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Abstract

Many security systems employing different methods have been proposed to protect buried
oil pipelines transporting petroleum products from the well head via the refinery to: depots
and other receiving stations. Currently there is a security gap in the monitoring of these
buried pipelines in real time and in keeping them protected from third party interference.
This thesis addresses the problem of monitoring these systems by developing an automated
image analysis system with the aid of a low-cost multisensory Unmanned Aerial Vehicle
(UAV) for monitoring of buried pipeline right-of-way (ROW). The method used in this
research is based on the identification of threat objects of interest from the video frame
sequences of the pipeline right-of-way acquired by the UAV. This is achieved by training
the system to recognise objects of interest using trained correlation filters. To determine the
geographical location of detected objects, the Video frame sequences captured by the UAV
platform were ortho-rectified to form ortho-images which were then mosaicked to form a
seamless Digital Surface Model (DSM) covering the test area using a photogrammetry
model. The DSM formed from the mosaicking of ortho-images is then emerged with a
digital globe for geo-referencing of detected objects. Experiments were carried out on a test
field located in United Kingdom and Nigeria, where video and telemetry data were
collected, then processed using the techniques created in this research. The results
demonstrated that the developed correlation filter was able to detect objects of interest
despite the distortions that come with the object image, due to the fact that the expected
distortion was compensated for using the training images. When compared with the 6
control points in the digital globe the accuracy of the two-dimension DSM gave a
misalignment error of between 2 and 3 metres.
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CHAPTER ONE
Introduction



Many Unmanned Aerial Vehicle (UAV) technologies have been developed, refined and
used for military applications and in the public sector. These have led to useful applications
in both the public and private sectors. Typically for all these applications, the key
component is the on-board sensor systems (video camera and the GPS/INS). In the private
sector, the sensor systems are used for different kinds of applications, among which are
homeland security [1], forestry fire monitoring [2], intelligent surveillance and target
acquisition [3]. Other researchers, such as [4], [5], [6], [7] and [8] have used their UAV for
different kinds of application, which present different difficulties that require customized
solutions.

In this research, a low-cost multi-sensor UAV is used for monitoring buried oil pipeline
right-of-way (ROW). Interference with pipeline Right-of-Way (ROW) is, typically caused
by a third party using construction equipment on the ROW, which can cause mechanical
damage to the pipe or lead to problems ranging from pipe failure to explosion or
environmental pollution. Since most of the reported damage to the pipeline ROWSs are
caused by third-party intrusions [9], the ability to detect third-party and construction
equipment entering a pipeline ROW before it can contact the oil pipeline would greatly
reduce damage caused by third party incursion.

Many approaches have been used for monitoring and reporting third-party contact or
activities along the pipelines; among these are the use of wired and wireless fiber-optic
sensors buried alongside the pipe, satellite technology, manned aircraft, as well as foot and
car patrols. All these methods have one limitation or another, hence the need for alternative

methods for monitoring the ROW.



1.1 Aims and Objective
Pipeline monitoring and threat detection are based on images taken from a low-cost multi-
sensor UAV. The aim is to develop an automated image analysis system with the use of
light UAVs for monitoring pipeline ROWSs. This system should be able to identify potential
hazards and vandals along the pipeline ROW automatically and send alerts to the pipeline
response team in near real- time. The major task to be solved is the detection of:

e Human tampering and/or theft and any type of third-party intervention

e Unauthorized construction equipment

e Unauthorized vehicle on the right-of-way

1.2 Methodology

The technique used in this work is to lead the UAV to the pipeline ROW and arrange it to
fly along the ROW with the aid of a Global Positioning System (GPS).The UAV auto-pilot
system is then programmed with four way-points to enable the UAV to keep tracking the
pipeline ROW.

For the automatic analysis of this work, the BPS video converter 1.4 software was used for
de-compilation of the raw video streams acquired by the UAV into individual frames,
trained Optimal Trade-off Maximum Average Correlation Height (OT-MACH) filter was
used for object detection, and photogrammetry modelling, this uses algorithms based on the
direct linear transform (DLT), to establish the relationship between the camera sensor used
to capture the imagery, the imagery itself and the Earth’s surface — the output from this was
used for determination of the geographical location of the object detected from the video

imagery. The system is made up of the aerial platform and the ground station. The aerial



platform consists of the UAV and sensors, which consist of a GPS, Inertial Navigation
System (INS) and camera, all integrated into the UAV. The ground station consists of a
portable PC computer and three servers, which comprise: an image processing application
server, a threat database server and the base map server.

The UAV platform is responsible for data acquisition and the GPS and INS give the
navigational position and attitude of the UAV, respectively. Data acquired are transmitted
via a radio link to the ground station for processing.

At the ground station, the image processing application server, which contains the BPS
software is responsible for de-compilation of the raw video streams captured under the
UAV platform into frames. This module then hands over to the threat database server.

The threat database server module is responsible for detecting and identifying objects of
interest on the pipeline ROW imagery that might represent a potential danger to the pipe.
Here objects of interest are trained using the OT-MACH correlation filter and stored in a
database. Objects detected look for a candidate match in the database by the degree of
matching with each object of interest in the database. A match indicates a threat and the
image is then handed over to the base map server.

The ortho-rectification and geo-referencing of video frames with the digital globe for
determination of the geographical location of objects detected from the video frame takes
place in the base map server.

Once a threat is detected and its location known, an alert will be sent by the pipeline
operator to the response team in near real time. The architecture and workflow of the buried

oil pipeline right-of-way monitoring system is shown in Fig.1.1
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Fig.1.1 General System Architecture and Workflow Chain

1.3 Achievements

The major contributions of this research are:

The OT-MACH correlation filter is trained to detect object images by cropping and
training the same object of interest under different viewing angles and illumination
conditions. With these, the problem of rotation and illumination variance of the
correlation filter was solved. An experiment was carried out to test this method and
the results are published in [10].

For ortho-rectification and geo-referencing of video imagery the relationship
between the camera sensor used to capture the imagery, the imagery itself and the
Earth’s surface using collinear equations was evaluated.

An experiment using the algorithms developed was carried out in a test field where
aerial imagery and telemetry data were collected. The data collected were tested

with this method and the results are published in [11].
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1.4 Related Research
There are a number of technologies used for buried oil pipeline monitoring and threat
detection. Most of these technologies are based on using remote sensing [12], to detect and
report potential hazards. These technologies depend on some types of communication
networks, which collect data and send alerts from inside and outside the buried pipe to the
control station. Different types of network architecture have been used to provide effective
communication in pipeline monitoring systems. These architectures, which are either wired
or wireless networks or a combination of both networks, rely on factors such as power
supplies and physical network security to be effective [13], [14], [15].
Fiber optic cables [16] are used by wired networks for monitoring buried pipeline ROWSs.
These cables are usually connected to sensor devices that measure the flow rate, the
pressure and the temperature of the oil in the pipe. The networks, which extend linearly
along the pipeline, collect and send information from sensor nodes, these are spread over
the pipeline and transmit their data to the control station [15], [16], [17]. Wired network
based monitoring systems are faced with the following types of problems:
e If any wire in the network disconnects or is damaged, the whole pipeline
monitoring system will be vulnerable to vandals.
e The physical security of the system is not guaranteed when the pipeline
extends over large areas.
e Location and repairs of a faulty network can be very difficult since most of
the pipelines are buried under-ground. Hence to maintain and repair a faulty

network is a difficult task.



e Repeated and irrelevant signals may be transmitted on the network causing
delay for other relevant signals.
[18], [19], and [20] addressed the short-comings of wired sensors by using wireless sensors
to replace the wired sensors to monitor the buried pipeline system. In the wireless networks,
the sensors, which are distributed inside the buried pipe along the pipeline are divided into
network segments. Unlike the wired sensors, if a sensor in a segment of the pipeline fails,
due to damage to one of the sensors or any destructive action, the network is not affected
because other sensors in the same segment or other segments will quickly detect the faulty
sensor. The damaged sensor can then be physically replaced and new ones installed. The
new sensor will automatically connect to the network segment without the need to program
it into the sensor network. In the wireless sensor network, each sensor node acts as a
communication relay node, such that each sensor node collects information from the
nearest sensor node to it. The sensor node filters the sensed data and transfers it from one
communication relay node to another until it reaches a data dissemination node, which will
then transfer it to the pipeline control station through another network. The problems with
wireless sensors are:
e If any node in the network develops a fault, the connectivity of the segment
where the node belongs will be lost and the network is partitioned.
e For pipelines that extend to large areas, a wide signal range will be needed
for sensor nodes. This wireless range to stay connected will consume more
energy from sensor batteries. This may lead to the requirement for frequent

changes of sensor batteries.



e Since most of the pipelines are buried under the ground, the task of
maintaining the sensor network is difficult.

[21] and [22] used a satellite based technology for oil pipeline monitoring and threat
detection. This technique utilizes pipeline and satellite data for surveying or providing
surveillance of the pipeline. The satellite data is integrated with the pipeline data to produce
a current pipeline map by using change detection analysis, i.e.; the current pipeline map is
compared with a previous map to determine whether the route of the pipeline or the
surrounding environment of the pipeline has changed. The satellite makes use of high
resolution imagery of the pipeline and the geographical location of the pipeline.
Satellite technology provides one of the most effective and efficient means for pipeline
monitoring and threat detection. However, it is very expensive to build a satellite platform
and sensor system, to launch it, to control it in its orbit and to recover data, as compared to
operating a light aircraft with a good camera and scanner [23].
Also, for mapping to high accuracy over a relatively small area, data from sensors flown
aboard an aircraft are much more useful than satellite data [21], [23]. Moreover, a satellite
cannot take good quality images when the weather is cloudy. The fact that an unmanned
aerial vehicle flies so much lower than satellites means that one can see more detail on the
ground than can be obtained from commercial satellites.
The most widely used methods for pipeline monitoring include foot patrols along the
pipeline ROW and aerial surveillance using helicopters [24]. These patrols check for
unauthorized intrusion into the pipeline ROW and leakages from the pipeline.
A disadvantage of this method arises from its cost and concern for the safety of the pilot
flying at low altitude, especially during bad weather. The cost of foot patrols is high in

terms of personnel and their time. The use of UAVs for pipeline monitoring reduces
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operational costs, speeds up the process of monitoring and can be used in situations where

manned inspection is not possible.

1.5 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 provides the background,
which provides the pre-requisites for the rest of the Chapters in the thesis. The background
contains an overview of: UAV system; remote sensing system; global position system;
inertial navigation system; camera and imaging system; spatial and frequency domain
filters; and image mosaicking. In Chapter 3, different matching techniques used for object
image detection: feature based, area based and least square approximation are explained
and compared. In Chapter 4, the procedure and results of a test experiment on object image
detection using trained OT-MACH filter are discussed. Chapter 5 explains the
photogrammetry model and the techniques used for ortho-rectification and geo-referencing
of aerial imagery. In Chapter 6, the procedure and results of a test experiment conducted
on ortho-rectification and geo-referencing of video streams captured at the UAV platform
are discussed. Chapter 7 discusses the experimental procedures and results of the
experiment conducted by integrating the object detection process with the ortho-
rectification and geo-referencing processes. In Chapter 8, the thesis is concluded by

summarizing the goals, contributions, results and the future work.



CHAPTER TWO
Background
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2.1 Introduction

This chapter gives the basic literature review needed to understand the concepts discussed

in the chapters of this thesis.

2.2 Overview of UAV

The concept of Unmanned Aerial Vehicle (UAV) started when balloons carrying explosive
were used by Austria to attacked Venice in 1849 (Fig.2.1) [25]. Lawrence Sperry [26], also
demonstrated his flying machine without a pilot by installing a gyrostabilizer on a Curtis
Bi-plane. UAV technology used for military applications has led to useful applications in
both public and private sectors. The acronym UAV has evolved to UAS (Unmanned Air
System) because of the rapid growth and development of more sophisticated ground control
systems, payload and other components [25], [26]. Unmanned Aerial Vehicle (UAV) is an
integral part of the Unmanned Air System (UAS), but when combined with other sub —
systems like control station (CS), communication systems and other support systems; it is

then addressed as Unmanned Air System (UAS) [26].

In a simplistic view, an Unmanned Air System (UAS) is an aircraft with its flight crew
removed and replaced by a computer system and a radio — link. However, in the real life
scenario, the UAS is more complicated than that, the complete UAS comprises a number of

sub — systems which includes:

e A ground control station (GCS), which houses the control systems and the

operators.
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e The aircraft, often referred to as Unmanned Aerial Vehicle (UAV), which
comprises of payload of different types.
e The communication system, which transmits signals between the GCS and the
aircraft usually through radio signals
Apart from missiles, there are three types of aircraft that can fly without pilots on board.
This includes, Unmanned Aerial Vehicle (UAV), Remotely Piloted Vehicle (RPV) and
Drones. They are of course, all unmanned, so the name “Unmanned Aerial Vehicle” or

UAV can be thought of as the generic title [26], [27].

Fig 2.1 Concept of UAV: Balloon carrying explosive [25].

It is incorrect to use the terms RPV and UAYV interchangeably as done by some people. The
Remotely Piloted Vehicle is an aircraft without a pilot that is controlled from a remote
location. Hence an RPV can always be referred to as a UAV, but a UAV which can be

autonomous or pre-programmed to perform a mission need not always be an RPV [27].
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Also Unmanned Aerial Vehicle (UAV) must not be confused with model aircraft or with
drones. A model aircraft is also an aircraft without a pilot they are usually used for sport
and are controlled by a radio. Model aircraft must stay within the sight of the operator. The
operator cannot do any other thing than to instruct the aircraft to ascend or descend and to

either turn left or right [26], [27].

A drone aircraft unlike the model aircraft can fly out of sight of the operator but has no
intelligence. A drone is operated by launching it into a pre-programmed course or mission.
It does not communicate with the control station, for example, data are usually obtained

from the aircraft until it return to base. [27], [28].

A UAV on the other hand, has some level of intelligence. It communicates with the control
station while on mission. It does not need to go back to base station before data can be
recovered from it. For example, the UAV is able to communicate with the operator on the
ground station and return payload data, such as imagery and video streams. The UAV also,
transmits information about itself during flight, such as its position, altitude, component

temperature and the conditions of its engine [26], [27], [28].

2.2.1 UAS System Composition

The Unmanned Air System (UAS) consist of some major sub-systems. These sub-systems

form part of a total system and do not exist on their own. These sub-systems are:
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2.2.1.1 Control Station

The control station (CS) can be based on the ground, or on a ship on shore or a parent
aircraft [27], [28]. The UAV flight plan is done at the control station. Also, at the control
station the operator can communicate and control the UAV via different types of
communication up-links. Likewise, the UAV can send information and images to the
control station through a communication down-link. These information includes, payloads
data, UAV status and position information. The hovering, launching and recovery of the
UAV can also take place at the control station. An example of a UAV control station is

shown in Fig.2.2.

Fig 2.2 UAV Control Station (CS) [27].
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2.2.1.2 UAV Payload

The main work of the aircraft is to carry the payload to its place of application. The type of
payload a UAV carries depend on the mission the UAV was designed to carry out. These
may range from a simple sub-system consisting of video camera with a fixed lens having a
mass as little as 200g, to a very powerful radar having a mass up to 1000Kg [28]. Data or
images obtained by this sub-system are transmitted through the communication down-link

to the ground control station.

2.2.1.3 UAV Communication Systems

The UAV communication system provides data communication links between the aircraft
and control station. The communication link could be either up-link (from the control
station to the aircraft) or down-link (from the aircraft to the control station). The
transmission medium mostly used is the radio frequency (RF) [29], an alternative to this

medium is a light signal in the form of a laser beam or via optical fibers [28], [29].
The type of data communication links and their task is as follows:

e Data up-link communication: - This is the process of transferring information
from the ground control station to the aircraft. The data communication up-link is
responsible for the transmission of the flight way-points plan to the aircraft during
autonomous flight control.

Also, the data communication up-link transmits real-time flight control commands

to the aircraft.
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Moreover, data communication up-link transmits real-time commands to the
payload mounted on the aircraft.

e Data down-link communication: - This is the process of transmitting information
from the aircraft to the ground control station. It is responsible for the real-time
transmission of aircraft altitude and attitude to the ground control station.

The data communication down-link also handles the task of transmitting data

captured by the payload mounted on the aircraft to the ground control station.

2.2.2 Classification of UAV

UAVs are classified into tiers or classes but there is no common term adopted for this
classification. The Air force for an example define tier in terms of their operational altitude
and endurance while the US Army define tier in terms of manufacturing company or
brigade [30]. The Navy and Marines on the other hand have their own way of defining
UAV tier classifications. Since there is no categorization standard, in this thesis UAVs are
placed in a specific tier based on their size, weight, payload, endurance and range as listed

in Table 2.1.
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Tier Weight Endurance Flight Range
(Kg) Altitude | (communication)
(m) (Km)
|
(Micro) 2-5 20-40 min 250 5
(Mini)
25150 40 min — 1hr 150 - 500 10
I
(Close Range) | 150 -250 12 — 14hrs 500 - 2000 125 - 250
Il
(Medium 200 — 250 21hrs >3000 Global
Range)
v
(Long Range) | 1000 -22000 34hrs >15000 Global

2.3 Remote Sensing

An image is a digital representation of an object. Remotely sensed image data is the
acquisition of information about an object from a far distance [31]. Remote sensing of an
object or scene can be achieved by examining radiation reflected or emitted from/by the
object or scene. In practice, aerial imagery, satellite imagery and radar are all products of
remotely sensed data. In order to capture this remotely sensed data, an imaging system is
required. An imaging system comprises of sensors/camera, an imaging platform (airborne

or satellite) and other supporting systems, such as a global positioning system (GPS), an

Table 2.1 UAV Tier Structure

inertial navigation system (INS) and a computer system [31], [32].
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2.3.1 Electromagnetic Spectrum

Remote sensing system both in airborne and satellite platform, usually record
electromagnetic radiation. Electromagnetic radiation is the energy that is transmitted in
form of electric and magnetic waves [33]. Remote sensors consist of detectors that can
record specific wavelengths of the electromagnetic spectrum. The range of electromagnetic
radiation which extends from cosmic waves to radio waves is known as the electromagnetic

spectrum [32], [33].

A portion of the electromagnetic spectrum is been absorbed by different kinds of land
cover, such as rock, water bodies, etc. This leads to giving the electromagnetic radiation a
distinguishable signature [33], [34]. Equipped with the knowledge of which wavelengths
are absorbed and the intensity of the reflection of electromagnetic radiation of certain
features, a remotely sensed image can be analysed and accurate assumptions can be made
about the scene. The electromagnetic spectrum consists of regions, such as near-infrared
and middle-infrared, which is also known as the Short Wave Infrared Region (SWIR), and
the thermal or far infrared region, also known as the Long Wave Infrared Region (LWIR)

[34]. This illustrated in Fig.2.3.
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Fig.2.3 Electromagnetic Spectrum [34].
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When there is an interaction between an electromagnetic radiation and objects, some

wavelengths are absorbed and others reflected.

2.3.2 Remote Sensory System

It is possible to observe the interaction between an electromagnetic wave and a target
material. When an electromagnetic wave strikes a target surface, there are three types of
interaction that can take place, this includes, reflection, transmission and scattering.
However, it is only the reflected radiation that is recorded by the remote sensor [35]. The
remote sensed data comprises of reflectance values which translate into discrete values
(numbers) that is recorded by the sensing device [34] [35]. These values are grey scale
values (0 to 255), which fit within a certain bit range (e.g., 8 bits) depending on the

properties of the sensor.

Sensors can be classified based on their sensitivity to a specific frequency of an
electromagnetic radiation. A sensor that is sensitive to more than one electromagnetic
radiation frequency is known as a multispectral system, this includes, Enhanced Thematic
Mapper Plus (ETM+) [36]. The ETM+ is sensitive to electromagnetic radiation centered on

8 different frequencies.

Generally, multispectral system samples a small number of frequencies over a large
bandwidth. A higher spectral system is the hyperspectral system, which samples a large
number of frequencies over small bandwidths [35], [36]. Remote sensors can be classified

as follows:
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Infrared Sensors: - These are type of remote sensors that sense radiation emitted
by objects in a scene. The amount of radiation is highly connected with the
temperature of the target object [35].

Optical Sensors: - Optical sensors sense radiation at frequencies very close to
human eye sensitivity. It senses the amount of sunlight that is reflected by the target
object through the optical lens of the sensor. The sensor makes use of passive light
from the sun and are therefore called a passive sensor. The optical sensors can only
be used in daytime and can be affected by cloud cover [35], [36].

Radar Sensors: - Radar sensors transmit microwave radiation to the target object
which are then scattered back and stored by the sensor. The most commonly used
radar sensor is the Synthetic Aperture Radar (SAR) [37]. The magnitude of the
backscattered signal from the target object that is illuminated by the radar
corresponds to some factors, such as, the surface roughness of the object, the
electromagnetic properties of the object that was struck by the microwave signals
and the frequency of the radar sensor [36], [37]. The resolution of the radar sensor is
determined by the length of the synthetic aperture. Hence the resolution does not
depend on the distance between the target object and the sensor.

Radar sensors, unlike the optical sensors are not affected by weather and light
conditions. However, SAR images consist of less detailed information and more

noise, compared with optical sensors [37].

20



2.4 Global Positioning System

The global positioning system (GPS) is a space-based navigation system that uses satellite
technology to pinpoint a precise location on the Earth. It does this, by using a minimum of
three different satellites, which transmit radio signals to a receiver on Earth [38], [39]. The
GPS was originally designed for military use, but nowadays, GPS use has extended to
many applications, such as, land survey, automobile navigation, the GPS components in

cell phones can be used to find and locate someone that is lost [38].

The GPS was created by the United States government. They maintain the system and
make it accessible to anyone with a GPS receiver. The GPS system consists of three

segments:

2.4.1 GPS Space Segment

The space segment of the GPS consists of a constellation of satellites, which transmit radio
signal to the GPS receiver on the Earth [30]. The GPS satellites fly at an altitude of
approximately 20,200km in medium Earth orbit (GEQO), and each GPS satellite circles the

Earth two times in a day [39].

The constellation of satellites in the GPS consists of a 24 slot arrangement, in which six
equally-spaced orbital planes surrounds the Earth, with each plane containing four slots for
baseline satellites. This slot arrangement enables the users to view a minimum of four
satellites from any point on the Earth. In June 2011, three of the 24 slots were expanded,

therefore increasing the constellation slot to 27-slots. This lead to improved satellite
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coverage in most parts of the world [38], [39]. Fig.2.4 shows the illustration of slots

arrangement in the GPS satellite constellation.
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Fig.2.4 Slots satellite constellation [38]

2.4.2 GPS Control Segment

The GPS control segment consists of ground facilities. These ground facilities include, a

master control station, monitor stations and the ground antennas [39].

The master control station sends command and control signals to the GPS constellation. It
listens to the satellites to know their health state by checking their signal integrity and

orbital stability.

The monitor stations are responsible for tracking the GPS satellites as they pass overhead
and send their observations back to the master control station. They make use of a

sophisticated GPS receiver and are controlled by the master control station.
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The ground antennas are used for communications between the ground stations and the

GPS satellites for command and control purposes.

2.4.3 GPS User Segment

The user segment consists of the GPS receiver. The GPS receiver reads available satellite
signals to compute the user’s position and time. In order to get an accurate fix position, the
receiver must receive a minimum of three satellite signals simultaneously. The user’s
position refers to the 2D coordinates (latitude and longitude) position on the Earth. Fig.2.5,
illustrates how the position of a user is determined using the signals from different
satellites. The area marked with ‘red x’ is the region at which the user can be located (the

region where the signals of the 3 satellites intercept).

Satellite 1 Satellite 2

Satellite 3

Fig.2.5 User’s Location Computation using 3 Different GPS Satellites Signal [38].
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2.5 Inertial Navigation System

A minimal inertial navigation system (INS) comprises: a computer and a module containing
accelerometers, gyroscopes and other motion sensors [40]. Mostly, the INS is initially
provided with its own position and velocity data from a GPS receiver. Afterwards, it then
computes its own updated position and velocity by integrating information it received from
the motion sensors. Once the INS has been initialized by the GPS or by any other source
(e.g. human), it needs no external references in order to compute its position, velocity or

orientation [41].

Most applications make use of both GPS and INS together by integration of the two for
navigation purposes. The use of GPS with INS has the benefit of GPS signals calibrating
the INS [4]. INS being able to provide position and angle updates at a faster rate than the
GPS, it is able to fill in the gaps between GPS positions in a fast moving vehicle like

missiles and aircraft [40], [41].

Another advantage of combining both the GPS and INS is that GPS may lose its signal, and
during this period of loss of GPS signal, the INS can continue to compute the position and

angle of the aircraft.

GPS/INS is usually used on aircraft for navigation. This allows for stable position and
velocity estimates, which are provided at a sampling rate faster than when a GPS receiver is
used [41]. The combined GPS and INS also allow for precise approximation of the aircraft

attitude (roll, pitch and yaw) angles.
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2.6 Image Acquisition using Digital Camera

Digital cameras consist of an array of CCD (charge-coupled device) sensors. CCD sensors
are widely used in digital cameras and other light sensing equipment [42]. These sensors
are usually arranged in two dimensional arrays. A typical CCD sensor array is
manufactured with a broad range of sensing properties that can be packaged in arrays of

512 x 512 elements or more.

A complete image is captured by focusing the energy pattern onto the surface of the array.
This is illustrated in Fig. 2.6, which shows show the energy from an illumination source is
been reflected from a viewed scene object. After which, the imaging system collects the
reflected signal and focusses it onto its focal plane. Then, the sensory array, which
corresponds to the focal plane, produces outputs which is equivalent to the integral of the
light signals received at each sensor and finally, the output signal received by the sensors
are converted into a video signal, which is then digitized by another process of imaging

discussed in the next section.
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Fig. 2.6 Process of Capturing an Image on CCD Sensory Plane [43].
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2.7 Image Digitization

As mentioned in section 2.6, the output of most sensors is a continuous voltage waveform,
which represents the physical properties of the object or scene being sensed. In order to be
able to analyze this continuous voltage waveform from the imaging sensors, the continuous
waveform needs to be digitalized. This means, we need to convert the continuous sensed
data into digital form. The two processes involved in image digitization are Sampling and

Quantization [42], [43].

In a continuous image x and y coordinates as well as its amplitude need to be sampled in
order to convert it to digital form. The process of digitizing the coordinate values of the
image is known as sampling, while the process of digitizing the amplitude values of the

analog image is known as quantization [43], [44]

Sampling includes choosing a finite number of points within an interval, while quantization
involves assigning an amplitude value that lies within a range of possible finite values to
each of those selected points. The outcome of the digitization process is a rectangular array
of pixels, from image elements whose values correspond to their intensities for
monochrome images or color components for color images. Fig. 2.7 shows the continuous

image projected onto the CCD sensor array and the result of its digitalization.
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Fig. 2.7 Left: Sensed Image and Right: Result of Image Sampling and Quantization [43].

Sampling rate is the number of samples across the height and width of the image. Care
must be taken when choosing a sampling rate during image sampling. Choosing inadequate
values may affect the quality of the image, leading to what is known as aliasing. Aliasing or
under sampling occurs, when the sampling rate is lower is lower than twice the highest
frequency component of the signal [44]. This can lead to not having enough points to

ensure proper reconstruction of the original signal.

2.7.1 Digital Image Representation

A digital image obtained as a result of sampling and quantization of an analogue image or
one that is already in a digital form can be represented by the function of a two-dimensional
array of real numbers [43]. A monochrome image f(x, y) of size M x N implies X in the
function f(x,y) denotes the row number (between 0 and M —1) and Y denotes the

column number (between 0 and N -1) as shown in (2.1).
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The values of a given pixel of coordinates f(x,,Y,)in the image f(x,y)is called the

intensity or gray level of the image at that pixel location.

£(0,0) £0,1) - f(O,N - 1)
f(\ ",) - f(l()) f(l 1) f(l /V i l) @
f(M-1,0) f(M-11) - f(M—1N —1)

The maximum and minimum pixel intensity value varies, depending on the data type. For
example, for double data type the intensity range is between 0.0 (black) and 1.0 (white),
and for unsigned 8 bits integer (unit 8), the range is between 0 (black) and 255 (white) [42],
[43]. The two commonly use format for encoding the contents of a digital image is the
raster (bitmap) and vector image representation formats. The raster representations make
use of two-dimensional array of pixels, while the vector representations use drawing
commands to represent a digital image. The raster representations have an advantage of
high quality graphics and display speed. However, the raster format, occupies a large
amount of memory and enlarging the raster image may lead to artifacts. The vector format
on the other hand, requires less memory and is very robust to resizing and geometric
manipulation without introducing artifacts [43], [44]. Selecting suitable image
representation has to do with the type of application one is working on because both raster

and vector formats have their pros and cons.
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2.7.1.1 Binary Images

Binary images are two-dimensional array of pixels, containing one bit per pixel, where the
pixel value 0 corresponds to black and a pixel value of a 1 corresponds to white. This type
of image representation is suitable for images of very small size, such as graphics, text or
line art [45]. Fig. 2.8, shows, a binary image and its corresponding pixel values in a 6 x 6

neighborhood.

Fig. 2.8 Binary Image with its Corresponding Pixel Values [45]

2.7.1.2 Gray-Level Images

Gray-level images are also known as monochrome images. They are a two-dimensional
array of pixels, containing 8 bits per pixel, where the pixel value of 0 corresponds to black,
while pixel value of 255 corresponds to white and intermediate pixel values correspond to
varying shades of gray. Fig. 2.9 shows, a 6 x 6 grayscale image, where brighter pixels

correspond to larger pixel values.
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Fig. 2.9 Grayscale Image with its Corresponding Pixel Values in a 6 x 6 Neighborhood [45]

2.7.1.3 Color Images

Color images are stored in a RGB representation, where each pixel is represented by a 24
bits number containing the amount of red ®, green (G) and blue (B) components, and an
indexed representation to a two-dimensional array containing indices to a color palette or

lookup table [45], [46]. The indexing of color image and the indices is illustrated in Fig.

2.10.
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Fig. 2.10 An Indexed Color Image with a Pointer to a Color Palette [45].
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2.8 Spatial Domain Filters

The name filter comes from the frequency domain processing. While filtering denotes to
accept (pass) or reject certain frequency components [47]. A low-pass filter for example,
passes low frequencies, this is normally used to blur (smooth an image. A similar
smoothing can be done directly on the image by using spatial filters (also known as kernels,
templates, spatial mask and windows). There is a one-to-one relationship between the linear
spatial filters and filters in the frequency domain, but the spatial filters are more flexible

than the frequency domain filters [47], [48].

A spatial filter consists of a small rectangular window called the neighborhood and a
predefined operation that is performed on the image pixels neighbors [48]. The result of a
filtering operation, is a new pixel with coordinates equal to the coordinates of the pixel at
the center of the neighborhood, which have a new value as a result of the filtering
operation. As the center pixel of the filter visits each pixel in the input image, a filtered

image is generated.

The two major operations in linear spatial filtering are the correlation and convolution
processes [49]. Correlation is the process of moving a window filter over the image and
determining the sum of products at each location. While a convolution process is the same
as the correlation process, except that the filter is first rotated by 180° [45], [46]. The best
way to illustrate the difference between correlation and convolution process is with the aid

of examples, which are given as follows:
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Given an image;

15 20 2 1 17 |
21 6 8 11 14

A=13 4 10 18 22 2.2)
12 14 15 23 5 '

13 16 24 4 7 |

and a correlation kernel;

6 9 4
K=/1 3 5 2.3)
8 7 2

The following steps can be used to determine the output pixel at location (2, 3) in the image

A:

o Slide the center element of the correlation filter, in such a way that it lies on top of
the element at location (2, 3) of A.

e Multiply each weight in the correlation filter by the pixel value of A below it.

e Sum up the individual products from the output of multiplication of filter weights
and the pixel values.

The correlation output of the pixel in location (2, 3) in A is:

(6x20) + (9x2) + (4x1) + (1x6) + (3x8) + (5x11) + (8x4) + (7x10) + (2x18) = 365

The correlation process is also illustrated in Fig. 2.11. Where the colored numbers are the

values of correlation kernel, while the numbers in black are the image pixel values.
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12 | 14 15 23 5

13 | 16 14 4 7

Fig. 2.11 Computation of the (2, 3) Output of Correlation.

The convolution process can also be explained using the same image A and correlation
filter K as illustrated in the example for the correlation process. The convolution process is
similar to the correlation process, the only difference is that the correlation filter is rotated
180° about its center to create a convolution filter. The output pixel using a convolution

filter on pixel at location (2, 3) of A is:
(2x20) + (7x2) + (8x1) + (5x6) + (3x8) + (1x11) + (4x4) + (9x10) + (6x18) = 341

This is also illustrated in Fig. 2.12:
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Fig. 2.12 Computation of the (2, 3) Output of Convolution

2.9 Frequency Domain Filters

Image processing filters that process images in the frequency domain are known as
frequency filters. In this domain, the image is first of all Fourier transformed, then
multiplied with the filter function and then transformed back into the spatial domain (Fig.

2.13).

Fourier
transform

Input image

fxp)

Filter's frequency
response
H(u,v)

Inverse fourier
transform

Output image
&, y)

Fig. 2.13 Frequency domain filtering process
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Filtering in the frequency domain is generally based on the Fourier transform and it has the
advantage of computational speed when compared with spatial domain filtering, especially
when dealing with filters of large sizes. In other words, it is computationally faster to
perform a two 2D Fourier transforms and filter multiplication than to perform a convolution

in the spatial domain [49], [50].

2.9.1 Fourier Transform

The Fourier transform is an image processing tool, which is used to convert an image into
its sine and cosine components. The output of the Fourier transform is the image in the
Fourier or frequency domain while the input image is usually in the spatial domain. Each
point on the image contained in the spatial domain is represented by a particular frequency
in the Fourier domain image. When the Fourier transform is applied to a digital image, it is

known as Discrete Fourier Transform (DFT) [50].

The DFT is a sampled Fourier transform, it only contains a set of frequencies that is large
enough to fully describe the image in the spatial domain, and it does not contain all the
frequencies that form an image. However, the number of frequencies corresponds to the
number of pixels in the spatial domain image. This implies that both images in the spatial

and Fourier domains are of the same size.

Considering a square image of size N x N, the 2D DFT is given by:

N-1IN-1 —i27r(ii+Lj)

x=0y=0
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where f(x,y) is the image in the spatial domain and the exponential term is the basis
function corresponding to each point F(u,v) in the Fourier space. Equation (2.4), can be
interpreted as: the value of each point F(u,v) and can be obtained by multiplying the spatial

image with the corresponding base function and adding the result.

The basis functions are the sine and the cosine waves with their frequencies increasing from

F(0,0), which represents the dc-component of the image that corresponds to average

brightness, and to F(N -1, N -1) which represents the highest frequency.

In a similar way as the forward transform, the Fourier image can also be reverse

transformed to the spatial domain. The inverse Fourier transform is given by:

N—IN-1 272(%X4 1Yy

F(x, Y)—N—ZZF(U v)e "N

u=0v=0 (2.5)

The % normalization term in the inverse transformation is sometimes applied to the

forward transform, instead of the inverse transform, but it cannot be used for both

transformations [50], [51].

In order to obtain the results for (2.4) and (2.5), a double sum needs to be computed for

each image point. Since the Fourier transform can be separated, it can be expressed as:

P =1 TPUYe !

R
N (2.6)
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where,

iX

1 N-1 -2z
PUY) =2 F(xy)e " -

Using (2.6) and (2.7), the spatial domain image is first of all transformed into an
intermediate image using N, one-dimensional Fourier transform. Afterwards, the
intermediate image is transformed into the final image, also using an N one-dimensional
Fourier transform. Stating the two-dimensional Fourier transform in terms of a sequence of
2N one-dimensional transforms reduced the number of required computations [49], [50],

[51].

The one-dimensional DFT, despite the reduction of the number of required computations
still has the N? complexity. But by introduction of the Fast Fourier Transform (FFT) [50],

[51], to compute the one-dimensional DFT, the N® complexity is reduced.

The Fourier transform process produces two image outputs, either the real and imaginary
parts or magnitude and phase. However in image processing, only the magnitude of the
Fourier transform is usually displayed, because it contains most of the geometric
information of the structure of the spatial domain image. Both the magnitude and phase of
the Fourier image need to be preserved for use during inverse transformation of the Fourier

image into the spatial domain [51].
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2.10 Image Mosaicking

Image mosaicking is the process of merging two or more images of a scene to obtain a
wider field-of-view of the scene. It is frequently used for remotely sensed images, to
provide a wider view of an entire geographical area, when sensors are not able to capture
the entire scene at one time [52], [53]. Image mosaicking involves four steps of image

processing: registration, projection, stitching and blending.

Registration involves the establishment of geometric correspondence between a pair of
images showing the same scene [53]. In order to register a set of images, the geometric
transformations, which align the images with respect to a reference image within that set
that must be estimated. This set of images may include, two or more images of the same
scene taken at different times, from different viewing positions, and/or by different sensors.
The above-mentioned correspondence between images during image registration can be
established either by matching templates between images or by matching features extracted

from images [53], [54].

The next step after the registration process is the re-projection step. The re-projection
process involves, the alignment of the images into the same coordinate system using the

computed geometric transformations.

After the re-projection step, is the stitching step, where the aligned images are joined
together to form a larger image. This is done by merging pixel values of the overlapping

areas and retaining pixels where no overlap takes place.

The final step in the image mosaicking process is the blending step. Errors caused due to

misalignment, which often results in undesirable object discontinuities are usually visible at
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the boundary between the two images during stitching process. Hence, at the blending step,
a blending algorithm is used during or after the stitching of images to reduce the
discontinuities in the final appearance of the mosaic image. Fig. 2.14, illustrate the four

steps involved in image mosaicking.

Registration

HO1 ~a H12 -

Reprojection

Stitching

Blending

Fig. 2.14 Processes of Image Mosaicking [53].

In order to solve the problems of multiple color bands during the formation of mosaic
image, the RGB images are first converted to grayscale before transformation parameters
are obtained. However, all the color bands are processed and combined together at the re-
projection stage to produce a color mosaic [54]. A detailed literature on image mosaicking

can be found in [52], [53], [54] and [55].
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2.11 Chapter Summary

This chapter presents the required background knowledge of digital image processing and
also acts as a perquisite for topics in the remaining chapters of the thesis. The chapter
consists of an overview of: UAV system, remote sensing system, global position system,
inertial navigation system, camera and imaging system, spatial and frequency domain

filters and image mosaicking.
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CHAPTER THREE

State-of-Art for Image Matching and

Object Detection
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3.1 Introduction

Image matching aims at matching two images to establish a degree of similarity between
them. Image matching is an approach to object detection and it forms one of the major tasks
in photogrammetry and computer vision, whose applications include, point transfer in
relative orientation and image sequences or bundle blocks adjustment [56], which involves
many points being transferred. Image matching, rather than feature points only, can also be
applied to lines or segment transfer between images. Other applications of image matching
are object and scene recognition, motion tracking, and texture classification [57], [58].
Image matching is a very rigorous task because of images taken under different lighting
conditions, as well as image deformations and occlusions caused by different a view point
of the imaging system. The process of making the pixels on one image to geometrically
match with the pixels on another image, with both images corresponding to the same

physical region of the scene being imaged is known as image matching [59].

Based on the aforementioned definition of image matching by Dai and Lu [59], it can be
seen that image matching problems can be solved by applying the affine (i.e., translation,
rotation and scaling) transformation, to one of the images in order to draw similarity with
the other image as much as possible. This becomes very difficult to achieve due to the
nature of the three dimensional world and more importantly because images could be taken

under different lighting conditions and from different viewing points.

The common image matching methods can be divided into two major categories: the

Feature based and Area based matching techniques [60], [61].
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3.2 Feature Based Matching Techniques

Feature based matching techniques are usually applied when the information obtained from

the local structure of the image is more important than the information obtained from the

image intensities.

In feature based techniques, features in the referenced image are tested with the features of

the sensed image. These features can be points, lines or regions [61]. However, in this

research, point based features are used for image matching. The search for distinct image

points in matching images can be divided into three major stages:

Interest Points Selection: This is the first step of computational search, in which
interest points are selected on locations on the image where there can be
repeatability of the points. This means points found on a location in the image,
where the points remain unchanged, when viewed under different camera positions.
Such points are mostly found at locations, such as corners, T-junction and blobs.
Descriptor Vector: At this stage, very interest point is represented by a descriptor
vector. This descriptor must be unique and invariant to geometric and image
deformations.

Description Matching: This is the final stage, in which the descriptor vectors are
matched between nearest images based on the Euclidean distance between their
vectors. Matching time between descriptors depend on the dimension of the
descriptor vector, smaller dimension descriptor vector takes less time for interest
points matching compared with descriptor vector with a larger dimension. However,
a small size dimension descriptor vector produces less distinct interest points than

large dimension descriptor vectors.

43



3.2.1 Harris Corner Detection

The earliest use of feature based matching techniques can be found in the work of Moravec
[62] in 1981, in which stereo matching was done using a corner detector. Chris Harris and
Mike Stephens [63], improve on the work of Moravec by making their work more
repeatable under minor image alterations and close to the edges. This was shown in 1988 in
their paper, “A combined Corner and Edge Detector”, which is today known as Harris

Corner Detector. They expressed their idea in a mathematical form as:

D(u,v) = XZ))/W(X, Y)[| (X+U,y+Vv)—I(Xx, y)]2 (3.1)

where:
D = the difference between the tested window and the window that was shifted.
u = the window’s shift along x-direction.
v = the window’s shift along y-direction.

w(X, y) = the window’s location at (x, y). This ensures that merely the required window
is allowed. The window function w(x, y) acts like a mask and can either be a

rectangular window or Gaussian window.
I(X, y) = the intensity of the original window.

I(x+u, y+v) = the intensity of the shifted window.
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For Corner Detection, we need to look for a window that gives large value for D(u, v). This
means, we have to maximize the value in the square bracket in (3.1), which is the second

term in the equation.

Thus, we maximize the term:

SHx+u,y+v)—1(x, y)f

<y (3.2)

We then, expand (3.2) using Taylor series, this gives:

D(u,V)zZD (X, y)+ul +vl, —1(X, y)]2 (3.3)

Expanding the square in (3.3), we have:
212 212
D(u,v) = 2u’l; +2uM +V7I| (3.4)

(3.4) in matrix form becomes:

I, LI, (u
Du,v)=fu v] x| ** Xy{}
L, | (35)
Hence,
D) ~[u vN|"
! v (3.6)
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where,

XX ley

Il 3.7)

IXIY y'y

N=¥

After D(u, v) is obtained, a score was created to help decide if a window contained a corner

or not. Hence a score S was calculated for each window as:
S =det(N) —x(trace(N))* 3.9)
where:
det(N) =44, .
trace(N) =4, + 4, .
Ay and 2, = the Eigen values of N.
The value of these Eigen ( A, and A,) determines whether a region is flat, edge or a corner.

e If S has a small value, which implies the values of A, and A, are also small, then,

the image area is referred to as “Flat”.

e |If the value of S is less than zero, which implies that either A>2, or > A,

then area is an “Edge”.

e If the value of S is large, which implies that the values of both Ay and A, are also

large, then the area is referred to as a “Corner”.
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The above conditions are represented in Fig.3.1. With a suitable threshold, the outcome of
Harris Corner Detector is a grayscale image that fulfilled the aforementioned score.
Although feature detectors are generally referred to as corner detector, they are not based
on corner picking only but rather finding image position with large gradients in all

directions at a fixed scale [63], [64].

Early applications of the Harris corner detector were in stereoscopic and short range motion
tracking. But later in the year 1995, Torr [65] used Harris corner for long-range motion

matching, where geometric control were used on firm objects moving within an image.

A

Fig.3.1. Conditions for Harris Corner Detector [64].

Two years later, Schmid and Mohr [66], solved image object detection problems by
matching a test feature against a database of images. In their work, interest points were

picked using a Harris corner detector and a descriptor vector was used instead of a
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correlation window for image matching. This descriptor is distinct and invariant to rotation.
This means, features matching is not affected by the change in orientation between

matching images.

The Harris corner detector is not invariant to scale. Hence it does not yield accurate results

if the matching images are not of the same sizes [65], [66].

3.2.2 Scale Invariance Feature Transform (SIFT)

In the last section, we saw that Harris Corner Detector is rotationally invariant but not scale
invariant. This means, if the image is rotated, the same corner in the image can be found,
this is obvious because a corner remains unchanged even if the image is rotated. However,
a corner no more remains a corner if the scale of the image is changed. For example, a
corner containing a small window becomes flat when zoomed in the same window. To
solve the problem of scale invariance, David Lowe [67], in 1999 developed an algorithm
known as Scale Invariance Feature Transform (SIFT), in which keypoints were extracted
from images and are used to compute its descriptors. When the SIFT algorithm is used for

image matching and object detection six processes involved are:

3.2.2.1 Scale Space Construction

The first process in the SIFT algorithm is to detect keypoints by identifying locations and
scales that are invariant to scale change of the image and this is followed by searching for
distinct features across all likely scales, by means of a continuous function of scale known

as Scale Space.
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Scale space can be constructed by taking the original image and generating a progressively
blurred out images. Afterwards, the original image is resized to half its original size. Then,
blurred out images are generated from it again. This process is repeated for each octave. As
shown in Fig.3.2, images of the same size arrange vertically to form an octave, while
images within the same octave are increasingly blurred from the top image to the bottom
image. The number of octaves and blur levels used to construct a scale space depends on
the size of the image. In Fig.3.3, for example, the scale space consists of three octaves and

five blur levels.

Third Octave

Second Octave

— First Octave

Fig.3.2. Octaves in Scale Space Construction [68].
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Blurring referred to as the mathematical convolution of Gaussian’s variable scale

G(x,Y,0) , with an input image 1(x, y) . This can be expressed as:

L(X,Yy,0) =G(X, Yy, 8)*1(Xx,y) (3.9)
where:

e L isthe blurred image

e G is the Gaussian function

e |listheimage

e X, Y are the image position coordinates

e 5 is the amount of blur, also known as scale parameter. The higher the value of &
the higher the blur.

e *is the convolution operation in x and y, and

1 (2 2
G(x,y,6) = 152 exp{ "+ y%y} (3.10)

In image blurring, a constant k is chosen, such that if the amount of blur in a particular
image is 5, then, the amount of blur in the next image within an octave is k multiplied by &

(i.e., k&). Lowe [46], in his algorithm suggested a value of 2 for the constant k.
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3.2.2.2 Difference of Gaussian Approximations (DoG)

In the previous section, a scale space was constructed by progressively blurring the original
image, reducing the image size, blur the reduced image progressively and the process is
repeated for each octave. The octaves formed from the scale space are then used to generate
the Difference of Gaussian (DoG), in which adjacent images within an octave are
subtracted from one another. This difference of Gaussian, which is equivalent to the
Laplacian of Gaussian (LoG) was proposed by Lowe, to solve the problem of intensive
computation involved in calculating Laplacian of Gaussian which contains second order
derivatives that are very sensitive to noise.

The difference of Gaussian function when convolved with an image, M(x,y,8) which is
obtained from the difference between two adjacent scales separated by a constant k, can be

expressed as:

M(x,y,6) = (G(x, y,kd) =G(x, y,6) * (X, y)

= L(X, y,ko)-L(x, y,0) (3.11)

The DoG produces images that are an approximation of a Laplacian of Gaussian and is very

effective in detecting stable key points in scale space. The DoG is illustrated in Fig 3.3.
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(first
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Difference of
Gaussian Gaussian (DOG)

Fig.3.3. Adjacent Gaussian images are subtracted to generate DoG [67].

3.2.2.3 Finding Keypoints on the Image
After the construction of the scale space and determination of the DoG. The next step is to

find the keypoints in the image. Finding keypoints in an image consists of three processes:

(@) Location of Maxima and Minima in DoG Images:
The process here is to locate coarsely the maxima and minima in the DoG images. This is
done by iterating through each pixel and checking the entire pixel in its neighbourhood. As

illustrated in Fig.3.4, the checks are done within the pixels surrounding the sample pixel.
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Fig.3.4 Checks for Maxima/Minima in DoG Images [67]

The sample pixel is denoted by X while the neighbouring pixels are denoted with green
circles. X is chosen as keypoint if it has the largest value when compared with all its 26
neighbours. Note that, during the checks for maxima and minima, the lowermost and
topmost scales are discarded because the region does not have enough neighbours to do the
comparison. Hence, keypoints sample are not used in the lowermost and topmost region of
the image.

All points marked as maxima or minima are actually the approximate maxima and minima
because points found as maxima or minima lies somewhere in between the pixel not exactly
on the pixel. Since data between pixels cannot be accessed, a mathematical model is used to

find the subpixel location.
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(b) Location of Maxima and Minima in Subpixel:
Once a candidate keypoint has been found by comparing a pixel to its neighbours, the next
step is to localize keypoint by generating the subpixel values using a Taylor’s expansion oOf

the pixel surrounding the approximate keypoint.

The Taylor’s expansion [69], of the scale space function, D(X, Y, d) is given by:

T 2
D(x) = D+ 10D
X 2 &

X (3.12)

The subpixel keypoint location X , can be determined by differentiating (3.12) and equating

it to zero, given as:

X= 52 ox (3.13)

[67] and [69], suggested generating two extrema images, which means four DoG images

are needed to achieve this, hence, five level of blurs are needed in each octave.

(c) Removing Subpixel Keypoints with Low Contrast and the Ones Lying on the
Edges:

Most of the keypoints generated in the last section lie along the edge or have low contrast.
Keypoints found in both cases are not good as features and need to be removed.

In order to remove and check for the contrast value of a subpixel keypoint, Taylor’s

expansion is again employed. Here, the function value of the subpixel keypoint, D(X) is
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used discarding subpixel keypoints with low contrast, if its intensity value is less than a
user’s specified threshold.

The function D(X) can be obtained by substituting (3.13) in (3.12) and given as:

5 1D7
D(X) = D+EWX (3.14)

To remove keypoints that lie along the edge of the image of DoG in a subpixel, an approach
similar to the Harris corner detector method for removing edge features is used. The idea
here is to calculate two gradients at the subpixel keypoint location that are perpendicular to
each other. The Hessian matrix [69], is used for this purpose. Hence, the Hessian matrix is
used to check weather a keypoint is a corner or not. The Hessian matrix H can be computed

at the location and scale of the keypoint as:

Dxx ny
H=15 D (3.15)

By making « to be the bigger eigenvalue and g to be the smaller eigenvalue, then, the
sum of the two eigenvalues («+ ) can be computed from the trace of H and their products

(ap) from the determinant of H:

T.(H)=D,, +Dy,, =a+p (3.16)

Det(H)=D,D,, —(D,,)* =af (3.17)
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If r is the ratio between the two eigenvalues (r =«a/£), then a=rp and thus,

T, (H)® _ (a+p)° _(rB+p) _ (r+1?
Det(H) af ik r

(3.18)

Based on the pixel surrounding the keypoint, the following conditions can exist:
e Flat, if the two gradients have small values
e Anedge, if one gradient is greater than the other.
e A corner, if the two gradients have large values.
The corner consists the most stable keypoints. Hence, if the two gradients value are big

enough it will be accepted as a keypoint, otherwise it will be rejected.

3.2.2.4 Keypoint Orientations

In the previous sections, scale invariance and stable keypoints were generated. Next is to

assign orientations to each of the keypoints, in order to make it rotation invariant.

Orientation can be assigned to each keypoint by checking the gradient magnitudes and
directions of each pixel surrounding each keypoint. Then the most noticeable orientation in
that area is selected and this orientation is then assigned to the keypoint. Any other
calculations are done with respect to this orientation. Hence, for an image sample, L(x, y)
the gradient magnitude, m(x, y)and the orientation, &(x,y) is computed using the pixel

differences, which is given as:
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m(x, ¥) = (L(x+1 y) - L(x=1y))? +(L(x, y +1)— L(x, y~1))

(3.19)

(x, y) =tan 7 (LY +D) = 1(X,Y =1)/L(x+1 y) - L(x =1 y))) (3.20)

Once the gradient magnitude and orientation are determined for all pixels surrounding the
keypoints, then an orientation histogram is created. The histogram created consists of 360
degrees orientation which is broken into 36 bins (i.e., each is 10 degrees). Each sample of

the gradient magnitude and the window size of orientation collection area that is added to

the histogram is blurred by the amount of O that is 1.5 times the scale of the keypoint [69].

For example, if the gradient direction at a certain point in the orientation collection region

is 13.645 degrees, then, this will go into the 10-19 degree bin as shown in Fig.3.5.
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Fig.3.5.0rientation Histogram [68].
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The highest peak in the histogram is at 20-29 degrees. Hence the keypoint is assigned
orientation 3 in the third bin. Any other local peak that is within the range of 80% of the
highest peak is used to create a new keypoint with that orientation. This means for location
with many peaks of the same magnitude, multiple keypoints will be created at the same

location and scale but with different orientations.

3.2.2.5 Feature Vector Generation

In the previous section, a stable, scale and rotation invariance keypoint is generated. The
next step of SIFT algorithm process is to create a unique identity for each keypoint. For
example, if an eye is a keypoint, a unique identifier that is created for the eye keypoint, will
be to distinguish it from other identifier keypoints, such as ears, mouth, noses and so on.

In order to create this unique identifier for a keypoint, a 16 x 16 window is created around
the keypoint location. Then the 16 x 16 window is broken into sixteen 4 x4 windows as

shown in Fig.3.6.
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Fig.3.6 (a) 16 x16 Window Broken into (b) Sixteen 4 x 4 Window [68].
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Within each 4 x 4 window, the pixel gradient magnitudes and orientations are calculated
and the obtained orientations are then put into an 8 bin histogram. This is illustrated in
Fig.3.7.

Added to the first bin of the histogram is any gradient orientation that falls in the 0 — 44
degrees, and the second bin consists of gradient orientation in the range 45 — 89 and so on.
The magnitude of the gradient and its distance to the keypoints determines the amount
added to the bin. This means, pixel gradient that is far away from the keypoint location will

add smaller values to the histogram.

A

(@) (b)

Fig.3.7. (@) Precomputed Gradients and (b) 8 Bin Histogram [68].

This is done with the aid of the Gaussian weighting function. The gradient generated by the
Gaussian weighting function is multiplied by the magnitude of the orientation to get the
weight of the magnitude. The further the gradient orientation to the keypoint location the

lowerr the magnitude.
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The gradient magnitudes and orientations are calculated for the 16 pixels as explained
above and placed into 8 predetermined bins. This is done for all the sixteen 4 x 4 regions
and this ends up with 128 numbers (i.e., 4*4*8 = 128). Once these 128 numbers are
obtained, they are normalized and hence they form the feature vector. This feature vector is
a unique keypoint identifier.

Once the feature vector is determined, it is further modified to reduce the effects of rotation

and illumination change. The effect of these changes can be eliminated as follows:

e Rotation Change: Since the feature vector uses gradient orientation, if the image is
rotated, all gradient orientation will change. To solve this problem of rotation
variance, the angle at which the keypoint is rotated is subtracted from each
keypoint’s gradient orientation. Hence, each gradient orientation is relative to the
keypoint’s rotation [50].

e Illumination change: lllumination invariance can be achieved by the threshold of
the value of each element of the feature vector to 0.2 and normalizing the resultant

feature vector [68], [69].

3.2.2.6 Keypoint Feature Vector Matching

After the generation of stable keypoint descriptor (feature vector), this can be used for

matching stereoscopic images, as well as object recognition.

For matching of two images, the SIFT feature vector are first extracted from each image as
explained in previous sections and similar features are used to match the two images

together in a process known as image mosaicking.
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For image recognition, SIFT features are extracted from a referenced image and stored on a
database. A test image to be detected has its SIFT features compared with each of the
features stored in the database, in order to find a candidate match feature based on the

Euclidean distance between their feature vectors.

A lot of algorithms has been used for the computational matching in the database. Among

them are the Nearest-neighbour, Best-Bin-First, and Hough Transform algorithm [68].

Lowe [69], in his experiment, concluded that the Hough transform algorithm is the most

efficient, especially in matching that involves cluttered images.

In clutter image, a lot of features from the background may not form a match with the
features in the database, giving rise to false matches mixing with the correct matches.
Hence, the correct features need to be removed from the set of matches. The filtering of
correct features from a set of both false and correct features is done with the use of hash

table in the implementation of Hough transform.

Each of the correct features (minimum of 3) that agree on an object and its pose is then
subject to more thorough confirmation by a least squares estimate for the approximation of
the object pose. Any other image keypoint vectors that are stable with this pose are identify.

Image keypoint vectors that pass all these tests are identified as correct features.

3.2.3 Speed-Up Robust Feature (SURF)

The Speed-Up Robust Feature (SURF) uses the same principle and processing steps as the
SIFT algorithm but it utilizes a different scheme. The SURF algorithm was introduced by

Bay, H et al [70], in their paper “SURF: Speeded up Robust Features” in 2006. As the
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name suggests, it is a speeded up version of the SIFT algorithm which consists of the

following processing stages:
3.2.3.1 Interest Point Detector

In order to detect interest points on the image, the SURF algorithm uses a Hessian matrix
because of its fast computational time and accuracy. Rather than selecting the location and
scale using different measures, the algorithm relies on the determinant of the Hessian

matrix for selecting location and scale. For a point X =(x,y), in an image |, the Hessian

matrix H(x,8)in X atscale O is given as:

H (%, ) = {Lxx(x, 8) Ly (x 5)}

ny (Xa 5) Lyy (X, 5) (3.21)

2

o
where L, (x, ) is the convolution of the Gaussian second order derivative " g(3) with

the image | at point x.

Similarly, L, (x,8)and L,,(x, ) are given as:

52

Ly (x,8)=1(0*— ; g(9) (3.22a)
52

L, (x,6)=1 (X)*? 9(9) (3.22b)
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[70] and [71], show in their findings that the Gaussians are optimal for scale-space analysis.
The convolutions is approximated and speed-up by using approximated kernels and integral

images.

Integral images are two-dimensional lookup tables in the form of a matrix having the same
size as the original image [71]. The sum of all pixels at the upper left area of the original
image is contained in each element of an integral image with respect to the element’s
position. This enables the computation of the sum of rectangular areas in the image, at any

scale or position with the aid of only four lookups:
1(x)=>(A+C-B-D) (3.23)

Where points A, B, C, and D, are elements of the integral image I, as shown in Fig.3.8.

z=(A+C—B—D)

Fig.3.8. Finding the Sum of Shaded Area on an Integral Image.
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52
In practise, the second order derivative Gaussian Kernels —— 9(J) that was used for the

&/2
Hessian matrix must be discretized and cropped before applying them to a kernel.
Afterwards, the kernel is approximated with a rectangular box filters. This is illustrated in
Fig.3.9, where grey areas are denoted as O in the kernel, white areas are denoted as positive

and black areas as negative.

N N 0

(@) (b)

Fig.3.9 (a) Discretized Gaussians (b) D,, and D,, Approximations [70]

In this way, the approximated convolution is effectively calculated for a randomly sized

kernel making use of the integral image.

The approximated convolution for a randomly sized kernel, making use of the integral

image can be calculated by:

Det (H.pp0x) = DDy — (WD,,)? (3.24),

where the approximations for discretized Gaussians L,,(x,d)and L, (X, ) are denoted by
D,, and D,, respectively.
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[69], shows in his paper that the lowest scale that can be processed by a SURF algorithm

correspond to a O value of 1.2. When calculating the determinant of the Hessian matrix,

using the approximated kernels, it needs to be weighted (wD,,), as shown in (3.24). The

term w is known to be theoretically sensitive to scale but can be kept constant by assigning

a value of 0.9 to it. Hence, the equation (3.25) becomes:

Det (H o) = DDy, — (0.9D,,)’ (3:25)

approx

In SURF, scale space are normally implemented as image pyramids. The images are
repeatedly blurred with Gaussian kernels and subsequently sub-sampled in order to achieve
a higher level of the pyramid. Features are detected across scales by examine many octaves
and blur levels. Unlike the SIFT algorithm, where the image scales are progressively
reduced and larger Gaussians Kernels are used. The SURF algorithm, is analysed by up-
scaling the Gaussian kernels rather than reducing the image scale. This comparison is

illustrated in Fig.3.10.

Scale
-

Scale

(b) @

Fig 3.10 (a) SIFT: Image Size Progressively Reduced (b) SURF: Up-Scaling Gaussian Kernels
Instead of Reducing Image [70]
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A non-maximum suppression in a 3x3x3 neighbour is used to localise interest points in the
image and over the scales. Then with the method proposed by Brown et al [57], the maxima

of the Hessian matrix’s determinant can be interpolated in the scale and image space.

3.2.3.2 SURF Descriptor

The purpose of a descriptor is to offer a unique and strong description of an image feature
based on the pixels that surround the interest point. A descriptor must be computed for each

interest point found in the image.
(@) Orientation Assignment to Interest Point

The SURF algorithm is very robust to rotations, an upright version of the SURF referred to

as U-SURF is very robust to rotations within the range of +15°, without having to perform

orientation assignment [70], [71].

In order to make the interest point rotation invariant, the Haar wavelet response in the x and
y direction, which lies within the pixels in a circular neighbourhood of a user’s defined
radius around the interest point is computed. The Gaussian function centred at the sample
point within a circular neighbourhood of the interest point is used to weigh the obtained

Haar wavelet response (Fig.3.11), and the dominant orientation is detected by a sliding

window of size V4 (Fig.3.12).
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(a) (b)

Fig.3.11 (a) Haar Wavelet Filters to Compute Responses in x Direction (b) and y Direction. Black

Side have Weight -1 and the White Side +1 [70].

dy

Fig.3.12 A Sliding Orientation Window Size 1% Detects the Dominant Orientation [70]

Both the vertical (dy) and horizontal (dx) responses within a window are summed up. Then,

the orientation of the interest point is defined by the longest vector over all windows.
(b) Descriptor Based on the Summation of Haar Wavelet Responses
The region around the interest point is described by a square region within an interest area

of window size of 20S (where S is the scale of the interest point at the point of detection).
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The interest region is divided into 4 x 4 smaller sub-regions (Fig.3.13), as described by dx

and dy wavelet response.

Fig.3.13 4 x 4 Square Sub-region is laid on the Interest Point on the Left [70].

For each sub-region a feature vector v is calculated based on 5 x 5 regular space sample

points, using (3.26):

v=[Xdx, X|dx, >dy,>|dy[] (3.26)

To offer more robustness for noise, translation and deformation, the wavelet responses are

weighted with a Gaussian.

3.2.3.3 SURF Feature Matching

Matching of features for object recognition and image matching with SURF algorithm uses
the same principle as the SIFT algorithm. However, the use of integral image makes the

computation of SURF faster than that of SIFT algorithm.
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Also the vector size of SURF being smaller than that of SIFT, makes the SURF image
matching operation faster. However, the SIFT has higher matching accuracy than SURF

because the SIFT produces more feature points than SURF.

3.3 Area Based Image Matching

Area based matching techniques; unlike the feature based techniques make use of grey
values as its matching entities. Grey values of neighbouring pixels are used rather than one
pixel because of the uncertainty in matching one pixel. An image patch cut from one image
known as the template, is used to search for a corresponding image patch in a sampled
image. The template consists of m x n pixels and in most cases the m and n are equal, and

are odd numbers.

In order to identify the matching area, the window template is compared with the sample
image by sliding it from left to right, then, from up to down of the sample image. At each
location of the template window in the sample image, a grey value is calculated and the

location with the highest grey value is chosen as the highest matches.

The bigger the template, the more the requirement of matching entity is achieved. However,
the geometric distortion caused by imaging instruments and change in orientation of images
can affect image matching using big templates [72], [73]. For example, in sloppy areas the
matching image patches are not geometrically identical. To solve this type of problem, the
size of the template has to be small or its shape modified by geometric distortion (such as a
trapezoid window). This approach is mostly applied in photogrammetry in the generation of

a Digital Elevation model (DEM) [73].
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One of the major tasks in image matching is avoidance of mismatches. In order to avoid
outliers in area based image matching techniques, a threshold is set for similarity measures.
Apart from the setting of a threshold for similarity check, geometric constraint and robust
adjustment method are used for further computation to eliminate wrong matches. In area

based matching, Correlation or Least Square methods are used for image matching.

3.3.1 Correlation Image Matching Techniques

Correlation matching techniques tends to find the similarity between two images by
matching a patch of pixels in the first image, known as the template, and sliding it through
the second image and by calculating and comparing the grey values at each area in the

search image, the location with the highest value is selected as the best match. Thus, the

normalised cross-correlation between a template image (9+ (X, Y;))and a search image

patch (95 (X5, Ys)) , centred at the points (XT1 ' Y, ) and (Xsl’ ysl) respectively, is given as:

k

i _ _
Z_ Zk[gT (XT1 +vaTl +n)_gT]_[gs(Xsl "'m’ys1 +n)_gs]

m=—j n=—

p:

> 3 [0 (6, +My; +M) =GP 2 3 [0s (% +M,Ys +1)—Fs

m=—j n=—k m=-—j n=—k

(3.26)

where:

N, =2j+1 and n, =2k +1 are the sizes of the template image, while
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>3 [0y (g, +m, Yy + )]

— m=—j n=-kK

dr = n,-n, (3.27a)

j

and,

j k
B m;_j n:Z_k[gs (Xs, + M,y +n)]

05 =

n, -n, (3.27b)

are the average grey values in the template image and the search window of the right

(sampled) image respectively. This technique is realised by comparing the average grey
value in the template image to all N;x n, pixels of a search window in the sample image.

This comparison assigns a correlation coefficient value o(Xs ,Ys) to each location

(Xs,+Ys,) within the sample image search window. Using interpolation, the location of the

template image, centred at a point in the search window of a sampled image where
maximum value of the correlation coefficient is found, is selected as a match, provided that
this maximum value of correlation coefficient does not exceed a certain predefied

threshold.

To compute the coordinate of the pixel, where the maximum correlation function

P(Xs,Ys) is located, an estimate using second order polynomials in the Xs and Y

directions is used:

2
p(Xs) =a, +a,Xg +a,Xg (3.284)
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p(Ys) =0y +bys + bzyg (3.28h)

Then, the coordinates are determined as:

St
Sm 2a, (3.29a)
v oD

o 2b, (3.29)

Other correlation matching approaches as proposed in [74] and [75] try to match the
template window with the search window of a sampled image, by minimizing their
differences. This is expressed by the normalized spatial root mean square deviation, given

as:

LI ZH@AX+myT+m 07 )] - (95 (%, +m,ys, +0) -G )II

NN, m=—jn=-k
(3.30)

Or by normalizing the absolute difference of the two windows, given as:

%=—ZHM&WWWQJMUW%MQJ

NN, m=-jn=-
(3.31)
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The methods used in (3.30) and (3.31) are similar to the correlation coefficient method, the
only difference here is that the window search aims in finding a local minima instead of

local maxima.

3.3.2 Least Squares Method

Correlation coefficient method is very fast and efficient, if the images involved in the
matching have the same geometric and radiometric properties. However, images that
exhibit such conditions are very rare, especially when aerial images are involved, due to a
lot of geometric distortions found in aerial images. This geometric distortion in aerial
images may include, imaging sensor, change in height of the aerial platform, terrain slope,
position and attitude differences. Illumination and reflectance conditions can also cause an

image to be radio-metrically distorted.

In order to solve the matching problem caused by images that are geometrically and radio-
metrically distorted, a Least Squares matching technique is employed. The least squares
technique attempt to solve the problem of geometric and radio-metric distortion in a search
image by minimizing the differences in the grey values between the template and search
image window in an adjustment where corrections were made to the geometric and radio-

metric distortion of the search image [75], [76].

Using a stereo pair of images as an example, if the left image L;(X,y) is made the

template and the image on the right Rg(X,y) as the sampled image. Then, ideally the

correlation is established if;

73



L+ (X, ¥) =Rs (X, Y) (3.32)

However, the presence of noise in both images or noise in only the search image, makes

(3.32) unreliable. Hence, a noise vector is added, then (3.32) becomes:

L (X, y)—4(X,y) =Rs (X, y) (3.33)

! is a noise vector caused by a geometric and radio-metric distortion to the images, in an

ideal situation as in (3.32), the £ =0,

In order to find the match point, the position of the function values Rg(x,y) must be

determined. This is done by minimizing a function which measures the differences in grey
values between the template image and the search image. The goal is to determine the

geometric and radio-metric transformation parameters of the search window, such that
vector ¢ is minimized. The least squares equation in (3.33) is a non-linear adjustment
problem, this needs to be linearized and the location of the template is estimated.

The template location in the search image is described by a shift parameters (Ax,Ay) with
respect to an initial position of R(X,y) and the estimation of the corresponding window

((X,Y) in the search image areaR°(X,y). Apart from the shift parameters, the image

shaping parameters and radiometric corrections must be introduced, in order to account for

distortions caused by systematic image deformations [76].
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If for example, L;(X;,y;) is the template of n, x n, pixels in the left image and

Re(xg,ys) is the equal size estimation of the template location in the right image, the goal
Is to estimate a new location for the search image window in the right image Rq(Xs,Ys),

such that, the difference in the grey values will be minimized in a least squares approach.

The estimation is achieved through a perspective transformation of the coordinates
R°(x2,ye) and resampling of the corresponding grey values. The geometrical

transformation relates the two image patches by a bivariate polynomial given by:

T
XS = 1:y Aatx (3.34a)

T
s =t,Bpt, (3.34b)
where:

tr =[L X, X5,.. X0 ]

ty =[L Yo, V5. ¥ ']
(A,, B,) = the unknown m x m parameter matrix

(Xo: Yo) = the grid location of the sample image points of R°(x, y)

With respect to very small size of the templates to be matched, the bivariate polynomial is

usually substituted with a 6-parameters affine transformation:
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a, ap |1
Xs = [1 yo{a ' Oﬂ{x } =8y TapX T8y Yy (3.35a)
21 0

and,

bll b12 1
ys =[1 yo{bﬂ 0 x| by +D04, %) +b51 Y4 (3.35)

The function Rg(X,y) in (3.33) need to be linearized, in order to operate with the

traditional least squares approach, while the transformation parameters in (3.35) need to be

estimated. Hence,

AR (X, RO (X,
L=t ) =Ry + B D e BN gy
where:
X
dx = —dp,
p;
X
dy = —dp,
ot

P; = ith transformation parameter in (3.34)

Differentiating (3.35) gives,

dx =da,, + Xx,da,, +Yy,da,, (3.37a)

dy =db,, + x,db,, + y,db,, (3.37b)
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From (3.36) and (3.37), with the addition of the shift parameter (r), results into the

following observation equations:

L (% y) = £(x,y) =
RY(x,y)+R,day, +R,X,da, + R, y,da, + R dby, +R x,dby, + R, yedby, +,

(3.38)
where:
R2(x,y) RO (X,
R, =—< ,and Ry :—( y)
X oy

The unknown vector X becomes:

X' = [da,,,da,,,da,,,db,,,db;,,db,,,rs] (3.39)

For every pair of pixels from the left template image L; (X,Y) and the right search image

window Rg (X, Y) , one observation equation is formed.

In matrix form, we have,
(X, y)=AX -L (3.40)
where each element of the vector L is in the form:

L=L; (X, y7)—RI(XS, ¥e) (341

77



And each row of matrix A, is:

A= [RsX , RsX XLy, RsX yL:, Rsy ' Rsy XLy, Rsy yL;] (3.42)
Thus, the least squares solution vector is:
X = (ATPA) T ATPL (3.43)

where P is the weight matrix, which is usually a diagonal or identity matrix.
The parameters obtained through the least squares solution are used in updating the
coordinates of the template image and to resample grey values, as a new right image

window Rg (X$,Ys) is selected as a match of a fixed left image template L (X7, Y1) .

This means, each pixel (Xs, Ys) of this new window corresponds to a pixel (X, , Y., ) of

the template according to the following transformation:
' 0 0 0
Xps = (a;; +day,;) + (a, +dag, )X, (ay; +day;) Yy (3.44a)

y;zs = (b, +dby,) + (by, +dby, )xL; (b3 +dby)yl, (3.44b)

The final solution obtained through iterations does not completely remove the difference
between the template window and its conjugate in the search image. This is because minor
differences can be introduced by terrain slope, and change in camera orientation. The least
squares approach tries to minimized these differences, which cannot be completely
eliminated. The highest possible pixel coordinate difference between the initial estimation

and the absolute solution that can be used in a least squares technique is referred to as pull-
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range [77]. According to [64], the pull range values depend on the size of the window and

are usually such that the matching windows conjugate has at least 50% overlap.

By introducing constraints, for intersecting conjugate rays, in addition to geometric and
radiometric constraints, multiple image grid points can be simultaneously matched and
hence, performing both image matching and object space coordinate determination [76],

[77].

3.4 Working in the Spatial and Frequency Domain

Filtering in the frequency domain is much more efficient in convolving images with large
kernels. It is also useful in the reverse process of deconvolution, which is when the output
image and the Point Spread Function (PSF) (also known as the impulse response) are
known, the input image can be reconstructed. In another words, the forward convolution
may be processed by a multiplication of the frequency components and the PSF as in (2.4).
While the deconvolution can be processed by dividing the frequency components of the

output image with the corresponding PSF in the frequency domain.

During the reverse process of deconvolution, the frequency components of the PSF must be
handled with care, so as not to blow-up noise from the input image into large artifacts in the

reconstructed image.

Frequency domain filtering ignore the present of any object regions in the image and
process the whole image signal at once. This makes filtering in the frequency domain
robust to applications such as, smoothing, object recognition and image matching. In these

cases, the frequency filtering is better than filtering in the spatial domain.
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In contrast, applications that involves segmenting objects in the image from its background
in order to recognise object or region of interest are better done in spatial domain than in

the frequency domain.

3.5 Chapter Summary

This chapter presented the state of art of the most common image matching and image
object detection techniques, which includes feature based and area based matching and

detection techniques.

The feature based matching techniques are frequently used, when the information needed is
mostly the local structure of the image rather than the image intensities. To test for image
similarity, features in a referenced image are tested with the features of the second image.
Image feature can be in the form of points, lines or regions in the image. With respect to
feature points, the search for unique image points and the matching of images consists of
three major processes: interest points selection, descriptor vector formation and descriptor
vector matching. The interest point selection is the process of selecting locations in the
image where there are repeatability of points. Afterwards, a descriptor vector is formed by
the pixel around the interest point. Finally the descriptor vector, which must be unique and
invariant to image deformations are matched with a referenced descriptor vector to
determine similarity. The dimension of the descriptor of the two matching images
determines the time it takes for matching the images. A descriptor vector with a smaller
dimension takes less time for matching when compared with a descriptor vector with a

larger dimension.
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The earliest algorithm that uses feature based techniques is Harris corner detection. The
Harris corner uses a mathematical formula to determine the window that produces large
variations when moved in all direction on the image. Each of the windows is assigned a
score. One can figure out which of the windows consists of a corner based on the score.
The Harris corner detection algorithm not being invariant to scale, gives rise to the

development of SIFT and SURF algorithms.

The SIFT algorithm, generates keypoints from images and these keypoints are used to
compute descriptor vectors through octaves, which are used to generate difference of

Gaussian.

The SURF is a speed up version of the SIFT algorithm and it makes use of integral image
for the computation of a feature vector. SURF is faster in operation than the SIFT algorithm
because of the smaller dimension of its descriptor vector and the use of integral image for

the computation of its feature vector.

The second most commonly used matching and object recognition technique is the area
based method. Area based matching makes use of grey level values for matching entities to
measure the degree of image matching. To identify matching area, a window template of an
image is slid in all direction through the sampled image. At each location of the template
window on the sampled image, a grey value is computed and the location with the highest
grey value is selected as the highest matches. Algorithms that make use of area based
matching, includes correlation coefficient and least squares methods. The former is usually
employed when images involved in the matching have the same geometric and radiometric
properties. While the least squares method is employed where matching images are
geometrically and radiometrically distorted.
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CHAPTER FOUR

Detection of Objects in Video Streams
from a Low-cost UAV
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4.1 Introduction

A composite correlation filter is used for detection of objects of interest in the video
streams acquired from a low-cost UAV in this thesis. A correlation filter was chosen for
object detection because of its ability to handle general types of distortion. Also, since it is
a Correlation Pattern Recognition (CPR) filter, it has the robust property of evaluating the
whole input signal at once, unlike the feature-based techniques, which minutely extract
information from piecewise examination of the signal and compare the relationships
between the features. Matching the whole image against the template makes the CPR less
sensitive to small mismatches. Composite correlation filters are designed from many
training images, which represent the different views of the objects to be detected. The filter
can be trained to detect any object with any kind of distortion as long as the expected
variations can be captured by the training images. The major aim of all composite filters in
this thesis is to be able to detect the object on which they were trained. To obtain a cross-
correlation as a function of the relative shift between a query image and a set of training
image templates, the query image is compared to the template. The whole operation is
computed in the spatial-frequency domain for computational efficiency by performing the

complex multiply:

Y(a,b) = X(a,b)*H(a,b) 1)

where X(a,b) is the 2D-Discrete Fourier Transform (DFT) of the query image, H(a,b) is the
spectrum of the reference template, * denotes the complex conjugate of the filter spectrum
and Y(a,b) is the DFT of the correlation output . A Fast Fourier Transform (FFT) [78]

algorithm is used to implement the DFT efficiently. Whenever there is a match between the
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query image and the template image, the correlation filters are designed to give a sharp
peak at the centre of the correlation output plane and no peak if there is no match between

the query image and the template image, as illustrated in Fig. 4.1.

%3 FFT

Template

»| Correlation
Images

L ’ Filter
e " FFT

Match w

Query
Image

o)

| FFT N : | IFFT _Correlation
® Output

No Match |

Fig.4.1 Matching (correlating) a query image with the template (correlation filter)

4.2 Composite Correlation Filter Design

The first composite correlation filter developed, was the Projection Synthetic Discriminant
Function filter (PSDF) [79]. The PSDF filter is based on the assumption that the filter is a
weighted sum of training images and the weights are determined so that the correlation
output takes on pre-defined values in response to training images at the origin. However,
PSDF filters suffer from not having any in-built robustness to noise and display large side
lobes, making location of the correlation peak difficult. Hence synthetic discriminant
function (SDF) filters are based on training images that contain examples of expected

distortions. The Minimum Variance SDF (MVSDF) [79], [80] was then developed to
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minimise the Output Noise Variance (ONV) in the projection SDF. The MVSDF is able to
improve correlation peak height variations but cannot suppress white noise present in the
correlation output plane. In order to solve the problem of white noise and high correlation
peak side lobes generated by the earlier composite correlation filters, the Minimum
Average Correlation Energy (MACE) [80] filter was developed. The. MACE filter is able
to suppress the side lobes by minimizing the energy in the correlation plane. With the
reduction of energy in the correlation plane, sharp correlation peaks were produce but it is
still not as robust to noise as the MVSDF. It was discovered by [80] and [81] that both
attributes of MACE and MVSDF can be integrated into a single filter by providing an
optimal trade-off between the MACE and the MVSDF. To illustrate the optimal trade-off
between these filters, let us consider the design of a filter that uses two performance
criteria, the average correlation energy (ACE) and output noise variance (ONV), in order to
satisfy a set of linear constraints. Since it is not possible to minimise both performance
criteria. ONV is minimized for every possible choice of ACE. This is illustrated in the

following Lagrangian equation:
#(p) =ONV — p(ACE)~h" X5 @a2)

where o is a single Lagrange multiplier that forces ACE to a fixed value, J is the vector

of M Lagrange multipliers, which corresponds to the linear constraints on the correlation
peaks in response to M training images. It can be seen that when ACE is fixed to any value,

minimising ONV will also minimize ¢(p) .
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By defining o= (/4_/:1) €[0,1], where u is the mean peak value of the constrained filter.

The parameter 2 offers the way to optimally trade the properties of the correlation filter to

obtain a suitable compromise between the two performance criteria.

Equation (4.2) becomes:

P(u) = ud(p) = LONV + (- 1) ACE-h" X, (4.3)

where q = uo.

Hence, the weighted linear combination of ACE and ONV indicates the performance

criterion to be minimised. Thus, as 4 varies from 0 to 1.0, the emphasis sifts from

minimizing ACE to minimizing ONV.

This approach can be applied to more than two performance criteria and to other
unconstrained correlation filters like the MACH filter [82]. When the optimal trade-off

performance criterion is applied to the MACH filter, it takes the form:
h=(cACE + SASM +;0NV)™'m (4.4

where o, B and y are the optimal trade-off parameters, which are associated with the
performance criteria ACE, Average Similarity Measures (ASM) and Output Noise
Variance (ONV), respectively. Each parameter is varied while all others are held constant
until a satisfactory value is found. The composite correlation filter, used in this research, is
the Optimal Trade-off Maximum Average Correlation Height (OT-MACH) filter [83]. The

OT-MACH filter is able to obtain the best balance between the filter’s variance to noise,
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sharpness of the correlation peak, and distortion variance. A detailed literature on

correlation filter design is give in [79], [80], [81], [82] and [83].

4.3 Experimental Procedure

For detection of objects of interest in a video stream from a low-cost UAV, an experiment
was carried out both in United Kingdom and Nigeria. Where video data were collected for
approximately 45 minutes from a low-cost UAV and transmitted through a radio link to a

portable PC on the ground control station in real time.

The UAV used in the experimental work reported in this thesis is the Spreading Wings
S800, which is a product of Djibouti Dow Jones (DJI) Industry Ltd, as shown in Fig.4.1. It
is a lightweight, multi-functional hexa-rotor integrated aircraft. Table 4.1, shows the main
specification of the DJI S800. The UAV consists of integrated GPS/INS for position,
altitude control and a 7.5R/C flight simulator, which is used for flying the UAV from the

ground control station. The UAV supports up to 50 way-points in the flight plan.

Fig. 4.2 Spreading Wings S800 [83]
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The GPS/INS has been integrated on board into the center frame. This allows raw images
captured to be linked to the exact time of acquisition of images. The DJI S800 gives real-

time flight data and video feeds with a 5.8G video downlink via a radio signal.

Diagonal 800mm
Wheelbase
Frame Arm 350mm
Length
Center Frame 240mm
Diameter

Bi-Pod Size | 500mm(Length)x415mm(Width)x320mm(Height)

width: 145mm
Max Power 360W
Signal 30Hz — 450Hz
Frequency
Total weight 2.6Kg

Table 4.1 DJI Spreading Wings S800 Specification [83]
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Tables 4.2 and 4.3 show the specification of the sensors and camera employed.

Size 17.3 x 13 mm
Diagonal 21.64 mm
Surface Area 224.9 mm?
Pixel Pitch 3.74 MM
Pixel Area 13.99 um?
Pixel Density MP/cm?

Table 4.2 Sensors Specification [83]

Resolution 17.20 Megapixels
Sensor Size Four Thirds (17.3 x 13 mm)
Sensor Resolution 4620 x 3474
Crop Factor 2
Video Recording 1920 x 1080p

Table 4.3 Camera Specifications [83]

The procedural steps for object detection in a video stream are as follows:

e Video Streams Resample: - The first step in object detection in the video stream
captured by the UAYV, is the resampling of the video streams into frames at the rate of

one frame per second of sizes 256 x 256. This is done with the use of the BPS video

converter 1.4 software at the ground station. Then each image in the video frame is

89



processed individually with the goal of detecting objects of interest in the video frames
with a very small number of false detections.

Training of Correlation Filter: - The next step in object detection from the video
frames, is the training of the correlation (OT-MACH,) filter. This is done by carefully
cropping images of objects of interest to a size of 64 x 64 and training them on multiple
sample targets to form template images. These template (filter) images are trained with
the aid of a computer aided design (CAD) model, under different viewing angles (0° —
3607), different lighting conditions, and different image deformation that is expected
from the target image in the video frame. This makes the correlation filter to be robust to
different kinds of distortion that is expected from the target image on the video frame.
The trained images used as examples are classified into two sets, the first set consists of
a person CAD model, while the second set is a car CAD model. The two sets of training
images are trained under different UAV Camera viewing angles. Afterwards, all the sets
of trained images are used to synthesis the filter and then stored in a database.

Cross Correlation: - The final step in object detection is the cross correlation between
the test (query) image and the training image. To achieve cross correlation, a test image
is matched by individually comparing it with each of the trained images in the database
and finding candidate match images. Whenever the cross correlation output plane gives
a sharp peak, it implies there is a match between the input image and one of the trained

images in a class. Hence an object has been detected.
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4.4 Test Results and Discussion

Fig. 4.3 and Fig. 4.4 shows the example results of the two sets of trained images, which

have been derived from CAD models of a selected person and car respectively.

These trained sets are derived from different viewing angles (0° — 360°%) of the UAV’s

camera.

The correlation output peak, which is the result of the cross correlation is quantified by
determining the peak-to-side lobe ratio (PSR). This is done by comparing the correlation

peak height value with the peak value of the side lobes. This is given as:

Peak — u
PSR=——-— 45)

where the peak is the largest value in the correlation output plane and, # and O are the

average values and standard deviation respectively of the correlation values of some side

lobes surrounding the peak.
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Fig. 4.3 Trained Images from Human CAD Model
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Fig. 4.4 Trained Images from Car CAD Model
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PSR is designed to measure the relative height of the correlation peak with respect to the
background. One advantage of PSR is that, it is invariant to constant change in illumination
in the test image. PSRs are found to be larger for authentic test images and smaller for
impostor images. A Fig. 4.5 and Fig. 4.6 show the resulting correlation peaks when the test

image used is an impostor and is authentic respectively.

Fig. 4.5 correlation output for an imposter test image, the PSR value is found to be 8.12

Fig. 4.6 correlation output for an authentic test image, the PSR value is found to be 28.51
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In this experiment the OT-MACH filter parameters & Band 7 have been fixed to
0.0000009, 0.42 and 0.1 respectively. These values have been found to be near optimal for
all the test images. However better results can be obtained by adjusting the parameters

between correlation test operations.

Multiple example tests were conducted using different viewing angles of the UAV’s

camera of the target scenes. The results obtained are as follows:
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(©)

Fig.4.7 (a) Video frame (256x256) containing the target image (b) Correlation output when target
(person) is view by the camera at an angle of 35° (b) Result image showing the corresponding (64 x

64) trained image.

The PSR value in the correlation output plane in Fig. 4.7 was found to be 28.12.
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(b)

Fig. 4.8 (a) Correlation output when target (person) is view by the camera at an angle of 320° (b)

Result image showing the corresponding (64 x 64) trained image.

The PSR value in the correlation output plane in Fig. 4.8 was found to be 17.28 while the

correlation peak is 625.40. It can be observed that the PSR in Fig. 4.7 is larger than that of

Fig.4.8, this implies that the degree of similarity of object detected and the trained image is

larger in the test image in Fig. 4.7.

The test was also carried out using a car CAD model under different illumination condition,

using the same parameters and the results obtained are:
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Fig. 4.9 (a) Video frame (256x256) containing the target image (b) Correlation output when target
(car) is viewed by the camera at an angle of 35° (b) Result image showing the corresponding (64 x

64) trained image.
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Fig. 4.10 (a) Correlation output when target (car) is view by the camera at an angle of 100° (b)

Result image showing the corresponding (64 x 64) trained image.
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4.5 Chapter Summary

This chapter presents a brief overview of a composite correlation filter. The major aim of
the correlation filters is to detect any object with any kind of distortion as long as these
distortions can be captured by a set of training images. Objects are detected by matching a
query image with a set of trained image templates. The correlation process is computed in
the spatial frequency domain for fast and effective computation. A sharp peak at the centre

of the correlation output plane, indicates a match between the query and a template image.

In order to get the best balance between the SDF filters variance to noise and the MVSDF

filter’s sharp correlation peak constraints, an OT-MACH filter is used for object detection.

In order to evaluate our method, experiments were conducted on a test field both in Nigeria
and United Kingdom. Where video stream data were captured by the use of UAV. The data
obtained were evaluated using MatLab/Simulink software and gave promising results in

terms of object detection and recognition.
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CHAPTER FIVE

PHOTOGRAMMETRY MODELLING

100



5.1  Photogrammetry

Photogrammetry is the technology that enables us to obtain reliable information about
objects and their locations on the Earth’s surface through the process of capturing,
measuring and interpreting photographic images [84]. Photogrammetry was formally used
for architectural survey [85], [86], but now it is widely used for remote sensing
technology, it was the first methodology to make use of the geometric properties of objects
from photographic images.

The development of photogrammetry consisted of three main phases. The mode of
operation and type of equipment used to carry out measurements distinguished one phase
from another and it took a many years for transition from one phase to the next phase.

In the first phase of photogrammetry, recording of images is carried-out with the aid of
photographic film. Orientation reconstruction and other measurements are carried-out in
an optical-mechanical way. Hence this phase is called Analogue Photogrammetry [86],
[87].

In the second phase of photogrammetry, with the advent of computers, the reconstruction
of the orientation process change from analogue to algorithmic, where formulas and their
parameters are evaluated and stored in the computer. This phase makes use of an
analytical plotter for photographic support, hence the name Analytical Photogrammetry
[87].

The latest and current phase is the digital photogrammetry phase [88], this phase make use
of digital images that are captured by digital cameras, which are then stored and processed
on a computer system. With digital photogrammetry, many tasks are now automated (e.g.,

digital ortho-image formation and digital elevation model extraction). The output product
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of digital photogrammetry are in digital form and hence they can easily be stored,
managed and used for different applications.

In reality, photogrammetry gives correct and exact environmental information from a wide
range of images. Measurements taken using the photogrammetric technique on images or
photographs reflect measurements taken on the ground. Instead of having to make constant
visits to the field to make measurements of distance and object’s coordinate position on
the Earth’s surface. The photogrammetry technique permits the accurate gathering of
information from images. This approach of collecting environmental information from
images saves time and cost, and gives a high level of accuracy.

From digital photogrammetry that is based on digital recording instruments, the following
processes can be distinguished:

e Frame Acquisition — This is the process of image acquisition in which the central
perspective defines the geometrical link between the two dimensional image plane
and the object in the 3D world.

e Whiskbroom and Push-broom Scanning Systems — This process is more complex
when compared with the traditional central perspective, it consists of multiple
central perspectives [88]. This process is time consuming and expensive.

The frame acquisition imaging process involves generating images through single central
perspective geometry. As shown in Fig.5.1, the object points (P, Q R and S) generate the
image points (p, g, r, and s) through a single perspective centre (O). The single central
perspective method is used in this research and unlike the scanning systems, it is not

expensive and uses less time.
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O Perspective centre

Fig. 5.1 Central perspective linking points on the image plane and points on the ground [88].

5.1.1 Types of Photogrammetric Processes
There are two types of photogrammetric process: the terrestrial photogrammetry and the
aerial or aero-photogrammetry. These two processes are defined as follows:
e Terrestrial photogrammetry — This refers to acquisition of images by cameras
positioned at ground level, in which objects are also located on the Earth’s surface
(such as landslide monitoring, building surveys, etc.).
e Aerial or aero-photogrammetry — This is where acquisition of images is carried out
from above sea level, in which the camera is attached to an aircraft and the object

is on the ground. Present day maps are derived from aero-photogrammetry survey.
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5.1.2 Stereoscopic Viewing

From a single image frame, which consists of a two dimensional plane, we can only get two
dimensional co-ordinates. In order to get three dimension views, photogrammetry uses a
method similar to the principle of human vision [89].

We are able to see objects in the 3D-world in which we are in, because our two eyes are
able to receive optical information as a central perspective between images captured by
both eyes. The image captured by the left eye is slightly different from the image captured
by the right eye. These two images are then combined in our brain to produce a spatial
impression. This is the process that enables us to estimate the distance between us and an
object. When this same principle is applied in photogrammetry to get the three dimensional
information it is called stereoscopic viewing [90]. To illustrate stereoscopic viewing,

consider the case of aerial photogrammetry in Fig.5.2:

m 44— Baseline —m———p m
Projection centres

C™,

Epipolar‘/f‘....

Plane

Object (terrain)
X Coordinate system

Fig.5.2 Example of Stereoscopic Viewing with two Different Camera Positions [88].
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where P1 and P, are the camera positions on the left and right respectively, C is the
corresponding projection center for each camera position, the ray from the center of
projection of the left camera position to the center of projection of the right camera position
is called the base or baseline and Q is the image point in the 3D world scene.
If we are able to reconstruct the geometric parameters of the condition of the camera during
exposure, we can then determine the height of an object point in the 3D world scene. This
can be done by setting up the two equations of the rays, and then calculating their
intersection.
To implement stereoscopy, the following rules must be obeyed in aerial imaging:
e Each image used for stereoscopy must have at least 50% view of the same terrain
features. But a 50% view means, no room for error from the aerial images. Hence a
60% forward overlap and a 20-40% side overlap is the minimum requirement.
e The distance between exposure stations must be constant, so that all images will
have approximately the same scale.
e For aerial imaging consisting of more than one flight strip, the flight strips must be
close and parallel to each other as much as possible.
e The distance between the two exposure stations must not be too great in order not
to lose stereoscopic coverage.
In practical terms, stereoscopy between two images can only be provided by controlling the
horizontal and vertical parallaxes in tie points on two images. The difference in the location
of points in the x-direction or in the direction of the flight is called x-parallax. The x-

parallax adjustment played a major role in the determination of the elevation of a point.
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The y-parallax is the major factor affecting the formation of stereoscopic viewing, this
means, with the present of y-parallax in imaging, stereoscopic viewing is not possible.

The y-parallax is caused by the difference in the location of tie points in the direction
perpendicular to the flight direction. The major cause of y-parallax is a tilt in the
photograph. An essential task that needs to be done by a photogrammetrist is the

elimination of y-parallax within a model.

5.2.  Aerial Image and Data Acquisition
During aerial image acquisition, overlapping images are captured along the UAV flight
direction. Each point along the flight direction where the camera captures an image is

known as the exposure station (Fig.5.3).
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Fig.5.3 Exposure stations along a flight strip [84].

Images captured along the same flight line constitute a strip of images or photographs. In
Fig.5.3, all the exposure stations in the flight line 1 for example, constitute a flight strip

while the images captured by all the expose stations in flight line 2 constitute another
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flight strip. All images in a flight strip are taken at approximately the same altitude and the
distance between exposure stations is kept constant.

Images from several flight strips of the same UAYV as a collective form a block of images,
usually with a forward overlap of 60% and side overlap of between 20-30% (Fig.5.4). The
use of more than one image in photogrammetry, gives the geometry related to the
exposure stations, the image points on the image plane and the corresponding object points

on the ground, high accuracies and precision.
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Fig.5.4 Strips of Images Forming a Block of Aerial Images [84].

5.3  Co-ordinate Systems

In order to understand the connection between the camera/sensor used to capture the
object point on the ground, the object point itself and its corresponding image point,
(which is the main task of photogrammetry), the coordinate system associated with these

three variables must be defined.
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5.3.1 Pixel Co-ordinate System

Pixel co-ordinate system is used to define file coordinates of the digital image. This pixel
coordinate system usually has the origin of its coordinate system at the left upper corner of
the image, its x-axis points to the right while its y-axis points downward, as shown by axis
c and r in Fig.5.5. These file coordinates (c, r) represent the pixel column and row number

respectively and is referenced as the pixel coordinates in this thesis.

-
|

Y
o

Pixel coordinate system origin

Image coordinate system origin

Fig.5.5 Pixel and Image Coordinates Systems

5.3.2 Image Plane Coordinate System

An image plane coordinate system is the 2D coordinate system which has its origin in the
image center or at the intersection of the fiducial marks as shown by the u and v axis in
Fig.5.5. Under perfect conditions, the origin is normally at the principal point. Image plane
coordinates are used to describe image point positions on the film plane. The image
coordinates are usually measured in millimetres or microns. The image plane coordinates

are referenced as (u, v) in this thesis.
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5.3.3 Image Space Coordinate System
An image space coordinate system unlike the image coordinate system adds a third (w)
axis, making it a three-dimensional axis. The perspective center (C) as shown in Fig.5.6,

defines the origin of the image space coordinate system.

Fig.5.6 Image Space and Ground Coordinate Systems [84].

The w axis represents the optical axis and its value is usually equal to —f (where f is the
focal length of the camera). The image space coordinates described image point positions
inside the camera and are usually express in the same units as the image plane coordinates.

The image space coordinates are referenced as (u, v, w) in this thesis.

5.3.4 Ground Coordinate System

This is a 3D coordinate system made use of a known map projection. The ground

coordinate system is referenced as (X, Y, Z) as shown in Fig.5.6, the Z value represents
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the altitude above sea level for a given object point. The ground coordinates are usually

measured in feet or meters.

5.4  Basic Photogrammetry Geometry
The major task in photogrammetry geometry is to determine the (X, Y, Z) object co-
ordinates in the 3D-world given the corresponding 2D image plane co-ordinates (u, v) on

two or more digital images, as illustrated in Fig.5.7.
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Fig.5.7 Photogrammetry geometry and triangulation [91]

To solve this task, the affine transformation of each of the intersecting rays and the
location of the central perception of each exposure must be established with respect to the
3D-ground co-ordinate (X, Y, Z) system. The six parameters that are involved in this
process are: three orientation angles and three camera station coordinates. These

parameters describe what is termed the exterior orientation of the image (also known as
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extrinsic parameters). The camera’s interior orientation parameters (intrinsic parameters)
are described by the relationship between the perspective centre and the image co-ordinate
system. The interior orientation consists of three parameters: camera focal length,
principal distance and the co-ordinates of the principal points.

With reference to Fig.5.8, the principal distance is the perpendicular distance from the
perspective center to the image plane, and the point at which the optical axis intersects the
image plane is called the principal point. The origin of the image plane co-ordinate system

(u,v) should ideally be coincident with the principal point but this rarely happens.

Object point
Perturbed

7z Perspective center

True image
point position

Fiducial mark

Fig.5.8 Perspective transformation and the effect of offsets to collinearity [91].

Hence the principal point offsets uo and vo define the shift from the origin (u,v) of the

image plane, defined by fiducial (image reference) marks, and the principal point.
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For digital cameras, which make use of a CCD matrix array in the image plane, instead of
a fiducial system, a central row and column are used to define the origin of the (u, v)
image plane coordinate system. CCD cameras usually have values up to 0.5mm for the

origin co-ordinates [91], [92].

5.4.1 Principle of Collinearity

When the 2D coordinate system of the image plane (u, v) align very well with the object
3D-space coordinate system. Then the object point on the ground coordinate system, the
perspective center and the image point in the 2D image plane, will all lie along the same
straight line (as shown in Fig.5.6, points “A”, “c” and “a”, lie on a straight line). This is
the principle of collinearity [93]. Although, this is not always the case, collinearity can
only be achieved by capturing images with a perfect camera system. In a general situation,
the image point, the object point and the perspective center does not always satisfy the
principle of collinearity, giving rise to departures Au and Av of the image point from its
true position on the image plane, as shown in Fig.5.8. These offsets, which are caused by
various geometric distortions, can be corrected by the calibration of the photogrammetric
imaging system. Calibration of the imaging system in its simplest form is the shifting the
actual image point coordinates (Au and Av) so as to satisfy the collinearity principle.
Using the principle of collinearity, the perspective transformation between image and

object space is given by:

u-u, +Au X=X,
V-V, +Av |=CR| Y; =Y, 5.0)
— f Z. -7, o
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where, R=|ry Iy Tp| -
3 T3 I33

COS@COSK  COS@COSK +SiNwSINZCOSkx  SINwSIN Kk — COS wSIN@CoS k
—COS@SiNK  COS@COS kK —SiNwSIN@Sink  SiNwCOS k + COS @wSiN@Sink (5.2)
sing —sinwCos ¢ COS ®COS ¢

This is the transformation matrix that describes the relative orientation between the image

space and object space coordinate systems. After some mathematical manipulation (5.1)

becomes:
r,(X—X,)+r Y, )+r.(Z-2

bt 4= f KXY 2Yo)+15(Z=Z,) -
M (X = X))+, (Y =Yo) +15(Z2-2) '
(X =X,)+r,(Y=Y,)+r.(Z-Z

V—V0+AV=—f 21( 0) 22( o) 23( 0) (5.:3b)

(X =X )+ 15, (Y =Y)+15(Z2-2,)

where:
rij is an element of R,

(U, V) are the image coordinates,
(U, V) are the principal point coordinates,
( X;,Y;,Z;) are the object point coordinates,

(X,,Yy,Z,) are the exposure station coordinates,

f is the camera focal length,

(Au, Av) are distortion in the image point coordinates.
It was shown by Gruen and Beyer [94] that it is possible to determine both the interior
orientation elements and the exterior elements, which are the parameters that described the
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departures from collinearity through analytical approach based on the solutions of both
equation (5.2a) and (5.2b). Analytical self-calibration and test-range calibration represents
this approach. Finding the solution of all parameters forming the collinearity equations:
interior and exterior orientation, calibration coefficients and object space target point co-
ordinates simultaneously without prior knowledge of the 3D co-ordinate information of
the object space target area is known as Self-Calibration [94], [95]. Test-range calibration
[95] has the same procedural calibration as the self-calibration but required object space
control points in its calibration procedure, such a requirement is not necessary in self-

calibration.

5.4.2 Direct Linear Transform (DLT)

The direct linear transform (DLT), which was originally presented in [96], is based on the
principle of co-linearity (i.e. all points must be on a straight line). It is a projective
geometry transformation between 3-D object space and 2-D image plane, it is expressed

as:

LX+LY+L,Z+L,
L,X+LY+L,Z2+1"

u+Au=

(5.4a)

LX+LY+LZ+L,
L, X +L,Y+L,Z+1

V+AV = (5.4b)

where u and v are the image or pixel co-ordinates not necessarily referenced to the
principal point, L1 — L1z can be physically interpreted as the interior and exterior
orientation parameters of the image. The DLT is used only for non-metric camera which

does not require a priori knowledge of the interior orientation parameters (uo, Vo, d). But
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in the digital camera context, the DLT offers two major advantages when compared with
the collinearity approach. The first, been the ability of the DLT method to provide a non-
iterative and direct solution, which is independent of the initial parameter estimates. Hence
resulting in a faster computation. The second advantage is the presence of the affine/shear
image co-ordinate correction in the DLT model, which is very appropriate for CCD
sensors. However DLT requires foreknowledge of the object space and image coordinates
of a set of Ground Control Points (GCP) that is well distributed in three dimensions [95],

[96].

5.4.3 Sources of perturbation

In finding suitable parameters for the functions Au and Av, it is important to study the
three major causes of departures from collinearity (perturbation). These distortions which
are physical in nature are: the symmetric radial distortion, the de-centering distortion, and
focal plane unflattening [96], [97]. The total image shift at a point will be the accumulative

effect of each of these perturbations (offsets). Thus,

Au=Au, +Au, +Au, (5.5a)

AV =Av, +Av, +Av, (5.5b)

where the subscripts r, d, and u are the radial distortion, decentring effects, and out of
plane unflattening respectively. The relative magnitudes of these perturbations depend on

the nature of the camera used for image acquisition.
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5431 Radial Distortion
The most common distortion is the radial lens distortion, which causes the real image
point to be displaced radially in the image plane. The radial distortion is usually

approximated using an odd-ordered polynomial series expression:
3 5 7
Ar=K r’ + K,r’ + K,r' +... (5.6)
where K,,K,... are coefficients of radial distortion and r is the radial distance from the

principal point, i.e.

r=~u®+v? 5.7)

For most of the medium-angle, non-photogrammetric lenses used in close-range cameras,
the third-order terms are sufficient to model the lens distortion. Wide-angle lenses employ
higher order terms (very rarely above seventh-order term) for adequate lens distortion. For
CCD cameras, one or two coefficients are enough to compensate for the distortion [97].

From (5.6) the necessary radial distortion correction for the u and v image plane co-

ordinates is given by:

u

Au r = ? Ar (58&)
v
AV, = " Ar (5.8b)

where U=U-—-U; and V=V—V,,
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5.4.3.2 Decentering Distortion

The centers of curvature of lens surfaces not always being collinear gives rise to another
category of lens distortion known as decentering distortion. This type of distortion
originated from both radial and tangential image displacements, which were demonstrated

by Brown [98] in the following corrected equations:

Aug = P,(r? +2u°) +2P,uv (5.9)

Av, =P, (r* + 2\_/2) +2Puv (5.9b)

where P, and P, are decentering distortion parameters.
Like the radial distortion, decentering distortion also varies with focussing, but the

resultant image co-ordinate offsets are usually small and this offset is generally ignored in

analytical photogrammetry.

5.4.3.3 Focal Plane Unflatness

In focal plane or film unflatness distortion, image displacement is caused by image focal
plane unflatness. Which is a major factor affecting the accuracy of the photogrammetric
process, this is common especially where nonmetric cameras are involved. Fig.5.9,

illustrates the effect of the unflatness image plane and it can been seen that the radial

image displacement AT, is a function of the incidence angle of the imaging ray.

Hence, the short focal length with wide-angle lenses is more greatly affected by out-of-

plane image distortion than the long focal length with narrow-angle lenses. [99], shows
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that a CCD array can show a degree of planarity that does not permit any unflatness

correction.

Perspective center

Photographic surface

4l
B Iy

—r‘Arq—r—r

Fig.5.9 Image Displacement Due to Focal Plane Unflatness [100]

There are other types of distortion that have been proposed in the literatures [100], [101]
and [102]. But in most cases the error is small and the distortion component is

insignificant.

55  Photogrammetric Process and Results

The output products of photogrammetric processes range from ortho-image formation,
digital elevation model extraction, feature gathering, stereo pair formation, control point
extension and very accurate point determination [103]. In order to produce these
aforementioned products of photogrammetric process, the relationship between the

camera/sensor used to capture an object point on the ground, the object point itself and its
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corresponding image point on the image plane must be defined. In order to define this
relationship the following parameters must be determined for each image:

e Interior orientation parameters

e Exterior orientation parameters

e Precise representation of the ground
The most difficult task in photogrammetry is trying to use a very small number of ground
control points (GCPs) for each image in a project. Most photogrammetric applications use
a limited number of GCPs because of the intensive procedures associated with collecting

GCPs.

5.5.1 Photogrammetric Techniques
The input data provided for a photogrammetric process determine the photogrammetric
techniques that can be used for production of ortho-rectification, digital elevation

extraction and other photogrammetry output products.

5.5.1.1 Space Resection

The method that is usually used to determine the exterior orientation parameters of one
image or many images based on known GCPs is known as space resection [104]. Space
resection is based on the principle of collinearity, which stipulates that, the object point on
the ground, the perspective center of the camera and the image point of the corresponding

object point on the image plane must lie along the same straight line.
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With at least three GCPs (X, Y, Z) coordinate known and with the camera information
available, the space resection can be used to calculate the exterior orientation parameters
of an image.

Space resection is useful when performing single frame ortho-rectification, this mean
processing one image at a time. But if it involves multiple images, for each image process,
a minimum of three GCPs must be found on them.

To compute, the positions of the exterior orientation parameters, space resection uses the
collinearity condition, in which light rays from at least three object points pass through its
corresponding image points on the image plane and resect at the perspective center of the
camera. Afterwards, the least squares adjustment method is used to compute the positions

of the exterior orientation.

55.1.2 Space Forward Intersection

The techniques used to determine the X, Y, Z ground coordinates of points that appear on
the overlap part of two or more images, with both the interior and exterior orientation
parameters given, is known as space forward intersection [104].

To determine the X, Y, Z ground coordinates of points that appear on the overlap part of
two images for example. The concept of space forward intersection is illustrated in
Fig.5.10. Here, the principle of collinearity is applied, in which the corresponding light
rays from the two exposure stations O1 and O2, pass through their corresponding image

point’s pl and p2 on the two images respectively and intersect at the same ground point P.
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Fig.5.10 Space Forward Intersection [103].

Using the known exterior orientation parameters and the image coordinate measurements
of point P on image 1 and image 2 as input in the collinear equations, then, the Xp,Yp

and Zp ground coordinates of point P can be computed.

Space forward intersection techniques are used for applications, such as, cadastral
mapping [103], [104], using airborne surveying method, GCPs collection and highly

accurate point determination.

55.1.3 Bundle Block Adjustment

For applications involving many images, space forward intersection and space resection
methods cannot give a highly accurate result. This can be attributed to the lack of accuracy
in the values of the input parameters. For example, it is very rare for values of exterior
parameters computed by the airborne GPS and INS techniques in aerial photogrammetry
to be very accurate for each image or photograph in a project due to both systematic and

non-systematic factors. Thus, on board GPS and INS techniques provide initial estimate
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values of the exterior orientation parameters, however, the final value for these parameters
must be adjusted to obtain higher accuracies.

In space resection, the more the images in a project, the more GCPs are required for the
computation of exterior orientation parameters. For example in a project that consists of 70
or more images, to implement space resection, a minimum of 210 GCPS is needed. Hence,
the time and the cost required to identify, match and measure all of the points will be high.
The high cost associated with block triangulation and ortho-rectification is dependent upon
the number of GCPs used for the photogrammetric process. This cost can be reduced by
collecting fewer GCPs. To ensure high accuracies with the use of reduced GCPs, a
technique known as bundle block adjustment [104], [105], is employed.

Bundle block adjustment can be defined by examining each of the words that makes up the
term. A bundled solution is a solution that is computed by determining each image
position and its exterior orientation parameters, the tie points X, Y, Z coordinate system,
and the GCPs. In one solution, all the images in a block in a project are processed at the
same time. The least squares adjustment method [106] is used in the entire block model for
the estimation of the final bundle adjustment, while error is been minimized and
distributed along the entire block.

The process of defining the geometrical relationship between the images in a block, the
camera or sensor used to capture these images, and the ground is known as block
triangulation [107]. Once this geometrical relationship has been defined, an accurate
representation of the imagery on the Earth’s surface is established. When processing
imagery captured from digital camera and videography camera, block triangulation is
denoted as Aerial Triangulation (AT). While in processing imagery captured by a push

broom sensor, block triangulation is denoted as Triangulation.
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In photogrammetry, many models of block triangulation are used, among these are: the
strip method, the independent model method, and the bundled method. The bundle method
is the most difficult of the above methods, in view of its ability to minimize and distribute

errors [108], [109].

55.1.3.1 The Concept of Bundled Block Adjustment

The concept of bundled block adjustment is based on the collinearity condition. To
illustrate this concept, an example, consisting of two frames CCD camera data with three
GCPs of known X, Y, and Z coordinates. Also provided are six tie points as illustrated in
Fig.5.11. For every single ground point measured, the corresponding image point has
coordinates (u, v). Hence, to establish a relationship between an object point on the ground
and its corresponding image point on the image plane, two collinearity equations are
created. These equations in the context of bundled block adjustment are known as

observation equations [105], [106], [107].

A @ Tie point

®A A

A Ground object point

Fig.5.11. Two Frames CCD with 3 GCPs and 4 Tie Points
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For an object point on the ground measured on the overlap areas of two images, four
collinearity equations can be created. This includes two for the top image comprising a
pair and two for the bottom image comprising another pair. This implies that an object
point on the ground measured on the overlap part of two images consists of four

collinearity equations that can be formulated as:

f N (X o = Xog) + 1 (Yo =Yor) +15(Zy = Zy)

Uar —Up =— 5.10
b Fag (X g = Xo0) + 1 (Yo =Yo1) +155(Z 4 = Zy) (5.108)
V. —V.=—f N1 (Xa = Xon) + 1y (Ya —You) + 1(Z 4 = Z1) 5 100
1~ Vo =
: r31(XA_X01)+r32(YA _Y01)+r33(ZA_201) ( ' )
_U. =—f N (X = Xo) + 1 (Y =Yoo) + 15(Z 4 —Zg,)
ua2 uO_ ' X _X ' Y _Y ' Z _Z (5113)
I (X4 02) T (Yo —Yoo) +1s5(Z o 02)
Vo, —V =—f N1 (X g = Xgg) + 1 (Y —Yoo) +15(Z 4 — Zp) (5.11b)
Fa (X g = Xop) T (Yo —Yoo) +155(Z 4 = Zg,) '

An image point measurement of ground object point A on image 1:
ualv Val

An image point measurement of ground object point A on image 2:
uaZ ) Va2

Camera exposure station of exterior orientation on image 1:

X01 ' YOl’ ZOl

Camera exposure station of exterior orientation on image 2:

XOZ ’Y02 ! ZOZ
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With reference to the example in Fig.5.11, since three ground object points have been
measured on the overlap areas of the two images, this implies that twelve collinearity
equations can be created. This includes, two equations for each ground object point (3
object points) on image 1, and also, two equations for each ground object point (3 object
points) on image 2.

Also in the example above, since four tie points have been measured on the area of overlap
of the two images, sixteen equations can be created (from each tie point). This gives a total

of 28 observation equations. In this example (Fig.5.11), the known elements are:
e The six exterior orientation parameters of the image on top (i.e., X, Y, Z, @ ¢

and K).

e The six exterior orientation parameters of the image at the bottom (i.e., X, Y, Z,

@, P and K ).

e The tie points X, Y, and Z coordinates, create twelve unknowns (i.e., four tie points
multiply by three X, Y, Z coordinates).

From the above, the overall total of the unknowns equals 24.
The value and redundancy in the input data determines the overall quality of a bundle
block adjustment. With reference to the example above, the redundancy in the project can
be determined by subtracting the number of unknowns (24) from the number of knowns
(28). Then the resulting redundancy is 4. Once all the observation equations have been
created, the collinearity condition can then be solved using a least squares adjustment

approach.
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55.1.3.2 Least Squares Adjustment in Aerial Triangulation
Least squares adjustment technique is an algebraic method used for the estimation of the
unknown parameters linked with a solution while also reducing error within the solution

[106], [109]. The purpose of least square adjustment in block triangulation is:

e The adjustment of values linked with exterior and interior orientation parameters.

e The estimation of values of X, Y and Z coordinates linked with the tie points

e Minimizing and spreading of input data error through the entire bundle model.
The least squares adjustment technique uses repeated processing until a desired result is
reached. A desired result is reached when the input data residuals are minimized. This
includes, finding the corrections to the unknown parameters by reducing the input
residuals. The residuals are obtained from the variance between the measured user’s input
and the computed value in a project.
The residuals to be minimized include: the image point coordinates of the object points on
the ground, the tie points and the known object point ground coordinates. The least squares

conditions can be formulated as follows:

V=AX-L (5.12)

where:
V = a vector of image coordinate residuals

A = the matrix of partial derivative associated with the unknown parameters, which
includes, exterior orientation, interior orientation, tie points X, Y, Z and object
point ground coordinates

X = the matrix of the unknown parameters.
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L = the matrix of the input observations, which includes image point coordinates
and object point ground coordinates.
The X matrix, which holds the adjustments of the unknown parameters, can be calculated

by the following formula:

X =(A'PA)"A'PL (5.13)

where, X, A and L are as in (5.12), t is the matrix transposed and P is the matrix holding
the observations.

After the least squares iteration process is completed, the adjusted values of the unknown
parameters are then added to the initial estimates. In most practical cases, the initial values
are the exterior orientation parameter readings obtained from the on board GPS/INS sensor
and to compute the final EOPs, the adjusted value of the EOPs that is computed by the
least square adjustment process is added to the initial value of EOPs provided by the on
board GPS/INS. The least squares iteration technique continues to adjust the values of the
unknown parameters by an iteration process until a pre-defined threshold is reached. The
results that can be obtained from the least squares adjustment process in an aerial

triangulation includes:

e The absolute values of both the exterior and the interior orientation parameters of

each image in a block.
e The image and GCP coordinate residuals.

e The coordinates of the adjusted X, Y and Z tie points.
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The block triangulation result above can then be used as primary inputs for processing the
following tasks:

e Ortho-rectification

e Formation of Digital Elevation Model (DEM).

e Creation of stereo pairs

e Accurate point determination

5.6  Ground Control Points

The photogrammetry component that is instrumental to the establishment of a highly
accurate relationship between the camera/sensor used to capture the images in a project,
the imagery itself and the Earth’s surface is the ground control points (GCPs). These GCPs
have features that are located on the Earth’s surface, which have X, Y, and Z coordinates
that are known. The X and Y coordinates of a full GCP specifies the horizontal control
while the Z coordinate specifies the vertical control (elevation).

Ground control surveys for ortho-rectification and geo-referencing, consist of two
procedural steps. The first procedure involves creating a setup of basic control on the
project area. This basic control consists of the scaling of the project area by determining
the X and Y coordinates of permanent features on the project, and the benchmark of
vertical (Z) control elevation that serves as a reference model for subsequence surveys.
Basic ground control surveys can be done by using either the conventional ground
techniques or by using GPS techniques. [108], [106] and [109] found GPS techniques to

be cheaper and very accurate when compared with the conventional ground technique.
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The second step, involves the measurement of established image points on the image plane
corresponding to object points on the scaled (control) ground.
The topographies on the Earth’s surface used as GCPs for ground surveys must be
permanent features, so that they can be reused for a subsequent visit. Commonly used
features are:

e Side walk corners

e Intersection of roads

e Survey benchmarks

5.6.1 GCP for Mapping Project Area

The minimum number of GCP required for a photogrammetric mapping project depends
on the size of the area. Theoretically, to establish a relationship between the image space
and the object’s ground space, at least two GCPs having X, Y, and Z coordinates and one
GCP having a Z coordinate is needed. This gives a total of seven observations.

In processing one image, for the purpose of ortho-rectification (known as single frame
ortho-rectification), a minimum of 3 GCPs is required. Each GCP must have X, Y and Z
coordinates associated with it and must be evenly distributed to ensure high accuracy in
camera/sensor modelling.

In processing a strip of adjacent images, a minimum of 2 GCPs for every third image will
be adequate. In a strip or block of images, an accurate geometry can be applied in regions
where there is less redundancy, such as the curve edges of the strip or block. Thus,
choosing GCPs located at the curve ends of a strip or block increase the accuracy of ortho-

rectification. The GCPs arrangement for a block of images consisting of four strips of
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images with each strip having eight overlapping images is illustrated in Fig.5.12. The

image locations of the GCPs are measured on the overlap parts of the images.

NN | =

Fig. 5.12 GCP arrangement in a block of images

5.7  Tie Points

A point that is identifiable in the overlap areas between two or more images is known as a
tie point. The tie point has ground coordinates that are not known, tie point ground
coordinates are determined during aerial triangulation. Tie points in two overlapping
images appearing in their overlap areas are identified and measured during block
triangulation. Tie point measurement can be done either manually or automatically. Tie
points must be well distributed over the area of the block to ensure high accuracy during
block triangulation.

As illustrated in Fig.5.13, for a block of images with 60% forward overlap and 30% side

overlap, nine points will be enough to tie together the block along with separate strips.
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Fig.5.13 Tie points on a block of images

Image matching techniques which include, area based matching, and feature based, are
used individually or in a combined form for the automatic identification of tie points and

to tie together block images and individual strips.

58  Chapter Summary

The main purpose of photogrammetric technique is to thoroughly state the sizes of an
object and hence define its coordinates. This was achieved based on the intersection of
rays from a pair of photographic images. The origin of photogrammetry started with
analog photogrammetry in which, images were recorded on photographic film. During this
period, orientation reconstruction and other measurements are carried out in an optical
mechanical way. The orientation reconstruction was later changed to algorithms and is
called analytical photogrammetry. With advent digital cameras and high speed computer
systems, computers are employed for all photogrammetric processes. There are two types

of imaging method in photogrammetry, this includes terrestrial and aerial imaging. With
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respect to aerial imaging, a photogrammetric camera is fixed on an aircraft and runs
parallel flight strips as defined in the flight plan. The two dimensional images captured by
the aircraft, are observed pair by pair in order to create a stereoscopic view. Tie points in a
pair of images with a number of known ground control points are adjusted based on
geometric equations, in which specific rules (collinearity) are followed. Thus, this process
is called aerial triangulation. The results obtained from these equations are used as inputs

for processing photogrammetric tasks such as: ortho-rectification, formation of DEM, etc.
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CHAPTER SIX

Ortho-Rectification and Geo-referencing
of Video Streams from a Low-Cost UAV
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6.1 Introduction

The flight of the low-cost UAV is generally less-stable when compared with larger fixed-
wing aircraft and because it flies at low altitude (approximately 500 m), the camera frame
tends to jerk continuously along the flight path. This, coupled with the disorientation
caused by long viewing of the video camera, makes the analysis of data acquired by the
low-cost UAV difficult. Thus, the ortho-rectification and geo-referencing of the video data
could serve as an important post-processing step preceding the analysis of the UAV data.
Ortho-rectification is the process of geometrically correcting an aerial image such that the
scale is uniform. The ortho-image formed from the process is corrected for lens distortion,
topographic relief, and camera tilt. This can be used to measure true distances, because it
is represents the exact measurement of the earth’s surface. Ortho-rectification and geo-
referencing are essential to pin point the exact location of targets in video imagery
acquired at the Unmanned Aerial Vehicle (UAV) platform. This can only be achieved by
comparing such video imagery with an existing digital map. However, it is only when the
image is ortho-rectified with the same co-ordinate system as an existing map that such a
comparison is possible. Many approaches have been presented for ortho-rectification and
geo-referencing of low-cost UAVs by researchers in the past. These range from using
different types of operational platforms such as satellite [110], fixed-wing aircraft [111],
helicopters and UAVS; and different sensors like radar [112], visible and multi-spectral
images [113]. Also, many mathematical models have been used for ortho-rectification,
ranging from the simple affine transformation [114] to projective transformation [115].
Geo-referencing in general is based on direct geo-referencing using a GPS/INS system,
but because of the low quality of the GPS/INS usually used for low-cost UAVs during

data acquisition, the GPS/INS accuracy is very low.
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The method used in this research for ortho-rectification and geo-referencing is based on
the photogrammetry model [116], [117], this is a form of geometry imaging system that
makes use of the aerial image central perspective and the principle of collinearity. A close
alternative to this photogrammetry method, are the Laser scanner and the Push-broom
[118]. These two approaches were observed by [119] and it was found to be time

consuming and very expensive.

6.2 Experimental Procedures
The experimental procedure for ortho-rectification and geo-referencing of object detected

from video streams captured by a low-cost UAV is as follows:

6.2.1 Data Collection and Test Field Calibration

The UAV used in the experimental work reported in this thesis is the Spreading Wings
S800, the detailed configuration and specification of the Spreading Wings S800 is given in
chapter three of this thesis. The Spreading Wings S800 UAYV is equipped with GPS/INS
and has the capability to geotag (time and position tagged) each video frame at the exact
time of exposure.

The experiments were conducted on a calibrated control field at the federal capital
territory Abuja, Nigeria. The control field coverage area is 0.11357 square kilometers (sq.
km). Six ground control points (GCPs) were collected using a hand held GPS receiver, and
these ground control points, which are located at the corners of sidewalk and crossroad
(Fig.6.1), were observed till four satellites are locked simultaneously before readings were

taken. The six GCPs collected are converted from a geodetic coordinate system to X, Y
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Cartesian coordinate system in meters for use in the computation of the final bundle block

adjustment.

Google earth

Fig.6.1 Digital map of the test field used in the experiment showing the location of the 6 GCPs

The aerial platform includes the UAV and the sensor systems (camera and GPS/INS
system). The UAV, which is remotely controlled by a pilot at the control station, flies along
the test field and collects video streams of the test area, while the on board GPS/INS system
simultaneously collects telemetry data of the test area. The telemetry data consists of the
UAV’s position and angular attitude. All data collected and their source are also

summarized in Table 6.1.
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Data Purpose

Captured by UAV video camera to pin point exact locations
Mpeg-based of targets.
video

stream

Captured by the GPS/INS system on the UAV platform. It

Telemetry
consist of the UAV’s position and angular attitude
Data
Captured by hand-held GPS receiver. It is used to measure
GCPs

the X and Y coordinates of the GCPs.

Table 6.1 Data collection source and its purpose

The video and the telemetry data were collected for approximately 25 minutes and were
transmitted through a radio link of 2.4GHz to the portable PC at the ground station in real
time. In order to perform a near real-time image geo-referencing of the video streams
acquired by the UAV platform, it is essential to generate an ortho-image from the image
sequence. Due to the limited payload weight on the UAV platform we were forced to off-

load this process to the ground station (Fig. 6.2).
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Fig. 6.2 Ground control Station

Since the GPS and INS are integrated into the camera on board, the received video
sequence frames are time and position tagged (see appendix I). Fig.6.3 shows the GPS
flight elevation against distance covered by the UAV. The unstable lines in the graph are an
indication of continuous jerking of the aircraft along the flight line. Hence, the cause of

distortion in the captured images and the need for ortho-rectification of these images.
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Fig.6.3 GPS/INS Flight Track Log (Elevation Vs Distance)

6.2.2 Multi-sensor System Data Fusion

The multi-sensor digital systems used in this research consists of a digital camera system
used for image acquisition and a GPS/INS integrated sensor system used for recording
camera’s positions and attitudes. When using multi-sensor digital systems, all these systems
need to be calibrated in order to minimise the systematic errors that arises from these
systems. The main calibration requirement in a multi-sensor systems is the camera and

boresight calibration.

Boresight calibration involves computing the misalignment angles between the INS body
frame and the camera frame. Since the INS sensor system and the camera cannot occupy
the same center on the UAV there are is a gap between the two sensors coordinate system.

The angle formed by the gaps between the coordinate system of the INS body frame and
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the camera coordinate system is known as boresight angle. The concept of boresight

calibration is shown in Fig. 6.4.

Flight Direction

—
Camera Frame GPS/INS Frame
7c A
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>
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Q X° YI ' Zllr
k

Fig. 6.4 INS/Camera Boresight Calibration

The relative orientation of the camera frame coordinate system with respect to the INS

body frame coordinate system is defined by the direction cosine matrix as:

1 0 0 |cosg O —sing| cosxk sink O
R.=/0 cosep sinp| 0 1 0 |-sink cosx O
0 —singp cose|sing 0 cos¢ 0 0 1
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COS ¢ COS Kk CoS ¢sin k —sing
=|sin@sin ¢ cos k —CoS @Sin k' Sin @Sin @sin K +C0S @ COS k¥ SIN @ COS ¢
COS @SIN ¢ COS K +SIN@SIN K COS @ SiN @Sin Kk —SiN @ COS k¥ COS ¢ COS ¢

(6.1)

Hence (6.1) is used as additional observations in the final bundle adjustment and estimating

the boresight as one of the parameter.

6.2.3 Ortho-Rectification and Geo-Referencing of Video Streams

The basic steps for video imagery ortho-rectification and geo-referencing are described in

the following sub-sections:

6.2.3.1 Feature Points Extraction and Tie Points Matching of Video Frames

After the de-compilation of the video streams into individual frames as discussed in chapter
four of this thesis. The next step is to extract feature points from each video frame, track tie
points between images and video frame matching. A feature based algorithm is used for
feature points extraction, tie points tracking and image matching of the video frames. We
chose feature based matching because, it is invariant to radiometric changes and it runs
faster when compared with other matching techniques. Also the features used are points
rather than lines. This enables us to avoid problems caused by broken lines and more so,

points are very easy to describe and are invariant to central projection. Feature points
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extracted and matched are based on a number of control parameters such as window sizes

and threshold values. This matching technique is detailed in chapter three of this thesis.

Based on the SURF algorithm operations, a chain of overlapped video frames and
corresponding tie points are generated for further (relative and absolute) bundle adjustment

model.

6.2.3.2 Finding of Interior Camera Orientation Parameter

The next step is the finding of the interior orientation of each video frame, known as
camera calibration. This involves finding the focal length of the camera, principal point co-
ordinates and lens distortion of each video camera frame. For the calibration of the video
camera, we used a mathematical model called the Direct Linear Transform (DLT). As
mentioned in chapter five, the DLT model is based on the principle of co-linearity (i.e. all
points must be on a straight line), and it requires foreknowledge of the image plane
coordinates and Ground Control Points (GCPs). The DLT model based on a point g on the

first image frame and for a ground control point G can be expressed as:

L, Xs +L,Ys +LZ5 +L,

u.+Au=
g L, X +LyoYg + L 2 +1 (6.22)
L Xs+LYs +LZs +L
Vy + AV = c Tholeg Tt T4y (6.2b)
LoXg + LYo +LyZe +1
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where, (U,,V,) are the coordinates of the image point 4 on the first image frame

(Xs,Ys,Zg) are the coordinates of the ground control point G; and (AU, AV) are optical

errors, which can

be expressed as:
Au=E(L,r* +Lgr® + L,r°) + Lg(r* + 2&%) + L& (6.3a)
AV = A(Lr? + Lgr* +L,r®) + Lné +L (r* +27%) (6.30)
where, [E,A]l=[U—Uy,v—V,] and r> =E*+A?.

From (6.2),

1 1
Buq :B(L:lXG +L,Ys + LyZg +L,—LuX g — LuYg — LjuZg ) +Au (6.4a)

1 1
BVq :B(leG +L,Ye + LiZg +L,—LovX g — LygWg — L VZ g ) + AV (6.4b)
where, D=1Xs +LpYe +LyZ5 +1 (6.5)

(6.4) in matrix form becomes:
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Ll
L2
L3
L4
L5
1|Xs Yo Zg 1000 0 -uXs -uYs -uZ, Er'D Er'D Er’D (r*+2E°)D EAD||L, (6.6)
D[0000 Xg Ys Zg 1 -vXg ~vYs —vZg ArD Ar'D Ar'D AED (r*+2A")D||L, |
LS
Lg
L10
_Lll_
Vq
L
L2
L3
L4
X Yo Zg 1 0000 “U X -UYs -UZs Er'D Er'D Er°D (r’+2E°)D EAD tf’
11D Do b D D D D D D D || ®| (6.7)
Dligoo Xe Yo Zo 1 %X ¥ —%Zo AFD ArD Ar'D AED (F424)D|| L,
D D DD D D D D D D D D L,
L9
LlO
_Lll_

In (6.7), the values of L,....... L,, are the only unknowns. Also in the equation, it was

assumed that the image frame consists of a point and one ground control point was used for
the calibration of the camera. Thus, less than 16 parameters were used while the unused

rows and columns were discarded.
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From here, we will denote the right hand-side matrix of (6.7) by F, the L,....... L,, matrix

as L, and the left hand- side matrix as, h, so that (6.7) can be expressed as:
h=F.L (6.8)

Calibration is achieved by solving for L in (6.8) but the matrix F is not a square matrix and
hence cannot be inverted. Thus, a least squares method is employed to solve for L. A
simple way to do this is to use the ‘Moore-penrose pseudo-inverse’ method [120]. The step

is to multiple both sides of (6.8) by F':
FTFL=F'h (6.9)

Since FTF is a square, it can now be inverted. We then multiply both sides of (6.9) by the

inverted matrix square (FTF)™:
(FTRLYFTAL = (FTF)Fh (6.10)

An identity matrix | is formed on the right-hand side of (6.10), then the solution of L is

calculated:
L = (FTF)'FTh (6.11)

Through computational iteration, the L,....... L,, parameters can be solved. Afterwards, the

interior and exterior parameters can be calculated.

The interior orientation parameters can be calculated from:
Up =—(Ly Lo + Ly Lyg + gLy ) /(LG + L5, +15,) (6.12)
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Vo = _(L5L9 +LgLy + Ly L11)/(Lg + Lio + Lil) (6.13)

fe=—u+(L+L5+L2)/(L2+L2% +12)  (6.14a)

fl=—vg+(L+L+L)(E+L+L))  (6.14b)

¢ f, +f,
2 (6.15)
The exterior orientation parameters can be calculated from:
my =Ly /(2 + 5 +L2)
3 9 9 10 11 (6.16a)
N = LlO/\/(Lg +L3 +L31) (6.16b)
S, = '—g/\/(LS +L5 +L5,) (6.16¢)
1
m, :f_|:L1/\/(Ls29 + Lo +L31) +m3uo:| (6.16d)
1
n :f_[l-z/\/(l—g + Lo +L§1)+n3uo} (6.16e)
1
S1 :f_|:|-3/\/(|—sza + L +L§1)+33u0:| (6.16f)
1
m, = f_[Ls/\/(Lg + L3 +L3,) + msvo} (6.169)

v
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n, :—[LG/\/(Lg +Li, +L51)+nsvo} (6.16h)

v

1
s, :f_[L7/\/(L§ +L2, +|_fl)+sgvo} (6.16i)

\'

The rotation matrix can be expressed as in (6.22) by:

m m, m,
Q =|n n, n
1 2 3 (6.17)
Sl S2 S3

The perspective centre coordinates ( X,,Ys,Z;) can be calculated from:

My X +N3Ys +5;Z5 +(\/LS +L5, +L5,)=0 (6.18)
u, + f,(m X, +nY, +s,Z,)/W+L, =0 (6.19)
Vo + f, (M, X +n,Ys +5,Z)IW+ L, =0 (6.20)

where W = \/Lg + L5+ L3
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6.2.3.3 Finding the Relative Orientation

The process of orienting images in relation to one another, by recreating the relative
position and angular attitude of images with respect to one another at the instants of

exposure is called relative orientation. This is achieved in a stereoscopic pair image, by

making the first image fixed and setting the Z coordinate of the first (fixed) image to its

focal length, while the X and Y coordinates and the angular attitude (@, ¢, x ) of the fixed

image are all set to zero. The X coordinate of the last image is then equal to the photo base.
After the determination of the interior orientation parameters of each video frame
separately, using the DLT model as mentioned in section 6.2.2.2, the two image coordinates

system are clearly known.

Hence, the relative orientation unknown parameters can be easily solved by using tie point

coordinates as observations in a least squares solution.

The results obtained can then be used to attach relatively oriented image sets to each other
for an entire flight strip. The entire strip is then adjusted to absolute coordinates using

ground control points in a final transformation, which is discussed in the next section.

6.2.3.4 Finding the Absolute Orientation

The absolute orientation is the process of levelling and scaling the stereo model with
respect to a reference datum using ground control points. With the relative orientation

parameters computed, both the camera’s interior and exterior parameters (IOPs and EOPS)
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are solved simultaneously by a calibration model called bundle adjustment model.

The bundle adjustment model used the principle of collinearity to specify the relationship
between the images coordinates of points, the image space coordinate at exposure, and the

ground coordinates of points.

The bundle adjustment process like the relative orientation, start with the first and second
frame (a stereo pair of images) and afterwards, extended to the entire flight strip. Hence, for

any ground point Q, the first video frame is given by the following mathematical model:

Uy — Uy +AU =

g rlll(xQ = Xs) + r112(YQ =Ya) + rlls(ZQ -Zg) (6.212)
rs‘ll(XQ _X51)+r312(YQ _Y51)+r313(ZQ _Zél) .

Vg — Vo +AV =

g erl(XQ —Xg)+ rzlz (YQ —Yg1) + r213(ZQ —Zg) (6.21b)
rsll(xQ _X51)+r312(YQ _Y31)+r313(ZQ _Zél) l

For the second video frame, the mathematical model is expressed as:

Ug —Up +AU =

f r121()(Q - st)+ rli(YQ _Y52)+ rl%(ZQ _Zsz)

- 6.22a
r321(XQ_X822)+r322(YQ _Ysz)+r323(ZQ_Zé2) ( )
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Vg2 —Vo +AV =

f M (Xq = Xg2) + 15 (Yo —Yso) +15(Zg = Zs,)

- 6.22b
r321(XQ_XSZ)+r322(YQ _Y52)+r323(ZQ_Zé2) ( )

where (ug,v,) and (Ug,,V,,) are the image coordinates of point g in the first and second
video frame respectively; (Au,Av) is as in (6.3); ( X,.Y,.Z,) are object space coordinates
of point Q; (Xg;,Ys Zs,) and ( Xs,,Ys, Zs,) are object space coordinates of the exposure
station of the first and second video frames respectively; (Ug, V) are the principal point

coordinates in the corresponding frame; f is the focal length of the camera; and r and r?

are the elements of the three rotational angles as in (6.1) in the corresponding frames.

In this mathematical model, the unknown elements, which consist of the camera’s interior

orientation parameters (Uy,V,, f, AU, AV) , and the exterior orientation parameters of the
first and second video frames, (Xs;, Y51 Zg1, @y, @,k ) and  (Xg,,Ys0 Zgo s 05, 8,,K,)

respectively, can be solved by linearizing (6.21) and (6.22) using a Taylor series expansion.

The linearized equation is expressed in matrix form by:
Vv, = A X, + A, X, —I (6.23)

where V; is a vector of image coordinate residuals, X, is a vector of the exterior
orientation parameters of the two video frames, X, represents the vector of the camera

interior orientation parameters, A, and A, are the coefficients of X; and X,

respectively.

150



On the basis of the 6 GCPs collected as described in section 6.2.1, the co-ordinates of the
image plane in the first and second video frames were measured and all the unknown

parameters in (6.23) are computed.

With the formation of the ortho-image from the above process, all ortho-images (video
frames) are mosaicked together to create a mosaic image covering the test area. This
mosaic image is then mapped onto the digital globe containing the map of the test area and
the accuracy achieved is evaluated by the use of the six ground control points obtained

from the test area.

The work flow of the ortho-rectification and geo-referencing procedure is shown in Fig.6.5:
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Fig.6.5. Work Flow of Geometric Ortho-rectification and Geo-referencing of Video Stream
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6.3 Experimental Results and Discussion

As shown in Fig.6.6, each video frame is geo-tagged, that is each video frame is tagged
with its corresponding geodetic coordinate (Latitude, Longitude, Altitude), apart from the
value of the altitude, values of both Latitude and Longitude are converted to X, Y, Z
Cartesian coordinate system in meters (appendix 1) . Thus, these values can then be used
during computation of in aerial triangulation. It can also be observed from Fig.6.6 that the
values for attitude for each video frame are not the same, despite the fact that the UAV
travels at constant altitude above the sea level. This is because as the UAV travels, it

height above the ground height varies with its topography.

0eH WEOoQ®Be x4 |8 il R &
x]o) Roferonce
CEE s 0 BEE &
Cameras i Longitude Latitude Alttude Error (m) Yaw Pitch Roll ~ Eror(deg)  Projections  Error
1] P1090306.pg 7482535 8910153  521.201200
',{j P1090307.jog 7482527 8910148 521.201200
1] P1090308 og 7482427 8910045 530456500
1] P1090309jog 7482347 8909942  535.525100
[ P1090310pg 7482212 8909847  530,026300
1] P1090311,jog 7482238 8909798  536.026300
1] P1090312jpg 7482172 8909702  539.355200
[ P10903130g 7.482068 8909557 548512300
i] P1090314j0g 748202 6909500  548.512300
3] 1090315 jog 7.481960 8909302 550953800
13 P10303160g 7.481685 8900287  551.659100
1] P1090317,g 7.481768 6909128 554.920800
31 0400740 inn 7481730 8909078  554.920800

Fig.6.6 Each Video Frame Geo-tagged with it Corresponding Geodetic Coordinate
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Fig.6.7 shows, the 78 frames obtained as a result of video stream de-compilation, the video
frames are decompiled at the rate of two frames per second by BPS video converter 1.4
software. Hence, leading to a forward overlap of 60%, no side overlap was recorded
because the experiment was conducted for only one flight strip. The frames are shown as

not overlapping for the purpose of clarification.

PIONA0pg  PILipg PO PINO3jpg  PIONMNpg  PINDSjpg PN  PINOTpg  PIONMSpg  PIOSOMOjg PO POy  PIONMjpg  PIOSORjg POy PLOSEETS)pg
llIIIlllllllllllllllllllllllllll
PIONATEjpg  PIOTIjpg  PIONATBpg  PIOONSjng  PIONEOjpg  PIOLjpg  PIORljpg  PIOSON3jog  PIORMjpg  PIOUSjpg  PIOMGjpg  PIOSUTjog  PIONSMjpg  PUOSUNDjpg  PIONIjpg  PUSILjpg
N0 00 ) I
PLONMjpg  PUBMjpg  PIONMjpg  PIONMSjpg  PIOEjpg P1090]97;p9 PL0%03%8 jog Pllm399|g PIOM0Djpg  PUAOLjpg  PIOMOZjpg  PIOSMBjpg  PIONMMAjpg  PISONOSjpg  PIOMMOGjpg PIOSMORjpg
BN
POy PNy plOM0pg  PIOOMLpg  PIONM2pg | PIMUpy PUSOMAjg  PIOMISpg  PONMSpg  POMIg  PIOMGpy OISy POy MOy P2y P
HENNEE NN

POy PIOSNSjpg PO MUy PIONMZpg  POSMjpg  PIOSOANjpg  PIOMLpg  PIOOM3Zjpg  PIOSOS3pg  PIMjpg  PIOM3Sjpg  PIONMGjpg PLOSTig

Fig.6.7 De-compilation of Video Streams into 78 Frames

Fig.6.8 show the result of interest points matching between two overlapping frames (first
and the second frame) using the SURF algorithm. A total of 20516 tie points were
successfully matched within 78 frames with 72983 projections. See appendix IIA for

detailed survey data.
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Fig.6.8 Conjugate points between two overlap frames (outliers removed)

Fig.6.9 shows the image residuals of the camera, which was the outcome result of the

camera calibration.

Fig.6.9 Image residuals for video frames

It can be observed from Fig.6.9, that the residuals are randomly distributed in magnitude
and direction. This implies that there is no obvious systematic error in the residuals. The

root mean square residual is 0.672782 pix.
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Through the relative orientation stereo model the average camera location error was
computed (Table 6.2). See also appendix 1B for detailed report on the camera locations and

error estimates.

X error (m) Y error (m) Z error (m) Total error (m)

8.820588 5.003659 3.798771 10.829129

Table 6.2.Average Camera Location Error

The on board GPS/INS provides the real time UAV’s attitude information (Table 6.3),
which is used in the calculation of the Boresight matrix by adding the GPS/INS readings to

the result of the absolute bundle adjustment.

On-board Row (@) Pitch (¢) Yaw (k)
GPS/INS
0.0607932 0.00986701 1.0098690
Attitude
Readings

Table 6.3 UAV Attitude Information

The result from the DLT model and the bundle adjustment method to calculate the interior
orientation parameters and exterior orientation parameters is shown in Table 6.3 and Table

6.4 respectively.
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In Table 6.3, uo and vo are the coordinates of the principal point. Also the lens distortion is
not considered here, this is because the DLT method does not give very accurate results,
hence, the solved interior orientation parameters and exterior orientation parameters will be

used as initial values in (6.1).

The computation of absolute orientation is automatic but not autonomous because it
involves human interaction, where we are prompted to enter the values of the selected

ground control points.

Row (@) -0.0524789
Pitch (¢ ) 0.0042136
Yaw (K) -1.037061
U, 2409.78
v, 2380.12
f 4836.75
u
f 4836.75
\'

Table.6.4 DLT Model Results
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Row (@) -0.0545097

pitch (4) 0.0087668

Yaw (k) -1.0087921
u, 2420.61
V, 1335.46
K, -0.0310589
K, 0.0280943
K, -0.0188507
P, 0
P, 0

Table 6.5 Results from Self-calibration

In Table 6.5, (K1, Kz, K3) represents radial distortion coefficients while (P1, P2) represents
the tangential distortion coefficients. The results of ortho-rectification of each video frame

is given in appendix I11.
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After the ortho-rectification process, the ortho-images (corrected frames) are mosaicked
together to form a map covering the test area, the result of the mosaicking of video frames
is shown in Fig.6.10. The reconstructed digital elevation model obtained as a result of the
mosaicking of video frames is also shown in appendix IV. This mosaic digital elevation
model is then integrated with a virtual globe (Google Earth). The result of integration of

mosaicked images and the Google Earth is shown in Fig.6.11.

Fig.6.10 Mosaicked Images Covering Test Area

Fig.6.11 Mosaicked images registered on Google earth for geo-referencing
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It can be seen from the result of the merging in Fig.6.11, that the image points on the
mosaicked images aligns well with the 6 GCPs on the Google earth map with a

misalignment error of between 3-5 meters.

6.4 Chapter Summary

This chapter presented the procedural steps for near real-time ortho-rectification and geo-
referencing of video streams obtained from a low cost UAV equipped with a multi-sensor
system. A mathematical model and DLT algorithm, which is based on a photogrammetry
model, was used to calculate the internal geometric parameters of the camera and the
exterior orientation parameters of each video frame. The values obtained from the solved
DLT equations were used as inputs in the stereoscopic pair image of the relative orientation

to eliminate the x-parallax and y-parallax in the developed model.

The DLT values are also employed as initial values for the calibration process for the final
bundle block adjustment, in which the 10Ps and EOPs of each video frame were solved
simultaneously at the point of exposure. A test field located in Abuja, Nigeria was used to
evaluate our method. Video and telemetry data were collected for about twenty-five
minutes, and they were processed using our method. The results obtained demonstrated that
the geometric measurement of the test field from ortho-images is more accurate, when
compared with those from original perspective images and also, the accuracy of the two-
dimensional DSM obtained, when compared with the 6 control points in the digital globe

has misalignment errors between 2 and 3 metres.
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CHAPTER SEVEN

Integration of Object Detection and Geo-
referencing Processes
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7.1 Introduction

After the two independent experiments conducted for object detection using the correlation
filter and ortho-rectification and geo-referencing of the object detected using the
photogrammetry model. Another experiment was conducted which integrated the two

processes of object detection and geo-referencing.

In monitoring of a buried oil pipeline right-of-way (ROW) using a remotely controlled low-
cost UAV equipped with sensors, objects of interest lying on the buried oil pipeline ROW
and which may act as a potential threat to the buried oil pipeline ROW must be detected
and the exact geographical location of the object detected must be determined. This will
enable the pipeline operator to know the exact location where to deploy security operatives
in order to apprehend the third party intruder to the pipeline ROW. The basic steps and
results of experiments performed for the developed system for monitoring of buried oil
pipeline ROW s illustrated in the following sections. The general work flow of the

developed system is shown in Fig. 7.1.
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Fig. 7.1 Work Flow of the Developed Monitoring System
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7.2 Object of Interest Detection Process

The first step in monitoring of the pipeline ROW is to detect objects of interest which may
act as a threat to the pipeline ROW. The three basic steps for detecting objects of interest in

a video streams are:
7.2.1 Data Acquisition

Experiments were conducted on a calibrated control field, located at the federal capital
territory Abuja, Nigeria. Where video streams and telemetry data were collected with the
aid of a Spreading Wings S800 UAV, which is equipped with GPS/INS and has the

capability to geotag (time and position tagged) video frames at the exact time of exposure.

The DJI S800 UAV transmits real-time flight data and video feeds with a 5.8G video

downlink via a radio signal to the ground station where all other processing takes place.

The ground station consists of a portable PC and three servers: the image processing server,
the threat database server and the base map server. The configuration of each server is the

same and is given in Table 7.1.

Operating System Window 7 Enterprise, Service Pack 1

64-bit Operating System

Processor Inter® Core (TM) i7-3770 CPU@
3.40GHz
RAM 8.00GB

Table 7.1 Server Configuration.
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7.2.2 Resampling of Video Streams

The video streams captured by the UAV are resampled into individual frames (JPG format)
at the rate of one frame per second of sizes 256 x 256 using the BPS video converter 1.4
software in the image processing server. Conversion rate of one frame per second was
chosen to allow for an image forward overlap of 65% between sequential frames to allow
for stereoscopic reconstruction of image points during bundle adjustment. Breaking the
video streams into individual frames allows for each image in the video frame to be
processed individually with the aim of detecting objects of interest in the frames with a
very small number of false detections. Fig. 7.2 shows the result of video streams broken

down into 98 frames.
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Fig. 7.2 Video streams converted into 98 frames.
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7.2.3 Cross Correlation

After the video streams had been resampled into individual frames, the video frames are
then transferred into the threat database server, where each frame is cross correlated with
each trained (image template) filter in the threat database server. Whenever the cross
correlation output peak gives a PSR value that is greater than the chosen PSR threshold
value of 20.01. Then there is a match between the video frame and one of the trained in-
class images. Hence a target object has been detected. The PSR value is given by equation
(4.5).

Fig. 7.3 shows the example results of trained images, which have been derived from CAD
models of a selected car. These training sets are derived from different viewing angles (0°—
360°) of the UAV’s camera.

Fig. 7.4a shows the result obtained from cross correlation of the target image with the
trained images using the OT-MACH correlation filter. The image at the upper left most

corner is the 64 x 64 filter image (template) that correlates with the target image.
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(b)

Fig. 7.4 (a) Result image showing the viewing angle of the UAV camera and the corresponding
template image (b) Result of Cross Correlation output, the sharp peak indicate an object is detected.

In Fig. 7.4b the PSR threshold value was set to 17.01. This means if after cross correlation
the output peak has a PSR value less than 17.01, then the object found is not a threat, it
only has some features similar to the object of interest. However, all video frames which
produce a correlation output peak with a PSR value greater than the chosen PSR threshold
value (17.01) implies that objects of interest are detected on them. We chose a small PSR
value to enable the filter to detect any little features of the object of interest that may be
present in any frame, since it is possible to have the object features of interest in more than
one frame. However, care must be taken so as not to choose a PSR value that is too low or
too high as threshold, in order to prevent false detection or passing objects of interest
without detecting them. Hence a lot of tests need to be conducted before a value is chosen
as threshold for the PSR. The PSR value of the output peak in Fig. 7.4b was found to be

625. 55.
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7.3 Ortho-rectification of Video Frames

The next step after objects of interest have been detected from the video frames is the
ortho-rectification of video frames. This process is performed in the base map server, which
consists of the SURF algorithm, the Agisoft Photoscan and Google Earth software. The X,
Y, Z coordinates position data of each image is given in appendix V. The process of ortho-

rectification and results obtained are explained in the following subsection.

7.3.1 Extraction of Feature Points and Tie Points Search

After the detection of objects in the video frames, the frames are transferred from the threat
database to the base map database. The feature point based algorithm (SURF) is used for

the extraction and matching of feature points from adjacent video frames.

Tie points are conjugate points on two images in the direction of the flight of the UAV. The
SUREF algorithm automatically searches for tie points between image frames. The algorithm
exploits the fact video frames contain imagery that are very close to each other resulting
into a small change of images between frames. This means any feature points found on an
image in a frame will have image coordinates in close proximity to the coordinates of the
tie points found on the image in the frame directly preceding and succeeding it. Hence the
problem of occlusion is greatly reduced. Fig. 7.5 shows the result of putatively matched
points including the outliers between two successive frames. Only the 20 feature points that
best matched were selected while the outliers were discarded, the result of matching of the
matched points inliers is shown in Fig. 7.6. The SURF algorithm m file used for the

extraction and matching process is given appendix VI.
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Fig. 7.6 Matched points (Inliers only) between two successive Frames

Tie points are used in the relative orientation step for estimating the image frame base. In
an ideal situation where the flight line is a straight line in the x direction of the image
planes, the sequential tie points will be found in positions with the same image coordinates
with other image plane. But due to continuous jerking of the low-cost UAV along the flight
line, the attitude and position of the camera is continuously changing. This produces some
image point off-set on the image plane. This is corrected in the remaining steps of ortho-
rectification in the following section. The survey data for this experiment is shown in

appendix VIIA
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7.3.2 Camera Calibration

The next step of ortho-rectification is the calibration of each camera video frame. Due to
the off-set of the image point position on the video frame which is caused by lens distortion
and other systematic and non-systematic distortion of the camera, there is the need to
calibrate each camera video frame to correct these errors and obtain the true position of the
image point on the frame. This involves finding the focal length, principal coordinates and
lens distortion (interior orientation parameters) and the exterior orientation parameters of
video camera frame using a DLT model. The results obtained for the calibration of the
camera are given in Table 7.2 and the residual of the camera in Fig. 7.6. The DLT model

results are used as initial values during iteration process during the final bundle adjustment.

Row (@) -0.0524789

Pitch (¢) 0.0042136

Yaw (k) -1.037061
uj 2409.78
v 2380.12
f 4836.75
f, 4836.75
K1 -0.025369
K2 0.0240245
K3 -0.014159

Table 7.2 Result of Video frame Calibration
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where Uy, Vg are the coordinates of the principal point, f, and f, are the focal lengths in

the x and y direction respectively.
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Fig. 7.6 Image residuals for DMC-GH3 Camera is approximately 1 pixel

7.3.3 Recreation of Position and Angular Attitude of Video Frames

After the calibration of video frames, the frames are further adjusted by forming a stereo
pair image by placing video frames beside each other and recreating the relative position
and angular attitudes of one image frame with respect to the one beside it, so that the
baselines of all the image frames lies on the same horizontal plane using an affine
coordinate transform. The output result of this process is a tie point in the first image frame
and the tie point on the last image frame holding the entire sequence of images in the flight
strip together. The results obtained from the experiment are shown in Table 7.3. A detailed

camera locations and error estimates is also shown in appendix VIIB

172



X error (m)

Y error (m)

Z error (m)

Total error (m)

7.087607

4.113576

3.460632

8.895598

Table 7.3 Average Camera Position Error

7.3.4 Bundle Adjustment for the Entire Flight

The final step under ortho-rectification is the process of levelling and orienting the stereo
model form in the relative orientation process in the previous section to the ground control
system by adjusting the entire ray in the stereo model with reference to six ground control
points through a self-calibration process. The results obtained from the self-calibration are
given in Table 7.4. Where (K1, K2, K3) represents radial distortion coefficients while (P1, P2)
represents the tangential distortion coefficients. The results obtained from ortho-
rectification of each video frame is given in appendix VIII.

After the ortho-rectification of video frame images, the ortho-images formed are mosaicked

together to form a digital elevation model covering the test area (appendix IX). Fig. 7.7

shows the result of mosaicking of ortho-images from the experiment.
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Row (@) -0.0547097

Pitch () 0.0084768

Yaw (k) -1.0087921
U 2470.61
Vv, 1435.46
K, -0.0314587
K, 0.0281640
K, -0.0187615
P 0
P, 0

Table 7.4 Results from Bundle Adjustment of the Entire Flight

Fig. 7.7 Result of Ortho-images Mosaicking
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7.4 Geo-referencing

The final step in monitoring of the buried pipeline ROW is the geo-referencing of the
object detected on the pipeline ROW. This is necessary in order to pin point the exact
geographical location of the object detected for a quick response of pipeline security to the
place intruded. The process of geo-referencing takes place in the base map server which

contains the virtual globes.

7.4.1 Virtual Globe

There are different types of web based 3D geo-information services that are based on
virtual globes that are available today. The two prominent ones are the Google Earth and
the Microsoft Virtual Earth. These virtual globes have the capability to geo-register and
integrate a very large amount of geo-spatial content like ortho-mosaic, terrain model and

3D objects.

7.4.2 Ortho-mosaic registration and Integration

The ortho-mosaic formed after ortho-rectification of each video frame is geo-registered and
integrated with a virtual globe (Google Earth). This allows for real-time geo-referencing of
the ortho-mosaic that contains the detected object. Fig. 7.8 shows the results of the
integration and geo-registration of the ortho-mosaic with the Google Earth with a
misalignment error of between 1.5 and 2 meters. While Fig. 7.9 shows the exact location of

the object detected on the ortho-mosaic on the Google Earth.
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The object detected is found to be at Latitude of 8.902066° and Longitude of 7.481951°.

Fig. 7.8 Geo-registration of Ortho-mosaic into Google Earth

E7.48°

f(/jgject detected “"

Image © 2016/DigitalGlobe
® 2016 Google

Fig 7.9 Object Detected at Lat. 8.902066°, Long.7.481951 on Google Earth
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Once the geographical location of the object detected has been found, an alert containing
location of the object is then sent to the pipeline security personnel by the operator for

necessary action.

7.5 Chapter Summary

This chapter illustrates the procedure and results of the experiment conducted for the
developed system. Where both the object detection process and geo-referencing processes
are integrated for testing the developed system for monitoring and protecting the buried oil

pipeline ROW from oil theft or deliberate sabotage.

Objects which may act as a potential danger to the pipeline ROW were used to train the
system for object detection, while a photogrammetry model was used for ortho-rectification
and geo-referencing of video imagery captured by a low cost multi-sensors UAV. The
resulting ortho-mosaic was then merged with a digital globe for geo-referencing of the

detected objected contained on the ortho-mosaic.

177



CHAPTER EIGHT
Conclusion and Recommendation
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8.1 Buried Oil Pipeline Monitoring

Oil carrying pipelines are buried in utility rights-of-way, which traverse remote
environments. These rights-of-way, which are usually maintained by the pipeline operators,
are sometimes damaged by construction equipment owned by a third party, with the
intention of oil theft, vandalism and terrorist attacks. Damage to the pipeline rights-of-way
are caused by digging or drilling along the pipeline rights-of-way can be devastating,
sometimes causing explosions and death and, loss of millions of dollars by pipeline

operators.

Many approaches have been used for protecting and monitoring of buried oil pipeline
ROW, these approaches include the use of security force ground patrol of the pipeline
ROW, the installation of sensors along the pipeline ROW and the use of helicopters for
aerial patrol of the pipeline ROW. However, the frequent reports of pipeline vandalism and
oil theft are pointers to the inadequacy of these methods used for protecting buried oil

pipelines.

In this research, we were able to develop an automated image analysis system with the aid
of a UAV equipped with sensors, to detect potential hazards (construction equipment,
person, car, etc.) along the pipeline rights-of-way and also to pin-point the exact

geographical location of the detected objects and then alert the pipeline operator.

Obiject detection is one of the major aspects of a remote monitoring system. Towards this
purpose, we investigated different detection techniques, which include the feature based

(Harris corner, SIFT and SURF) methods and area based (cross correlation, least squares)
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detection methods. The cross correlation method was found to be the most suitable for this

research.

A correlation filter was specially designed for the task of object detection and an optimal
trade-off between the parameters of the filter were used to improve the performance of the

pattern detection tasks.

After the detection of the objects of interest, the developed system must be able to pin point
the precise geographic location of the object detected from a wide range of video frame

images. This was achieved with the aid of a photogrammetry model.

Since data acquisition in this research was done by the use of a UAV equipped with camera
and sensors; Video frames acquired at the UAV platform suffer from of a lot of geometric
distortions. It was observed that these geometric distortions cannot be corrected to a
reasonable accuracy without the use of ground control points (GCPs), especially when
dealing with systematic and/or non-systematic errors and images covering rough terrain.
Hence photogrammetric techniques with the aid of least squares bundle adjustment were
used for correcting the aforementioned distortions to the video images acquired by the

UAYV platform.

The photogrammetric technique was able to produce the precise geographic location of the
object detected from a wide range of images. This means, any measurement taken with the
aid of a photogrammetry processed image reflects a measurement taken on the ground.
Hence there is no need to constantly go to the test field to make measurements, since with
the use of photogrammetry tools, information obtained from imagery is the same as that

obtained from the field.

180



Our method was tested by performing three experiments on test fields located in Nigeria
and United Kingdom. The first experiment was a test experiment for object detection
conducted in a test field at Gatwick, United Kingdom. Where objects that may act as a
potential threat to the pipeline ROW were used to train the developed system for

recognition using a correlation filter.

Also another independent test experiment was conducted at Abuja, Nigeria to test our
method for ortho-rectification and geo-referencing by calibrating the test field and using a
photogrammetry model for ortho-rectification of video imagery. The ortho-image formed
from the ortho-rectification of the video frame imagery are mosaicked and then integrated

with a digital globe for geo-referencing.

The last experiment was also conducted in Abuja, Nigeria. This is the main experiment on
the developed system for monitoring buried oil pipeline ROW for third party incursion. In
this experiment the process of object detection is integrated with the process of ortho-
rectification and geo-referencing. In other words, after the first process detects an object,
which the system has been trained to recognise. The detection system then hands over to
the ortho-rectification and geo-referencing system. Where the detected object geographical
location is determined and an alarm is sent to the pipeline security personnel for necessary

action.

The overall objectives of this thesis focus on developing an automated system that will
protect the pipeline from damage caused by oil pipelines vandals and saboteurs. Such a
technology would result in a safer and more reliable oil carrying pipeline systems and solve

a long time standing problem of the natural oil and gas industry.
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The prevention of third party incursion onto the buried pipeline right-of-way will go a long

way in reducing pipeline service interruptions and cost of frequent repairs of the pipeline

systems.

8.2 Future Work

While much work has been done, there is still room for improvement to help address the

following outstanding limitations:

To increase object detection capability of the correlation filter, future works need to
be focused on designing correlation filters that are sensitive to the colour of objects.
Colours are known to provide additional information about an object and can easily
be used to add to the criteria for object detection in correlation filters.

Also, future research may focus on how to reduce training of correlation filters,
which is based on the number of constrained variants of the target image. A solution
to this problem, will go a long way in reducing computational time and memory
space needed for the detection process.

Future works may also focus on designing UAVs specifically for the purpose of
aerial monitoring where most of the image processing process will take place on-
board the aircraft.

Since the UAV flies at low altitude, future works should focus on equipping the
UAYV with sense and avoid sensors to prevent it from collision with flying objects

(such as balloons, birds, etc.).
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Moreover, future research may focus on a UAV payload consisting of a
combination of electro-optical sensors which can provide: day light surveillance,
the infrared sensors for night time surveillance and synthetic aperture radar which is
not affected by bad weather. The data obtain from these sensors can be processed
and integrated to provide better information or information that could not be

obtained when a single type of sensor is used.
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APPENDIX |

Results for the test experiments for ortho-rectification and geo-referencing is as follows:

X Y Z

Cameras Longitude Latitude Altitude
% P109036...: 7.478762 8.905067 577.014400
7] [£] P109036... 7.478832 8.905163 577.860200
P109036... 7.478898 8.905252 578.186000
P109036... 7.478992 8.905383 578.624900
P109036... 7.479057 8.905477 578.847000
P109036... 7.479122 8.905572 579.624700
g P109036... 7.479155 8.905617 580.007400
P109036... 7.479248 8.905765 580.160400
P109036... 7.479283 8.905815 580.347100
P109036... 7.479353 8.905918 580.103700
P109037... 7.479428 8.906032 578.675200
P109037... 7.479492 8.906153 577.656600
P109037... 7.479605 8.906307 578.253400
P109037... 7.479690 8.906410 578.273200
P109037... 7.479732 8.906463 577.914500
P109037... 7.479853 8.906610 578.256800
P109037... 7.479895 8.906658 578.773500
P109037... 7.479968 8.906775 578.796200
P109037... 7.480083 8.906957 578.113100
P109037... 7.480162 8.907068 578.147400
P109038... 7.480242 8.907173 579.027700
P109038... 7.480328 8.907272 579.018600
P109038... 7.480413 8.907372 578.777900
P109038... 7.480487 8.907488 578.544800
P109038... 7.480520 8.907550 577.053200
P109038... 7.480588 8.907672 575.381600
P109038... 7.480703 8.907843 575.260100
P109038... 7.480738 8.907902 575.719000
; P109038... 7.480812 8.908010 575.820500
P109038... 7.480887 8.908133 576.775700
P109039... 7.481008 8.908310 578.418400
P109039... 7.481093 8.908418 578.679000
P109039... 7.481137 8.908467 578.632300
P109039... 7.481222 8.908572 579.038200
P109039... 7.481340 8.908743 578.591600

P109039... 7.481378 8.908798 578.371400
P109039... 7.481462 8.908908 579.455600
P109039... 7.481577 8.909083 580.395100
P109039... 7.481652 8.909192 579.351300
P109039... 7.481728 8.909305 578.235300
P109040... 7.481810 8.909427 577.670400
P109040... 7.481848 8.909482 577.789500
P109040... 7.481977 8.909660 577.885700
P109040... 7.482057 8.909768 578.361700

Each Video Frame Geographical Location Data
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7.482097
7482217
7.482252
7.482353
7482417
7.482447
7.482578
7.482668
7.482725
7.482788
7.482857
7.482887
7.482968
7.482993
7.483037
7.483147
7483173
7483237
7.483305
7.483368
7.483460
7.483492
7.483555
7.483635
7.483693
7.483725
7.483812
7.483872
7.483935
7.483967
7.484033
7.484095
7484117
7482518
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8.909820
8.909997
8.910060
8.910248
8.910383
8.910452
8.910702
8.910892
8.911027
8911155
8911272
8.911328
8.911542
8911613
8.911690
8911933
8.912005
8912125
8912243
8.912367
8.912557
8912622
8.912758
8.912962
8.913093
8.913158
8913352
8.913477
8.913602
8.913662
8.913788
8.913938
8.913985
8.910577

579.094600
578.542600
578.284600
579.178200
580.004800
579.602400
578.745300
580.597500
581.542200
580.384500
580.008500
580.197100
580.252100
580.715500
580.715500
581.359600
580.839200
580.293800
579.515600
578.284600
578.290000
578.609600
577.426000
575.664000
574.397600
574.042000
574.057400
573.701200
572.784000
572.356300
570.970600
569.363300
570.336700
578.912700

Each Video Frame Geographical Location Data
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APPENDIX 1A

Survey Data

Camera locations and image overiap.

Number of images: 78 Camera stations: 78
Tie-points: 20516
Ground resolution:  0.0251572 mVpix Projections: 72983
Coverage area: 0.0454991sqkm  Emor: 0.672782 pix
Camera Model | Resolution | Focal Length | Pixel Size Precalibrated
DMC-GH3 (12 mm) | 4608 x 2592 | 12 mm 3.77706 x 3.77706 um | No
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APPENDIX 11B

Camera Locations

Estimated camera locations are marked with a black dot.

Camera locations and error estimates.
Z error is represented by ellipse color. X,Y errors are represented by ellipse shape.

X error (m)

Y error (m)

Z error (m)

Total error (m)

8.820588

5.003659

3.798771

10.829129

Average camera location error.
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APPENDIX |11

Results of Ortho-rectification of Each Video Frame

Long, est
1478626
478705
1478179
7478854
7476928
7479004
1479078
7479154
141929
1479311
7479391
1479476
7479562
7479647
1479728
7479816
7479901
479987
7480073
7480155
7480238
7480320
7480406
7480490
7480574
7480662
7480745
7480825
7480908
7480995
7481080
7481162
148142
7481314
7481405
7481487
7481566
7481646
1481728
7481808
7481889
7481968
7482048

Lat. est
8905166
8905250
8905334
8905426
8905516
8905605
8905700
8905798
8905895
8905994
8906091
8906189
8906291
8906394
8.906494
8906599
8906702
8906806
8906910
8907014
8907121
8907233
8907342
8907451
8907560
8907667
8907781
8907889
8908002
8908113
8908225
8908336
8908445
8908558
8908674
8908788
8908900
8909016
8909133
8909251
8909368
8909483
8909602

Alt est
568372865
569.164392
570104670
571759994
572828765
574088080
574977262
575522192
576.248419
576.534072
576993810
571864122
578771995
579439655
580156612
581003730
581076246
581569167
582180426
582520448
82715824
582901487
582995737
583.22445%
583395972
583601811
583609686
583.600714
58355354
583351417
583555647
583334400
583.260281
582733171
582173425
581726998
581001700
580459386
579.772360
579190793
578524569
578021715
571368368

Error (m)
20439107
19047707
17877910
178172
15959574
14.515909
13515002
11932609
11453067
10471724

7906115

4381

5098639

5150570

4076356

511834

5342200

4902374

6639936

7444838

6856267

5875581

5420577

6274432

8.784907
1154309
11738989
12409583
13140016
13782670
13316100
12720640
12675307
11956089
11072798
12431459
11.567906
10613999
10638318
10591329
10864098
13128710
10146964

Yaw est
21855
28749
29091
28957
2014
29353
29367
20499
29535
30647
30472
30238
30479
30064
2987
20710
2827
20410
29239
20003
28798
28964
28791
28589
2789
28482
2163
28320
28140
8112
2213
21539
21645
2318
2231
27134
267146
2649
25893
25,602
25148
24991
24631
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Pitch est
10339
93717
9.190
8932
8.850
8445
8166
7889
7658
6.204
6094
5810
5622
5456
5327
5.260
4805
5047
4951
4918
4797
4119
3883
3704
3104
2806
2701
2047
2201
1940
1929
1686
1199
0955
0801
0547
0589
0587
042
029
0104
0132
-0.284

Roll est
44510
44436
44397
44019
44050
8973
43979
44065
43902
4313
44526
a0
44.3%
44,603
44672
4578
44837
44741
44
44.566
44,692
44761
48m
4691
4478
487
44946
45136
45152
45361
45.261
45386
45.48
45418
45436
45458
45713
45,549
45679
45659
45626
455712
45528

Error (deg) Projections
817
957
900
8
863
857
936
959
949
95
946
959
948
819
836
820
813
896
919
954
966
918
875
882
864
880
889
909
916
m
893
903
930
933
99
905
892
939
9
1039
102
1020

947

Error (pix)
069
0609
0,685
078
0,655
0.751
0627
0739
0.749
0694
0.746
0682
0732
0652
0.588
0712
0682
0655
0645
0693
0713
0712
0715
0821
0.787
0738
0729
0818
0.702
0695
0648
0774
0718
0,655
059
0557
0604
05717
0543
0530
0.545
0.567
0531
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PLOYAO. 148127 8009719 57633431 9675133 U310 0504 45710 9% 0530
PLOYAO. 148203 8909834 575604060 12331839 U8 RIS 45699 %62 051
PL0%OAS. 1482075 8909960 575204842 8.281768 13860 1983 45511 1014 054
PL0%OAO 1482340 8910085 57523260 10350235 250 43 45469 948 04%
PLO%AO., 1482406 oot ST 196412 bibt] 073 45.466 L) 0526
PO%OAO. 1482469 8103 575854678 8835500 0578 081 453% 9 0550
PL00O4O. 1482530 Bol062 516327116 9757090 003 0954 4518 1055 02
PAOOOAL.. 1482648 8072 571586647 8082427 17675 219 45083 1005 0634
PLOODAL., 1482106 8910832 578091532 6.523684 16807 2360 45076 m 0579
PLOYOAL.., 1482762 801091 57857550 1143013 16381 205 4500 95 0746
PLOGOAL.., 1482825 891109 57924502 6,549705 1592 225 e 9% 073
POGOAL,., 1482682 8L 579318027 4117531 15458 2515 4o " 082
PLOYOAL.., 1482040 BOL1364 579916686 1030826 15190 2357 44876 %1 0,668
PLOYAL.., 148299 BOL1% 579798010 5981487 14831 2309 44986 93 0737
PLOYOAL.., 1483046 BOL163 579594015 5964345 141% 2368 44945 1009 0843
P0%0AL.., 148309 BOLTSE 579335183 9497654 14019 2006 45183 %1 0762
P0YAL.. 1483149 BoLlege 57903310 5,5817%9 13615 195 450m 910 0701
P04 148303 g0 578822816 4035064 1313 187 45019 g1 063
PLOGOAL.. 148325 891147 STRSISET 345309 1290 1849 45106 869 078
PLOYOAL.. 1483304 891216 577.982803 3913083 12.59% 183 45.19 i 0,765
PLOYOAL.. 1483353 801008 571599292 4.949006 128 1485 45130 m 0661
PLOYOAL.. 1483407 80153 S76.9672% 6.2008%9 1209 1201 45341 1060 0623
PLOYOAL.. 1483457 8912676 576.505086 1409192 1180 0347 45210 1019 060
PL0%OAL.. 1483508 BOLB07 576319523 153139 11587 0817 45359 9 0641
POYOAL.. 148355 891203 ST5T8ALTS 875647 10988 0819 45413 ] 0634
P04, 1483604 830 515372507 101232 10781 0692 45310 %1 078
P03, 1483653 B3NS STATIEIS 952197 10102 0918 4554 1031 0,706
P03, 1483702 O3 574368182 1219657 939 123 45288 1017 0636
PLOYAS, 1483750 8911 ST3G0TSN6 13429849 9140 114 45454 %3 0385
PLOYAS,. 1483797 8913603 ST26%05 15,0513 8767 0948 45621 Ut} 0667
PLOYOAS,. 1483842 81314 57165491 15907937 8840 0740 45,700 0 0748
P0%OAS,. 1483881 891384 STL16133 17815094 8709 007 45315 %0 0666
PL0YAS.. 1483916 81303 57053011 10,699204 867 012 4583 953 0360
PL0YOAS.. 1483045 BOM0L 56969375 19574444 8399 157 45316 79 0629
pLO90AL., 1482589 8910590 576769327 8.214680 18885 1476 458 102 0,786
Total Error 10829129
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APPENDIX IV

Digital Elevation Model

I545.456m

430.602 m

Reconstructed digital elevation model.

Resolution: 3.05284

Point density: 0.107285 per sg. m
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APPENDIXV

Results for the experiments conducted for the integrated developed system is as follows:

Each Video Frame Geographical Location Data

Cameras Longitude Latitude Altitude
£| P109036...: 7.478762 8.905067 577.014400
=] P109036 7.478832 8.905163 577.860200
P109036 7.478898 8.905252 578.186000
P109036 7.478992 8.905383 578.624900
P109036 7.479057 8.905477 578.847000
(2] p109036 7.479122 8.905572 579.624700
[&] p109036 7.479155 8.905617 580.007400
P109036 7.479248 8.905765 580.160400
P109036 7.479283 8.905815 580.347100
P109036 7.479353 8.905918 580.103700
P109037 7.479428 8.906032 578.675200
P109037 7.479492 8.906153 577.656600
P109037 7.479605 8.906307 578.253400
(=] P109037 7.479690 8.906410 578.273200
P109037 7.479732 8.906463 577.914500
P109037 7.479853 8.906610 578.256800
P109037 7.479895 8.906658 578.773500
[£] P109037 7.479968 8.906775 578.796200
(] P109037 7.480083 8.906957 578.113100
P109037 7.480162 8.907068 578.147400
P109038 7.480242 8.907173 579.027700
[&] p109038 7.480328 8.907272 579.018600
[£] p109038 7.480413 8.907372 578.777900
P109038 7.480487 8.907488 578.544800
P109038 7.480520 8.907550 577.053200
P109038 7.480588 8.907672 575.381600
[%] p109038. 7.480703 8.907843 575.260100
P109038. 7.480738 8.907902 575.719000
P109038. 7.480812 8.908010 575.820500
(=] P109038. 7.480887 8.908133 576.775700
(=] pP109039. 7.481008 8.908310 578.418400
P109039. 7.481093 8.908418 578.679000
P109039. 7481137 8.908467 578.632300
P109039. 7.481222 8.908572 579.038200
[£] p109039. 7.481340 8.908743 578.591600
P109039. 7.481378 8.908798 578.371400
P109039. 7.481462 8.908908 579.455600
P109039. 7.481577 8.909083 580.395100
(2] p109039. 7.481652 8.909192 579.351300
P109039... 7.481728 8.909305 578.235300
P109040... 7.481810 8.909427 577.670400
@ P109040... 7.481848 8.909482 577.789500

191



FEEEEEEEEEEESEEEEEEEEEE NS SEEEEEEE
(6] ) (65 () (1) () ) (1) () 1 () ) () () () () () 0 () ) 0 () () () 6 () () 0 (1) () S (66

P109040...
P109040...
P109040...
P109040...
P109040...
P109040...
P109040...
P109040...
P109041...
P109041...
P109041...
P109041...
P109041...
P109041...
P109041...
P109041...
P109041...
P109041...
P109042...
P109042...
P109042...
P109042...
P109042...
P109042...
P109042...
P109042...
P109042...
P109042...
P109043...
P109043...
P109043...
P109043...
P109043...
P109043...
P109043...
P109043...

APPENDIX V CONT.

7481977
7.482057
7.482097
7482217
7.482252
7.482353
7482417
7.482447
7.482518
7.482578
7.482668
7.482725
7.482788
7.482857
7.482887
7.482968
7.482993
7.483037
7.483147
7483173
7.483237
7.483305
7.483368
7.483460
7.483492
7.483555
7.483635
7.483693
7483725
7.483812
7.483872
7.483935
7.483967
7.484033
7.484095
7484117
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8.909660
8.909768
8.909820
8.909997
8.910060
8.910248
8.910383
8.910452
8.910577
8.910702
8.910892
8.911027
8911155
8911272
8.911328
8.911542
8911613
8.911690
8.911933
8.912005
8912125
8912243
8.912367
8.912557
8.912622
8912758
8.912962
8.913093
8.913158
8913352
8913477
8.913602
8.913662
8913788
8913938
8.913985

577.885700
578.361700
579.094600
578.542600
578.284600
579.178200
580.004800
579.602400
578.912700
578.745300
580.597500
581.542200
580.384500
580.008500
580.197100
580.252100
580.715500
580.715500
581.359600
580.839200
580.293800
579.515600
578.284600
578.290000
578.609600
577.426000
575.664000
574.397600
574.042000
574.057400
573.701200
572.784000
572.356300
570.970600
569.363300
570.336700



APPENDIX VI

SURF M FILE

%$Read the reference image containing the object of interest
g = imread('l.jpg'");
boxImage = rgb2gray(qg):;
figure; imshow (boxImage) ;
title ('Image of a known object');
%$Read the target image containing a cluttered scene
r = imread('2.7pg');
scenelmage = rgb2gray(r);
figure; imshow (scenelmage) ;
title ('Raw image of ROW captured by UAV');
$Detect feature points in both images
boxPoints = detectSURFFeatures (boxImage) ;
scenePoints = detectSURFFeatures (scenelmage) ;
%Visualize the strongest feature points found in the reference image
figure; imshow (boxImage) ;
hold on;
plot (boxPoints.selectStrongest (20));
$Visualize the strongest feature points found in the target image
figure; imshow (scenelmage) ;
title ('20 Strongest Feature Points from image capture by UAV');
hold on;
plot (scenePoints.selectStrongest (20));
$Extract feature descriptors at the interest points in both images
[boxFeatures, boxPoints] = extractFeatures (boxImage, boxPoints);
[sceneFeatures, scenePoints] = extractFeatures (scenelmage, scenePoints);
sMatch the features using their descriptors
boxPairs = matchFeatures (boxFeatures, sceneFeatures)
$Display putatively matched features.
matchedBoxPoints = boxPoints (boxPairs(:, 1), :)
matchedScenePoints = scenePoints (boxPairs(:, 2), :)
figure;
showMatchedFeatures (boxImage, scenelmage, matchedBoxPoints,
matchedScenePoints, 'montage')
title ('Putatively Matched Points (Including Outliers)');
sestimateGeometricTransform calculates the transformation relating the
matched points,
$while eliminating outliers. This transformation allows us to localize
the object in the scene
[tform, inlierBoxPoints, inlierScenePoints] =
estimateGeometricTransform (matchedBoxPoints, matchedScenePoints,
'affine');
$Display the matching point pairs with the outliers removed
figure;
showMatchedFeatures (boxImage, scenelmage, inlierBoxPoints,
inlierScenePoints, 'montage');
title ('Matched Points (Inliers Only)');
%Get the bounding polygon of the reference image
boxPolygon = [1, 1;...
size (boxImage, 2), 1;...
size (boxImage, 2), size(boxImage, 1);...

o\°

top-left
top-right
bottom-right

oe

oe
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% bottom-left
% top-left again to close the polygon

1, 11; >
$Transform the polygon into the coordinate system of the target image.

1, size(boxImage, 1);...

The transformed polygon
%indicates the location of the object in the scene.

newBoxPolygon = transformPointsForward(tform, boxPolygon);
$Display the detected object

figure; imshow (scenelmage) ;

hold on;

line (newBoxPolygon(:, 1), newBoxPolygon(:, 2), 'Color', 'y'");

title('Detected object');
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APPENDIX VIIA

APPENDIX VIIA

Survey Data

Camera locations and image overiap
Number of mages: 80 Camera stations: 80
Tie-points: 20974
Ground resoluton:  0.0248157 mvpix Projections: 74005
Coverage area: 0.0420028 sq km Ermor: 0.71731 pix
Camera Model Resolution | Focal Length | Pixel Size Precalibrated
DMC-GH3 (12 mm) | 4608 x 2592 | 12 mm 3.77706 x 3.77706 um | No
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APPENDIX VIIB

Camera Locations

@ 781248 m
@ £24939m
© 468749 m
[} 3.12499 m
o 15625m
o Om

o -1.5625m
[} -3.12499 m
© 468743 m
@ S24595m
o -7.81248 m

Camera locations and error estimates.
Z error is represented by ellipse color. XY emors are represented by ellipse shape.
Estimated camera locations are marked with a black dot.

X error (m)

Y error (m)

Z error (m)

Total error (m)

7.087607

4.113576

3.460632

8.895598
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APPENDIX VIII

Results of Ortho-rectification of Each Video Frame

Long. est
TAT8659
TAT135
TAT8807
14788719
TAT8951
TAT0H
TA790%
TA170
7479243
141933
7479402
TAT485
1479568
T47%52
TAN9132
1419817
7479901
7479985
7480070
7480151
7480232
7480312
7480397
7480430
7480564
7480650
14807132
7480811
748084
748090
7481064
TAR1146
143125
1481307
7481388
7481469
7481548
748168
74811
7481791
7481812
7481951

8905135
8905221
8905306
8905402
8905493
8905585
8905682
8905782
8905881
8905981
8906080
8906180
8906284
8906388
8906490
8.9065%
8906701
8906807
8906913
8907018
8907126
8907239
8907349
8907459
8907569
8907617
8907192
8907901
8908014

8908238
8908349

8908572
8908639
8908302
8908914

8909147
8909265
8909381
8909497
890915

Alt. est
569413518
570199703
571078168
512662820
5713650557
ST4836112
575582050
575951287
576.543044
576708153
577046587
571883403
STBT35649
5719326173
579969400
580.787934
580.793656
581287201
581918310
582186683
582297202
582394343
8246311
582693763
582859667
583097842
83072578
583040595
582972161
5828020%
583056631
582838058
582816611
582301086
581740652
58132084
580619959
580131768
5719487831
578938276
51836324
STI912181
STIALTS3

Error (m)
15533960
14557072
13697585
13898071
12903372
11801820
1069332

9764132

933238

6215342
3059178
480517
4923138
3501878
496127
5134646
472491
6351120
6981266
6261735
5283981
432039
5352442
1813997
10.295585
10160998
10824507
11511816
11934308
11061980
10404066
10581386
9956274
8519243
10445264
9518197
816302
8206060
8195794
8497906
unasn
7855344

5745
%732
Py
2035
2175
2501
21565
2749
283
2082
2894
8751
28782
2668
B65
B3
28569
8159
805
21816
216%
291
2792
27638
27904
2659
2391
21593
2446
21476
2710
2984
mn
2946
%85
2804
%451
%238
25639
542
510
290
2609
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Pitch est
8552
7691
1510
1337
128
6933
6684
6455
6260
4935
4348
4631
4415
4216
an
41
369
39%
3853
384
374
3102
2891
1%
2161
181
1794
1585
142
1119
ait
0885
0457
029
0085
0143
0084
-0.065
0257
-0.367
-0.5%
0.785
0930

24
395641
39562
3164
31
39084
39084
0173
39005
39405
9628
39540
39494
39709
39780
39687
39950
0841
39564
39667
379
39861
2978
39780
39360
39955
002
40205
025
40432
4038
40458
40304
40480
40495
40515
074
40600
40742
4075
40681
40607
40552

Error(deg)  Proj

&ﬁﬁéﬁgﬁgﬁé

95
954
92
945

955

EB8EE

1064

1022
3

Error (pi)
0689
05%
0675
0735
0567
0736
05649
0737
0763
0694
0741
0572
0728
0561
0589
056%9
06%
051
0570
06%
070
0735
0708
0502
0178
0743
0732
0312
0713
0634
0656
0794
0728
0562
0615
0563
0606
0560
0533
052
053%
0541
058




APPENDIX VIII CONT.

@ 3] po9040.. 1480 8909M31L ST6MSHT 1549628 U555 1203 09 % 0519
7 & p1oa0s0.. 143188 8o0%46  STSAMILL 10985828 U3 148 010 93 0540
@ & p1os. 743260 89097 575440103 6374661 U2 -15%9 40518 103 0530
@ 3] prosns0.. 14803% 891095 STSAM 9469083 21 0788 40489 954 0489
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APPENDIX IX

Digital Elevation Model

$34071m

424478 m

Reconstructed digital elevation model.

Resolution: 3.05161 m/pix
Point density: 0.107384 points per sqm
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