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Three Essays on the Causal Impacts of Child Labour Laws in Brazil 

SUMMARY 

This thesis focuses on different impacts of an important change in Brazil’s child 

labour legislation. In December 1998, Brazil raised the minimum employment age from 

14 to 16 banning from the labour force children who turned 14 just after the law passed. 

Two year later, in December 2000, Brazil institutionalised an apprenticeship programme 

aimed at children aged 14 to 17. In chapter one of this thesis I investigate the short run 

effects of both laws on children’s time allocation using a regression discontinuity design 

technique. I look at the impact of both laws on schooling and labour market outcomes 

for two cohorts: children just under age 14 and teenagers just under age 16.  

The second chapter turns attention to the long-term effects of the 1998 ban, 

comparing the labour market and schooling outcomes of the cohorts who turned 14 

before and after the law came into effect. The analysis is conducted for white and non-

white males to check how the ban affected individuals from different socioeconomic 

backgrounds. This is the first study that looks at the long-term effects of a child labour 

ban.  

The third chapter investigates whether the ban had spillover effects on time 

allocation of younger siblings and parents. This is chapter covers a broad set of 

outcomes, exploring family composition and potential liquidity constraints to shed light 

on potential underlying mechanisms.  

This thesis contributes to the understanding of the consequences of child labour 

legislation, looking at immediate impacts on children themselves, long-term effects, and 

spillover effects on other household members. Its main results show that such 

legislation may have unintended consequences, long-lasting effects, and affect time 

allocation of other household members in ways policy makers might not be able to 

foresee.  
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INTRODUCTION 
 

Should child labour be banned? From a normative perspective, there is likely 

wide agreement that child labour is bad and should be condemned. Child labour is often 

associated with an image of very young children engaged in different forms of 

hazardous work, including unpaid household services.1 In fact, the reality is far more 

complex. The definition of ‘child labour’ depends on who is considered a child – the 

age range – and the types of work/activities in which a ‘child’ is involved. Thus, before 

fighting against child labour one should question who is actually working and on what. 

Child labour could also be criticized on empirical grounds, as engagement in the world 

work early in life might harm children’s human capital – e.g., missed school days and 

low academic achievement.  

The International Labour Organization (ILO) considers children to be between 

the ages of 5 and 17 and use two criteria to define child labour: minimum employment 

age and form of labour. The two criteria are not mutually exclusive. If a child below the 

minimum employment age is working, she is immediately considered to be in child 

labour unless she is participating in an apprenticeship programme. In this case, an 

arbitrary age threshold determines whether work performed by two children who are 

close in age is child labour. But the ILO’s definition also encompasses the type of work 

performed by children. Children older than the minimum employment age but younger 

than 18 found performing “the worst forms of work” will be included in child labour 

statistics as well.2  

ILO (2013) estimates for 2012 show that 264 million children were in 

employment, 168 million in child labour, and 85 million in hazardous work,3 with most 

employed in the agricultural and service sectors (58.6 percent and 32.3 percent 

respectively). The incidence of child labour was 9.9 percent (120.5 million in absolute 

terms) among 5 to 14 year olds and 13.1 percent (47.4 million) among those aged 12 to 

                                                        
1 This category of child labour includes long hours of work in an unhealthy and unsafe environment.  
2 ILO (2013) lists the following as the worst forms of child labour: child prostitution; compulsory labour; 

compulsory recruitment in armed conflict; work underground, in confined spaces, with dangerous 

machinery, carrying heavy loads; and so on. Note that household chores and sporadic work are excluded 

from this definition. 
3 ILO uses ‘Children in Employment’ as a broader definition that encompasses illegal (child labour) and 

legal work activities carried out by 5- to 17-year-old children. Work is considered legal if it is in 

accordance with the ILO Conventions No. 138 and 182. Convention No. 138 sets the definition of 

minimum employment ages, whereas the Convention No. 182 prohibits the worst (most hazardous) forms 

of child labour. See ILO (2013).   
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14, whereas the incidence of hazardous work was 3.1 percent and 5.3 percent for these 

two age groups respectively.  

Although the incidence of child labour increases with age, it could be argued 

that a higher incidence among 12- to 14-year-olds might be less worrying than a lower 

incidence among those aged 5 to 11,4 in particular in cases in which children are 

approaching the minimum employment age and they are not performing any type of 

condemned work. There is increasing evidence in early childhood development 

literature showing that the earlier vulnerable children are exposed to interventions 

aimed at remedying deficiencies in cognitive and non-cognitive skills, the higher the 

return per dollar invested in terms of adult outcomes.5 Because early exposure to child 

labour may come at the expense of human capital accumulation through formal 

education as well as health outcomes, this literature suggests that policies aimed at 

reducing incidences of child labour should perhaps pay closer attention to the youngest 

groups—those more likely to being harmed in the long run from early exposure to work 

activities. 

For children approaching the minimum legal working age, it might be more 

difficult to know upfront whether they should accumulate human capital through formal 

education or labour market experience, especially in contexts in which formal education 

is unlikely to add much to children’s productivity.6 Identifying (i) the forms of work 

that can actually contribute to children’s human capital accumulation and (ii) the 

appropriate age at which they can be exposed to the labour market environment is 

particularly relevant for developing countries that still have a high number of children 

working illegally and with public schools of questionable quality.7 The consequences of 

policies developed to help children accumulate human capital through 

training/employment are still to be better understood, but the evidence available 

suggests their effects can be broad and persistent (see Edmonds, 2008). 

                                                        
4 Evidence for Brazil, for instance, shows that the earlier an individual is exposed to work the higher the 

probability of their offspring entering the labour market early (Emerson and Souza, 2003), the higher the 

probability of developing health problems in adult life (Kassouf et al. 2001), the higher the probability of 

performing poorly in school (Bezerra et al. 2009), and the lower the wages earned in adult life (Emerson 

and Souza, 2011).   
5 Interventions include the provision of daycare centres. This literature is evolving quickly, and there is 

evidence covering an array of outcomes such as employability and wages, probability of committing 

crime and being incarcerated, and probability of pregnancy during adolescence. See Heckman (2008).  
6 Although formal education can affect labour market outcomes through signaling effect, it is unlikely 

that employers are unaware of the average quality of public education children receive. In this case, the 

signaling effect of education might be dominated by the productivity effect.   
7 A new wave of studies looking at long-term effects of conditional cash transfer programmes has found 

small or nil impact on labour market outcomes. 
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This debate is very relevant in face of the high proportion of young people in the 

labour force worldwide. Concerns over youth unemployment have increased around the 

world in the aftermath of the financial crises of 2008 (see WB 2013 and ILO 2014). 

Studies show that youth unemployment may have permanent negative consequences for 

individuals’ lives through lower accumulation of work experience. Individuals who do 

not accumulate experience during their youth may face difficulty finding a job in the 

long run and consequently see lower returns to an additional year of work experience. In 

fact, the perception that postponing entrance into the labour force might have long-term 

negative consequences for their labour market prospects may be one of the drivers in 

parents’ decisions to send their children to work relatively young. To help youth 

transition from school to work, many countries have created apprenticeship 

programmes8. These vocational training programmes work as an entry point to the 

labour market, which in some countries the youth are highly encouraged to take-up.9  

Countries that have ratified ILO Convention No. 138 and set minimum ages for 

admission to employment have had to deal with a dilemma: identifying a minimum 

employment age that discourages child labour without harming opportunities for 

disadvantaged youth to accumulate human capital through labour market experience. It 

is important to mention that in ratifying the ILO Convention No. 138 countries agree on 

setting the minimum employment age above the school leaving age to reduce children’s 

incentive to abandon school before graduating. The success of this endeavour is 

ultimately an empirical matter that this thesis explores. Theoretical models suggest that 

bans on child labour such as those based on specifying minimum employment ages may 

not deliver as expected (Basu and Van 1998; Basu 2005). Perhaps one of the 

assumptions of advocates of a minimum legal age is that parents can actually afford 

children’s leisure activities and decide not to make such investments. Parents’ decisions 

to send their children to work would therefore be due to some misperception regarding 

the returns to schooling (underestimated) and the returns to labour market experience 

(overestimated). Thus, with a ban in place, it is hoped that parents would reallocate 

children’s time towards school and leisure. On theoretical grounds, Basu (2005) has 

shown that ban policies can actually harm poor households by limiting the sources of 

                                                        
8 Apprenticeship programmes are usually seen as a form of vocational training for youth.  
9 See Brodaty et al. (1999) and Caliendro et al. (2011).  
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household income.10 Since the ban will lead to a reallocation of children’s time in the 

short run, it may affect their schooling – such as school attendance and learning – and 

short-term and long-term labour market outcomes – such as participation in the informal 

sector, occupation, and wage prospects. These effects on children’s human capital have 

to be assessed empirically.  

A few studies have investigated the impact of minimum legal age laws on the 

incidence of child labour in the US (Moheling 1999; Fargo and Finegan 1996; Lleras-

Muney 2002; Golding and Katz 2008). These studies look at the effect of child labour 

laws on participation rate, and the evidence suggests that the impact of this type of 

intervention reduces child labour but not much.11  

Much less is known about the impact of these policies in developing countries. 

The available evidence casts doubts on its efficacy in reducing child labour (see 

Edmonds 2008; Edmonds and Shrestha 2013; and Braradwaj et al. 2013). Questionable 

efficacy is not unexpected, as the large size of the informal sector and the number of 

children still engaged in paid work activities in developing countries demonstrates the 

imperfect enforceability of the rule of law in such contexts. This leads some to conclude 

that bans may have limited, if any, impact on reducing child labour (Kassouf 2001). 

Perhaps the impact of ban policies, particularly in places where the law is not fully 

enforced, should be tested in urban areas given the lower monitoring costs incurred by 

local authorities and the higher concentration of children engaged in paid work 

activities.12  

This thesis focuses on the case of Brazil and uses regression discontinuity design 

to shed light on the impact of two recent law changes: a ban policy on child labour and 

an apprenticeship programme.  

 

 

 

 

Context 

                                                        
10 With imperfect enforcement, ban policies could harm children’s human development, as they end up 

working illegally and for longer hours.  
11 This is particularly evident when the ban is broadly defined as a combination of minimum admission 

age and compulsory schooling law, as in Margo and Finegan (2006). It is interesting to note that these 

studies looked at participation rate in the labour force as whole, that is, without distinguishing between 

participation in the formal and informal sectors. 
12 Child labour that is due to unpaid family farm work might be much more difficult to reduce with this 

type of intervention.   
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In December 1998, Brazil raised the minimum employment age from 14 to 16. 

Interventions increasing the minimum employment age are usually considered a ban 

policy on child labour (Edmonds and Shrestha, 2013).  

The change was made at a critical moment for the Brazilian economy. In 1998 

the Brazilian GDP grew in real terms by less than a half percentage point. The 

unemployment rate reached about 10 percent and the informality rate approached 60 

percent.13 The statistics for younger age groups are not very different: for those aged 16 

to 24, the participation rate approached 48.2 percent with participation in the formal 

sector accounting for 55 percent of the total employed. Among children aged 10 to 14 in 

urban areas, the participation rate was much lower and predominantly informal (6.9 and 

6.8 percentage points respectively). 

The increase in the minimum legal age in such a context may have aggravated 

the struggle of many poor households that used to rely on work performed by their 14 

year-old children. Using the instruction level of the household head as a proxy for the 

socioeconomic background of households, one can see that children aged 10 to 14 with 

the head holding fewer than 8 years of education (incomplete primary education) are 

almost twice as likely to work than children with a household head with 8 or more years 

of education (3.2 percent against 1.7 percent). In that case, the change in the law would 

have contributed to increasing children’s human capital accumulation in households that 

could afford to move forward without relying on child labour, but it would exacerbate 

earnings inequality between these households and those that have to send their children 

to work informally.    

It is difficult to determine the extent to which this ban contributed to the 

observed decrease in child labour in Brazil. Official statistics show that child labour has 

steadily declined in Brazil in the last couple of decades, even before the ban of 1998 

(Ferro and Kassouf 2005). In the last 12 years or so, the decrease has been accentuated. 

According to the Brazilian Bureau of Statistics, the number of boys and girls aged 10 to 

14 in child labour in urban areas more than halved between 2001 and 2013. In 2001, 1.3 

million boys and 655,000 girls were working, whereas in 2013 those numbers dropped 

to 537,000 and 242,000 respectively. The school attendance rate, on the other hand, 

                                                        
13 See ipeadata.gov.br for a compilation of official statistics in Brazil.  
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increased over the years and now approaches 100 percent for the same age group.14 The 

numbers suggest a reallocation of children’s time towards education. 

The decrease in child labour rates has been attributed to many causes, such as 

better employment opportunities for parents (Neri et al. 2000; Duryea et al. 2001), 

social protection policies such as conditional cash transfer programmes (Cardoso and 

Souza, 2004), and demographic changes in the Brazilian population that imply a lower 

number of children per household (Lam and Duryea 1999).  

Another intervention that might have contributed to reducing child labour in 

Brazil but that has not received much attention is the apprenticeship programme 

introduced in December 2000. Two years after increasing the minimum legal working 

age to 16, Brazil put in place an apprenticeship programme targeted to children between 

the ages of 14 and 17. Where the programme attracted children working in the informal 

sector it helped to reduce the incidence of child labour.  

This programme is similar to successful European experiences, such as the 

German, French, and British apprenticeship programmes, but it attracted very few 

participants in the beginning.15 Evaluations of similar vocational training programmes 

for youth show positive short- and long-term effects on labour market outcomes, with 

more educated youths having higher returns, though the evidence for developing 

countries remains scarce and mixed.16 

The 1998 and 2000 laws in Brazil permit an assessment of the impact of child 

labour legislation in several outcomes of interest using a regression discontinuity 

design.  

In chapter one I investigate the short-run effects of both laws on children’s time 

allocation. I look at the impact of both laws on schooling and labour market outcomes 

of boys and girls. Estimates are provided for two groups of children, those around age 

14 at the time the ban of 1998 passed, and those around age 16 – the new cutoff – after 

the ban. To check whether the apprenticeship programme counterbalanced the effect of 

the ban, difference-in-differences estimates are provided comparing cohorts of 14 and 

16 year-olds before 1998 and after 2000.  

                                                        
14 Primary school is basically universalised in Brazil. The challenge now is to reduce high school dropout 

rates. The data is available at www.ibge.org.br.  
15 In 2002, for instance, only 582 14-year-olds were participating in the programme. See Courseuil et al. 

(2011).  
16 See Clark and Fahr (2001) and Caliendro et al. (2011) for the case of Germany; Blundell et al. (2004) 

and De Giorgi (2005) for UK; Attanasio et al. (2015) for Colombia; Card et al. (2011) for Dominican 

Republic; Courseuil et al. (2012) for Brazil; and Cho et al. (2013) for Malawi. 
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The second chapter turns to the long-term effects of the 1998 ban, comparing the 

outcomes of the cohorts who turned 14 before (comparison group) and after (treatment 

group) the law was passed. This is the first empirical analysis for the long-term causal 

effects of a child labour ban.17 The analysis is conducted for white and non-white males 

to check how the ban affected individuals from different socioeconomic backgrounds. 

Theoretical models predict that ban policies will have a welfare enhancing effect on not-

so-poor households, and a welfare reducing effect on poor households.   

The third chapter investigates whether the 1998 law had spillover effects on the 

time allocation of younger siblings and parents of children affected by the ban. As far as 

I am aware, Manacorda (2006) is the only paper to look at the spillover effects of a child 

labour ban on other household members. Most papers that consider the links between 

child labour and time allocation of other household members examine the impact of 

parents’ inputs on their children’s outcomes.18 This thesis goes beyond Manacorda 

(2006), as it covers a broader set of outcomes and explores family composition and 

liquidity constraints to outline the potential mechanisms of underlying results.  

Potential Caveats for the Interpretation of the Results as Causal Effects   

It will be claimed throughout the thesis that the point estimates capture an 

exclusive effect of the child labour laws on the outcomes of interest. A set of validity 

checks is carried out to verify the plausibility of the identification strategy used in the 

thesis. Robustness checks and placebo tests are also undertaken to test the validity of the 

results and to rule out the role of potential confounders. Although some estimates seem 

more stable and precisely estimated than others, the main results are robust. The 

estimates are then given a causal interpretation.  

This section outlines potential caveats and provides an explanation of why they 

should not be seen as real threats to the main findings of the thesis, in particular those 

related to the short-term impacts of the 1998 ban.    

By the time Brazil passed the two child labour laws, different programmes 

targeting similar age groups studied in this thesis had been put in place and could 

                                                        
17 Efforts have been made to estimate the long-term effects of child labour. See e.g., Emerson and Souza 

(2011), Lee and Orazem (2010), and Beegle et al. (2009). Chapter two provides a more detailed 

discussion of these studies.  
18 See, for instance, Duncan (1990 and 1994), Bhalotra (2004), Oreopoulos et al. (2006c), Emerson and 

Souza (2003 and 2007), and McCrary and Royer (2011).  
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therefore be seen as potential threats to the internal validity of the impact of the two 

laws.  

For instance, the Brazilian conditional cash transfer (CCT) scheme Bolsa Escola 

(renamed Bolsa Familia in 2003) started in 1995 and targeted ‘poor families with 

children aged 6 to 15 enrolled in school and attending at least 85 percent of school days’ 

(Glewwe and Kassouf 2012). However, the programme started as a pilot in only two 

municipalities, Brasilia and Campinas, and by 1998 only 1 percent of Brazil’s 

municipalities were participating. The programme was federalised in April 2001. Since 

this programme targeted 13-, 14-, and 15-year-olds from poor families, it can be thought 

of as having a common effect on children pertaining to these age groups.19 However, the 

comparison of 15- and 16-year-olds presented in chapter one may be partially 

contaminated by this programme, as 16-year-olds were ineligible for the CCT at that 

time.20  

Although the PNAD provides information on variables that account for the 

eligibility of a household for the CCT that could be controlled for in the regression 

models, the survey does not have an identifier variable for the municipalities. Thus, 

even though the programme covered only slightly more than 50 municipalities by 2001, 

one cannot exclude those municipalities from the sample. Since the main results in the 

thesis come from the comparison between 14-year-olds who were equally eligible for 

the CCT, I do not think this would be a real threat to the internal validity of the 

estimates.  

Another potential source of concern is related to changes in the national 

minimum wage by the time the child labour laws were approved. Because minimum 

wage applies only to the formal sector, one could think of it as a potential confounder 

once it affects the participation rate of the control children only. In fact, according to the 

Brazilian Ministry of Labour and Employment, between 1995 and 1999 the Brazilian 

minimum wage was annually adjusted on 1 May 1 of each year according to the 

accumulated inflation of the previous calendar year. It is thus unexpected that the 

                                                        
19 See Glewwe and Kassouf (2012) for the causal impact of Bolsa Escola/Familia on schooling outcome 

as well as for a programme description. The authors estimate the average treatment effect on school 

enrollment, dropout rates, and grade promotion and find that the programme increased the first by 6 

percent, reduced the second by half a percentage point, and increased the third by 0.6 percentage points. 

The few empirical papers considering the impact of the Brazilian CCT on child labour find relatively 

small effects, even though they are statistically significant (see e.g., Cardoso and Souza 2004).   
20 The literature has shown that CCT affects the same outcomes considered in the empirical section. For 

an overview of the impact of CCT, see Fiszbein and Schady (2009).  
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increase in the minimum wage would affect participation rate in the labour force of 

children in the control group.21 

One last source of concern is the Compulsory Schooling Law (CSL) in Brazil. 

Law No. 9394 of 20 December 1996, which defines the guidelines and foundation of 

education in Brazil (Lei de Diretrizes e Bases da Educação), is clear in stating that what 

is mandatory is the school cycle, not the age range; that is, individuals should complete 

at least a primary education degree regardless their age.22 By the time the law passed, 

primary school was mandatory in Brazil. Children aged 7 to 14 should thus not be 

lagging behind. At the time of the change in the child labour laws, about 40 percent of 

14-year-olds were delayed in school according to official estimates.  

Brazil does not have an official date (deadline) at which children should be enrolled 

in school. Usually, children who turn seven in the first semester of the calendar year – 

in Brazil the school year coincides with the calendar year – would be allowed to enroll 

in school in that year.23 Those who turn seven after 30 June would have to wait until the 

next school year to start school. Thus, regression discontinuity design estimates 

obtained with a bandwidth of six months or narrower will compare the ‘treatment’ and 

‘control’ children who are supposed to have started school in the same year.24  

Despite official statistics from 1999 showing that 13 percent of children had 

abandoned school before graduating primary school and that about 40 percent of 14- 

year-olds were delayed in school, meaning that many children would graduate primary 

school older than age 14, a set of robustness checks was carried out seeking to rule out 

the risk of bias. In all chapters a placebo test comparing children before and after 

December 1997, one year before the ban, was carried out. In chapter 2, the last week of 

June 1999 is used as a threshold to check whether my results could be confounded by 

the age at school entry (Bedard and Dhuey 2006; Black et al. 201). In chapter 3 a few 

more robustness checks are performed to rule out a potential confounding factor 

accruing from the CSL and sample composition.   

Taking the above into account, this thesis identifies the impacts of the two child 

labor laws. In so doing, it contributes to the understanding of the consequences of child 

                                                        
21 See www.mte.gov.br. 
22 See Article 4 paragraph 1st of the Law.    
23 There is a current debate in Brazil trying to make 30 March the official cutoff. Children who turn 6 by 

30 March will be able to start schooling in that calendar year, while those who turn 6 after that cutoff will 

be able to enroll in school in the following year.  
24 The ‘control’ group turned 7 in the second semester of 1991, while the ‘treatment’ group turned 7 in the 

first semester of 1992. 

http://www.mte.gov.br/
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labour laws in various ways. First, by looking at their immediate impacts on children, 

second by shedding light on the long-term effects of the ban, and third by exploring the 

spillover effects of the ban on time allocation of other household members. It provides a 

broader analysis of the impact of child labour laws aimed at reducing child labour and 

increasing youth employment. Its main results show that these types of laws may have 

unintended consequences, long-lasting effects, and affect time allocation of other 

household members in ways policy makers might not be able to foresee.  
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CHAPTER 1: CAUSAL IMPACTS OF CHILD LABOUR LAWS IN 

BRAZIL 

 
1 INTRODUCTION 

 

The literature on child labour has grown considerably over the last 15 years, and 

this is not only because of increasing data availability. Child labour rates have fallen 

over the years, but the worldwide figure is still alarming. According to the ILO (2013), 

in 2012 264 million children aged 5 to 17 were participating in the labour market with 

168 million in child labour.25  

 Due to the negative externalities associated with children’s participation in the 

labour force, it is argued that the public sector could intervene in the labour market by 

changing the incentives that lead parents to send their children to work (see Basu and 

Van 1998). In fact, many countries have adopted bans or other mechanisms aiming to 

break down the ‘intergenerational child labour trap’ (Emerson and Souza 2003; see 

Edmonds 2008 for a survey). 

Basu and Van (1998), for instance, argue that parents’ decisions to send a child 

into the labour force might be seen as a rational choice for poor households facing a 

varied set of constraints. Based on a set of assumptions, it is shown that the labour 

market may have multiple stable equilibria: an equilibrium characterised by children’s 

labour force participation and depressed adult wages and an equilibrium in which 

children do not participate in the labour force and adult wages are higher. Because these 

equilibria are Pareto efficient, the authors argue that if children are observed 

participating in the labour force, the government could put a ban policy in place to shift 

the economy from this equilibrium to one without child labour.26  

Although many policies have been implemented to fight against child labour, 

too little is known about the causal impact of such interventions, particularly in 

developing countries where empirical evidence remains almost inexistent. This chapter 

                                                        
25 ILO uses ‘Children in Employment’ as a broader definition that encompasses illegal (child labour) and 

legal work activities carried out by 5- to 17-year-old children. Work is considered legal if it is in 

accordance with ILO Conventions No. 138 and 182. Convention No. 138 defends the definition of 

minimum employment ages whereas Convention No. 182 defends the prohibition of the worst (most 

hazardous) forms of child labour. See ILO (2013).   
26 The two main assumptions stemming from this result are that the increase in adult wages that results 

from a ban must be high enough to compensate for the children’s ‘forgone’ income and to allow parents 

to consume children’s leisure. The two assumptions set are (i) child and adult labour inputs are perfect 

substitutes, and (ii) children’s leisure is a normal good for parents. This theoretical framework suggests 

that households’ net benefit from a child labour ban is ultimately an empirical question. 
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helps fill this gap by delving into the consequences of two recent pieces of federal 

legislation in Brazil aimed at children.  

The available evidence of the impact of such policies comes almost exclusively 

from the US and investigates the effect of minimum legal age laws at the beginning of 

the last century. One of the most cited papers is Moehling (1999), who analyses state 

legislation on the minimum legal age for labour market entry, looking at the experience 

of the US at the beginning of the 20th century. The author focuses her analysis on the 

first three decades of the century, taking advantage of the fact that different states set 

different minimum legal ages. She exploits variations across states and time to estimate 

the impact of legislation on the incidence of child labour. According to her results, child 

labour laws affected only marginally the time trend prevalent in that period.27  

On the other hand, Margo and Finegan (1996) conclude that in combination with 

compulsory schooling laws passed more or less in the same period, minimum age 

legislations were effective in reducing the proportion of children in the labour force. 

More recent evidence for the combination of these two laws during the early 20th 

century in the US confirms Margo and Finegan’s findings (see Lleras-Muney 2002).   

Tyler (2003) uses the US child labour laws of the 1980s to identify the causal 

effect of child labour on the academic performance of students in the 12th grade in 1992. 

The author finds that 10 hours of weekly work during high school reduced academic 

performance in maths and reading by 3.6 percent and 5.1 percent respectively.28  

In December 1998, Brazil increased the minimum employment age from 14 to 

16, and this policy change gave rise to a natural experiment, the consequences of which 

are investigated in this chapter.  

The first attempt to understand the consequences of this law is seen in Ferro and 

Kassouf (2005). The authors look exclusively at the effect of the change in the law on 

labour force participation rates. They pool eight years of the Brazilian household survey 

(PNAD), from 1995 to 200329 to assess the effect of the law on work incidence among 

children aged 14 and 15 before and after the law passed. Unfortunately, their empirical 

                                                        
27 Using double and triple difference estimations, Moehling (1999) compares the magnitude of treatment 

effect with the magnitude of time dummy and notices that the latter is larger in absolute terms. She 

concludes that child labour would decrease without any intervention, and that the legislation made a 

minor contribution to the observed trend.    
28 Evidence for Brazil shows that the impact of child labour on standardised exams in maths and reading 

is strong and negative (Bezerra et al. 2009). 
29 The year 2000 was excluded from their analysis, because in census years the PNAD is not surveyed.  
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strategy does not include a control group; therefore, their work does not indicate what 

would have happened for children affected by the law had the law not been enacted. 

Since they select only individuals at age 14 and 15, they compare different cohorts 

before and after the change in the law. Apart from that, Ferro and Kassouf (2005) do not 

distinguish among the variety work activities in which children engage, such as 

household chores and informal work. When one looks at the relatively large 

participation rate in paid work activities among children aged 10 to 14, one may 

conclude that the law was unsuccessful in reducing child labour.30 However, this 

chapter shows that the law contributed to some reduction in child labour.   

In December 2000, two years after increasing the minimum employment age to 

16, an apprenticeship programme aimed at 14- to 17-year-olds was implemented in 

Brazil. Children who participate in the programme are registered with the Ministry of 

Labour and Employment, can work up to 6 hours per day, and are paid the hourly 

minimum wage. The programme also requires formal training (at school and on the job) 

and has the objective of helping children transition from school to work. This chapter 

questions whether the programme incentivised 14-year-old children to enter the labour 

market and, if so, how this affected their time allocation.  

 In a recent paper, Courseuil et al. (2012) use data from Relação Anual de 

Informações Sociais (RAIS), a census of firms in the formal sector in Brazil, to estimate 

the effect of this programme on several labour market outcomes. The authors use as 

their identification strategy the fact that before 2005 only youth ages 14 to 17 were 

eligible for the programme. They use the discontinuity at age 18 to identify the effect of 

the programme on employment and wage outcomes. The findings point to positive 

effects on the likelihood of being employed after two years of programme participation, 

but only marginal effects on wages. The authors conclude that the programme has had a 

positive medium run local average treatment effect on 17-year-olds who participate in 

the programme. Unfortunately, due to data restrictions, the authors are unable to shed 

light on the impact of the programme on participation rates in the informal labour force. 

In addition, since they do not use the exact birthdate in days, weeks, or months to define 

the forcing variable, one could argue that their identification strategy is problematic; 

                                                        
30 Kassouf (2001) provides an overview of the child labour situation in Brazil in 1999, arguing along 

these lines.  
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they are comparing individuals far from the cut-off point. They did not check the 

balance around the cut-off point or check robustness using different bandwidth sizes.  

This chapter contributes to the literature by providing evidence of the impact of 

the law passed in December 1998 and the apprenticeship programme of December 

2000. For the 1998 law, I combine the exact birthdate with the date the law was enacted 

and use a regression discontinuity design (RDD) to identify the impact of the law on 

those banned from the labour market. Unlike most of the papers that turn to the impact 

of changes in the legal minimum age, this thesis provides the first evidence of the causal 

effects of the ban for both work and school related outcomes of recent law change in a 

developing country.  

For the apprenticeship programme, I use age at the survey date and an RDD. The 

estimates for the apprenticeship programme complement Corseuil et al. (2012), as my 

results inform short-term impacts of the intervention looking at different sets of 

outcomes and age groups. 

Given that the ban was imperfectly enforced, the participation rate among those 

banned from the labour force did not fully shrink. In addition, not all who are eligible to 

work actually work. This problem of imperfect two-sided compliance explains the fuzzy 

design in the case of the ban. For the apprenticeship program one observes a similar 

problem, as some below age 14 are observed working informally.  

Imperfect compliance with the law ultimately means that participation rate 

remains endogenous. However, the law could be used as an instrumental variable to 

inform the effect on those who actually dropped out of the labour force as a 

consequence of the ban. The estimates discussed throughout the thesis refer to the effect 

of the ban on the eligible group. Given the relatively small sample size and the 

imperfect enforceability of the law, the instrument would very likely be weak and the 

estimates very imprecise.  

The main results of the chapter suggest that the 1998 law reduced the labour 

force participation rate among 14-year-old boys but not for girls, who seem to have 

shifted to the informal sector. The results for boys are interesting, as they indicate that a 

law can be a powerful instrument to affect individuals who are not supposed to be 

affected since by definition the law is weakly enforced in the informal sector. It seems 

that girls became more likely to attend school. The results are robust to different 
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bandwidth sizes and functional form specifications. Difference-in-differences estimates 

are qualitatively similar to most of the RDD estimates. 

Since the law should not affect the eligibility status of those who turned 14 

before the law passed, a comparison between children close to 16 years of age is 

performed to check whether this is really the case, as 15-year-olds should have similar 

participation rates to children just above age 16. The RDD estimates comparing 

individuals close to age 16 are statistically insignificant in most cases.  

 With regard to the apprenticeship programme, the RDD estimates suggest that 

children aged 14 became slightly more likely to participate in the formal labour force 

and to be in a formal paid occupation. However, the decrease in informality was strong 

enough to reduce the participation rate as a whole. As a result, children at age 14 are 

working more hours per week in formal activities and fewer hours in the informal 

sector, though points estimates are only statistically significant against a one-sided 

alternative. There is also an indication of higher school attendance among boys. These 

results could contribute to the design of public interventions to boost the programme’s 

take-up rate.31 If these impacts last over time is an open question. 

 For those around age 16, the RDD estimates show a decrease in the difference in 

participation rates between 15- and 16-year-olds, although there is some suggestive 

evidence that 15-year-old girls are more likely to participate in the formal labour force 

and have a formal occupation. On the other hand, there is some indication that girls 

worked fewer hours in the formal sector. The results for participation rate in the labour 

force as a whole suggests that the apprenticeship programme made the minimum legal 

age an unbinding constraint for youth aged 15. With regard to school outcomes, there is 

evidence that boys became less likely to attend school.  

 

2. THE INSTITUTIONAL SETTING  
 

2.1 Minimum Age of Entry to the Labour Market 

 
The Brazilian Constitution of 1988 set the minimum legal age of entry into the 

labour market at 14, and in 1990 a federal rule called ‘The Statute of Children and 

                                                        
31 The low take-up rate may be related to information constraints – the target group is unaware of the 

programme and how to enroll – or misperceptions regarding the returns of the programme. The findings 

of this thesis can be used to design public interventions aimed at increasing programme take-up, similar to 

Jensen’s (2010) successful experiment in the Dominican Republic.  
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Adolescents’32 established children’s and youth rights beyond regulating the conditions 

of formal labour market entry. Complementing the Constitution of 1988, the statute is 

considered the legal framework for children and youth in the labour market.33 From 

1988 to November 1998, the minimum legal working age in Brazil was 14 and 

individuals under 17 were prohibited from working in hazardous activities.   

As a consequence of comprehensive modifications approved for the pension 

system on 15 December 1998, Constitutional Amendment No. 20 also increased the 

minimum legal age for entry into the labour market from 14 to 16.34 According to the 

law, individuals under 16 could work only as apprentices, and individuals younger than 

18 were prohibited from hazardous and night work. The reasons for increasing the 

minimum employment age are not spelled out in the law, but the main two reasons seem 

to be (i) the change in the retirement age based on time of contribution to the pension 

system that increased by two years with the Constitutional Amendment,35 and (ii) the 

ratification of ILO Convention No. 138, by which Brazil agreed to set the minimum 

employment age above the school leaving age, which was 14 at the time the law passed.  

The Constitutional Amendment of 15 December 1998 itself is mute about the 

penalties to be applied to those who decide to employ children below the minimum 

employment age. However, a recent report commissioned by the Brazilian Public 

Prosecutor’s Office (PPO or Ministério Público Federal in Portuguese), the institution 

responsible for monitoring the practice of child labour in Brazil, employers (including 

parents in case the child works for a family firm) can face several forms of penalties, 

ranging from paying a fine and other administrative costs to being prosecuted criminally 

depending on the type of work performed by the child. The report is also clear in stating 

that children below the minimum employment age are not allowed to work as self-

employed. It is important to emphasise that in neither case is the child herself penalised. 

The ultimate goal of the law is to protect the child (see Medeiros Neto, 2013).  

                                                        
32 Lei do Estatuto e do Adolescente, Law No. 8069 from 13 July 1990. Complementary to the 

Constitution of 1988, the statute is considered the legal framework for children and youth in the labour 

market.   
33 Although ILO considers a child to be an individual 17 years old or younger, in this chapter the terms 

‘children,’ ‘teenagers,’ and ‘youth’ are used interchangeably.  
34 The law was passed on 15 December and was made effective the following day.  
35 In Brazil there are two retirement mechanisms, an age cut-off and the time contributed to the pension 

system. Because many Brazilians start working early in life, they end up retiring relatively early as well. 

With the increase in the minimum employment age, people had to postpone their entrance into the formal 

labour force by two years. Consequently, by the time they are eligible to retire based on the time 

contributed to the pension system they would be two years older.  
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One could question the enforceability of such a law in a country where informal 

activities are widespread. In fact, as will be shown later, the law is almost perfectly 

enforced in the formal sector, but less so in the informal sector. The good enforcement 

of the law in the formal sector is explained by the fact that the Ministry of Labour and 

Employment is the institution responsible for issuing the working permits. With the 

change in the law, it stopped issuing work permits for individuals who turned 14 after 

the law passed. Thus, the enforceability of the law in the formal sector is almost 

deterministic.36  

The ban policy divided similar children into two groups: those banned from the 

formal labour force (‘treatment group’) and those unaffected by the ban (control group). 

It is interesting to note that banned children who shifted to the informal sector 

automatically entered the child labour statistics, whereas those of a similar age (and 

plausibly other characteristics) who were in the labour force but unaffected by the law 

did not.37  

If the law had no bite in the informal sector, its effect on child labour would 

have been very small, around 1 to 2 percentage points (see Table 3). If some children 

participating in the formal sector simply shifted to informality after the ban, the effect of 

the law on child labour would have been negligible or even negative if the increase in 

the informality overcame the fall in the participation in the formal sector.38 As will be 

discussed later, the ban seems to have affected the child labour demand as well, at least 

for boys. It could be that some employers decided to no longer employ children under 

age 16 to avoid legal consequences, such as paying fines. If that was the case, even if 

for a relatively small sample of firms, one should expect the law reducing participation 

rate in the informal sector as well.  

  

2.2 The Apprenticeship Programme  

 

                                                        
36 The official statistics of participation rate and weekly hours worked for children at age 15 in 1999 show 

a high participation rate for those with full-time jobs that year (more than 35 hours per week), suggesting 

that those who turned 14 before the ban were unaffected. 
37 Looking at the statistics of participation rate in the formal labour force of children aged 14, it seems 

that the first interpretation prevails. As discussed below, the participation rate in the formal labour force 

dropped to almost zero among those who turned 14 after the change in the law and remained small, 

though positive, among those who turned 14 before the law passed (see figure 3 below). 
38 This result is predicted in the theoretical models of Ranjan (1999) and Basu (2005). Braradwaj et al. 

(2013) suggest that the Indian child labour ban of 1986 led to an increase in informality and in child 

labour as a whole.  
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Two years after increasing the legal minimum working age, Brazil passed Law 

No. 10.097 on 19 December 2000. This law formalised the apprenticeship programme 

initially conceived in the 1940s. The programme was originally designed for individuals 

aged 14 to 17 and aimed at providing skills for youth making the transition from school 

to work.39 Interestingly, the Constitutional Amendment of December 1998 refers to an 

apprenticeship status in the labour force despite the fact that the programme was 

formally institutionalised only in December 2000. In fact, the number of apprentices 

was very low before that year.40 

According to the rules of the programme, an apprentice is permitted to work up 

to six hours per day as long as she is enrolled in secondary school and in a technical 

course designed to provide the skills employers require.41 Apprentices should earn at 

least the hourly minimum wage.42 The law also created a constraint for firms, as at least 

5 percent of employees must be apprentices. The apprentice’s contract cannot last more 

than two years, and firms cannot fire the apprentice except under very special 

circumstances.43 To counterbalance the extra cost imposed on firms compelled to hire 

apprentices,44 firms are subsidised, as they deposit only 2 percent of the worker’s salary 

in the worker’s pension fund (Fundo de Garantia por Tempo de Serviço), around six 

percentage points less than it deposits for a regular worker. 

A question arising is whether the apprenticeship programme fully 

counterbalances the employment constraint that the 1998 law created. Depending on the 

take-up rate into the apprenticeship programme, the programme might have partially 

undermined the objective of the increase in the minimum legal age. Although the set of 

                                                        
39 In Brazil this law is called Lei do Menor Aprendiz. In 2005 the law was amended by the Decreto Lei 

No. 5.598, which enlarged the scope of beneficiaries to individuals under age 25. According to the 

amendment, firms should give priority to youth aged 14 to 18 (see Manual da Aprendizagem 2011).   
40 According to Corseuil et al. (2011), who use the Brazilian Census of formal enterprises (Relação Anual 

de Informações Sociais - RAIS) to assess the impact of the Brazilian Apprenticeship Programme of 2000, 

the number of apprentices at age 14 in 1999 and 2000 was 82 and 99 respectively. On the other hand, the 

number of apprentices increases sharply from 2001 onwards. In 2002, for instance, the number of 

apprentices aged 14 reached 582.     
41 Officially qualified agencies that comprise Brazl’s S-System normally provide skills training. This 

programme has a lot in common with European youth employment programmes (see Brodaty et al. 1999; 

Caliendro et al. 2011).    
42 The monthly wage is estimated as follows: [hourly (minimum) wage*weekly hours worked*number of 

weeks in a month*7]/6. The monthly wage is multiplied by a factor (7/6) to take the remunerated weekly 

rest into account (see Manual da Aprendizagem 2011).  
43 The apprenticeship programme does not apply to small firms (i.e., those with seven or fewer 

employees) (see Manual da Aprendizagem 2011).   
44 It is quite plausible that apprentices are less productive than their counterparts. Even paying the hourly 

minimum wage, firms would surely be at least as good as without such a constraint.  
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incentives embedded in the apprenticeship programme is very different from those that 

prevail in full-time occupations in the formal labour market, this is an empirical 

question this chapter aims to address.  

It is worth pointing out that I will approach this question comparing outcomes of 

children who turned 14 before and after September 2002. These cohorts are different 

from those used to estimate the impact of the ban of 1998. Note that with the 

apprenticeship programme, children who turned 14 are thus exposed to both child 

labour laws. Because they are still under 16 in September 2002, they are banned from 

the formal labour force, but those just above age 14 are eligible to enter the formal 

labour force as apprentices.  

To check whether the apprenticeship program counterbalanced the effect of the 

ban for those turning 14 after September 2002, I compare the participation rate of 

children aged 14 before and after September 1998 and 2002. Because both laws provide 

antagonist incentives to children entering the labour force, I will interpret the 

coefficients of this exercise as the composite (or net) effect of the two laws. 

 

2.3 Theoretical Implications of the Change in the Law  

 
Although changes to child labour laws do not mandate a direct income transfer, 

it is expected that they will affect the household budget constraint, either because 

households cannot count on children’s earnings any longer or because they will get paid 

less in the informal labour market.45 Children who turned 14 just before the law passed 

were not affected by the ban, whereas those who turned 14 just after December 1998 

were affected. This peculiarity of the law results in children with similar characteristics 

facing different wage rates in the labour market. For children who either dropped out of 

the labour force or shifted to the informal sector, the lower wage rate paid in the 

informal sector work as a reduction in the household budget. A more limited choice set 

                                                        
45 According to the Brazilian household survey (Pesquisa Nacional por Amostra de Domicílios) of 1998, 

the monthly wage paid in the formal sector was, on average, about 46 percent higher than in the informal 

sector (R$ 187.5 vs. R$ 128.5). The difference is statistically significant at the 1 percent level. Using the 

PNAD of 1999 it is possible to compare the wage rates of children affected (eligible group) and non-

affected (ineligible) by the change in the law. The average wage rate of the ineligible group was 15.7 

reais, whereas the eligible group faced a wage rate of 14.15 reais. The difference in means is not 

statistically significant, but the Kolmogorov-Smirnov test rejects the null of equal distributions at the 5 

percent level (p-value of 0.049) using 6 months as bandwidth. 
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might lead parents to reallocate the household’s income towards goods other than 

children’s leisure.  

Since the interventions might affect households differently depending on 

socioeconomic background and preferences and perceptions regarding returns to 

education, households can be divided into two groups: those that can afford children’s 

leisure or schooling – ‘not so poor’ – and those that send their children to work in the 

informal sector – ‘poor’.  

Using a very simple child labour supply model with a perfect credit market 

(Ranjan, 1999), one could argue that if the fall in household income caused by the ban 

is relatively high, children would be expected to shift to the informal labour force. This 

would be the group of children who do not comply with the law. To use the terminology 

of Angrist et al. (1996), this would be equivalent to the never-takers.  

On the other hand, if the drop in household income is relatively small for a 

typical household, one could hypothesise that households would compensate children’s 

forgone income by increasing marginally adults’ labour supply or cutting consumption 

of luxury goods. Consequently, one could expect either an increase in unpaid (domestic) 

work, as children would spend more time at home, or an increase in school attendance. 

The results can also be affected by other constraints, such as access to credit markets 

and the household production function.46  

Note that the apprenticeship programme can be seen as a relaxation in the ban, 

as children aged 14 are once again eligible to participate in the formal labour force, 

although part-time. The impact of the programme on the outcomes of interest can be 

theoretically hypothesised along the same lines.  

The next section discusses the identification strategy based on the laws of 

December 1998 and 2000. The objective is to check first whether the law was enforced, 

the consequences of the apprenticeship program, and the implications for children 

affected by both policies.  

3. IDENTIFICATION STRATEGY 

 

 Identification of the impact of the laws under study on the outcomes of interest 

depends, to some degree, on compliance with both laws so that an RDD can be used to 

                                                        
46 See Ranjan (1999 and 2001) and Baland and Robinson (2000).  
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estimate the local treatment effects of the laws. It is standard in the impact evaluation 

literature to use of the term ‘causal’ when the ultimate goal of the econometrician is to 

estimate the average treatment effect of a policy or intervention, that is, to uncover what 

would have happened to those units exposed to an intervention/programme had the 

programme not existed. This is known as the fundamental problem of causal inference 

(Holland, 1986). This terminology has become standard in the program evaluation 

literature (see e.g. Imbens and Rubin 2015), applied labor economics literature (see e.g. 

Angrist and Pischke 2009), and applied development economics literature (see e.g. 

Duflo et al. 2008).  

According to Lee and Lemieux (2010), when the assumptions necessary to make 

the RDD a credible identification strategy hold, RDD can be seen as a local randomised 

trial. Thus, ‘causal effects’ in the context of this thesis refer to any observed difference 

in means in the outcomes of interest that can, under plausible assumptions, be attributed 

to the an intervention (‘treatment’). In this thesis, the focus is on the effect of the 

assignment rule rather than the treatment itself for reasons discussed below.  

Since household surveys are annual, the difference-in-differences (DD) 

approach is also used. The identification strategy of the DD draws directly on the 

discontinuities generated by the two laws and uses information about different cohorts 

of teenagers before and after the intervention. The DD can be seen as a way of checking 

robustness (see Lemieux and Milligan 2008). The subsection below describes the RD 

design in more detail and shows how it will be used to identify the effect of the laws. It 

is then followed by a brief description of how the DD approach is used to inform the 

impact of the policies comparing different cohorts in two periods of time.  

 

3.1 Regression Discontinuity Design 

 

The identification strategy is based on the discontinuities that can result from a 

rule that makes a group of individuals eligible to participate in a programme based on 

an arbitrary threshold of some observed variable. The rule therefore exogenously 

assigns groups of individuals to the eligible and ineligible groups, making the 

identification of the impact of the programme possible to estimate by comparing units 

just on the right and the left of the threshold.  

For that reason, RDD is widely seen as a quasi-experimental technique, as the 

existence of an assignment variable (also called the forcing variable) gives rise to a 
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natural experiment for those units close to the cut-off point. The identification strategy 

requires that, on average, the units close to the cut-off point be similar in observed and 

unobserved characteristics so that the only difference between them is that one can take 

up a treatment due to some exogenous reason and the other cannot (Lee and Lemieux 

2010 and Imbens and Lemieux 2008).  

The validity of the RDD depends on (1) the similarity in observed and 

unobserved characteristics around the threshold, and (2) the lack of perfect manipulation 

of the assignment variable. The first test consists of checking whether children close to 

the cut-off point have, on average, similar observed characteristics. One cannot check 

whether children are similar in unobserved characteristics, but being similar enough in 

observed characteristics suggests that the two groups are, on average, similar in 

unobserved characteristics as well47. The second test consists of checking if the 

assignment variable is smooth around the threshold. A high concentration of eligible 

units close to the cutoff point would indicate that children (or their parents) could be 

sorting, that is, misreporting their age in order to enter work. This condition can be 

formally tested as shown below.  

In cases in which all eligibles take up the treatment through a deterministic 

process, the discontinuity design is called ‘sharp.’ In most of the cases, the forcing 

variable defines an eligibility status and the take-up decision is up to the individual. In 

the case where only a subsample of the eligible group takes up the treatment, the design 

is called ‘fuzzy.’ Unlike the sharp design, the fuzzy design gives space for individuals 

to self-select into the programme. Thus, the estimates of the causal effect under the 

fuzzy design require more assumptions than under the sharp design, but are weaker than 

any IV approach.48  

The key assumption of a fuzzy design is that without the assignment rule some 

of those who take up the treatment would not participate in the programme (for 

similarities between IV and RDD approaches, see Imbens and Lemieux 2008 and van 

der Klaauw 2008). The forcing variable acts as a nudge. The subgroup that participates 

in a programme due to the selection rule is called compliers (see e.g. Angrist and 

                                                        
47 Exactly the same assumption has to be made in randomised controlled trials.  
48 It requires the monotonicity assumption, that is, that the participation rate among the eligible 

participants is higher (or lower, as in the present case) than the participation rate of those who are 

ineligible. Unlike the IV, it does not require exclusion restriction, as the forcing variable is allowed to 

have a direct effect on the outcome. For this point see Lee and Lemieux (2009).  
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Imbens 1994, and Imbens, Angrist, and Rubin 1996). Thus, under the RDD the 

treatment effects are estimated only for the group of compliers.  

When the group of compliers is identified, and assuming a binary treatment 

variable, the Wald estimate is obtained by dividing the impact of the eligibility rule for 

the outcome of interest (the intent-to-treat estimator) by the proportion of the eligible 

group that took up the treatment. The Wald estimator can be seen as an IV estimator and 

can be estimated in two steps. The first step consists of a regression of the treatment 

variable (X) on the assignment to the treatment variable (Z). For the sake of illustration, 

let  be the effect of Z on X. The second step is given by a regression of the outcome 

Y on the Z, with  being the estimate of the effect of Z on Y. The Wald estimator is 

then given the ratio . In the IV framework, the identification of the Wald 

estimator depends on a non-zero correlation between Z and X and a zero correlation 

between Z and the error term of the outcome equation. Unlike the standard IV, the 

identification of the treatment effect via RDD does not require zero correlation between 

Z and the error term of the outcome equation (Hahn, Todd, and Van der Klaauw, 

2001).49  

Under sharp design, the treatment variable X is a deterministic function of Z, and 

 is discontinuous in some observable values of Z, i.e., . Defining the 

observed outcome model as , and assuming that: 

(1) The limits  and  exist, with ; 

and 

(2)  is continuous in  at  such that for an arbitrarily small , 

 

Then the (local) treatment effect in a sharp design is given by:  

 , since  and .  and  are defined 

similarly to  and .  

                                                        
49 Hahn et al. (2001) show that the RDD estimators can be seen as Local Wald versions of the 

aforementioned IV. As in Imbens and Angrist (1994), they refer to the Wald estimator as a local average 

treatment effect since this framework identifies the impact only for the subgroup of compliers. 
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In the fuzzy design,  is a random variable given  and the conditional 

probability  is known to be discontinuous in . Thus, 

the only difference between the sharp and fuzzy estimators is that for the latter  

and , i.e., ‘there are additional variables unobserved by the econometrician that 

determine assignment to the treatment’ (Hahn et al., 2001, p. 202). So, the treatment 

effect in a fuzzy design is given by:  

.  

Although the sharp and fuzzy estimators identify only the local average 

treatment effect, i.e., the treatment effect for the individuals close to the cut-off, Hahn et 

al. (2001) note that this method has many advantages compared to other quasi-

experimental approaches in that it does not depend on functional form assumptions 

when estimates can be obtained with narrow bandwidths and does not require 

identifying instruments or the set of variables that affect the selection rule for a 

particular programme (or treatment).       

The laws investigated in this chapter affect the eligibility of individuals aged 14 

and 15 to participate in the formal labour market. Thus, the laws give rise to two fuzzy 

designs.50 Before December 1998, one expects to observe a jump from zero to a positive 

number in the participation rate in the formal labour force around age 14, as 13-year-

olds were not permitted to participate in the formal labour market. Thus, since the 

estimation of the effect of the minimum legal age on participation in the formal labour 

market after December 1998 will concentrate only on those who are observed working 

after age 14, the parameter of interest can be interpreted as the local average treatment 

effect on the treated (LATT) (Battistin and Rittore 2008). After the increase in the legal 

minimum age, the data should no longer detect a discontinuity.51 For all other outcomes 

than participation in the formal labour market, the parameter of interest can be seen as a 

                                                        
50 Since the assignment to the treatment is exclusively based on the age variable, any manipulation that 

could compromise the internal validity of the Wald estimate via RDD is not an issue of concern in the 

present case.  

51 In fact, before the increase in the minimum age in December 1998,  equals zero. Corseuil et al. 

(2012) also employ this estimator.  
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local intent to treat, since the law likely affected the other outcomes directly and an 

instrumental variable strategy would not provide credible estimates.52  

A complementary exercise is undertaken comparing teenagers just under age 16 

with teenagers just over age 16. No discontinuity is expected in participation rate in the 

formal labour force before and after the law passed, because 15-year-olds did not have 

their eligibility status changed by the ban. For this reason, the impact of the ban on 

those close to age 16 can be seen as a placebo test, as no effect should be observed for 

this age group.  

The figure below illustrates how the law is used to identify the local average 

treatment effect for both age groups.  

 

Figure 1 – Timeline of the laws of 1998 and 2000 

 

 

 

The estimation of the effect of the laws can be performed parametrically using 

linear probability models (OLS) to fit the following reduced form regression model: 

𝑦𝑖𝑐 = 𝛼 + 𝛿𝑇𝑖𝑐 + ℎ(𝑍𝑖𝑐) + 𝜀𝑖𝑐                    (1) 

where 𝑦𝑖𝑐 is the outcome of interest of individual i in cohort c, 𝑇𝑖𝑐 is an indicator 

function that takes the value of 1 for individuals in the cohort affected by the child 

labour laws, and 0 for individuals in the cohort unaffected by the laws. Z is the 

                                                        
52 When there is perfect compliance of the control group (i.e., nobody from the control group participates 

in the programme), the Wald estimate will be equivalent to the average treatment effect on the treated. 

For this point, see Duflo et al. (2008).  
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assignment variable that defines an observable clear cut-off point, and h(Z) is a 

polynomial function in Z. The identification strategy therefore relies on the exogeneity 

of Z at the threshold. With that assumption, the parameter of interest, 𝛿, provides the 

estimate of the intent-to-treat – the effect of the eligibility rather than the treatment itself 

on the outcomes of interest. In the present case, the ITT estimates are obtained 

comparing the average of the outcome variables of children who turned 14 after 

December 1998 (‘eligible’) with children who turned 14 in December 1998 or before 

(comparison group).     

To estimate the impact of the 1998 ban on 14-year-olds, Z is defined in 

accordance with the individual’s exact date of birth. Since the household survey reports 

the date of birth and the date the survey was collected, one can define age in days, 

weeks, or months at the date the law passed and/or at the date of the survey.53 

Age is defined in weeks in the empirical analysis age.54 The variable Z takes the 

value of 0 for individuals who turned 14 in the last week of December 1998, 1 for those 

who turned 14 in the first week of January 1999, 2 for those who turned 14 in the 

second week of January 1999, and so on.  

For the comparison between children close to age 16, Z is defined slightly 

differently. According to the Brazilian bureau of statistics, IBGE, the reference date for 

the Brazilian household survey is the last week of September.55 Thus, Z takes the value 

of 0 if an individual turned 16 in the last week of September 1999, 1 for individuals 

aged 16 in the first week of October 1999, 2 in the second week of October 1999 and so 

on. The dummy T takes the value of 1 for teenagers aged 16 or above and 0 otherwise. 

Note that for this age group the use of the exact date of birth when the law passed would 

make no difference, because individuals aged 15 before December 1998 did not have 

their eligibility status affected by the ban.  

The estimation of the impact of the apprenticeship programme uses exactly the 

same definition of the forcing variable Z for both age groups. For individuals aged 14 

(16), Z takes the value of 0 for children who turned 14 in the last week of September 

2002, 1 for those aged 14 (16) in the first week of October 2002, and so on. The dummy 

T takes the value of 1 for 𝑍 > 0 and zero for 𝑍 ≤ 0.    

                                                        
53 The survey is usually collected in the last week of September. The exact date suggested by the 

Brazilian bureau of statistics is the last week of September, or 26 September 1998.  
54 Age in days could also be provided but would add too much noise to the estimates.  
55 IBGE uses individuals’ date of birth to define the exact age in years in that reference date. The 

Brazilian Bureau of Statistics collects the annual household survey between October and December of 

each year except in census years.   
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Since no discontinuity is expected around age 16, the comparison of the labour 

force participation rate of children just under and just above age 16 can be seen as a way 

of checking whether children who turned 14 before the ban were, in fact, unaffected by 

the ban. That said, the effects of major interest of both laws are those that come from 

the comparison of 14-year-old children around the date the ban passed with 14-year-old 

children around the survey’s reference date in the case of the apprenticeship 

programme.  

As long as the law affected individuals’ eligibility to participate in the labour 

force and there is no indication of sorting or perfect manipulation of the forcing 

variable, the law would work as a local experiment, as children around the cutoff point 

are expected to have similar observed and unobserved characteristics. In this case, 

because Z is orthogonal to the error term, the covariates are expected to be uncorrelated 

with eligibility status. The inclusion of covariates in the estimates would be justified 

only with the purpose of improving efficiency of local estimates (Imbens and Lemieux, 

2008; Lee and Lemieux, 2010).56 To explore sensitivity of results, the specification of 

eq. (1) is extended, accommodating interaction terms between T and h(Z) to allow for 

different slopes on both sides of the cut-off point. 

Table 1 summarises how the treatment and control groups are defined for 

different age groups in different years.  

 

Table 1 – Definition of the Treatment and Control Groups for the RDD Estimates 

  1997 1999 2002 

 

1997 1999 2002 

 

13 vs. 14 

 

15 vs. 16 

        

Eligible Group 

>=14 on the 

date of the 

survey (26 

Sept) 

14 after 

31Decemb

er 1998 

>=14 on 

the date of 

the survey 

(26 Sept) 

 

>=16 on the 

date of the 

survey (26 

Sept) 

>=16 on the 

date of the 

survey (26 

Sept) 

>=16 on the 

date of the 

survey (26 

Sept) 

        

Control Group 

< 14 on the 

date of the 

survey (26 

Sept) 

14 up to 

31 

December 

1998 

< 14 on the 

date of the 

survey (26 

Sept) 

 

< 16 on the 

date of the 

survey (26 

Sept) 

< 16 on the 

date of the 

survey (26 

Sept) 

< 16 on the 

date of the 

survey (26 

Sept) 

 

                                                        
56 Lee and Lemieux (2010) argue that the covariates have to be continuous around the cut-off, that is, 

have equal distributions, so as the RDD can be interpretable as a local experiment. As stated by the 

authors (2010, p. 297), a consequence of a local random assignment ‘is that the assignment to treatment 

is, by construction, independent of the baseline covariates. As such, it is not necessary to include them [in 

the regression model] to obtain consistent estimates of the treatment effect.’ 
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Equation (1) is fit parametrically with several functional forms.57 The smooth 

function is specified as polynomials of orders zero to three, and as linear and quadratic 

splines.58  

The caveat that underlies the specification of the h(Z) function is directly related 

to bandwidth size. The narrower the bandwidth size, the less the need for a flexible h(Z) 

function. As Lee and Lemieux (2010) suggest, for a very small bandwidth size the 

LATE could be estimated through a simple difference of means. However, the 

feasibility of this strategy depends on a sufficient number of observations just on the 

right and the left of the cut-off point. A small bandwidth minimises the bias and frees up 

the researcher from looking for the optimal specification; however, it increases the 

sampling variance and harms the precision of local estimates. Estimates are therefore 

provided with bandwidths of 20 weeks (5 months) and 16 weeks (4 months).59 These 

bandwidth sizes are actually smaller than what seems to be the optimal choice based on 

the Imbens and Kalyanaraman (2012) algorithm.60  To select the functional form of the 

smooth function, Lee and Lemieux (2009) recommend the generalised cross-validation 

technique, but Gelman and Imbens (2014) show that this technique is inadequate since 

it is a global fit measure.61  

To test whether there is a manipulation of the forcing variable, I use the 

McCrary density test. This test plots density functions on each side of the cut-off point 

to check how smoothly (or continuously) they behave around the threshold. Under the 

null of absence of perfect control over the assignment variable, one should observe no 

jump around the threshold. The presence of a statistically significant discontinuity of the 

assignment variable around the cut-off point would characterise either perfect 

manipulation of the eligibility status or some measurement error due to data heap. The 

latter seems to be very common when the assignment variable is self-reported. In either 

                                                        
57 van der Klaauw (2008) provides a comprehensive discussion about the critical role the functional form 

specification in a parametric framework plays for the consistency of the LATE estimate in RDD.    
58 Higher order polynomials are avoided, because I use parametric regressions. For this point, see Gelman 

and Imbens (2014). The higher the order of the polynomial the higher the weight assigned to observations 

far from the cut-off point.  
59 I have also estimated the regressions with 12 weeks bandwidth. The results are almost identical to those 

obtained with 16 weeks bandwidth.   
60 Imbens and Kalyanaraman (2012) recommend a bandwidth that minimises the mean squared error, 

which is equivalent to minimising the sum of bias and variance.  
61 Lee and Lemiux (2009) recommend the Akaike criterion information for model selection, but Gelman 

and Imbens (2014) argue that such global fit tests are not very informative, particularly when one uses 

non-parametric regression (local linear and local polynomial).  
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case, the rejection of the null hypothesis would put in check the identification strategy 

of the RDD (see Barreca et al. 2015).    

 

3.2 Difference-in-Differences 

 

The empirical approach can be extended so as to take into account pre-treatment 

information on different cohorts of children aged 14 and 15. To estimate the effect of 

the 1998 law, children who turned 14 around December 1998 are compared with those 

who turned 14 around December 1997. Note that the second difference, that is, the 

difference in outcomes between treatment and control groups around December 1998, is 

equivalent to the RDD estimates as explained above, whereas the first difference will be 

given by the difference in outcomes of 14-year-olds before and after December 1997.62 

For the apprenticeship programme, comparison is made between children around age 14 

on the surveys’ reference dates – September 1998 and September 1999 respectively.   

DD estimates are also provided for the ‘net’ effect of the both laws. To do so, 

the PNADs of 1998 and 2002 are used. Note that because the apprenticeship 

programme allowed 15-year-olds to participate in the formal labour force, at least part-

time, the coefficient of the joint effect of the two laws will pick up the lower-bound 

effect of the ban. Table 2 shows how the ‘treatment’ and comparison groups are defined 

for the difference-in-differences estimation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                        
62 The DD estimate will be given by: 𝐷𝐷 = (𝑦𝐷𝑒𝑐98

14𝑎𝑓𝑡𝑒𝑟
− 𝑦𝐷𝑒𝑐98

14𝑏𝑒𝑓𝑜𝑟𝑒
) − (𝑦𝐷𝑒𝑐97

14𝑎𝑓𝑡𝑒𝑟
− 𝑦𝐷𝑒𝑐97

14𝑏𝑒𝑓𝑜𝑟𝑒
) 
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Table 2 – Definition of the Eligible and Comparison Groups for the DD Estimates 

  1998 1999 2002 

 

1998 1999 2002 

 

13 vs. 14 

 

15 vs. 16 

 
Minimum Legal Age of 1998 

  

Minimum Legal Age of 

1998 

Eligible 
Group 

14 after 31 

December 
1997 

14 after 

31 December 
1998 

  

>=16 on the 

date of the 

survey (26 
Sept) 

 

>=16 on the date 

of the survey (26 
Sept) 

Comparison 
Group 

14 before 31 

December 
1997 

14 before 31 
December 1998 

  

< 16 on the 

date of the 

survey (26 
Sept) 

 

< 16 on the date 

of the survey (26 
Sept) 

  

Apprenticeship Programme 

of 2000 

  

Apprenticeship Programme of 

2000 

Eligible 

Group 

 

>= 14 at 26 
September 

1999 

>= 14 at 26 
September 

2002 

  

>=16 at the date 
of the survey (26 

Sept) 

>=16 on the date 
of the survey (26 

Sept) 

Comparison 

Group 

 

< 14 at 26 
September 

1999 

< 14 at 26 
September 

2002 

  

< 16 at the date 
of the survey (26 

Sept) 

< 16 at the date 
of the survey (26 

Sept) 

 
Net Effect 

 

Net Effect 

Eligible 

Group 

>= 14 at 26 
September 

1999  

>= 14 at 26 
September 

2002 

 

>=16 at the 

date of the 
survey (26 

Sept)  

>=16 at the date 
of the survey (26 

Sept) 

Comparison 

Group 

< 14 at 26 
September 

1999  

< 14 at 26 
September 

2002 

 

< 16 at the date 
of the survey 

(26 Sept)  

< 16 at the date 
of the survey (26 

Sept) 

 

The identification strategy for the DD depends on two assumptions: (1) the 

difference in labour force participation between the treatment and control groups exists 

in level but not in difference, i.e., the groups would show a common trend in the 

absence of the laws. This is a key assumption in the DD framework, and in the present 

case it might be even stronger, since the comparison is between different cohorts;63 and 

(2) all unobserved characteristics that can be correlated with the eligibility status of the 

individual or other covariates are additive and time-invariant.64 In fact, it is impossible 

to control for individual fixed effects in the present case, since the analysis compares 

cohorts. Instead, it is assumed that individuals of the same age group have 

characteristics that are common and invariant across time. In other words, the difference 

                                                        
63 Abadie (2005), for instance, argues that one could match the groups in the baseline (in our case 1997) 

when there is reason to believe that the group trends would not be parallel in the absence of the law. 

Although this approach cannot be implemented in this study, because the estimation is performed with 

cohorts in two different periods in time rather than with the same individuals, figures 1 to 3 show that the 

compared cohorts evolved in parallel before the law passed. For the difference-in-differences matching 

estimator see also Heckman et al. (1997) and Blundell and Dias (2002).   
64 This second assumption is relevant in the present context only if it is assumed that individuals from 

different cohorts have, on average, the same distribution of time invariant unobserved characteristics.   
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in participation rate that would prevail in the absence of the ban would be the same as 

that observed between similar age groups the year before.   

 The estimation of the impact of the 1998 law on the outcomes of interest is 

conducted through the regression model: 

𝑦𝑖𝑐𝑡 = 𝛽0 + 𝑋𝑖𝑐𝑡
′ 𝛽1 + 𝛽2𝑇𝑖𝑐 + 𝛽3𝐷99 + 𝛿𝑇𝑖𝑐𝐷99 + 𝑢𝑖𝑐𝑡                           (2) 

where 𝑦𝑖𝑐𝑡 is the outcome variable of individual i in cohort c in time t, 𝑋𝑖𝑐𝑡 is the vector 

of observed characteristics of individual i in cohort c in time t. The vector includes 

dummies of individuals’ gender and ethnicity, years of schooling of the household head, 

age of the household head, gender of the household head, and dummy variables for 

regions and the metropolitan region. Tic is a dummy variable that equals 1 if individual i 

in cohort c turned 14 after the date of the ban and zero if (s)he was 14 before the date of 

the ban, D99 is a year dummy that takes value 1 in 1999 and zero for 1998, and 𝑢𝑖𝑐𝑡 

denotes a composite error term, 𝜇𝑖𝑐 + 𝜀𝑖𝑐𝑡, which is allowed to be correlated with X and 

T through effects that are common to cohorts but fixed in time, 𝜇𝑐𝑡 (see Meyer 1995).65 

The parameter of interest, 𝛿, provides the average treatment effect on the cohort 

affected by the ban. Since we do not observe the same individuals before and after the 

ban, we cannot be sure who dropped out of the labour force after the ban. The parameter 

𝛿 therefore captures the intent-to-treat, that is, the impact of the ban on the cohort that 

was hindered from participating in the formal labour force at age 14 after December 

1998. The estimation of the impact of the apprenticeship programme is performed 

similarly, with age defined in accordance with the date of the survey as discussed above. 

For both laws, DD estimates will be provided with 16 weeks bandwidth only.  

For the binary outcomes, linear probability models are used to estimate the 

marginal effects.66 For weekly hours worked, I estimate a Tobit model, as many 

children in the dataset work zero hours per week. Unfortunately, the Tobit regressions 

did not converge in the RDD regressions. I therefore provide DD estimates for the 

intensive margin of labour supply only.    

 

                                                        
65 For individuals aged 15, age is defined according to the date of the survey. See table 2. 
66 The coefficients of linear probability model have a straightforward interpretation, but the there are two 

drawbacks associated with linear probability models. First, the probability distribution does not 

necessarily lie within the [0, 1] interval. In some cases it can even be negative. The second issue has to do 

with the linearity assumption. The marginal effect is constant for all values of the covariates.  
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4 DATA 

  

The sample used in this chapter is drawn from the Brazilian household surveys 

(Pesquisa Nacional por Amostra de Domicilios – PNAD) of 1997, 1998, 1999, and 

2002. The year 2000 is not included, because the Brazilian Census Bureau (Brazilian 

Institute of Geography and Statistics, IBGE) does not run this survey in census years. 

The PNAD is an annual household survey that covers around 100,000 households and 

about 320,000 individuals.67 The year 2001 was dropped, because take-up into the 

apprenticeship programme was close to zero.  

The PNAD constitutes one of the main sources of microdata in Brazil and is a 

nationally representative survey that contains detailed information on each household’s 

socioeconomic characteristics, demographic data, and household income and labour 

force status.  

According to IBGE, the survey is collected between October and December each 

year, although the institute provides three different dates as reference: the month, the 

week, and the day the survey was collected. The month of reference is always 

September and the week is always the last of that month. The day changes from year to 

year, but it is usually 26 or 27 of September. The sub-samples of interest are the urban 

cohorts of children aged 13, 14, 15, and 16.  

 
4.1 Definition of the Outcomes 

 

The extensive margin of child labour relies on the following measures: labour 

force participation rate(s), participation in the formal labour force, participation rate in 

the informal labour force, and household chores.68  

The first definition of labour force participation rate is based on whether the 

child is employed in the week the survey took place.69 Thus, LFPR is a dummy that 

                                                        
67 The last year in which the household survey was collected annually was 2013. In 2014, the IBGE 

merged PNAD and the Monthly Employment Survey (PME) into a new survey called PNAD Continua. 

PNAD Continua is a rotating quarterly panel covering fewer households than the original PNAD, but 

unlike the original labour survey, it is still nationally representative.   
68 Although child labour is generally associated with hazardous activity and authors such as Edmonds 

(2008) suggest the term child work to refer to non-hazardous work, in this chapter both terms will be used 

interchangeably.   
69 This includes market work and housework. The PNAD differentiates housework such as food 

production for personal consumption and construction for personal use from domestic work. For the first 

(housework) there is data for the week of reference as well as for the previous 12 months, whereas for 

domestic work there is data only for the week the survey took place.    
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takes the value of 1 if the individual is employed in the week of reference and zero 

otherwise.  

A child is regarded as formal worker if (s)he has a formal labour contract with 

her/his employer. All formal labour contract of a worker is registered in her/his work 

permit (in Brazil called carteira de trabalho) issued by the Brazilian Ministry of 

Labour.70 The work permit is akin to a notebook where the employee keeps records of 

all her/his labour contracts in the formal sector. A registered (formal) worker has to 

have her/his work permit dully signed by the employer. According to Brazilian labour 

legislation, a formal worker should begin working only after receiving the registration 

of the employer in her/his work permit. In addition to the wages, formal workers are 

endowed with a set of legal rights that include unemployment insurance benefits and 

compulsory savings accounts that can be accessed in the case of dismissal.71   

The Brazilian household survey asks whether the individual has a job in the 

week of reference. For those who answer yes, surveyors then ask whether or not (s)he is 

registered in that work. Thus, the variable “formal” is a dummy that equals 1 if the 

individual was an active registered worker in the week of reference and zero otherwise 

(working unregistered or not working at all). I also look at occupations in the formal 

sector. This variable is referred to as “formal paid work” or “occupation in the formal 

sector” and is defined as a dummy that takes on the value of 1 if the individual was an 

active registered worker and zero if (s)he was working unregistered. The formal 

occupation dummy is an alternative measure to capture the effect of the laws on 

formality rate, as this variable has more variability than the “formal” dummy.     

 Participation rate in the informal labour market mirrors the definition of 

“formal,” i.e., a child is considered to be an informal worker if (s)he works unregistered 

and zero otherwise (working registered or not participating in the labour market at all). 

Participation rate in household chores is also considered in the analysis so that we can 

get a better picture of time-reallocation caused by the laws. Household chores are 

defined separately from the other three measures of child labour, as they are very 

different from work performed outside home. Thus, the variables could also be 

categorised as a “paid work” and “unpaid work.”  

                                                        
70 This definition does not include domestic servants, because in Brazil domestic servants are covered by 

separate legislation. 
71 A similar definition is given by Fernandes and Felício (2005). 
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The empirical analysis is performed considering five measures of work 

incidence: (1) LFPR; (2) LFPR in the formal labour market in the week of reference; (3) 

LFPR in the informal sector in the week of reference; (4) occupation in formal paid 

activities; and (5) participation rate in household chores (unpaid work).72    

The PNAD also reports the weekly hours worked. Thus, it is possible to estimate the 

impact of the law on the intensive margin of child labour supply. For the latter, two 

measures are considered: weekly hours worked in the formal labour market and weekly 

hours worked in the informal labour market.73  

For school related outcomes one looks at school attendance, as this is the most 

commonly used indicator in the literature on the determinants of child labour (e.g., 

Patrinos and Psacharopolous, 1997; Psacharopolous, 1997; Jensen and Nielsen, 1997) 

and children’s time allocation. School attendance is defined as a dummy that equals 1 if 

the individual attended school in the week of reference and zero otherwise.  

 
4.2 Descriptive Statistics 

     

Table 3 shows how the outcome variables evolved between 1997 and 2002 

among children aged 13 to 16. The tables also show the statistics for boys and girls 

separately. The data is restricted to children living in urban areas, because (1) rural areas 

are underrepresented in the Brazilian PNADs; (2) the laws might be easier to enforce in 

urban areas; (3) there is a lower incidence of formal workers in rural areas; and (4) the 

potential for bias due to cash transfer programs designed for rural children in 

particular.74 

The tables show interesting patterns. First, although the labour force 

participation rate increases monotonically with age, one can observe a fall in the 

incidence of child labour. The proportion of children aged 14 in the formal labour force 

was small in 1997, but dropped to almost zero with the increase in the minimum legal 

age. Although the occupation rate in the formal sector stayed almost stable for boys 

                                                        
72 The definitions of participation rate in the formal and informal labour forces do not include active 

workers and those who had a job in the last 12 months. Consequently, the participation rates in the formal 

and informal labour forces will be equal to LFPR but not to LFPR2.  
73 Emerson and Souza (2003, 2007, 2008, and 2011) use this information to define the indicator measure 

for child labour. Based on their definition, a child is defined as participating in the labour force if (s)he 

worked any positive number of hours per week. 
74 In 1996 Brazil implemented an unconditional cash transfer programme aimed at eradicating child 

labour in rural areas. The progamme was called Programa de Erradicação do Trabalho Infantil (PETI), 

and in 2003 it was integrated to the Brazilian conditional cash transfer programme Bolsa Familia (Yap et 

al. 2002).   
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between 1997 and 1998, it halved by September 1999. A similar pattern is observed for 

15-year-olds, but for this age group participation in the formal labour force does not 

shrink completely in 1999, because some of these children turned 14 before the ban. 

Girls are much less likely to participate in the labour force than boys. 

Participation rates in both formal and informal sectors increases with age, but remains 

well below those registered for boys. In 1998, for instance, only 2.1 percent of 14-year-

old girls were working compared to 7.7 percent of boys in the same age group.   

Since children who turned 14 before December 1998 could carry on working in 

the formal sector, by September 1999 some of those children would be 15 years old. 

This peculiarity of the law of 1998 implied a higher proportion of 15-year-olds 

participating in the formal labour force in 1999 – after the ban – than in 2002 – after the 

apprenticeship program. Also interesting is the high participation rate in the informal 

sector, even among 16-year-old children. This suggests that the minimum legal age is 

not the only constraint affecting children’s (or parents’) decisions to work in the formal 

sector.    

When attention is turned to household chores, it seems that this type of work is 

much less sensitive to macroeconomic shocks and perhaps to demographic changes in 

Brazilian society.75 Household chores are much more prevalent among girls and are 

quite stable across age groups and time.  

Children’s school and work outcomes have to do with how their time is 

allocated, and as such time allocation decisions need to be thought of as simultaneous 

decisions taken by children themselves or their parents.76 Thus, it is worth checking 

how school attendance evolved over this period. 

Children working informally used to work about 30 hours per week or 

approximately 5 hours per weekday as shown in table 1. The number of weekly hours in 

the formal sector was much lower for boys and girls aged 14 or more. The small 

proportion of 14-year-olds participating in the formal labour force suggests that 

estimates for the intensive margin of labour supply will likely be noisy and imprecise.  

The table shows that the attendance rate is slightly higher among girls, 

regardless of age, and that it increased over time for both boys and girls in all age 

groups. The literature has reported a trade-off between school attendance and child 

                                                        
75 The introduction of the thesis lists some of the potential factors underlying the decrease in child labour 

over the years in Brazil.  
76 Although we assume that parents are responsible for children’s time allocation, this does not 

necessarily mean that an altruistic household model is assumed.  
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labour, but suggests by descriptive statistics that the two outcomes are far from perfect 

substitutes.77  

The figure below shows the time allocation between working and studying of 14-year-

olds at the time of the ban of December 1998. The statistics are for the group of 

‘control’ children only, that is, those who turned 14 before the ban, and used a window 

of 5 months. Thus, the distributions can be seen as counterfactual distributions for the 

cohort of children affected by the ban. The great majority 14-year-old children in the 

comparison group were only studying, whereas among the working children (11.1 

percent in total), the majority were also studying. 

                                                        
77 In fact, Ravallion and Wodon (2000) show that an exogenous reduction in the price of school in 

Bangladesh increased school attendance and reduced child labour, but only marginally. This finding leads 

them to argue that child labour does not displace schooling. However, Tyler (2003) shows that in the US 

students who worked during the 12th grade performed worse on math and reading exams. Obviously this 

might not hold in countries with poor school quality.         
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Table 3 – Descriptive Statistics for the Outcome Variables Between 1997 and 2002  
  13   14   15   16 

 
Girls Boys 

 
Girls Boys 

 
Girls Boys 

 
Girls Boys 

 
N Mean N Mean 

 
N Mean N Mean 

 
N Mean N Mean 

 
N Mean N Mean 

 
1997 

LFPR 1916 0.029 1879 0.04 

 

1687 0.056 1625 0.098 

 

2141 0.115 2015 0.178 

 

2152 0.171 1825 0.262 

Formal 1916 0 1879 0 

 

1687 0.004 1625 0.016 

 

2141 0.027 2015 0.049 

 

2152 0.043 1825 0.084 

Informal 1916 0.029 1879 0.04 

 

1687 0.052 1625 0.082 

 

2141 0.088 2015 0.129 

 

2152 0.127 1825 0.178 

Formal occupation 55 0 75 0 
 

94 0.064 160 0.163 
 

248 0.238 358 0.274 
 

370 0.254 481 0.322 

Weekly hours worked formal  60 0 92 0 
 

97 2.454 172 5.692 
 

250 9.216 369 10.425 
 

375 10.008 495 12.453 

Weekly hours worked informal 60 28.217 92 25.38 
 

97 36.856 172 26.174 
 

250 29.872 369 25.694 
 

375 29.203 495 25.147 

Household chores 1779 0.836 1704 0.499 
 

1474 0.843 1311 0.5 
 

1678 0.865 1399 0.482 
 

1461 0.849 1034 0.477 

School attendance 1916 0.951 1879 0.949 

 

1687 0.902 1625 0.919 

 

2141 0.858 2015 0.864 

 

2152 0.812 1825 0.789 

 
1998 

LFPR 1876 0.007 1768 0.037 

 

1853 0.021 1812 0.077 

 

1944 0.056 1935 0.143 

 

1963 0.104 1836 0.241 

Formal 1876 0.001 1768 0.002 

 

1853 0.002 1812 0.011 

 

1944 0.015 1935 0.034 

 

1963 0.037 1836 0.076 

Informal 1876 0.007 1768 0.036 

 

1853 0.019 1812 0.066 

 

1944 0.041 1935 0.11 

 

1963 0.067 1836 0.165 

Formal occupation 14 0.071 66 0.045 

 

39 0.103 140 0.143 

 

108 0.269 279 0.233 

 

204 0.358 445 0.315 

Weekly hours worked formal  14 2.5 67 1.403 

 

39 2.615 141 4.787 

 

108 9.676 279 8.72 

 

204 13.216 445 12.166 

Weekly hours worked informal 14 24.571 67 26.657 

 

39 26 141 28.759 

 

108 25.426 279 27.358 

 

204 22.931 445 26.926 

Household chores 1821 0.82 1653 0.506 
 

1756 0.846 1606 0.507 
 

1726 0.838 1548 0.506 
 

1623 0.842 1235 0.498 

School attendance 1879 0.959 1778 0.954 
 

1863 0.939 1829 0.928 
 

1944 0.905 1935 0.896 
 

1963 0.842 1836 0.839 

 
1999 

LFPR 1854 0.009 1794 0.038 
 

1846 0.02 1784 0.062 
 

1800 0.039 1755 0.13 
 

1804 0.075 1833 0.223 

Formal 1854 0 1794 0 

 

1846 0.002 1784 0.003 

 

1800 0.007 1755 0.018 

 

1804 0.032 1833 0.077 

Informal 1854 0.009 1794 0.038 

 

1846 0.018 1784 0.059 

 

1800 0.032 1755 0.112 

 

1804 0.043 1833 0.146 

Formal occupation 17 0 68 0 

 

37 0.108 111 0.045 

 

71 0.183 228 0.136 

 

135 0.43 410 0.344 

Weekly hours worked formal  17 0 68 0 

 

37 4.973 112 1.214 

 

71 6.845 228 5.101 

 

135 15.867 410 13.576 

Weekly hours worked informal 17 22.235 68 26.75 

 

37 25.649 112 30.741 

 

71 28.394 228 30.307 

 

135 20.119 410 24.544 

Household chores 1797 0.845 1678 0.537 

 

1769 0.858 1618 0.54 

 

1643 0.872 1433 0.513 

 

1556 0.875 1274 0.509 

School attendance 1854 0.967 1794 0.969 

 

1846 0.943 1784 0.942 

 

1800 0.908 1755 0.906 

 

1804 0.86 1833 0.852 

 
2002 

LFPR 1960 0.022 1978 0.039 
 

2059 0.042 2032 0.058 
 

2034 0.076 1976 0.127 
 

2111 0.135 1977 0.213 

Formal 1960 0.001 1978 0.001 
 

2059 0.001 2032 0.003 
 

2034 0.004 1976 0.009 
 

2111 0.021 1977 0.042 

Informal 1960 0.021 1978 0.038 
 

2059 0.041 2032 0.054 
 

2034 0.071 1976 0.118 
 

2111 0.114 1977 0.171 

Formal occupation 44 0.045 77 0.026 
 

88 0.034 117 0.06 
 

155 0.058 254 0.067 
 

286 0.157 424 0.196 

Weekly hours worked formal  47 1.872 87 0.92 

 

90 1.422 132 2.01 

 

161 2.335 267 2.629 

 

292 5.795 438 7.438 

Weekly hours worked informal 47 22.128 87 24.218 

 

90 30.711 132 27.583 

 

161 30.832 267 28.607 

 

292 29.884 438 27.623 

Household chores 1896 0.782 1847 0.485 

 

1904 0.831 1823 0.491 

 

1710 0.848 1542 0.473 

 

1557 0.824 1276 0.456 

School attendance 1960 0.973 1978 0.965   2059 0.96 2032 0.949   2034 0.91 1976 0.917   2111 0.85 1977 0.861 

.  
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Very few were only working. It is clear in figure that girls are much more likely 

than boys to be studying full-time, while boys are more likely to conciliate working and 

schooling activities. 

 

 

Figure 2 – Time Allocation of 14-year-old ‘Control’ Children Between Schooling and 

Working Activities  

 

Source: PNAD1999.  

 

4.3 Visual Check of the Discontinuities  

 
According to Imbens and Lemieux (2008), the regression discontinuity analysis 

should start with a visual check. The figures below inspect whether the laws created 

discontinuity in the participation rate in the labour force among children close to age 14 

and 16 respectively. I follow Lee and Lemieux (2010) and compute the unconditional 

mean of the outcome variable for each month bin and fit local linear regression lines 

with a triangle kernel on each side of the threshold. For all figures, the 95 per cent 

confidence interval is also showed. I used monthly bins to visualise the potential effect 

of the laws instead of weekly or daily to better smooth the regression lines.78 The local 

regressions were estimated with a one-month bandwidth over a year interval, that is, 

between -12 and 12 months.  

The identification of the causal impact of the law of 1998 in the RDD 

framework depends on the discontinuity in the participation rate of teenagers who 

turned 14 just after December 1998. Similarly, for the apprenticeship programme, the 

                                                        
78 With regard to the bandwidth choice, they say (p. 308 and 309), ‘In practice, this is typically done 

informally by trying to pick a bandwidth that makes the graphs look informative in the sense that bins are 

wide enough to reduce the amount of noise, but narrow enough to compare observations “close enough” 

on both sides of the cutoff point.’  

9.3%
1.8%

84.1%

4.8%2.8% 0.3%

92.1%

4.8%

Work and Study Only Work Only Study Neither Working nor
StudingBoys Girls
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effect is identified through a jump in the participation rate distribution around age 14 by 

the time the household survey is collected.  

Figures 3 to 7 check the effect of the ban. In these figures the threshold is 

defined at December 1998, and the comparison is made between children who turned 14 

in December 1998 or before 1998 (𝑍 ≤ 0) and children who turned 14 after (𝑍 > 0) 

December 1998.  

Figure 2 suggests that ban was well enforced in the formal sector, as the 

participation rate among those who turned 14 after the ban dropped to almost zero. 

Figures 4 and 5 indicate that the ban was relatively well enforced in the informal sector, 

at least for boys, given the sharp reduction in their participation rate. There is no 

equivalent fall in girls’ participation rate, and it might because the participation rate of 

girls was relatively low even before the ban, as shown in table 3 above. Interestingly, 

figure 6 points to a small increase in girls’ school attendance rate after the ban.  

 

Figure 3 – Boys’ Participation Rate in the Formal Labour Force – 1999 
14 Before and After Dec 1998   
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Figure 4 – Boys’ Participation Rate in the Labour Force –1999 
14 Before and After Dec 1998  

 

 
 

 

 

Figure 5 – Girls’ Participation Rate in the Labour Force –1999 
14 Before and After Dec 1998 
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Figure 6 – Girls’ School Attendance –1999 
14 Before and After Dec 1998  

 
 

Figures 7 and 8 show the participation rate and the participation rate in the 

formal labour force for children around age 16. While figure 6 suggests a small jump in 

participation rate, figure 8 indicates that the participation rate in the formal labour force 

of children around the new threshold was not affected. This is expected, since children 

who were 14 by the time of the increase in the minimum legal age where unaffected by 

this law change.  

 

Figure 7 – Labour Force Participation –1999 
15 vs.16 – September 1999  

 

 

 

 

 



42 

Figure 8 – Participation Rate in the Formal Labour Force –1999 
15 vs.16 – September 1999  

 

 

 

Figure A.1 in the appendix (Appendix 1, page 179) shows local linear regression 

lines for participation rate in the labour force for children close to age 14 in December 

1997, one year before the ban. Figure A.2 (Appendix 1, page 179) presents local linear 

estimates for boys only. These figures can be seen as placebo checks. As can be seen, 

there is no indication of discontinuity around December 1997. Figures A.3 and A.4 

(Appendix 1, page 180) show local linear regression lines for participation rate in the 

labour force and participation in the formal sector for children around age 16 in 

September 1998. As expected, no discontinuity is observed around age 16.  

One could expect that children banned from the labour force would receive a 

smaller wage rate in the informal sector. This fall is represented in figure 9. There is 

clear indication that banned boys received a wage rate about two-thirds of that received 

by the comparison boys. This is an interesting result and could suggest a couple of 

things. On one hand, this could be simply show that participation rate is lower among 

the treatment group due to a substitution effect, since the wage rate in the informal 

sector is about 28 percent lower than in the formal sector (figure 10). On the other hand, 

this could show some equilibrium effect in the case in which the law was well enforced. 

If boys in the eligible and comparison groups are in fact similar in observed and 

unobserved characteristics, they should be taken as perfect substitute inputs in the 

labour market. As such, with the reduction in participation rate among eligible boys, the 

child labour supply would shift to the left, increasing wage rates of the control children. 

One could argue that this is less likely the case, since most children participating in the 
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labour force were in the informal sector, and these 14 year-olds in the comparison group 

should not be much different from 15-year-olds also allowed to work. In other words, 

the fall in participation rate of boys aged 14 should not have such a large effect on the 

labour supply.  

 

Figure 9 – Hourly Wage of Boys 1999 

 
 

 

 

Figure 10 – Density Distributions of Log of Hourly Wage 1999 
Comparison group 

 
Note: Dashed line refers to the mean of log hourly wage of informal workers in the comparison group 

(2.57), whereas the solid line crosses the horizontal axis at the mean of log hourly wage of formal 

workers in the comparison group (2.85).  

 

In figures 11 and 12, I look for a jump in participation rate in the formal labour 

force that might be attributed to the apprenticeship programme. In these figures the cut-
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off point is September 2002, the month the survey was collected. Figure 11 indicates 

that the apprenticeship program may have marginally increased participation rate in the 

formal labour force of children aged 14.  

  

Figure 11 – Participation rate in the formal labour force in 2002 
13 vs. 14 in Sept 2002 

 
 

Figure 12 points to some small discontinuities in participation rate in the formal 

sector around age 16. The lack of a sharper discontinuity around the new threshold 

suggests that the apprenticeship programme might have counterbalanced the effect of 

the ban for 15-year-olds given the similarity in participation rate between children just 

under and just above age 16. 

  

Figure 12 – Participation Rate in the Formal Labour Force –2002 
15 vs. 16 in Sept 2002 
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As mentioned above, the validity of the RDD goes beyond the visual check. It 

requires a balanced sample of individuals close to the cut-off point—a necessary 

condition that characterises discontinuity as a (local) natural experiment (see Lee and 

Lemieux 2009 and Imbens and Lemieux 2008), and an imperfect control over the 

assignment variable. Table 4 presents the difference in means for a set of covariates for 

two bandwidth sizes – 16 weeks and 20 weeks. The vector of covariates includes 

parents’ years of schooling, child’s ethnicity, household size, land title ownership, and 

household non-labour income. All these variables are commonly used as important 

predictors in the labour supply literature, as they capture household socioeconomic 

background. The table reports the coefficient of regressions of each covariate on a 

constant and a dummy indicating whether the teenager was 14 years of age after 

December 1998. Standard errors are clustered at the forcing variable level.  

 

Table 4 – T-test for Difference in Means – Urban Area Only 
14 before Dec 1998 vs. 14 after Dec 1998 

  Comparison Group   Eligible Group   

T-

statistic 

Outcomes Mean SD 

 

Mean SD 

  LFPR 0.12 0.32 

 

0.08 0.28 

 

(3.06) 

LFPR - Formal  0.01 0.09 

 

0.00 0.04 

 

(2.37) 

LFPR – Informal 0.11 0.31 

 

0.08 0.27 

 

(2.58) 

Domestic work 0.72 0.45 

 

0.70 0.46 

 

(1.46) 

School 

attendance 0.93 0.25 

 

0.94 0.23 

 

(-1.38) 

Covariates 

       White  0.49 0.50 

 

0.50 0.50 

 

(-0.24) 

Father’s years of 

schooling  5.33 4.48 

 

5.28 4.58 

 

(0.24) 

Mother’s years of 

schooling 5.02 4.50 

 

5.10 4.69 

 

(-0.44) 

Father’s age 37.32 20.25 

 

36.85 20.21 

 

(0.63) 

Mother’s age 32.78 20.26 

 

31.85 20.36 

 

(1.22) 

Household size 4.73 1.59 

 

4.65 1.57 

 

(1.32) 

Land title 0.92 0.28 

 

0.91 0.28 

 

(0.13) 

Non-labor 

income 3.33 23.94 

 

3.62 28.73 

 

(-0.29) 

Observations 1387     1287                2674 

Source: PNAD of 1999. 

   

 

The table shows the mean for the vector of outcomes and for vector covariates. 

The last column shows the t-statistic for the difference in mean. For all covariates, the 

null of equal means cannot be rejected, suggesting that the sample of individuals around 
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the discontinuity is similar, even for a 20-week bandwidth. As consequence, I report the 

coefficients of the impact of the ban with 20 weeks bandwidth and use a shorter window 

to check robustness.79 

Table A.1 in Appendix 1 (page 181) presents the same set of estimates for youth 

aged 15 and 16. The null of equal means is rejected in only one case.  

Table 5 shows the balance check analysis for 2002 to check whether children 

aged 14 who were eligible to participate in the apprenticeship programme are similar in 

observed characteristics to those 13-year-olds who were a few weeks away from turning 

14. 

 

Table 5 – T-test for Difference in Means – Urban Area Only 
13 vs. 14 – Sept 2002 

  Comparison Group   Eligible Group   T-statistic 

Outcomes Mean SD 

 

Mean SD 

  LFPR 0.11 0.31 

 

0.09 0.28 

 

(2.24) 

LFPR - Formal  0.00 0.05 

 

0.00 0.00 

 

(1.90) 

LFPR – Informal 0.11 0.31 

 

0.09 0.28 

 

(2.03) 

Domestic work 0.66 0.48 

 

0.65 0.48 

 

(0.50) 

School attendance 0.96 0.21 

 

0.96 0.20 

 

(-0.27) 

Covariates 

       White  0.47 0.50 

 

0.44 0.50 

 

(1.77) 

Father’s years of schooling  5.29 4.79 

 

5.41 4.67 

 

(-0.73) 

Mother’s years of schooling 6.83 4.36 

 

6.87 4.31 

 

(-0.23) 

Father’s age 33.55 20.47 

 

34.58 19.94 

 

(-1.44) 

Mother’s age 40.92 12.04 

 

40.23 12.16 

 

(1.62) 

Household size 4.63 1.60 

 

4.60 1.55 

 

(0.44) 

Land title 2.16 0.54 

 

2.17 0.59 

 

(-0.57) 

Non-labor income 3.06 19.09 

 

4.44 26.29 

 

(-0.47) 

Observations 1621     1424                3045 

Source: PNAD of 2002. 

 

As before, the children on each side of the cutoff point look similar in observed 

characteristics. The null hypothesis of equal means is rejected in only one case at 10 

percent.  

For the comparison between 15- and 16-year-olds, one must bear in mind that 

16-year-olds were also eligible for the programme. The objective of this analysis is to 

                                                        
79 Angrist and Rokkanen (2012) develop a combination of RDD and propensity score matching 

techniques to extrapolate the local estimates a little farther from the cut-off point.  
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see whether the programme fully counterbalanced the effect of the ban. The balance 

check for children around age 16 is shown in table A.2 (Appendix 1, page 182). 

 The similarity in the covariates suggests that the two sub-samples of eligible and 

ineligible groups are very well balanced in observed characteristics. Figures 13 and 14 

show the McCrary density test around ages 14 and 16. The test checks for perfect 

manipulation of the assignment variable and is therefore a key test to validate the RD 

design as a credible identification strategy. The rejection of the null hypothesis that the 

assignment variable is smooth around the threshold would cast some doubt on the 

validity of RDD regressions, because it would indicate that the groups on each side of 

the cut-off point are systematically different (Lee and Lemieux, 2010).  

Because the assignment variable used in the thesis is self-reported, one could 

expect to observe some measurement error or data heaping if the head of the household 

misreported the age of children who turned 14 after the ban passed. As long as the 

measurement error is random and not associated with heaps in the outcome variable, the 

RD estimates would still be internally valid. However, if the measurement error in fact 

is caused by a deliberate decision of the household head in misreporting the age of the 

14 year-old as an attempt to avoid complying with the ban then the RD estimates could 

be biased (see Barreca et al. 2015).80 Since this is a non-parametric test that compares 

two local linear regressions on each side the cut-off point, it does not perform well with 

a discrete assignment variable (Card and Lee, 2007; McCrary, 2008). The test is thus 

performed with age defined in days over a 180-day interval. The figures show no 

statistically significant difference between density distributions around the thresholds.  

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                        
80 According to the Brazilian Bureau of Statistics, the head of the household is the one who reports to the 

surveyor the age of the household members. From 2005 onwards, the annual household survey began 

asking for individuals’ birth certificate.  
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Figure 13 – McCrary Density Test for the Manipulation of the Assignment Variable 
14 Before and After Dec 1998 – Age in days 

 

 

 

 

 

Figure 14 – McCrary Density Test for the Manipulation of the Assignment Variable 
15 vs. 16 in Sept 1999 – Age in days 

 

 

An untestable assumption that assures internal validity for the RDD estimates 

and that will be critical to guaranteeing credibility for the DD estimates is that children 

close enough to the cut-off points have similar distributions of unobserved 

characteristics. This assumption will be important for the identification strategy of the 

DD model, because there is no way to control for individual fixed effects once the 

regressions are estimated with different cohorts.  
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Although such a combination of approaches has been used recently (Lemieux 

and Milligan 2008), Lemieux and Milligan (2008) argue that the RDD and DD 

estimates might differ if the key the assumption of parallel trends in the DD framework 

is violated. The authors apply both approaches to investigate the effect of a social 

assistance programme focused on individuals over age 30 on labour supply. Although 

both approaches rendered estimates that are qualitatively similar, the magnitudes 

differed substantially in some cases. Lemieux and Milligan (2008) interpret this as an 

indication that the DD approach may provide misleading results. One could argue that 

the difference in point estimates could result from a misspecification of the RDD 

model.81  

 

5 RESULTS: IMPACT OF THE LAW OF DECEMBER 1998 

 

This section is organised as follows. The first set of results report the RDD 

estimates for children around age 14, the old threshold, and for children around age 16, 

the new threshold. The key focus is on the comparison between the cohorts of 14-year-

olds given that no discontinuity in labour force participation rate is expected for 

children around age 16. The section is complemented with a discussion on the DD 

estimates. Though the main reason for reporting DD estimates is to check robustness of 

RDD results, the DD estimates provide a way to estimate the impact of the laws on the 

intensive margin of labour supply. Joining two waves of PNADs increases the number 

of observations (and statistical power) so that Tobit regressions can be estimated to 

account for censored data.  

 

5.1 RDD Estimates  

 

Age 13 vs. age 14 

The results are reported for the pooled sample of boys and girls and then 

separately for boys and girls to see whether the law had heterogeneous effects.  

Tables 6 and 7 show the results for a 20 weeks bandwidth, that is, 20 weeks on 

each side of the cut-off point. 

                                                        
81 Fajnzylber et al. (2012) combine a polynomial specification with a weighting scheme to assign higher 

weights to observations close to the cutoff. The authors use a normal kernel function with one month of 

bandwidth to weight the data. Although the RDD and DD estimates differ substantially in some cases, the 

authors did not provide any justification for the differences.   
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Table 6 – Parametric ITT Estimates for the Impact of the Laws of 1998 on Extensive Margin of Labour Supply 
14 before Dec 1998 vs. 14 after Dec 1998 

Bandwidth of 20 weeks 

Polynomial degree Labour Force Participation 

 

Formal 

 

Informal 

 

Domestic work 

 

All Boys Girls 

 

All Boys Girls 

 

All Boys Girls 

 

All Boys Girls 

0 -0.035*** -0.065*** -0.0070  -0.0069*** -0.011*** -0.0029  -0.028*** -0.055*** -0.0042  -0.011 0.00038 -0.0036 

 

(-3.45) (-3.55) (-0.54)  (-3.02) (-2.84) (-1.06)  (-2.97) (-3.05) (-0.32)  (-0.51) (0.011) (-0.22) 

1 -0.030 -0.086* 0.025  -0.0074 -0.0037 -0.011*  -0.023 -0.083* 0.036  0.018 0.036 0.010 

 

(-1.24) (-1.93) (0.96)  (-1.54) (-0.50) (-1.91)  (-1.00) (-1.88) (1.42)  (0.40) (0.56) (0.27) 

2 -0.029 -0.085* 0.026  -0.0074 -0.0033 -0.011*  -0.022 -0.082* 0.037  0.021 0.046 0.010 

 

(-1.21) (-1.93) (1.01)  (-1.47) (-0.45) (-1.92)  (-0.97) (-1.87) (1.50)  (0.47) (0.67) (0.28) 

3 -0.018 -0.032 -0.0022  -0.012** -0.0090 -0.014  -0.0071 -0.024 0.011  0.0089 0.019 -0.0081 

 

(-0.58) (-0.58) (-0.072)  (-1.98) (-1.05) (-1.61)  (-0.25) (-0.43) (0.41)  (0.13) (0.20) (-0.14) 

Spline linear -0.029 -0.084* 0.026  -0.0074 -0.0032 -0.012*  -0.022 -0.081* 0.037  0.021 0.046 0.011 

 

(-1.18) (-1.90) (1.00)  (-1.44) (-0.43) (-1.92)  (-0.94) (-1.85) (1.50)  (0.48) (0.65) (0.29) 

Spline quadratic -0.013 -0.0073 -0.018  -0.013** -0.011 -0.016  -0.00052 0.0023 -0.0024  -0.0058 -0.021 -0.0051 

 (-0.38) (-0.12) (-0.52)  (-2.00) (-1.02) (-1.49)  (-0.016) (0.038) (-0.074)  (-0.085) (-0.24) (-0.081) 

Observations 2674 1306 1368  2674 1306 1368  2674 1306 1368  2570 1230 1340 

Note: Clustered T-statistics in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. 
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The estimates in table 6 point to a decrease in the participation rate of boys at about 8.5 

percentage points, or 40.5 percent over the mean of the control group (21 percent). The 

point estimates vary with the specification of the smooth function, but most of them are 

qualitatively similar, except for higher order polynomials.82 The coefficients for boys 

are statistically significant at the 10 percent level (and at 5 percent against a one-sided 

alternative) in most of the cases. It is interesting to note that labour force participation 

rate for boys dropped in the formal and informal sectors, but mostly in the latter.  

In the case of girls, the decrease in participation rate in the formal labour force 

was similar for boys and girls, but the effect on girls was apparently counterbalanced by 

an increase in participation in the informal labour force, although none of the 

coefficients for participation rate in the informal sector are statistically significant. No 

effect is observed for participation in household chores among boys or girls. 

 

 

Table 7 – Parametric ITT Estimates for the Impact of the Laws of 1998 on Schooling 

outcome 
14 before Dec 1998 vs. 14 after Dec 1998 

Bandwidth of 20 weeks 

Polynomial degree School Attendance 

 

All Boys Girls 

0 0.0095 0.012 0.0070 

 

(1.32) (0.94) (0.74) 

1 0.021 0.0020 0.040** 

 

(1.38) (0.067) (2.03) 

2 0.021 0.0020 0.039* 

 

(1.35) (0.067) (1.89) 

3 0.013 -0.031 0.056** 

 

(0.60) (-0.77) (2.10) 

Spline linear 0.021 0.0015 0.039* 

 

(1.34) (0.052) (1.88) 

Spline quadratic 0.011 -0.051 0.073*** 

 (0.46) (-1.21) (3.50) 

Observations 2822 1409 1413 

Note: Clustered T-statistics in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% 

respectively. 

                                                        
82 The sensitivity of results to high order polynomials is consistent with a point recently made by Gelman 

and Imbens (2014). They argue against the use of parametric estimation of LATE with high order 

polynomials. They use a Monte Carlo simulation to show that high order polynomials give too much 

weight to the tails of the outcome variable distribution, and this can bias the results. Instead, they argue 

for the use of local linear and local polynomials.  
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Table 7 indicates that the law of 1998 increased school attendance among girls. 

Most of the coefficients are statistically significant at standard levels and point to an 

increase of 4 percentage points or 4.2 percent over the mean of the control group (95 

percent). Robustness check with 16 weeks bandwidth are shown in tables A.3 and A.4 

(Appendix 1, page 183-184). The results are qualitatively similar, though less precisely 

estimated. 

 

Age 15 vs. age 16 

 

Tables 8 and 9 present the estimates comparing outcomes of 15- and 16-year- 

olds with the same bandwidth size.  

Table 8 shows that, except for a couple of point estimates, the ban did not have 

an impact on participation rate. This is what one could expect had the ban of 1998 not 

affected those who turned 14 before the change in the law. In other words, children just 

under age 16 kept working as much as children just above the new threshold.  

 Table 9 indicates that boys aged 15 became more likely to attend school after the 

ban, but most of the coefficients are imprecise. Tables A.5 and A.6 (Appendix 1, pages 

185-186) present the results with a narrower bandwidth of 16 weeks. Results are very 

similar to those discussed above, but less precisely estimated.  
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Table 8 – Parametric ITT Estimates for the Impact of the Laws of 1998 on Extensive Margin of Labour Supply 
15 vs. 16 

Bandwidth of 20 weeks 

Polynomial degree Labour Force Participation 

 

Formal 

 

Informal 

 

Domestic work 

 

All Boys Girls 

 

All Boys Girls 

 

All Boys Girls 

 

All Boys Girls 

0 0.039** 0.080*** 0.00052  0.023*** 0.039*** 0.0098*  0.018 0.048* -0.0087  0.031 0.041 -0.0013 

 

(2.10) (3.05) (0.032)  (3.74) (3.68) (1.75)  (1.01) (1.88) (-0.52)  (1.57) (1.21) (-0.066) 

1 0.015 0.044 -0.023  0.0074 0.016 -0.0013  0.0099 0.034 -0.022  -0.0053 0.023 -0.021 

 

(0.48) (0.90) (-0.82)  (0.74) (0.89) (-0.12)  (0.28) (0.66) (-0.71)  (-0.13) (0.38) (-0.63) 

2 0.014 0.043 -0.025  0.0072 0.016 -0.0021  0.0085 0.033 -0.023  -0.0054 0.023 -0.021 

 

(0.44) (0.90) (-0.86)  (0.73) (0.91) (-0.20)  (0.24) (0.66) (-0.72)  (-0.13) (0.38) (-0.62) 

3 -0.011 0.052 -0.052  -0.0027 0.0047 -0.0035  -0.0069 0.054 -0.049  0.040 0.022 0.021 

 

(-0.28) (0.79) (-1.54)  (-0.26) (0.23) (-0.31)  (-0.15) (0.75) (-1.25)  (0.66) (0.29) (0.42) 

Spline linear 0.013 0.042 -0.024  0.0074 0.017 -0.0025  0.0075 0.031 -0.022  -0.0063 0.023 -0.023 

 

(0.42) (0.90) (-0.86)  (0.75) (0.94) (-0.24)  (0.22) (0.64) (-0.71)  (-0.15) (0.39) (-0.65) 

Spline quadratic -0.026 0.041 -0.061*  0.00024 0.011 -0.0042  -0.025 0.038 -0.057  0.043 0.021 0.015 

 (-0.63) (0.65) (-1.69)  (0.024) (0.52) (-0.37)  (-0.54) (0.56) (-1.36)  (0.60) (0.24) (0.25) 

Observations 2536 1217 1319  2536 1217 1319  2536 1217 1319  2269 1018 1251 

Note: Clustered T-statistics in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. 
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Table 9 – Parametric ITT Estimates for the Impact of the Laws of 1998 on Schooling 

outcome 
15 vs. 16 

Bandwidth of 20 weeks 

Polynomial degree School Attendance 

 

All Boys Girls 

0 -0.031*** -0.058*** -0.0052 

 

(-2.75) (-3.53) (-0.33) 

1 0.00028 -0.024 0.026 

 

(0.012) (-0.71) (0.89) 

2 0.00041 -0.026 0.029 

 

(0.018) (-0.75) (1.15) 

3 -0.044 -0.064 -0.026 

 

(-1.53) (-1.31) (-0.75) 

Spline linear 0.0021 -0.026 0.033 

 

(0.10) (-0.74) (1.30) 

Spline quadratic -0.037 -0.060* -0.021 

 (-1.62) (-1.85) (-0.52) 

Observations 2837 1414 1423 

Note: Clustered T-statistics in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% 

respectively. 
 

5.2 Difference-in-Differences Estimates  

 

Age 13 vs. age 14 

Tables 10 to 12 report the DD estimates on work outcomes of children aged 14. 

Due to the gain in power of using two waves of the Brazilian household survey, 

regressions are estimated only with a 16 weeks bandwidth. The decision to use a 16 

weeks bandwidth instead of 20 weeks has to do with gain in power in pooling two 

waves of the household survey. Thus, with DD it is possible to explore the estimates 

more locally with more precision than the RDD estimates. One could also see the DD 

estimates as a way of cleaning up the RDD estimates from any cohort effect that might 

be idiosyncratic of the cohorts who turned 14 by the time the law change took effect.83  

Results shown in table 10 are qualitatively similar to the RDD estimates. There 

is an indication that the ban reduced participation rate in the labour force only for boys 

by 3.3 percentage points. The estimate is statistically significant at the 10 percent level 

                                                        
83 Lemieux and Milligan (2008) interpret the differences between RDD and DD estimates as an indication 

that the necessary conditions to validate the DD estimates, specifically the common trend assumption, 

were violated.  
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(or at the 5 percent level against a one-sided alternative), and as with the RDD estimates 

the total effect is mostly explained by the decrease in participation in the informal 

sector. Note that the gain in power due to a larger sample size is counterbalanced by the 

reduction in the magnitude of the effect size that is less than half of that found with the 

RDD. The table also presents estimates for occupation in the formal sector. Since this 

outcome is conditioned on individuals participating in the labour force, the sample size 

is adjusted accordingly.  

Table 11 shows the estimates for participation in household chores as well as 

weekly hours worked. Consistent with the RDD estimates, the DD regressions show no 

impact on household chores. The estimates for the intensive margin of labour supply 

suggest that the ban increased weekly hours worked in the formal labour force among 

boys but that the ban decreased the same among girls. The results for girls are consistent 

with the RDD estimates, but the increase in weekly hours of work among boys is 

difficult to explain, particularly because of the decrease in participation rate. The 

coefficient for the dummy ‘eligible’ in table 11 shows a pre-treatment difference in 

hours worked between the ‘treatment’ and control groups. Prior to the ban, eligible boys 

worked 26 fewer hours per week than boys unaffected by the ban. This might indicate 

that a decrease in weekly hours worked in the formal sector, as denoted by the 

coefficient of the time dummy (D99), was stronger among the control group, because 

boys affected by the ban were already working fewer hours before the ban. Put 

differently, the DD coefficient, though more precisely estimated, might be picking up a 

disproportionate reduction in weekly hours worked among the control group.   

 Table 12 presents the estimates for school attendance. The DD estimates are 

small in magnitude and very imprecisely estimated. The ban seems to have reduced the 

participation rate of boys, and this result is very much driven by the effect on the 

informal sector. The effect of the ban on girls points to a reduction in the participation 

rate in the formal labour force, but there is no detectable impact on labour force 

participation in the informal sector.
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Table 10 – Difference-in-Differences Estimates for the Impact of the Law of 1998 on Extensive Margin of Labour Supply 
14 before Dec 1998 vs. 14 after Dec 1998 

Bandwidth of 16 weeks 

  Labour Force Participation Rate 

 

Participation Rate – Formal Labour 

Force 

 

Occupation in Formal Sector 

 

Participation Rate – Informal Labour 

Force 

 

All Boys Girls 

 

All Boys Girls 

 

All Boys Girls 

 

All Boys Girls 

 

               

Eligible*D99 (DD) -0.016 -0.033* 0.0020  -0.0052 -0.0026 -0.0068*  -0.017 0.049 -0.24  -0.011 -0.030* 0.0088 

 

(-1.64) (-1.93) (0.22)  (-1.29) (-0.37) (-1.77)  (-0.26) (0.68) (-1.46)  (-1.20) (-1.91) (1.06) 

Eligible  -0.0065 -0.013 -0.00075  -0.0044* -0.010** 0.00092  -0.077 -0.11** -0.0026  -0.0021 -0.0028 -0.0017 

 (-1.09) (-1.25) (-0.13)  (-1.82) (-2.31) (0.50)  (-1.57) (-2.03) (-0.021)  (-0.39) (-0.29) (-0.31) 

D99 (1998=0, 1999=1) 0.037*** 0.064*** 0.010  0.0078** 0.0073 0.0080**  0.0037 -0.061 0.23*  0.029*** 0.057*** 0.0022 

 (5.11) (4.91) (1.57)  (2.38) (1.24) (2.57)  (0.079) (-1.18) (1.98)  (4.42) (4.76) (0.38) 

Controls Yes Yes Yes  Yes Yes Yes  Yes Yes Yes  Yes Yes Yes 

 

               

Dummies for states? Yes Yes Yes  Yes Yes Yes  Yes Yes Yes  Yes Yes Yes 

Constant 0.11** 0.21*** 0.064  -0.00027 0.0065 -0.0016  -0.021 0.014 -0.079  0.11*** 0.20*** 0.065* 

  (2.55) (2.67) (1.59)  (-0.023) (0.29) (-0.23)  (-0.15) (0.087) (-0.32)  (2.62) (2.66) (1.66) 

Observations 9368 4634 4734  9368 4634 4734  545 428 117  9368 4634 4734 

Adjusted R2 0.033 0.021 0.005  0.009 0.009 0.001  0.045 0.063 -0.032  0.027 0.017 0.004 
 Note: Robust T-statistics in parentheses. *, **, *** Statistically significant at 10%, 5%, and 1% respectively.  

 

 

Table 11 – Difference-in-Differences Estimates for the Impact of the Law of 1998 on the Intensive Margin of Labour Supply and Household Chores 
14 before Dec 1998 vs. 14 after Dec 1998 

Bandwidth of 16 weeks 

  Household Chores 

 

Weekly Hours Worked - Formal 

 

Weekly Hours Worked - Informal 

 

All Boys Girls 

 

All Boys Girls 

 

All Boys Girls 

 

           

Eligible*D99 (DD) 0.0043 0.014 0.0081  -1.34 12.3*** -43.7***  -0.13 -0.20 0.52 

 

(0.23) (0.46) (0.38)  (-0.54) (4.47) (-9.03)  (-0.035) (-0.049) (0.065) 

Eligible  -0.0080 0.0048 -0.023  -19.4*** -26.1*** 2.53  4.47 4.49 6.30 

 (-0.61) (0.23) (-1.46)  (-8.36) (-10.2) (0.54)  (1.58) (1.35) (1.07) 

D99 (1998=0, 1999=1) 0.024* 0.0074 0.029*  1.93 -12.6*** 47.9***  3.21 4.61 -2.75 

 (1.85) (0.33) (1.91)  (0.88) (-5.23) (11.0)  (1.27) (1.63) (-0.51) 

Controls Yes Yes Yes  Yes Yes Yes  Yes Yes Yes 

Dummies for states? Yes Yes Yes  Yes Yes Yes  Yes Yes Yes 

Constant 0.82*** 0.43*** 0.88***  -345.5*** -330.9*** -548.9***  35.1*** 36.8*** 32.3* 

  (10.7) (3.33) (9.84)  (-131.4) (-116.1) (-108.7)  (3.56) (3.06) (1.85) 

Sigma     52.1*** 49.9*** 45.1***  20.0*** 19.8*** 18.0*** 

     (38.3) (34.3) (19.7)  (28.9) (26.0) (12.8) 

Observations 8474 4020 4454  545 428 117  545 428 117 

Adjusted R2/Pseudo-R2 0.16 0.05 0.02  0.05 0.07 0.10  0.01 0.01 0.04 

 Note: Robust T-statistics in parentheses. *, **, *** Statistically significant at 10%, 5%, and 1% respectively.  
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Table 12 – Difference-in-Differences Estimates for the Impact of the Law of 1998 on 

Schooling Outcome 
14 before Dec 1998 vs. 14 after Dec 1998 

Bandwidth of 16 weeks 

 

School Attendance 

 

All Boys Girls 

Eligible*D99 (DD) -0.0042 -0.0090 0.00072 

 

(-0.39) (-0.57) (0.049) 

Eligible  0.017** 0.015 0.019** 

 (2.45) (1.40) (2.04) 

D99 (1998=0, 1999=1) -0.023*** -0.016 -0.031*** 

 

(-2.90) (-1.38) (-2.81) 

Controls? Yes Yes Yes 

Dummies for states? Yes Yes Yes 

Constant 0.87*** 0.82*** 0.91*** 

  (18.5) (10.9) (16.0) 

Observations 9368 4634 4734 

Adjusted R2 0.011 0.009 0.012 

Note: Robust T-statistics in parentheses. *, **, *** Statistically significant at 10%, 5%, and 1% 

respectively.  

 

 

Age 15 vs. age 16 

 The DD estimates of the impact of the ban on 15-year-olds are shown in tables 

A.7 to A.9 (Appendix 1, pages 187-189). The treatment dummy is defined as 1 for 

individuals above the threshold—age 16 on the survey date—and 0 otherwise. Thus, the 

impact of the ban of December 1998 on 15-year-olds will have the opposite sign.  

None of the estimates for participation rate are statistically significant. There is 

an indication that 15-year-old boys are more likely to do household chores, but the 

estimate is significant only against a one-sided alternative. Table A.8 suggests, on the 

other hand, that 15-year-old girls worked fewer hours per week in formal sector due to 

the ban. This result would be consistent with the shift of some girls to the apprenticeship 

programme, which is a part-time programme. But this could also be due to the fact that 

school is no longer mandatory for teenagers aged 16. This is also consistent with the 

results for school attendance. A premature dropout of school at age 16 would explain 

the lower school attendance as shown in table A.9.  

 

6 RESULTS: IMPACT OF THE APPRENTICESHIP PROGRAMME 

 

 This section presents the results of the causal effects of the apprenticeship 

programme. As in the previous section, the discussion starts with the RDD estimates 
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and is followed by the DD regressions. As before, DD estimates are provided for 16 

weeks bandwidth only. The low take-up of the programme suggests a small effect on 

participation rate in the formal labour market and, consequently, on time allocation of 

children aged 14.  

 

6.1 RDD Estimates  

 
Age 13 vs. age 14 

Tables 13 and 14 show estimates of the effect of the apprenticeship programme 

approved in December 2000 for a 20 weeks bandwidth.  

Most of the estimates point to a reduction in participation rate in the labour force 

between 3.7 percentage points and 7 percentage points; however, the result is almost 

fully explained by the decrease in informality among girls. There is an indication that 

the programme decreased the participation rate of girls in the informal sector by about 

5.5 percentage points to 9.5 percentage points. The effect participation rate in formal 

labour is almost indistinguishable from zero in magnitude.  

Given that such a decrease is not followed by a sharp increase in participation in 

the formal sector, it is worth looking at the occupations of those already in the labour 

force. The impact on occupation in formal paid work is positive and relatively high in 

most of the regressions for the pooled sample of boys and girls. This suggests that those 

who did not drop out of the labour force became more likely to take up the   

apprenticeship programme. In other words, the programme seems to have changed the 

composition of 14-year-olds from informal to formal occupations.  

Robustness checks with a bandwidth of 16 weeks are presented in tables A.10 

and A.11 in Appendix 1 (pages 190-191). Results are qualitatively the same. This is an 

interesting result. The programme might not have nudged children to enter the labour 

force, but seems to have incentivised those already in the labour force to shift to the 

formal sector. No effect on household chores was detected. 
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Table 13 – Parametric ITT Estimates for the Impact of the Apprenticeship Programme on the Extensive Margin of Labour Supply 
13 vs. 14  

Bandwidth of 20 weeks  

Polynomial degree Labour Force Participation 

 

Participation Rate in Formal Sector 

 

Formal Paid Work – occupation 

 

Informal 

 

Domestic Work 

 

All Boys Girls 

 

All Boys Girls 

 

All Boys Girls 

 

All Boys Girls 

 

All Boys Girls 

0 0.024* 0.036** 0.012  0.0025** 0.0026 0.0024  0.053** 0.047 0.061  0.021* 0.034** 0.0095  0.0089 -0.013 0.017 

 

(1.88) (2.23) (0.77)  (2.18) (1.45) (1.47)  (2.13) (1.56) (1.43)  (1.67) (2.10) (0.60)  (0.52) (-0.54) (0.94) 

1 -0.037** -0.020 -0.052**  0.0039* 0.0043 0.0035  0.10* 0.083 0.14  -0.040** -0.024 -0.055**  0.0071 -0.0091 0.011 

 

(-2.08) (-0.72) (-2.10)  (1.65) (1.01) (1.35)  (1.68) (1.06) (1.43)  (-2.33) (-0.88) (-2.22)  (0.23) (-0.20) (0.41) 

2 -0.038** -0.022 -0.053**  0.0038* 0.0042 0.0034  0.098* 0.077 0.15  -0.042** -0.026 -0.056**  0.0019 -0.012 0.0059 

 

(-2.24) (-0.80) (-2.21)  (1.65) (1.03) (1.30)  (1.66) (1.08) (1.42)  (-2.49) (-0.95) (-2.34)  (0.063) (-0.27) (0.21) 

3 -0.070*** -0.041 -0.096***  0.0016 0.0042 -0.00083  0.058 0.064 0.060  -0.072*** -0.045 -0.095***  0.023 -0.016 0.043 

 

(-2.94) (-1.24) (-3.12)  (0.53) (0.66) (-0.45)  (0.79) (0.63) (0.80)  (-3.08) (-1.37) (-3.06)  (0.57) (-0.26) (1.11) 

Spline linear -0.038** -0.022 -0.053**  0.0038* 0.0042 0.0034  0.099* 0.077 0.15  -0.042** -0.026 -0.056**  0.00057 -0.013 0.0052 

 

(-2.22) (-0.81) (-2.20)  (1.68) (1.04) (1.34)  (1.67) (1.11) (1.39)  (-2.46) (-0.95) (-2.32)  (0.018) (-0.29) (0.17) 

Spline quadratic -0.065** -0.030 -0.095***  0.0014 0.0047 -0.0013  0.047 0.066 -0.022  -0.066*** -0.034 -0.094**  0.042 -0.0034 0.064* 

 

(-2.49) (-0.87) (-2.63)  (0.49) (0.72) (-0.94)  (0.66) (0.73) (-0.31)  (-2.58) (-0.99) (-2.57)  (1.07) (-0.050) (1.85) 

 Observations 3045 1503 1542  3045 1503 1542  127 71 56  3045 1503 1542  2918 1431 1487 

Source: PNAD 2002.  

Note: Clustered T-statistic in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% respectively.  
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Table 14 shows the estimates for school attendance. Consistent with the 

conditionality embedded in the programme, school attendance seems to have increased 

with the programme, but only for boys. 

 

 

Table 14 – Parametric ITT Estimates for the Impact of the Apprenticeship Programme 

on Schooling Outcome 
13 vs. 14  

Bandwidth of 20 weeks  

Polynomial degree 

 

School Attendance 

  

All Boys Girls 

0  -0.0019 0.0075 -0.012 

 

 (-0.25) (0.69) (-1.02) 

1  0.029** 0.052** 0.0075 

 

 (2.01) (2.38) (0.31) 

2  0.029** 0.051** 0.0088 

 

 (2.01) (2.32) (0.37) 

3  0.039** 0.049* 0.031 

 

 (2.23) (1.78) (1.13) 

Spline linear  0.030** 0.051** 0.0093 

 

 (2.04) (2.32) (0.39) 

Spline quadratic  0.049*** 0.052* 0.045 

 

 (2.63) (1.89) (1.64) 

Observations  3241 1632 1609 

Source: PNAD 2002.  

Note: Clustered T-statistics in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% 

respectively. 
 

Age 15 vs. age 16 

 The objective of this exercise is to check whether the apprenticeship programme 

annulated the effect of the ban among children aged 15. Table 15 shows that the 

coefficients on participation rate in the formal labour force are positive and statistically 

significant only for 15-year-old girls. They indicate that girls became 2.3 percentage 

points more likely to participate in the formal labour force, and for girls in the labour 

force already, the estimates indicate that they became 18 percentage points more likely 

to work in a formal occupation. For 15-year-old boys, the results suggest that the 

programme fully counterbalanced the effect of the ban.  
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Table 15 – Parametric ITT Estimates for the Impact of the Apprenticeship Programme on the Extensive Margin of Labour Supply 
15 vs. 16  

Bandwidth of 20 weeks  

Polynomial degree Labour Force Participation 

 

Participation Rate in Formal Sector 

 

Formal Paid Work – occupation 

 

Informal 

 

Domestic Work 

 

All Boys Girls 

 

All Boys Girls 

 

All Boys Girls 

 

All Boys Girls 

 

All Boys Girls 

0 0.043*** 0.054*** 0.030  0.013** 0.021** 0.0051  0.072** 0.085** 0.048  0.033** 0.038* 0.026  -0.016 -0.021 -0.017 

 

(2.68) (2.66) (1.20)  (1.99) (2.11) (0.99)  (1.96) (1.96) (1.08)  (2.01) (1.76) (1.03)  (-0.89) (-0.72) (-0.83) 

1 0.027 0.020 0.050  -0.015 -0.0046 -0.023***  -0.076 -0.019 -0.17***  0.040 0.024 0.072  -0.0092 -0.031 -0.033 

 

(0.91) (0.52) (0.95)  (-1.31) (-0.26) (-3.13)  (-1.20) (-0.23) (-2.79)  (1.37) (0.55) (1.36)  (-0.29) (-0.61) (-0.76) 

2 0.026 0.022 0.046  -0.013 -0.0026 -0.023***  -0.068 -0.0026 -0.18***  0.038 0.024 0.066  -0.0070 -0.029 -0.032 

 

(0.89) (0.54) (0.88)  (-1.37) (-0.17) (-3.12)  (-1.19) (-0.037) (-2.85)  (1.36) (0.54) (1.29)  (-0.23) (-0.60) (-0.74) 

3 0.025 0.030 0.032  -0.0011 0.014 -0.014*  -0.017 0.027 -0.087  0.026 0.019 0.045  0.0042 0.021 -0.050 

 

(0.68) (0.62) (0.48)  (-0.098) (0.69) (-1.79)  (-0.26) (0.30) (-1.42)  (0.75) (0.35) (0.67)  (0.10) (0.36) (-0.80) 

Spline linear 0.025 0.021 0.045  -0.013 -0.0018 -0.023***  -0.067 0.0016 -0.18***  0.036 0.022 0.065  -0.0060 -0.027 -0.031 

 

(0.87) (0.51) (0.88)  (-1.34) (-0.12) (-3.08)  (-1.16) (0.023) (-2.86)  (1.35) (0.52) (1.29)  (-0.20) (-0.56) (-0.73) 

Spline quadratic 0.020 0.011 0.035  -0.0046 0.0081 -0.016**  -0.039 0.0014 -0.087  0.024 0.0040 0.050  0.0036 0.036 -0.043 

 

(0.54) (0.27) (0.48)  (-0.39) (0.41) (-1.99)  (-0.58) (0.017) (-1.27)  (0.67) (0.089) (0.69)  (0.083) (0.62) (-0.63) 

 Observations 2788 1362 1426  2788 1362 1426  443 283 160  2788 1362 1426  2347 1081 1266 

Source: PNAD 2002.  

Note: Clustered T-statistic in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% respectively.  
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 The results for school attendance are a bit puzzling, particularly because school 

was no longer mandatory for children aged 16. Table 16 indicates that teenagers just 

under age 16 are about 4.5 percent less likely to attend school. To conciliate work with 

school, apprentices might have attended school less often. Tables A.12 and A.13 

(Appendix 1, page 192-193) show the results with the bandwidth of 16 weeks to check 

robustness.84 

 

Table 16 – Parametric ITT Estimates for the Impact of the Apprenticeship Programme 

on Schooling Outcome 
15 vs. 16  

Bandwidth of 20 weeks  

Polynomial degree 

 

School Attendance 

  

All Boys Girls 

0  -0.031** -0.030* -0.032* 

 

 (-2.54) (-1.91) (-1.86) 

1  0.036** 0.047* 0.022 

 

 (2.28) (1.87) (0.75) 

2  0.035** 0.048** 0.020 

 

 (2.26) (1.96) (0.67) 

3  0.038** 0.043 0.030 

 

 (2.01) (1.42) (0.73) 

Spline linear  0.036** 0.049** 0.021 

 

 (2.32) (1.98) (0.68) 

Spline quadratic  0.041** 0.038 0.041 

 

 (2.04) (1.04) (1.02) 

Observations  3300 1659 1641 

Source: PNAD 2002.  

Note: Clustered T-statistics in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% 

respectively. 
 

 

 

 

 

 

                                                        
84 Estimates presented in table A.12 suggest that one cannot reject the null hypothesis that the 

apprenticeship programme fully mitigated the impact of the ban among boys. For girls, it seems that the 

programme resulted in a higher proportion of 15-year-olds participating in the formal labour force than 

girls aged 16. Consistently, girls aged 15 are also more likely to work in a formal occupation. Table A.13 

indicates that the programme may have reduced school attendance among 15-year-old boys. 
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6.2 Difference-in-Differences Estimates  

 

Age 13 vs. age 14 

 To increase power, DD regressions use two waves of the household survey and 

are estimated with a 16 weeks bandwidth. Results are presented in tables 17 to 19.  

Almost no estimates are statistically significant. There is an indication that girls ended 

up working few more hours in the formal sector and fewer hours in the informal sector. 

There is a puzzling result for boys that is difficult to reconcile with the estimates for the 

extensive margin of labour supply, as there is no indication of an increase in 

formalisation among the employed. Estimates at the intensive margin are very noisy and 

imprecise given the relatively small proportion of 13- and 14-year-olds in the labour 

force.  

 

Age 15 vs. age 16 

Tables A.14 to A.16 in Appendix 1 (pages 194-196) bring the estimates for the 

apprenticeship programme for children under age 16. None of the estimates are 

statistically significant. It seems that the apprenticeship programme of 2000 fully 

counterbalanced the impact of the ban on participation rate in the formal labour force 

amongst those just under age 16. 
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Table 17 – Difference-in-Differences Estimates – Apprenticeship Programme of 2000 – Extensive Margin of Labour Supply 
13 vs. 14 

Bandwidth of 16 weeks  
  LFPR 

 

LFPR - Formal 

 

Formal Paid Work - Occupation 

 

LFPR - Informal 

 

All Boys Girls 

 

All Boys Girls 

 

All Boys Girls 

 

All Boys Girls 

T*Year -0.0014 -0.0023 -0.00038  -0.0062 -0.0057 -0.0073  -0.0022 0.035 -0.050  0.0049 0.0033 0.0069 

 

(-0.14) (-0.15) (-0.030)  (-1.43) (-0.81) (-1.34)  (-0.053) (0.62) (-0.58)  (0.53) (0.24) (0.58) 

T (13=0; 14=1) -0.0027 0.0020 -0.0058  -0.00016 0.0013* -0.00087  -0.038 -0.072* -0.0062  -0.0025 0.00072 -0.0049 

 

(-0.70) (0.29) (-1.56)  (-0.45) (1.69) (-1.62)  (-1.34) (-1.86) (-0.079)  (-0.66) (0.11) (-1.34) 

Year (1999=0; 2002=1) 0.11*** 0.12*** 0.11***  0.029*** 0.036*** 0.024***  0.19*** 0.19*** 0.19***  0.083*** 0.082*** 0.085*** 

 (16.0) (10.8) (11.9)  (9.03) (6.95) (5.79)  (6.90) (5.11) (3.74)  (12.9) (8.29) (10.2) 

Controls? Yes Yes Yes  Yes Yes Yes  Yes Yes Yes  Yes Yes Yes 

                

Observations 9883 4866 5017  9883 4866 5017  785 448 337  9883 4866 5017 

Adjusted R2 0.09 0.08 0.09  0.05 0.05 0.05  0.07 0.07 0.09  0.05 0.04 0.05 

Source: PNADs 1999 and 2002.  

Note: Robust T-statistics in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. The controls include dummy variables for gender (male), 

ethnicity (white), head years of schooling, age and gender (=1 if male), dummy for states and metropolitan area.  
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Table 18 – Difference-in-Differences Estimates – Apprenticeship Programme of 2000 – Household Chores and Intensive Margin of Labour 

Supply 
13 vs. 14 

Bandwidth of 16 weeks  
  Household Chores 

 

Weekly Hours Worked – Formal 

 

Weekly Hours Worked – Informal 

 

All Boys Girls 

 

All Boys Girls 

 

All Boys Girls 

T*Year -0.0056 -0.034 0.021  2.84 -10.01*** 7.46**  -1.85 2.75 -12.70* 

 

(-0.29) (-1.12) (0.90)  (1.35) (-3.72) (2.34)  (-0.52) (0.63) (-1.88) 

T (13=0; 14=1) 0.017 0.029 0.0057  4.76** 18.17*** 0.19  1.13 -2.70 10.96* 

 

(1.24) (1.39) (0.34)  (2.26) (6.69) (0.06)  (0.36) (-0.73) (1.71) 

Year (1999=0; 2002=1) 0.0028 -0.012 0.016  299.98*** 303.05*** 279.23***  -1.64 -5.40* 7.20 

 (0.20) (-0.55) (0.92)  (133.92) (107.99) (82.38)  (-0.66) (-1.69) (1.45) 

Controls? Yes Yes Yes  Yes Yes Yes  Yes Yes Yes 

            

Sigma     47.9*** 48.6*** 44.4***  28.5*** 28.0*** 28.0*** 

     (46.4) (36.4) (27.3)  (50.3) (39.8) (30.2) 

Observations 8576 4165 4411  785 448 337  785 448 337 

Adjusted R2/Pseudo-R2 0.15 0.04 0.02         

Source: PNADs 1999 and 2002.  

Note: Robust T-statistics in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. The controls include dummy variables for gender (male), 

ethnicity (white), head years of schooling, age and gender (=1 if male), dummy for states and metropolitan area.  



66 

 

Table 19 – Difference-in-Differences Estimates – Apprenticeship Programme of 2000 – 

Schooling outcome 
13 vs. 14 

Bandwidth of 16 weeks  
  School Attendance 

 

All Boys Girls 

T*Year 0.0022 0.0045 -0.00033 

 

(0.22) (0.33) (-0.022) 

T (13=0; 14=1) -0.0019 -0.000019 -0.0039 

 

(-0.35) (-0.0027) (-0.47) 

Year (1999=0; 2002=1) -0.067*** -0.067*** -0.066*** 

 (-9.34) (-6.76) (-6.37) 

Controls? Yes Yes Yes 

    

Observations 9883 4866 5017 

Adjusted R2 0.08 0.08 0.08 

Source: PNADs 1999 and 2002.  

Note: Robust T-statistics in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% 

respectively. The controls include dummy variables for gender (male), ethnicity (white), head years of 

schooling, age and gender (=1 if male), dummy for states and metropolitan area.  

 

 

6.3 Difference-in-Differences Estimates for the Composite Effect of the Two Laws 

 
 This section turns to the net effect of both laws. Under the hypothesis that the 

apprenticeship programme constitutes a weak incentive for children to participate in the 

formal labour force, compared estimates can be seen as the lower bound estimates for 

the ban. The estimates use 1998 as baseline and 2002 as endline with a 16 weeks 

bandwidth.85  

 

Age 13 vs. age 14 

According to the estimates presented in table 20, the ban dominated the effect of 

the apprenticeship programme as the coefficients for participation in the formal labour 

force and for formal occupations are negative and statistically significant. In fact, the 

magnitude of the composite effect on the participation rate of boys is almost identical to 

the DD estimates of the 1998 ban. The composite effect of the laws on participation rate 

in the labour force is also negative, although statistically insignificant for girls. As a 

consequence of the two laws, there was a complete reallocation of children’s time.  

 

                                                        
85 Instead of using the PNAD of 2001 I use 2002, because in 2001 the proportion of 14-year-olds working 

in the formal sector was practically zero.  
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Age 15 vs. age 16 

 The composite effect of the two laws is also estimated to compare outcomes of 

youth around age 16. According to the results shown in table A.17 in Appendix 1 (page 

197), the composite effect of the laws was nil, as none of the coefficients are 

statistically significant. The coefficients for the extensive margin of labour supply 

approach zero.  
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Table 20 – Difference-in-Differences Estimates – Composite Effect of the Laws of 1998 and 2000 – Extensive Margin of Labour Supply 
13 vs. 14 

Bandwidth of 16 weeks  
  LFPR 

 

LFPR - Formal 

 

Formal Paid Work – Occupation 

 

LFPR - Informal 

 

All Boys Girls 

 

All Boys Girls 

 

All Boys Girls 

 

All Boys Girls 

T*Year -0.028** -0.033* -0.021  -0.018*** -0.023** -0.014*  -0.12* -0.12* -0.20  -0.0097 -0.010 -0.0071 

 

(-2.39) (-1.80) (-1.47)  (-3.11) (-2.54) (-1.89)  (-1.81) (-1.67) (-1.00)  (-0.92) (-0.60) (-0.56) 

T (13=0; 14=1) 0.021** 0.021 0.020  0.018*** 0.021** 0.014**  0.082*** 0.076* 0.092**  0.0033 0.000064 0.0057 

 

(2.08) (1.36) (1.49)  (3.18) (2.41) (1.98)  (2.75) (1.85) (2.06)  (0.37) (0.0047) (0.48) 

Year (1998=0; 2002=1) -0.13*** -0.13*** -0.12***  -0.035*** -0.038*** -0.031***  -0.14** -0.14** -0.061  -0.092*** -0.096*** -0.090*** 

 (-14.3) (-9.34) (-11.2)  (-8.51) (-6.12) (-5.64)  (-2.54) (-2.50) (-0.37)  (-11.3) (-7.21) (-9.40) 

Controls? Yes Yes Yes  Yes Yes Yes  Yes Yes Yes  Yes Yes Yes 

                

Observations 8680 4261 4419  8680 4261 4419  914 527 387  8680 4261 4419 

Adjusted R2 0.07 0.07 0.06  0.03 0.03 0.02  0.09 0.08 0.10  0.04 0.04 0.04 

Source: PNADs 1998 and 2002.  

Note: Robust T-statistics in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. The controls include dummy variables for gender (male), 

ethnicity (white), head years of schooling, age and gender (=1 if male), dummy for states and metropolitan area.  
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7 CONCLUSION  

  

This chapter contributes to the literature an analysis of the impact of child 

labour legislation by examining the short-run impacts of a Brazilian Constitutional 

Amendment of December 1998 and the apprenticeship programme formally 

conceptualised in December 2000.  

RDD and DD regressions provide estimates of the causal impacts of the 

interventions on measures of extensive and intensive margins of child labour supply 

and schooling outcome. The results suggest that the increase in the minimum legal 

age of entry into the labour market of December 1998 affected boys and girls 

differently. Boys were more likely to drop out of the labour force, whereas girls were 

more likely to attend school.   

DD estimates show that the ban also affected hours worked, and the results 

are consistent with the impact on participation rate. Boys ended up working fewer 

hours per week in the informal sector and girls worked more hours per week in the 

same sector. Although RDD estimates find that the ban affected school attendance, 

DD regressions do not show the same results. One could argue that the DD estimates 

might be confounded in cases in which the cohorts are not comparable and therefore 

might follow different trends over the years. The estimates for children just under 

age 16 were similar but relatively weaker, particularly when attention is turned to 

DD results.  

 With regard to the apprenticeship programme, the estimates indicate positive 

but very small effects on participation rate in the formal labour force among children 

aged 14. Most of the estimates are not statistically significant. There is an indication 

that 14-year-old boys and girls are more likely to attend school. The comparison 

between children around age 16 shows that the programme resulted in a higher 

participation rate in the formal labour force, in particular for 15-year-old girls. The 

estimates also point to a lower probability of boys under age 16 attending school.   

An interesting finding related to the apprenticeship programme is that it made 

the minimum legal age an unbinding constraint for youth aged 15, as there is no 

indication of a statistically significant jump in the participation rate in the formal 

labour force around age 16.  

These findings suggest that policymakers should have a broader perspective 

when they pass a law. The consequences can be difficult to predict, since laws are 
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likely to affect the time allocation of children and potentially other household 

members and have heterogeneous effects by gender and socioeconomic background.  
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CHAPTER 2: LONG-TERM EFFECTS OF CHILD LABOUR 

BANS ON ADULT OUTCOMES: EVIDENCE FROM BRAZIL 

 

1 INTRODUCTION 

 

It is a plausible assumption that most policy makers are shortsighted in that 

they might not take into consideration long-term consequences of their decisions. 

When changes in the ‘rules of the game’ are made indiscriminately, policy makers 

may not care if the changes can affect individuals differently, particularly in cases in 

which the effectiveness of the rules depend on the individual’s background. The 

purpose of this chapter is to assess the long-term consequences of a child labour ban 

on labour market and schooling outcomes of adult males.  

In December 1998, Brazil passed a Constitutional Amendment increasing the 

minimum legal age of entry into the labour market from 14 to 16. The change in the 

minimum working age gave rise to a natural experiment, as an individual’s eligibility 

to participate in the formal labour force depends on his or her date of birth.  

Chapter one looks at the short-run effects of the law on urban children and 

finds that the law affected mostly 14-year-old boys, resulting in a reduction in 

participation rates in the formal and informal sectors.86  

This chapter uses the law of 1998 to investigate the long-term effects of 

postponing entrance into the formal labour force by up to two years (from 14 to 16). 

The research question can be altered to also investigate the effect of early exposure 

to the labour market on long-term outcomes. This question parallels the literature on 

the impact of youth employment on an individual’s long-run outcomes. Most studies 

that use date of birth to estimate the long-term effects of a law or intervention 

focused on the impact of early school enrolment87. The literature outlines the 

                                                        
86 Chapter one also covers the impact of an apprenticeship programme. Due to the small take up rate 

into the programme and the small effects discussed in chapter one, I opt to focus on the long-term 

effects of the ban only.  
87 Angrist and Krueger (1991) were the first to use date of birth to identify eligible and ineligible 

groups for a treatment. After Angrist and Krueger (1991), many other authors have used date of birth 

as an instrumental variable. See, for instance, Oreopoulos (2006a, 2006b), Dobkin and Ferreira 

(2010), Bedard and Dhuey (2011), and Black, Devereux, and Salvanes (2011). Bound et al. (1995) 

and Bound and Jaeger (2000) show that quarter of birth can be a weak instrument, but more recently 

Buckles and Hungerman (2013) cast doubt on the validity of quarter of birth as instrumental variables, 

at least for the US, as mothers who give birth during the winter and summer seem to have very 

different socioeconomic backgrounds. This does not seem to be a problem in the present chapter, as 

suggested by a placebo test that compares two other cohorts.  
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educational channel as the main mechanism linking date of birth to labour market 

outcomes. Few empirical papers provide causal estimates for long-term effects of 

youth employment (or child labour) and outline the potential experience in the labour 

market as the plausible mechanism through which such laws can affect individuals’ 

outcomes. This chapter helps fill this gap in the empirical literature.88  

To assess whether the law affected individuals with different socioeconomic 

backgrounds differently, the cohort affected by the ban is split into groups of white 

and non-whites males. Skin colour (or race) is used, because it correlates well with 

several socioeconomic indicators (including income poverty), as is discussed below, 

and is exogenous.89 Thus, we compare long-term outcomes of white males affected 

and unaffected and non-white males affected and unaffected by the ban. This chapter 

draws on theoretical contributions of Ranjan (1999), Baland and Robinson (2000), 

and Horowitz and Wang (2004) to hypothesise the long-run effects for each group of 

males.   

The research question addressed in this chapter has several policy 

implications: (1) it informs policy makers of the potential long-run effects of across 

the board changes in child labour legislation; (2) it reveals there are returns to an 

earlier entrance into to the labour force; (3) it shows the returns to experience depend 

on the individual’s socioeconomic background; and (4) it sheds light on long run 

unintended consequences of such decisions and signals whether this type of policy 

should be accompanied by compensating policies for those to whom it is more likely 

cause harm.  

Common sense suggests that early exposure to the labour market is likely 

harmful. In fact, child labour bans have been justified on theoretical grounds (Baland 

                                                        
88 There is plenty of evidence of the impact of vocational training on youth outcomes. The question 

addressed in this chapter is different, as it aims to discover the impact of hindering the labour market 

participation of 14-year-olds for up to two years. 
89 The literature on returns to education has shown heterogeneous effects due to ethnicity as well (see 

Angrist and Krueger (1991) for the US and Stefani and Biderman (2006) for Brazil). An alternative 

way of estimating heterogeneous effects is to split the sample according to household income per 

capita, but this would have at least two implications for the empirical exercise. First, splitting the 

sample into quartiles, for instance, would reduce the sample in such a way that the first stage 

regressions would be very difficult to estimate. As will be discussed below, first stage regressions are 

reported using a household survey from 1999, and the sample size with 3 and 6 months bandwidth is 

relatively small. Second, using household income per capita could result in biased estimates, because 

it is very likely to affect time allocation of household members. To circumvent the issue of low power, 

quantile treatment effects are provided instead. The advantage of quantile regression in the present 

case is that it provides estimates for the impact of the intervention in different quantiles of the 

earnings distribution. However, with quantile regressions we are unable to have a distribution of 

average treatment effects. For a discussion, see Abbring and Heckman (2007).    
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and Robinson, 2000; Dessy and Knowles, 2008), although some also argue that 

depending on the context of the household, a ban can actually backfire.90 The long-

term consequences of banning individuals from entering the formal labour force at 

age 14 are ultimately an empirical question.  

Emerson and Souza (2011) show that child labour harms individuals’ 

outcomes in adult life. They use the Brazilian household survey PNAD of 1996 to 

show that the wage earned by the cohort of adults who entered the labour market 

earlier in their youth is lower compared to those who entered later. Using the number 

of schools and teachers per 1,000 children in the state of their birth as instruments for 

participation in the labour market and school attendance, they show that child labour 

has a short-run negative effect with lower investment in human capital and a long-

run negative effect with lower (adult) earnings. However, their findings suggest that 

the negative effects vanish around age 30. 

Lee and Orazem (2010) borrow Emerson and Souza’s (2011)91 identification 

strategy to estimate the long-run effects of child labour on the health outcomes of 

adult Brazilians using PNAD 1998.92 The estimates suggest that a simultaneous 

effect of an early entrance into the labour force and premature school dropout 

resulted in higher probability of back problems, arthritis, and reduced stamina. 

Despite using an instrumental variable (IV) strategy, the authors are incapable of 

disentangling the effects of child labour and more time spent in school on adult 

health outcomes. 

Beegle et al. (2009) use an IV approach to investigate the medium-term 

consequences of child labour on schooling, labour market, and health outcomes in 

rural Vietnam. They use two waves of a panel data collected in 1992-93 and 1997-98 

and rice price and community shocks as instruments to identify the causal impact of 

child labour in individual outcomes five years later. They consider the sample of 

individuals aged 8 to 13 as the baseline. Their findings suggest that child labour had 

a negative effect on school attendance and educational attainment, but a positive 

effect on labour market outcomes such as employability in paid work and earnings. 

                                                        
90 Basu and Van (1998) and Basu (2005) theorize that child labour bans can backfire. Theoretical 

models of Ranjan (1999) and Dessy and Knowles (2008) also suggest that a child labour ban is more 

likely to be binding among the not-so-poor and more likely to harm the poorest.  
91 In fact, Lee and Orazem (2010) refer to Emerson and Souza’s (2011) working paper.  
92 PNAD 1998 has a special supplement on health outcomes.  
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They found no impact on health outcomes. Based on these mixed results, Beegle et 

al. (2009) argue that for some individuals the returns to experience seem to overcome 

the returns to education, at least in the medium term in rural Vietnam. These results 

help explain why child labour exists and cast doubt on the hypothesis that parents are 

myopic or that children who enter the labour force relatively early do so due to credit 

constraints or lack of information on the returns to education. As discussed later, the 

results for the cohort of non-white males follow similar lines.  

This chapter uses RDD to investigate the impact of the ban of December 

1998 on the following adult outcomes: hourly wage (in natural log), likelihood of 

being employed, likelihood of being employed in the formal sector, and likelihood of 

either holding or pursuing a college degree. Cohorts of individuals born in the first 

half of 1985—age 14 in the first half of 1999—are compared to the cohorts of males 

born in the second half of 1984 and who were 14 in the second half of 1998. 

Estimates are provided for a 6-month bandwidth on each side of cut-off point (the 

date of the law). To check robustness, estimates are also provided with controls and a 

bandwidth of three months.  

Unconditional quantile treatment effects (QTE) are estimated to shed light on 

the distributive impacts of the change in the law. The main results show that the ban 

had long-lasting effects on the groups of white and non-white males, contributing to 

increased wage differentials between these two groups.  

There is some indication that the affected cohort of white males benefited 

from higher wages, higher probability of being employed in a highly skilled 

occupation, and higher probability of holding a college degree. For non-white males, 

the results suggest the opposite—that is, the ban implied lower wages for non-white 

males and lower probability of being employed and having a formal occupation. 

These results are consistent with the theoretical predictions of Ranjan (1999), Dessy 

and Knowles (2008), and Horowitz and Wang (2004).  

Unconditional quantile treatment effects point to distributive effects among 

white and non-white males. Under rank preserving assumption, it could be argued 

that the ban harmed non-white males but benefited white males at the lower end of 

the hourly wage distribution—a result consistent with Baland and Robinson’s (2000) 

theoretical predictions.  
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Two points are important to emphasise. First, the results are valid for the 

cohort who turned 14 in the first half of 1999. In other words, the results and 

conclusions cannot be extrapolated to different age groups or cohorts. Second, one 

should not read the results among non-whites as an implicit advocacy towards child 

labour, as the counterfactual are children allowed to work in the formal sector at age 

14.   

 

2 THE INTERVENTION: THE LAW OF DECEMBER 1998 

 

As discussed in chapter one, Brazil’s Constitutional Amendment No. 20 on 

15 December 1998 increased the minimum legal age of entry into the labour market 

from 14 to 16. The law approved in December 1998 mostly affected individuals who 

turned 14 from January 1999 onwards. The law became a binding constraint only for 

a subgroup of children who turned 14 after December 1998. Those who turned 14 

before the law was passed were unaffected by the ban and could carry on working. 

One consequence of the ban was the division of similar individuals into two 

groups: the affected (eligible) and the unaffected (control). Note that if some of those 

affected by the ban shifted to the informal sector, they automatically entered the 

child labour statistics, whereas those of a similar age (and who are plausibly similar, 

on average, in other characteristics) in the control group did not. This is interesting in 

itself, as the results of this chapter can shed some light on the long-term 

consequences of child labour.  

The main question this chapter investigates is how these two cohorts who 

turned 14 close to the change in the minimum legal age and facing different 

constraints to participation in the labour force, performed in the long term.  

 

3 THEORETICAL FRAMEWORK 

 

This section presents the theoretical framework used to rationalise the effect 

of the child labour ban on children’s labour supply in the short-run and its possible 

consequences in the long-run when children become adults. The two key references 

are the theoretical model by Baland and Robinson (2000) and its extension by 
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Horowitz and Wang (2004).93 The model aims to provide the rationale for parents’ 

investment decision making in their offspring when the capital market is imperfect. 

The main difference between the two models is that Horowitz and Wang (2004) 

introduce intra-household children’s heterogeneity and derive theoretical 

implications for parents’ decisions in favouring human capital investment in a child.  

Baland and Robinson’s (2000) model consists of two periods, t=1, 2. The 

model makes a simplified assumption of no discounting factor. At the beginning of 

period 1, there are 𝐿𝑝 identical parents alive and they choose how to allocate their 

children’s time between child labour and human capital accumulation. In period one, 

parents control all household income. In period two, children are adults and control 

their own income. Parents supply labour inelastically. Each parent has A efficiency 

units of labour in each period so that in period t=1 parental labour supply is 𝐴𝐿𝑝. The 

child labour supply is given by 𝑛𝐿𝑝𝑙𝑐, where n is the number of children and 𝑙𝑐 the 

fraction of children’s time devoted to work. The term 𝑛𝐿𝑝𝑙𝑐   is thus the fraction of 

time devoted to work by all children of living parents. In period t=2, children become 

adults and work. Their total labour supply in t=2 is given by 𝐿𝑝ℎ(1 − 𝑙𝑐), where 

ℎ(1 − 𝑙𝑐) are the units of human capital accumulated by an adult who worked 𝑙𝑐 of 

his time as a child. The human capital function h(.) is assumed to be twice 

continuously differentiable, strictly concave with h(0)=1. That is, if a child only 

worked during her childhood, she will have a single efficiency of unit labour (A) in 

t=2.  

Other agents in the economy run firms and use labour to produce a numeraire 

good. Agents who represent the firms live for both periods and have no children. 

Firms have a linear technology. With the assumption of constant returns to scale, 

economic profits are expected to be zero in equilibrium. This assumption implies 

perfect competition in the production of the numeraire good. Firms and workers are 

price takers. Thus, adults and working children will be paid the same wages, 𝑤𝑝1, 

𝑤𝑝2, 𝑤𝑐1, 𝑤𝑐2. For the sake of simplification, wages are set to one.  

Parents have a joint utility function that depends on their consumption of the 

numeraire good defined by 𝑐𝑝
𝑡  for t=1, 2; the number of children they have, n; and the 

utility of their children. Children’s preferences are assumed to be identical to those of 

their parents. Note that this framework is an example of an inter-temporal unitary 

                                                        
93 More specifically the version of the model with one-sided altruism and exogenous fertility. 
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household model. Parental utility is given by 𝑊𝑝 (𝑐𝑝
1, 𝑐𝑝

2, 𝑛, 𝑊𝑐(𝑐𝑐)). Child’s utility 

depends only on child’s consumption, 𝑐𝑐. This function is assumed to be separable so 

that  

𝑊𝑝 (𝑐𝑝
1, 𝑐𝑝

2, 𝑛, 𝑊𝑐(𝑐𝑐)) ≡ 𝑈(𝑐𝑝
1) + 𝑈(𝑐𝑝

2) + 𝑛𝛿𝑊𝑐(𝑐𝑐), where  1 > 𝛿 > 0  is a 

parameter measuring the level of altruism of parents towards their children. U(.) and 

Wc(.) are assumed to be twice continuously differentiable and strictly concave. For 

the sake of simplification, n is treated as exogenous and set as equal to 1.94  

In this setting, parents choose 𝑙𝑐, how much income to transfer to period t=2 

as bequests or savings. Bequests, b, cannot be negative. With imperfect capital 

markets parents cannot borrow, thus savings, s, are also non-negative. Parents face 

the following budget constraints: 

𝑐𝑝
1 = 𝐴 + 𝑙𝑐 − 𝑠                        (1) 

𝑐𝑝
2 = 𝐴 − 𝑏 + 𝑠                                    (2) 

𝑐𝑐 = ℎ(1 − 𝑙𝑐) + 𝑏                                              (3) 

The first order conditions are obtained through this constraint maximisation 

problem. Using (1), (2), and (3) in the utility function, the first order conditions can 

be obtained through an unconstrained maximisation problem as follows: 

𝑈(𝐴 + 𝑙𝑐 − 𝑠) + 𝑈(𝐴 − 𝑏 + 𝑠) + 𝛿𝑊𝑐(ℎ(1 − 𝑙𝑐) + 𝑏) , for n=1 

(i) 
𝜕𝐿

𝜕𝑏
= 0: 𝑈′(𝑐𝑝

2) =  𝛿𝑊𝑐
′ for 𝑏 > 0 or 𝑈′(𝑐𝑝

2) >  𝛿𝑊𝑐
′ for 𝑏 = 0 

(ii) 
𝜕𝐿

𝜕𝑙𝑐
= 0: 𝑈′(𝑐𝑝

1) =  𝛿𝑊𝑐
′ℎ′(1 − 𝑙𝑐) 

(iii) 
𝜕𝐿

𝜕𝑠
= 0: 𝑈′(𝑐𝑝

1) =  𝑈′(𝑐𝑝
2), for 𝑠 > 0 or 𝑈′(𝑐𝑝

1) >  𝑈′(𝑐𝑝
2) for 𝑠 = 0 

It is assumed that there exists an interior solution for child labour with the 

interior optimal level given by 𝑙𝑐
∗ . From (ii), ℎ′(1 − 𝑙𝑐) =

𝑈′(𝑐𝑝
1)

𝛿𝑊𝑐
′(.)

. For the optimal 

level of child labour, 𝑙𝑐
∗, ℎ′(1 − 𝑙𝑐) = 1, because the marginal utility of consuming 

one extra unit of 𝑐𝑝
1 should be equal to the marginal utility of consuming one extra 

unit of 𝑐𝑐 for a given 𝛿. Note that for ℎ′(1 − 𝑙𝑐
∗) > 1 the level of child labour will be 

inefficiently high. From (ii), it means that 𝑈′(𝑐𝑝
1) >  𝛿𝑊𝑐

′(. ), that is, to equalise the 

marginal utilities the level of child labour has to increase. 

                                                        
94 Baland and Robinson (2000) discuss the implications of the model of treating fertility 

endogenously. We left this discussion aside, because it is not the main purpose of this chapter.  
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In this setting, the decision to send children to work in period t=1 is 

motivated by imperfections in the capital market. Parents cannot borrow, but they 

can transfer income to their offspring through savings or bequests.  

Baland and Robinson (2000) show in Proposition 1 that when bequests and 

savings are interior, that is when for 𝑠 > 0 and for 𝑏 > 0, the level of child labour in 

the economy is efficient, because parents will equalise the marginal return to 

education in terms of income with the opportunity cost in terms of lower child 

labour. On the other side, if bequests are at a corner, 𝑏 = 0, the level of child labour 

in the economy will be inefficiently high since ℎ′(1 − 𝑙𝑐
∗) > 1 (see Proposition 2).  

The inefficient level of child labour could also occur when bequests are 

interior but parents cannot borrow either, because they are liquid constrained (poor) 

or due to imperfections in capital markets. Since children cannot enter into a credit 

contract with their parents because it would not be credible, households cannot solve 

the inefficiency problem themselves. 

In the Baland and Robinson (2000) model, the two causes of the high level of 

child labour are income poverty and parents’ lack of altruism toward their children – 

low level of 𝛿. From (ii) above, it can be shown that 
𝜕𝑙𝑐

∗

𝜕𝛿
< 0 and 

𝜕𝑙𝑐
∗

𝜕𝐴
< 0, that is, the 

higher the weight parents assign to children’s utility, the lower the child labour, and 

the higher the parental endowment, the lower the child labour. 

Since households cannot solve inefficiencies accruing from capital market 

imperfections, there is room for the government to intervene, and this simple 

framework allows one to assess the potential consequences of a child labour ban.95 

According to the authors, with perfect competition in both output and input markets, 

firms and workers are price takers and a marginal ban on child labour will be Pareto 

improving, since it will not have direct effects on firms’ profits and wages.96  

A ban can have equilibrium effects. With the ban, the child labour should be 

lower and the adult labour supply should be higher in the long-run. Children and 

adult current wages should therefore increase and future wages fall. However, if 

banned children accumulate human capital, adult wages should thus be lower in the 

long-run for the educated children. Note that to be welfare enhancing, the effect of 

                                                        
95 A similar argument is developed in Basu and Van (1998).  
96 They investigate the impact of a marginal ban, that is, a ban on the intensive margin of child labour 

supply to be able to use calculus techniques.  
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the ban on parental current wages should dominate any welfare loss in terms of lower 

wages in the long-run. 

Horowitz and Wang (2004) add children’s heterogeneity into this framework 

to explain parents’ decisions to favour one child over another. Children are 

heterogeneous, as represented by a parameter ai, that can either be a child’s innate 

ability or any other environmental factor that can give a child a labour market 

advantage over another, such as age, race, and gender in case the labour market 

discriminates against non-whites and women. Let child’s i human capital be defined 

by ℎ(𝑒𝑖, 𝑎𝑖), where ℎ𝑒 > 0, ℎ𝑒𝑒 < 0 and ℎ𝑎 > 0, that is, human capital is a strictly 

concave function of education and positively associated with ‘talent.’  

A more ‘talented’ child will receive increased investment in her human 

capital in time t=1 and enter t=2 with a higher stock of human capital, (h). Since the 

more ‘talented’ child also earns more in t=1, parents then need to decide how much 

of a child’s time to allocate to school and labour in t=1. Horowitz and Wang (2004) 

show that from the first order conditions, ℎ𝑒
1(𝑒1

∗, 𝑎1) = ℎ𝑒
2(𝑒2

∗, 𝑎2), where 𝑒 = 1 − 𝑙𝑐 

is defined as above, that is, the time a child devotes to education. Let child 1 be more 

‘talented’ than child 2, then 𝑎1 > 𝑎2. Thus, for the marginal returns to education to 

equalise, ℎ𝑒
1 = ℎ𝑒

2, the more ‘talented’ child has to receive more education than the 

less ‘talented,’ since for a given labour supply, 𝑙𝑐 (and therefore 𝑒), the rate of return 

to education is higher among the more ‘talented.’ The ‘less talented’ will then work 

more than the more ‘talented’ in t=1.   

Horowitz and Wang (2004) model’s intention is to understand parents’ 

decision of favouring one child in the household. In doing so, it provides insights on 

parental decision to invest in child’s schooling or not based on the child’s perceived 

‘talent’. The model does not distinguish how households with different 

socioeconomic background behave, but it makes clear that the decision of favouring 

a child would kick in if a household is poor or faces market constraints, such as 

liquidity or credit constraint.     

I apply this theoretical framework to the problem at hand and try to shed light 

on the potential effects of the ban on households with different social economic 

backgrounds. Although not originally envisaged for this purpose, the model provides 

several insights to speculate on what type of household would be more likely to face 

a situation of having to favour a child.  
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To be consistent with the model’s terminology, I will call the white males the 

more ‘talented’ and the non-white males the less ‘talented’. By using skin colour as a 

proxy for ‘poverty’ status, it is then assumed that non-white males belong to poorer 

households than white males. In fact, as discussed in the next section, descriptive 

statistics sustain that assumption (see Table 1 below). As such, those poorer 

households should have more difficulty smoothing the negative income shocks 

caused by the ban given all the constraints they and their child may face – e.g. 

imperfect credit markets, low quality public schools, higher inter-temporal discount 

factor (Lawrence, 1991), and more discrimination in the labour market (Horowitz 

and Wang, 2004) – than white males. Consequently, poorer households should be 

less likely to invest in their non-white child, because they have less income and 

because they might believe that the investment would not pay off given that the child 

is perceived as ‘not-so-talented.’ If both parents and the labour market perceive the 

group of white males as more ‘talented,’ and white male households rely less on 

child labour, then they should be able to invest in their child’s human capital.     

If that is the case, then in the short-run one would expect non-whites to be 

more likely in child labour and consequently having lower stock of human in the 

long run than whites. The long-run effect of the ban will depend on parents’ capacity 

(including their preferences toward their children) to compensate the decrease in 

household income caused by the ban with higher accumulation of human capital of 

their children. Because white households might be better positioned to smooth the 

negative shock and invest in their children’s human capital, one should expect the 

cohort of white males hindered from entering the labour force at age 14 doing at least 

as well as than their non-banned peers.  

Note that the within group (race) wage gap can thus increase or decrease as a 

consequence of a child labour ban among this group. However, the combination of 

these two hypothesised effects on white and non-white males should lead to an 

increase in the wage gap between more ‘talented’ and less ‘talented’ children in the 

long-run.    

 

4 EMPIRICAL STRATEGY 

 

The objective of this chapter is to estimate the long-run effects of being 

hindered from participating in the (formal) labour force at age 14. The problem is 
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that the participation decision is endogenous. An individual may participate in the 

labour force for a number of reasons, e.g., to complement household income, because 

s/he is talented enough to abdicate formal education, or because parents are not fully 

aware of the returns to education. Whatever the explanation, individuals may enter 

the labour force at a certain age for a variety of reasons. This chapter uses the ban of 

December 1998 to identify the long-run consequences of an exogenous variation in 

labour force participation at age 14.  

As in Angrist and Krueger (1991),97 the identification strategy relies on the 

individual’s date of birth. The change of the minimum legal working age in 

December 1998 affected only those who turned 14 from January 1999 onwards. The 

analysis of the long-term effects of the law on individual outcomes consists of 

comparing the cohorts who turned 14 in the second half of 1998 with individuals 

who turned 14 in the first half of 1999. However, unlike Angrist and Krueger (1991) 

and many other authors who combine birth date with school entry or exit ages, 

parents could not have anticipated this change in law and its effects.98  

Using the household surveys of 2007, 2008, 2009, and 2011, the impact of 

the ban on the outcomes of interest are estimated fitting the following reduced-form 

regression model, 

𝑦𝑖𝑐𝑡 = 𝛼 + 𝜌𝐷𝑖𝑐 + ℎ(𝑍𝑖𝑐) + 𝛽𝑋𝑖𝑐𝑡
′ + 𝜏2𝑤08 + 𝜏3𝑤09 + 𝜏4𝑤11 + 𝑢𝑖𝑐𝑡             (1)          

where 𝑦𝑖𝑐𝑡 is the outcome of individual i in cohort c in time t, 𝐷𝑖𝑐 is a dummy that 

takes on the value of 1 if the individual belongs to cohort c, i.e., if s/he turned 14 in 

the first half of 1999 and could not participate in formal labour market due to the 

ban, and 0 if s/he turned 14 in the second half of 1998 and was thus allowed to 

participate. The eligible group is those who turned 14 between January and June of 

1999. The same cohorts are compared for ages 22 to 23 and ages 26 to 27.  

The function h(𝑍𝑖𝑐) depends on age, the forcing variable, and will be referred 

to as the “smooth function.” The variable age, 𝑍𝑖𝑐, is defined in weeks and is set to 0 

for individuals who turned 14 on the last week of December 1998. Thus, 𝑍𝑖𝑐 takes 

the value of 1 for the first week of January 1999, 2 for the second week, and so on. 

                                                        
97 Many other authors have used a similar approach after the publication of this seminal paper. There 

is an increasing body of literature on weak instruments showing that the instrumental variable used by 

Angrist and Krueger (1991), the quarter of birth, may be weak. Differently from Angrist and Krueger, 

we estimate reduced form regressions. 
98 See, for instance, Smith (2009), McCrary, and Royer (2011), and Black et al. (2011). For criticisms 

on using date of birth as an instrumental variable for years of schooling, see Bound, Jaeger and Baker 

(1995) and Staiger and Stock (1997).  
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Analogously, 𝑍𝑖𝑐 takes the value of -1 for the third week of December 1998, -2 for 

the second week, and so on. 𝑋𝑖𝑐𝑡 is a vector of controls that includes parents’ years of 

schooling, parent’s age, household size, household non-labour income, household 

income net of children’s income and land title, 𝑤𝑡 for t=08, 09, and 11 are survey-

year dummies (2008, 2009, and 2011), and  𝑢𝑖𝑐𝑡 is the error term. The estimates 

discussed in the text are estimated without controls, but robustness check control for 

the vector of covariates 𝑋𝑖𝑐𝑡.  

The parameter of interest, 𝜌, corresponds to the intent-to-treat as long as the 

analysis is performed for all individuals who belong to the cohort affected by the law 

rather than the subgroup of children who actually dropped out of the labour force.99 

The identification of this parameter depends on exogenous variations in the labour 

force participation rate of some 14-year-old individuals in the first half of 1999, as 

they become less likely to participate in the labour force compared to their 

counterparts.100 If the law of December 1998 implied a reduction in labour force 

participation, then the outcomes of the cohort who were 14 years old just before 

December 1998 can be used as counterfactual for the cohort who turned 14 just after 

the law passed.101 

With hourly wage in natural log in the left hand side of eq. (1), the model 

becomes very similar to the Mincer equation. However, note that eq. (1) does not 

include years of schooling as in the original Mincer equation. This is because in the 

Mincer equation the potential experience and the years of schooling are endogenous 

variables. It is a common practice to replace potential experience with an individual’s 

age, leaving the researcher with the problem of dealing with the endogeneity of years 

of schooling. In the present case, the intent-to-treat estimates exclude the school 

attenders for all labour market outcomes. The empirical exercise involves identifying 

the most plausible mechanism through which the law affects adults’ wages. As 

                                                        
99 For a comprehensive introduction to different treatment effect parameters, see Heckman, Lalonde, 

and Smith (1999). 
100 The condition is called the monotonicity assumption. See, for instance, Imbens and Angrist (1994).  
101 As discussed in chapter one, according to the Brazilian Constitution the apprenticeship programme 

was available for youth aged 14 even before the increase in the legal minimum working age. Thus, the 

apprenticeship programme should have a common effect in the eligible and ineligible cohorts. 

However, since the programme remained an alternative to youth entering the formal labour force at 

age 14, the impact of a ban could have been further attenuated had the number of 14-year-old 

apprentices been high. Courseuil et al. (2012) show that the number of apprentices in Brazil before 

December 2000 was less than 100.  
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mentioned, this chapter suggests that experience is likely driving the effect of the ban 

on labour market outcomes.  

If the labour force participation rate varies according to individuals’ 

backgrounds, the law might have had heterogeneous and distributive effects on 

wages.102 Given the exogeneity of the law, unconditional quantile treatment effects 

are estimated to determine if that was the case. As with the ITT, estimates are 

provided by pooling the years and allowing for different year effects. 

To check robustness, eq. (1) is estimated with controls and with a bandwidth 

size of three months. A placebo test is also performed, comparing two cohorts that 

supposedly would not be affected by the law. For this exercise, the comparison is 

between individuals who turned 14 in the first and second halves of 1999.  

 

5 DATA 

  

This chapter uses several years of the Brazilian household survey PNAD. 

Data from 1998 and 1999 are used for descriptive statistics and short-run estimates. 

For the long-run analysis, I pool the surveys from 2007, 2008, 2009, and 2011.103 

Because the survey is not collected in census years, 2010 could not be considered.  

The PNAD has been conducted annually by the IBGE since the end of the 

1970s and covers around 100,000 households and 320,000 individuals. The survey is 

collected between October and December each year, and it constitutes one of the 

main sources of microdata in Brazil.104 The PNAD is nationally representative, 

containing information on household socioeconomic characteristics, demographic 

data, household sources of income, and labour force status.  

The purpose of pooling several years of the household survey is threefold. 

First, covering several waves of the survey is important if one aims to investigate the 

impact of the ban on schooling and labour market outcomes when individuals are 

transitioning from school to work. Second, pooling allows for a better understanding 

                                                        
102 We look at heterogeneous effects across gender and explore distributional impacts through 

unconditional quantile treatment effects. Unconditional quantile treatment effects are estimated only 

for hourly wage, since the other outcome variables are binary. The heterogeneity in wage distribution 

also justifies the estimation of the effect of the ban at different points of the wage distribution.  
103 Rural areas are under-represented in the PNADs. See www.ibge.gov.br.  
104 The survey documents provide the month (September), week (last of the month), and day (usually 

27th of the month) of reference for the Brazilian PNAD. According to emails exchanged with 

members of the Brazilian Bureau of Statistics, the survey is usually collected between October and 

December each year.  

http://www.ibge.gov.br/
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of the mechanisms underlying individuals’ decisions regarding the accumulation of 

human capital through formal education or labour market experience. Third, a larger 

sample size increases the estimates’ precision. As in chapter one, the same sample 

used in the empirical analysis, focusing on households in urban areas.  

 

 
5.1 Descriptive statistics 

 

As mentioned, skin colour is used as a proxy for individuals’ backgrounds, 

because it is highly correlated with individuals’ backgrounds. Table 1 compares 

whites and non-whites across several socioeconomic characteristics. On average, 

non-whites lag behind in all dimensions, with differences in means being statistically 

significant except in one case. The impact of the ban on participation rate is therefore 

not straightforward, as child workers can move to the informal economy. If children 

have moved to the informal economy, it could be argued that accumulated 

experience in the labour market is likely the mechanism underlying the long-term 

impact of the law on this subgroup, unless the returns to experience differ according 

to the sector in which experience was accumulated. If labour force participation 

drops and completed years of schooling remains the same between eligible and 

ineligible groups, then it can be argued that experience is the main driver.  

On the other hand, if one observes a drop in participation rate and differences 

in human capital accumulation through schooling, then education is likely the main 

driver for the observed differences in labour market outcomes.  

 

Table 1 – T-test for Difference in Means in 1998 – White vs. Non-White Males 

  Non-white White P-value 

    

Log of hourly wage 2.21 2.90 0.00 

Labour force participation rate 0.21 0.15 0.00 

Labour force participation rate – Formal 0.00 0.01 0.03 

Occupation rate – Formal 0.05 0.15 0.01 

Informal 0.07 0.06 0.12 

Domestic work 0.69 0.67 0.14 

School attendance 0.90 0.94 0.00 

Mother's Education 4.60 6.30 0.00 

Father's Education 3.60 5.50 0.00 

Household size 5.00 4.60 0.00 

 Source: PNAD 1998.  

 With the ban, similar individuals would receive different wage rates. Figure 1 

indicates that individuals aged 14 before the ban received a higher wage rate than 
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those who turned 14 after the ban was enacted, as they could still participate in the 

formal labour force.105 This is consistent with the assumption in the theoretical 

framework and may have been one of the drivers of children’s decisions to leave the 

labour force after December 1998. The other critical assumption is related to labour 

demand, as risk-averse employers would rather dismiss children under age 16 fearing 

prosecution by Brazilian judicial authorities.  

 

 

Figure 1 – Hourly Wage Distributions for Formal and Informal Workers at Age 14 in 

1998 

 

Source: PNAD 1998.  

Note: The Penn’s Parade is just an alternative way of reporting the cumulative 

distribution function (CDF) (see Jenkins and Van Kerm, 2009). In 1998, the Brazilian 

monthly minimum wage was R$ 130. 

 

Figure 1 shows the wage rate distribution for the formal and informal sectors 

for all individuals aged 14 in 1998. The observed pattern in wage rate distributions 

has direct welfare implications. Given that the wage rate in the formal sector lies 

above the wage rate in the informal sector, all children working in the formal sector 

were better off than children working informally. In order words, the wage rate in the 

formal sector first order dominates the distribution in the informal sector.106 The 

                                                        
105 A T-test for difference in means rejects the null hypothesis of equal means at the one percent level. 

The wage paid in the formal sector was, on average, about 46 percent higher (R$ 187.5 vs. R$ 128.5). 

According to the PNAD 1999, the monthly wage in the informal sector was lower than in 1998 (R$ 

86.4). This could be partially explained by the economic recession in that year.  
106 In the inequality literature, this way of representing the two variables’ distribution is known as 

Pen’s Parade. As shown in Jenkins Van Kerm, 2009, this is an alternative way of plotting cumulative 

distribution functions and is usually used in the literature of welfare economics. The wage 

distributions correspond to two alternative states of nature, and the purpose is to know in which of the 

two individuals are better off, i.e., which has the highest welfare. As discussed in Jenkins Van Kerm 

(2009), when one CDF lies above another, one can say that it dominates in first order and 
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lower wage rate in the informal sector may have contributed to the decrease in the 

labour force participation rate, since the wage rate in the informal economy would be 

lower than the reservation wage for some individuals.  

In fact, figure 2 shows that the hourly wage of the eligible group was below 

the wage rate received by children in the comparison group along all distributions. In 

other words, comparison children were better off than children banned from the 

formal labour force.  

 

 

Figure 2 – Hourly Wage Distributions for Children Aged 14 Before and After 

December 1998 

 
Source: PNAD 1999.  

 

Taking this set of descriptive results into account, it is possible to roughly 

estimate the effect of a change in wage rate on individuals’ participation in the labour 

force. Since individuals who are very close in age are likely to have similar observed 

and unobserved characteristics, the ban gave rise to a natural experiment wherein the 

‘same’ individual faced two different wage rates. Thus, it is plausible that a fraction 

of individuals who have a reservation wage above the wage rate paid in the informal 

sector dropped out of the labour force after the ban.  

The difference in wage rate between the eligible and ineligible groups in 

1999 was, on average, about 16 percent.107 To get a sense of the elasticity of labour 

supply at the intensive margin, the following reduced-form equation is estimated, 

                                                                                                                                                             
consequently all individuals who belong to that distribution are better off than those represented in the 

one that lies below.  
107 The average wage rate of the comparison group is 15.7 reais, whereas the eligible group received 

an average wage rate of 14.15 reais. The difference in means is not statistically significant, but the 
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𝑙𝑛𝑤ℎ𝑤𝑖 = 𝛼 + 𝛽1𝑙𝑛𝑤𝑎𝑔𝑒𝑖 + 𝛽2𝑙𝑛𝑤𝑎𝑔𝑒𝑖 ∗ 𝐷𝑖 + ℎ(𝑍𝑖) + 𝑢𝑖                        (2) 

 

where lnwhw holds for weekly hours worked in natural log, lnwage is the natural log 

of hourly wage, and h(.) is defined as before. For the sake of simplicity, eq. (2) is 

fitted with 3-months bandwidth and with the smooth function specified as 

polynomials of 0 to 3 degrees and as linear, quadratic, and cubic splines. The 

parameter of interest is 𝛽2. Note that the equation is estimated only for individuals 

participating in the labour market and whose wage is non-zero. Table B.16 in 

Appendix 2 (page 174) shows the results. The coefficient for the elasticity of labour 

supply is about -0.3 and statistically significant at the 1 percent level in all cases, 

indicating that a decrease in hourly wage of 10 percent would increase hours worked 

by 3 percent. The negative coefficient suggests that leisure is a normal good, as 

demand for leisure reduces as a consequence of a negative income shock. In addition, 

it suggests that the labour supply of male youth is not very responsive to variations in 

wage rate, meaning that boys have to work harder to compensate for a reduction in 

wage. This estimate is similar to that which is considered the benchmark in the 

literature.108 This result is consistent with the hypothesis that child labour is 

influenced by the poverty status of the household (Bhalotra 2007).109 

The figures below present the visual checks of the short-run effects of the 

ban. Local linear regressions with a triangle kernel with a bandwidth of one month 

are fitted to each side of the cut-off point. The figures consider an interval of one 

year each side of the cut-off point, as in chapter one.  

Since the survey provides the exact birth date of each individual, age is 

defined in months to mitigate excess noise. The forcing variable Z is represented in 

the horizontal axis and the cut-off is set at zero in December 1998. Individuals on the 

right side of the cutoff point are banned from the labour force, as they turned 14 after 

December 1998.  

                                                                                                                                                             
Kolmogorov-Smirnov test rejects the null of equal distributions at the 5 percent level (p-value of 

0.049) with a 6-month bandwidth.  
108 For an extensive survey of this literature, see Blundell and MaCurdy (1999). Recent evidence 

includes Ziliak and Kniesner (2005) and Bargain et al. (2012). The estimate of -0.3 for young males is 

within the range found in the empirical literature and is almost identical to the estimate found by 

Bhalotra (2007).  
109 Bhalotra (2007) argues that the wage elasticity of child labour supply should be negative under the 

hypothesis that child labour is compelled by poverty. Using data from Pakistan, she finds support for 

this hypothesis for boys and mixed results for girls.   
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Figures 3a and 3b show a decrease in labour force participation rate for white 

and non-white males in 1999.110  

 

Figure 3a – Local Linear Regression for Labour Force Participation Rate in 1999 
White Males  

 
 

Figure 3b – Local Linear Regression for Labour Force Participation Rate in 1999 
Non-white Males  

 
 

The figures suggest that the ban might have had local effects on the 

participation rate of white and non-white males. The decrease in labour force 

participation rate among the eligible group might be associated with the lower wage 

rate in the informal sector. It may also be associated with an improved public 

monitoring system, making it easier for public authorities to identify underage 

working youth rather than verifying whether s/he has a formal labour contract with 

                                                        
110 The participation rate for girls is not shown, because the short-run estimates discussed in chapter 

one are not statistically significant. 
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the employer—an attempt of some parents to avoid the stigma of having a son 

working informally. In addition, the decrease may be attributable to a change in 

labour demand if some risk-averse employers decided to avoid employing underage 

workers in their business. It is interesting to note that the drop in participation rate 

was clearly stronger among white males than among non-white males. This is 

consistent with the assumptions in theoretical models indicating that child labour is 

largely explained by the poverty status of the household.  

To check whether the discontinuities in figures 3a and 3b capture exclusively 

the effect of the ban, I compare the cohorts who turned 14 before and after December 

1997, one year before the increase in the minimum employment age. Figures B.1 and 

B.2 (Appendix 2, page 216) show no visual discontinuity in participation rate for the 

‘placebo’ cohorts. This visual check will be complemented by parametric regressions 

in the section that will check robustness of the main results.  

Figures 4a and 4b illustrate the effect of the ban on females.  

 

Figure 4a – Local Linear Regression for Labour Force Participation Rate in 1999 
White Females  
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Figure 4b – Local Linear Regression for Labour Force Participation Rate in 1999 
Non-white Females  

 

 
 

Figure 4a shows no discontinuity, but figure 4b suggests that the ban might 

have increased the labour force participation of non-white females.  

As discussed in chapter one, the validity of the RD design depends on a 

balanced sample around the threshold and some evidence of imperfect manipulation 

of the assignment variable. Table 2 presents the t-test for difference in means for 

some covariates with a six months (or 26 weeks) bandwidth. The table reports the 

coefficients of simple regressions of each covariate on a constant and the indicator 

function D, with D defined as in eq. (1). The sample seem to be very well balanced 

around the cutoff point, as the null hypothesis of equal means is rejected in very few 

cases. It is worth making a couple of comments on the coefficients of monthly 

earnings for both groups of males separately. The coefficient of white males is 

positive and thus consistent with the theoretical framework. With the ban, children’s 

wages should increase in the short run. Interestingly, the coefficient for non-white 

males is negative and very precisely estimated.  

As hypothesised, non-whites are less likely to drop out of the labour force 

and are more likely to shift to the informal sector. The difference in wages reflects 

the average wage differential observed in the formal and informal sectors and a 

composition effect. With the ban, child labour supply increased in the informal sector 

and probably widened the wage differential of the two sectors even further. The 

long-run effects for non-whites thus depend on the quality of work experience 

accumulated in the informal sector and, perhaps more fundamentally, on how 
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employers perceive the set of skills of workers whose experience was accumulated in 

the informal sector.   

 

Table 2 – T-test for Difference in Means in 1999 – Males 
26 Weeks Bandwidth  

 

All Whites Non-whites 

Mother's education 0.15 -0.072 0.38 

 

(0.68) (-0.22) (1.41) 

N 1839 891 948 

Father's education -0.0041 -0.038 0.051 

 

(-0.019) (-0.12) (0.19) 

N 1839 891 948 

Mother's age -0.22 -0.95 0.48 

 

(-0.23) (-0.71) (0.35) 

N  1839 891 948 

Father's age -1.09 -0.98 -1.23 

 

(-1.15) (-0.72) (-0.92) 

N 1839 891 948 

Household size 0.034 0.085 -0.020 

 

(0.46) (0.91) (-0.18) 

N 1839 891 948 

Land title -0.013 -0.034* 0.0080 

 

(-0.91) (-1.88) (0.37) 

N 1456 707 749 

Household non-labour income -0.0014 -0.19 0.21 

 

(-0.0013) (-0.10) (0.22) 

N 1839 891 948 

Monthly earnings -23.5* 10.4 -28.7*** 

 

(-1.84) (0.36) (-2.63) 

N 163 67 96 

Monthly household net income (net of children's income) 19.3 43.4 1.22 

 (0.49) (0.61) (0.035) 

N 1839 891 948 

Source: PNAD 1999.  

Note: The T-test is performed through simple regressions with each covariate X being regressed on a 

constant and the indicator variable D. T-statistic in parenthesis. ***, **, * Statistically significant at 

1%, 5%, and 10% respectively.  

 

Figures 5 to 8 illustrate what may have happened to the cohorts in the long 

run. The figures are plotted with the pooled data from 2007 to 2011 (excluding 

2010). As before, local linear regressions are fitted to each side of the cut-off point.  
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Figure 5 – Local Linear Regression for Log of Hourly Wage – Long Run 
White Males  

 
 

 

Figure 6 – Local Linear Regression for Labour Force Participation Rate – Long Run 
Non-white Males  

 
 

Figure 7 – Local Linear Regression for Participation Rate in the Formal Labour 

Force – Long Run 
Non-white Males  
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Figure 8 – Local Linear Regression for Having a College Degree – Long Run 
White Males  

 

 
 

Figure 5 shows a small positive jump in the wage rate distribution of white 

males at the cutoff.  

Figures 6 and 7 suggest that the ban seems to have reduced the likelihood of 

non-white males’ being employed and having a formal job. Figure B.3 in Appendix 2 

(page 217) indicates that white males affected by the ban are as likely as the 

comparison cohort to be employed in a formal job. 

Figure 8 points to an increase in the likelihood of white males having a 

college degree, a result that is also not observed among non-white males (see Figure 

B.4, Appendix 2 page 217). These are interesting results, as they indicate that the ban 

may have affected white and non-white males banned from the formal labour force in 

opposite ways.  

To check whether the sample of eligible and comparison cohorts is balanced 

around the cutoff point in the long run, a t-test for difference in means for the 

outcomes and some covariates are reported using the pooled sample of 2007 to 2011 

(excluding 2010). The t-test is presented in Table 3 and it shows very few differences 

in means for the covariates.  

Given the imbalance in some covariates, a robustness check is performed 

controlling for a vector of covariates as discussed below. This balance check is 

informative for two reasons: it shows that eligible and ineligible youth have similar 

socioeconomic backgrounds, and it suggests that the ban did not affect the human 

capital of non-whites through education, as the ‘eligible’ and comparison non-white 

males around the cut-off have the same number of completed years of schooling, and 

no difference in the probability of having a college degree is suggested by figure B.6. 
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To further check whether education might be a channel through which the 

ban affected long-term outcomes, a Kolmogorov-Smirnov test is conducted to test 

the null hypothesis of equal distributions of completed years of schooling between 

eligible and comparison non-white males. The null cannot be rejected for the pooled 

sample of males or for the subsample of non-white males.111 It is therefore argued 

below that accumulated experience is likely the main driver of results for non-white 

males, while for white males education seems to be the underlying mechanism. 

 

 

 

 

                                                        
111 The p-values are 0.85 and 0.99 respectively. 
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Table 3 – Difference in Means for the Outcome Variables and Some Covariates – Males  
6 Months Bandwidth  

 

All Whites Non-whites 

Covariates 

   White 0.016 Na Na 

 

(1.45) Na Na 

N 7471 3248 4223 

Years of Schooling (exclude school attenders) -0.077 -0.13 -0.050 

 

(-0.85) (-0.90) (-0.37) 

N 5879 2367 3512 

Father's Education -0.17 -0.065 -0.28* 

 

(-1.65) (-0.48) (-1.96) 

N 7471 3248 4223 

Mother's Education -0.083 -0.12 -0.083 

 
(-1.01) (-1.01) (-0.72) 

N 7471 3248 4223 

Father's Age 0.089 0.73 -0.49 

 

(0.18) (1.06) (-0.80) 

N 7471 3248 4223 

Mother's Age 0.33 -0.053 0.57 

 
(0.94) (-0.11) (1.23) 

N 7471 3248 4223 

Metropolitan Region -0.0083 -0.022 0.0020 

 
(-0.87) (-1.51) (0.15) 

N 7471 3248 4223 

Source: PNADs 2007, 2008, 2009 and 2011.  

Note: The T-test is performed through simple regressions with each covariate X being regressed on a constant and the indicator variable D. T-statistic in parenthesis. ****, 

**, * Statistically significant at 1%, 5%, and 10% percent respectively. 
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6 RESULTS 

 
6.1 Short Term Effects of the Ban of December 1998 

 

To check whether the discontinuities illustrated in participation rates of white 

and non-white males and females are statistically significant, the following 

regression model is used: 

 𝑦𝑖 = 𝛼 + 𝛿𝐷𝑖 + ℎ(𝑍𝑖) + 𝜀𝑖                                      (3)
 

where  is a dummy that takes on the value of 1 for individuals who turned 14 after 

December 1998 and 0 otherwise, and  is the forcing variable age defined in weeks, 

as explained in section 4. Analogously, eq. (2) is estimated with  defined as 

polynomials of degree 0 to 3 and as linear and quadratic piecewise polynomials. For 

the sake of robustness, eq. (3) is estimated with 3- and 6-month bandwidths. The 

parameter of interest 𝛿 captures the (local) intent-to-treat of the ban. Table 4 shows 

the estimates for white and non-white males and females.  

Given that the direction of the effect of the ban on the participation rate of 

males is known, one can test the hypothesis using a one-sided alternative to gain 

precision. The coefficients for the impact of the ban on white and non-white males 

are similar, stable, and precisely estimated in most of the cases for the bandwidth of 

6 months. The coefficients for the narrower bandwidth are negative but imprecise. 

For white males in particular, most of the point estimates are small.112 Given that the 

sample is balanced around the cut-off point for the larger bandwidth, I focus 

attention on the results estimated with the larger window. The results in table 4 

indicate that the ban reduced participation in the labour force for both white and non-

white males by about 6 and 7 percentage points respectively. In relative terms, they 

represent a reduction in child labour of about 30 percent.  

Another notable finding is the absence of the effect of the law on girls. This is 

consistent with the visual check and with results obtained in the first chapter, 

providing further support to the evidence that the law affected males exclusively.  

With regard to long run consequences of the ban, if the decrease in 

participation rate affected individuals’ work histories, one can expect an effect on 

                                                        
112 Chapter one shows that the results of the pooled sample of males are more precise and stable. Most 

of the estimates are statistically significant at standard levels and point to a decrease in overall 

participation rate of about 6 to 7 percentage points for boys. See Table 10a in chapter one.  

Di
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employability. Along the same lines, if the wage rate of youth is somehow 

responsive to accumulated experience in the labour market, one can also hypothesise 

that the cohort of males affected by the law will have a different (lower) wage in the 

long run compared to the other group. 
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Table 4 – Short Run Effects of the Ban on Labour Force Participation Rate of Males in Urban Area 

Functional 

Formal of h(z) 
White Males Non-white Males White Males Non-white Males 

 

White Females Non-white Females White Males Non-white Females 

 
3 Months Bandwidth 6 Months Bandwidth 

 

3 Months Bandwidth 6 Months Bandwidth 

0 -0.00037 -0.084 -0.080*** -0.034* 

 

-0.00087 0.0042 -0.012 -0.023 

 

(-0.0081) (-1.54) (-4.48) (-1.87) 

 

(-0.047) (0.18) (-0.95) (-1.31) 

1 -0.0059 -0.089 -0.058* -0.065* 

 

-0.014 0.048 0.012 0.040 

 

(-0.13) (-1.64) (-1.95) (-1.68) 

 

(-0.46) (1.03) (0.49) (1.15) 

2 -0.030 -0.030 -0.058* -0.065* 

 

-0.015 0.047 0.012 0.045 

 

(-0.46) (-0.44) (-1.93) (-1.68) 

 

(-0.46) (1.01) (0.48) (1.37) 

3 -0.0072 -0.091 -0.020 -0.11** 

 

-0.011 0.019 -0.0094 0.035 

 

(-0.16) (-1.63) (-0.46) (-2.14) 

 

(-0.28) (0.36) (-0.32) (0.82) 

Spline linear -0.027 -0.0097 -0.058* -0.067* 

 

-0.014 0.046 0.011 0.047 

 

(-0.37) (-0.13) (-1.94) (-1.72) 

 

(-0.44) (0.97) (0.45) (1.40) 

Spline quadratic -0.00037 -0.084 -0.011 -0.13** 

 

0.0012 -0.0067 -0.021 0.028 

 

(-0.0081) (-1.54) (-0.23) (-2.10) 

 

(0.030) (-0.11) (-0.64) (0.60) 

Mean of the 

comparison 

group 0.15 0.21 0.17 0.20  0.059 0.045 0.056 0.075 

Observations 422 412 891 948 

 
439 434 934 933 

Source: PNAD 1999. 

Note: Clustered T-statistics in parenthesis. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. Coefficients in bold are statistically significant against an one-sided alternative 

at 5% and 10% levels.  
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6.2 Long Run Effects of The Ban 

 

ITT estimates on wages: Returns to experience?  

 

Table 5 presents the ITT estimates without controls and a 6-month 

bandwidth. The table shows two sets of estimates. In the first set (columns 1 to 6), 

the ban is assumed to have a constant effect during the period. The second set of 

estimates (columns 7 to 12) relaxes this assumption and allows for heterogeneous 

time effects. Since contemporaneous education can have a direct effect on earnings, 

the estimates exclude school attenders.113  

Estimates are provided with different specifications of the smooth function. 

The first row of the table shows six distinct specifications, with the first column 

consisting of a difference in means (polynomial of degree zero), whereas in the 

second, third, and fourth columns the smooth function is specified as polynomials of 

degree one, two, and three respectively. The last two columns consist of linear and 

quadratic splines. In these two cases, the slope of the functions fitted to each side of 

the cut-off point is permitted to differ.   

The estimates suggest that white males were positively affected by the ban. 

Although the point estimates are sensitive to the specification of the smooth function 

and not precisely estimated, the pooled estimates suggest that postponing entrance 

into the labour force may have resulted in higher wages in the long run. It is worth 

mentioning that these estimates reflect the lower bound effects of the ban. Also, 

potential measurement errors of the dependent variable might partially explain the 

relatively high standard errors. 

For non-whites, the opposite is observed. Most of the coefficients are 

negative, but only in 2009 are they robust to different specifications of the smooth 

function and more precisely estimated. For 2009, the cohort of non-white males 

earned about 12 percent less than the comparison group. It is difficult to justify such 

an effect in that particular year. A possible explanation is the contraction of the 

economy in the aftermath of the financial crisis. The Brazilian gross domestic 

product grew only 0.33 percent in real terms in 2009.114 It might be that, for this 

                                                        
113 In fact, table 2 shows that school attendance is higher among the eligible group and the difference 

is statistically significant at the 1 percent level.  
114 Data available at www.ipeadata.gov.br.  

http://www.ipeadata.gov.br/
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group, more years of experience in the labour market helped smooth the negative 

macroeconomic shock.  

Taking the statistically significant point estimates for white and non-white 

males at face value, they suggest that only white males managed to counterbalance 

the lower (potential) experience accumulated in the formal labour market with more 

education. The magnitude of the estimates for white males is actually similar to some 

of the best evidence of returns to education to the US.115   

Non-whites, on the other hand, did not have the same success. In fact, the 

results for non-whites suggest accumulated experience in the formal sector is a key 

component in their human capital formation. Taking the estimate for non-white 

males as an estimate for their returns to experience, one realises that their magnitude 

is similar to what the empirical literature has reported for different countries. Despite 

being lower-bound estimates,116 they are very similar to those of Angrist (1990) and 

Bratsberg and Terreall (1998) for the case of the US, and Imbens and van der 

Klaauw (1995) for Netherlands.117 

 

 

                                                        
115 Using a sample of twins in the US, Ashenfelter and Rouse (1998) estimate the return to education 

through a system of equations (Three Stage Least Squares). Controlling for family fixed effects, they 

explore the differences of years of schooling among twins in order to get a good estimate of the return 

to education. Their estimates point to a rate of return to education of around 10 percent. 
116 The estimates consider the eligible cohort rather than those who actually dropped out of the labour 

force as consequence of the law.  
117 Angrist (1990) looks at the impact of serving in Vietnam on adults’ earnings and find that two 

years of serving implied an adult wage of 15 percent lower than that of non-servers. Imbens and van 

der Klaauw (1995) look at the impact of conscription in the Netherlands and find that one year of 

military service reduced the servers’ annual wage by 5 percent. Both authors interpret these results 

through the effect of being recruited on potential experience.  



101 

 

Table 5 – Long Run Effects on Hourly Log Wages – White and Non-white Males 
6 Months Bandwidth – Exclude School Attenders 

 
White Males 

Polynomial degree 0 1 2 3 spline linear 

quadratic 

spline 0 1 2 3 spline linear 

quadratic 

spline 

D (=1 if 14 after Dec 

1998; =0 if 14 before 

Dec 1998) -0.011 0.099 0.096 0.18* 0.097 0.21* -0.036 0.078 0.076 0.16 0.086 0.19 

 

(-0.33) (1.38) (1.33) (1.84) (1.34) (1.84) (-0.60) (0.89) (0.87) (1.45) (0.97) (1.58) 

D*2008       0.028 0.027 0.024 0.023 0.011 0.011 

 

      (0.32) (0.31) (0.28) (0.27) (0.12) (0.12) 

D*2009       0.010 0.0013 0.0013 0.0080 -0.0025 0.0043 

 

      (0.12) (0.016) (0.015) (0.097) (-0.030) (0.052) 

D*2011       0.048 0.043 0.042 0.046 0.031 0.037 

 

      (0.50) (0.46) (0.44) (0.49) (0.32) (0.38) 

Dummies for years Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 1966 1966 1966 1966 1966 1966 1966 1966 1966 1966 1966 1966 

             

 
Non-White Males 

Polynomial degree 0 1 2 3 spline linear 
quadratic 

spline 0 1 2 3 spline linear 
quadratic 

spline 
D (=1 if 14 after Dec 

1998; =0 if 14 before 

Dec 1998) -0.029 0.0078 0.0014 -0.074 -0.0057 -0.065 -0.016 0.024 0.017 -0.059 0.015 -0.046 

 

(-1.29) (0.16) (0.030) (-1.09) (-0.12) (-0.82) (-0.38) (0.38) (0.28) (-0.74) (0.24) (-0.50) 

D*2008       0.052 0.051 0.049 0.052 0.042 0.045 

 

      (0.89) (0.88) (0.85) (0.89) (0.71) (0.75) 

D*2009       -0.11* -0.12* -0.12* -0.11* -0.13* -0.12* 

 

      (-1.76) (-1.79) (-1.80) (-1.75) (-1.93) (-1.92) 

D*2011       0.0065 0.0052 0.0080 0.0094 0.0069 0.0076 

 

      (0.11) (0.086) (0.13) (0.16) (0.11) (0.12) 

Dummies for years Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 2831 2831 2831 2831 2831 2831 2831 2831 2831 2831 2831 2831 

Source: PNADs 2007, 2008, 2009, and 2011.  

Note: Clustered T-statistics in parenthesis. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. 
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Employability and education 

 

The next two tables (6 and 7) show the long-term effects of the ban on 

employability defined as the probability of being employed and on being employed 

in the formal sector. As before, the estimates exclude school attenders, except for 

those pursing a college degree.   

The ITT estimates suggest that the employability of the cohort of white males 

was unaffected by the ban, whereas non-white males became less likely to be 

employed or to be employed in the formal sector. Although only a few coefficients 

are statistically significant, most of the coefficients are positive for the cohort of 

whites and negative for the cohort of non-whites.  
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Table 6 – Long Run Effects on Being Employed – White and Non-white Males 
6 Months Bandwidth – Exclude School Attenders 

 
White Males 

Polynomial degree 0 1 2 3 spline linear 

quadratic 

spline 0 1 2 3 spline linear 

quadratic 

spline 

D (=1 if 14 after Dec 

1998; =0 if 14 before 

Dec 1998) -0.00054 -0.010 -0.012 -0.018 -0.017 -0.022 0.013 0.0022 0.0012 -0.0040 0.000038 -0.0038 

 

(-0.033) (-0.29) (-0.34) (-0.40) (-0.47) (-0.42) (0.33) (0.042) (0.022) (-0.066) (0.00072) (-0.057) 

D*2008 

      

-0.044 -0.044 -0.045 -0.045 -0.056 -0.056 

       

(-0.83) (-0.83) (-0.86) (-0.86) (-1.05) (-1.06) 

D*2009 

      

0.0024 0.0034 0.0031 0.0026 0.0053 0.0049 

       

(0.043) (0.061) (0.055) (0.048) (0.096) (0.090) 

D*2011 

      

-0.012 -0.012 -0.013 -0.013 -0.021 -0.021 

       

(-0.24) (-0.24) (-0.26) (-0.27) (-0.41) (-0.40) 

Dummies for years Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 2367 2367 2367 2367 2367 2367 2367 2367 2367 2367 2367 2367 

             

 
Non-White Males 

Polynomial degree 0 1 2 3 spline linear 
quadratic 

spline 0 1 2 3 spline linear 
quadratic 

spline 

D (=1 if 14 after Dec 

1998; =0 if 14 before 

Dec 1998) -0.0045 -0.017 -0.017 -0.071* -0.021 -0.079* 0.031 0.019 0.019 -0.036 0.015 -0.043 

 

(-0.30) (-0.59) (-0.60) (-1.88) (-0.71) (-1.78) (1.02) (0.47) (0.46) (-0.73) (0.36) (-0.80) 

D*2008 

      

-0.043 -0.043 -0.043 -0.042 -0.041 -0.039 

       

(-1.03) (-1.03) (-1.03) (-0.99) (-0.97) (-0.92) 

D*2009 

      

-0.039 -0.039 -0.039 -0.037 -0.041 -0.039 

       

(-0.88) (-0.87) (-0.87) (-0.83) (-0.92) (-0.88) 

D*2011 

      

-0.056 -0.055 -0.055 -0.053 -0.054 -0.052 

       

(-1.35) (-1.34) (-1.33) (-1.28) (-1.29) (-1.24) 

Dummies for years Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 3512 3512 3512 3512 3512 3512 3512 3512 3512 3512 3512 3512 

Source: PNADs 2007, 2008, 2009, and 2011.  

Note: Clustered T-statistics in parenthesis. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. 
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Table 7 – Long Run Effects on Being a Formal Employee – White and Non-white Males 
6 Months Bandwidth – Exclude School Attenders 

 
White Males 

Polynomial degree 0 1 2 3 spline linear quadratic spline 0 1 2 3 spline linear quadratic spline 

D (=1 if 14 after Dec 

1998; =0 if 14 before 

Dec 1998) 0.0083 0.028 0.027 0.075 0.035 0.082 0.032 0.054 0.053 0.099 0.064 0.11 

 

(0.33) (0.61) (0.58) (1.25) (0.74) (1.21) (0.61) (0.80) (0.79) (1.26) (0.93) (1.27) 

D*2008       -0.038 -0.038 -0.039 -0.039 -0.054 -0.054 

 

      (-0.52) (-0.53) (-0.55) (-0.55) (-0.74) (-0.75) 

D*2009       -0.044 -0.047 -0.047 -0.043 -0.040 -0.038 

 

      (-0.65) (-0.68) (-0.68) (-0.63) (-0.58) (-0.55) 

D*2011       -0.012 -0.012 -0.013 -0.011 -0.017 -0.014 

 

      (-0.18) (-0.18) (-0.19) (-0.16) (-0.25) (-0.20) 

Dummies for years Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 2283 2283 2283 2283 2245 2245 2283 2283 2283 2283 2245 2245 

             

 
Non-White Males 

Polynomial degree 0 1 2 3 spline linear quadratic spline 0 1 2 3 spline linear quadratic spline 

D (=1 if 14 after Dec 

1998; =0 if 14 before 

Dec 1998) 0.011 -0.018 -0.020 -0.080* -0.019 -0.095* 0.031 0.0019 -0.000013 -0.062 0.0017 -0.076 

 

(0.58) (-0.49) (-0.54) (-1.69) (-0.51) (-1.72) (0.82) (0.038) (-0.00026) (-1.01) (0.033) (-1.11) 

D*2008       -0.021 -0.020 -0.021 -0.019 -0.019 -0.017 

 

      (-0.39) (-0.38) (-0.39) (-0.36) (-0.36) (-0.32) 

D*2009       -0.023 -0.022 -0.022 -0.020 -0.027 -0.025 

 

      (-0.41) (-0.39) (-0.39) (-0.35) (-0.48) (-0.44) 

D*2011       -0.033 -0.033 -0.032 -0.030 -0.031 -0.029 

 

      (-0.64) (-0.63) (-0.61) (-0.58) (-0.59) (-0.55) 

Dummies for years Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 3403 3403 3403 3403 3403 3403 3403 3403 3403 3403 3403 3403 

Source: PNADs 2007, 2008, 2009, and 2011.  

Note: Clustered T-statistics in parenthesis. ***, **, * Statistically significant at 1%, 5%, and 10% respectively 
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Table 8 shows that white males are more likely to hold or be in pursuit of a 

college degree.118 Combining the results on employability and education, it may be 

the case that some of the white males in the eligible group are, in fact, employed in 

higher skilled occupations. Tables B.1 to B.4 in Appendix 2 (pages 200-203) show 

estimates with 26 weeks bandwidth controlling for a vector of covariates. This is 

estimated with the intention of increasing power in case the covariates have any 

predictive power on the outcome variables. In fact, the coefficients are very similar, 

and there is very little gain in precision in adding controls.   

Tables B.5 and B.6 (Appendix 2, page 204-205) show pooled and 

heterogeneous linear probability model estimates for nine occupational groups. The 

occupation dummies are regressed on a constant, the indicator D, a piecewise linear 

function of the forcing variable, h(Z), and year dummies for 2008, 2009, and 2011. 

The standard errors are clustered at week level as before.  

The results in Table B.5 point to an increase of about 5 percentage points in 

participation rate in skilled occupations among white males, a decrease of about 2 

percentage points in participation rate in the armed forces, and a weak indication of a 

decrease in participation rate in civil construction. The coefficients in Table B.5 tell a 

similar story, but are less precisely estimated.  

These results are striking. They suggest that the law had a positive effect on 

the better off (white males) and a remarkable negative impact on the worse off (non-

white males). While these are local estimates for a very specific cohort, the results 

indicate that earlier entrance into the labour force benefited non-white males. This 

could be due to the fact that this group experiences more constraints in life, such as 

low quality public education, problems of self-control that imply a sub-optimal 

accumulation of human capital, or even myopic parents who underestimate the 

returns to education. 

                                                        
118 In recent years, access to college degrees for people with relatively poor backgrounds was made 

much easier. The federal government has begun to fully or partially subsidise student loans and 

scholarships. However, most of the universities these people manage to attend do not have good 

reputations. Note that the estimates shown in table 7 include school attenders.  
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Table 8 – Long Run Effects on Holding or Being Pursuing a College Degree –White and Non-white Males 
6 Months Bandwidth 

 
White Males 

Polynomial degree 0 1 2 3 spline linear quadratic 

spline 
0 1 2 3 spline linear quadratic 

spline 
D (=1 if 14 after Dec 

1998; =0 if 14 before 

Dec 1998) 0.022 0.12*** 0.12*** 0.11** 0.12*** 0.11** 0.034 0.13** 0.13** 0.13** 0.13** 0.13** 

 

(1.12) (3.15) (3.13) (2.47) (3.13) (2.07) (0.94) (2.55) (2.54) (2.20) (2.57) (2.00) 

D*2008 

      

-0.015 -0.014 -0.014 -0.015 -0.0076 -0.0079 

       

(-0.29) (-0.27) (-0.28) (-0.28) (-0.15) (-0.15) 

D*2009 

      

-0.020 -0.026 -0.025 -0.026 -0.024 -0.025 

       

(-0.38) (-0.48) (-0.48) (-0.48) (-0.45) (-0.46) 

D*2011 

      

-0.012 -0.013 -0.013 -0.013 -0.024 -0.025 

       

(-0.25) (-0.25) (-0.26) (-0.26) (-0.49) (-0.49) 

Dummies for years Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 3248 3248 3248 3248 3248 3248 3248 3248 3248 3248 3248 3248 

             

 
Non-White Males 

Polynomial degree 0 1 2 3 spline linear 
quadratic 

spline 0 1 2 3 spline linear 
quadratic 

spline 

D (=1 if 14 after Dec 

1998; =0 if 14 before 

Dec 1998) -0.0034 0.015 0.016 0.00066 0.019 0.0086 -0.00053 0.018 0.019 0.0034 0.021 -0.0014 

 

(-0.27) (0.58) (0.64) (0.020) (0.75) (0.24) (-0.025) (0.56) (0.61) (0.094) (0.65) (-0.034) 

D*2008 

      

-0.013 -0.013 -0.013 -0.013 -0.011 -0.010 

       

(-0.47) (-0.48) (-0.46) (-0.45) (-0.38) (-0.37) 

D*2009 

      

0.0061 0.0057 0.0059 0.0063 0.0068 0.0072 

       

(0.17) (0.16) (0.17) (0.18) (0.19) (0.20) 

D*2011 

      

-0.0039 -0.0040 -0.0050 -0.0049 -0.0024 -0.0020 

       

(-0.11) (-0.12) (-0.15) (-0.14) (-0.069) (-0.058) 

Dummies for years Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 4223 4223 4223 4223 4223 4223 4223 4223 4223 4223 4223 4223 

Source: PNADs 2007, 2008, 2009, and 2011.  

Note: Clustered T-statistics in parenthesis. ***, **, * Statistically significant at 1%, 5%, and 10% respectively 
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Although drawing on a different method and country, these results are 

qualitatively similar to some evidence found for the US. Connolly and Gottschalk 

(2006) use ten years (1986 to 1996) of the Survey of Income and Program 

Participation, a panel that collected monthly continuous information on workers for a 

period of up to 48 months. They use this long panel to investigate whether the less 

educated gain less from returns to experience. According to their results, the returns 

to experience are higher for more highly educated workers regardless of the 

occupation.119  

In this chapter, skin colour is used as a proxy for individuals’ backgrounds, 

the characteristics of which might be difficult to observe, such as quality of school 

attended and other educational outcomes unavailable in the data. If white males 

hindered from working were to reallocate more time and effort towards education, 

one could then expect a higher return to experience for white males than their 

counterparts who were unaffected by the ban. For non-whites, on the other hand, one 

should not expect much difference in returns to experience between eligible and 

ineligible groups given that the reduction in participation rate was lower and, 

consequently, a smaller proportion of non-white males may have ended up studying 

more intensively.  

The estimation of the average effect on the eligible group (ITT) is very 

informative from a policy perspective, but might be of limited interest if the ban had 

different effects in different quantiles of the wage distribution. The next section 

provides unconditional quantile treatment effects of the ban to check whether it had 

distributive effects. The objective is to deepen understanding of the impact of the 

ban, taking into account the asymmetry in wage distribution.  

 

6.3 Distributive effects of the law 

 

To estimate the distributive effects of the increase in the minimum legal age, 

the unconditional quantitle regression method proposed by Firpo et al. (2009) is 

used. The estimation of the unconditional quantile treatment effects takes advantage 

of the exogeneity of the 1998 law, and it consists of comparing the horizontal 

                                                        
119 Brasterg and Terrell (1998) use several rounds of the National Longitudinal Survey of Youth to 

investigate whether the returns to experience are different between white and black workers in the US. 

They find that the return to experience is higher among whites, but the return to tenure is higher for 

blacks.    
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distance of two unconditional wage distributions (cumulative distribution functions) 

for any given quantile.     

Table 9 presents the impact of the law on the wage gap of the two groups at 

different points of the unconditional hourly log wage distribution, assuming common 

time effects. The results suggest that the ban had a significant positive effect at the 

first decile of the hourly wage distribution for white males, but a large and negative 

effect for non-whites at the median of the hourly wage distribution. These results 

corroborate the ITT estimates. Under rank preserving conditions, the results indicate 

that the law led to an increase in earnings inequality among non-white males, a 

decrease in earnings inequality among white males, and a wider wage gap across 

race.   

 These results have to be linked to individual participation rates in the labour 

force. The drop in participation rate among white males was greater than among non-

white males. White males were more likely to dedicate more time to school than non-

white males, and the effect on the probability of a child banned from the labour force 

obtaining a college degree suggests that was the case. White males more than 

compensated less work experience with more education. The effect on wages for 

white males suggests that investing in education paid off. The results suggest that 

non-white males did not succeed in counterbalancing the lower stock of work 

experience that could be accumulated in the formal sector. According to the 

theoretical framework, this suggests that their parents either did not manage to save 

for the future or did not leave bequests to their offspring. Since the ban does not 

seem to have affected educational outcomes of non-white males, the lower median 

wages of banned non-whites could suggest either that employers do not value work 

experience in the informal sector as much as experience accumulated in the formal 

sector, or that the informal sector does not add as many skills to workers’ human 

capital as does the formal sector. Unfortunately, the data do not allow one to 

investigate which of these two mechanisms is more plausible.  

Whatever the mechanism, the bottom line is that the 1998 law put white 

males banned from the work force ahead of their peers, but put non-white males 

banned from the workforce behind. The intra-group wage gap increased slightly 

among white males and non-whites. The reason for the increase was distinct for these 

two groups, as per the discussion above. However, the ban sharply increased the 
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inter-groups wage gap. The wage gap between banned white and non-white males is 

larger than it was before the ban.   

Table 10 presents the QTE estimates with heterogeneous time effects. Most 

of the estimates are positive for whites and negative for non-whites. The coefficients 

for white males are positive and statistically significant at the bottom decile and first 

quartile of the hourly wage distribution. With regard to non-white males, there is an 

indication of a negative effect at the median of the hourly wage distribution, although 

the effects become larger and more precisely estimated in 2009. The results suggest 

that the returns to work experience (human capital) are positive for white males as 

long as the eligible group of white males receives higher wages despite having less 

potential experience. The returns to work experience are negative for non-white 

males.  

These findings are somewhat similar to what Bratsberg and Terrell (1998) 

find in their study of the US economy. They use 12 years of the National 

Longitudinal Survey of Youth (1979 to 1991) to estimate returns to experience and 

job tenure for white and black workers. Their results indicate a higher return to 

general experience for white workers than black workers, but black workers 

experience higher returns to tenure than white workers.  
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Table 9 – Long Run QTE on Hourly Log Wages – White and Non-White Males 
6 Months Bandwidth – Excluding School Attenders – Homogeneous time effects 

  Q10 Q25 Q50 Q75 Q90 

 
White 

D 0.19** 0.15 0.14 0.23 0.20 

 

(2.04) (1.54) (1.28) (1.42) (0.82) 

 
Non-White 

D 0.027 -0.092 -0.24*** -0.054 0.18 

  (0.39) (-1.38) (-2.88) (-0.49) (1.02) 

Source: PNADs 2007, 2008, 2009, and 2011.  

Note: Clustered T-statistics in parenthesis. ***, **, * Statistically significant at 1%, 5%, and 10% respectively 

 

Table 10 – Long Run QTE on Hourly Log Wages –White and Non-White Males 
6 Months Bandwidth – Excluding School Attenders – Heterogeneous time effects 

 

White 

 

Non-White 

 

Q10 Q25 Q50 Q75 Q90 

 

Q10 Q25 Q50 Q75 Q90 

            D 0.22* 0.21* 0.16 0.18 0.097 

 

0.092 -0.13 -0.23** -0.039 0.10 

 

(1.75) (1.81) (1.33) (1.03) (0.41) 

 

(1.08) (-1.58) (-2.52) (-0.35) (0.55) 

D*2008 -0.023 -0.034 0.043 0.13 0.014 

 

-0.020 0.064 0.022 0.038 0.093 

 

(-0.19) (-0.33) (0.41) (1.02) (0.087) 

 

(-0.28) (0.86) (0.29) (0.46) (0.85) 

D*2009 -0.054 -0.045 -0.0025 0.12 0.34* 

 

-0.16** -0.047 -0.17** -0.17* -0.094 

 

(-0.52) (-0.45) (-0.024) (0.87) (1.74) 

 

(-2.38) (-0.72) (-2.30) (-1.93) (-0.73) 

D*2011 0.013 -0.081 0.0040 0.057 0.13 

 

-0.083 0.017 -0.0072 -0.057 0.14 

 

(0.13) (-0.92) (0.043) (0.41) (0.64) 

 

(-1.45) (0.29) (-0.11) (-0.63) (0.94) 

Dummies for years? Yes Yes Yes Yes Yes 

 

Yes Yes Yes Yes Yes 

Observations 1966 1966 1966 1966 1966 

 

2831 2831 2831 2831 2831 

Source: PNADs 2007, 2008, 2009, and 2011.  

Note: Clustered T-statistics in parenthesis. ***, **, * Statistically significant at 1%, 5%m and 10% respectively 
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Using a different approach and PNAD data from 1996, Emerson and Souza 

(2011) show that, on average, the returns to experience tend to be lower than returns 

to education up to age 31. Given that the cohorts followed in this study are in their 

mid-20s, this seems consistent with the results for white males. However, the impact 

of the ban on the wages of the cohort of non-white males suggests that the returns to 

experience might be higher than the returns to education for individuals at the lower 

end of the wage distribution. Although returns to education are not provided here, 

they are unlikely to reach 20 percent. If this is the case, Emerson and Souza’s (2011) 

findings may hold only for the subgroup of white males. Our estimates show that the 

impact of an early entrance into the formal labour force varies with the individual’s 

socioeconomic background and along the unconditional distribution of hourly wage.   

This finding has immediate implications for public policy. It shows that 

prohibiting households from sending young boys to the formal labour force at age 14 

may not pay off if the returns to education for poor individuals who have to attend 

low quality public schools and carry on working informally might not be high. 

Conversely, returns to education might be high for better off males who face fewer 

constraints to attending high quality schools. Returns to experience might be more 

relevant to those from disadvantaged backgrounds.  

The main findings of this chapter are also supported by theoretical 

predictions. Dessy and Knowles (2008) use a theoretical model to argue that a child 

labour ban can make the not-so-poor better off. However, their model shows that a 

ban can jeopardise the poorest households by reducing the total household income 

and children’s opportunities for education. There is no evidence that the Brazilian 

ban reduced children’s education in the short-run in terms of the distributions of 

completed years of schooling of the eligible and ineligible groups. On the other hand, 

the raw data shows that the ban reduced sharply the total household income of non-

whites by 28 percent, but did not affect the household income of whites.120 In that 

sense, at least for the group of non-white males, the ban seems to have affected 

household welfare through its impact on total household income.   

 

                                                        
120 This number was obtained by dividing the difference in average monthly wages between eligible 

and ineligible individuals by the household net income of the ineligible group. A T-test for difference 

in means shows that the difference in monthly wage for non-white males was -28.7 reais and 

statistically significant, but insignificant for white males. Over an average household net monthly 

income of 100.7 reais, this represents about 28.5 percent. The analysis considers a 6-month 

bandwidth.  



112 

 

7 ROBUSTNESS CHECK 

 

In this section, the same regressions are re-estimated with a bandwidth of 3 

months. The disadvantage of using a narrower bandwidth is that it increases the 

sampling variance and reduces the estimates’ precision (power). The small sample 

size increases the chances of type II error, i.e., one might not be able to reject the null 

when it is false.   

The eligibility dummy D is redefined so as to take the value of 1 if an 

individual turned 14 between October and December of 1998 and 0 if s/he turned 14 

in the first three months of 1999. If the effect were very local, then one would expect 

a slightly higher impact in absolute terms. Table B.7 (Appendix 2, page 206) shows 

the ITT estimates for the impact of the law on the log of hourly wage. The reduction 

in precision results in statistically insignificant point estimates. Although 

qualitatively similar to those obtained with a larger bandwidth size, most of the 

estimates are statistically significant only against a one-sided alternative.  

Tables B.8 and B.9 in Appendix 2 (pages 207-208) present the effects for the 

probability of an individual being employed and for the probability of having a 

formal job. The results for the labour force participation rate are very similar to those 

obtained with a larger bandwidth. There is no indication of impact on white males 

and some weak evidence of a negative effect on non-white males.121 Conversely, 

unlike the estimates with a broader bandwidth, the results of Table B.8 strongly 

suggest that the law had a very local negative effect on the formal labour force 

participation rate of non-white males. Non-white males became about 12 percentage 

points less likely to participate in the formal labour force. These results reinforce the 

previous findings and suggest, once again, that the law negatively affected children 

from disadvantaged backgrounds.   

Table B.10 (page 209) presents ITT estimates for college degree. The 

treatment effects on attaining a college degree are very similar to those reported in 

Table 7, but they are less precisely estimated in the interactive model.  

Tables B.11 and B.12 (Appendix 2, page 210) show the QTE estimates with a 

narrower bandwidth. The point estimates are slightly lower and less precise. None of 

the estimates for white males are statistically significant. Although the negative 

impact at the median of the hourly wage distribution for non-whites remains, there is 

                                                        
121 Some point estimates are statistically significant against a one-sided alternative.  
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an indication that the ban positively affected non-whites at the top decile of the wage 

distribution. 

The heterogeneous effects presented in table B.12 are similar to those 

estimated with a 6-month bandwidth, with few coefficients for non-white males 

being statistically significant.  

 

7.1 Placebo Test 

 

This section presents a placebo test using the cohorts of individuals who 

turned 14 between January and December of 1999. Eq. (3) is re-estimated with the 

dummy D replaced by a placebo variable that takes on the value of 0 if the individual 

turned 14 between 1 January and 30 June 1999 and if s/he turned 14 between 1 July 

and 31 December 1999. Tables B.13 to B.16 (Appendix 2, pages 170-173) show the 

results for white and non-white males.   

None of the coefficients of the placebo variable are statistically significant in 

tables B.13-B15 (Appendix 2, page 211-213. Table B.15 shows statistically 

significant coefficients for 2011. According to the estimates, white males are more 

likely to hold or be in pursuit of a college degree. Although the coefficients are 

significant for 2011, an F-test cannot reject the null that the coefficients for the 

impact of the placebo are jointly equal to zero.  

The placebo estimates provide further support for the main long run effects of 

the ban of December 1998. The ban that hindered individuals from participating in 

the formal labour force at age 14 had heterogeneous and distributive effects, as it 

affected mostly the subsample of non-white males, particularly those at the lower end 

of the hourly wage distribution. The evidence suggests that the law resulted in a 

higher wage gap between white and non-white males, and probably resulted in a 

more concentrated earnings distribution by increasing the wage gap between those at 

the bottom and top of the earnings distribution.   

 

 

 

8. CONCLUSION  
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This chapter investigated the long-run effects of a Brazilian law from 

December 1998 that increased the minimum legal age of entry into the labour market 

from 14 to 16. This chapter contributes to the scarce evidence of the long run effects 

of early participation in the labour force on adult outcomes. To my knowledge, this is 

the first study to provide long run causal estimates for the impact on the cohort 

affected by a change in the minimum legal age of entry into the labour market. 

This chapter draws on Angrist and Krueger (1991) and explores dates of birth 

around the date the law was enacted to estimate local treatment effects. The results 

suggest that the law had heterogeneous effects across gender and race. Short-run 

estimates show that the law affected only boys, and long run estimates indicate that 

the law benefits white males but harms non-whites. Overall, the estimates indicate 

that white males prevented from entering the labour force at age 14 had better 

outcomes compared to those unaffected by the law. On the other hand, the estimates 

indicate that non-white males prevented from working at age 14 had worse outcomes 

in adult life compared to the comparison group. 

The ITT estimates on wages were interpreted as lower bound for the returns 

to experience as long as the eligible and comparison groups have the same 

distribution of completed years of schooling, and estimates were obtained for non-

school attenders. Unconditional quantile treatment effects were estimated to shed 

light on the distributive impact of the law. The results showed higher earnings for 

white males at the bottom decile of earnings distribution and negative effects for 

non-white males at the median of earnings distribution. Under rank preserving 

condition, this indicates that the law led to an increase in earnings inequality among 

non-white males, a decrease in earnings inequality among white males, and a wider 

wage gap across race. The results are robust to different bandwidth sizes and 

specifications of the smooth function.  

The results for non-white males suggest that allowing this group to participate 

in the formal labour force at age 14 may pay off if the returns to experience 

overcome the returns to education. Thus, creating incentives for this group to enroll 

in the Brazilian apprenticeship programme may help these children accumulate 

experience in the formal labour force and achieve better long-term outcomes.    

The results indicate that policy makers should take into account long run 

consequences of decisions on changes in law that can potentially have heterogeneous 

effects on individuals with distinct backgrounds. 
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CHAPTER 3: INTRAHOUSEHOLD EFFECTS OF A CHILD 

LABOUR BAN: EVIDENCE FROM BRAZIL 
 

 

INTRODUCTION  

 

The literature on the determinants of child labour has evolved considerably in 

the last few years, but too little is known about its consequences (Manacorda 2006; 

Beegle et al. 2005 and 2009). The majority of papers that look at the consequences of 

child labour emphasise the effects on children themselves (see Edmonds (2008) for a 

recent survey and chapter one for discussion). Empirical evidence of the effects of 

child labour on other household members is much less explored. This chapter uses 

the increase in the minimum employment age of December 1998 in Brazil as a 

source of exogenous variation in children’s participation rate in the labour force to 

investigate how the ban affected the time allocation of other household members. 

Uncovering causal effects of an intervention on intra-household allocation is 

a challenging task. The intra-household decision-making process is complex and, as 

shown by non-cooperative bargaining household models, it does not necessarily 

result in optimal allocations of scarce resources among household members (Doss, 

1996). The empirical modeling of intra-household time allocation faces 

methodological challenges that are difficult to overcome with reduced-form 

regression models, such as the simultaneity problem embedded in collective 

household models (Vermeulen 2002; Strauss et al. 2000), and data constraints, as the 

hypothesis derived from those models can hardly be tested with cross-sectional 

household surveys unless one is lucky enough to identify a natural experiment that, 

say, affects the bargaining power of one of the parents without affecting households’ 

total income (see Rangel 2006 for an example).  

To test empirically either unitary household models – models that assume that 

households members pool their resources and allocate them optimally across 

household members either through a cooperative process or through some benevolent 

dictator122 – or collective models that assume that households’ resource allocation is 

                                                        
122 Gary Becker and Jacob Mincer are widely seen as the pioneers in developing unitary household 

models, but it was Becker’s (1976) version of the unitary model that first used the idea of a benevolent 

dictator. For a review of unitary household models, see Grossbard (2010).    
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Pareto efficient – longitudinal data is often required unless one is willing to make 

strong assumptions (see Attanasio and Lechene, 2002 for an example).  

The empirical literature has provided an increasing amount of evidence 

against unitary household models (see e.g. Attanasio and Lechene, 2002; 

Quisumbing and Maluccio, 2003; and Tommasi, 2015); however, little is known 

about which collective model best represents households’ behaviour. Collective 

models suppose the existence of some vector of variables (also called distribution 

factors) that affect intra-household resource allocation, keeping preferences and 

household budget constants (Donni, 2008). In order to recover the sharing rule – the 

rule households follow to share resources among household members – the model 

requires a set of assumptions that can be better accommodated in structural models 

(Doss, 1996).123 In fact, according to Doss (1996, p. 1603), ‘it is not possible to test 

whether collective model, cooperative bargaining model, or non-cooperative 

bargaining model best characterizes the intra-household allocation of resources. 

What can be tested is whether a Pareto efficient outcome is attained’. In addition, 

testing household model longitudinal data on household members’ consumption and 

labour supply would be ideal, even in a context of a randomised controlled trial (see 

Attanasio, Meghir and Santiago, 2011 for an example), otherwise the model would 

have to rely on too many assumptions (see e.g. Attanasio and Lechene, 2002).  

The number of empirical studies testing a particular intra-household model 

has grown steadily over the years (e.g. Blundell et al. 2005; Blundell et al. 2007; 

Apps and Rees 1997; Couprie 2007; Macours et al. 2012; Tommasi, 2015). 

However, Attanasio and Kaufmann (2014) argue, the great majority of household 

models treat children as public goods instead of potential decision-makers.  

It is not the intention of this chapter to contribute to the theoretical literature 

of intra-household models. Instead, this chapter follows Rubino-Codina (2010) who 

use a unitary household labour supply model to frame the problem under 

investigation through the lens of economic theory. Although the model does not 

provide straightforward testable hypotheses, it uses standard consumer theory to 

decompose the effect of the ban into a cross-substitution effect and an income effect, 

                                                        
123 As discussed in Doss (1996), the cooperative bargaining model and unitary household models are 

nested in more general collective models. 
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and in doing so it allows one to check whether the labour supply of children banned 

from the labour force and other household members are substitutes or complements. 

If one is willing to assume that children and adults are substitute inputs for 

firms, an assumption usually made in theoretical models of child labour (Basu and 

Van, 1998; Baland and Robinson, 2000; Horowitz and Wang, 2004; Basu, 2005), 

then the results will provide suggestive evidence on whether households allocate 

labour based on some household production function and whether there is some 

degree of substitutability and complementarity between children’s and adults’ labour 

supply to produce home and market goods. To do so, this chapter digs into the 

consequences of the law of 1998, taking into account dynamics that might prevail in 

single and couple parent families. Looking at different family compositions can 

uncover different choices regarding time allocation of household members, 

particularly if households face market imperfections such as credit or liquidity 

constraints (Ranjan, 1999; Baland and Robinson, 2000; Horowitz and Wang, 2004). 

This chapter contributes to the literature on child labour bans in different 

ways. First, most of the papers investigating links between children’s outcomes and 

intra-household allocation, such as Duncan (1990 and 1994), Bhalotra (2004), 

Oreopoulos et al. (2006c), Emerson and Souza (2003 and 2007), and McCrary and 

Royer (2011), examine the impact of parents’ inputs, ranging from education to 

participation in the labour market during their childhood years, on their children’s 

human capital related-outcomes, such as participation in child labour and school 

attendance. This chapter does the opposite, as it looks at the effect of an enforced 

change to child labour on other household members, particularly younger siblings 

and parents. Second, it explores different household compositions, seeking to better 

understand whether a policy of this kind affects ‘insured’ and ‘uninsured’ households 

differently—that is, households in which the mother is single (‘uninsured’) or a 

spouse (‘insure’) (see Gruber and Culler, 1996 for a similar interpretation). Third, 

this is the first study to use regression discontinuity design (RDD) to investigate the 

impact of a child labour ban on younger siblings and parents. Apart from being 

widely regarded as the quasi-experimental method that most resembles an 

experimental design (Cook 2008; Green et al. 2009), in the present study RDD 
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provides a straightforward means of identifying between-household effects caused by 

the change in the law.124  

I am only aware of two other papers that provide estimates of the impact of 

child labour on other household members. One of these is Manacorda (2006), who 

uses the US Census of 1920 to investigate the impact of an exogenous increase in the 

labour force participation rate of children just above the minimum legal age on time 

allocation of household members. He draws on exogenous variations in child labour 

caused by different minimum legal ages of entry into the labour force across states. 

Using child labour laws as an instrument for labour force participation rate, 

Manacorda (2006) estimates the ‘spillover effects’ of child labour, looking at what 

happened to the time allocation of younger siblings and parents by the time at least 

one child in the household became eligible to work. His findings show that the 

increase in the participation rate of children eligible to work had positive effects on 

siblings (lower participation rate and increased school attendance) but no impact on 

parents.125  

Braradwaj et al. (2013) investigate the effectiveness of the child labour ban in 

India through the Child Labour Act of 1986 that set the minimum legal age of entry 

into the labour market at 14. Using data from employment surveys before and after 

the law and in two different sectors, Braradwaj et al. apply the difference-in-

differences technique to check the impact of the law on the extensive margin of 

children affected by the ban and on their parents and siblings. Their findings suggest 

that the law increased child labour and reduced wages. They also find an increase in 

                                                        
124 Manacorda (2006) had to disentangle the within and between household effects of the child labour 

ban in the US, because in his identification strategy children in the same household could be in the 

treatment and control groups; therefore, estimating the impact of minimum legal age without taking 

this issue into consideration would render a composite effect. Manacorda uses the proportion of 

children per household above the minimum employment age (thus, eligible to work) as an 

instrumental variable to participation rate to circumvent this issue, enabling between household 

estimates.   
125 Although Manacorda’s (2006) results are precisely estimated, it is unclear why he was unable to 

use regression discontinuity design to compare the outcomes of individuals close to the age threshold. 

Instead, he uses difference-in-differences and instrumental variable techniques, exploring variations 

across states and time. His identification strategy depends on different minimum legal ages across 

states; if states with the highest incidence of child labour decide to adopt stricter rules and/or move 

more quickly in adopting the law, then the law would be an invalid instrument. It would be directly 

correlated with the incidence of child labour at state level. Note that regression discontinuity design 

would circumvent this issue, because it does not require an exclusion restriction. For more on this 

point, see Lee and Lemieux (2009). 
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the participation rate of siblings aged 10 to 13, particularly girls, and a reduction in 

school attendance.126  

This chapter draws on Manacorda (2006) but widens the understanding of the 

intra-household effects caused by a child labour ban by covering a broader set of 

outcomes. To my knowledge, this is the first study to investigate the effects of a child 

labour ban on the extensive and intensive margins of parents’ labour supply, 

exploring labour force status of parents and different family compositions.127 By 

looking at different single and couple parent families and parents’ status in the labour 

force, this chapter sheds light on the potential mechanisms underlying the decision-

making process within households facing different constraints.  

The main result of the chapter is the finding that the intra-household impact 

of a ban can differ remarkably according to family composition. For couple parent 

households, it is shown that mothers become more likely to participate in the formal 

labour force, fathers work slightly fewer hours per week, whereas younger siblings 

became less likely to work. These results support the hypothesis that mothers’ labour 

supply in couple parent families can be used as an imperfect insurance mechanism, 

but alternative explanations cannot be completely ruled out.  

For single parent households, it is found that single fathers shift from the 

formal to the informal sector, whereas younger brothers become more likely to attend 

school. I interpret this result as an indication of a binding liquidity constraint and that 

single fathers may privilege younger brothers based on assumptions regarding the 

returns to education, as in the Horowitz and Wang (2004) model discussed in chapter 

two. Since brothers banned from the formal labour force did not shift to the informal 

sector, it might be the case that they ended up helping with household chores so that 

                                                        
126 Although anchored in a theoretical model, the above results are counter-intuitive and difficult to 

reconcile. There are various possible issues that would call these results into question. First, the 

assumption of parallel trends would be unlikely to hold, as the comparison is made between youth 

working in the manufacturing and agricultural sectors. Another explanation could stem from the age 

of the groups considered in the analysis. Rather than focusing on individuals close to the threshold age 

(14) and then using discontinuity in exact date of birth, the study compares children aged 12 to 13 

against those aged 14 to 15. In addition to being unable to show parallel trends for these two age 

groups due to a lack of pre-ban data, the authors are also unable to use regression discontinuity or 

explore the impact of the law on the intensive margin of children’s labour supply. 
127 Due to data restrictions, Manacorda (2006) offers no evidence of the impact of US child labour 

legislation on the intensity of parents’ labour supply. 
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the younger brother could go to school.128 The robustness check and placebo tests 

confirm most of these findings.  

 

2 THE INTERVENTION: THE LAW OF DECEMBER 1998 

 

As discussed in chapter one, the Brazilian Constitution of 1988 set the 

minimum legal age of entry into the labour market at 14, and from 1988 to mid-

December 1998, the minimum legal working age in Brazil was 14. Individuals under 

the age of 17 were prohibited from working in hazardous activities.   

Constitutional Amendment No. 20, enacted on 15 December 1998, increased 

the minimum legal age of entry into labour market from 14 to 16. With the change in 

the law, children who turned 14 after the law passed were hindered from 

participating in the formal labour force, whereas children who turned 14 before the 

law passed were not. In other words, individuals with very close ages were 

exogenously split into two groups: those who had their labour force status unaffected 

by the law (ineligible or control group) and those banned from participation in the 

(formal) labour force by the law (eligible or ‘treatment’ group).129 The figure below 

illustrates the change in the minimum legal age (MLA) and its effect on individuals 

turning 14 just before and just after its enactment.   

 

Diagram 1 – The Change in the Minimum Employment Age   

 

                                                        
128 Chapter one finds no effect on domestic work for boys and girls, but most of the estimates for boys 

are positive though statistically insignificant.  
129 Chapter one provides a more detailed discussion of the law. 
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As shown in chapter one, participation rate in the labour force as a whole 

(regardless the sector) dropped only among boys and mostly in the informal sector. 

In this chapter I use the exogenous variation in the labour force participation rate 

(LFPR) (formal and informal) of 14-year-old boys to investigate its consequences on 

time allocation of other household members. 

 

3 THEORETICAL BACKGROUND 

 
Rubino-Codina (2010) developed an intra-family model to test the impact of 

Oportunidades (previously named Progresa), a conditional cash transfer (CCT) 

program in Mexico, on household members’ labour supply. She interprets the 

transfer as a positive income shock and allows the conditionalities to affect the 

relative price of school and work of eligible children in the household. 

The model is an extension of Ashenfelter and Heckman (1974) and a 

different version of Newman and Gertler (1994). Ashenfelter and Heckman’s (1974) 

concern was how shocks in the labour market (change in wages or unemployment) 

experienced by either the husband or wife affected the spouse’s labour supply. The 

model focused on couples and ignored any other household members. This model 

can be seen as a first version of what Lundberg (1985) calls the ‘added worker 

effect,’—that is, an increase in labour force participation rate of wives when 

husbands experience a negative shock in the labour market. Rubino-Codina (2010) 

follows Newman and Gertler (1994) and adds children to that framework. By doing 

so, she permits that children contribute to the total household income and to 

producing both home and market goods. In her setting, the labour supply of children 

and adults can be substitutes or complements in producing those goods.  

The model considers a household h consisting of 𝑖 = 1, … , 𝐼 members, in 

which 𝑎 = 1, … , 𝐴 ≤ 𝐼 adults, 𝑞 = 1, … , 𝑄 ≤ 𝐼 children, and 𝑘 = 1, … , 𝐾 ≤ 𝑄 

children eligible to participate in the CCT. Thus, 𝐴 + 𝑄 = 𝐼 and 𝐾∁ 𝑄.  

The utility function is given by: 

𝑈 = 𝑈(𝐿1, … , 𝐿𝐼 , 𝐶; 𝑋, 𝜀),         (1) 

where C is the total household consumption (expenditure), 𝐿𝑖 is the leisure time of 

individual i, X is a vector of observed heterogeneity among household members, and 

𝜀 is a vector of unobserved heterogeneity among household members.  
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Each household member is endowed with a total time T that can be allocated 

into three activities: market (m), farm (f), and domestic (d). Children can also 

allocate time into schooling (s). The household faces the following budget constraint: 

∑ ∑ 𝑊𝑖
𝑗
𝐻𝑖

𝑗
𝑗≠𝑠 + 𝑌 ≥ 𝑃𝐶 + ∑ 𝑊𝑖

𝑠𝐻𝑖
𝑠

𝑖=𝑞𝑖 ,       (2) 

where 𝐻𝑖
𝑗
 is the time individual i allocates to activity j and 𝑊𝑖

𝑗
 is the marginal return 

(shadow price) of that activity. The price of schooling 𝑊𝑖
𝑠 includes fees, books, 

transportation costs, etc. P is the price of the composite consumption good, and Y is 

the non-labour income. 

 The I time constraints are given by: 

∑ 𝐻𝑖
𝑗

𝑗 + 𝐿𝑖 = 𝑇, ∀𝑖, 𝑗         (3) 

 The I constraints can be re-written in terms of 𝐿𝑖 and then replaced in the 

utility function. The household problem then consists of finding C and the time each 

household member allocates to each activity J that maximises the household utility 

function given the budget constraint. Solving the first order conditions one obtains 

the following Marshallian demand functions: 

𝐶 = 𝐶(𝑊, 𝑃, 𝑌; 𝑋, 𝜀),          (4) 

𝐿𝑖 = 𝐿𝑖(𝑊, 𝑃, 𝑌; 𝑋, 𝜀),         (5) 

where 𝑊 = (𝑊1
𝑚, … , 𝑊𝐼

𝑚, 𝑊1
𝑓

, … , 𝑊𝐼
𝑓

, 𝑊1
𝑑 , … , 𝑊𝐼

𝑑 , 𝑊1
𝑠, … , 𝑊𝑄

𝑠 ).  

Replacing 𝐿𝑖 in the I time constraints, one obtains the labour supply of individual i in 

activity j: 

𝐻𝑖
𝑗

= 𝐻𝑖
𝑗(𝑊, 𝑃, 𝑌; 𝑋, 𝜀), ∀𝑖, 𝑗        (6) 

Rubino-Codina shows that the effect of the program (∑ 𝑑𝑊𝑘
𝑠

𝑘 , 𝑑𝑌) on time spent on 

activity j by each household member i in a treated household is given by130  

 

 𝑑𝐻𝑖
𝑗

= ∑
𝜕𝐻𝑖

𝑗

𝜕𝑊𝑘
𝑠 𝑑𝑘 𝑊𝑘

𝑠 +
𝜕𝐻𝑖

𝑗

𝜕𝑌
𝑑𝑌, ∀𝑖, 𝑗       (7) 

To get the total effect of the program on labour supply of individual i to activity j she 

uses the Slustky equation, 

𝑑𝐻𝑖
𝑗

=
𝜕𝐻̂𝑖

𝑗

𝜕𝑊𝑖
𝑠 𝑑𝑊𝑖

𝑠 + ∑
𝜕𝐻̂𝑖

𝑗

𝜕𝑊𝑘
𝑠 𝑑𝑘≠𝑖 𝑊𝑘

𝑠 + [− ∑ 𝐻𝑘
𝑗
𝑑𝑘 𝑊𝑘

𝑠 + 𝑑𝑌]
𝜕𝐻𝑖

𝑗

𝜕𝑌
, ∀𝑖, 𝑗  (8) 

                                                        
130 Where ∑ 𝑑𝑊𝑘

𝑠
𝑘  is the reduction in the price of schooling given the educational grant and 𝑑𝑌 is the 

increase in non-labour income. The model assumes that there is more than one eligible child per 

household; otherwise, the reduction in price of schooling would be 𝑑𝑊𝑘
𝑠. Note that 𝑑𝑊𝑘

𝑠 < 0 as it 

represents a reduction in price of schooling.  
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where 𝐻̂𝑖
𝑗

= 𝐻𝑖
𝑗(𝑊, 𝑃, 𝑈; 𝑋, 𝜀) is the Hickisian (utility compensated) labour supply 

function.   

 The first term on the right hand side of (8) is the own-substitution effect of 

the program – the extra time individual i=k spent on activity j –, the second term is 

the cross-substitution effect – the extra time individual 𝑖 ≠ 𝑘 spent on activity j given 

the grant received by k children in the treatment household – and the term in brackets 

is the total income effect.  

If one assumes that work activities are inferior goods and that schooling is a 

normal good, then 
𝜕𝐻𝑖

𝑗

𝜕𝑌
< 0 for any household member other than school-aged 

children, and 
𝜕𝐻𝑖

𝑠

𝜕𝑌
> 0 for school-aged children. This implies a negative total income 

effect for other household members and a positive effect for school-aged children.  

To derive the sign of the own-substitution effect, Rubino-Codina assumes (i) 

that schooling is an ordinary good so that 
𝜕𝐻̂𝑖

𝑠

𝜕𝑊𝑘
𝑠 < 0, that is, a reduction in the price of 

schooling will increase time allocated to schooling activity, and (ii) that schooling 

and any other work activity J are substitutes, so that 
𝜕𝐻̂𝑖

𝑗

𝜕𝑊𝑘
𝑠 > 0. With these 

assumptions, one can know the direction of own-substitution effect and income 

effect. For school-aged children, the own-substitution and total income effects would 

be positive, whereas for other household members the total income effect would be 

negative. Note that the model makes an implicit assumption that the grant is large 

enough to circumvent any credit market imperfection so that the ‘treated’ children no 

longer need to work.  

As discussed in Rubino-Codina (2010), the overall effect of the program 

depends on the cross-substitution effect, and its sign depends on whether schooling 

and work of a school-aged child and other household members are substitutes or 

complements. For instance, whereas the total income effect predicts a decrease in 

participation rate and hours worked for all household members, for school-aged 

children one could still expect an increase in schooling among non-beneficiary 

children in a treated household. However, whether non-beneficiary children will 

dedicate more time to schooling or any other work activity depends on whether 

schooling and work between beneficiary and non-beneficiary children in treated 

households are substitutes or complements. The total effect of the grant on the labour 
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supply of non-beneficiary children in the household therefore depends upon the sign 

and magnitude of the cross-substitution effect. Rubino-Codina (2010, p. 228) 

concludes that ‘the total effect on schooling demand and labor supply depends on the 

magnitude and direction of the different effects at play and remains an empirical 

question.’  

Adapting Rubino-Codina’s framework for the problem at hand, a modified 

version of the Slutsky equation described above can be derived. First, since my 

sample includes only urban households, farm activity can be dropped from the 

model. Second, there is only one ‘eligible’ child per household. Third, non-labour 

income effects can be fully ignored. Fourth, the data I use do not inform the time 

spent on both school and domestic work (household chores).131 Fifth, the ban of 

1998 does not have any type of conditionality; hence, there is no reason to expect an 

increase in demand for schooling among children banned from the work force.  

In fact, if the ban is seen as a negative income shock, the own-substitution 

effect should be zero. Thus, if one replaces 𝑑𝑊𝑘
𝑠 for 𝑑𝑌𝑘, where 𝑌𝑘 is the forgone 

income of child k banned from the formal labour force, equation (8) can be re-written 

as: 

 𝑑𝐻𝑖
𝑗

= ∑
𝜕𝐻̂𝑖

𝑗

𝜕𝑌𝑘
𝑑𝑘≠𝑖 𝑌𝑘 − 𝐻̂𝑘

𝑗 𝜕𝐻𝑖
𝑗

𝜕𝑇𝐼
𝑑𝑌𝑘,        (9) 

where TI is total household income and 𝐻̂𝑘
𝑗

=
𝜕𝑇𝐼

𝜕𝑌𝑘
 by Shephard’s lemma. If work 

activities are inferior goods, the total income effect should thus be positive, as 𝑑𝑌𝑘 <

0 and 
𝜕𝐻𝑖

𝑗

𝜕𝑇𝐼
> 0. In other words, with the decrease in total household income, one 

would expect an increase in the individual’s 𝑖 ≠ 𝑘 participation rate in the labour 

force and hours worked in activity j. As with the original model, the total effect of 

the ban on individual’s i labour supply would depend on the sign and magnitude of 

the cross-substitution effect. With a few additional assumptions, one can try to back 

out of the household production function to get a better idea of whether time 

allocation of household members is driven by some (plausible) efficiency criterion.   

 

 

3.1 EXPECTED RESULTS 

                                                        
131 Rubino-Codina (2010) uses the residual of the total hours spent on school and in work activities, 

including household chores, to compute time allocated to leisure.    
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The household production function and the household decision-making 

process might be very different in single and couple parent families. In couple parent 

families, for instance, mothers’ labour supply may be undersold in the market. Thus, 

if the labour force participation rate of mothers is relatively low compared to fathers, 

couple parent households could respond to negative income shocks such as 

children’s forgone income, adjusting mothers’ labour supply at the extensive margin. 

Mothers’ labour supply could thus be used as an imperfect risk-coping mechanism to 

deal with such shocks. It is also plausible to expect different effects of the ban on 

younger siblings in single and couple parent households.132 One can argue that the 

head of a single parent family would supply labour more inelastically than the head 

in of a couple parent family, and almost surely more inelastically than the spouse in a 

couple parent household.  

For couple parent families, one could expect most of the impact of the ban to 

be absorbed by the parents, particularly mothers, since about 93 percent of household 

heads in couple parent households are male (see Table C.3) and the participation rate 

of women is relatively low (43.6 percent). Therefore, one could expect to see an 

impact on the mother’s labour supply, mainly at the extensive margin. 

According to Basu and Van’s (1998) luxury axiom, altruistic parents always 

prefer to buy children’s leisure rather than sending them to work if they can afford to 

do so. Thus, one could question why mothers decide to stay home and send their sons 

to the labour force in the first place. The luxury axiom evokes equity minded parents, 

but depending on the household production function, it could be that in couple parent 

households mothers are thought to have a comparative advantage in doing household 

chores and consequently prefer having teenaged boys working outside the home. It is 

also possible that some parents believe that male teenagers may have some 

comparative advantage in performing low-skilled paid work in the labour market, a 

decision that would be consistent with the view of Horowitz and Wang (2004) 

discussed in the previous chapter.133 

                                                        
132 See Gruber and Culler (1996) for a similar interpretation in the context of the US. Lundberg (1988) 

finds that parents’ hours worked are simultaneously determined when there are young children in the 

household. She shows that a wife’s hours of work have a positive effect on a husband’s labour supply, 

regardless of the number of children under age 6. However, a husband’s hours of work have a 

negative effect on a wife’s hours when there is only one child under age 6.  
133 According to the model, credit constrained parents favour the most ‘talented’ with higher 

investment in education, sending the less ‘talented’ to labour market.  
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The question then becomes whether banning children under age 14 from the 

formal labour market triggered a relocation of time of other household members or 

simply implied a reallocation of time of children directly affected by the ban.  

If parents care about (a) the type of work performed by their children, (b) the 

extra time they would have to work in the informal sector to keep monthly household 

income more or less constant, and/or (c) some stigma effect that could be attached to 

having their children working in the informal sector, then a ban can actually 

reallocate mothers’ labour supply towards paid work. This reallocation of mothers’ 

labour supply can be also supported by an argument based on efficiency gains. For 

instance, one could argue that mothers would enter the labour force since they could 

work in the formal sector and have higher earnings than young children working 

informally. Children banned from the labour force could spend more time doing 

household chores, such as looking after their younger siblings.           

For single parent families the story might be very different, since households 

cannot use spouses’ labour supply to help smooth the shock. The shock will have to 

be almost fully absorbed by the household head – and probably by older daughters 

through more time allocated to household chores.134 The Brazilian PNAD 1999 does 

not have information on time spent on household chores and older siblings are not 

covered in the empirical analysis, but I expect most of the cost will accrue to the 

household head, particularly in cases in which they can afford to consume children’s 

leisure.  

 

4 IDENTIFICAITON STRATEGY 

 
This chapter applies RDD to estimate the local effect of an exogenous 

variation in children’s participation in the labour force on time allocation of younger 

siblings and parents. By relying on the discontinuity in the labour force participation 

rate of 14-year-old boys, local intent-to-treat estimates can be obtained by comparing 

outcomes of younger siblings (or parents) whose brother (or son) was 14 years of age 

                                                        
134 Using data from Nepal, Edmonds (2006) shows that having younger siblings increases older 

sisters’ hours worked for household chores. Older boys work extra hours per week in paid work in the 

presence of younger brothers, but not in the presence of younger sisters. However, Edmonds shows 

that the effects depend both on the household size (number of siblings) and the age gap between the 

oldest and youngest siblings.   
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just before and just after the law was passed. This method provides a sharp empirical 

strategy for the estimation of the between-household effect of child eligibility.135  

In the RDD context, the identification of the local treatment effect requires a 

clear-cut assignment rule. Once this condition is satisfied, the assumption is that, on 

average, individuals just on the right and just on the left of the cut-off point will 

have, in statistical terms, identical observed and unobserved characteristics; the only 

difference between them is that one group can take up the treatment while the other 

cannot.136  

Although the RDD only identifies the local average treatment effect—the 

treatment effect for the individuals close to the cut-off—Hahn et al. (2001), van der 

Klaauw (2008), Imbens and Lemieux (2008), and Lee and Lemieux (2009) note that 

that this method has many advantages compared to other quasi-experimental 

approaches. RDD is less dependent on functional form assumptions and does not 

require identifying instruments—particularly for narrow bandwidth—or the vector of 

observed variables that determines the eligibility of units for the treatment. Lee and 

Lemieux (2008) also argue that unlike the instrumental variable estimator, RDD does 

not require exclusion restriction, since the forcing variable is allowed to have a direct 

effect on the outcome.137  

 With the law of 15 December 1998, individuals who turned 14 before the ban 

could still participate in the formal labour force, whereas those who turned 14 after 

the law was passed were hindered from doing so. Since the 1998 law precludes the 

participation of individuals under age 16 – as long as they turned 14 after the ban – in 

formal occupations, individuals affected by the law had to drop out of the formal 

labour force or shift to informal occupations.  

The law gave rise to a fuzzy design, as some individuals may have dropped 

out of the labour force while others moved or carried on working in the informal 

sector. The short-run impact of the law on household members is estimated on the 

following outcome variables of siblings: (i) the labour force participation rate as a 

                                                        
135 Manacorda (2006) identifies the within and between household estimates. In the present case, none 

of the households in the sample have more than one child affected by the law.  
136 In the fuzzy design there is imperfect compliance, as eligible individuals are given the final 

decision to participate or not in the intervention. In the case of sharp design, the compliance is perfect 

since the take-up is a deterministic function of the forcing variable. See below. 
137 For the identification of the local average treatment effect (LATE) under the fuzzy design, the 

monotonicity condition needs to hold, i.e., the take up among the eligible group has to be higher than 

the take up among the ineligible group.  
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whole (LFPR), (ii) household chores, (iii) school attendance, and (iv) completed 

years of schooling. For parents I look at: LFPR, LFPR disaggregated between formal 

and informal sectors, and weekly hours worked.  

As in chapter one, LFPR takes the value of 1 if an individual worked in the 

week of reference, if s/he worked in the last 12 months, and if s/he was an active 

worker in the week of reference but was prevented from working due to external 

causes and zero otherwise. Household chores takes the value 1 if the individual 

worked did some domestic work, such as cooking and cleaning, in the week of 

reference and zero otherwise. School attendance takes the value of 1 if a child 

attended school in the week of reference and zero otherwise.   

The effect of the law on other household members can be estimated as 

follows: 

𝑦𝑘𝑗 = 𝛽0 + 𝛽1𝐷𝑖𝑗 + ℎ(𝑍𝑖𝑗) + 𝜀𝑖𝑗                             (1) 

𝑃𝑖𝑗 = 𝛿0 + 𝛿1𝐷𝑖𝑗 + ℎ(𝑍𝑖𝑗) + 𝜇𝑖𝑗                             (2) 

where 𝑦𝑘𝑗 is the outcome variable of individual k (sibling or parents) of household j, 

is a dummy variable that takes on a value of 1 if individual i of household j 

turned 14 after the law passed and 0 if s/he turned 14 before the law passed. This 

variable captures individual i eligibility status to participate in the labour force on 

outcomes of his/her siblings and parents. The smooth function  depends on the 

forcing variable Z (age) of individual i of household j. Variable Z is defined in weeks 

and takes on a value of zero for individuals who turned 14 on the last week of 

December 1998, 1 for individuals who turned 14 in the first week of 1999, and so on.  

Eq. (1) is the reduced-form equation, as it provides the effect of the eligibility 

status of individual i on siblings’ and parents’ outcomes rather than the impact of 

actual treatment. The coefficient 𝛽1 corresponds to the intent-to-treat (ITT) estimate. 

Given the relatively narrow bandwidth sizes used, the estimate remains local. Note 

that this coefficient will inform whether labour supply of children from the labour 

market and other household members are substitutes or complements.  

Using the effect of the actual participation rate of 14-year-old children on 

other household members would very likely result in biased estimates. This could be 

either because siblings and parents allocate their time together, or because time 

allocation of household members is affected, for instance, by unobserved 

characteristics such as parents’ preferences for work and school and children’s innate 

Dij

h Zij( )
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skills. Because the law exogenously affects individual eligibility status in the labour 

market, eligibility status can be used as an instrument for actual participation and 

deal with problems of self-selection into the labour force.  

Eq. (2) models the probability that individual i of household j participates in 

the labour force, , as a function of a constant, the eligibility dummy, the smooth 

function, and a stochastic error term. Eq. (2) provides the first stage, that is, the effect 

of the law on the participation rate of individual i. The local average treatment effect 

(LATE) of the law on outcomes of individual k of household j can be obtained by 

dividing the reduced-form estimate 𝛽1 by the participation rate of individual i 

predicted in Eq. (2), 𝛿1. As mentioned above, I focus on local ITT estimates, because 

if time allocation of household members is a result of a simultaneous decision 

making process this could invalidate the instrument.  

With binary outcomes, equations are estimated with the linear probability 

model. With censored outcomes, such as weekly hours worked, a Tobit model is 

used instead. Since members of the same household are likely to allocate time taking 

into account the time constraints of other household members, standard errors will be 

clustered at the household level.  

To check whether the law had heterogeneous impact, estimates are provided 

for younger brothers and sisters and parents (mother and father) in single and couple 

parent families. I look at different family compositions to try to better understand the 

intra-household decision-making response to the 1998 law that prevented 14-year-old 

boys from participating in the labour force. I also try to shed light on potential 

liquidity constraints by exploring the labour force status of parents. Because I will 

split the sample according to family composition, I use a larger bandwidth of 52 

weeks. However, to check robustness, estimates are also provided with a bandwidth 

of 20 weeks.  

 

 

5 DATA AND DESCRIPTIVE STATISTICS  

 

This chapter uses the 1999 PNAD to estimate the short run effects of the child 

labour ban on household members. 

 

 

Pij
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Table 1 – Sample Composition – Households with at Least One Parent – Urban Area 

Only 

 

Frequency Percent Cumulative Percent 

One parent 36,999 31.43 42.48 

Single Mother 22,461 73.82 73.82 

Single Father 14,538 24.32 100 

Two parents 80,772 68.57 100 

Father Head 72,757 83.35 83.35 

Mother Head 7,965 26.18 100 

Total 117,721 100 

 Source: PNAD 1999.  

 

The sample used in this chapter excludes from the analysis households with 

no parents present, households with multiple families, and households without at 

least one child.138   

Table 2 splits the sample into households with a son affected by the ban 

(‘treated’) and households with a son unaffected by the ban. Estimates are obtained 

with a year bandwidth. Both tables one and two show that the great majority of 

single parents are female, and when both parents are present the head is usually the 

father.  

 

Table 2 – Sample Composition – ‘Treated’ and ‘Control’ Households with at Least 

One Parent – Urban Area Only 

 

Frequency Percent Cumulative Percent 

One parent 2,332 42.48 42.48 

Single Mother 1,428 80.54 80.54 

Single Father 904 24.32 100 

Two parents 3,158 57.52 100 

Father Head 2,813 75.68 75.68 

Mother Head 345 19.46 100 

Total 5,490 100 

 Source: PNAD 1999.  

 

The sample used in the empirical exercises is even smaller, as it considers 

only ‘treated’ and ‘control’ households with at least one parent and at least one 

                                                        
138 It is important to mention that the PNAD of 1999 does not identify married couples. I defined 

couples if the head and spouse live in the same household. However, couples in stable relationships 

that do not share the same household are considered single. The definition used here will therefore 

underestimate the number of couple parent families and overestimate the number of single parent 

families. Interestingly, the official statistics show that since the early 2000s, the proportion of single 

parent families has been following an upward trend in Brazil, with the number of married couples 

declining monotonically. For more information, see www.ibge.gov.br.  
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younger sibling. The final starts with 2,420 households, 47 percent of which are 

single headed families with two-thirds of headed by women. About 80 percent of 

couple parent families in the final sample is headed by men.   

Tables 3a to 3b show the mean, standard deviation, and t-test for the 

difference in means for two samples of younger siblings and household head: one 

with a brother (son) who turned 14 just before the ban (ineligible group) and another 

with a brother (son) who turned 14 just after the ban (eligible group). The sample 

excludes households in rural areas, because the law might not be as well enforced in 

rural as in urban areas, and most of the outcomes are likely to change if households 

have access to better infrastructure, such as schools, and if there is a more active 

labour market.139 

Unlike chapter one, which includes all samples of 14-year-old children, the 

sample used in this chapter consists of 14-year-old children who have at least one 

parent present in the household and excludes households with multiple families.140 

The analysis concentrates on siblings aged 10 to 13 and parents aged 30 to 60. The 

selection of this subsample of siblings stems from the fact that in urban areas school 

attendance approaches 100 percent among children under age 10, whereas the labour 

force participation rate is close to zero, although some children do household chores. 

Note that focusing on siblings aged 10 to 13 minimises the potential effects of school 

entry ages on parents’ labour supply, as in 1999 it was mandatory for children 

turning 6 by 30 June of the current year to be enrolled in school in Brazil; therefore, 

having children aged 6 in the sample could confound the estimates on the labour 

force participation rate of mothers (see Berlinski et al. 2011).  

Table 3a shows the samples of younger siblings with a bandwidth of 52 

weeks. The samples seem very similar in terms of observed characteristics (the list of 

covariates in the table) with the null hypothesis of equal means being rejected in two 

cases only. Even in those cases, the difference in means is not large. It is also 

interesting to observe that the difference in means detects almost no difference in the 

outcomes. From this simple test, there is an indication that the law did not affect 

younger siblings.   

                                                        
139 Also, rural households are underrepresented in the PNADs. 
140 About 5 percent of 14-year-olds in the PNAD 1999 have both parents absent, whereas 9 percent of 

14-year-olds live in households with multiple (more than one) families. See table C.1 in the appendix.  
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Table 3a – Descriptive Statistics and Difference in Means 
Younger siblings aged 10 to 13 with a brother aged 14 around December 1998 

52 weeks bandwidth 

 

Siblings with older brother non-affected by the 

law 

(14 before Dec 1998) 

 

Siblings with older brother affected by 

the law 

(14 after Dec 1998) 

  

 

Mean SE 

 

Mean SE Difference 

Clustered 

T-statistic 

Outcomes        

Labour force participation rate 0.04 0.18  0.03 0.16 0.01 (0.94) 

Domestic work 0.68 0.47  0.66 0.47 0.02 (0.74) 

School attendance 0.97 0.17  0.97 0.18 0.00 (0.36) 

Years of schooling 3.40 1.58 

 

3.09 1.46 0.31*** (3.64) 

        

Covariates        

White  0.43 0.50  0.43 0.50 0.00 (-0.01) 

Male  0.49 0.50  0.47 0.50 0.02 (0.72) 

Single Parent Families 0.45 0.50  0.44 0.50 0.01 (0.21) 

Head’s years of schooling 5.98 4.17  5.69 4.18 0.29 (1.23) 

Head’s age 41.71 5.96  41.34 6.44 0.36 (1.03) 

Metropolitan region 0.64 0.48 

 

0.67 0.47 -0.04 (-1.39) 

Household size 5.64 1.75 

 

5.81 1.68 -0.18* (-1.84) 

Household Income (net of children’s 

income) 504.69 646.57 

 

574.11 776.24 -69.42* (-1.73) 

Observations 619   630 

   Source: PNAD 1999. *** Statistically significant at 1%. 
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Table 3b – Descriptive Statistics and Difference in Means 
Household head aged 30 to 60 with a son aged 14 around December 1998 

52 weeks bandwidth 

 

Household head with a son non-affected by the 

law 

(14 before Dec 1998) 

 

Household head with a son affected by 

the law 

(14 after Dec 1998) 

  

 

Mean SE 

 

Mean SE Difference 

Clustered 

T-statistic 

Outcomes        

Labour force participation rate 0.81 0.39  0.82 0.38 -0.01 (-0.58) 

Participation rate – formal labour force 0.57 0.49  0.56 0.50 0.02 (0.69) 

Participation rate – informal labour force 0.14 0.35  0.18 0.38 -0.04** (-2.04) 

Weekly hours worked 45.18 13.27  44.60 12.63 0.60 (0.97) 

        

Covariates        

Age 42.97 6.48  42.39 6.64 0.58** (2.14) 

White  0.51 0.50  0.51 0.50 -0.005 (-0.24) 

Years of schooling 6.75 4.23  6.75 4.30 -0.003 (-0.01) 

Metropolitan region 0.66 0.47  0.69 0.46 -0.028 (-1.43) 

Household size 4.78 1.49  4.82 1.42 -0.037 (-0.62) 

Household Income (net of children’s 

income) 667.63 936.09 

 

723.48 1079.80 -55.850 (-1.33) 

Observations 1038   1107 

   Source: PNAD 1999. *** Statistically significant at 1%. 
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Table 3b shows descriptive statistics and difference in means for household 

heads using a 52 weeks bandwidth. As with the sample of younger siblings, the 

sample seems well balanced around the threshold. The t-test suggests that the law 

affected the participation of the household head in both the formal and informal 

sectors. Robustness checks with 20 weeks bandwidth are shown in Tables C.1 and 

C.2 (Appendix 3, page 218-219).  

It is important to mention that I observe in the data a high number of missing 

values for the dummy that identifies whether the worker is in the formal or informal 

sector – about 33 percent of household heads in a sample with 52 weeks bandwidth 

did not respond whether s/he was a registered (formal) worker. The percentage is 

slightly higher among male heads. This is expected, since male heads account for 69 

percent of the heads in the sample.      

The balanced sample around the threshold indicates that the law can be seen 

as a natural experiment so that the comparison of outcomes of these two samples of 

households can be interpreted as a local causal impact of the law on household 

members. For the effect of the ban on household members to have a causal 

interpretation, one requires that the groups be balanced in terms of unobserved 

characteristics.  

With a bandwidth of 52 weeks, about 15 percent of children in the 

comparison group are 15 years old by the time the survey was collected, and some 

can argue that the Compulsory Schooling Law may therefore confound the impact of 

the ban.141 To check whether that might be the case, I first compare the difference in 

labour force participation rate, school attendance rates, and completed years of 

schooling between control children aged 14 (who turned 14 before the ban) and 15. 

There is no statistically significant difference in labour force participation rate and 

school attendance between these two groups. The p-value for a t-test of difference in 

proportions is equal to 0.34 and 0.69 respectively. In terms of completed years of 

schooling, children aged 15 have, on average, 0.12 more years of schooling than their 

younger peers, and this difference is statistically significant at the 1 percent level. 

Children aged 15 in the comparison group seem, on average, at least as likely as their 

14-year-old peers to carry on with their studies.  

                                                        
141 As discussed in the introduction of the thesis, in 1999 school was mandatory for children aged 7 to 

14.  
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In addition, I run two placebo tests as discussed below. The first uses 

December 1997 as threshold, and the second uses 30 June, an unofficial cut-off for 

age at school entry, to check whether either age at school entry or school leaving can 

confound what is argued to be the impact of the ban. The balance in unobserved 

characteristics is more likely to hold for narrower bandwidths; however, with a split 

sample based on family composition a narrow bandwidth will likely result in very 

imprecise estimates. Thus, with the narrower bandwidth of 20 weeks one should 

focus more on the magnitude and signal of the coefficients rather than their 

precision. 

Figures 1 to 5 illustrate the main results of the chapter. The figures report 

local linear regressions on each side the cut-off point over the -12 months, 12 months 

interval, as in chapters one and two. The regression lines are estimated with a 

triangle kernel and a one-month bandwidth; a 95 percent confidence interval is also 

reported. Figure 1 illustrates a non-parametric estimate of Eq. (2). This corresponds 

to the effect of the ban on 14-year-old boys, that is, the first stage.142  

 

 

Figure 1 – Linear Regressions: LFPR of Eligible and Ineligible Boys  
First Stage – 12 Months Bandwidth 

 
 

Figure 1 shows a significant decrease in the labour force participation rate as 

a whole (formal and informal) of boys who turned 14 after the ban. As discussed in 

the previous chapters, the reason for looking at participation rate as a whole is 

because the law affected mostly boys in the informal sector. Based on these results, 

one can then ask whether this decrease affected the time allocation of other 

                                                        
142 Figure C.1 in Appendix 3 (page 81) uses data from one year earlier and shows no discontinuity in 

participation rate for boys aged 14 around December 1997.   



136 

 

household members. Figures 2 to 5 are graphic representations of non-parametric 

reduced-form (ITT) estimates. 

 

Figure 2 – Linear Regressions for LFPR of Mothers in Couple Parent 

Households  

 
 

 

Figure 3 – Linear Regressions for LFPR in the Formal Sector of Mothers in Couple 

Parent Households  
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Figure 4 – Linear Regressions for LFPR of Fathers in Couple Parent Households  

 
 

 

Figure 5 – Linear Regressions for LFPR in the Informal Sector of Fathers in Single 

Parent Households 

 
 

Figures 2 and 3 show that mothers seem to be more likely to participate in the 

labour force, particularly in the formal sector. Figures 4 and 5 show a small increase 

in fathers’ participation rate both in single and couple parent families.  

Figures 2 to 4 suggest that couple parent households absorbed the ban, 

increasing mothers’ and fathers’ participation rates in the labour force. This suggests 

that mothers’ labour supply was used as an imperfect insurance mechanism, a 

response that is consistent with the added worker effect hypothesis (Ashenfelter and 

Heckman 1974; Lundberg 1985). This effect helps explain the possible reduction in 

the participation rate of younger siblings in couple households shown in figure C.2 in 

Appendix 3 (page 245).  
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Figure 6 shows an increase in the participation rate of single fathers in the 

informal sector. These results may indicate that single fathers either face liquidity 

constraints or an equilibrium effect when the decrease in the participation rate of 

boys in the informal sector increased the wage rate of adults in the same sector. 

Figure C.3 (Appendix 3, page 245) shows a small increase in the school attendance 

of younger siblings in single headed households.143 

The next section presents the results and discusses the impact of the ban on 

household members with equations (1) and (2) fitted with different specifications and 

52 weeks bandwidth size.   

 

6 RESULTS  

 

 

6.1 The Impact of the Ban on Children Aged 14  

 

Here we consider parametric regressions of the impact of the ban on children 

hindered from participating in the formal labour force at age 14. Estimates are only 

provided for 14-year-old boys, as chapter one shows that the law did not have any 

effect on the participation rate of girls. The model is run with two bandwidth sizes, 

52 weeks and 20 weeks. The  function is specified as polynomials of degree 

one to three and as linear and quadratic piecewise polynomials.144  

Regressions are estimated for three outcome measures: participation rate, 

participation in the formal labour force, and participation in the informal labour 

force. Table 4 shows the first stage estimates with both bandwidth sizes. 

                                                        
143 Figures C2 and C3 are plotted without the 95 percent confidence intervals, because the relatively 

small sample size results in very noisy patterns. Local linear regressions can be very noisy with a 

small sample size given the lower rate of convergence in non-parametric methods. See Fölich (2004) 

and Cameron and Trivedi (2005). 
144 The main difference between this exercise and that of chapter one is the bandwidth and sample 

composition. In this chapter the sample includes 14-year-old boys who have at least one parent present 

and excludes households with multiple families.  

h Zi( )
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Table 4 – Parametric ITT Estimates for the Impact of the Laws of 1998 on Extensive Margin of Labour Supply of Boys aged 14 
14 before Dec 1998 vs. 14 after Dec 1998 

 20 Weeks Bandwidth  52 weeks bandwidth 

Polynomial degree 

Participation 

Rate 

Participation Rate 

Formal 

Participation Rate 

Informal 

 Participation 

Rate 

Participation Rate 

Formal 

Participation Rate 

Informal 

        

Linear -0.054*** -0.012** -0.041**  -0.094*** -0.011*** -0.057*** 

 

(-3.08) (-2.16) (-2.48)  (-6.33) (-2.76) (-4.95) 

Quadratic -0.059* -0.014 -0.045  -0.069** -0.0017 -0.041* 

 

(-1.85) (-1.21) (-1.49)  (-2.39) (-0.24) (-1.90) 

Cubic -0.057* -0.015 -0.043  -0.068** -0.0011 -0.041* 

 

(-1.77) (-1.20) (-1.40)  (-2.37) (-0.16) (-1.85) 

Spline Linear 0.012 -0.019 0.031  -0.071* -0.0015 -0.059** 

 

(0.29) (-1.31) (0.77)  (-1.93) (-0.17) (-2.13) 

Spline Quadratic -0.056* -0.015 -0.041  -0.068** -0.0011 -0.041* 

 

(-1.73) (-1.19) (-1.36)  (-2.36) (-0.16) (-1.85) 

Observations 1014 1014 1014 
 

2145 2145 2145 

Note: Clustered T-statistics in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. 
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Most of the estimates of the participation rate of boys are negative and 

statistically significant at conventional levels, particularly for the larger bandwidth. 

Although the estimates with the narrower bandwidth are slightly smaller in absolute 

terms and less precise, most of them show a reduction in the labour force 

participation rate of about 6 to 7 percentage points. In relative terms, this represents a 

decrease of 52.6 to 61.4 percent.145 Consistent with results in chapter one, the results 

for participation rate as a whole are mostly driven by a reduction in participation rate 

in the informal sector. The decrease in participation rate in the informal sector 

indicates that some employers complied with the law and stopped hiring children 

under age 16.146  

The impact of an exogenous variation in the labour force participation rate of 

14-year-old boys on their younger siblings sheds some light on whether same sex 

individuals are complementary or substitute inputs in the household production 

function, and whether parents’ preferences for boys and girls are different. The next 

section provides estimates for the impact of the ban on the outcomes of younger 

siblings and parents. 

 

6.2 Spillover Effects on Household Members 

 

This section provides estimates for household members in single and couple 

parent families. Splitting the sample according to family composition can help us 

develop a better understanding of the potential mechanisms underlying the results. In 

order to investigate whether credit/liquidity constraint affects parents’ response to the 

ban, the labour force status of the parents is used as an imperfect proxy for credit 

constraint. Unfortunately, the Brazilian PNAD does not contain information on 

household access to insurance and credit markets, use of credit, or household debt 

burden. Participation in the informal sector is used as a proxy for credit constraint, 

because informal workers do not have access to a variety of credit lines available 

through Brazilian commercial banks.147  

                                                        
145 The participation rate of the control group is 11.4 percent with 52 weeks bandwidth.  
146 This is the main channel in the Basu (2005) model through which a ban could affect child labour 

and the wage rate paid to children after the ban. Braradwaj et al. (2013) argue along the same lines 

and use an extended version of the model to understand the impact of the Indian child labour ban of 

1986.  
147 A common practice in Brazil is the salary-deducted loan where the worker commits a fraction of 

his/her salary to pay back the outstanding loan. The occupation of the household head is an imperfect 

proxy, as formal workers tend to have easier access to credit but are also more liquidity constrained, 
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Thus, an increase in participation rate in the informal labour force would 

suggest that the household did not manage to smooth the shock through borrowing or 

through some insurance mechanism and instead shifted to the informal labour 

market, trading off higher consumption in the long-run – since they have to stop 

contributing to the pension system – for higher liquidity in the short-run. If that is the 

case, a higher participation rate in the informal labour market could suggest that the 

household is credit or liquidity constrained.148 I also investigate whether the impact 

of the ban changes according to family composition to understand household 

decision-making in these two settings.  

 

6.2.1 Family Composition and Labour Force Status of Parents 

 

This section looks at the formality status of the household head to check whether 

credit constraint is likely a binding constraint for some households affected by the 

ban. The results for single parent households can be seen in Table 5. Though the 

patterns for single mothers and single fathers suggest opposite responses to the ban, 

none of the coefficients are statistically significant. 

                                                                                                                                                             
because some of the benefits are not as liquid as cash – such as health insurance and mandatory 

contributions to the pension system, both deductible from gross monthly earnings. That helps explain 

why, controlling for self-selection into the formal labour market, Menezes Filho et al. (2004) find that 

earnings in the informal sector are actually higher than in the formal sector.    
148 This is a binary variable that takes the value of one for those participating in the informal sector 

and zero otherwise (not participating at all or participating as formal sector workers). Participation in 

the formal sector is defined similarly. 
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Table 5 – Parametric ITT Estimates of the Impact of the Ban on Household Head’s 

Labour Supply – Single Parent Households 
52 weeks bandwidth – with controls 

  Female Head 

 

Male Head 

h(z)  LFPR 

Hours Worked per 

Week 

 

LFPR 

Hours Worked per 

Week 

  

     Linear  0.033 5.39  -0.013 -1.29 

  (0.41) (1.51)  (-0.28) (-0.45) 

Quadratic  0.031 5.60  -0.013 -1.20 

  (0.38) (1.55)  (-0.28) (-0.42) 

Cubic  0.013 3.90  -0.030 0.13 

  (0.12) (0.80)  (-0.50) (0.036) 

Spline Linear  0.030 5.48  -0.013 -1.27 

  (0.38) (1.52)  (-0.27) (-0.44) 

Spline 

Quadratic  0.040 4.61  -0.035 0.23 

  (0.33) (0.84)  (-0.54) (0.058) 

       

Controls?  Yes Yes 

 

Yes Yes 

Sigma   14.5***   12.9*** 

   (20.1)   (14.8) 

Observations  565 276  371 323 

Source: PNAD 1999.  

Note: Clustered T-statistic in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% 

respectively. Given the proportion of parents not participating in the labour force, the coefficients on 

weekly hours worked refer to Tobit estimates.  

 

 

On the other hand, table 6 shows striking results when participation rate is 

split into formal and informal sectors. There is a clear indication that single fathers 

became more likely to participate in the informal sector. A great part of this increase 

seems to be explained by a reduction in the participation rate in the formal sector, but 

the magnitude of the point estimates show that some male heads entered the labour 

force as a consequence of the ban. The magnitude of the effects is very large and 

might be a bit noisy given the relatively small sample size. It is difficult to justify 

that decision based on the monthly wage in both sectors as well as the occupations in 

the formal and informal sectors in which single parents ended up.149 As suggested 

earlier, I interpret this shift as an indication that at least for some of these households, 

credit was a binding constraint. In essence, the estimates point to a lack of traditional 

                                                        
149 See figure C.22 and table C.20 in Appendix 3. I also consider hourly wages, and the conclusions 

are the same.  
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risk coping mechanisms, such as unemployment insurance and/or credit markets, 

among single parent households affected by the 1998 ban.  

The estimates for couple parent families are shown in table 7. Interestingly, 

for this family composition there is a clear indication that mothers became more 

likely to enter the labour force. Most of the increase took place in the formal sector, 

as shown in table 8. In relative terms, the participation rate of mothers increased by 

about 25 percent.150 Dividing this number by the relative decrease in the participation 

rate of sons aged 14, I find a cross-elasticity of labour supply of -0.41 to -0.48. A 10 

percent decrease in the participation rate of a son aged 14 increased his mother’s 

participation rate in the labour force by 4.1 to 4.8 percent. This is an interesting 

result, since it could suggest either that (i) some mothers, despite having skills to 

participate in the formal labour force, would otherwise stay home, or (ii) males and 

females in the same household are specialised in different tasks. This result remains 

consistent with the hypothesis that in couple parent families the labour supply of 

spouses can be used as an imperfect insurance mechanism.151

                                                        
150 The participation rate of control mothers in couple parent households was 40.1 percent in 1999. A 

10 percentage point increase in participation rate corresponds to about 25 percent in relative terms.   
151 One could argue that this violates the luxury axiom that parents always prefer to consume 

children’s leisure if they can afford it. I understand that the assumption made by Basu and Van (1998) 

might hold, particularly for younger children participating in hazardous activities. For children aged 

14, participation in the labour force may have positive effects on the individual’s human capital in the 

form of accumulated experience.  
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Table 6 – Impact of the Ban on Labour Force Status of the Household Head – Single 

Parent Households 
52 weeks bandwidth – with controls 

  Female Head 

 

Male Head 

h(z)  Formal Informal 

 

Formal Informal 

  

     Linear  0.047 0.0085  -0.29** 0.26*** 

  (0.57) (0.16)  (-2.54) (2.63) 

Quadratic  0.041 0.0060  -0.29** 0.26*** 

  (0.49) (0.11)  (-2.55) (2.65) 

Cubic  -0.010 -0.083  -0.47*** 0.40*** 

  (-0.091) (-1.13)  (-3.10) (2.85) 

Spline Linear  0.040 0.0034  -0.30** 0.26*** 

  (0.48) (0.065)  (-2.56) (2.66) 

Spline Quadratic  -0.015 -0.10  -0.53*** 0.45*** 

  (-0.11) (-1.25)  (-3.08) (2.76) 

Controls?  Yes Yes  Yes Yes 

       

Observations  443 443  227 227 

Source: PNAD 1999.  

Note: Clustered T-statistic in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% 

respectively. The regressions include a dummy for metropolitan region, a dummy for skin colour (white), 

and years of schooling. 

 

 

Looking at tables 5 and 6 together, one notices that fathers, on the other hand, 

increased their participation in the informal labour force but ended up working slightly 

fewer hours per week. The ITT estimates for the participation rate of fathers in couple 

parent households are almost half of those for single fathers in absolute terms (10 

percentage points), but are still high in relative terms (56.5 percent), and this might be 

because they can share the burden of the adverse shock with their spouses.  
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Table 7 – Parametric ITT Estimates of the Impact of the Ban on Parents’ Labour Supply 

– Couple Parent Households 
52 weeks bandwidth – with controls 

 Mother 

 

Father 

h(z) LFPR 

Hours Worked per 

Week 

 

LFPR 

Hours Worked per 

Week 

 

     Linear 0.10** 0.80  0.036 -3.28** 

 (1.99) (0.33)  (1.36) (-2.49) 

Quadratic 0.10** 0.83  0.036 -3.29** 

 (1.98) (0.35)  (1.36) (-2.49) 

Cubic 0.11* 1.02  0.041 -4.31*** 

 (1.65) (0.38)  (1.27) (-2.77) 

Spline Linear 0.11** 0.81  0.036 -3.23** 

 (2.00) (0.34)  (1.39) (-2.46) 

Spline Quadratic 0.074 2.79  0.059** -3.19** 

 (1.11) (1.04)  (2.03) (-2.10) 

      

Controls? Yes Yes 

 

Yes Yes 

Sigma  15.0***   11.8*** 

  (25.8)   (30.5) 

Observations 1208 462  1208 1083 

Source: PNAD 1999.  

Note: Clustered T-statistic in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% 

respectively. Given the proportion of parents not participating in the labour force, the coefficients on 

weekly hours worked refer to Tobit estimates.  

 

Tables 8 and 9 show the results for younger siblings in single parent households. 

Table 8 suggests no impact on the labour supply of younger siblings, but table 9 shows 

that younger brothers became more likely to attend school. The point estimate is large 

and very stable, pointing to an increase in school attendance at around 10 percentage 

points. It seems that with the ban, 14-year-old boys who left the labour force allowed 

their younger brothers to attend school. It is possible that parents assigned boys banned 

from the labour force to household chores to be able to invest in the education of the 

younger sons.152 The decision to invest in the human capital of younger sons might 

indicate that single fathers, considering the household production function and the 

returns to education of boys and girls, see boys as more ‘talented’ than girls, as in the 

Horowitz and Wang (2004) model.153 

                                                        
152 According to the results in chapter one, there is an indication that boys affected by the ban became 

more likely to do household chores.   
153 Note that this would be also consistent with the assumption that poor households tend to prefer sons to 

daughters, because sons are more likely to take care of parents in the long-run, whereas daughters tend to 

move once they get married (Eswaran 1996; Ennew 1982).   
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Table 8 – Parametric ITT Estimates of the Impact of the Ban on Younger Siblings – Single Parent Households  
52 weeks bandwidth – with controls 
Work Outcomes 

 All   Brothers 

 

Sisters 

h(z) LFPR Domestic Work   LFPR Domestic Work 

 

LFPR Domestic Work 

     

     Linear -0.0018 0.069   0.00075 0.15  -0.0055 0.0065 

 (-0.059) (0.84)   (0.014) (1.21)  (-0.20) (0.069) 

Quadratic -0.0018 0.078   0.00098 0.16  -0.0053 0.0086 

 (-0.061) (0.95)   (0.019) (1.27)  (-0.18) (0.090) 

Cubic 0.012 0.15   0.056 0.15  -0.030 0.14 

 (0.32) (1.45)   (0.89) (0.98)  (-0.82) (1.07) 

Spline Linear -0.0024 0.090   0.00084 0.18  -0.0054 0.011 

 (-0.079) (1.09)   (0.016) (1.42)  (-0.17) (0.11) 

Spline Quadratic -0.0041 0.16   0.041 0.13  -0.050 0.15 

 (-0.083) (1.30)   (0.57) (0.79)  (-0.82) (1.05) 

          

Controls? Yes Yes   Yes Yes  Yes Yes 

Observations 534 517   250 237  284 280 

Source: PNAD 1999.  

Note: Clustered T-statistic in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. The vector of controls include a dummy for skin colour (1 if 

white), years of schooling of the household head, number of children aged 0 to 13, and a dummy for metropolitan region.  
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Table 9 – Parametric ITT Estimates of the Impact of the Ban on Younger Siblings – Single Parent Households 
52 weeks bandwidth – with controls 
School Outcomes 

 All   Brothers 

 

Sisters 

h(z) School Attendance Years of Schooling   School Attendance Years of Schooling 

 

School Attendance Years of Schooling 

     

     Linear 0.064** -0.17   0.10** -0.047  0.029 -0.30 

 (2.25) (-0.67)   (2.00) (-0.13)  (1.05) (-0.90) 

Quadratic 0.065** -0.17   0.10** -0.066  0.028 -0.29 

 (2.24) (-0.67)   (1.99) (-0.18)  (1.03) (-0.86) 

Cubic 0.053* -0.39   0.065 -0.39  0.035 -0.40 

 (1.77) (-1.28)   (1.37) (-0.93)  (0.99) (-0.99) 

Spline Linear 0.068** -0.18   0.11* -0.090  0.029 -0.29 

 (2.21) (-0.66)   (1.97) (-0.24)  (0.99) (-0.83) 

Spline Quadratic 0.059 -0.59   0.056 -0.57  0.056 -0.59 

 (1.60) (-1.55)   (1.18) (-1.14)  (1.00) (-1.15) 

          

Controls? Yes Yes   Yes Yes 

 

Yes Yes 

Observations 534 534   250 250  284 284 

Source: PNAD 1999.  

Note: Clustered T-statistic in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. The vector of controls include a dummy for skin colour (1 if 

white), years of schooling of the household head, number of children aged 0 to 13, and a dummy for metropolitan region. 
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The results for couple parent families suggest that mothers and fathers 

entered the labour force, but fathers already employed spent fewer hours at work, 

probably to help with household chores such as looking after children.   

 

Table 10 – Parametric ITT Estimates of the Impact of the Ban on Parents’ Labour 

Supply – Couple Parent Households 
52 weeks bandwidth – with controls 

 Mother 

 

Father 

h(z) LFPR 

Hours Worked per 

Week 

 

LFPR 

Hours Worked per 

Week 

 

     Linear 0.10** 0.80  0.036 -3.28** 

 (1.99) (0.33)  (1.36) (-2.49) 

Quadratic 0.10** 0.83  0.036 -3.29** 

 (1.98) (0.35)  (1.36) (-2.49) 

Cubic 0.11* 1.02  0.041 -4.31*** 

 (1.65) (0.38)  (1.27) (-2.77) 

Spline Linear 0.11** 0.81  0.036 -3.23** 

 (2.00) (0.34)  (1.39) (-2.46) 

Spline Quadratic 0.074 2.79  0.059** -3.19** 

 (1.11) (1.04)  (2.03) (-2.10) 

      

Controls? Yes Yes 

 

Yes Yes 

Sigma  15.0***   11.8*** 

  (25.8)   (30.5) 

Observations 1208 462  1208 1083 

Source: PNAD 1999.  

Note: Clustered T-statistic in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% 

respectively. Given the proportion of parents not participating in the labour force, the coefficients on 

weekly hours worked refer to Tobit estimates.  
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Table 11 – Impact of the Ban on Labour Force Status of Parents – Couple Parent 

Households 
52 weeks bandwidth – with controls 

  Mother 

 

Father 

h(z)  Formal Informal 

 

Formal Informal 

  

     Linear  0.094** -0.013  -0.054 0.11** 

  (2.06) (-0.38)  (-0.90) (2.32) 

Quadratic  0.095** -0.012  -0.053 0.11** 

  (2.07) (-0.36)  (-0.89) (2.31) 

Cubic  0.098* 0.0055  -0.052 0.12** 

  (1.79) (0.14)  (-0.71) (2.19) 

Spline Linear  0.099** -0.010  -0.053 0.11** 

  (2.11) (-0.31)  (-0.89) (2.24) 

Spline 

Quadratic  0.092 -0.015  0.023 0.071 

  (1.54) (-0.35)  (0.31) (1.09) 

Controls?  Yes Yes  Yes Yes 

       

Observations  924 924  772 772 

Source: PNAD 1999.  

Note: Clustered T-statistic in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% 

respectively. The regressions include a dummy for metropolitan region, a dummy for skin colour 

(white), and years of schooling.  

 

 

Table 11 shows that mothers entered the formal labour force. This is one of 

the most consistent results in this chapter and seems consistent with mothers’ labour 

supply being used to smooth the negative income shock.   

The effects of the ban on younger siblings in couple parent families are 

shown in Tables 12 and 13. The ban does not seem to have affected school outcomes 

of younger siblings, but Table 9 suggests that younger siblings became less likely to 

participate in the labour force. The result is stable and statistically significant at 10 

percent in three specifications. It indicates a fall of 3 percentage points in the 

probability of younger siblings participating in the labour force.  
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This represents a 100 percent decrease in relative terms and a cross-elasticity 

of labour supply of 1.6 to 1.9, suggesting a fairly elastic labour supply of younger 

siblings in couple parent households. This is actually an expected result, as younger 

siblings’ labour supply is supposed to be used only in extreme situations where no 

alternative risk-coping options are available. Besides, there seems to be some gender 

specialisation in the household production function, with younger and older brothers 

as complementary inputs to some extent. 
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Table 12 – Parametric ITT Estimates of the Impact of the Ban on Younger Siblings – Couple Parent Households 
52 weeks bandwidth – with controls 
Work Outcomes 

 All   Brothers 

 

Sisters 

h(z) LFPR Domestic Work   LFPR Domestic Work 

 

LFPR Domestic Work 

     

     Linear -0.032* -0.084   -0.038 -0.056  -0.027 -0.10 

 (-1.66) (-1.27)   (-1.05) (-0.58)  (-1.64) (-1.25) 

Quadratic -0.032* -0.084   -0.038 -0.055  -0.026 -0.100 

 (-1.65) (-1.27)   (-1.05) (-0.57)  (-1.60) (-1.23) 

Cubic -0.040* -0.015   -0.071* -0.037  -0.011 0.012 

 (-1.86) (-0.19)   (-1.73) (-0.32)  (-0.81) (0.13) 

Spline Linear -0.031 -0.091   -0.037 -0.070  -0.024 -0.10 

 (-1.48) (-1.35)   (-0.96) (-0.71)  (-1.40) (-1.21) 

Spline Quadratic -0.030 -0.026   -0.060 -0.014  0.0041 -0.035 

 (-0.96) (-0.30)   (-1.01) (-0.11)  (0.22) (-0.31) 

          

Controls? Yes Yes   Yes Yes  Yes Yes 

Observations 715 705   341 335  374 370 

Source: PNAD 1999.  

Note: Clustered T-statistic in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. The vector of controls include a dummy for skin colour (1 if 

white), years of schooling of the household head, number of children aged 0 to 13, and a dummy for metropolitan region.  

 

  



152 

 

Table 13 – Parametric ITT Estimates of the Impact of the Ban on Younger Siblings – Couple Parent Households 
52 weeks bandwidth – with controls 
School Outcomes 

 All   Brothers 

 

Sisters 

h(z) School Attendance Years of Schooling   School Attendance Years of Schooling 

 

School Attendance Years of Schooling 

     

     Linear -0.012 -0.16   -0.012 -0.16  -0.012 -0.15 

 (-0.56) (-0.72)   (-0.35) (-0.58)  (-0.56) (-0.50) 

Quadratic -0.012 -0.16   -0.012 -0.16  -0.014 -0.16 

 (-0.58) (-0.73)   (-0.34) (-0.57)  (-0.65) (-0.51) 

Cubic -0.012 -0.12   -0.011 0.077  -0.011 -0.30 

 (-0.63) (-0.44)   (-0.34) (0.22)  (-0.60) (-0.83) 

Spline Linear -0.021 -0.19   -0.019 -0.21  -0.023 -0.16 

 (-0.99) (-0.84)   (-0.56) (-0.75)  (-1.06) (-0.52) 

Spline Quadratic -0.031* -0.11   -0.044 0.20  -0.017 -0.47 

 (-1.65) (-0.38)   (-1.48) (0.55)  (-0.78) (-1.24) 

          

Controls? Yes Yes   Yes Yes 

 

Yes Yes 

Observations 715 715   341 341  374 374 

Source: PNAD 1999.  

Note: Clustered T-statistic in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. The vector of controls include a dummy for skin colour (1 if 

white), years of schooling of the household head, number of children aged 0 to 13, and a dummy for metropolitan region. 
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Combining the effects of the ban on the labour supply of parents and younger 

siblings, one can argue that mothers enter the labour force to mitigate the shock for 

younger siblings. Since mothers are get paid more than young boys, particularly if the 

occupation is in the formal sector, this reallocation of time among household 

members caused by the ban may have enhanced households’ welfare.154   

 

7 ROBUSTNESS CHECK 

 
To check robustness, some regressions are estimated with 20 weeks 

bandwidth. Since smaller samples lead to loss in precision, I concentrate on the 

qualitative aspect of the estimates (sign and magnitude of the effect) rather than their 

significance in statistical terms. Estimates are provided for linear, quadratic, and 

spline linear specifications of the smooth function, since with narrower bandwidth 

linear specifications of the smooth function are less restrictive and estimates of 

polynomials of high order may imply noisier estimates.  

Tables C.3 and C.4 in Appendix 3 (page 220-221) present estimates for the 

impact of the ban on younger siblings in single parent families. Just as with the larger 

bandwidth, there is an indication that younger siblings are more likely to attend 

school. Based on the magnitudes of the estimates for younger brothers and sisters, 

most of the effect seems to be coming from brothers.  

Estimates of the labour supply of single parents are shown in table C.5 (page 

222). The coefficients for single mothers and fathers are qualitatively similar to those 

observed with the larger bandwidth; however, the estimates of weekly hours worked 

of mothers are larger and statistically significant. Table C.6 (Appendix 3, page 223) 

shows the coefficients for labour force status of parents. The coefficients for single 

parents are qualitatively similar to previous coefficients but are too large to be 

interpreted at face value.  

Results for siblings in couple parent families can be seen in tables C.7 and C.8 

in Appendix 3 (page 224-225). Though not statistically significant, the coefficients on 

the labour force participation rate are very similar to those found with larger 

bandwidths. The estimates for mothers and fathers are also very similar to the 

previous estimates (see tables C.9 and C.10 in the Appendix 3 on pages 226-227).  

                                                        
154 This result is consistent with Basu and Van’s luxury axiom (1998). 
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7.1 PLACEBO TEST 

 

To check whether the results are exclusively due to the 1998 ban, a placebo 

test is conducted using the 1998 PNAD. The cutoff point is defined as 31 December 

1983. Boys born before and after 31 December 1983 are unaffected by the ban, 

because they turned 14 one year before the law passed. Thus, one should not expect a 

difference in the outcomes of children who turned 14 just before and just after 

December 1997. 

Table C.11 (Appendix 3, page 228) shows the first stage estimates and tables 

C.12 to C.22 (Appendix 3, page 229-239) present the results of household members. 

Estimates are provided with 52 weeks bandwidth.155 The coefficients of the first stage 

are negative, relatively large, and statistically significant in the linear specification, 

but they become much smaller, positive, and statistically insignificant in all other 

specifications. This shows that one should use different specifications when 

estimating an RDD parametrically to avoid misleading conclusions.  

Most of the estimates for younger siblings and parents are statistically 

insignificant. Tables C.14 to C.16 (page 231-233) show that single mothers of boys 

born after December 1983 were more likely to participate in the formal labour force. 

The coefficients are large and stable across specifications and are statistically 

significant.  

In the results discussed above, I find no impact of the ban on single mothers’ 

labour supply. This result is a bit difficult to understand, as there is no particular 

reason that single mothers of boys born in 1984 (who turned 14 after December 1997) 

would be more likely to work than mothers of boys born in 1983 (who turned 14 

before December 1997). Since the results have no apparent connection with the 

participation rate of 14-year-old boys and are very different from what I claim to be 

the effects of the law, I do not believe they harm the main findings. 

Nevertheless, in order to unpack this puzzling result I provide visual and 

regression checks. Figures C.4 to C.6 (Appendix 3, page 205) inspect the placebo 

results for single mothers visually to identify which observations might be driving 

these large coefficients. The figures plot local polynomial regressions for the labour 

                                                        
155 For 52 weeks bandwidth, the vector of covariates of the previous estimates are used to control for 

potential confounders related to observed characteristics.   
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force participation rate of single mothers. Figure C.4 (Appendix 3, page 246) 

indicates that observations close to the threshold seem to drive the average effects. 

Figure C.5 (Appendix 3, page 246) plots similar regressions dropping observations in 

the (-4, 4) interval, that is, children who turned 14 between December 1997 and 

January 1998, whereas figure C.6 drops observations in the (-6, 6) interval (Appendix 

3, page 246). As the figures suggest, the strong effects of the participation rate of 

single mothers are very local. Table C.16 (Appendix 3, page 233) provides regression 

estimates for participation rate in the labour force for three samples of single mothers: 

sample of white single mothers, sample of non-white single mothers, and sample of 

mothers excluding observations in the (-6, 6) interval. The results in the first and 

second columns indicate that placebo effects are driven by the sub-sample of non-

white single mothers, whereas estimates in the third column show that results are very 

local, confirming the visual inspection.156 Although I believe that this placebo result 

does not harm the main findings discussed above, I cannot rule out the hypothesis that 

the placebo regressions for non-white single mothers might pick up some seasonal 

birth effects.157 

With regard to siblings, most of the estimates are statistically insignificant. 

Table C.22 (Appendix 3, page 239) indicates that younger sisters of boys who turned 

14 after December 1997 were more likely to attend school. There is no particular 

reason to expect such a result, particularly because I did not find any impact of the 

ban on school outcomes of younger siblings in couple parent families, particularly for 

sisters.  

                                                        
156 With the addition of a vector of covariates that includes the age of the household head, household 

size, number of children under age 5, number of children aged 6 to 9, number of children aged 10 to 

12, number of children above age 14, and household total income net from children’s income, the point 

estimates for white single mothers shrink. This is not the case for non-white single mothers, as results 

remain quite large and statistically significant.  
157 Based on comprehensive data for the US, Buckles and Hungerman (2013) find strong evidence 

against applied papers in which the identification strategy relies on the use of quarter of birth as the 

instrumental variable. They show that quarter of birth might capture seasonal birth effects that are 

largely explained by and women’s socioeconomic background and expected weather at birth. The main 

pattern in their analysis suggests that women who have a child in the winter (January to May) are very 

different in socioeconomic terms from those who have a child in the other seasons. They are more 

likely to be teenagers, unmarried, and less likely to have a high school diploma. They observe that 

children born to these women are different in several dimensions. If the same pattern applies to Brazil, 

I could expect children born from June to August (the winter period in Brazil) to have different 

outcomes compared to those born in other seasons of the year. Since the law was enacted in December 

1998 and estimates are provided with 20 and 52 weeks bandwidth, I believe that the results are unlikely 

to be contaminated by such seasonal effects. The balance checks around the cutoff point suggest that 

children on each side of the threshold have similar characteristics and socioeconomic backgrounds 

(e.g., parents’ education and household income).  
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Overall, the placebo tests support the main results discussed previously, 

mainly for couple parent families. The next section checks whether this might have to 

do with school starting age effect.  

 

 7.2 CAVEATS 

 
 The seminal paper by Angrist and Kruger (1991) triggered the use of date of 

birth as an instrumental variable for completed years of schooling. Despite criticisms 

regarding the use of season of birth as a valid instrument (Bound et al. 1995; Bound 

and Jaeger 2000; Buckles and Hungerman 2013), many authors have combined exact 

date of birth with compulsory schooling laws to estimate returns to education (see 

Oreopoulos, 2006a and 2006b). Others have combined the exact date of birth at 

school entry to estimate the impact of entering school later on short and long run 

outcomes, such as academic performance in primary and secondary education, 

earnings, employability, and teenage pregnancy (Dobkin and Ferreira 2010; McCrary 

and Royer 2011; Black et al. 2011; Bedard and Dhuey 2006).  

Most of these papers find that students who enter school later due to school 

entry laws tend to perform better in school, but not necessarily in the labour market. 

Despite the mixed evidence regarding long-term effects of school entry laws, there is 

evidence of positive effects on earnings and employability at least until a certain age 

(Black et al. 2011; Bedard and Dhuey 2006).  

One challenge of most of these papers face is the difference between absolute 

and relative age effects. The absolute age effect captures the maturity effect at certain 

ages. This ‘maturity effect’ can explain, for instance, differences in academic 

performance at early ages. Black et al. (2011) and Fredriksson and Öckert (2013) 

argue that what matters for policy is the relative age effect, i.e., whether ‘being the 

oldest in class gives an early advantage which may persist in the longer run’ 

(Fredriksson and Öckert 2013, p. 2). 

Until recently there was no official school entry law in Brazil,158 although the 

common practice is for parents to enroll their children in school up to 30 July in the 

year in which the child turns 6. If this informal rule were followed by most families 

                                                        
158 Since 2010, children have had to be enrolled in school in the current academic year if they turn 6 by 

30 March of the current calendar year. Those who turn 6 after 30 March are enrolled the next academic 

year.  
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and to some extent enforced by Brazilian schools by the time the 1998 law passed, my 

estimates could reflect the effect of school starting age in labour market outcomes. 

Due to this enrollment rule, individuals who turned 14 in the second half of 1998—

before the law passed—entered school jointly with those who turned 14 in the first 

half of 1999. Since they were equally affected by the rule, the estimates would at most 

be affected by the ‘maturity effect.’ In other words, if entering school older has long 

lasting effects, including labour market outcomes, one could argue that these 

individuals would anticipate their entrance into the labour market to accumulate 

human capital through work experience (Black et al. 2011).159 In that case, the 

difference in participation rate among boys who turned 14 before and after December 

1998 could be explained by the effect of entering school younger. The estimates 

would therefore capture the combined effect of school starting age and the child 

labour ban. The contamination of the results by the school entry law may also affect 

labour market outcomes of mothers (see Berlinski et al. 2011).  

To check whether the results capture the effect of the school entry law, table 

C.23 (Appendix 3, page 240) shows first stage estimates with the cut-off defined as 30 

June 1999. Estimates are provided with 52 weeks bandwidth. As with the previous 

placebo test, coefficients are negative and statistically significant in the linear 

specification, but become positive and statistically insignificant in all other cases. The 

absence of discontinuity in the participation rate suggests that the age at school entry 

does not play a role in the estimates. Tables C.24 to C.26 in Appendix 3 (page 241-

243) show the estimates for younger siblings and the household head. None of the 

estimates is statistically significant. These results support the main findings of the 

chapter and suggest that age at school entry is unlikely to influence results.  

I also tried to minimise the potential influence of the school entry rule by 

using a larger bandwidth size with controls. With a larger bandwidth, the results are 

less likely to be affected by seasonal birth effects, an issue raised recently by Buckles 

and Hungerman (2013). As discussed above, the results with 20 and 52 weeks 

bandwidth are very similar.  

 

8. CONCLUSION  

 

                                                        
159 Fredriksson and Öckert (2013) argue that older students who finish all school cycles have less 

experience in the labour market, because they enter the labour market at an older age. Since the returns 

to experience decrease with age, they would have lower returns to experience for a given age.   
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This chapter contributes to the nascent literature of the consequences of child 

labour by investigating the intra-household consequences of the increase in the 

minimum legal age of entry into the labour force of December 1998 and, more 

specifically, the impact of banning participation in the formal labour force of 14-year-

old children on the time allocation of younger siblings and the household head. 

 RDD is used to estimate the impact of the ban with different bandwidth sizes 

and flexible functional forms. The main findings suggest that the impact of the law 

was minor among younger siblings but more relevant among parents, particularly 

when family composition and the occupation of the household head are taken into 

account.  

I looked at the labour force status of the household head to shed light on 

whether the household could face credit constraints. I found that male heads became 

more likely to participate in the informal labour market. The results indicate that 

fathers, particularly single fathers, shifted from the formal to the informal sector. This 

could suggest that with the shock they traded off illiquid perks embedded in a formal 

job contract for more cash in the informal sector. I interpret this result as an indication 

that credit could be a binding constraint for some households. 

Splitting the sample according to family composition reveals an interesting 

and consistent story. Mothers in couple parent families became more likely to 

participate in the formal labour force, whereas fathers entered the informal sector but 

worked fewer hours per week. I also found that younger siblings in couple parent 

families were less likely to work. These results suggest that couple parent families use 

mothers’ work as a risk-coping mechanism, a strategy not available to single parent 

families. 

In fact, for single parent families I found no impact on single mothers’ labour 

supply. On the other hand, I found an almost perfect shift of single fathers from the 

formal to the informal sector. I interpret these results as an indication that single 

parent households supply labour is more inelastic and these households are more 

likely to be headed by unskilled workers.    

The results indicate that the consequences of a child labour ban can go beyond 

its immediate effect on children below a certain age, since it might affect several 

outcomes of other household members, particularly if the household head has few 

skills and access to suboptimal risk coping mechanisms. For households that rely on 

child labour to complement household income, banning child labour can indeed 
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backfire (Ranjan 1999; Dessy and Knowles 2008). Insurance mechanisms such as 

unemployment insurance or even conditional cash transfers could be offered to 

households affected by the ban.    
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CONCLUSION 
 

This thesis contributes to the scant literature on the causal impacts of 

legislation designed to reduce child labour in developing countries. In chapter one I 

examine the short run impacts of a Brazilian Constitutional Amendment of December 

1998 that increased the minimum legal age of entry into the labour force from 14 to 

16, and the impact of the Brazilian apprenticeship programme of December 2000 

aimed at youth aged 14 to 17. This chapter pertains to the strand of literature that 

looks at the consequences of child labour for children themselves.   

Regression discontinuity design is used to estimate the impact of both laws, 

exploring discontinuities around age thresholds. In some cases the analysis is 

complemented by difference-in-differences estimates. The results of the ban show that 

it affected 14-year-old boys and girls differently, with boys more likely to drop out of 

the labour force and girls more likely to attend school. The ban also affected hours 

worked, and the results were consistent with the impact on participation rate. For 

children just under age 16, almost no effect is found.  

With regard to the apprenticeship programme, the estimates show a positive 

though very small effect on participation rate in the formal labour force among 14-

year-olds. I find an indication that 14-year-old boys and girls became more likely to 

attend school. The comparison between children around age 16 shows that the 

programme fully counterbalanced the effect of the ban on participation rate for this 

age group.  

  In chapter two I focus on the long run consequences of the December 1998 

ban on schooling and labour market outcomes of white and non-white males. I also 

look at distributional impacts of the ban by estimating unconditional quantile 

treatment effects on the log of hourly wage distribution. The estimates sustain the 

hypothesis that the law benefits white males with higher wages, higher probability of 

enrollment into college, and better occupations, whereas non-white males look less 

likely to be employed and have lower earnings. The results suggest that, on average, 

the law worked as a nudge to parents of white males to reallocate children’s time 

towards activities with higher market returns, but for non-white males the law may 

have had negative consequences. Putting these results together, while males seem to 

accumulate more human capital through education, non-white males appears to 

accumulate human capital through labour market experience. The chapter also 
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provides estimates for elasticity of labour supply on the intensive margin, and the 

results are in line with what seems to be the benchmark in the literature. With regard 

to the potential mechanisms, the estimates suggest that accumulated experience in the 

labour force is the main driver underlying these results.  

Finally, the third chapter looks at the intra-household consequences of banning 

participation in the formal labour force of 14-year-olds on time allocation of younger 

siblings and parents. I explore different family compositions and the labour force 

status of the household head in order to better understand the decision-making process 

when the spouse is present and when households face liquidity constraints. As with 

the previous two chapters, I use regression discontinuity design to estimate the impact 

of the ban of 1998 on household members. The main findings suggest that fathers, 

mainly single fathers, shift from the formal to the informal sector. I interpret this 

result as an indication that single fathers face liquidity constraints and decide to shift 

to the informal sector, trading off benefits provided by formal occupations (such as 

pensions) for informal jobs that tend to be more cash-oriented (liquid). I also find that 

younger brothers are more likely to attend school. It seems that parents shift to the 

informal sector and brothers banned from the labour force take over household 

responsibilities and help with chores to allow their younger brothers to go to school. 

This is consistent with a household production function in which older siblings have 

comparative advantages on both paid and unpaid (domestic) work activities and 

parents’ preference for sending older children to work so that they can invest in the 

human capital of younger sons.  

The most interesting and robust results are for couple parent families. I find 

that mothers in couple parent families became more likely to participate in the formal 

labour force, whereas fathers entered the informal sector but worked fewer hours per 

week. I also find that younger siblings in couple parent families were less likely to 

work. These results show that couple parent families use mother’s work as a risk-

coping mechanism—a strategy not available to single parent families.  

The results of this thesis support the hypothesis that a simple change in the 

minimum legal age of entry into the labour force can have consequences on other 

household members and can potentially harm relatively poor households that could, 

perhaps, benefit more from an earlier entrance into the formal labour force than from 

low quality public education. For households that rely on child labour to complement 

household income, insurance mechanisms such as unemployment insurance or even 
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conditional cash transfers could be used to help households smooth the negative 

consequences of the ban, even though the evidence found in this thesis suggests that 

some children could also benefit from an expansion of the Brazilian apprenticeship 

programme. Because laws as such can potentially harm children from 

disadvantageous backgrounds and affect the time allocation of other household 

members, this thesis shows that public interventions should be carefully designed to 

avoid misleading policy recommendations, a point made by Basu and Van (1998), 

Basu (2005), Ranjan (1999), Horowitz and Wang (2004), and Dessy and Knowles 

(2008) based on theoretical predictions.  

Despite the fact that the findings strongly indicate that the ban impacted 

children in the short and long run as well as their household members, it is also worth 

discussing the scope for future research. First, in many cases throughout the chapters 

the estimates showed sensitivity to the specification of the smooth function and lacked 

statistical power. For future work, I suggest exploring non-parametric specifications 

and using the census of 2010 to estimate long-run effects with a larger sample size. 

Unfortunately, the census of 2010 does not provide individuals’ exact date of birth. 

Access to this information relies on the approval of a formal request to be made to the 

Brazilian Bureau of Statistics.  

Second, the household survey used to investigate the impact of the 

apprenticeship programme is not ideal given the low take up rate into the programme. 

A lot more can be said about the apprenticeship programme with the Relação Anual 

de Informações Sociais (RAIS) – a census of formal firms that is annually collected 

by the Brazilian Ministry of Labour and Employment but not publicly available – 

particularly with regard to its effects in the long-run.  

Third, chapter two sets out the labour market experience as the underlying 

mechanism. That channel cannot be formally analysed with repeated household 

surveys, but might be investigated to some extent with the Brazilian labour force 

survey (Pesquisa Mensal de Emprego), a rotating quarterly panel.  

Fourth, since intra-household time allocation, as investigated in chapter three, 

requires large sample sizes to have statistical power, more efficient estimates could be 

obtained with the census of 2000. However, as mentioned above, the census does not 

report individuals’ exact date of birth.  

Finally, the puzzling placebo results for single mothers found in chapter three 

suggest that, as in the US, mothers giving birth in different quarters of year might 
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come from different socioeconomic backgrounds. This issue is key and needs further 

investigation as long as it would cast doubt on RDD estimates performed with 

relatively narrow bandwidths.  

This thesis reveals that policymakers should have a broader perspective when 

designing laws. The results in the three chapters strongly recommend that policy 

makers take into account potential unintended consequences of law changes, such as 

heterogeneous effects across race and gender, spillover effects on time allocation of 

household members, and potential increases in wage inequality across race.   
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Appendix 1: Tables and Figures from Chapter 1 
 

 

Placebo: 14 before and After December 1997 
 
Figure A.1 – Labour Force Participation Rate  

 
 
Figure A.2 – Labour Force Participation Rate for Males 
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Placebo: Age 15 vs. age 16 in September 1998  

 
Figure A.3 – Participation Rate in the Labour Force 

 
 

 

Figure A.4 – Participation Rate in the Formal Labour Force 
15 vs. 16 in Sept 1998 
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Table A.1 – T-test for Difference in Means – Urban Area Only 

15 vs. 16 – Sept 1999 

  Comparison Group   Eligible Group   
T-

statistic 

Outcomes Mean SD 

 

Mean SD 

  LFPR 0.21 0.40 

 

0.24 0.43 

 

(-2.45) 

LFPR - Formal  0.02 0.15 

 

0.05 0.21 

 

(-3.20) 

LFPR – Informal 0.19 0.39 

 

0.20 0.40 

 

(-1.21) 

Domestic work 0.69 0.46 

 

0.72 0.45 

 

(-1.61) 

School attendance 0.89 0.31 

 

0.86 0.35 

 

(2.51) 

Covariates 

      White  0.49 0.50 

 

0.49 0.50 

 

(0.03) 

Father’s years of 

schooling  5.41 4.50 

 

5.21 4.47 

 

(1.17) 

Mother’s years of 

schooling 4.95 4.45 

 

4.83 4.48 

 

(0.73) 

Father’s age 37.30 20.57 

 

37.86 20.57 

 

(-0.72) 

Mother’s age 32.36 20.83 

 

32.41 21.11 

 

(-0.06) 

Household size 4.66 1.56 

 

4.60 1.64 

 

(1.13) 

Land title 0.92 0.28 

 

0.93 0.26 

 

(-0.85) 

Non-labor income 4.70 44.92 

 

6.14 43.80 

 

(-0.86) 

Observations 1338     1499                2837 

Source: PNAD of 1999.  
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Table A.2 – T-test for Difference in Means – Urban Area Only 

15 vs. 16 – Sept 2002 

  Comparison Group   Eligible Group   T-statistic 

Outcomes Mean SD 

 

Mean SD 

  LFPR 0.27 0.44 

 

0.31 0.46 

 

(-2.70) 

LFPR - Formal  0.01 0.10 

 

0.02 0.15 

 

(-2.55) 

LFPR – Informal 0.26 0.44 

 

0.29 0.45 

 

(-2.10) 

Domestic work 0.68 0.47 

 

0.66 0.47 

 

(0.84) 

School attendance 0.90 0.30 

 

0.87 0.34 

 

(2.73) 

Covariates 

      White  0.46 0.50 

 

0.45 0.50 

 

(0.75) 

Father’s years of schooling  5.42 4.80 

 

5.13 4.83 

 

(1.75) 

Mother’s years of schooling 6.99 4.32 

 

6.77 4.25 

 

(1.48) 

Father’s age 34.69 20.89 

 

34.08 21.54 

 

(0.82) 

Mother’s age 41.87 11.99 

 

41.98 12.54 

 

(-0.24) 

Household size 4.53 1.55 

 

4.50 1.63 

 

(0.50) 

Land title 2.15 0.58 

 

2.14 0.54 

 

(0.36) 

Non-labor income 2.56 18.83 

 

4.36 27.92 

 

(-0.92) 

Observations 1569     1731                3045 

Source: PNAD of 2002.  
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Table A.3 – Parametric ITT Estimates for the Impact of the Laws of 1998 on Extensive Margin of Labour Supply 
14 before Dec 1998 vs. 14 after Dec 1998 

Bandwidth of 16 weeks 

Polynomial degree Labour Force Participation 

 

Formal 

 

Informal 

 

Domestic work 

 

All Boys Girls 

 

All Boys Girls 

 

All Boys Girls 

 

All Boys Girls 

0 -0.034*** -0.077*** 0.0057  -0.0067** -0.010** -0.0036  -0.028*** -0.068*** 0.0092  -0.011 0.0034 -0.0039 

 

(-3.19) (-3.76) (0.42)  (-2.47) (-2.22) (-1.07)  (-2.72) (-3.39) (0.68)  (-0.47) (0.092) (-0.20) 

1 -0.030 -0.066 0.0069  -0.0091* -0.0038 -0.014*  -0.022 -0.063 0.021  0.032 0.052 0.013 

 

(-1.09) (-1.31) (0.25)  (-1.65) (-0.47) (-1.94)  (-0.83) (-1.26) (0.81)  (0.64) (0.74) (0.29) 

2 -0.029 -0.062 0.0056  -0.0090 -0.0035 -0.014*  -0.021 -0.059 0.019  0.033 0.056 0.013 

 

(-1.07) (-1.29) (0.20)  (-1.58) (-0.43) (-1.90)  (-0.81) (-1.22) (0.74)  (0.68) (0.76) (0.30) 

3 -0.00023 -0.018 0.015  -0.011* -0.012 -0.0094  0.0098 -0.0067 0.024  -0.023 -0.035 -0.014 

 

(-0.0070) (-0.31) (0.43)  (-1.70) (-1.27) (-0.88)  (0.33) (-0.12) (0.76)  (-0.28) (-0.32) (-0.21) 

Spline linear -0.028 -0.060 0.0042  -0.0090 -0.0034 -0.014*  -0.020 -0.057 0.018  0.033 0.054 0.014 

 

(-1.03) (-1.23) (0.15)  (-1.54) (-0.41) (-1.89)  (-0.77) (-1.17) (0.70)  (0.69) (0.74) (0.33) 

Spline quadratic 0.0062 -0.000050 0.013  -0.014* -0.013 -0.014  0.019 0.012 0.026  -0.048 -0.093 -0.017 

 (0.17) (-0.00083) (0.33)  (-1.92) (-1.13) (-1.18)  (0.55) (0.20) (0.84)  (-0.59) (-0.97) (-0.24) 

Observations 2134 1030 1104  2134 1030 1104  2134 1030 1104  2049 969 1080 

Note: Clustered T-statistics in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. 
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Table A.4 – Parametric ITT Estimates for the Impact of the Laws of 1998 on Schooling outcome 
14 before Dec 1998 vs. 14 after Dec 1998 

Bandwidth of 16 weeks 

Polynomial degree School Attendance 

 

All Boys Girls 

0 0.012 0.013 0.012 

 

(1.49) (0.88) (1.18) 

1 0.020 -0.0049 0.044* 

 

(1.13) (-0.15) (2.02) 

2 0.019 -0.0064 0.044** 

 

(1.08) (-0.19) (1.96) 

3 0.0071 -0.057 0.070** 

 

(0.29) (-1.41) (2.51) 

Spline linear 0.019 -0.0073 0.045** 

 

(1.07) (-0.22) (2.03) 

Spline quadratic 0.0072 -0.078* 0.093*** 

 (0.31) (-1.84) (5.06) 

Observations 2134 1030 1104 

Note: Clustered T-statistics in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. 
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Table A.5 – Parametric ITT Estimates for the Impact of the Laws of 1998 on Extensive Margin of Labour Supply - 15 vs. 16 

Bandwidth of 16 weeks 

Polynomial degree Labour Force Participation 

 

Formal 

 

Informal 

 

Domestic work 

 

All Boys Girls 

 

All Boys Girls 

 

All Boys Girls 

 

All Boys Girls 

0 0.046** 0.084*** 0.0054  0.025*** 0.042*** 0.0089  0.025 0.050* -0.0030  0.010 0.025 -0.015 

 

(2.20) (2.80) (0.29)  (3.55) (3.50) (1.34)  (1.17) (1.68) (-0.15)  (0.48) (0.68) (-0.66) 

1 -0.0092 0.029 -0.044  -0.0027 0.0013 -0.0039  -0.0054 0.032 -0.040  0.028 0.045 0.0078 

 

(-0.27) (0.52) (-1.48)  (-0.26) (0.067) (-0.35)  (-0.14) (0.55) (-1.18)  (0.59) (0.77) (0.20) 

2 -0.014 0.021 -0.046  -0.0029 0.0019 -0.0058  -0.0099 0.023 -0.041  0.025 0.048 0.00030 

 

(-0.44) (0.43) (-1.54)  (-0.28) (0.099) (-0.54)  (-0.27) (0.45) (-1.21)  (0.52) (0.79) (0.0077) 

3 -0.014 0.067 -0.068*  0.0043 0.020 -0.0044  -0.016 0.057 -0.064  0.036 0.014 -0.00015 

 

(-0.33) (0.98) (-1.91)  (0.41) (1.05) (-0.37)  (-0.34) (0.77) (-1.53)  (0.54) (0.18) (-0.0028) 

Spline linear -0.014 0.020 -0.045  -0.0026 0.0023 -0.0061  -0.011 0.021 -0.040  0.023 0.048 -0.0017 

 

(-0.45) (0.41) (-1.49)  (-0.25) (0.12) (-0.57)  (-0.30) (0.43) (-1.17)  (0.47) (0.79) (-0.042) 

Spline quadratic -0.016 0.071 -0.062*  0.014 0.035* 0.00078  -0.027 0.047 -0.063  0.033 -0.019 0.0075 

 (-0.35) (0.95) (-1.89)  (1.28) (1.89) (0.058)  (-0.54) (0.62) (-1.55)  (0.39) (-0.22) (0.100) 

Observations 2046 996 1050  2046 996 1050  2046 996 1050  1833 833 1000 

Note: Clustered T-statistics in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. 
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Table A.6 – Parametric ITT Estimates for the Impact of the Laws of 1998 on Schooling Outcome - 15 vs. 16 

Bandwidth of 16 weeks 

Polynomial degree School Attendance 

 

All Boys Girls 

0 -0.020* -0.051*** 0.010 

 

(-1.74) (-2.96) (0.63) 

1 -0.018 -0.034 -0.0034 

 

(-0.74) (-0.95) (-0.11) 

2 -0.015 -0.034 0.0029 

 

(-0.70) (-0.95) (0.10) 

3 -0.044 -0.079 -0.0086 

 

(-1.60) (-1.65) (-0.23) 

Spline linear -0.011 -0.031 0.0072 

 

(-0.61) (-0.94) (0.26) 

Spline quadratic -0.028 -0.067** 0.0097 

 (-1.23) (-2.26) (0.23) 

Observations 2046 996 1050 

Note: Clustered T-statistics in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. 
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Table A.7 – Difference-in-Differences Estimates for the Impact of the Law of 1998 on Extensive Margin of Labour Supply - 15 vs. 16 
Bandwidth of 16 weeks 

  Labour Force Participation Rate 

 

Participation Rate – Formal Labour 

Force 

 

Occupation in Formal Sector 

 

Participation Rate – Informal Labour 

Force 

 

All Boys Girls 

 

All Boys Girls 

 

All Boys Girls 

 

All Boys Girls 

 

               

Eligible*D99 (DD) 0.0067 -0.0043 0.014  0.0071 0.00036 0.013  0.049 0.014 0.11  -0.00044 -0.0047 0.0016 

 

(0.51) (-0.20) (0.98)  (0.89) (0.027) (1.42)  (0.95) (0.23) (1.01)  (-0.039) (-0.25) (0.13) 

Eligible  0.020** 0.038** 0.0059  0.0081 0.020* -0.0025  0.018 0.047 -0.036  0.012 0.018 0.0085 

 (2.03) (2.29) (0.54)  (1.28) (1.90) (-0.36)  (0.50) (1.18) (-0.50)  (1.45) (1.27) (0.98) 

D99 (1998=0, 1999=1) -0.048*** -0.072*** -0.024**  -0.026*** -0.033*** -0.019***  -0.091** -0.056 -0.17**  -0.022*** -0.039*** -0.0052 

 (-5.26) (-4.72) (-2.42)  (-4.95) (-3.80) (-3.07)  (-2.38) (-1.29) (-2.15)  (-2.75) (-2.90) (-0.64) 

Male 0.11*** Na Na  0.033*** Na Na  -0.012 Na Na  0.080*** Na Na 

 (17.3) Na Na  (8.37) Na Na  (-0.38) Na Na  (14.4) Na Na 

White 0.0074 -0.00043 0.015*  0.011*** 0.015** 0.0069  0.078*** 0.085** 0.058  -0.0036 -0.015 0.0080 

 (1.05) (-0.036) (1.95)  (2.62) (2.10) (1.54)  (2.69) (2.50) (1.01)  (-0.59) (-1.49) (1.25) 

Years of Schooling of the 

Household Head -0.0017* -0.0043** 0.00092  0.000090 -0.000073 0.00028  0.0046 0.0056 -0.0045  -0.0018** 

-

0.0042*** 0.00064 

 (-1.66) (-2.52) (0.80)  (0.15) (-0.074) (0.41)  (1.17) (1.25) (-0.54)  (-2.02) (-2.83) (0.67) 

Age of Household Head  -0.00018 -0.00017 -0.00023  0.000092 0.00012 0.000036  0.00071 0.00060 0.00057  -0.00027 -0.00029 -0.00026 

 (-0.68) (-0.38) (-0.78)  (0.58) (0.43) (0.21)  (0.67) (0.49) (0.28)  (-1.20) (-0.74) (-1.09) 

Gender of the Household 

Head (=1 if male) -0.071** -0.14** 0.0093  -0.012 -0.043 0.022***  0.044 -0.011 0.43***  -0.059* -0.098* -0.013 

 (-2.08) (-2.40) (0.33)  (-0.64) (-1.22) (6.12)  (0.49) (-0.11) (2.91)  (-1.89) (-1.84) (-0.44) 

Metropolitan Region -0.026** -0.040** -0.015  -0.0068 -0.00080 -0.014*  -0.014 0.0067 -0.10  -0.019** -0.039*** -0.0010 

 

(-2.43) (-2.29) (-1.29)  (-1.03) (-0.077) (-1.76)  (-0.38) (0.17) (-1.31)  (-2.12) (-2.58) (-0.11) 

Dummies for states? Yes Yes Yes  Yes Yes Yes  Yes Yes Yes  Yes Yes Yes 

Constant 0.15*** 0.36*** 0.034  0.035 0.13** -0.021  0.34 0.50** -0.39*  0.11*** 0.24*** 0.055 

  (3.07) (4.25) (0.80)  (1.25) (2.24) (-1.59)  (1.63) (2.18) (-1.67)  (2.69) (3.33) (1.33) 

Observations 9748 4842 4906  9748 4842 4906  1234 896 338  9748 4842 4906 

Adjusted R2 0.05 0.03 0.02  0.03 0.03 0.01  0.08 0.10 0.06  0.03 0.02 0.00 
 Note: Robust T-statistics in parentheses. *, **,*** Statistically significant at 10%, 5%, and 1% respectively. 
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Table A.8 – Difference-in-Differences Estimates for the Impact of the Law of 1998 on the Intensive Margin of Labour Supply and Household 

Chores - 15 vs. 16 
Bandwidth of 16 weeks 

  Household Chores 

 

Weekly Hours Worked - Formal 

 

Weekly Hours Worked - Informal 

 

All Boys Girls 

 

All Boys Girls 

 

All Boys Girls 

 

           

Eligible*D99 (DD) -0.020 -0.049 0.0067  7.07 4.27 11.6***  -2.04 -0.26 -4.37 

 

(-1.03) (-1.50) (0.31)  (1.09) (0.54) (6.10)  (-0.61) (-0.067) (-0.67) 

Eligible  -0.00044 0.0094 -0.0091  2.86 5.73 -1.93  -1.16 -3.00 2.88 

 (-0.032) (0.39) (-0.62)  (0.72) (1.20) (-1.15)  (-0.52) (-1.19) (0.62) 

D99 (1998=0, 1999=1) 0.00038 0.050** -0.041***  -12.8** -9.39 -20.4***  4.09* 2.54 7.83 

 (0.028) (2.15) (-2.69)  (-2.55) (-1.54) (-11.9)  (1.69) (0.91) (1.60) 

Male -0.35*** Na Na  -1.68 Na Na  2.09 Na Na 

 (-35.6) Na Na  (-0.48) Na Na  (1.09) Na Na 

White -0.087*** -0.10*** -0.078***  9.97*** 10.7** 7.91***  -4.94*** -6.23*** -0.72 

 (-8.40) (-5.73) (-6.61)  (2.80) (2.55) (4.75)  (-2.70) (-2.95) (-0.20) 

Years of Schooling of the Household Head -0.0055*** 0.000078 -0.0098***  0.67 0.83 -0.33**  -0.31 -0.36 0.29 

 (-3.68) (0.031) (-5.68)  (1.38) (1.43) (-2.16)  (-1.23) (-1.28) (0.56) 

Age of Household Head  -0.00014 -0.00060 0.00023  0.082 0.083 -0.0087  -0.054 -0.084 0.057 

 (-0.37) (-0.90) (0.54)  (0.65) (0.56) (-0.28)  (-0.80) (-1.07) (0.44) 

Gender of the Household Head (=1 if male) -0.020 0.0024 -0.032  1.03 -6.88 256.5***  -2.75 -0.94 -13.8 

 (-0.47) (0.033) (-0.69)  (0.077) (-0.51) (130.3)  (-0.50) (-0.15) (-1.34) 

Metropolitan Region -0.053*** -0.025 -0.075***  -1.54 1.79 -11.9***  0.78 0.11 6.11 

 

(-3.81) (-0.98) (-5.42)  (-0.36) (0.34) (-6.96)  (0.34) (0.042) (1.17) 

Dummies for states? Yes Yes Yes  Yes Yes Yes  Yes Yes Yes 

Constant 0.92*** 0.52*** 0.95***  -13.3 1.47 -494.3***  22.6 13.9 53.3*** 

  (12.8) (4.21) (11.5)  (-0.56) (0.062) (-251.0)  (1.60) (0.89) (3.52) 

Sigma     44.0*** 43.7*** 40.1***  27.3*** 26.5*** 27.1*** 

     (37.7) (31.2) (53.6)  (43.6) (37.4) (22.3) 

Observations 7829 3605 4224  1234 896 338  1234 896 338 

Adjusted R2/Pseudo-R2 0.17 0.04 0.03         

 Note: Robust T-statistics in parentheses, and robust standard errors in brackets. *, **,*** Statistically significant at 10%, 5%, and 1% respectively.
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Table A.9 – Difference-in-Differences Estimates for the Impact of the Law of 1998 on 

Schooling outcome - 15 vs. 16 
Bandwidth of 16 weeks 

 

School Attendance 

 

All Boys Girls 

Eligible*D99 (DD) -0.016 0.0040 -0.038** 

 

(-1.18) (0.20) (-2.00) 

Eligible  -0.010 -0.025* 0.0060 

 (-1.02) (-1.73) (0.41) 

D99 (1998=0, 1999=1) 0.042*** 0.020 0.065*** 

 

(4.37) (1.47) (4.76) 

Male -0.0064 Na Na 

 

(-0.94) Na Na 

White 0.047*** 0.050*** 0.044*** 

 

(6.21) (4.62) (4.25) 

Years of Schooling of the  

Household Head 0.0048*** 0.0046*** 0.0049*** 

 

(4.44) (2.97) (3.25) 

Age of Household Head  -0.00010 -0.00029 0.000090 

 

(-0.38) (-0.74) (0.23) 

Gender of the Household 

 Head (=1 if male) 0.035 0.077 -0.010 

 

(1.03) (1.54) (-0.24) 

Metropolitan Region 0.011 -0.010 0.031** 

 

(1.07) (-0.72) (2.10) 

Dummies for states? Yes Yes Yes 

Constant 0.70*** 0.69*** 0.71*** 

  (12.5) (8.39) (9.38) 

Observations 9768 4855 4913 

Adjusted R2 0.01 0.01 0.02 
Note: Robust T-statistics in parentheses. *, **,*** Statistically significant at 10%, 5%, and 1% respectively. 
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Table A.10 – Parametric ITT Estimates for the Impact of the Apprenticeship Programme on the Extensive Margin of Labour Supply 
13 vs. 14 

Bandwidth of 16 weeks  

Polynomial degree Labour Force Participation 

 

Participation Rate in Formal Sector 

 

Formal Paid Work – occupation 

 

Informal 

 

Domestic Work 

 

All Boys Girls 

 

All Boys Girls 

 

All Boys Girls 

 

All Boys Girls 

 

All Boys Girls 

0 0.022 0.035* 0.0028  0.0044** 0.0032 0.0030  0.098** 0.077 0.069  0.018 0.032* 0.0062  0.016 -0.0087 0.010 

 

(1.32) (1.81) (0.17)  (2.04) (1.46) (1.48)  (2.15) (1.45) (1.43)  (1.04) (1.67) (0.35)  (0.58) (-0.24) (0.64) 

1 -0.084*** -0.047 -0.088***  0.0014 0.0034 0.0024  0.098 0.022 0.14  -0.086*** -0.050* -0.088***  0.026 -0.025 0.024 

 

(-4.13) (-1.60) (-3.74)  (0.49) (0.66) (1.11)  (1.51) (0.37) (1.40)  (-4.09) (-1.73) (-3.26)  (0.56) (-0.34) (0.94) 

2 -0.084*** -0.049 -0.087***  0.0016 0.0035 0.0023  0.097 0.030 0.14  -0.086*** -0.052* -0.085***  0.015 -0.031 0.025 

 

(-3.96) (-1.62) (-3.65)  (0.66) (0.70) (1.08)  (1.53) (0.57) (1.36)  (-3.98) (-1.74) (-3.19)  (0.33) (-0.43) (1.00) 

3 -0.067** 0.0040 -0.073**  -0.0019 0.0064 -0.0039  -0.011 0.026 0.012  -0.065** -0.0020 -0.049  0.093* 0.071 0.042 

 

(-2.18) (0.13) (-2.26)  (-0.66) (0.92) (-1.27)  (-0.16) (0.34) (0.15)  (-2.10) (-0.064) (-1.28)  (1.72) (0.72) (1.06) 

Spline linear -0.084*** -0.049 -0.088***  0.0018 0.0034 0.0025  0.098 0.029 0.15  -0.086*** -0.052* -0.086***  0.012 -0.031 0.026 

 

(-3.87) (-1.60) (-3.55)  (0.77) (0.70) (1.21)  (1.51) (0.55) (1.34)  (-3.89) (-1.72) (-3.16)  (0.27) (-0.43) (1.09) 

Spline quadratic -0.067* 0.031 -0.078*  -0.0012 0.0067 -0.0034  -0.038 0.043 -0.065  -0.066* 0.025 -0.055  0.13*** 0.12 0.046 

 

(-1.73) (0.99) (-1.88)  (-0.52) (0.96) (-1.30)  (-0.54) (0.55) (-0.71)  (-1.69) (0.80) (-1.23)  (2.69) (1.21) (1.28) 

 Observations 2440 1201 1239  2440 1201 1239  110 59 51  2440 1201 1239  2330 1141 1189 

Note: Clustered T-statistic in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. 
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Table A.11 – Parametric ITT Estimates for the Impact of the Apprenticeship Programme on Schooling outcome 
13 vs. 14 

Bandwidth of 16 weeks  

Polynomial degree 

 

School Attendance 

  

All Boys Girls 

0  -0.0012 0.0080 -0.0083 

 

 (-0.14) (0.64) (-0.61) 

1  0.025 0.059** 0.010 

 

 (1.55) (2.51) (0.39) 

2  0.025 0.057** 0.014 

 

 (1.52) (2.38) (0.53) 

3  0.040** 0.043 0.050* 

 

 (2.02) (1.34) (1.89) 

Spline linear  0.025 0.058** 0.014 

 

 (1.49) (2.36) (0.54) 

Spline quadratic  0.045* 0.042 0.062** 

 

 (1.90) (1.20) (2.41) 

Observations  2440 1201 1239 

Note: Clustered T-statistics in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% respectively.
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Table A.12 – Parametric ITT Estimates for the Impact of the Apprenticeship Programme on the Extensive Margin of Labour Supply - 15 vs. 16  
Bandwidth of 16 weeks  

Polynomial degree Labour Force Participation 

 

Participation Rate in Formal Sector 

 

Formal Paid Work – occupation 

 

Informal 

 

Domestic Work 

 

All Boys Girls 

 

All Boys Girls 

 

All Boys Girls 

 

All Boys Girls 

 

All Boys Girls 

0 0.041** 0.050** 0.034  0.0055 0.014 -0.0025  0.032 0.060 -0.018  0.037** 0.040 0.036  -0.016 -0.028 -0.018 

 

(2.29) (2.27) (1.20)  (0.93) (1.49) (-0.46)  (0.90) (1.34) (-0.41)  (2.07) (1.62) (1.32)  (-0.77) (-0.91) (-0.74) 

1 0.021 0.017 0.041  -0.0059 0.0073 -0.017**  -0.029 0.023 -0.12**  0.027 0.011 0.057  -0.0017 -0.0029 -0.044 

 

(0.65) (0.40) (0.71)  (-0.58) (0.43) (-2.36)  (-0.48) (0.28) (-1.96)  (0.86) (0.23) (0.99)  (-0.050) (-0.059) (-0.89) 

2 0.021 0.017 0.040  -0.0058 0.0075 -0.017**  -0.030 0.023 -0.12*  0.026 0.010 0.056  -0.0029 -0.0037 -0.043 

 

(0.65) (0.38) (0.71)  (-0.58) (0.46) (-2.35)  (-0.52) (0.29) (-1.97)  (0.86) (0.21) (1.01)  (-0.087) (-0.074) (-0.89) 

3 0.041 0.047 0.045  -0.017 -0.015 -0.019**  -0.12* -0.11 -0.14**  0.056 0.058 0.062  -0.011 -0.036 -0.021 

 

(1.02) (0.89) (0.61)  (-1.65) (-0.85) (-2.45)  (-1.90) (-1.32) (-2.32)  (1.40) (0.98) (0.85)  (-0.24) (-0.55) (-0.30) 

Spline linear 0.020 0.015 0.040  -0.0055 0.0082 -0.017**  -0.028 0.029 -0.12*  0.025 0.0076 0.056  -0.0024 -0.0026 -0.043 

 

(0.63) (0.34) (0.73)  (-0.56) (0.53) (-2.33)  (-0.48) (0.39) (-1.95)  (0.84) (0.16) (1.04)  (-0.075) (-0.052) (-0.88) 

Spline quadratic 0.032 0.019 0.049  -0.020** -0.017 -0.022***  -0.14** -0.11 -0.16**  0.049 0.032 0.070  -0.00046 0.0030 -0.010 

 

(0.79) (0.39) (0.63)  (-2.04) (-1.11) (-2.82)  (-2.22) (-1.41) (-2.40)  (1.24) (0.60) (0.91)  (-0.0099) (0.056) (-0.14) 

 Observations 2243 1113 1130  2243 1113 1130  356 228 128  2243 1113 1130  1887 885 1002 

Source: PNAD 2002.  

Note: Clustered T-statistic in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% respectively.  
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Table A.13 – Parametric ITT Estimates for the Impact of the Apprenticeship Programme on 

Schooling Outcome - 15 vs. 16  
Bandwidth of 16 weeks  

Polynomial degree 

 

School Attendance 

  

All Boys Girls 

0  -0.020 -0.020 -0.019 

 

 (-1.55) (-1.24) (-1.02) 

1  0.041*** 0.059** 0.020 

 

 (2.60) (2.27) (0.58) 

2  0.039** 0.058** 0.017 

 

 (2.44) (2.26) (0.49) 

3  0.025 0.0077 0.039 

 

 (1.22) (0.23) (0.91) 

Spline linear  0.040** 0.058** 0.018 

 

 (2.54) (2.26) (0.52) 

Spline quadratic  0.035* 0.0063 0.061 

 

 (1.79) (0.15) (1.64) 

Observations  2243 1113 1130 

Source: PNAD 2002.  

Note: Clustered T-statistics in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. 
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Table A.14 – Difference-in-Differences Estimates – Apprenticeship Programme of 2000 – Extensive Margin of Labour Supply - 15 vs. 16 
Bandwidth of 16 weeks  
  LFPR 

 

LFPR - Formal 

 

Formal Paid Work - Occupation 

 

LFPR - Informal 

 

All Boys Girls 

 

All Boys Girls 

 

All Boys Girls 

 

All Boys Girls 

T*Year -0.012 -0.013 -0.012  0.0046 0.0022 0.0067  -0.042 -0.050 -0.013  -0.017 -0.015 -0.018 

 

(-0.87) (-0.57) (-0.69)  (0.53) (0.16) (0.62)  (-0.78) (-0.81) (-0.10)  (-1.39) (-0.76) (-1.28) 

T (15=0; 16=1) 0.021*** 0.035*** 0.0088  0.0089** 0.017** 0.0018  0.074 0.071 0.059  0.012* 0.018 0.0069 

 

(2.92) (2.67) (1.28)  (2.39) (2.55) (0.48)  (1.56) (1.37) (0.49)  (1.93) (1.58) (1.19) 

Year (1999=0; 2002=1) 0.19*** 0.20*** 0.18***  0.076*** 0.086*** 0.066***  0.16*** 0.16*** 0.12  0.12*** 0.12*** 0.12*** 

 (19.6) (13.0) (15.2)  (12.5) (8.98) (8.88)  (3.80) (3.52) (1.16)  (13.6) (8.49) (11.4) 

Controls? Yes Yes Yes  Yes Yes Yes  Yes Yes Yes  Yes Yes Yes 

                

Observations 9876 4832 5044  9876 4832 5044  1637 1018 619  9876 4832 5044 

Adjusted R2 0.09 0.08 0.09  0.05 0.05 0.05  0.07 0.07 0.09  0.05 0.04 0.05 

Source: PNADs 1999 and 2002.  

Note: Robust T-statistics in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. The controls include dummy variables for gender (male), 

ethnicity (white), head years of schooling, age and gender (=1 if male), dummy for states and metropolitan area.  
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Table A.15 – Difference-in-Differences Estimates – Apprenticeship Programme of 2000 – Household Chores and Intensive Margin of Labour 

Supply - 15 vs. 16 
Bandwidth of 16 weeks  
  Household Chores 

 

Weekly Hours Worked – Formal 

 

Weekly Hours Worked – Informal 

 

All Boys Girls 

 

All Boys Girls 

 

All Boys Girls 

T*Year -0.035 -0.046 -0.031  -8.13 -9.42 -2.75  2.50 3.54 0.97 

 

(-1.49) (-1.17) (-1.12)  (-0.99) (-0.98) (-0.16)  (0.72) (0.90) (0.12) 

T (15=0; 16=1) 0.015 0.013 0.020  11.5 11.7 7.98  -5.11* -4.86 -5.02 

 

(1.13) (0.57) (1.26)  (1.51) (1.35) (0.49)  (-1.70) (-1.50) (-0.63) 

Year (1999=0; 2002=1) -0.0062 -0.023 0.013  23.4*** 25.5*** 14.7  -8.49*** -8.45*** -8.53 

 (-0.37) (-0.84) (0.64)  (3.54) (3.33) (1.10)  (-3.27) (-2.94) (-1.31) 

Controls? Yes Yes Yes  Yes Yes Yes  Yes Yes Yes 

            

Sigma     47.9*** 48.6*** 44.4***  28.5*** 28.0*** 28.0*** 

     (46.4) (36.4) (27.3)  (50.3) (39.8) (30.2) 

Observations 6155 2892 3263  1662 1038 624  1662 1038 624 

Adjusted R2/Pseudo-R2 0.15 0.04 0.02         

Source: PNADs 1999 and 2002.  

Note: Robust T-statistics in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. The controls include dummy variables for gender (male), 

ethnicity (white), head years of schooling, age and gender (=1 if male), dummy for states and metropolitan area.  
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Table A.16 – Difference-in-Differences Estimates – Apprenticeship Programme of 2000 – Schooling outcome - 15 vs. 16 
Bandwidth of 16 weeks  
  School Attendance 

 

All Boys Girls 

T*Year -0.021 -0.020 -0.022 

 

(-1.45) (-0.96) (-1.06) 

T (15=0; 16=1) -0.0071 -0.020* 0.0055 

 

(-0.94) (-1.82) (0.52) 

Year (1999=0; 2002=1) -0.19*** -0.19*** -0.20*** 

 (-18.7) (-13.0) (-13.3) 

Controls? Yes Yes Yes 

    

Observations 9876 4832 5044 

Adjusted R2 0.08 0.08 0.08 

Source: PNADs 1999 and 2002.  

Note: Robust T-statistics in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. The controls include dummy variables for gender (male), 

ethnicity (white), head years of schooling, age and gender (=1 if male), dummy for states and metropolitan area.  
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Table A.17 – Difference-in-Differences Estimates – Composite Effect of the Laws of 1998 and 2000 – Extensive Margin of Labour Supply - 15 

vs. 16 
Bandwidth of 16 weeks  
  LFPR 

 

LFPR - Formal 

 

Formal Paid Work - Occupation 

 

LFPR - Informal 

 

All Boys Girls 

 

All Boys Girls 

 

All Boys Girls 

 

All Boys Girls 

T*Year 0.0036 0.011 -0.0040  0.0056 0.012 -0.00057  0.057 0.060 0.064  -0.0020 -0.0011 -0.0034 

 

(0.25) (0.51) (-0.22)  (0.56) (0.80) (-0.045)  (1.12) (0.96) (0.68)  (-0.17) (-0.058) (-0.23) 

T (15=0; 16=1) 0.0063 0.0039 0.0087  0.0030 0.0011 0.0044  0.0021 -0.0018 0.0063  0.0033 0.0028 0.0043 

 

(0.51) (0.21) (0.54)  (0.33) (0.082) (0.38)  (0.087) (-0.055) (0.17)  (0.33) (0.18) (0.33) 

Year (1998=0; 2002=1) -0.23*** -0.26*** -0.21***  -0.12*** -0.13*** -0.10***  -0.20*** -0.20*** -0.20***  -0.12*** -0.13*** -0.11*** 

 (-22.8) (-16.2) (-15.9)  (-16.6) (-12.1) (-11.3)  (-5.55) (-4.56) (-2.90)  (-13.6) (-9.20) (-10.0) 

Controls? Yes Yes Yes  Yes Yes Yes  Yes Yes Yes  Yes Yes Yes 

                

Observations 10422 5076 5346  10422 5076 5346  1998 1172 826  10422 5076 5346 

Adjusted R2 0.11 0.11 0.09  0.06 0.07 0.06  0.08 0.07 0.08  0.05 0.04 0.04 

Source: PNADs 1998 and 2001.  

Note: Robust T-statistics in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. The controls include dummy variables for gender (male), 

ethnicity (white), head years of schooling, age and gender (=1 if male), dummy for states and metropolitan area.  
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Table A.18 – Linear Probability Model: Marginal Effects for Participation in the 

Formal Labour Force in 1997 
13 and 14 in Sept 1997 

VARIABLES 

 

Formal Worker 

Male 

 

0.027 

  

(0.48) 

White 

 

0.00030 

  

(0.0063) 

Hourly Wage (in ln) 0.059* 

 

(1.71) 

Household Income (in ln) – net of children’s income 0.056* 

  

(1.77) 

Mother's years of schooling 0.0043 

 

(0.43) 

Father's years of schooling 0.0017 

 

(1.05) 

Mother’s Age -0.0051 

  

(-0.55) 

Father’s Age 0.000029 

  

(0.015) 

# of Siblings 0-5 -0.017 

  

(-0.33) 

# of Siblings 6-11 -0.0062 

  

(-0.10) 

# of Siblings 12-13 -0.072 

  

(-1.25) 

# of Siblings 14-15 0.092** 

  

(2.02) 

# of Siblings 16-17 0.057 

  

(0.95) 

# of Siblings >=18 0.026 

  

(0.49) 

Land Title 

 

-0.032 

  

(-0.43) 

School Attendance -0.054 

  

(-0.79) 

Metropolitan Region 0.013 

  

(0.25) 

Constant 

 

-0.41* 

  

(-1.94) 

Observations 
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R2 

 

0.03 

Source: PNAD 1997. Robust standard errors in parentheses. ***, **, * Statistically significant at 1%, 

5%, and 10% respectively. 
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Table A.19 – Participation Rate and Occupation in the Formal Labour Force – 1997 
13 vs. 14 in Sept 1997 

Bandwidth of 52 weeks  

Functional Formal of h(z) Formal Labour Force 

 

Formal Occupation 

 
   

0 0.0096*** 

 

0.16*** 

 

(5.93) 

 

(6.39) 

1 0.0025 

 

0.11* 

 

(0.93) 

 

(1.89) 

2 0.0029 

 

0.11*** 

 

(1.21) 

 

(2.70) 

3 0.0022 

 

0.060 

 

(0.76) 

 

(0.94) 

Spline linear 0.0031 

 

0.12*** 

 

(1.29) 

 

(2.67) 

Spline quadratic 0.0026 

 

0.063 

 

(0.90) 

 

(1.07) 

Observations 7336 

 

315 

Note: Robust T-statistic in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% 

respectively. 
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APPENDIX 2: Tables and Figures from Chapter 2 
 

Table B.1 – Long Run Effects on Hourly Log Wages – White and Non-White Males 
26 Weeks Bandwidth – with controls 

 
White Males 

Polynomial degree 0 1 2 3 spline linear 
quadratic 

spline 0 1 2 3 spline linear quadratic spline 

D (=1 if 14 after Dec 

1998; =0 if 14 before 

Dec 1998) -0.016 0.038 0.038 0.16** 0.038 0.19** -0.064 -0.012 -0.0093 0.11 -0.0089 0.14 

 

(-0.52) (0.64) (0.66) (2.14) (0.65) (2.23) (-1.11) (-0.15) (-0.12) (1.31) (-0.11) (1.49) 

D*2008 

      

0.0027 0.0017 -0.0025 -0.0057 -0.0033 -0.0064 

       

(0.034) (0.022) (-0.032) (-0.074) (-0.043) (-0.082) 

D*2009 

      

0.068 0.064 0.061 0.071 0.060 0.068 

       

(0.89) (0.83) (0.80) (0.92) (0.79) (0.88) 

D*2011 

      

0.10 0.099 0.097 0.11 0.097 0.10 

       

(1.22) (1.20) (1.18) (1.29) (1.18) (1.27) 

Dummies for years Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 1793 1793 1793 1793 1793 1793 1793 1793 1793 1793 1793 1793 

             

 
Non-White Males 

Polynomial degree 0 1 2 3 spline linear 

quadratic 

spline 0 1 2 3 spline linear quadratic spline 

D (=1 if 14 after Dec 

1998; =0 if 14 before 

Dec 1998) -0.024 -0.027 -0.029 -0.11* -0.029 -0.12 -0.0011 -0.0018 -0.0043 -0.091 -0.0043 -0.098 

 

(-1.10) (-0.56) (-0.60) (-1.71) (-0.60) (-1.60) (-0.025) (-0.028) (-0.068) (-1.13) (-0.069) (-1.09) 

D*2008       0.022 0.022 0.020 0.024 0.020 0.023 

 

      (0.38) (0.38) (0.34) (0.41) (0.34) (0.40) 

D*2009       -0.11* -0.11* -0.11* -0.11* -0.11* -0.11* 

 

      (-1.77) (-1.77) (-1.77) (-1.69) (-1.77) (-1.71) 

D*2011       -0.0087 -0.0087 -0.0051 -0.0035 -0.0048 -0.0042 

 

      (-0.14) (-0.14) (-0.086) (-0.059) (-0.079) (-0.071) 

Dummies for years Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 2653 2653 2653 2653 2653 2653 2653 2653 2653 2653 2653 2653 

Source: PNADs 2007, 2008, 2009, and 2011. Clustered T-statistics in parenthesis. ***, **, * Statistically significant at 1%, 5%, and 10% respectively 
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Table B.2 – Long Run Effects on Being Employed – White and Non-White Males 
26 Weeks Bandwidth – with controls 

 
White Males 

Polynomial degree 0 1 2 3 spline linear 

quadratic 

spline 0 1 2 3 spline linear 

quadratic 

spline 

D (=1 if 14 after Dec 

1998; =0 if 14 before 

Dec 1998) 0.0053 -0.0036 -0.0033 -0.0016 -0.0035 -0.0048 0.020 0.0096 0.011 0.015 0.011 0.011 

 

(0.30) (-0.093) (-0.087) (-0.032) (-0.090) (-0.090) (0.46) (0.17) (0.21) (0.23) (0.21) (0.17) 

D*2008 

      

-0.047 -0.046 -0.049 -0.049 -0.049 -0.049 

       

(-0.82) (-0.82) (-0.87) (-0.87) (-0.87) (-0.87) 

D*2009 

      

0.0027 0.0036 0.0018 0.0020 0.0016 0.0017 

       

(0.046) (0.061) (0.030) (0.034) (0.028) (0.030) 

D*2011 

      

-0.013 -0.013 -0.014 -0.014 -0.014 -0.014 

       

(-0.24) (-0.24) (-0.27) (-0.27) (-0.27) (-0.27) 

Dummies for years Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 2174 2174 2174 2174 2174 2174 2174 2174 2174 2174 2174 2174 

             
 

Non-White Males 

Polynomial degree 0 1 2 3 spline linear 
quadratic 

spline 0 1 2 3 spline linear 
quadratic 

spline 
D (=1 if 14 after Dec 

1998; =0 if 14 before 

Dec 1998) 
-0.0056 -0.024 -0.024 -0.079** -0.024 -0.092** 0.036 0.019 0.018 -0.037 0.018 -0.050 

 

(-0.37) (-0.80) (-0.80) (-2.01) (-0.80) (-2.09) (1.15) (0.44) (0.44) (-0.74) (0.44) (-0.91) 

D*2008 

      

-0.037 -0.037 -0.037 -0.035 -0.037 -0.035 

       

(-0.88) (-0.88) (-0.88) (-0.83) (-0.88) (-0.82) 

D*2009 

      

-0.050 -0.049 -0.049 -0.046 -0.049 -0.047 

       

(-1.07) (-1.05) (-1.05) (-0.98) (-1.05) (-1.00) 

D*2011 

      

-0.073* -0.072* -0.072* -0.070 -0.072* -0.071* 

       

(-1.70) (-1.69) (-1.68) (-1.63) (-1.68) (-1.65) 

Dummies for years Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 3298 3298 3298 3298 3298 3298 3298 3298 3298 3298 3298 3298 

Source: PNADs 2007, 2008, 2009, and 2011.  
Note: Clustered T-statistics in parenthesis. ***, **, * Statistically significant at 1%, 5%, and 10% respectively 
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Table B.3 – Long Run Effects on Being a Formal Employee – White and Non-White Males 
26 Weeks Bandwidth – with controls 

 
White Males 

Polynomial degree 0 1 2 3 spline linear quadratic spline 0 1 2 3 spline linear quadratic spline 

D (=1 if 14 after Dec 

1998; =0 if 14 before 

Dec 1998) 0.0098 0.048 0.048 0.10* 0.048 0.10* 0.026 0.066 0.067 0.12 0.067 0.12 

 

(0.40) (1.04) (1.04) (1.76) (1.04) (1.66) (0.49) (0.96) (0.98) (1.54) (0.97) (1.47) 

D*2008 

      

-0.053 -0.053 -0.055 -0.056 -0.054 -0.055 

       

(-0.73) (-0.74) (-0.77) (-0.78) (-0.76) (-0.77) 

D*2009 

      

-0.025 -0.028 -0.030 -0.025 -0.029 -0.025 

       

(-0.36) (-0.41) (-0.43) (-0.37) (-0.42) (-0.37) 

D*2011 

      

0.0093 0.0086 0.0075 0.011 0.0079 0.010 

       

(0.13) (0.12) (0.11) (0.16) (0.11) (0.15) 

Dummies for years Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 2174 2174 2174 2174 2174 2174 2174 2174 2174 2174 2174 2174 

             

 
Non-White Males 

Polynomial degree 0 1 2 3 spline linear quadratic spline 0 1 2 3 spline linear quadratic spline 

D (=1 if 14 after Dec 

1998; =0 if 14 before 

Dec 1998) 0.0085 -0.029 -0.029 -0.095** -0.029 -0.11** 0.028 -0.0097 -0.0100 -0.078 -0.0099 -0.092 

 

(0.45) (-0.79) (-0.80) (-2.01) (-0.79) (-2.07) (0.72) (-0.19) (-0.20) (-1.26) (-0.20) (-1.37) 

D*2008 

      

-0.013 -0.013 -0.013 -0.011 -0.013 -0.011 

       

(-0.25) (-0.24) (-0.25) (-0.19) (-0.24) (-0.19) 

D*2009 

      

-0.035 -0.034 -0.034 -0.030 -0.034 -0.031 

       

(-0.60) (-0.59) (-0.58) (-0.52) (-0.58) (-0.53) 

D*2011 

      

-0.027 -0.026 -0.025 -0.023 -0.025 -0.024 

       

(-0.52) (-0.50) (-0.49) (-0.45) (-0.49) (-0.46) 

Dummies for years Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 3298 3298 3298 3298 3298 3298 3298 3298 3298 3298 3298 3298 

Source: PNADs 2007, 2008, 2009, and 2011.  

Note: Clustered T-statistics in parenthesis. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. 
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Table B.4 – Long Run Effects on Holding or Pursuing a College Degree – White and Non-White Males 
26 Weeks Bandwidth – with controls 

 
White Males 

Polynomial degree 0 1 2 3 spline linear 
quadratic 

spline 0 1 2 3 spline linear 
quadratic 

spline 
D (=1 if 14 after Dec 

1998; =0 if 14 before 

Dec 1998) 0.023 0.089** 0.091** 0.064 0.091** 0.059 0.020 0.087* 0.089* 0.063 0.089* 0.058 

 

(1.15) (2.30) (2.36) (1.30) (2.37) (1.11) (0.55) (1.68) (1.73) (1.06) (1.73) (0.91) 

D*2008 

      

0.0098 0.011 0.0098 0.0095 0.010 0.011 

       

(0.19) (0.22) (0.19) (0.19) (0.20) (0.21) 

D*2009 

      

-0.0017 -0.0051 -0.0058 -0.0083 -0.0057 -0.0076 

       

(-0.032) (-0.095) (-0.11) (-0.15) (-0.11) (-0.14) 

D*2011 

      

0.0045 0.0054 0.0048 0.0027 0.0050 0.0039 

       

(0.089) (0.11) (0.096) (0.054) (0.10) (0.078) 

Dummies for years Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 2972 2972 2972 2972 2972 2972 2972 2972 2972 2972 2972 2972 

             

 
Non-White Males 

Polynomial degree 0 1 2 3 spline linear 
quadratic 

spline 0 1 2 3 spline linear 
quadratic 

spline 
D (=1 if 14 after Dec 

1998; =0 if 14 before 

Dec 1998) 
-0.0012 -0.0009 -0.0010 -0.010 -0.0012 -0.015 -0.0051 -0.0048 -0.0047 -0.014 -0.0047 -0.019 

 

(-0.01) (-0.032) (-0.039) (-0.30) (-0.045) (-0.40) (-0.24) (-0.15) (-0.14) (-0.37) (-0.14) (-0.46) 

D*2008 

      

-0.00087 -0.001 -0.00015 0.00006 -0.000094 0.00016 

       

(-0.031) (-0.03) (-0.006) (0.0021) (-0.0034) (0.0058) 

D*2009 

      

0.0043 0.0043 0.0044 0.0048 0.0043 0.0046 

       

(0.12) (0.12) (0.12) (0.13) (0.12) (0.13) 

D*2011 

      

0.011 0.011 0.0096 0.0097 0.0092 0.0093 

       

(0.34) (0.34) (0.29) (0.29) (0.28) (0.28) 

Dummies for years Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 3936 3936 3936 3936 3936 3936 3936 3936 3936 3936 3936 3936 

Source: PNADs 2007, 2008, 2009, and 2011.  

Note: Clustered T-statistics in parenthesis. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. 

.
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Table B.5 – Effect of the Ban on Occupation of Adult Males – ITT Estimates 
26 Weeks Bandwidth – Homogeneous Time Effects  

  

Directors in 

General 

Science & 

Arts 
Technicians 

Administrative 

Services 
Service Sector 

Commerce 

Sector 

Agricultural 

Sector 

Civil 

Construction 

Army 

Force 
Undefined 

 
          

 
White Males 

D 0.027 0.047* 0.032 -0.014 0.0015 -0.010 0.0099 -0.076 -0.020* 0.0030 

 

(1.20) (1.93) (0.98) (-0.35) (0.044) (-0.27) (1.30) (-1.56) (-1.81) (1.04) 

Observations 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 

           

 
Non-White Males 

D 0.0054 0.015 -0.028 0.013 -0.030 -0.0034 0.011 0.010 0.0048 0.0030 

 

(0.35) (0.86) (-1.02) (0.35) (-0.91) (-0.11) (1.19) (0.23) (0.59) (1.03) 

Observations 2851 2851 2851 2851 2851 2851 2851 2851 2851 2851 

Source: PNADs 2007, 2008, 2009, and 2011.  

Note: Clustered T-statistics in parenthesis. * Statistically significant at the 10% level. 
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Table B.6 – Effect of the Ban on Occupation of Adult Males – ITT Estimates 
26 Weeks Bandwidth – Heterogeneous Time Effects 

  

Directors in 

General 

Science & 

Arts 
Technicians 

Administrative 

Services 
Service Sector 

Commerce 

Sector 

Agricultural 

Sector 

Civil 

Construction 

Army 

Force 
Undefined 

 
          

 
White Males 

D 0.053** 0.059 -0.00027 0.015 -0.0025 -0.0060 0.0088 -0.12 -0.0091 0.0051 

 

(2.05) (1.46) (-0.0063) (0.25) (-0.051) (-0.14) (0.77) (-1.63) (-0.45) (1.05) 

Dt2 -0.068** -0.023 0.065 -0.026 -0.00067 0.016 0.0028 0.041 0.00052 -0.0083 

 

(-2.49) (-0.58) (1.40) (-0.47) (-0.012) (0.37) (0.29) (0.56) (0.024) (-1.02) 

Dt3 -0.011 -0.013 0.026 0.0091 -0.017 -0.017 -0.0038 0.047 -0.021 -0.00044 

 

(-0.41) (-0.29) (0.52) (0.17) (-0.30) (-0.38) (-0.24) (0.70) (-0.96) (-0.87) 

Dt4 -0.022 -0.011 0.032 -0.079 0.028 -0.0096 0.0046 0.075 -0.017 -0.00039 

 

(-0.78) (-0.25) (0.79) (-1.60) (0.58) (-0.21) (0.49) (1.11) (-1.07) (-0.95) 

Observations 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 

           

 
Non-White Males 

D 0.0012 0.025 -0.0013 0.039 -0.061 0.017 0.016 -0.042 -0.00070 0.0066 

 

(0.069) (1.41) (-0.038) (0.92) (-1.63) (0.45) (0.98) (-0.71) (-0.049) (1.04) 

Dt2 0.011 0.013 -0.026 -0.065* 0.047 0.0051 -0.016 0.021 0.014 -0.0043 

 

(0.79) (0.74) (-0.74) (-1.69) (1.08) (0.15) (-1.21) (0.42) (0.95) (-1.01) 

Dt3 0.00069 -0.014 -0.040 -0.031 0.051 -0.046 -0.00046 0.091 -0.0061 -0.0045 

 

(0.033) (-0.63) (-1.21) (-0.71) (1.13) (-1.23) (-0.037) (1.65) (-0.39) (-1.02) 

Dt4 0.0045 -0.032 -0.035 -0.011 0.024 -0.031 -0.0044 0.078 0.012 -0.0045 

 

(0.24) (-1.67) (-1.13) (-0.31) (0.67) (-0.76) (-0.28) (1.17) (0.90) (-1.03) 

Observations 2851 2851 2851 2851 2851 2851 2851 2851 2851 2851 

Source: PNADs 2007, 2008, 2009, and 2011.  

Note: Clustered T-statistics in parenthesis. **, * Statistically significant at 5% and10% respectively. 
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Table B.7 – Long Run Effects on Hourly Log Wages – White and Non-white Males 
12 Weeks Bandwidth – Exclude School Attenders 

 
White Males 

Polynomial degree 0 1 2 3 spline linear 
quadratic 

spline 0 1 2 3 spline linear quadratic spline 

D (=1 if 14 after Dec 

1998; =0 if 14 before 

Dec 1998) 0.063 0.16 0.16 0.12 0.15 0.096 0.11 0.21 0.21 0.17 0.20 0.14 

 

(1.20) (1.44) (1.43) (0.84) (1.39) (0.54) (1.42) (1.60) (1.60) (1.04) (1.56) (0.72) 

D*2008 

      

-0.076 -0.078 -0.077 -0.081 -0.078 -0.072 

       

(-0.62) (-0.63) (-0.62) (-0.66) (-0.64) (-0.59) 

D*2009 

      

-0.12 -0.12 -0.12 -0.13 -0.12 -0.12 

       

(-1.07) (-1.09) (-1.08) (-1.11) (-1.07) (-1.05) 

D*2011 

      

0.0037 -0.00037 -0.00038 -0.0013 -0.00036 -0.00040 

       

(0.025) (-0.0025) (-0.0025) (-0.0087) (-0.0024) (-0.0027) 

Dummies for years Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 881 881 881 881 881 881 881 881 881 881 881 881 

             
 

Non-White Males 

 

0 1 2 3 spline linear 

quadratic 

spline 0 1 2 3 spline linear quadratic spline 

D (=1 if 14 after Dec 

1998; =0 if 14 before 

Dec 1998) -0.026 -0.014 -0.026 0.020 -0.030 0.054 0.028 0.040 0.027 0.069 0.024 0.11 

 

(-0.75) (-0.19) (-0.34) (0.20) (-0.40) (0.45) (0.41) (0.39) (0.27) (0.53) (0.23) (0.72) 

D*2008       -0.021 -0.022 -0.023 -0.020 -0.024 -0.017 

 

      (-0.25) (-0.26) (-0.27) (-0.23) (-0.28) (-0.20) 

D*2009       -0.18* -0.18* -0.18* -0.18* -0.18* -0.18* 

 

      (-1.77) (-1.77) (-1.75) (-1.74) (-1.74) (-1.76) 

D*2011       -0.0096 -0.010 -0.0068 -0.0086 -0.0077 -0.0085 

 

      (-0.11) (-0.11) (-0.076) (-0.096) (-0.087) (-0.095) 

Dummies for years Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 1294 1294 1294 1294 1294 1294 1294 1294 1294 1294 1294 1294 

Source: PNADs 2007, 2008, 2009, and 2011.  

Note: Clustered T-statistics in parenthesis. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. 
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Table B.8 – Long Run Effects on Being Employed – White and Non-white Males 
12 Weeks Bandwidth – Exclude School Attenders 

 
White Males 

Polynomial degree 0 1 2 3 spline linear 

quadratic 

spline 0 1 2 3 spline linear 

quadratic 

spline 

D (=1 if 14 after Dec 

1998; =0 if 14 before 

Dec 1998) -0.0021 -0.027 -0.028 -0.048 -0.028 -0.054 0.028 0.00050 -0.00068 -0.023 -0.00089 -0.028 

 

(-0.082) (-0.54) (-0.56) (-0.77) (-0.55) (-0.72) (0.43) (0.0061) (-0.0082) (-0.26) (-0.011) (-0.28) 

D*2008 

      

-0.10 -0.10 -0.10 -0.10 -0.10 -0.10 

       

(-1.14) (-1.15) (-1.16) (-1.18) (-1.15) (-1.18) 

D*2009 

      

-0.024 -0.023 -0.023 -0.026 -0.023 -0.027 

       

(-0.28) (-0.27) (-0.27) (-0.31) (-0.27) (-0.31) 

D*2011 

      

0.0036 0.0046 0.0043 0.0037 0.0044 0.0041 

       

(0.048) (0.060) (0.056) (0.048) (0.057) (0.054) 

Dummies for years Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 1074 1074 1074 1074 1074 1074 1074 1074 1074 1074 1074 1074 

             

 
Non-White Males 

Polynomial degree 0 1 2 3 spline linear 
quadratic 

spline 0 1 2 3 spline linear 
quadratic 

spline 
D (=1 if 14 after Dec 

1998; =0 if 14 before 

Dec 1998) -0.0082 -0.077* -0.081** -0.022 -0.083** 0.0091 0.081 0.013 0.0095 0.069 0.0075 0.099 

 

(-0.39) (-1.89) (-1.99) (-0.41) (-2.01) (0.15) (1.65) (0.21) (0.15) (0.95) (0.12) (1.25) 

D*2008 

      

-0.13* -0.12* -0.12* -0.12* -0.12* -0.12* 

       

(-1.97) (-1.85) (-1.86) (-1.80) (-1.86) (-1.77) 

D*2009 

      

-0.094 -0.091 -0.091 -0.091 -0.091 -0.091 

       

(-1.43) (-1.38) (-1.38) (-1.37) (-1.38) (-1.38) 

D*2011 

      

-0.12* -0.12* -0.12* -0.12* -0.12* -0.13* 

       

(-2.39) (-2.38) (-2.37) (-2.38) (-2.37) (-2.44) 

Dummies for years Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 1591 1591 1591 1591 1591 1591 1591 1591 1591 1591 1591 1591 

Source: PNADs 2007, 2008, 2009, and 2011.  

Note: Clustered T-statistics in parenthesis. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. 



 

 

205 

Table B.9 – Long Run Effects on Being a Formal Employee – White and Non-white Males 
12 Weeks Bandwidth – Exclude School Attenders 

 
White Males 

Polynomial degree 0 1 2 3 spline linear quadratic spline 0 1 2 3 spline linear quadratic spline 

D (=1 if 14 after Dec 

1998; =0 if 14 before 

Dec 1998) 0.044 0.0071 0.014 -0.011 0.019 -0.017 0.095 0.058 0.063 0.035 0.069 0.031 

 

(1.26) (0.11) (0.23) (-0.15) (0.30) (-0.19) (1.22) (0.56) (0.61) (0.33) (0.66) (0.26) 

D*2008 

      

-0.090 -0.090 -0.087 -0.090 -0.088 -0.093 

       

(-0.83) (-0.83) (-0.80) (-0.83) (-0.81) (-0.85) 

D*2009 

      

-0.065 -0.064 -0.064 -0.068 -0.065 -0.070 

       

(-0.65) (-0.63) (-0.63) (-0.65) (-0.64) (-0.67) 

D*2011 

      

-0.043 -0.042 -0.040 -0.041 -0.040 -0.040 

       

(-0.42) (-0.41) (-0.39) (-0.39) (-0.38) (-0.38) 

Dummies for years Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 1028 1028 1028 1028 1028 1028 1028 1028 1028 1028 1028 1028 

             

 
Non-White Males 

Polynomial degree 0 1 2 3 spline linear quadratic spline 0 1 2 3 spline linear quadratic spline 

D (=1 if 14 after Dec 

1998; =0 if 14 before 

Dec 1998) 0.0044 -0.11** -0.11** -0.0097 -0.12** 0.043 0.11** 0.0018 -0.0053 0.10 -0.0100 0.16 

 

(0.16) (-2.00) (-2.16) (-0.15) (-2.22) (0.56) (2.00) (0.023) (-0.070) (1.19) (-0.13) (1.62) 

D*2008 

      

-0.13* -0.12 -0.12 -0.11 -0.12 -0.11 

       

(-1.68) (-1.54) (-1.57) (-1.48) (-1.58) (-1.46) 

D*2009 

      

-0.12 -0.11 -0.11 -0.11 -0.11 -0.11 

       

(-1.39) (-1.34) (-1.35) (-1.34) (-1.34) (-1.36) 

D*2011 

      

-0.17** -0.16** -0.17** -0.17** -0.17** -0.18** 

       

(-2.21) (-2.15) (-2.16) (-2.25) (-2.17) (-2.27) 

Dummies for years Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 1539 1539 1539 1539 1539 1539 1539 1539 1539 1539 1539 1539 

Source: PNADs 2007, 2008, 2009, and 2011.  

Note: Clustered T-statistics in parenthesis. ***, **, * Statistically significant at 1%, 5%, and 10% respectively
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Table B.10 – Long Run Effects on Holding or Being Pursuing a College Degree –White and Non-White Males 
12 Weeks Bandwidth 

 
White Males 

Polynomial degree 0 1 2 3 spline linear 

quadratic 

spline 0 1 2 3 spline linear 

quadratic 

spline 

D (=1 if 14 after Dec 

1998; =0 if 14 before 

Dec 1998) 0.073** 0.12** 0.12** 0.16** 0.12** 0.24*** 0.069 0.12 0.12 0.16* 0.12 0.19* 

 

(2.48) (2.39) (2.32) (2.46) (2.27) (2.81) (1.20) (1.61) (1.59) (1.93) (1.57) (1.94) 

D*2008 

      

0.029 0.030 0.029 0.032 0.030 0.030 

       

(0.36) (0.37) (0.36) (0.39) (0.36) (0.37) 

D*2009 

      

-0.0081 -0.0078 -0.0078 -0.0046 -0.0078 -0.0061 

       

(-0.10) (-0.099) (-0.098) (-0.057) (-0.098) (-0.077) 

D*2011 

      

-0.0032 -0.0042 -0.0043 -0.0053 -0.0043 -0.0054 

       

(-0.043) (-0.057) (-0.059) (-0.073) (-0.058) (-0.074) 

Dummies for years Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 1485 1485 1485 1485 1485 1485 1485 1485 1485 1485 1485 1485 

             

 
Non-White Males 

Polynomial degree 0 1 2 3 spline linear 

quadratic 

spline 0 1 2 3 spline linear 

quadratic 

spline 

D (=1 if 14 after Dec 

1998; =0 if 14 before 

Dec 1998) 0.0052 0.014 0.012 -0.032 0.011 -0.058 0.040 0.051 0.050 0.0047 0.049 -0.014 

 

(0.27) (0.37) (0.33) (-0.72) (0.30) (-1.22) (1.14) (1.08) (1.06) (0.089) (1.03) (-0.25) 

D*2008 

      

-0.059 -0.060 -0.060 -0.063 -0.060 -0.064 

       

(-1.25) (-1.28) (-1.29) (-1.35) (-1.30) (-1.38) 

D*2009 

      

-0.037 -0.038 -0.038 -0.038 -0.038 -0.038 

       

(-0.66) (-0.67) (-0.68) (-0.68) (-0.68) (-0.67) 

D*2011 

      

-0.044 -0.044 -0.045 -0.042 -0.045 -0.042 

       

(-0.85) (-0.85) (-0.86) (-0.81) (-0.86) (-0.81) 

Dummies for years Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 1938 1938 1938 1938 1938 1938 1938 1938 1938 1938 1938 1938 

Source: PNADs 2007, 2008, 2009, and 2011.  

Note: Clustered T-statistics in parenthesis. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. 
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Table B.11 – Long Run QTE on Hourly Log Wages –White and Non-White Males 
12 Weeks Bandwidth – Exclude School Attenders 

  Q10 Q25 Q50 Q75 Q90 

 
White 

D 0.28* 0.095 0.14 0.079 -0.053 

 

(1.94) (0.64) (0.84) (0.28) (-0.13) 

 
Non-White 

D 0.068 0.0055 -0.21* -0.026 0.50** 

  (0.64) (0.059) (-1.83) (-0.18) (2.03) 

Source: PNADs 2007, 2008, 2009, and 2011.  

Note: Clustered T-statistics in parenthesis. ***, **, * Statistically significant at 1%, 5%, and 10% respectively  

 

 

 

Table B.12 – Long Run QTE on Hourly Log Wages –White and Non-White Males 
12 Weeks Bandwidth – Exclude School Attenders 

 

White 

 

Non-White 

 
Q10 Q25 Q50 Q75 Q90 

 
Q10 Q25 Q50 Q75 Q90 

            D 0.32 0.19 0.22 0.11 -0.044 

 

0.14 0.029 -0.21* -0.0038 0.42 

 

(1.56) (1.03) (1.18) (0.38) (-0.11) 

 

(1.00) (0.25) (-1.65) (-0.025) (1.59) 

D*2008 0.049 -0.080 -0.012 0.029 -0.16 

 

0.0037 -0.077 0.028 -0.023 -0.14 

 

(0.24) (-0.51) (-0.076) (0.14) (-0.61) 

 

(0.033) (-0.69) (0.26) (-0.23) (-1.09) 

D*2009 -0.14 -0.076 -0.11 0.014 0.040 

 

-0.14 -0.13 -0.22** -0.15 -0.25 

 

(-0.82) (-0.50) (-0.74) (0.066) (0.13) 

 

(-1.31) (-1.38) (-2.08) (-1.37) (-1.41) 

D*2011 -0.062 -0.14 -0.089 -0.045 0.083 

 

-0.088 -0.029 0.072 -0.057 0.32 

 

(-0.35) (-0.95) (-0.64) (-0.21) (0.28) 

 

(-0.89) (-0.35) (0.77) (-0.47) (1.52) 

Dummies for years? Yes Yes Yes Yes Yes 

 

Yes Yes Yes Yes Yes 

Observations 881 881 881 881 881 

 

1294 1294 1294 1294 1294 

Source: PNADs 2007, 2008, 2009, and 2011.  

Note: Clustered T-statistics in parenthesis. ***, **, * Statistically significant at 1%, 5%, and 10% respectively 
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Table B.13 –Placebo Effects on Hourly Log Wages – White and Non-White Males 
26 Weeks Bandwidth – Exclude School Attenders 

 
White Males 

Polynomial degree 0 1 2 3 spline linear 
quadratic 

spline 0 1 2 3 spline linear quadratic spline 

D (=1 if 14 after June 

1999; =0 if 14 before 

June) -0.048* 0.025 0.025 -0.024 0.026 0.013 -0.047 0.025 0.026 -0.024 0.027 -0.046 

 

(-1.74) (0.46) (0.47) (-0.35) (0.49) (0.21) (-0.94) (0.36) (0.37) (-0.30) (0.39) (-0.55) 

D*2008 

      

0.021 0.019 0.019 0.020 0.019 0.020 

       

(0.29) (0.27) (0.27) (0.28) (0.27) (0.28) 

D*2009 

      

-0.056 -0.055 -0.055 -0.058 -0.056 -0.062 

       

(-0.78) (-0.78) (-0.78) (-0.81) (-0.79) (-0.87) 

D*2011 

      

0.034 0.035 0.035 0.033 0.034 0.031 

       

(0.44) (0.46) (0.45) (0.44) (0.45) (0.41) 

Dummies for years Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 2613 2613 2613 2613 2613 2613 2613 2613 2613 2613 2613 2613 

             

 
Non-White Males 

Polynomial degree 0 1 2 3 spline linear 

quadratic 

spline 0 1 2 3 spline linear quadratic spline 

D (=1 if 14 after June 

1999; =0 if 14 before 

June) -0.026 -0.049 -0.050 -0.038 -0.049 -0.055 -0.013 -0.037 -0.037 -0.023 -0.037 -0.022 

 

(-1.14) (-1.08) (-1.09) (-0.63) (-1.08) (-0.92) (-0.31) (-0.65) (-0.66) (-0.33) (-0.65) (-0.30) 

D*2008       -0.040 -0.040 -0.039 -0.040 -0.039 -0.040 

 

      (-0.64) (-0.65) (-0.64) (-0.65) (-0.64) (-0.65) 

D*2009       0.027 0.026 0.026 0.025 0.026 0.025 

 

      (0.42) (0.41) (0.40) (0.40) (0.40) (0.39) 

D*2011       -0.033 -0.035 -0.035 -0.035 -0.035 -0.036 

 

      (-0.56) (-0.58) (-0.59) (-0.60) (-0.59) (-0.60) 

Dummies for years Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 3271 3271 3271 3271 3271 3271 3271 3271 3271 3271 3271 3271 

Source: PNADs 2007, 2008, 2009, and 2011.  

Note: Clustered T-statistics in parenthesis. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. 
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Table B.14 – Placebo Effects on Being Employed – White and Non-White Males 
26 Weeks Bandwidth – Exclude School Attenders 

 
White Males 

Polynomial degree 0 1 2 3 spline linear 

quadratic 

spline 0 1 2 3 spline linear 

quadratic 

spline 

D (=1 if 14 after June 

1999; =0 if 14 before 

June) -0.032** -0.029 -0.028 -0.017 -0.028 -0.0017 -0.049 -0.047 -0.046 -0.034 -0.045 -0.035 

 

(-2.04) (-0.95) (-0.93) (-0.43) (-0.91) (-0.043) (-1.51) (-1.17) (-1.15) (-0.72) (-1.13) (-0.67) 

D*2008 

      

0.057 0.057 0.057 0.057 0.057 0.057 

       

(1.24) (1.24) (1.24) (1.24) (1.24) (1.24) 

D*2009 

      

0.0087 0.0087 0.0082 0.0085 0.0076 0.0065 

       

(0.20) (0.20) (0.19) (0.20) (0.18) (0.15) 

D*2011 

      

0.0050 0.0049 0.0048 0.0051 0.0047 0.0046 

       

(0.11) (0.11) (0.11) (0.12) (0.11) (0.11) 

Dummies for years Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 3386 3386 3386 3386 3386 3386 3386 3386 3386 3386 3386 3386 

             

 
Non-White Males 

Polynomial degree 0 1 2 3 spline linear 
quadratic 

spline 0 1 2 3 spline linear 
quadratic 

spline 
D (=1 if 14 after June 

1999; =0 if 14 before 

June) -0.0030 -0.025 -0.025 -0.021 -0.025 -0.044 0.020 -0.0011 -0.0013 0.0038 -0.0012 0.0038 

 

(-0.21) (-0.87) (-0.87) (-0.52) (-0.86) (-1.17) (0.75) (-0.030) (-0.035) (0.080) (-0.033) (0.072) 

D*2008 

      

-0.036 -0.036 -0.035 -0.036 -0.036 -0.036 

       

(-0.92) (-0.94) (-0.92) (-0.92) (-0.92) (-0.93) 

D*2009 

      

-0.046 -0.046 -0.046 -0.046 -0.046 -0.047 

       

(-1.22) (-1.22) (-1.22) (-1.22) (-1.22) (-1.24) 

D*2011 

      

-0.013 -0.014 -0.014 -0.014 -0.014 -0.015 

       

(-0.32) (-0.35) (-0.36) (-0.36) (-0.35) (-0.38) 

Dummies for years Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 4308 4308 4308 4308 4308 4308 4308 4308 4308 4308 4308 4308 

Source: PNADs 2007, 2008, 2009, and 2011.  

Note: Clustered T-statistics in parenthesis. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. 
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Table B.15 – Placebo Effects on Being a Formal Employee – White and Non-White Males 
26 Weeks Bandwidth – Exclude School Attenders 

 
White Males 

Polynomial degree 0 1 2 3 spline linear quadratic spline 0 1 2 3 spline linear quadratic spline 

D (=1 if 14 after June 

1999; =0 if 14 before 

June) -0.051** -0.0019 -0.0031 -0.024 -0.0032 0.0082 -0.056 -0.0075 -0.0089 -0.034 -0.0090 -0.043 

 

(-2.46) (-0.049) (-0.079) (-0.47) (-0.082) (0.16) (-1.36) (-0.14) (-0.17) (-0.56) (-0.17) (-0.66) 

D*2008 

      

0.015 0.013 0.013 0.014 0.013 0.014 

       

(0.25) (0.22) (0.22) (0.23) (0.22) (0.23) 

D*2009 

      

-0.037 -0.036 -0.036 -0.037 -0.036 -0.039 

       

(-0.66) (-0.64) (-0.63) (-0.65) (-0.63) (-0.68) 

D*2011 

      

0.043 0.044 0.044 0.043 0.044 0.042 

       

(0.73) (0.74) (0.75) (0.73) (0.75) (0.71) 

Dummies for years Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 2649 2649 2649 2649 2649 2649 2649 2649 2649 2649 2649 2649 

             

 
Non-White Males 

Polynomial degree 0 1 2 3 spline linear quadratic spline 0 1 2 3 spline linear quadratic spline 

D (=1 if 14 after June 

1999; =0 if 14 before 

June) 
-0.013 -0.016 -0.015 0.025 -0.015 -0.0049 0.0058 0.0020 0.0020 0.045 0.0022 0.052 

 

(-0.65) (-0.39) (-0.39) (0.47) (-0.38) (-0.095) (0.16) (0.040) (0.039) (0.73) (0.043) (0.76) 

D*2008 

      

-0.024 -0.024 -0.022 -0.025 -0.022 -0.024 

       

(-0.44) (-0.44) (-0.41) (-0.46) (-0.42) (-0.45) 

D*2009 

      

-0.012 -0.012 -0.013 -0.013 -0.013 -0.014 

       

(-0.24) (-0.24) (-0.25) (-0.26) (-0.25) (-0.27) 

D*2011 

      

-0.038 -0.039 -0.039 -0.039 -0.038 -0.039 

       

(-0.74) (-0.74) (-0.74) (-0.74) (-0.74) (-0.74) 

Dummies for years Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 3274 3274 3274 3274 3274 3274 3274 3274 3274 3274 3274 3274 

Source: PNADs 2007, 2008, 2009, and 2011.  

Note: Clustered T-statistics in parenthesis. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. 
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Table B.16 – Placebo Effects on Holding or Being Pursuing a College Degree –White and Non-White Males 
26 Weeks Bandwidth 

 
White Males 

D (=1 if 14 after June 

1999; =0 if 14 before 

June) 
0 1 2 3 spline linear 

quadratic 

spline 0 1 2 3 spline linear 

quadratic 

spline 

D (=1 if 14 after June 

1999; =0 if 14 before 

June) -0.0045 0.012 0.011 0.0022 0.010 -0.023 -0.050 -0.034 -0.035 -0.046 -0.037 -0.050 

 

(-0.23) (0.32) (0.30) (0.046) (0.27) (-0.52) (-1.38) (-0.70) (-0.73) (-0.81) (-0.75) (-0.82) 

D*2008 

      

0.074 0.073 0.073 0.073 0.073 0.073 

       

(1.41) (1.39) (1.39) (1.39) (1.39) (1.40) 

D*2009 

      

0.024 0.024 0.025 0.025 0.026 0.027 

       

(0.46) (0.46) (0.48) (0.47) (0.50) (0.52) 

D*2011 

      

0.086* 0.085* 0.086* 0.085* 0.086* 0.086* 

       

(1.70) (1.70) (1.70) (1.70) (1.71) (1.70) 

Dummies for years Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 3386 3386 3386 3386 3386 3386 3386 3386 3386 3386 3386 3386 

             

 
Non-White Males 

Polynomial degree 0 1 2 3 spline linear 

quadratic 

spline 0 1 2 3 spline linear 

quadratic 

spline 

D (=1 if 14 after June 

1999; =0 if 14 before 

June) 
0.0078 0.022 0.022 0.018 0.022 -0.0012 0.0054 0.020 0.020 0.015 0.020 0.010 

 

(0.65) (1.00) (1.01) (0.64) (1.00) (-0.044) (0.26) (0.74) (0.75) (0.45) (0.76) (0.29) 

D*2008 

      

0.033 0.033 0.032 0.032 0.032 0.032 

       

(1.11) (1.12) (1.10) (1.11) (1.09) (1.09) 

D*2009 

      

-0.022 -0.022 -0.022 -0.022 -0.022 -0.023 

       

(-0.64) (-0.63) (-0.63) (-0.63) (-0.63) (-0.65) 

D*2011 

      

-0.0014 
-

0.00061 

-

0.00050 
-0.00037 -0.00065 -0.0014 

       

(-0.044) (-0.019) (-0.015) (-0.011) (-0.020) (-0.042) 

Dummies for years Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 4308 4308 4308 4308 4308 4308 4308 4308 4308 4308 4308 4308 

Source: PNADs 2007, 2008, 2009, and 2011.  

Note: Clustered T-statistics in parenthesis. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. 
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Table B.17 – Short Run ITT Estimates for Elasticity of Labour Supply 
12 Weeks Bandwidth 

 

h(z) specifications 

 

0 Linear Quadratic Cubic 

Spline 

linear 

Spline 

quadratic 

Spline 

cubic 

        Ln WHW -0.45*** -0.53*** -0.53*** -0.52*** -0.53*** -0.50*** -0.52*** 

 (-5.31) (-7.12) (-7.19) (-6.63) (-7.17) (-6.22) (-6.14) 

Ln WHW*D1 0.024 0.23*** 0.23*** 0.17** 0.23*** 0.19* 0.15 

 

(0.50) (2.99) (3.00) (2.01) (3.04) (1.96) (1.24) 

Elasticity -0.43 -0.3 -0.3 -0.35 -0.3 -0.31 -0.37 

        

F-test (Ln WHW + Ln WHW*D1 =0) 30.39 8.96 9.68 15.82 9.55 10.22 14.54 

P-value 0.000 0.006 0.005 0.005 0.005 0.004 0.001 

Observations 72 72 72 72 72 72 72 

Adjusted R2 0.18 0.27 0.27 0.27 0.27 0.28 0.29 

Source: PNAD 1999. 

Note: Clustered T-statistics in parenthesis. ****, **, * Statistically significant at 1%, 5%, and 10% respectively.  



 

 

213 

Placebo: Short Run 
 
 
Figure B.1 – Local Linear Regression for Labour Force Participation Rate  
Non-white Males – 12 Months Bandwidth 

 
 

Figure B.2 – Local Linear Regression for Labour Force Participation Rate  
White Males – 12 Months Bandwidth 
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Long Run 
 

 

Figure B.3 – Local Linear Regression for Participation Rate in the Formal Labour Force 

– Long Run 
White Males – 12 Months Bandwidth 

 
 

 

Figure B.4 – Local Linear Regression for Having College Degree – Long Run 
Non-white Males – 12 Months Bandwidth 
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APPENDIX 3: Tables and Figures from Chapter 3 

 
Table C.1 – Descriptive Statistics and Difference in Means 
Younger siblings aged 10 to 13 with a brother aged 14 around December 1998 

20 Weeks Bandwidth 

 

Siblings with older brother non-affected by the 

law 

(14 before Dec 1998) 

 

Siblings with older brother affected by 

the law 

(14 after Dec 1998) 

  

 

Mean SE 

 

Mean SE Difference 

Clustered 

T-statistic 

Outcomes        

Labour force participation rate 0.03 0.18  0.02 0.15 0.01 (0.67) 

Domestic work 0.67 0.47  0.70 0.46 -0.03 (-0.64) 

School attendance 0.97 0.18  0.98 0.15 -0.01 (-0.67) 

Years of schooling 3.41 1.57 

 

3.28 1.46 0.13 (0.97) 

        

Covariates        

White  0.43 0.50  0.45 0.50 -0.02 (-0.37) 

Male  0.48 0.50  0.51 0.50 -0.03 (-0.69) 

Single Parent Families 0.45 0.50  0.45 0.50 0.00 (0.04) 

Head’s years of schooling 6.13 4.23  5.60 4.30 0.53 (1.44) 

Head’s age 41.67 5.50  41.38 6.46 0.29 (0.56) 

Metropolitan region 0.58 0.49 

 

0.67 0.47 -0.09** (-2.23) 

Household size 5.72 1.76 

 

5.85 1.77 -0.13 (-0.84) 

# of Siblings (0 to 13) 0.43 0.58  0.40 0.59 0.03 (0.52) 

# of Siblings (15 to 21) 0.80 0.85  0.63 0.86 0.17** (2.28) 

Household Income (net of children’s 

income) 476.78 593.68 

 

545.41 700.71 -68.63 (-1.23) 

Observations 244   256 

   Source: PNAD 1999. *** Statistically significant at 1%.
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Table C.2 – Descriptive Statistics and Difference in Means 
Household head aged 30 to 60 with a son aged 14 around December 1998 

20 Weeks Bandwidth 

 

Household head with a son non-affected by the 

law 

(14 before Dec 1998) 

 

Household head with a son affected by 

the law 

(14 after Dec 1998) 

  

 

Mean SE 

 

Mean SE Difference 

Clustered 

T-statistic 

Outcomes        

Labour force participation rate 0.82 0.39  0.81 0.39 0.01 (0.24) 

Participation rate – formal labour force 0.61 0.49  0.51 0.50 0.09** (2.39) 

Participation rate – informal labour force 0.42 0.49  0.48 0.50 -0.06** (-2.00) 

Weekly hours worked 45.50 12.89  44.00 12.83 1.51 (1.62) 

        

Covariates        

Age 42.88 6.28  42.73 6.66 0.16 (0.39) 

White  0.51 0.50  0.51 0.50 -0.001 (-0.05) 

Years of schooling 6.72 4.24  6.70 4.36 0.03 (0.11) 

Metropolitan region 0.63 0.48 

 

0.70 0.46 -0.06** (-2.20) 

Household size 4.88 1.52 

 

4.94 1.54 -0.06 (-0.65) 

Household Income (net of children’s 

income) 675.38 896.03 

 

672.75 887.57 2.63 (0.05) 

Observations 503   511 

   Source: PNAD 1999. *** Statistically significant at 1%. 
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Family Composition and Labour Force Status of Parents  
 

 

Robustness Check 
 

 

Table C.3 – Parametric ITT Estimates of the Impact of the Ban on Younger Siblings – Single Parent Households 
20 Weeks Bandwidth 
Work Outcomes 

 All   Brothers 

 

Sisters 

h(z) LFPR Domestic Work   LFPR Domestic Work 

 

LFPR Domestic Work 

     

     Linear 0.012 0.12   0.068 0.25  -0.056 0.063 

 (0.22) (0.83)   (0.75) (1.13)  (-1.00) (0.39) 

Quadratic 0.016 0.10   0.071 0.24  -0.051 0.042 

 (0.31) (0.71)   (0.79) (1.09)  (-0.98) (-1.06) 

Spline Linear 0.016 0.11   0.070 0.24  -0.050 0.047 

 (0.31) (0.73)   (0.78) (1.10)  (-1.00) (0.29) 

          

Controls? No No   No No 

 

No No 

Observations 221 214   110 104  111 110 

Source: PNAD 1999.  

Note: Clustered T-statistic in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. 
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Table C.4 – Parametric ITT Estimates of the Impact of the Ban on Younger Siblings – Single Parent Households  
20 Weeks Bandwidth 
School Outcomes 

 All   Brothers 

 

Sisters 

h(z) School Attendance Years of Schooling   School Attendance Years of Schooling 

 

School Attendance Years of Schooling 

     

     Linear 0.054 -0.28   0.059 0.30  0.056 -0.77 

 (1.60) (-0.59)   (1.31) (0.45)  (1.00) (-1.27) 

Quadratic 0.055* -0.27   0.063 0.31  0.051 -0.73 

 (1.68) (-0.56)   (1.44) (0.47)  (0.98) (-0.60) 

Spline Linear 0.057* -0.27   0.066 0.30  0.050 -0.73 

 (1.76) (-0.56)   (1.52) (0.46)  (1.00) (-1.22) 

          

Controls? No No   No No 

 

No No 

Observations 221 221   110 110  111 111 

Source: PNAD 1999.  

Note: Clustered T-statistic in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. 
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Table C.5 – Impact of the Ban on Labour Force Status of the Household Head – Single Parent Households 
20 Weeks Bandwidth 

 Mother 

 

Father 

h(z) LFPR 

Hours Worked per 

Week 

 

LFPR 

Hours Worked per 

Week 

 

     Linear -0.058 11.3**  -0.086 0.77 

 (-0.40) (2.36)  (-0.78) (0.18) 

Quadratic -0.066 10.7**  -0.094 -0.48 

 (-0.46) (2.21)  (-0.81) (-0.11) 

Spline Linear -0.068 9.98**  -0.090 -1.27 

 (-0.47) (2.06)  (-0.73) (-0.30) 

      

Controls? No No 

 

No No 

Sigma  9.61***   9.45*** 

  (11.9)   (13.3) 

Observations 197 71  98 88 

Source: PNAD 1999.  

Note: Clustered T-statistic in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. Given the proportion of parents not participating in the labour 

force, the coefficients on weekly hours worked refer to Tobit estimates.  
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Table C.6 – Impact of the Ban on Labour Force Status of Parents – Single Parent Households 
20 weeks bandwidth – with controls 

  Single Mothers 

 

Single Fathers 

h(z)  Formal Informal 

 

Formal Informal 

  

     Linear  0.032 -0.091  -0.54*** 0.46*** 

  (0.24) (-1.02)  (-3.54) (3.00) 

Quadratic  0.028 -0.095  -0.60*** 0.50*** 

  (0.21) (-1.06)  (-3.78) (3.13) 

Spline Linear  0.027 -0.095  -0.61*** 0.52*** 

  (0.20) (-1.06)  (-3.77) (3.13) 

Controls?  No No  No No 

       

Observations  197 197  98 98 

Source: PNAD 1999.  

Note: Clustered T-statistic in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. 
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Table C.7 – Parametric ITT Estimates of the Impact of the Ban on Younger Siblings – Couple Parent Households  
20 Weeks Bandwidth 
School Outcomes 

 All   Brothers 

 

Sisters 

h(z) LFPR Domestic Work   LFPR Domestic Work 

 

LFPR Domestic Work 

     

     Linear -0.052 -0.11   -0.10 -0.14  -0.0088 -0.050 

 (-1.36) (-1.01)   (-1.36) (-0.81)  (-0.94) (-0.33) 

Quadratic -0.052 -0.11   -0.10 -0.12  -0.0087 -0.063 

 (-1.36) (-1.03)   (-1.37) (-0.74)  (-0.93) (-0.41) 

Spline Linear -0.052 -0.12   -0.10 -0.13  -0.0093 -0.066 

 (-1.36) (-1.02)   (-1.39) (-0.75)  (-0.95) (-0.43) 

          

Controls? No No   No No 

 

No No 

Observations 279 276   140 137  139 139 

Source: PNAD 1999.  

Note: Clustered T-statistic in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. 
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Table C.8 – Impact of the Ban on Labour Force Status of the Household Head – Couple Parent Households 
20 Weeks Bandwidth 

 All   Brothers 

 

Sisters 

h(z) School Attendance Years of Schooling   School Attendance Years of Schooling 

 

School Attendance Years of Schooling 

     

     Linear -0.038 -0.33   -0.053 0.073  -0.018 -0.70 

 (-1.42) (-0.87)   (-1.26) (0.13)  (-0.68) (-1.56) 

Quadratic -0.038 -0.33   -0.052 0.10  -0.018 -0.68 

 (-1.42) (-0.87)   (-1.29) (0.19)  (-0.63) (-1.53) 

Spline Linear -0.038 -0.33   -0.053 0.12  -0.017 -0.67 

 (-1.42) (-0.87)   (-1.32) (0.21)  (-0.60) (-1.51) 

          

Controls? No No   No No 

 

No No 

Observations 279 279   140 140  111 111 

Source: PNAD 1999.  

Note: Clustered T-statistic in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. 
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Table C.9 – Parametric ITT Estimates of the Impact of the Ban on Parents’ Labour Supply – Couple Parent Households 
20 Weeks Bandwidth 
Work Outcomes 

 Mother 

 

Father 

h(z) LFPR 

Hours Worked per 

Week 

 

LFPR 

Hours Worked per 

Week 

 

     Linear 0.16* 0.079  0.026 -5.54** 

 (1.92) (0.019)  (0.89) (-2.58) 

Quadratic 0.16* -0.12  0.028 -5.40** 

 (1.90) (-0.029)  (0.98) (-2.53) 

Spline Linear 0.16* -0.026  0.031 -5.32** 

 (1.90) (-0.0061)  (1.08) (-2.49) 

      

Controls? No No 

 

No No 

Sigma  14.3***   11.5*** 

  (19.3)   (29.2) 

Observations 619 487  619 565 

Source: PNAD 1999.  

Note: Clustered T-statistic in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. 
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Table C.10 – Impact of the Ban on Labour Force Status of Parents – Couple Parent Households 
20 weeks bandwidth – with controls 

  Mother 

 

Father 

h(z)  Formal Informal 

 

Formal Informal 

  

     Linear  0.12 0.031  -0.058 0.090 

  (1.55) (0.56)  (-0.64) (1.10) 

Quadratic  0.13 0.025  -0.054 0.089 

  (1.62) (0.46)  (-0.60) (1.09) 

Spline Linear  0.13 0.024  -0.049 0.087 

  (1.63) (0.43)  (-0.55) (1.07) 

Controls?  No No  No No 

       

Observations  302 302  302 302 

Source: PNAD 1999.  

Note: Clustered T-statistic in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. 
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Placebo Test 
 

 

Table C.11 – Parametric ITT Estimates for the Impact of the Laws of 1998 on Extensive Margin of Labour Supply of Boys Aged 14 
14 before December 1997 vs. 14 after December 1997 

52 weeks Bandwidth  

Polynomial degree 

Participation 

Rate 

Participation Rate 

Formal 

Participation Rate 

Informal 

    

Linear -0.064*** -0.024*** -0.040*** 

 

(-5.11) (-4.14) (-3.51) 

Quadratic 0.017 -0.013 0.030 

 

(0.69) (-1.12) (1.38) 

Cubic 0.018 -0.013 0.031 

 

(0.74) (-1.11) (1.44) 

Spline Linear 0.032 -0.012 0.043 

 

(0.95) (-0.74) (1.44) 

Spline Quadratic 0.018 -0.013 0.031 

 

(0.74) (-1.11) (1.43) 

    

Controls? Yes Yes Yes 

Observations 2148 2148 2148 

Source: PNAD 1998.  

Note: Clustered T-statistics in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. 
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Table C.12 – Parametric ITT Estimates of the Impact of the Ban on Younger Siblings – Placebo Test 
52 weeks Bandwidth 
Work Outcomes 

 All   Brothers 

 

Sisters 

h(z) LFPR Domestic Work   LFPR Domestic Work 

 

LFPR Domestic Work 

     

     Linear -0.0063 -0.060   -0.016 -0.046  0.0023 -0.089 

 (-0.26) (-1.07)   (-0.37) (-0.56)  (0.11) (-1.27) 

Quadratic -0.0073 -0.062   -0.017 -0.048  0.0023 -0.089 

 (-0.30) (-1.10)   (-0.40) (-0.58)  (0.11) (-1.28) 

Cubic -0.013 -0.074   -0.0095 -0.062  -0.012 -0.12 

 (-0.41) (-1.08)   (-0.17) (-0.60)  (-0.54) (-1.37) 

Spline Linear -0.011 -0.067   -0.022 -0.057  0.0022 -0.083 

 (-0.45) (-1.19)   (-0.53) (-0.69)  (0.10) (-1.20) 

Spline Quadratic -0.045 -0.048   -0.059 -0.049  -0.024 -0.028 

 (-1.27) (-0.68)   (-0.98) (-0.47)  (-0.78) (-0.29) 

          

Controls? Yes Yes   Yes Yes 

 

Yes Yes 

Observations 1234 1200   631 605  603 595 

Source: PNAD 1998.  

Note: Clustered T-statistic in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. 
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Table C.13 – Parametric ITT Estimates of the Impact of the Ban on Younger Siblings – Placebo Test 
52 weeks Bandwidth 
School Outcomes 

 All   Brothers 

 

Sisters 

h(z) School Attendance Years of Schooling   School Attendance Years of Schooling 

 

School Attendance Years of Schooling 

     

     Linear 0.016 0.034   0.031 -0.089  0.0026 0.11 

 (0.83) (0.22)   (1.20) (-0.42)  (0.091) (0.51) 

Quadratic 0.015 0.039   0.031 -0.083  -0.00045 0.11 

 (0.74) (0.25)   (1.17) (-0.39)  (-0.015) (0.51) 

Cubic 0.013 0.034   0.023 -0.16  0.0022 0.15 

 (0.53) (0.18)   (0.77) (-0.60)  (0.058) (0.58) 

Spline Linear 0.014 0.051   0.029 -0.062  -0.00051 0.12 

 (0.69) (0.33)   (1.10) (-0.29)  (-0.017) (0.55) 

Spline Quadratic 0.012 0.051   0.032 -0.11  -0.0012 0.18 

 (0.47) (0.25)   (0.98) (-0.37)  (-0.031) (0.66) 

          

Controls? Yes Yes   Yes Yes 

 

Yes Yes 

Observations 1234 1234   631 631  603 603 

Source: PNAD 1998.  

Note: Clustered T-statistic in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. 
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Table C.14 – Parametric ITT Estimates of the Impact of the Ban on Household Head’s Labour Supply – Single Parent Households 
52 weeks bandwidth – with controls 

  Female Head 

 

Male Head 

h(z)  LFPR 

Hours Worked per 

Week 

 

LFPR 

Hours Worked per 

Week 

  

     Linear  0.22*** -2.40  -0.0052 -0.56 

  (2.74) (-0.61)  (-0.090) (-0.18) 

Quadratic  0.20** -3.62  -0.0081 -0.55 

  (2.48) (-0.90)  (-0.14) (-0.18) 

Cubic  0.28** -6.47  0.029 -3.66 

  (2.51) (-1.21)  (0.39) (-0.82) 

Spline Linear  0.20** -3.49  -0.0081 -0.46 

  (2.50) (-0.87)  (-0.14) (-0.15) 

Spline Quadratic  0.32** -7.05  0.052 -3.91 

  (2.55) (-1.18)  (0.65) (-0.78) 

       

Controls?  Yes Yes 

 

Yes Yes 

Sigma   15.8***   12.6*** 

   (18.8)   (17.0) 

Observations  593 282  349 286 

Source: PNAD 1999.  

Note: Clustered T-statistic in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. Given the proportion of parents not participating in the labour 

force, the coefficients on weekly hours worked refer to Tobit estimates.  
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Table C.15 – Impact of the Ban on Labour Force Status of Parents – Single Parent Households 
52 weeks bandwidth – with controls 

  Female Head 

 

Male Head 

h(z)  Formal Informal 

 

Formal Informal 

  

     Linear  0.21** -0.019  -0.029 -0.0035 

  (2.36) (-0.33)  (-0.22) (-0.029) 

Quadratic  0.20** -0.016  -0.040 0.00039 

  (2.28) (-0.29)  (-0.30) (0.0033) 

Cubic  0.28** -0.045  0.051 -0.024 

  (2.28) (-0.53)  (0.29) (-0.15) 

Spline Linear  0.20** -0.017  -0.042 0.0029 

  (2.30) (-0.29)  (-0.32) (0.024) 

Spline Quadratic  0.31** -0.037  0.071 0.0025 

  (2.24) (-0.38)  (0.36) (0.014) 

Controls?  Yes Yes  Yes Yes 

       

Observations  437 437  194 194 

Source: PNAD 1999.  

Note: Clustered T-statistic in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. The regressions include a dummy for metropolitan region, a 

dummy for skin colour (white), and years of schooling. 
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Table C.16 – Placebo Regressions for Labour Force Participation of Single Mothers 
52 weeks bandwidth 

  White Single Mothers Non-white single mothers Single Mothers 

    Linear 0.093 0.37*** 0.11 

 

(0.87) (3.22) (1.14) 

Quadratic 0.089 0.35*** 0.089 

 

(0.83) (2.97) (0.92) 

Spline linear 0.089 0.36*** 0.091 

 

(0.84) (3.03) (0.94) 

Controls? Yes Yes Yes 

    Observations 360 275 576 

Source: PNAD 1998.  

Note: Clustered T-statistic in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. The regressions include a dummy for metropolitan region, a 

dummy for skin colour (white), and years of schooling. The regression for single mothers in the third column excludes observations in the (-6, 6) interval.  
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Table C.17 – Parametric ITT Estimates of the Impact of the Ban on Parents’ Labour Supply – Couple Parent Households 
52 weeks bandwidth – with controls 

 Mother 

 

Father 

h(z) LFPR 

Hours Worked per 

Week 

 

LFPR 

Hours Worked per 

Week 

 

     Linear 0.025 0.024  -0.013 1.16 

 (0.43) (0.0084)  (-0.50) (0.72) 

Quadratic 0.025 0.014  -0.013 1.15 

 (0.43) (0.0048)  (-0.49) (0.72) 

Cubic 0.074 4.20  0.0089 0.22 

 (0.93) (0.98)  (0.25) (0.100) 

Spline Linear 0.025 0.011  -0.013 1.14 

 (0.43) (0.0039)  (-0.50) (0.71) 

Spline Quadratic 0.098 5.73  0.021 -0.99 

 (1.10) (1.14)  (0.52) (-0.40) 

      

Controls? Yes Yes 

 

Yes Yes 

Sigma  15.7***   12.5*** 

  (22.9)   (29.0) 

Observations 1166 453  1166 1669 

Source: PNAD 1999.  

Note: Clustered T-statistic in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. Given the proportion of parents not participating in the labour 

force, the coefficients on weekly hours worked refer to Tobit estimates.  
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Table C.18 – Impact of the Ban on Labour Force Status of Parents – Couple Parent Households 
52 weeks bandwidth – with controls 

  Female Head 

 

Male Head 

h(z)  Formal Occupation Informal Occupation 

 

Formal Occupation Informal Occupation 

  

     Linear  0.059 -0.047  0.033 -0.061 

  (1.07) (-1.53)  (0.52) (-1.13) 

Quadratic  0.060 -0.047  0.033 -0.061 

  (1.08) (-1.53)  (0.52) (-1.13) 

Cubic  0.054 0.0013  0.059 -0.056 

  (0.73) (0.038)  (0.68) (-0.77) 

Spline Linear  0.060 -0.047  0.033 -0.061 

  (1.09) (-1.54)  (0.52) (-1.13) 

Spline Quadratic  0.055 0.015  0.086 -0.063 

  (0.66) (0.40)  (0.88) (-0.78) 

Controls?  Yes Yes  Yes Yes 

       

Observations  892 892  778 778 

Source: PNAD 1999.  

Note: Clustered T-statistic in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. The regressions include a dummy for metropolitan region, a 

dummy for skin colour (white), and years of schooling. 
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Table C.19 – Parametric ITT Estimates of the Impact of the Ban on Younger Siblings – Single Parent Households  
52 weeks bandwidth – with controls 
Work Outcomes 

 All   Brothers 

 

Sisters 

h(z) LFPR Domestic Work   LFPR Domestic Work 

 

LFPR Domestic Work 

     

     Linear -0.029 -0.013   -0.024 0.023  -0.034 -0.066 

 (-0.78) (-0.16)   (-0.35) (0.19)  (-1.21) (-0.60) 

Quadratic -0.030 -0.012   -0.026 0.017  -0.033 -0.057 

 (-0.79) (-0.14)   (-0.38) (0.14)  (-1.17) (-0.54) 

Cubic -0.035 -0.090   -0.022 0.017  -0.042 -0.16 

 (-0.75) (-0.84)   (-0.26) (0.11)  (-1.20) (-1.22) 

Spline Linear -0.034 -0.012   -0.037 -0.0071  -0.032 -0.041 

 (-0.86) (-0.14)   (-0.51) (-0.057)  (-1.07) (-0.38) 

Spline Quadratic -0.078 -0.073   -0.089 0.011  -0.064 -0.10 

 (-1.42) (-0.66)   (-0.92) (0.076)  (-1.25) (-0.69) 

          

Controls? Yes Yes   Yes Yes  Yes Yes 

Observations 504 489   249 235  255 254 

Source: PNAD 1999.  

Note: Clustered T-statistic in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. The vector of controls include a dummy for skin colour (1 if 

white), years of schooling of the household head, number of children aged 0 to 13, and a dummy for metropolitan region.  
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Table C.20 – Parametric ITT Estimates of the Impact of the Ban on Younger Siblings – Single Parent Households 
52 weeks bandwidth – with controls 
School Outcomes 

 All   Brothers 

 

Sisters 

h(z) School Attendance Years of Schooling   School Attendance Years of Schooling 

 

School Attendance Years of Schooling 

     

     Linear 0.0033 -0.029   0.055 -0.028  -0.035 -0.097 

 (0.087) (-0.12)   (1.45) (-0.082)  (-0.57) (-0.29) 

Quadratic 0.0015 -0.012   0.053 -0.0031  -0.037 -0.077 

 (0.039) (-0.047)   (1.43) (-0.0089)  (-0.60) (-0.23) 

Cubic -0.015 -0.039   -0.0016 -0.13  -0.030 0.021 

 (-0.30) (-0.13)   (-0.045) (-0.30)  (-0.34) (0.052) 

Spline Linear 0.0011 0.044   0.051 0.068  -0.033 -0.034 

 (0.031) (0.18)   (1.36) (0.19)  (-0.57) (-0.10) 

Spline Quadratic -0.017 -0.0048   0.024 0.17  -0.061 -0.11 

 (-0.43) (-0.015)   (0.58) (0.34)  (-1.18) (-0.27) 

          

Controls? Yes Yes   Yes Yes 

 

Yes Yes 

Observations 504 504   249 249  255 255 

Source: PNAD 1999.  

Note: Clustered T-statistic in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. The vector of controls include a dummy for skin colour (1 if 

white), years of schooling of the household head, number of children aged 0 to 13, and a dummy for metropolitan region. 
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Table C.21 – Parametric ITT Estimates of the Impact of the Ban on Younger Siblings – Couple Parent Households 
52 weeks bandwidth – with controls 
Work Outcomes 

 All   Brothers 

 

Sisters 

h(z) LFPR Domestic Work   LFPR Domestic Work 

 

LFPR Domestic Work 

     

     Linear 0.015 -0.092   -0.0010 -0.095  0.031 -0.087 

 (0.51) (-1.29)   (-0.021) (-0.86)  (1.07) (-1.05) 

Quadratic 0.013 -0.10   -0.0020 -0.098  0.029 -0.11 

 (0.44) (-1.43)   (-0.041) (-0.88)  (1.03) (-1.31) 

Cubic 0.0097 -0.087   0.016 -0.15  0.0086 -0.085 

 (0.26) (-1.03)   (0.22) (-1.02)  (0.31) (-0.86) 

Spline Linear 0.010 -0.11   -0.0052 -0.10  0.030 -0.12 

 (0.33) (-1.57)   (-0.11) (-0.91)  (1.02) (-1.38) 

Spline Quadratic -0.014 -0.065   -0.012 -0.13  0.0035 0.026 

 (-0.33) (-0.69)   (-0.16) (-0.83)  (0.11) (0.23) 

          

Controls? Yes Yes   Yes Yes   Yes 

Observations 730 711   382 370  348 341 

Source: PNAD 1999.  

Note: Clustered T-statistic in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. The vector of controls include a dummy for skin colour (1 if 

white), years of schooling of the household head, number of children aged 0 to 13, and a dummy for metropolitan region.  
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Table C.22 – Parametric ITT Estimates of the Impact of the Ban on Younger Siblings – Couple Parent Households 
52 weeks bandwidth – with controls 
School Outcomes 

 All   Brothers 

 

Sisters 

h(z) School Attendance Years of Schooling   School Attendance Years of Schooling 

 

School Attendance Years of Schooling 

     

     Linear 0.027 0.097   0.0058 -0.086  0.046** 0.22 

 (1.26) (0.49)   (0.16) (-0.32)  (2.10) (0.83) 

Quadratic 0.025 0.085   0.0053 -0.083  0.044* 0.18 

 (1.14) (0.43)   (0.14) (-0.31)  (1.95) (0.67) 

Cubic 0.030 0.10   0.029 -0.12  0.022 0.19 

 (1.17) (0.41)   (0.63) (-0.33)  (0.89) (0.61) 

Spline Linear 0.024 0.073   0.0047 -0.079  0.044* 0.17 

 (1.01) (0.36)   (0.13) (-0.29)  (1.77) (0.60) 

Spline Quadratic 0.036 0.12   0.029 -0.23  0.031 0.43 

 (1.03) (0.42)   (0.57) (-0.61)  (0.67) (1.13) 

          

Controls? Yes Yes   Yes Yes 

 

Yes Yes 

Observations 730 730   382 382  341 341 

Source: PNAD 1999.  

Note: Clustered T-statistic in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. The vector of controls include a dummy for skin colour (1 if 

white), years of schooling of the household head, number of children aged 0 to 13, and a dummy for metropolitan region. 
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Testing for Potential Effect of Age at School Entry 

 
Table C.23 – Parametric ITT Estimates for the Impact of the Laws of 1998 on Extensive Margin of Labour Supply of Boys Aged 14 
14 before June 30th 1999 vs. 14 after June 30th 1999 

52 weeks Bandwidth 

Polynomial degree 

Participation 

Rate 

Participation Rate 

Formal 

Participation Rate 

Informal 

    

Linear -0.030*** -0.0023 -0.027*** 

 

(-2.73) (-0.86) (-2.59) 

Quadratic 0.027 0.0030 0.024 

 

(1.36) (0.94) (1.22) 

Cubic 0.027 0.0030 0.024 

 

(1.37) (0.94) (1.23) 

Spline Linear 0.030 0.00092 0.029 

 

(1.15) (0.48) (1.12) 

Spline Quadratic 0.027 0.0030 0.024 

 

(1.36) (0.94) (1.22) 

Controls? Yes Yes Yes 

Observations 1821 1821 1821 

Source: PNAD 1999.  

Note: Clustered T-statistics in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. 
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Table C.24 – Parametric ITT Estimates of the Impact of the Ban on Younger Siblings – Placebo Test 
52 weeks bandwidth 
Work Outcomes 

 All   Brothers 

 

Sisters 

h(z) LFPR Domestic Work   LFPR Domestic Work 

 

LFPR Domestic Work 

     

     Linear -0.0085 0.030   -0.032 0.10  0.0034 -0.021 

 (-1.01) (0.45)   (-1.40) (0.96)  (0.94) (-0.26) 

Quadratic -0.0083 0.031   -0.031 0.10  0.0035 -0.018 

 (-0.98) (0.48)   (-1.38) (0.99)  (0.96) (-0.24) 

Cubic -0.0062 -0.045   -0.014 0.0081  -0.0029 -0.052 

 (-0.66) (-0.57)   (-0.51) (0.061)  (-0.95) (-0.56) 

Spline Linear -0.0083 0.036   -0.032 0.11  0.0036 -0.010 

 (-0.97) (0.55)   (-1.39) (1.01)  (0.97) (-0.13) 

Spline Quadratic -0.0072 0.0035   -0.020 0.086  0.00068 -0.023 

 (-0.97) (0.051)   (-0.98) (0.76)  (0.33) (-0.25) 

          

Controls? Yes Yes   Yes Yes  Yes Yes 

Observations 836 739   390 346  446 393 

Source: PNAD 1999.  

Note: Clustered T-statistic in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. The vector of controls include a dummy for skin colour (1 if 

white), years of schooling of the household head, number of children aged 0 to 13, and a dummy for metropolitan region.  
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Table C.25 – Parametric ITT Estimates of the Impact of the Ban on Younger Siblings – Placebo Test 
52 weeks bandwidth  
School Outcomes 

 All   Brothers 

 

Sisters 

h(z) School Attendance Years of Schooling   School Attendance Years of Schooling 

 

School Attendance Years of Schooling 

     

     Linear 0.020 0.017   0.016 -0.025  0.021 -0.020 

 (1.10) (0.11)   (0.54) (-0.096)  (1.14) (-0.10) 

Quadratic 0.021 0.021   0.018 -0.010  0.021 -0.019 

 (1.12) (0.13)   (0.59) (-0.039)  (1.15) (-0.094) 

Cubic 0.020 0.00011   0.011 -0.26  0.027 0.12 

 (1.01) (0.00056)   (0.32) (-0.78)  (1.32) (0.52) 

Spline Linear 0.021 0.019   0.018 -0.015  0.022 -0.021 

 (1.13) (0.12)   (0.58) (-0.055)  (1.15) (-0.10) 

Spline Quadratic 0.021 -0.022   0.018 -0.17  0.022 -0.0091 

 (1.21) (-0.14)   (0.58) (-0.66)  (1.24) (-0.045) 

          

Controls? Yes Yes   Yes Yes 

 

Yes Yes 

Observations 836 836   390 390  446 446 

Source: PNAD 1999.  

Note: Clustered T-statistic in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. The vector of controls include a dummy for skin colour (1 if 

white), years of schooling of the household head, number of children aged 0 to 13, and a dummy for metropolitan region. 
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Table C.26 – Parametric ITT Estimates of the Impact of the Ban on Household Head’s Labour Supply – Placebo Test  
52 weeks bandwidth  

 Household Head   Female Head 

 

Male Head 

h(z) LFPR 

Hours Worked per 

Week 

 

 LFPR 

Hours Worked per 

Week 

 

LFPR 

Hours Worked per 

Week 

     

     Linear 0.057 0.14   0.032 1.54  0.015 -0.57 

 (1.30) (0.13)   (0.51) (0.73)  (0.46) (-0.46) 

Quadratic 0.056 0.15   0.032 1.58  0.016 -0.58 

 (1.28) (0.13)   (0.50) (0.74)  (0.47) (-0.47) 

Cubic 0.064 -0.75   0.029 1.00  0.038 -1.63 

 (1.11) (-0.56)   (0.37) (0.39)  (0.90) (-1.05) 

Spline Linear 0.056 0.083   0.034 1.53  0.020 -0.64 

 (1.28) (0.076)   (0.53) (0.72)  (0.59) (-0.51) 

Spline Quadratic 0.074 -0.79   0.088 2.65  0.048 -2.04 

 (1.14) (-0.58)   (1.01) (0.97)  (1.14) (-1.33) 

          

Controls? Yes Yes   Yes Yes 

 

Yes Yes 

Sigma  10.2***    9.90***   9.89*** 

  (27.5)    (18.4)   (22.5) 

Observations 1786 1204   832 287  1021 917 

Source: PNAD 1999.  

Note: Clustered T-statistic in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. Given the proportion of mothers not participating in the labour 

force, the coefficients on weekly hours worked refer to Tobit estimates. The regressions include a dummy for metropolitan region, a dummy for skin colour (white), and years 

of schooling. 
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Table C.27 – ITT Estimates for Occupation of Single Fathers 

 

Science & 

Arts 

Administrative 

Services 

Agricultural 

Sector 

Processing 

industry 

Commerce 

and related 

Transport and 

communication 

Provision of 

Services 
Undefined 

         Male head (ITT) 0.017 -0.058* 0.010 0.039 -0.014 -0.0012 0.030* -0.022 

 

(0.84) (-1.89) (0.70) (0.83) (-0.39) (-0.038) (1.90) (-0.60) 

         Mean of Monthly Wage 1309.734 907.3318 293.1663 414.5252 528.7923 615.3671 302.4568 370.3963 

Observations 1455 1455 1455 1455 1455 1455 1455 1455 

Source: PNAD 1999.  

Note: Clustered T-statistic in parentheses. ***, **, * Statistically significant at 1%, 5%, and 10% respectively. The estimates are for spline linear specification.  
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Figure C.1 – Local Linear Regressions for LFPR of Boys in 1998 
Cutoff = December 1997 

 
 

Figure C.2 – Linear Regressions for LFPR of Younger Siblings in Couple Parent 

Households 

 
 

Figure C.3 – Linear Regressions for School Attendance of Siblings in 1999 
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Figure C.4 – Local Polynomial Regressions for LFPR of Single Mothers in 1998

 
 

Figure C.5 – Local Polynomial Regressions for LFPR of Single Mothers in 1998 

Excludes observations in the (-4, 4) interval.  

 
 
Figure C.6 – Local Polynomial Regressions for LFPR of Single Mothers in 1998 

Excludes observations in the (-6, 6) interval.  
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Figure C.7 –Monthly Wage Earned by Single Fathers in the Formal and Informal 

Sectors  

 


	PhD Coversheet
	Mazzutti, Caio Cícero de Toledo Piza da Costa

