
π22s−1

· π

Γ
(
s− 1

2

)
sin
(
s− 1

2

)
π
. (2.41)

Using (2.41) in (2.40) we have

ζ(2s− 1) =
π2s− 3

2 Γ(1− s)
Γ
(
s− 1

2

) ζ(2− 2s). (2.42)

Substituting (2.42) in (2.37) gives

π−sΓ (s)E∗(z, s) = 2
( y
π

)s
ζ(2s)Γ(s) + 2

( y
π

)1−s
ζ(2− 2s)Γ (1− s) + 2y

1
2H(s). (2.43)
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If we now write

ξ(s) = π−sΓ (s)E∗(z, s),

we see from (2.39) and (2.43) that

ξ(1− s) = πs−1Γ(1− s)E∗(z, 1− s) = 2
( y
π

)1−s
ζ(2− 2s)Γ(1− s) + 2

( y
π

)s
ζ(2s)Γ (s)

+ 2y
1
2H(s) = ξ(s).

Hence

π1−2sE∗(z, s)

Γ(1− s)
=
E∗(z, 1− s)

Γ(s)
or π−sΓ (s)E∗(z, s) = π−(1−s)Γ (1− s)E∗(z, 1− s). (2.44)

The generalisation of the material in this section to the general linear group SL(n,Z) is con-

sidered in Awonusika and Taheri [8].



Chapter 3

Trace Formulae for Hyperbolic

Surfaces and Applications

As we have earlier pointed out in Section 1.8 that the main tool for studying the structure of

the spectrum of the Laplacian on (compact and noncompact) hyperbolic surfaces is the Selberg

trace formula. In this chapter we shall develop the trace formulae for compact and noncompact

hyperbolic surfaces M = Γ\H (Γ is a Fuchsian group of the first kind), and present some of

its interesting applications, ranging from heat and eigenvalue asymptotics (Weyl’s law) to the

determinants of the Laplacian on M .

In Section 3.1, we derive explicitly, the trace formula for a compact hyperbolic surface M by

decomposing Γ into conjugacy classes. Section 3.2 accounts for a complete derivation of the

trace formulae for a noncompact hyperbolic surface M . The main task in the derivation of the

trace formula is the evaluation of integrals involving the Γ -automorphic kernel which contains

the identity, hyperbolic and parabolic elements of Γ .

When the hyperbolic surface M is compact we need to evaluate only the integral defining the

trace of the automorphic kernel which contains the identity and hyperbolic elements of Γ since

the spectrum of the Laplacian in this case is discrete. The resulting trace formula then relates

the spectrum of the Laplacian on M to the length of closed geodesics on M .

Computations are complicated when M is noncompact, because the spectrum of the Laplacian

is no longer purely discrete but also continuous and this has significant spectral and geometric

effects on the trace formula. The starting point in the process of presenting explicit trace

formula for a noncompact hyperbolic surface M is the Selberg spectral decomposition formula

for automorphic functions in L2(M ); this spectral formula decomposes automorphic functions

f ∈ L2(M ) into the discrete and continuous parts. The discrete part involves summation over

the discrete spectrum while the continuous part contains integral involving Eisenstein series; the

continuous spectrum is understood and studied in terms of Eisenstein series.

The Parseval inner product formula is the generalisation of the Selberg spectral expansion for-

mula for automorphic functions f ∈ L2(SL(2,Z)\H), namely the Parseval inner product formula

is the spectral expansion formula for the L2-inner product (f, g), where f and g are automorphic

functions in L2(SL(2,Z)\H). In Section 3.3 we develop an explicit Parseval inner product for-

mula for the nonholomorphic Eisenstein series E(z, s).

56



Chapter 3. Trace Formulae for Hyperbolic Surfaces and Applications 57

Having successfully established the trace formula for a noncompact M ; in particular for the

modular surface M = SL(2,Z)\H, we next apply the trace formula to determine the determinant

of the Laplacian ∆̃ − s(1 − s) (s ∈ C) on SL(2,Z)\H. The determinant obtained is a special

case of Efrat [56], Momeni and Venkov [114]. The computations of this determinant are in two

stages - the first step is to compute the trace and heat trace asymptotics on SL(2,Z)\H. The

second stage involves explicit determinantion of the (Selberg) zeta functions associated to the

identity, hyperbolic and parabolic elements of SL(2,Z), and we then express the determinant in

terms of these zeta functions. We determine the determinant for special values of s ∈ R, s > 0.

3.1 The Trace Formula for a Compact Hyperbolic Surface

Throughout this section, Γ is a Fuchsian group of the first kind such that M = Γ\H is smooth

and compact, i.e., the fundamental domain DΓ of Γ has finite non-Euclidean area. Thus the

Laplacian on M has purely discrete spectrum (λk : k ≥ 0) and the corresponding eigenfunctions

form an orthonormal basis (ϕk : k ≥ 0) of L2(M ).

Let k̃ : [0,∞) −→ C be an even smooth function.

Definition 3.1. For all γ ∈ Γ , z = x+ iy, z′ = x′ + iy′ ∈ H, a smooth function

k(z, z′) = k̃ [u(z, z′)] , u(z, z′) =
|z − z′|2

yy′
, (3.1)

satisfying

(i) k(z, z′) = k(γz, γz′)

(ii) k(z, z′) = k(z′, z)

is called a point-pair invariant.

Definition 3.2. Functions f which satisfy

f(γz) = f(z) for all γ ∈ Γ, z ∈ H

are called automorphic functions. Hence, an automorphic function with respect to Γ defines a

function on the hyperbolic surface Γ\H.

Let φ be an eigenfunction of the Laplacian on H, with

∆̃φ = λφ =

(
1

4
+ r2

)
φ.

Then φ is also an eigenfunction for all of the invariant integral operators, say L, corresponding

to any point-pair invariant, and that the eigenvalue of L depends only on λ, and not on φ; that

is, there exists a function h defined on the set of all possible eigenvalues such that∫
H

k(z, z′)φ(z′) dµ(z′) = h(λ)φ(z). (3.2)

In particular,

Lφ = h(λ)φ.
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The precise statement is the following.

Theorem 3.3. Let φ be a Γ -automorphic lift of the eigenfunction ϕ with respect to the covering

H → M = Γ\H. Then the equality (3.2) holds, where k(z, z′) is defined by (3.1) and h(λ)

depends only on the eigenvalue λ = 1
4 + r2 and the point-pair invariant k.

Proof. The integrand is absolutely integrable since φ is a bounded function on H. Now, consider

the geodesic polar coordinates z = (ρ̃, θ̃), 0 ≤ ρ̃ <∞, 0 ≤ θ̃ ≤ π, where ρ̃ = d(z, i) and θ̃ = θ̃(z, i)

is the angle between the positive y-axis and the tangent at the unique geodesic passing through

i and z at the point i. In fact, since s(1− s), s ∈ C, takes on all complex values as s ranges over

the complex plane, we can regard h as a function of a complex parameter r, related to s by the

equation s = 1
2 + ir. We note that in terms of r, ∆̃y

1
2 +ir =

(
1
4 + r2

)
y

1
2 +ir. Since the Laplacian

∆̃ is an isometry invariant and since the unit circle S1 acts on H by rotations with centre i, the

averaged function

ψ(ρ̃) =
1

π

∫ π

0

φ(ρ̃, θ̃) dθ̃ (3.3)

is again a solution (not Γ -automorphic) of the initial value problem

ψ′′(ρ̃) + cothψ′(ρ̃) +

(
1

4
+ r2

)
ψ(ρ̃) = 0

ψ(0) = φ(i), ψ′(0) = 0.

By the uniqueness of the initial value problem we have

ψ(ρ̃) = φ(i)
1

π

∫ π

0

Ψ(ρ̃, θ̃) dθ̃, (3.4)

where

Ψ(z) = y
1
2 +ir, Ψ(ρ̃, θ̃) =

(
cosh ρ̃+ sinh ρ̃ cos θ̃

)− 1
2−ir

.

Multiplying (3.4) by k̃(2 cosh ρ̃ − 2) sinh ρ̃ and integrating from 0 to ∞, and using the decom-

position ∫
H

dµ =

(∫ ∞
0

sinh ρ̃ dρ̃

)(
1

π

∫
S1

dν1

)
=

(∫ ∞
0

sinh ρ̃ dρ̃

)(
1

π

∫ π

0

dθ̃

)
together with (3.3), we obtain∫

H

k(z, i)φ(z) dµ(z) = φ(i)

∫
H

k(z, i)y
1
2 +ir dµ(z) = h(r)φ(i).

Next we state and prove a set of transforms which plays a key role in Selberg theory in particular

and in harmonic analysis on Lie groups in general.

Theorem 3.4 (Abel-Selberg-Harish-Chandra integral transform). The compactly sup-

ported smooth function k̃ : [0,∞) −→ C and the real-valued C∞-function h
(

1
4 + r2

)
are connec-

ted by the relations

Q(x) =

∫ ∞
x

k̃(t)√
t− x

dt, (3.5)
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where

k̃(t) = − 1

π

∫ ∞
t

dQ(x)√
x− t

, (3.6)

and

Q
(
eu + e−u − 2

)
= g (u) , (3.7)

with

h

(
1

4
+ r2

)
=

∫ ∞
−∞

eirug(u) du, g(u) =
1

2π

∫ ∞
−∞

e−iruh

(
1

4
+ r2

)
dr. (3.8)

Proof. Let the functions Q(x) and g(u) be as given in the theorem. We then show that

k̃(t) = − 1

π

∫ ∞
t

dQ(x)√
x− t

, h

(
1

4
+ r2

)
=

∫ ∞
−∞

eirug(u) du.

To this end, let |supp k̃| < C, 0 ≤ w ≤ C, we have, by integration by parts

Q′(w) =

∫ ∞
w

k̃′(x)√
x− w

dx =

∫ C

w

k̃′(x)√
x− w

dx = −2

∫ C

w

(x− w)
1
2 k̃′′(x) dx.

Thus as ε↘ 0,

− 1

π

∫ C

t+ε

Q′(w) dw√
w − t

dx =
2

π

∫ C

t+ε

(∫ C

w

(x− w)
1
2 k̃′′(x) dx

)
(w − t)− 1

2 dw

=
2

π

∫ C

t+ε

∫ x

t+ε

(x− w)
1
2 k̃′′(x)(w − t)− 1

2 dwdx

=
2

π

∫ C

t+ε

k̃′′(x)

(∫ x

t+ε

(x− w)
1
2 (w − t)− 1

2 dw

)
dx.

Making a substitution u = (x− w)/(x− t), we see that∫ x

t

(x− w)
1
2 (w − t)− 1

2 dw = (x− t)B
(

3

2
,

1

2

)
=
π

2
(x− t). (3.9)

By letting ε→ 0, we have again by integration by parts,

− 1

π

∫ C

t

Q′(w) dw√
w − t

d =
2

π

∫ C

t

k̃′′(x)
(π

2
(x− t)

)
dx =

∫ C

t

(x− t) dk̃′(x)dx

= −
∫ C

t

k̃′(x) dx = k̃(t)− k̃(C) = k̃(t).

This proves the first part. For the second part, let φ(z) = ys, s = 1
2 + ir, r ∈ R. Then by

Theorem 3.3 we have

h(λ) =

∫
H

k(i, z)ys dµ(z) =

∫ ∞
0

∫ ∞
−∞

k̃

(
x2 + (y − 1)2

y

)
ys
dxdy

y2

=

∫ ∞
0

∫ ∞
(y−1)2

y

k̃(u)√
u− (y−1)2

y

du

 ys− 3
2 dy, u =

x2 + (y − 1)2

y
.

Setting

Q

(
(y − 1)2

y

)
=

∫ ∞
(y−1)2

y

k̃(u)√
u− (y−1)2

y

du = Q
(
y + y−1 − 2

)
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with y = eu, we obtain

h(λ) =

∫ ∞
0

Q
(
y + y−1 − 2

)
ys−

3
2 dy

=

∫ ∞
−∞

g(u)eiru du = h

(
1

4
+ r2

)
= h(r).

The Fourier inversion formula (1.72) completes the proof of the theorem.

Next we define an integral operator on a compact hyperbolic surface M = Γ\H whose kernel is

Γ -automorphic. Towards this end, let the function k̃ : [0,∞)→ C satisfy the decay condition

|k̃(ρ)| = |k̃(2 cosh ρ− 2)| = O
(
e−ρ(1+ε)

)
, ρ = d(z, z′)

for some ε > 0. Then the sum

K(z, z′) =
∑
γ∈Γ

k(z, γz′) (3.10)

converges uniformly on compact sets (Patterson [125]). The function (kernel) K(z, z′) given

by (3.10) is Γ -biinvariant (i.e., K(γ′z, γ′′z′) = K(z, z′) for all γ′, γ′′ ∈ Γ ) and symmetric (i.e.,

K(z, z′) = K(z′, z)).

By Definition (A.8), we can regard K(z, z′) as the kernel of the Hilbert-Schmidt operator L
defined by (see Appendix A.5)

(Lf)(z) =

∫
Γ\H

K(z, z′)f(z′) dµ(z′), f ∈ L2 (Γ\H) . (3.11)

Selberg trace formula now arises from the computation of the trace

trL =

∫
Γ\H

K(z, z)dµ(z) (3.12)

in two different ways, namely the spectral side and the geometric side. We shall consider first

the contribution of the spectral side of the trace formula (3.12).

The Spectral Side. For the spectral side of the trace formula (3.12) we have the following

statement.

Theorem 3.5 (Pre-trace formula). Let (ϕk : k ≥ 0) be automorphic eigenfunctions of the

Laplacian ∆̃ on a compact surface M with corresponding eigenvalues (λk : k ≥ 0), satisfying

0 = λ0 < λ1 ≤ · · · . Then the following holds:

(i) K(z, z′) =
∞∑
k=0

h(λk)ϕk(z)ϕk(z′);

(ii)
∞∑
k=0

h(λk) is finite.

In particular ∫
Γ\H

K(z, z) dµ(z) =

∞∑
k=0

h(λk).
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Proof. By (3.2), (3.10) and since the translates γ (DΓ ) by γ ∈ Γ cover the upper half-plane H,

we have ∫
DΓ

K(z, z′)φk(z) dµ(z) =
∑
γ∈Γ

∫
DΓ

k(z, γz′)φk(z′) dµ(z′)

=

∫
γ(DΓ )

k(z, γz′)φk(z′) dµ(z′)

=

∫
H

k(z, z′)φk(z′) dµ(z′)

= h(λk)φk(z),

(3.13)

where we have used the fact that the eigenfunction φ(z) is Γ -invariant and that the hyperbolic

area dµ(z) is PSL(2,R)-invariant. By viewing the functions ϕk as Γ -automorphic eigenfunctions

of the Laplacian ∆̃ on H, we have by Theorem 3.3 (see also (3.13)),∫
H

k(z, z′)ϕk(z) dµ(z) = h(λk)ϕk(z′),

which can also be written as∫
Γ\H

K(z, z′)ϕk(z) dµ(z) = h(λk)ϕk(z′).

In other words, ϕk are the eigenfunctions of the Hilbert-Schmidt operator L corresponding

to the kernel K(z, z′), and since they are complete, they form a complete orthonormal set of

eigenfunctions for this operator. It therefore follows from the Hilbert-Schmidt theorem (Theorem

A.9) that

K(z, z′) =

∞∑
k=0

h(λk)ϕk(z)ϕk(z′), (3.14)

where the convergence is in L2(M ×M ). This proves part (i). Since the sum in part (i)

converges, part (ii) follows by setting z = z′ and integrating over Γ\H bearing in mind that ϕk

has norm 1.

Equation (3.14) is called the pre-trace formula for a compact hyperbolic surface M .

Remark 3.1. If we regard the φ′ks as automorphic eigenfunctions of the Laplacian on H, then

the pre-trace formula (3.14) becomes

K(z, z′) =

∞∑
k=0

h(λk)φk(z)φk(z′). (3.15)

The Geometric Side. The geometric side of the trace formula (3.12) comes from an explicit

computation of the trace formula

trL =

∫
Γ\H

K(z, z) dµ(z) =
∑
γ∈Γ

∫
Γ\H

k(z, γz) dµ(z).

Since any element β ∈ Γ − {I} can be uniquely written as

β = σ−1γmσ, σ ∈ Γγ\Γ, m ≥ 1,



Chapter 3. Trace Formulae for Hyperbolic Surfaces and Applications 62

we have

trL =

∫
Γ\H

k(0) dµ(z) +
∑
{γ}p

∞∑
m=1

∑
σ∈Γγ\Γ

∫
Γ\H

k
(
z, σ−1γmσz

)
dµ(z)

=

∫
Γ\H

k(0) dµ(z) +
∑
{γ}p

∞∑
m=1

∑
σ∈Γγ\Γ

∫
σ(Γ\H)

k (z, γmz) dµ(z),

where {γ}p is the primitive conjugacy class of γ in Γ . Let Dγ =
⋃

σ∈Γγ\Γ
σ (Γ\H) be a fundamental

domain for the centraliser Γγ when Γ\H is a fundamental domain for Γ . Then

trL =

∫
Γ\H

k(0) dµ(z) +
∑
{γ}p

∞∑
m=1

∫
Dγ
k (z, γmz) dµ(z)

=

∫
Γ\H

k(0) dµ(z) +
∑
{γ}p

∞∑
m=1

∫
Γγ\H

k (z, γmz) dµ(z). (3.16)

Next we compute according to when γ = I and γ 6= I. We shall call the first term on the right-

hand side of (3.16) the identity contribution and the second term the hyperbolic contribution.

3.1.1 Computation of the Trace for the Identity Element

Let c(I) denote the contribution of the identity transformation in Γ . Then

c(I) =

∫
Γ\H

k(0) dµ(z) = k(0)µ (Γ\H) , (3.17)

where by Theorem 3.4

k(0) = k̃(0) = − 1

π

∫ ∞
0

dQ(x)√
x

= − 1

π

∫ ∞
0

dg(u)√
eu + e−u − 2

= − 1

π

∫ ∞
0

g′(u)du

e
u
2 − e−u2

=
1

2π2

∫ ∞
0

rh(r)

(∫ ∞
0

sin (ru)

sinh(u/2)
du

)
dr

=
1

4π

∫ ∞
−∞

rh(r) tanh(πr) dr,

where we have used (Bateman et al. [20, p. 88])∫ ∞
0

sin (ru)

sinh(u/2)
du = πtanh(πr).

We therefore obtain

Proposition 3.6.

c(I) =
µ (Γ\H)

4π

∫ ∞
−∞

rh(r) tanh(πr) dr. (3.18)

3.1.2 Computation of the Trace for the Hyperbolic Element

Here we present the contribution of the hyperbolic element of γ ∈ Γ (i.e., the second term on

the right-hand side of (3.16)). Noting that every hyperbolic element γ ∈ Γ is conjugate to the
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dilation

γz : z → e`(γ)z with Dγ =
{
z = x+ iy ∈ H : x ∈ R, y ∈

[
1, e`(γ)

]}
,

we have

∑
{γ}p

∞∑
m=1

∫
Γγ\H

k (z, γmz) dµ(z) =
∑
{γ}p

∞∑
m=1

∫ ∞
−∞

(∫ e`(γ)

1

k
(
z, em`(γ)z

) dy
y2

)
dx. (3.19)

Let c(H) denote the contribution of the hyperbolic transformation in Γ . Then by the definition

of the point-part invariant k(z, z′), we have

c(H) =
∑
{γ}p

∞∑
m=1

∫ e`(γ)

1

∫ ∞
−∞

k

[
|em`(γ)z − z|2

em`(γ)y2

]
dµ(z)

= 2
∑
{γ}p

∞∑
m=1

`(γ)

∫ ∞
0

k

[(
em`(γ) − 1

)2
em`(γ)

(
1 + α2

)]
dα,

where we have made the substitution x = αy. Again making the substitution

v = Nm`(γ)
(
1 + α2

)
, Nm`(γ) =

(
em`(γ) − 1

)2
em`(γ)

,

we obtain

c(H) = 2
∑
{γ}p

∞∑
m=1

`(γ)

∫ ∞
Nm`(γ)

k(v) dv

2Nm`(γ)
√
N−m`(γ)v − 1

=
∑
{γ}p

∞∑
m=1

`(γ)N−
m`(γ)

2

∫ ∞
Nm`(γ)

k(v) dv√
v −Nm`(γ)

.

By noting that

Nm`(γ) = em`(γ) + e−m`(γ) − 2,

and applying Theorem 3.4, we therefore obtain

Proposition 3.7.

c(H) =
∑
{γ}p

∞∑
m=1

`(γ)
e
m`(γ)

2

em`(γ) − 1
Q
(
Nm`(γ)

)
,

=
∑
{γ}p

∞∑
m=1

`(γ)g (m`(γ))

e
m`(γ)

2 − e
−m`(γ)

2

=
∑
{γ}p

∞∑
m=1

`(γ)g (m`(γ))

2 sinh m`(γ)
2

.

Since the traces in both sides involve integrals of the automorphic kernel at the diagonal, it

follows immediately that the spectral side is equal to the geometric side.

The precise statement is given in the following theorem.

Theorem 3.8. Let M = Γ\H be a compact hyperbolic surface and let h satisfy the conditions

(S.I) h(z) is an even function, i.e., h(z) = h(−z);

(S.II) h(z) is analytic on |Im (z)| < 1
2 + ε, ε > 0;
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(S.III) h(z) ≤ A(1 + |z|2)−1−ε, A > 0, ε > 0.

Then the following identity holds:

∑
k≥0

h(λk) = c(I) + c(H), (3.20)

where (λk : k ≥ 0) are the purely discrete spectrum of the Laplacian ∆̃ on M corresponding to

the eigenfunctions (ϕk : k ≥ 0) which forms an orthonormal basis of L2(M ). The function c(I)

which is the contribution of the identity element of Γ is given by

c(I) =
µ (Γ\H)

4π

∫ ∞
−∞

rh

(
1

4
+ r2

)
tanhπr dr.

The term c(H) denotes the contribution of the hyperbolic element γ of Γ and is given by

c(H) =
∑
{γ}p

∞∑
m=1

`(γ)

2 sinh m`(γ)
2

g(m`(γ)), (3.21)

where {γ}p denotes the hyperbolic conjugacy class of γ in Γ , `(γ) is the primitive length of γ

and the function g is given by

g(u) =
1

2π

∫ ∞
−∞

e−iruh

(
r2 +

1

4

)
dr.

The conditions (S.I) − (S.III) above are such that all the series and integrals are absolutely

convergent.

The Selberg trace formula for a general locally symmetric space Γ\G/K is discussed in Awonusika

and Taheri [8].

3.2 The Trace Formula for a Noncompact Hyperbolic Sur-

face

Let Γ ⊂ SL(2,R) be a Fuchsian group of the first kind such that M = Γ\H is noncompact,

that is, Γ is noncocompact but cofinite, and so M has finitely many cusps. We recall that if

M = Γ\H is noncompact or what is the same, if Γ has a noncompact fundamental domain DΓ ,

then DΓ has a finite (nonzero) numbers of zero interior angles; the vertices of those angles are

fixed points of the parabolic transformations in Γ and are called cusps (or parabolic vertices) of

DΓ . In this case the spectrum of ∆̃ is more complicated, no longer purely discrete.

In this section, we shall obtain the trace formula for a noncompact hyperbolic surface M = Γ\H.

Since M = Γ\H is noncompact, there is a finite number of primitive parabolic conjugacy classes

in Γ . Before computing the trace formula, it is necessary to study the spectral decomposition of

∆̃ on the noncompact surface M = Γ\H.

Let M = Γ\H be a noncompact, finite area hyperbolic surface. The conditions on M mean

that it consists of a relatively compact part together with finitely many regions stretch out to

infinity, i.e.,

M = M0 ∪ Z1 ∪ · · · ∪ Znc ,
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where M0 is a compact Riemann surface with smooth boundary and

Zi = [ai,∞)× S1, i = 1, · · ·, nc,

are cusps, nc is the number of cusps of M , ai > 0. In this case, the spectrum of the Laplacian

on M is both discrete and continuous. Indeed, the Laplacian on M has absolutely continuous

spectrum in
[

1
4 ,∞

)
with multiplicity equal to the number of cusps of M , while the discrete spec-

trum consists of finitely many eigenvalues in
[
0, 1

4

)
, where each eigenvalue has finite multiplicity

(Lax and Phillips [99]). The spectral decomposition of the absolutely continuous part of ∆̃ is

described by generalized eigenfunctions Ei(z, s), i = 1, · · ·, nc. These generalized eigenfunctions

are constructed as Eisenstein series.

3.2.1 Selberg Spectral Expansion of Automorphic Functions

Let Γ = SL(2,Z) and M = SL(2,Z)\H. The Selberg spectral decomposition of L2 (Γ\H)

states that

L2 (Γ\H) = C⊕ L2
cusp (Γ\H)⊕ L2

cont (Γ\H) , (3.22)

where C is the one dimensional space of constant functions, L2
cusp (Γ\H) is the Hilbert space

of square integrable functions on H whose constant term is zero, and L2
cont (Γ\H) represents

all square integrable functions on H which are representable as integrals of the Eisenstein series

(Eisenstein transform) E(z, s) : C∞0 (R)→ L2 (Γ\H) defined by

(f,E(∗, s)) =
1

4π

∫
SL(2,Z)\H

f(z)E(z, s)dµ(z). (3.23)

The reason for the introduction of terminologies L2
cusp (Γ\H) , L2

cont (Γ\H) is because the clas-

sical definition of cusp form requires that the constant term in the Fourier expansion around

any cusp (a real number or infinity) be zero, and also because the Eisenstein series is in the

continuous spectrum of the Laplacian. The spectrum of ∆̃ in L2
cusp (Γ\H) is discrete, whereas

the spectrum of ∆̃ in L2
cont (Γ\H) is absolutely continuous.

Since the quotient SL(2,Z)\H is not compact, the spectral expansion of a square-integrable

function on Γ\H is a sum of two terms - the first term is Fourier series which contains eigen-

functions associated to the discrete spectrum and the second term is an integral which contains

eigenfunctions associated to the continuous spectrum of the hyperbolic Laplacian, which are the

Eisenstein series.

The Selberg spectral expansion of a function f ∈ L2 (SL(2,Z)\H) says that every f ∈ L2 (Γ\H)

admits the spectral expansion (see Terras [167, pp. 254-257])

f(z) =

∞∑
j=0

(f, φj)φj(z) +
1

4π

∫ ∞
−∞

(
f,E

(
z,

1

2
+ ir

))
E

(
z,

1

2
+ ir

)
dr, (3.24)

where (φj : j ≥ 0) are automorphic eigenfunctions which form an orthonormal basis of L2(M ).

For any f ∈ L2 (Γ\H), for which f and ∆̃f are smooth and bounded, the series and integral in

(3.24) converge absolutely and uniformly for z ranging over compact sets in H. In particular,
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let K(z, z′) be the automorphic kernel defined by (3.10). Then

K(z, z′) =

∞∑
k=0

h (rk)φk(z)φk(z′) +
1

4π

∫ ∞
−∞

h(r)E

(
z,

1

2
+ ir

)
E

(
z′,

1

2
+ ir

)
dr, (3.25)

with the function h(r) satisfying the conditions (S.I)− (S.III) in Theorem 3.8.

In the subsections that follow we deal with the right-hand side of the trace formula

∞∑
k=0

h (rk) =

∫
M

K(z, z) dµ(z)− 1

4π

∫
M

∫ ∞
−∞

h(r)

∣∣∣∣E (z, 1

2
+ ir

)∣∣∣∣2 drdµ(z), (3.26)

where

K(z, z′) =
∑
γ∈Γ

k(u(z, γz′)), u(z, z′) =
|z − z′|2

yy′
, z, z′ ∈ H,

is an automorphic kernel with respect to Γ , and

H(z, z′) :=
1

4π

∫ ∞
−∞

h(r)E

(
z,

1

2
+ ir

)
E

(
z′,

1

2
+ ir

)
dr (3.27)

is in a certain sense the noncompact part or the principal part of the kernel K.

We shall obtain, via the function H(z, z′) a quite elegant, explicit expression for the continuous

spectrum of ∆̃. Since M is noncompact we have more work to do here; we need to take care

of the contribution of the parabolic element in the series (3.2.1) and the contribution of the

continuous spectrum given by (3.27). The next subsection does the preliminary work in the

explicit computation of the trace formula for noncompact M , namely it presents the formula we

need to attack the integral (3.27); this formula is known as the Maass-Selberg relation.

3.2.2 The Maass-Selberg Relation

This subsection obtains the tool needed to deal with the continuous spectrum of M . Let M =

Γ\H be noncompact. We assume straight away that Γ has a simple cusp, which is equivalent to

saying that Γ = SL(2,Z). The function ϕ(s) given in (2.29) satisfies the following properties:

E(z, 1− s) = ϕ(1− s)E(z, s), or E(z, s) = ϕ(s)E(z, 1− s); (3.28)

E(z, s)ϕ(s)−1 = ϕ(1− s)E(z, s), ϕ(s)ϕ(1− s) = 1; (3.29)

ϕ

(
1

2
− ir

)
= ϕ

(
1

2
+ ir

)
,

∣∣∣∣ϕ(1

2
+ ir

)∣∣∣∣2 = 1. (3.30)

For analytic properties of ϕ (s) and various analytic continuations of E(s, z), see Kubota [97],

Müller [118].

Now, for s ∈ C, we define the truncated Eisenstein series EY (z, s) by

EY (z, s) =

E(z, s), y ≤ Y,

E(z, s)− ys − ϕ(s)y1−s, y > Y
(3.31)

for a sufficiently large positive number Y with the corresponding fundamental domain DYΓ defined

by

DYΓ = {z ∈ DΓ : Im z = y ≤ Y } . (3.32)
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The function EY (z, s) is also automorphic with respect to Γ and it is called the compact part

of E(z, s). The word ‘truncation’ here describes the Γ -automorphic function EY (z, s) as the

function obtained by cutting off the constant term ys + ϕ(s)y1−s of the Fourier expansion of

E(z, s). Since for Re s > 1, E(z, s) − ys is bounded as y → ∞ and the fact that M has finite

invariant measure, it follows that EY (z, s) ∈ L2(M ).

The starting point is to develop a formula involving two Eisenstein series E(z, s) and E(z, s′)

for z ∈ DΓ , s, s′ ∈ C. Noting that

∆̃EY (z, s) = s(1− s)EY (z, s), ∆̃EY (z, s′) = s′(1− s′)EY (z, s′), (3.33)

we have

(s′ − s)(s+ s′ − 1)

∫
DΓ

EY (z, s)EY (z, s′) dµ(z)

=

∫
DΓ

(
EY (z, s)∆̃EY (z, s′)− EY (z, s′)∆̃EY (z, s)

)
dµ(z). (3.34)

Let the fundamental domain DΓ = M be fixed and denote by D the subdomain of DΓ consisting

of all points z ∈M such that y ≤ Y . Then by Green’s theorem∫
D

(
EY (z, s)∆̃EY (z, s′)− EY (z, s′)∆̃EY (z, s)

)
dµ(z)

=

∫
∂D

(
EY (z, s)y

∂EY (z, s′)

∂ν
− EY (z, s′)y

∂EY (z, s)

∂ν

)
dl

y
, (3.35)

where ∂
∂ν is the outer normal derivative and dl is Euclidean arc length, or what is the same,

y ∂
∂ν is the invariant outer normal derivative on ∂D and dl

y is the invariant length in H. Taking

into account the discontinuity along the line y = Y , and observing that the integrals over the

boundary of DΓ cancel out and that the contribution coming from the line segment y = Y ,

|x| ≤ 1
2 is

(
Y s + ϕ(s)Y 1−s) d

dy

(
Y s
′
+ ϕ(s′)Y 1−s′

)
−
(
Y s
′
+ ϕ(s′)Y 1−s′

) d

dy

(
Y s + ϕ(s)Y 1−s)

= (s′ − s)
(
Y s+s

′−1 − ϕ(s)ϕ(s′)Y 1−s−s′
)

+ (s′ + s− 1)
(
ϕ(s)Y s

′−s − ϕ(s′)Y s−s
′
)
, (3.36)

we obtain, for s 6= s′, s+ s′ 6= 1,∫
DΓ

EY (z, s)EY (z, s′)dµ(z) =
Y s+s

′−1 − ϕ(s)ϕ(s′)Y 1−s−s′

s+ s′ − 1
+
Y s−s

′
ϕ(s′)− Y s′−s(s)
s− s′

, (3.37)

or by setting s′ = s,∫
DΓ

∣∣EY (z, s)
∣∣2 dµ(z) =

Y s+s−1 − ϕ(s)ϕ(s)Y 1−s−s

s+ s− 1
+
Y s−sϕ(s)− Y s−s(s)

s− s
. (3.38)

Setting s = σ + ir, r ∈ R, r 6= 0, σ 6= 1/2 in (3.38), we have

∫
DΓ

∣∣EY (z, σ + ir)
∣∣2 dµ(z) =

Y 2σ−1 − Y 1−2σ|ϕ(σ + ir)|2

2σ − 1
+
Y 2irϕ(σ + ir)− Y −2irϕ(σ + ir)

2ir
.

(3.39)
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Taking the limit as σ → 1
2 in (3.39), the first term on the right hand side of (3.39) becomes

lim
σ→ 1

2

(
Y 2σ−1 − Y 1−2σ|ϕ(σ + ir)|2

2σ − 1

)
= 2 log Y − ϕ′

ϕ

(
1

2
+ ir

)
,

where we have applied the following approximations as σ → 1
2 :

Y 2σ−1 = 1 + (2σ − 1) log Y + · · ·,

Y 1−2σ = 1− (2σ − 1) log Y + · · ·,

ϕ(σ + ir) = ϕ

(
1

2
+ ir

)
+

(
σ − 1

2

)
ϕ′
(

1

2
+ ir

)
+ · · ·,

ϕ (σ + ir)ϕ (σ − ir) = 1 + (2σ − 1)ϕ′
(

1

2
+ ir

)
ϕ

(
1

2
+ ir

)−1

+ · · ·,

where, in the last approximation, we have applied (3.29). Hence as σ → 1
2 in (3.39), we have

Proposition 3.9 (Maass-Selberg relation).

∫
DΓ

∣∣∣∣EY (z, 1

2
+ ir

)∣∣∣∣2 dµ(z) = 2 log Y −
ϕ′
(

1
2 + ir

)
ϕ
(

1
2 + ir

)
+
Y 2irϕ

(
1
2 + ir

)
− Y −2irϕ

(
1
2 + ir

)
2ir

.

(3.40)

3.2.3 Computation of the Spectral Trace: The Continuous Spectrum

Having obtained the tool we need to attack the contribution of the continuous spectrum, we

now evaluate completely the integral (3.27). Towards this end, we first note that by the spectral

decomposition given by (3.24) and (3.25),∫
DΓ
|P (z, z′)|2 dµ(z′) =

∫
DΓ
| (K(z, z′)−H(z, z′)) |2 dµ(z′) <∞,

and that for f ∈ L2
cusp (Γ\H), ∫

DΓ
H(z, z′)f(z′) dµ(z′) = 0. (3.41)

Furthermore, the integral operator whose kernel is P (z, z′) is a Hilbert-Schmidt operator and so

in particular is a compact operator. So we can now proceed to compute explicit formula for the

trace

∞∑
k=0

h(rk) =

∫
DΓ

P (z, z) dµ(z) =

∫
DΓ

(K(z, z)−H(z, z)) dµ(z).

We have seen in Section 3.1 that when γ is not a parabolic transformation, the component

c(γ) =

∫
Dγ

k(z, γz) dµ(z)
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of the trace is expressed in terms of the function h(r). But for a parabolic transformation γ the

individual c(γ) do not exist in general, so we consider a modified component

c(∞) =

∫
DΓ

P (z, z)dµ(z) = lim
Y↗∞

∫
DYΓ

P (z, z)dµ(z)

= lim
Y↗∞

∫
DYΓ

(K(z, z)−H(z, z)) dµ(z), (3.42)

where DYΓ is the fundamental domain (3.32) corresponding to the truncated Eisenstein series

EY (z, s). We consider first the limit

lim
Y↗∞

∫
DYΓ

H(z, z) dµ(z). (3.43)

Indeed, from (3.43) and (3.27), we have as Y ↗∞

∫
DYΓ

H(z, z) dµ(z) =
1

4π

∫
DYΓ

∫ ∞
−∞

h(r)

∣∣∣∣E (z, 1

2
+ ir

)∣∣∣∣2 drdµ(z)

=
1

4π

∫ ∞
−∞

h(r)

(∫
DYΓ

∣∣∣∣E (z, 1

2
+ ir

)∣∣∣∣2 dµ(z)

)
dr,

where the change of the order of integration is justified since the integrand is nonnegative. Thus

by (3.31) and (3.40), we obtain∫
DYΓ

H(z, z) dµ(z) =
1

4π

∫ ∞
−∞

h(r)×

×

∫
DYΓ

∣∣∣∣∣E
(
z,

1

2
+ ir

)
− y 1

2 +ir − y 1
2−ir
√
π

Γ(ir)

Γ
(

1
2 + ir

)L0

(
1

2
+ ir

)∣∣∣∣∣
2

dµ(z)

 dr,

=
1

4π

∫ ∞
−∞

h(r)

∫
DYΓ

∣∣∣∣E (z, 1

2
+ ir

)∣∣∣∣2 dµ(z)dr + o(1)

=
1

4π

∫ ∞
−∞

h(r)

[
2 log Y −

ϕ′
(

1
2 + ir

)
ϕ
(

1
2 + ir

) +
Y 2irϕ

(
1
2 + ir

)
− Y −2irϕ

(
1
2 + ir

)
2ir

]
dr + o(1)

= log Y
1

2π

∫ ∞
−∞

h(r) dr − 1

4π

∫ ∞
−∞

h(r)
ϕ′
(

1
2 + ir

)
ϕ
(

1
2 + ir

) dr
+

1

4π

∫ ∞
−∞

h(r)
Y 2irϕ

(
1
2 + ir

)
− Y −2irϕ

(
1
2 + ir

)
2ir

dr + o(1) (3.44)

as Y ↗∞, where L0(s) is some Dirichlet series. The first term on the right-hand side of (3.44)

is

log Y
1

2π

∫ ∞
−∞

h(r) dr = g(0) log Y.
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Since h(r) = h(−r), we see that the last term on the right of (3.44) becomes

∫ ∞
−∞

h(r)
Y 2irϕ

(
1
2 + ir

)
− Y −2irϕ

(
1
2 + ir

)
2ir

dr

=

∫ ∞
−∞

h(−r)
Y −2irϕ

(
1
2 + ir

)
− Y 2irϕ

(
1
2 − ir

)
−2ir

dr

=

∫ ∞
−∞

h(r)
Y 2irϕ

(
1
2 − ir

)
+ Y −2irϕ

(
1
2 − ir

)
2ir

dr

=

∫ ∞
−∞

h(r)
Y 2irϕ

(
1
2 − ir

)
ir

dr =

∫ ∞
−∞

h(r)
ϕ
(

1
2 − ir

)
ir

e2ir log Y dr.

The integral ∫ ∞
−∞

h(r)
ϕ
(

1
2 − ir

)
ir

e2ir log Y dr (3.45)

is equivalent to the integral ∫ ∞
−∞

h(r)
Reϕ

(
1
2 − ir

)
r

sin(2r log Y )dr. (3.46)

In other words, the integrals (3.45) and (3.46) have the same limits. Indeed, using the limit

formula

f(0) = lim
α↗∞

1

π

∫ ∞
−∞

f(t)
sinαt

t
dt,

we see that the integral (3.46) has the limit

lim
Y↗∞

∫ ∞
−∞

h(r)
Reϕ

(
1
2 − ir

)
r

sin(2r log Y )dr = πh(0)ϕ

(
1

2

)
.

Hence, as Y ↗∞, we obtain

Proposition 3.10.∫
DYΓ

H(z, z) dA(z) = g(0) log Y − 1

4π

∫ ∞
−∞

h(r)
ϕ′
(

1
2 + ir

)
ϕ
(

1
2 + ir

) dr +
1

4
h(0)ϕ

(
1

2

)
+ o(1).

3.2.4 Computation of the Trace for the Parabolic Elements

That the explicit computation of the first integral on the right-hand side of (3.26) is the most

complicated task in our effort to completely compute the explicit trace formula for a noncompact

hyperbolic surface M is not an overstatement as we shall see in the sequel. To be precise we

want to compute an explicit formula for the∫
DYΓ

K(z, z) dµ(z) =
∑
γ∈Γ∞

∫
DYΓ

k(z, γz) dµ(z) (3.47)

as Y ↗ ∞. Towards this end, we recall that any parabolic transformation is conjugate to the

translation Γ∞ : z → γz = z + 1, z ∈ H, with the fundamental domain DYΓ = [0, 1] × (0,∞).
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Indeed,

lim
Y↗∞

∫
DYΓ

K(z, z) dµ(z) = lim
Y↗∞

∑
l 6=0,l∈Z

∫
DYΓ

k(u(z, z + l)) dµ(z)

= lim
Y↗∞

2

∞∑
l=1

∫ Y

0

∫ 1

0

k

(
l2

y2

)
dxdy

y2

= lim
Y↗∞

2

∞∑
l=1

∫ Y

0

k

(
l2

y2

)
dy

y2
. (3.48)

The main task now is the evaluation of the integral in (3.48). For this purpose we make a

substitution u = l/y and incorporate the sum into the integral to get

2

∞∑
l=1

∫ Y

0

k

(
l2

y2

)
dy

y2
= 2

∞∑
l=1

∫ ∞
l
Y

k
(
u2
) 1

l
du = 2

∫ ∞
0

k
(
u2
) ∞∑

1≤l≤Y u

1

l

 du. (3.49)

Noting that for u > 0, ∑
1≤k≤Au

1

k
= log(Au) + C +O

(
1√
Au

)
,

where C is the Euler-Mascheroni constant, we obtain

2

∞∑
l=1

∫ Y

0

k

(
l2

y2

)
dy

y2
= 2

∫ ∞
0

k
(
u2
)

(log(Y u) + C) du+O

(
1√
Y

)
= 2 (log Y + C)

∫ ∞
0

k
(
u2
)
du

+ 2

∫ ∞
0

(log u)k
(
u2
)
du+O

(
1√
Y

)
(3.50)

as Y ↗ ∞. Setting u2 = t, and noting that Q (eu + e−u − 2) = g(u) and eu + e−u − 2 = 0

implies u = 0, the first integral on the right-hand side of (3.50) becomes

Lemma 3.11. ∫ ∞
0

k
(
u2
)
du =

1

2

∫ ∞
0

k(t)√
t
dt =

1

2
Q(0) =

1

2
g(0). (3.51)

It remains to evaluate the second integral on the right-hand side of (3.50). By the same substi-

tution as in the first integral, we obtain

2

∫ ∞
0

(log u)k
(
u2
)
du =

1

2

∫ ∞
0

(log t)
k(t)√
t
dt = −1

2

∫ ∞
0

(
log t√
t

)
1

π

∫ w

0

dQ(w)√
w − t

dt

= − 1

2π

∫ ∞
0

∫ w

0

log t√
t(w − t)

dtdQ(w). (3.52)

The second integral on the right-hand side of (3.52) yields∫ w

0

log t√
t(w − t)

dt =

∫ w

0

log t
√
w
√
t
(
1− t

w

) dt =

∫ 1

0

log uw√
u (1− u)

du

(
t

w
= u

)

=

∫ 1

0

u−
1
2 (1− u)−

1
2 log u du+ logw

∫ 1

0

u−
1
2 (1− u)−

1
2 du.

(3.53)
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Using the identity (Gradshtejn and Ryzhik [66, p. 540, eq. 4.253.1])∫ 1

0

tα−1(1− t)β−1 log t dt =
Γ(α)Γ(β)

Γ(α+ β)
[ψ(α)− ψ(α+ β)] , (3.54)

and the special values (B.12) of the diagamma function ψ(s), the first integral on the right-hand

side of (3.53) becomes∫ 1

0

u−
1
2 (1− u)−

1
2 log u du = π

[
ψ

(
1

2

)
− ψ(1)

]
= −2π log 2, (3.55)

while the second integral on the right-hand side of (3.53) is the beta function∫ 1

0

u−
1
2 (1− u)−

1
2 du = B

(
1

2
,

1

2

)
= π.

Thus ∫ w

0

log t√
t(w − t)

dt = π(logw − 2 log 2). (3.56)

By (3.52), (3.53), (3.55) and (3.56), we obtain

2

∫ ∞
0

(log u)k
(
u2
)
du = −1

2

∫ ∞
0

(logw − 2 log 2)dQ(w), (3.57)

and by (3.7) we have

2

∫ ∞
0

(log u)k
(
u2
)
du = −1

2

∫ ∞
0

log
(
eu + e−u − 2

)
dg(u) + log 2

∫ ∞
0

dQ(w)

= −1

2

∫ ∞
0

log
(
eu + e−u − 2

)
dg(u)− log 2Q(0) (3.58)

By applying elementary laws of logarithm, we obtain

2

∫ ∞
0

(log u)k
(
u2
)
du = −1

2

∫ ∞
0

log
(
1− e−u

)2
dg(u)− 1

2

∫ ∞
0

u dg(u)− log 2g(0)

= −
∫ ∞

0

log
(
1− e−u

)
dg(u) +

1

4

∫ ∞
−∞

g(u) du− log 2g(0)

= −
∫ ∞

0

log
(
1− e−u

)
dg(u) +

1

4
h(0)− log 2g(0). (3.59)

Noting that

g(u) =
1

2π

∫ ∞
−∞

e−iruh(r) dr, g′(u) = − 1

2π

∫ ∞
−∞

ire−iruh(r) dr,

the integral on the right-hand side of (3.59) gives

−
∫ ∞

0

log
(
1− e−u

)
dg(u) = −

∫ ∞
0

log
(
1− e−u

)
g′(u) du

=
1

2π

∫ ∞
−∞

h(r)

{∫ ∞
0

ire−iru log
(
1− e−u

)
du

}
dr.

(3.60)

Lemma 3.12. ∫ ∞
0

ire−iru log
(
1− e−u

)
du = −C − Γ′ (1 + ir)

Γ (1 + ir)
,
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where C is the Euler-Mascheroni constant.

Proof. Making the substitution x = 1− e−u, e−u = 1− x, we have∫ ∞
0

ire−iru log
(
1− e−u

)
du =

∫ 1

0

ir(1− x)−1+ir log x dx.

Again, using (3.54) with α = 1 and (B.12), we have∫ ∞
0

ire−iru log
(
1− e−u

)
du =

∫ 1

0

ir(1− x)−1+ir log x dx

= ir
Γ(ir)

Γ(1 + ir)
[ψ(1)− ψ(1 + ir)]

= −C − Γ′ (1 + ir)

Γ (1 + ir)
.

Thus,

−
∫ ∞

0

log
(
1− e−u

)
dg(u) = −C 1

2π

∫ ∞
−∞

h(r) dr − 1

2π

∫ ∞
−∞

h(r)
Γ′ (1 + ir)

Γ (1 + ir)
dr

= −Cg(0)− 1

2π

∫ ∞
−∞

h(r)
Γ′ (1 + ir)

Γ (1 + ir)
dr.

Hence, from (3.59), (3.60) and Lemma 3.12 we obtain

Lemma 3.13.

2

∫ ∞
0

(log u)k
(
u2
)
du = −Cg(0)− 1

2π

∫ ∞
−∞

h(r)
Γ′ (1 + ir)

Γ (1 + ir)
dr +

1

4
h(0)− log 2g(0).

Therefore, from (3.48), (3.50), Lemmas 3.11 and (3.13), we obtain

Proposition 3.14.∫
DYΓ

K(z, z)dµ(z) = g(0) log Y − 1

2π

∫ ∞
−∞

h(r)
Γ′ (1 + ir)

Γ (1 + ir)
dr +

1

4
h(0)− log 2g(0) + o(1)

as Y ↗∞.

In summary we have found explicit formulae for the contribution of the continuous spectrum

(Proposition 3.10) and parabolic elements (Proposition 3.14) and by adding both formulae we

obtain

Proposition 3.15.

c(∞) =
1

4π

∫ ∞
−∞

h(r)
ϕ′
(

1
2 + ir

)
ϕ
(

1
2 + ir

) dr − 1

2π

∫ ∞
−∞

h(r)
Γ′ (1 + ir)

Γ (1 + ir)
dr

− g(0) log 2 +
1

4

(
1− ϕ

(
1

2

))
h(0).

The trace formula (3.26) in general says that the spectral side (which is the left-hand side) is equal

to the right-hand side (the geometric side) which is the sum of the contribution of the identity,
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hyperbolic, parabolic elements and continuous spectrum. We recall that the contributions of

the identity and hyperbolic elements have been taken care of in Subsections 3.1.1 and 3.1.2

respectively. Adding Propositions 3.6, 3.7 and 3.15, we obtain the following statement.

Theorem 3.16.

∞∑
k=0

h(rk) =
1

4π

∞∫
−∞

h

(
1

4
+ r2

)
ϕ′

ϕ

(
1

2
+ ir

)
dr −

ϕ
(

1
2

)
4

h

(
1

4

)

+
µ (Γ\H)

4π

∫ ∞
−∞

rh

(
1

4
+ r2

)
tanhπr dr +

∑
{γ}p

∞∑
n=1

`(γ)

2 sinh n`(γ)
2

g(n`(γ))

− g(0) log 2 +
1

4
h

(
1

4

)
− 1

2π

∫ ∞
−∞

h

(
r2 +

1

4

)
Γ′

Γ
(1 + ir) dr.

(3.61)

We can simplify further since ϕ(s) is given explicitly. To this end, inserting s → 2s − 1 in the

functional equation (B.22) for ζ(s), and then using (2.29), we obtain

ϕ(s) = π2s−1 Γ (1− s)
Γ(s)

ζ(2− 2s)

ζ(2s)
. (3.62)

Taking the logarithmic derivative of (3.62) we obtain

ϕ′

ϕ

(
1

2
+ ir

)
= 2 log π − Γ′

Γ

(
1

2
+ ir

)
− Γ′

Γ

(
1

2
− ir

)
− 2

ζ ′

ζ
(1 + 2ir)− 2

ζ ′

ζ
(1− 2ir) . (3.63)

Thus from Theorem (3.16), we have

1

4π

∫ ∞
−∞

h(r)
ϕ′

ϕ

(
1

2
+ ir

)
dr

=
log π

2π

∫ ∞
−∞

h(r) dr − 1

4π

∫ ∞
−∞

h(r)

[
Γ′

Γ

(
1

2
+ ir

)
+

Γ′

Γ

(
1

2
− ir

)]
dr

− 1

2π

∫ ∞
−∞

h(r)

[
ζ ′

ζ
(1 + 2ir) +

1

2ir

]
dr − 1

2π

∫ ∞
−∞

h(r)

[
ζ ′

ζ
(1− 2ir)− 1

2ir

]
dr.

Since h(r) = h(−r), we have

1

4π

∫ ∞
−∞

h(r)
ϕ′

ϕ

(
1

2
+ ir

)
dr

= g(0) log π − 1

2π

∫ ∞
−∞

h(r)
Γ′

Γ

(
1

2
+ ir

)
dr − 1

π

∫ ∞
−∞

h(r)

[
ζ ′

ζ
(1 + 2ir) +

1

2ir

]
dr.

Using the formula ∫
Im r=−ε

h(r)

r
dr = πih(0)
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which follows from Cauchy integral formula, and the identity (B.29), we obtain

1

4π

∫ ∞
−∞

h(r)
ϕ′

ϕ

(
1

2
+ ir

)
dr

= g(0) log π − 1

2π

∫ ∞
−∞

h(r)
Γ′

Γ

(
1

2
+ ir

)
dr

+
1

π

∫
Im r=−ε

h(r)

( ∞∑
n=1

Λ(n)

n1+2ir

)
dr − 1

2πi

∫
Im r=−ε

h(r)

r
dr

= g(0) log π − 1

2π

∫ ∞
−∞

h(r)
Γ′

Γ

(
1

2
+ ir

)
dr

+
1

π

∞∑
n=1

Λ(n)

n

∫
Im r=−ε

h(r)e−2ir logn dr − 1

2πi

∫
Im r=−ε

h(r)

r
dr

= g(0) log π − 1

2π

∫ ∞
−∞

h(r)
Γ′

Γ

(
1

2
+ ir

)
dr + 2

∞∑
n=1

Λ(n)

n
g(2 log n)− 1

2
h(0),

Hence, by noting that ϕ
(

1
2

)
= 1, we have shown that the contributions of the parabolic elements

of SL(2,Z) and continuous spectrum of ∆̃ is given by

Proposition 3.17.

c(∞) = g(0) log
(π

2

)
− 1

2π

∫ ∞
−∞

h(r)

[
Γ′

Γ
(1 + ir) +

Γ′

Γ

(
1

2
+ ir

)]
dr + 2

∞∑
n=1

Λ(n)

n
g(2 log n).

In summary we have the following statement.

Theorem 3.18. Let M = SL(2,Z)\H be a noncompact, finite-area hyperbolic surface and let

h(r) satisfy the conditions (S.I)-(S.III) in Theorem 3.8. Then the following equality holds:∑
k≥0

h(rk) = c(I) + c(H) + c(P1) + c(P2) + c(P3) + c(P4), (3.64)

where
(
λk = 1

4 + r2
k : k ≥ 0

)
is the discrete spectrum of the Laplacian ∆̃ on M . The term c(I)

which is the contribution of the identity element of the group SL(2,Z) is given by

c(I) =
1

12

∫ ∞
−∞

rh

(
1

4
+ r2

)
tanhπr dr. (3.65)

The term c(H) which is the contribution of the hyperbolic elements is given by

c(H) =
∑
{γ}p

∞∑
n=1

`(γ)

2 sinh n`(γ)
2

g(n`(γ)), (3.66)

where {γ}p denotes the hyperbolic conjugacy class of γ in SL(2,Z) and the function g is given

by

g(u) =
1

2π

∫ ∞
−∞

e−iruh

(
r2 +

1

4

)
dr.
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Finally, the last four terms are the contributions of the parabolic elements of SL(2,Z) and the

continuous spectrum of M and are given by

c(P1) = g(0) log
π

2
,

c(P2) = 2

∞∑
n=1

Λ(n)

n
g(2 lnn),

c(P3) = − 1

2π

∫ ∞
−∞

h

(
r2 +

1

4

)
Γ′

Γ
(1 + ir) dr,

c(P4) = − 1

2π

∫ ∞
−∞

h

(
r2 +

1

4

)
Γ′

Γ

(
1

2
+ ir

)
dr,

(3.67)

where Λ(n) is the Mangoldt function defined by (B.30). All the series and integrals are absolutely

convergent.

3.3 The Parseval Inner Product Formula

In this section we present a result on the Parseval formula for the inner product of two non-

holomorphic Eisenstein series for the modular surface SL(2,Z)\H. The Parseval inner product

formula for automorphic functions is a generalisation of the Selberg spectral decomposition of

automorphic functions in L2(M ) discussed in Subsection 3.2.1, namely formula (3.24). The Par-

seval inner product formula is the spectral expansion of the inner product of two automorphic

functions in L2(M ), where as Selberg spectral expansion is the spectral expansion of a single

automorphic function in L2(M ). In other words the Parseval inner product formula is a com-

plicated version of the Selberg spectral expansion of automorphic functions f ∈ L2(M ).

The Rankin-Selberg transform. For z ∈ H, γ ∈ SL(2,Z), the function g(z) satisfies

g(γz) = g(z + 1) = g(z), and so it admits the Fourier expansion

g(z) =

∞∑
m=−∞

am(y)e2πmix, z = x+ iy ∈ H.

Let Rg denote the Rankin-Selberg transform of g. The typical “unfolding” trick is the following

(Rg)(s) =

∫
SL(2,Z)\H

g(z)E(z, s) dµ(z) =

∫
SL(2,Z)\H

∑
γ∈Γ∞\SL(2,Z)

g(γz)Im (γz)s dµ(z)

=

∫
Γ∞\H

g(z)Im (z)s dµ(z) =

∫ ∞
0

ys
∫ 1

0

g(x+ iy)
dxdy

y2

=

∫ ∞
0

a0(y)ys−2 dy, (3.68)

where Re s > 1 and a0(y) is the constant term in the Fourier expansion of g. Here we have

used the fundamental domain DΓ = [0, 1] × (0,∞) for Γ∞\H, or what is the same, D∞ =

{0 ≤ Re z ≤ 1} ⊂ H for the fundamental domain for Γ∞. Therefore the properties of E(z, s)

given in Subsection 2.2.2 imply the corresponding properties of (Rg)(s), i.e., (Rg)(s) can be

meromorphically continued to the whole complex plane with a simple pole at s = 1 with the
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following properties (Zagier [179]):

Res (Rg)(s)

∣∣∣∣
s=1

=
3

π

∫
SL(2,Z)\H

g(z) dµ(z),

(R̃g)(s) = Λ(2s)(Rg)(s) = π−sΓ(s)ζ(2s)(Rg)(s),

(R̃g)(s) = (R̃g)(1− s),

where

ResE(z, s)

∣∣∣∣
s=1

=
3

π
for all z ∈ H.

The idea of integrating an SL(2,Z)-invariant function g(z) against an Eisenstein series was

introduced independently by Rankin [138] and Selberg [147], who observed that in the region

of absolute convergence of the Eisenstein series this integral equals the Mellin transform of the

constant term in the Fourier expansion of g.

For f1, f2 ∈ L2(SL(2,Z)\H), the Parseval inner product formula (Motohashi [116, p. 14, eq.

1.1.47])

(f1, f2) =

∞∑
j=1

(f1, φj) (f2, φj) +
1

4π

∫ ∞
−∞

(
f1, E

(
z,

1

2
+ ir

))(
f2, E

(
z,

1

2
+ ir

))
dr (3.69)

is a general case of the Selberg spectral decomposition (3.24), where (φj : j ≥ 1) is a cusp form.

The Selberg spectral expansion (3.24) and the Parseval inner produt formula (3.69) have been

computed for nonholomorphic automorphic forms by notable authors, namely Goldfeld [65] and

Motohashi [116]. Goldfeld [65] considers an L2 (SL(2,Z)\H)-integrable product of automorphic

form associated with a congruence subgroup of SL(2,Z) using (3.24). The Parseval formula

(3.69) for the inner product 〈f, Pm(·, s)〉 is computed by Motohashi ([116]), where Pm(z, s) is

the nonholomorphic Poincaré series given by

Pm(z, s) =
∑

γ∈Γ∞\SL(2,Z)

(Im γz)se2πimγz, z ∈ H,Re s > 1,m ≥ 0, (3.70)

and s is the complex conjugate of s. To be precise Motohashi [116] computes the following inner

product expansion

(Pm(·, s1), Pm(·, s)) =

∞∑
j=0

(Pm(·, s1), ψj) (Pm(·, s), ψj) (3.71)

+
1

4π

∫ ∞
−∞

(
Pm(·, s1), E

(
z,

1

2
+ ir

))(
Pm(·, s), E

(
z,

1

2
+ ir

))
dr.

Unlike Goldfeld [65] that applies formula (3.24), we shall use the complicated version of (3.24),

i.e., the Parseval inner product formula (3.69); it is a complicated version in the sense that we

have two inner products as the integrand to work with, while (3.24) has only one inner product

as the integrand. Also, [116] considers a single Poincaré series, we shall replace the Poincaré

series in (3.71) with the product

F (z, s1, s2) = Ẽ(z, s1)Ẽ(z, s2) ∈ L2 (SL(2,Z)\H) , z ∈ H, s ∈ C,
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where

Ẽ(z, s) = Λ(2s)E(z, s) =
1

2
πsΓ(s)E∗(z, s),

with Λ(s) given by (B.23). The functional equation (2.44) then implies

Ẽ(z, s) = Ẽ(z, 1− s).

The precise statement is the following (see also Awonusika [5]).

Theorem 3.19. Let f1, f2 ∈ L2 (SL(2,Z)\H) be nonholomorphic automorphic forms whose

inner product admits the Parseval inner product formula (3.69). If

f1(z) = F (z, s1, s2) = Ẽ (z, s1) Ẽ (z, s2) ∈ L2 (SL(2,Z)\H)

and

f2(z) = F (z, s′1, s
′
2) = Ẽ (z, s′1) Ẽ (z, s′2) ∈ L2 (SL(2,Z)\H) ,

then

(F (·, s1, s2), F (·, s′1, s′2))

=
1

4π2(s2+s′2)

∞∑
j=1

Θ (s1, s2, rj)Θ (s′1, s
′
2, rj)

|aj(1)|2
+

1

4π

∫ ∞
−∞

Ξ(s1, s2, r)Ξ(s′1, s
′
2, r)

|Λ(1 + 2ir)|2
dr, (3.72)

where

Θ (s1, s2, rj) = Γ (s1, s2, rj)Lφj

(
s2 − s1 +

1

2

)
Lφj

(
s2 + s1 −

1

2

)
,

Θ (s′1, s
′
2, rj) = Γ (s′1, s

′
2, rj)Lφj

(
s′2 − s′1 +

1

2

)
Lφj

(
s′2 + s′1 −

1

2

)
,

Γ (s1, s2, rj) = Γ (a) Γ (b) Γ (c) Γ (d) ,

Γ (s′1, s
′
2, rj) = Γ (a′) Γ (b′) Γ (c′) Γ (d′) ,

with

a =
s2 + s1 − 1

2 − irj
2

, b =
s2 − s1 + 1

2 − irj
2

, c =
s2 + s1 − 1

2 + irj

2
, d =

s2 − s1 + 1
2 + irj

2
,

a′ =
s′2 + s′1 − 1

2 + irj

2
, b′ =

s′2 − s′1 + 1
2 + irj

2
, c′ =

s′2 + s′1 − 1
2 − irj

2
, d′ =

s′2 − s′1 + 1
2 − irj

2
,

and

Ξ(s1, s2, r) = Λ

(
s1 + s2 −

1

2
− ir

)
Λ

(
s2 − s1 +

1

2
− ir

)
× Λ

(
s1 − s2 +

1

2
− ir

)
Λ

(
−s1 − s2 +

3

2
− ir

)
,

Ξ(s′1, s
′
2, r) = Λ

(
s′1 + s′2 −

1

2
+ ir

)
Λ

(
s′2 − s′1 +

1

2
+ ir

)
× Λ

(
s′1 − s′2 +

1

2
+ ir

)
Λ

(
−s′1 − s′2 +

3

2
+ ir

)
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with the Dirichlet series Lφ(s) given by

Lφ(s) =

∞∑
m=1

aj(m)

ms
, Lφ(s) =

∞∑
m=1

aj(m)

ms
,

which converge for Re s > 1 since φ is a cusp form. In particular, for s1 = s′2 = 1
2 + ir,

s2 = s′1 = 1
2 − ir, (

F

(
·, 1

2
+ ir,

1

2
− ir

)
, F

(
·, 1

2
+ ir,

1

2
− ir

))
=

1

4π2

∞∑
j=1

Θ̃ (rj)

|aj(1)|2
+

1

4π

∫ ∞
−∞

Ξ̃(r)

|Λ(1 + 2ir)|2
dr

=
1

4π2

 ∞∑
j=1

N (rj) L (rj)

|aj(1)|2
+ π

∫ ∞
−∞

N(r)Q(r) coshπr

|ζ(1 + 2ir)|2
dr

 ,
where

Θ̃ (r) = Θ2

(
1

2
+ ir,

1

2
− ir, r

)
=

∣∣∣∣Γ(1

4
+
ir

2

)∣∣∣∣6 ∣∣∣∣Γ(1

4
+

3ir

2

)∣∣∣∣2 ∣∣∣∣Lφ(1

2

)∣∣∣∣2 ∣∣∣∣Lφ(1

2
+ 2ir

)∣∣∣∣2 ,
Ξ̃ (r) = Ξ2

(
1

2
+ ir,

1

2
− ir, r

)
=

∣∣∣∣Λ(1

2
+ ir

)∣∣∣∣6 ∣∣∣∣Λ(1

2
+ 3ir

)∣∣∣∣2
N(r) =

∣∣∣∣Γ(1

4
+
ir

2

)∣∣∣∣2 ∣∣∣∣Γ(1

4
+

3ir

2

)∣∣∣∣2 ,
L(r) =

∣∣∣∣Lφ(1

2

)∣∣∣∣2 ∣∣∣∣Lφ(1

2
+ 2ir

)∣∣∣∣2 , Q(r) =

∣∣∣∣ζ (1

2
+ ir

)∣∣∣∣2 ∣∣∣∣ζ (1

2
+ 3ir

)∣∣∣∣2 .
Proof. By the inner product formula (3.69) it suffices to compute explicit formula for the inner

product

(F (·, s1, s2), F (·, s′1, s′2))

=

∞∑
j=1

(F (·, s1, s2), φj) (F (·, s′1, s′2), φj)

+
1

4π

∫ ∞
−∞

(
F (·, s1, s2), E

(
z,

1

2
+ ir

))(
F (·, s′1, s′2), E

(
z,

1

2
+ ir

))
dr. (3.73)

Each inner product on the right-hand side of (3.73) will be handled separately. Towards this

end we set

Fφj (s1, s2, s
′
1, s
′
2) = (F (·, s1, s2), φj) (F (·, s′1, s′2), φj) (3.74)

FE(s1, s2, s
′
1, s
′
2, r) =

(
F (·, s1, s2), E

(
z,

1

2
+ ir

))(
F (·, s′1, s′2), E

(
z,

1

2
+ ir

))
. (3.75)

The main tool is the Rankin-Selberg transform. Clearly the Rankin-Selberg method (3.68) can

be viewed as the inner product (Rg)(s) = (E(·, s), g). With this inner product notation and
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noting that φ is SL(2,Z)-automorphic we have

(F (·, s1, s2), φj) =

∫
SL(2,Z)\H

Ẽ(z, s1)φj(z)Ẽ(z, s2)
dxdy

y2

= Λ(2s2)

∫
SL(2,Z)\H

∑
γ∈Γ∞\SL(2,Z)

Ẽ(z, s1)φj(z)Im (γz)s2
dxdy

y2

= Λ(2s2)

∫
Γ∞\H

Ẽ(z, s1)φj(z)Im (z)s2
dxdy

y2

= Λ(2s2)

∫ ∞
0

∫ 1

0

Ẽ(z, s1)φj(z)y
s2−2 dxdy.

Noting that the constant term of the product Ẽ(z, s1)φj(z) is (see e.g. Zagier [180])

∫ 1

0

Ẽ(x+ iy, s1)φj(x+ iy) dx = 2y
∑
m 6=0

aj(m)σ2s1−1(m)|m| 12−s1Ks1− 1
2
(2π|m|y)K−irj (2π|m|y),

we obtain

(F (·, s1, s2), φj) = 2(2π)−s2Λ(2s2)
∑
m 6=0

aj(m)σ2s1−1(m)|m| 12−2s1−s2

×
∫ ∞

0

ηs2−1Ks1− 1
2
(η)K−irj (η) dη.

By using the identity (B.51) with

σ = 1− s2, µ = s1 −
1

2
, ν = −irj , a = b = 1,

we have∫ ∞
0

ηs2−1Ks1− 1
2
(η)K−irj (η) dη =

2s2

8Γ(s2)
Γ

(
s2 + s1 − 1

2 − irj
2

)
Γ

(
s2 − s1 + 1

2 − irj
2

)
× Γ

(
s2 + s1 − 1

2 + irj

2

)
Γ

(
s2 − s1 + 1

2 + irj

2

)
.

(3.76)

Thus,

(F (·, s1, s2), φj) =
1

4π2s2
ζ (2s2) Γ (s1, s2, rj)

∑
m6=0

aj(m)σ2s1−1(m)|m| 12−2s1−s2 ,

where

Γ (s1, s2, rj) = Γ (a) Γ (b) Γ (c) Γ (d) ,

with

a =
s2 + s1 − 1

2 − irj
2

, b =
s2 − s1 + 1

2 − irj
2

, c =
s2 + s1 − 1

2 + irj

2
, d =

s2 − s1 + 1
2 + irj

2
.

(3.77)
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The following equality holds (see e.g. Goldfeld [65]):

∑
m 6=0

aj(m)σ2s1−1|m|
1
2−2s1−s2 = 2

Lφj
(
s2 − s1 + 1

2

)
Lφj

(
s2 + s1 − 1

2

)
aj(1)ζ (2s2)

.

Hence,

(F (·, s1, s2), φj) =
1

2π2s2aj(1)
Γ (s1, s2, rj)Lφj

(
s2 − s1 +

1

2

)
Lφj

(
s2 + s1 −

1

2

)
. (3.78)

Similarly, following the same procedure as in the case of (F (·, s′1, s′2), φj), we obtain

(F (·, s′1, s′2), φj) =
(
F (·, s′1, s′2), φj

)
=

1

2π2s′2aj(1)
Γ (s′1, s

′
2, rj)Lφj

(
s′2 − s′1 +

1

2

)
Lφj

(
s′2 + s′1 −

1

2

)
, (3.79)

where

Γ (s′1, s
′
2, rj) = Γ (a′) Γ (b′) Γ (c′) Γ (d′) ,

with

a′ =
s′2 + s′1 − 1

2 + irj

2
, b′ =

s′2 − s′1 + 1
2 + irj

2
, c′ =

s′2 + s′1 − 1
2 − irj

2
, d′ =

s′2 − s′1 + 1
2 − irj

2
.

From (3.74), (3.78) and (3.79), the first term on the right-hand side of (3.73) gives

∞∑
j=1

Fφj (s1, s2, s
′
1, s
′
2) =

∞∑
j=1

(F (·, s1, s2), φj) (F (·, s′1, s′2), φj)

=
1

4π2(s2+s′2)

∞∑
j=1

Θ (s1, s2, rj)Θ (s′1, s
′
2, rj)

|aj(1)|2
, (3.80)

where

Θ (s1, s2, rj) = Γ (s1, s2, rj)Lφj

(
s2 − s1 +

1

2

)
Lφj

(
s2 + s1 −

1

2

)
Θ (s′1, s

′
2, rj) = Γ (s′1, s

′
2, rj)Lφj

(
s′2 − s′1 +

1

2

)
Lφj

(
s′2 + s′1 −

1

2

)
.

Before expanding the remaining inner products, namely the integrand in (3.73) we need to give

an expression for the Fourier expansion of F (z, s1, s2). Since F (z, s1, s2) is a product of SL(2,Z)-

automorphic functions, it is itself SL(2,Z)-automorphic, i.e., F (z + 1, s1, s2) = F (z, s1, s2). It

therefore admits a Fourier expansion

F (z, s1, s2) =
∑
k∈Z

ck(y, s1, s2)e2πikx,



Chapter 3. Trace Formulae for Hyperbolic Surfaces and Applications 82

whose constant term c0(y, s1, s2) is given by

c0(y, s1, s2) = 8y

∞∑
m=1

σ1−2s1(m)ms1− 1
2σ1−2s2(m)ms2− 1

2Ks1− 1
2
(2πmy)Ks2− 1

2
(2πmy)

=

∫ 1

x=0

F (x+ iy, s1, s2) dx.

So, by the Rankin-Selberg method (3.68), we have(
F (·, s1, s2), E

(
z,

1

2
+ ir

))
=

∫
SL(2,Z)\H

F (z, s1, s2)E

(
z,

1

2
− ir

)
dxdy

y2

=

∫ ∞
0

c0(y, s1, s2)y−
3
2−ir dy

= 8(2π)−
1
2 +ir

∞∑
m=1

σ2s1−1(m)σ2s2−1(m)

ms1+s2− 1
2−ir

×
∫ ∞

0

y−
1
2−irKs1− 1

2
(η)Ks2− 1

2
(η) dη. (3.81)

We shall give a closed form formula for the series in (3.81). Towards this end we use the Dirichlet

series (Ramanujan’s formula)

∞∑
k=1

σp(k)σq(k)

ks
=
ζ(s)ζ(s− p)ζ(s− q)ζ(s− p− q)

ζ(2s− p− q)
,

to see that the sum on the right-hand side of (3.81) becomes

∞∑
m=1

σ2s1−1(m)σ2s2−1(m)

ms1+s2− 1
2−ir

=
ζ
(
s1 + s2 − 1

2 − ir
)
ζ
(
s2 − s1 + 1

2 − ir
)
ζ
(
s1 − s2 + 1

2 − ir
)
ζ
(
−s1 − s2 + 3

2 − ir
)

ζ(1− 2ir)
. (3.82)

The integral on the right-hand side of (3.81) is

∫ ∞
0

y−
1
2−irKs1− 1

2
(η)Ks2− 1

2
(η) dη =

2−32
1
2−ir

Γ
(

1
2 − ir

)Γ

(
s1 + s2 − 1

2 − ir
2

)
Γ

(
s2 − s1 + 1

2 − ir
2

)
× Γ

(
s1 − s2 + 1

2 − ir
2

)
Γ

(−s1 − s2 + 3
2 − ir

2

)
. (3.83)

Hence, from (3.81), (3.82) and (3.83) we obtain(
F (·, s1, s2), E

(
z,

1

2
+ ir

))
=

Λ
(
s1 + s2 − 1

2 − ir
)

Λ
(
s2 − s1 + 1

2 − ir
)

Λ
(
s1 − s2 + 1

2 − ir
)

Λ
(
−s1 − s2 + 3

2 − ir
)

Λ(1− 2ir)
. (3.84)

Similarly,(
F (·, s′1, s′2), E

(
z,

1

2
+ ir

))
=

(
F (·, s′1, s′2), E

(
z,

1

2
− ir

))
=

Λ
(
s′1 + s′2 − 1

2 + ir
)

Λ
(
s′2 − s′1 + 1

2 + ir
)

Λ
(
s′1 − s′2 + 1

2 + ir
)

Λ
(
−s′1 − s′2 + 3

2 + ir
)

Λ(1 + 2ir)
. (3.85)
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Combining (3.75), (3.84) and (3.85), the second term on the right-hand side of (3.73) gives

1

4π

∫ ∞
−∞

FE(s1, s2, s
′
1, s
′
2, r) dr =

1

4π

∫ ∞
−∞

Ξ(s1, s2, r)Ξ(s′1, s
′
2, r)

|Λ(1 + 2ir)|2
dr, (3.86)

where

Ξ(s1, s2, r) = Λ

(
s1 + s2 −

1

2
− ir

)
Λ

(
s2 − s1 +

1

2
− ir

)
× Λ

(
s1 − s2 +

1

2
− ir

)
Λ

(
−s1 − s2 +

3

2
− ir

)
and

Ξ(s′1, s
′
2, r) = Λ

(
s′1 + s′2 −

1

2
+ ir

)
Λ

(
s′2 − s′1 +

1

2
+ ir

)
× Λ

(
s′1 − s′2 +

1

2
+ ir

)
Λ

(
−s′1 − s′2 +

3

2
+ ir

)
.

This proves the first part of the theorem. To see the second part (i.e., the particular case), we

use Λ(s) given by (B.23) and the identity (B.5) with s1 = 1
2 + ir, s2 = 1

2 − ir.

3.4 Zeta Functions and Determinant of the Laplacian

Having computed explicitly the trace formula for a noncompact hyperbolic surface M = Γ\H,

we are going to put the formula (i.e., Theorem 3.18) into action. Here our Γ is the discrete

subgroup SL(2,Z). This section is involved as we are going to set necessary machineries in

motion for the explicit computation of the determinant of the shifted Laplacian ∆̃ − s(1 − s),
s ∈ C, on SL(2,Z)\H. Before getting to the determinant of the Laplacian we have to compute

all what we need to put together - these include the heat trace, the resolvent of the Laplacian,

the Selberg zeta function (or what is the same, the zeta function associated to the hyperbolic

contribution), the zeta function associated to the identity contribution and the zeta function

associated to the parabolic contribution. Thereafter we express the determinant in terms of

all these zeta functions. It is remarkable that all the spectral zeta functions mentioned can be

realised using the trace formula. In particular we compute the determinant of the Laplacian for

some particular values of s ∈ R, s > 0, and express the determinant with higher s, s > 0, in

terms of the determinant with lower s, s > 0. Our starting point is the construction of the trace

of the heat kernel on SL(2,Z)\H, which is the first application of the trace formula.

3.4.1 The Heat Trace and Eigenvalue Asymptotics

The heat trace asymptotics on Γ\H plays a crucial role in the computation of the determinant

of the Laplacian on Γ\H; as we shall see in Subsection 3.4.3.

By the method of images, we can obtain the heat kernel KM (t, z, z′) of a hyperbolic surface

M = Γ\H from the heat kernel K̃(t, z, z′) of the hyperbolic plane H. The method of images

says that for z, z′ ∈ H and γ ∈ Γ ,

KM (t, z, z′) =
∑
γ∈Γ

K̃(t, z, γz′), (3.87)
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where K̃(t, z, z′) is given by (1.58). Let ∆̃ be the Laplacian on M . The trace of the heat operator

e−t∆̃ on M is given by

tr e−t∆̃ =

∞∑
k=0

e−tλk =

∫
Γ\H

KM (t, z, z) dµ(z) =
∑
γ∈Γ

∫
Γ\H

K̃(t, z, γz) dµ(z), (3.88)

with the main property that K̃(t, z, z′) = K̃(t, d(γz, γz′)) = K̃(t, d(z, z′)) for all γ ∈ Γ . Since

any element β ∈ Γ − {I} = {γ}p can be uniquely written as

β = σ−1γnσ, σ ∈ Γ/Γγ , n ≥ 1,

we have

∞∑
k=0

e−tλk =

∫
Γ\H

K̃(t, d(z, z)) dµ(z) +
∑
{γ}p

∞∑
m=1

∑
σ∈Γ/Γγ

∫
Γ\H

K̃
(
t, d
(
z, σ−1γmσz

))
dµ(z)

=

∫
Γ\H

K̃(t, d(z, z)) dµ(z) +
∑
{γ}p

∞∑
m=1

∑
σ∈Γ/Γγ

∫
σ(Γ\H)

K̃ (t, d (z, γmz)) dµ(z).

Let Dγ =
⋃

σ∈Γ/Γγ
σ (Γ\H) be a fundamental domain for the centraliser Γσ when Γ\H is a

fundamental domain for Γ . Then

tr e−t∆̃ =

∫
Γ\H

K̃(t, d(z, z)) dµ(z) +
∑
{γ}p

∞∑
m=1

∫
Dγ
K̃ (t, d (z, γmz)) dµ(z)

=

∫
Γ\H

K̃(t, d(z, z)) dµ(z) +
∑
{γ}p

∞∑
m=1

∫
Γγ\H

K̃ (t, d (z, γmz)) dµ(z).

Since every hyperbolic element γ ∈ Γ is conjugate to the dilation

γz : z → e`(γ)z with Dγ =
{
x+ iy ∈ C : x ∈ R, y ∈

[
1, e`(γ)

]}
,

we have

tr e−t∆̃ =

∫
Γ\H

K̃(t, d(z, z)) dµ(z) +
∑
{γ}p

∞∑
m=1

∫ ∞
−∞

(∫ e`(γ)

1

K̃
(
t, d
(
z, em`(γ)z

)) dy
y2

)
dx.

(3.89)

Noting that

d(z, em`(γ)z) = cosh−1

[
1 +

|z − em`(γ)z|2

2 Im z Im em`(γ)z

]
= cosh−1

[
1 + 2 sinh2

(
m`(γ)

2

)(
1 +

x2

y2

)]
,

with

η = cosh−1

[
1 + 2 sinh2

(
m`(γ)

2

)(
1 +

x2

y2

)]
, x = yu, sinh η dη = 4u sinh2

(
m`(γ)

2

)
du,
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the first integral on the right-hand side of (3.89) is independent of z. Thus

∫
Γ\H

K̃(t, d(z, z)) dµ(z) = µ(Γ\H)K̃(t, 0) =
µ(Γ\H)e−

t
4

(4πt)
3
2

∞∫
0

be−
b2

4t

sinh(b/2)
db.

The double integral on the right hand side of (3.89) becomes

∫ ∞
−∞

(∫ e`(γ)

1

K̃
(
t, d
(
z, em`(γ)z

)) dy
y2

)
dx = `(γ)

∫ ∞
−∞

K̃ (t, η) du

= 2`(γ)

∫ ∞
m`(γ)

K̃ (t, η)
sinh η

4u sinh2
(
m`(γ)

2

) dη
=

`(γ)

sinh
(
m`(γ)

2

) ∫ ∞
m`(γ)

e−
t
4

(4πt)
3
2

∞∫
η

be−
b2

4t

√
cosh b− cosh η

db
sinh η dη√

cosh η − coshm`(γ)

=
`(γ)

sinh
(
m`(γ)

2

) e−
t
4

(4πt)
3
2

∫ ∞
m`(γ)

be−
b2

4t db

b∫
m`(γ)

sinh η dη
√

cosh b− cosh η
√

cosh η − coshm`(γ)

=
`(γ)

sinh
(
m`(γ)

2

) e−
t
4

(4πt)
3
2

∫ ∞
m`(γ)

be−
b2

4t db

d∫
c

dξ√
d− ξ

√
ξ − c

=
`(γ)

2 sinh
(
m`(γ)

2

) e−
t
4

√
4πt

e−
m2`(γ)2

4t .

Hence, we obtain

Proposition 3.20.

tr e−t∆̃ =
µ(Γ\H)e−

t
4

(4πt)
3
2

∞∫
0

be−
b2

4t

sinh(b/2)
db+

∑
{γ}p

∞∑
m=1

`(γ)

2 sinh
(
m`(γ)

2

) e−
t
4

√
4πt

e−
m2`(γ)2

4t , (3.90)

which is the trace of the heat operator on Γ\H.

The heat trace formula (3.90) can also be obtained directly from the trace formula (3.20). To-

wards this end, we use a pair of function

h(r) = e−(r2+ 1
4 )t, t > 0,

g(u) =
1

2π

∫ ∞
−∞

e−(r2+ 1
4 )te−iru dr =

e−
t
4

(4πt)
1
2

e−
u2

4t

and using

µ(Γ\H)

4π

∫ ∞
−∞

re−(r2+ 1
4 )t tanh(πr) dr =

µ(Γ\H)

(4πt)
3
2

e−
t
4

∫ ∞
0

ue−
u2

4t

sinh(u/2)
du,

to obtain (3.90).

The small-t behaviour of the heat trace is determined by the integral term in (3.90) (see Lemma

3.21 below). The right-hand side of (3.90) provides at once the full asymptotic expansion of the

trace of the heat operator for t↘ 0.
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Proposition 3.21. The trace of the heat operator on a compact hyperbolic surface M = Γ\H
given by Proposition 3.20 admits the Minakshisundaram-Pleijel asymptotic expansion (see (A.8))

tr e−t∆̃ =

∞∑
k=0

e−λkt ∼ 1

4πt

∞∑
k=0

akt
k as t↘ 0, (3.91)

where the Minakshisundaram-Pleijel heat coefficients ak are given by

a0 = µ(Γ\H), ak = µ(Γ\H)

k∑
j=0

(−1)k−j
(

1
4

)k−j
(k − j)!

B2j

(
21−2j − 1

)
j!

, k ≥ 1. (3.92)

In particular,

tr e−t∆̃ ∼ µ(Γ\H)

4πt
as t↘ 0.

Proof. We examine the asymptotic behaviour of each term of the right-hand side of the heat

trace formula in 3.90 as t↘ 0.

Contribution of the identity element. To determine the asymptotic expansion of the first

term on the right-hand side of (3.90) we use the series representation

u

2 sinh(u/2)
=

∞∑
m=0

(
21−2m − 1

)
B2m

u2m

(2m)!
,

where Bm is the mth Bernoulli number (see (B.27)). So we have

µ(Γ\H)e−
t
4

(4πt)
3
2

∞∫
−∞

ue−
u2

4t

2 sinh(u/2)
du =

µ(Γ\H)e−
t
4

(4πt)
3
2

∞∑
m=0

(
21−2m − 1

)
B2me

t

∞∫
−∞

e−
1
4ty

2

dy

=
µ(Γ\H)e−

t
4

4πt

∞∑
m=0

(
21−2m − 1

)
B2m

tm

m!

=
µ(Γ\H)

4πt

[
1− t

3
+
t2

15
+ · · ·

]
∼ µ(Γ\H)

4πt
as t↘ 0. (3.93)

Contribution of the hyperbolic elements. The last term on the right-hand side of (3.90)

decays exponentially as t↘ 0.

Theorem 3.22 (Weyl asymptotic distribution of eigenvalues). Let N (λ) denote the num-

ber of eigenvalues λk that are less than or equal to λ (called the eigenvalue counting function):

N (λ) = # {k : λk ≤ λ} .

Then to the leading order

N (λ) =
µ(Γ\H)

4π
λ+ o(

√
λ) as λ↗∞, (3.94)

or equivalently

λk ∼
4πk

µ(Γ\H)
as k ↗∞. (3.95)
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Remark 3.2. Lemma 3.21 clearly implies that

∞∫
0

e−λtdN (λ) ∼ µ(Γ\H)

4πt
as t↘ 0. (3.96)

To prove Theorem 3.22, we need the following Tauberian theorem whose proof can be found in

Widder [177, p. 192], Taylor [166, Prop. 3.2].

Theorem 3.23 (Karamata’s Tauberian Theorem). Let (λm : m ≥ 0) be a nondecreasing

sequence of nonnegative real numbers such that the series

∞∑
m=0

e−λmt

converges for every t > 0. If
∞∑
m=0

e−λmt ∼ A

tα

as t ↘ 0 for some A,α > 0, then the associated counting function N (λ) = # {k : λk ≤ λ}
satisfies

N (λ) ∼ Aλα

Γ (α+ 1)
as λ↗∞. (3.97)

Proof of Theorem 3.22. Since the eigenvalues of ∆̃ form a nondecreasing sequence of nonnegative

real numbers, the counting function N (λ) is nondecreasing. Therefore, Weyl asymptotic formula

(3.94) follows from (3.97) with

A =
µ(Γ\H)

4π
, α = 1.

3.4.2 The Trace of the Resolvent and Selberg Zeta Functions

Another operator of great importance in spectral theory is the resolvent operator. In order to

calculate the trace of the resolvent of ∆̃ on M , or what is the same, the trace of the resolvent

operator

Rs =
(

∆̃− λ
)−1

on M we choose the function

g(u) =
1

2
(
s− 1

2

)e−(s− 1
2 )|u| − 1

2
(
a− 1

2

)e−(a− 1
2 )|u|, u ∈ R, 1 < Re s < a, (3.98)

whose Fourier (Selberg) transform

h(r) =

∞∫
−∞

g(u)eiru du =
1(

s− 1
2

)2
+ r2

− 1(
a− 1

2

)2
+ r2

(3.99)
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satisfies conditions (S.I) − (S.III) in Theorem 3.8. Putting (3.98) and (3.99) into the trace

formula (3.20), we have

∞∑
k=0

[
1

r2
k +

(
s− 1

2

)2 − 1

r2
k +

(
a− 1

2

)2
]

=
µ(Γ\H)

4π

∫ ∞
−∞

r

[
tanh(πr)

r2
k +

(
s− 1

2

)2 − tanh(πr)

r2
k +

(
a− 1

2

)2
]
dr

+
1

2s− 1

∑
{γ}p

∞∑
m=1

`(γ)e−(s− 1
2 )m`(γ)

e
m`(γ)

2 − e−
m`(γ)

2

− 1

2a− 1

∑
{γ}p

∞∑
m=1

`(γ)e−(a− 1
2 )m`(γ)

e
m`(γ)

2 − e−
m`(γ)

2

. (3.100)

Next we give closed forms for the series on the right-hand side of (3.100); the closed form obtained

is expressed in terms of the hyperbolic analogue of the Riemann zeta function, known as the

Selberg zeta function. Towards this end we set α = s− 1
2 to obtain

`(γ)
∑
{γ}p

∞∑
m=1

e−αm`(γ)

2 sinh m`(γ)
2

= `(γ)
∑
{γ}p

∞∑
m=1

∞∑
k=0

e−m`(γ)(α+k+ 1
2 )

= `(γ)
∑
{γ}p

∞∑
k=0

e−`(γ)(α+k+ 1
2 )

1− e−`(γ)(α+k+ 1
2 )

=
∑
{γ}p

∞∑
k=0

d

dα
log
(

1− e−`(γ)(α+k+ 1
2 )
)

=
d

dα
log

∏
{γ}p

∞∏
k=0

(
1− e−`(γ)(α+k+ 1

2 )
)

=
Z ′
(
α+ 1

2

)
Z
(
α+ 1

2

) . (3.101)

In summary, the closed form representation of the series on the right-hand side of (3.100) is

given by

Proposition 3.24. ∑
{γ}p

∞∑
m=1

`(γ)e−(s− 1
2 )m`(γ)(

e
m`(γ)

2 − e−
m`(γ)

2

) =
Z ′(s)

Z(s)
, (3.102)

where

Z(s) =
∏
{γ}p

∞∏
k=0

(
1− e−`(γ)(s+k)

)
, Re s > 1, (3.103)

is called the Selberg zeta function. The outer product is over the primitive hyperbolic connjugacy

classes of γ in Γ and `(γ) is the length of the closed geodesic associated to {γ}p. The Selberg zeta

function Z(s) converges absolutely in the half-plane Re s > 1 and admits an analytic continuation

to the whole complex plane.

From equation (3.100) and Proposition 3.24 we obtain

Proposition 3.25.

1

2s− 1

Z ′(s)

Z(s)
− 1

2a− 1

Z ′(a)

Z(a)
=
µ(Γ\H)

4π

∫ ∞
−∞

r

[
tanh(πr)

r2 +
(
a− 1

2

)2 − tanh(πr)

r2 +
(
s− 1

2

)2
]
dr

+

∞∑
k=0

[
1

r2
k +

(
s− 1

2

)2 − 1

r2
k +

(
a− 1

2

)2
]
. (3.104)
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We can further give an explicit expression for the integral term on the right-hand side of (3.104)

in terms of the digamma function. To do this we employ the calculus of residue to evaluate the

contribution of the identity element given by

I(s) =
µ(Γ\H)

4π

∫ ∞
−∞

r

(
1

r2 + β2
− 1(

s− 1
2

)2
+ r2

)
tanh(πr) dr. (3.105)

Towards this end we define, for N ∈ N,

JN (s) =
µ(Γ\H)

4π

∫
CN

z

(
1

z2 + β2
− 1(

s− 1
2

)2
+ z2

)
tanh(πz) dz, (3.106)

where the integration is performed counterclockwise along the path CN , consisting of the interval

[−N,N ] and the semicircle C ′N of radius N with centre at the origin, lying in the upper half-plane

Re z > 0. In the domain Re s > 1
2 , and in the upper half-plane Re z > 0, the integrand

f(z) = z

(
1

z2 + β2
− 1(

s− 1
2

)2
+ z2

)
tanh(πz) (3.107)

has only simple poles at zk = i
(
k + 1

2

)
, k = N ∪ {0}, coming from tanhπz and simple poles at

z = i
(
s− 1

2

)
and z = iβ coming from the denominators

(
s− 1

2

)2
+ z2 and z2 + β2 respectively.

Thus by Cauchy’s integral formula, we have

JN (s) = −µ(Γ\H)

4π
2πi

[
Res f(z)

∣∣∣∣
z=i(s− 1

2 )
+ Res f(z)

∣∣∣∣
z=iβ

+

N−1∑
k=0

Res f(z)

∣∣∣∣
z=i(k+ 1

2 )

]
, (3.108)

where

2πiResz=i(s− 1
2 ) f(z) = 2πi

[
1

2
tanhπi

(
s− 1

2

)]
= −π tanπ

(
s− 1

2

)
, (3.109)

2πiResz=iβ f(z) = 2πi

[
1

2
tanhπiβ

]
= −π tanπβ, (3.110)

2πiResz=i(k+ 1
2 ) f(z) = −2

[
k + 1

2

−
(
k + 1

2

)2
+
(
s− 1

2

)2 +
k + 1

2

−
(
k + 1

2

)2
+ β2

]
. (3.111)

So as N ↗∞, we have

I(s) = B(s) + E(s), (3.112)

where

B(s) =
µ(Γ\H)

4π
π tanπ

(
s− 1

2

)
− µ(Γ\H)

4π
π tanπβ, (3.113)

E(s) = −2
µ(Γ\H)

4π

∞∑
k=0

[
k + 1

2

−
(
k + 1

2

)2
+
(
s− 1

2

)2 +
k + 1

2

−
(
k + 1

2

)2
+ β2

]
. (3.114)



Chapter 3. Trace Formulae for Hyperbolic Surfaces and Applications 90

Using the identities (B.13), (B.11) and by resolving the expression inside the square bracket in

(3.114) into partial fractions we have (see Awonusika and Taheri [8])

B(s) =
µ(Γ\H)

4π

∞∑
k=0

[
1

k + 1
2 − α

− 1

k + 1
2 + α

− 1

k + 1
2 − β

+
1

k + 1
2 + β

]
, (3.115)

E(s) =
µ(Γ\H)

4π

∞∑
k=0

[
1

β + 1
2 + k

− 1

β − 1
2 − k

+
1

α− 1
2 − k

− 1

α+ 1
2 + k

]
. (3.116)

Hence, we obtain

I(s) =
µ(Γ\H)

2π

∞∑
k=0

[
1

a+ k
− 1

s+ k

]
=
µ(Γ\H)

2π
(ψ(s)− ψ(a)),

where ψ(s) is the digamma function (Appendix B.1).

Therefore, we obtain the following formula for the logarithmic derivative of the Selberg zeta

function (see also Awonusika and Taheri [8]).

Theorem 3.26. For 1 < Re s < a, let Z(s) be the Selberg zeta function defined by (3.103). The

following formula for the logarithmic derivative of the Selberg zeta function holds:

1

2s− 1

Z ′(s)

Z(s)
− 1

2a− 1

Z ′(a)

Z(a)
=

∞∑
k=0

[
1

λk − s(1− s)
− 1

λk − a(1− a)

]
+
µ(Γ\H)

2π
ψ(s)− ψ(a).

(3.117)

The sum on the right-hand side of (3.117) is absolutely convergent for s ∈ C, except at the poles

where λk = s(1− s) or s = −m, m ≥ 0. The poles are simple with unit residues. Moreover, the

Selberg zeta function Z(s) can be analytically continued to an entire function of s whose zeros

(trivial and nontrivial) are characterised as follows.

(i) The nontrivial zeros of Z(s) are located at s = 1 and s = 1
2 ± irk, k = 1, 2, 3, · · ·. The zero

at s = 1 (corresponding to k = 0) has multiplicity 1.

(ii) The trivial zeros are located at s = −m, m ≥ 0, and have multiplicity 2g − 1 for m = 0

and (2m+1)µ(Γ\H)
2π = 2(g − 1)(2m+ 1) for m > 0.

(iii) Z(s) satisfies the functional equation

Z(s) = Z(1− s) · exp

[
µ(Γ\H)

∫ z=s− 1
2

0

v tanπv dv

]
. (3.118)

Remark 3.3. It follows from the formula (3.117) that for s ∈ C

Z ′(s) 6= 0 for Re s < 1
2 and Im s 6= 0.

(see Minamide [112]). See also Minamide [113], Luo [104], Jorgenson and Smajlovic [90].

The Zeta Function Associated to the Contribution of Identity Element. The zeta

function ZI(s) corresponding to the identity contribution I(s) in the trace formula (3.20) is
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given by (see e.g. Momeni and Venkov [114])

ZI(s) =

(
(2π)s

Γ(s)

) 1
6 1

G(s)
1
3

, (3.119)

where G(s) = 1
Γ2(s) denotes the Barnes G-function, Γ2(s) is the Barnes double gamma function

(Barnes [18]) defined by the infinite product

G(s+ 1) =
1

Γ2(s+ 1)
= (2π)

s
2 e−

s
2−(C+1) s

2

2

∞∏
k=1

(
1 +

s

k

)k
e−s+

s2

2k

(C is the Euler-Mascheroni constant) with the following properties:

(i) G(s+ 1) = 1
Γ2(s+1) = Γ(s)

Γ2(s) ;

(ii) G(1) = 1
Γ2(1) = 1 = Γ2(1);

(iii) for s ∈ R, logG(s + 1) = log 1
Γ2(s+1) = 1

2

(
s2 − 1

6

)
log s − 3

4s
2 + 1

2s log 2π + ζ ′(−1) + o(1)

as s↗∞.

The Zeta Function Associated to the Contribution of Parabolic Elements. If we

insert (3.99) into the trace formula in Theorem 3.18, we see that

P1(s) =

(
1

2s− 1
− 1

2β

)
log
(π

2

)
,

and by the method of obtaining Z(s), we have

d

ds

1

2s− 1

d

ds
logZP1

(s) =
d

ds
P1(s) = log

(π
2

) d

ds

1

2s− 1

=
d

ds

1

2s− 1

d

ds
(s) log

(π
2

)
=

d

ds

1

2s− 1

d

ds
log
(π

2

)s
,

which implies

ZP1
(s) =

(π
2

)s
. (3.120)

For P2(s), we have

P2(s) = 2

∞∑
n=1

Λ(n)

n

(
1

2s− 1
n−(2s−1) − 1

2β
n−(2β)

)
log

π

2
,

so that

d

ds
P2(s) = 2

d

ds

1

2s− 1

∞∑
n=1

Λ(n)

n2s
=

d

ds

1

2s− 1

d

ds
log ζ(2s)−1,

which implies

ZP2(s) = ζ(2s)−1, (3.121)

where we have used (B.29). We next compute ZP3
(s). Using Hejhal [76, p. 435] we obtain

− 1

π

∫ ∞
−∞

ψ(1 + ir)
1

r2 + 1
4 + s(s− 1)

dr = − 1

s− 1
2

d

ds
log Γ

(
s+

1

2

)
.



Chapter 3. Trace Formulae for Hyperbolic Surfaces and Applications 92

Thus

d

ds
P3(s) = − d

ds

1

2π

∫ ∞
−∞

ψ(1 + ir)

[
1

r2 + 1
4 + s(s− 1)

− 1

r2 + β2

]
dr

= −1

2

d

ds

1

s− 1
2

d

ds
log Γ

(
s+

1

2

)
.

So,

d

ds

1

2s− 1

d

ds
logZP3(s) =

d

ds

1

2s− 1

d

ds
log Γ

(
s+

1

2

)−1

gives

ZP3
(s) = Γ

(
s+

1

2

)−1

. (3.122)

Similarly,

P4(s) = − 1

2π

∫ ∞
−∞

ψ

(
1

2
+ ir

)
1

r2 + 1
4 + s(s− 1)

dr = − 1

2s− 1

d

ds
log Γ (s)

implies

ZP4
(s) = Γ (s)

−1
. (3.123)

In summary, the zeta function associated to the parabolic contribution is given by

ZP(s) = ZP1
(s)ZP2

(s)ZP3
(s)ZP4

(s) =
(π

2

)s
ζ(2s)−1Γ

(
s+

1

2

)−1

Γ (s)
−1
. (3.124)

3.4.3 Zeta Regularised Determinant of the Laplacian

We are now set to give explicit computation of the determinant of the Laplacian ∆̃− s(1− s) on

M = SL(2,Z)\H in terms of the zeta functions we have obtained in Subsection 3.4.2. We also

give determinant expression for the det ∆̃− s(1− s) for special values of s ∈ R, s > 0.

The precise statement is the following.

Theorem 3.27. Let ∆̃ be the Laplacian on the modular surface SL(2,Z)\H with eigenvalues

λ = s(1− s), s ∈ C. Then

det(∆̃− s(1− s)) = ec1s(s−1)+c2Z(s)ZI(s)ZP(s), for some constants c1, c2, (3.125)

where

(i) Z(s) is the zeta function associated to the contribution of the hyperbolic elements (or simply

the Selberg zeta function) and it is given by

Z(s) =
∏
{γ}p

∞∏
m=1

(
1− e−`(γ)(s+m)

)
, Re s > 1; (3.126)

(ii) ZI(s) is the zeta function associated to the contribution of the identity element given by

ZI(s) =

(
(2π)s

Γ(s)G(s)2

)1/6

; (3.127)

and
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(iii) ZP(s) is the zeta function associated to the contribution of the parabolic elements and it is

given by

ZP(s) =

[
2sΛ(2s)Γ

(
s+

1

2

)]−1

, Λ(s) = π−
s
2 Γ
(s

2

)
ζ(s).

In particular, we have the following special values.

(i) det ′ (∆̃) = 2
7
6 · 3 · π− 4

3 ec2Z ′(1).

(ii) det
(

∆̃ + 2
)

= 2
4
3 · 3 · 5 · π− 13

6 Z(2)e2c1+c2 .

(iii) det
(

∆̃ + 6
)

= 2−2 · 3 · 5−1 · 7 · π− 5
6 e4c1 Z(3)

Z(2)det
(

∆̃ + 2
)
.

(iv) det
(

∆̃ + 12
)

= 2
5
6 · 3− 7

6 · 5 · 7−1π−
5
6 e6c1 Z(4)

Z(3)det
(

∆̃ + 6
)
.

(v) det
(

∆̃ + 20
)

= 2−
11
6 · 3− 1

3 · 5−1 · 11π−
5
6 e8c1 Z(5)

Z(4)det
(

∆̃ + 12
)
.

(vi) det
(

∆̃ + 3
4

)
= −2−

151
72 π−

11
12 ζ ′(−2)−1Z

(
3
2

)
exp

(
− ζ
′(−1)

2 + 3
4c1 + c2

)
,

(vii) det
(

∆̃ + 15
4

)
= −2

2
3 3−

1
6π−1 ζ

′(−2)
ζ′(−4)e

3c1
Z( 5

2 )
Z( 3

2 )
det
(

∆̃ + 3
4

)
(viii) det

(
∆̃ + 35

4

)
= −2−

1
3 3−

1
3 5−

1
6
ζ′(−4)
ζ′(−6)

Z( 7
2 )

Z( 5
2 )
ec1det

(
∆̃ + 15

4

)
.

(ix) det
(

∆̃ + 63
4

)
= −2−

4
3 3−

1
3 5−

1
3 7−

1
6π−10e11c1 ζ

′(−6)
ζ′(−8)

Z( 9
2 )

Z( 7
2 )

det
(

∆̃ + 35
4

)
.

Proof of Theorem 3.27

We start with the asymptotics of the heat kernel function, and we use Theorem 3.18.

Proposition 3.28 (Minakshisundaram’s formula). Let the trace formula for the modular

surface M = SL(2,Z)\H be given by Theorem 3.18. Then for some constants A,B,C ′, D, the

trace of the heat operator on M given by

Θ(t) := tr e−t∆̃ =

∞∑
k=0

e−(r2+ 1
4 )t (3.128)

has the asymptotic expansion

Θ(t) =
A

t
+B

log t√
t

+
C ′√
t

+D +O(
√
t log t) as t↘ 0. (3.129)

Proof. As usual we insert the spectral function

h(r) = e−(r2+ 1
4 )t, t > 0,

into the trace formula in Theorem 3.18, and we obtain the equality

∞∑
k=0

e−λkt = I(t) +H(t) + P1(t) + P2(t) + P3(t) + P4(t), (3.130)
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where

I(t) =
1

12

∫ ∞
−∞

re−(r2+ 1
4 )t tanh(πr) dr, H(t) =

∑
{γ}p

∞∑
m=1

`(γ)

2 sinh m`(γ)
2

e−
t
4

(4πt)
1
2

e−
m2`(γ)2

4t

P1(t) =
1

2
√
πt
e−

t
4 log

π

2
, P2(t) = 2

∞∑
n=1

Λ(n)

n

1

2
√
πt
e
−
(
t
4 + log2 n

t

)

P3(t) = − 1

2π

∞∫
−∞

e−(r2+ 1
4 )tΓ

′

Γ
(1 + ir) dr, P4(t) = − 1

2π

∞∫
−∞

e−(r2+ 1
4 )tΓ

′

Γ

(
1

2
+ ir

)
dr.

It suffices to compute the asymptotics as t↘ 0 of each term on the right-hand side of the trace

formula (3.130). The asymptotics as t↘ 0 of I(t) and H(t) have been computed earlier in Sub-

section 3.4.1. It remains to find the asymptotic behaviours as t↘ 0 of P1(t),P2(t),P3(t),P4(t).

Indeed, by integration by parts, we have

P3(t) =
i

2π

∫ ∞
−∞

e−(r2+ 1
4 )t d

dr
ln Γ (1 + ir) dr =

2tie−
t
4

π

∫ ∞
−∞

re−r
2t ln Γ (1 + ir) dr.

In summary, we have (as t↘ 0)

(i) P1(t) = e−
t
4√
t

log(π2 )
2
√
π

= C1√
t

+O
(√
t
)

;

(ii) P2(t) = o(1);

(iii) P3(t) = B1
ln t√
t

+ C2√
t

+D1 +O (t ln t) (Efrat [56]);

(iv) P4(t) = B2
ln t√
t

+ C3√
t

+D2 +O (t ln t) (Venkov [171]).

The combination of all these asymptotics proves the proposition.

Now let ∆̃ be the Laplacian on the modular surface M = SL(2, Z)\H. The regularized de-

terminant det (∆̃− s(1− s)) of ∆̃ is done through the analytic continuation of the spectral zeta

function

ζM (w; s) =
∞∑
k=0

1

(λk − s(1− s))w
, s� 0, w � 0, (3.131)

which was first studied by Minakshisundaram and Pleijel [111] for Riemannian manifolds M ,

where they show that ζM (w; s) can be analytically continued to a domain in the complex w-

plane including w = 0. We shall see in a moment that ζM (w; s) is regular at w = 0.

In view of the formal relations

d

dw
ζM (w; s)

∣∣∣∣
w=0

= −
∞∑
k=0

log (λk − s(1− s)) = − log

∞∏
k=0

(λk − s(1− s))

and

det(∆̃− s(1− s)) =

∞∏
k=0

(λk − s(1− s)) , (3.132)

we define the determinant of the Laplacian ∆̃ on SL(2,Z)\H by

det(∆̃− s(1− s)) = exp

(
− ∂

∂w
ζM (w; s)

∣∣∣∣
w=0

)
. (3.133)
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An application of the Mellin transform gives

ζM (w; s) =
1

Γ(w)

∫ ∞
0

Θ(t)e−s(s−1)ttw−1 dt. (3.134)

Since 1
Γ(w) vanishes at w = 0 we conclude that for s� 0, ζM (w; s) is regular at w = 0.

Proposition 3.29.

∂

∂w
ζM (w; s)

∣∣∣∣
w=0

= − log det (∆̃− s(1− s))

∼ As(s− 1) log s(s− 1)−As(s− 1)

+ 2
√
πB (s(s− 1))

1
2 [log s(s− 1) + (C + log 4− 2)]

− 2
√
πC ′ (s(s− 1))

1
2 −D log s(s− 1) as s↗∞,

(3.135)

where C is the Euler-Mascheroni constant.

Proof. By (3.129) and (3.134) we have

ζM (w; s) = ζM ,1(w; s) + ζM ,2(w; s) + ζM ,3(w; s) + ζM ,4(w; s) + ζM ,5(w; s),

where

ζM ,1(w; s) =
A

Γ(w)

∫ ∞
0

e−s(s−1)ttw−2 dt = A(w − 1)−1(s(s− 1))−(w−1)

ζM ,2(w; s) =
B

Γ(w)

∫ ∞
0

e−s(s−1)ttw−
3
2 log t dt

ζM ,3(w; s) =
C ′

Γ(w)

∫ ∞
0

e−s(s−1)ttw−
3
2 dt =

C ′

Γ(w)
(s(s− 1))−(w− 1

2 )Γ

(
w − 1

2

)
ζM ,4(w; s) =

D

Γ(w)

∫ ∞
0

e−s(s−1)ttw−1 dt = D(s(s− 1))−w

ζM ,5(w; s) =
1

Γ(w)

∫ ∞
0

e−s(s−1)tO(
√
t log t)tw−1 dt.

To simplify ζM ,2(w; s) further, we use the identity (Gradshtejn and Ryzhik [66, p. 573, eq.

4.352(1)]) ∫ ∞
0

xν−1e−µx log x dx =
1

µν
Γ(ν)[ψ(ν)− logµ]

to obtain

ζM ,2(w; s) =
B

Γ(w)
(s(s− 1))−(w− 1

2 )Γ

(
w − 1

2

)[
ψ

(
w − 1

2

)
− log s(s− 1)

]
,

so that

∂

∂w
ζM ,2(w; s)

∣∣∣∣
w=0

= BΓ

(
−1

2

)
(s(s− 1))

1
2

[
ψ

(
−1

2

)
− log s(s− 1)

]
= 2B

√
π(s(s− 1))

1
2 (C + log 4− 2) + 2B

√
π(s(s− 1))

1
2 log s(s− 1),
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where we have used (B.15) and (B.16). Also,

∂

∂w
ζM ,1(w; s)

∣∣∣∣
w=0

= −As(s− 1) +As(s− 1) log s(s− 1),

∂

∂w
ζM ,3(w; s)

∣∣∣∣
w=0

= −2
√
πC ′ (s(s− 1))

1
2 ,

∂

∂w
ζM ,4(w; s)

∣∣∣∣
w=0

= −D log s(s− 1),

ζM ,5(w; s)↘ 0 as s↗∞.

We proceed now to compute the determinant of the Laplacian using the trace formula (3.64) with

the spectral function (3.99). With this spectral function the spectral side of the trace formula

(3.64) has the derivative

d

ds

∞∑
k=0

[
1

[λk − s(1− s)]
− 1

[λk − a(1− a)]

]
= −

∞∑
k=0

2s− 1

[λk − s(1− s)]2
. (3.136)

We also observe that

d

ds

1

2s− 1

d

ds
log det(∆̃ + s(s− 1)) =

d

ds

1

2s− 1

d

ds

[
− d

dw
ζM (w; s)

∣∣∣∣
w=0

]
=

d

dw

d

ds

1

2s− 1

d

ds

[
−
∞∑
k=0

1

(λk + s(s− 1))
w

∣∣∣∣
w=0

]

=
d

dw

d

ds

[ ∞∑
k=0

w

(λk + s(s− 1))
w+1

∣∣∣∣
w=0

]

= −
∞∑
k=0

(2s− 1)

(λk + s(s− 1))
2 .

(3.137)

Let I(s) denote the term c(I) with the spectral function (3.99). Then from (3.64), (3.136) and

(3.137) we have

d

ds

1

2s− 1

d

ds
log det(∆̃− s(1− s)) =

d

ds
I(s) +

d

ds
H(s) +

d

ds
P1(s) +

d

ds
P2(s)

+
d

ds
P3(s) +

d

ds
P4(s)

=
d

ds

1

2s− 1

d

ds
logZI(s) +

d

ds

1

2s− 1

d

ds
logZ(s)

+
d

ds

1

2s− 1

d

ds
logZP1

(s) +
d

ds

1

2s− 1

d

ds
logZP2

(s)

+
d

ds

1

2s− 1

d

ds
logZP3

(s) +
d

ds

1

2s− 1

d

ds
logZP4

(s).

Integrating both sides of the last equation with respect to s, we obtain

det(∆̃− s(1− s)) = ec1s(s−1)+c2ZI(s)Z(s)ZP(s), (3.138)

where c1 and c2 are constants of integration.
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Remark 3.4. The constants c1 and c2 can be obtained by comparing the asymptotic behaviours

of the logarithm of both sides of (3.138). The asymptotics of log det(∆̃ − s(1 − s)) is given by

Proposition (3.29).

Next we compute explicitly det(∆̃− s(1− s)) for some special values of s ∈ R, s > 0.

First we observe that

det(∆̃− s(1− s)) = s(s− 1)

∞∏
k=1

(λk − s(1− s)) , (3.139)

and so
d

ds
det(∆̃− s(1− s))

∣∣∣∣
s=1

=

∞∏
k=1

λk = det′(∆̃). (3.140)

Since Z(s) has a simple zero at s = 1, ZI(1) = (2π)
1
6 (since Γ2(1) = 1) and Λ(2) = π

6 , we obtain

det ′ (∆̃) =
d

ds
ec1s(s−1)+c2ZI(s)Z(s)ZP(s)

∣∣∣∣
s=1

= 2
7
6 · 3 · π− 4

3 ec2Z ′(1).

For the other special values of s ∈ R, s > 1, explicit computations show that

• (s = 2)

det
(

∆̃ + 2
)

= e2c1+c2ZI (2)ZP (2)Z (2)

= 2
4
3 · 3 · 5 · π− 13

6 Z(2)e2c1+c2 .

• (s = 3)

det
(

∆̃ + 6
)

= e6c1+c2ZI (3)ZP (3)Z (3)

= 2−
2
3 · 32 · 7 · π−3Z(3)e6c1+c2

= 2−2 · 3 · 5−1 · 7 · π− 5
6 e4c1

Z(3)

Z(2)
det
(

∆̃ + 2
)
.

• (s = 4)

det
(

∆̃ + 12
)

= e12c1+c2ZI (4)ZP (4)Z (4)

= 2
1
6 · 3 5

6 · 5 · π− 23
6 Z(4)e12c1+c2

= 2−
7
6 · 3− 1

6π−
5
3 e10c1

Z(4)

Z(2)
det
(

∆̃ + 2
)

= 2
5
6 · 3− 7

6 · 5 · 7−1π−
5
6 e6c1

Z(4)

Z(3)
det
(

∆̃ + 6
)
.
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• (s = 5)

det
(

∆̃ + 20
)

= e20c1+c2ZI (5)ZP (5)Z (5)

= 2−
5
3 · 3 1

2 · 11 · π− 14
3 Z(5)e20c1+c2

= 2−3 · 3− 1
2 · 5−1 · 11π−

5
2 e18c1

Z(5)

Z(2)
det
(

∆̃ + 2
)

= 2−1 · 3− 3
2 · 7−1 · 11π−

5
3 e14c1

Z(5)

Z(3)
det
(

∆̃ + 6
)

= 2−
11
6 · 3− 1

3 · 5−1 · 11π−
5
6 e8c1

Z(5)

Z(4)
det
(

∆̃ + 12
)
.

•
(
s = 3

2

)
det

(
∆̃ +

3

4

)
= e

3
4 c1+c2ZI

(
3

2

)
ZP

(
3

2

)
Z

(
3

2

)
= 2

29
72π

1
12 e−

1
24A

1
2 · 2− 1

2πζ(3)−1Z

(
3

2

)
e

3
4 c1+c2

= −2−
151
72 π−

11
12 ζ ′(−2)−1Z

(
3

2

)
exp

(
−ζ
′(−1)

2
+

3

4
c1 + c2

)
.

•
(
s = 5

2

)
det

(
∆̃ +

15

4

)
= e

15
4 c1+c2ZI

(
5

2

)
ZP

(
5

2

)
Z

(
5

2

)
= 2

77
72 3−

1
6π

1
12 e−

1
24A

1
2 · 2− 1

2π23−1ζ(5)−1Z

(
5

2

)
e

15
4 c1+c2

= 2−
103
72 3−

1
6π−

23
12 ζ ′(−4)−1Z

(
5

2

)
exp

(
−ζ
′(−1)

2
+

15

4
c1 + c2

)
= −2

2
3 3−

1
6π−1 ζ

′(−2)

ζ ′(−4)
e3c1

Z
(

5
2

)
Z
(

3
2

)det

(
∆̃ +

3

4

)
.

•
(
s = 7

2

)
det

(
∆̃ +

35

4

)
= e

35
4 c1+c2ZI

(
7

2

)
ZP

(
7

2

)
Z

(
7

2

)
= 2

149
72 3−

1
2 5−

1
6π

1
12 e−

1
24A

1
2 · 2− 3

2π43−25−1ζ(7)−1Z

(
7

2

)
e

35
4 c1+c2

= −2−
175
72 3−

1
2 5−

1
6π−

23
12 ζ ′(−6)−1Z

(
7

2

)
exp

(
−ζ
′(−1)

2
+

35

4
c1 + c2

)
= 2

1
3 3−

1
2 5−

1
6π−1 ζ

′(−2)

ζ ′(−6)

Z
(

7
2

)
Z
(

3
2

)e4c1det

(
∆̃ +

3

4

)
= −2−

1
3 3−

1
3 5−

1
6
ζ ′(−4)

ζ ′(−6)

Z
(

7
2

)
Z
(

5
2

)ec1det

(
∆̃ +

15

4

)
.
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•
(
s = 9

2

)
det

(
∆̃ +

63

4

)
= e

63
4 c1+c2ZI

(
9

2

)
ZP

(
9

2

)
Z

(
9

2

)
= 2

11
12 3−

11
6 5−

3
2 7−

7
6π−4e−

1
24A

1
2 · 2− 1

72π
1
12 ζ(9)−1Z

(
9

2

)
e

63
4 c1+c2

= 2−
223
72 3−

5
6 5−

1
2 7−

1
6π−

143
12 ζ ′(−8)−1Z

(
9

2

)
exp

(
−ζ
′(−1)

2
+

63

4
c1 + c2

)
= −2−13−

5
6 5−

1
2 7−

1
6π−11e15c1

ζ ′(−2)

ζ ′(−8)

Z
(

9
2

)
Z
(

3
2

)det

(
∆̃ +

3

4

)
= 2−

5
3 3−

2
3 5−

1
2 7−

1
6π−10 ζ

′(−4)

ζ ′(−8)

Z
(

9
2

)
Z
(

5
2

)e12c1det

(
∆̃ +

15

4

)
= −2−

4
3 3−

1
3 5−

1
3 7−

1
6π−10e11c1

ζ ′(−6)

ζ ′(−8)

Z
(

9
2

)
Z
(

7
2

)det

(
∆̃ +

35

4

)
.

In Awonusika and Taheri [15] the zeta regularised determinants of the Laplacians on the real

and complex hyperbolic manifolds M = Γ\Hn and M = Γ\CHn are discussed and identified.

Furthermore, let (M, g) be a compact Riemannian manifold. Following Osgood et al. [124],

Sarnak [144], the height function of a Riemannian manifold M is defined by

h(g) = − log det′∆M .

The height function h(g) admits a Polyakov formula (Polyakov [132, 133]) which describes the

variation of the determinant under conformal deformations of the metric. To conformally deform

a metric we mean to change the distances between points while maintaining the angles between

vectors. Polyakov’s formula for the determinant is the key tool in the analysis of extrema

of determinants on manifolds. The authors Sarnak [144, 146], Osgood et al. [124] show that

for a closed Riemann surface there exists a unique metric of constant curvature at which the

regularized determinant attains a maximum. They also prove the corresponding statement for

the case of a compact Riemann surface with boundary, with appropriate boundary conditions

(see Chang [37], Chang and Yang [38, 39, 40], Okikiolu [121] for functional determinants in higher

dimensions). A consequence of the Polyakov formula for a closed Riemann surface is the Onofri’s

inequality (Onofri [122], Onofri and Virasoro [123]), which implies that the determinant of the

Laplacian on S2 under the conformal change of the metric is maximised by the standard metric.

The generalisation of Onofri’s inequality to the n-dimensional unit sphere Sn was considered by

Beckner [23, 24], Dolbeault et al. [53]) using symmetrisation arguments in terms of the Poisson

semigroup, ultraspherical and spherical harmonic polynomials.



Chapter 4

Poisson Integral Representations

in Euclidean and Non-Euclidean

spaces

Of fundamental importance in the theory of harmonic functions and especially for solving the

Dirichlet problem in the unit ball Bn in Rn, is the so-called Poisson kernel. In the classical

situation of the Laplacian in Rn, the exact formula for the kernel leads to many important

results concerning behaviours of harmonic functions, and also leads to various identities in the

context of special functions. One of the aims of this chapter is to derive a formula, in a closed

form, for the Euclidean Poisson kernel and then compute a series representation involving the

Gengebauer polynomial. The said formula for the Euclidean Poisson kernel will be deduced from

the explicitly computed series representation for Poisson kernel in a ball in the n-dimensional

real hyperbolic space Hn, involving the Gegenbauer polynomial and the Gauss hypergeometric

functions. We also give integral representations of the Euclidean Poisson kernel involving special

functions. The case of the unit sphere Sn is also considered. In Section 4.1, we compute

explicitly the eigenfunctions of the Laplacian in Hn using the method of separation of variables.

In Sections 4.2 and 4.3, we respectively compute the Poisson kernels on the upper half-space Hn

and the unit sphere Sn. In Section 4.4 we deduce the n-dimensional Euclidean Poisson kernel

from the non-Euclidean one, by considering a small hyperbolic distance, bearing in mind that

every Riemannian manifold is locally Euclidean. Finally, in Section 4.5 we present various series

representations for the Poisson kernel in the Poincaré (hyperbolic) unit ball Dn in terms of

special functions, from which the Poisson integral formula for Dn follows. The Poisson kernels

on symmetric spaces are also considered in Symeonidis [162] using different methods. See also

Cammarota and Orsingher [36], and Byczkowski and Ma lecki [34] for Poisson kernels in the

context of hyperbolic Brownian motion.

We shall see in Chapter 5, Section 5.5 that the traces of the heat kernels on compact symmetric

spaces can be purely expressed in terms of the Euclidean Poisson kernel and in Chapter 6,

Section 6.1 that the generalised eigenfunctions of the Laplacian in the upper half-space Hn can

be given as an integral transform of harmonic functions in the Euclidean ball Bn; this justifies the

choice of the contents of this chapter before considering other spectral functions in the remaining

chapters.

100
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4.1 Eigenfunctions of the Laplacian in the Hyperbolic Space

In this section we solve explicitly the eigenvalue problem in the upper half-space Hn so as to

obtain the eigenfunctions of the Laplacian in Hn which will be useful in the sequel.

The eigenvalue problem on the upper half-space Hn is the equation

− ∂2

∂ρ2
− (n− 1)

cosh ρ

sinh ρ

∂

∂ρ
− 1

sinh2 ρ
∆Sn−1G = λG, (4.1)

where G = G(ρ, ϕ) (0 < ρ < ∞, 0 ≤ ϕ ≤ π) are the eigenfunctions of the Laplacian ∆Hn with

eigenvalues λ = s(n − 1 − s) (s = (n − 1)/2 + ir, r ∈ R). To solve (4.1), we assume a product

solution of the form

G(ρ, ϕ) = Θ(ρ)Ψ(ϕ).

Differentiating and substituting in (4.1), we have

Ψ
∂2Θ

∂ρ2
+ (n− 1)Ψ

cosh ρ

sinh ρ

∂Θ

∂ρ
+

Θ

sinh2 ρ
∆Sn−1Ψ = −λΘΨ.

Multiplying both sides of the last equation by sinh2 ρ
ΘΨ , we obtain

sinh2 ρ

Θ

∂2Θ

∂ρ2
+

(n− 1)

Θ
cosh ρ sinh ρ

∂Θ

∂ρ
+ λ sinh2 ρ = − 1

Ψ
∆Sn−1Ψ.

Since the left hand side depends only on ρ and the right hand side depends only on ϕ, we can

equate each side to a constant, say, µ2. Thus, we obtain a pair of ODE and PDE, namely

sinh2 ρ

Θ

d2Θ

dρ2
+

(n− 1)

Θ
cosh ρ sinh ρ

dΘ

dρ
+ λ sinh2 ρ = µ2 (4.2)

∆Sn−1Ψ = −µ2Ψ, (4.3)

where

µ2 = m(m+ n− 2), m = 0, 1, 2, · · ·,

are the eigenvalues of ∆Sn−1 corresponding to the eigenfunctions Ψ. We are interested in the

radial part (4.2). Multiplying equation (4.2) by Θ
sinh2 ρ

we have

d2Θ

dρ2
+ (n− 1)

cosh ρ

sinh ρ

dΘ

dρ
+

{
λ− µ2

sinh2 ρ

}
Θ = 0. (4.4)

Substituting

Θ(ρ) = sinh1−n2 ρη(ρ),

with

dΘ

dρ
= cosh ρ sinh−

n
2 ρη − n

2
cosh ρ sinh−

n
2 ρη + sinh1−n2 ρ

dη

dρ
,

d2Θ

dρ2
= sinh1−n2 ρ

d2η

dρ2
+
[
2 cosh ρ sinh−

n
2 ρ− n cosh ρ sinh−

n
2 ρ
] dη
dρ

+

[
cosh2 ρ sinh−

n
2−1 ρ

(
−n

2
+
n2

4

)
+ sinh1−n2 ρ

(
1− n

2

)]
η,
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in (4.4) and then multiplying the resulting equation by sinh
n
2−1 ρ, we obtain after some re-

arrangements

d2η

dρ2
+

[
2

cosh ρ

sinh ρ
− n cosh ρ

sinh ρ
+ (n− 1)

cosh ρ

sinh ρ

]
dη

dρ

+

[
cosh2 ρ sinh−2 ρ

(
−n

2
+
n2

4

)
+
(

1− n

2

)
+ (n− 1) cosh2 ρ sinh−2 ρ

]
η

+
[
(n− 1) cosh2 ρ sinh−2 ρ

(
1− n

2

)
+ λ− µ2 sinh−2 ρ

]
η = 0.

Further simplification gives

d2η

dρ2
+

cosh ρ

sinh ρ

dη

dρ
+

{
λ− n

2
+ 1−

[(n
2
− 1
)2

cosh2 ρ+ µ2

]
sinh−2 ρ

}
η = 0. (4.5)

Setting

y(x) = η(ρ), x = cosh ρ,
dη

dρ
=
dy

dx
sinh ρ,

d2η

dρ2
=
(
x2 − 1

) d2y

dx2
+ x

dy

dx
(4.6)

gives

(1− x2)
d2y

dx2
− 2x

dy

dx
+

{
−λ+

n

2
− 1−

[(
n
2 − 1

)2
x2

1− x2
+

µ2

1− x2

]}
y = 0.

Denote the expression inside the braces by In(λ, µ;x). Then

In(λ, µ;x) =
−λ+ n

2 − 1 + λx2 − nx2

2 −
n2x2

4 + nx2 − µ2

1− x2

=

(
− 1

4 − λ+ (n−1)2

4

) (
1− x2

)
−
[(
n
2 − 1

)2
+ µ2

]
1− x2

.

If we set

α(α+ 1) = −1

4
− λ+

(n− 1)2

4
,

then we obtain a quadratic equation in α :

α2 + α+
1

4
+ λ− (n− 1)2

4
= 0

whose solution is

α = −1

2
±
√
−λ+

(n− 1)2

4
= −1

2
± ir, s =

n− 1

2
+ ir. (4.7)

Hence, we obtain the associated Legendre equation

(1− x2)
d2y

dx2
− 2x

dy

dx
+

{
α(α+ 1)− σ2

1− x2

}
y = 0 (4.8)

of degree α given by (4.7) and order

σ = ±

√
(n− 2)

2

4
+ µ2 = ±n− 2 + 2m

2
. (4.9)

In summary we have the following statement.
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Proposition 4.1. For s = n−1
2 +ir, r ∈ R, a solution of the n-dimensional hyperbolic eigenvalue

problem
d2Θ

dρ2
+ (n− 1)

cosh ρ

sinh ρ

dΘ

dρ
+

{
s(n− 1− s)− m(m+ n− 2)

sinh2 ρ

}
Θ = 0 (4.10)

is given by

Θn
s,m(ρ) = sinh1−n2 ρP

−n−2+2m
2

− 1
2 +ir

(cosh ρ). (4.11)

In particular, the function

Θn
s,0(ρ) = sinh1−n2 ρP

−n−2
2

− 1
2 +ir

(cosh ρ), (4.12)

solves the eigenvalue problem

d2Θ

dρ2
+ (n− 1)

cosh ρ

sinh ρ

dΘ

dρ
+ s(n− 1− s)Θ = 0; (4.13)

and

Θn
0,m(ρ) = sinh1−n2 ρP

−n−2+2m
2

n−2
2

(cosh ρ), (4.14)

solves the eigenvalue problem

d2Θ

dρ2
+ (n− 1)

cosh ρ

sinh ρ

dΘ

dρ
− m(m+ n− 2)

sinh2 ρ
Θ = 0, (4.15)

where Pµν (z) is the associated Legendre function of the first kind with degree ν and order µ, and

argument z (see Appendix B.5).

4.2 Special Functions Representation of the Poisson Ker-

nel

We now compute the Poisson kernel in Hn, or what is the same we solve the Laplace equation

in Hn involving the radial part of the Laplacian in Hn using Proposition 4.1.

Let Hn be the n-dimensional upper half-space with origin o = (0, ..., 0, 1) ∈ Hn. As usual

ρ̃ = d(w,w′), w = (x, y), w′ = o = (0, ..., 0, 1) ∈ Hn. Consider the n-dimensional hyperbolic

Dirichlet problem[
∂2

∂ρ̃2
+ (n− 1)

cosh ρ̃

sinh ρ̃

∂

∂ρ̃
+

1

sinh2 ρ̃

(
∂2

∂θ̃2
+ (n− 2)

cos θ̃

sin θ̃

∂

∂θ̃

)]
Pρ̃,ρ(θ̃, θ) = 0

Pρ̃,ρ

(
θ̃, θ
)

= δ
(
θ̃ − θ

)
,

(4.16)

where 0 < ρ̃ < ρ <∞, θ̃− θ ∈ (0, π], and δ is the Dirac delta function. To solve the initial value

problem (4.16), we assume a product solution of the form

Pρ̃,ρ(θ̃, θ) = R(ρ̃)Θ(θ̃). (4.17)
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Differentiating (4.17) and then substituting in (4.16) we obtain two ordinary differential equations

Θ′′(θ̃) + (n− 2) cot θ̃Θ′(θ̃) + µ2Θ(θ̃) = 0 (4.18)

sinh2 ρ̃R′′(ρ̃) + (n− 1) cosh ρ̃ sinh ρ̃R′(ρ̃)− µ2R(ρ̃) = 0, (4.19)

where µ2 = k(k + n− 2), k ≥ 0, is the eigenvalue of the Laplacian on the unit sphere Sn−1, i.e.,

(4.18) is the eigenvalue problem on the unit sphere Sn−1. To solve (4.18) we make a substitution

Θ(θ̃) = y(ξ), ξ = cos θ̃,

to obtain (
1− ξ2

)
y′′(ξ)− (n− 1)ξy(ξ) + µ2y(ξ) = 0, (4.20)

which can be called the (n− 1)-dimensional Legendre’s equation. When n = 3, (4.20) reduces to

the classical Legendre’s equation (see Appendix B.5). However, in the study of special functions,

equation (4.20) is called the Gegenbauer equation (see (B.112) with ν = n−2
2 ); its solution Cνk (t)

is called the Gegenbauer polynomial (see Appendix B.6). Thus

y(ξ) = C
n−2
2

k (ξ), ξ = cos θ̃,

solves (4.20). Hence,

Θ(θ̃) = AC
n−2
2

k (cos θ̃). (4.21)

We observe that (4.19) is precisely the equation (4.15) in Proposition 4.1, with the solution

R(ρ̃) = sinh
2−n
2 ρ̃P

−n−2
2 −k

n−2
2

(cosh ρ̃), k ≥ 0. (4.22)

So by (4.17), (4.21) and (4.22) we obtain

Pρ̃,ρ(θ̃, θ) =

∞∑
k=0

AkC
n−2
2

k (cos θ̃)Rk(ρ̃)

=

∞∑
k=0

Ak sinh
2−n
2 ρ̃P

−n−2
2 −k

n−2
2

(cosh ρ̃)C
n−2
2

k (cos θ̃). (4.23)

By the initial condition (4.16) we have

Pρ̃,ρ(θ̃, θ) = δ(θ̃ − θ) =

∞∑
k=0

Ak sinh
2−n
2 ρP

−n−2
2 −k

n−2
2

(cosh ρ)C
n−2
2

k (cos θ̃). (4.24)

To determine the constantAk we multiply both sides of the equation (4.24) by sinn−2 θ̃C
n−2
2

m (cos θ̃)

and integrate from 0 to π with respect to θ̃ to get

∫ π

0

δ(θ̃ − θ) sinn−2 θ̃C
n−2
2

m (cos θ̃) dθ̃ =

∞∑
k=0

Ak sinh
2−n
2 ρP

−n−2
2 −k

n−2
2

(cosh ρ)

×
∫ π

0

sinn−2 θ̃C
n−2
2

k (cos θ̃)C
n−2
2

m (cos θ̃)dθ̃

= Am sinh
2−n
2 ρP

−n−2
2 −m

n−2
2

(cosh ρ)
π23−nΓ(m+ n− 2)

m!
(
m+ n−2

2

)
Γ
(
n−2

2

)2 ,
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where we have used the orthogonality property (B.116) and (B.117), for 0 < θ̃ ≤ π. Thus,

Am =
sinn−2 θC

n−2
2

m (cos θ)

sinh
2−n
2 ρP

−n−2
2 −m

n−2
2

(cosh ρ)

m!
(
m+ n−2

2

)
Γ
(
n−2

2

)2
π23−nΓ(m+ n− 2)

. (4.25)

Hence, from (4.23) and (4.25) we obtain

Pρ̃,ρ(θ̃, θ) =
Γ
(
n−2

2

)2
23−nπ

sinn−2 θ

∞∑
k=0

k!
(
k + n−2

2

)
Γ(k + n− 2)

sinh
2−n
2 ρ̃P

−n−2
2 −k

n−2
2

(cosh ρ̃)

sinh
2−n
2 ρP

−n−2
2 −k

n−2
2

(cosh ρ)

× C
n−2
2

k (cos θ̃)C
n−2
2

k (cos θ). (4.26)

By applying the addition formula (B.115) with η = 0, m = 0, we have

C
n−2
2

k (cos θ̃)C
n−2
2

k (cos θ) = C
n−2
2

k (cos(θ̃ − θ))C
n−2
2

k (1) (4.27)

and by the identity (B.104) (the last identity), namely

C
n−2
2

k (1) =
Γ(n+ k − 2)

k!(n− 3)!
, (4.28)

equation (4.26) becomes

Pρ̃,ρ(θ̃, θ) =
Γ
(
n−2

2

)2
sinn−2 θ

23−nπ(n− 3)!

∞∑
k=0

(
k +

n− 2

2

) sinh
2−n
2 ρ̃P

−n−2
2 −k

n−2
2

(cosh ρ̃)

sinh
2−n
2 ρP

−n−2
2 −k

n−2
2

(cosh ρ)

× C
n−2
2

k (cos(θ̃ − θ)). (4.29)

Proposition 4.2.

Γ
(
n−2

2

)2
23−nπ(n− 3)!

=
2

n− 2

νn−2

νn−1
,

where νn−1 is the surface area of the (n− 1)-dimensional sphere (see (1.12)).

Proof. Indeed, by the Legendre duplication formula (B.3), namely

22−n√πΓ(n− 1) = Γ
(n

2

)
Γ

(
n− 1

2

)
, (4.30)

we have

Γ
(
n−2

2

)2
23−nπ(n− 3)!

=

(
n
2 − 1

)2
Γ
(
n−2

2

)2(
n
2 − 1

)2
23−nπ(n− 3)!

=
2Γ
(
n
2

)2
22−nπΓ(n− 1)(n− 2)

=
2

n− 2

Γ
(
n
2

)
√
πΓ
(
n−1

2

) =
2

n− 2

νn−2

νn−1
. (4.31)

In summary we have the following statement (see also Awonusika [6]).
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Theorem 4.3. For 0 < ρ̃ < ρ <∞, θ̃ − θ ∈ (0, π], the solution to the n-dimensional hyperbolic

Dirichlet problem (Laplace equation)[
1

sinhn−1 ρ̃

∂

∂ρ̃

(
sinhn−1 ρ̃

∂

∂ρ̃

)
+

1

sinh2 ρ̃

(
1

sinn−2 θ̃

∂

∂θ̃

(
sinn−2 θ̃

∂

∂θ̃

))]
Pρ̃,ρ(θ̃, θ) = 0

Pρ̃,ρ

(
θ̃, θ
)

= δ
(
θ̃ − θ

)
,

is given by

Pρ̃,ρ(θ̃, θ) =
νn−2

νn−1

∞∑
k=0

(
2k

n− 2
+ 1

) sinh
2−n
2 ρ̃P

−n−2
2 −k

n−2
2

(cosh ρ̃)

sinh
2−n
2 ρP

−n−2
2 −k

n−2
2

(cosh ρ)
C
n−2
2

k (cos(θ̃ − θ)) sinn−2 θ.

In particular, the Poisson kernel in Hn is given by

PHn

ρ̃,ρ (θ̃, θ) =
1

νn−1

∞∑
k=0

(
2k

n− 2
+ 1

) sinh
2−n
2 ρ̃P

−n−2
2 −k

n−2
2

(cosh ρ̃)

sinh
2−n
2 ρP

−n−2
2 −k

n−2
2

(cosh ρ)
C
n−2
2

k (cos(θ̃ − θ));

and the corresponding Poisson integral formula for Hn is

PHn

ρ̃,ρ [φ](θ) = νn−2

∫ π

0

PHn

ρ̃,ρ (θ̃, θ)φ(θ̃) sinn−2 θ̃ dθ̃ =

∫ π

0

Pρ̃,ρ(θ̃, θ)φ(θ̃) dθ̃

for a continuous function φ on [0, π].

Remark 4.1. It is not difficult to write the associated Legendre function P
−n−2

2 −k
n−2
2

(cosh ρ̃) in

terms of the Gauss hypergeometric function. Indeed, using (B.70) and (B.80) we obtain

P
−n−2

2 −k
n−2
2

(cosh ρ̃) =
2

2−n
2

Γ
(
k + n

2

) tanhk
(
ρ̃

2

)
sinh

n−2
2 ρ̃F

(
k, 1− n

2
; k +

n

2
; tanh2

(
ρ̃

2

))
. (4.32)

Hence,

PHn

ρ̃,ρ (θ̃, θ) =
1

νn−1

∞∑
k=0

(
2k

n− 2
+ 1

) tanhk
(
ρ̃
2

)
F
(
k, 1− n

2 ; k + n
2 ; tanh2

(
ρ̃
2

))
tanhk

(
ρ
2

)
F
(
k, 1− n

2 ; k + n
2 ; tanh2

(
ρ
2

))
× C

n−2
2

k (cos(θ̃ − θ)). (4.33)

Therefore, our results agree with those of Symeonidis [162], Cammarota and Orsingher [36],

Byczkowski and Ma lecki [34] who use different methods.

An important property of the Poisson kernel is the following

Remark 4.2.

νn−2

∫ π

0

PHn

ρ̃,ρ (ϑ) sinn−2 ϑ dϑ =

∫ π

0

Pρ̃,ρ(ϑ) dϑ = 1.
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Proof. We use the hypergeometric function expression given by (4.33) to see that∫ π

0

Pρ̃,ρ(θ) dθ = νn−2

∫ π

0

PHn

ρ̃,ρ (θ) sinn−2 θ dθ

=
νn−2

νn−1

∫ π

0

sinn−2 θ dθ

+
νn−2

νn−1

∞∑
k=1

(
2k

n− 2
+ 1

) tanhk
(
ρ̃
2

)
F
(
k, 1− n

2 ; k + n
2 ; tanh2

(
ρ̃
2

))
tanhk

(
ρ
2

)
F
(
k, 1− n

2 ; k + n
2 ; tanh2

(
ρ
2

))
×
∫ π

0

C
n−2
2

k (cos θ) sinn−2 θ dθ, (4.34)

where we have used (B.103) (the first identity) and (B.59). To evaluate the first integral on the

right-hand side of (4.34), we use the beta function (B.33) with x = 1
2 , y = n−1

2 , t = cos θ, to

obtain

B

(
1

2
,
n− 1

2

)
=

∫ π

0

sinn−2 θ dθ =
Γ
(

1
2

)
Γ
(
n−1

2

)
Γ
(
n
2

) =
νn−1

νn−2
. (4.35)

The proof is complete by noting that for k > 0∫ π

0

C
n−2
2

k (cos θ) sinn−2 θ dθ = 0.

(see (B.117)).

4.3 The Poisson Integral Formula for Sn

The result in Theorem 4.3 for the upper half-space Hn can be extended to that for the unit

sphere Sn by analytic continuation, namely we set ρ̃→ ir and ρ→ i% to obtain

Theorem 4.4. Let

Sn =
{
x ∈ Rn+1 : |x| = 1

}
be the n-dimensional unit sphere and denote by d(x, x′) the spherical distance between two points

x, x′ ∈ Sn. Let o ∈ Sn and

Sn% (o) = {x ∈ Sn : r = d(o, x) < % < π} .

Then the solution to the n-dimensional spherical Dirichlet problem (Laplace equation)[
1

sinn−1 r

∂

∂r

(
sinn−1 r

∂

∂r

)
+

1

sin2 r

(
1

sinn−2 ϑ

∂

∂ϑ

(
sinn−2 ϑ

∂

∂ϑ

))]
Pr,%(ϑ, ϑ

′) = 0

Pr,% (ϑ, ϑ′) = δ (ϑ− ϑ′) , ϑ− ϑ′ ∈ (0, π]

is given by

Pr,%(ϑ, ϑ
′) =

νn−2

νn−1

∞∑
k=0

(
2k

n− 2
+ 1

)
tank

(
r
2

)
F
(
k, 1− n

2 ; k + n
2 ;− tan2

(
r
2

))
tank

(
%
2

)
F
(
k, 1− n

2 ; k + n
2 ;− tan2

(
%
2

))
× C

n−2
2

k (cos(ϑ− ϑ′)) sinn−2 ϑ′.
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In particular, the Poisson kernel on Sn is

PSn

r,% (ϑ, ϑ′) =
1

νn−1

∞∑
k=0

(
2k

n− 2
+ 1

)
tank

(
r
2

)
F
(
k, 1− n

2 ; k + n
2 ;− tan2

(
r
2

))
tank

(
%
2

)
F
(
k, 1− n

2 ; k + n
2 ;− tan2

(
%
2

))
× C

n−2
2

k (cos(ϑ− ϑ′));

and the corresponding Poisson integral formula is

PSn

r,% [φ](ϑ) = νn−2

∫ π

0

PSn

r,% (ϑ, ϑ′)φ(ϑ′) sinn−2 ϑ′ dϑ′

for a continuous function φ on [0, π].

Remark 4.3.

νn−2

∫ π

0

PSn

r,% (ϑ) sinn−2 ϑ dϑ = 1.

Proof. As in the case of Hn.

4.4 Integral Representations of the Euclidean Poisson Ker-

nel

It is a topic of particular interest in the theory of harmonic functions to solve the Dirichlet

problem (see Theorem 4.8 below) in the unit ball Bn of Rn, and of fundamental importance in

solving this problem is the Poisson kernel PBn(x, y), given by (4.42) below.

The upper half-space Hn, being a Riemannian manifold, must behave locally like Euclidean

space Rn. Let

Bn = {x ∈ Rn : |x| < 1}

be the unit ball in Rn with boundary ∂Bn = Sn−1. It is interesting to see that for a small value

of the hyperbolic distance, the n-dimensional hyperbolic Poisson kernel reduces to the Poisson

kernel on the unit ball.

The precise statement is the following.

Theorem 4.5. For small values of ρ̃ and ρ, the following holds:

PHn

ρ̃,ρ (θ, θ̃) =
1

νn−1

∞∑
k=0

(
2k

n− 2
+ 1

) tanhk
(
ρ̃
2

)
F
(
k, 1− n

2 ; k + n
2 ; tanh2

(
ρ̃
2

))
tanhk

(
ρ
2

)
F
(
k, 1− n

2 ; k + n
2 ; tanh2

(
ρ
2

))
× C

n−2
2

k (cos(θ̃ − θ))

∼ 1

nωn

1− r2

(1− 2r cosϑ+ r2)
n
2
, r =

ρ̃

ρ
, ϑ = θ̃ − θ, 0 ≤ r < 1,

where

PBn(r, ϑ) =
1

nωn

1− r2

(1− 2r cosϑ+ r2)
n
2

=
1

nωn

1− r2[
(1− r)2

+ 4r sin2 ϑ
2

]n
2

(4.36)

is the Poisson kernel on the Euclidean ball Bn with x ∈ Bn, y ∈ Sn−1 and

ωn =
π
n
2

Γ
(
n
2 + 1

) =
νn−1

n
(4.37)
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is the volume of the unit ball Bn in Rn. Furthermore, PBn(r, ϑ) admits the following series

representations:

1− r2

(1− 2r cosϑ+ r2)
n
2

=

∞∑
k=0

2k + n− 2

n− 2
C
n−2
2

k (cosϑ)rk (4.38)

=

∞∑
k=0

Mn−1
k F

(
n− 2 + k,−k;

n− 1

2
; sin2 ϑ

2

)
rk (4.39)

=
eiπ(1−n)/2

(
1− r2

) 3
2−

n
2

√
πrΓ

(
n
2

) ∞∑
k=−∞

e−ikϑQ
n
2−

1
2

k− 1
2

(
1 + r2

2r

)
. (4.40)

The integral

PBn [φ](r, θ) = νn−2

∫ π

0

PBn(r, θ, θ′)φ(θ′) sinn−2 θ′dθ′ (4.41)

is called the Poisson integral formula for the unit ball Bn in Rn.

Remark 4.4. (i) In Cartesian coordinates we have

PBn(x, y) =
1

nωn

1− |x|2

|x− y|n
(4.42)

(see Taheri [163, Chs. 2, 5 & 8], Krantz [96]).

(ii) If n = 2, then we obtain the Poisson kernel on the unit disk:

PD(r, ϑ) = P (r, ϑ) =
1

2π

1− r2

1− 2r cosϑ+ r2
=

1

2π

(
1 + 2

∞∑
k=1

rk cos kϑ

)
. (4.43)

The last term on the right-hand side of (4.43) follows by applying the limit formula (1.18).

Proof of Theorem 4.5. In this proof we make use of some properties of the Gegenbauer polyno-

mial in Appendix B.6. Indeed noting that tanh ρ
2 ∼

ρ
2 , and using the identities (B.103) (the first

and second), we have

I =

∞∑
k=0

(
2k

n− 2
+ 1

) tanhk
(
ρ̃
2

)
F
(
k, 1− n

2 ; k + n
2 ; tanh2

(
ρ̃
2

))
tanhk

(
ρ
2

)
F
(
k, 1− n

2 ; k + n
2 ; tanh2

(
ρ
2

))
× C

n−2
2

k (cosϑ)

∼
∞∑
k=0

(
2k

n− 2
+ 1

)
rkC

n−2
2

k (cosϑ)

=
2

n− 2

[
n− 2

2

∞∑
k=0

rkC
n−2
2

k (cosϑ) + (n− 2)r cosϑ+

∞∑
k=2

krkC
n−2
2

k (cosϑ)

]
.
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Using the functional equation (B.108), we obtain

I ∼
∞∑
k=0

rkC
n−2
2

k (cosϑ) + 2r cosϑ+
2

n− 2

∞∑
k=2

[
rk(n− 2)

{
cosϑC

n
2

k−1(cosϑ)− C
n
2

k−2(cosϑ)
}]

= 2

[
1

2

∞∑
k=0

rkC
n−2
2

k (cosϑ) + r cosϑ+

∞∑
k=2

rk cosϑC
n
2

k−1(cosϑ)−
∞∑
k=2

rkC
n
2

k−2(cosϑ)

]

= 2

[
1

2

∞∑
k=0

rkC
n−2
2

k (cosϑ) + r

∞∑
k=0

rk cosϑC
n
2

k (cosϑ)− r2
∞∑
k=0

rkC
n
2

k (cosϑ)

]
.

By the generating function of Cνk (x) (see (B.102)), we have

I ∼ 2

[
1

2

(
1− 2r cosϑ+ r2

)−n−2
2 + r cosϑ

(
1− 2r cosϑ+ r2

)−n2 − r2
(
1− 2r cosϑ+ r2

)−n2 ]
= 2

[
1

2

(
1− 2r cosϑ+ r2

)−n−2
2 +

(
1− 2r cosϑ+ r2

)−n2 (r cosϑ− r2
)]

= 2
(
1− 2r cosϑ+ r2

)−n2 [r cosϑ− r2 +
1

2

(
1− 2r cosϑ+ r2

)]
=
(
1− 2r cosϑ+ r2

)−n2 [1− r2
]
.

We have therefore shown that the following identity holds:

∞∑
k=0

(
2k

n− 2
+ 1

)
rkC

n−2
2

k (cosϑ) =
1− r2

(1− 2r cosϑ+ r2)
n
2

; (4.44)

this establishes the fact that Hn being a Riemannian manifold, is locally Euclidean.

It is interesting to see that we can as well recover the left-hand side of (4.44) from the right-

hand side using the definition of the Gegenbauer polynomial. Towards this end, by the definition

(B.102) and the identity (B.118), we have

1− r2

(1− 2r cosϑ+ r2)
n
2

=
(
1− r2

) ∞∑
m=0

C
n
2
m(cosϑ)rm

=
(
1− r2

) Γ
(
n
2 − 1

)
Γ
(
n
2

) ∞∑
m=0

∑
0≤l≤m2

alC
n−2
2

m−2l(cosϑ)rm,

where al = m− 2l + n−2
2 . Letting k = m− 2l gives

1− r2

(1− 2r cosϑ+ r2)
n
2

=
(
1− r2

) ∞∑
k=0

k + n
2 − 1

n
2 − 1

C
n−2
2

k (cosϑ)rk
∞∑
l=0

r2l

=

∞∑
k=0

2k + n− 2

n− 2
C
n−2
2

k (cosϑ)rk, (4.45)

where we have used the first identity in (B.107). To prove (4.40), we write

PBn(r, ϑ) =
1

ωn

1− r2

(2r)
n
2

1[
1+r2

2r − cosϑ
]n

2
. (4.46)
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Using the generalised Heine identity (Cohl and Dominici [43])

1

[z − cosϑ]µ
=

√
2

π

e−iπ(µ− 1
2 ) (z2 − 1

)−µ2 + 1
4

Γ(µ)

∞∑
k=−∞

eikψQ
µ− 1

2

k− 1
2

(z) ,

with µ = n/2 and z = (1 + r2)/2r proves (4.40). The fact that

|Cνk (t)| = O
(
k2ν−1

)
follows from

Mn
k = O

(
kn−1

)
(4.47)

(see e.g. Sogge [153, p. 57]); thus the series on the right-hand side of (4.38) converges absolutely

when 0 ≤ r < 1. This completes the proof of the theorem.

As we have earlier mentioned in the beginning of this chapter that the trace of the heat operators

on rank one compact symmetric spaces can be expressed in terms of the Euclidean Poisson kernel,

we now, prior to Chapter 5 obtain some identities involving the Euclidean Poisson kernel that

will suit our needs in Section 5.5.

If we set ϑ = 0 in (4.36), then we have

PBn(r, 0) =
1

νn−1

1 + r

(1− r)n−1
=

1

νn−1

∞∑
k=0

Mn−1
k rk. (4.48)

Setting r = e−t in (4.48), we see that

1 + r

(1− r)n−1
=

1 + e−t

(1− e−t)n−1
=

22−n cosh t
2

e−
n−2
2 t
(
sinh t

2

)n−1 .

Hence,

PBn(e−t, 0) =
1

νn−1

22−n cosh t
2

e−
n−2
2 t
(
sinh t

2

)n−1 =
1

νn−1

∞∑
k=0

Mn−1
k e−kt. (4.49)

Also,

PBn(e−t, ϑ) =
1

νn−1

2
2−n
2 e−

2−n
2 t sinh t

(cosh t− cosϑ)
n
2
, PBn(e−t, 0) =

1

νn−1

2
2−n
2 e−

2−n
2 t sinh t

(cosh t− 1)
n
2

. (4.50)

That is, from (4.49) and (4.50) we obtain the identities

Proposition 4.6.
cosh t

2(
sinh t

2

)n−1 =
2
n−2
2 sinh t

(cosh t− 1)
n
2

=

∞∑
k=0

Mn−1
k e−kt. (4.51)

We also have the special case

1− r2

(1− 2r cosϑ+ r2)
3
2

=

∞∑
k=0

(2k + 1)Pk(cosϑ)rk. (4.52)

A good reference for the n-dimensional Euclidean Poisson kernel is a new 2-volume book by

Taheri [163, 164].

The following property of the Euclidean Poisson kernel holds:
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Remark 4.5.

νn−2

νn−1

∫ π

0

∞∑
k=0

Mn−1
k

C
n−2
2

k (cosϑ)

C
n−2
2

k (1)
rk sinn−2 ϑ dϑ =

νn−2

νn−1

∫ π

0

(
1− r2

)
sinn−2 ϑ

(1− 2r cosϑ+ r2)
n
2
dϑ = 1. (4.53)

Proof. We follow the proof of Remark 4.2, and use the formulae (B.64), (4.35) and (B.59) to see

that

(
1− r2

) νn−2

νn−1

∫ π

0

sinn−2 ϑ dϑ

(1− 2r cosϑ+ r2)
n
2

=
(
1− r2

) νn−2

νn−1
B

(
n− 1

2
,

1

2

)
F
(

1,
n

2
;
n

2
; r2
)

= 1.

The following proposition says that the Euclidean Poisson kernel is an eigenfunction of the

Euclidean Laplacian.

Proposition 4.7. The function

PBn(r, ϑ) =
1

νn−1

∞∑
k=0

Mn−1
k C

n−2
2

k (cosϑ)rk,

is harmonic in the unit ball Bn.

Proof. It suffices to show that the following equality is satisfied:

DnPBn(r, ϑ) = 0,

where Dn is the Euclidean Laplacian in polar coordinates given by (1.6). Indeed,

DnPBn(r, θ) = − 1

νn−1

1

rn−1

∂

∂r

[
rn−1 ∂

∂r

( ∞∑
k=0

2k + n− 2

n− 2
C
n−2
2

k (cosϑ)rk

)]

− 1

νn−1

1

r2
∆Sn−1

[ ∞∑
k=0

2k + n− 2

n− 2
C
n−2
2

k (cosϑ)rk

]

= − 1

νn−1

1

rn−1

∂

∂r

[
rn−1

( ∞∑
k=0

2k + n− 2

n− 2
kC

n−2
2

k (cosϑ)rk−1

)]

+
1

νn−1

1

r2

[ ∞∑
k=0

2k + n− 2

n− 2
k(k + n− 2)C

n−2
2

k (cosϑ)rk

]

= − 1

νn−1

1

rn−1

[( ∞∑
k=0

2k + n− 2

n− 2
k(k + n− 2)C

n−2
2

k (cosϑ)

)
rk+n−3

]

+
1

νn−1

1

r2

[ ∞∑
k=0

2k + n− 2

n− 2
k(k + n− 2)C

n−2
2

k (cosϑ)rk

]
= 0.

See Taheri [163, Sec. 8.1] for a different proof of Proposition 4.7.

In summary we have the following statement.

Theorem 4.8. Let x = rζ ∈ Bn, ζ ∈ Sn−1, and let ϑ(ζ, ζ ′) denote the geodesic distance on

the sphere Sn−1 from ζ to ζ ′, with cosϑ(ζ, ζ ′) = (ζ · ζ ′). If φ ∈ C
(
Sn−1

)
, then the Euclidean
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Dirichlet problem

Dnu = 0 in Bn,

u = φ on ∂Bn = Sn−1,

has the solution u ∈ C
(
Bn
)

given by

u(x) = u(rζ) = PBn [φ](rζ) =

∫
Sn−1

PBn(rζ, ζ ′)φ(ζ ′)dνn−1(ζ ′),

where

PBn(rζ, ζ ′) =
1

νn−1

1− r2

(1− 2r cos(ζ, ζ ′) + r2)
n
2

=
1

νn−1

∞∑
k=0

Mn−1
k

C
n−2
2

k (ζ · ζ ′)

C
n−2
2

k (1)
rk.

Moreover,

lim
r→1

PBn [φ](rζ) = φ(ζ).

Remark 4.6. What remains in the proof of Theorem 4.8 is to show that u ∈ C
(
Bn
)
, and for

this it suffices to show that u is continuous at every point ζ ∈ ∂Bn = Sn−1 (see Taheri [163, pp.

277-278]).

We next give integral representations of the Poisson kernel on the unit ball Bn in Rn.

Theorem 4.9 (Integral representations of the Euclidean Poisson Kernel). The Poisson

kernel PBn defined by

PBn(r, θ, θ′) =
1

νn−1

∞∑
k=0

2k + n− 2

n− 2
C
n−2
2

k (cosα)rk

has the following integral representations:

PBn(r, θ, θ′) =
1

νn−1

νn−3

νn−2

∫ π

0

(
1− r2

)
sinn−3 ω dω

[1− 2r cosα+ r2]
n
2
, (4.54)

where

cosα = cos θ cos θ′ + sin θ sin θ′ cosω;

and

PBn(r, θ, θ′) =
23(3−n)

νn−2

(
cos θ + cos θ′

2

)2−n(
r
d

dr
+
n− 2

2

)[
In−3,n−3(−r, θ, θ′)

(1 + r)n−2

]
, (4.55)

where

Iµ,ν(r, θ, θ′) =

∫ ∞
0

Ĩµ
2

(
rη

1− r

)
K̃ ν

2

(
η

1− r

)
J̃µ

2
(aη) J̃ ν

2
(bη) ηµ+ν+1 dη, (4.56)

with

a =
sin θ

cos θ + cos θ′
, b =

sin θ′

cos θ + cos θ′
, H̃α(ξ) =

(
ξ

2

)−α
Hα(ξ);
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here Jα, Iα and Kα are the Bessel functions defined in Appendix B.3. In particular,

PBn(r, θ, θ′) =
23−n

νn−2Γ
(
n−1

2

)2 (cos θ + cos θ′

2

)2−n ∞∑
k=0

(−1)k

k!

(
sin θ

cos θ + cos θ′

)2k

× Γ(k + n− 1)F

(
−k,−n− 3

2
− k;

n− 5

2
;

sin2 θ′

sin2 θ

)
×
(
r
d

dr
+
n− 2

2

)
(1 + r)2k+n−2F

(
k + n− 1, k +

n− 1

2
;
n− 1

2
; r2

) (4.57)

and

νn−3

νn−2

∫ π

0

PBn (r, ω) sinn−3 ω dω =
1

νn−1

νn−3

νn−2

∫ π

0

(
1− r2

)
sinn−3 ω

(1− 2r cosω + r2)
n
2
dω

=
1

νn−1

(
1− r2

)
F

(
n

2
,

3

2
;
n− 1

2
; r2

)
. (4.58)

Proof. By the addition formula (B.115), we have

C
n−2
2

k (cos θ cos θ′ + sin θ sin θ′ cosω) =
k!(n− 3)!

Γ(k + n− 2)
C
n−2
2

k (cos θ)C
n−2
2

k (cos θ′).

Thus, ∫ π

0

C
n−2
2

k (cosα) sinn−3 ω dω =
k!(n− 3)!

Γ(k + n− 2)
C
n−2
2

k (cos θ)C
n−2
2

k (cos θ′)
νn−2

νn−3
. (4.59)

Hence, for n ≥ 3,

PBn(r, θ, θ′) =
1

νn−1

∞∑
k=0

2k + n− 2

n− 2
C
n−2
2

k (cos θ cos θ′ + sin θ sin θ′ cosω)rk

=
1

νn−1

∞∑
k=0

2k + n− 2

n− 2

k!(n− 3)!

Γ(k + n− 2)
C
n−2
2

k (cos θ)C
n−2
2

k (cos θ′)rk

=
2

n− 2

νn−3

νn−1νn−2

∫ π

0

sinn−3 ω

∞∑
k=0

(
k +

n− 2

2

)
rkC

n−2
2

k (cosα) dω

=
1

νn−1

2

n− 2

νn−3

νn−2

(
r
d

dr
+
n− 2

2

)∫ π

0

sinn−3 ω

[ ∞∑
k=0

rkC
n−2
2

k (cosα)

]
dω

=
1

νn−1

2

n− 2

νn−3

νn−2

(
r
d

dr
+
n− 2

2

)∫ π

0

sinn−3 ω dω

(1− 2r cosα+ r2)
n−2
2

(4.60)

=
1

νn−1

νn−3

νn−2

∫ π

0

sinn−3 ω

[
1− r2

(1− 2r cosα+ r2)
n
2

]
dω, (4.61)

which proves (4.54). For the second part (4.55), we use the equality (Kobayashi and Möllers

[93])

(1− r)−2σ

(
cos θ + cos θ′

2

)−2σ

I2σ−1,2σ−1(r, θ, θ′)

=
28σ−4

π

∞∑
k=0

(−1)k
Γ(k + 1)

Γ(k + 2σ)
Γ(σ)2Cσk (cos θ)Cσk (cos θ′)rk,
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where Iµ,ν is the integral given by (4.56), with σ = (n− 2)/2, to see that

π

24(n−3)

(
cos θ + cos θ′

2

)2−n(
r
d

dr
+
n− 2

2

)
(1 + r)2−nIn−3,n−3(−r, θ, θ′)

=

∞∑
k=0

Γ(k + 1)

Γ(k + n− 2)
Γ

(
n− 2

2

)2

C
n−2
2

k (cos θ)C
n−2
2

k (cos θ′)

(
r
d

dr
+
n− 2

2

)
rk

=

∞∑
k=0

k!
(
k + n−2

2

)
Γ(k + n− 2)

Γ

(
n− 2

2

)2

C
n−2
2

k (cos θ)C
n−2
2

k (cos θ′)rk

= νn−223−nπPBn(r, θ, θ′),

which proves (4.55). To obtain (4.57) we evaluate the integral In−3,n−3(−r, θ, θ′) explicitly. We

have

In−3,n−3(−r, θ, θ′) = (−1)
−n−3

2 22n−6 (1 + r)
n−3

r−
n−3
2 (ab)−

n−3
2

×
∫ ∞

0

ηIn−3
2

(
− rη

1 + r

)
Kn−3

2

(
η

1 + r

)
Jn−3

2
(aη) Jn−3

2
(bη) dη.

(4.62)

Using (B.37), we get

In−3,n−3(−r, θ, θ′) = (−1)
−n−3

2 22n−6 (1 + r)
n−3

r−
n−3
2 (ab)−

n−3
2

×
(
ab
4

)n−3
2

Γ
(
n−1

2

) ∞∑
k=0

(−1)k
(
a
2

)2k
k!Γ

(
k + n−1

2

)F (−k,−n− 3

2
− k;

n− 5

2
;
b2

a2

)
×
∫ ∞

0

In−3
2

(
− rη

1 + r

)
Kn−3

2

(
η

1 + r

)
η2k+n−2 dη;

and again using (B.52), we obtain

In−3,n−3(−r, θ, θ′) = (−1)
−n−3

2 22n−6 (1 + r)
n−3

r−
n−3
2 (ab)−

n−3
2

×
(
ab
4

)n−3
2

Γ
(
n−1

2

) ∞∑
k=0

(−1)k
(
a
2

)2k
k!Γ

(
k + n−1

2

)F (−k,−n− 3

2
− k;

n− 5

2
;
b2

a2

)

× (−1)
n−3
2 r

n−3
2 (1 + r)n+2k−1

2−2k−n+3

Γ(k + n− 1)Γ
(
k + n−1

2

)
Γ
(
n−1

2

) ;

=
22n−6 (1 + r)

2n−4

Γ
(
n−1

2

)2 ∞∑
k=0

(−1)ka2k

k!
F

(
−k,−n− 3

2
− k;

n− 5

2
;
b2

a2

)
× Γ(k + n− 1)(1 + r)2kF

(
k + n− 1, k +

n− 1

2
;
n− 1

2
; r2

)
.

Hence,

PBn(r, θ, θ′) =
23−n

νn−2Γ
(
n−1

2

)2 (cos θ + cos θ′

2

)2−n ∞∑
k=0

(−1)k

k!

(
sin θ

cos θ + cos θ′

)2k

× Γ(k + n− 1)F

(
−k,−n− 3

2
− k;

n− 5

2
;

sin2 θ′

sin2 θ

)
×
(
r
d

dr
+
n− 2

2

)
(1 + r)2k+n−2F

(
k + n− 1, k +

n− 1

2
;
n− 1

2
; r2

)
,
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which gives (4.57). We can also use (B.38) in (4.62) to obtain

In−3,n−3(−r, θ, θ′) = (−abr)−
n−3
2 22n−6 (1 + r)

n−3

(
1

2

ab√
a2 + b2

)n−3
2
∞∑
k=0

(
1
2

ab√
a2+b2

)2k

k!Γ(n−1
2 + k)

×
∫ ∞

0

η
n−1
2 +2kIn−3

2

(
− rη

1 + r

)
Kn−3

2

(
η

1 + r

)
Jn−3

2 +2k

(
η
√
a2 + b2

)
dη

= (−1)
−n−3

2 22n−6

(
1

2

1√
a2 + b2

)n−3
2
∞∑
k=0

(
1
2

ab√
a2+b2

)2k

k!Γ(n−1
2 + k)

×
r
−n−2k+2

2 (1 + r2)
n−3
4 +k(1 + r)

3n+4k−5
2 e−(n−2

2 +2k)πiQ
n−2
2 +2k

n−4
2

(
− 1+r2

r

)
√

2π [1 + r2 + r4]
n−2
4 +k

.

(4.63)

Hence,

PBn(r, θ, θ′) =
(−1)

−n−3
2

√
2πνn−2

(
cos θ + cos θ′

2

)2−n(
r
d

dr
+
n− 2

2

)

×
(

1√
a2 + b2

)n−3
2
∞∑
k=0

(
1
2

ab√
a2+b2

)2k

k!Γ(n−1
2 + k)

r−
n+2k−2

2 (1 + r2)
n−3
4 +k

×
(1 + r)

n+4k−1
2 e−(n−2

2 +2k)πiQ
n−2
2 +2k

n−4
2

(
− 1+r2

r

)
[1 + r2 + r4]

n−2
4 +k

.

For the particular case (4.58), we put θ = θ′ = π/2 in (4.61) and apply (B.64) to get

1

νn−1

νn−3

νn−2

∫ π

0

(
1− r2

)
sinn−3 ω

(1− 2r cosω + r2)
n
2
dω

=
1

νn−1

νn−3

νn−2

(
1− r2

)
B

(
n− 2

2
,

1

2

)
F

(
n

2
,

3

2
;
n− 1

2
; r2

)
=

1

νn−1

(
1− r2

)
F

(
n

2
,

3

2
;
n− 1

2
; r2

)
= PBn

(
r,
π

2
,
π

2

)
, (4.64)

which proves (4.58), and hence completes the proof of the theorem.

An interesting identity involving the Gauss hypergeometric function can be established by setting

θ = θ′ = π/2 in (4.60) and applying (B.39) and (B.41) to get

1

νn−1

2

n− 2

νn−3

νn−2

(
r
d

dr
+
n− 2

2

)∫ π

0

[
sinn−3 ω

(1− 2r cosω + r2)
n−2
2

]
dω

=
1

νn−1

2

n− 2

(
r
d

dr
+
n− 2

2

)
F

(
n− 2

2
,

1

2
;
n− 1

2
; r2

)
. (4.65)

Using (B.61) in (4.65) and comparing the resulting equation with (4.64), we obtain the identity

Proposition 4.10.

(
1− r2

)
F

(
n

2
,

3

2
;
n− 1

2
; r2

)
=

2r2

(n− 1)
F

(
n

2
,

3

2
;
n+ 1

2
; r2

)
+ F

(
n− 2

2
,

1

2
;
n− 1

2
; r2

)
.

(4.66)
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For the special case n = 3, we have from (4.66)

Proposition 4.11.

(
1− r2

)
F

(
3

2
,

3

2
; 1; r2

)
= r2F

(
3

2
,

3

2
; 2; r2

)
+ F

(
1

2
,

1

2
; 1; r2

)
. (4.67)

4.5 Series Representations of the Poisson Kernel on Dn

This section presents different representations for the Poisson kernel on the Poincaré (hyperbolic)

unit ball Dn. We transform the Poisson kernel expressed in terms of Cartesian coordinates into

different representations in terms of special functions. Different identities in the context of special

functions are obtained.

Consider the hyperbolic Poisson kernel on the unit ball Dn given in Cartesian coordinates by

(Helgason [78, 83] (see also Jaming [89]))

PDn(z, ζ) =
1

νn−1

(
1− |z|2

|z − ζ|2

)n−1

(4.68)

for z ∈ Dn, ζ ∈ ∂Dn = Sn−1. Our starting point is to write (4.68) in polar coordinates

(z, ζ) = (r, θ, θ′) = (r, ϑ). Towards this end we set ζ = eiθ
′

and z = reiθ, r < 1, 0 ≤ θ ≤ 2π,

0 ≤ θ′ ≤ 2π, to obtain a closed form

PDn(r, ϑ) =
1

νn−1

(
1− r2

1− 2r cosϑ+ r2

)n−1

, ϑ = θ − θ′. (4.69)

We shall see that the Poisson kernel (4.69) can be expressed in different forms involving special

functions. We first compute series representations for PDn(r, ϑ). The precise statement is the

following.

Theorem 4.12. For n ≥ 3, r < 1, 0 ≤ ϑ ≤ 2π, we have

PDn(r, ϑ) =
1

νn−1

∞∑
k=0

Mn−1
k C

n−2
2

k (cosϑ)Fk(r)rk, (4.70)

where

Fk(r) =
(n− 1)k(

n
2

)
k

F
(
k,−n

2
+ 1; k +

n

2
; r2
)

=
C
n−1
2

k (x)

P
(n−2

2 ,n−2
2 )

k (x)
F
(
k,−n

2
+ 1; k +

n

2
; r2
)
, −1 ≤ x ≤ 1,

(4.71)

satisfying

Fk(1) = 1, (4.72)
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and P ν,µk (x) is the Jacobi polynomial (see Appendix B.6). Moreover,

PDn(r, ϑ) =
1

νn−1

2Γ
(
n
2

)
(n− 2)

[
(1−r2)eiπ

r

]n−1
2

√
πΓ(n− 1)

×
∞∑
k=1

Γ(k + n− 1)

Γ(k)

(
k +

n− 2

2

)
Q
−n2 + 1

2

k+n
2−

3
2

(
1 + r2

2r

)
C
n−2
2

k (cosϑ); (4.73)

PDn(r, ϑ) =
1

νn−1

2Γ
(
n
2

)
(r − 1)

n
2−1

(n− 2)Γ(n− 1)

(
2

r

)n
4−

1
2

×
∞∑
k=0

Γ(k + n− 1)

(
k +

n− 2

2

)
(2r)

k
2 P
−n2−k+1

−n2

(√
1 + r2

r − 1

)
C
n−2
2

k (cosϑ); (4.74)

and

PDn(ρ̃, ϑ) =
1

2νn−1

∞∑
k=0

Mn−1
k

(n− 1)k(
n
2

)
k

tanhk ρ̃F

(
k

2
,
k

2
+

1

2
; k +

n

2
; tanh ρ̃

)
C

n−2
2

k (cosϑ).

(4.75)

In particular, PDn(ρ̃, ϑ) and PHn

ρ̃,ρ (ϑ) are related to one-another by

PDn(ρ̃, ϑ) =
1

νn−1
lim
ρ↗∞

PHn

ρ̃,ρ (θ̃, θ). (4.76)

Proof. By the definition (B.102) and the identity (B.118), we have

(
1− r2

1− 2r cosϑ+ r2

)n−1

=
(
1− r2

)n−1
∞∑
m=0

Cn−1
m (cosϑ)rm

=
(
1− r2

)n−1 Γ
(
n
2 − 1

)
Γ (n− 1)

∞∑
m=0

∑
0≤l≤m2

alC
n−2
2

m−2l(cosϑ)rm,

where

al =
m− 2l + n−2

2

l!

Γ
(
l + n

2

)
Γ
(
n
2

) Γ(m+ n− 1− l)
Γ
(
m+ n

2 − l
) .

Letting k = m− 2l gives

ak =
k + n−2

2

l!

Γ
(
l + n

2

)
Γ
(
n
2

) Γ(k + n− 1 + l)

Γ
(
k + n

2 + l
) .
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So,

(
1− r2

1− 2r cosϑ+ r2

)n−1

=
(
1− r2

)n−1 Γ
(
n
2 − 1

)
Γ(n− 1)

∞∑
k=0

rkC
n−2
2

k (cosϑ)

×
∞∑
l=0

k + n−2
2

l!

Γ
(
l + n

2

)
Γ
(
n
2

) Γ(m+ n− 1− l)
Γ
(
m+ n

2 − l
) r2l

=
(
1− r2

)n−1 Γ
(
n
2 − 1

)
Γ(n− 1)

∞∑
k=0

rkC
n−2
2

k (cosϑ)

×
∞∑
l=0

Γ (k + n− 1)

Γ
(
k + n

2 − 1
) Γ
(
l + n

2

)
Γ
(
n
2

) Γ(k + n− 1 + l)Γ
(
k + n

2

)
Γ (k + n− l) Γ

(
k + n

2 + l
) r2l

l!

=
Γ
(
n
2 − 1

)
Γ(n− 1)

∞∑
k=0

Γ (k + n− 1)

Γ
(
k + n

2 − 1
)rkF (k,−n

2
+ 1; k +

n

2
; r2
)
C
n−2
2

k (cosϑ),

where we have used (B.55) and (B.65). Expanding further, we have

(
1− r2

1− 2r cosϑ+ r2

)n−1

= Γ
(n

2
− 1
) ∞∑
k=0

Γ
(
k + n

2

)
Γ
(
k + n

2 − 1
)

Γ
(
n
2

)Fk(r)rkC
n−2
2

k (cosϑ)

=

∞∑
k=0

2k + n− 2

n− 2
Fk(r)rkC

n−2
2

k (cosϑ),

where

Fk(r) =
Γ
(
n
2

)
Γ(k + n− 1)

Γ
(
k + n

2

)
Γ(n− 1)

F
(
k,−n

2
+ 1; k +

n

2
; r2
)
.

By the identity (B.73), we obtain (4.72). To obtain (4.73), it suffices to show that

F
(
k, 1− n

2
; k +

n

2
; r2
)

=
Γ
(
n
2

)
eiπ(n−1

2 )

√
πΓ(k)r

n−1
2 (1− r2)

1−n
2

Q
−n2 + 1

2

k+n
2−

3
2

(
1 + r2

2r

)
. (4.77)

Towards this end, we use (B.72) to obtain

F
(
k, 1− n

2
; k +

n

2
; r2
)

=
(
1 + r2

)−k
F

(
k

2
,
k

2
+

1

2
; k +

n

2
;

(
2r

1 + r2

)2
)
, (4.78)

and then apply (B.95) to get (4.77). To obtain (4.74), it suffices to show that

F
(
k, 1− n

2
; k +

n

2
; r2
)

=

(
1 + r2

)− k2
(r − 1)1−n2

(
2

r

) k
2 +n

4−
1
2

Γ
(
k +

n

2

)
P
−k−n2 +1

−n2

(√
1 + r2

r − 1

)
. (4.79)

To see this, we apply (B.82) to (4.78) and we get (4.79). The assertion (4.76) follows by noting

that as ρ↗∞, tanh
(
ρ
2

)
→ 1 and then using (B.73) to see that
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PDn(ρ̃, ϑ) =
1

νn−1
lim
ρ↗∞

PHn

ρ̃,ρ (θ̃, θ)

=
1

νn−1
lim
ρ↗∞

∞∑
k=0

(
2k

n− 2
+ 1

) tanhk
(
ρ̃
2

)
F
(
k, 1− n

2 ; k + n
2 ; tanh2

(
ρ̃
2

))
tanhk

(
ρ
2

)
F
(
k, 1− n

2 ; k + n
2 ; tanh2

(
ρ
2

)) C n−2
2

k (cosϑ)

=
1

νn−1

∞∑
k=0

2k + n− 2

n− 2
rk
F
(
k, 1− n

2 ; k + n
2 ; r2

)
F
(
k, 1− n

2 ; k + n
2 ; 1
) C n−2

2

k (cosϑ)

=
1

νn−1

∞∑
k=0

Mn−1
k C

n−2
2

k (cosϑ)Fk(r)rk, r = tanh

(
ρ̃

2

)
. (4.80)

In terms of the associated Legendre polynomial we obtain

PDn(ρ̃, ϑ) =
2
n−2
2 Γ

(
n
2

)
νn−1

∞∑
k=0

Mn−1
k C

n−2
2

k (cosϑ)
Γ(k + n− 1)

Γ (n− 1)
sinh

2−n
2 ρ̃P

2−n
2 −k

n−2
2

(cosh ρ̃). (4.81)

This completes the proof of the theorem.

Remark 4.7. If n = 2 in (4.73), then we obtain the Poisson kernel on the unit disk (see (4.43)):

PD(r, ϑ) = P (r, ϑ) =
1

2π

1− r2

1− 2r cosϑ+ r2
=

1

2π

(
1 + 2

∞∑
k=1

rk cos kϑ

)
. (4.82)

Proof. Since the limit (1.18) exists, it suffices to show that

1√
π

[(
1− r2

)
r

eiπ

] 1
2

Γ(k + 1)

Γ(k)
Q
− 1

2

k− 1
2

(
1 + r2

2r

)
= rk.

Thanks to (B.100a).

Remark 4.8. In view of (4.77) and (4.79), we have the following identity in the context of

special functions

P
−k−n2 +1

−n2

(√
1 + r2

r − 1

)
=

i2−
k
2−

n
4 + 1

2 Γ
(
n
2

)
√
πΓ(k)Γ

(
k + n

2

)
r
n
4−

k
2

(
1 + r2

) k
2

(r + 1)1−n2
Q
−n2 + 1

2

k+n
2−

3
2

(
1 + r2

2r

)
.

In particular, if k = 1, then

P
−n2
−n2

(√
1 + r2

r − 1

)
=

i21−n4

n
√
πr

n
4−

1
2

(
1 + r2

) 1
2

(r + 1)1−n2
Q
−n2 + 1

2

− 1
2 +n

2

(
1 + r2

2r

)
.

Putting k = 1, n = 4 in (4.77), and using (B.99a), (B.100a) and (B.100b), we obtain

Proposition 4.13.

F
(
1,−1; 3; r2

)
=
−i
(
1− r2

) 3
2

√
πr

3
2

Q
− 3

2
3
2

(
1 + r2

2r

)
=
i

r

(
1− 1

3r2

)
. (4.83)

Next we establish an important property of the Poisson kernel.

Remark 4.9.

νn−2

∫ π

0

PDn

r (ϑ) sinn−2 ϑ dϑ = 1.
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Proof. Clearly, for n = 2, we have by (B.63)∫ 2π

0

PD(r, ϑ) dϑ =
1

2π

∫ 2π

0

1− r2

1− 2r cosϑ+ r2
dϑ =

(
1− r2

)
F
(
1, 1; 1; r2

)
= 1.

For n ≥ 2,

νn−2

∫ π

0

PDn

r (ϑ) sinn−2 ϑ dϑ =

(
1− r2

)n−1
νn−2

νn−1

∫ π

0

sinn−2 ϑ dϑ

(1− 2r cosϑ+ r2)
n−1 .

Using (B.64), (4.35) and (B.59), we find that

νn−2

∫ π

0

PDn

r (ϑ) sinn−2 ϑ dϑ =

(
1− r2

)n−1
νn−2

νn−1
B

(
n− 1

2
,

1

2

)
F
(
n− 1,

n

2
;
n

2
; r2
)

= 1.

The integral

PDn

r [φ](θ) = νn−2

∫ π

0

PDn

r (ϑ, ϑ′)φ(ϑ′) sinn−2 ϑ′ dϑ′ (4.84)

is called the Poisson integral formula for the hyperbolic unit ball Dn, for a continuous function

φ on [0, π].

4.6 Summation of Certain Series Involving Legendre Poly-

nomials

In some occasions in computations we find closed forms of certain infinite series useful, especially

when we are interested in only the exact expressions of some series involving special functions.

In this section, as a consequence of the series representations of the Poisson kernel we deduce

closed forms for certain infinite series involving the Legendre polynomial.

To start with, consider the generating function for the Legendre polynomial

(1− 2rt+ r2)−
1
2 =

∞∑
k=0

rkPk(t), t = cos θ, r < 1. (4.85)

Differentiating both sides of (4.85) l times w.r.t. t, we have(
−1

2

)(
−3

2

)(
−5

2

)
· · ·
[
−1

2
(2l − 1)

]
(−2r)l(1− 2rt+ r2)−

1
2−l

= 1 · 3 · 5 · 7 · · · (2l − 1)rl(1− 2rt+ r2)−
1
2−l = (2l − 1)!!rl(1− 2rt+ r2)−

1
2−l

=

∞∑
k=0

rk
dl

dtl
Pk(t),

where

k!! =


1 · 3 · 5 · ... · k if k is odd,

2 · 4 · 6 · ... · k if k is even,

1 if k ≤ 0.

(4.86)
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That is,

(1− 2rt+ r2)−ν =
1

(2ν − 2)!!rν−
1
2

∞∑
k=0

rk
dν−

1
2

dtν−
1
2

Pk(t) =

(
1− t2

) ν
2−

1
4

(2ν − 2)!!rν−
1
2

∞∑
k=0

rkP
ν− 1

2

k (t), (4.87)

where we have used the identity (B.93).

For the special case ν = 1, we see that

(
1− 2rt+ r2

)−1
= r−

1
2

(
1− t2

) 1
4

∞∑
k=0

rkP
1
2

k (t) (4.88)

=

√
2

π

∞∑
k=0

rk−
1
2 cos

(
k +

1

2

)
θ, t = cos θ,

where we have used (B.84d). On the other hand (see Dixon and Lacroix [50])

(
1− 2r cos θ + r2

)−1
=

∞∑
k=0

2k + 1

2r
Qk

(
1 + r2

2r

)
Pk(cos θ). (4.89)

Equating (4.88) and (4.89) we obtain the identity

Proposition 4.14.

∞∑
k=0

(2k + 1)Qk

(
1 + r2

2r

)
Pk(cos θ) = 2

√
2r

π

∞∑
k=0

rk cos

(
k +

1

2

)
θ. (4.90)

To obtain another identity, we put ν = 3/2 in (4.87) to get

(1− 2rt+ r2)−
3
2 =

1

r

∞∑
k=0

rk
d

dt
Pk(t),

and by applying (B.91), we have

(1− 2rt+ r2)−
3
2 =

1

r

∞∑
k=0

rk
Pk(t)− (k + 1)Pk+1(t)

1− t2

=
1

r (1− t2)

[ ∞∑
k=0

rkPk(t)−
∞∑
k=0

rk(k + 1)Pk+1(t)

]
. (4.91)

Using (4.85) in (4.91) we obtain

Proposition 4.15.

∞∑
k=0

rk(k + 1)Pk+1(t) =
1− 2rt+ r2 − r + rt2

(1− 2rt+ r2)
3
2

. (4.92)

Again, formally we have

∞∑
k=0

1

k + 1
ρk+1Pk(t) =

∞∑
k=0

Pk(t)

∫ ρ

0

rk dr =

∫ ρ

0

dr√
1− 2rt+ r2

= ln
ρ− t+

√
1− 2ρt+ ρ2

1− t
.

(4.93)

The identity (4.93) looks interesting, we therefore summarise it as
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Proposition 4.16.

∞∑
k=0

1

k + 1
ρk+1Pk(t) = ln

ρ− t+
√

1− 2ρt+ ρ2

1− t
.

In particular,

∞∑
k=0

1

k + 1
Pk(t) = ln

(
1 +

√
2

1− t

)
.

Next we consider infinite series involving products of the Legendre polynomial of the first kind,

namely we find closed forms for the two infinite series

∞∑
k=0

Pk(cos θ)Pk(cos θ′)rk,

∞∑
k=0

(2k + 1)Pk(cos θ)Pk(cos θ′)rk

in terms of elliptic integrals, by means of the addition formula

Pk(cosα) = Pk(cos θ)Pk(cos θ′) + 2

k∑
m=1

(k −m)!

(k +m)!
Pmk (cos θ)Pmk (cos θ′) cosmω, (4.94)

where

cosα = cos θ cos θ′ + sin θ sin θ′ cosω.

Integrating both sides of (4.94) with respect to ω, 0 ≤ ω ≤ π, we have

Pk(cos θ)Pk(cos θ′) =
1

π

∫ π

0

Pk(cosα) dω.

Thus,

∞∑
k=0

Pk(cos θ)Pk(cos θ′)rk =
1

π

∫ π

0

∞∑
k=0

Pk(cosα)rk dω

=
1

π

∫ π

0

dω√
1− 2r cosα+ r2

, (4.95)

where we have used (B.105); and by (4.95)

∞∑
k=0

(2k + 1)Pk(cos θ)Pk(cos θ′)rk =

(
1 + 2r

d

dr

) ∞∑
k=0

Pk(cos θ)Pk(cos θ′)rk

=
1

π

∫ π

0

∞∑
k=0

(2k + 1)Pk(cosα)rk dω

=
1

π

∫ π

0

(
1− r2

)
dω

(1− 2r cosα+ r2)
3
2

, (4.96)
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where we have used (4.52). In particular, setting θ = θ′ = π
2 in (4.95) and using (B.85) gives

1

π

∞∑
k=0

cos2

(
kπ

2

)
Γ
(
k
2 + 1

2

)2
Γ
(
k
2 + 1

)2 rk
=

{
1 +

(
1

2

)2

r2 +

(
1

2
· 3

4

)2

r4 + · · ·+
(

(2n− 1)!!

2nn!

)2

r2n + · · ·

}

=
1

π

∫ π

0

dω√
1− 2r cosω + r2

= F

(
1

2
,

1

2
; 1; r2

)
(4.97)

=
2

π

∫ π
2

0

dω√
1− r2 sin2 ω

=
2

π
K(r),

where K(r) is the (complete) elliptic integral of the first kind (see Gradshtejn and Ryzhik [66,

Section 8.11]). Similarly, from (4.96) we have

1

π

∞∑
k=0

(2k + 1) cos2

(
kπ

2

)
Γ
(
k
2 + 1

2

)2
Γ
(
k
2 + 1

)2 rk =
1

π

∫ π

0

(
1− r2

)
dω

(1− 2r cosω + r2)
3
2

(4.98)

=
(
1− r2

)
F

(
3

2
,

3

2
; 1; r2

)
,

where we have used (B.63). On the other hand

∫ π

0

(
1− r2

)
dω

(1− 2r cosω + r2)
3
2

=

(
1 + 2r

d

dr

)∫ π

0

dω√
1− 2r cosω + r2

= 2

(
1 + 2r

d

dr

)
K(r)

=
2

r′2
(
2E(r)−K(r)r′2

)
, r′2 = 1− r2, (4.99)

where

E(r) =

∫ π
2

0

√
1− r2 sin2 θ dθ =

π

2
F

(
−1

2
,

1

2
; 1; r2

)
,
dK(r)

dr
=

E(r)

rr′
− K(r)

r
. (4.100)

The function E(r) is the (complete) elliptic integral of the second kind (see Gradshtejn and

Ryzhik [66, Section 8.11]).

In summary, we obtain the following identities.

Proposition 4.17. The following identities hold in the context of special functions:

(i) 1
π

∞∑
k=0

cos2
(
kπ
2

) Γ( k2 + 1
2 )

2

Γ( k2 +1)
2 rk = F

(
1
2 ,

1
2 ; 1; r2

)
= 2

πK(r),

(ii) 1
π

∞∑
k=0

(2k+1) cos2
(
kπ
2

) Γ( k2 + 1
2 )

2

Γ( k2 +1)
2 rk =

(
1− r2

)
F
(

3
2 ,

3
2 ; 1; r2

)
= 2

πr′2

(
2E(r)−K(r)(1− r2)

)
.

In view of (4.98)-(4.100), we obtain the identity

Proposition 4.18.

(
1− r2

)
F

(
3

2
,

3

2
; 1; r2

)
=

2

1− r2
F

(
−1

2
,

1

2
; 1; r2

)
− F

(
1

2
,

1

2
; 1; r2

)
.
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We can also establish another interesting identity by replacing rk with J2k(r) in (4.98) and then

using
∞∑
k=0

(2k + 1)J2k(a)Pk(x) =
a

2
J0

(
a

√
1− x

2

)
to get

∞∑
k=0

(2k + 1) cos2

(
kπ

2

)
Γ
(
k
2 + 1

2

)2
Γ
(
k
2 + 1

)2 J2k(r) =
r

2

∫ π

0

J0

(
r

√
1− cosω

2

)
dω

=
r

2

∫ π

0

J0

(
r sin

ω

2

)
dω.

Hence, we obtain the identity

Proposition 4.19.

∞∑
k=0

(2k + 1) cos2

(
kπ

2

)
Γ
(
k
2 + 1

2

)2
Γ
(
k
2 + 1

)2 J2k(r) =
πr

2

[
J0

(r
2

)]2
.

Again, considering the equality (Dougall [54])

2νΓ(ν + 1)

Γ(2ν + 1)

∞∑
k=0

Γ(2ν + k + 1)

Γ(k + 1)
rν+kP νν+k(cos θ) =

rν sinν θ

(1− 2r cos θ + r2)
ν+ 1

2

, (4.101)

for r < 1,Re ν ≥ 0. Integrating both sides of (4.101) from 0 to π with respect to θ and then

setting x = cos θ, −1 ≤ x ≤ 1, we have

2νΓ(ν + 1)

Γ(2ν + 1)

∞∑
k=0

Γ(2ν + k + 1)

Γ(k + 1)
rk
∫ 1

−1

P νν+k(x)
(
1− x2

)− 1
2 dx =

∫ 1

−1

(
1− x2

) ν
2−

1
2

(1− 2rx+ r2)
ν+ 1

2

dx.

On applying (B.90) and using (B.64), we obtain the identity

Proposition 4.20.

π22νΓ(ν + 1)Γ
(

1
2 + ν

2

)
Γ(2ν + 1)Γ

(
1
2 −

ν
2

)−1

∞∑
k=0

rk
Γ(2ν + k + 1)

Γ(k + 1)

Γ
(
k
2 + 1

)−1
Γ
(
−ν − k

2 + 1
2

)−1

Γ
(
1 + ν

2 + k
2

)
Γ
(

1
2 −

ν
2 −

k
2

)
= B

(
ν + 1

2
,

1

2

)
F

(
ν +

1

2
,
ν + 1

2
;
ν

2
+ 1; r2

)
. (4.102)

Equation (4.102) is the generalisation of (4.97). By setting ν = 0 in (4.102) and comparing with

(4.97) we obtain the equality

Corollary 4.21.

cos

(
kπ

2

)
=

π

Γ
(

1
2 −

k
2

)
Γ
(

1
2 + k

2

) , k ≥ 0.



Chapter 5

The Gegenbauer Transform and

Heat Kernels on Sn and CPn

In this chapter we discuss the heat kernels on the unit sphere Sn and the complex projective

space CPn. We also calculate explicitly the heat kernel coefficients on Sn, n ≥ 1. Since the

real projective space RPn is the sphere with antipodal points identified (see pp. 133-134), we

concentrate mainly here on Sn and CPn. The sphere Sn, the real projective space RPn and

the complex projective space CPn are important examples of n-dimensional rank one compact

Riemannian symmetric spaces of the form X = G/K, where G is a connected, semisimple

compact Lie group and K is a maximal compact subgroup of G (see Section 1.2). We use the

Gegenbauer transform to derive the integral heat kernel on the unit sphere Sn; this gives a series

representation of the heat kernels in terms of the Gegenbauer polynomial; we then apply the

Riemann-Liouville fractional derivative formula to express the heat kernels in closed forms. By

expressing the trace of the heat operator on Sn in terms of Jacobi’s theta functions and their

higher order derivatives we compute the heat kernel coefficients ank in the Minakshisundaram-

Pleijel asymptotic expansion (1.79) for the special case M = Sn. The explicit fractional and

integral representations of the heat kernels on the complex projective spaces are also presented.

Finally we express the traces of the heat kernels on Sn, RPn and CPn, in terms of the Euclidean

Poisson kernel.

5.1 The Gegenbauer Transform and its Inversion Formula

In this section we discuss the Gegenbauer transform and its inversion formula. The Gegenbauer

transform developed here will be used to compute the heat kernel on the unit sphere Sn in the

next section. The Gegenbauer transform approach for obtaining the solution of the heat equation

and consequently the heat kernel on Sn is appearing here for the first time in the Literature.

Let f(x) be a function defined on the closed interval −1 ≤ x ≤ 1. In this section and the next

section we temporarily denote the Gegenbauer transform of a function f by f̃ .

Definition 5.1. The Gegenbauer transform G [f ] = f̃ of a function f is given by

G [f(x)](k; ν) = f̃(k; ν) =

∫ 1

−1

(
1− x2

)ν− 1
2 Cνk (x)f(x) dx, k ≥ 0, (5.1)

126
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or equivalently,

G [f(cosϕ)](k; ν) = f̃(k; ν) =

∫ π

0

sin2ν ϕCνk (cosϕ)f(cosϕ) dϕ, k ≥ 0.

Suppose f(x) admits a Gegenbauer-Fourier expansion of the form

f(x) =

∞∑
k=0

c(k; ν)Cνk (x), (5.2)

where, because of the orthogonality property (B.116), c(k; ν) is given by

c(k; ν) = ak,ν

∫ 1

−1

(
1− x2

)ν− 1
2 Cνk (x) f(x) dx = ak,ν f̃(k; ν), (5.3)

where

ak,ν =
k!(k + ν)Γ (ν)

2

π21−2νΓ(2ν + k)
.

Substituting c(k; ν) given by the integral (5.3) in (5.2), we see at once that the Gegenbauer

inversion formula is given by the series representation

G−1[f̃(k; ν)](x) = f(x) =

∞∑
k=0

ak,ν f̃(k; ν)Cνk (x). (5.4)

Theorem 5.2. Given the Gegenbauer differential equation

(
1− x2

)
y′′(x)− (2ν + 1)xy′(x) + k(k + 2ν)y(x) = 0, (5.5)

one has

G
[(

1− x2
)
f ′′(x)− (2ν + 1)xf ′(x)

]
(k; ν) = −k(k + 2ν)f̃(k; ν). (5.6)

Proof. In the form of the self-adjoint (Sturm-Liouville) form, the differential equation satisfied

by Cνk (x) (i.e., (5.5)) can be written

d

dx

[(
1− x2

)ν+ 1
2 y′(x)

]
+ k(k + 2ν)

(
1− x2

)ν− 1
2 y = 0. (5.7)

Also, (
1− x2

)
f ′′(x)− (2ν + 1)xf ′ =

d

dx

[(
1− x2

)ν+ 1
2 f ′(x)

] (
1− x2

)−ν+ 1
2 . (5.8)

Applying the Gegenbauer transform to the right-hand side of (5.8) gives∫ 1

−1

f(x)
d

dx

[(
1− x2

)ν+ 1
2
dCνk (x)

dx

]
dx.

By (5.5) and (5.7) with y(x) = Cνk (x), we see that the last term reduces to

−k(k + 2ν)

∫ 1

−1

f(x)
(
1− x2

)ν− 1
2 Cνk (x) dx = −k(k + 2ν)f̃(x).

The Gegenbauer transform is also a tool for establishing the Euclidean Poisson kernel and thereby

giving several identities concerning special functions (see Awonusika and Taheri [8] for details).
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5.2 The Heat Kernel on Sn via the Gegenbauer Transform

The unit sphere Sn in Rn+1 is a compact smooth n-dimensional manifold and a symmetric space

of rank one in virtue of the identification

Sn = SO(n+ 1)/SO(n), (5.9)

where SO(n) is the special orthogonal group of real n × n matrices with determinant one (see,

e.g., Berger et al. [26]).

The heat kernel on the sphere Sn has been obtained by notable authors, namely Terras [167]

(for n = 2), Faraut [58] and Taylor [166, pp. 113-116]. In Terras [167], the heat kernel on the

sphere S2 is obtained by using the method of separation of variables and the addition formula

for spherical harmonics. In Taylor [166, pp. 113-116] the heat kernel on the sphere S2k+1,

k = 0, 1, 2, . . . , is computed via the Poisson integral formula for the Euclidean ball; it is worth

noting that the heat kernel on the even dimensional sphere is not given in Taylor [166]. Faraut

[58, pp. 220-227] computes the heat kernels on the sphere Sn, n = 2, 3 using an integral transform

defined on the Lie group SU(2) (see also Faraut [58, pp. 176-182]). In this section we use the

Gegenbauer transform developed in Section 5.1 (see also Conte [44]) to compute explicit formulae

for the heat kernels on the sphere Sn, n = 1, 2, . . . . The Gegenbauer transform presents the heat

kernel on Sn as a spectral sum involving the Gegenbauer polynomial; we later transform the

series representation into fractional and integral representations using the Riemann-Liouville

fractional derivative. Our result in the odd-dimensional case agrees with that of Taylor [166,

113-116] who uses a different method.

Now consider the Cauchy problem for the heat equation on the sphere Sn:

∂

∂t
u(t, θ) =

[
∂2

∂θ2
+ (n− 1)

cos θ

sin θ

∂

∂θ

]
u(t, θ), t > 0,

u(0, θ) = u0 (θ) .

(5.10)

In order to reduce the second-order partial differential equation in (5.10) to a second-order

ordinary differential equation we make the substitution

u(t, θ) = v(t, ζ), ζ = cos θ,

in (5.10) to obtain

∂

∂t
v(t, ζ) =

[(
1− ζ2

) ∂2

∂ζ2
− nζ ∂

∂ζ

]
v(t, ζ)

v(0, ζ) = v0 (ζ) .

(5.11)

The Gegenbauer transform of both sides of equation (5.11) now gives

d

dt
ṽ(t, k;n) = −k(k + n− 1)ṽ(t, k;n)

ṽ(0, k;n) = ṽ0(k;n).

(5.12)

The unique solution to the initial value problem (5.12) is given by

ṽ(t, k;n) = ṽ0(k;n)e−k(k+n−1)t.



Chapter 5. The Gegenbauer Transform and Heat Kernels on Sn and CPn 129

By the Gegenbauer transform and its inversion formula, we have

v(t, ζ) =

∞∑
k=0

ak,νe
−k(k+n−1)tṽ0(k;n)C

n−1
2

k (ζ)

=

∞∑
k=0

ak,νe
−k(k+n−1)t

∫ 1

−1

(
1− ζ ′2

)n−2
2 C

n−1
2

k (ζ ′)v0(ζ ′)C
n−1
2

k (ζ) dζ ′

=

∫ π

0

U(t, θ, θ′)v0(θ′) sinn−1 θ′ dθ′ (5.13)

= u(t, θ),

where

U(t, θ, θ′) =

∞∑
k=0

ak,νe
−k(k+n−1)tC

n−1
2

k (cos θ′)C
n−1
2

k (cos θ) (5.14)

and

ak,ν =
k!
(
k + n−1

2

)
Γ
(
n−1

2

)2
π22−nΓ(k + n− 1)

.

Using (4.27), (4.28) and (4.31) in (5.14), we obtain

U(t, θ, θ′) =
νn−1

νn

∞∑
k=0

(
2k

n− 1
+ 1

)
e−k(k+n−1)tC

n−1
2

k (cos(θ − θ′)).

Hence,

u(t, θ) = νn−1

∫ π

0

KSn(t, θ, θ′)u0(θ′) sinn−1 θ′ dθ′,

where

KSn(t, θ) =
1

νn

∞∑
k=0

(
2k

n− 1
+ 1

)
e−k(k+n−1)tC

n−1
2

k (cos θ)

=
1

νn

∞∑
k=0

Mn
k e
−k(k+n−1)tC

n−1
2

k (cos θ)

(5.15)

is the heat kernel on the unit sphere Sn.

For future purposes we write out the following special cases.

• (n = 1)

Θ̃1(t, θ) := KS1(t, θ) =
1

2π

(
1 + 2

∞∑
k=1

e−k
2t cos kθ

)
=

1

2π

∞∑
k=−∞

e−k
2teikθ

=
1√
4πt

∞∑
k=−∞

e−
(θ+2kπ)2

4t , (5.16)

which is the heat kernel on the unit circle S1. Equalities in (5.16) are a consequence of

the limit (1.18) and the Poisson summation formula. The theta function Θ̃1(t, θ) and the

classical Jacobi’s theta function Θ3(t, θ) are related to one-another by

Θ̃1(t, θ) =
1

2π
Θ3

(
it

π
,
θ

2

)
.
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For these classical Jacobi’s theta functions and more, see Whittaker and Watson [176, Ch.

21]. The theta function Θ̃1(t, θ) is periodic, i.e.,

Θ̃1(t, θ + 2kπ) = Θ̃1(t, θ).

• (n = 2)

KS2(t, θ) =
e
t
4

2π

∞∑
k=0

(
k +

1

2

)
e−(k+ 1

2 )
2
tPk(cos θ), (5.17)

which is the heat kernel on the unit sphere S2, where M2
k = 2k + 1 is the multiplicity of

eigenvalues (k(k + 1) : k ≥ 0) of the Laplacian on S2 and ν2 = 4π is the area of the sphere

S2.

The following remark is an important property of the heat kernel, and it can be established the

same way as we did for the Poisson kernel in Hn (see Remark 4.2, p. 106).

Remark 5.1. The heat kernel on a compact manifold integrates to one (see e.g. Chavel [41],

see also Li [103] for the noncompact case):

νn−1

∫ π

0

KSn(t, θ) sinn−1 θ dθ = 1.

Next we transform the heat kernels KSn(t, θ) given by the spectral sum (5.15) according to

whether n is odd or even. In other words we use the Riemann-Liouville fractional derivative

formula to show that the heat kernel on the odd-dimensional sphere Sn (n ≥ 1) can be expressed

in terms of the theta function Θ̃1(t, θ) and that the heat kernel on the even-dimensional sphere

Sn (n ≥ 2) can be expressed in terms of the corresponding theta function, denoted Θ̃2(t, θ) (we

shall see the series defining this theta function in a moment). To actualise this goal we use the

fractional representations (B.120)-(B.123) in (5.15) to obtain

KSn(t, θ) =
e

(n−1)2t
4

νn

2
n+1
2 Γ

(
n
2

)
√
πΓ(n)

∂
n−1
2

∂(cos θ + 1)
n−1
2

∞∑
k=0

e−(k+n−1
2 )

2
t cos

(
k +

n− 1

2

)
θ, (5.18)

where

∂
1
2 f

∂(cos θ + 1)
1
2

=
1√
π

∫ θ

π

∂f
∂ϑ√

cos θ − cosϑ
dϑ,

∂
1
2h

∂(1− cos θ)
1
2

=
1√
π

∫ θ

0

∂h
∂ϑ√

cosϑ− cos θ
dϑ,

provided f(π) = 0, h(0) = 0. A consequence of the fractional representation formula for the

Gegenbauer polynomial Cνk is the following integral representation for the Legendre polynomial

Pk:

C
1
2

k (cos θ) = Pk(cos θ) =
2

3
2

√
π(2k + 1)

∂
1
2

∂(cos θ + 1)
1
2

cos

(
k +

1

2

)
θ

=

√
2

π

∫ π

θ

sin
(
k + 1

2

)
ϑ dϑ

√
cos θ − cosϑ

. (5.19)

For future purposes we also write out the heat kernels for the special cases n = 2, 3.
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• (n = 2)

KS2(t, θ) =
e

1
4 t

√
2π

(
∂

∂(cos θ + 1)

) 1
2

Θ̃2(t, θ), (5.20)

where the theta function Θ̃2(t, θ) is given by

Θ̃2(t, θ) :=
1

π

∞∑
k=0

e−(k+ 1
2 )

2
t cos

(
k +

1

2

)
θ =

1

2π

∞∑
k=−∞

e−(k+ 1
2 )

2
tei(k+ 1

2 )θ

=
1√
4πt

∞∑
m=−∞

(−1)me−
(θ+2mπ)2

4t , (5.21)

which is antiperiodic, i.e.,

Θ̃2(t, θ + 2kπ) = (−1)kΘ̃2(t, θ).

The theta function Θ̃2(t, θ) and the classical Jacobi’s theta function Θ2(t, θ) are related to

one-another by

Θ̃2(t, θ) =
1

2π
Θ2

(
it

π
,
θ

2

)
.

So, from (5.20) and (5.21) we have

KS2(t, θ) =
e

1
4 t
√

2

(4πt)
3
2

∫ π

θ

∞∑
k=−∞

(−1)k
(ϑ+ 2kπ)e−

(ϑ+2kπ)2

4t

√
cos θ − cosϑ

dϑ (5.22)

=
e
t
4

√
2π

∫ π

θ

(
− ∂
∂ϑ

)
Θ̃2(t, ϑ)

√
cos θ − cosϑ

dϑ,

since

f(π) = Θ̃2(t, π) = 0.

• (n = 3)

KS3(t, θ) =
e
t
4

2π2

(
− 1

sin θ

∂

∂θ

) ∞∑
k=0

e−(k+1)2t cos(k + 1)θ

=
e
t
4

2π

(
− 1

sin θ

∂

∂θ

)
Θ̃1(t, θ)

=
e
t
4

(4πt)
3
2

∞∑
k=−∞

(θ + 2kπ)

sin θ
e−

(θ+2kπ)2

4t .

Continuing in this way and noting that

π

νn

2
n+1
2 Γ

(
n
2

)
√
πΓ(n)

=
1

(2π)
n−1
2

,

we have the following statement (see also Awonusika and Taheri [10]).
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Theorem 5.3. For t > 0, 0 ≤ θ < π, the heat kernel KSn(t, θ) associated to the Laplacian on

the unit sphere Sn is given by the series representation

KSn(t, θ) =
e

(n−1)2t
4

νn

∞∑
k=0

Mn
k e
−(k+n−1

2 )
2
tC

n−1
2

k (cos θ), for all n ≥ 1, (5.23)

where

C
n−1
2

k (cos θ) :=
C
n−1
2

k (cos θ)

C
n−1
2

k (1)

is the spherical function on Sn satisfying the eigenvalue equation(
∂2

∂θ2
+ (n− 1) cot θ

∂

∂θ

)
ΦSn

k (θ) = −k(k + n− 1)ΦSn

k (θ), (5.24)

ΦSn

k (0) = C
n−1
2

k (1) = 1. (5.25)

Moreover, KSn(t, θ) is given by the following fractional representations:

(a) n odd, n ≥ 1,

KSn(t, θ) = e
(n−1)2

4 t

(
1

2π

∂

∂(cos θ + 1)

)n−1
2

Θ̃1(t, θ)

= e
(n−1)2

4 t

(
− 1

2π

1

sin θ

∂

∂θ

)n−1
2

Θ̃1(t, θ), (5.26)

where Θ̃1(t, θ) is the heat kernel on the circle S1 given by (5.16);

(b) n even, n ≥ 2,

KSn(t, θ) = e
(n−1)2

4 t

(
1

2π

∂

∂(cos θ + 1)

)n−1
2

Θ̃2(t, θ)

= e
n(n−2)

4 t

(
− 1

2π

1

sin θ

∂

∂θ

)n−2
2

KS2(t, θ), (5.27)

where Θ̃2(t, θ) is given by (5.21).

Remark 5.2. The noncompact analogue of Theorem 5.3, i.e., the case of the real hyperbolic

case Hn will be discussed in Chapter 6 (precisely Theorem 6.5).

The Green Function on the Sphere Sn. The Green function is an important spectral

function for studying the spectrum of a Riemannian manifold. The Green function GSn(θ; k)

of ∆Sn on Sn is the kernel of the resolvent operator (∆Sn − k(k + n− 1))
−1

, k ≥ 0, for which

λ = k(k + n − 1) is not the eigenvalue of ∆Sn . Here we compute the Green function on Sn

using the Laplace transform approach. That is we obtain the Green function on Sn by taking

the Laplace transform of the heat kernel on Sn; this gives fractional and integral representations

of the Green function on Sn in the form of the heat kernel on Sn given by Theorem 5.3. We

compute according to whether n is odd or even.
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• n odd, n ≥ 1. Indeed from (5.26) we have

GSn(θ; k) =

∫ ∞
0

e−λtKSn(t, θ) dt

=
1√
4π

(
− 1

2π

1

sin θ

∂

∂θ

)n−1
2

∞∑
m=−∞

∫ ∞
0

e−(k+n−1
2 )

2
te−

(θ+2mπ)2

4t t−1/2 dt

=
1

2
(
k + n−1

2

) (− 1

2π

1

sin θ

∂

∂θ

)n−1
2

η1(θ; k), (5.28)

where

η1(θ; k) =

∞∑
m=−∞

e−(2mπ+θ)(k+n−1
2 ).

Here we have used (B.49) and (B.47).

• n even, n ≥ 2. From (5.27), (B.49) and (B.47) we obtain

GSn(θ; k) =

∫ ∞
0

e−λtKSn(t, θ) dt

=

(
− 1

2π

1

sin θ

∂

∂θ

)n−2
2
∫ ∞

0

e−k(k+n−1)te−
n(n−2)t

4 KS2(t, θ) dt

×
∫ ∞

0

t−3/2e−(k+n−1
2 )

2
te−

(θ+2mπ)2

4t dtdϑ

=
1

2π

(
− 1

2π

1

sin θ

∂

∂θ

)n−2
2 1√

2

π∫
θ

η2(ϑ; k)√
cos θ − cosϑ

dϑ, (5.29)

where

η2(θ; k) =

∞∑
m=−∞

(−1)me−(2mπ+θ)(k+n−1
2 ).

The Heat Kernel on the Real Projective Space RPn. The real projective space RPn is

a compact smooth n-dimensional manifold and again a symmetric space of rank one in view of

the characterisation

RPn = Sn/ {±I} = SO(n+ 1)/O(n), (5.30)

where O(n) denotes the orthogonal groups of real n × n matrices (see, e.g., Berger et al. [26]).

As we have mentioned earlier that since RPn is obtained from Sn by identifying the antipodal

points, we will briefly discuss the heat kernel on RPn. If n = 1, RPn reduces to the circle S1.

In view of the double covering description of RPn and using the theory of Riemannian coverings

it is not difficult to see that the eigenfunctions of RPn are only those descending from the cover

Sn whose degree of homogeneity is even (see, e.g., Berger et al. [26]). As a consequence the

eigenvalues of ∆RPn are in turn given by λ2k = 2k(2k + n− 1), k ≥ 0, with the multiplicity

Mn
2k =

(2k + n− 2)!

(n− 1)!(2k)!
(n+ 4k − 1), k ≥ 0. (5.31)

Now since RPn is obtained from Sn by identifying the antipodal points, its diameter is π
2 and

its volume is

Vol(RPn) =
π
n+1
2

Γ(n+1
2 )

=
νn
2
. (5.32)
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Moreover the radial part of the Laplacian on RPn coincides with that on Sn and subsequently

the heat kernels on Sn and RPn are related to one-another by

KRPn(t, θ) = KSn(t, θ) +KSn(t, π − θ). (5.33)

Using the identity (B.131) the spherical function on Sn takes the form

ΦSn

k (θ) =
k!Γ

(
n
2

)
Γ
(
k + n

2

)P (n−2
2 ,n−2

2 )
k (cos θ),

and upon noting that

ΦSn

k (π − θ) =
k!Γ

(
n
2

)
Γ
(
k + n

2

)P (n−2
2 ,n−2

2 )
k (cos(π − θ)) =

k!Γ
(
n
2

)
Γ
(
k + n

2

)P (n−2
2 ,n−2

2 )
k (− cos θ),

and using the identity (B.133) of the Jacobi polynomials we have

ΦSn

k (π − θ) = (−1)kΦSn

k (θ).

As a result from (5.33) we obtain

KRPn(t, θ) =
1

νn

∞∑
k=0

Mn
k [1 + (−1)k]ΦSn

k (θ)e−k(k+n−1)t

=
e

(n−1)2

4 t

Vol(RPn)

∞∑
k=0

Mn
2kΦSn

2k (θ)e−(2k+n−1
2 )

2
t.

(5.34)

In summary we have the following statement.

Proposition 5.4. For t > 0, 0 ≤ θ < π. The heat kernel KRPn(t, θ) associated to the Laplacian

on the real projective space RPn is given by the following series representation:

KRPn(t, θ) =
2e

(n−1)2t
4

νn

∞∑
k=0

Mn
2ke
−(2k+n−1

2 )
2
tC

n−1
2

2k (cos θ), (5.35)

with the spherical functions ΦSn

2k (θ) = C
n−1
2

2k (θ) satisfying(
∂2

∂θ2
+ (n− 1) cot θ

∂

∂θ

)
ΦSn

2k (θ) = −2k(2k + n− 1)ΦSn

2k (θ) (5.36)

ΦSn

2k (0) = 1. (5.37)

5.3 Minakshisundaram-Pleijel Heat Coefficients

We calculate the heat coefficients ank appearing in the Minakshisundaram-Pleijel asymptotic

expansion (A.8) for the special case of the sphere M = Sn. We first express the trace of the heat

operator on Sn purely in terms of Jacobi’s theta functions and their higher order derivatives,

and then take the asymptotic of the Jacobi function as t ↘ 0; thereafter the heat coefficients

follow after some mathematical rearrangements.
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Indeed, from Theorem 5.3 we have

tr e−t∆Sn = e
(n−1)2t

4

∞∑
k=0

(k + n− 2)!

(n− 1)!k!
(n+ 2k − 1)e−(k+n−1

2 )
2
t, t > 0, (5.38)

where we have taken the integral of the heat kernel KSn(t, θ) at θ = 0. As a starting point of

the computation of the Minakshisundaram-Pleijel heat coefficients ank for Sn, we shall write the

multiplicity Mn
k as a product of the form

Mn
k =

(k + n− 2)!

(n− 1)!k!
(n+ 2k − 1) =

2k + n− 1

(n− 1)!

n−2∏
j=1

(k + j). (5.39)

We shall compute according to whether n is odd or even. We first consider the case of n odd,

n ≥ 3.

(a) Odd n ≥ 3. Writing the multiplicity Mn
k in a polynomial form gives

Mn
k =

(k + n− 2)!

(n− 1)!k!
(n+ 2k − 1) =

2k + n− 1

(n− 1)!

n−2∏
j=1

(k + j)

=
2

(n− 1)!

r∏
j=0

[(
k +

n− 1

2

)2

− j2

]
, r = (n− 3)/2

=
2

(n− 1)!

r∑
m=0

Cm,n

(
k +

n− 1

2

)2m+2

, (5.40)

where the integers (Cm,n) are the coefficients of the polynomial

r∏
j=0

(x2 − j2) =

r∑
m=0

Cm,nx
2m+2. (5.41)

We note that the first few coefficients (Cm,n : 0 ≤ m ≤ r) are given in Table 5.1 below.

Table 5.1: The coefficients (Cm,n : 0 ≤ m ≤ r).

C0,3 C0,5 C1,5 C0,7 C1,7 C2,7 C0,9 C1,9 C2,9 C3,9

1 −1 1 4 −5 1 −36 49 −14 1

Inserting the multiplicity Mn
k given by (5.40) into the heat trace formula (5.38) we obtain

another form of the heat trace formula, namely,

tr e−t∆Sn =
2e

(n−1)2

4 t

(n− 1)!

∞∑
k=0

r∑
m=0

Cm,n

(
k +

n− 1

2

)2m+2

e−(k+n−1
2 )

2
t

=
e

(n−1)2

4 t

(n− 1)!

r∑
m=0

Cm,n

∞∑
p=(n−1)/2

2p2m+2e−p
2t

(
p = k +

n− 1

2

)

=
e

(n−1)2

4 t

(n− 1)!

r∑
m=0

(−1)m+1Cm,nϑ
(m+1)
1 (t). (5.42)



Chapter 5. The Gegenbauer Transform and Heat Kernels on Sn and CPn 136

Here ϑ
(m+1)
1 (with m ≥ 0) are the derivatives of the Jacobi theta function ϑ1 = ϑ1(t) defined

for t > 0 by

ϑ1(t) =

∞∑
j=−∞

e−j
2t. (5.43)

In the calculations below we need the asymptotics of ϑ1(t) and its derivatives ϑ
(m+1)
1 (t) as

t↘ 0. Towards this end let us first note that as a result of the Poisson summation formula

the theta function satisfies the inversion formula

ϑ1(t) =

∞∑
j=−∞

e−j
2t =

√
π

t

∞∑
j=−∞

e−j
2 π2

t , (5.44)

and hence the asymptotics

ϑ1(t) ∼
√
π

t
as t↘ 0; ϑ′1(t) ∼ −1

2
π

1
2 t−

3
2 , as t↘ 0;

ϑ1(t) ∼ 1 as t↗∞; ϑ′1(t) ∼ 0, as t↗∞.

The asymptotics of the higher order derivatives of ϑ1 are analogous and will be given below.

Now we return to the heat trace (5.38) and its formulation via the theta function given

above. In order to motivate the discussion and to illustrate the main ideas it is helpful to

start by considering the cases 3 ≤ n ≤ 7 before moving to the general case. Notice that the

case n = 1 reduces to what is already given in (5.43).

• (n = 3) Here by referring to (5.38) we can write

tr e−t∆S3 =

∞∑
k=0

(k + 1)2e−k(k+2)t =

∞∑
p=1

p2e−(p2−1)t = et
∞∑
p=1

p2e−p
2t

= −e
t

2

d

dt

∞∑
p=0

2e−p
2t = −e

t

2
ϑ′1(t), (5.45)

where a straightforward differentiation gives

ϑ′1(t) = −1

2
π

1
2 t−

3
2

∞∑
j=−∞

e−j
2 π2

t + π
5
2 t−

5
2

∞∑
j=−∞

j2e−j
2 π2

t ∼ −1

2
π

1
2 t−

3
2 .

Thus as t↘ 0 we obtain

tr e−t∆S3 ∼ 2−2
√
πt−

3
2 et =

2π2et

(4πt)
3
2

=⇒ a3
k =

2π2

k!
k ≥ 0. (5.46)

On the other hand,

KS3(t, θ) = − 1√
4πt

et

2π

1

sin θ

∂

∂θ

∞∑
m=−∞

e−
(θ−2πm)2

4t . (5.47)
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Thus,

tr e−t∆S3 = − 2π2

√
4πt

et
1

2π

1

sin θ

∂

∂θ
e−

θ2

4t |θ=0 +O (t∞)

=
2π2

√
4πt2π

et

sin θ

θ

2t
e−

θ2

4t |θ=0 +O (t∞)

∼ 2π2

(4πt)
3
2

et as t↘ 0

(5.48)

(compare with (5.46)).

• (n = 5) Indeed from the trace formula (5.38) we have

tr e−t∆S5 =
1

12

∞∑
k=0

(k + 1)(k + 2)2(k + 3)e−k(k+4)t

=
e4t

4!

[
d2

dt2

∞∑
p=0

2e−p
2t +

d

dt

∞∑
p=0

2e−p
2t

]
(p = k + 2)

=
e4t

4!
[ϑ′′1(t) + ϑ′1(t)] ,

(5.49)

where a further differentiation of ϑ1 gives

ϑ′′1(t) ∼ 3

4
π

1
2 t−

5
2 .

Thus it is plain that as t↘ 0 we have

tr e−t∆S5 ∼ e4t

24

[
3

4
π

1
2 t−

5
2 − 1

2
π

1
2 t−

3
2

]
=

π3

(4πt)
5
2

[
1 +

∞∑
k=1

(
4k

k!
− 2

3

4k−1

(k − 1)!

)
tk

]

=⇒ a5
0 = π3, a5

k = π3

(
4k

k!
− 2

3

4k−1

(k − 1)!

)
k ≥ 1. (5.50)

• (n = 7) Here the heat trace can be written as

tr e−t∆S7 =
2

6!

∞∑
k=0

(k + 1)(k + 2)(k + 3)2(k + 4)(k + 5)e−k(k+6)t

=
e9t

6!

[
− d3

dt3

∞∑
p=0

2e−p
2t − 5

d2

dt2

∞∑
p=0

2e−p
2t − 4

d2

dt2

∞∑
p=0

2e−p
2t

]
(p = k + 3)

=
e9t

6!
[−ϑ′′′1 (t)− 5ϑ′′1(t)− 4ϑ′1(t)] . (5.51)

Now similar to what was seen before a further differentiation of ϑ1 gives

ϑ′′′1 (t) ∼ −1 · 3 · 5
8

π
1
2 t−

7
2 as t↘ 0. (5.52)
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Thus as t↘ 0 we obtain

tr e−t∆S7 ∼ e9t

360

[
15

16
π

1
2 t−

7
2 − 15

8
π

1
2 t−

5
2 + π

1
2 t−

3
2

]
=

=
π4/3

(4πt)
7
2

[
1 + 7t+

∞∑
k=2

(
9k

k!
− 2 · 9k−1

(k − 1)!
+

16

15

9k−2

(k − 2)!

)
tk

]

=⇒ a7
0 =

π4

3
, a7

1 =
7π4

3
, a7

k =
π4

3

(
9k

k!
− 2 · 9k−1

(k − 1)!
+

16

15

9k−2

(k − 2)!

)
k ≥ 2. (5.53)

Having computed the asymptotics of the heat trace on Sn for the special cases 3 ≤ n ≤ 7 we

are now ready to move on to the general case (5.42) for n odd, n ≥ 3. First by invoking the

Leibniz rule and a basic induction argument the asymptotics of the higher order derivatives

of ϑ1 as t↘ 0 are seen to be

ϑ
(m+1)
1 (t) ∼ (−1)m+1 (2m+ 1)!!π

1
2 t−m−

3
2

2m+1
, m ≥ 0, (5.54)

where the double factorial k!! is as defined in (4.86). Substituting the asymptotic formula

(5.54) into (5.42) we obtain

tr e−t∆Sn ∼ e
(n−1)2

4 t

(n− 1)!

(n− 2)!!
√

2π

(2t)
n
2

[
1 +

1

(n− 2)!!

r−1∑
m=0

Cm,n
(2m+ 1)!!

(2t)m−
n−3
2

]
. (5.55)

Using the identities

(n− 2)!! =
2
n−1
2 Γ

(
n
2

)
√
π

,
1

(n− 1)!
=

νn

Γ
(
n
2

)
(4π)

n
2

we see that
(n− 2)!!

√
2π

(2t)
n
2

2
n−1
2 νn√

π(4π)
n
2

=
νn

(4πt)
n
2
.

Hence, as t↘ 0 we obtain the heat trace asymptotic formula

tr e−t∆Sn ∼ νne
(n−1)2

4 t

(4πt)
n
2

[
1 +

1

(n− 2)!!

r−1∑
m=0

Cm,n
(2m+ 1)!!

(2t)m−r

]
. (5.56)

The explicit heat coefficients ank can then be derived from the heat trace asymptotic formula

(5.56). Thus we obtain

ank =
νn

(n− 2)!!

r∑
j=0

(
n−1

2

)2k−2j

(k − j)!
Cr−j,n(n− 2− 2j)!!2j , k ≥ 0, (5.57)

with 1/(−m!) = 0 for m ∈ N.

(b) Even n ≥ 2. We next consider the case of the even dimensional sphere Sn, n ≥ 2. The

computations of spectral invariants on even dimensional Riemannian manifolds are complic-

ated compared with the case of the odd dimensional ones (see e.g., Taylor [166], Polterovich

[131], Awonusika and Taheri [8, 15]). We shall see shortly that the heat coefficients associ-

ated with the even dimensional sphere Sn are complicated to handle because of the Jacobi’s

theta function involved, which requires one to work with summation containing the Bernoulli

numbers before the asymptotics for small t can be obtained.
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Towards this end we note that the multiplicity Mn
k admits the polynomial representation

Mn
k =

(k + n− 2)!

(n− 1)!k!
(n+ 2k − 1) =

2k + n− 1

n− 1

n−2∏
j=1

k + j

j

=
2
(
k + n−1

2

)
(n− 1)!

n−3
2∏

j=1/2

[(
k +

n− 1

2

)2

− j2

]

=
2

(n− 1)!

r∑
m=0

Dm,n

(
k +

n− 1

2

)2m+1

, r = (n− 2)/2, (5.58)

where the coefficients (Dm,n : 0 ≤ m ≤ r) are defined by the polynomial

n−3
2∏

j=1/2

(
x2 − j2

)
=

r∑
m=0

Dm,nx
2m.

Here again the first few coefficients (Dm,n : 0 ≤ m ≤ r) are given in Table 5.2 below.

Table 5.2: The coefficients (Dm,n : 0 ≤ m ≤ r).

D0,2 D0,4 D1,4 D0,6 D1,6 D2,6 D0,8 D1,8 D2,8 D3,8

1 −1/4 1 9/16 −5/2 1 −225/64 259/16 −34/5 1

Thus we obtain

tr e−t∆Sn =
2e

(n−1)2

4 t

(n− 1)!

∞∑
k=0

r∑
m=0

Dm,n

(
k +

n− 1

2

)2m+1

e−(k+n−1
2 )

2
t

=
e

(n−1)2

4 t

(n− 1)!

r∑
m=0

Dm,n2

∞∑
p=(n−1)/2

p2m+1e−p
2t

(
p = k +

n− 1

2

)

=
e

(n−1)2

4 t

(n− 1)!

r∑
m=0

(−1)mDm,nϑ
(m)
2 (t), (5.59)

where

ϑ2(t) =

∞∑
m=0

(2m+ 1)e−(m+ 1
2 )

2
t w

1

t
+

∞∑
m=0

Bm
tm

m!
(see e.g., Mulholland [117]). (5.60)

Here Bm is expressed in terms of the mth Bernoulli number Bm (see Appendix B.2) and it

is given by

Bm =
(−1)m

(m+ 1)
B2m+2

(
1− 2−2m−1

)
m ≥ 0. (5.61)

Similar to what was done in the case of odd n, here we also examine the asymptotics of the

heat trace (5.38) for the special cases 2 ≤ n ≤ 6 before moving on to the general case n ≥ 2.
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• (n = 2) We have

tr e−t∆S2 = e
t
4

∞∑
k=0

(2k + 1)e−(k+ 1
2 )

2
t = e

t
4ϑ2(t)

=

(
1 +

t

4
+

t2

16 · 2!
+ · · ·

)(
1

t
+

1

12
+

7

480
t+ · · ·

)
=

ν2

4πt

(
1 +

t

3
+
t2

15
+

t3

160
+O

(
t4
))

as t↘ 0.

(5.62)

Thus in terms of the mth Bernoulli number Bm we have

tr e−t∆S2 w
ν2e

t
4

4πt

[
1 +

∞∑
m=1

Bm−1t
m

(m− 1)!

]
, (5.63)

where the associated heat coefficients a2
k are given by

a2
k = 4π

k∑
j=0

(
1
4

)k−j
(k − j)!

Bj−1

(j − 1)!
, k ≥ 0. (5.64)

On the other hand the trace of the heat kernel on S2 admits the integral representa-

tion over closed geodesics (see e.g., Taylor [166, pp. 113-116]), and by considering its

principal value we have

tr e−t∆S2 w
ν2e

t
4

(4πt)
3
2

∫ π

0

ϕe−
ϕ2

4t

sin ϕ
2

dϕ

=
ν2e

t
4

(4πt)
3
2

∫ π

0

∞∑
m=0

(−1)mB2m

(
21−2m − 1

) ϕ2m

(2m)!
e−

ϕ2

4t dϕ

= t−1e
t
4

∞∑
m=0

(−1)mB2m

(
21−2m − 1

) tm
m!

=
ν2

4πt

(
1 +

t

3
+
t2

15
+O

(
t3
))

as t↘ 0

(5.65)

(compare with (5.62)).

• (n = 4) Let us start by noting that in general for n ≥ 4 even we write the series ϑ2(t)

in (5.60) in the more suggestive form

ϑ2(t) = 2

∞∑
p=1/2

pe−p
2t

(
m+

1

2
= p

)
. (5.66)

Indeed from the heat trace (5.38) we can write

tr e−t∆S4 =
e

9t
4

3

∞∑
k=0

(k + 1)(k + 2)

(
k +

3

2

)
e−(k+ 3

2 )
2
t

=
e

9t
4

6

− d

dt
2

∞∑
p=1/2

pe−p
2t − 1

4
2

∞∑
p=1/2

pe−p
2t

 (
p = k +

3

2

)

=
e

9t
4

6

[
−ϑ′2(t)− 1

4
ϑ2(t)

]
, (5.67)
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where

ϑ′2(t) w − 1

t2
+

∞∑
m=1

Bm
tm−1

(m− 1)!
. (5.68)

Inserting the theta functions (5.60) and (5.68) into (5.67) we have

tr e−t∆S4 =
ν4e

9t
4

(4πt)2

[
1− t

4
−
∞∑
m=2

u4
mt

m

]
, (5.69)

where

u4
0 = 1, u4

1 = −1

4
, u4

k = − 1

(k − 2)!

(
Bk−1 +

1

4
Bk−2

)
, k ≥ 2. (5.70)

Thus we obtain the Minakshisundaram-Pleijel heat coefficients a4
k = a4

k(S4) given by

a4
k = ν4

k∑
j=0

(
9
4

)k−j
(k − j)!

u4
j , k ≥ 0. (5.71)

• (n = 6) Here we can write

tr e−t∆S6 =
e

25t
4

60

∞∑
k=0

(k + 1)(k + 2)(k + 3)(k + 4)

(
k +

5

2

)
e−(k+ 5

2 )
2
t

=
e

25t
4

60

 ∞∑
p=1/2

p5e−p
2t − 5

2

∞∑
p=1/2

p3e−p
2t +

9

16

∞∑
p=1/2

pe−p
2t


(
p = k +

5

2

)
=
e

25t
4

120

[
ϑ′′2(t) +

5

2
ϑ′2(t) +

9

16
ϑ2(t)

]
, (5.72)

where

ϑ′′2(t) w
2

t3
+

∞∑
m=2

Bmt
m−2

(m− 2)!
.

With these asymptotic expansions of the Jacobi’s theta function ϑ2 we obtain the heat trace

asymptotics

tr e−t∆S6 =
ν6e

25t
4

(4πt)3

[
1− 5t

4
+

9t2

32
+

∞∑
m=3

u6
mt

m

]
, (5.73)

where

u6
0 = 1, u6

1 = −5

4
, u6

2 =
9

32
, u6

k =
1/2

(k − 3)!

(
Bk−1 +

5

2
Bk−2 +

9

16
Bk−3

)
, k ≥ 3. (5.74)

Thus the Minakshisundaram-Pleijel heat coefficients a6
k = a6

k(S6) are given by

a6
k = ν6

k∑
j=0

(
25
4

)k−j
(k − j)!

u6
j , k ≥ 0. (5.75)
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Motivated by the asymptotics of the derivatives ϑ
(`)
2 (t), (` ≥ 1) of the theta function ϑ2(t)

we give an asymptotic formula for the derivatives ϑ
(`)
2 (t), ` ≥ 1, namely,

ϑ
(`)
2 (t) w

(−1)``!

t1+`
+

∞∑
m=`

Bmt
m−`

(m− `)!
. (5.76)

So from the asymptotic formulae (5.59) and (5.76) we obtain the following asymptotic ex-

pansion for the heat trace formula (5.59) associated with the even dimensional sphere Sn:

tr e−t∆Sn w
e

(n−1)2

4 t

(n− 1)!

r!

t
n
2

{
1 +

1

r!

[ r−1∑
m=0

Dm,nm!tr−m

+

r∑
m=0

D̃m,n

∞∑
`=m

B`t
n
2 +`−m

Γ(`−m+ 1)

]}

=
e

(n−1)2

4 t

(4πt)
n
2

[
1 +

1

r!

[ r−1∑
m=0

Dm,nm!tr−m +

r∑
m=0

D̃m,n

∞∑
`=m

B`t
n
2 +`−m

Γ(`−m+ 1)

]]
, (5.77)

where we have set D̃m,n = (−1)mDm,n. By the series expansion of the exponential function

we finally obtain

ank =
νn

Γ (r + 1)

k∑
j=0

(2r + 1)2k−2j

4k−j(k − j)!
Dr−j,nΓ (r − j + 1) , 0 ≤ k ≤ r;

ank =
νn

Γ (r + 1)

k∑
j=0

(2r + 1)2k−2j

4k−j(k − j)!

r∑
`=0

(−1)`D`,n
(j − r − 1)!

Bj+`−r−1, k ≥ r + 1.

(5.78)

Theorem 5.5. For t > 0, the heat trace

tr e−t∆Sn =

∫
Sn
KSn(t, 0) dνn(ζ) = e

(n−1)4t
2

∞∑
k=0

(k + n− 2)!

(n− 1)!k!
(n+ 2k − 1)e−(k+n−1

2 )
2
t (5.79)

satisfies the Minakshisundaram-Pleijel asymptotic expansion (A.8) with the heat coefficients ank =

ank (Sn) given by (5.57) and (5.78) according to whether n is odd or even.

Remark 5.3. It follows from Theorem 5.5 that the first few heat trace coefficients for the sphere

are given by

an0 = Vol(M) = νn, an1 =
1

6

∫
M

Scal =
n(n− 1)

6
νn, (5.80)

an2 =
1

360

∫
M

(
5Scal2 − 2|Ric|2 + 2|Rm|2

)
=

5n2(n− 1)2 − 2n(n− 1)2 + 4n(n− 1)

360
νn, (5.81)

in agreement with the general formulae expressed using polynomials in the curvatures tensor and

its derivatives (see e.g. Chavel [41, pp. 154-155]).

Remark 5.4. In his paper Polterovich [130] gives explicit computations of the heat invariants

on arbitrary Riemannian manifolds using the asymptotics of the derivatives of the resolvent

approach; this allows the heat invariants to be written in terms of powers of the Laplacian and

distance function on the Riemannian manifold. In Polterovich [131], the particular case of the

sphere Sn is considered, where the asymptotics of the trace of the heat operator on Sn is expressed
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as
∞∑
k=0

Mn
k e
−λkt ∼ t−n2

∞∑
k=0

ak,nt
k as t↘ 0.

The heat coefficient ak,n of Polterovich [131] differs from ours by a constant (4π)−
n
2 , i.e., ak,n =

(4π)−
n
2 ank . For instance it is obtained that

ak,2 =
1

k!4k−1

k∑
l=0

(−1)l
Γ(k + 1)

Γ(l + 1)Γ(k − l + 1)
B2l

(
1− 22l−1

)
ak,5 =

4k−3(6− k)
√
π

3 · k!
, ak,7 =

32k−6
(
16k2 − 286k + 1215

)√
π

640 · k!
.

By inspection these coefficients satisfy the equalities

ak,2 = (4π)−1a2
k, ak,5 = (4π)−

5
2 a5
k, ak,7 = (4π)−

7
2 a7
k.

For the particular case of Sn, the powers of the distance d(θ) = 2 − 2 cos(θ) are expressed in

terms of the Gegenbauer polynomial C
n−1
2

k (cos θ), namely

d(θ)m = 2m(1− cos θ)m = 2m
m∑
l=0

cml
C
n−1
2

l (cos θ)

C
n−1
2

l (1)
,

where by the orthogonality of C
n−1
2

l (cos θ), the constant cml is given by

cml =
(−1)l2mΓ

(
m+ n

2

)
m!

(m− l)!(m+ l + n− 1)!

(4π)
n
2Mn

l

νn
.

All these together with the result of Polterovich [130] on arbitrary compact Riemannian manifolds

give

ak,n =

j∑
m=1

2(−1)kΓ
(
j + n

2 + 1
)

(j −m)!(m+ k)!(2m+ n)!

m∑
l=1

(−1)l
(2m+ n− 1)!

(m− l)!(m+ n+ l − 1)!
Mn
l λ

m+k
l ,

for k ≥ 1, j ≥ 2k. After some mathematical substitutions and rearrangements with the use of

combinatorial identities and some facts about Gegenbauer polynomials, he obtains the following

heat coefficients on Sn, according to whether n is odd or even:

ak,2m+1 =

m∑
l=1

m2k−2m+2lΓ
(
l + 1

2

)
Km
l

(k −m+ l)!(2m)!
, m ≥ 1, (5.82)

where the coefficients Km
l are defined by

m−1∏
j=0

(
y2 − j2

)
=

m∑
l=1

Km
l y

2l;
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and

ak,2m =
1

Γ(2m)

[
m−1∑
l=0

Γ(m− l)
Γ(k − l + 1)

(
m− 1

2

)2k−2l

Lml +

+

m−1∑
l=0

Lml

k−l∑
q=m−l

(−1)q+m−l−1

(
m− 1

2

)2k−2l−2q
B2q

qΓ(k − l − q + 1)Γ(q −m+ l + 1)

(
1− 22q−1

22q−1

) , (5.83)

where the coefficients Lml are defined by

m−3/2∏
j=1/2

(
y2 − j2

)
=

m−1∑
l=0

Lml y
2m−2l−2.

It is worth noting that the second sum in (5.83) vanishes for m > k.

Details of spectral invariants such as the heat trace, Minakshisundaram-Pleijel asymptotics of

the heat trace, Minakshisundaram-Pleijel heat coefficients, spectral zeta functions, and zeta

regularised functional determinants of the Laplacians on Sn, RPn and CPn are discussed in

Awonusika and Taheri [8, 15].

Furthermore, in Awonusika and Taheri [10] we express the Maclaurin asymptotic expansion of

the heat kernel on Sn as a spectral series involving the trace of the associated heat operator,

and consequently in terms of the Minakshisundaram-Pleijel heat coefficients on Sn; and present

an explicit spectral formula for the full Maclaurin expansion of the heat kernel on Sn (see also

Awonusika and Taheri [7, 12]).

5.4 Integral Representations of the Heat Kernels on CPn

In this section we give explicit series, fractional and integral representations of the heat kernels

on the complex projective spaces CPn, n ≥ 1. To obtain fractional formulae for the heat kernels

on CPn we use the Riemann-Liouville fractional derivative formula and to establish integral

representations we use integral formulae for the spherial functions on CPn.

The complex projective space CPn is the set of all complex 1-dimensional subspaces through

the origin in Cn+1. It is a compact smooth complex n-dimensional manifold (real dimension 2n)

and a rank one symmetric space in virtue of

CPn = SU(n+ 1)/S(U(n)×U(1)), n ≥ 1, (5.84)

where U(n) is the group of complex n×n unitary matrices and SU(n) the group of n×n special

unitary matrices of determinant 1 (see, e.g., Berger et al. [26]).

The volume of CPn is given by the formula

Vol (CPn) =
4nπn

n!
, n ≥ 1, (5.85)

and it is easily seen that when n = 1 the space CP1 reduces to the 2-sphere S2. The radial part

of the Laplacian on CPn is given by

∆CPn = −
[
∂2

∂θ2
+

(
cot θ + (n− 1) cot

θ

2

)
∂

∂θ

]
, (5.86)
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where θ = θ(o, x) is the complex projective distance between point x ∈ CPn and the origin

o ∈ CPn; the associated eigenvalues are given by (λk : k ≥ 0) = (k(k + n) : k ≥ 0) with the

multiplicity

(mc)nk =
2k + n

n

[
Γ(k + n)

k!Γ(n)

]2

, k ≥ 0. (5.87)

Now using the basic identity 2 cotx = cotx/2− tanx/2 we have

∆CPn = − ∂2

∂θ2
−
[(
n− 1

2

)
cot

θ

2
− 1

2
tan

θ

2

]
∂

∂θ
. (5.88)

By substituting t = θ/2 we obtain the Jacobi operator (see (B.125))

L(α,β) = 4∆CPn = − ∂2

∂t2
− [(2α+ 1) cot t− (2β + 1) tan t]

∂

∂t
, (5.89)

where α = n− 1, β = 0. So here the spherical functions on CPn are the Jacobi polynomials

ΦCPn

k (θ) =
k!Γ (n)

Γ (k + n)
P

(n−1,0)
k (cos θ)

= F

(
k + n,−k;n; sin2 θ

2

)
.

(5.90)

In other words, the function ΦCPn

k (θ) solves the complex projective eigenvalue equation

∆CPnΦCPn

k (θ) = k(k + n)ΦCPn

k (θ)

ΦCPn

k (0) = 1.

Thus the heat kernel on CPn is

KCPn(t, θ) =
1

Vol(CPn)

∞∑
k=0

(mc)nkΦCPn

k (θ)e−k(k+n)t, (5.91)

where ΦCPn

k is the spherical function on CPn.

Similar to what we did in the case of Sn, we give fractional representations for the heat kernels

on CPn by using the formula (B.135), namely

P
(a,0)
k (cos θ) =

√
2

π

k!Γ(a)

Γ(a+ k + 1)

∂
1
2

∂(cos θ + 1)
1
2

Ca2k+1 (cos(θ/2)) ,

to obtain

KCPn(t, θ) =
e
n2

4 t

Vol(CPn)

∞∑
k=0

2k + n

n

Γ(k + n)

k!Γ(n)
P

(n−1,0)
k (cos θ)e−(k+n

2 )
2
t

=

√
2

π

e
n2

4 tΓ(n− 1)

Γ(n+ 1)Vol(CPn)

∂
1
2

∂(cos θ + 1)
1
2

∞∑
k=0

(2k + n)e−(k+n
2 )

2
tCn−1

2k+1 (cos(θ/2))

=
2
√

2e
n2

4 t

nπVol(CPn)

∫ π

θ

ω1(t, ϑ) sin ϑ
2√

cos θ − cosϑ
dϑ, (5.92)

where

ω1(t, θ) =

∞∑
k=0

(
k +

n

2

)
e−(k+n

2 )
2
tCn2k (cos(θ/2)) .
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Here we have used (B.110) and the fact that Ca2k+1 (cos(θ/2)) is an odd polynomial in cos(θ/2)

and so Cn−1
2k+1 (cos(π/2)) = 0.

We write out the heat kernel on CP2; this will lead to explicit expansions of the Gegenbauer

polynomial for the special case n = 5, thereby give identities in the context of special functions.

Indeed,

KCP2(t, θ) =
1

Vol(CP2)

∞∑
k=0

(k + 1)P
(1,0)
k (cos θ)e−k(k+2)t

=
et
√

2
π

Vol(CP2)

∞∑
k=0

(k + 1)e−(k+1)2t ∂
1
2

∂(cos θ + 1)
1
2

C1
2k+1 (cos(θ/2))

=
et
√

2
π

Vol(CP2)

∞∑
k=0

(k + 1)e−(k+1)2t ∂
1
2

∂(cos θ + 1)
1
2

sin(k + 1)θ

sin(θ/2)

=
et
√

2
π

Vol(CP2)

∞∑
k=0

(k + 1)e−(k+1)2t

× 1

2
√
π

∫ π

θ

cot(ϑ/2) sin(k + 1)ϑ− 2(k + 1) cos(k + 1)ϑ

sin(ϑ/2)
√

cos θ − cosϑ
dϑ. (5.93)

Also, by setting n = 2 in (5.92) and comparing with (5.93) we obtain the following expansions

of the Gegenbauer polynomial C2
k(t):

Corollary 5.6.

C2
2k

(
cos

ϑ

2

)
=

1
2 cot ϑ2 sin(k + 1)ϑ− (k + 1) cos(k + 1)ϑ

sin2 ϑ
2

;

and

C2
k (cos θ) =

cos θ sin(k + 2)θ − (k + 2) sin θ cos(k + 2)θ

2 sin3 θ
,

which clearly satisfy the property C2
0 (cos θ) = 1.

Again, we use the fractional representation (B.134), namely

P
(n−1,0)
k (cos θ) =

2
5
2−nΓ(k + 1)√
πΓ(k + n)

∂
1
2

cos θ+1∂
n−1
cos(θ/2)+1

cos((k + n
2 )θ)

2k + n

in (5.91) to obtain

KCPn(t, θ) =
2

5
2−ne

n2

4 t

√
πVol(CPn)Γ(n+ 1)

∂
1
2

cos θ+1∂
n−1
cos(θ/2)+1

∞∑
k=0

e−(k+n
2 )

2
t cos

(
k +

n

2

)
θ. (5.94)
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Setting n = 2 in (5.94) we see that

KCP2(t, θ) =
et√

2πVol(CP2)
∂

1
2

cos θ+1∂cos(θ/2)+1

∞∑
k=0

e−(k+1)2t cos (k + 1) θ

= et
(

1

2π

∂

∂(cos θ + 1)

)1/2(
1

8π

∂

∂ cos(θ/2)

)
Θ̃1(t, θ) (5.95)

=
et

25/2π2

∫ π

θ

∂
∂ϑ

(
1

sin(ϑ/2)

) (
− ∂
∂ϑ

)
Θ̃1(t, ϑ)

√
cos θ − cosϑ

dϑ.

Continuing in this way, we obtain the following fractional formula for the heat kernels on CPn:

KCPn(t, θ) = e
n2

4 t

(
1

2π

∂

∂(cos θ + 1)

)1/2(
1

8π

∂

∂ cos (θ/2)

)n−1

Θ±1 (t, θ), (5.96)

where Θ+
1 (t, θ) = Θ̃1(t, θ) is the theta function corresponding to the case n even, n ≥ 2; and

Θ−1 (t, θ) = Θ̃2(t, θ) is the theta function corresponding to the case n odd, n ≥ 1.

In summary we have the following statement (see also Awonusika and Taheri [9]).

Theorem 5.7. For t > 0, 0 ≤ θ < π, the heat kernel KCPn(t, θ) associated to the Laplacian on

the complex projective space CPn is given by the following series representation:

KCPn(t, θ) =
e
n2

4 t

Vol(CPn)

∞∑
k=0

2k + n

n

Γ(k + n)

k!Γ(n)
P

(n−1,0)
k (cos θ)e−(k+n

2 )
2
t, n ≥ 1. (5.97)

Moreover, KCPn(t, θ) admits the following fractional and integral formulae:

KCPn(t, θ) =
(n− 1)!e

n2

4 t

22n−3/2πn+1

∫ π

θ

ω1(t, ϑ) sin ϑ
2√

cos θ − cosϑ
dϑ;

and according to whether n is odd or even,

(a) n odd, n ≥ 1,

KCPn(t, θ) =
e
n2

4 t

22n−3/2πn

∫ π

θ

(
− ∂
∂ϑ

) (
− 1

sin(ϑ/2)
∂
∂ϑ

)n−1

Θ̃2(t, ϑ)
√

cos θ − cosϑ
dϑ;

(b) n even, n ≥ 2,

KCPn(t, θ) =
e
n2

4 t

22n−3/2πn

∫ π

θ

(
− ∂
∂ϑ

) (
− 1

sin(ϑ/2)
∂
∂ϑ

)n−1

Θ̃1(t, ϑ)
√

cos θ − cosϑ
dϑ.

We can also write the spherical function ΦCPn

k (θ) in terms of the Jacobi function φ
(α,β)
r (x) (see

(B.131)-(B.129)), namely

ΦCPn

k (θ) = F
(
k + n,−k;n; sin2(θ/2)

)
= φ

(n−1,0)
(2k+n)/i(iθ/2), (5.98)

and then compute integral representations for KCPn(t, θ) involving the Gauss hypergeometric

function. Towards this end, we use the integral representation (B.130) for the Jacobi function
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φ
(α,β)
r (x) to give an explicit integral formula for the spherical function ΦCPn

k (θ), namely

ΦCPn

k (θ) =
Γ(n)

√
πΓ
(
n− 1

2

) 2n−3/2

sin2n−2(θ/2) cos1/2(θ/2)

×
∫ θ

0

cos
(
k +

n

2

)
ϑF

(
1

2
,

1

2
;n− 1

2
;

cos(θ/2)− cos(ϑ/2)

2 cos(θ/2)

)
dϑ. (5.99)

If we now insert this into the heat kernel (5.91) we obtain

KCPn(t, θ) =
e
n2

4 t2n−1/2

Vol(CPn)

sin2−2n(θ/2) cos−1/2(θ/2)
√
πΓ(n+ 1)Γ

(
n− 1

2

)
×
∫ θ

0

ω2(t, ϑ)F

(
1

2
,

1

2
;n− 1

2
;

cos(θ/2)− cos(ϑ/2)

2 cos(θ/2)

)
dϑ, (5.100)

where

ω2(t, θ) =

∞∑
k=0

(
k +

n

2

)[Γ(k + n)

k!

]2

cos
(
k +

n

2

)
θe−(k+n

2 )
2
t. (5.101)

For the special case n = 2, we have

KCP2(t, θ) =
et

23/2π3
sin−2(θ/2) cos−1/2(θ/2)

×
∫ θ

0

ω2(t, ϑ)F

(
1

2
,

1

2
;

3

2
;

cos(θ/2)− cos(ϑ/2)

2 cos(θ/2)

)
dϑ, (5.102)

where

ω2(t, θ) =

∞∑
k=0

(k + 1)
3

cos (k + 1) θe−(k+1)2t. (5.103)

Using the identity (B.60) we obtain another statement for the heat kernel KCPn(t, θ).

Theorem 5.8. For t > 0, 0 ≤ θ < π, the heat kernel KCPn(t, θ) associated to the Laplacian on

the complex projective space CPn is given by the following integral representation (5.100). In

particular,

KCP2(t, θ) =
et

23/2π3
sin−2(θ/2) cos−1/2(θ/2)

×
∫ θ

0

ω2(t, ϑ)F

(
1

2
,

1

2
;

3

2
;

cos(θ/2)− cos(ϑ/2)

2 cos(θ/2)

)
dϑ

=
et

2π3
sin−2(θ/2)

∫ θ

0

ω2(t, ϑ)
arcsin

(
cos(θ/2)−cos(ϑ/2)

2 cos(θ/2)

)1/2

√
cos(θ/2)− cos(ϑ/2)

dϑ, (5.104)

where

ω2(t, θ) =

∞∑
m=1

m3 cos(mθ)e−m
2t. (5.105)

Remark 5.5. In Hafoud and Intissar [72] the integral representation (B.136) is constructed for

the Jacobi polynomial P a,bk (cos θ) to obtain the following integral formula for the heat kernel on
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CPn.

KCPn(t, θ) =
e
n2

4 t22−n

4nπn+1

∫ π/2

θ/2

(
− ∂
∂ϑ

)
cosϑ

(
− 1

sinϑ
∂
∂ϑ

)n−1
ω2(t, ϑ)√

cos2 θ/2− cos2 ϑ
dϑ, (5.106)

where

ω2(t, θ) =

∞∑
k=0

(2k + n)
sin(2k + n)θ

sin θ
e−(k+n

2 )
2
t.

Furthermore, in Awonusika and Taheri [9] we express the Maclaurin asymptotic expansion of the

heat kernel on CPn as a spectral series involving the trace of the associated heat operator, and

consequently in terms of the Minakshisundaram-Pleijel heat coefficients on CPn; and present

an explicit spectral formula for the full Maclaurin expansion of the heat kernel on CPn (see also

Awonusika and Taheri [16]).

5.5 The Heat Trace Formulae via the Euclidean Poisson

Kernel

As we have earlier mentioned in Section 4.4 that the trace of the heat operator on a compact

symmetric space can be expressed in terms of the Euclidean Poisson kernel, we now present the

traces of the heat operators on the sphere Sn, the real projective space RPn and the complex

projective space CPn in terms of the Euclidean Poisson kernel.

Towards this end we consider the Laplacian
√

∆′X on X , where ∆′X is the shifted Laplacian

given by

∆′X = ∆X + %2

whose eigenvalues are λ′k = λk+%2, % > 0. We then compute explicit formulae for the heat trace

tr e−t
√

∆′X =

∞∑
k=0

dke
−t
√
λ′k ,

where X = Sn,RPn,CPn.

• X = Sn. For the sphere Sn, dk = Mn
k , λk = k(k + n− 1), % = (n− 1)/2; and we have

tr e−t
√

∆′
Sn = tr e−t

√
∆Sn+

(n−1)2

4 =

∞∑
k=0

Mn
k e
−t
√
λ′k

= e−t
n−1
2

∞∑
k=0

Mn
k e
−tk = νne

−tn−1
2 PBn+1(e−t, 0)

=
21−n cosh t

2(
sinh t

2

)n =
1

2
n−1
2

sinh t

(cosh t− 1)
n+1
2

.
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• X = RPn. In this case, dk = Mn
2k, λ2k = 2k(2k + n− 1), % = (n− 1)/2; and we obtain

tr e−t
√

∆′
RPn = tr e−t

√
∆RPn+

(n−1)2

4 =

∞∑
k=0

Mn
2ke
−t
√
λ′2k

= e−t
n−1
2

∞∑
k=0

Mn
2ke
−2tk =

1

2
e−t

n−1
2

∞∑
m∈2Z

Mn
me
−tm

=
1

4
νne
−tn−1

2 PBn+1(e−t, 0)

=
2−1−n cosh t

2(
sinh t

2

)n =
1

2
n+3
2

sinh t

(cosh t− 1)
n+1
2

.

• X = CPn. Here dk = (mc)nk , λk = k(k + n), % = n/2; we have

tr e−t
√

∆′
CPn = tr e−t

√
∆CPn+n2

4 =

∞∑
k=0

(mc)nke
−t(k+n

2 )

=
2−n cosh t

2(
sinh t

2

)n+1 =
1

2
n
2

sinh t

(cosh t− 1)
n+2
2

.



Chapter 6

Integral Representations in the

Real Hyperbolic Space Hn

This chapter presents integral formulae for spectral functions in the n-dimensional upper half-

space Hn. Section 6.1 is devoted to the development of integral formulae for the generalised

spherical functions and general eigenfunctions of the Laplacian in Hn; the integral representations

of general eigenfunctions can also be interpreted as integral transforms of harmonic functions on

the hyperbolic unit ball. In Section 6.2 as a result of the beautiful relation between the solutions

of the heat and wave equations, we obtain the heat kernel in Hn from the wave equation in

Hn; this is possible using the Euclidean Fourier transform. Section 6.3 is devoted to the Green

function of the Laplacian in Hn. Using the Green function of the Laplacian in the upper half-

space Hn, we derive explicitly, in Section 6.4, the generalisation of the Mehler-Fock integral

formula, from which the heat kernels in Hn are deduced by appropriately choosing a spectral

function. We also derive the Mehler-Fock inversion formula via the Poisson kernel in Hn. Finally

we establish a Millson-type recursion formula for the Mehler-Fock integral transform.

6.1 Generalised Spherical Functions

In harmonic analysis on hyperbolic spaces, the theory of (zonal) spherical functions plays a

crucial role. The spherical functions are normalised eigenfunctions of the Laplacian that take

the value one at the origin. The asymptotic behaviour of the spherical function at∞ was studied

by Harish-Chandra [73] for general symmetric spaces of rank one.

In this section we compute eigenfunctions of the Laplacian in the real hyperbolic space Hn in

terms of an orthonormal basis
(
Yk,j : k ≥ 0, 1 ≤ j ≤Mn−1

k

)
of Hn−1

k ⊂ L2
(
Sn−1

)
, which consists

of spherical harmonic functions on Sn−1; such eigenfunctions are called general eigenfunctions.

We also give integral representations for spherical functions of the Laplacian in Hn.

We start the construction of spherical functions from what we already know in Section 1.5 (see

also the beginning of Subsection 2.2.1). The function ys, s = n−1
2 +ir, r ∈ R, is an eigenfunction

of the Laplacian ∆Hn in Hn with eigenvalues λ = s(n − 1 − s) = (n−1)2

4 + r2. The aim of this

section is to develop the corresponding spherical functions. We recall that in geodesic polar

151
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coordinates w = (ρ, θ), we have

f(w) = y =
1

cosh ρ+ sinh ρ cos θ
,

where ρ = d(w, o), w = (x, y) ∈ Hn, and w′ = o = (0, 0, ..., 0, 1) ∈ Hn, the origin, and

θ = θ(ζ, ζ ′), ζ, ζ ′ ∈ Sn−1. Since the Laplacian ∆Hn is an isometry invariant and since the unit

sphere Sn−1 acts on Hn by rotations with centre w′ = o = (0, 0, ..., 0, 1), the averaged function

ΦHn

r (ρ, ζ) =
1

νn−1

∫
Sn−1

dνn−1(ζ ′)

[cosh ρ+ sinh ρ (ζ · ζ ′)]
n−1
2 +ir

,

or what is the same

ΦHn

r (ρ) =
νn−2

νn−1

∫ π

0

sinn−2 θ dθ

[cosh ρ+ sinh ρ cos θ]
n−1
2 +ir

, (6.1)

is also an eigenfunction of ∆Hn , which is the generalisation of (1.48). The functions ΦHn

r (ρ) are

called spherical functions in Hn, which are radial eigenfunctions of the Laplacian ∆Hn satisfying

ΦHn

−r (ρ) = ΦHn

r (ρ) = ΦHn

r (−ρ), ΦHn

r (0) = 1.

More generally, for a continuous function f(ζ) on Sn−1,

(
ΦHn

r f
)

(ρ, ζ) =
1

νn−1

∫
Sn−1

f(ζ ′) dνn−1(ζ ′)

[cosh ρ+ sinh ρ (ζ · ζ ′)]
n−1
2 +ir

. (6.2)

Using the radial part (1.39) of ∆Hn and differentiating under the integral sign, and noting that

∆Hny
n−1
2 +ir =

(
(n− 1)2

4
+ r2

)
y
n−1
2 +ir, (6.3)

we see that
(
ΦHn

r f
)

(ζ) is an eigenfunction of the Laplacian ∆Hn in Hn. Now putting µ = 2−n
2 ,

ν = − 1
2 + ir in the formula (B.87) or putting t = cos θ, µ = n−2

2 , ν = − 1
2 − ir, q = cosh ρ in the

equality (B.89), we obtain

ΦHn

r (ρ) = 2
n−2
2 Γ

(n
2

)
sinh

2−n
2 ρP

2−n
2

− 1
2 +ir

(cosh ρ) (6.4)

(compare with Gruet [70, p. 1019] who uses different methods, see also Proposition 4.1). In

terms of other special functions we have

ΦHn

r (ρ) = C
n−1
2

−n−1
2 −ir

(cosh ρ) =
C
n−1
2

−n−1
2 −ir

(cosh ρ)

C
n−1
2

−n−1
2 −ir

(1)

=
Γ
(
−n2 + 3

2 + ir
)

Γ
(
n
2

)
Γ
(

1
2 + ir

) P
(n−2

2 ,n−2
2 )

−n−1
2 +ir

(cosh ρ),

where Pα,βk (t) is the Jacobi polynomial (see Appendix B.6), and we have used the formula

(B.114), the last identity in (B.104), (B.80) (see also (B.119)) and (B.125)-(B.129).

An important function in the theory of symmetric spaces is the Harish-Chandra c-function

(Harish-Chandra [73]). The Harish-Chandra c-function was originally defined as a meromorphic

function in terms of the asymptotic behaviour of a zonal spherical function of a noncompact
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semisimple Lie group G. The Harish-Chandra c-function determines the Plancherel measure for

the spherical transform on G. It turns out that this c-function plays a key role in every aspect of

harmonic analysis on G and various symmetric spaces of G (see e.g. Helgason [77, 80, 83, 84]).

We now want to see that the Harish-Chandra c-function on a noncompact symmetric space

G/K = Hn = SO0(n, 1)/SO(n) can be described in terms of the asymptotic behaviour of the

spherical function ΦHn

r (ρ) as ρ↗∞.

Theorem 6.1. Let Re ir > 0. Then

lim
ρ↗∞

e(
n−1
2 +ir)ρΦHn

r (ρ) =
2n−2Γ

(
n
2

)
Γ(ir)

√
πΓ
(
n−1

2 + ir
) = c(r), (6.5)

where c(r) is the Harish-Chandra c-function in Hn.

Proof. Making the substitution

u = tan

(
θ

2

)
, du =

1

2

(
sec2

(
θ

2

))
dθ =

1

2

(
1 + u2

)
dθ

in (6.1) and noting the trigonometric identities

cos θ =
1− tan2

(
θ
2

)
1 + tan2

(
θ
2

) =
1− u2

1 + u2
, sin θ =

2u

1 + u2
,

we have (after some rearrangements)

ΦHn

r (ρ) = 2n−1 νn−2

νn−1
e−(n−1

2 +ir)ρ
∫ ∞

0

(
1 + u2e−2ρ

)−(n−1
2 +ir) (

1 + u2
)−(n−1

2 +ir)
un−2 du.

By following the same argument as in the two-dimensional case (see Helgason [83, pp. 39-40]),

we see that

lim
ρ↗∞

e(
n−1
2 +ir)ρΦHn

r (ρ) = 2n−1 νn−2

νn−1

∫ ∞
0

(
1 + u2

)−(n−1
2 +ir)

un−2 du.

Let

ξ =
(
1 + u2

)−1
, u = (1− ξ) 1

2 ξ−
1
2 .

Then

lim
ρ↗∞

e(
n−1
2 +ir)ρΦHn

r (ρ) = 2n−2 νn−2

νn−1

∫ 1

0

ξir−1(1− ξ)
n−3
2 dξ =

2n−2Γ
(
n
2

)
Γ(ir)

√
πΓ
(
n−1

2 + ir
) ,

where we have expressed the beta function in terms of the gamma function (see (B.33)).

We shall see later in this chapter that the Harish-Chandra c-function (6.5) determines the

Plancherel formula in Hn, and hence the heat kernel in Hn.

In summary we have the following statement for the eigenvalue problem in the real hyperbolic

space Hn.

Proposition 6.2. The functions

ΦHn

r (ρ) = C
n−1
2

−n−1
2 −ir

(cosh ρ) = 2−
2−n
2 Γ

(n
2

)
sinh

2−n
2 ρP

2−n
2

− 1
2 +ir

(cosh ρ) (6.6)
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are called spherical functions in Hn, satisfying the eigenvalue problem[
∂2

∂ρ2
+ (n− 1) coth ρ

∂

∂ρ

]
ΦHn

r (ρ) = s(s− n+ 1)ΦHn

r (ρ) (6.7)

and the limit formula

lim
ρ↗∞

e(
n−1
2 +ir)ρΦHn

r (ρ) =
2n−2Γ

(
n
2

)
Γ(ir)

√
πΓ
(
n−1

2 + ir
) = c(r),

where c(r) is the Harish-Chandra c-function in Hn, with ΦHn

r (0) = 1.

Next we construct a more general eigenfunction of the Laplacian in Hn that involves the

spherical harmonic function discussed in Section 1.4; we do this by replacing the continu-

ous functions f defined on Sn−1 in (6.2) with spherical harmonics. Towards this end, let(
Yk,j : k ≥ 0, 1 ≤ j ≤Mn−1

k

)
be an orthonormal basis of Hn−1

k ⊂ L2
(
Sn−1

)
, which consists of

spherical harmonic functions on Sn−1. Consider the function

(
ΦHn

r [Yk,j ]
)

(ρ, ζ) =
1

νn−1

∫
Sn−1

Yk,j(ζ
′) dνn−1(ζ ′)

[cosh ρ− sinh ρ (ζ · ζ ′)]
n−1
2 +ir

, (6.8)

which by the reason stated above is also an eigenfunction of the Laplacian ∆Hn in Hn. The

choice of the spherical harmonic function allows us to apply the Funk-Hecke Theorem 1.14 to

(6.8). Thus we obtain

(
ΦHn

r [Yk,j ]
)

(ρ, ζ) =
νn−2

νn−1
Yk,j(ζ)

∫ π

0

C
n−2
2

k (cos θ) sinn−2 θ dθ

[cosh ρ− sinh ρ cos θ]
n−1
2 +ir

. (6.9)

Substituting the k-degree zonal spherical harmonics C
n−2
2

k given by the Rodrigue’s formula (see

(B.104) and (B.113))

C
n−2
2

k (t) :=
C
n−2
2

k (t)

C
n−2
2

k (1)
=

(
−1

2

)k Γ
(
n−1

2

)
Γ
(

2k+n−1
2

) (1− t2) 3−n
2

dk

dtk
(
1− t2

) 2k+n−3
2 (6.10)

into (6.9) and integrating by parts, we have

(
ΦHn

r [Yk,j ]
)

(ρ, ζ) =
νn−2Yk,j(ζ)

νn−1

(
−1

2

)k Γ
(
n−1

2

)
Γ
(

2k+n−1
2

) ∫ 1

−1

dk

dtk

(
1− t2

) 2k+n−3
2 dt

[cosh ρ− t sinh ρ]
n−1
2 +ir

= ck,nYk,j(ζ)

∫ 1

−1

dk

dtk

(
[cosh ρ− t sinh ρ]

−n−1
2 −ir

) (
1− t2

) 2k+n−3
2 dt

= ck,nYk,j(ζ)

k−1∏
l=0

(
−n− 1

2
− ir − l

)
sinhk ρ

νn+2k−1

νn+2k−2
ΦHn+2k

r (ρ)

= Yk,j(ζ)Ψr,k,n(ρ),

where ΦHn+2k

r (ρ) is the spherical function of the Laplacian ∆Hn+2k in Hn+2k and the constant

ck,n is given by

ck,n =
νn−2

νn−1

(
1

2

)k Γ
(
n−1

2

)
Γ
(

2k+n−1
2

) =
(π

2

)k ν2k+n−2

νn−2
.
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The function

Ψr,k,n(ρ) = ck,n

k−1∏
l=0

(
−n− 1

2
− ir − l

)
sinhk ρ

νn+2k−1

νn+2k−2
ΦHn+2k

r (ρ) (6.11)

is called the generalised spherical function (also called spherical function of type k) in the real

upper half-space Hn, satisfying

Ψr,k,n(ρ)/Nk,n(r) = Ψ−r,k,n(ρ)/Nk,n(−r), Nk,n(r) =

k−1∏
l=0

(
−n− 1

2
− ir − l

)
.

In terms of other special functions, we have

Ψr,k,n(ρ) = ck,n,r,l2
n+2k−2

2 Γ

(
n+ 2k

2

)
sinh

2−n−k
2 ρP

2−n−2k
2

− 1
2 +ir

(cosh ρ)

= ck,n,r,l sinhk ρF

(
n− 1

2
+ k + ir,

n− 1

2
+ k − ir; n

2
+ k;− sinh2

(ρ
2

))
, (6.12)

where

ck,n,r,l = ck,n
νn+2k−1

νn+2k−2

k−1∏
l=0

(
−n− 1

2
− ir − l

)
;

here we have applied (B.80).

Now that we have constructed the generalised spherical functions in Hn, before giving the integral

representations of the generalised spherical functions we compute the general eigenfunctions in

Hn, as well as thier integral representations. Towards this end, we define, for r ∈ R, the

eigenspace Er by

Er (Hn) =

{
f ∈ C∞ (Hn) : ∆Hnf =

(
(n− 1)2

4
+ r2

)
f

}
.

A result of Strichartz [159] says that if Ψr,k,j are the generalised spherical functions in Hn given

by (6.11), and Yk(ζ) a spherical harmonic function of degree k in n dimensions which forms an

orthonormal basis
(
Yk,j : k ≥ 0, 1 ≤ j ≤Mn−1

k

)
of Hn−1

k , then any H ∈ Er (Hn) can be expanded

in an absolutely and uniformly convergent series of the form (spherical harmonic expansion)

H(ρ, ζ) =

∞∑
k=0

Ψr,k,n(ρ)

Mn−1
k∑
j=1

ak,jYk,j(ζ), ρ ≥ 0, ζ ∈ Sn−1, (6.13)

for suitable coefficients ak,j.

A function H with the spherical harmonic expansion (6.13) is called the general eigenfunction

of ∆Hn .

Remark 6.1. Since every Riemannian manifold is locally Euclidean, the hyperbolic spherical

function Ψr,k,n(ρ) behaves locally like ρk for 0 ≤ ρ < 1:

H(ρ, ζ) ∼
∞∑
k=0

ρk
Mn−1
k∑
j=1

ak,jYk,j(ζ),

for suitable coefficients ak,j. Thus H(ρ, ζ) becomes a Euclidean harmonic function in the unit ball

Bn in Rn. If in particular, ak,j = Yk,j(ζ ′), ζ
′ ∈ Sn−1, then the hyperbolic general eigenfunction
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H(ρ, ζ) behaves locally like the Euclidean Poisson kernel in Bn (see Section 4.4):

H(ρ, ζ, ζ ′) =

∞∑
k=0

ρk
Mn−1
k∑
j=1

Yk,j(ζ ′)Yk,j(ζ) =

∞∑
k=0

ρkMn−1
k C

n−2
2

k ((ζ · ζ ′)) =
1− ρ2

(1− 2ρ(ζ · ζ ′) + ρ2)
n
2
.

We are now set to give integral representation formulae for the generalised spherical functions and

general eigenfunctions of the Laplacian in Hn. We start with the generalised spherical functions

Ψr,k,n(ρ). Towards this end we use the transformation formula (B.70) in (6.12) to obtain

Ψr,k,n(ρ) = ck,n,r,l sinhk ρ
(

cosh2 ρ

2

)−s+k
F

(
s+
k ,

1

2
+ ir;

n

2
+ k; tanh2

(ρ
2

))
(6.14)

= ck,n,r,l(−i%)k
(
1− %2

)s+k F (s+
k ,

1

2
+ ir;

n

2
+ k;

%2

%2 − 1

)
, (6.15)

where s+
k = n−1

2 + k + ir, %2 = − sinh2(ρ/2). Replacing this Gauss hypergeometric function by

its integral formula (B.62) gives

Ψr,k,n(%) = ck,n,r,l
(
1− %2

)n
2 +k (−i)k%kΓ

(
k + n

2

)
Γ
(
s+
k

)
Γ
(

1
2 − ir

) ∫ 1

0

t
n−3
2 +k+ir(1− t)− 1

2−ir

(1− %2(1− t))
1
2−ir

dt. (6.16)

For general eigenfunctions H(%, ζ), we use (6.16) in (6.13) to get

H(%, ζ) =
1

Γ
(

1
2 − ir

) ∫ 1

0

F (1)
r,n (%tζ)

t
n−3
2 +ir(1− t)− 1

2−ir

(1− %2(1− t))
1
2−ir

dt,

where

F (1)
r,n (%tζ) =

∞∑
k=0

ck,n,r,l(−i)kΓ
(
k + n

2

)
(1− %2)

−n2−k Γ
(
s+
k

) (%t)k
Mn−1
k∑
j=1

ak,jYk,j(ζ), ρ ≥ 0, ζ ∈ Sn−1.

Again, if we set υ = tanh2(%/2) in (6.14), we obtain

Ψr,k,n(υ) = ck,n,r,l2
k
(
1− υ2

)n−1
2 +ir Γ

(
k + n

2

)
Γ
(
s+
k

)
Γ
(

1
2 − ir

) ∫ 1

0

(υt)k
t
n−3
2 +ir(1− t)− 1

2−ir

(1− υ2t)
1
2−ir

dt. (6.17)

Using the integral formula (6.17) in (6.13) we obtain another integral representation for the

general eigenfunction H, namely,

H(υ, ζ) =

(
1− υ2

)n−1
2 +ir

Γ
(

1
2 − ir

) ∫ 1

0

F (2)
r,n (υt)

t
n−3
2 +ir(1− t)− 1

2−ir

(1− υ2t)
1
2−ir

dt, (6.18)

where

F (2)
r,n (υtζ) =

∞∑
k=0

ck,n,r,l2
kΓ
(
k + n

2

)
Γ
(
n−1

2 + k + ir
) (υt)k

Mn−1
k∑
j=1

ak,jYk,j(ζ)

and υ ≥ 0, ζ ∈ Sn−1.

We recall that any harmonic function F in the Euclidean unit ball Bn can be written

F (ρζ) =

∞∑
k=0

ρk
Mn−1
k∑
j=1

ãk,jYk,j(ζ), 0 ≤ ρ < 1,
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for suitable coefficients ãk,j .

Thus for 0 ≤ ρ < 1, % = − sinh2(ρ/2) and υ = tanh2(ρ/2), the general eigenfunctions H(%, ζ)

and H(υ, ζ) turn out to be integral transforms of Euclidean harmonic functions in the Euclidean

unit ball.

In summary we have the following statement.

Theorem 6.3. Let ∆Hn be the Laplacian in the upper half-space Hn and let Ψr,k,n be the gener-

alised spherical functions of ∆Hn given by (6.11). Let Yk(ζ) be spherical harmonic functions of

degree k in n dimensions which form an orthonormal basis
(
Yk,j : k ≥ 0, 1 ≤ j ≤Mn−1

k

)
of Hn−1.

Then the generalised spherical function Ψr,k,n(ρ) in Hn has explicit integral representations

Ψr,k,n(%) = ck,n,r,l
(−i)k%k

(
1− %2

)n
2 +k

Γ
(
k + n

2

)
Γ
(
n−1

2 + k + ir
)

Γ
(

1
2 − ir

) ∫ 1

0

t
n−3
2 +k+ir(1− t)− 1

2−ir

(1− %2(1− t))
1
2−ir

dt,

where % = − sinh2(ρ/2); and

Ψr,k,n(υ) =
(
1− υ2

)n−1
2 +ir 2kck,n,r,lΓ

(
k + n

2

)
Γ
(
s+
k

)
Γ
(

1
2 − ir

) ∫ 1

0

(υt)k
t
n−3
2 +ir(1− t)− 1

2−ir

(1− υ2t)
1
2−ir

dt,

where υ = tanh2(ρ/2). Moreover, the general eigenfunction H ∈ Er(Hn) has integral represent-

ations

H(%, ζ) =
1

Γ
(

1
2 − ir

) ∫ 1

0

F (1)
r,n (%tζ)

t
n−3
2 +ir(1− t)− 1

2−ir

(1− %2(1− t))
1
2−ir

dt,

where

F (1)
r,n (%tζ) = Γ

(
n− 1

2

) ∞∑
k=0

(
− i

2

)k
(1− %2)−

n
2−k

π2k+ 1
2 Nk,n(r)

Γ
(
n−1

2 + k + ir
) (%t)k

Mn−1
k∑
j=1

ak,jYk,j(ζ);

and

H(υ, ζ) =

(
1− υ2

)n−1
2 +ir

Γ
(

1
2 − ir

) ∫ 1

0

F (2)
r,n (υtζ)

t
n−3
2 +ir(1− t)− 1

2−ir

(1− υ2t)
1
2−ir

dt,

where

F (2)
r,n (υtζ) = Γ

(
n− 1

2

) ∞∑
k=0

π2k+ 1
2 Nk,n(r)

Γ
(
n−1

2 + k + ir
) (υt)k

Mn−1
k∑
j=1

ak,jYk,j(ζ).

Remark 6.2. The spherical functions ΦSn

k (θ) on the unit sphere Sn given by Proposition 1.15

with associated eigenvalues (k(k + n− 1) : k ≥ 0) can be obtained from the spherical function

ΦHn

r (ρ) in the hyperbolic upper half-space Hn with associated eigenvalues
(
(n− 1)2/4 + r2 : r ∈ R

)
by analytic continuation, i.e., by letting r → i (k + (n− 1)/2) and ρ→ iθ in ΦHn

r (ρ):

ΦSn

k (θ) = C
n−1
2

k (cos θ) = i
n−2
2 2

n−2
2 Γ

(n
2

)
sin

2−n
2 θP

2−n
2

k+n−2
2

(cos θ)

=
C
n−1
2

k (cos θ)

C
n−1
2

k (1)
= F

(
k + n− 1,−k;

n

2
; sin2 θ

2

)

=
k!Γ

(
n
2

)
Γ
(
k + n

2

)P (n−2
2 ,n−2

2 )
k (cos θ).

(See also Section 1.4 and (B.119).)
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Before ending this section we shall discuss some integral transforms that will be useful in the

sequel. As we have mentioned earlier in this section we shall see the role of the Harish-Chandra

c-function obtained above in some of the computations we will be dealing with in the subsequent

sections. It turns out that the inverse of the square of the absolute value of the product of the

Harish-Chandra c-function is Plancherel measure which plays a central role in every aspect of

harmonic analysis on symmetric spaces (as we shall see shortly for the particular case of the

hyperbolic space Hn). Of a particular importance is the inversion formula for the spherical

transform which gives the spectral distribution of the eigenvalues of the Laplacian in the upper

half-space Hn.

The spherical function ΦHn

r (ρ) is the non-Euclidean analogue of eir in the Euclidean harmonic

analysis. In other words, the spherical function ΦHn

r (ρ) plays the same role for Non-Euclidean

spaces as the function eir plays in the Euclidean space.

We now introduce the spherical Fourier transform which is the non-Euclidean version of the

classical (Euclidean) Fourier transform (1.71).

Definition 6.4. Let f ∈ C∞0 (Hn). The Fourier transform of f is given by

f̂(r, ζ) =

∫
Hn

f(w)y
n−1
2 +ir dµHn(w), y = (cosh ρ+ sinh ρ cos θ(ζ, ζ ′))−1. (6.19)

If we now use the decomposition∫
Hn

dµHn =
1

νn−1

∫ ∞
0

∫
Sn−1

dνn−1dρ =
νn−2

νn−1

∫ ∞
0

∫ π

0

sinn−2 θ dθ sinhn−1 ρ dρ, (6.20)

with w = (ρ, θ) = ρ, y = (cosh ρ+ sinh ρ cos θ)−1, we obtain

f̃(r) =

∫ ∞
0

(
νn−2

νn−1

∫ π

0

sinn−2 θ dθ

(cosh ρ+ sinh ρ cos θ)
n−1
2

+ir

)
f(ρ) sinhn−1 ρ dρ

=

∫ ∞
0

ΦHn

r (ρ)f(ρ) sinhn−1 ρ dρ. (6.21)

Integral (6.21) is the generalisation of the Mehler-Fock transform (1.50). We call f̃(r) given by

(6.21) the spherical transform of f . Moreover, the inversion formula for the spherical transform

f(ρ) =
2n−1

2πνn−1

∫ ∞
0

ΦHn

r (ρ)f̃(r)|c(r)|−2 dr (6.22)

and the Plancherel formula

‖f(ρ)‖22 =
2n−1

2πνn−1

∫ ∞
0

|f̃(r)|2|c(r)|−2 dr (6.23)

hold (see Section 6.3), where

σHn(r) := |c(r)|−2 = [c(r)c(−r)]−1 =
π
∣∣Γ (n−1

2 + ir
)∣∣2

22n−4Γ
(
n
2

)2 |Γ(ir)|2
, (6.24)

and it is called the Plancherel measure in Hn.

The name “Plancherel measure” is not surprising because it arises in the Plancherel inversion

formula (6.22) and in the Plancherel norm (6.23). Recall that the function c(r) is obtained as



Chapter 6. Integral Representations in the Real Hyperbolic Space Hn 159

the asymptotic function at infinity of the spherical functions ΦHn

r (ρ). The integral (6.22) is the

generalisation of the Mehler-Fock inversion formula (1.51). It follows from (6.24) the asymptotic

behaviour of σHn(r) for R 3 r ↗∞:

σHn(r) ∼ rn−1, r ↗∞ (6.25)

(compare with the asymptotics (4.47) of the multiplicity Mn
k of the sphere Sn). The Plancherel

measure σHn(r) can further be written explicitly as (see Section 6.3)

σHn(r) =
π

22n−4Γ
(
n
2

)2 (n−3)/2∏
j=0

(
r2 + j2

)
, n odd, n ≥ 3;

σHn(r) =
πr tanhπr

22n−4Γ
(
n
2

)2 (n−3)/2∏
j=1/2,3/2

(
r2 + j2

)
n even, n ≥ 4

(6.26)

(for the case n = 2 the product is omitted).

We shall see how we moved from (6.24) to (6.26) in Section 6.3 when establishing the generalisa-

tion of the Mehler-Fock integral formula (6.22) via the spectral properties of the Lalacian ∆H.

It follows that

22n−4Γ
(n

2

)2

π−1σHn(r) =

∣∣Γ (n−1
2 + ir

)∣∣2
|Γ(ir)|2

.

Furthermore, σHn(r), n odd, is analytic, and in fact a polynomial in r2; and σHn(r), n even, is

a meromorphic function with simple poles on the imaginary axis.

Example 6.1. For the special case n = 2, i.e., in H,

σH(r) = σ(r) =
π
∣∣Γ ( 1

2 + ir
)∣∣2

|Γ(ir)|2
= πr tanhπr,

where we have used (B.4) and (B.5). Thus the spherical transform of the function f ∈ C∞0 (H)

becomes

f̃(r) =

∫ ∞
0

ΦH
r (ρ)f(ρ) sinh ρ dρ; (6.27)

and the corresponding inversion formula is

f(ρ) =
1

2π

∫ ∞
0

ΦH
r (ρ)f̃(r)r tanhπr dr

(see (1.50) and (1.51)).

6.2 The Heat Kernel via the Wave Equation

As we have pointed out earlier that the heat kernel plays a central role in harmonic analysis on

Riemannian manifolds, of a particular importance is the wave equation. The wave equation is not

only useful in its own right as an equation of mathematical physics, but also in number theory.

For instance, Weyl’s asymptotic distribution of eigenvalues with remainder term is proved using

the wave equation (see Hörmander [86], Duistermaat and Guillemin [55], Bérard [25], Chazarain

[42], Sogge [153], see also Pinsky and Taylor [128]); wave equation method is also used in the
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computation of the asymptotics expansion of hyperbolic lattice point counting function in Lax

and Phillips [99], Levitan [102]. In this section we shall use the relation between the solutions of

the heat and wave equations to compute the heat kernel in the real hyperbolic space Hn. The

required appropriate solution of the wave equation in Hn is given by Helgason [83, pp. 574-577]

(see also Lax and Phillips [99]). This is the approach of Grigor’yan and Noguchi [69], but for

completion we shall revisit the discussion in details. The main tool is the Euclidean Fourier

transform.

Consider the initial value problem for the wave equation in the upper half-space Hn, given by

∂2u

∂t2
=

(
∂2

∂ρ2
+ (n− 1)

cosh ρ

sinh ρ

∂

∂ρ

)
u+

(n− 1)2u

4
,

u(0, w) = u0(w),
∂u(0, w)

∂t
= 0,

(6.28)

for t > 0, ρ = d(w,w′) > 0, w = (x, y), w′ = (x′, y′) ∈ Hn, u0 ∈ C∞(Hn).

Let

Sρ(w) = {w′ = (x′, y′) ∈ Hn : d(w,w′) = ρ}

be the sphere centred at w ∈ Hn with radius ρ.

According to Helgason [83, pp. 574-577] the solution u of the wave equation (6.28) is given by

(a) n odd, n ≥ 3,

u(t, w) = cos

(
t

√
∆Hn − (n− 1)2

4

)
u0(w)

= cn
∂

∂t

(
1

sinh t

∂

∂t

)n−3
2

(
1

sinh t

∫
St(w)

u0(w′) dνn−1(w′)

)
, (6.29)

where

cn =
1

2(n− 3)!!νn−2
;

and

(b) n even, n ≥ 2,

u(t, w) = cos

(
t

√
∆Hn − (n− 1)2

4

)
u0(w)

= c̃n
∂

∂t

∫ t

0

sinh ρ

(cosh t− cosh ρ)
1/2

(
1

sinh ρ

∂

∂ρ

)n−2
2

(
1

sinh ρ

∫
Sρ(w)

u0(w′) dνn−1(w′)

)
dρ,

(6.30)

where

c̃n =
1√

2π(n− 3)!!νn−2

.

In this section we shall obtain the solution of the heat equation in the upper half-space Hn

via the solution (6.29)-(6.30) of the wave equation (6.28). The main tool that relates these

two equations is the Euclidean Fourier transform. We shall consider two heat equations in Hn;

the first one involves the radial part of the classical Laplacian ∆Hn and the second is the heat

equation associated to the shifted Laplacian −∆′Hn = −∆Hn +
(
n−1

2

)2
, namely
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∂v

∂τ
=

(
∂2

∂ρ2
+ (n− 1)

cosh ρ

sinh ρ

∂

∂ρ

)
v,

v(0, w) = v0(w);

(6.31)

and

∂v

∂τ
=

(
∂2

∂ρ2
+ (n− 1)

cosh ρ

sinh ρ

∂

∂ρ

)
v +

(n− 1)2v

4
,

v(0, w) = v0(w),

(6.32)

for t > 0, ρ = d(w,w′) > 0, w = (x, y), w′ = (x′, y′) ∈ Hn, v0 ∈ C∞(Hn).

We recall that in Chapter 5 we used the Gegenbauer transform to solve the heat equation on Sn,

and after applying the Riemann-Liouville fractional derivative formula we obtained fractional

formulae for the heat kernel on Sn; here we use the wave equation in Hn to obtain fractional

formulae for the heat kernel in Hn.

It is known that the solution operator to the heat equation (6.31) is given by

v(τ, w) = exp (−τ∆Hn) v0(w), (6.33)

and the solution operator to the heat equation (6.32) is given by

v(τ, w) = exp (−τ∆′Hn) v0(w) = exp

(
−τ∆Hn +

(n− 1)2

4

)
v0(w). (6.34)

Next we shall relate the heat operator e−τ∆′Hn to the wave operator cos

(
t
√

∆Hn − (n−1)2

4

)
using the Euclidean Fourier transform, namely

exp

(
−τ∆Hn +

(n− 1)2

4

)
=

1√
4πτ

∫ ∞
−∞

e−
t2

4τ cos

(
t

√
∆Hn − (n− 1)2

4

)
dt; (6.35)

and for a function u0 = v0 ∈ C∞(Hn), we have

v(τ, w) =
(
e−τ∆′Hn v0

)
(w) =

1√
4πτ

∫ ∞
−∞

e−
t2

4τ cos

(
t
√

∆′Hn

)
u0(w) dt

=
1√
4πτ

∫ ∞
−∞

e−
t2

4τ u(t, w) dt, (6.36)

where u(t, w) is the solution of the wave equation (6.28) given by (6.29)-(6.30). We now insert

the solution of the wave equation which we already know into (6.36) to obtain the solution of the

heat equation (6.32), from which we can then deduce the solution to the heat equation (6.31)

using the relation

exp (−τ∆′Hn) = exp

(
−τ∆Hn +

(n− 1)2

4

)
. (6.37)

We shall do this according to whether n is odd or even. We first consider the case n odd.
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(a) n odd, n ≥ 3. Substituting (6.29) into (6.36) gives

v(τ, w) =
cn√
4πτ

∫ ∞
−∞

e−
t2

4τ
∂

∂t

(
1

sinh t

∂

∂t

)n−3
2

(
1

sinh t

∫
St(w)

u0(w′) dνn−1(w′)

)
dt.

What we do next is to integrate by parts. Towards this end we apply the formula

∫ ∞
0

f(t)
∂

∂t

(
1

sinh t

∂

∂t

)µ−1

[h(t)u(t)] dt = (−1)µ
∫ ∞

0

{
h(t)

(
1

sinh t

∂

∂t

)µ
f(t)

}
u(t) dt,

(6.38)

with

f(t) = e−
t2

4τ , h(t) =
1

sinh t
, u(t) =

∫
St(w)

u0(w′) dνn−1(w′),

to get

v(τ, w) =
2cn√
4πτ

∫ ∞
0

∫
St(w)

(
− 1

sinh t

∂

∂t

)n−1
2

e−
t2

4τ u0(w′) dνn−1(w′) dt.

By the decomposition (6.20), we have

v(τ, w) =
2cn√
4πτ

∫
Hn

(
− 1

sinh ρ

∂

∂ρ

)n−1
2

e−
ρ2

4τ u0(w′) dµHn(w′), (6.39)

bearing in mind that St(w) is the sphere in Hn with the centre w ∈ Hn and radius t > 0.

It follows from (A.5) that the integral kernel of the heat operator e−τ∆′Hn associated to the

shifted Laplacian ∆′Hn is given by

KHn(τ, w,w′) =
2cn√
4πτ

(
− 1

sinh ρ

∂

∂ρ

)n−1
2

e−
ρ2

4τ ;

and by the relation (6.37) we obtain the heat kernel in Hn associated to the classical Lapla-

cian ∆Hn :

KHn(τ, w,w′) =
1√
4πτ

(
− 1

2π sinh ρ

∂

∂ρ

)n−1
2

e−
(n−1)2τ

4 e−
ρ2

4τ ,

where we have used the identity

2cn =
1

(n− 3)!!νn−2
= (2π)−

n−1
2 .

(b) n even, n ≥ 2: We now compute the solution of the heat equation in Hn for the case n even.

As we did for the case n odd we substitute the corresponding solution of the wave equation

in Hn, namely equation (6.30) in (6.36) to obtain

v(τ, w) =
c̃n√
4πτ

∫ ∞
−∞

e−
t2

4τ

[
∂

∂t

∫ t

0

sinh ρ√
cosh t− cosh ρ

(
1

sinh ρ

∂

∂ρ

)n−2
2
(

u(ρ)

sinh ρ

)
dρ

]
dt.

By one-time integration by parts we get

v(τ, w) =
c̃n√
4πτ

3
2

∫ ∞
0

te−
t2

4τ

[∫ t

0

sinh ρ√
cosh t− cosh ρ

(
1

sinh ρ

∂

∂ρ

)n−2
2 u(ρ)

sinh ρ
dρ

]
dt,
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where

u(ρ) =

∫
Sρ(w)

u0(w′) dνn−1(w′).

Changing the order of integration, we obtain

v(τ, w) =
c̃n√
4πτ

3
2

∫ ∞
0

(∫ ∞
ρ

te−
t2

4τ

√
cosh t− cosh ρ

dt

)
sinh ρ

(
1

sinh ρ

∂

∂ρ

)n−2
2
(

u(ρ)

sinh ρ

)
dρ.

By applying the formula (6.38) we get,

v(τ, w) =
c̃n√
4πτ

3
2

∫ ∞
0

(
− 1

sinh ρ

∂

∂ρ

)n−2
2

(∫ ∞
ρ

te−
t2

4τ

√
cosh t− cosh ρ

dt

)
u(ρ) dρ,

which on using the decomposition (6.20) becomes

v(τ, w) =
c̃n√
4πτ

3
2

∫
Hn

(
− 1

sinh ρ

∂

∂ρ

)n−2
2

(∫ ∞
ρ

te−
t2

4τ

√
cosh t− cosh ρ

dt

)
u0(w′) dHnµ(w′).

Thus the integral kernel of the heat operator e−τ∆′Hn associated to the shifted Laplacian

∆′Hn is given by

KHn(τ, w,w′) =
c̃n√
4πτ

3
2

(
− 1

sinh ρ

∂

∂ρ

)n−2
2

(∫ ∞
ρ

te−
t2

4τ

√
cosh t− cosh ρ

dt

)
,

and by the relation (6.37) we obtain the heat kernel of the heat operator e−τ∆Hn associated

to the classical Laplacian ∆Hn :

KHn(τ, w,w′) =
e−

(n−1)2τ
4

2
n+3
2 π

n+1
2 τ

3
2

(
− 1

sinh ρ

∂

∂ρ

)n−2
2

(∫ ∞
ρ

te−
t2

4τ

√
cosh t− cosh ρ

dt

)
,

where we have used the identity

c̃n
2
√
π

=
1

2
n+3
2 π

n+1
2

.

In summary we have the following statement which should be compared with Theorem 5.3, p.

131.

Theorem 6.5. For t > 0, 0 < ρ < ∞, the heat kernel KHn(t, ρ) associated to the Laplacian

∆Hn in the hyperbolic space Hn is given by the following fractional and integral representations:

(a) n odd n ≥ 3,

KHn(t, w,w′) =

(
− 1

2π

1

sinh ρ

∂

∂ρ

)n−1
2

e−
(n−1)2t

4 KH1(t, w,w′), (6.40)

where

KH1(t, w,w′) =
1√
4πt

e−
ρ2

4t

coincides with the heat kernel in R; and
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(b) n even n ≥ 2,

KHn(t, w,w′) =

(
− 1

2π

1

sinh ρ

∂

∂ρ

)n−2
2

e−
n(n−2)t

4 KH(t, w,w′), (6.41)

where

KH(t, w,w′) = K̃(t, w,w′) =

√
2

(4πt)
3
2

e−
t
4

∞∫
ρ

ue−
u2

4t

√
coshu− cosh ρ

du (6.42)

is the heat kernel in H (see Subsection 1.5.3).

6.3 Fractional and Integral Representations of the Green

Function

As we have mentioned in Chapter 5 an important spectral function for studying the spectrum of

a Riemannian manifold in general and the hyperbolic space in particular is the Green function.

Let ∆Hn be the Laplacian in Hn. The Green function GHn(·, ·; s) of ∆Hn in Hn is the kernel

of the resolvent operator (∆Hn − s(n− 1− s))−1
, s ∈ C, for which λ = s(n − 1 − s) is not

an eigenvalue of ∆Hn . In this section we shall compute the Green function in Hn using two

different approaches. The first approach takes the Laplace transform of the heat kernel in Hn to

obtain integral representations of the Green function in Hn, in the form of the heat kernel in Hn.

The second approach is for future purposes; it involves solving an eigenvalue problem in Hn by

substitution method and the Green function is expressed in terms of the Gauss hypergeometric

function. This hypergeometric function representation of the Green function will be used in the

next section to derive the Mehler-Fock inversion formula of higher order, which we later use to

establish the heat kernel in Hn.

We start with the Laplace transform approach. Let KHn(t, w,w′) be the heat kernel in Hn. In

our usual way, we calculate according to whether n is odd or even. We start with the case n

odd.

• n odd, n ≥ 1. Indeed from (6.40) we have

GHn(w,w′; s) =

∫ ∞
0

eλtKHn(t, w,w′) dt

=

(
− 1

2π

1

sinh ρ

∂

∂ρ

)n−1
2
∫ ∞

0

e−s(s−n+1)te−
(n−1)2t

4 KH1(t, w,w′) dt

=
1

2
(
s− n−1

2

) (− 1

2π

1

sinh ρ

∂

∂ρ

)n−1
2

e−ρ(s−
n−1
2 ), (6.43)

where we have used (B.49) and (B.47). Setting s = (n− 1)/2 + ir, we obtain

GHn(w,w′; r) =
1

2ir

(
− 1

2π

1

sinh ρ

∂

∂ρ

)n−1
2

e−iρr. (6.44)
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• n even, n ≥ 2. From (6.41) we obtain

GHn(w,w′; s) =

∫ ∞
0

eλtKHn(t, w,w′) dt

=

(
− 1

2π

1

sinh ρ

∂

∂ρ

)n−2
2
∫ ∞

0

e−s(s−n+1)te−
n(n−2)t

4 KH(t, w,w′) dt

=
1

2π

(
− 1

2π

1

sinh ρ

∂

∂ρ

)n−2
2 1√

2

∫ ∞
ρ

e−u(s−
n−1
2 ) du√

coshu− cosh ρ
, (6.45)

where we have used (B.49) and (B.47). We can simplify further. Towards this end, we

apply (B.97), (B.96) and write

cosh ρ = cosh2(ρ/2) + sinh2(ρ/2) = 2ζ − 1, ζ = cosh2(ρ/2),

to get

GHn(w,w′; s) =
1

2π

(
− 1

2π

1

sinh ρ

∂

∂ρ

)n−2
2

Qs−n2 (cosh ρ)

=
1

2π

(
− 1

2π

1

sinh ρ

∂

∂ρ

)n−2
2 √

π
Γ
(
s− n

2 + 1
)
ζ−s+

n
2−1

22s−n+2Γ
(
s− n

2 + 3
2

)
× F

(
s− n

2
+ 1, s− n

2
+ 1; 2s− n+ 2; ζ−1

)
=

1

4π

(
− 1

2π

1

sinh ρ

∂

∂ρ

)n−2
2 Γ

(
s− n

2 + 1
)2

Γ (2s− n+ 2)
ζ−s+

n
2−1

× F
(
s− n

2
+ 1, s− n

2
+ 1; 2s− n+ 2; ζ−1

)
, (6.46)

where we have used (B.3). If we now set s = (n− 1)/2 + ir, we obtain

GHn(w,w′; r) =
1

4π

(
− 1

2π

1

sinh ρ

∂

∂ρ

)n−2
2 Γ

(
1
2 + ir

)2
Γ (1 + 2ir)

ζ−
1
2−ir

× F
(

1

2
+ ir,

1

2
+ ir; 1 + 2ir; ζ−1

)
=

(
− 1

2π

1

sinh ρ

∂

∂ρ

)n−2
2

G̃r(w,w′),

where G̃r is the Green function on H.

For the second approach we solve the following eigenvalue problem in Hn:

R′′(ρ̃) + (n− 1) coth(ρ̃)R′(ρ̃) + s(n− s− 1)R(ρ̃) = 0. (6.47)

Making the substitution

R(ρ̃) = GHn(ζ; s), ζ = cosh2

(
ρ̃

2

)
=
|x− x′|2 + (y + y′)2

4yy′
, w = x+ iy, w′ = x′ + iy′ ∈ Hn,
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with

∂ζ

∂ρ̃
= sinh

(
ρ̃

2

)
cosh

(
ρ̃

2

)
,

∂

∂ρ̃
R(ρ̃) =

∂GHn(ζ; s)

∂ζ

∂ζ

∂ρ̃
= G′Hn(ζ; s) sinh

(
ρ̃

2

)
cosh

(
ρ̃

2

)
∂2

∂ρ̃2
R(ρ̃) =

∂

∂ρ̃

(
G′Hn(ζ; s) sinh

(
ρ̃

2

)
cosh

(
ρ̃

2

))
=

∂

∂ζ
G′Hn(ζ; s)

∂ζ

∂ρ̃
sinh

(
ρ̃

2

)
cosh

(
ρ̃

2

)
+

1

2
G′Hn(ζ; s) sinh2

(
ρ̃

2

)
+

1

2
G′Hn(ζ; s) cosh2

(
ρ̃

2

)
= G′′Hn(ζ; s) sinh2

(
ρ̃

2

)
cosh2

(
ρ̃

2

)
+

1

2
G′Hn(ζ; s) sinh2

(
ρ̃

2

)
+

1

2
G′Hn(ζ; s) cosh2

(
ρ̃

2

)
,

in (6.47) to obtain

ζ(1− ζ)G′′Hn(ζ; s) +
(n

2
− nζ

)
G′Hn(ζ; s)− s(n− 1− s)GHn(ζ; s) = 0.

This is the Gauss hypergeometric equation (B.54) with a = s, b = n − 1 − s, c = n/2. The

solution f(z) = F (a, b; c; z) is regular at z = 0, whereas we require a solution regular at z = ∞
since ζ ∈ [1,∞). We therefore choose the Kummer solution (B.69) to obtain

GHn(ζ; s) = Cn(s)ζ−sF

(
s, s− n− 2

2
; 2s− (n− 2); ζ−1

)
, (6.48)

where

Cn(s) =
1

2nπ
n
2

Γ(s)Γ
(
s− n

2 + 1
)

Γ(2s− (n− 2))
.

The Green function GHn(ζ; s) has an integral representation (see (B.62))

GHn(ζ; s) =
1

2nπ
n
2

Γ(s)

Γ
(
s− n

2 + 1
) ∫ 1

0

[t(1− t)]s−n2 (ζ − t)−s dt.

In summary we have the following statement.

Theorem 6.6. For s = n−1
2 +ir, r ∈ R, 0 < ρ <∞, ρ = d(w,w′), the Green function GHn(ρ; s)

associated to the Laplacian ∆Hn in the hyperbolic space Hn is given by the following fractional

and hypergeometric function representations:

(a) n odd, n ≥ 1,

GHn(w,w′; s) =
1

2
(
s− n−1

2

) (− 1

2π

1

sinh ρ

∂

∂ρ

)n−1
2

e−ρ(s−
n−1
2 ); (6.49)

(b) n even, n ≥ 2,

GHn(w,w′; s) =

(
− 1

2π

1

sinh ρ

∂

∂ρ

)n−2
2

G̃s(w,w′), (6.50)

where G̃s is the Green function in H (see (1.61)); and

(c) general n ≥ 2,

GHn(ζ; r) =
1

2nπ
n
2

Γ
(
n−1

2 + ir
)

Γ
(

1
2 + ir

)
Γ(1 + 2ir)

ζ−(n−1
2 +ir)F

(
n− 1

2
+ ir,

1

2
+ ir; 1 + 2ir; ζ−1

)
.
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6.4 The Generalised Mehler-Fock Integral Formula

As we have earlier promised in Subsection 1.5.3 that the proof of Theorem 1.18 would be given

for n ≥ 2 in this section; we shall now present the explicit proof of the generalised Mehler-Fock

integral formula using the Green function and the spectral resolution of self-adjoint operators

(Birman and Solomjak [28], Guseinov [71]). The Mehler-Fock inversion formula for Hn is an

integral transform involving the spherical functions in Hn, namely the Legendre function, associ-

ated Legendre function and the Gegenbauer polynomial. The kernel of the classical Mehler-Fock

inversion formula (see Theorem 1.18, see also Mehler [109], Fock [61]) is the Legendre function

Pν , ν = 1
2 + ir, r ∈ R, which is the associated Legendre function Pµν of order µ = 0. The order

of the kernel is the order of the formula. In this section we compute the Mehler-Fock integral

formula of order µ, µ ≥ 0, or what is the same the Mehler-Fock integral formula whose kernel is

the spherical function C µ
ν discussed in Section 6.1, namely

C
n−1
2

−n−1
2 −ir

(cosh ρ) :=
C
n−1
2

−n−1
2 −ir

(cosh ρ)

C
n−1
2

−n−1
2 −ir

(1)
) = 2

n−2
2 Γ

(n
2

)
sinh

2−n
2 ρP

2−n
2

− 1
2 +ir

(cosh ρ). (6.51)

In particular we extend the formula to the heat kernel in Hn by appropriately choosing a spectral

test function. We also compute the generalised Mehler-Fock inversion formula via the Poisson

kernel in Hn. Some recursion formulae for the integral transform are established.

The precise statement is the following

Theorem 6.7. Let Eω, ω ∈ R, be the spectral projection for the shifted hyperbolic Laplacian

∆′Hn = ∆Hn + (n−1)2

4 . For f ∈ L2 (Hn) define the operator ∆′Hn by

∆′Hnf =

∫ ∞
0

ω dEωf. (6.52)

Then for a suitable function h,

h

(√
∆′Hn

)
f(w) =

∫
Hn

KHn(w,w′)f(w′) dµHn(w′), (6.53)

where the spectral kernel KHn(w,w′) given by

KHn(ρ) = KHn(w,w′) =
1

πi

∫ ∞
0

rh(r)

(
GHn

(
ζ;
n− 1

2
− ir

)
−GHn

(
ζ;
n− 1

2
+ ir

))
dr

=
2n−3Γ

(
n
2

)
π
n+2
2

∫ ∞
0

h(r)σHn(r)C
n−1
2

−n−1
2 −ir

(cosh ρ) dr, (6.54)

is the generalised Mehler-Fock integral formula for Hn, satisfying the Millson formula

KHn+2(ρ) = − 1

2π sinh ρ

∂

∂ρ
KHn(ρ), (6.55)

and σHn(r) is the Plancherel measure (6.26). Moreover, for an appropriate spectral function

ht(r),
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(a) n odd, n ≥ 1,

KHn(t, w,w′) = e−
(n−1)2

4 t (−1)
n−1
2

√
2(2π)

n
2

√
t

(
1

sinh ρ

∂

∂ρ

)n−1
2

e−
ρ2

4t ;

(b) n even, n ≥ 2,

KHn(t, w,w′) =
e−

n(n−2)
4 te−

t
4

√
2

8π
3
2 t

3
2

(
− 1

2π

1

sinh ρ

∂

∂ρ

)n−2
2
∫ ∞
ρ

ue−
u2

4t du√
coshu− cosh ρ

.

Proof. The proof of the first part of the theorem uses the Green function discussed in the previous

section and the spectral theory of self-adjoint operator. We start with the first part that uses

the Green function in Hn. Indeed, from (6.48) we have

GHn

(
ζ;
n− 1

2
+ ir

)
= Cn

(
n− 1

2
+ ir

)
ζ−(n−1

2 +ir)F

(
n− 1

2
+ ir,

1

2
+ ir; 1 + 2ir; ζ−1

)
;

GHn

(
ζ;
n− 1

2
− ir

)
= Cn

(
n− 1

2
− ir

)
ζ−(n−1

2 −ir)F

(
n− 1

2
− ir, 1

2
− ir; 1− 2ir; ζ−1

)
,

with

Cn

(
n− 1

2
+ ir

)
=

1

2nπ
n
2

Γ
(
n−1

2 + ir
)

Γ
(

1
2 + ir

)
Γ(1 + 2ir)

;

Cn

(
n− 1

2
− ir

)
=

1

2nπ
n
2

Γ
(
n−1

2 − ir
)

Γ
(

1
2 − ir

)
Γ(1− 2ir)

.

By using the transformation formula (B.66), and the identities

Γ (1− β + α) = (α− β)Γ(α− β), Γ (1− α+ β) = (β − α)Γ(β − α),

we obtain the formula

GHn

(
ζ;
n− 1

2
− ir

)
−GHn

(
ζ;
n− 1

2
+ ir

)
=

Γ
(
n−1

2 − ir
)

Γ
(
n−1

2 + ir
)

Γ
(

1
2 + ir

)
Γ
(

1
2 − ir

)
2nπ

n
2 (−2ir)Γ(−2ir)Γ(2ir)Γ

(
n
2

)
× F

(
n− 1

2
+ ir,

n− 1

2
− ir; n

2
; 1− ζ

)
.

(6.56)

Using (B.5) and the identity

Γ

(
n− 1

2
− ir

)
Γ

(
n− 1

2
+ ir

)
=

∣∣∣∣Γ(n− 1

2
+ ir

)∣∣∣∣2 =
22n−4Γ

(
n
2

)2
σHn(r)

r sinhπr
, (6.57)

we get

GHn

(
cosh2

(ρ
2

)
;
n− 1

2
− ir

)
−GHn

(
cosh2

(ρ
2

)
;
n− 1

2
+ ir

)
=

i

π
n
2 r

2n−3Γ
(n

2

)
σHn(r)C

n−1
2

−n−1
2 −ir

(cosh ρ).

Writing

Qn(r) := 22n−4π−1Γ
(n

2

)2

σHn(r), (6.58)
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it then follows from (6.57) that

Qn+2(r) =

[(
n− 1

2

)2

+ r2

]
Qn(r), n ≥ 1. (6.59)

The recursion relation (6.59) will be useful later for establishing the Millson recursion formula

(6.55).

We complete the proof of the first part of the theorem by applying the spectral properties of

self-adjoint operators. Towards this end, let Eω, ω ∈ R, be the spectral projection for the

self-adjoint Laplacian ∆′Hn :

∆′Hnf =

∫ ∞
0

ω dEωf, f ∈ L2 (Hn) .

Using Stone’s formula A.15, we have

dEωf(w) =
1

2πi
[Rω+i0 −Rω−i0] f(w) dω, (6.60)

where Rω is the resolvent operator in Hn defined by

(Rωf) (w) =

∫
Hn

G′Hn(w,w′;ω)f(w′) dµHn(w′), f ∈ L2 (Hn) ,

with

G′Hn(w,w′;ω) =

GHn(ζ; n−1
2 + i

√
ω), Imω < 0,

GHn(ζ; n−1
2 − i

√
ω), Imω > 0.

(6.61)

Putting (6.61) in (6.60), we obtain

(Eωf) (w) =

∫
Hn

πω(w,w′)f(w′) dµHn(w′), (6.62)

where πω(w,w′) is the spectral function of ∆′Hn , which of course, is the spectral kernel of the

projection operator Eω in Hn given by

πω(w,w′) =
1

2πi

∫ ω

0

[G′Hn(w,w′; r + i0)−G′Hn(w,w′; r − i0)] dr

=
1

2πi

∫ ω

0

[
GHn

(
ζ;
n− 1

2
− i
√
r

)
−GHn

(
ζ;
n− 1

2
+ i
√
r

)]
dr

=
1

πi

∫ √ω
0

r

[
GHn

(
ζ;
n− 1

2
− ir

)
−GHn

(
ζ;
n− 1

2
+ ir

)]
dr

=
2n−3Γ

(
n
2

)
π
n
2 +1

∫ √ω
0

σHn(r)C
n−1
2

−n−1
2 −ir

(cosh ρ) dr,

for ω ≥ 0, and πω(w,w′) = 0 if ω < 0, since the spectrum of ∆′Hn fills the interval [0,∞).

Next, we establish the integral (6.53). Indeed, by Theorem 3.3 (see also the statement leading

to Theorem 3.3) and the integral formula (3.11), we have

h

(√
∆′Hn

)
f(w) =

∫
Hn

KHn(w,w′)f(w′) dµHn(w′), f ∈ L2 (Hn) . (6.63)
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On the other hand, by the spectral theory of self-adjoint operator, we have

h

(√
∆′Hn

)
f(w) =

∫ ∞
0

h(
√
ω) dEωf(w)

=
1

2πi

∫ ∞
0

h(
√
ω)

[∫
Hn

GHn

(
ζ;
n− 1

2
− ir

)
f(w′) dµHn(w′)

−GHn

(
ζ;
n− 1

2
+ ir

)
f(w′) dµHn(w′)

]
dω. (6.64)

Comparing (6.64) with (6.63), we see that

KHn(ρ) = KHn(w,w′) =
1

2πi

∫ ∞
0

h(
√
ω)

(
GHn

(
ζ;
n− 1

2
− ir

)
−GHn

(
ζ;
n− 1

2
+ ir

))
dω

=
1

πi

∫ ∞
0

rh(r)

(
GHn

(
ζ;
n− 1

2
− ir

)
−GHn

(
ζ;
n− 1

2
+ ir

))
dr

=
2n−3Γ

(
n
2

)
π
n+2
2

∫ ∞
0

h(r)σHn(r)C
n−1
2

−n−1
2 −ir

(cosh ρ) dr. (6.65)

This establishes the generalised Mehler-Fock integral formula (6.54). For the recursion formula

(6.55) we differentiate both sides of (6.65) with respect to ρ and apply the formula

dP
2−n
2

− 1
2 +ir

(x)

dx

∣∣∣∣
x=cosh ρ

= −
(
n−1

2

)2
+ r2

sinh ρ
P
−n2
− 1

2 +ir
(cosh ρ)+

(
n− 2

2

)
cosh ρ

sinh2 ρ
P

2−n
2

− 1
2 +ir

(cosh ρ), (6.66)

and the recursion formula (6.59) to obtain (6.55). This completes the proof of the first part of

the theorem.

Before proceeding to the proof of the second part of the theorem, let us write out the Mehler-Fock

integral formulae for the special cases n = 1, 2.

• (n = 1)

KH1(ρ) =
1√
2π

sinh1/2 ρ

∫ ∞
0

h(r)P
1
2

− 1
2 +ir

(cosh ρ) dr,

which on using (B.84c) gives

KH1(ρ) =
1

2π

∫ ∞
−∞

h(r) cosh ρr dr = g(ρ) = Q
(
eρ + e−ρ − 2

)
,

which is (or coincides with) the classical Euclidean Fourier transform of h (see Theorem

3.4); this is not surprising in view of the fact that H1 coincides with R.

• (n = 2)

KH(ρ) =
1

2π

∫ ∞
0

h(r)P− 1
2 +ir(cosh ρ)r tanhπr dr, (6.67)

which is the Mehler-Fock inversion formula of order zero (or simply the classical Mehler-

Fock integral formula; see Theorem 1.18).

What we do next is the transformation of the integral formula (6.54) into the heat kernel

KHn(t, ρ) in Hn, t > 0. Towards this end, we use our appropriate spectral function ht(r)

in Hn, namely

ht(r) = e−r
2te−

(n−1)2

4 t, t > 0,
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in (6.54) to obtain

KHn(t, w,w′) =
e−

(n−1)2

4 t

(2π)
n
2

sinh
2−n
2 ρ

∫ ∞
0

e−r
2tQn(r)P

2−n
2

− 1
2 +ir

(cosh ρ) dr. (6.68)

The Millson formula (6.55) for the heat kernel now takes the form

KHn(t, w,w′) = − e−nt

2π sinh ρ

∂

∂ρ
KHn−2(t, w,w′), n ≥ 3. (6.69)

Next we give explicit expressions for (6.68). We do this according to whether n is odd or even.

(a) n odd, n ≥ 1. We use the following formula for the Plancherel measure to give explicit

expression for (6.68) (see e.g. Strichartz [159]):

sinh
2−n
2 ρQn(r)P

2−n
2

− 1
2 +ir

(cosh ρ) =
(2π)

n
2

π

(
− 1

2π

1

sinh ρ

∂

∂ρ

)n−1
2

cos ρr.

Using this identity in (6.68) we obtain

KHn(t, w,w′) =
e−

(n−1)2

4 t

2
n−1
2 π

n+1
2

(
− 1

sinh ρ

∂

∂ρ

)n−1
2
∫ ∞

0

e−r
2t cos ρr dr. (6.70)

On applying the equality∫ ∞
0

e−β
2η2 cosαη dη =

√
π

2β
e
− α2

4β2 , α > 0,

we get

KHn(t, w,w′) =
e−

(n−1)2

4 t

√
2(2π)

n
2

√
t

(
− 1

sinh ρ

∂

∂ρ

)n−1
2

e−
ρ2

4t ,

which agrees with (6.40).

(b) n even, n ≥ 2. Similarly, for n even, we use the identity (see e.g. Strichartz [158])

sinh
2−n
2 ρQn(r)P

2−n
2

− 1
2 +ir

(cosh ρ) = r tanhπr
(2π)

n
2

2π

(
− 1

2π

1

sinh ρ

∂

∂ρ

)n−2
2

P− 1
2 +ir(cosh ρ).

By replacing the Legendre function with its integral representation we have

sinh
2−n
2 ρQn(r)P

2−n
2

− 1
2 +ir

(cosh ρ) =
(2π)

n
2

√
2

2π2

(
− 1

2π

1

sinh ρ

∂

∂ρ

)n−2
2
∫ ∞
ρ

r sin ru du√
coshu− cosh ρ

.

(6.71)

Now using (6.71) and (1.57) in (6.68) we obtain

KHn(t, w,w′) =
e−

n(n−2)
4 te−

t
4

√
2

8π
3
2 t

3
2

(
− 1

2π

1

sinh ρ

∂

∂ρ

)n−2
2
∫ ∞
ρ

ue−
u2

4t du√
coshu− cosh ρ

, (6.72)

which agrees with (6.41). This completes the proof of the theorem.
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We have derived the generalised Mehler-Fock integral formula via the Green function and spectral

projection of the Laplacian in Hn, next we approach this integral formula via the Poisson kernel

in Hn. The precise statement is the following

Theorem 6.8. Let ζ = cosh2(ρ/2), ρ = d(w,w′), w,w′ ∈ Hn. Then

KHn(w,w′) =
1

4πni

n−1
2 +i∞∫

n−1
2 −i∞

∫
Rn−1

P̃ sHn(w, ξ)P̃n−1−s
Hn (w′, ξ)

Γ(n− 1− s)Γ(s)

Γ
(
n−1

2 − s
)

Γ
(
s− n−1

2

)h(s) dξds

=
1

2n−1π
n
2 Γ
(
n
2

) ∫ ∞
0

h(r)Qn(r)F

(
n− 1

2
+ ir,

n− 1

2
− ir; n

2
; 1− ζ

)
dr, (6.73)

satisfying the Millson formula

KHn+2(w,w′) = − 1

4π

∂

∂ζ
KHn(w,w′), (6.74)

where

P̃Hn(w, ξ) =
y

|x− ξ|2 + y2
(6.75)

with x, ξ ∈ Rn−1, y > 0, w = (x, y) ∈ Hn.

Remark 6.3. The Poisson kernel in the upper half-space Hn in Cartesian coordinates as given

by Byczkowski et al. [33] is

PHn(w, ξ) =
Γ(n− 1)

π
n−1
2 Γ

(
n−1

2

) ( y

|x− ξ|2 + y2

)n−1

(6.76)

with x, ξ ∈ Rn−1, y > 0, w = (x, y) ∈ Hn. It is worth mentioning that the Poisson kernel in

R2 coincides with that in H (in view of (6.76) with n = 2); see Appendix A.4 for the Euclidean

Poisson kernel.

Proof of Theorem 6.8 . The proof uses an integral formula involving the product of the Poisson

kernel PHn , namely (see e.g. Mandouvalos [107])

∫
Rn−1

P̃ sHn(w, ξ)P̃n−1−s
Hn (w′, ξ) dξ = π

n−1
2

Γ
(
n−1

2 − s
)

Γ (n− 1− s)
f (ζ; s) + π

n−1
2

Γ
(
s− n−1

2

)
Γ (s)

f(ζ;n− 1− s),

where

f(ζ; s) = 4−sζ−sF
(
s, s+ 1− n

2
; 2s− n+ 2; ζ−1

)
.

Making the substitution s = ((n− 1)/2) + ir, we have

1

4πni

n−1
2 +i∞∫

n−1
2 −i∞

∫
Rn−1

P̃ sHn(w, ξ)P̃n−1−s
Hn (w′, ξ)

Γ(n− 1− s)Γ(s)

Γ
(
n−1

2 − s
)

Γ
(
s− n−1

2

)h(s) dξds

=
π
n−1
2

4πn

∞∫
−∞

[
Γ
(
n−1

2 + ir
)

Γ(ir)
f

(
ζ;
n− 1

2
+ ir

)
+

Γ
(
n−1

2 − ir
)

Γ(−ir)
f

(
ζ;
n− 1

2
− ir

)]
h(r) dr.

(6.77)
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Interestingly we can express the hypergeometric function appearing in the integral in terms of

the Green function in Hn, namely

F

(
n− 1

2
+ ir,

1

2
+ ir; 1 + 2ir; ζ−1

)
=

2nπ
n
2 Γ(1 + 2ir)ζ

n−1
2 +ir

Γ
(
n−1

2 + ir
)

Γ
(

1
2 + ir

)GHn

(
ζ;
n− 1

2
+ ir

)
.

Using this equality in (6.77), we have

KHn(w,w′) = 2i

∞∫
−∞

rΓ(2ir)Γ(−2ir)
[
GHn

(
ζ; n−1

2 + ir
)
−GHn

(
ζ; n−1

2 − ir
)]

Γ(−ir)Γ(ir)Γ
(

1
2 + ir

)
Γ
(

1
2 − ir

) h(r) dr

=
1

πi

∫ ∞
0

rh(r)

[
GHn

(
ζ;
n− 1

2
− ir

)
−GHn

(
ζ;
n− 1

2
+ ir

)]
dr. (6.78)

On using (6.56) we obtain (6.73). For the recursion formula (6.74), we use the integral repres-

entation (B.62) of the Gauss hypergeometric function to obtain

KHn(w,w′) =
21−n

π
n
2

∫ ∞
0

h(r)Qn(r)

Γ
(
n−1

2 − ir
)

Γ(ir)

∫ 1

0

η
n−3
2 −ir(1− η)ir−1

(1− η(1− ζ))
n−1
2 +ir

dηdr.

Differentiating both sides with respect to ζ and using the recursion formula (6.59), we get

∂

∂ζ
KHn(w,w′) =

21−n

π
n
2

∫ ∞
0

h(r)Qn(r)

(
−
(
n−1

2

)
− ir

) (
n−1

2 − ir
)(

n−1
2 − ir

)
Γ
(
n−1

2 − ir
)

Γ(ir)

×
∫ 1

0

η
n−1
2 −ir(1− η)ir−1(1− η(1− ζ))−

n+1
2 −ir dηdr

=
21−n

π
n
2

∫ ∞
0

h(r)

[
−
(
n−1

2

)2 − r2
]
Qn(r)

Γ
(
n+1

2 − ir
)

Γ(ir)

×
∫ 1

0

η
n−1
2 −ir(1− η)ir−1(1− η(1− ζ))−

n+1
2 −ir dηdr

= − 4π

2n+1π
n+2
2

∫ ∞
0

h(r)
Qn+2(r)

Γ
(
n+1

2 − ir
)

Γ(ir)

×
∫ 1

0

η
n−1
2 −ir(1− η)ir−1(1− η(1− ζ))−

n+1
2 −ir dηdr

= −4πKHn+2(w,w′).

This completes the proof of the theorem.

6.5 Concluding Remarks

The generalisation of the trace formulae discussed in Chapter 3 and their associated applications

are considered in Awonusika and Taheri [8], namely, we study the Selberg spectral theory of the

quotient space SΓ = Γ\G/K, where G is a connected semisimple Lie Group of noncompact type

with finite centre, Γ a discrete torsion-free subgroup of G, and K a maximal compact subgroup of

G. We construct the Selberg trace formula and the Selberg zeta function attached to the manifold

SΓ = Γ\X = Γ\G/K. Also discussed are the McKean integral formula for the Selberg zeta

function ZΓ (s) and zeta regularised determinants of the Laplacians on SΓ . In this case the space

X = G/K is a symmetric space of noncompact type and we specialise to the special cases of

real hyperbolic manifolds M = Γ\Hn and the complex hyperbolic manifolds M = Γ\CHn. We
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also generalise the material in Section 2.2 to the general linear group GL(n,R), namely we give

explicit computations of the Fourier expansion of Eisenstein series for the subgroup GL(n,Z),

and we specialise to the case SL(3,Z) where and when necessary, i.e., we restrict ourselves

to forms which are automorphic under the action of the modular group SL(3,Z). The explicit

computation of Eisenstein series for the modular group SL(3,Z) is presented. For the higher rank

group GL(n,R), the K-Bessel function appearing in the Fourier expansion of nonholomorphic

Eisenstein series for the modular group SL(2,Z) (see (2.28)) is replaced with the Whittaker

function, precisely Jacquet’s the Whittaker function.

In Awonusika and Taheri [8] (see also Awonusika and Taheri [15]) we include discussions of

spectral functions and spectral invariants on the real hyperbolic spaces X = Hn and the complex

hyperbolic spaces X = CHn. We present explicit constructions of spherical functions of the

Laplacian on CHn, in terms of special functions, namely Jacobi polynomials and hypergeometric

functions. The Minakshisundaram-Pleijel asymptotics (as t ↘ 0) of the heat kernel at the

diagonal and the Minakshisundaram-Pleijel zeta functions on noncompact symmetric spaces

X = Hn,CHn are treated explicitly. The Minakshisundaram-Pleijel zeta function in this case

of a noncompact symmetric space is simply the Mellin transform of the heat kernel at the

diagonal; and we express the associated heat coefficients in relation to the heat coefficients for

the corresponding compact symmetric spaces. The heat kernel and Green function on CHn is

obtained in a similar way as in the case of the real hyperbolic space Hn. As in the cases of

the sphere Sn and the real hyperbolic space Hn, the heat kernel on the complex hyperbolic

space CHn is obtained from the heat kernel on the complex projective space CPn by analytic

continuation, with the Riemann-Liouville fractional integral replaced with the Weyl fractional

integral. Similar to what we did in the case of the real hyperbolic space Hn, we establish the

complex hyperbolic Mehler-Fock integral formula for the complex hyperbolic space CHn via the

Green function and spectral resolution of self-adjoint operators.



Appendix A

The Laplacian on a Riemannian

Manifold

A.1 The Laplace-Beltami Operator

Smooth Manifold: An n-dimensional (n ≥ 1) smooth manifold M is a topological space that

is locally homeomorphic to the n-dimensional Euclidean space Rn by smooth transformations.

This homeomorphism permits differentiation to be defined. Formally, an n-dimensional smooth

manifold is a set M together with a collection of local charts {(Ui, ϑi)} , where Ui ⊂ M with⋃
i Ui = M, and ϑi : Ui ⊂ M −→ Rn is a bijection. For each pair of local charts (Ui, ϑi) and

(Uj , ϑj), it is required that ϑj(Ui ∩ Uj) is open and ϑij = ϑi ◦ ϑ−1
j are diffeomorphisms, called

the transition maps.

Riemannian manifold. A Riemannian manifold (M, g) is a smooth manifold M with a family

of smoothly varying positive definite inner products g = gp on TpM for each p ∈M . The family

g is called a Riemannian metric, which in local coordinates is given by

g =
∑
i,j

gijdx
idxj .

Some examples of Riemannian manifolds of relevance in this thesis include the Euclidean space

Rn, the Euclidean sphere Sn, the real projective space RPn, the complex projective space

CPn, the quaternionic projective space PQ2n, the Cayley projective plane P(Cay)
8
, the real

hyperbolic space Hn, the complex hyperbolic space CHn, the quaternionic hyperbolic space

QH2n and the Cayley hyperbolic plane CayH8; and their quotients.

One of the basic differential operators in Riemannian geometry is the Laplace-Beltrami operator.

Indeed recall that for a function f : M −→ R, the gradient of f , denoted grad f, is the vector

field defined by

(grad f(p), X) = X(f).

In local coordinates, the gradient of f is given by

(grad f)i =
∑
j

gij
∂f

∂xj
,

175
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where gij is the inverse of gij . The divergence operator is defined to be the adjoint of the gradient,

allowing ‘integration by parts’ on manifolds with special structure. If a Riemannian manifold M

is orientable, we define the volume form of a Riemannian metric to be the top dimensional form

(i.e., a differential form of top degree) dV which in local coordinates is given by

dV =
√

det gdx1 · · · dxn,

whenever
(
∂
∂x1 , · · ·, ∂

∂xn

)
is a positively oriented basis of TxM . We set the volume of M to be

V(M) =

∫
M

dV(x).

A volume form, in turn, enables the definition of the divergence of a vector field on the manifold.

In local coordinates, the divergence of a vector field X is given by

divX =
1√

det g

∑
i

∂

∂xi

(√
det gXi

)
,

where det g denotes the determinant of the matrix gij . Hence, the Laplace-Beltrami operator on

functions defined on M with respect to the metric g is defined by

∆(M,g) = ∆M = ∆ = −div grad,

which in local coordinates is given by

∆ = − 1√
det g

∑
j

∂

∂xj

(∑
i

gij
√

det g
∂

∂xi

)
. (A.1)

The Euclidean space Rn is a Riemannian manifold with its metric tensor given as the Euclidean

metric

g = δij ,

where δij is the Kronecker delta. In Cartesian coordinates,

ds2 =
∑
i

(
dxi
)2

= |dx|2,

and the Laplace-Beltrami operator is reduced to the familiar n-dimensional Euclidean Laplacian

∆ = Dn = −
n∑
j=1

∂2

∂x2
j

.

The three spaces that are the only complete, simply connected Riemannian manifolds of given

constant sectional curvature κ are the Euclidean space Rn of curvature κ = 0, the n-dimensional

sphere of curvature κ = 1 and the n-dimensional hyperbolic space of curvature κ = −1 (Do Carmo

[51]).

For details of Riemannian geometry and Riemannian manifolds, we refer the reader to Do Carmo

[51], Lee [101].
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A.2 The Heat Kernel on a Riemannian Manifold

Definition A.1. A continuous function KM (t, x, y) : (0,∞) ×M ×M → R is called a funda-

mental solution of the heat equation

∂u(t, x)

∂t
= −∆Mu(t, x), x ∈M, t > 0,

u(0, x) = u0(x), x ∈M,

(A.2)

or the heat kernel on M if it belongs to C1,2((0,∞)×M ×M) and satisfies the following condi-

tions:

(i) ∂KM (t,x,y)
∂t = −∆MKM (t, x, y);

(ii) KM (t, x, y) = KM (t, y, x);

(iii) lim
t↘0

KM (t, x, y) = δ(x− y), where δ(x, y) = δ(x− y) is the Dirac measure, i.e.,

lim
t↘0

∫
M

KM (t, x, y)u0(y) dV (y) = u0(x), u0 ∈ C∞(M), x ∈M ;

(iv) if M is compact, then

KM (t, x, y) =

∞∑
k=0

e−λktφk(x)φk(y), (A.3)

where (φk : k ≥ 0) is a complete orthonormal basis of the Hilbert space L2(M) consisting

of eigenfunctions of ∆M , with associated eigenvalues (λk : k ≥ 0) satisfying

∆Mφk = λkφk (A.4)

with

0 = λ0 < λ1 ≤ λ2 ≤ · · · ↗ ∞.

In particular, each eigenvalue has finite multiplicity.

It follows from Definition A.1 that the solution u(t, x) of the heat equation (A.2) is given by

u(t, x) =
(
e−t∆M f

)
(x) =

∫
M

K(t, x, y)f(y) dy, f ∈ C∞(M). (A.5)

If M = Rn, then the classical heat kernel in Rn is given by

KRn(t, x, y) =
1

(4πt)
n
2
e−
|x−y|2

4t , x, y ∈ Rn, t > 0. (A.6)

In 1948 by construction of a parametrix for the heat equation Minakshisundaram and Pleijel

[111] showed that on a compact Riemannian manifold M without boundary the heat kernel

KM (t, x, y) has the asymptotic expansion

KM (t, x, x) ∼ (4πt)−n/2
∞∑
k=0

unk (x, x)tk as t↘ 0, (A.7)



Appendix A. The Laplacian on a Riemannian Manifold 178

and as a result the heat trace satisfies the expansion

ΘM (t) = Tr e−t∆M =

∫
M

KM (t, x, x) dVol(x)

=

∞∑
k=0

e−λkt ∼ (4πt)−n/2
∞∑
k=0

ank t
k as t↘ 0, (A.8)

where the coefficients ank (with k ≥ 0) are given by

an0 = Vol(M), ank =

∫
M

unk (x, x) dVol(x), k ≥ 1. (A.9)

For an account on heat kernels in Riemannian geometry the reader is referred to the monographs

Chavel [41], Grigor’yan [68] or Li [103] and the extensive list of references therein.

A.3 The Wave Kernel on a Riemannian Manifold

Let M be a compact Riemannian manifold and ∆M the Laplace-Beltrami operator on M . Let

(φk : k ≥ 0) be a complete orthonormal basis of L2(M) consisting of eigenfunctions of ∆M such

that the corresponding eigenvalues (λk : k ≥ 0) satisfy

0 = λ0 < λ1 ≤ λ2 ≤ · · ·.

Consider the initial value problem for the wave equation on M :

∂2u

∂t2
= −∆Mu on (0,∞)×M

u(0, x) = f(x),
∂

∂t
u(0, x) = g(x), x ∈M.

(A.10)

It is known that the solution operator to the wave equation (A.10) is given by

u(t, x) =
(

cos(t
√

∆M )f
)

(x) +

(
sin(t
√

∆M )√
∆M

g

)
(x)

=

∫
M

W
(1)
M (t, x, y)f(y) dy +

∫
M

W
(2)
M (t, x, y)f(y) dy,

where

W
(1)
M (t, x, y) =

∞∑
k=1

cos
(
t
√
λk

)
φk(x)φk(y), W

(2)
M (t, x, y) =

∞∑
k=1

sin(t
√
λk)√

λk
φk(x)φk(y)

are the wave kernels on M .

The half-wave operator

U(t) = eit
√

∆M (A.11)

solves the half-wave equation

1

i

∂u

∂t
=
√

∆Mu on R×M,

u(0, x) = f(x), x ∈M,

(A.12)
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where u ∈ C∞(R×M), f ∈ C∞(M). The operator U(t) is defined by

(U(t)f)(x) =
(
eit
√

∆M f
)

(x) =

∫
M

U(t, x, y)f(y) dV (y),

where the half-wave kernel is

U(t, x, y) =

∞∑
k=1

eiλktφk(x)φk(y) (A.13)

on R×M ×M , which converges in the sense of distributions.

For example the solution of the wave equation on M = Rn,

∂2u

∂t2
= −Dnu on (0,∞)×Rn,

u(0, x) = f(x),
∂

∂t
u(0, x) = g(x), x ∈ Rn,

(A.14)

where f, g ∈ C∞(Rn), is given explicitly, via spherical means, by (see e.g. Taheri [163, pp.

343-344], Folland [62, Ch. 5])

u(t, x) =
1

1 · 3 · · · (n− 2)νn−1
[Nf (t, x) + Ng(t, x)] ,

where

(a) n odd, n ≥ 3,

Nf (t, x) =
∂

∂t

(
1

t

∂

∂t

)n−3
2

(
tn−2

∫
St(x)

f(y) dνn−1(y)

)
,

Ng(t, x) =

(
1

t

∂

∂t

)n−3
2

(
tn−2

∫
St(x)

g(y) dνn−1(y)

)
;

and

(b) n even, n ≥ 2,

u(t, x) =
2

1 · 3 · · · (n− 1)νn

[
N′f (t, x) + N′g(t, x)

]
,

where

N′f (t, x) =
∂

∂t

(
1

t

∂

∂t

)n−2
2

∫
Bt(x)

f(y) dy√
t2 − |y − x|2

 ,

N′g(t, x) =

(
1

t

∂

∂t

)n−2
2

∫
Bt(x)

g(y) dy√
t2 − |y − x|2

 .

Here dνn−1 is the volume measure of the sphere St(x) = {y ∈ Rn : |y − x| = t} and Bt(x) is

the closed ball in Rn : Bt(x) = {y ∈ Rn : |y − x| ≤ t} .
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A.4 The Poisson, Heat and Wave Kernels in Rn

It is known by Fourier transform that the solution of the wave equation (A.14) in Rn is given

by (see e.g. Stein and Shakarchi [154, Ch. 6])

u(t, x) =
(

cos
(
t
√

Dn
)
f
)

(x) +

(
sin
(
t
√
Dn
)

√
Dn

g

)
(x)

=
1

(2π)n

∫
Rn

f̂(ξ) cos(t|ξ|)eix·ξ dξ +
1

(2π)n

∫
Rn

ĝ(ξ)
sin(t|ξ|)eix·ξ

|ξ|
dξ

=

(
∂

∂t
Wt

)
∗ f +Wt ∗ g,

for f, g ∈ S (Rn), where

Wt(x) = W
(2)
Rn(t, x, y) =

1

(2π)n

∫
Rn

ei(x−y)·ξ sin(t|ξ|)
|ξ|

dξ, x ∈ Rn, t > 0,

and
∂

∂t
Wt(x) = W

(1)
Rn(t, x, y) =

1

(2π)n

∫
Rn

ei(x−y)·ξ cos(t|ξ|) dξ, x ∈ Rn, t > 0.

By analytic continuation, we have for t > 0 (Sogge [153, pp. 6-13]),

Wt(x) = W
(2)
Rn(t, x) =

1

(2π)n

∫
Rn

ei(x)·ξ sin(t|ξ|)
|ξ|

dξ

= c′n lim
ε→0

Im
(
|x|2 − (t− iε)2

)−n−1
2 ,

where

c′n =
1

2

Γ
(
n−1

2

)
π
n+1
2

and

H(t, x) = t2 − r2(x, y)

is a natural quadratic term associated with the wave operator ∂2

∂t2 + ∆. Here r2(x, y) = d2(x, y)

is the Riemannian distance between points x and y in M . The half-wave kernel on Rn is

URn(t, x, y) =
1

(2π)n

∫
Rn

ei(x−y)·ξeit|ξ| dξ, x ∈ Rn.

Now, if t = iτ , τ > 0, the half-wave kernel URn(t, x, y) becomes

URn(iτ, x, y) =
1

(2π)n

∫
Rn

ei(x−y)·ξe−τ |ξ| dξ, x ∈ Rn.

Note that the heat kernel on Rn is

K(t, x, y) =
1

(2π)n

∫
Rn

e−t|ξ|
2

ei(x−y)·ξ dξ =
1

(4πt)
n
2
e−
|x−y|2

4t , x, y ∈ Rn, t > 0.

Using the well known (subordination) identity (see e.g. Stein and Weiss [155, p. 6(i)])

e−ηA =
η

2
√
π

∫ ∞
0

e−
η2

4t e−tA
2

t−
3
2 dt, η > 0, A > 0,
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with A = |ξ|, we have

URn(iτ, x, y) =
1

(2π)n

∫
Rn

ei(x−y)·ξe−τ |ξ| dξ

=
τ

2
√
π

∫ ∞
0

e−
τ2

4t

{
1

(4πt)
n
2
e−
|x−y|2

4t

}
t−

3
2 dt

=
τ

(4π)
n+1
2

∫ ∞
0

e−
τ2+|x−y|2

4t t−
n+3
2 dt.

Changing variables s = 1/t, we obtain

URn(iτ, x, y) =
τ

(4π)
n+1
2

Γ

(
n+ 1

2

)(
τ2 + |x− y|2

4

)−n+1
2

=
Γ
(
n+1

2

)
π
n+1
2

τ

(τ2 + |x− y|2)
n+1
2

, x, y ∈ Rn, τ > 0

= PRn(τ, x, y),

where PRn(τ, x, y) is the Poisson kernel on ((0,∞)×Rn ×Rn).

A.5 The Hilbert-Schmidt Spectral Theorem

This section discusses the aspect of spectral theory of self-adjoint operators relevant to the

content of this thesis.

Let T be a linear operator on a Hilbert space H .

Definition A.2. An operator T : L2(M)→ L2(M) on H is said to be self-adjoint if

(Tf, g) = (f, Tg) for all f, g ∈H .

Definition A.3. The eigenvalues of T are the complex numbers λ such that the determinant

of T − λI is equal to zero. The set of such λ is called the spectrum. It can consist at most k

points since det (T − λI) is a polynomial of degree k. If λ is not an eigenvalue, then T − λ has

an inverse since det (T − λI) 6= 0.

Definition A.4. A number λ ∈ C is said to be in the resolvent set ρ(T ) of T if T − λI is a

bijection with a bounded inverse. The operator

Rλ = (T − λI)−1

is then called the resolvent of T at λ. If λ /∈ ρ(T ), then λ is said to be in the spectrum σ(T ) of

T .

Definition A.5. Let λ ∈ C, λ 6= 0. Then x ∈ H , x 6= 0, is called an eigenvector of T if it

satisfies the eigenvalue problem Tx = λx. The number λ is called the corresponding eigenvalue

of T . If λ is an eigenvalue, then T − λI is not injective so λ ∈ σ(T ). The set of all eigenvalues

is called the point spectrum of T .

Given an interval I ⊂ R (or more generally a Borel subset), the associated spectral projector is

defined by

EI = χI(T ),
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where χI denotes the characteristic function.

Stone’s Formula. Let T be a self-adjoint operator on H . Then

1

2

[
E[a,b] + E(a,b)

]
= lim
ε→0

1

2πi

∫ b

a

[(T − z − iε)−1 − (T − z + iε)−1] dz. (A.15)

Definition A.6. Let σess(T ) denotes the essential spectrum of T . We say that λ ∈ σess(T )

if and only if E(λ−ε,λ+ε) is infinite dimensional for all ε > 0. If λ ∈ σ(T ), but E(λ−ε,λ+ε) is

finite dimensional for some ε > 0, we say λ ∈ σdis, the discrete spectrum of T , in other words

the complement of the essential spectrum is the discrete spectrum. An eigenvalue of T could be

contained in σess(T ), in which case it is called an embedded eigenvalue.

Definition A.7. A point λ ∈ σ(T ) is in the continuous spectrum σcon(T ) if E{λ} = 0, and in

the point spectrum otherwise. The continuous spectrum is called absolutely continuous if EA = 0

for any Borel subset A ⊂ σcon(T ) with zero Lebesgue measure.

Let H be a Hilbert space. An unbounded operator T defined on some dense domain D(T ) ⊂H

is self-adjoint if T = T ∗, with the same domain. The operator T is essentially self-adjoint on

D(T ) ⊂ D(T ∗), T = T ∗ on D(T ), and the closure of T is self-adjoint. This implies that the

extension of T from the domain D(T ) is uniquely determined. If (M, g) = M is a complete

Riemannian manifold, then the Laplace-Beltrami operator on M is essentially self-adjoint on

C∞0 (M) ⊂ L2(M).

Definition A.8. Let M be a compact Riemannian manifold and K ∈ L2(M ×M). The integral

operator T defined by

(Tf)(x) =

∫
M

K(x, y)f(y) dy (A.16)

is called a Hilbert-Schmidt operator and K is the Hilbert-Schmidt kernel, satisfying

K(x, y) = K(y, x) for all x, y ∈M.

Theorem A.9 (Hilbert-Schmidt Theorem). Let M be a compact Riemannian manifold and

let T be the integral operator defined by

(Tf)(x) =

∫
M

K(x, y)f(y) dV (y), f ∈ L2(M),

where K : M ×M → (−∞,∞) is the Hilbert-Schmidt kernel. Then the eigenvalue problem

Tψ = ηψ

has a complete orthonormal system of eigenfunctions (ψk : k ≥ 0) in L2(M) with corresponding

eigenvalues (ηk : k ≥ 0) , where ηk ↘ 0 as k ↗ ∞. Moreover, the kernel K has the following

expansion in the L2 sense:

K(x, y) =

∞∑
k=0

ηkψk(x)ψk(y).

Proof. The proof can be found in Riesz and Nagy [141, pp. 242-246] and Dodziuk [52].
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Theorem A.10 (Mercer’s Theorem). Let M , K be as in Theorem A.9. Assume in addition

that almost all eigenvalues (ηk : k ≥ 0) are nonnegative. Then K has the expansion

K(x, y) =

∞∑
k=0

ηkψk(x)ψk(y),

where the convergence of the series is uniform on M ×M.

Proof. See Riesz and Nagy [141, pp. 242-246], Dodziuk [52].

A.6 Classical Trace Formulae

Let M be a compact Riemannian manifold. Let H be a Hilbert space and T a bounded operator

in H . Assume that there is an orthonormal basis (ψk : k ≥ 0) of H consisting of eigenfunctions

of T with corresponding eigenvalues (ηk : k ≥ 0) such that

Tψk = ηkψk, ηk ∈ C.

Definition A.11. A bounded operator T is said to be of trace class if and only if for some

orthonormal basis (ψk : k ≥ 0) one has

∞∑
k=0

(|T |ψk, ψk) <∞,

where |T | =
√
TT ∗; T ∗ is the conjugate transpose of T . Then

tr (T ) =

∞∑
k=0

(Tψk, ψk)

is a finite number, independent of the orthonormal basis.

Equivalently,

Definition A.12. A bounded operator T is said to be of trace class if and only if the series

∞∑
k=0

ηk

is absolutely convergent; one then has that

tr (T ) =

∞∑
k=0

ηk

is a finite number, independent of the orthonormal basis.

An illustration of Definition A.12 is that if we assume that H = L2 (M) so that (ψk : k ≥ 0) is

an orthonormal basis of L2 (M), then the Schwartz kernel K of T is defined by

K(x, y) =

∞∑
k=0

ηkψk(x)ψk(y) (A.17)
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on M ×M , and thus ∫
M

K(x, x) dV (x) =
∑
k

ηk, (A.18)

given that the series converges absolutely and uniformly. Hence, for all f ∈H

(Tf)(x) =

∫
M

K(x, y)f(y) dV (x)

and we write

tr (T ) =

∫
M

K(x, x) dV (x).

For example the trace of the heat kernel on M is given by

ΘM (t) = tr e−t∆M =

∫
M

K(t, x, x) dV (x) =

∞∑
k=0

e−λkt. (A.19)

Similarly, the traces of the wave kernels on M are

cos
(
t
√

∆M

)
= Re eit

√
∆M =

∞∑
k=1

cos
(
t
√
λk

)
= Re

∞∑
k=0

ei
√
λkt (A.20)

sin
(
t
√

∆M

)
√

∆M

=

∞∑
k=1

sin(t
√
λk)√

λk
, (A.21)

where

U(t) := eit
√

∆M (A.22)

is the half-wave operator with the trace

trU(t) =

∫
M

U(t, x, x) dV (x) =

∞∑
k=1

ei
√
λkt.



Appendix B

Special Functions and Integral

Formulae

We include in this appendix some special functions that we used in this thesis. These include

the gamma function, digamma function (also called psi function), Riemann zeta function, Bessel

functions, hypergeometric functions, Legendre functions, associated Legendre functions, Gegen-

bauer polynomials and Jacobi Polynomials. Our main references include Gradshtejn and Ryzhik

[66], Magnus et al. [106], Abramowitz and Stegun [1].

B.1 The Gamma Function

The gamma function (Gradshtejn and Ryzhik [66, Sec. 8.31]) is defined by

Γ(s) =

∞∫
0

e−tts−1 dt, Re s > 0. (B.1)

It has a meromorphic continuation to the whole complex s-plane given by

Γ(s) =

1∫
0

ts−1 dt

∞∑
n=0

(−1)n
tn

n!
=

∞∑
n=0

(−1)n
1

n!

1∫
0

tn+s−1 dt

=

∞∑
n=0

(−1)n
1

n!

1

s+ n
.

Hence, Γ(s) admits a simple pole at s = −n, n ∈ N0, with residue

Re s=−nΓ(s) = (−1)n
1

n!
; (B.2)

and satisfies the following properties.

√
πΓ(2s) = 22s−1Γ(s)Γ

(
s+

1

2

)
(Legendre duplication formula); (B.3)

Γ(s+ 1) = sΓ(s), Γ(s)Γ(1− s) =
π

sin πs
; (B.4)

185
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Γ

(
1

2
+ ia

)
Γ

(
1

2
− ia

)
=

∣∣∣∣Γ(1

2
+ ia

)∣∣∣∣2 =
π

coshπa
, a ∈ R; (B.5)

Γ (1 + ia) Γ (1− ia) =
πa

sinhπa
, a ∈ R. (B.6)

The asymptotics of log Γ(s) is given by (Abramowitz and Stegun [1, eq. 6.1.41])

ln Γ(z) ∼
(
z − 1

2

)
ln z − z +

1

2
ln 2π +

1

12

1

z + 1
+O

(
1

z2

)
as z ↗∞. (B.7)

The following Stirling’s formulae hold (Magnus et al. [106, p. 12]):

|Γ(ν + ix)Γ(ν − ix)| = O
(
x2ν−1e−πx

)
for large x, (B.8)

Γ(z + α)

Γ(z + β)
∼ zα−β

[
1 +

1

2z
(α− β)(α+ β − 1) +O

(
z−2
)]
, | arg z| < π. (B.9)

For m ∈ N, the Pochhammer symbol (s)m is defined by

(s)m =
Γ(s+m)

Γ(s)
, (−s)m = (−1)m

m−1∏
k=0

(s− k). (B.10)

The digamma function (Gradshtejn and Ryzhik [66, Sec. 8.36], Magnus et al. [106]) is defined

by

ψ(z) =
d

dz
log Γ(z) =

Γ′(z)

Γ(z)
,

with the series representation

ψ(z)− ψ(w) =

∞∑
n=0

[
1

n+ w
− 1

n+ z

]
, (B.11)

and has the following properties and special values.

ψ(1) = −C (B.12)

π tanπz = ψ

(
1

2
+ z

)
− ψ

(
1

2
− z
)

(B.13)

ψ (−z) = ψ (z + 1) + π cotπz (B.14)

ψ

(
1

2

)
= −C − 2 log 2 (B.15)

ψ (z + 1) = ψ(z) +
1

z
(B.16)

ψ

(
1

2
± n

)
= −C + 2

[
n∑
k=1

1

2k − 1
− log 2

]
. (B.17)

B.2 The Riemann Zeta Function

The Riemann zeta function ζ(s) (Titchmarsh [170]) is a function of a complex variable s ∈ C

defined for Re s > 1 by

ζ(s) =
∞∑
n=1

n−s. (B.18)
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The series converges absolutely for Re s > 1 and uniformly in every half plane Re s > 1 + ε

(ε > 0). Riemann proved that ζ possesses an analytic continuation into the whole s-plane which

is regular except for a simple pole at s = 1 and satisfies the Riemann’s functional equation

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s), (B.19)

or equivalently,

ζ(1− s) = 21−sπ−s cos
(πs

2

)
Γ(s)ζ(s). (B.20)

The Riemann zeta function ζ(s) can be analytically continued into the half plane Re s > 0 and

the continuation is regular for Re s > 0, except for a simple pole at s = 1 with residue 1. Further,

at s = 1, ζ(s) has the expansion (see e.g. Titchmarsh [170], Siegel [152])

ζ(s) =
1

s− 1
+ C + c1(s− 1) + c2(s− 1)2 + · · ·, (B.21)

and that ζ(s) satisfies the functional equation

Λ(s) = Λ(1− s), (B.22)

where

Λ(s) = π−
s
2 Γ
(s

2

)
ζ(s), (B.23)

and C = 0.57721566 · ·· is the Euler-Mascheroni constant.

Taking s = 2n+ 1, n = 1, 2, · · · in (B.20), the factor cos
(
πs
2

)
vanishes and we have

ζ(−2n) = 0, n = 1, 2, · · ·, (B.24)

which are often referred to as the trivial zeros of ζ(s). Setting s = 2n, n = 1, 2, · · · in (B.20) and

applying

ζ(−n) =

− 1
2 , n = 0,

−Bn+1
n+1 , n = 1, 2, · · ·,

(B.25)

we obtain the identity

ζ(2n) = (−1)n+1 (2π)2n

2(2n)!
B2n, n = 0, 1, 2, · · ·, (B.26)

where Bn = the nth Bernoulli number defined by

s

es − 1
=

∞∑
n=0

Bn
sn

n!
, (|s| < 2π). (B.27)

The first few Bernoulli numbers are illustrated in Table B.1 below.

Table B.1: The mth Bernoulli Numbers Bm.

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

1 1/2 1/6 0 −1/30 0 1/42 0 −1/30 0 5/66
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By (B.26) and Table B.1 we obtain the following special values of the Riemann zeta functions:

ζ(2) =
π2

6
, ζ(4) =

π4

90
, ζ(6) =

π6

945
, · · ·. (B.28)

The following logarithmic derivative of ζ(s) (Titchmarsh [170, eq. (1.1.8)]) holds:

ζ ′

ζ
(s) = −

∞∑
n=1

Λ(n)

n
, (B.29)

where Λ(n) is the Mangoldt function defined by

Λ(n) =

ln p, if n is an integer power pk, k ≥ 1, of a prime number p,

0 for other natural number n.
(B.30)

B.3 The Bessel Functions

The Bessel’s equation of order n (Abramowitz and Stegun [1, Ch. 9]) is

z2 d
2f

dz2
+ z

df

dz
+
(
z2 − n2

)
f = 0, n = 0, 1, 2, ..., (B.31)

and has a solution

Jn(z) = f(z) =

∞∑
k=0

(−1)k
(z

2

)2k+n 1

k!Γ(n+ k + 1)
, (B.32)

called the Bessel function of the first kind of order n. By substituting the beta function

B(x, y) =

∫ 1

0

tx−1(1− t)y−1 dt =
Γ(x)Γ(y)

Γ(x+ y)
, Rex > 0,Re y > 0, (B.33)

with x = k + 1
2 , y = ν + 1

2 , into (B.32), we have

Jν(z) =
(z/2)

ν

Γ
(

1
2

)
Γ
(
ν + 1

2

) ∫ 1

−1

(
1− t2

)ν−1/2
eizt dt, Re ν > −1

2
. (B.34)

According to Abramowitz and Stegun [1, eq. 11.4.38],∫ ∞
0

J0(aη) cos ηα dη =
1√

a2 − α2
, 0 ≤ α < a, (B.35)

where J0(z) is the Bessel function of the first kind of order 0 .

For arbitrary parameter ν, which can be real or complex, the Bessel function Jν is defined by

(Abramowitz and Stegun [1, Ch. 10])

Jν(z) =

∞∑
k=0

(−1)k( z2 )ν+2k

Γ(k + 1)Γ(k + ν + 1)
, |z| <∞, (B.36)

and it is known as the Bessel function of the first kind of order ν. The following formula for the

product of two Bessel functions holds (Gradshtejn and Ryzhik [66, p. 918, eq. 8.442(2)], Glasser
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and Montaldi [64]):

Jµ(az)Jν(bz) =

(
az
2

)µ ( bz
2

)ν
Γ(ν + 1)

∞∑
k=0

(−1)k
(
az
2

)2k
k!Γ(µ+ k + 1)

F

(
−k,−µ− k; ν − 1;

b2

a2

)
, (B.37)

Jν(az)Jν(bz) =

(
1

2

abz√
a2 + b2

)ν ∞∑
k=0

(
1
2

abz√
a2+b2

)2k

k!Γ(ν + k + 1)
Jν+2k

(
z
√
a2 + b2

)
. (B.38)

In terms of the elliptic integral (Dougall [54, eq. (23)]),∫ ∞
0

e−xµJν(%x)Jν(ax) dx =
1

π
%νaν

∫ π

0

sin2ν ϕdϕ

(µ2 + a2 − 2a% cosϕ+ %2)
ν+ 1

2

, (B.39)

for % > 0, a > 0, % < a, ν > − 1
2 , µ > 0. In particular,∫ ∞

0

e−xµJ0(%x)J0(ax) dx =
1

π

∫ π

0

dϕ√
µ2 + a2 − 2a% cosϕ+ %2

. (B.40)

Also, in terms of the Gauss hypergeometric function (Gradshtejn and Ryzhik [66, p. 660, eq.

6.512(1)])

∫ ∞
0

Jµ(%x)Jν(ax) dx = %νa−ν−1 Γ
(
µ+ν+1

2

)
Γ(ν + 1)Γ

(
µ−ν+1

2

)F (µ+ ν + 1

2
,
µ− ν + 1

2
; ν + 1;

%2

a2

)
,

(B.41)

for % > 0, a > 0, % < a, Re (µ+ν) > −1, µ > 0; for a < %, we interchange a and %. See Appendix

B.4 for the Gauss hypergeometric function.

The differential equation

z2 d
2f

dz2
+ z

df

dz
−
(
z2 + ν2

)
f = 0, n = 0, 1, 2, ..., (B.42)

is called a modified Bessel’s equation (Abramowitz and Stegun [1, Sec. 9.6]). The general

solution, for arbitrary ν, of (B.42) can be written in the form

h(z) = C1Kν(z) + C2Iν(z),

where

Iν(z) =

∞∑
k=0

( z2 )ν+2k

Γ(k + 1)Γ(k + ν + 1)
, |z| <∞, | arg z| < π, (B.43)

Kν(z) =
π

2

I−ν(z)− Iν(z)

sin νπ
, | arg z| < π, ν 6= 0,±1,±2, ...; (B.44)

Iν(z) is the modified Bessel function of the first kind and Kν(z) the modified Bessel function of

the second kind, having integral representations

Kν(z) =
1

2

∞∫
0

e−
z
2 (t+ 1

t )tν−1 dt, Re z > 0, ν arbitrary; (B.45)

Iν(z) =

(
z
2

)ν
Γ
(
ν + 1

2

)
Γ
(

1
2

) 1∫
−1

e±zt(1− t2)ν−
1
2 dt, Re

(
ν +

1

2

)
> 0. (B.46)
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It follows from (B.45) that

∫ ∞
0

e−σte−
α2

4t t−ν dt = 2

(
α

2
√
σ

)−ν+1

Kν−1

(√
σα
)
. (B.47)

By the definition of the gamma function and a simple change of variables, we have

∞∫
−∞

e−2πimt

(t2 + y2)
s dt =

y1−2s
√
π

Γ(s− 1
2 )

Γ(s) , m = 0,

2y
1
2−s πs

Γ(s) |m|
s− 1

2Ks− 1
2
(2π|m|y), m 6= 0.

(B.48)

For the special value ν = 1
2 , we have (Lebedev [100, p. 136 ])

K 1
2
(z) =

√
π

2z
e−z, I 1

2
(z) =

√
2

2z
sinh z. (B.49)

In particular, the following asymptotics hold (Lebedev [100, p. 136 ]):

Kν(z) ∼
√

π

2z
e−z as z ↗∞, Iν(z) ∼ ez√

2πz
as z ↗∞. (B.50)

The Mellin transform of a product of modified Bessel functions are given by∫ ∞
0

t−σKµ(at)Kν(bt) dt =
2−2−σa−ν+σ−1bν

Γ(1− σ)
Γ

(
1− σ + µ+ ν

2

)
Γ

(
1− σ − µ+ ν

2

)
× Γ

(
1− σ + µ− ν

2

)
Γ

(
1− σ − µ− ν

2

)
× F

(
1− σ + µ+ ν

2
,

1− σ − µ+ ν

2
; 1− σ; 1− b2

a2

)
, (B.51)

Re (a+ b) > 0, Reσ < 1− Re |µ| < Re |ν|;

∫ ∞
0

t−σKµ(at)Iν(bt) dt =
bνΓ

(
1
2 −

σ
2 + µ

2 + ν
2

)
Γ
(

1
2 −

σ
2 −

µ
2 + ν

2

)
2σ+1Γ(ν + 1)a−σ+ν+1

× F
(

1

2
− σ

2
+
µ

2
+
ν

2
,

1

2
− σ

2
− µ

2
+
ν

2
; ν + 1;

b2

a2

)
, (B.52)

a > b, Re (ν + 1− σ ± µ) > 0;

∫ ∞
0

tν+1Kµ(at)Iµ(bt)Jν(ct) dt =
(ab)−ν−1cνe−(ν+ 1

2 )πiQ
ν+ 1

2

µ− 1
2

(
a2+b2+c2

2ab

)
√

2π
[(
a2+b2+c2

2ab

)2 − 1
] ν

2 + 1
4

(B.53)

Re a > |Re b|+ |Im c|, Re ν > −1,Re (ν + µ) > −1.

B.4 The Gauss Hypergeometric Function

A particular solution of the hypergeometric equation (Abramowitz and Stegun [1, Ch. 15])

z(1− z)d
2f

dz2
+ (c− (a+ b+ 1)z)

df

dz
− abf = 0 (B.54)
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(where z is a complex variable, a, b and c are parameters which can take arbitrary real or complex

values) is

h(z) = F (a, b; c; z) = 2F1 =

∞∑
n=0

(a)n(b)n
n!(c)n

zn, |z| < 1, (B.55)

c 6= 0,−1,−2, ..., where

(β)n = β(β + 1) · · · (β + n− 1) =
Γ(β + n)

Γ(β)
, n = 1, 2, ...; (β)0 = 1, (B.56)

is the Pochhammer symbol. The series on the right-hand side of (B.55) is known as the hyper-

geometric series (hypergeometric function). If either a or b is zero or a negative integer, the

series terminates after a finite number of terms, and its sum is then a polynomial in z. It follows

from (B.55) and (B.56) that

F (a, b; c; z) =
Γ(c)

Γ(a)Γ(b)

∞∑
n=0

Γ(a+ n)Γ(b+ n)

Γ(c+ n)

zn

n!
.

If b = c, then we have

F (a, b; b; z) =

∞∑
n=0

Γ(a+ n)

Γ(a)

zn

n!
. (B.57)

On the other hand

1

(1− z)a
=

∞∑
n=0

(
a+ n− 1

n

)
zn =

∞∑
n=0

(
a+ n− 1

a− 1

)
zn =

∞∑
n=0

Γ(a+ n)

Γ(a)

zn

n!
. (B.58)

By (B.57) and (B.58), we obtain (Abramowitz and Stegun [1, eq. 15.1.8])

F (a, b; b;−z) =
1

(1 + z)a
=

∞∑
n=0

Γ(a+ n)

Γ(a)

(−z)n

n!
, (B.59)

with the identity (Gradshtejn and Ryzhik [66, 9. 121(26)])

F

(
1

2
,

1

2
;

3

2
; z2

)
=

arcsin z

z
. (B.60)

The following differentiation formula holds (Abramowitz and Stegun [1, p. 557, eq. 15.2.1]):

d

dz
F (a, b; c; z) =

ab

c
F (a+ 1, b+ 1; c+ 1; z). (B.61)

For Re c >Re b > 0, the hypergeometric function F (a, b; c; z) admits the integral representation

(Gradshtejn and Ryzhik [66, p. 1005, eq. 9.111])

F (a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− tz)−a dt. (B.62)
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In terms of the elliptic integral, we have (Gradshtejn and Ryzhik [66, p. 407, eq. 3.665(2)])

a−2νF

(
ν, ν; 1;

b2

a2

)
=

1

π

∫ π

0

dω

(a2 + b2 − 2ab cosω)
ν , |b| < |a|, (B.63)∫ π

0

sin2µ−1 ψ dψ

(1− 2a cosψ + a2)
ν+ 1

2

= B

(
µ,

1

2

)
F

(
ν +

1

2
, ν − µ+ 1;µ+

1

2
; a2

)
, Reµ > 0, |a| < 1.

(B.64)

The hypergeometric function F (a, b; c; z) satisfies various transformation rules. For example

(Gradshtejn and Ryzhik [66, p. 1008, eqs 9.1311, 9.131(1)-(2), 9.132(1)-(2)])

F (a, b; c; z) = (1− z)c−a−bF (c− a, c− b; c; z), (B.65)

F (a, b; c; z) =
Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
(1− z)−aF

(
a, c− b; a+ 1− b; 1

1− z

)
,

+
Γ(c)Γ(a− b)
Γ(a)Γ(c− b)

(1− z)−bF
(
b, c− a; b− a+ 1;

1

1− z

)
, (B.66)

F (a, b; c; z) =
Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
(−z)−aF

(
a, a+ 1− c; a+ 1− b; 1

z

)
,

+
Γ(c)Γ(a− b)
Γ(a)Γ(c− b)

(−z)−bF
(
b, b+ 1− c; b+ 1− a;

1

z

)
,

a− b 6= ±m,m = 0, 1, 2, · · ·, (B.67)

F (a, b; c; z) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

F (a, b; a+ b− c+ 1; 1− z) ,

+ (1− z)c−a−bΓ(a+ b− c)Γ(c)

Γ(a)Γ(b)
F (c− a, c− b; c− a− b+ 1; 1− z) . (B.68)

Also (Abramowitz and Stegun [1, eqs 15.5.7, 15.4.4], Gradshtejn and Ryzhik [66, p. 1008, eq.

9.131(1)])

F (a, b; c; z) = z−aF (a, a− c+ 1; a− b+ 1; z−1), (B.69)

F (a, b; c; z) = (1− z)−aF
(
a, c− b; c; z

z − 1

)
, (B.70)

F (−a, a+ 1; 1; z) = Pa(1− 2z), (B.71)

F (2a, 2a+ 1− c; c, z) = (1 + z)
−2a

F

(
a, a+

1

2
; c;

4z

(1 + z)
2

)
. (B.72)

We also have the special value (Gradshtejn and Ryzhik [66, p. 1008, eq. 9.122(1)])

F (a, b, ; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

, Re c > Re (a+ b). (B.73)

B.5 The Legendre Functions

The differential equation

(1− z2)
d2f

dz2
− 2z

df

dz
+

[
ν(ν + 1)− µ2

1− z2

]
f = 0 (B.74)
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is called the associated Legendre equation of degree ν and order µ and its solution is called the

associated Legendre function of the first kind of degree ν and order µ (Abramowitz and Stegun

[1, Ch. 8]). If µ = 0, then (B.74) reduces to the Legendre equation of degree ν.

Now if we set

t =
1

2
(1− z)⇒ z = 1− 2t

in the Legendre equation

(1− z2)
d2f

dz2
− 2z

df

dz
+ ν(ν + 1)f = 0, (B.75)

then we obtain the hypergeometric equation

t(1− t)d
2u

dt2
+ (1− 2t)

du

dt
+ [ν(ν + 1)]u = 0, (B.76)

with a = −ν, b = ν + 1, c = 1. Hence,

Pν(z) = F

(
−ν, ν + 1; 1;

1− z
2

)
, (B.77)

and it is called the Legendre function of the first kind of degree ν and it is a solution of (B.75).

Because of the property

P−ν−1(z) = Pν(z), (B.78)

the Legendre function

Pν(z) = P−s(x),

where P−s(x), x = cos r, is a solution of

(1− x2)
d2v

dx2
− 2x

dv

dx
+ s(s− 1)v = 0. (B.79)

In general for Reµ ≥ 0 (Bateman et al. [19, p. 122, eq. 7], Abramowitz and Stegun [1, p. 562,

eq. 15.4.10])

Pµν (z) =
2µ

Γ(1− µ)

(
z2 − 1

)−µ2 F (1− µ+ ν,−µ− ν; 1− µ;
1− z

2

)
, (B.80)

Pµν (z) =
1

Γ(1− µ)

(
z + 1

z − 1

)µ
2

F

(
−ν, ν + 1; 1− µ;

1− z
2

)
, (B.81)

P 1−c
2a−c

[
(1− z)− 1

2

]
= 21−cΓ(c)−1z

c
2−

1
2 (1− z) 1

2−
c
2 +aF

(
a, a+

1

2
; c; z

)
. (B.82)

The associated Legendre function of the first kind satisfies the following recurrence relations

(Abramowitz and Stegun [1, p. 333, eqs 8.5.1, 8.5.5])

Pµ+1
ν (z) =

(
z2 − 1

)− 1
2
[
(ν − µ)zPµν (z)− (ν + µ)Pµν−1(z)

]
, (B.83a)

Pµν+1(z) = Pµν−1(z) + (2ν + 1)
(
z2 − 1

) 1
2 Pµ−1

ν (z). (B.83b)



Appendix B. Special Functions and Integral Formulae 194

From (B.83) we can easily deduce the following special values (Gradshtejn and Ryzhik [66, p.

967, eqs 8.753(1), 8.754(1-2)])

P−s(1) = 1, P0(coshα) = P−1(coshα) = 1 (B.84a)

Pµ0 (cosϑ) =
1

Γ(1− µ)
cotµ

ϑ

2
(B.84b)

P
1
2

ν− 1
2

(coshα) =

√
2

π sinhα
cosh να. (B.84c)

P
1
2

ν− 1
2

(cosϑ) =

√
2

π sinϑ
cos νϑ. (B.84d)

Also for the argument zero, we have (Abramowitz and Stegun [1, p. 334, eq. 8.6.1])

Pµν (0) = 2µ
cos
[
π
2 (ν + µ)

]
Γ
(
ν
2 + µ

2 + 1
2

)
√
πΓ
(
ν
2 −

µ
2 + 1

) . (B.85)

The associated Legendre function Pµν has the following integral representations:

Pν(coshα) =
2

π
cot

(
ν +

1

2

)
π

∞∫
α

sinh
(
ν + 1

2

)
θ

√
2 cosh θ − 2 coshα

dθ (B.86)

Pµν (coshα) =

√
2

π

sinhµ α

Γ
(

1
2 − µ

) ∫ α

0

cosh
(
ν + 1

2

)
t dt

(coshα− cosh t)
µ+ 1

2

(B.87)

Reµ <
1

2
, α > 0

Pmν (z) = (−1)m
Γ(ν + 1)

πΓ(ν −m+ 1)

∫ π

0

cosmtdt(
z +
√
z2 − 1 cos t

)ν+1 (B.88)

P−µν (q) =

(
q2 − 1

)µ
2

2µ
√
πΓ
(

1
2 + µ

) ∫ 1

−1

(
1− t2

)µ− 1
2 dt[

q + t
√
q2 − 1

]µ−ν , Reµ > −1

2
. (B.89)

According to Gradshtejn and Ryzhik [66, p. 772, eq. 7.132(1)], the following equality holds:

∫ 1

−1

(
1− t2

)σ−1
Pµν (t) dt =

π2µΓ
(
σ + µ

2

)
Γ
(
σ − µ

2

)
Γ
(
σ + ν

2 + 1
2

)
Γ
(
σ − ν

2

)
Γ
(
−µ2 + ν

2 + 1
)

Γ
(
−µ2 −

ν
2 + 1

2

) , (B.90)

for 2Reσ >Reµ. The following derivatives hold (Gradshtejn and Ryzhik [66, p. 965, eq.

8.733(1)], Sergo [150, p. 41]):

dPµν (x)

dx
=
Pµν (x)− (ν − µ+ 1)Pµν+1(x)

1− x2
, (B.91)

=
(ν + µ)(ν − µ+ 1)√

x2 − 1
Pµ−1
ν (x)− νµ

x2 − 1
Pµν (x), (B.92)

Pmk (cos θ) = sinm θ
dmPk(cos θ)

(d cos θ)m
, (B.93)

lim
ν↘0

∂

∂ν
Pν (z) =

z − 1

2
F

(
1, 1; 2;

1− z
2

)
. (B.94)

The second solution of (B.74) is Qµν (z) and it is called the associated Legendre function of the

second kind of degree ν and order µ. The function Qν(z) is the Legendre function of the second

kind of degree ν (Abramowitz and Stegun [1, Ch. 8]). It can also be written in terms of the
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hypergeometric function, namely (Gradshtejn and Ryzhik [66, P. 970, eq. 8.771(2)])

Qµν (z) =
eµπi
√
πΓ(ν + µ+ 1)

2ν+1Γ
(
ν + 3

2

) (
z2 − 1

)µ
2 z−ν−µ−1F

(
ν + µ+ 2

2
,
ν + µ+ 1

2
; ν +

3

2
;

1

z2

)
, (B.95)

for µ+ ν 6= −m, m ≥ 1; and (Lebedev [100, p. 200])

Qν(z) =
√
π

Γ(ν + 1)

2ν+1Γ
(
ν + 3

2

) (z + 1)−ν−1F

(
ν + 1, ν + 1; 2ν + 2;

2

1 + z

)
. (B.96)

The function Qν(z) has an integral representation (Lebedev [100, eq. 7.4.8])

Qν(cosh ρ) =
1√
2

∫ ∞
ρ

e−(ν+ 1
2 )θ

√
cosh θ − cosh ρ

dθ. (B.97)

The following integral involving the product of Legendre functions holds (Gradshtejn and Ryzhik

[66, p. 770, eq. 7.114(1)] ):∫ ∞
1

Pν(x)Qσ(x) dx =
1

(σ − ν)(σ + ν + 1)
. (B.98)

Also, the associated Legendre function of the second kind satisfies the following recurrence

relations (Gradshtejn and Ryzhik [66, p. 967, eqs 8.732(3-4)])

Qµ+2
ν (z) = −2(µ+ 1)z

(
z2 − 1

)− 1
2 Qµ+1

ν (z) + (ν − µ)(ν + µ+ 1)Qµν (z), (B.99a)

Qµν−1(z) = Qµν+1(z)− (2ν + 1)
(
z2 − 1

) 1
2 Qµ−1

ν (z). (B.99b)

From (B.99) we can easily deduce the following special values (Abramowitz and Stegun [1, p.

334, eqs 8.6.11, 8.6.10, 8.6.13])

Q
− 1

2
ν (z) =

−i(2π)
1
2

(
z2 − 1

)− 1
4

(2ν + 1)

[
z +

(
z2 − 1

) 1
2

]−ν− 1
2

, (B.100a)

Q
1
2
ν (z) = i

√
π

2

(
z2 − 1

)− 1
4

[
z +

(
z2 − 1

) 1
2

]−ν− 1
2

, (B.100b)

Q
1
2

ν− 1
2

(cosϑ) = −
√

π

2 sinϑ
sin νϑ. (B.100c)

The Legendre polynomials Pµν and Qµν satisfy the relation (Abramowitz and Stegun [1, eq. 8.2.7])

P
−ν− 1

2

−µ− 1
2

(
z

(z2 − 1)
1/2

)
=

√
2

π

(
z2 − 1

)1/4
e−µiπQµν (z)

Γ(ν + µ+ 1)
. (B.101)

B.6 The Gegenbauer Polynomials

The Gegenbauer polynomial Cνk (t) (Gradshtejn and Ryzhik [66, Sec. 8.93]) is the generalisation

of the Legendre polynomial Pk(t) (Gradshtejn and Ryzhik [66, Sec. 8.91]) and is defined by the

coefficient of αk in the power series expansion of the function

(
1− 2tα+ α2

)−ν
=

∞∑
k=0

Cνk (t)αk, (B.102)
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with

Cν0 (t) = 1, Cν1 (t) = 2νt, Cν2 (t) = 2ν(ν + 1)t2 − ν, · · ·, (B.103)

and the special cases

C0
0 (cos θ) = 1, C1

k(cos θ) =
sin(k + 1)θ

sin θ
, Cνk (1) =

(
2ν + k − 1

k

)
. (B.104)

A special case of (B.102) is the Legendre polynomial Pk(t) defined by

(
1− 2tα+ α2

)− 1
2 =

∞∑
k=0

Pk(t)αk. (B.105)

For ν > − 1
2 , Cνk (t) has a series representation (Bateman et al. [20, p. 175, eq. (18)])

Cνk (t) =
∑

0≤l≤ k2

(−1)l
Γ(k − l + ν)

Γ(ν)l!(k − 2l)!
(2t)k−2l. (B.106)

In terms of the Gauss hypergeometric function it is given by

Cνk (t) =
Γ(2ν + k)

k!Γ(2ν)
F

(
−k, k + 2ν; ν +

1

2
;

1− t
2

)
, (B.107)

=
2kΓ(ν + k)

k!Γ(ν)
tkF

(
−k

2
,

1− k
2

; 1− ν − k;
1

t2

)
,

with the recursion formulae

kCνk (t) = 2ν
[
tCν+1

k−1(x)− Cν+1
k−2(t)

]
(B.108)

kCνk (t) = (k + 2ν − 1)tCνk−1(t)− 2ν
(
1− t2

)
Cν+1
k−2(t). (B.109)

Differentiating (B.106) gives

d

dt
Cνk (t) = 2

∑
0≤l≤ k−1

2

(−1)l
Γ(k − l + ν)

Γ(ν)l!(k − 2l − 1)!
(2t)k−2l−1

= 2ν
∑

0≤l≤ k−1
2

(−1)l
Γ(k − 1− l + ν + 1)

Γ(ν + 1)l!(k − 2l − 1)!
(2t)k−2l−1.

Therefore, we obtain the differential recursion formula

d

dt
Cνk (t) = 2νCν+1

k−1(t); (B.110)

and in general,
dm

dtm
Cνk (t) = 2m

Γ(ν +m)

Γ(ν)
Cν+m
k−m(t). (B.111)

It is not difficult to see that using (B.110) and (B.111), the Gegenbauer polynomial y(t) = Cνk (t)

satisfies the second-order differential equation

(
1− t2

)
y′′ − (2ν + 1)ty′ + k(k + 2ν)y = 0. (B.112)
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Expanding the right-hand side of the identity (B.109), we obtain the Rodrigues’ formula (Grad-

shtejn and Ryzhik [66, p. 993, eq. 8.939(7)])

Cνk (t) =
(−1)kΓ( 1+2ν)

2 Γ(k + 2ν)
(
1− t2

) 1
2−ν

2kk!Γ(2ν)Γ
(

2ν+1
2 + k

) dk

dtk
(
1− t2

)k+ν− 1
2 . (B.113)

The Gegenbauer polynomial Cνk (t) and the associated Legendre polynomial P νk (t) are related to

one-another by

Cνk (t) =
Γ(2ν + k)Γ

(
ν + 1

2

)
Γ(2ν)Γ(k + 1)

{
1

4

(
t2 − 1

)} 1
4−

ν
2

P
1
2−ν
ν+k− 1

2

(t), (B.114)

with

C
1
2

k (t) = Pk(t).

The following addition formula also holds (Gradshtejn and Ryzhik [66, p. 992, eq. 8.934(3)]):

Cνk (cosα cosβ + sinα sinβ cos η)

=
Γ(2ν − 1)

[Γ(ν)]2

k∑
m=0

22m(k −m)![Γ(ν +m)]2

Γ(2ν + k +m)
(2ν + 2m− 1) sinm α sinm β (B.115)

× Cν+m
k−m(cosα)Cν+m

k−m(cosβ)C
ν− 1

2
m (cos η), α, β, η ∈ R, ν 6= 1

2
.

As an orthogonal polynomial, Cνk (t) satisfies the orthogonality properties

∫ 1

−1

(
1− x2

)ν− 1
2 [Cνm (x)]

2
dx =

π21−2νΓ(2ν +m)

m!(m+ ν)Γ (ν)
2 , (B.116)∫ 1

−1

(
1− x2

)ν− 1
2 Cνk (x) dx = 0, k > 0, ν > −1

2
. (B.117)

The polynomial Cνk (t) satisfies the recursive formula

Cµm(t) =
Γ(ν)

Γ(µ)

∑
0≤l≤m2

alC
ν
m−2l(t), µ > ν > −1

2
, (B.118)

where

al =
m− 2l + ν

l!

Γ(l + µ− ν)

Γ(µ− ν)

Γ(m+ µ− l)
Γ(m+ ν + 1− l)

.

It has the Laplace integral representation

C µ
ν (x) =

Cµν (x)

Cµν (1)
=
νn−2

νn−1

∫ π

0

[
x+

(
x2 − 1

) 1
2 cos θ

]ν
sin2µ−1 θ dθ, µ > 0. (B.119)

In terms of the fractional representation we have

C
n−1
2

k (cos θ) =
2
n+1
2 Γ

(
n
2

)
√
π(2k + n− 1)Γ(n− 1)

∂
n−1
2

∂(cos θ + 1)
n−1
2

cos

(
k +

n− 1

2

)
θ, (B.120)
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where

∂
1
2

∂(y − q) 1
2

h(y) =
∂

∂y

∂−
1
2

∂(y − q)− 1
2

h(y) =
1√
π

∂

∂y

∫ y

q

(y − x)−
1
2h(x) dx

=
1√
π

∫ y

q

h′(x)√
y − x

dx+
1√
π

h(q)√
y − q

, (B.121)

provided that h(q) exists; and moreover, for a function g,

∂β

∂(g(y)− g(q))β
h(y) =

∂β−k

∂(g(y)− g(q))β−k
∂k

∂yk
h(y) +

m−1∑
k=0

(g(y)− g(q))k−βh(k)(q)

Γ(k − β + 1)
, (B.122)

and

∂
1
2

∂(g(y)− g(q))
1
2

h(y) =
1√
π

∫ y

q

h(x)√
g(y)− g(x)

dx+
1√
π

h(q)√
g(y)− g(q)

. (B.123)

In particular, if m is not an integer, the Riemann-Liouville fractional derivative is given by

(Kilbas et al. [92, Sec 2.1])

dm

dym
h(y) =

dk

dyk
1

Γ(k −m)

∫ y

0

(y − x)k−m−1h(x) dx, (B.124)

where k is the smallest integer not less than m.

B.7 The Jacobi Polynomials

The Jacobi polynomial P
(α,β)
k (t) satisfies the second-order differential equation

(
1− t2

)
y′′ − (α− β + (α+ β + 2)t)y′ + k(k + α+ β + 1)y = 0. (B.125)

Writing

R
(α,β)
k (t) =

k!

(α+ 1)k
P

(α,β)
k (t) = F

(
−k, k + α+ β + 1;α+ 1;

1− t
2

)
(B.126)

and setting k → ir−α−β−1
2 , with t = cosh 2x, we obtain the Jacobi function

R
(α,β)
ir−α−β−1

2

(cosh 2x) =
Γ
(
ir−α−β+1

2

)
Γ(α+ 1)

Γ
(
ir−α−β−1

2

) P
(α,β)
ir+α−β+1

2

(cosh 2x)

= F

(
α+ β + 1− ir

2
,
ir + α+ β + 1

2
;α+ 1;− sinh2 x

)
= φ(α,β)

r (x);

(B.127)

and the associated Jacobi operator is

− L(α,β) =
d2

dx2
+ [(2α+ 1) cothx+ (2β + 1) tanhx]

d

dx
, (B.128)
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or what is the same, φ
(α,β)
r (x) solves the differential equation(

d2

dx2
+ [(2α+ 1) cothx+ (2β + 1) tanhx]

d

dx

)
φ(α,β)
r (x) = −

(
ρ2 + r2

)
φ(α,β)
r (x), (B.129)

such that φ
(α,β)
r (0) = 1. Here ρ = α+ β + 1.

The Jacobi function φ
(α,β)
r (x) admits the following integral representation (see Koornwinder

[94]):

φ(α,β)
r (x) =

Γ(α+ 1)
√
πΓ
(
α+ 1

2

) 23/2−α

sinh2α x coshα+β x

×
∫ x

0

cos ry
F
(
α+ β, α− β;α+ 1

2 ; cosh x−cosh y
2 cosh x

)
(cosh 2x− cosh 2y)1/2−α dy, Reα > −1/2. (B.130)

Furthermore, the Gegenbauer polynomial Cνk (t) is related to the Jacobi polynomial P
(α,β)
k (t) by

Cνk (t) =
(2ν)k(
ν + 1

2

)
k

P
(ν− 1

2 ,ν−
1
2 )

k (t), (B.131)

where

P
(α,β)
k (t) =

(α+ 1)k
k!

F

(
−k, k + α+ β + 1;α+ 1;

1− t
2

)
, k ≥ 0, α, β > −1, (B.132)

with

P
(α,β)
k (1) =

(α+ 1)k
k!

, P
(α,β)
k (−t) = (−1)kP

(β,α)
k (t). (B.133)

The following fractional representations hold:

P
(α,β)
k (cos %) =

22β−α+ 3
2 Γ(k + β + 1)√
πΓ(k + 2σ)

∂
β+ 1

2
cos %+1∂

α−β
cos %2 +1

cos((k + σ)%)

2k + 2σ
(B.134)

for α and β positive integer or half-integer, α > β, σ = (α+ β + 1)/2;

P
(α,β)
k (cos %) =

2β+ 1
2 Γ(k + β + 1)Γ(α− β)√
πΓ(k + α+ β + 1)

∂
β+ 1

2
cos %+1C

α−β
2k+2β+1

(
cos

%

2

)
(B.135)

for α arbitrary and β integer or half-integer, α− β not a negative integer or zero;

P a,0k (cos θ) =
k!

2a−1πΓ(k + a+ 1)

∫ π
2

θ
2

(
− ∂
∂ϑ

)
cosϑ

(
− 1

sinϑ
∂
∂ϑ

)a ( sin(2k+a+1)ϑ
sinϑ

)
√

cos2(θ/2)− cos2 ϑ
dϑ. (B.136)
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