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Abstract 
 

Many security systems employing different methods have been proposed to protect buried 

oil pipelines transporting petroleum products from the well head via the refinery to: depots 

and other receiving stations. Currently there is a security gap in the monitoring of these 

buried pipelines in real time and in keeping them protected from third party interference. 

This thesis addresses the problem of monitoring these systems by developing an automated 

image analysis system with the aid of a low-cost multisensory Unmanned Aerial Vehicle 

(UAV) for monitoring of buried pipeline right-of-way (ROW). The method used in this 

research is based on the identification of threat objects of interest from the video frame 

sequences of the pipeline right-of-way acquired by the UAV. This is achieved by training 

the system to recognise objects of interest using trained correlation filters. To determine the 

geographical location of detected objects, the Video frame sequences captured by the UAV 

platform were ortho-rectified to form ortho-images which were then mosaicked to form a 

seamless Digital Surface Model (DSM) covering the test area using a photogrammetry 

model. The DSM formed from the mosaicking of ortho-images is then emerged with a 

digital globe for geo-referencing of detected objects. Experiments were carried out on a test 

field located in United Kingdom and Nigeria, where video and telemetry data were 

collected, then processed using the techniques created in this research. The results 

demonstrated that the developed correlation filter was able to detect objects of interest 

despite the distortions that come with the object image, due to the fact that the expected 

distortion was compensated for using the training images. When compared with the 6 

control points in the digital globe the accuracy of the two-dimension DSM gave a 

misalignment error of between 2 and 3 metres. 
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CHAPTER ONE 

Introduction  
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Many Unmanned Aerial Vehicle (UAV) technologies have been developed, refined and 

used for military applications and in the public sector. These have led to useful applications 

in both the public and private sectors. Typically for all these applications, the key 

component is the on-board sensor systems (video camera and the GPS/INS). In the private 

sector, the sensor systems are used for different kinds of applications, among which are 

homeland security [1], forestry fire monitoring [2], intelligent surveillance and target 

acquisition [3]. Other researchers, such as [4], [5], [6], [7] and [8] have used their UAV for 

different kinds of application, which present different difficulties that require customized 

solutions. 

In this research, a low-cost multi-sensor UAV is used for monitoring buried oil pipeline 

right-of-way (ROW). Interference with pipeline Right-of-Way (ROW) is, typically caused 

by a third party using construction equipment on the ROW, which can cause mechanical 

damage to the pipe or lead to problems ranging from pipe failure to explosion or 

environmental pollution. Since most of the reported damage to the pipeline ROWs are 

caused by third-party intrusions [9], the ability to detect third-party and construction 

equipment entering a pipeline ROW before it can contact the oil pipeline would greatly 

reduce damage caused by third party incursion.  

Many approaches have been used for monitoring and reporting third-party contact or 

activities along the pipelines; among these are the use of wired and wireless fiber-optic 

sensors buried alongside the pipe, satellite technology, manned aircraft, as well as foot and 

car patrols. All these methods have one limitation or another, hence the need for alternative 

methods for monitoring the ROW. 
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1.1 Aims and Objective 

Pipeline monitoring and threat detection are based on images taken from a low-cost multi-

sensor UAV. The aim is to develop an automated image analysis system with the use of 

light UAVs for monitoring pipeline ROWs. This system should be able to identify potential 

hazards and vandals along the pipeline ROW automatically and send alerts to the pipeline 

response team in near real- time.  The major task to be solved is the detection of: 

 Human tampering and/or theft and any type of third-party intervention 

 Unauthorized construction equipment 

 Unauthorized vehicle on the right-of-way 

 

1.2 Methodology 

The technique used in this work is to lead the UAV to the pipeline ROW and arrange it to 

fly along the ROW with the aid of a Global Positioning System (GPS).The UAV auto-pilot 

system is then programmed with four way-points to enable the UAV to keep tracking the 

pipeline ROW.  

For the automatic analysis of this work, the BPS video converter 1.4 software was used for 

de-compilation of the raw video streams acquired by the UAV into individual frames, 

trained Optimal Trade-off Maximum Average Correlation Height (OT-MACH) filter was 

used for object detection, and photogrammetry modelling, this uses algorithms based on the 

direct linear transform (DLT), to establish the relationship between the camera sensor used 

to capture the imagery, the imagery itself and the Earth’s surface – the output from this was 

used for determination of the geographical location of the object detected from the video 

imagery. The system is made up of the aerial platform and the ground station. The aerial 
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platform consists of the UAV and sensors, which consist of a GPS, Inertial Navigation 

System (INS) and camera, all integrated into the UAV. The ground station consists of a 

portable PC computer and three servers, which comprise: an image processing application 

server, a threat database server and the base map server.  

The UAV platform is responsible for data acquisition and the GPS and INS give the 

navigational position and attitude of the UAV, respectively. Data acquired are transmitted 

via a radio link to the ground station for processing. 

At the ground station, the image processing application server, which contains the BPS 

software is responsible for de-compilation of the raw video streams captured under the 

UAV platform into frames. This module then hands over to the threat database server. 

The threat database server module is responsible for detecting and identifying objects of 

interest on the pipeline ROW imagery that might represent a potential danger to the pipe. 

Here objects of interest are trained using the OT-MACH correlation filter and stored in a 

database. Objects detected look for a candidate match in the database by the degree of 

matching with each object of interest in the database. A match indicates a threat and the 

image is then handed over to the base map server. 

The ortho-rectification and geo-referencing of video frames with the digital globe for 

determination of the geographical location of objects detected from the video frame takes 

place in the base map server. 

Once a threat is detected and its location known, an alert will be sent by the pipeline 

operator to the response team in near real time. The architecture and workflow of the buried 

oil pipeline right-of-way monitoring system is shown in Fig.1.1 
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Fig.1.1 General System Architecture and Workflow Chain 

 

1.3 Achievements 

The major contributions of this research are: 

 The OT-MACH correlation filter is trained to detect object images by cropping and 

training the same object of interest under different viewing angles and illumination 

conditions. With these, the problem of rotation and illumination variance of the 

correlation filter was solved. An experiment was carried out to test this method and 

the results are published in [10]. 

 For ortho-rectification and geo-referencing of video imagery the relationship 

between the camera sensor used to capture the imagery, the imagery itself and the 

Earth’s surface using collinear equations was evaluated.  

 An experiment using the algorithms developed was carried out in a test field where 

aerial imagery and telemetry data were collected. The data collected were tested 

with this method and the results are published in [11]. 
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1.4   Related Research 

There are a number of technologies used for buried oil pipeline monitoring and threat 

detection. Most of these technologies are based on using remote sensing [12], to detect and 

report potential hazards. These technologies depend on some types of communication 

networks, which collect data and send alerts from inside and outside the buried pipe to the 

control station. Different types of network architecture have been used to provide effective 

communication in pipeline monitoring systems. These architectures, which are either wired 

or wireless networks or a combination of both networks, rely on factors such as power 

supplies and physical network security to be effective [13], [14], [15].  

Fiber optic cables [16] are used by wired networks for monitoring buried pipeline ROWs. 

These cables are usually connected to sensor devices that measure the flow rate, the 

pressure and the temperature of the oil in the pipe. The networks, which extend linearly 

along the pipeline, collect and send information from sensor nodes, these are spread over 

the pipeline and transmit their data to the control station [15], [16], [17]. Wired network 

based monitoring systems are faced with the following types of problems: 

 If any wire in the network disconnects or is damaged, the whole pipeline 

monitoring system will be vulnerable to vandals. 

 The physical security of the system is not guaranteed when the pipeline 

extends over large areas. 

 Location and repairs of a faulty network can be very difficult since most of 

the pipelines are buried under-ground. Hence to maintain and repair a faulty 

network is a difficult task. 
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 Repeated and irrelevant signals may be transmitted on the network causing 

delay for other relevant signals. 

 [18], [19], and [20] addressed the short-comings of wired sensors by using wireless sensors 

to replace the wired sensors to monitor the buried pipeline system. In the wireless networks, 

the sensors, which are distributed inside the buried pipe along the pipeline are divided into 

network segments. Unlike the wired sensors, if a sensor in a segment of the pipeline fails, 

due to damage to one of the sensors or any destructive action, the network is not affected 

because other sensors in the same segment or other segments will quickly detect the faulty 

sensor. The damaged sensor can then be physically replaced and new ones installed. The 

new sensor will automatically connect to the network segment without the need to program 

it into the sensor network. In the wireless sensor network, each sensor node acts as a 

communication relay node, such that each sensor node collects information from the 

nearest sensor node to it. The sensor node filters the sensed data and transfers it from one 

communication relay node to another until it reaches a data dissemination node, which will 

then transfer it to the pipeline control station through another network. The problems with 

wireless sensors are:  

 If any node in the network develops a fault, the connectivity of the segment 

where the node belongs will be lost and the network is partitioned. 

 For pipelines that extend to large areas, a wide signal range will be needed 

for sensor nodes. This wireless range to stay connected will consume more 

energy from sensor batteries. This may lead to the requirement for frequent 

changes of sensor batteries. 
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 Since most of the pipelines are buried under the ground, the task of 

maintaining the sensor network is difficult. 

[21] and [22] used a satellite based technology for oil pipeline monitoring and threat 

detection. This technique utilizes pipeline and satellite data for surveying or providing 

surveillance of the pipeline. The satellite data is integrated with the pipeline data to produce 

a current pipeline map by using change detection analysis, i.e.; the current pipeline map is 

compared with a previous map to determine whether the route of the pipeline or the 

surrounding environment of the pipeline has changed. The satellite makes use of high 

resolution imagery of the pipeline and the geographical location of the pipeline.  

Satellite technology provides one of the most effective and efficient means for pipeline 

monitoring and threat detection. However, it is very expensive to build a satellite platform 

and sensor system, to launch it, to control it in its orbit and to recover data, as compared to 

operating a light aircraft with a good camera and scanner [23].  

Also, for mapping to high accuracy over a relatively small area, data from sensors flown 

aboard an aircraft are much more useful than satellite data [21], [23]. Moreover, a satellite 

cannot take good quality images when the weather is cloudy. The fact that an unmanned 

aerial vehicle flies so much lower than satellites means that one can see more detail on the 

ground than can be obtained from commercial satellites. 

The most widely used methods for pipeline monitoring include foot patrols along the 

pipeline ROW and aerial surveillance using helicopters [24]. These patrols check for 

unauthorized intrusion into the pipeline ROW and leakages from the pipeline.  

A disadvantage of this method arises from its cost and concern for the safety of the pilot 

flying at low altitude, especially during bad weather. The cost of foot patrols is high in 

terms of personnel and their time. The use of UAVs for pipeline monitoring reduces 
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operational costs, speeds up the process of monitoring and can be used in situations where 

manned inspection is not possible. 

 

1.5 Thesis Outline 

The remainder of this thesis is organized as follows. Chapter 2 provides the background, 

which provides the pre-requisites for the rest of the Chapters in the thesis. The background 

contains an overview of: UAV system; remote sensing system; global position system; 

inertial navigation system; camera and imaging system; spatial and frequency domain 

filters; and image mosaicking. In Chapter 3, different matching techniques used for object 

image detection: feature based, area based and least square approximation are explained 

and compared. In Chapter 4, the procedure and results of a test experiment on object image 

detection using trained OT-MACH filter are discussed. Chapter 5 explains the 

photogrammetry model and the techniques used for ortho-rectification and geo-referencing 

of aerial imagery. In Chapter 6,   the procedure and results of a test experiment conducted 

on ortho-rectification and geo-referencing of video streams captured at the UAV platform 

are discussed. Chapter 7 discusses the experimental procedures and results of the 

experiment conducted by integrating the object detection process with the ortho-

rectification and geo-referencing processes. In Chapter 8, the thesis is concluded by 

summarizing the goals, contributions, results and the future work. 

. 
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CHAPTER TWO 
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2.1 Introduction 

This chapter gives the basic literature review needed to understand the concepts discussed 

in the chapters of this thesis.  

 

2.2 Overview of UAV 

The concept of Unmanned Aerial Vehicle (UAV) started when balloons carrying explosive 

were used by Austria to attacked Venice in 1849 (Fig.2.1) [25]. Lawrence Sperry [26], also 

demonstrated his flying machine without a pilot by installing a gyrostabilizer on a Curtis 

Bi-plane. UAV technology used for military applications has led to useful applications in 

both public and private sectors. The acronym UAV has evolved to UAS (Unmanned Air 

System) because of the rapid growth and development of more sophisticated ground control 

systems, payload and other components [25], [26]. Unmanned Aerial Vehicle (UAV) is an 

integral part of the Unmanned Air System (UAS), but when combined with other sub – 

systems like control station (CS), communication systems and other support systems; it is 

then addressed as Unmanned Air System (UAS) [26]. 

In a simplistic view, an Unmanned Air System (UAS) is an aircraft with its flight crew 

removed and replaced by a computer system and a radio – link. However, in the real life 

scenario, the UAS is more complicated than that, the complete UAS comprises a number of 

sub – systems which includes:  

 A ground control station (GCS), which houses the control systems and the 

operators. 
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 The aircraft, often referred to as Unmanned Aerial Vehicle (UAV), which 

comprises of payload of different types. 

 The communication system, which transmits signals between the GCS and the 

aircraft usually through radio signals  

Apart from missiles, there are three types of aircraft that can fly without pilots on board. 

This includes, Unmanned Aerial Vehicle (UAV), Remotely Piloted Vehicle (RPV) and 

Drones. They are of course, all unmanned, so the name “Unmanned Aerial Vehicle” or 

UAV can be thought of as the generic title [26], [27].  

 

 

Fig 2.1 Concept of UAV: Balloon carrying explosive [25]. 

 

It is incorrect to use the terms RPV and UAV interchangeably as done by some people. The 

Remotely Piloted Vehicle is an aircraft without a pilot that is controlled from a remote 

location. Hence an RPV can always be referred to as a UAV, but a UAV which can be 

autonomous or pre-programmed to perform a mission need not always be an RPV [27].  
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Also Unmanned Aerial Vehicle (UAV) must not be confused with model aircraft or with 

drones. A model aircraft is also an aircraft without a pilot they are usually used for sport 

and are controlled by a radio. Model aircraft must stay within the sight of the operator. The 

operator cannot do any other thing than to instruct the aircraft to ascend or descend and to 

either turn left or right [26], [27].  

A drone aircraft unlike the model aircraft can fly out of sight of the operator but has no 

intelligence. A drone is operated by launching it into a pre-programmed course or mission. 

It does not communicate with the control station, for example, data are usually obtained 

from the aircraft until it return to base. [27], [28].  

A UAV on the other hand, has some level of intelligence. It communicates with the control 

station while on mission. It does not need to go back to base station before data can be 

recovered from it. For example, the UAV is able to communicate with the operator on the 

ground station and return payload data, such as imagery and video streams. The UAV also, 

transmits information about itself during flight, such as its position, altitude, component 

temperature and the conditions of its engine [26], [27], [28]. 

 

2.2.1 UAS System Composition 

The Unmanned Air System (UAS) consist of some major sub-systems. These sub-systems 

form part of a total system and do not exist on their own. These sub-systems are: 
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2.2.1.1 Control Station 

The control station (CS) can be based on the ground, or on a ship on shore or a parent 

aircraft [27], [28]. The UAV flight plan is done at the control station. Also, at the control 

station the operator can communicate and control the UAV via different types of 

communication up-links. Likewise, the UAV can send information and images to the 

control station through a communication down-link. These information includes, payloads 

data, UAV status and position information. The hovering, launching and recovery of the 

UAV can also take place at the control station. An example of a UAV control station is 

shown in Fig.2.2. 

 

 

Fig 2.2 UAV Control Station (CS) [27]. 
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2.2.1.2 UAV Payload 

The main work of the aircraft is to carry the payload to its place of application. The type of 

payload a UAV carries depend on the mission the UAV was designed to carry out. These 

may range from a simple sub-system consisting of video camera with a fixed lens having a 

mass as little as 200g, to a very powerful radar having a mass up to 1000Kg [28]. Data or 

images obtained by this sub-system are transmitted through the communication down-link 

to the ground control station. 

 

2.2.1.3 UAV Communication Systems 

The UAV communication system provides data communication links between the aircraft 

and control station. The communication link could be either up-link (from the control 

station to the aircraft) or down-link (from the aircraft to the control station). The 

transmission medium mostly used is the radio frequency (RF) [29], an alternative to this 

medium is a light signal in the form of a laser beam or via optical fibers [28], [29]. 

The type of data communication links and their task is as follows: 

 Data up-link communication: - This is the process of transferring information 

from the ground control station to the aircraft. The data communication up-link is 

responsible for the transmission of the flight way-points plan to the aircraft during 

autonomous flight control. 

Also, the data communication up-link transmits real-time flight control commands 

to the aircraft. 
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Moreover, data communication up-link transmits real-time commands to the 

payload mounted on the aircraft. 

 Data down-link communication: - This is the process of transmitting information 

from the aircraft to the ground control station. It is responsible for the real-time 

transmission of aircraft altitude and attitude to the ground control station. 

The data communication down-link also handles the task of transmitting data 

captured by the payload mounted on the aircraft to the ground control station. 

 

2.2.2 Classification of UAV 

UAVs are classified into tiers or classes but there is no common term adopted for this 

classification. The Air force for an example define tier in terms of their operational altitude 

and endurance while the US Army define tier in terms of manufacturing company or 

brigade [30]. The Navy and Marines on the other hand have their own way of defining 

UAV tier classifications. Since there is no categorization standard, in this thesis UAVs are 

placed in a specific tier based on their size, weight, payload, endurance and range as listed 

in Table 2.1. 

 

 

  

 



17 
 

Tier Weight 

(Kg) 

Endurance Flight 

Altitude 

(m) 

Range 

(communication) 

(Km) 

I 

(Micro) 

 

(Mini) 

 

2 – 5 

 

20-40 min 

 

250 

 

5 

 

25 – 150 

 

40 min – 1hr 

 

150 - 500 

 

10 

II 

(Close Range) 

 

150 – 250 

 

12 – 14hrs 

 

500 - 2000 

 

125 - 250 

III 

(Medium 

Range) 

 

200 – 250 

 

21hrs 

 

>3000 

 

Global 

IV 

(Long Range) 

 

1000 -22000 

- > 

- 0 

 

34hrs 

 

>15000 

 

Global 

Table 2.1 UAV Tier Structure 

 

 

2.3 Remote Sensing 

An image is a digital representation of an object. Remotely sensed image data is the 

acquisition of information about an object from a far distance [31]. Remote sensing of an 

object or scene can be achieved by examining radiation reflected or emitted from/by the 

object or scene. In practice, aerial imagery, satellite imagery and radar are all products of 

remotely sensed data. In order to capture this remotely sensed data, an imaging system is 

required. An imaging system comprises of sensors/camera, an imaging platform (airborne 

or satellite) and other supporting systems, such as a global positioning system (GPS), an 

inertial navigation system (INS) and a computer system [31], [32]. 
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2.3.1 Electromagnetic Spectrum 

Remote sensing system both in airborne and satellite platform, usually record 

electromagnetic radiation. Electromagnetic radiation is the energy that is transmitted in 

form of electric and magnetic waves [33]. Remote sensors consist of detectors that can 

record specific wavelengths of the electromagnetic spectrum. The range of electromagnetic 

radiation which extends from cosmic waves to radio waves is known as the electromagnetic 

spectrum [32], [33]. 

A portion of the electromagnetic spectrum is been absorbed by different kinds of land 

cover, such as rock, water bodies, etc. This leads to giving the electromagnetic radiation a 

distinguishable signature [33], [34]. Equipped with the knowledge of which wavelengths 

are absorbed and the intensity of the reflection of electromagnetic radiation of certain 

features, a remotely sensed image can be analysed and accurate assumptions can be made 

about the scene. The electromagnetic spectrum consists of regions, such as near-infrared 

and middle-infrared, which is also known as the Short Wave Infrared Region (SWIR), and 

the thermal or far infrared region, also known as the Long Wave Infrared Region (LWIR) 

[34]. This illustrated in Fig.2.3. 

 

Fig.2.3 Electromagnetic Spectrum [34]. 
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When there is an interaction between an electromagnetic radiation and objects, some 

wavelengths are absorbed and others reflected. 

  

2.3.2 Remote Sensory System 

It is possible to observe the interaction between an electromagnetic wave and a target 

material. When an electromagnetic wave strikes a target surface, there are three types of 

interaction that can take place, this includes, reflection, transmission and scattering. 

However, it is only the reflected radiation that is recorded by the remote sensor [35]. The 

remote sensed data comprises of reflectance values which translate into discrete values 

(numbers) that is recorded by the sensing device [34] [35]. These values are grey scale 

values (0 to 255), which fit within a certain bit range (e.g., 8 bits) depending on the 

properties of the sensor. 

Sensors can be classified based on their sensitivity to a specific frequency of an 

electromagnetic radiation. A sensor that is sensitive to more than one electromagnetic 

radiation frequency is known as a multispectral system, this includes, Enhanced Thematic 

Mapper Plus (ETM+) [36]. The ETM+ is sensitive to electromagnetic radiation centered on 

8 different frequencies. 

Generally, multispectral system samples a small number of frequencies over a large 

bandwidth. A higher spectral system is the hyperspectral system, which samples a large 

number of frequencies over small bandwidths [35], [36]. Remote sensors can be classified 

as follows: 
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 Infrared Sensors: - These are type of remote sensors that sense radiation emitted 

by objects in a scene. The amount of radiation is highly connected with the 

temperature of the target object [35]. 

 Optical Sensors: - Optical sensors sense radiation at frequencies very close to 

human eye sensitivity. It senses the amount of sunlight that is reflected by the target 

object through the optical lens of the sensor. The sensor makes use of passive light 

from the sun and are therefore called a passive sensor. The optical sensors can only 

be used in daytime and can be affected by cloud cover [35], [36]. 

 Radar Sensors: - Radar sensors transmit microwave radiation to the target object 

which are then scattered back and stored by the sensor. The most commonly used 

radar sensor is the Synthetic Aperture Radar (SAR) [37]. The magnitude of the 

backscattered signal from the target object that is illuminated by the radar 

corresponds to some factors, such as, the surface roughness of the object, the 

electromagnetic properties of the object that was struck by the microwave signals 

and the frequency of the radar sensor [36], [37]. The resolution of the radar sensor is 

determined by the length of the synthetic aperture. Hence the resolution does not 

depend on the distance between the target object and the sensor. 

Radar sensors, unlike the optical sensors are not affected by weather and light 

conditions. However, SAR images consist of less detailed information and more 

noise, compared with optical sensors [37]. 
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2.4 Global Positioning System 

The global positioning system (GPS) is a space-based navigation system that uses satellite 

technology to pinpoint a precise location on the Earth. It does this, by using a minimum of 

three different satellites, which transmit radio signals to a receiver on Earth [38], [39]. The 

GPS was originally designed for military use, but nowadays, GPS use has extended to 

many applications, such as, land survey, automobile navigation, the GPS components in 

cell phones can be used to find and locate someone that is lost [38]. 

The GPS was created by the United States government. They maintain the system and 

make it accessible to anyone with a GPS receiver. The GPS system consists of three 

segments: 

 

2.4.1 GPS Space Segment 

The space segment of the GPS consists of a constellation of satellites, which transmit radio 

signal to the GPS receiver on the Earth [30]. The GPS satellites fly at an altitude of 

approximately 20,200km in medium Earth orbit (GEO), and each GPS satellite circles the 

Earth two times in a day [39]. 

The constellation of satellites in the GPS consists of a 24 slot arrangement, in which six 

equally-spaced orbital planes surrounds the Earth, with each plane containing four slots for 

baseline satellites. This slot arrangement enables the users to view a minimum of four 

satellites from any point on the Earth. In June 2011, three of the 24 slots were expanded, 

therefore increasing the constellation slot to 27-slots. This lead to improved satellite 
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coverage in most parts of the world [38], [39]. Fig.2.4 shows the illustration of slots 

arrangement in the GPS satellite constellation. 

 

 

Fig.2.4 Slots satellite constellation [38] 

 

2.4.2 GPS Control Segment 

The GPS control segment consists of ground facilities. These ground facilities include, a 

master control station, monitor stations and the ground antennas [39]. 

The master control station sends command and control signals to the GPS constellation. It 

listens to the satellites to know their health state by checking their signal integrity and 

orbital stability. 

The monitor stations are responsible for tracking the GPS satellites as they pass overhead 

and send their observations back to the master control station. They make use of a 

sophisticated GPS receiver and are controlled by the master control station. 
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The ground antennas are used for communications between the ground stations and the 

GPS satellites for command and control purposes. 

 

2.4.3 GPS User Segment 

The user segment consists of the GPS receiver. The GPS receiver reads available satellite 

signals to compute the user’s position and time. In order to get an accurate fix position, the 

receiver must receive a minimum of three satellite signals simultaneously. The user’s 

position refers to the 2D coordinates (latitude and longitude) position on the Earth. Fig.2.5, 

illustrates how the position of a user is determined using the signals from different 

satellites. The area marked with ‘red x’ is the region at which the user can be located (the 

region where the signals of the 3 satellites intercept). 

 

 

Fig.2.5 User’s Location Computation using 3 Different GPS Satellites Signal [38]. 
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2.5 Inertial Navigation System 

A minimal inertial navigation system (INS) comprises: a computer and a module containing 

accelerometers, gyroscopes and other motion sensors [40]. Mostly, the INS is initially 

provided with its own position and velocity data from a GPS receiver. Afterwards, it then 

computes its own updated position and velocity by integrating information it received from 

the motion sensors. Once the INS has been initialized by the GPS or by any other source 

(e.g. human), it needs no external references in order to compute its position, velocity or 

orientation [41]. 

Most applications make use of both GPS and INS together by integration of the two for 

navigation purposes. The use of GPS with INS has the benefit of GPS signals calibrating 

the INS [4]. INS being able to provide position and angle updates at a faster rate than the 

GPS, it is able to fill in the gaps between GPS positions in a fast moving vehicle like 

missiles and aircraft [40], [41]. 

Another advantage of combining both the GPS and INS is that GPS may lose its signal, and 

during this period of loss of GPS signal, the INS can continue to compute the position and 

angle of the aircraft. 

GPS/INS is usually used on aircraft for navigation. This allows for stable position and 

velocity estimates, which are provided at a sampling rate faster than when a GPS receiver is 

used [41]. The combined GPS and INS also allow for precise approximation of the aircraft 

attitude (roll, pitch and yaw) angles. 
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2.6 Image Acquisition using Digital Camera 

Digital cameras consist of an array of CCD (charge-coupled device) sensors. CCD sensors 

are widely used in digital cameras and other light sensing equipment [42]. These sensors 

are usually arranged in two dimensional arrays. A typical CCD sensor array is 

manufactured with a broad range of sensing properties that can be packaged in arrays of 

512 x 512 elements or more. 

A complete image is captured by focusing the energy pattern onto the surface of the array. 

This is illustrated in Fig. 2.6, which shows show the energy from an illumination source is 

been reflected from a viewed scene object. After which, the imaging system collects the 

reflected signal and focusses it onto its focal plane. Then, the sensory array, which 

corresponds to the focal plane, produces outputs which is equivalent to the integral of the 

light signals received at each sensor and finally, the output signal received by the sensors 

are converted into a video signal, which is then digitized by another process of imaging 

discussed in the next section. 

 

Fig. 2.6 Process of Capturing an Image on CCD Sensory Plane [43]. 
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2.7 Image Digitization 

As mentioned in section 2.6, the output of most sensors is a continuous voltage waveform, 

which represents the physical properties of the object or scene being sensed. In order to be 

able to analyze this continuous voltage waveform from the imaging sensors, the continuous 

waveform needs to be digitalized. This means, we need to convert the continuous sensed 

data into digital form. The two processes involved in image digitization are Sampling and 

Quantization [42], [43]. 

In a continuous image x and y coordinates as well as its amplitude need to be sampled in 

order to convert it to digital form. The process of digitizing the coordinate values of the 

image is known as sampling, while the process of digitizing the amplitude values of the 

analog image is known as quantization [43], [44] 

Sampling includes choosing a finite number of points within an interval, while quantization 

involves assigning an amplitude value that lies within a range of possible finite values to 

each of those selected points. The outcome of the digitization process is a rectangular array 

of pixels, from image elements whose values correspond to their intensities for 

monochrome images or color components for color images. Fig. 2.7 shows the continuous 

image projected onto the CCD sensor array and the result of its digitalization. 
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Fig. 2.7 Left: Sensed Image and Right: Result of Image Sampling and Quantization [43]. 

 

Sampling rate is the number of samples across the height and width of the image. Care 

must be taken when choosing a sampling rate during image sampling. Choosing inadequate 

values may affect the quality of the image, leading to what is known as aliasing. Aliasing or 

under sampling occurs, when the sampling rate is lower is lower than twice the highest 

frequency component of the signal [44]. This can lead to not having enough points to 

ensure proper reconstruction of the original signal. 

 

2.7.1 Digital Image Representation 

A digital image obtained as a result of sampling and quantization of an analogue image or 

one that is already in a digital form can be represented by the function of a two-dimensional 

array of real numbers [43]. A monochrome image ),( yxf of size M x N implies x  in the 

function ),( yxf   denotes the row number (between 0 and M –1) and y  denotes the 

column number (between 0 and N -1) as shown in (2.1). 
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The values of a given pixel of coordinates ),( 00 yxf in the image ),( yxf is called the 

intensity or gray level of the image at that pixel location.  

 

 

 

The maximum and minimum pixel intensity value varies, depending on the data type. For 

example, for double data type the intensity range is between 0.0 (black) and 1.0 (white), 

and for unsigned 8 bits integer (unit 8), the range is between 0 (black) and 255 (white) [42], 

[43]. The two commonly use format for encoding the contents of a digital image is the 

raster (bitmap) and vector image representation formats. The raster representations make 

use of two-dimensional array of pixels, while the vector representations use drawing 

commands to represent a digital image. The raster representations have an advantage of 

high quality graphics and display speed. However, the raster format, occupies a large 

amount of memory and enlarging the raster image may lead to artifacts. The vector format 

on the other hand, requires less memory and is very robust to resizing and geometric 

manipulation without introducing artifacts [43], [44]. Selecting suitable image 

representation has to do with the type of application one is working on because both raster 

and vector formats have their pros and cons. 
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2.7.1.1 Binary Images 

Binary images are two-dimensional array of pixels, containing one bit per pixel, where the 

pixel value 0 corresponds to black and a pixel value of a 1 corresponds to white. This type 

of image representation is suitable for images of very small size, such as graphics, text or 

line art [45]. Fig. 2.8, shows, a binary image and its corresponding pixel values in a 6 x 6 

neighborhood.  

 

 

Fig. 2.8 Binary Image with its Corresponding Pixel Values [45] 

 

2.7.1.2 Gray-Level Images 

Gray-level images are also known as monochrome images. They are a two-dimensional 

array of pixels, containing 8 bits per pixel, where the pixel value of 0 corresponds to black, 

while pixel value of 255 corresponds to white and intermediate pixel values correspond to 

varying shades of gray. Fig. 2.9 shows, a 6 x 6 grayscale image, where brighter pixels 

correspond to larger pixel values. 
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Fig. 2.9 Grayscale Image with its Corresponding Pixel Values in a 6 x 6 Neighborhood [45] 

 

2.7.1.3 Color Images 

Color images are stored in a RGB representation, where each pixel is represented by a 24 

bits number containing the amount of red ®, green (G) and blue (B) components, and an 

indexed representation to a two-dimensional array containing indices to a color palette or 

lookup table [45], [46]. The indexing of color image and the indices is illustrated in Fig. 

2.10. 

 

 

Fig. 2.10 An Indexed Color Image with a Pointer to a Color Palette [45]. 
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2.8 Spatial Domain Filters 

The name filter comes from the frequency domain processing. While filtering denotes to 

accept (pass) or reject certain frequency components [47]. A low-pass filter for example, 

passes low frequencies, this is normally used to blur (smooth an image. A similar 

smoothing can be done directly on the image by using spatial filters (also known as kernels, 

templates, spatial mask and windows). There is a one-to-one relationship between the linear 

spatial filters and filters in the frequency domain, but the spatial filters are more flexible 

than the frequency domain filters [47], [48]. 

A spatial filter consists of a small rectangular window called the neighborhood and a 

predefined operation that is performed on the image pixels neighbors [48]. The result of a 

filtering operation, is a new pixel with coordinates equal to the coordinates of the pixel at 

the center of the neighborhood, which have a new value as a result of the filtering 

operation. As the center pixel of the filter visits each pixel in the input image, a filtered 

image is generated. 

The two major operations in linear spatial filtering are the correlation and convolution 

processes [49]. Correlation is the process of moving a window filter over the image and 

determining the sum of products at each location. While a convolution process is the same 

as the correlation process, except that the filter is first rotated by 1800 [45], [46]. The best 

way to illustrate the difference between correlation and convolution process is with the aid 

of examples, which are given as follows: 
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Given an image; 

























74

523

24

15

16

14

13

12

22181043

14118621

17122015

A
                  (2.2) 

and a correlation kernel; 



















278

531

496

K
                                  (2.3) 

The following steps can be used to determine the output pixel at location (2, 3) in the image 

A: 

 Slide the center element of the correlation filter, in such a way that it lies on top of 

the element at location (2, 3) of A. 

 Multiply each weight in the correlation filter by the pixel value of A below it. 

 Sum up the individual products from the output of multiplication of filter weights 

and the pixel values. 

The correlation output of the pixel in location (2, 3) in A is: 

(6x20) + (9x2) + (4x1) + (1x6) + (3x8) + (5x11) + (8x4) + (7x10) + (2x18) = 365 

The correlation process is also illustrated in Fig. 2.11. Where the colored numbers are the 

values of correlation kernel, while the numbers in black are the image pixel values. 
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15 6x20 9x2 4x1 17 

21 1x6 3x8 5x11 14 

3 8x4 7x10 2x18 22 

12 14 15 23 5 

13 16 14 4 7 

Fig. 2.11 Computation of the (2, 3) Output of Correlation. 

 

The convolution process can also be explained using the same image A and correlation 

filter K as illustrated in the example for the correlation process. The convolution process is 

similar to the correlation process, the only difference is that the correlation filter is rotated 

1800 about its center to create a convolution filter. The output pixel using a convolution 

filter on pixel at location (2, 3) of A is: 

(2x20) + (7x2) + (8x1) + (5x6) + (3x8) + (1x11) + (4x4) + (9x10) + (6x18) = 341 

This is also illustrated in Fig. 2.12: 

 

 

 

 

 

Center kernel 
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15 2x20 7x2 8x1 17 

21 5x6 3x8 1x11 14 

3 4x4 9x10 6x18 22 

12 14 15 23 5 

13 16 14 4 7 

Fig. 2.12 Computation of the (2, 3) Output of Convolution 

 

2.9 Frequency Domain Filters 

Image processing filters that process images in the frequency domain are known as 

frequency filters. In this domain, the image is first of all Fourier transformed, then 

multiplied with the filter function and then transformed back into the spatial domain (Fig. 

2.13). 

 

 

Fig. 2.13 Frequency domain filtering process 

Center kernel  
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Filtering in the frequency domain is generally based on the Fourier transform and it has the 

advantage of computational speed when compared with spatial domain filtering, especially 

when dealing with filters of large sizes. In other words, it is computationally faster to 

perform a two 2D Fourier transforms and filter multiplication than to perform a convolution 

in the spatial domain [49], [50]. 

 

2.9.1 Fourier Transform 

The Fourier transform is an image processing tool, which is used to convert an image into 

its sine and cosine components. The output of the Fourier transform is the image in the 

Fourier or frequency domain while the input image is usually in the spatial domain. Each 

point on the image contained in the spatial domain is represented by a particular frequency 

in the Fourier domain image. When the Fourier transform is applied to a digital image, it is 

known as Discrete Fourier Transform (DFT) [50]. 

The DFT is a sampled Fourier transform, it only contains a set of frequencies that is large 

enough to fully describe the image in the spatial domain, and it does not contain all the 

frequencies that form an image. However, the number of frequencies corresponds to the 

number of pixels in the spatial domain image. This implies that both images in the spatial 

and Fourier domains are of the same size. 

Considering a square image of size N x N, the 2D DFT is given by: 
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 where ),( yxf  is the image in the spatial domain and the exponential term is the basis 

function corresponding to each point ),( vuF  in the Fourier space. Equation (2.4), can be 

interpreted as: the value of each point ),( vuF  and can be obtained by multiplying the spatial 

image with the corresponding base function and adding the result. 

The basis functions are the sine and the cosine waves with their frequencies increasing from

)0,0(F , which represents the dc-component of the image that corresponds to average 

brightness, and to )1,1(  NNF  which represents the highest frequency. 

In a similar way as the forward transform, the Fourier image can also be reverse 

transformed to the spatial domain. The inverse Fourier transform is given by: 
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The 
2

1

N
 normalization term in the inverse transformation is sometimes applied to the 

forward transform, instead of the inverse transform, but it cannot be used for both 

transformations [50], [51]. 

In order to obtain the results for (2.4) and (2.5), a double sum needs to be computed for 

each image point. Since the Fourier transform can be separated, it can be expressed as: 
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where, 
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Using (2.6) and (2.7), the spatial domain image is first of all transformed into an 

intermediate image using N, one-dimensional Fourier transform. Afterwards, the 

intermediate image is transformed into the final image, also using an N one-dimensional 

Fourier transform. Stating the two-dimensional Fourier transform in terms of a sequence of 

2N one-dimensional transforms reduced the number of required computations [49], [50], 

[51]. 

The one-dimensional DFT, despite the reduction of the number of required computations 

still has the 2N  complexity. But by introduction of the Fast Fourier Transform (FFT) [50], 

[51], to compute the one-dimensional DFT, the 2N  complexity is reduced. 

The Fourier transform process produces two image outputs, either the real and imaginary 

parts or magnitude and phase. However in image processing, only the magnitude of the 

Fourier transform is usually displayed, because it contains most of the geometric 

information of the structure of the spatial domain image. Both the magnitude and phase of 

the Fourier image need to be preserved for use during inverse transformation of the Fourier 

image into the spatial domain [51]. 

 

 

 



38 
 

2.10 Image Mosaicking 

Image mosaicking is the process of merging two or more images of a scene to obtain a 

wider field-of-view of the scene. It is frequently used for remotely sensed images, to 

provide a wider view of an entire geographical area, when sensors are not able to capture 

the entire scene at one time [52], [53]. Image mosaicking involves four steps of image 

processing: registration, projection, stitching and blending. 

Registration involves the establishment of geometric correspondence between a pair of 

images showing the same scene [53]. In order to register a set of images, the geometric 

transformations, which align the images with respect to a reference image within that set 

that must be estimated. This set of images may include, two or more images of the same 

scene taken at different times, from different viewing positions, and/or by different sensors. 

The above-mentioned correspondence between images during image registration can be 

established either by matching templates between images or by matching features extracted 

from images [53], [54]. 

The next step after the registration process is the re-projection step. The re-projection 

process involves, the alignment of the images into the same coordinate system using the 

computed geometric transformations. 

After the re-projection step, is the stitching step, where the aligned images are joined 

together to form a larger image. This is done by merging pixel values of the overlapping 

areas and retaining pixels where no overlap takes place. 

The final step in the image mosaicking process is the blending step. Errors caused due to 

misalignment, which often results in undesirable object discontinuities are usually visible at 
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the boundary between the two images during stitching process. Hence, at the blending step, 

a blending algorithm is used during or after the stitching of images to reduce the 

discontinuities in the final appearance of the mosaic image. Fig. 2.14, illustrate the four 

steps involved in image mosaicking.  

 

 

Fig. 2.14 Processes of Image Mosaicking [53]. 

 

In order to solve the problems of multiple color bands during the formation of mosaic 

image, the RGB images are first converted to grayscale before transformation parameters 

are obtained. However, all the color bands are processed and combined together at the re-

projection stage to produce a color mosaic [54]. A detailed literature on image mosaicking 

can be found in [52], [53], [54] and [55]. 
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2.11 Chapter Summary 

This chapter presents the required background knowledge of digital image processing and 

also acts as a perquisite for topics in the remaining chapters of the thesis. The chapter 

consists of an overview of: UAV system, remote sensing system, global position system, 

inertial navigation system, camera and imaging system, spatial and frequency domain 

filters and image mosaicking. 
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CHAPTER THREE 

State-of-Art for Image Matching and 

Object Detection 
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3.1 Introduction 

Image matching aims at matching two images to establish a degree of similarity between 

them. Image matching is an approach to object detection and it forms one of the major tasks 

in photogrammetry and computer vision, whose applications include, point transfer in 

relative orientation and image sequences or bundle blocks adjustment [56], which involves 

many points being transferred. Image matching, rather than feature points only, can also be 

applied to lines or segment transfer between images. Other applications of image matching 

are object and scene recognition, motion tracking, and texture classification [57], [58]. 

Image matching is a very rigorous task because of images taken under different lighting 

conditions, as well as image deformations and occlusions caused by different a view point 

of the imaging system. The process of making the pixels on one image to geometrically 

match with the pixels on another image, with both images corresponding to the same 

physical region of the scene being imaged is known as image matching [59]. 

Based on the aforementioned definition of image matching by Dai and Lu [59], it can be 

seen that image matching problems can be solved by applying the affine (i.e., translation, 

rotation and scaling) transformation, to one of the images in order to draw similarity with 

the other image as much as possible. This becomes very difficult to achieve due to the 

nature of the three dimensional world and more importantly because images could be taken 

under different lighting conditions and from different viewing points. 

The common image matching methods can be divided into two major categories: the 

Feature based and Area based matching techniques [60], [61]. 

 



43 
 

3.2 Feature Based Matching Techniques 

Feature based matching techniques are usually applied when the information obtained from 

the local structure of the image is more important than the information obtained from the 

image intensities. 

In feature based techniques, features in the referenced image are tested with the features of 

the sensed image. These features can be points, lines or regions [61]. However, in this 

research, point based features are used for image matching. The search for distinct image 

points in matching images can be divided into three major stages: 

 Interest Points Selection: This is the first step of computational search, in which 

interest points are selected on locations on the image where there can be 

repeatability of the points. This means points found on a location in the image, 

where the points remain unchanged, when viewed under different camera positions. 

Such points are mostly found at locations, such as corners, T-junction and blobs. 

 Descriptor Vector: At this stage, very interest point is represented by a descriptor 

vector. This descriptor must be unique and invariant to geometric and image 

deformations. 

 Description Matching: This is the final stage, in which the descriptor vectors are 

matched between nearest images based on the Euclidean distance between their 

vectors. Matching time between descriptors depend on the dimension of the 

descriptor vector, smaller dimension descriptor vector takes less time for interest 

points matching compared with descriptor vector with a larger dimension. However, 

a small size dimension descriptor vector produces less distinct interest points than 

large dimension descriptor vectors. 
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3.2.1 Harris Corner Detection 

The earliest use of feature based matching techniques can be found in the work of Moravec 

[62] in 1981, in which stereo matching was done using a corner detector. Chris Harris and 

Mike Stephens [63], improve on the work of Moravec by making their work more 

repeatable under minor image alterations and close to the edges. This was shown in 1988 in 

their paper, “A combined Corner and Edge Detector”, which is today known as Harris 

Corner Detector. They expressed their idea in a mathematical form as: 
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                  (3.1) 

where: 

              D = the difference between the tested window and the window that was shifted. 

              u = the window’s shift along x-direction. 

              v = the window’s shift along y-direction. 

     w(x, y) = the window’s location at (x, y). This ensures that merely the required window 

is allowed. The window function w(x, y) acts like a mask and can either be a 

rectangular window or Gaussian window. 

                            I(x, y) = the intensity of the original window. 

I(x+u, y+v) = the intensity of the shifted window. 
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For Corner Detection, we need to look for a window that gives large value for D(u, v). This 

means, we have to maximize the value in the square bracket in (3.1), which is the second 

term in the equation.  

Thus, we maximize the term: 
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                                 (3.2) 

We then, expand (3.2) using Taylor series, this gives: 
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Expanding the square in (3.3), we have: 
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(3.4) in matrix form becomes: 
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where, 
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After D(u, v) is obtained, a score was created to help decide if a window contained a corner 

or not. Hence a score S was calculated for each window as: 

2))(()det( NtraceNS                            (3.8) 

where: 

            21)det( N . 

           21)(  Ntrace . 

           1 and 2 = the Eigen values of N. 

The value of these Eigen ( 1 and 2 ) determines whether a region is flat, edge or a corner. 

 If S has a small value, which implies the values of 1 and 2  are also small, then, 

the image area is referred to as “Flat”. 

 If the value of S is less than zero, which implies that either 1 > 2  or 2 > 1 , 

then area is an “Edge”. 

 If the value of S is large, which implies that the values of both 1 and 2  are also 

large, then the area is referred to as a “Corner”. 
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The above conditions are represented in Fig.3.1. With a suitable threshold, the outcome of 

Harris Corner Detector is a grayscale image that fulfilled the aforementioned score. 

Although feature detectors are generally referred to as corner detector, they are not based 

on corner picking only but rather finding image position with large gradients in all 

directions at a fixed scale [63], [64]. 

Early applications of the Harris corner detector were in stereoscopic and short range motion 

tracking. But later in the year 1995, Torr [65] used Harris corner for long-range motion 

matching, where geometric control were used on firm objects moving within an image. 

 

Fig.3.1. Conditions for Harris Corner Detector [64]. 

 

Two years later, Schmid and Mohr [66], solved image object detection problems by 

matching a test feature against a database of images. In their work, interest points were 

picked using a Harris corner detector and a descriptor vector was used instead of a 
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correlation window for image matching. This descriptor is distinct and invariant to rotation. 

This means, features matching is not affected by the change in orientation between 

matching images. 

The Harris corner detector is not invariant to scale. Hence it does not yield accurate results 

if the matching images are not of the same sizes [65], [66]. 

 

3.2.2 Scale Invariance Feature Transform (SIFT) 

In the last section, we saw that Harris Corner Detector is rotationally invariant but not scale 

invariant. This means, if the image is rotated, the same corner in the image can be found, 

this is obvious because a corner remains unchanged even if the image is rotated. However, 

a corner no more remains a corner if the scale of the image is changed. For example, a 

corner containing a small window becomes flat when zoomed in the same window. To 

solve the problem of scale invariance, David Lowe [67], in 1999 developed an algorithm 

known as Scale Invariance Feature Transform (SIFT), in which keypoints were extracted 

from images and are used to compute its descriptors. When the SIFT algorithm is used for 

image matching and object detection six processes involved are: 

 

3.2.2.1 Scale Space Construction 

The first process in the SIFT algorithm is to detect keypoints by identifying locations and 

scales that are invariant to scale change of the image and this is followed by searching for 

distinct features across all likely scales, by means of a continuous function of scale known 

as Scale Space. 
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Scale space can be constructed by taking the original image and generating a progressively 

blurred out images. Afterwards, the original image is resized to half its original size. Then, 

blurred out images are generated from it again. This process is repeated for each octave. As 

shown in Fig.3.2, images of the same size arrange vertically to form an octave, while 

images within the same octave are increasingly blurred from the top image to the bottom 

image. The number of octaves and blur levels used to construct a scale space depends on 

the size of the image. In Fig.3.3, for example, the scale space consists of three octaves and 

five blur levels. 

 

 

Fig.3.2. Octaves in Scale Space Construction [68]. 
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Blurring referred to as the mathematical convolution of Gaussian’s variable scale 

),,( yxG  , with an input image ),( yxI . This can be expressed as: 

 

),(*),,(),,( yxIyxGyxL             (3.9) 

where: 

 L is the blurred image 

 G is the Gaussian function 

 I is the image 

 x, y are the image position coordinates 

   is the amount of blur, also known as scale parameter. The higher the value of   

the higher the blur. 

 * is the convolution operation in x and y, and 
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In image blurring, a constant k is chosen, such that if the amount of blur in a particular 

image is , then, the amount of blur in the next image within an octave is k multiplied by   

(i.e., k ). Lowe [46], in his algorithm suggested a value of 2  for the constant k. 
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3.2.2.2 Difference of Gaussian Approximations (DoG) 

In the previous section, a scale space was constructed by progressively blurring the original 

image, reducing the image size, blur the reduced image progressively and the process is 

repeated for each octave. The octaves formed from the scale space are then used to generate 

the Difference of Gaussian (DoG), in which adjacent images within an octave are 

subtracted from one another. This difference of Gaussian, which is equivalent to the 

Laplacian of Gaussian (LoG) was proposed by Lowe, to solve the problem of intensive 

computation involved in calculating Laplacian of Gaussian which contains second order 

derivatives that are very sensitive to noise.  

The difference of Gaussian function when convolved with an image, ),,( yxM  which is 

obtained from the difference between two adjacent scales separated by a constant k, can be 

expressed as: 

 

),(*)),,(),,((),,( yxIyxGkyxGyxM    

                                                    ),,(),,(  yxLkyxL                      (3.11) 

 

The DoG produces images that are an approximation of a Laplacian of Gaussian and is very 

effective in detecting stable key points in scale space. The DoG is illustrated in Fig 3.3. 
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Fig.3.3. Adjacent Gaussian images are subtracted to generate DoG [67]. 

 

 

3.2.2.3 Finding Keypoints on the Image 

After the construction of the scale space and determination of the DoG. The next step is to 

find the keypoints in the image. Finding keypoints in an image consists of three processes: 

 

(a) Location of Maxima and Minima in DoG Images: 

The process here is to locate coarsely the maxima and minima in the DoG images. This is 

done by iterating through each pixel and checking the entire pixel in its neighbourhood. As 

illustrated in Fig.3.4, the checks are done within the pixels surrounding the sample pixel.  
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Fig.3.4 Checks for Maxima/Minima in DoG Images [67] 

 

The sample pixel is denoted by X while the neighbouring pixels are denoted with green 

circles. X is chosen as keypoint if it has the largest value when compared with all its 26 

neighbours. Note that, during the checks for maxima and minima, the lowermost and 

topmost scales are discarded because the region does not have enough neighbours to do the 

comparison. Hence, keypoints sample are not used in the lowermost and topmost region of 

the image. 

All points marked as maxima or minima are actually the approximate maxima and minima 

because points found as maxima or minima lies somewhere in between the pixel not exactly 

on the pixel. Since data between pixels cannot be accessed, a mathematical model is used to 

find the subpixel location. 
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(b) Location of Maxima and Minima in Subpixel: 

Once a candidate keypoint has been found by comparing a pixel to its neighbours, the next 

step is to localize keypoint by generating the subpixel values using a Taylor’s expansion of 

the pixel surrounding the approximate keypoint. 

The Taylor’s expansion [69], of the scale space function, ),,( yxD  is given by: 
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The subpixel keypoint location x̂ , can be determined by differentiating (3.12) and equating 

it to zero, given as: 
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[67] and [69], suggested generating two extrema images, which means four DoG images 

are needed to achieve this, hence, five level of blurs are needed in each octave. 

 

(c) Removing Subpixel Keypoints with Low Contrast and the Ones Lying on the 

Edges: 

Most of the keypoints generated in the last section lie along the edge or have low contrast. 

Keypoints found in both cases are not good as features and need to be removed. 

In order to remove and check for the contrast value of a subpixel keypoint, Taylor’s 

expansion is again employed. Here, the function value of the subpixel keypoint, )ˆ(xD   is 
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used discarding subpixel keypoints with low contrast, if its intensity value is less than a 

user’s specified threshold. 

The function )ˆ(xD  can be obtained by substituting (3.13) in (3.12) and given as: 
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To remove keypoints that lie along the edge of the image of DoG in a subpixel, an approach 

similar to the Harris corner detector method for removing edge features is used. The idea 

here is to calculate two gradients at the subpixel keypoint location that are perpendicular to 

each other. The Hessian matrix [69], is used for this purpose. Hence, the Hessian matrix is 

used to check weather a keypoint is a corner or not. The Hessian matrix H can be computed 

at the location and scale of the keypoint as: 
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By making  to be the bigger eigenvalue and   to be the smaller eigenvalue, then, the 

sum of the two eigenvalues (   ) can be computed from the trace of H and their products 

( ) from the determinant of H: 

 

  yyxxr DDHT )(                 (3.16) 

 2)()( xyyyxx DDDHDet            (3.17) 
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If r is the ratio between the two eigenvalues ( r ), then  r  and thus, 
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Based on the pixel surrounding the keypoint, the following conditions can exist: 

 Flat, if the two gradients have small values 

 An edge, if one gradient is greater than the other. 

 A corner, if the two gradients have large values. 

The corner consists the most stable keypoints. Hence, if the two gradients value are big 

enough it will be accepted as a keypoint, otherwise it will be rejected. 

 

3.2.2.4 Keypoint Orientations 

In the previous sections, scale invariance and stable keypoints were generated. Next is to 

assign orientations to each of the keypoints, in order to make it rotation invariant. 

Orientation can be assigned to each keypoint by checking the gradient magnitudes and 

directions of each pixel surrounding each keypoint. Then the most noticeable orientation in 

that area is selected and this orientation is then assigned to the keypoint. Any other 

calculations are done with respect to this orientation. Hence, for an image sample, ),( yxL  

the gradient magnitude, ),( yxm and the orientation, ),( yx  is computed using the pixel 

differences, which is given as: 
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22 ))1,()1,(()),1(),1((),(  yxLyxLyxLyxLyxm                 

(3.19) 

))),1(),1())1,()1,(((tan),( 1 yxLyxLYXlYXLyx                    (3.20) 

 

Once the gradient magnitude and orientation are determined for all pixels surrounding the 

keypoints, then an orientation histogram is created. The histogram created consists of 360 

degrees orientation which is broken into 36 bins (i.e., each is 10 degrees). Each sample of 

the gradient magnitude and the window size of orientation collection area that is added to 

the histogram is blurred by the amount of  that is 1.5 times the scale of the keypoint [69]. 

For example, if the gradient direction at a certain point in the orientation collection region 

is 13.645 degrees, then, this will go into the 10-19 degree bin as shown in Fig.3.5.  

 

 

Fig.3.5.Orientation Histogram [68]. 
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The highest peak in the histogram is at 20-29 degrees. Hence the keypoint is assigned 

orientation 3 in the third bin. Any other local peak that is within the range of 80% of the 

highest peak is used to create a new keypoint with that orientation. This means for location 

with many peaks of the same magnitude, multiple keypoints will be created at the same 

location and scale but with different orientations. 

 

3.2.2.5 Feature Vector Generation 

In the previous section, a stable, scale and rotation invariance keypoint is generated. The 

next step of SIFT algorithm process is to create a unique identity for each keypoint. For 

example, if an eye is a keypoint, a unique identifier that is created for the eye keypoint, will 

be to distinguish it from other identifier keypoints, such as ears, mouth, noses and so on. 

In order to create this unique identifier for a keypoint, a 16 x 16 window is created around 

the keypoint location. Then the 16 x 16 window is broken into sixteen 4 x4 windows as 

shown in Fig.3.6. 

 

 

                                 (a)                                                                        (b) 

Fig.3.6 (a) 16 x16 Window Broken into (b) Sixteen 4 x 4 Window [68]. 
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Within each 4 x 4 window, the pixel gradient magnitudes and orientations are calculated 

and the obtained orientations are then put into an 8 bin histogram. This is illustrated in 

Fig.3.7. 

Added to the first bin of the histogram is any gradient orientation that falls in the 0 – 44 

degrees, and the second bin consists of gradient orientation in the range 45 – 89 and so on. 

The magnitude of the gradient and its distance to the keypoints determines the amount 

added to the bin. This means, pixel gradient that is far away from the keypoint location will 

add smaller values to the histogram. 

 

 

                            (a)                                                                         (b) 

Fig.3.7. (a) Precomputed Gradients and (b) 8 Bin Histogram [68]. 

 

This is done with the aid of the Gaussian weighting function. The gradient generated by the 

Gaussian weighting function is multiplied by the magnitude of the orientation to get the 

weight of the magnitude. The further the gradient orientation to the keypoint location the 

lowerr the magnitude. 
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The gradient magnitudes and orientations are calculated for the 16 pixels as explained 

above and placed into 8 predetermined bins. This is done for all the sixteen 4 x 4 regions 

and this ends up with 128 numbers (i.e., 4*4*8 = 128). Once these 128 numbers are 

obtained, they are normalized and hence they form the feature vector. This feature vector is 

a unique keypoint identifier. 

Once the feature vector is determined, it is further modified to reduce the effects of rotation 

and illumination change. The effect of these changes can be eliminated as follows:  

 

 Rotation Change: Since the feature vector uses gradient orientation, if the image is 

rotated, all gradient orientation will change. To solve this problem of rotation 

variance, the angle at which the keypoint is rotated is subtracted from each 

keypoint’s gradient orientation. Hence, each gradient orientation is relative to the 

keypoint’s rotation [50]. 

 Illumination change: Illumination invariance can be achieved by the threshold of 

the value of each element of the feature vector to 0.2 and normalizing the resultant 

feature vector [68], [69]. 

 

3.2.2.6 Keypoint Feature Vector Matching 

After the generation of stable keypoint descriptor (feature vector), this can be used for 

matching stereoscopic images, as well as object recognition. 

For matching of two images, the SIFT feature vector are first extracted from each image as 

explained in previous sections and similar features are used to match the two images 

together in a process known as image mosaicking. 
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For image recognition, SIFT features are extracted from a referenced image and stored on a 

database. A test image to be detected has its SIFT features compared with each of the 

features stored in the database, in order to find a candidate match feature based on the 

Euclidean distance between their feature vectors. 

A lot of algorithms has been used for the computational matching in the database. Among 

them are the Nearest-neighbour, Best-Bin-First, and Hough Transform algorithm [68]. 

Lowe [69], in his experiment, concluded that the Hough transform algorithm is the most 

efficient, especially in matching that involves cluttered images. 

In clutter image, a lot of features from the background may not form a match with the 

features in the database, giving rise to false matches mixing with the correct matches. 

Hence, the correct features need to be removed from the set of matches. The filtering of 

correct features from a set of both false and correct features is done with the use of hash 

table in the implementation of Hough transform. 

Each of the correct features (minimum of 3) that agree on an object and its pose is then 

subject to more thorough confirmation by a least squares estimate for the approximation of 

the object pose. Any other image keypoint vectors that are stable with this pose are identify. 

Image keypoint vectors that pass all these tests are identified as correct features. 

 

3.2.3 Speed-Up Robust Feature (SURF) 

The Speed-Up Robust Feature (SURF) uses the same principle and processing steps as the 

SIFT algorithm but it utilizes a different scheme. The SURF algorithm was introduced by 

Bay, H et al [70], in their paper “SURF: Speeded up Robust Features” in 2006. As the 
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name suggests, it is a speeded up version of the SIFT algorithm which consists of the 

following processing stages: 

3.2.3.1 Interest Point Detector 

In order to detect interest points on the image, the SURF algorithm uses a Hessian matrix 

because of its fast computational time and accuracy. Rather than selecting the location and 

scale using different measures, the algorithm relies on the determinant of the Hessian 

matrix for selecting location and scale. For a point ),( yxX  , in an image I, the Hessian 

matrix ),( xH in X  at scale  is given as: 
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where ),( xLxx is the convolution of the Gaussian second order derivative )(
2

2


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x
 with 

the image I at point x. 

Similarly, ),( xLxy and ),( xLyy are given as: 
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[70] and [71], show in their findings that the Gaussians are optimal for scale-space analysis. 

The convolutions is approximated and speed-up by using approximated kernels and integral 

images. 

Integral images are two-dimensional lookup tables in the form of a matrix having the same 

size as the original image [71]. The sum of all pixels at the upper left area of the original 

image is contained in each element of an integral image with respect to the element’s 

position. This enables the computation of the sum of rectangular areas in the image, at any 

scale or position with the aid of only four lookups: 

  )()( DBCAxI                 (3.23) 

Where points A, B, C, and D, are elements of the integral image I, as shown in Fig.3.8. 

 

 

Fig.3.8. Finding the Sum of Shaded Area on an Integral Image. 
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In practise, the second order derivative Gaussian Kernels )(
2

2





g

y
that was used for the 

Hessian matrix must be discretized and cropped before applying them to a kernel. 

Afterwards, the kernel is approximated with a rectangular box filters. This is illustrated in 

Fig.3.9, where grey areas are denoted as 0 in the kernel, white areas are denoted as positive 

and black areas as negative. 

 

                                       (a)                                                                     (b) 

Fig.3.9 (a) Discretized Gaussians (b) yyD  and xyD  Approximations [70] 

 

In this way, the approximated convolution is effectively calculated for a randomly sized 

kernel making use of the integral image. 

The approximated convolution for a randomly sized kernel, making use of the integral 

image can be calculated by: 

2)()( xyxyxxapprox wDDDHDet                  (3.24), 

where the approximations for discretized Gaussians ),( xLxy and ),( xLyy are denoted by 

xyD  and yyD  respectively. 
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[69], shows in his paper that the lowest scale that can be processed by a SURF algorithm 

correspond to a  value of 1.2. When calculating the determinant of the Hessian matrix, 

using the approximated kernels, it needs to be weighted )( xywD , as shown in (3.24). The 

term w is known to be theoretically sensitive to scale but can be kept constant by assigning 

a value of 0.9 to it. Hence, the equation (3.25) becomes: 

 

2)9.0()( xyxyxxapprox DDDHDet                  (3.25), 

In SURF, scale space are normally implemented as image pyramids. The images are 

repeatedly blurred with Gaussian kernels and subsequently sub-sampled in order to achieve 

a higher level of the pyramid. Features are detected across scales by examine many octaves 

and blur levels. Unlike the SIFT algorithm, where the image scales are progressively 

reduced and larger Gaussians Kernels are used. The SURF algorithm, is analysed by up-

scaling the Gaussian kernels rather than reducing the image scale. This comparison is 

illustrated in Fig.3.10. 

 

 

Fig 3.10 (a) SIFT: Image Size Progressively Reduced (b) SURF: Up-Scaling Gaussian Kernels 

Instead of Reducing Image [70] 
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A non-maximum suppression in a 3x3x3 neighbour is used to localise interest points in the 

image and over the scales. Then with the method proposed by Brown et al [57], the maxima 

of the Hessian matrix’s determinant can be interpolated in the scale and image space. 

 

3.2.3.2 SURF Descriptor 

The purpose of a descriptor is to offer a unique and strong description of an image feature 

based on the pixels that surround the interest point. A descriptor must be computed for each 

interest point found in the image. 

(a) Orientation Assignment to Interest Point 

The SURF algorithm is very robust to rotations, an upright version of the SURF referred to 

as U-SURF is very robust to rotations within the range of 015 , without having to perform 

orientation assignment [70], [71]. 

In order to make the interest point rotation invariant, the Haar wavelet response in the x and 

y direction, which lies within the pixels in a circular neighbourhood of a user’s defined 

radius around the interest point is computed. The Gaussian function centred at the sample 

point within a circular neighbourhood of the interest point is used to weigh the obtained 

Haar wavelet response (Fig.3.11), and the dominant orientation is detected by a sliding 

window of size 3
  (Fig.3.12). 
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Fig.3.11 (a) Haar Wavelet Filters to Compute Responses in x Direction (b) and y Direction. Black 

Side have Weight -1 and the White Side +1 [70]. 

 

Fig.3.12 A Sliding Orientation Window Size 
3

   Detects the Dominant Orientation [70] 

 

Both the vertical (dy) and horizontal (dx) responses within a window are summed up. Then, 

the orientation of the interest point is defined by the longest vector over all windows. 

(b) Descriptor Based on the Summation of Haar Wavelet Responses 

The region around the interest point is described by a square region within an interest area 

of window size of 20S (where S is the scale of the interest point at the point of detection). 



68 
 

The interest region is divided into 4 x 4 smaller sub-regions (Fig.3.13), as described by dx 

and dy wavelet response.  

 

 

Fig.3.13 4 x 4 Square Sub-region is laid on the Interest Point on the Left [70]. 

For each sub-region a feature vector v is calculated based on 5 x 5 regular space sample 

points, using (3.26): 

 

],,,[    dydydxdxv              (3.26) 

To offer more robustness for noise, translation and deformation, the wavelet responses are 

weighted with a Gaussian. 

 

3.2.3.3 SURF Feature Matching 

Matching of features for object recognition and image matching with SURF algorithm uses 

the same principle as the SIFT algorithm. However, the use of integral image makes the 

computation of SURF faster than that of SIFT algorithm. 
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Also the vector size of SURF being smaller than that of SIFT, makes the SURF image 

matching operation faster. However, the SIFT has higher matching accuracy than SURF 

because the SIFT produces more feature points than SURF. 

 

3.3 Area Based Image Matching  

Area based matching techniques; unlike the feature based techniques make use of grey 

values as its matching entities. Grey values of neighbouring pixels are used rather than one 

pixel because of the uncertainty in matching one pixel. An image patch cut from one image 

known as the template, is used to search for a corresponding image patch in a sampled 

image. The template consists of m x n pixels and in most cases the m and n are equal, and 

are odd numbers. 

In order to identify the matching area, the window template is compared with the sample 

image by sliding it from left to right, then, from up to down of the sample image. At each 

location of the template window in the sample image, a grey value is calculated and the 

location with the highest grey value is chosen as the highest matches. 

The bigger the template, the more the requirement of matching entity is achieved. However, 

the geometric distortion caused by imaging instruments and change in orientation of images 

can affect image matching using big templates [72], [73]. For example, in sloppy areas the 

matching image patches are not geometrically identical. To solve this type of problem, the 

size of the template has to be small or its shape modified by geometric distortion (such as a 

trapezoid window). This approach is mostly applied in photogrammetry in the generation of 

a Digital Elevation model (DEM) [73]. 
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One of the major tasks in image matching is avoidance of mismatches. In order to avoid 

outliers in area based image matching techniques, a threshold is set for similarity measures. 

Apart from the setting of a threshold for similarity check, geometric constraint and robust 

adjustment method are used for further computation to eliminate wrong matches. In area 

based matching, Correlation or Least Square methods are used for image matching. 

 

3.3.1 Correlation Image Matching Techniques 

Correlation matching techniques tends to find the similarity between two images by 

matching a patch of pixels in the first image, known as the template, and sliding it through 

the second image and by calculating and comparing the grey values at each area in the 

search image, the location with the highest value is selected as the best match. Thus, the 

normalised cross-correlation between a template image )),(( TTT yxg and a search image 

patch )),(( SSS yxg , centred at the points ),(
11 TT yx and ),(

11 SS yx respectively, is given as: 
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where: 

             121  jn  and 122  kn  are the sizes of the template image, while  
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and, 
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               (3.27b) 

are the average grey values in the template image and the search window of the right 

(sampled) image respectively. This technique is realised by comparing the average grey 

value in the template image to all 1n x 2n  pixels of a search window in the sample image. 

This comparison assigns a correlation coefficient value ),(
11 SS yx  to each location 

),(
11 SS yx  within the sample image search window. Using interpolation, the location of the 

template image, centred at a point in the search window of a sampled image where 

maximum value of the correlation coefficient is found, is selected as a match, provided that 

this maximum value of correlation coefficient does not exceed a certain predefied 

threshold. 

To compute the coordinate of the pixel, where the maximum correlation function 

),( SS yx  is located, an estimate using second order polynomials in the Sx  and Sy

directions is used: 

 

2

210)( SSS xaxaax                  (3.28a) 
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2

210)( SSS ybybby                   (3.28b) 

Then, the coordinates are determined as: 
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                                          (3.29b) 

Other correlation matching approaches as proposed in [74] and [75] try to match the 

template window with the search window of a sampled image, by minimizing their 

differences. This is expressed by the normalized spatial root mean square deviation, given 

as: 
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(3.30) 

Or by normalizing the absolute difference of the two windows, given as: 
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The methods used in (3.30) and (3.31) are similar to the correlation coefficient method, the 

only difference here is that the window search aims in finding a local minima instead of 

local maxima. 

 

3.3.2 Least Squares Method 

Correlation coefficient method is very fast and efficient, if the images involved in the 

matching have the same geometric and radiometric properties. However, images that 

exhibit such conditions are very rare, especially when aerial images are involved, due to a 

lot of geometric distortions found in aerial images. This geometric distortion in aerial 

images may include, imaging sensor, change in height of the aerial platform, terrain slope, 

position and attitude differences. Illumination and reflectance conditions can also cause an 

image to be radio-metrically distorted. 

In order to solve the matching problem caused by images that are geometrically and radio-

metrically distorted, a Least Squares matching technique is employed. The least squares 

technique attempt to solve the problem of geometric and radio-metric distortion in a search 

image by minimizing the differences in the grey values between the template and search 

image window in an adjustment where corrections were made to the geometric and radio-

metric distortion of the search image [75], [76]. 

Using a stereo pair of images as an example, if the left image ),( yxLT   is made the 

template and the image on the right ),( yxRS  as the sampled image. Then, ideally the 

correlation is established if: 
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),(),( yxRyxL ST                   (3.32) 

 

However, the presence of noise in both images or noise in only the search image, makes 

(3.32) unreliable. Hence, a noise vector is added, then (3.32) becomes: 

 

),(),(),( yxRyxyxL ST                     (3.33) 

  is a noise vector caused by a geometric and radio-metric distortion to the images, in an 

ideal situation as in (3.32), the 0 . 

In order to find the match point, the position of the function values ),( yxRS  must be 

determined. This is done by minimizing a function which measures the differences in grey 

values between the template image and the search image. The goal is to determine the 

geometric and radio-metric transformation parameters of the search window, such that 

vector   is minimized. The least squares equation in (3.33) is a non-linear adjustment 

problem, this needs to be linearized and the location of the template is estimated. 

The template location in the search image is described by a shift parameters ),( yx   with 

respect to an initial position of ),( yxR  and the estimation of the corresponding window 

),( yx  in the search image area ),(0 yxR . Apart from the shift parameters, the image 

shaping parameters and radiometric corrections must be introduced, in order to account for 

distortions caused by systematic image deformations [76]. 
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If for example, ),( TTT yxL  is the template of 1n  x 2n  pixels in the left image and 

),( 000

SSS yxR  is the equal size estimation of the template location in the right image, the goal 

is to estimate a new location for the search image window in the right image ),( SSS yxR , 

such that, the difference in the grey values will be minimized in a least squares approach. 

The estimation is achieved through a perspective transformation of the coordinates 

),( 000

SS yxR  and resampling of the corresponding grey values. The geometrical 

transformation relates the two image patches by a bivariate polynomial given by: 
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),( ba BA = the unknown m x m parameter matrix 

),( 00 yx = the grid location of the sample image points of ),(0 yxR  

With respect to very small size of the templates to be matched, the bivariate polynomial is 

usually substituted with a 6-parameters affine transformation: 

 



76 
 

  02101211

021

1211

0

1

0
1 yaxaa

xa

aa
yxS 


















                    (3.35a) 

and, 
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The function ),( yxRS  in (3.33) need to be linearized, in order to operate with the 

traditional least squares approach, while the transformation parameters in (3.35) need to be 

estimated. Hence, 
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Differentiating (3.35) gives, 

21012011 daydaxdadx             (3.37a) 

21012011 dbydbxdbdy             (3.37b) 
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From (3.36) and (3.37), with the addition of the shift parameter (r), results into the 

following observation equations: 

22101201121012011

0 ),(
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The unknown vector x  becomes: 

 

],,,,,,[ 211211211211 S

T rdbdbdbdadadax              (3.39) 

For every pair of pixels from the left template image ),( yxLT  and the right search image 

window ),( yxRS , one observation equation is formed. 

In matrix form, we have, 

LAXyx  ),(                  (3.40) 

where each element of the vector L is in the form: 

),(),( 000

SSSTTT yxRyxLL            (3.41) 
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And each row of matrix A, is: 

],,,,,[ TSTSSTSTSS yLRxLRRyLRxLRRA
yyyxxx

        (3.42) 

Thus, the least squares solution vector is: 

PLAPAAX TT 1)(ˆ              (3.43) 

where P is the weight matrix, which is usually a diagonal or identity matrix. 

The parameters obtained through the least squares solution are used in updating the 

coordinates of the template image and to resample grey values, as a new right image 

window ),( SSS yxR   is selected as a match of a fixed left image template ),( TTT yxL .  

This means, each pixel ),( SS yx   of this new window corresponds to a pixel ),(
TT LL yx  of 

the template according to the following transformation: 

TTR yLdaaxLdaadaax
S

)()()( 13

0

1312

0

1211

0

11             (3.44a) 
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11             (3.44b) 

The final solution obtained through iterations does not completely remove the difference 

between the template window and its conjugate in the search image. This is because minor 

differences can be introduced by terrain slope, and change in camera orientation. The least 

squares approach tries to minimized these differences, which cannot be completely 

eliminated. The highest possible pixel coordinate difference between the initial estimation 

and the absolute solution that can be used in a least squares technique is referred to as pull-
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range [77]. According to [64], the pull range values depend on the size of the window and 

are usually such that the matching windows conjugate has at least 50% overlap. 

By introducing constraints, for intersecting conjugate rays, in addition to geometric and 

radiometric constraints, multiple image grid points can be simultaneously matched and 

hence, performing both image matching and object space coordinate determination [76], 

[77]. 

3.4 Working in the Spatial and Frequency Domain 

Filtering in the frequency domain is much more efficient in convolving images with large 

kernels. It is also useful in the reverse process of deconvolution, which is when the output 

image and the Point Spread Function (PSF) (also known as the impulse response) are 

known, the input image can be reconstructed. In another words, the forward convolution 

may be processed by a multiplication of the frequency components and the PSF as in (2.4). 

While the deconvolution can be processed by dividing the frequency components of the 

output image with the corresponding PSF in the frequency domain. 

During the reverse process of deconvolution, the frequency components of the PSF must be 

handled with care, so as not to blow-up noise from the input image into large artifacts in the 

reconstructed image. 

Frequency domain filtering ignore the present of any object regions in the image and 

process the whole image signal at once. This makes filtering in the frequency domain 

robust to applications such as, smoothing, object recognition and image matching. In these 

cases, the frequency filtering is better than filtering in the spatial domain. 
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In contrast, applications that involves segmenting objects in the image from its background 

in order to recognise object or region of interest are better done in spatial domain than in 

the frequency domain. 

 

3.5 Chapter Summary 

This chapter presented the state of art of the most common image matching and image 

object detection techniques, which includes feature based and area based matching and 

detection techniques. 

The feature based matching techniques are frequently used, when the information needed is 

mostly the local structure of the image rather than the image intensities. To test for image 

similarity, features in a referenced image are tested with the features of the second image. 

Image feature can be in the form of points, lines or regions in the image. With respect to 

feature points, the search for unique image points and the matching of images consists of 

three major processes: interest points selection, descriptor vector formation and descriptor 

vector matching. The interest point selection is the process of selecting locations in the 

image where there are repeatability of points. Afterwards, a descriptor vector is formed by 

the pixel around the interest point. Finally the descriptor vector, which must be unique and 

invariant to image deformations are matched with a referenced descriptor vector to 

determine similarity. The dimension of the descriptor of the two matching images 

determines the time it takes for matching the images. A descriptor vector with a smaller 

dimension takes less time for matching when compared with a descriptor vector with a 

larger dimension. 
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The earliest algorithm that uses feature based techniques is Harris corner detection. The 

Harris corner uses a mathematical formula to determine the window that produces large 

variations when moved in all direction on the image. Each of the windows is assigned a 

score. One can figure out which of the windows consists of a corner based on the score. 

The Harris corner detection algorithm not being invariant to scale, gives rise to the 

development of SIFT and SURF algorithms. 

The SIFT algorithm, generates keypoints from images and these keypoints are used to 

compute descriptor vectors through octaves, which are used to generate difference of 

Gaussian. 

The SURF is a speed up version of the SIFT algorithm and it makes use of integral image 

for the computation of a feature vector. SURF is faster in operation than the SIFT algorithm 

because of the smaller dimension of its descriptor vector and the use of integral image for 

the computation of its feature vector. 

The second most commonly used matching and object recognition technique is the area 

based method. Area based matching makes use of grey level values for matching entities to 

measure the degree of image matching. To identify matching area, a window template of an 

image is slid in all direction through the sampled image. At each location of the template 

window on the sampled image, a grey value is computed and the location with the highest 

grey value is selected as the highest matches. Algorithms that make use of area based 

matching, includes correlation coefficient and least squares methods. The former is usually 

employed when images involved in the matching have the same geometric and radiometric 

properties. While the least squares method is employed where matching images are 

geometrically and radiometrically distorted.  
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CHAPTER FOUR 

  Detection of Objects in Video Streams 

from a Low-cost UAV 
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4.1 Introduction 

A composite correlation filter is used for detection of objects of interest in the video 

streams acquired from a low-cost UAV in this thesis. A correlation filter was chosen for 

object detection because of its ability to handle general types of distortion. Also, since it is 

a Correlation Pattern Recognition (CPR) filter, it has the robust property of evaluating the 

whole input signal at once, unlike the feature-based techniques, which minutely extract 

information from piecewise examination of the signal and compare the relationships 

between the features. Matching the whole image against the template makes the CPR less 

sensitive to small mismatches. Composite correlation filters are designed from many 

training images, which represent the different views of the objects to be detected. The filter 

can be trained to detect any object with any kind of distortion as long as the expected 

variations can be captured by the training images. The major aim of all composite filters in 

this thesis is to be able to detect the object on which they were trained. To obtain a cross-

correlation as a function of the relative shift between a query image and a set of training 

image templates, the query image is compared to the template. The whole operation is 

computed in the spatial-frequency domain for computational efficiency by performing the 

complex multiply: 

 

),(*),(),( baHbaXbaY                  (4.1) 

where X(a,b) is the 2D-Discrete Fourier Transform (DFT) of the query image, H(a,b) is the 

spectrum of the reference template, * denotes the complex conjugate of the filter spectrum 

and Y(a,b) is the DFT of the correlation output . A Fast Fourier Transform (FFT) [78] 

algorithm is used to implement the DFT efficiently. Whenever there is a match between the 
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query image and the template image, the correlation filters are designed to give a sharp 

peak at the centre of the correlation output plane and no peak if there is no match between 

the query image and the template image, as illustrated in Fig. 4.1. 

 

 

Fig.4.1 Matching (correlating) a query image with the template (correlation filter) 

 

4.2 Composite Correlation Filter Design 

The first composite correlation filter developed, was the Projection Synthetic Discriminant 

Function filter (PSDF) [79]. The PSDF filter is based on the assumption that the filter is a 

weighted sum of training images and the weights are determined so that the correlation 

output takes on pre-defined values in response to training images at the origin. However, 

PSDF filters suffer from not having any in-built robustness to noise and display large side 

lobes, making location of the correlation peak difficult. Hence synthetic discriminant 

function (SDF) filters are based on training images that contain examples of expected 

distortions. The Minimum Variance SDF (MVSDF) [79], [80] was then developed to 



85 
 

minimise the Output Noise Variance (ONV) in the projection SDF. The MVSDF is able to 

improve correlation peak height variations but cannot suppress white noise present in the 

correlation output plane. In order to solve the problem of white noise and high correlation 

peak side lobes generated by the earlier composite correlation filters, the Minimum 

Average Correlation Energy (MACE) [80] filter was developed. The. MACE filter is able 

to suppress the side lobes by minimizing the energy in the correlation plane. With the 

reduction of energy in the correlation plane, sharp correlation peaks were produce but it is 

still not as robust to noise as the MVSDF. It was discovered by [80] and [81] that both 

attributes of MACE and MVSDF can be integrated into a single filter by providing an 

optimal trade-off between the MACE and the MVSDF. To illustrate the optimal trade-off 

between these filters, let us consider the design of a filter that uses two performance 

criteria, the average correlation energy (ACE) and output noise variance (ONV), in order to 

satisfy a set of linear constraints. Since it is not possible to minimise both performance 

criteria ONV is minimized for every possible choice of ACE. This is illustrated in the 

following Lagrangian equation: 

 XhACEONV  )()(       (4.2) 

where   is a single Lagrange multiplier that forces ACE to a fixed value,   is the vector 

of M Lagrange multipliers, which corresponds to the linear constraints on the correlation 

peaks in response to M training images. It can be seen that when ACE is fixed to any value, 

minimising ONV will also minimize )( .  
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By defining  ],1,0[
)1(








   where  is the mean peak value of the constrained filter. 

The parameter   offers the way to optimally trade the properties of the correlation filter to 

obtain a suitable compromise between the two performance criteria. 

 

Equation (4.2) becomes: 

                   qXhACEONV  )1()()(                   (4.3) 

where q .  

Hence, the weighted linear combination of ACE and ONV indicates the performance 

criterion to be minimised. Thus, as  varies from 0 to 1.0, the emphasis sifts from 

minimizing ACE to minimizing ONV. 

This approach can be applied to more than two performance criteria and to other 

unconstrained correlation filters like the MACH filter [82]. When the optimal trade-off 

performance criterion is applied to the MACH filter, it takes the form: 

mONVASMACEh 1)(        (4.4) 

where α, β and γ are the optimal trade-off parameters, which are associated with the 

performance criteria ACE, Average Similarity Measures (ASM) and Output Noise 

Variance (ONV), respectively. Each parameter is varied while all others are held constant 

until a satisfactory value is found. The composite correlation filter, used in this research, is 

the Optimal Trade-off Maximum Average Correlation Height (OT-MACH) filter [83]. The 

OT-MACH filter is able to obtain the best balance between the filter’s variance to noise, 
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sharpness of the correlation peak, and distortion variance. A detailed literature on 

correlation filter design is give in [79], [80], [81], [82] and [83]. 

 

4.3 Experimental Procedure  

For detection of objects of interest in a video stream from a low-cost UAV, an experiment 

was carried out both in United Kingdom and Nigeria. Where video data were collected for 

approximately 45 minutes from a low-cost UAV and transmitted through a radio link to a 

portable PC on the ground control station in real time. 

The UAV used in the experimental work reported in this thesis is the Spreading Wings 

S800, which is a product of Djibouti Dow Jones (DJI) Industry Ltd, as shown in Fig.4.1. It 

is a lightweight, multi-functional hexa-rotor integrated aircraft. Table 4.1, shows the main 

specification of the DJI S800. The UAV consists of integrated GPS/INS for position, 

altitude control and a 7.5R/C flight simulator, which is used for flying the UAV from the 

ground control station. The UAV supports up to 50 way-points in the flight plan.  

 

 

Fig. 4.2 Spreading Wings S800 [83] 
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The GPS/INS has been integrated on board into the center frame. This allows raw images 

captured to be linked to the exact time of acquisition of images. The DJI S800 gives real-

time flight data and video feeds with a 5.8G video downlink via a radio signal.  

 

Diagonal 

Wheelbase 

800mm 

Frame Arm 

Length 

350mm 

Center Frame 

Diameter 

240mm 

Bi-Pod Size 500mm(Length)×415mm(Width)×320mm(Height) 

 width: 145mm 

Max Power 360W 

Signal 

Frequency 

30Hz – 450Hz 

Total weight 2.6Kg 

Table 4.1 DJI Spreading Wings S800 Specification [83] 
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Tables 4.2 and 4.3 show the specification of the sensors and camera employed. 

 

Size 17.3 x 13 mm 

Diagonal 21.64 mm 

Surface Area 224.9 mm2 

Pixel Pitch 3.74 m  

Pixel Area 13.99 2m  

Pixel Density MP/cm2 

Table 4.2 Sensors Specification [83] 

 

Resolution 17.20 Megapixels 

Sensor Size Four Thirds (17.3 x 13 mm) 

Sensor Resolution 4620 x 3474 

Crop Factor 2 

Video Recording 1920 x 1080p 

Table 4.3 Camera Specifications [83] 

 The procedural steps for object detection in a video stream are as follows: 

 Video Streams Resample: - The first step in object detection in the video stream 

captured by the UAV, is the resampling of the video streams into frames at the rate of 

one frame per second of sizes 256 x 256. This is done with the use of the BPS video 

converter 1.4 software at the ground station. Then each image in the video frame is 
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processed individually with the goal of detecting objects of interest in the video frames 

with a very small number of false detections.  

 Training of Correlation Filter: - The next step in object detection from the video 

frames, is the training of the correlation (OT-MACH) filter. This is done by carefully 

cropping images of objects of interest to a size of 64 x 64 and training them on multiple 

sample targets to form template images. These template (filter) images are trained with 

the aid of a computer aided design (CAD) model, under different viewing angles (00 – 

3600), different lighting conditions, and different image deformation that is expected 

from the target image in the video frame. This makes the correlation filter to be robust to 

different kinds of distortion that is expected from the target image on the video frame. 

The trained images used as examples are classified into two sets, the first set consists of 

a person CAD model, while the second set is a car CAD model. The two sets of training 

images are trained under different UAV Camera viewing angles. Afterwards, all the sets 

of trained images are used to synthesis the filter and then stored in a database. 

 Cross Correlation: - The final step in object detection is the cross correlation between 

the test (query) image and the training image. To achieve cross correlation, a test image 

is matched by individually comparing it with each of the trained images in the database 

and finding candidate match images. Whenever the cross correlation output plane gives 

a sharp peak, it implies there is a match between the input image and one of the trained 

images in a class. Hence an object has been detected. 
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4.4 Test Results and Discussion 

Fig. 4.3 and Fig. 4.4 shows the example results of the two sets of trained images, which 

have been derived from CAD models of a selected person and car respectively.  

These trained sets are derived from different viewing angles (00 – 3600) of the UAV’s 

camera.  

The correlation output peak, which is the result of the cross correlation is quantified by 

determining the peak-to-side lobe ratio (PSR). This is done by comparing the correlation 

peak height value with the peak value of the side lobes. This is given as: 

 






Peak
PSR

                       (4.5) 

where the peak is the largest value in the correlation output plane and,  and  are the 

average values and standard deviation respectively of the correlation values of some side 

lobes surrounding the peak. 
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Fig. 4.3 Trained Images from Human CAD Model 

 

Fig. 4.4 Trained Images from Car CAD Model 
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PSR is designed to measure the relative height of the correlation peak with respect to the 

background. One advantage of PSR is that, it is invariant to constant change in illumination 

in the test image. PSRs are found to be larger for authentic test images and smaller for 

impostor images. A Fig. 4.5 and Fig. 4.6 show the resulting correlation peaks when the test 

image used is an impostor and is authentic respectively. 

 

Fig. 4.5 correlation output for an imposter test image, the PSR value is found to be 8.12 

 

Fig. 4.6 correlation output for an authentic test image, the PSR value is found to be 28.51 
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In this experiment the OT-MACH filter parameters ,  and   have been fixed to 

0.0000009, 0.42 and 0.1 respectively. These values have been found to be near optimal for 

all the test images. However better results can be obtained by adjusting the parameters 

between correlation test operations. 

Multiple example tests were conducted using different viewing angles of the UAV’s 

camera of the target scenes. The results obtained are as follows: 

 

 

(a) 

 

(b) 
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(c) 

Fig.4.7 (a) Video frame (256x256) containing the target image (b) Correlation output when target 

(person) is view by the camera at an angle of 350 (b) Result image showing the corresponding (64 x 

64) trained image.  

 

The PSR value in the correlation output plane in Fig. 4.7 was found to be 28.12.  

 

 

(a) 
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(b) 

Fig. 4.8 (a) Correlation output when target (person) is view by the camera at an angle of 3200 (b) 

Result image showing the corresponding (64 x 64) trained image.  

 

The PSR value in the correlation output plane in Fig. 4.8 was found to be 17.28 while the 

correlation peak is 625.40. It can be observed that the PSR in Fig. 4.7 is larger than that of  

Fig.4.8, this implies that the degree of similarity of object detected and the trained image is 

larger in the test image in Fig. 4.7. 

The test was also carried out using a car CAD model under different illumination condition, 

using the same parameters and the results obtained are: 
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(a) 

 

(b) 

 

(c) 

Fig. 4.9 (a) Video frame (256x256) containing the target image (b) Correlation output when target 

(car) is viewed by the camera at an angle of 350 (b) Result image showing the corresponding (64 x 

64) trained image. 
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(a) 

 

(b) 

Fig. 4.10 (a) Correlation output when target (car) is view by the camera at an angle of 1000 (b) 

Result image showing the corresponding (64 x 64) trained image. 
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4.5 Chapter Summary 

This chapter presents a brief overview of a composite correlation filter. The major aim of 

the correlation filters is to detect any object with any kind of distortion as long as these 

distortions can be captured by a set of training images. Objects are detected by matching a 

query image with a set of trained image templates. The correlation process is computed in 

the spatial frequency domain for fast and effective computation. A sharp peak at the centre 

of the correlation output plane, indicates a match between the query and a template image. 

In order to get the best balance between the SDF filters variance to noise and the MVSDF 

filter’s sharp correlation peak constraints, an OT-MACH filter is used for object detection. 

In order to evaluate our method, experiments were conducted on a test field both in Nigeria 

and United Kingdom. Where video stream data were captured by the use of UAV. The data 

obtained were evaluated using MatLab/Simulink software and gave promising results in 

terms of object detection and recognition. 
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CHAPTER FIVE 

PHOTOGRAMMETRY MODELLING 

 

  



101 
 

5.1  Photogrammetry 

Photogrammetry is the technology that enables us to obtain reliable information about 

objects and their locations on the Earth’s surface through the process of capturing, 

measuring and interpreting photographic images [84]. Photogrammetry was formally used 

for architectural survey [85], [86], but now it is widely used for remote sensing 

technology, it was the first methodology to make use of the geometric properties of objects 

from photographic images. 

The development of photogrammetry consisted of three main phases. The mode of 

operation and type of equipment used to carry out measurements distinguished one phase 

from another and it took a many years for transition from one phase to the next phase. 

In the first phase of photogrammetry, recording of images is carried-out with the aid of 

photographic film. Orientation reconstruction and other measurements are carried-out in 

an optical-mechanical way. Hence this phase is called Analogue Photogrammetry [86], 

[87]. 

In the second phase of photogrammetry, with the advent of computers, the reconstruction 

of the orientation process change from analogue to algorithmic, where formulas and their 

parameters are evaluated and stored in the computer. This phase makes use of an 

analytical plotter for photographic support, hence the name Analytical Photogrammetry 

[87]. 

The latest and current phase is the digital photogrammetry phase [88], this phase make use 

of digital images that are captured by digital cameras, which are then stored and processed 

on a computer system. With digital photogrammetry, many tasks are now automated (e.g., 

digital ortho-image formation and digital elevation model extraction). The output product 
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of digital photogrammetry are in digital form and hence they can easily be stored, 

managed and used for different applications. 

In reality, photogrammetry gives correct and exact environmental information from a wide 

range of images. Measurements taken using the photogrammetric technique on images or 

photographs reflect measurements taken on the ground. Instead of having to make constant 

visits to the field to make measurements of distance and object’s coordinate position on 

the Earth’s surface. The photogrammetry technique permits the accurate gathering of 

information from images. This approach of collecting environmental information from 

images saves time and cost, and gives a high level of accuracy. 

From digital photogrammetry that is based on digital recording instruments, the following 

processes can be distinguished: 

 Frame Acquisition – This is the process of image acquisition in which the central 

perspective defines the geometrical link between the two dimensional image plane 

and the object in the 3D world. 

 Whiskbroom and Push-broom Scanning Systems – This process is more complex 

when compared with the traditional central perspective, it consists of multiple 

central perspectives [88]. This process is time consuming and expensive.  

The frame acquisition imaging process involves generating images through single central 

perspective geometry. As shown in Fig.5.1, the object points (P, Q R and S) generate the 

image points (p, q, r, and s) through a single perspective centre (O). The single central 

perspective method is used in this research and unlike the scanning systems, it is not 

expensive and uses less time. 
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Fig. 5.1 Central perspective linking points on the image plane and points on the ground [88]. 

 

 

5.1.1  Types of Photogrammetric Processes 

There are two types of photogrammetric process: the terrestrial photogrammetry and the 

aerial or aero-photogrammetry. These two processes are defined as follows: 

 Terrestrial photogrammetry – This refers to acquisition of images by cameras 

positioned at ground level, in which objects are also located on the Earth’s surface 

(such as landslide monitoring, building surveys, etc.). 

 Aerial or aero-photogrammetry – This is where acquisition of images is carried out 

from above sea level, in which the camera is attached to an aircraft and the object 

is on the ground. Present day maps are derived from aero-photogrammetry survey. 
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5.1.2  Stereoscopic Viewing 

From a single image frame, which consists of a two dimensional plane, we can only get two 

dimensional co-ordinates. In order to get three dimension views, photogrammetry uses a 

method similar to the principle of human vision [89]. 

We are able to see objects in the 3D-world in which we are in, because our two eyes are 

able to receive optical information as a central perspective between images captured by 

both eyes. The image captured by the left eye is slightly different from the image captured 

by the right eye. These two images are then combined in our brain to produce a spatial 

impression. This is the process that enables us to estimate the distance between us and an 

object. When this same principle is applied in photogrammetry to get the three dimensional 

information it is called stereoscopic viewing [90]. To illustrate stereoscopic viewing, 

consider the case of aerial photogrammetry in Fig.5.2: 

 

 

Fig.5.2 Example of Stereoscopic Viewing with two Different Camera Positions [88]. 



105 
 

where P1 and P2 are the camera positions on the left and right respectively, C is the 

corresponding projection center for each camera position, the ray from the center of 

projection of the left camera position to the center of projection of the right camera position 

is called the base or baseline and Q is the image point in the 3D world scene. 

If we are able to reconstruct the geometric parameters of the condition of the camera during 

exposure, we can then determine the height of an object point in the 3D world scene. This 

can be done by setting up the two equations of the rays, and then calculating their 

intersection. 

To implement stereoscopy, the following rules must be obeyed in aerial imaging: 

 Each image used for stereoscopy must have at least 50% view of the same terrain 

features. But a 50% view means, no room for error from the aerial images. Hence a 

60% forward overlap and a 20-40% side overlap is the minimum requirement. 

 The distance between exposure stations must be constant, so that all images will 

have approximately the same scale. 

 For aerial imaging consisting of more than one flight strip, the flight strips must be 

close and parallel to each other as much as possible. 

 The distance between the two exposure stations must not be too great in order not 

to lose stereoscopic coverage. 

In practical terms, stereoscopy between two images can only be provided by controlling the 

horizontal and vertical parallaxes in tie points on two images. The difference in the location 

of points in the x-direction or in the direction of the flight is called x-parallax. The x-

parallax adjustment played a major role in the determination of the elevation of a point. 



106 
 

The y-parallax is the major factor affecting the formation of stereoscopic viewing, this 

means, with the present of y-parallax in imaging, stereoscopic viewing is not possible.  

 The y-parallax is caused by the difference in the location of tie points in the direction 

perpendicular to the flight direction. The major cause of y-parallax is a tilt in the 

photograph. An essential task that needs to be done by a photogrammetrist is the 

elimination of y-parallax within a model. 

 

5.2.  Aerial Image and Data Acquisition 

During aerial image acquisition, overlapping images are captured along the UAV flight 

direction. Each point along the flight direction where the camera captures an image is 

known as the exposure station (Fig.5.3).  

 

 

 

 

 

 

 
Fig.5.3 Exposure stations along a flight strip [84]. 

 

 

Images captured along the same flight line constitute a strip of images or photographs. In 

Fig.5.3, all the exposure stations in the flight line 1 for example, constitute a flight strip 

while the images captured by all the expose stations in flight line 2 constitute another 
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flight strip. All images in a flight strip are taken at approximately the same altitude and the 

distance between exposure stations is kept constant. 

Images from several flight strips of the same UAV as a collective form a block of images, 

usually with a forward overlap of 60% and side overlap of between 20–30% (Fig.5.4). The 

use of more than one image in photogrammetry, gives the geometry related to the 

exposure stations, the image points on the image plane and the corresponding object points 

on the ground, high accuracies and precision. 

 

 

Fig.5.4 Strips of Images Forming a Block of Aerial Images [84]. 

 

 

5.3  Co-ordinate Systems 

In order to understand the connection between the camera/sensor used to capture the 

object point on the ground, the object point itself and its corresponding image point, 

(which is the main task of photogrammetry), the coordinate system associated with these 

three variables must be defined. 



108 
 

5.3.1  Pixel Co-ordinate System 

Pixel co-ordinate system is used to define file coordinates of the digital image. This pixel 

coordinate system usually has the origin of its coordinate system at the left upper corner of 

the image, its x-axis points to the right while its y-axis points downward, as shown by axis 

c and r in Fig.5.5. These file coordinates (c, r) represent the pixel column and row number 

respectively and is referenced as the pixel coordinates in this thesis. 

 

 

 

 

 

 

 

 

 

Fig.5.5 Pixel and Image Coordinates Systems 

 

 

5.3.2  Image Plane Coordinate System 

An image plane coordinate system is the 2D coordinate system which has its origin in the 

image center or at the intersection of the fiducial marks as shown by the u and v axis in 

Fig.5.5. Under perfect conditions, the origin is normally at the principal point. Image plane 

coordinates are used to describe image point positions on the film plane. The image 

coordinates are usually measured in millimetres or microns. The image plane coordinates 

are referenced as (u, v) in this thesis. 
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5.3.3  Image Space Coordinate System 

An image space coordinate system unlike the image coordinate system adds a third (w) 

axis, making it a three-dimensional axis. The perspective center (C) as shown in Fig.5.6, 

defines the origin of the image space coordinate system.  

 

 

Fig.5.6 Image Space and Ground Coordinate Systems [84]. 

 

The w axis represents the optical axis and its value is usually equal to –f (where f is the 

focal length of the camera). The image space coordinates described image point positions 

inside the camera and are usually express in the same units as the image plane coordinates. 

The image space coordinates are referenced as (u, v, w) in this thesis. 

 

5.3.4  Ground Coordinate System 

This is a 3D coordinate system made use of a known map projection. The ground 

coordinate system is referenced as (X, Y, Z) as shown in Fig.5.6, the Z value represents 



110 
 

the altitude above sea level for a given object point. The ground coordinates are usually 

measured in feet or meters. 

 

5.4  Basic Photogrammetry Geometry 

The major task in photogrammetry geometry is to determine the (X, Y, Z) object co-

ordinates in the 3D-world given the corresponding 2D image plane co-ordinates (u, v) on 

two or more digital images, as illustrated in Fig.5.7. 

 

 

 

 

 

 

 

 

 

 

Fig.5.7 Photogrammetry geometry and triangulation [91] 

 

To solve this task, the affine transformation of each of the intersecting rays and the 

location of the central perception of each exposure must be established with respect to the 

3D-ground co-ordinate (X, Y, Z) system. The six parameters that are involved in this 

process are: three orientation angles and three camera station coordinates. These 

parameters describe what is termed the exterior orientation of the image (also known as 
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extrinsic parameters). The camera’s interior orientation parameters (intrinsic parameters) 

are described by the relationship between the perspective centre and the image co-ordinate 

system. The interior orientation consists of three parameters:  camera focal length, 

principal distance and the co-ordinates of the principal points. 

With reference to Fig.5.8, the principal distance is the perpendicular distance from the 

perspective center to the image plane, and the point at which the optical axis intersects the 

image plane is called the principal point. The origin of the image plane co-ordinate system 

(u,v) should ideally be coincident with the principal point but this rarely happens.  

 

 

 

Fig.5.8 Perspective transformation and the effect of offsets to collinearity [91]. 

 

Hence the principal point offsets u0 and v0 define the shift from the origin (u,v) of the  

image plane, defined by fiducial (image reference) marks, and the principal point.  



112 
 

For digital cameras, which make use of a CCD matrix array in the image plane, instead of 

a fiducial system, a central row and column are used to define the origin of the (u, v) 

image plane coordinate system. CCD cameras usually have values up to 0.5mm for the 

origin co-ordinates [91], [92]. 

 

5.4.1 Principle of Collinearity 

When the 2D coordinate system of the image plane (u, v) align very well with the object 

3D-space coordinate system. Then the object point on the ground coordinate system, the 

perspective center and the image point in the 2D image plane, will all lie along the same 

straight line (as shown in Fig.5.6, points “A”, “c” and “a”, lie on a straight line). This is 

the principle of collinearity [93]. Although, this is not always the case, collinearity can 

only be achieved by capturing images with a perfect camera system. In a general situation, 

the image point, the object point and the perspective center does not always satisfy the 

principle of collinearity, giving rise to departures ∆𝑢 𝑎𝑛𝑑 ∆𝑣 of the image point from its 

true position on the image plane, as shown in Fig.5.8. These offsets, which are caused by 

various geometric distortions, can be corrected by the calibration of the photogrammetric 

imaging system. Calibration of the imaging system in its simplest form is the shifting the 

actual image point coordinates (∆𝑢 𝑎𝑛𝑑 ∆𝑣) so as to satisfy the collinearity principle. 

Using the principle of collinearity, the perspective transformation between image and 

object space is given by: 
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where,       
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This is the transformation matrix that describes the relative orientation between the image 

space and object space coordinate systems. After some mathematical manipulation (5.1) 

becomes: 
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where:  

            ijr is an element of R, 

              ( vu, ) are the image coordinates, 

              ( 00 , vu ) are the principal point coordinates, 

              ( iii ZYX ,, ) are the object point coordinates, 

              ( 000 ,, ZYX ) are the exposure station coordinates, 

              f  is the camera focal length, 

              ( vu  , ) are distortion in the image point coordinates. 

It was shown by Gruen and Beyer [94] that it is possible to determine both the interior 

orientation elements and the exterior elements, which are the parameters that described the 
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departures from collinearity through analytical approach based on the solutions of both 

equation (5.2a) and (5.2b). Analytical self-calibration and test-range calibration represents 

this approach. Finding the solution of all parameters forming the collinearity equations: 

interior and exterior orientation, calibration coefficients and object space target point co-

ordinates simultaneously without prior knowledge of the 3D co-ordinate information of 

the object space target area is known as Self-Calibration [94], [95]. Test-range calibration 

[95] has the same procedural calibration as the self-calibration but required object space 

control points in its calibration procedure, such a requirement is not necessary in self-

calibration. 

 

5.4.2  Direct Linear Transform (DLT) 

The direct linear transform (DLT), which was originally presented in [96], is based on the 

principle of co-linearity (i.e. all points must be on a straight line). It is a projective 

geometry transformation between 3-D object space and 2-D image plane, it is expressed 

as: 
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where u and v are the image or pixel co-ordinates not necessarily referenced to the 

principal point, L1 – L11 can be physically interpreted as the interior and exterior 

orientation parameters of the image. The DLT is used only for non-metric camera which 

does not require a priori knowledge of the interior orientation parameters (u0, v0, d). But 



115 
 

in the digital camera context, the DLT offers two major advantages when compared with 

the collinearity approach. The first, been the ability of the DLT method to provide a non-

iterative and direct solution, which is independent of the initial parameter estimates. Hence 

resulting in a faster computation. The second advantage is the presence of the affine/shear 

image co-ordinate correction in the DLT model, which is very appropriate for CCD 

sensors. However DLT requires foreknowledge of the object space and image coordinates 

of a set of Ground Control Points (GCP) that is well distributed in three dimensions [95], 

[96]. 

 

5.4.3  Sources of perturbation 

In finding suitable parameters for the functions ∆𝑢 and ∆𝑣, it is important to study the 

three major causes of departures from collinearity (perturbation). These distortions which 

are physical in nature are: the symmetric radial distortion, the de-centering distortion, and 

focal plane unflattening [96], [97]. The total image shift at a point will be the accumulative 

effect of each of these perturbations (offsets). Thus, 

 

udr uuuu                                                     (5.5a) 

udr vvvv                                                        (5.5b) 

where the subscripts r, d, and u are the radial distortion, decentring effects, and out of 

plane unflattening respectively. The relative magnitudes of these perturbations depend on 

the nature of the camera used for image acquisition.   
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5.4.3.1  Radial Distortion 

The most common distortion is the radial lens distortion, which causes the real image 

point to be displaced radially in the image plane. The radial distortion is usually 

approximated using an odd-ordered polynomial series expression: 

...7

3

5

2

3

1  rKrKrKr                                                           (5.6) 

where ..., 21 KK  are coefficients of radial distortion and r is the radial distance from the 

principal point, i.e. 

22 vur                                            (5.7) 

 

For most of the medium-angle, non-photogrammetric lenses used in close-range cameras, 

the third-order terms are sufficient to model the lens distortion. Wide-angle lenses employ 

higher order terms (very rarely above seventh-order term) for adequate lens distortion. For 

CCD cameras, one or two coefficients are enough to compensate for the distortion [97]. 

From (5.6) the necessary radial distortion correction for the u and v image plane co-

ordinates is given by: 

r
r

u
u r                                                                                 (5.8a) 

r
r

v
vr                                                                                  (5.8b) 

where 0uuu   and 0vvv  . 
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5.4.3.2  Decentering Distortion 

The centers of curvature of lens surfaces not always being collinear gives rise to another 

category of lens distortion known as decentering distortion. This type of distortion 

originated from both radial and tangential image displacements, which were demonstrated 

by Brown [98] in the following corrected equations: 

 

vuPurPud 2
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1 2)2(                                                        (5.9a) 

vuPvrPvd 1

22

2 2)2(                                                         (5.9b) 

 

where 1P  and 2P  are decentering distortion parameters. 

Like the radial distortion, decentering distortion also varies with focussing, but the 

resultant image co-ordinate offsets are usually small and this offset is generally ignored in 

analytical photogrammetry. 

 

5.4.3.3  Focal Plane Unflatness 

In focal plane or film unflatness distortion, image displacement is caused by image focal 

plane unflatness. Which is a major factor affecting the accuracy of the photogrammetric 

process, this is common especially where nonmetric cameras are involved. Fig.5.9, 

illustrates the effect of the unflatness image plane and it can been seen that the radial 

image displacement ur  is a function of the incidence angle of the imaging ray. 

Hence, the short focal length with wide-angle lenses is more greatly affected by out-of-

plane image distortion than the long focal length with narrow-angle lenses. [99], shows 
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that a CCD array can show a degree of planarity that does not permit any unflatness 

correction. 

 

 

 

 

 

 

 

 

 

Fig.5.9 Image Displacement Due to Focal Plane Unflatness [100] 

  

There are other types of distortion that have been proposed in the literatures [100], [101] 

and [102]. But in most cases the error is small and the distortion component is 

insignificant. 

 

5.5  Photogrammetric Process and Results 

The output products of photogrammetric processes range from ortho-image formation, 

digital elevation model extraction, feature gathering, stereo pair formation, control point 

extension and very accurate point determination [103]. In order to produce these 

aforementioned products of photogrammetric process, the relationship between the 

camera/sensor used to capture an object point on the ground, the object point itself and its 
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corresponding image point on the image plane must be defined. In order to define this 

relationship the following parameters must be determined for each image: 

 Interior orientation parameters 

 Exterior orientation parameters 

 Precise representation of the ground 

The most difficult task in photogrammetry is trying to use a very small number of ground 

control points (GCPs) for each image in a project. Most photogrammetric applications use 

a limited number of GCPs because of the intensive procedures associated with collecting 

GCPs. 

 

5.5.1  Photogrammetric Techniques 

The input data provided for a photogrammetric process determine the photogrammetric 

techniques that can be used for production of ortho-rectification, digital elevation 

extraction and other photogrammetry output products. 

 

5.5.1.1 Space Resection 

The method that is usually used to determine the exterior orientation parameters of one 

image or many images based on known GCPs is known as space resection [104]. Space 

resection is based on the principle of collinearity, which stipulates that, the object point on 

the ground, the perspective center of the camera and the image point of the corresponding 

object point on the image plane must lie along the same straight line. 
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With at least three GCPs (X, Y, Z) coordinate known and with the camera information 

available, the space resection can be used to calculate the exterior orientation parameters 

of an image. 

Space resection is useful when performing single frame ortho-rectification, this mean 

processing one image at a time. But if it involves multiple images, for each image process, 

a minimum of three GCPs must be found on them. 

To compute, the positions of the exterior orientation parameters, space resection uses the 

collinearity condition, in which light rays from at least three object points pass through its 

corresponding image points on the image plane and resect at the perspective center of the 

camera. Afterwards, the least squares adjustment method is used to compute the positions 

of the exterior orientation. 

 

 

5.5.1.2  Space Forward Intersection 

The techniques used to determine the X, Y, Z ground coordinates of points that appear on 

the overlap part of two or more images, with both the interior and exterior orientation 

parameters given, is known as space forward intersection [104]. 

To determine the X, Y, Z ground coordinates of points that appear on the overlap part of 

two images for example. The concept of space forward intersection is illustrated in 

Fig.5.10. Here, the principle of collinearity is applied, in which the corresponding light 

rays from the two exposure stations O1 and O2, pass through their corresponding image 

point’s p1 and p2 on the two images respectively and intersect at the same ground point P. 
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Fig.5.10 Space Forward Intersection [103]. 

 

Using the known exterior orientation parameters and the image coordinate measurements 

of point P on image 1 and image 2 as input in the collinear equations, then, the PP YX ,

and PZ  ground coordinates of point P can be computed. 

Space forward intersection techniques are used for applications, such as, cadastral 

mapping [103], [104], using airborne surveying method, GCPs collection and highly 

accurate point determination. 

 

5.5.1.3  Bundle Block Adjustment 

For applications involving many images, space forward intersection and space resection 

methods cannot give a highly accurate result. This can be attributed to the lack of accuracy 

in the values of the input parameters. For example, it is very rare for values of exterior 

parameters computed by the airborne GPS and INS techniques in aerial photogrammetry 

to be very accurate for each image or photograph in a project due to both systematic and 

non-systematic factors. Thus, on board GPS and INS techniques provide initial estimate 
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values of the exterior orientation parameters, however, the final value for these parameters 

must be adjusted to obtain higher accuracies. 

In space resection, the more the images in a project, the more GCPs are required for the 

computation of exterior orientation parameters. For example in a project that consists of 70 

or more images, to implement space resection, a minimum of 210 GCPS is needed. Hence, 

the time and the cost required to identify, match and measure all of the points will be high. 

The high cost associated with block triangulation and ortho-rectification is dependent upon 

the number of GCPs used for the photogrammetric process. This cost can be reduced by 

collecting fewer GCPs. To ensure high accuracies with the use of reduced GCPs, a 

technique known as bundle block adjustment [104], [105], is employed. 

Bundle block adjustment can be defined by examining each of the words that makes up the 

term. A bundled solution is a solution that is computed by determining each image 

position and its exterior orientation parameters, the tie points X, Y, Z coordinate system, 

and the GCPs. In one solution, all the images in a block in a project are processed at the 

same time. The least squares adjustment method [106] is used in the entire block model for 

the estimation of the final bundle adjustment, while error is been minimized and 

distributed along the entire block. 

The process of defining the geometrical relationship between the images in a block, the 

camera or sensor used to capture these images, and the ground is known as block 

triangulation [107]. Once this geometrical relationship has been defined, an accurate 

representation of the imagery on the Earth’s surface is established. When processing 

imagery captured from digital camera and videography camera, block triangulation is 

denoted as Aerial Triangulation (AT). While in processing imagery captured by a push 

broom sensor, block triangulation is denoted as Triangulation. 
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In photogrammetry, many models of block triangulation are used, among these are: the 

strip method, the independent model method, and the bundled method. The bundle method 

is the most difficult of the above methods, in view of its ability to minimize and distribute 

errors [108], [109]. 

 

5.5.1.3.1  The Concept of Bundled Block Adjustment 

The concept of bundled block adjustment is based on the collinearity condition. To 

illustrate this concept, an example, consisting of two frames CCD camera data with three 

GCPs of known X, Y, and Z coordinates. Also provided are six tie points as illustrated in 

Fig.5.11. For every single ground point measured, the corresponding image point has 

coordinates (u, v). Hence, to establish a relationship between an object point on the ground 

and its corresponding image point on the image plane, two collinearity equations are 

created. These equations in the context of bundled block adjustment are known as 

observation equations [105], [106], [107]. 

 

 

 

 

 

 

 

 

 

Fig.5.11. Two Frames CCD with 3 GCPs and 4 Tie Points 
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For an object point on the ground measured on the overlap areas of two images, four 

collinearity equations can be created. This includes two for the top image comprising a 

pair and two for the bottom image comprising another pair. This implies that an object 

point on the ground measured on the overlap part of two images consists of four 

collinearity equations that can be formulated as: 
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An image point measurement of ground object point A on image 1: 

1au , 1av  

An image point measurement of ground object point A on image 2: 

2au , 2av  

Camera exposure station of exterior orientation on image 1: 

010101 ,, ZYX  

Camera exposure station of exterior orientation on image 2: 

020202 ,, ZYX  
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With reference to the example in Fig.5.11, since three ground object points have been 

measured on the overlap areas of the two images, this implies that twelve collinearity 

equations can be created. This includes, two equations for each ground object point (3 

object points) on image 1, and also, two equations for each ground object point (3 object 

points)  on image 2. 

Also in the example above, since four tie points have been measured on the area of overlap 

of the two images, sixteen equations can be created (from each tie point). This gives a total 

of 28 observation equations. In this example (Fig.5.11), the known elements are:  

 The six exterior orientation parameters of the image on top (i.e., X, Y, Z, ,  

and  ). 

 The six exterior orientation parameters of the image at the bottom (i.e., X, Y, Z,

 ,  and   ). 

 The tie points X, Y, and Z coordinates, create twelve unknowns (i.e., four tie points 

multiply by three X, Y, Z coordinates). 

From the above, the overall total of the unknowns equals 24. 

The value and redundancy in the input data determines the overall quality of a bundle 

block adjustment. With reference to the example above, the redundancy in the project can 

be determined by subtracting the number of unknowns (24) from the number of knowns 

(28). Then the resulting redundancy is 4. Once all the observation equations have been 

created, the collinearity condition can then be solved using a least squares adjustment 

approach. 
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5.5.1.3.2  Least Squares Adjustment in Aerial Triangulation 

Least squares adjustment technique is an algebraic method used for the estimation of the 

unknown parameters linked with a solution while also reducing error within the solution 

[106], [109]. The purpose of least square adjustment in block triangulation is: 

 

 The adjustment of values linked with exterior and interior orientation parameters. 

 The estimation of values of X, Y and Z coordinates linked with the tie points 

 Minimizing and spreading of input data error through the entire bundle model. 

The least squares adjustment technique uses repeated processing until a desired result is 

reached. A desired result is reached when the input data residuals are minimized. This 

includes, finding the corrections to the unknown parameters by reducing the input 

residuals. The residuals are obtained from the variance between the measured user’s input 

and the computed value in a project. 

The residuals to be minimized include: the image point coordinates of the object points on 

the ground, the tie points and the known object point ground coordinates. The least squares 

conditions can be formulated as follows: 

 

LAXV                                      (5.12) 

where: 

            V = a vector of image coordinate residuals 

            A = the matrix of partial derivative associated with the unknown parameters, which   

includes, exterior orientation, interior orientation, tie points X, Y, Z and object 

point ground coordinates 

            X = the matrix of the unknown parameters. 
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             L = the matrix of the input observations, which includes image point coordinates 

and object point ground coordinates. 

The X matrix, which holds the adjustments of the unknown parameters, can be calculated 

by the following formula: 

 

 PLAPAAX tt 1)(                   (5.13)           

  

where, X, A and L are as in (5.12), t is the matrix transposed and P is the matrix holding 

the observations. 

After the least squares iteration process is completed, the adjusted values of the unknown 

parameters are then added to the initial estimates. In most practical cases, the initial values 

are the exterior orientation parameter readings obtained from the on board GPS/INS sensor 

and to compute the final EOPs, the adjusted value of the EOPs that is computed by the 

least square adjustment process is added to the initial value of EOPs provided by the on 

board GPS/INS. The least squares iteration technique continues to adjust the values of the 

unknown parameters by an iteration process until a pre-defined threshold is reached. The 

results that can be obtained from the least squares adjustment process in an aerial 

triangulation includes:  

 

 The absolute values of both the exterior and the interior orientation parameters of 

each image in a block. 

 The image and GCP coordinate residuals. 

 The coordinates of the adjusted X, Y and Z tie points. 
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The block triangulation result above can then be used as primary inputs for processing the 

following tasks: 

 Ortho-rectification 

 Formation of Digital Elevation Model (DEM). 

 Creation of stereo pairs 

 Accurate point determination 

 

5.6  Ground Control Points 

The photogrammetry component that is instrumental to the establishment of a highly 

accurate relationship between the camera/sensor used to capture the images in a project, 

the imagery itself and the Earth’s surface is the ground control points (GCPs). These GCPs 

have features that are located on the Earth’s surface, which have X, Y, and Z coordinates 

that are known. The X and Y coordinates of a full GCP specifies the horizontal control 

while the Z coordinate specifies the vertical control (elevation). 

Ground control surveys for ortho-rectification and geo-referencing, consist of two 

procedural steps. The first procedure involves creating a setup of basic control on the 

project area. This basic control consists of the scaling of the project area by determining 

the X and Y coordinates of permanent features on the project, and the benchmark of 

vertical (Z) control elevation that serves as a reference model for subsequence surveys. 

Basic ground control surveys can be done by using either the conventional ground 

techniques or by using GPS techniques. [108], [106] and [109] found GPS techniques to 

be cheaper and very accurate when compared with the conventional ground technique. 
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The second step, involves the measurement of established image points on the image plane 

corresponding to object points on the scaled (control) ground.  

The topographies on the Earth’s surface used as GCPs for ground surveys must be 

permanent features, so that they can be reused for a subsequent visit. Commonly used 

features are: 

 Side walk corners 

 Intersection of roads 

 Survey benchmarks 

 

5.6.1  GCP for Mapping Project Area 

The minimum number of GCP required for a photogrammetric mapping project depends 

on the size of the area. Theoretically, to establish a relationship between the image space 

and the object’s ground space, at least  two GCPs having X, Y, and Z coordinates and one 

GCP having a Z coordinate is needed. This gives a total of seven observations. 

In processing one image, for the purpose of ortho-rectification (known as single frame 

ortho-rectification), a minimum of 3 GCPs is required. Each GCP must have X, Y and Z 

coordinates associated with it and must be evenly distributed to ensure high accuracy in 

camera/sensor modelling. 

In processing a strip of adjacent images, a minimum of 2 GCPs for every third image will 

be adequate. In a strip or block of images, an accurate geometry can be applied in regions 

where there is less redundancy, such as the curve edges of the strip or block. Thus, 

choosing GCPs located at the curve ends of a strip or block increase the accuracy of ortho-

rectification. The GCPs arrangement for a block of images consisting of four strips of 
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images with each strip having eight overlapping images is illustrated in Fig.5.12. The 

image locations of the GCPs are measured on the overlap parts of the images. 

 

 

Fig. 5.12 GCP arrangement in a block of images 

 

5.7  Tie Points 

A point that is identifiable in the overlap areas between two or more images is known as a 

tie point. The tie point has ground coordinates that are not known, tie point ground 

coordinates are determined during aerial triangulation. Tie points in two overlapping 

images appearing in their overlap areas are identified and measured during block 

triangulation. Tie point measurement can be done either manually or automatically. Tie 

points must be well distributed over the area of the block to ensure high accuracy during 

block triangulation. 

As illustrated in Fig.5.13, for a block of images with 60% forward overlap and 30% side 

overlap, nine points will be enough to tie together the block along with separate strips. 
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Fig.5.13 Tie points on a block of images 

 

Image matching techniques which include, area based matching, and feature based, are 

used individually or in a combined form for the automatic identification of tie points and 

to tie together block images and individual strips.  

 

5.8  Chapter Summary 

The main purpose of photogrammetric technique is to thoroughly state the sizes of an 

object and hence define its coordinates. This was achieved based on the intersection of 

rays from a pair of photographic images. The origin of photogrammetry started with 

analog photogrammetry in which, images were recorded on photographic film. During this 

period, orientation reconstruction and other measurements are carried out in an optical 

mechanical way. The orientation reconstruction was later changed to algorithms and is 

called analytical photogrammetry. With advent digital cameras and high speed computer 

systems, computers are employed for all photogrammetric processes. There are two types 

of imaging method in photogrammetry, this includes terrestrial and aerial imaging. With 
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respect to aerial imaging, a photogrammetric camera is fixed on an aircraft and runs 

parallel flight strips as defined in the flight plan. The two dimensional images captured by 

the aircraft, are observed pair by pair in order to create a stereoscopic view. Tie points in a 

pair of images with a number of known ground control points are adjusted based on 

geometric equations, in which specific rules (collinearity) are followed. Thus, this process 

is called aerial triangulation. The results obtained from these equations are used as inputs 

for processing photogrammetric tasks such as: ortho-rectification, formation of DEM, etc. 
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CHAPTER SIX 

Ortho-Rectification and Geo-referencing 

of Video Streams from a Low-Cost UAV 
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6.1 Introduction 

The flight of the low-cost UAV is generally less-stable when compared with larger fixed-

wing aircraft and because it flies at low altitude (approximately 500 m), the camera frame 

tends to jerk continuously along the flight path. This, coupled with the disorientation 

caused by long viewing of the video camera, makes the analysis of data acquired by the 

low-cost UAV difficult. Thus, the ortho-rectification and geo-referencing of the video data 

could serve as an important post-processing step preceding the analysis of the UAV data. 

Ortho-rectification is the process of geometrically correcting an aerial image such that the 

scale is uniform. The ortho-image formed from the process is corrected for lens distortion, 

topographic relief, and camera tilt. This can be used to measure true distances, because it 

is represents the exact measurement of the earth’s surface. Ortho-rectification and geo-

referencing are essential to pin point the exact location of targets in video imagery 

acquired at the Unmanned Aerial Vehicle (UAV) platform. This can only be achieved by 

comparing such video imagery with an existing digital map. However, it is only when the 

image is ortho-rectified with the same co-ordinate system as an existing map that such a 

comparison is possible. Many approaches have been presented for ortho-rectification and 

geo-referencing of low-cost UAVs by researchers in the past. These range from using 

different types of operational platforms such as satellite [110], fixed-wing aircraft [111], 

helicopters and UAVs; and different sensors like radar [112], visible and multi-spectral 

images [113]. Also, many mathematical models have been used for ortho-rectification, 

ranging from the simple affine transformation [114] to projective transformation [115]. 

Geo-referencing in general is based on direct geo-referencing using a GPS/INS system, 

but because of the low quality of the GPS/INS usually used for low-cost UAVs during 

data acquisition, the GPS/INS accuracy is very low.  
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The method used in this research for ortho-rectification and geo-referencing is based on 

the photogrammetry model [116], [117], this is a form of geometry imaging system that 

makes use of the aerial image central perspective and the principle of collinearity. A close 

alternative to this photogrammetry method, are the Laser scanner and the Push-broom 

[118]. These two approaches were observed by [119] and it was found to be time 

consuming and very expensive. 

 

6.2 Experimental Procedures 

The experimental procedure for ortho-rectification and geo-referencing of object detected 

from video streams captured by a low-cost UAV is as follows: 

 

6.2.1 Data Collection and Test Field Calibration 

The UAV used in the experimental work reported in this thesis is the Spreading Wings 

S800, the detailed configuration and specification of the Spreading Wings S800 is given in 

chapter three of this thesis. The Spreading Wings S800 UAV is equipped with GPS/INS 

and has the capability to geotag (time and position tagged) each video frame at the exact 

time of exposure. 

The experiments were conducted on a calibrated control field at the federal capital 

territory Abuja, Nigeria. The control field coverage area is 0.11357 square kilometers (sq. 

km). Six ground control points (GCPs) were collected using a hand held GPS receiver, and 

these ground control points, which are located at the corners of sidewalk and crossroad 

(Fig.6.1), were observed till four satellites are locked simultaneously before readings were 

taken. The six GCPs collected are converted from a geodetic coordinate system to X, Y 
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Cartesian coordinate system in meters for use in the computation of the final bundle block 

adjustment.  

 

 

 

Fig.6.1 Digital map of the test field used in the experiment showing the location of the 6 GCPs 

 

The aerial platform includes the UAV and the sensor systems (camera and GPS/INS 

system). The UAV, which is remotely controlled by a pilot at the control station, flies along 

the test field and collects video streams of the test area, while the on board GPS/INS system 

simultaneously collects telemetry data of the test area. The telemetry data consists of the 

UAV’s position and angular attitude. All data collected and their source are also 

summarized in Table 6.1.  
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Data 

 

Purpose 

 

Mpeg-based 

video 

stream 

Captured by UAV video camera to pin point exact locations 

of targets. 

Telemetry 

Data 

 

Captured by the GPS/INS system on the UAV platform. It 

consist of the UAV’s position and angular attitude 

 

GCPs 

Captured by hand-held GPS receiver. It is used to measure 

the X and Y coordinates of the GCPs. 

 

Table 6.1 Data collection source and its purpose 

 

The video and the telemetry data were collected for approximately 25 minutes and were 

transmitted through a radio link of 2.4GHz to the portable PC at the ground station in real 

time. In order to perform a near real-time image geo-referencing of the video streams 

acquired by the UAV platform, it is essential to generate an ortho-image from the image 

sequence. Due to the limited payload weight on the UAV platform we were forced to off-

load this process to the ground station (Fig. 6.2). 
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Fig. 6.2 Ground control Station 

 

Since the GPS and INS are integrated into the camera on board, the received video 

sequence frames are time and position tagged (see appendix I). Fig.6.3 shows the GPS 

flight elevation against distance covered by the UAV. The unstable lines in the graph are an 

indication of continuous jerking of the aircraft along the flight line. Hence, the cause of 

distortion in the captured images and the need for ortho-rectification of these images. 
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Fig.6.3 GPS/INS Flight Track Log (Elevation Vs Distance) 

 

6.2.2 Multi-sensor System Data Fusion  

The multi-sensor digital systems used in this research consists of a digital camera system 

used for image acquisition and a GPS/INS integrated sensor system used for recording 

camera’s positions and attitudes. When using multi-sensor digital systems, all these systems 

need to be calibrated in order to minimise the systematic errors that arises from these 

systems. The main calibration requirement in a multi-sensor systems is the camera and 

boresight calibration. 

Boresight calibration involves computing the misalignment angles between the INS body 

frame and the camera frame. Since the INS sensor system and the camera cannot occupy 

the same center on the UAV there are is a gap between the two sensors coordinate system. 

The angle formed by the gaps between the coordinate system of the INS body frame and 



140 
 

the camera coordinate system is known as boresight angle. The concept of boresight 

calibration is shown in Fig. 6.4. 

 

 

Fig. 6.4 INS/Camera Boresight Calibration 

 

The relative orientation of the camera frame coordinate system with respect to the INS 

body frame coordinate system is defined by the direction cosine matrix as: 
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(6.1) 

Hence (6.1) is used as additional observations in the final bundle adjustment and estimating 

the boresight as one of the parameter. 

 

6.2.3 Ortho-Rectification and Geo-Referencing of Video Streams 

The basic steps for video imagery ortho-rectification and geo-referencing are described in 

the following sub-sections: 

 

6.2.3.1 Feature Points Extraction and Tie Points Matching of Video Frames 

After the de-compilation of the video streams into individual frames as discussed in chapter 

four of this thesis. The next step is to extract feature points from each video frame, track tie 

points between images and video frame matching. A feature based algorithm is used for 

feature points extraction, tie points tracking and image matching of the video frames. We 

chose feature based matching because, it is invariant to radiometric changes and it runs 

faster when compared with other matching techniques. Also the features used are points 

rather than lines. This enables us to avoid problems caused by broken lines and more so, 

points are very easy to describe and are invariant to central projection.  Feature points 
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extracted and matched are based on a number of control parameters such as window sizes 

and threshold values. This matching technique is detailed in chapter three of this thesis. 

 Based on the SURF algorithm operations, a chain of overlapped video frames and 

corresponding tie points are generated for further (relative and absolute) bundle adjustment 

model. 

  

6.2.3.2 Finding of Interior Camera Orientation Parameter 

The next step is the finding of the interior orientation of each video frame, known as 

camera calibration. This involves finding the focal length of the camera, principal point co-

ordinates and lens distortion of each video camera frame. For the calibration of the video 

camera, we used a mathematical model called the Direct Linear Transform (DLT). As 

mentioned in chapter five, the DLT model is based on the principle of co-linearity (i.e. all 

points must be on a straight line), and it requires foreknowledge of the image plane 

coordinates and Ground Control Points (GCPs). The DLT model based on a point q on the 

first image frame and for a ground control point G can be expressed as: 

111109

4321




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GGG

GGG

q
ZLYLXL

LZLYLXL
uu                              (6.2a) 
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where,  ),( qq vu  are the coordinates of the image point q  on the first image frame

),,( GGG ZYX  are the  coordinates of the ground control point G; and ),( vu  are optical 

errors, which can 

be expressed as: 
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where,  ],[],[ 00 vvuu   and  
222 r . 

From (6.2), 
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where,             111109  GGG ZLYLXLD                                         (6.5) 

(6.4) in matrix form becomes: 
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  (6.7)                                                                                                       

In (6.7), the values of 111........LL  are the only unknowns. Also in the equation, it was 

assumed that the image frame consists of a point and one ground control point was used for 

the calibration of the camera. Thus, less than 16 parameters were used while the unused 

rows and columns were discarded. 
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From here, we will denote the right hand-side matrix of (6.7) by F, the  111........LL  matrix 

as L, and the left hand- side matrix as, h, so that (6.7) can be expressed as: 

h = F.L                                   (6.8) 

Calibration is achieved by solving for L in (6.8) but the matrix F is not a square matrix and 

hence cannot be inverted. Thus, a least squares method is employed to solve for L. A 

simple way to do this is to use the ‘Moore-penrose pseudo-inverse’ method [120]. The step 

is to multiple both sides of (6.8) by FT: 

FTFL = FTh                  (6.9) 

Since FTF is a square, it can now be inverted. We then multiply both sides of (6.9) by the 

inverted matrix square (FTF)-1: 

(FTF)-1(FTF)L = (FTF)-1FTh                  (6.10) 

An identity matrix I is formed on the right-hand side of (6.10), then the solution of L is 

calculated: 

L = (FTF)-1FTh                (6.11) 

Through computational iteration, the 111........LL  parameters can be solved. Afterwards, the 

interior and exterior parameters can be calculated. 

 The interior orientation parameters can be calculated from: 
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The exterior orientation parameters can be calculated from: 
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The rotation matrix can be expressed as in (6.22) by: 
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The perspective centre coordinates ( ),, SSS ZYX  can be calculated from: 
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6.2.3.3 Finding the Relative Orientation 

The process of orienting images in relation to one another, by recreating the relative 

position and angular attitude of images with respect to one another at the instants of 

exposure is called relative orientation. This is achieved in a stereoscopic pair image, by 

making the first image fixed and setting the Z coordinate of the first (fixed) image to its 

focal length, while the X and Y coordinates and the angular attitude (  ,, ) of the fixed 

image are all set to zero. The X coordinate of the last image is then equal to the photo base. 

After the determination of the interior orientation parameters of each video frame 

separately, using the DLT model as mentioned in section 6.2.2.2, the two image coordinates 

system are clearly known. 

Hence, the relative orientation unknown parameters can be easily solved by using tie point 

coordinates as observations in a least squares solution.  

The results obtained can then be used to attach relatively oriented image sets to each other 

for an entire flight strip. The entire strip is then adjusted to absolute coordinates using 

ground control points in a final transformation, which is discussed in the next section. 

 

6.2.3.4 Finding the Absolute Orientation 

The absolute orientation is the process of levelling and scaling the stereo model with 

respect to a reference datum using ground control points. With the relative orientation 

parameters computed, both the camera’s interior and exterior parameters (IOPs and EOPs) 
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are solved simultaneously by a calibration model called  bundle adjustment model. 

The bundle adjustment model used the principle of collinearity to specify the relationship 

between the images coordinates of points, the image space coordinate at exposure, and the 

ground coordinates of points. 

The bundle adjustment process like the relative orientation, start with the first and second 

frame (a stereo pair of images) and afterwards, extended to the entire flight strip. Hence, for 

any ground point Q, the first video frame is given by the following mathematical model: 
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For the second video frame, the mathematical model is expressed as: 
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where ( 11, qq vu ) and ( 22 , qq vu ) are the image coordinates of point q in the first and second 

video frame respectively; ( vu  , ) is as in (6.3); ( QQQ ZYX ,, ) are object space coordinates 

of point Q; ( 1,11 , SSS ZYX ) and ( 2,22 , SSS ZYX ) are object space coordinates of the exposure 

station of the first and second video frames respectively; ( 00 ,vu ) are the principal point 

coordinates in the corresponding frame; f  is the focal length of the camera; and r1 and r2 

are the elements of the three rotational angles as in (6.1) in the corresponding frames. 

 In this mathematical model, the unknown elements, which consist of the camera’s interior 

orientation parameters ),,,,( 00 vufvu  , and the exterior orientation parameters of the 

first and second video frames, ),,,,( 1111,11 SSS ZYX and  ),,,,( 2222,22 SSS ZYX   

respectively, can be solved by linearizing (6.21) and (6.22) using a Taylor series expansion. 

The linearized equation is expressed in matrix form by: 

             (6.23) 

where 1v  is a vector of image coordinate residuals, 1X  is a vector of the exterior 

orientation parameters of the two video frames, 2X  represents the vector of the camera 

interior orientation parameters, 1A  and 2A  are the coefficients of X1 and 2X  

respectively. 

 vvvq 02

lXAXAv  22111
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On the basis of the 6 GCPs collected as described in section 6.2.1, the co-ordinates of the 

image plane in the first and second video frames were measured and all the unknown 

parameters in (6.23) are computed.  

With the formation of the ortho-image from the above process, all ortho-images (video 

frames) are mosaicked together to create a mosaic image covering the test area. This 

mosaic image is then mapped onto the digital globe containing the map of the test area and 

the accuracy achieved is evaluated by the use of the six ground control points obtained 

from the test area. 

The work flow of the ortho-rectification and geo-referencing procedure is shown in Fig.6.5: 
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Fig.6.5. Work Flow of Geometric Ortho-rectification and Geo-referencing of Video Stream 



153 
 

6.3 Experimental Results and Discussion 

As shown in Fig.6.6, each video frame is geo-tagged, that is each video frame is tagged 

with its corresponding geodetic coordinate (Latitude, Longitude, Altitude), apart from the 

value of the altitude, values of both Latitude and Longitude are converted to X, Y, Z 

Cartesian coordinate system in meters (appendix I) . Thus, these values can then be used 

during computation of in aerial triangulation. It can also be observed from Fig.6.6 that the 

values for attitude for each video frame are not the same, despite the fact that the UAV 

travels at constant altitude above the sea level.  This is because as the UAV travels, it 

height above the ground height varies with its topography. 

 

 

Fig.6.6 Each Video Frame Geo-tagged with it Corresponding Geodetic Coordinate 
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Fig.6.7 shows, the 78 frames obtained as a result of video stream de-compilation, the video 

frames are decompiled at the rate of two frames per second by BPS video converter 1.4 

software. Hence, leading to a forward overlap of 60%, no side overlap was recorded 

because the experiment was conducted for only one flight strip. The frames are shown as 

not overlapping for the purpose of clarification.  

   

Fig.6.7 De-compilation of Video Streams into 78 Frames 

Fig.6.8 show the result of interest points matching between two overlapping frames (first 

and the second frame) using the SURF algorithm. A total of 20516 tie points were 

successfully matched within 78 frames with 72983 projections. See appendix IIA for 

detailed survey data. 
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Fig.6.8 Conjugate points between two overlap frames (outliers removed) 

 

 Fig.6.9 shows the image residuals of the camera, which was the outcome result of the 

camera calibration. 

 

 

Fig.6.9 Image residuals for video frames 

 

It can be observed from Fig.6.9, that the residuals are randomly distributed in magnitude 

and direction. This implies that there is no obvious systematic error in the residuals. The 

root mean square residual is 0.672782 pix. 
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Through the relative orientation stereo model the average camera location error was 

computed (Table 6.2). See also appendix IIB for detailed report on the camera locations and 

error estimates. 

 

X error (m) Y error (m) Z error (m) Total error (m) 

8.820588 5.003659 3.798771 10.829129 

Table 6.2.Average Camera Location Error 

 The on board GPS/INS provides the real time UAV’s attitude information (Table 6.3), 

which is used in the calculation of the Boresight matrix by adding the GPS/INS readings to 

the result of the absolute bundle adjustment. 

 

On-board 

GPS/INS 

Attitude 

Readings 

Row )(  Pitch )(  Yaw )(  

0.0607932 0.00986701 1.0098690 

Table 6.3 UAV Attitude Information 

The result from the DLT model and the bundle adjustment method to calculate the interior 

orientation parameters and exterior orientation parameters is shown in Table 6.3 and Table 

6.4 respectively. 
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In Table 6.3, u0 and v0 are the coordinates of the principal point. Also the lens distortion is 

not considered here, this is because the DLT method does not give very accurate results, 

hence, the solved interior orientation parameters and exterior orientation parameters will be 

used as initial values in (6.1). 

 The computation of absolute orientation is automatic but not autonomous because it 

involves human interaction, where we are prompted to enter the values of the selected 

ground control points. 

Row ( ) -0.0524789 

Pitch ( ) 0.0042136 

Yaw ( ) -1.037061 

0u  
2409.78 

0v  
2380.12 

uf  4836.75 

vf  4836.75 

Table.6.4 DLT Model Results 

 

 



158 
 

 

Table 6.5 Results from Self-calibration 

 

In Table 6.5, (K1, K2, K3) represents radial distortion coefficients while (P1, P2) represents 

the tangential distortion coefficients. The results of ortho-rectification of each video frame 

is given in appendix III. 

Row )(  -0.0545097 

Pitch )(  0.0087668 

Yaw )(  -1.0087921 

0u  
2420.61 

0v  
1335.46 

1K  -0.0310589 

2K  0.0280943 

3K  -0.0188507 

1P  0 

2P  
0 
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After the ortho-rectification process, the ortho-images (corrected frames) are mosaicked 

together to form a map covering the test area, the result of the mosaicking of video frames 

is shown in Fig.6.10. The reconstructed digital elevation model obtained as a result of the 

mosaicking of video frames is also shown in appendix IV. This mosaic digital elevation 

model is then integrated with a virtual globe (Google Earth). The result of integration of 

mosaicked images and the Google Earth is shown in Fig.6.11. 

 

 

Fig.6.10 Mosaicked Images Covering Test Area 

 

                    Fig.6.11 Mosaicked images registered on Google earth for geo-referencing 
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It can be seen from the result of the merging in Fig.6.11, that the image points on the 

mosaicked images aligns well with the 6 GCPs on the Google earth map with a  

misalignment error of  between 3-5 meters.  

 

6.4 Chapter Summary 

This chapter presented the procedural steps for near real-time ortho-rectification and geo-

referencing of video streams obtained from a low cost UAV equipped with a multi-sensor 

system. A mathematical model and DLT algorithm, which is based on a photogrammetry 

model, was used to calculate the internal geometric parameters of the camera and the 

exterior orientation parameters of each video frame. The values obtained from the solved 

DLT equations were used as inputs in the stereoscopic pair image of the relative orientation 

to eliminate the x-parallax and y-parallax in the developed model. 

The DLT values are also employed as initial values for the calibration process for the final 

bundle block adjustment, in which the IOPs and EOPs of each video frame were solved 

simultaneously at the point of exposure. A test field located in Abuja, Nigeria was used to 

evaluate our method. Video and telemetry data were collected for about twenty-five 

minutes, and they were processed using our method. The results obtained demonstrated that 

the geometric measurement of the test field from ortho-images is more accurate, when 

compared with those from original perspective images and also, the accuracy of the two-

dimensional DSM obtained, when compared with the 6 control points in the digital globe 

has misalignment errors between 2 and 3 metres. 
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CHAPTER SEVEN 
 

Integration of Object Detection and Geo-

referencing Processes 
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7.1 Introduction 

After the two independent experiments conducted for object detection using the correlation 

filter and ortho-rectification and geo-referencing of the object detected using the 

photogrammetry model. Another experiment was conducted which integrated the two 

processes of object detection and geo-referencing. 

In monitoring of a buried oil pipeline right-of-way (ROW) using a remotely controlled low-

cost UAV equipped with sensors, objects of interest lying on the buried oil pipeline ROW 

and which may act as a potential threat to the buried oil pipeline ROW must be detected 

and the exact geographical location of the object detected must be determined. This will 

enable the pipeline operator to know the exact location where to deploy security operatives 

in order to apprehend the third party intruder to the pipeline ROW. The basic steps and 

results of experiments performed for the developed system for monitoring of buried oil 

pipeline ROW is illustrated in the following sections. The general work flow of the 

developed system is shown in Fig. 7.1. 
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Fig. 7.1 Work Flow of the Developed Monitoring System 
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7.2 Object of Interest Detection Process 

The first step in monitoring of the pipeline ROW is to detect objects of interest which may 

act as a threat to the pipeline ROW. The three basic steps for detecting objects of interest in 

a video streams are: 

7.2.1 Data Acquisition  

Experiments were conducted on a calibrated control field, located at the federal capital 

territory Abuja, Nigeria. Where video streams and telemetry data were collected with the 

aid of a Spreading Wings S800 UAV, which is equipped with GPS/INS and has the 

capability to geotag (time and position tagged) video frames at the exact time of exposure. 

The DJI S800 UAV transmits real-time flight data and video feeds with a 5.8G video 

downlink via a radio signal to the ground station where all other processing takes place. 

The ground station consists of a portable PC and three servers: the image processing server, 

the threat database server and the base map server. The configuration of each server is the 

same and is given in Table 7.1. 

 

Operating System Window 7 Enterprise, Service Pack 1 

64-bit Operating System 

Processor Inter® Core (TM) i7-3770 CPU@ 

3.40GHz 

RAM 8.00GB 

Table 7.1 Server Configuration. 
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7.2.2 Resampling of Video Streams 

The video streams captured by the UAV are resampled into individual frames (JPG format) 

at the rate of one frame per second of sizes 256 x 256 using the BPS video converter 1.4 

software in the image processing server. Conversion rate of one frame per second was 

chosen to allow for an image forward overlap of 65% between sequential frames to allow 

for stereoscopic reconstruction of image points during bundle adjustment. Breaking the 

video streams into individual frames allows for each image in the video frame to be 

processed individually with the aim of detecting objects of interest in the frames with a 

very small number of false detections. Fig. 7.2 shows the result of video streams broken 

down into 98 frames.  

 

 

Fig. 7.2 Video streams converted into 98 frames. 
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7.2.3 Cross Correlation 

After the video streams had been resampled into individual frames, the video frames are 

then transferred into the threat database server, where each frame is cross correlated with 

each trained (image template) filter in the threat database server. Whenever the cross 

correlation output peak gives a PSR value that is greater than the chosen PSR threshold 

value of 20.01. Then there is a match between the video frame and one of the trained in-

class images. Hence a target object has been detected. The PSR value is given by equation 

(4.5).  

Fig. 7.3 shows the example results of trained images, which have been derived from CAD 

models of a selected car. These training sets are derived from different viewing angles (00 – 

3600) of the UAV’s camera.  

Fig. 7.4a shows the result obtained from cross correlation of the target image with the 

trained images using the OT-MACH correlation filter. The image at the upper left most 

corner is the 64 x 64 filter image (template) that correlates with the target image.  
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Fig. 7.3 Trained images from a car CAD Model under different viewing angles (00 – 3600). 

 

 

(a) 
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(b) 

Fig. 7.4 (a) Result image showing the viewing angle of the UAV camera and the corresponding 

template image (b) Result of Cross Correlation output, the sharp peak indicate an object is detected. 

 

In Fig. 7.4b the PSR threshold value was set to 17.01. This means if after cross correlation 

the output peak has a PSR value less than 17.01, then the object found is not a threat, it 

only has some features similar to the object of interest. However, all video frames which 

produce a correlation output peak with a PSR value greater than the chosen PSR threshold 

value (17.01) implies that objects of interest are detected on them. We chose a small PSR 

value to enable the filter to detect any little features of the object of interest that may be 

present in any frame, since it is possible to have the object features of interest in more than 

one frame. However, care must be taken so as not to choose a PSR value that is too low or 

too high as threshold, in order to prevent false detection or passing objects of interest 

without detecting them. Hence a lot of tests need to be conducted before a value is chosen 

as threshold for the PSR. The PSR value of the output peak in Fig. 7.4b was found to be 

625. 55. 
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7.3 Ortho-rectification of Video Frames 

The next step after objects of interest have been detected from the video frames is the 

ortho-rectification of video frames. This process is performed in the base map server, which 

consists of the SURF algorithm, the Agisoft Photoscan and Google Earth software. The X, 

Y, Z coordinates position data of each image is given in appendix V. The process of ortho-

rectification and results obtained are explained in the following subsection. 

 

 7.3.1 Extraction of Feature Points and Tie Points Search 

After the detection of objects in the video frames, the frames are transferred from the threat 

database to the base map database. The feature point based algorithm (SURF) is used for 

the extraction and matching of feature points from adjacent video frames. 

Tie points are conjugate points on two images in the direction of the flight of the UAV. The 

SURF algorithm automatically searches for tie points between image frames. The algorithm 

exploits the fact video frames contain imagery that are very close to each other resulting 

into a small change of images between frames. This means any feature points found on an 

image in a frame will have image coordinates in close proximity to the coordinates of the 

tie points found on the image in the frame directly preceding and succeeding it. Hence the 

problem of occlusion is greatly reduced. Fig. 7.5 shows the result of putatively matched 

points including the outliers between two successive frames. Only the 20 feature points that 

best matched were selected while the outliers were discarded, the result of matching of the 

matched points inliers is shown in Fig. 7.6. The SURF algorithm m file used for the 

extraction and matching process is given appendix VI. 
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Fig. 7.5 Putatively Matched Points Including the Outliers between two successive Frames 

 

 

Fig. 7.6 Matched points (Inliers only) between two successive Frames 

 

Tie points are used in the relative orientation step for estimating the image frame base. In 

an ideal situation where the flight line is a straight line in the x direction of the image 

planes, the sequential tie points will be found in positions with the same image coordinates 

with other image plane. But due to continuous jerking of the low-cost UAV along the flight 

line, the attitude and position of the camera is continuously changing. This produces some 

image point off-set on the image plane. This is corrected in the remaining steps of ortho-

rectification in the following section. The survey data for this experiment is shown in 

appendix VIIA 
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7.3.2 Camera Calibration 

The next step of ortho-rectification is the calibration of each camera video frame. Due to 

the off-set of the image point position on the video frame which is caused by lens distortion 

and other systematic and non-systematic distortion of the camera, there is the need to 

calibrate each camera video frame to correct these errors and obtain the true position of the 

image point on the frame. This involves finding the focal length, principal coordinates and 

lens distortion (interior orientation parameters) and the exterior orientation parameters of 

video camera frame using a DLT model. The results obtained for the calibration of the 

camera are given in Table 7.2 and the residual of the camera in Fig. 7.6. The DLT model 

results are used as initial values during iteration process during the final bundle adjustment. 

 

Row ( ) -0.0524789 

Pitch ( ) 0.0042136 

Yaw ( ) -1.037061 

0u  
2409.78 

0v  
2380.12 

uf  4836.75 

vf  4836.75 

K1 -0.025369 

K2 0.0240245 

K3 -0.014159 
Table 7.2 Result of Video frame Calibration 
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where 0u , 0v  are the coordinates of the  principal point, uf and vf are the focal lengths in 

the x and y direction respectively. 

 

 

Fig. 7.6 Image residuals for DMC-GH3 Camera is approximately 1 pixel 

 

7.3.3 Recreation of Position and Angular Attitude of Video Frames 

After the calibration of video frames, the frames are further adjusted by forming a stereo 

pair image by placing video frames beside each other and recreating the relative position 

and angular attitudes of one image frame with respect to the one beside it, so that the 

baselines of all the image frames lies on the same horizontal plane using an affine 

coordinate transform. The output result of this process is a tie point in the first image frame 

and the tie point on the last image frame holding the entire sequence of images in the flight 

strip together. The results obtained from the experiment are shown in Table 7.3. A detailed 

camera locations and error estimates is also shown in appendix VIIB 
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X error (m) Y error (m) Z error (m) Total error (m) 

7.087607 4.113576 3.460632 8.895598 

Table 7.3 Average Camera Position Error 

 

7.3.4 Bundle Adjustment for the Entire Flight 

The final step under ortho-rectification is the process of levelling and orienting the stereo 

model form in the relative orientation process in the previous section to the ground control 

system by adjusting the entire ray in the stereo model with reference to six ground control 

points through a self-calibration process. The results obtained from the self-calibration are 

given in Table 7.4. Where (K1, K2, K3) represents radial distortion coefficients while (P1, P2) 

represents the tangential distortion coefficients. The results obtained from ortho-

rectification of each video frame is given in appendix VIII.  

After the ortho-rectification of video frame images, the ortho-images formed are mosaicked 

together to form a digital elevation model covering the test area (appendix IX). Fig. 7.7 

shows the result of mosaicking of ortho-images from the experiment. 
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Row )(  -0.0547097 

Pitch )(  0.0084768 

Yaw )(  -1.0087921 

0u  
2470.61 

0v  
1435.46 

1K  -0.0314587 

2K  0.0281640 

3K  -0.0187615 

1P  0 

2P  
0 

Table 7.4 Results from Bundle Adjustment of the Entire Flight 

 

 

 

Fig. 7.7 Result of Ortho-images Mosaicking 
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7.4 Geo-referencing 

The final step in monitoring of the buried pipeline ROW is the geo-referencing of the 

object detected on the pipeline ROW. This is necessary in order to pin point the exact 

geographical location of the object detected for a quick response of pipeline security to the 

place intruded. The process of geo-referencing takes place in the base map server which 

contains the virtual globes. 

 

7.4.1 Virtual Globe 

There are different types of web based 3D geo-information services that are based on 

virtual globes that are available today. The two prominent ones are the Google Earth and 

the Microsoft Virtual Earth. These virtual globes have the capability to geo-register and 

integrate a very large amount of geo-spatial content like ortho-mosaic, terrain model and 

3D objects. 

 

7.4.2 Ortho-mosaic registration and Integration  

The ortho-mosaic formed after ortho-rectification of each video frame is geo-registered and 

integrated with a virtual globe (Google Earth). This allows for real-time geo-referencing of 

the ortho-mosaic that contains the detected object. Fig. 7.8 shows the results of the 

integration and geo-registration of the ortho-mosaic with the Google Earth with a 

misalignment error of between 1.5 and 2 meters. While Fig. 7.9 shows the exact location of 

the object detected on the ortho-mosaic on the Google Earth. 
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 The object detected is found to be at Latitude of 8.9020660 and Longitude of 7.4819510. 

 

 

Fig. 7.8 Geo-registration of Ortho-mosaic into Google Earth 

 

 

Fig 7.9 Object Detected at Lat. 8.9020660, Long.7.481951 on Google Earth 
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Once the geographical location of the object detected has been found, an alert containing 

location of the object is then sent to the pipeline security personnel by the operator for 

necessary action. 

 

7.5 Chapter Summary 

This chapter illustrates the procedure and results of the experiment conducted for the 

developed system. Where both the object detection process and geo-referencing processes 

are integrated for testing the developed system for monitoring and protecting the buried oil 

pipeline ROW from oil theft or deliberate sabotage. 

Objects which may act as a potential danger to the pipeline ROW were used to train the 

system for object detection, while a photogrammetry model was used for ortho-rectification 

and geo-referencing of video imagery captured by a low cost multi-sensors UAV. The 

resulting ortho-mosaic was then merged with a digital globe for geo-referencing of the 

detected objected contained on the ortho-mosaic. 
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CHAPTER EIGHT 

Conclusion and Recommendation 
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8.1 Buried Oil Pipeline Monitoring 

Oil carrying pipelines are buried in utility rights-of-way, which traverse remote 

environments. These rights-of-way, which are usually maintained by the pipeline operators, 

are sometimes damaged by construction equipment owned by a third party, with the 

intention of oil theft, vandalism and terrorist attacks. Damage to the pipeline rights-of-way 

are caused by digging or drilling along the pipeline rights-of-way can be devastating, 

sometimes causing explosions and death and, loss of millions of dollars by pipeline 

operators. 

Many approaches have been used for protecting and monitoring of buried oil pipeline 

ROW, these approaches include the use of security force ground patrol of the pipeline 

ROW, the installation of sensors along the pipeline ROW and the use of helicopters for 

aerial patrol of the pipeline ROW. However, the frequent reports of pipeline vandalism and 

oil theft are pointers to the inadequacy of these methods used for protecting buried oil 

pipelines. 

In this research, we were able to develop an automated image analysis system with the aid 

of a UAV equipped with sensors, to detect potential hazards (construction equipment, 

person, car, etc.) along the pipeline rights-of-way and also to pin-point the exact 

geographical location of the detected objects and then alert the pipeline operator. 

Object detection is one of the major aspects of a remote monitoring system. Towards this 

purpose, we investigated different detection techniques, which include the feature based 

(Harris corner, SIFT and SURF) methods and area based (cross correlation, least squares) 
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detection methods. The cross correlation method was found to be the most suitable for this 

research. 

A correlation filter was specially designed for the task of object detection and an optimal 

trade-off between the parameters of the filter were used to improve the performance of the 

pattern detection tasks. 

After the detection of the objects of interest, the developed system must be able to pin point 

the precise geographic location of the object detected from a wide range of video frame 

images. This was achieved with the aid of a photogrammetry model. 

Since data acquisition in this research was done by the use of a UAV equipped with camera 

and sensors; Video frames acquired at the UAV platform suffer from of a lot of geometric 

distortions. It was observed that these geometric distortions cannot be corrected to a 

reasonable accuracy without the use of ground control points (GCPs), especially when 

dealing with systematic and/or non-systematic errors and images covering rough terrain. 

Hence photogrammetric techniques with the aid of least squares bundle adjustment were 

used for correcting the aforementioned distortions to the video images acquired by the 

UAV platform. 

The photogrammetric technique was able to produce the precise geographic location of the 

object detected from a wide range of images. This means, any measurement taken with the 

aid of a photogrammetry processed image reflects a measurement taken on the ground. 

Hence there is no need to constantly go to the test field to make measurements, since with 

the use of photogrammetry tools, information obtained from imagery is the same as that 

obtained from the field. 
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Our method was tested by performing three experiments on test fields located in Nigeria 

and United Kingdom. The first experiment was a test experiment for object detection 

conducted in a test field at Gatwick, United Kingdom. Where objects that may act as a 

potential threat to the pipeline ROW were used to train the developed system for 

recognition using a correlation filter. 

Also another independent test experiment was conducted at Abuja, Nigeria to test our 

method for ortho-rectification and geo-referencing by calibrating the test field and using a 

photogrammetry model for ortho-rectification of video imagery. The ortho-image formed 

from the ortho-rectification of the video frame imagery are mosaicked and then integrated 

with a digital globe for geo-referencing. 

The last experiment was also conducted in Abuja, Nigeria. This is the main experiment on 

the developed system for monitoring buried oil pipeline ROW for third party incursion. In 

this experiment the process of object detection is integrated with the process of ortho-

rectification and geo-referencing. In other words, after the first process detects an object, 

which the system has been trained to recognise. The detection system then hands over to 

the ortho-rectification and geo-referencing system. Where the detected object geographical 

location is determined and an alarm is sent to the pipeline security personnel for necessary 

action. 

The overall objectives of this thesis focus on developing an automated system that will 

protect the pipeline from damage caused by oil pipelines vandals and saboteurs. Such a 

technology would result in a safer and more reliable oil carrying pipeline systems and solve 

a long time standing problem of the natural oil and gas industry. 
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The prevention of third party incursion onto the buried pipeline right-of-way will go a long 

way in reducing pipeline service interruptions and cost of frequent repairs of the pipeline 

systems.  

 

8.2 Future Work 

While much work has been done, there is still room for improvement to help address the 

following outstanding limitations: 

 To increase object detection capability of the correlation filter, future works need to 

be focused on designing correlation filters that are sensitive to the colour of objects. 

Colours are known to provide additional information about an object and can easily 

be used to add to the criteria for object detection in correlation filters. 

 Also, future research may focus on how to reduce training of correlation filters, 

which is based on the number of constrained variants of the target image. A solution 

to this problem, will go a long way in reducing computational time and memory 

space needed for the detection process. 

 Future works may also focus on designing UAVs specifically for the purpose of 

aerial monitoring where most of the image processing process will take place on-

board the aircraft. 

 Since the UAV flies at low altitude, future works should focus on equipping the 

UAV with sense and avoid sensors to prevent it from collision with flying objects 

(such as balloons, birds, etc.). 
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  Moreover, future research may focus on a UAV payload consisting of a 

combination of electro-optical sensors which can provide:  day light surveillance, 

the infrared sensors for night time surveillance and synthetic aperture radar which is 

not affected by bad weather. The data obtain from these sensors can be processed 

and integrated to provide better information or information that could not be 

obtained when a single type of sensor is used. 
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APPENDIX I 

Results for the test experiments for ortho-rectification and geo-referencing is as follows: 

 

                                                        X                          Y                      Z 

 

Each Video Frame Geographical Location Data 
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APPENDIX I CONT. 

 

Each Video Frame Geographical Location Data 
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APPENDIX IIA 
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APPENDIX IIB 
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APPENDIX III 

Results of Ortho-rectification of Each Video Frame 
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APPENDIX III CONT. 
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APPENDIX IV 

 

 

Resolution:               3.05284 

Point density:            0.107285 per sq. m 
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APPENDIX V 

Results for the experiments conducted for the integrated developed system is as follows:  

Each Video Frame Geographical Location Data 
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APPENDIX V CONT. 
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APPENDIX VI 

SURF M FILE 

%Read the reference image containing the object of interest 
g = imread('1.jpg'); 
boxImage = rgb2gray(g); 
figure; imshow(boxImage); 
title('Image of a known object'); 
%Read the target image containing a cluttered scene 
r = imread('2.jpg'); 
sceneImage = rgb2gray(r); 
figure; imshow(sceneImage); 
title('Raw image of ROW captured by UAV'); 
%Detect feature points in both images 
boxPoints = detectSURFFeatures(boxImage); 
scenePoints = detectSURFFeatures(sceneImage); 
%Visualize the strongest feature points found in the reference image 
figure; imshow(boxImage); 
hold on; 
plot(boxPoints.selectStrongest(20)); 
%Visualize the strongest feature points found in the target image 
figure; imshow(sceneImage); 
title('20 Strongest Feature Points from image capture by UAV'); 
hold on; 
plot(scenePoints.selectStrongest(20)); 
%Extract feature descriptors at the interest points in both images 
[boxFeatures, boxPoints] = extractFeatures(boxImage, boxPoints); 
[sceneFeatures, scenePoints] = extractFeatures(sceneImage, scenePoints); 
%Match the features using their descriptors 
boxPairs = matchFeatures(boxFeatures, sceneFeatures) 
%Display putatively matched features. 
matchedBoxPoints = boxPoints(boxPairs(:, 1), :) 
matchedScenePoints = scenePoints(boxPairs(:, 2), :) 
figure; 
showMatchedFeatures(boxImage, sceneImage, matchedBoxPoints, ... 
    matchedScenePoints, 'montage') 
title('Putatively Matched Points (Including Outliers)'); 
%estimateGeometricTransform calculates the transformation relating the 

matched points,   
%while eliminating outliers. This transformation allows us to localize 

the object in the scene 
[tform, inlierBoxPoints, inlierScenePoints] = ... 
    estimateGeometricTransform(matchedBoxPoints, matchedScenePoints, 

'affine'); 
%Display the matching point pairs with the outliers removed 
figure; 
showMatchedFeatures(boxImage, sceneImage, inlierBoxPoints, ... 
    inlierScenePoints, 'montage'); 
title('Matched Points (Inliers Only)'); 
%Get the bounding polygon of the reference image 
boxPolygon = [1, 1;...                           % top-left 
        size(boxImage, 2), 1;...                 % top-right 
        size(boxImage, 2), size(boxImage, 1);... % bottom-right 
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        1, size(boxImage, 1);...                 % bottom-left 
        1, 1];                   % top-left again to close the polygon 
%Transform the polygon into the coordinate system of the target image. 

The transformed polygon  
%indicates the location of the object in the scene. 
newBoxPolygon = transformPointsForward(tform, boxPolygon); 
%Display the detected object 
figure; imshow(sceneImage); 
hold on; 
line(newBoxPolygon(:, 1), newBoxPolygon(:, 2), 'Color', 'y'); 
title('Detected object'); 
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APPENDIX VIIA 
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APPENDIX VIIB 
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APPENDIX VIII 

Results of Ortho-rectification of Each Video Frame 
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APPENDIX VIII CONT. 
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APPENDIX IX 
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