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Abstract

In this thesis I developed and analysed several mathematical models that describe

the dynamics of infectious diseases spreading in a population simultaneously with

people becoming aware of the presence of the disease and thus modifying their

behaviour. This is achieved using compartmental models, with further extensions to

models with time delays and the administration of vaccines. Resulting mathematical

models were analysed using the techniques of dynamical systems and bifurcations

theory, complemented by direct numerical simulations. Design of optimal strategies

maximising the reduction of infection rates subject to logistical constraints were

studied within the new modelling framework and with a view to be used in realistic

contexts. Of particular interest is the design and analysis of the impact of local and

global awareness campaigns, as well as the administration of vaccines to minimise

the spread of infections.
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Preface

Epidemic models are often employed to analyse the dynamics of infectious diseases.

Whilst some situations require the use of detailed network-based models, signific-

ant insights can be obtained using mean-field compartmental models, such as the

susceptible-infected-recovered (SIR), susceptible-infected-susceptible (SIS), or the

susceptible-infected-recovered-susceptible (SIRS) models and their multiple modi-

fications. When developing epidemic models for the dynamics of infectious disease

with account for human behavioural changes, the propagation of awareness about a

disease has been shown to play a significant role in curtailing the spread of infectious

diseases. In this context, delay in the circulation of information about the disease

locally (through direct interactions between individuals) and globally (through the

media and other sources of awareness) can influence the rate of spread of the disease

within human population. Significant delays in the spread of awareness tend to

facilitate the endemic state of the disease outbreak, thus highlighting the need for

a prompt dissemination of information to the population. These effects are particu-

larly important when one considers different strategies for administration of vaccines

against infections, especially if the vaccines are leaky, i.e. when they do not provide

perfect immunity.

In the first part of the thesis I develop an SIRS-type epidemic model to explore

the dynamics of infectious diseases spreading in a population simultaneously with

people becoming aware of the presence of the disease, and thus modifying their be-

haviour. The model is studied analytically and numerically to evaluate the impact

of both local and global awareness on the spread of disease. The main underlying

assumption of the model is that the susceptible, the infected and the recovered in-

dividuals can all access information regarding the outbreak through global sources,

such as media campaigns, in addition to becoming aware through contacts or in-
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Preface xv

teractions with their aware neighbours. The results of the model show how the

availability of local, as well as global awareness to the population can act as a con-

trol measure for the spread of infectious diseases.

In order to better understand the role of time delays associated with behavioural

changes in the population in response to awareness, in the second part of the thesis

I develop and analyse an SIS epidemic model that explicitly takes into account a

time delay representing the time required for the dissemination of information and

subsequent changes in human behaviour. Analytical and numerical studies yield

stability results for the disease-free and endemic equilibria, together with a detailed

information about the characteristic eigenvalues of the model. The outcome of this

analysis suggests that while stability of the disease-free steady state is independent

of the delay in the dissemination of awareness, this delay can cause Hopf bifurcation

of the endemic equilibrium, thus resulting in periodic oscillations. The results show

that the propagation of awareness tends to curtail the spread of infectious diseases,

and the delay fosters the spread of infectious diseases within a human population.

This provides useful information about requirements on the speed of circulation of

awareness and human responses needed to minimise the spread of infectious diseases.

In the last part of the thesis I develop and study a time-delayed model with vital

dynamics to understand the effects of vaccination on the dynamics of infectious

diseases in the presence of disease awareness. Having established well-posedness

of the model, conditions for stability of the disease-free and endemic equilibria are

derived in terms of system parameters, and conditions for a Hopf bifurcation of

the endemic steady state are obtained. To gain a better insight into the dynamics,

characteristic eigenvalues are computed numerically using the traceDDE suite, and

numerical simulations are performed to illustrate the behaviour of the model in

different dynamical regimes. DDE-BIFTOOL numerical bifurcation software is used

to continue periodic solutions of the model and to obtain information about the

dependence of their amplitudes and periods on the time delay.



Chapter 1

Introduction

Infectious diseases are known to have caused huge devastation and loss of human

life throughout the ages, and most recently they pose a great threat, especially to

developing countries [19, 49]. The last two decades have witnessed a number of

major outbreaks of infectious diseases, including avian and swine flu, SARS, Ebola,

and, most recently, the Zika virus. Due to the globalised travel and significant

advances in social media, information about these outbreaks is now spreading quite

quickly, and this, in turn, can have a profound effect on the actual epidemic dynamics

[15, 25, 43, 45].

Interestingly, awareness can have very complex and sometimes unexpected effects

on the dynamics of the disease spread. It can have a clearly positive influence,

where disease propagation is minimised or fully stopped by various disease control

measures. These include among others the use of face masks, condoms or other

tools appropriate for specific diseases, as well as vaccination and even quarantine,

with examples ranging from the plague outbreak in the English village of Eyam

in 1665-1666 [42], where the village completely sealed itself off to prevent further

transmission of plague, to more recent outbreaks of swine influenza [25] and Ebola

[45].

On the other hand, the spread of information about a disease can also result

in anxiety and panic, which can lead to undesired consequences, such as the un-

controlled spread of plague during the 1994 outbreak in one of the states in India,

where by fleeing the endemic area the people carried the disease with them, thus

infecting other parts of the country [46], or the failure of HPV vaccination campaign

1



1.1 Literature review 2

in Romania due to the negative press coverage [44]. In light of this complexity of

behavioural changes in the population in the presence of awareness, it is important

to understand how the concurrent spread of disease and awareness affects disease

dynamics.

1.1 Literature review

1.1.1 Epidemic models

The general study of the causes of epidemic outbreaks and the spread of epidemics

has led to the development of a variety of mathematical models [42]. These models

are considered very useful in describing the dynamics of infectious diseases and for

predicting how a disease can be contained or eradicated from a given geographical

location.

Epidemic dynamics are often represented mathematically through compartmental

models, such as the SIS (susceptible-infected-susceptible) model [10, 30, 35, 56, 62]

and the SIR (susceptible-infected-recovered) model [1, 5, 17, 29, 31, 34, 53, 59].

The SIS and SIR models form the bases for developing other, more advanced epi-

demic models, for instance, the SAIS model with ‘A’ denoting the aware population

[26, 48], the SIRS model [16, 66] for cases that involve a loss of immunity, the SEIR

model with ‘E’ representing the exposed population (that is, those infected but not

infectious as the disease is latent) [43, 45]. Similarly, there are epidemic models that

use separate compartments for the vaccinated (V) individuals [3, 27, 54, 58], the

cumulative density of awareness programs (M) [19, 39, 40, 47, 49, 68], the hospital-

ized (H) [36, 60] and treated (T) individuals [23, 28, 61] to analyse their respective

impacts on the disease dynamics via the SIS, SIR, SEIR and SIRS epidemic models

as appropriate.

A simple SIS model for a disease spreading in a closed homogeneously mixed

population can be represented mathematically as

dS

dt
= −β S I

N
+ r I,

dI

dt
=
β S I

N
− r I,

(1.1)

where S and I are in proportion to the entire population, N . The parameter β is
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the transmission rate of infection from the infected to the susceptible, and r denotes

the rate of recovery of the infected individuals, that is, 1/r measures the duration

of time spent in the infectious state. Introducing non-dimensional quantities s = S
N

and i = I
N

, this model can be equivalently rewritten in the form

ds

dt
= −β s i+ r i,

di

dt
= β s i− r i.

Similarly, a simple SIRS epidemic model can be written as follows

dS

dt
= −β S I

N
+ δ R,

dI

dt
=
β S I

N
− r I,

dR

dt
= r I − δ R,

(1.2)

with δ denoting the rate at which the recovered lose their immunity over time.

Models (1.1) and (1.2) represent a constant population, since the sum of the

right-hand sides of all equations is equal to zero. Considering the model (1.2), we

have
dS

dt
+
dI

dt
+
dR

dt
= 0 ⇒ S(t) + I(t) +R(t) = N.

The SIRS epidemic model can be analysed using the initial conditions

S(0) = S0 > 0, I(0) = I0 > 0, and R(0) = 0,

which imply

dI

dt

∣∣∣∣
t=0

=
β S0 I0

N
− r I0 =

β I0

N

(
S0 −

N r

β

) > 0,

< 0,

if S0

>
N r
β
,

< N r
β
,

and
dS

dt

∣∣∣∣
t=0

= −β S0 I0

N
≤ 0.

Hence, if S0 <
N r
β

, it implies that

dI

dt
=
β I

N

(
S − N r

β

)
≤ 0 for all t ≥ 0.

Therefore, I0 > I(t) → 0 as t → ∞, and the disease fades out, thus preventing an

epidemic outbreak. On the other hand, for S0 >
N r
β

, there is an epidemic outbreak,
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as for sufficiently small t, we have I(t) > I0, that is, the infected population I(t)

increases.

In this case, the basic reproductive number, R0, which is defined as the number

of secondary infections that occur when an infected individual is introduced into a

fully susceptible population, can be readily found as R0 = β
r
. Hence for R0 > 1, the

spread of the disease reaches an epidemic state, while for R0 < 1 the infection dies

out.

The study of epidemiology over the past years has witnessed much attention been

focused on areas that study the dynamics of epidemic models with time delay [34].

Time delay models are often used to evaluate or analyse the incubation period of

infectious diseases, the periods of infection of the infected individuals, the immunity

period of recovery of the disease, and in the case of awareness, the delay in individual

responses to available information and/or the delay in awareness circulation [1, 18,

34, 59, 63]. Consequently, delay models that describe situations as aforementioned

are best represented by delay differential equations. A delay differential equation

can be written in the following general form

dz(t)

dt
= f

(
t, z(t), zτ

)
, z(t) ∈ Rn, and zτ = {z(τ) : τ ≤ t},

where zτ represents the solution of the system in the past, and τ is the representation

for time delay. Delay differential equations can take the form of a continuous delay

equation
dz(t)

dt
= f

(
t, z(t),

∫ 0

−∞
z(t+ τ)ekτdτ

)
,

or discrete delay equation

dz(t)

dt
= f

(
t, z(t), z(t− τ1), . . . , z(t− τm)

)
, for τ1 > · · · > τm ≥ 0.

In the case of a single delay term, the discrete equation is expressed as

dz(t)

dt
= f

(
t, z(t), z(t− τ)

)
, for τ ≥ 0. (1.3)

The solutions of delay differential equation are often obtained using the method of

steps [13]. For instance, considering (1.3) with the initial condition z̃ : [−τ, 0]→ Rn,

it implies that the solution z(t) over the interval [0, τ ] satisfies the inhomogeneous

initial value problem

dz(t)

dt
= f

(
z(t), z̃(t− τ)

)
, z(0) = z̃(0).
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Linear discrete delay equations have the form

dz(t)

dt
= A0 z(t) + A1 z(t− τ1) + · · ·+ Am z(t− τm), (1.4)

where Ai ∈ Rn×n, i = 0, 1, 2, . . . ,m. Just like the case of ordinary differential

equation, the linear discrete delay equation can be analysed using the characteristic

equation. In the case of (1.4), the characteristic equation has the form,

det
(
−k I + A0 + A1 e

−k τ1 + · · ·+ Am e
−k τm

)
= 0, (1.5)

where k denotes the eigenvalue, and I is the n×n identity matrix. Due to the pres-

ence of the exponentials in the characteristic equation, the characteristic equation

(1.5) has an infinite number of eigenvalues unlike the case of ordinary differential

equations. However, despite the infinite number of eigenvalues, only a finite number

of them are in the right complex half-plane [13, 38].

Delay differential equations differ from ordinary differential equations in the fact

that, with delay differential equations, past history influences present dynamics.

Considering the following linear first-order ordinary differential equation,

dz(t)

dt
= x0 z(t), z(0) = 1, (1.6)

with x0 being a positive constant. The solution of this equation can be derived using

the method of separation of variables which implies

dz(t)

z(t)
= x0 dt,

and integrating both sides of this equation gives∫
dz(t)

z(t)
=

∫
x0 dt ⇒ ln z(t) = x0 t+ c,

where c is the constant of integration. Hence, we obtain

z(t) = ex0 t+ c = y0 e
x0 t, with y0 = ec.

Using the initial condition, z(0) = 1, the solution of (1.6) has the form

z(t) = ex0 t. (1.7)

Consequently, the present value of z, that is, z(0) = 1, determines the future value

of z at any given time, t. An equivalent delay differential equation would have a

form

dz(t)

dt
= x0 z(t− τ), z(s) = 1, with s ∈ [−τ, 0). (1.8)
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Figure 1.1: Dynamics of solutions representing ordinary differential equation (1.6) in plot (a) and delay differential

equation (1.8) with x0 = −0.2 in plots (b) - (d).

In contrast to (1.6), the initial condition is given by a function defined over a finite

time interval [13], and by substituting z(t) = y0 e
k t and its derivative into (1.8) we

obtain

k y0 e
k t = x0 y0 e

k (t−τ) ⇒ k ek t = x0 e
k t e−k τ ,

multiplying both sides of this equation with the inverse of ek t gives

k = x0 e
−k τ .

Hence, the solution of the delay differential equation (1.8) takes the form

z(t) = y0 e
k t, where k = x0 e

−k τ . (1.9)

Considering (1.9) for τ = 0, we have k = x0 , which implies that the system (1.8)

is linearly asymptotically stable whenever x0 < 0 and unstable for x0 > 0. These

results coincide with the dynamics of the ordinary differential equation (1.6). For

τ > 0, we note that k = 0 is not a solution of (1.8), therefore considering the solution

in the form k = i µ gives

i µ = x0 e
−i µ τ

= x0

[
cos(µ τ)− i sin(µ τ)

]
.
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Equating the real and imaginary parts give the conditions for oscillatory solution as

cos(µ τ) = 0 and µ = −x0 sin(µ τ),

and for cos(µ τ) = 0 we have infinite number of solutions for µ τ but since cosine

function has a period of 2 π, it implies that cos(µ τ) = 0 yields µ τ = π
2

or µ τ = 3π
2

within the interval (0, 2π). Hence, from µ = −x0 sin(µ τ) we obtain

x0 τ = −π
2

when µ τ =
π

2
,

and

x0 τ =
3π

2
when µ τ =

3π

2
.

Therefore, the following values of the time delay can give rise to periodic solutions:

i) µ τ =
π

2
and x0 τ = −π

2
, ii) µ τ =

3π

2
and x0 τ =

3 π

2
.

Figure 1.1 illustrates the respective dynamics of the steady states as regard the

ordinary differential equation (1.6) and the delay differential equation (1.8).

1.1.2 Epidemic models with population awareness

A number of mathematical models have looked into the effects of information and

awareness on the spread of epidemics. These models can be roughly divided into two

major classes: network-based models, where individuals are represented as nodes of

a network, and edges correspond to possible connections along which a disease can

be transmitted [17, 18, 20, 23, 26, 48, 62, 65], and mean-field models that assume

global mixing between individuals in the population [9, 10, 35, 36, 56, 58].

Funk et al. [17] investigated how the spread of awareness prompted by a first-

hand contact with the disease affects the disease dynamics. They showed that in a

social network, the spread of awareness and the resulting reduction in susceptibility

does not only lower the incidence of the disease, but in some cases can even prevent

onset of epidemics, thus implying that awareness can act as an effective measure of

disease control. Furthermore, their results suggest that in the presence of an infec-

tious disease, social distancing should be considered not only from the perspective

of some centrally controlled action, but also in terms of self-initiated behavioural
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changes of individuals. This is further supported by Kleczkowski et al. [29] who ana-

lysed two dimensions of behavioural changes: reduction in the number of contacts

(staying at home) and reduction in the likelihood of contacts resulting in infections

(washing hands). Their results revealed that “washing hands” appeared more ef-

fective for short-lived diseases, while “staying at home” was better for long-lived

diseases.

Mean-field models have provided an alternative approach for modelling the effects

of awareness on disease transmission. One possibility is to represent awareness as

the reduction of the transmission (contact) rate by some factor that grows with the

number of infected individuals, with the common choices being either a saturated

[10, 35, 56, 58] or an exponential [9, 36, 57] growth of the reduction factor. In

the specific context of STIs, most individuals are actually aware of the spreading

infection but they may still choose to not respond to the threat. Kiss et al. [28]

have considered the effects of disease awareness in the case of STIs, where the rate

of information transmission has the form of a saturating function of the number

of infected individuals, and the value of information is allowed to decay over time.

The authors have shown that whilst the population-wide (global) awareness does

not affect the epidemic threshold, it reduces the infection prevalence at endemic

equilibrium.

Another way to include awareness in mean-field models is by introducing a sep-

arate compartment for the “media” variable that effectively represents the level of

awareness in the population, and the populations move from the unaware to aware

compartments at rates proportional to this level of awareness [39, 40, 41, 49]. Mean-

field models have highlighted a number of important features of dynamics associated

with the simultaneous spread of disease and awareness, such as the occurrence of

multiple disease outbreaks due to the spread of information [36], co-existence of mul-

tiple feasible equilibria [9, 36], as well as helped to analyse optimal disease control

programs [35, 47, 58, 61] and the role of time delay in the response to awareness

campaigns on disease dynamics [19, 66, 67, 68].
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1.1.3 Time delayed models with population awareness

The significance of awareness creation cannot be overemphasized, as both local and

global dissemination of information play very important roles in influencing the

behavioural changes in humans [16, 23, 39, 49, 60, 62]. These behavioural changes

often generate practices that protect individuals from infection, and, consequently,

produce an impact on the dynamics of the spread of infectious diseases [17, 48,

49, 68]. Wu et al. [65] noted that local dissemination of awareness is effective at

stopping the spread of infectious diseases, while the global circulation of awareness

helps in curtailing the prevalence of the disease.

Public education at an early stage of an outbreak is considered very important

in controlling the spread of infectious diseases. This is particularly important in

the cases when the pharmaceutical intervention seems to be delayed as a result of

prolonged processes of either discovering the nature of the pathogen or developing

the required vaccine, or determining the treatment procedures [40, 56]. In such

cases, the population could employ other preventive and/or control measures when

informed of the infectious disease. According to Misra et al. [40], people largely

depend on the information released by the media and other global sources in order

to plan their respective movements and behaviour in the case of an infectious disease

outbreak. They act on available information to control and prevent further spread of

the pathogen in circulation. Consequently, the delay in disseminating such valuable

information or awareness could eventually cause more harm.

In the past, early dissemination of information concerning an outbreak yielded

positive results and assisted in providing detailed records of the prevalence of infec-

tious diseases, controlling subsequent spread of infection, enhancing psychological

impact on individual behaviour and response to treatment and preventative meas-

ures [56, 60]. Recent examples include the cases of SARS outbreak in 2003, H1N1

influenza pandemic in 2009 [17, 49, 62], and the spread of HIV/AIDS in Bangladesh

among married couples [49]. The delay in the impact of awareness could be attrib-

uted to a number of factors that include the circulation of misleading information

and the misinterpretation of accessed information [17, 56, 58, 67], which often leads

to devastating consequences. For instance, the spread of rumors, which according to

[16, 17] is similar to the spread of infectious diseases, is often a result of the circula-
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tion of information from wrong channels (sources) or the spreading of misinterpreted

information about the spread of the disease.

Time delays in epidemic models often represent the waiting periods at different

stages, such as the incubation period of infectious diseases (that is the elapsed time

between when a susceptible is infected by a pathogen and when they become in-

fective), the duration of infection of patients, the period of immunity to the disease

(recovery period), the time of response of individuals to available information (alert-

ness to awareness) [1, 34, 59, 63]. Dynamical systems based on ordinary differential

equation assume implicitly that all these periods are exponentially distributed. One

of the practically important and epidemiologically relevant issues is the existence

of a non-negligible time delays associated with reporting of infected cases and indi-

viduals’ response to available information about the disease.

A number of models have looked into the effects of these time delays on the

disease dynamics. Zuo et al. [68] included time delay in the equation for the “media”

variable M to account for a delayed reporting of cases of infections, while Misra

et al. [41] have also included some degree of global awareness. Zhao et al. [66]

incorporated delayed reporting into the reduced disease transmission rate. Zuo and

Liu [67] focused on the analysis of the time delay between reports of infection and

changes in the behaviour. In all these models, the disease-free steady state is stable

when some basic reproduction number R0 that depends on the disease parameters

only satisfies the condition R0 < 1, and for R0 > 1, the disease-free steady state is

unstable regardless of the value of the time delay. Also, for R0 > 1, each of these

models has a feasible endemic steady state that is stable for a zero time delay, and

in the models of Zuo et al. [68], Zhao et al. [66], and Misra et al. [41] it can

undergo Hopf bifurcation at certain value of the time delay, whereas in the model

of Zuo and Liu [67], the endemic steady state is globally asymptotically stable

independent of the time delay, provided it is biologically feasible. Greenhalgh et

al. [19] have included both the delay in reporting of infected cases, and another

delay representing the loss of disease awareness after a fixed period of time. They

have shown that increasing the duration of awareness leads to a reduced equilibrium

number of infected individuals, and both time delays can lead to a destabilisation

of the endemic equilibrium and onset of oscillations.
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1.1.4 Time delayed models with population awareness and

vaccination

Vaccines are known to be effective means of disease control and prevention [14,

21, 27, 53], having led to a complete eradication of smallpox [4, 35] and a sub-

stantial reduction in the cases of polio, measles, mumps, rubella. Latest WHO

forecasts suggest expected eradication of measles and mumps in Europe in the next

few years [64]. Depending on a particular disease and each individual vaccine, the

vaccine-induced immunity may be life-long, or individuals may require subsequent

vaccinations to improve their immunity status. Another relevant aspect is vaccine

“leakiness” [21, 22], which describes the situation where even with a complete popu-

lation coverage, some individuals are unable to develop protective antibodies, which

makes them susceptible to further disease outbreaks.

In order to achieve maximum impact, every vaccination campaign should be

accompanied by appropriate information campaigns that educate individuals about

the need of vaccination to prevent the spread of infection and achieve the desired

level of herd immunity [27]. In some cases, negative press coverage has led to a

reduction in vaccine uptake or even complete disruption of the vaccination campaign,

as has been the case with an HPV vaccine in Romania [44] and the MMR vaccine

in the UK [8]. Furthermore, fears associated with possible side effects or incorrect

perceptions about vaccine efficiency may also be detrimental to the vaccine uptake

and subsequent success [3, 54].

A number of mathematical models have looked into the dynamics of vaccination

[2, 3, 11, 24, 27, 30, 50, 55] focusing on different types of vaccination schedules, vari-

ous scenarios of vaccine uptake and efficiency, and the resulting control of epidemics.

Some work has also been done on developing techniques for assessment and quan-

tifying of vaccine efficacy and efficiency [14, 21, 53]. More recently, attention has

turned to vaccination models that include different types of population awareness

[35, 52, 58] and/or time delays due to either epidemiological properties of infection,

such as latency or temporary immunity, or time delay in individuals’ responses to

information about the disease [1, 32, 37, 51].
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1.2 Thesis outline

The research in this thesis focuses on the mathematical modelling of epidemics with

account for population awareness.

In Chapter 2, I present and analyse an epidemic model where the unaware sus-

ceptible, infected and recovered populations can all become aware of an invading

disease through various means, such as the media, health campaign programme,

etc. in addition to direct interactions between individuals. Feasibility and stability

of different steady states are established in terms of disease parameters, and numer-

ical simulations are performed to illustrate the behaviour of the model in different

dynamical regimes.

Chapter 3 derives a time-delayed SIS epidemic model with population awareness

to evaluate the impact of time delay in the response of unaware individuals to

available information on the epidemic dynamics. Conditions for stability and the

Hopf bifurcation of the endemic steady state are found in terms of system parameters

and the time delay. Numerical bifurcation analysis reveal how the amplitude and

the period of the periodic solutions vary with the response time delay.

In Chapter 4, an SIRS time delayed model is developed to investigate the ef-

fects of vaccination on the dynamics of the infectious disease, which is spreading

in a population concurrently with awareness. The model considers contributions to

the overall awareness from a global information campaign, direct contacts between

unaware and aware individuals, and reported cases of infection. It is assumed that

there is some time delay between individuals becoming aware and modifying their

behaviour. Vaccination is administered to newborns, as well as to aware individuals,

and it is further assumed that vaccine-induced immunity may wane with time. I

show how different types of awareness and vaccination rates affect the disease dy-

namics, and how the time delay in individuals’ response can lead to the onset of

oscillations around the endemic equilibrium.

Chapter 5 contains the summary and discussion of the main results of thesis, as

well as directions for further research.



Chapter 2

Mathematical model for the

impact of awareness on the

dynamics of infectious diseases

In an outbreak of infectious disease, people sometimes change their behaviour not

necessarily because they were infected by the disease but often as a result of the

acquired information from the media or awareness campaigns. However, information

from global sources such as the media and health campaign usually pay attention

to high-profile diseases and large statistics of reported cases of infection which in

most cases generates low amount of awareness among the people. Consequently,

awareness prompt by individuals hearing of others being infected as they interact

or by other forms of local information transmission tends to increase in the advent

of disease outbreak not covered by global sources of awareness [16].

Earlier work has highlighted the fact that the spread of awareness from both local

and global sources of information influence changes in human behaviour, which in

turn, affects the spread of infectious diseases within the population. This chapter

focuses on how the dissemination of local awareness arising from direct contacts

between unaware and aware individuals, and global awareness by information cam-

paigns affect the dynamics of the disease spread. The model includes the possibility

of direct contacts between unaware and aware individuals regardless of their disease

status, and it also takes into account the global spread of awareness through various

media and information campaigns.

13
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2.1 Model derivation

In order to analyse the effects of awareness on the dynamics of a directly transmitted

disease, we use an SIRS-type model similar to a model considered in Funk et al. [16],

and divide the overall population into two major groups of compartments: unaware

susceptible, infected and recovered individuals (denoted by Sn, In and Rn) and aware

susceptible, infected and recovered individuals (denoted by Sa, Ia and Ra). A disease

is characterised by a transmission rate β for unaware population, which is reduced

by the factors 0 < σi < 1 and 0 < σs < 1 that represent the decrease in infectivity

and susceptibility, respectively. A reduction in infectivity occurs due to infected

individuals taking treatment or possibly staying at home (quarantine) to reduce their

contacts, while a reduction in susceptibility is associated with susceptible individuals

taking measures for disease prevention, such as face masks, vaccination or tablets

etc. Infected individuals recover at a rate r, which is further amplified by a factor

ε > 1 for aware individuals. Upon recovery, it is assumed that individuals remain

immune to the disease for an average period of 1/δ, after which they return to their

respective class of susceptibles. The duration of temporary immunity for aware

individuals is taken to be longer by a factor of 1/φ [16].

dSn
dt

= −(In + σi Ia) β Sn
N

− α (Sa + Ia +Ra)Sn
N

+ λSa + δ Rn,

dIn
dt

=
(In + σi Ia) β Sn

N
− α (Sa + Ia +Ra) In

N
+ λ Ia − r In − ω In,

dRn

dt
= −α (Sa + Ia +Ra)Rn

N
+ λRa − δ Rn + r In,

dSa
dt

= −(In + σi Ia)σs β Sa
N

+
α (Sa + Ia +Ra)Sn

N
− λSa + φ δ Ra,

dIa
dt

=
(In + σi Ia)σs β Sa

N
+
α (Sa + Ia +Ra) In

N
− λ Ia − ε r Ia + ω In,

dRa

dt
=
α (Sa + Ia +Ra)Rn

N
− λRa − φ δ Ra + ε r Ia.

(2.1)

Awareness is assumed to spread from the aware section of the population to

the unaware at a rate α and to be lost at a rate λ. Besides this ‘local’ awareness

associated with direct contacts between unaware and aware individuals, we also

include a possibility of a general population-wide campaign aimed at reducing the

impact of the disease by distributing information about this disease. Formally, this

is represented in the model by direct transitions from each unaware population to
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Sn In Rn

Sa Ia Ra

β, σiβ

α

r

ωα

δ

α

σsβ, σiσsβ

λ

εr

λ λ

φδ

Figure 2.1: Diagram of transitions in model (2.1). Solid lines represent transitions associated with individuals.

Arrow stands for “possible transition”: doubled arrow head indicating processes subject to contacts on the disease

(solid lines) or awareness (dash lines) networks, single head arrows indicate processes that are not subject to contact.

an associated aware population (e.g., from Sn to Sa) at a rate ω. With the above

assumptions, the model for the simultaneous spread of disease and awareness takes

the form

dSn
dt

= −(In + σi Ia) β Sn
N

− α (Sa + Ia +Ra)Sn
N

+ λSa + δ Rn − ω Sn,

dIn
dt

=
(In + σi Ia) β Sn

N
− α (Sa + Ia +Ra) In

N
+ λ Ia − r In − ω In,

dRn

dt
= −α (Sa + Ia +Ra)Rn

N
+ λRa − δ Rn + r In − ωRn,

dSa
dt

= −(In + σi Ia)σs β Sa
N

+
α (Sa + Ia +Ra)Sn

N
− λSa + φ δ Ra + ω Sn,

dIa
dt

=
(In + σi Ia)σs β Sa

N
+
α (Sa + Ia +Ra) In

N
− λ Ia − ε r Ia + ω In,

dRa

dt
=
α (Sa + Ia +Ra)Rn

N
− λRa − φ δ Ra + ε r Ia + ωRn.

(2.2)

This model generalises model (2.1), by allowing the unaware susceptible and

recovered populations to acquire information through a global awareness programme

without the need for contacts with aware individuals. This provides a very important

practical difference, since preventing the disease through an appropriate information

programme is very effective and more economical than treating the disease once it

has started spreading in the population. The system of equations (2.1) is represented

by the model diagram shown in Figure 2.1, while Figure 2.2 shows the model diagram

for (2.2) with all the transitions between different compartments.

Since model (2.2) does not include vital dynamics and there are no disease-
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Sn In Rn

Sa Ia Ra

β, σiβ

α ω

r

ωα

δ

α ω

σsβ, σiσsβ

λ

εr

λ λ

φδ

Figure 2.2: Model diagram: dynamics of transitions in model (2.2). Solid lines represent transitions associated with

individuals. Arrow stands for “possible transition”: doubled arrow head indicating processes subject to contacts

on the disease (solid lines) or awareness (dash lines) networks, single head arrows indicate processes that are not

subject to contact.

induced deaths, it implies that the total population N(t) = Nn(t) + Na(t) = N is

constant, where Nn(t) = Sn(t) + In(t) +Rn(t) and Na(t) = Sa(t) + Ia(t) +Ra(t) are

total populations of unaware and aware individuals, respectively. It is easy to show

that model (2.2) is well-posed, i.e. its solutions are non-negative for all t ≥ 0.

Summing up the last three equations in (2.2) gives

dNa

dt
=
αNaNn

N
− λNa + ωNn, (2.3)

and using the fact that Nn(t) = N − Na(t) yields the following logistic-type

equation for the total aware population

dNa

dt
=
αNa (N −Na)

N
− λNa + ω (N −Na)

= bvNa

(
1− Na

K

)
+ ωN,

(2.4)

where bv = α − λ − ω and K = bv N
α

. Introducing a rescaled population

xa = Na

K
, it follows that

dxa
dt

= bv xa (1− xa) + bs, (2.5)

where bs = ωN
K

= αω
bv

. Solving this equation gives

xa (t) =
1

2 bv

[
bv + tanh

(
t
√

4 bs bv + b2
v

2
+
c1

√
4 bs bv + b2

v

2

) √
4 bs bv + b2

v

]
,
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or, in terms of original variables,

Na (t) =
N

2α

[
bv + tanh

(
t
√

4 bs bv + b2
v

2
+
c1

√
4 bs bv + b2

v

2

) √
4 bs bv + b2

v

]
.

At time, t = 0, Na(0) = 0, therefore c1 =

−2 tanh−1

(
bv√

4 bs bv+b2v

)
√

4 bs bv + b2
v

, and

Na (t) =
N

2α

[
bv + tanh

(
t
√

4 bs bv + b2
v

2
− tanh−1

(
bv√

4 bs bv + b2
v

))√
4 bs bv + b2

v

]
,

and as t→∞, Na(t)→ Na(∞) = N
2α

(
bv +

√
4 bs bv + b2

v

)
, since tanh(∞) = 1.

Equivalently, one can rewrite this as

N

2α

(
bv +

√
4 bs bv + b2

v

)
=

N

2α

(
α− λ− ω +

√
4αω + (α− λ− ω)2

)
= N

1

2

(
1− λ+ ω

α

)
+

√
1

4

(
1− λ+ ω

α

)2

+
ω

α


= N h,

where

h =
1

2

(
1− λ+ ω

α

)
+

√
1

4

(
1− λ+ ω

α

)2

+
ω

α
. (2.6)

Hence, one can write

Na(∞) = N h and Nn(∞) = N −Na(∞) = N (1− h), 0 < h < 1.

This implies that as t→∞, Nn(t) and Na(t) tend to some constant values that only

depend on the rates of gain of local and global awareness (α and ω) and the loss

rate of awareness λ, but are independent of the initial conditions for individual pop-

ulations or the characteristics of the disease, such as transmission rate, or durations

of recovery or temporary immunity.

2.2 Steady states

Steady states with the absence of global awareness

As a first step in the analysis, we look at possible steady states of model (2.3). In

the case when ω = 0, one possibility is a trivial case Na = Sa + Ia + Ra = 0, in
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which case all state variables are zero except for Sn = N . Therefore, we have an

equilibrium state E0 = (S◦n, 0, 0, 0, 0, 0). This is a steady state free of disease and

awareness.

Staying with the case Na = 0 we consider next the second and the third equations

of (2.2) for the case when In 6= 0, which gives

Sn =
r N

β
and Rn =

r In
δ
.

Since Sn + In +Rn = N −Na = N ⇒ In +Rn = N − Sn, it follows therefore

that

In =
δ N

δ + r

(
1− r

β

)
, and Rn =

r N

δ + r

(
1− r

β

)
.

This gives a disease equilibrium state E1 = (S∗n, I
∗
n, R

∗
n, 0, 0, 0) independent of aware-

ness in the case when the global awareness is zero. We have

S∗n =
r N

β
, I∗n =

δ N

δ + r

(
1− r

β

)
and R∗n =

r N

δ + r

(
1− r

β

)
,

and this steady state is biologically feasible provided Rd
0 = β

r
> 1.

Next, considering the case when In = 0 but Na > 0, we have from the fifth

equation in (2.2)

[σi σs β Sa −N (λ+ ε r)] Ia = 0,

⇒ Ia = 0 or σi σs β Sa −N (λ+ ε r) = 0,

and from the second equation

Ia = 0 or
σi β Sn
N

+ λ = 0.

Since σi β Sn

N
+ λ > 0, hence Ia = 0, which implies Rn = 0 and Ra = 0. Now, the

first and fourth equations in (2.2) reduce to

αSa Sn
N

− λSa = 0,

which implies

Sa = 0 or Sn = N
λ

α
,

but, since in this case, Sa > 0, this yields

Sn = N
λ

α
and Sa = N

(
1− λ

α

)
with Ra

0 =
α

λ
> 1.
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Therefore we have an awareness-endemic steady state E0
0 = (S∗n, 0, 0, S

∗
a, 0, 0)

established only by local awareness (through contacts) in a disease-free population

with ω = 0,

S∗n = N
λ

α
, S∗a = N

(
1− λ

α

)
and Ra

0 > 1.

Steady states with global awareness

In the case where global awareness is present, i.e. ω > 0, the disease-free steady

state is actually an awareness-endemic equilibrium which involves both unaware and

aware populations. Now, the first and the fourth equations of (2.2) reduce to

αSa Sn
N

− λSa + ω Sn = 0.

Substituting Sn = N − Sa gives the following quadratic equation

S2
a −N

(
1− λ+ ω

α

)
Sa −

ωN2

α
= 0,

with a single positive root

Sa = N

1

2

(
1− λ+ ω

α

)
+

√
1

4

(
1− λ+ ω

α

)2

+
ω

α

 = N h,

⇒ Sa = N h and Sn = N −N h = N (1− h), 0 < h < 1.

Hence, we have an awareness-endemic equilibrium state Eω
0 = (S∗n, 0, 0, S

∗
a, 0, 0) with

ω > 0,

I∗n = I∗a = R∗n = R∗a = 0, S∗a = N h, and S∗n = N (1− h).

Earlier analysis has shown that as t → ∞, Na tends to a steady state value of

N h. Thus, the steady states of (2.2) are determined from the following system of

equations

0 = −αhSn −
(In + σi Ia) β Sn

N
+ λSa + δ Rn − ω Sn, (2.7)

0 = −αh In +
(In + σi Ia) β Sn

N
+ λ Ia − r In − ω In, (2.8)

0 = −αhRn + λRa − δ Rn + r In − ωRn, (2.9)

0 = αhSn −
(In + σi Ia)σs β Sa

N
− λSa + φ δ Ra + ω Sn, (2.10)

0 = αh In +
(In + σi Ia)σs β Sa

N
− λ Ia − ε r Ia + ω In, (2.11)

0 = αhRn − λRa − φ δ Ra + ε r Ia + ωRn. (2.12)
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Adding equations (2.7) and (2.10), (2.8) and (2.11), (2.9) and (2.12) gives

β (In + σi Ia) (Sn + σi Sa) = N (δ Rn + φ δ Ra), (2.13)

β (In + σi Ia) (Sn + σi Sa) = N (r In + ε r Ia), (2.14)

and

δ Rn + φ δ Ra = r In + ε r Ia. (2.15)

One can notice that, the equation (2.13) follows from (2.14) and (2.15). Solving

equation (2.8) for Ia gives

Ia =
[N (αh+ r + ω)− β Sn] In

N λ+ σi β Sn
,

and similarly from equation (2.11) one finds

Ia =
[N (αh+ ω) + σs β Sa] In
N (λ+ ε r)− σi σs β Sa

.

Equating these two expressions for Ia gives

[N (αh+ r + ω)− β Sn] In
N λ+ σi β Sn

=
[N (αh+ ω) + σs β Sa] In
N (λ+ ε r)− σi σs β Sa

,

which implies

Sa =
N [λ r + ε r (αh+ r + ω)]− β [σi (αh+ ω) + λ+ ε r]Sn

β σs [σi (αh+ r + ω) + λ]
.

In a similar way, we solve equations (2.9) and (2.12) to find

Ra =
(αh+ δ + ω)Rn − r In

λ
and Rn =

λRa + r In
αh+ δ + ω

,

and

Ra =
(αh+ ω)Rn + ε r Ia

λ+ φ δ
and Rn =

(λ+ φ δ)Ra − ε r Ia
αh+ ω

.

Equating the two expressions for Rn yields

Ra =
r (αh+ ω) In + ε r (αh+ δ + ω) Ia

λ δ + φ δ (αh+ δ + ω)
,

whereas, equating the expressions for Ra gives

Rn =
r (λ+ φ δ) In + λ ε r Ia
λ δ + φ δ (αh+ δ + ω)

.

Introducing the auxiliary parameters

m1 = ε r (αh+ δ + ω), m2 = λ δ + φ δ (αh+ δ + ω), m3 = λ r+ ε r (αh+ r+ ω),



2.2 Steady states 21

m4 = β [σi (αh+ ω) + λ+ ε r], m5 = β σs [σi (αh+ r + ω) + λ],

m6 = N (αh+ r + ω)− β Sn, m7 = N λ+ σi β Sn,

we have

Ia =
m6 In
m7

⇒ In =
m7 Ia
m6

,

Sa =
N m3 −m4 Sn

m5

, (2.16)

Ra =
[r (αh+ ω)m7 +m1m6] Ia

m2m6

, (2.17)

Rn =
[r (λ+ φ δ)m7 + λ ε rm6] In

m2m7

, (2.18)

this implies

Sn < min

{
N m3

m4

,
N (αh+ r + ω)

β

}
.

We recall that Sa + Ia + Ra = Na = N h and Sn + In + Rn = Nn = N − Na =

N(1− h), which gives

Ia +Ra = N h− Sa,

⇒ Ia =
m2m6 [N (m5 h−m3) +m4 Sn]

m5 [m6 (m1 +m2) + r (αh+ ω)m7]
. (2.19)

Hence,

Sn >
N (m3 −m5 h)

m4

,

and

In =
m2m7 [N (1− h)− Sn]

m2m7 + r (λ+ φ δ)m7 + λ ε rm6

. (2.20)

Consequently,

N (m3 −m5 h)

m4

< Sn < min

{
N m3

m4

,
N (αh+ r + ω)

β
, N (1− h)

}
.

Equating (2.20) with

In =
m7 Ia
m6

=
m2m7 [N (m5 h−m3) +m4 Sn]

m5 [m6 (m1 +m2) + r (αh+ ω)m7]

gives the following quadratic equation

x1 S
2
n − x2 Sn + x3 = 0,

where

x1 = β [m4 λ ε r +m5 (m1 +m2)]− β σi [m4 (m2 + λ r + r φ δ) + r (αh+ ω)m5],
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x2 = N
(
m4 λ (m2 +m3 + r φ δ) +m5 (m1 +m2) [β (1− h) + αh+ r + ω] +

r (αh+ ω)m5 [λ− σi β (1− h)]− β (m3 −m5 h) [σi (m2 + λ r + r φ δ)− λ ε r]
)
,

x3 = N2
[
m5 (1− h) [(αh+ r + ω) (m1 +m2) + λ r (αh+ ω)] +

λ (m3 −m5 h) (m2 +m3 + r φ δ)
]
.

Thus, the solution to the quadratic equation is

Sn =
x2 ±

√
x2

2 − 4x1 x3

2x1

, (2.21)

and it must lie within the interval

N (m3 −m5 h)

m4

< Sn < min

{
N m3

m4

,
N (αh+ r + ω)

β
, N (1− h)

}
.

Therefore, we obtain an endemic equilibrium state Eω
2 = (S∗n, I

∗
n, R

∗
n, S

∗
a, I
∗
a , R

∗
a),

with ω ≥ 0 and

S∗n =
x2 ±

√
x2

2 − 4x1 x3

2x1

, I∗n =
m2m7 [N (1− h)− S∗n]

m2m7 + r (λ+ φ δ)m7 + λ ε rm6

,

R∗n =
[r (λ+ φ δ)m7 + λ ε rm6] [N (1− h)− S∗n]

m2m7 + r (λ+ φ δ)m7 + λ ε rm6

,

S∗a =
N m3 −m4 S

∗
n

m5

, I∗a =
m2m6 [N (m5 h−m3) +m4 S

∗
n]

m5 [m6 (m1 +m2) + r (αh+ ω)m7]
,

R∗a =
[r (αh+ ω)m7 +m1m6] [N (m5 h−m3) +m4 S

∗
n]

m5 [m6 (m1 +m2) + r (αh+ ω)m7]
.

This steady state is only feasible when the value(s) of S∗n lie within the interval

N (m3 −m5 h)

m4

< S∗n < min

{
N m3

m4

,
N (αh+ r + ω)

β
,N (1− h)

}
.

In conclusion, the model (2.2) has the following steady states

E0 = (S◦n, 0, 0, 0, 0, 0), E1 = (S∗n, I
∗
n, R

∗
n, 0, 0, 0), for ω = 0,

Eω
0 = (S∗n, 0, 0, S

∗
a, 0, 0) and Eω

2 = (S∗n, I
∗
n, R

∗
n, S

∗
a, I
∗
a , R

∗
a), for ω ≥ 0.
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2.3 Stability analysis

Stability of steady states independent of global awareness

To analyse the stability of the different steady states, we again start by considering

the case with ω = 0 and linearise the system (2.2) near the disease-free steady state

E0. This gives the Jacobian matrix

J0 =



−ω −β δ −α + λ −α− σi β −α

0 β − r − ω 0 0 σi β + λ 0

0 r −δ − ω 0 0 λ

ω 0 0 α− λ α α + φ δ

0 ω 0 0 −λ− ε r 0

0 0 ω 0 ε r −λ− φ δ


,

with the characteristic equation for eigenvalues k, which can be factorised as follows

k (k − β + r) (k + δ) (k − α + λ) (k + λ+ ε r) (k + λ+ φ δ) = 0.

Therefore,

k1 = 0, k2 = β − r, k3 = −δ, k4 = α− λ, k5 = −λ− ε r, k6 = −λ− φ δ,

suggesting that the steady state E0 is linearly asymptotically stable, provided

β < r and α < λ,

or, equivalently if

Rd
0 =

β

r
< 1, Ra

0 =
α

λ
< 1.

Similarly, one can show that the endemic steady state E1 = (S∗n, I
∗
n, R

∗
n, 0, 0, 0),

with S∗a = I∗a = R∗a = 0 and S∗n > 0, I∗n > 0, R∗n > 0 is linearly stable whenever

Ra
0 < 1 and Rd

0 > 1, which coincides with the conditions for feasibility of this

steady state. Since this steady state is independent of awareness, one can substitute

σs = σi = ε = φ = 1 [16], which simplifies the Jacobian to

Jn =



−a1 −a2 δ −ã2 + λ −ã2 − a2 −ã2

a1 a2 − r 0 −ã1 −ã1 + a2 + λ −ã1

0 r −δ −a3 −a3 −a3 + λ

0 0 0 ã2 − a1 − λ ã2 ã2 + δ

0 0 0 ã1 + a1 ã1 − λ− r ã1

0 0 0 a3 a3 + r a3 − λ− δ


,
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with a1 = β I∗n
N

, ã1 = α I∗n
N

, a2 = β S∗
n

N
, ã2 = αS∗

n

N
, a3 = αR∗

n

N
. The characteristic

equation has the form

k (k + λ− ã2 − ã1 − a3)
[
k2 + k (a1 + δ + 2λ+ r) + (a1 + λ)(δ + r + λ) + δ r

]
×[

k2 + k (δ + r + a1 − a2) + δ (a1 − a2) + r (δ + a1)
]

= 0,

with the eigenvalues,

k1 = 0,

k2 = ã2 + ã1 + a3 − λ ⇒ k2 = αS∗
n

N
+ α I∗n

N
+ αR∗

n

N
− λ = α− λ, and

k2 < 0 if α < λ ⇒ Ra
0 < 1.

From k2 +k (a1 + δ+ 2λ+ r) + (a1 +λ) (δ+ r+λ) + δ r = 0 we have k3,4 < 0,

and from k2 + k (δ + r + a1 − a2) + δ (a1 − a2) + r (δ + a1) = 0 we obtain

k2 + k (δ + a1) + a1 (δ + r) = 0,

since

S∗n =
r N

β
and I∗n =

δ N

δ + r

(
1− r

β

)
,

⇒ a1 =
β I∗n
N

=
β δ

δ + r

(
1− r

β

)
and a2 =

β S∗n
N

= r,

hence k5,6 < 0 if a1 > 0, which is equivalent to Rd
0 > 1.

In the case where the spread of the disease is dependent on the spread of only local

awareness, i.e. in the absence of global awareness (ω = 0), one has the equilibrium

state E0
0 = (S∗n, 0, 0, S

∗
a, 0, 0) with I∗n = I∗a = R∗n = R∗a = 0 and S∗n = N λ

α
,

S∗a = N
(
1− λ

α

)
. Linearisation near this steady state yields the Jacobian

J◦s =



−a0 −a2 δ −ã2 + λ −ã2 − â2 −ã2

0 −a0 + a2 − r 0 0 â2 + λ 0

0 r −a0 − δ 0 0 λ

a0 −ã0 0 ã2 − λ ã2 − â0 ã2 + φ δ

0 a0 + ã0 0 0 â0 − λ− ε r 0

0 0 a0 0 ε r −λ− φ δ


,

with the characteristic equation

k (a0 − ã2 + λ+ k)[k2 + k (λ+ φ δ + a0 + δ) + λ δ + φ δ (a0 + δ)]×

[k2 +k (λ+ε r− â0 +a0 +r−a2)+(λ+ε r− â0) (a0 +r−a2)−(a0 + ã0) (â2 +λ)] = 0.
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where a0 = αS∗
a

N
, ã0 = σs β S∗

a

N
, â0 = σi σs β S

∗
a

N
, a2 = β S∗

n

N
, ã2 = αS∗

n

N
,

â2 = σi β S
∗
n

N
.

Hence, we obtain

k1 = 0,

k2 = ã2 − a0 − λ,

which is negative as long as α
λ
> 1, and since Ra

0 = α
λ
> 1 is the feasibility condition

of this steady state, this means that k2 < 0.

The roots k3,4 of the equation k2 + k (λ+ φ δ + a0 + δ) + λ δ + φ δ (a0 + δ) = 0

always have a negative real part, while from the equation

k2 +k (λ+ ε r− â0 +a0 + r−a2) + (λ+ ε r− â0) (a0 + r−a2)− (a0 + ã0) (â2 +λ) = 0

we have k5,6 < 0 if

λ+ ε r− â0 + a0 + r− a2 > 0 and (λ+ ε r− â0) (a0 + r− a2) > (a0 + ã0) (â2 + λ).

Since (a0 + ã0) (â2 + λ) > 0 it follows that (λ + ε r − â0) (a0 + r − a2) > 0.

Therefore, λ+ ε r− â0 + a0 + r− a2 > 0 if and only if λ+ ε r− â0 > 0 and

a0 + r − a2 > 0. Consequently, we have the conditions for stability as:

i) λ+ ε r − â0 > 0 ⇒ α (λ+ ε r) + λσi σs β > ασi σs β,

ii) a0 + r − a2 > 0 ⇒ α (α + r) > λ (β + α),

iii) (λ+ ε r − â0) (a0 + r − a2) > (a0 + ã0) (â2 + λ)

⇒ α (λ+ ε r) (α− λ+ r) > σi σs β (α− λ)(α− λ+ r) + β λ (λ+ ε r) +

λ (α− λ) (α + σs β + σi β).

This implies

α (λ+ ε r) (α− λ+ r) > σi σs β (α− λ)(α− λ+ r),

which can be recast as

α (λ+ ε r) + λσi σs β > ασi σs β.

Similarly, we have

α (λ+ ε r) (α− λ+ r) > β λ (λ+ ε r),

⇒ α (α + r) > λ (β + α).
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This shows that conditions (i) and (ii) are always satisfied when the condition

(iii) is satisfied. Consequently, the single condition for stability is

α r [λ+ ε (α− λ+ r)] > β (α− λ) [σi σs (α− λ+ r) + λ (σs + σi)] + β λ (λ+ ε r),

which can be rewritten as

β

r
<

α [λ+ ε (α− λ+ r)]

(α− λ) [σi σs (α− λ+ r) + λ (σs + σi)] + λ (λ+ ε r)
,

or Rd
0 < ϕ◦ with

ϕ◦ =
α [λ+ ε (α− λ+ r)]

(α− λ) [σi σs (α− λ+ r) + λ (σs + σi)] + λ (λ+ ε r)
.

Therefore, the awareness-endemic state E0
0 is linearly stable provided

Rd
ϕ◦ =

1

ϕ◦
Rd

0 < 1.

Stability of steady states with global awareness

Considering stability of the awareness-endemic steady state Eω
0 = (S∗n, 0, 0, S

∗
a, 0, 0)

with I∗n = I∗a = R∗n = R∗a = 0, S∗a = N h, and S∗n = N(1 − h), we introduce an

auxiliary parameter as = αS∗
a

N
+ ω, and obtain the Jacobian matrix

Js =



−as −a2 δ −ã2 + λ −ã2 − â2 −ã2

0 −as + a2 − r 0 0 â2 + λ 0

0 r −as − δ 0 0 λ

as −ã0 0 ã2 − λ ã2 − â0 ã2 + φ δ

0 as + ã0 0 0 â0 − λ− ε r 0

0 0 as 0 ε r −λ− φ δ


,

with the characteristics equation

k (as − ã2 + λ+ k)
[
k2 + k (λ+ φ δ + as + δ) + λ δ + φ δ (as + δ)

]
×[

k2 +k (λ+ε r− â0 +as+r−a2)+(λ+ε r− â0) (as+r−a2)−(as+ ã0) (â2 +λ)
]

= 0,

which gives,

k1 = 0,

k2 = ã2 − as − λ,

which is negative, provided ã2 < as + λ, or equivalently, αS∗
n

N
< αS∗

a

N
+ ω + λ,
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but since S∗a = N h and S∗n = N (1 − h), the above inequality takes the form

α (1− h) < αh+ ω + λ, which means

λ+ ω

α
> 1− 2h ⇒ h > 1

2

(
1− λ+ω

α

)
.

From the expression for h in (2.6), it follows that this condition is always satisfied,

hence k2 < 0.

By the Routh-Hurwitz criterion, the roots of the equation

k2 + k (λ+ φ δ + as + δ) + λ δ + φ δ (as + δ) = 0

always have negative real part, and from

k2 + k (λ+ ε r− â0 +as + r−a2) + (λ+ ε r− â0) (as + r−a2)− (as + ã0) (â2 +λ) = 0

we obtain k5,6 < 0 if

λ+ ε r− â0 + as + r− a2 > 0 and (λ+ ε r− â0) (as + r− a2) > (as + ã0) (â2 + λ).

Since (as+ ã0) (â2 +λ) > 0, this implies that (λ+ ε r− â0) (as+ r−a2) > 0.

Hence, λ + ε r − â0 + as + r − a2 > 0 if and only if λ + ε r − â0 > 0 and

as + r − a2 > 0.

Therefore, we have the conditions for stability as follows:

i) λ+ ε r − â0 > 0 ⇒ λ+ ε r > σi σs β h,

ii) as + r − a2 > 0 ⇒ αh+ ω + r > β (1− h),

iii) (λ+ ε r − â0) (as + r − a2) > (as + ã0) (â2 + λ),

⇒ (λ+ ε r) (αh+ ω + r) > σi σs β h (αh+ ω + r) + β (1− h) (λ+ ε r) +

λ (αh+ ω + σs β h) + σi β (1− h) (αh+ ω). (2.22)

If the inequality (2.22) holds, it implies

(λ+ ε r) (αh+ ω + r) > σi σs β h (αh+ ω + r),

⇒ λ+ ε r > σi σs β h,

and similarly,

(λ+ ε r) (αh+ ω + r) > β (1− h) (λ+ ε r),

⇒ αh+ ω + r > β (1− h).
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Hence, conditions (i) and (ii) are always satisfied if the condition (iii) is satisfied.

The condition for stability is thus given by a single inequality (2.22) which can be

rewritten as follows

β

r
<

λ+ ε (αh+ r + ω)

(1− h) [σi (αh+ ω) + λ+ ε r] + hσs [σi (αh+ r + ω) + λ]
.

Let

ϕ =
λ+ ε (αh+ r + ω)

(1− h) [σi (αh+ ω) + λ+ ε r] + hσs [σi (αh+ r + ω) + λ]
⇒ Rd

0 < ϕ.

Therefore, the awareness-endemic state Eω
0 = (S∗n, 0, 0, S

∗
a, 0, 0) with ω > 0 is linearly

stable if

Rd
ϕ =

1

ϕ
Rd

0 < 1.

To determine the stability of the steady state Eω
2 = (S∗n, I

∗
n, R

∗
n, S

∗
a, I
∗
a , R

∗
a) with

S∗n > 0, I∗n > 0, R∗n > 0, S∗a > 0, I∗a > 0, R∗a > 0 for ω ≥ 0 we introduce auxiliary

parameters ãs = αh + ω, a4 = (I∗n+σi I
∗
a)β

N
, ã4 = (I∗n+σi I

∗
a)σs β

N
, and obtain the

Jacobian matrix

Ja =



−ãs − a4 −a2 δ λ −â2 0

a4 −ãs + a2 − r 0 0 â2 + λ 0

0 r −ãs − δ 0 0 λ

ãs −ã0 0 −ã4 − λ −â0 φ δ

0 ãs + ã0 0 ã4 â0 − λ− ε r 0

0 0 ãs 0 ε r −λ− φ δ


,

with the associated characteristic equation

k (k + ãs + λ)(k4 + P1 k
3 + P2 k

2 + P3 k + P4) = 0, (2.23)

where

P1 = x4 + x5 + x6 + λ,

P2 = δ(φδ + φãs + λ) + (x4 + x5)(λ+ x6) + r(a4 + ã4ε) + x4 x5 − (ãs + ã0)(λ+ â2),

P3 = δ (φ δ + φ ãs + λ) (x4 + x5) + (λ+ x6) (x4 x5 − (ãs + ã0) (λ+ â2)) +

r a4 (x4 + φ δ + λ) + ã4 ε r (x5 + ãs + δ),

P4 = δ(φ δ + φ ãs + λ)[x4 x5 − (ãs + ã0)(λ+ â2)] + r [a4 x4(λ+ φ δ) + ã4 ãs(λ+ â2)]

+ ε r (a4 ã4 r + a4 λ (ãs + ã0) + x5 ã4 (δ + ãs)),
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and

x4 = ε r + ã4 + λ− â0, x5 = ãs + a4 + r − a2 and x6 = φ δ + δ + ãs.

Two of the eigenvalues of the characteristic equation (2.23) can be readily found as

k = 0 and k = −(αh + ω + λ), so the stability of the endemic steady state Eω
2 is

determined by the roots of the quartic

k4 + P1 k
3 + P2 k

2 + P3 k + P4 = 0.

Using the Routh-Hurwitz criterion, one can conclude that the steady state Eω
2 with

ω ≥ 0 is linearly asymptotically stable if and only if the following conditions hold

[6, 12, 33].

P4 > 0, P1 > 0, P2 > 0 and P3 (P1 P2 − P3) > P 2
1 P4. (2.24)

Figures 2.3, 2.4 and 2.5 illustrate how the stability of different steady states varies

with parameters. All of these Figures indicate that the endemic steady state is only

biologically feasible and stable in the parameter region where the disease-free steady

state is unstable. The region of stability of the disease-free steady state increases

with α and ω, implying that increasing awareness allows disease eradication and

prevents establishment of some steady levels of disease even for higher values of the

disease transmission rate β. Similar effect is observed by increasing the recovery rate

r, whereby disease is eradicated not so much through the spread of awareness, as due

to the fact that infected individuals recover faster than they are able to spread the

infection. Increasing the rate λ of awareness loss naturally has the opposite effect

of increasing the parameter region where the endemic steady state is biologically

feasible and stable.

2.4 Effects of awareness on system dynamics

In order to get a better understanding of relative effects of different aspects of aware-

ness on determining the stability of different steady states and eventual evolution of

the system, we fix three of the four parameters, σs, σi, ε and φ, to be equal to one,

and allow one of them to vary to individually investigate the effect it has on the

disease propagation. Qualitative behaviour is similar in all cases considered below
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Figure 2.3: Existence and stability of different steady states. The disease-free steady state is stable to the right

of the surface in (a) and below each curve in (b), and in these parameter regions the endemic steady state is not

feasible. To the left of the surface in (a) and above each curve in (b), the disease-free steady state is unstable, while

the endemic steady state exists and is stable. Parameter values are λ = 0.6, r = 0.6, σi = 0.5, σs = 0.5, φ = 0.3,

ε = 2, δ = 0.4.

in that in the absence of global awareness (ω = 0), the epidemic threshold is Rd
0 > 1

for Ra
0 < 1, and Rd

0 > ϕ◦ with ϕ◦ = ϕ (ω = 0) for Ra
0 > 1, whereas for ω > 0, it is

given by Rd
0 > ϕ regardless of the value of Ra

0. In the case of ω = 0 and Ra
0 < 1, the

disease is established in the form of a stable disease-endemic steady state E1, while

for Ra
0 > 1, and for ω > 0 and any value of Ra

0, the system settles on the stable

endemic equilibrium Eω
2 .

2.4.1 Reduced susceptibility

In the case of reduced susceptibility, where σi = ε = φ = 1 and 0 ≤ σs < 1, the

epidemic threshold is given by

ϕ =
λ+ αh+ r + ω

(1− h) (αh+ ω + λ+ r) + hσs (αh+ r + ω + λ)

= 1 +
h (1− σs)

1− h (1− σs)
,

(2.25)

where h was introduced in (2.6) and can be equivalently rewritten as

h =
1

2

(
1− 1

Ra
0

− ω

α

)
+

√
1

4

(
1− 1

Ra
0

− ω

α

)2

+
ω

α
.

For ω = 0, the expression for epidemic threshold reduces to

ϕ◦ = 1 +
(Ra

0 − 1)(1− σs)
1 + (Ra

0 − 1)σs
. (2.26)
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Figure 2.4: Existence and stability of different steady states. The disease-free steady state is stable to the right

of the surface in (a) and below each curve in (b), and in these parameter regions the endemic steady state is not

feasible. To the left of the surface in (a) and above each curve in (b), the disease-free steady state is unstable, while

the endemic steady state exists and is stable. Parameter values are α = 0.4, λ = 0.6, σi = 0.5, σs = 0.5, φ = 0.3,

ε = 2, δ = 0.4.

When α → ∞, this threshold tends to the same limit of 1/σs as the epidemic

threshold in a model of Funk et al. [16], thus suggesting that when the level of local

awareness is much higher than that of global awareness, it is this local awareness that

dominates the dynamics, and then it does not really matter whether global awareness

extends only to susceptible individuals or to the whole population. However, for

intermediate values of α, the epidemic threshold in our model depends not only on

Ra
0 and σs, but also on the ratio of the global (ω) and local (α) awareness rates as

shown in (2.25), whereas in Funk et al. [16], the epidemic threshold was given by

(2.26) for any value of ω.

2.4.2 Reduced infectivity

When one considers reduced infectivity where σs = ε = φ = 1, and the infective

population has its infectivity reduced by a factor 0 ≤ σi < 1, the epidemic threshold

is given by

ϕ =
λ+ αh+ r + ω

(1− h) [σi (αh+ ω) + λ+ r] + h [σi (αh+ r + ω) + λ]

=
λ+ αh+ r + ω

σi [h (α + r) + ω] + λ+ r (1− h)
= 1 +

[h (α + r) + ω] (1− σi)
σi [h (α + r) + ω] + λ+ r (1− h)

,
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Figure 2.5: Existence and stability of different steady states. The disease-free steady state is stable to the right

of the surface in (a) and below each curve in (b), and in these parameter regions the endemic steady state is not

feasible. To the left of the surface in (a) and above each curve in (b), the disease-free steady state is unstable, while

the endemic steady state exists and is stable. Parameter values are α = 0.4, r = 0.6, σi = 0.5, σs = 0.5, φ = 0.3,

ε = 2, δ = 0.4.

and similarly to the previous case, it now depends on both types of awareness and,

in fact, it increases with both α and ω.

2.4.3 Faster recovery

In the case of faster recovery with σs = σi = φ = 1 and ε > 1, the epidemic threshold

becomes

ϕ =
λ+ ε (αh+ r + ω)

(1− h) (αh+ ω + λ+ ε r) + h (αh+ r + ω + λ)

=
λ+ ε (αh+ r + ω)

h (α + r) + ω + λ+ ε r (1− h)
= 1 +

[h (α + r) + ω] (ε− 1)

h (α + r) + ω + λ+ ε r (1− h)
,

and this shows that the threshold depends on both types of awareness and increases

with both α and ω. Hence, the period of infectivity is shorten as a result of inform-

ation dissemination.

2.4.4 Longer preservation of immunity

For longer temporary immunity with σs = σi = ε = 1 and 0 ≤ φ < 1 (average

duration of immunity is given by 1/φ), the epidemic threshold remains unchanged
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Figure 2.6: Effects of local and global awareness on the spread of infectious diseases for (a) ω = 0 (b) ω = 0.01

(c) ω = 0.08 (d) ω = 0.2. Other parameters are λ = 0.5, r = 0.5, σi = 0.7, σs = 0.8, ε = 1.5, with varied value of α.

at Rd
0 > ϕ = 1, since

ϕ =
λ+ ε (αh+ r + ω)

(1− h) [σi (αh+ ω) + λ+ ε r] + hσs [σi (αh+ r + ω) + λ]

=
λ+ αh+ r + ω

(1− h) (αh+ ω + λ+ r) + h (αh+ r + ω + λ)
= 1.

However, if the awareness of an individual population influences the duration of its

immunity φ−1, the fractions of infected and recovered populations in the endemic

state can also change [16].

Figure 2.6 illustrates the dependence of epidemic threshold on the values of

Rd
0 and Ra

0 for reduced susceptibility, reduced infectivity and faster recovery. As

suggested by the earlier analysis, in the absence of global awareness (ω), depending

on the values of Rd
0 and Ra

0 the system can settle on one of the four stable steady

states, namely, a disease-free E0, a disease-endemic E1, an awareness-endemic E0
0 ,

or endemic equilibrium E0
2 . When the global awareness is present, i.e. ω > 0, the

options are limited to either an awareness-endemic equilibrium Eω
0 , which in this

case also plays a role of a disease-free state, and an endemic steady state Eω
2 . As

ω → 0, the results shown in plots (b) and (c) illustrate that the steady states in plot
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Figure 2.7: Steady states in the absence of global awareness (ω = 0), (a) disease-free state E0 with Rd
0 < 1, Ra

0 < 1

(r = 1, β = 0.6, λ = 0.6) (b) disease-endemic state, E1 with Rd
0 > 1, Ra

0 < 1 (r = 0.6, β = 1.8, λ = 0.6) (c) awareness-

endemic state, E0
0 with Rd

ϕ◦ < 1, Ra
0 > 1 (r = 1, β = 0.6, λ = 0.3) (d) endemic state E0

2 with Rd
ϕ◦ > 1, Ra

0 > 1

(r = 0.6, β = 1.8, λ = 0.3). Dashed line denotes Sn, dotted line denotes In, solid line denotes Rn. Other parameters

are α = 0.4, σi = 0.5, σs = 0.5, φ = 0.3, ε = 2, δ = 0.4, N = 100.

(d) will eventually transmute into the same result in plot (a) when ω = 0.

2.5 Numerical simulation of the model

In Figure 2.7 we show numerical solution of the system (2.2) in the absence of global

awareness, i.e. for ω = 0. Provided the level of local awareness is sufficiently small to

ensure Ra
0 < 1, and the transmission rate is such that Rd

0 < 1, after the initial growth,

the number of infected individuals decreases, and eventually the system approaches

a disease-free steady state E0, as illustrated in Figure 2.7(a). Once the transmission

rate exceeds the critical value determined by Rd
0, even after the initial outbreak,

certain level of disease is maintained in the population, however, all compartments

with aware individuals approach zero, thus giving a disease-endemic steady state E1

shown in Figure 2.7(b). Figure 2.7(c) shows that for sufficiently high local awareness

rate, such that Ra
0 > 1, as long as the disease transmission rate β is not too high,

the population clears the infection, and then the system tends toward an awareness-
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Figure 2.8: Dynamics of infectious disease with global awareness: (a) disease-free state, β = 0.8, Rd
ϕ < 1 (b)

endemic state, β = 1.8, Rd
ϕ > 1. Other parameter values are α = 0.4, λ = 0.6, ω = 0.2, σi = 0.5, σs = 0.5, φ =

0.3, ε = 2, δ = 0.4, N = 100. Dashed line denotes Sn, dotted line denotes In, solid line denotes Rn. The result gave

similar dynamics for the aware population.

endemic steady state E0
0 . Finally, for higher values of β, the final state of the system

is given by a stable endemic steady state E0
2 , as shown in Figure 2.7(d).

In the case of ω > 0 illustrated in Figure 2.8, there are just two options: the

system either approaches a disease-free steady state, whose role is now played by

the awareness-endemic steady state Eω
0 for Rd

0 < ϕ, or it tends to a fully endemic

steady state Eω
2 when Rd

0 > ϕ.

Although we have not rigorously proven global stability of individual steady

states, extensive numerical simulations suggest that in each parameter region only

one of the steady states of the system is a global attractor, and the system approaches

this steady state for arbitrary initial conditions. It is noteworthy that while stability

of the disease-free, disease-endemic and awareness-endemic equilibria can change

when some parameters are varied, the endemic steady state with all compartments

being positive is always stable whenever it is biologically feasible.

2.6 Discussion

This chapter has analysed the impact of local and global awareness on the spread

of infectious diseases in a human population. The main feature of the model is the

possibility of individuals in any of the unaware compartments to become aware of
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infection both through interactions with aware individuals (regardless of the disease

status of the latter), and through a global awareness campaign. This assumption

generalises an earlier work of Funk et al. [16] who only accounted for the effects of

global awareness on infected individuals. Unlike the analysis presented in [16], we

have been able to obtain analytical expressions for all steady states of the model

together with restrictions on parameters that guarantee their biological feasibility,

as well as derived analytical conditions for stability of all these equilibria.

Our results show that both local and global awareness have the capacity to reduce

the spread of epidemic by increasing the threshold for onset of a stable endemic

steady state characterised by persistent infection. Interestingly, unlike some of the

earlier models, we have shown that there is an intricate interplay between the two

aspects of awareness as illustrated by the dependence of epidemic threshold of α and

ω. Quite naturally, the faster people lose awareness (i.e. the larger is the unaware

population), the higher is the overall rate of infection as manifested by the disease-

endemic state. Conversely, higher recovery rates due to disease awareness lead to

a reduction in infected population. From a more general perspective, the presence

of awareness causes corresponding behavioural change in the population, which, in

turn, causes the reduction in the size of epidemic outbreaks. Hence, the spread of

local awareness or global information campaigns allow one to control or minimise the

spread of the disease, whilst they are also helping boost recovery rates for infected

individuals. This suggests that information campaigns provide a viable complement

if not a replacement for more direct intervention strategies, such as vaccination or

quarantine.



Chapter 3

Time-delayed SIS epidemic model

with population awareness

This chapter studies the dynamics of epidemic diseases with account for population

awareness of the disease generating some human behavioural changes character-

ised by delay. The time delay is included as an additional parameter in an SIS

epidemic model with population awareness to account for the delay in response of

unaware individuals to available information often encountered during dissemina-

tion of awareness generated from global or local sources regarding the outbreak of

diseases, such as, Influenza, STDs, SARS, etc.

3.1 Model derivation

We consider an SIS-type epidemic model similar to the ones in [67, 68] and divide

the total population N into susceptible individuals unaware of the diseases Sn, sus-

ceptible individuals aware of the disease Sa, and infected individuals I who could

become aware of the disease by virtue of being infected. The model focuses on a

directly-transmitted infection with a disease transmission rate β, which is modified

by a factor 0 < σs < 1 in aware susceptibles to describe the prevention measures,

such as, reduction in contact, use of vaccine etc., that they undertake in the light of

disease awareness. Once infected, individuals recover at a rate r and return to the

class of susceptibles (the disease is assumed to confer no immunity), with a propor-

tion p of them being aware of the disease, and proportion q remaining unaware, so

37
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that p + q = 1. Disease awareness is lost at a rate λ, so the effective duration of

awareness is 1/λ.

The cumulative density of awareness in the population is denoted by M , and it

contains a contribution from some global sources, such as, the level of disease aware-

ness in the population generated by general public awareness and media campaigns

represented by ωo, global awareness stemming from the number of reported cases of

disease, which is proportional to I with a rate αo, as well as an input from aware

susceptible individuals, taken as a proportion from the entire population at a rate α.

Once awareness starts to spread, unaware susceptible individuals become aware at a

rate η, and the awareness is lost at a rate λo. These assumptions give the following

system of equations

S ′n = −β I Sn
N

− ηM Sn + λSa + r q I,

S ′a = −σs β I Sa
N

+ ηM Sn − λSa + r p I,

I ′ =
β I Sn
N

+
σs β I Sa

N
− r I,

M ′ = ωo + αo I +
αSa
N
− λoM.

(3.1)

To account for the fact that even in the presence of information, it takes some

time for individuals to actually become aware and modify their behaviour, we ex-

plicitly include time delay τ from the moment information becomes available to the

time susceptible individuals process it, change their behaviour accordingly, and can

be considered properly aware susceptible individuals. With this assumption, the

model takes the form

S ′n = −β I Sn
N

− ηM(t− τ)Sn + λSa + r q I,

S ′a = −σs β I Sa
N

+ ηM(t− τ)Sn − λSa + r p I,

I ′ =
β I Sn
N

+
σs β I Sa

N
− r I,

M ′ = ωo + αo I +
αSa
N
− λoM,

(3.2)

with the initial conditions

Sn(0) = Sn0 ≥ 0, Sa(0) = Sa0 ≥ 0, I(0) = I0 > 0, Sn0 + Sa0 + I0 = N,

M(0) = M0 ≥ 0 and M(s) = M0(s) ≥ 0, −τ ≤ s < 0. (3.3)
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Figure 3.1: Transition diagram of model (3.2). Solid lines represent transitions associated with individuals. Arrow

stands for “possible transition”: doubled arrow head indicating processes subject to contacts on the disease (solid

lines) or awareness (dash lines) network, single head arrows indicate processes that are not subject to contact.

Since this model has no vital dynamics or disease-induced deaths, the total popula-

tion N = Sn +Sa + I is constant. Figure 3.1 represents the model diagram for (3.2)

with all the transitions between the compartments.

Before proceeding with the analysis, we have to ascertain that solutions of model

(3.2) remain biological feasible for all t ∈ [0,∞).

Theorem 1. The solutions, Sn(t), Sa(t), I(t),M(t), of the system of equations (3.2)

with the initial conditions in (3.3) are non-negative for all t ≥ 0.

Proof.

We begin the proof by showing that I(t) > 0 for all t > 0. Let t1 > 0 be the first

time when
β I(t1)Sn(t1)

N
= 0.

Assuming I(t1) = 0, we obtain

Sn(t) ≥ 0 for all t ∈ [0, t1].

Let

ψ1 = min
0≤t≤t1

{
β Sn(t)

N
+
σs β Sa(t)

N
− r
}

⇒ I ′ ≥ ψ1 I.

Hence, for t ∈ [0, t1] one has

I ′(t) ≥ ψ1 I(t) ⇒ I(t1) ≥ I(0) eψ1 t1 > 0,

which gives a contradiction, hence I(t) > 0 for t > 0.



3.2 Steady states 40

Next, we prove by contradiction that Sn(t) > 0 for all t > 0. Assuming there

exists a first time t0 > 0 such that Sn(t0) = 0, implies that Sn(t) > 0 for t ∈ [0, t0),

and dSn(t1)/dt < 0. On the other hand, from the first equation of the system (3.2)

it follows that
dSn
dt

∣∣∣∣
t=t0

= λSa + r q I > 0,

which is a contradiction. Hence, Sn(t) > 0 for t > 0.

To prove that Sa(t) > 0 for all t > 0 we again assume that there exists a first

time ts > 0 such that Sa(ts) = 0, and dSa(ts)/dt < 0. The third equation of the

system (3.2) gives
dSa
dt

∣∣∣∣
t=ts

= ηM(t− τ)Sn + r p I > 0,

which is a contradiction, and therefore, Sa(t) > 0 for t > 0.

Finally, from the fourth equation in (3.2) we have that when M(t)= 0, M ′(t)> 0,

thus M(t) can never become negative.

Therefore, during their evolution, the solutions of the system (3.2) with the

initial conditions (3.3) will remain non-negative for all t ∈ [0,∞). In fact, they will

be contained in the bounded set:

Φ1 =
{

(Sn, Sa, I, M) ∈ R4
+ : 0 ≤ Sn, Sa, I ≤ N, 0 ≤M ≤ M̃

}
,

where M̃ = M(0) +
ωo + αoN + α

λo
. �

3.2 Steady states

All steady states of the system (3.2) satisfy the following system of algebraic equa-

tions

0 = −β I Sn
N

− ηM Sn + λSa + r q I,

0 = −σs β I Sa
N

+ ηM Sn − λSa + r p I,

0 =
β I Sn
N

+
σs β I Sa

N
− r I,

0 = ωo + αo I +
αSa
N
− λoM.

(3.4)
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Disease-free state

From the third equation of (3.4), we have(
β Sn
N

+
σs β Sa
N

− r
)
I = 0,

hence, either

I = 0, or
β Sn
N

+
σs β Sa
N

− r = 0.

Considering I = 0, we obtain

0 = ηM Sn − λSa,

0 = ωo +
αSa
N
− λoM.

One can find M from the last equation as

M =
N ωo + αSa

N λo
,

and substitute it into the first equation, which using Sn = N − Sa gives

η (N ωo + αSa)

N λo
(N − Sa) = λSa,

which can be rewritten as a single quadratic equation for Sa

S2
a −N

(
1− λλo + η ωo

η α

)
Sa −

N2 ωo
α

= 0.

This equation has a single positive solution

Sa = N

1

2

(
1− λλo + η ωo

η α

)
+

√
1

4

(
1− λλo + η ωo

η α

)2

+
ωo
α

 .
Introducing

ho =
1

2

(
1− λλo + η ωo

η α

)
+

√
1

4

(
1− λλo + η ωo

η α

)2

+
ωo
α
, (3.5)

then

Sa = N ho, and Sn = N − Sa = N −N ho = N (1− ho), 0 < ho < 1.

This gives the disease-free equilibrium state E0 = (S◦n, S
◦
a, 0,M

◦), where

S◦n = N (1− ho), S◦a = N ho and M◦ =
ωo + αho

λo
. (3.6)

It is noteworthy that since 0 < ho < 1 for any ωo > 0, in this case the disease-free

steady state E0 is biologically feasible for any values of parameters, whereas in the

absence of general awareness campaigns, i.e. for ωo = 0, the steady state E0 is only

feasible provided

η α > λλo.
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Endemic state

Returning to the third equation of (3.4), we now explore the scenario when I > 0

and
β Sn
N

+
σs β Sa
N

− r = 0,

which implies

Sa =
N r − β Sn

σs β
. (3.7)

In order to have Sa > 0, it follows that Sn should satisfy the condition Sn <
N r
β

.

From the fourth equation of (3.4) we obtain

M =
N (ωo + αo I) + αSa

N λo
, (3.8)

and the first equation of (3.4) gives

M =
N λSa +N r q I − β I Sn

N η Sn
. (3.9)

Equating these two expressions for M yields

N (ωo + αo I) + αSa
N λo

=
N λSa +N r q I − β I Sn

N η Sn
,

[(N η αo + β λo)Sn −N r q λo] I = (N λλo − η αSn)Sa −N η ωo Sn. (3.10)

Substituting the value of Sa from (3.7) gives after simplification

I =
N2 r λ λo + β η αS2

n −N (β λλo + σs β η ωo + r η α)Sn
σs β [(N η αo + β λo)Sn −N r q λo]

. (3.11)

Since I must be positive, we note from (3.10) that

(N η ωo + η αSa)Sn = N λλo Sa +
[
N r q λo − (N η αo + β λo)Sn

]
I,

and

(N η ωo+η αSa)Sn > 0, this implies N λλo Sa+
[
N r q λo−(N η αo+β λo)Sn

]
I > 0,

which implies

I <
N λλo Sa

(N η αo + β λo)Sn −N r q λo
.
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In order for I to be positive, one then has to require

Sn >
N r q λo

N η αo + β λo
. (3.12)

Using the fact that N = Sn + Sa + I, and substituting (3.7) and (3.11) gives

Sn +
N r − β Sn

σs β
+
N2 r λ λo + β η αS2

n −N (β λλo + σs β η ωo + r η α)Sn
σs β [(N η αo + β λo)Sn −N r q λo]

= N,

which can be recast as the following quadratic equation for Sn

y1 S
2
n − y2 Sn + y3 = 0,

where y1 = β [(1− σs) (N η αo + β λo)− η α],

y2 = N [β r q λo (1− σs) + (N η αo + β λo) (r − σs β)− β (λλo + η σs ωo)− r η α],

y3 = N2 r λo [q (r − σs β)− λ].

The solution of this equation yields an endemic state E∗ = (S∗n, S
∗
a, I
∗,M∗), where

S∗n =
y2 ±

√
y2

2 − 4 y1 y3

2 y1

,

I∗ =
N2 r λ λo + β η αS∗2n −N (β λλo + σs β η ωo + r η α)S∗n

σs β [(N η αo + β λo)S∗n −N r q λo]
,

S∗a =
N r − β S∗n

σs β
, and M∗ =

N (ωo + αo I
∗) + αS∗a

N λo
,

(3.13)

with the value of S∗n lying within the interval
N r q λo

N η αo + β λo
< S∗n <

N r

β
for bio-

logical feasibility.

In summary, the model (3.2) has only two steady states,

E0 = (S◦n, S
◦
a, 0,M

◦) and E∗ = (S∗n, S
∗
a, I
∗,M∗).

3.3 Stability analysis

Linearising system of equations (3.2) near each steady state (Ŝn, Ŝa, Î , M̂), gives the

following Jacobian matrix

Jp =



−a5 − a6 λ −a2 + r q −aτ ã6

a6 −ã5 − λ −ã0 + r p aτ ã6

a5 ã5 a2 + ã0 − r 0

0 a7 αo −λo


, (3.14)
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where aτ = e−k τ , ã0 = σs β Ŝa

N
, a2 = β Ŝn

N
a5 = β Î

N
, ã5 = σs β Î

N
, a6 = η M̂ ,

ã6 = η Ŝn, a7 = α
N

.

Stability of the disease-free state

Theorem 2. The disease-free steady state E0 of the system of equations (3.2) is

linearly asymptotically stable for all τ ≥ 0 if the basic reproductive number, R0 < 1,

unstable for R0 > 1, and undergoes bifurcation at R0 = 1, where

R0 =
β (1 + σs ho − ho)

r
.

Proof.

Evaluating the Jacobian matrix (3.14) at the disease-free steady state E0 = (S◦n, S◦a,

0, M◦) with S◦n > 0, S◦a > 0 and M◦ > 0 gives the following matrix

J◦p =



−a6 λ −a2 + r q −aτ ã6

a6 −λ −ã0 + r p aτ ã6

0 0 a2 + ã0 − r 0

0 a7 αo −λo


,

with the associated characteristic equation

k (k + r − a2 − ã0) [k2 + k (λo + λ+ a6) + λo (λ+ a6)− ã6 a7 aτ ] = 0.

One of the eigenvalues is always k1 = 0, another is given by

k2 = a2 + ã0 − r =
β(S◦n + σsS

◦
a)

N
− r,

and the rest are determined by the roots of the transcendental equation

k2 + k (λo + λ+ a6) + λo (λ+ a6)− ã6 a7 e
−k τ = 0. (3.15)

The eigenvalue k2 is negative, provided

β(S◦n + σsS
◦
a)

N
− r < 0 ⇐⇒ β(S◦n + σsS

◦
a)

Nr
< 1,

which, using the values of S◦n and S◦a from (3.6), can be recast as

R0 =
β (1 + σs ho − ho)

r
< 1.
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Therefore, k2 < 0 if R0 < 1. It is clear that when R0 passes the value of 1, the

eigenvalue k2 goes through zero and becomes positive, thus making the disease-free

steady state E0 unstable by means of a steady state bifurcation.

For τ = 0, the equation (3.15) turns into a quadratic

k2 + k (λo + λ+ a6) + λo (λ+ a6)− ã6 a7 = 0 (3.16)

whose roots are both negative if and only if

λo (λ+ a6) > ã6 a7 ⇒ λo (λ+ ηM◦) >
η αS◦n
N

. (3.17)

Substituting the values of M◦ and S◦n from (3.6) shows that this condition is equi-

valent to

λλo + η ωo + 2 η α ho > η α, or ho >
1

2

(
1− λλo + η ωo

η α

)
,

and this inequality always holds in the light of (3.5), thus implying that for τ = 0,

both roots of the quadratic equation (3.16) always have negative real part.

Consequently, the disease-free steady state E0 with τ = 0 is stable if the basic

reproductive number satisfies

R0 =
β (1 + σs ho − ho)

r
< 1. (3.18)

To investigate whether the disease-free steady state can lose its stability for τ > 0,

we first note that k = 0 is not a solution of this equation (this follows immediately

from (3.17)), so we look for solutions of the equation (3.15) in the form k = iµ. This

gives,

−µ2 + i µ (λo + λ+ a6) + λo (λ+ a6) = ã6 a7 e
−i µ τ

= ã6 a7 [cos(µ τ)− i sin(µ τ)].

Separating real and imaginary parts we obtain

−µ2 + λo (λ+ a6) = ã6 a7 cos(µ τ),

µ (λo + λ+ a6) = −ã6 a7 sin(µ τ).

(3.19)

Squaring and adding these two equations yields the following quartic equation

µ4 + µ2 [λ2
o + (λ+ a6)2] + (λo (λ+ a6) + ã6 a7) (λo (λ+ a6)− ã6 a7) = 0.
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Substituting y4 = λ2
o+(λ+a6)2 and y5 = (λo (λ+a6)+ ã6 a7) (λo (λ+a6)− ã6 a7),

yields a quartic equation for µ

µ4 + y4 µ
2 + y5 = 0.

Since y4 > 0 and λo (λ + a6) > ã6 a7, which means that y5 > 0, this suggests that

there are no real positive roots µ2 of the above equation, such that k = iµ would

be a root of equation (3.15). Consequently, the disease-free state is always stable if

R0 < 1 for all τ ≥ 0. �

Stability of the endemic state

Next, we investigate stability of the endemic equilibrium of system (3.2). Evaluating

the Jacobian (3.14) at the endemic equilibrium state E∗ = (S∗n, S
∗
a, I
∗,M∗) with

S∗n > 0, S∗a > 0 I∗ > 0 and M∗ > 0, yields the characteristic equation

k
(
k3 + k2 (λo + y6) + k (λo y6 + y7 − ã6 a7 aτ ) + λo y7 +

aτ
[
α ã6(a5 − ã5)− a5 ã6 a7

])
= 0, (3.20)

with y6 = λ+a5 + ã5 +a6 and y7 = [ã5 (a5 + ã0 +a6)−a5 ã0]+λ a5 +r p (a5− ã5).

Note that

a5 − ã5 =
β I∗

N
− σs β I

∗

N
=
β I∗

N
(1− σs) > 0, (3.21)

ã5 (a5 + ã0 + a6)− a5 ã0

=
σs β I

∗

N

[
β I∗

N
+
σs β S

∗
a

N
+
N η (ωo + αo I

∗) + η αS∗a
N λo

]
− β I∗

N

σs β S
∗
a

N

=
σs β I

∗

N

[
N η (ωo + αo I

∗) + η αS∗a + β λo I
∗ + σs β λo S

∗
a − β λo S∗a

N λo

]
,

but we obtain from (3.10) that

N η (ωo + αo I
∗)S∗n + η αS∗a S

∗
n = N λλo S

∗
a +N r q λo I

∗ − β λo I∗ S∗n,

which can be rewritten as

[N η (ωo + αo I
∗) + η αS∗a + β λo I

∗]S∗n = N λλo S
∗
a +N r q λo I

∗,
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⇒ N η (ωo + αo I
∗) + η αS∗a + β λo I

∗ =
N

S∗n

[
λλo S

∗
a + r q λo I

∗
]

=
N r

[
λλo S

∗
a + r q λo I

∗]
r S∗n

=
(β S∗n + σs β S

∗
a)
(
λλo S

∗
a + r q λo

∗I
)

r S∗n

= β λo S
∗
a

[
λS∗n + σs λS

∗
a

r S∗n

]
+ β λo q I

∗
[
S∗n + σs S

∗
a

S∗n

]
.

Hence,

N η (ωo + αo I
∗) + η αS∗a + β λo I

∗ + σs β λo S
∗
a

= β λo S
∗
a

[
(λ+ σs r)S

∗
n + σs λS

∗
a

r S∗n

]
+ β λo q I

∗
[
S∗n + σs S

∗
a

S∗n

]
.

We also obtain from (3.10) the expression

(N λλo − η αS∗n)S∗a −N η ωo S
∗
n > 0,

which can be written as

N λλo S
∗
a > η αS∗a S

∗
n +N η ωo S

∗
n = (N η ωo + η αS∗a)S

∗
n

⇒ σs λS
∗
a >

σs (N η ωo + η αS∗a)S
∗
n

N λo
.

Therefore,

(λ+ σs r)S
∗
n + σs λS

∗
a >

[
N λo (λ+ σs r) +N σs η ωo + σs η αS

∗
a

N λo

]
S∗n

=
1

N λo

[[
λo (λ+ σs r) + σs η ωo

]
S∗n +

[
λo (λ+ σs r) + σs η (ωo + α)

]
S∗a +[

λo (λ+ σs r) + σs η ωo
]
I∗
]
S∗n

>

[
β λo S

∗
n + σs β λo S

∗
a

N λo

]
S∗n = r S∗n,

since r = β S∗
n+σs β S∗

a

N
. It follows that,

N η (ωo + αo I
∗) + η αS∗a + β λo I

∗ + σs β λo S
∗
a > β λo S

∗
a,

⇒ ã5 (a5 + ã0 + a6) > a5 ã0. (3.22)

Similarly, considering (N λλo − η αSn)Sa −N η ωo Sn > 0 gives

N λλo Sa > η αSn Sa +N η ωo Sn > η αSn Sa,
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λλo >
η αSn
N

= ã6 a7 ⇒ λλo > ã6 a7. (3.23)

Hence, the characteristic equation (3.20) gives the eigenvalue k1 = 0, and the

rest of the spectrum being given by the roots of the transcendental equation

k3 + k2(λo + y6) + k(λoy6 + y7) + λoy7 = [ã6a7(k + a5)− αã6(a5 − ã5)]e−kτ .(3.24)

For τ = 0, the equation (3.24) turns into a cubic equation

k3 + k2 (λo + y6) + k (λo y6 + y7 − ã6 a7) + λo y7 + α ã6 (a5 − ã5)− a5 ã6 a7 = 0.

(3.25)

By the Routh-Hurwitz criterion, the roots of this cubic equation have negative real

part if and only if the following conditions are satisfied

λo + y6 > 0, λo y6 + y7 − ã6 a7 > 0, λo y7 + α ã6 (a5 − ã5)− a5 ã6 a7 > 0,

and (λo + y6) (λo y6 + y7 − ã6 a7) > λo y7 + α ã6 (a5 − ã5)− a5 ã6 a7. (3.26)

Showing that the criteria above are satisfied gives

→ λo + y6 = λo + λ+ a5 + ã5 + a6 > 0,

this first condition is always satisfied.

→ λo y6 + y7 − ã6 a7 > λo y6 − ã6 a7

= λo (a5 + ã5 + a6) + (λλo − ã6 a7) > 0,

the second condition holds based on (3.23).

→ λo y7 + α ã6 (a5 − ã5)− a5 ã6 a7 = λo
[
ã5 (a5 + ã0 + a6)− a5 ã0

]
+ λλo a5 +

λo r p (a5 − ã5) + α ã6 (a5 − ã5)− a5 ã6 a7

= λo [ã5 (a5 + ã0 + a6)− a5 ã0] + (λo r p+ α ã6) (a5 − ã5) +

a5 (λλo − ã6 a7) > 0,

the third condition is also satisfied since all the brackets in the last expression are

positive due to (3.21), (3.22) and (3.23).

→ (λo + y6) (λo y6 + y7 − ã6 a7) > λo y7 + α ã6 (a5 − ã5)− a5 ã6 a7,

this can be expressed as

(λo + y6)
[
(λλo − ã6 a7) + λo (a5 + ã5 + a6)

]
+ y6 y7 + ã6 (α ã5 + a5 a7)− α a5 ã6 > 0,

hence, we have the following result.
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Lemma 1. If the condition

(λo + y6) (λo y6 + y7 − ã6 a7) > λo y7 + α ã6 (a5 − ã5)− a5 ã6 a7 (3.27)

holds, the endemic steady state E∗ is linearly asymptotically stable.

Remark 1. Although it does not appear possible to analytically prove that the con-

dition (3.27) always holds, numerical simulations suggest that it does indeed for any

parameter value, for which the endemic steady state E∗ is biologically feasible.

Since we have now established that for τ = 0 the endemic state E∗ is linearly

asymptotically stable, one still has to find out whether this steady state can lose

stability for τ > 0. First of all, one should note that in the light of the third

condition for stability, k = 0 is not a root of the characteristic equation (3.24).

Hence, the steady state E∗ can only lose its stability when a pair of complex conjug-

ate eigenvalues crosses the imaginary axis from left to right. Introducing auxiliary

parameters,

ỹ1 = λo + y6, ỹ2 = λo y6 + y7, ỹ3 = λo y7, ỹ4 = ã6 a7, ỹ5 = α ã6 (a5 − ã5)− a5 ã6 a7,

the characteristic equation (3.24) can be recast in the form

k3 + ỹ1 k
2 + ỹ2 k + ỹ3 = (ỹ4 k + ỹ5) e−k τ . (3.28)

Substituting k = i µ gives

−i µ3 − ỹ1 µ
2 + ỹ2 i µ+ ỹ3 = (ỹ4 i µ+ ỹ5) e−i µ τ

= (ỹ4 i µ+ ỹ5) [cos(µ τ)− i sin(µ τ)].

Separating real and imaginary parts, we obtain

−ỹ1 µ
2 + ỹ3 = ỹ5 cos(µ τ) + ỹ4 µ sin(µ τ),

−µ3 + ỹ2 µ = ỹ4 µ cos(µ τ)− ỹ5 sin(µ τ).

(3.29)

Squaring and adding these equations yield the following equation for the Hopf fre-

quency w:

f(µ) = µ6 + (ỹ2
1 − 2 ỹ2)µ4 + (ỹ2

2 − ỹ2
4 − 2 ỹ1 ỹ3)µ2 + ỹ2

3 − ỹ2
5 = 0. (3.30)
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The derivative of the function, f(µ) can be found as

f ′(µ) = 2µ
[
3µ4 + 2 (ỹ2

1 − 2 ỹ2)µ2 − 2 ỹ1 ỹ3 + ỹ2
2 − ỹ2

4

]
.

Multiplying the first equation of the system (3.29) by ỹ5 and the second equation

by ỹ4 and adding these two equations gives

cos(µ τ) =
ỹ3 ỹ5 + (ỹ2 ỹ4 − ỹ1 ỹ5)µ2 − ỹ4 µ

4

ỹ2
5 + ỹ2

4 µ
2

, (3.31)

and similarly,

sin(µ τ) =
(ỹ5 − ỹ1 ỹ4)µ3 + (ỹ3 ỹ4 − ỹ2 ỹ5)µ

ỹ2
5 + ỹ2

4 µ
2

. (3.32)

Therefore, the value of τ can be found as follows

τn =
1

µ

[
cos−1

(
ỹ3 ỹ5 + (ỹ2 ỹ4 − ỹ1 ỹ5)µ2 − ỹ4 µ

4

ỹ2
5 + ỹ2

4 µ
2

)
+ 2 π n

]
, n = 0, 1, 2, . . .

Without loss of generality, let us assume that equation (3.30) has six distinct

positive real roots µi, i = 1, . . . , 6. For each µi, we have the value of τ as

τj,n =
1

µj

[
cos−1

(
ỹ3ỹ5 + (ỹ2ỹ4 − ỹ1ỹ5)µ2

j − ỹ4µ
4
j

ỹ2
5 + ỹ2

4µ
2
j

)
+ 2π (n− 1)

]
, j = 1, . . . , 6, n ∈ N.

This allows one to define

τ0 = τj0,n0 = min
1≤j≤6,n≥1

{τj,n}, µ0 = µj0 . (3.33)

In order to establish whether the endemic steady state E∗ actually undergoes

Hopf bifurcation at τ = τ0, one has to compute the sign of d[Re(k)]/dτ . Differenti-

ating the characteristic equation (3.28) with respect to τ gives[
3 k2 + 2 ỹ1 k + ỹ2

]dk
dτ

=
[
ỹ4 e

−k τ − τ e−k τ (ỹ4 k + ỹ5)
]dk
dτ
− k (ỹ4 k + ỹ5) e−k τ ,

which can be rewritten as(
dk

dτ

)−1

=
ỹ4 e

−k τ − 3 k2 − 2 ỹ1 k − ỹ2

(ỹ4 k2 + ỹ5 k) e−k τ
− τ

k
.

Evaluating this at τ = τ0 with k = iµ0 we obtain(
dk

dτ

)−1
∣∣∣∣∣
τ=τ0

=
ỹ4 cos(µ0τ0) + 3µ2

0 − ỹ2 − i
[
ỹ4 sin(µ0τ0) + 2 ỹ1 µ0

]
µ0

[
ỹ5 sin(µ0τ0)− ỹ4µ0 cos(µ0τ0)

]
+ iµ0

[
ỹ5 cos(µ0τ0) + ỹ4µ0 sin(µ0τ0)

]
− τ0

iµ0

,
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and the real part of this expression can be found as

Re

(
dk

dτ

)−1
∣∣∣∣∣
τ=τ0

=
1

µ0

[
ỹ2

5 + ỹ2
4 µ

2
0

][[(3 ỹ5 − 2 ỹ1 ỹ4)µ2
0 − ỹ2 ỹ5

]
sin(µ0τ0) +

[
(ỹ2 ỹ4 − 2 ỹ1 ỹ5)µ0 − 3 ỹ4 µ

3
0

]
cos(µ0τ0)− ỹ2

4 µ0

]
.

Substituting the values of cos(µ0τ0) and sin(µ0τ0) from (3.31) and (3.32) gives

the following after simplification,

Re

(
dk

dτ

)−1
∣∣∣∣∣
τ=τ0

=
3µ4

0 + (2 ỹ2
1 − 4 ỹ2)µ2

0 − 2 ỹ1 ỹ3 + ỹ2
2 − ỹ2

4

ỹ2
5 + ỹ2

4 µ
2
0

=
2µ0

[
3µ4

0 + 2 (ỹ2
1 − 2 ỹ2)µ2

0 − 2 ỹ1 ỹ3 + ỹ2
2 − ỹ2

4

]
2µ0

[
ỹ2

5 + ỹ2
4 µ

2
0

] = zµ f
′(µ0),

where zµ =
[
2µ0(ỹ2

5 + ỹ2
4 µ

2
0)
]−1

, and since zµ > 0, it implies

sign

{
d[Re(k)]

dτ

}
τ=τ0

= sign

{
Re

(
dk(τ0)

dτ

)−1
}

= sign
{
zµ f

′(µ0)
}

= sign
{
f ′(µ0)

}
.

These calculations can now be summarised in the following result.

Theorem 3. Let the condition of Lemma 1 holds and also let τ0 and µ0 be defined

as in (3.33) and f ′(µ0) > 0. Then the endemic steady state E∗ of the system (3.2)

is linearly asymptotically stable for τ < τ0, unstable for τ > τ0 and undergoes Hopf

bifurcation at τ = τ0.

3.4 Numerical stability analysis and simulations

To get a better understanding of the effects of different parameters on the dynam-

ics of the system (3.2), we expand the analysis presented in the previous section

by numerically computing characteristic eigenvalues. This is achieved by using a

pseudospectral method implemented in a traceDDE suite in MATLAB [7].

Figure 3.2 illustrates regions of stability of the endemic steady state E∗ depend-

ing on the disease transmission rate β, time delay τ , awareness from global sources,

ωo, αo, the rate of local awareness α and the rate at which unaware susceptible indi-

viduals become aware, η. This Figure shows that for sufficiently small time delays τ ,

the endemic steady state E∗ is stable, thus providing numerical evidence to support

Remark 1. As the time delay τ increases, the steady state E∗ loses its stability in
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accordance with Theorem 3. There are several important observations that have to

be made here. First of all, one should note a qualitative difference in the effects

of different types of awareness transmission. Whereas the endemic steady state E∗

can be destabilised for arbitrarily small values of the general awareness campaigns

ωo, or the rate of local awareness α, in the case of awareness associated with the

increasing number of reported disease cases αo and the proportion of the unaware

susceptible individuals becoming aware η, the endemic steady state remains stable

for all possible values of the time delay τ .

Another counter-intuitive result is that as the level of awareness ωo and α in-

creases, the endemic steady state actually remains stable for longer durations of the

time delay in response. When one considers the effects of the speed of disease trans-

mission, as shown in Figure 3.2(c), it becomes clear that for sufficiently high values

of the disease transmission rate β, the endemic steady state is stable for any values

of the time delay τ . On the other hand, for small values of β, it has a destabilising

role: as β increases, the critical time delay at which the Hopf bifurcation occurs is

decreasing, but this effect reverses starting with some value of β. For sufficiently

large values of α and ωo, or for sufficiently small values of β, where R0 < 1, the

endemic steady state E∗ is not feasible, whereas the disease-free steady state E0 is

feasible and stable for any values of τ .

Figure 3.3 shows how the stability boundary of the steady state E∗ changes

depending on the values of global awareness ωo and local awareness α. One can see

that increasing the level of local awareness α results in the endemic steady state

losing its stability for smaller values of the global awareness ωo for the same time

delay τ . Conversely, if one fixes the value of ωo and increases α, instability occurs

for higher values of τ , suggesting that the local awareness actually helps the state

of infection remain present in the population for longer durations of the individual

response time.

To investigate the behaviour of the system beyond the Hopf bifurcation, we have

used the continuation software DDE-BIFTOOL to numerically continue branches of

periodic solutions in the parameter space, and the results are shown in Figures 3.4

- 3.7 for different values of the parameters α and τ . In Figure 3.4, with α = 0.3,

plots (a)-(c) show how the eigenvalues change with increasing time delay from the
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Figure 3.2: Stability of the endemic steady state E∗. Colour code denotes max[Re(k)] whenever the endemic steady

state is feasible. Parameter values are, α = 0.3 but varied in (a), ωo = 0.2 but varied in (b), β = 0.4 but varied in (c),

αo = 0.2 but varied in (d), η = 0.01 but varied in (e), λ = 0.1, r = 0.2, σs = 0.04, p = 0.4, q = 0.6, λo = 0.3, N = 100.

stable endemic steady state to unstable steady state through a Hopf bifurcation,

while plot (d) illustrates the comparison of the Hopf boundary as computed using

the DDE-BIFTOOL and the traceDDE software.

The outcome for the bifurcation analysis of the endemic steady state E∗ for

α = 0.3, τ = 45 is presented in Figure 3.5 showing the solutions, amplitude and the

period of oscillations. Similar results for α = 1.5, τ = 55 are shown in Figure 3.6,

and Figure 3.7 illustrates the outcome for α = 2.7, τ = 80. The plots (b) and (c) in
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Figure 3.3: Stability boundaries of the endemic steady state E∗. The steady state is stable to the left of the

surface in (a), and to the left of the lines in (b). Parameter values are λ = 0.1, β = 0.4, r = 0.2, σs = 0.04, p =

0.4, q = 0.6, αo = 0.2, λo = 0.3, η = 0.01, N = 100.

Figures 3.5, 3.6 and 3.7 suggest that increasing the time delay τ results in a larger

amplitude and a larger period of periodic oscillations around the endemic steady

state E∗. For the same time delay τ , the higher rate of local awareness α results in

smaller amplitude of oscillations, but a larger period of those oscillations, provided

α is not too high to ensure the existence of periodic solutions.

Figure 3.8 illustrates the dynamics of the system (3.2) in the case where R0 < 1

or R0 > 1 with zero time delay. In the situation where R0 < 1, the recovery from

infection is sufficiently fast to ensure the initial outbreak is contained, and the disease

is eradicated from the population. Figure 3.9 shows a similar behaviour for R0 < 1

in the case of positive time delay τ thus illustrating the conclusion of Theorem 2 that

stability of the disease-free steady state is independent of the time delay. For slower

recovery rates and sufficiently small delays in response to awareness, the system

settles on a stable endemic steady state, as shown in Figure 3.10(a)-(c).

Increasing the time delay τ results in higher-amplitude decaying oscillations

around the endemic steady state, and once τ exceeds the critical value determ-

ined by Theorem 3, the endemic steady state loses its stability, which results in the

emergence of stable periodic solutions shown in Figure 3.10(d).
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Figure 3.4: Bifurcation analysis of the endemic steady state E∗: (a) distribution of eigenvalues for τ = 30, (b)

distribution of eigenvalues at the Hopf point for τ = 45, (c) distribution of eigenvalues for τ = 45, (d) comparison

of the Hopf boundary of the steady state E∗ as computed by DDE-BIFTOOL (black) and traceDDE (red). The

parameter values are: α = 0.3, λ = 0.1, β = 0.4, r = 0.2, σs = 0.04, p = 0.4, q = 0.6, ωo = 0.2, αo = 0.2, λo = 0.3, η =

0.01, N = 100.

Figure 3.5: Bifurcation analysis of the endemic steady state E∗ for α = 0.3, τ = 45: (a) periodic orbit of solutions

(b) plot of amplitude against time delay, τ (c) plot of the period against time delay, τ . The parameter values

include: λ = 0.1, β = 0.4, r = 0.2, σs = 0.04, p = 0.4, q = 0.6, ωo = 0.2, αo = 0.2, λo = 0.3, η = 0.01, N = 100.

3.5 Discussion

In this chapter we have analysed the dynamics of a non-lethal infectious disease

with the simultaneous spread of awareness, and a delayed response of individuals

to available information. Specific emphasis was made on explicitly incorporating
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Figure 3.6: Bifurcation analysis of the endemic steady state E∗ for α = 1.5, τ = 55: (a) periodic orbit of solutions

(b) plot of amplitude against time delay, τ (c) plot of the period against time delay, τ . Value of parameters include:

λ = 0.1, β = 0.4, r = 0.2, σs = 0.04, p = 0.4, q = 0.6, ωo = 0.2, αo = 0.2, λo = 0.3, η = 0.01, N = 100.

Figure 3.7: Bifurcation analysis of the endemic steady state E∗ for α = 2.7, τ = 80: (a) periodic orbit of solutions

(b) plot of amplitude against time delay, τ (c) plot of the period against time delay, τ . The parameters are:

λ = 0.1, β = 0.4, r = 0.2, σs = 0.04, p = 0.4, q = 0.6, ωo = 0.2, αo = 0.2, λo = 0.3, η = 0.01, N = 100.

different facets of disease awareness that can arise due to general public information

campaigns, public reports of observed cases of disease, a word-of-mouth spread from

aware to unaware individuals. We have derived conditions for feasibility and stability

of the disease-free and endemic equilibria in terms of system parameters and the time

delay associated with changes in individuals’ behaviour. These results suggest that

stability of the disease-free equilibrium is independent of the time delay but depends

on the rates at which awareness is required.

An interesting result is that for sufficiently high values of the spread of global

information from general campaigns or information from aware population, it is

possible to eradicate the disease, whereas an increase in awareness stemming from

the higher number of reported disease cases does not result in disease eradication.

Another important observation is that in the presence of a delay in response of indi-

viduals to available information, increasing the values of global awareness campaign
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Figure 3.8: Numerical solution of the system (3.2) with τ = 0 (a) disease-free state, r = 0.5, R0 = 0.7474 (b)

endemic state, r = 0.2, R0 = 1.8685. Other parameter values are, α = 0.3, λ = 0.1, β = 0.4, σs = 0.04, p = 0.4, q =

0.6, ωo = 0.2, αo = 0.2, λo = 0.3, η = 0.01, N = 100.

Figure 3.9: Numerical solution of the system (3.2) with R0 < 1 (a) τ = 14 (b) τ = 42. Parameter values are,

α = 0.3, λ = 0.1, β = 0.4, r = 0.5, σs = 0.04, p = 0.4, q = 0.6, ωo = 0.2, αo = 0.2, λo = 0.3, η = 0.01, N = 100. In this

case, R0 = 0.7474, and the system settles on a stable disease-free steady state.

or local awareness actually results in stabilising the endemic equilibrium, i.e. main-

taining its presence in the population, and only when these values get quite high

that the disease is eradicated.

Considering the effects of time delay on the disease dynamics, we have discovered

that it can destabilise the endemic steady state, thus causing periodic oscillations.

Both the amplitude and the period of these oscillations increase with the time delay

in the individuals’ response, however, the period is also growing with the rate of local

information transmission, whereas the amplitude of oscillations decreases, and the

oscillations can be completely suppressed for sufficiently high rates of local inform-

ation transmission. If the disease is transmitted quite quickly, i.e. the transmission

rate is sufficiently high, then increasing the delay will not affect the stability of the

endemic equilibrium, hence, the disease will always be present at some constant

level in the population. In a narrow range of values of the time delay, increasing the

disease transmission rate initially destabilises the endemic steady state, whilst fur-
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Figure 3.10: Numerical solution of the system (3.2) with R0 = 1.8685, (a) τ = 5, (b) τ = 14, (c) τ = 25, (d)

τ = 42. Parameter values include, α = 0.3, λ = 0.1, β = 0.4, r = 0.2, σs = 0.04, p = 0.4, q = 0.6, ωo = 0.2, αo =

0.2, λo = 0.3, η = 0.01, N = 100.

ther increase leads to stability being regained. These results provide some practical

insights into the development and assessment of possible information campaigns

targeted at disease control and prevention by elucidating how different routes of

transmission of awareness affect the progression of the disease in the population.

In a nutshell, the results of the analysis show that the disease-free steady state

is stable for all values of time delay τ provided the threshold, R0 < 1 and the

endemic state is stable for zero time delay, these are similar to the results in [67, 68].

Contrary to Zuo and Liu [67] but in agreement with Zuo et al. [68], the endemic

steady state switches stability from a stable to an unstable state as the value of

the time delay exceeds the critical value. Furthermore, the analysis shows that the

threshold of the model is dependent on both global awareness campaigns ωo and

local awareness rate α which indicates that both ωo and α can influence the disease

dynamics. Based on the results, infectious diseases can be eradicated when the values

of ωo and α are sufficiently high. Consequently, in addition to global awareness

campaigns, dissemination of local awareness also aid in the eradication process of

infectious diseases and the delay in response of individuals to available information

from general public awareness campaigns and local awareness can increase the rate

of spread of infectious diseases within the population.



Chapter 4

Dynamics of vaccination in a

time-delayed epidemic model with

awareness

The chapter investigates the impact of combining awareness with vaccination on

the spread of infectious diseases in human population. Vaccination targets newborn

against childhood infections, such as, influenza, whooping cough, measles, etc. and

then people who become aware of the spreading of infections, and similar to the last

chapter we include multiple sources of disease awareness.

4.1 Derivation of the model

Similarly to the model analysed in the previous chapter, we consider a non-lethal

disease, but now we include vital dynamics and assume that infection confers a tem-

porary immunity. The population is divided into groups of susceptible individuals

unaware of infection, Sn(t), susceptible individuals aware of infection, Sa(t), infec-

ted individuals I(t), and recovered (immune) individuals R(t). There is a constant

birth rate b, which is taken to be the same as the death rate, so that the total

population N remains constant, and it is assumed that all newborns are unaware

and susceptible to infection. The disease is transmitted from infected to unaware

susceptible individuals at a rate β, and this rate is reduced by a factor 0 < σs < 1 for

aware susceptibles, who take some measures to reduce their potential contact rate.

59
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Infected individuals recover at rate r. The cumulative level of disease awareness

M(t) has contributions from the reported number of cases at a rate αo, from the

aware individuals at a rate α, and from some global awareness campaigns ωo, and

the awareness is lost at a rate λo, whereas aware susceptibles lose their awareness at

a rate λ. Finally, unaware susceptibles become aware at a rate η, and it is assumed

that it takes time τ for them to actually become aware or to modify their behaviour

in the relation to the spreading infection. These assumptions lead to the following

basic model

S ′n = bN − β I Sn
N

− ηM(t− τ)Sn + λSa − b Sn,

S ′a = −σs β I Sa
N

+ ηM(t− τ)Sn − λSa − b Sa,

I ′ =
β I Sn
N

+
σs β I Sa

N
− r I − b I,

R′ = r I − bR,

M ′ = ωo + αo I +
αSa
N
− λoM,

(4.1)

where Sn(t) + Sa(t) + I(t) +R(t) = N a constant.

To investigate the effects of the introduction of a vaccine on the disease dynamics,

we consider a situation where a proportion v of newborns and a proportion vs of

aware susceptible individuals are vaccinated [27]. With this assumption, bvN ≡

viN newborns appear straight in the recovered (protected) class, and b(1 − v)N =

(b − vi)N newborns go to the class of unaware susceptibles. It is further assumed

that after a period of time 1/δ, the individuals lose their immunity against the

infection. If δ = 0, this describes a perfect vaccine, while δ > 0 describes a leaky

vaccine resulting in temporary immunity. Similar to some earlier works [67, 68], it is

assumed that upon losing immunity, a certain proportion, p, of individuals will join

the aware susceptible class while the remaining proportion, q = 1− p, will return to

the unaware susceptible class. With these assumptions, a modified model has the
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Figure 4.1: Diagram of transitions in model (4.2). Solid lines represent transitions associated with individuals.

Arrow stands for “possible transition”: doubled arrow head indicating processes subject to contacts on the disease

(solid lines) or awareness (dash lines) network, single head arrows indicate processes that are not subject to contact.

form

S ′n = (b− vi)N −
β I Sn
N

− ηM(t− τ)Sn + λSa + δ q R− b Sn,

S ′a = −σs β I Sa
N

+ ηM(t− τ)Sn − (λ+ vs + b)Sa + δ pR,

I ′ =
β I Sn
N

+
σs β I Sa

N
− (r + b) I,

R′ = r I + viN + vs Sa − (δ + b)R,

M ′ = ωo + αo I +
αSa
N
− λoM,

(4.2)

with the initial conditions

Sn(0) ≥ 0, Sa(0) ≥ 0, I(0) > 0, R(0) ≥ 0, M(0) ≥ 0

and M(s) ≥ 0 for all s ∈ [−τ, 0).
(4.3)

The model diagram for (4.2) is represented by Figure 4.1 showing all the transitions

between the compartments.

Positivity of solutions

Since the model (4.2) with the initial conditions (4.3) represents the dynamics of

human population, it is essential to show that its solutions are positive and bounded

for all t ∈ [0,∞).
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Theorem 4. The solutions, Sn(t), Sa(t), I(t), R(t),M(t), of the system (4.2) with

the initial conditions (4.3) are non-negative and bounded for all t ≥ 0.

Proof.

Considering the equation for I(t), let ti > 0 be the first time when I(t) = 0, and

the other components are still non-negative as per initial conditions, so

Sn(t) ≥ 0, Sa(t) ≥ 0 for all t ∈ [0, ti].

Introducing an auxiliary quantity

ψ2 = min
0≤t≤ti

{
βSn
N

+
σsβSa
N

− (r + b)

}
,

we have the relation

I ′ =
βISn
N

+
σsβISa
N

− (r + b)I ≥ ψ2I,

that can be readily solved to yield

I(ti) ≥ I(0)eψ2ti > 0,

which gives a contradiction.

In a similar way, let us assume there exists a first time tn > 0 such that Sn(t) > 0

for t ∈ [0, tn) and Sn(tn) = 0, which implies dSn(tn)/dt < 0. Substituting this value

of Sn into the first equation of the system (4.2) gives

dSn
dt

∣∣∣∣
t=tn

= (b− vi)N + λSa + δ q R > 0,

which contradicts the initial assumption. Consequently, Sn(t) > 0 for t ≥ 0, and

similar arguments can be used to establish that Sa, R and M remain non-negative

for all t ≥ 0.

Having established the positivity of all state variables, from the fact that Sn(t)+

Sa(t)+I(t)+R(t) = N = const, it immediately follows that they are also all bounded

between 0 and N . Looking at the last equation of the system (4.2), we have

M ′ = ωo + αo I +
αSa
N
− λoM ≤ ωo + αoN + α− λoM,

which can be solved to give

M(t) ≤M(0)e−λot +
ωo + αoN + α

λo

(
1− e−λot

)
≤ M̂,
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where

M̂ = M(0) +
ωo + αoN + α

λo
. (4.4)

This suggests that throughout the time evolution, all solutions remain within the

bounded region

Φ2 =
{

(Sn, Sa, I, R, M) ∈ R5
+ : 0 < Sn, Sa, I, R ≤ N, 0 ≤M ≤ M̂

}
.

�

4.2 Steady states

The system of equations (4.2) can have at most two steady states, a disease-free

equilibrium and an endemic equilibrium. They can be found by solving the following

system of equations

0 = (b− vi)N −
β I Sn
N

− ηM Sn + λSa + δ q R− b Sn,

0 = −σs β I Sa
N

+ ηM Sn − (λ+ vs + b)Sa + δ pR,

0 =
β I Sn
N

+
σs β I Sa

N
− (r + b) I,

0 = r I + viN + vs Sa − (δ + b)R,

0 = ωo + αo I +
αSa
N
− λoM.

Since N = Sn + Sa + I +R, substituting R = N − Sn − Sa − I gives

0 = (b+ δ q − vi)N −
β I Sn
N

− (ηM + δ q + b)Sn + (λ− δ q)Sa − δ q I,

0 = −σs β I Sa
N

+ (ηM − δ p)Sn − (λ+ δ p+ vs + b)Sa + δ p (N − I),

0 =
β I Sn
N

+
σs β I Sa

N
− (r + b) I,

0 = ωo + αo I +
αSa
N
− λoM,

(4.5)

which reduces the total number of equations without affecting the system dynamics

since the total population, N is constant.

Disease-free state

The third equation of (4.5) gives[
β Sn
N

+
σs β Sa
N

− (r + b)

]
I = 0,
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which implies

I = 0 or
β Sn
N

+
σs β Sa
N

− (r + b) = 0.

For I = 0, the other three equations reduce to

0 = (b+ δ q − vi)N − (ηM + δ q + b)Sn + (λ− δ q)Sa,

0 = (ηM − δ p)Sn − (λ+ δ p+ vs + b)Sa + δ pN,

0 = ωo +
αSa
N
− λoM.

(4.6)

Hence, we have

M =
N ωo + αSa

N λo
,

and from the first equation of the system (4.6) one finds

Sn =
N λo [N (b+ δ q − vi) + (λ− δ q)Sa]
N [η ωo + λo (δ q + b)] + η αSa

. (4.7)

On the other hand, adding the first two equations of the system (4.6) yields

(b+ δ q + δ p− vi)N − (δ q + δ p+ b)Sn − (δ q + δ p+ vs + b)Sa = 0,

Sn =
N (b+ δ − vi)− (δ + vs + b)Sa

δ + b
, (4.8)

which shows that Sa must satisfy the condition Sa <
N (b+δ−vi)
δ+vs+b

to ensure that

Sn > 0. Equating the two expressions for Sn in (4.7) and (4.8), we obtain

N λo [N (b+ δ q − vi) + (λ− δ q)Sa]
N [η ωo + λo (δ q + b)] + η αSa

=
N (b+ δ − vi)− (δ + vs + b)Sa

δ + b
,

which can be rewritten as the following quadratic equation

z1 S
2
a +N z2 Sa −N2 z3 = 0,

where z1 = η α (δ + vs + b),

z2 = λo (δ + b) (λ+ b) + λo vs (δ q + b) + η ωo (δ + vs + b)− η α (b+ δ − vi),

z3 = λo δ p vi + η ωo (b+ δ − vi),

with the roots

Sa = N

[
−z2 ±

√
z2

2 + 4 z1 z3

2 z1

]
.

Since we know that b− vi > 0, it means that z3 > 0, and z1 > 0, and therefore,

Sa = N

[
−z2 +

√
z2

2 + 4 z1 z3

2 z1

]
⇒ Sa = N ha,
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and with Sa <
N (b+δ−vi)
δ+vs+b

, it follows that ha =
−z2+
√
z22+4 z1 z3

2 z1
< b+δ−vi

δ+vs+b
< 1.

Consequently,

M =
N ωo + αSa

N λo
=
ωo + αha

λo
,

and

Sn =
N λo [b− vi + δ q (1− ha) + λha]

η (ωo + αha) + λo (δ q + b)
= N hn,

where hn =
λo [b− vi + δ q (1− ha) + λha]

η (ωo + αha) + λo (δ q + b)
, 0 < hn < 1, and

R = N − Sn − Sa = N(1− hn − ha).

This gives the disease-free steady state E0 = (S◦n, S
◦
a, 0, R

◦,M◦) where

S◦n = N hn, S◦a = N ha, R◦ = N (1− hn − ha), and M◦ =
ωo + αha

λo
. (4.9)

with

hn =
λo [b− vi + δ q (1− ha) + λha]

η (ωo + αha) + λo (δ q + b)
, 0 < hn < 1, and

ha =
−z2 +

√
z2

2 + 4 z1 z3

2 z1

, 0 < ha <
b+ δ − vi
δ + vs + b

.

(4.10)

The steady state E0 is biologically feasible, as long as the condition ha <
b+ δ − vi
δ + vs + b

holds.

Endemic state

Considering I > 0 in the third equation gives

Sa =
N (r + b)− β Sn

σs β
, (4.11)

and Sa > 0, if Sn <
N (r+b)

β
.

From the fourth equation of (4.5) we have

M =
N (ωo + αo I) + αSa

N λo
, (4.12)

and substituting this into the second equation of (4.5) gives

N [η (ωo + αo I)− λo δ p]Sn +N λo δ p (N − I) =

[N λo (λ+ δ p+ vs + b) + λo σs β I − η αSn]Sa. (4.13)
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Substituting the value of Sa from (4.11) into (4.13) and simplifying yields

I =
m̃1 S

2
n −N m̃2 Sn +N2 m̃3

σs β (m̃4 Sn −N m̃5)
, (4.14)

where m̃1 = β η α, m̃2 = β λo [λ+ vs + b+ δ p(1− σs)] + η α (r + b) + σs β η ωo,

m̃3 = λo [(λ+ δ p+ vs + b) (r + b)− σs β δ p], m̃4 = N η αo + β λo,

m̃5 = λo (r + δ p+ b).

Lastly, from the first equation of (4.5) we obtain

(b+ δ q − vi)N −
β I Sn
N

− (ηM + δ q + b)Sn + (λ− δ q)Sa − δ q I = 0,

and again, substituting the value of M from (4.12) gives

N2λo (b+ δ q − vi)−N [η ωo + λo (δ q + b)]Sn + [Nλo (λ− δ q)− η αSn]Sa

= [Nλo δ q + (β λo +Nη αo)Sn]I.

Substituting the value of Sa from (4.11) gives after simplification

I =
m̃1 S

2
n −N m̃6 Sn +N2 m̃7

σs β (N λo δ q + m̃4 Sn)
, (4.15)

where m̃6 = β λo (λ+ σs δ q + σs b− δ q) + σs β η ωo + η α (r + b),

m̃7 = λo [σs β (b+ δ q − vi) + (λ− δ q) (r + b)].

Equating the two expressions for I from (4.14) and (4.15), we have

z4 S
2
n −N z5 Sn +N2 z6 = 0,

where z4 = m̃1 (λo δ q+m̃5)+m̃4 (m̃6−m̃2), z5 = λo δ q m̃2+m̃5 m̃6+m̃4 (m̃7−m̃3),

z6 = λo δ q m̃3 + m̃5 m̃7.

This equation can be readily solved to give

Sn = N

[
z5 ±

√
z2

5 − 4 z4 z6

2 z4

]
= N hn∗ ,

with hn∗ =
z5±
√
z25−4 z4 z6

2 z4
and 0 < Sn <

N (r+b)
β

⇒ 0 < hn∗ <
r+b
β

.

Thus, we have the endemic equilibrium state E∗ = (S∗n, S
∗
a, I
∗, R∗,M∗) where

S∗n = N hn∗ S∗a = N ha∗ , I∗ = N hi∗ ,

R∗ = N (1− hn∗ − ha∗ − hi∗), M∗ =
N hi∗ αo + ωo + αha∗

λo
,

(4.16)
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with

hn∗ =
z5 ±

√
z2

5 − 4 z4 z6

2 z4

, ha∗ =
r + b− β hn∗

σs β
, hi∗ =

hn∗ (m̃1 hn∗ − m̃6) + m̃7

σs β (λo δ q + m̃4 hn∗)
.

The endemic steady state E∗ is biologically feasible, provided 0 < hn∗ <
r + b

β
.

Consequently, the system of equations (4.2) has the following steady states,

E0 = (S◦n, S
◦
a, 0, R

◦,M◦) and E∗ = (S∗n, S
∗
a, I
∗, R∗,M∗).

4.3 Stability analysis

Linearising the system of equations (4.2) near each steady state gives the Jacobian

matrix

Jq =



−(a5+a6+δ q+b) λ−δ q −(a2+δ q) −aτ ã6

a6−δ p −(ã5+λ+δ p+vs+b) −(ã0+δ p) aτ ã6

a5 ã5 a2+ã0−(r+b) 0

0 a7 αo −λo

, (4.17)

where aτ = e−k τ , ã0 = σs β Sa

N
, a2 = β Sn

N
, a5 = β I

N
, ã5 = σs β I

N
, a6 = ηM ,

ã6 = η Sn, a7 = α
N

.

Stability of the disease-free state

Theorem 5. The disease-free equilibrium state E0 of the system (4.2) is linearly

asymptotically stable for all τ ≥ 0 if the basic reproductive number satisfies the

condition Rd
v < 1, where

Rd
v =

β (hn + σs ha)

r + b
. (4.18)

Proof

Linearisation of the system (4.2) near its disease-free equilibrium state E0 = (S◦n,

S◦a, 0, R◦, M◦) with S◦n > 0, S◦a > 0, R◦ > 0 and M◦ > 0 yields the following



4.3 Stability analysis 68

Jacobian matrix

J◦q =



−(a6+δ q+b) λ−δ q −(a2+δ q) −aτ ã6

a6−δ p −(λ+δ p+vs+b) −(ã0+δ p) aτ ã6

0 0 a2+ã0−(r+b) 0

0 a7 αo −λo

,

with the characteristic equation

(k + r + b− a2 − ã0) [k3 + ỹ5 k
2 + ỹ6 k + ỹ7 − aτ (ỹ8 k + ỹ9)] = 0,

where

aτ = e−k τ , ã0 =
σs β S

◦
a

N
, a2 =

β S◦n
N

, a6 = ηM◦, ã6 = η S◦n, a7 =
α

N
,

g1 = λ+ b+ a6, g2 = λo + δ + b, g3 = δ + b+ vs, g4 = δ q + b+ a6,

ỹ5 = g1 + g2 + vs, ỹ6 = g1 g2 + λo g3 + vs g4, ỹ7 = λo [vs g4 + g1 (δ + b)],

ỹ8 = ã6 a7, ỹ9 = ã6 a7 (δ + b).

(4.19)

The first eigenvalue k = a2 + ã0 − (r + b) is negative whenever

a2 + ã0 − (r + b) < 0 ⇐⇒ β (hn + σs ha)

r + b
< 1 ⇐⇒ Rd

v < 1,

with Rd
v defined in (4.18).

Other eigenvalues can be found as the roots of the transcendental equation

k3 + ỹ5 k
2 + ỹ6 k + ỹ7 = (ỹ8 k + ỹ9) e−k τ . (4.20)

For τ = 0, this equation turns into a simple cubic

k3 + ỹ5 k
2 + (ỹ6 − ỹ8) k + ỹ7 − ỹ9 = 0, (4.21)

whose roots all have a negative real part if and only if the following Routh-Hurwitz

conditions hold

ỹ5 > 0, ỹ6 − ỹ8 > 0, ỹ7 − ỹ9 > 0, and ỹ5 (ỹ6 − ỹ8) > ỹ7 − ỹ9. (4.22)

The first of these conditions ỹ5 = g1 + g2 + vs > 0 holds, since g1, g2 > 0 in

accordance with (4.19). The second Routh-Hurwitz condition can be written as

ỹ6 − ỹ8 = g1 g2 + λo g3 + vs g4 − ã6 a7

= g1 (δ + b) + λo g3 + vs g4 + (λo g1 − ã6 a7) > 0.
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Since

hn =
λo [b− vi + δ q (1− ha) + λha]

η (ωo + αha) + λo (δ q + b)
< 1,

this relation can be equivalently rewritten as

η (ωo + αha) > λo (λha − δ q ha − vi) ⇒ ha <
η ωo + λo vi

λλo − η α− λo δ q
,

which in light of 0 < ha < 1, gives λλo > η αhn, and, subsequently,

λo g1 − ã6 a7 = λo (λ+ b) + η (ωo + αha)− η α hn > 0, (4.23)

thus implying

ỹ6 − ỹ8 > 0.

Hence, the second Routh-Hurwitz condition in (4.22) is also satisfied.

The third condition has the form

ỹ7 − ỹ9 = λo [vs g4 + g1 (δ + b)]− ã6 a7 (δ + b)

= λovs g4 + (δ + b)(λo g1 − ã6 a7) > 0,

and it is also satisfied due to above relation λo g1 − ã6 a7 > 0.

Similarly, the last condition

ỹ5 (ỹ6 − ỹ8) > ỹ7 − ỹ9,

can be recast in the form

(g1 + g2 + vs)[λo g3 + g1(δ + b)] + vs g4(g1 + g3) + (g1 + λo + vs)(λo g1 − ã6 a7) > 0,

which immediately shows that it is also always satisfied. Hence, one can conclude

that for τ = 0, the disease-free steady state E0 is linearly asymptotically stable

provided Rd
v < 1.

To investigate whether stability can be lost for τ > 0, we look for solutions of

equation (4.20) in the form k = i µ, which gives

−i µ3 − ỹ5 µ
2 + ỹ6 i µ+ ỹ7 = (ỹ8 i µ+ ỹ9) e−i µ τ

= (ỹ8 i µ+ ỹ9)[cos(µ τ)− i sin(µ τ)].

Equating real and imaginary parts we obtain

−ỹ5 µ
2 + ỹ7 = ỹ8 µ sin(µ τ) + ỹ9 cos(µ τ),

−µ3 + ỹ6 µ = ỹ8 µ cos(µ τ)− ỹ9 sin(µ τ),

(4.24)
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and by squaring both equations in (4.24) and summing the results give

(−ỹ5 µ
2 + ỹ7)2 + (−µ3 + ỹ6 µ)2 = ỹ2

8 µ
2 + ỹ2

9,

⇒ µ6 + (ỹ2
5 − 2 ỹ6)µ4 + (ỹ2

6 − 2 ỹ5 ỹ7 − ỹ2
8)µ2 + ỹ2

7 − ỹ2
9 = 0.

Substituting x̃1 = ỹ2
5 − 2 ỹ6, x̃2 = ỹ2

6 − 2 ỹ5 ỹ7 − ỹ2
8, x̃3 = ỹ2

7 − ỹ2
9, yields

µ3
p + x̃1 µ

2
p + x̃2 µp + x̃3 = 0, µp = µ2, (4.25)

so if one can show that there are no real positive roots µp of this equation, then no

eigenvalues of the equation (4.20) can even cross the imaginary axis, thus implying

the stability of the disease-free steady state. We will once again use the Routh-

Hurwitz criteria to show that all roots of the cubic equation (4.25) have a negative

real part, which is true if and only if

x̃1 > 0, x̃2 > 0, x̃3 > 0, and x̃1 x̃2 > x̃3.

It is straightforward to show that the first three of these conditions holds,

→ x̃1 = ỹ2
5 − 2 ỹ6 = (g1 + g2 + vs)

2 − 2 (g1g2 + λo g3 + vs g4)

= g2
1 + λ2

o + (δ + b)2 + v2
s + 2 vs (λ+ δ p+ b) > 0,

the first condition is always satisfied.

→ x̃2 = ỹ2
6 − 2 ỹ5 ỹ7 − ỹ2

8

= (g1g2 + λo g3 + vs g4)2 − 2λo (g1 + g2 + vs) [vs g4 + g1 (δ + b)]− (ã6 a7)2

= (λo g1 + ã6 a7)(λo g1 − ã6 a7) + λ2
o [v2

s + (δ + b)2 + 2 vs (λ+ δ p+ b)] +

[vs g4 + g1 (δ + b)]2 > 0,

using (4.23) shows that the condition holds.

→ x̃3 = ỹ2
7 − ỹ2

9 = (ỹ7 + ỹ9)(ỹ7 − ỹ9) > 0,

the third condition holds since ỹ7 − ỹ9 > 0 as shown earlier.

→ x̃1 x̃2 > x̃3 ⇒ (ỹ2
5 − 2 ỹ6) (ỹ2

6 − 2 ỹ5 ỹ7 − ỹ2
8) > ỹ2

7 − ỹ2
9,
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which can be transformed into

(ỹ2
5 − 2 ỹ6) (ỹ2

6 − 2 ỹ5 ỹ7 − ỹ2
8)− ỹ2

7 + ỹ2
9

=
[
g2

1 + λ2
o + (δ + b)2 + v2

s + 2 vs (λ+ δ p+ b)
][

(λo g1 + ã6 a7)(λo g1 − ã6 a7) +

λ2
o

[
v2
s + (δ + b)2 + 2 vs (λ+ δ p+ b)

]
+
[
vs g4 + g1 (δ + b)

]2]−
λ2
o

[
vs g4 + g1 (δ + b)

]2
+ (ã6 a7)2

=
[
g2

1 + (δ + b)2 + v2
s + 2 vs (λ+ δ p+ b)

][
(λo g1 + ã6 a7)(λo g1 − ã6 a7) +

λ2
o

[
v2
s + (δ + b)2 + 2 vs (λ+ δ p+ b)

]
+
[
vs g4 + g1 (δ + b)

]2]
+ (ã6 a7)2+

λ2
o (λo g1 + ã6 a7)(λo g1 − ã6 a7) + λ4

o

[
v2
s + (δ + b)2 + 2 vs (λ+ δ p+ b)

]
> 0,

which shows that x̃1 x̃2 > x̃3, based on (4.23).

Therefore, all the roots µp of the cubic equation (4.25) have a negative real part.

Thus, there are no purely imaginary roots k = i µ of the characteristic equation

(4.20), and the disease-free steady state E0 is stable if Rd
v < 1 for any τ ≥ 0. �

Stability of the endemic state

Next, we turn our attention to the endemic steady state E∗. The characteristic

equation for linearisation near this steady state has the form

k4 + k3 P5 + k2 (P6 − aτ ỹ8) + k (P7 + aτ P̃7) + P8 + aτ P̃8 = 0, (4.26)

where

P5 = a5 + ã5 + g1 + g2 + vs,

P6 = g2 (a5 + ã5 + g1) + vs (a5 + g4) + λo g3 + a5 (λ+ a2 + ã5) + ã5 (ã0 + a6),

P7 = λo[vs (a5 + g4) + (δ + b)(a5 + ã5 + g1)] + a5[vs (δ q + a2) + r (λ+ ã5 − δ q)] +

ã5 r (a6 − δ p) + g2 [a5 (λ+ a2 + ã5) + ã5 (ã0 + a6)],

P̃7 = αo ã6 (a5 − ã5)− ỹ8 (δ + b+ a5),

P8 = λo
[
a5 [vs (δ q + a2) + λ (δ + b) + r (λ+ ã5 − δ q)] + (δ + b) [ã5 (b+ a5 + a6) +

a2 (a5 − ã5)] + ã5 r g4

]
,

P̃8 = αo ã6 [vs a5 + (δ + b) (a5 − ã5)]− ỹ8 a5 (r + δ + b),
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and

aτ = e−k τ , ã0 =
σs β S

∗
a

N
, a2 =

β S∗n
N

, a5 =
β I∗

N
, ã5 =

σs β I
∗

N
,

a6 = ηM∗, ã6 = η S∗n, a7 =
α

N
, g1 = λ+ b+ a6, g2 = λo + δ + b,

g3 = δ + b+ vs, g4 = δ q + b+ a6, ỹ8 = ã6 a7.

(4.27)

For τ = 0, characteristic equation (4.26) turns into a quartic

k4 + k3 P5 + k2 (P6 − ỹ8) + k (P7 + P̃7) + P8 + P̃8 = 0, (4.28)

whose roots all have a negative real part if and only if the following Routh-Hurwitz

conditions are satisfied

P5 > 0, P6 − ỹ8 > 0, P7 + P̃7 > 0, P8 + P̃8 > 0,

P5 [(P6 − ỹ8) (P7 + P̃7)− P5 (P8 + P̃8)] > (P7 + P̃7)2.

Since P5 [(P6 − ỹ8) (P7 + P̃7)− P5 (P8 + P̃8)] > (P7 + P̃7)2 can be rewritten as

P5 (P6 − ỹ8) (P7 + P̃7) > P 2
5 (P8 + P̃8) + (P7 + P̃7)2,

it follows that the condition P7 + P̃7 > 0 is always satisfied provided

P5 > 0, P6 − ỹ8 > 0, P8 + P̃8 > 0,

P5 [(P6 − ỹ8) (P7 + P̃7)− P5 (P8 + P̃8)] > (P7 + P̃7)2.

(4.29)

Note that equation (4.13) can be expressed in the form

(N η ωo + η αS∗a)S
∗
n +N2 λo δ p = N λo [(λ+ δ p+ vs + b)S∗a + δ p S∗n] +

[N λo δ p+ λo σs β S
∗
a −N η αo S

∗
n] I∗,

⇒ (N η ωo + η αS∗a)S
∗
n +N2 λo δ p = N λo [(λ+ δ p+ vs + b)S∗a + δ p S∗n] +

[N λo (r + δ p+ b)− (N η αo + β λo)S
∗
n] I∗, (4.30)

since (N η ωo + η α S∗a)S
∗
n +N2 λo δ p > 0 it follows that

N λo [(λ+ δ p+ vs + b)S∗a + δ p S∗n] + [N λo (r+ δ p+ b)− (N η αo + β λo)S
∗
n] I∗ > 0,

⇒ I∗ <
N λo [(λ+ δ p+ vs + b)S∗a + δ p S∗n]

(N η αo + β λo)S∗n −N λo (r + δ p+ b)
,
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the fact that I∗ > 0, gives

(N η αo + β λo)S
∗
n > N λo (r + δ p+ b) ⇒ η αo S

∗
n +

β λo S
∗
n

N
> λo (r + δ p+ b),

which implies

αo ã6 + λo a2 > λo (r + δ p+ b). (4.31)

By expressing (4.30) in the form

[(N η αo + β λo)S
∗
n −N λo (r + δ p+ b)] I∗ = N λo [(λ+ δ p+ vs + b)S∗a +

δ p S∗n]− (N η ωo + η αS∗a)S
∗
n −N2 λo δ p,

and using the relation (N η αo + β λo)S
∗
n > N λo (r + δ p+ b), it implies that

N λo [(λ+ δ p+ vs + b)S∗a + δ p S∗n]− (N η ωo + η αS∗a)S
∗
n −N2 λo δ p > 0,

which can be recast as

N λo (λ+ vs + b)S∗a > (N η ωo + η αS∗a)S
∗
n +N λo δ p (N − S∗n − S∗a),

N λo (λ+ vs + b)S∗a > η αS∗a S
∗
n ⇒ λo (λ+ vs + b) >

η αS∗n
N

= ã6 a7,

hence,

λo (λ+ vs + b) > ỹ8. (4.32)

Also note that

a5 − ã5 =
β I∗

N
− σs β I

∗

N
= β hi∗ (1− σs) > 0 ⇒ a5 > ã5. (4.33)

Consequently, proving the above stability conditions in (4.29) we have

→ P5 = a5 + ã5 + g1 + g2 + vs > 0,

this first condition for stability is always satisfied.

→ P6 − ỹ8 = g2 (a5 + ã5 + g1) + vs (a5 + g4) + λo g3 + a5 (λ+ a2 + ã5) +

ã5 (ã0 + a6)− ỹ8 > g2 g1 + λo g3 − ỹ8

= (λo + δ + b) (a5 + λ+ b+ a6) + λo (δ + b+ vs)− ỹ8

> λo (λ+ vs + b)− ỹ8 > 0,
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the second condition also holds due to (4.32).

→ P8 + P̃8 = λo
[
a5 [vs (δ q + a2) + λ (δ + b) + r (λ+ ã5 − δ q)] + ã5 r g4 +

(δ + b) [ã5 (b+ a5 + a6) + a2 (a5 − ã5)]
]

+ αo ã6 [vs a5 + (δ + b) (a5 − ã5)]−

ỹ8 a5 (r + δ + b)

= a5 vs (αo ã6 + λo a2 + λo δ q) + a5 (r + δ + b) [λo (λ+ vs + b)− ỹ8]−

λo a5 vs (r + δ + b)− λo a5 b (r + δ + b)− λo a5 r δ q + λo ã5 [r (δ q + a5) +

(δ + b) (r + b+ a5 + a6)] + (a5 − ã5)(δ + b)(αo ã6 + λo a2)

= a5 vs [αo ã6 + λo a2 − λo (r + δ p+ b)] + a5 (r + δ + b) [λo (λ+ vs + b)− ỹ8] +

λo a5 r δ p+ (a5 − ã5)(δ + b)[αo ã6 + λo a2 − λo (r + b)] + λo ã5 [r (δ q + a5) +

(δ + b)(a5 + a6)] > 0,

this condition is satisfied for any parameter values since all the brackets are positive

due to the relations in (4.31), (4.32) and (4.33) shown above.

→ P5

[
(P6 − ỹ8) (P7 + P̃7)− P5 (P8 + P̃8)

]
> (P7 + P̃7)2,

this expression can be rewritten as

(P7 + P̃7)
[
P5 (P6 − ỹ8)− (P7 + P̃7)

]
− P 2

5 (P8 + P̃8) > 0,

but

P5 (P6 − ỹ8)− (P7 + P̃7) = (a5 + ã5 + g1 + g2 + vs)
[
g2 (a5 + ã5 + g1) + vs (a5 + g4) +

λo g3 + a5 (λ+ a2 + ã5) + ã5 (ã0 + a6)− ỹ8

]
−
[
λo[vs (a5 + g4) +

(δ + b)(a5 + ã5 + g1)] + a5[vs (δ q + a2) + r (λ+ ã5 − δ q)] + ã5 r (a6 − δ p) +

g2 [a5 (λ+ a2 + ã5) + ã5 (ã0 + a6)] + αo ã6 (a5 − ã5)− ỹ8 (δ + b+ a5)
]

= (λo + vs + ã5 + g1) [λo (λ+ vs + b)− ỹ8] + λo [P5 (δ + b+ a5 + ã5 + a6) +

(δ + b+ a5)(λ+ vs + b)] + (a5 + ã5 + g1)[g3 (δ + b+ a5) + (δ + b)(ã5 + g1)] +

ã5 [(ã0 + a6)(vs + ã5 + g1) + r δ p+ αo ã6] + vs (a5 + g4)(ã5 + g1 + g3) +

a6 r (a5 − ã5) + a5 [ã5 (ã5 + g1) + r (δ q + b) + g1 (λ+ b+ ã5 − ã0)− αo ã6],

and P8 + P̃8 can also be express as

P8 + P̃8 = λo (P7 + P̃7) + αo a5 ã6 g3 −
[
λo (δ + b+ a5)[λo (λ+ vs + b)− ỹ8] +

a5 [λ2
o(δ + a2) + ỹ8 (r + δ + b)] + ã5 [(δ + b)(αo ã6 + λ2

o) +

λ2
o(a5 + ã0 + a6)] + λ2

o(a6 g3 − vs δ p) + αo ã6 λo (a5 − ã5)
]
.
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Therefore,

(P7 + P̃7) [P5 (P6 − ỹ8)− (P7 + P̃7)]− P 2
5 (P8 + P̃8)

= (P7 + P̃7)
[
(λo + vs + ã5 + g1)

[
λo (λ+ vs + b)− ỹ8

]
− λo

[
λo P5 +

(λo + vs + ã5 + g1)(λ+ vs + b)
]

+ (a5 + ã5 + g1)
[
g3 (δ + b+ a5) +

(δ + b)(ã5 + g1)
]

+ ã5

[
(ã0 + a6)(vs + ã5 + g1) + r δ p+ αo ã6

]
+

vs (a5 + g4)(ã5 + g1 + g3) + a6 r (a5 − ã5) + a5

[
ã5 (ã5 + g1) + r (δ q + b) +

g1 (λ+ b+ ã5 − ã0)− αo ã6

]]
+ P 2

5

[
λo (δ + b+ a5)

[
λo (λ+ vs + b)− ỹ8

]
+

a5

[
λ2
o(δ + a2) + ỹ8 (r + δ + b)

]
+ ã5

[
(δ + b)(αo ã6 + λ2

o) + λ2
o(a5 + ã0 + a6)

]
+

λ2
o(a6 g3 − vs δ p) + αo ã6 λo (a5 − ã5)− αo a5 ã6 g3

]
> 0.

Consequently, we obtain the result.

Lemma 2. Let the condition

(P7 + P̃7) [P5 (P6 − ỹ8)− (P7 + P̃7)]− P 2
5 (P8 + P̃8) > 0 (4.34)

hold, then the endemic steady state E∗ is linearly asymptotically stable for τ = 0.

Remark 2. Although it does not appear possible to prove that the condition (4.34)

is automatically satisfied, extensive numerical simulations show that it does indeed

hold for any parameter values, for which the endemic steady state E∗ is biologically

feasible.

Having established stability of the endemic state E∗ for τ = 0, the next step in

the analysis is to investigate whether this steady state can lose stability for τ > 0,

in which case the characteristic equation (4.26) has the explicit form

k4 + P5 k
3 + P6 k

2 + P7 k + P8 = (ỹ8 k
2 − P̃7 k − P̃8) e−k τ , (4.35)

In order for the steady state E∗ to lose its stability, some of the eigenvalues as

determined by this equation must cross the imaginary axis. Looking for solutions

in the form k = iµ gives

µ4 − P5 i µ
3 − P6 µ

2 + P7 i µ+ P8 = (−ỹ8 µ
2 − P̃7 i µ− P̃8) e−i µ τ

= (−ỹ8 µ
2 − P̃7 i µ− P̃8) [cos(µ τ)− i sin(µ τ)].
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Separating real and imaginary parts, we obtain

µ4 − P6 µ
2 + P8 = −[(ỹ8 µ

2 + P̃8) cos(µ τ) + P̃7 µ sin(µ τ)],

−P5 µ
3 + P7 µ = (ỹ8 µ

2 + P̃8) sin(µ τ)− P̃7 µ cos(µ τ).

(4.36)

Squaring and adding these two equations gives

µ8 + x̃4 µ
6 + x̃5 µ

4 + x̃6 µ
2 + x̃7 = 0, (4.37)

where x̃4 = P 2
5−2P6, x̃5 = 2P8+P 2

6−2P5 P7−ỹ2
8, x̃6 = P 2

7−2P6 P8−P̃ 2
7−2 ỹ8 P̃8,

x̃7 = P 2
8 − P̃ 2

8 .

Considering equation (4.37) gives the following equation for the Hopf frequency

f(µ) = µ8 + x̃4 µ
6 + x̃5 µ

4 + x̃6 µ
2 + x̃7 = 0. (4.38)

The derivative of the function, f(µ) can be found as

f ′(µ) = 2µ (4µ6 + 3 x̃4 µ
4 + 2 x̃5 µ

2 + x̃6).

Solving the system (4.36) for τ , we obtain

(µ4 − P6 µ
2 + P8)(ỹ8 µ

2 + P̃8) = −(ỹ8 µ
2 + P̃8)2 cos(µ τ)− P̃7 µ (ỹ8 µ

2 + P̃8) sin(µ τ),

P̃7 µ (−P5 µ
3 + P7 µ) = P̃7 µ (ỹ8 µ

2 + P̃8) sin(µ τ)− (P̃7 µ)2 cos(µ τ),

and adding these two equations yields

cos(µ τ) =
(P6 µ

2 − µ4 − P8)(ỹ8 µ
2 + P̃8) + P̃7 µ

2 (P5 µ
2 − P7)

(ỹ8 µ2 + P̃8)2 + P̃ 2
7 µ

2
.

Similarly, solving for sin(µ τ) using (4.36) gives

sin(µ τ) =
µ
[
(P6 P̃7 + ỹ8 P7 − P5 P̃8)µ2 − (ỹ8 P5 + P̃7)µ4 + P7 P̃8 − P8 P̃7

]
(ỹ8 µ2 + P̃8)2 + P̃ 2

7 µ
2

.

Hence, expressing τ in terms of cosine, we obtain

τn =
1

µ

[
cos−1

(
(P6 µ

2 − µ4 − P8)(ỹ8 µ
2 + P̃8) + P̃7 µ

2 (P5 µ
2 − P7)

(ỹ8 µ2 + P̃8)2 + P̃ 2
7 µ

2

)
+ 2πn

]
,

n = 0, 1, 2, . . .

Without loss of generality, one can assume that f(µ) = 0 has eight different

positive roots µj, j = 1, . . . , 8. For each of those roots, we can find the corresponding

value of the time delay τ as

τj,n =
1

µj

[
cos−1

(
(P6 µ

2
j − µ4

j − P8)(ỹ8 µ
2
j + P̃8) + P̃7 µ

2
j (P5 µ

2
j − P7)

(ỹ8 µ2
j + P̃8)2 + P̃ 2

7 µ
2
j

)
+ 2π (n− 1)

]
,

j = 1, . . . , 8, n ∈ N,



4.3 Stability analysis 77

and define

τ0 = τj0,n0 = min
1≤j≤8,n≥1

{τj,n}, µ0 = µj0 . (4.39)

In order to establish whether the Hopf bifurcation actually occurs at τ = τ0, one

has to determine the sign of d[Re(k)]/dτ . Differentiating the characteristic equation

(4.35) with respect to τ gives[
4 k3+3P5 k

2+2P6 k+P7

]dk
dτ

=
[
(2 ỹ8 k−P̃7) e−k τ−τ (ỹ8 k

2−P̃7 k−P̃8) e−k τ
]dk
dτ
−

k (ỹ8 k
2 − P̃7 k − P̃8) e−k τ

⇒ 4 k3 + 3P5 k
2 + 2P6 k + P7 −

[
2 ỹ8 k − P̃7 − τ (ỹ8 k

2 − P̃7 k − P̃8)
]
e−k τ =

− k e−k τ
[
ỹ8 k

2 − P̃7 k − P̃8

] dτ
dk
.

Therefore,(
dk

dτ

)−1

=

[
2 ỹ8 k − P̃7 − τ (ỹ8 k

2 − P̃7 k − P̃8)
]
e−k τ − (4 k3 + 3P5 k

2 + 2P6 k + P7)

k (ỹ8 k2 − P̃7 k − P̃8) e−k τ

=
(2 ỹ8 k − P̃7) e−k τ − (4 k3 + 3P5 k

2 + 2P6 k + P7)

(ỹ8 k3 − P̃7 k2 − P̃8 k) e−k τ
− τ

k
.

Evaluating at τ = τ0 with k = iµ0 yields(
dk

dτ

)−1
∣∣∣∣∣
τ=τ0

=
(2ỹ8iµ0 − P̃7)[cos(µ0τ0)− i sin(µ0τ0)] + (4iµ3

0 + 3P5µ
2
0 − 2P6iµ0 − P7)

(−ỹ8 i µ3
0 + P̃7 µ2

0 − P̃8 i µ0) [cos(µ0τ0)− i sin(µ0τ0)]

− τ0

iµ0

.

Collecting the real terms and substituting the values of cos(µ0τ0) and sin(µ0τ0)

give the following after simplification,

Re

(
dk

dτ

)−1
∣∣∣∣∣
τ=τ0

=

[
1

(ỹ8 µ2
0 + P̃8)2 + P̃ 2

7 µ
2
0

] [
4µ6

0 + 3 (P 2
5 − 2P6)µ4

0 +

2 (2P8 + P 2
6 − 2P5 P7 − ỹ2

8)µ2
0 + P 2

7 − 2P6 P8 − 2 ỹ8 P̃8 − P̃ 2
7

]
=

4µ6
0 + 3 x̃4 µ

4
0 + 2 x̃5 µ

2
0 + x̃6

(ỹ8 µ2
0 + P̃8)2 + P̃ 2

7 µ
2
0

=
2µ0

[
4µ6

0 + 3 x̃4 µ
4
0 + 2 x̃5 µ

2
0 + x̃6

]
2µ0

[
(ỹ8 µ2

0 + P̃8)2 + P̃ 2
7 µ

2
0

] = zv f
′(µ0),

where zv =
[
2µ0

(
(ỹ8 µ

2
0 + P̃8)2 + P̃ 2

7 µ
2
0

)]−1

and since zv > 0, it means that

sign

{
d [Re(k)]

dτ

}
τ=τ0

= sign

{
Re

(
dk(τ0)

dτ

)−1
}

= sign
{
zv f

′(µ0)
}

= sign
{
f ′(µ0)

}
.

This analysis can be summarised as follows.
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Theorem 6. Let τ0 and µ0 be defined as in (4.39) and f ′(µ0) > 0. Then the

endemic steady state E∗ of the system (4.2) is linearly asymptotically stable for

τ < τ0, unstable for τ > τ0 and undergoes Hopf bifurcation at τ = τ0 provided the

condition of Lemma 2 holds.

4.4 Numerical bifurcation analysis and simulations

In order to better understand how different parameters affect the stability of the

disease-free and endemic equilibria, we use a pseudospectral method [7] implemented

in a traceDDE suite in MATLAB to numerically compute characteristic eigenvalues.

Figure 4.2 illustrates how stability of the endemic steady state depends on the disease

transmission rate β, local awareness rate α, the value of global awareness campaigns

ωo, the rate of reporting infection cases αo, and the time delay τ of individuals’

response to available information. This figure shows that the endemic equilibrium

only exists for a limited range of disease transmission rates, and it is stable for

higher rates and unstable for smaller β. Increasing the awareness rate αo leads

to a destabilisation of the endemic steady state, but surprisingly, increasing the

value of global awareness campaigns ωo or a local awareness rate α actually results

in stabilising an endemic steady state, whilst increasing these rates above certain

values makes the endemic steady state unfeasible, in which case the disease-free

steady state is stable.

In terms of two types of vaccination, naturally, vaccination of aware individuals

does not have any noticeable effect on stability of the endemic steady state, whereas

increasing the vaccination rate of unaware individuals stabilises the endemic steady

state, until it makes E∗ unfeasible and stabilises the disease-free steady state. In-

creasing the time delay τ , in accordance with Theorem 6, leads to destabilisation of

the endemic steady state and the emergence of periodic solutions. Figure 4.3 further

illustrates the stability boundary of the steady state E∗, showing that for higher in-

fant vaccination rates, a lower value of global awareness campaign is required to

stabilise the endemic steady state.

Figures 4.4 - 4.7 demonstrates the results of numerical continuation of the Hopf

bifurcation of the endemic steady state, as performed using DDE-BIFTOOL con-
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Figure 4.2: Stability of the endemic steady state E∗. Colour code denotes max[Re(k)], and in white regions the

endemic steady state is not feasible. Parameter values are as follows, β = 1.2 but varied in (a), ωo = 0.1 but varied

in (b), α = 0.3 but varied in (c), vi = 0.04 but varied in (d), αo = 0.2 but varied in (e), vs = 0.06 but varied in (f),

λ = 0.1, r = 0.2, σs = 0.04, p = 0.4, q = 0.6, λo = 0.3, η = 0.05, δ = 0.3, b = 0.4, N = 100.

tinuation software. Figure 4.4(a) and (c) captured the results for the plot in complex

plane of the eigenvalues of the steady state as extracted using p splot during runtime

for τ = 8 and τ = 16 respectively showing a stable state and an unstable state, (b)

represents the Hopf point generated also from the p splot during runtime and (d)

shows the outcome of comparing the result obtained using traceDDE for varied ωo
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Figure 4.3: Stability boundaries of the endemic steady state E∗. The steady state is stable to the left of the

surface in (a), and to the left of the lines in (b). Parameter values used are: α = 0.3, λ = 0.1, β = 1.2, r = 0.2, σs =

0.04, p = 0.4, q = 0.6, αo = 0.2, λo = 0.3, η = 0.05, δ = 0.3, vs = 0.06, b = 0.4, N = 100.

Figure 4.4: Bifurcation analysis of the endemic state (a) distribution of eigenvalues for τ = 8, (b) distribution

of eigenvalues at the Hopf point for τ = 16, (c) distribution of eigenvalues for τ = 16, (d) comparison of the Hopf

boundary computed using DDE-BIFTOOL (black) and traceDDE (red). The parameter values are α = 0.3, λ =

0.1, β = 1.2, r = 0.2, σs = 0.04, p = 0.4, q = 0.6, ωo = 0.1, αo = 0.2, λo = 0.3, η = 0.05, δ = 0.3, vs = 0.06, vi =

0.04, b = 0.4, N = 100.

against τ and the result from DDE-BIFTOOL extracted by br contn for the con-

tinuation output of Hopf branch points. The results for the amplitude and period



4.4 Numerical bifurcation analysis and simulations 81

Figure 4.5: Bifurcation analysis of the endemic state for vi = 0.04, τ = 16 (a) periodic solutions showing the

dynamics of variables (b) amplitude of periodic solutions depending on the time delay τ , (c) period depending on

time delay. Parameter values are α = 0.3, λ = 0.1, β = 1.2, r = 0.2, σs = 0.04, p = 0.4, q = 0.6, ωo = 0.1, αo =

0.2, λo = 0.3, η = 0.05, δ = 0.3, vs = 0.06, b = 0.4, N = 100.

Figure 4.6: Bifurcation analysis of the endemic state for vi = 0.06, τ = 17 (a) periodic solutions showing the

dynamics of variables (b) amplitude of periodic solutions depending on the time delay τ , (c) period depending on

time delay. Parameters used are α = 0.3, λ = 0.1, β = 1.2, r = 0.2, σs = 0.04, p = 0.4, q = 0.6, ωo = 0.1, αo =

0.2, λo = 0.3, η = 0.05, δ = 0.3, vs = 0.06, b = 0.4, N = 100.

Figure 4.7: Bifurcation analysis of the endemic state for vi = 0.08, τ = 18, (a) periodic solutions showing the

dynamics of variables (b) amplitude of periodic solutions depending on the time delay τ , (c) period depending on

time delay. Other parameters are α = 0.3, λ = 0.1, β = 1.2, r = 0.2, σs = 0.04, p = 0.4, q = 0.6, ωo = 0.1, αo =

0.2, λo = 0.3, η = 0.05, δ = 0.3, vs = 0.06, b = 0.4, N = 100.
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Figure 4.8: Numerical solution of the system (4.5) with τ = 0. (a) Stable disease-free steady state for β = 0.6, Rd
v =

0.8977. (b) Stable endemic equilibrium for β = 1.2, Rd
v = 1.7955. Other parameter values are α = 0.3, λ = 0.1, r =

0.2, σs = 0.04, p = 0.4, q = 0.6, ωo = 0.1, αo = 0.2, λo = 0.3, η = 0.05, δ = 0.3, vs = 0.06, vi = 0.04, b = 0.4, N = 100.

of periodic solutions of the model equation as against time delay, τ using vi = 0.04

are represented in Figure 4.5. Further evaluations of the model with vi = 0.06 and

vi = 0.08 produced the outcome in Figures 4.6 and 4.7 respectively. It shows that

both the amplitude, and the period of periodic solutions increase with the time

delay τ , and for higher vaccination rates vi the amplitude of the periodic solution is

smaller, while the period is higher.

In Figure 4.8 we illustrate how actual dynamics of the system (4.2) changes

depending on system parameters. Figures 4.8(a) and (b) show that for τ = 0, the

system approaches the stable disease-free or endemic steady states for Rd
v < 1 or

Rd
v > 1, respectively. One should note that according to Theorem 5, the stability

of the disease-fee steady state does not depend on the value of the time delay τ ,

but rather on the basic reproduction number Rd
v only, so if one keeps the value of

Rd
v < 1, the same kind of behaviour would be observed for any τ > 0. Figure 4.9(a)-

(c) revealed that choosing parameters in the range where Rd
v > 1 and increasing the

time delays τ results in the system approaching endemic steady state in an oscillatory

manner, with the amplitude of oscillations increasing with the time delay. Once the

time delay τ exceeds the critical value determined by Theorem 6, the endemic steady

state becomes unstable, and the system exhibits stable periodic solutions illustrated

in Figure 4.9(d). The amplitude and period of such solutions themselves depend

on the time delay, as has been shown earlier in plots (b) and (c) of Figures 4.5, 4.6

and 4.7.
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Figure 4.9: Stability evaluation of the endemic state with Rd
v = 1.7955 (a) τ = 4 (b) τ = 8 (c) τ = 10 (d) τ = 16.

Parameter values are α = 0.3, λ = 0.1, β = 1.2, r = 0.2, σs = 0.04, p = 0.4, q = 0.6, ωo = 0.1, αo = 0.2, λo = 0.3, η =

0.05, δ = 0.3, vs = 0.06, vi = 0.04, b = 0.4, N = 100.

4.5 Discussion

This chapter has analysed the effects of vaccination and different types of disease

awareness on the dynamics of epidemic spread. We have studied analytically and

numerically the conditions on system parameters which ensure feasibility and sta-

bility of the disease-free and endemic equilibria. These results suggest that stability

of the disease-free steady state is independent of the time delay associated with

the response of unaware individuals to various types of awareness campaign, but it

is rather determined by the basic reproduction number Rd
v that depends on other

epidemiological parameters, as well as the values of awareness dissemination and

infant vaccination rate. On the contrary, stability of the endemic equilibrium does

depend on the response time delay in such a way that while the endemic steady state

is stable for τ = 0 (whenever it is biologically feasible), increasing the time delay

can destabilise this endemic steady state and lead to the onset of stable periodic

oscillations.

The analysis has provided a number of insights into the relative roles of different

parameters, some of which are natural, while others were surprising. Vaccination

of aware individuals appears to not have a profound effect on the disease dynamics,
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while increasing the vaccination rates of unaware individuals (newborn), can make

the endemic steady state unfeasible, so that the disease would be eradicated, and the

system would settle on a stable disease-free equilibrium. For large values of the time

delay, reducing the rate of disease transmission destabilise the endemic equilibrium,

which should be expected.

Contrary to intuition, the same behaviour occurs when one reduces the values

of global awareness campaign or local awareness, whereas one would expect that

reduced awareness would support the maintenance of disease in the population, as

is the case for the awareness stemming from the reported cases of disease. Moreover,

increasing the values of local awareness and/or global awareness campaign increases

the time delay needed to destabilise the endemic steady state. Interestingly, all

these different types of disease awareness only affect the stability of the endemic

equilibrium for sufficiently large time delay, while for zero and small delays, the

endemic steady state is always stable whenever it is feasible, regardless of the rates

of awareness.

The results suggest that no matter how efficiently the cases of infection are re-

ported, by itself this is not sufficient to create enough awareness to eradicate an

epidemic, whereas global awareness campaign, and increasing the overall aware-

ness level through contacts with other aware individuals are able to achieve this.

Furthermore, the analysis shows an important role played by the vaccination of

newborns, which can prevent epidemic outbreaks by providing a required level of

herd immunity.



Chapter 5

Discussion and future work

5.1 Summary and conclusions

Earlier models of infectious disease dynamics have provided some insights into how

the circulation of information about an invading pathogen could assist in curtailing

the spread of the disease within a given population. Information in these models can

originate from different sources, such as direct contacts between the individuals, also

known as a local awareness, and the global sources comprising of the media, mass

awareness campaign programmes, social networking via the internet etc. Availability

and dissemination of information to individuals from these sources play a vital role

in the control of infectious diseases.

This thesis has focused on the spread of infectious diseases within human popu-

lation that can become aware of the pathogen through both local and global sources

of awareness. In real life scenarios, one can observe that the unaware population

can access global information regardless of whether it is susceptible, infected or re-

covered, with all individuals having equal access to global sources of awareness. We

have considered three realistic scenarios concerning the circulation of awareness from

the media and other global sources, as well as from direct interactions of individu-

als. The first model focused on analysing the possibility of the unaware population

becoming aware, irrespective of its status, of an invading pathogen through direct

contact and global sources of awareness. The analysis provided analytical expres-

sions of various steady states together with conditions for their stability. The results

show that the presence of awareness tends to generate corresponding behavioural

85
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changes in humans which in turn allows to control the spread of infectious diseases.

The second model focused on the effects of time delay in the response of unaware

individuals to information provided during the dissemination of awareness. The

results of the analysis show that the disease-free state will remain stable irrespective

of the value of the time delay, suggesting that stability of this steady state does

not depend on the duration of delay associated with individuals’ responses to the

awareness but is rather determined by the rates at which the awareness is required.

Interestingly, the results suggest that, disease eradication becomes possible when the

rate of the spread of local awareness or the level of global awareness campaign are

sufficiently high, unlike the case of increasing the level of awareness stemming from

the higher number of reported disease cases. The results also show that increasing

global awareness campaign or the rate of local awareness tends to stabilise the

endemic steady state in the case of delay in the response of individuals to available

information, and when these values are sufficiently high, the disease is eradicated.

This demonstrates the importance of awareness circulation in reducing the spread

of infectious diseases.

The third model considered the optimisation of the impact of awareness when it

is operating in parallel with the administration of a vaccine. This was done by ana-

lysing the impact of disseminating awareness of the infectious disease using various

awareness routes and the administration of vaccine to the unaware susceptible (new-

born) and the aware population. Besides the analytical investigation of the model,

the numerical simulations were carried out to illustrate how different parameters

affect system dynamics. Further to conclusions obtained for earlier models, the res-

ults for this model show that vaccination of aware susceptible appears to not have

a profound effect on the disease dynamics, while increasing newborn vaccination is

much more effective at curtailing or eradicating the spread of infectious diseases.

The overall outcome lies in the significance of awareness for the purpose of con-

trolling the spread of infectious diseases. In light of the results, one can conclude

that the dissemination of information to the general public regarding an infectious

disease contributes to the positive behavioural reactions of the population in fighting

and controlling the spread of the disease, and, as a result, the outbreaks of the dis-

ease are minimised. The impact of awareness circulation was found to be enhanced
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with the administration of vaccines to newborns, which means that the combined

effects of awareness and vaccination on the spread of an invading infectious disease

in a given human population tend to be more effective in eradicating the disease

from the population. Consequently, educating people serves as a control strategy

against the spread of infectious diseases, and this can be further supported by the

administration of vaccines.

5.2 Further research

One possible important extension of the work presented in this thesis is the consider-

ation of the geographic spread of infections and disease awareness. Spatial movement

of people within and between different regions can result in different rates of the

spread of disease and awareness. According to [46], during the 1994 outbreak of

the plague in India, as the infected migrated due to a general panic, this resulted

in the spread of disease to other states of the country. Similar situations occurred

during the recent outbreak of Ebola and Zika virus which spread across countries

as a result of the infected population migrating from the disease-endemic region to

other countries. Zuo et al. [67] considered the influence of media coverage on the

spread of infectious disease within a particular region from other regions. In the

same light, future research should focus on the issue of migration of the population

and the dissemination of awareness, evaluating the impact these have on the spread

of infectious disease.

Within spatial models of epidemic spread, one can investigate optimal vaccin-

ation aimed at eradicating diseases with constrained resources. This would result

in targeted vaccination strategies focusing on specific geographic regions. Another

issue that can have a profound effect on developing techniques for disease control is

the fact that infectious diseases are often characterized by a non-exponential distri-

bution of infectious periods. More realistic models can include this feature through

distributed time delays, and data from actual epidemic outbreaks can then be fed

into these models to investigate how this affects the disease spread, and how epi-

demics can be controlled.
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