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Summary

Several hundred million years after the Big Bang, the Epoch of Reionisation(EoR) started

as the photons from the first objects ionised neutral baryons in the Universe. The obser-

vations such as the Gunn-Peterson troughs in quasar absorption spectra and the linear

polarisation of the cosmic microwave background (CMB) impose strong constraints on

reionisation models of the EoR. Recent data provide the rest-frame ultraviolet luminosity

of galaxies up to redshift 10. However, the observation of star formations in low mass

galaxies is still not practicable. Their star formations are expected to be suppressed by

the increase of ionised baryons and greatly affect the reionisation models.

We develop a flexible pipeline which utilises the Munich Semi-Analytic Model of galaxy

formation, L-Galaxies, and a semi-numerical modelling of cosmic reionisation. This

combination allows us to create a self-consistent reionisation simulation in computational

models of galaxy formation. We use this pipeline on a high resolution cosmological N -

body simulation to produce the redshift evolution of the star forming galaxies during the

EoR. Comparisons of the properties of mock galaxies and the growth of ionised hydrogen

bubbles suggest that the reionisation history heavily depends on the suppression models

used in the modeling of dwarf galaxy formation.

During this research, some numerical flaws of merger tree generation algorithms were

identified. We investigated the origins of these problems and present suggestions for solving

them.
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on applying HBT to the full simulation data, this discrepancy goes away. . 94
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Introductions
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Chapter 1

Semi-Analytic Modelling of

Galaxy Formation

1.1 ΛCDM Cosmology

The ΛCDM is a model where the dark matter is assumed to be non-relativistic at the

epoch of matter-radiation equality. It is also assumed to be dissipationless and collisionless,

which mean the dark matter cannot cool by radiative photons and can interact with other

particles only through gravitational attraction respectively. In addition, the Universe

is assumed to be flat, homogeneous and isotropic (in the large scales) according to the

cosmological principle. The letter Λ represents the cosmological constant which is currently

associated with the dark energy in empty space.

From the inflation model, the primordial perturbations have a nearly-scale-invariant

power spectrum. This predicts that structures grow hierarchically. As gravity accumulates

the dark matter in the over-density regions, the baryons fall into these potential wells after

decoupling. As the result, the acoustic oscillations imprinted in the baryons are shown as

a series of low amplitude peaks in the matter power spectrum.

The Big Bang model of cosmology became popular after the the discovery of the

cosmic microwave background (CMB) in 1965. Cold Dark Matter models came under

active consideration after COBE, discovered the CMB anisotropy in 1992 (Smoot et al.,

1992). After Ia supernovae (SNs) reveal that the Universe is now undergoing an accelerated

expansion (Perlmutter et al., 1999), the ΛCDM model became the leading model of the

Universe. There are many other observations to support it afterwards from the start of the

21th century; the BOOMERanG microwave background experiment which measured the

total density to be close to the critical density (Crill et al., 2003), 2dFGRS galaxy redshift
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Figure 1.1: The Planck 2015 temperature power spectrum. The best-fit base CDM the-

oretical spectrum fitted to the Planck TT+lowP likelihood is plotted in the upper panel.

Residuals with respect to this model are shown in the lower panel. The error bars show

±1σ uncertainties (Planck Collaboration et al., 2015).

survey to measure the matter density close to 25% (Peacock et al., 2001). The precision

cosmology observation of the microwave background from the successors of COBE, the

Wilkinson Microwave Anisotropy Probe (WMAP), in 2003-2010 (Spergel et al., 2003,

2007; Komatsu et al., 2009, 2011a; Hinshaw et al., 2013) and Planck in 2013 - 2015 (Planck

Collaboration et al., 2014, 2015) have continued to increase the precision of cosmological

parameters to be under 1% uncertainty nowadays.

1.2 Cosmological simulation

For many decades, tremendous efforts have been put into studies to understand cosmic

structures and galaxy formation. At the beginning, most of the understanding came from

elegantly simple analytic arguments and insights. The calculation of the cold dark matter

power spectrum (Peebles, 1982; Blumenthal et al., 1984), Press & Schechter theory (Press

and Schechter, 1974) and White & Rees’ galaxy formation model (White and Rees, 1978)
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are a few examples. However, the limits of purely analytical methods were clearly revealed

as the improved datasets showed the contradictions at small scales. With the continuing

advances in numerical methods and computational technologies, the structure formation

and galaxy formation theories are going to be mainly conducted by numerical simulation

in the future.

In this section, we will focus on dark matter only numerical simulations, especially

in ΛCDM cosmology, which are well developed and have been pushed to extremely high

resolution. Its only limitation is the computational resources available, in contrast to

full hydrodynamic simulations which are less well-developed and limited to lower resol-

ution. Further reading can be found in Kuhlen et al. (2012b) which reviewed numerical

simulations up to recent time.

In dark matter only simulations, the density field is sampled with N particles thus “N -

body” techniques can be applied to the problem. The dark matter particles are located

in a coordinate system which is co-moving with the expansion of the Universe. The

initial condition, which gives initial positions and velocities to all dark matter particles, is

often statistically generated based on the estimated evolution of dark matter density and

clustering (e.g. Klypin and Shandarin, 1983; Efstathiou et al., 1985; Crocce et al., 2006).

Reed et al. (2013) claims that initial redshift should have the expansion factor ! 10 of

that of the interested redshift, to avoid numerical artefacts.

Direct calculation of an N -body system is a O(N2) problem. Techniques like the tree

method (Barnes and Hut, 1986) and the adaptive particle-mesh (PM) method (e.g. Art

and Ramses) were invented to reduce the computational complexity to O(N logN). An

extreme method like the Fast Multipole Method (FFM) reduces the problem to O(N). A

hybrid algorithm such as hybrid Tree-PM (e.g. Gadget; Springel et al., 2001b) is also

widely used in modern cosmological simulations.

Dark matter only N -body simulations, from a few Mpc to near horizon scale ( ∼ 20

Gpc) with more than half a trillion particles, have been performed to serve different re-

searches in cosmology and astrophysics. The simulations can be classified by the boundary

of simulation into 2 categories; full-box and zoom-in simulations. Full-box simulations re-

solve the entire periodic domain with a single particle mass and force resolution. They are

typically used to represent a relatively large portion of the Univerese, with the box size

up to a few tens of Gpc. Statistical studies of halos and large scale structure are typically

the purpose of this type of simulation. On the other hand, zoom simulations are used to

represent a relatively small fraction of the Universe. By concentrating the computational
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power to an interested region, the highest possible resolution is used to resolve its infra-

structure. The initial conditions for zoom simulations are usually nested, with multiple

levels of resolution. The majority of the domain is sampled with the coarsest resolution

while a small region containing the object of interest will be resolved with much higher

resolution.

1.3 Structure finder

The data produced by N -body simulations is only the first step in the process to study

structure and galaxy formation. The information of the particles still requires some post-

processing so that their distribution can be compared to the real Universe. These analysis

tools, called halo finders, process N -body data to find locally over-dense (either in config-

uration or phase-space) gravitationally bound systems, i.e. the dark matter halos which

we currently believe to host galaxies (Knebe et al., 2013b).

We recommend readers to Knebe et al. (2013b) for further information and discus-

sions. Here, we will provide only a brief summary of the halo finding algorithms and their

development.

The first generation of halo finders; the spherical overdensity method mentioned by

Press and Schechter (1974) (hereafter, SO) as well as the friend-of-friends algorithms

introduced in astrophysical simulation by Davis et al. (1985a) (hereafter, FoF), remained

standard techniques for several years, until the new methods were introduced in the 1990s.

In the early time of the 21th century, halo finders became more sophisticate and were

able to detect substructures; e.g. Subfind (Springel et al., 2001a); AHF (Knollmann and

Knebe, 2009), which enable the ability to treat mergers from N -body simulations properly

for the modelling of galaxy formation (Springel et al., 2001a). Before that, the approach

to treat mergers were usually based on the extension of Press-Schechter formalism (Press

and Schechter, 1974; Bond et al., 1991), and a Monte Carlo realisation of the hierarchical

clustering process is used to statistically follow the collapse and merger history of dark

matter haloes (Cole, 1991; Kauffmann et al., 1993; Baugh et al., 1996).

Even a large variety of assumptions and algorithms being used in different halo finding

algorithms, we can conclude the general method of halo finding into these following steps.

• Halo location identification and particle collection: Most of halo finders need

to identify the locations of halo candidates, either from density peaks, gravitational

field or any unique criteria, before the particle collection process. However, some
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algorithms such as FoF skips this step and collect particles to be the candidates for

bound structures.

• Particle unbinding: The particles which are not gravitationally bound to the halo

candidates are removed. Without this step, some halo properties such as velocity

dispersion and spins can not be estimated correctly (Onions et al., 2012, 2013).

• Boundary finding: When a set of gravitationally bound particles are collected,

the edge of the halo must be specified. Various algorithms are used in different halo

finding methods. This will contribute to the properties such as the mass of haloes.

As the resolutions of N -body simulations improved over the years, the inconsistency

of halo catalogues between snapshots had been revealed. The disappearance of haloes in

high density regions, for example, “passing through” halo cases (see Figure 7.2) which

are caused by halo finders unable to resolve multiple haloes around the density peak, will

cause the overestimation of mergers. This resolution problem is also the cause of the

“flipping” problem where a pair of halos can be switched between being host and satellite

back and fourth. This leads to a very high fluctuation in halo mass. Therefore, some halo

finders deploy the temporal information to track dark matter particles in order to reduce

such problems (Han et al., 2012a). Rockstar (Behroozi et al., 2013a) deploy the phase-

space FoF algorithm with some additional temporal information for better identification

in merging scenarios.

1.4 Merger trees

In the study of the formation and evolution of galaxies from numerical simulations, ones

need to know the evolution of dark matter haloes which we assume to host galaxies.

In ΛCDM, dark matter particles are only attracted to others by the gravitational force.

Hence, dark matter structure grows hierarchically, with small objects collapsing under

their self-gravity first and merging in a continuous hierarchy to form larger and more

massive objects. By using this condition, the computational expense used to track the

evolution of halos between snapshots reduces significantly and make it easier to compute

in early 1990s to early 21th century (Lacey and Cole, 1993; Roukema et al., 1997; Springel

et al., 2001a). This assumption implies that a halo can have only one descendant (please

see the terminology used in this thesis in Section 6.2). In graph theory, a tree is an

undirected simple graph which is connected and has no cycles. Therefore, we can establish
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Figure 1.2: Schematic representation of the merger tree of a dark matter halo with its

substructure halos along discrete time-steps.
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a mathematical model by considering the relationship progenitor-descendant of haloes. We

call a graph containing halos with such connection a merger tree.

To study the formation and evolution of galaxies, the merger trees of substructures

or subhaloes are normally used instead of the merger trees of top-level haloes in order

to correctly follow the baryons during the merging process. Figure 1.2 shows a simple

schematic representation of the merger tree of a dark matter halo with its substructure

halos along discrete time-steps. A,B,C,D,E and F are top-level halos. In the transition

between T1 and T2, halo A captures halo B as its satellite, while halo C captures halo D

and halo E. In the transition between T2 and T3, a newly form halo F is captured by halo

A as its satellite; halo D, which is already a substructure of halo C, completely merges

into halo C. In the transition between T3 and T4, halo C becomes a satellite of halo A

together with halo E, which is its substructure. Halo B and and halo E which both are

substructures of halo A merge together. In this case, halo B in T3 is the main progenitor

of halo B in T4. Please note that the halo system shows in this figure is based on a multi-

level halo scheme which allows a substructure to have substructures. The outputs from

some halo finders might not allow the subhalo-of-subhalo situation hence the situation like

halo E is a substructure of halo C, which is a substructure of halo A, cannot happen.

1.5 The semi-analytic approach

To study the formation and evolution of galaxies from a self-consistent cosmological model,

one may directly account for the baryonic component (gas, stars, black holes, etc.) in cos-

mological simulation which include hydrodynamics and gravity which we call this kind

of simulations hydrodynamical simulations. Alternatively, we can go through a proced-

ure called semi-analytic modelling (SAM). Semi-analytic models use the distribution of

dark matter haloes and their merger histories, either from cosmological simulations or the

extended Press-Schechter method, together with analytical prescriptions to estimate the

distribution of the physical properties of galaxies.

The great challenge for hydrodynamic simulation is the amount of computational re-

sources makes it impractical to simulate a large enough volume necessary for galaxy sur-

veys. Furthermore, most of the modelling in sub-grid physics in hydrodynamical simula-

tions relies on analytical schemes similar to those used in SAMs. Therfore, it is much less

costly to apply these scheme in post-processing to the simulation which is easier to find

the best fit parameters the analytical sub-grid models.

The principle of semi-analytic modelling was originally introduced by White and Rees
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(1978), which treats galaxy formation as a two stage process. Dark matter haloes form in

a structure collapse, evolving by means of gravitational instabilities, while galaxies grow

embedded in these structures, through processes that are often dissipative and non-linear.

The first self-consistent models based on SAM methodology were developed by Cole

(1991), Lacey and Silk (1991) and White and Frenk (1991). During that time, most of the

modern physics recipes were already presented, e.g. the collapse of gas into an hot phase

and subsequent cooling into cold disc, the formation of stars from the cold disc, supernova

feedback, chemical enrichment to account the effect from supernovae on the properties

of the hot gas and stellar population synthesis model to estimate photon energy from

star formation histories. However, Press-Schechter formalism (Press and Schechter, 1974;

Bond et al., 1991), and a Monte Carlo realisation of the hierarchical clustering process are

widely used to statistically follow the collapse and merger history of dark matter haloes

until the end the 20th century.

Modern SAMs have shifted the focus towards the utilisation of merger trees directly

generated from N -body simulations instead of the using analytic formalisms as before.

They can reliably capture non-linear structure formation which allow us to study the

physics of galaxy formation in smaller scale.

We will give a very brief summary of how SAMs works (see the details of a particular

SAM, L-Galaxies model, in Section 4.3). The main physical models used in SAMs are

briefly summarised as follows (White and Frenk, 1991; Kauffmann et al., 1993; Cole et al.,

1994; Somerville and Primack, 1999; Cole et al., 2000; Somerville et al., 2001; Croton et al.,

2006; De Lucia et al., 2006; Cattaneo et al., 2007; Somerville et al., 2008):

• A certain amount of gas from the IGM is shock-heated as it joins a halo.

• The hot gas cools via atomic line transitions and other mechanisms.

• The cooled gas collapses to form a galactic disc.

• Stars are formed inside the galactic disk.

• Radiation from massive stars and supernovae reheat the gas inside the halo.

• Mergers trigger bursts of star formation. Major mergers transform discs into spher-

oids/ellipsoids.

• Other models, such as the stellar population synthesis and dust extinction model,

are used to estimate observational properties.
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The complexity due to the large number of physical models used in SAMs requires effi-

cient calibration tools to adjust the free parameters according to observational constraints.

Without an automatic tool, e.g. Monte Carlo Markov Chain (MCMC) parameter estima-

tion (Trotta, 2008; Henriques et al., 2009), to sample the coordinates in high-dimensional

parameter spaces, it is nearly impractical to produce a model with robust prediction power

in modern astrophysics.

An example of successful SAMs is the semi-analytical models based on the Millennium

Simulation (Springel et al., 2005b) and Millennium Simulation II (Boylan-Kolchin et al.,

2009), which are able to replicate many statistical results from observed properties of

galaxies (Springel et al., 2005b; Crocce et al., 2006; De Lucia and Blaizot, 2007; Guo

et al., 2011, 2013; Henriques et al., 2015).
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Chapter 2

The Epoch of Reionisation

2.1 The first light

About 400,000 years after the Big Bang, the density and the temperature of the Universe

decreased. When the Universe was cool enough, it allowed ions to recombine into neutral

hydrogen and helium atoms. After that, photons decoupled from baryons and radiated

through the transparent Universe, leaving the Cosmic Microwave Background (CMB)

radiation which is able to observed today. This period is known as the dark ages.

About 400 million years later, the first galaxies formed and started to emit ionising

photons. This brought the end of the dark ages and the Epoch of Reionsation (EoR) began.

The intergalactic medium (IGM) was initially ionised around the first objects. After that,

the patchy regions of neutral (H I ) and ionised hydrogen (H II ) evolved through the

ionisation and recombination. When there were enough number of ionising photons from

UV emitting sources, the temperature of the gas in the Universe increased drastically. The

ionised gas regions also evolved and eventually filled out the entire Universe (Barkana and

Loeb, 2001; Loeb and Barkana, 2001; Bromm and Larson, 2004; Ciardi and Ferrara, 2005;

Choudhury and Ferrara, 2006; Furlanetto et al., 2006).

The current constraints suggest that the EoR roughly occurs within the redshift

6 " z " 15. However, the detailed process involving reionisation is still uncertain. The

factors which controlled the formation of the first objects and ionising photon intensity

they produced is not well known. The topology of expanding ionisation bubbles in the

intergalactic medium is not yet to be confirmed. In order to answer these questions and

many other factors which may arise in the study of the EoR, we need the know the fun-

damental issues in cosmology, galaxy formation, quasars and the physics of Population III

stars. There are significant theoretical and observational efforts dedicated to understand-
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Figure 2.1: Cartoon of the transition from the neutral intergalactic medium (IGM) left

after the Universe recombined at z ∼ 1100 to the fully ionised IGM observed today. Image

credit: NASA/ESA, R. Ellis (Caltech), and the UDF 2012 Team.

ing the processes in the evolution of EoR, including the effects on structure formation

(see more details in Barkana and Loeb, 2001; Bromm and Larson, 2004; Ciardi and Fer-

rara, 2005; Choudhury and Ferrara, 2006; Furlanetto et al., 2006). However, observational

support is very limited, and when available, is indirect and model dependent.

2.2 Observational evidences for the Epoch of Reionisation

2.2.1 Gunn-Peterson troughs

The intergalactic medium (IGM) can be studied through the analysis of the Lyman-α

forest, which is an absorption lines seen in the spectra of background quasars or quasi-

stellar objects (QSOs). Gunn and Peterson (1965) predicted that the neutral hydrogen

between an observer and a quasar, would suppress the radiation from the quasar. The

Gunn and Peterson optical depth in a uniformly distributed IGM is given by:

τGP(z) =
1.8× 105

h
Ω1/2

(

Ωbh2

0.02

)(

1 + z

7

)3/2(nHI

nH

)

. (2.1)

We can see that even only a small neutral fraction can make τGP >> 1 and produce an

almost-complete absorption of the UV resonance line frequency of 1215.67Å(rest-frame).

We call this phenomenon a Gunn-Peterson trough. It was first observed in the spectrum

of a quasar at z = 6.28 with the Sloan Digital Sky Survey (SDSS) in 2001 (Becker et al.,

2001). Several samples of high redshift quasars have been identified ever since (Djorgovski

et al., 2001; Fan et al., 2002, 2006; White et al., 2003). The results show that the volume-

averaged neutral hydrogen fraction increases from 10−5 at z ∼ 3 to greater than 10−3 at
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Figure 2.2: A high signal-to-noise spectrum of the quasar ULAS J1319+0959 at z = 6.13

from Becker et al. (2015a), obtained with the X-Shooter spectrograph on the Very Large

Telescope (VLT), shows the observed Gunn-Peterson troughs.

z ∼ 6 (Fan et al., 2002). This discovery combined with the absence of Gunn-Peterson

trough in the spectra of the quasars at z < 6 weakly constrain the end of the EoR.

2.2.2 The Thomson scattering optical depth for the cosmic microwave

background (CMB) radiation

Another important constraint of reionisation is the Thomson scattering of CMB photons.

This topic has been discussed in detail by many authors (Peebles and Yu, 1970; Sunyaev

and Zeldovich, 1972; Bond and Efstathiou, 1984; Ma and Bertschinger, 1995; Hu and

White, 1997; Aghanim et al., 2008). The CMB photons were scattered by the free elec-

trons (i.e. from ionised hydrogen atoms) and caused the suppression in the temperature

fluctuation by 1 − e−τ (Zaldarriaga et al., 2004), where τ is the optical depth. The ob-

served value for the optical depth is 0.067± 0.016 (Planck TT + lensing + BAO)(Planck

Collaboration et al., 2015). The optical depth along a line of sight can be expressed in

terms of the integral

τe =

∫ zdec

0
σTne

cH−1
0 dz

(1 + z)
√

Ωm(1 + z)3 + ΩΛ

, (2.2)

where zdec is the decoupling redshift, σT is the Thomson cross section and ne is the electron

density. This relationship also works for the mean electron density of the Universe; hence

it could be turned into a constraint on the reionisation history of the Universe.
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2.2.3 21-cm hyperfine hydrogen line

The redshifted 21-cm line has been successfully used to probe the dynamic of the neutral

hydrogen in the Milky Way and other galaxies (Warmels, 1988; Dickey and Lockman,

1990; Kalberla and Kerp, 2009; Cortese et al., 2010). It is potentially a mean to study

the dark ages and the EoR. This topic has been discussed and reviewed in detail by many

authors (Furlanetto et al., 2006; Pritchard and Loeb, 2012; Furlanetto, 2015). Only a

brief review will be discussed here. The 21-cm line is from the transition between the

two hyperfine levels of the hydrogen 1s ground state with an energy difference of 5.87433

µeV. This corresponds to a 21.106 cm (1420.405 MHz) photon. The transition is highly

forbidden with a very small rate of 2.85× 10−15 s−1.

The redshifted 21-cm is defined as the differential brightness temperature, δTb, as

δTb = TS(1− e−τν ) + TBe
−τν − TB, (2.3)

where TB is the brightness temperature of the background source. The optical depth

τν ≡
∫

ανds is the integral of the absorption coefficient along a line of sight, and s is

the proper distance (Field, 1959). For a cloud of hydrogen, τν ∼ σ01
(

hν
kBTS

)(

NHI
4

)

σ(ν)

where σ01 ≡
3c2A01

8πν2 , A01 = 2.85×10−15 is the spontaneous emission coefficient of the 21-cm

transition, NHI is the column density of H I , and σ(ν) is the normalised line profile.

The spin temperature TS , which is determined by the absorption and emission of the

21-cm photons with the temperature TCMB, can be expressed as

TS =
TCMB + xcTK + xαTc

1 + xc + xα
, (2.4)

where xc and xα are the normalised probabilities of the collisions and Lyman-α scattering

respectively. TK is the gas kinetic temperature and Tα is the temperature due to the

scattering of Lyman-α photons.

When the source of Lyman-α photons has formed, the neutral hydrogen in the IGM

absorbs the emitted 10.2 eV photons and returns to one of the hyperfine spin states. The

coupling of the neutral hydrogen with the Lyman-α radiation is called Wouthuysen-Field

effect (Wouthuysen, 1952; Field, 1958). This phenomenon has the effects on the 21-cm

signal variation at ∼ 10% level.

By studying 21-cm line emission and absorption, it will be possible to learn more about

the formation of the first structures. There are many projects dedicated to measure this

faint signal. In the short term, there are the Precision Array to Probe the Epoch of Reion-

ization (PAPER) (Backer et al., 2007), the Low-Frequency ARray (LOFAR) (Brentjens
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Figure 2.3: The hyperfine structure of the hydrogen atom and the transitions relevant

for the Wouthuysen-Field effect. Black solid line transitions allow spin flips, while black

dashed transitions are allowed but do not contribute to spin flips, and the red dot-dot-

dashed transition lines are strictly forbidden (Pritchard and Loeb, 2012).

et al., 2011), the Murchison Widefield Array (MWA) (Tingay et al., 2013), and the Giant

Metrewave Radio Telescope (GMRT) (Pen et al., 2009). In the longer term, there is the

Square Kilometer Array (SKA) (Cordes, 2005) and its pathfinders. Although there is no

direct 21-cm measurement at the moment, Parsons et al. (2014) used 3-months data using

32 antennas of PAPER to place the upper limit of the power spectrum of 21-cm emission

within an order of magnitude of the brighter predictions of the expected 21 cm EoR signal

level. Dillon et al. (2014) also used the observations from the 32-tile prototype of the

MWA to establish upper limits on the power spectrum from z = 6.2 to z = 11.7.

2.2.4 Other observational probes

There are other observations that may provide evidence for reionisation, for example, the

direct studies of the high redshift (z " 6) IGM such as the IGM temperature evolution

and the number of ionising photons per baryon. The kinetic Sunyaev-Zel’dovich effect
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on the CMB caused by the reionisation is also a probe to study the reionisation history,

see Park et al. (2013) for details. Other probes include cosmic infrared and soft x-ray

background (Dijkstra et al., 2004a), Lyman-α emitters (Ouchi et al., 2009), high redshift

QSOs (Mortlock et al., 2011) and gamma-ray burst (GRBs) (Bromm and Loeb, 2006).

However, these probes currently provide very limited constraints on the EoR. See Zaroubi

(2013) for the detailed discussion of the probes.

2.3 Sources of reionising photons

To ionise a neutral hydrogen atom, the energy larger than 13.6 eV is needed. This corres-

ponds to photons with a maximum wavelength of 912 Å. Therefore, the primary candidates

are all sources which produce sufficient amount of energy in UV and above. Other factors

such as the photon density and the lifetime of the sources must be considered as well.

With these constraints, we can expect that the first generation stars and galaxies, in-

cluding quasars were the main source of energy (Madau et al., 1999; Barkana and Loeb,

2001).

2.3.1 Quasars and Active Galactic Nuclei (AGN)

Quasars, or quasi-stellar objects (QSOs), and AGNs are effective emitters of UV photons,

as the escape fraction of photons is assumed to be of the order of unity. However, un-

less there is a large population of those with very low luminosity, the emissivity of QSOs

does not meet the requirement for reionisation (Bolton and Haehnelt, 2007; Meiksin, 2005;

Srbinovsky and Wyithe, 2007). Their observed population could not produce enough UV

radiation to reionise the IGM at redshift z ∼ 3 and their density declines exponentially

towards high redshifts (Shapiro and Giroux, 1987; Madau et al., 1999; Giroux and Shapiro,

1996). Another important point about QSOs is their short lifetime, which might affect

the growth of their ionized regions. Moreover, unless they are extremely X-ray quiet, their

contribution to the reionisation history should be < 30% with respect to star-forming

galaxies (Zaldarriaga et al., 2003). They are instead the main sources for Helium reionisa-

tion. QSOs likely fully ionised helium by z ∼ 3, and possibly as early as z ∼ 5 if they have

hard spectra extending down to the He II photoelectric (Meiksin, 2005). However, there

is still uncertainty on the estimate of the total UV photon emissivity from star-forming

galaxies at high redshifts as there are still unknown factor like the stars formation rate,

the clumping factor and the UV escape fraction (see Section 2.3.2).
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2.3.2 Star-forming galaxies

Hot-young stars in star-forming galaxies are the source of Lyman continuum photons.

Due to the decrease of QSO population in high redshifts, even their spectra are too soft

to produce enough He II -ionising photons, they are the primary candidate sources for

hydrogen-ionising photons (Bouwens et al., 2012, 2015a; Robertson et al., 2015). However

there is still uncertainty in estimating the total UV photons emitted from these galaxies,

as such an estimate requires several theoretical assumptions regarding the Initial Mass

Function (IMF), populations, ages, and spectra of the massive stars, which dominate the

radiation at early times. A large uncertainty is the star-formation rate at high redshifts:

observational estimates are plagued by sample variance at z ∼ 6, due to the small volume

of deep surveys, as well as extrapolations toward faint luminosity objects. Moreover,

another major uncertainty is the escape fraction of the ionising radiation, as this must

multiply the emissivity based on galaxy counts and finally governs the contribution of

the star-forming galaxies to the UV background which is still uncertain due to several

factors. There are few direct measurements of the escape fraction, and virtually all are

upper limits. Putman et al. (2003) infer a global escape fraction from the Milky Way

of 12% from Hα spectroscopic measurements of nearby high velocity clouds. Based on a

detection of Lyman continuum flux from FUSE observations of a local starburst galaxy,

Bergvall et al. (2006) suggest an escape fraction of 0.04−0.1, subject to spectral modeling

uncertainties. Fernández-Soto et al. (2003) place an upper limit of 4% for galaxies in the

redshift range 1.9 < z < 3.5. Similar upper limits based on FUSE observations were

obtained by Deharveng et al. (2001) and Heckman et al. (2001). Shapley et al. (2006)

report the detection of UV radiation shortward of the Lyman edge in a sample of Lyman

Break Galaxies at z ∼ 3 with a corresponding escape fraction of 14%, although the estimate

is sensitive to the assumed calibrating population synthesis models and corrections for the

IGM optical depth, and it may also apply only to the more luminous galaxies. Inoue et al.

(2006) estimate the the escape fraction to be increasing with redshift, from a value less

than 0.01 at z " 1 to about 0.1 at z " 4.

On top of the ionising radiation escape fraction and UV-to-Lyman limit conversion

factor, the effects of internal galactic extinction, uncertainty in the amount of intergalactic

extinction by the IGM and the minimum source luminosity on the UV luminosity density

and its evolution are source of uncertainties in the net contribution of the galaxies. All

errors combined together still leave a range of uncertainties of about a factor of 4 for the

contribution of the galaxies to HI, excluding the uncertainty of the escape fraction (Ferrara
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and Pandolfi, 2014).

2.3.3 Population III stars

Population III stars are the stars which are made of only hydrogen and helium. There is

an evidence for such stars existed at z = 6.6 (Sobral et al., 2015). There are also indirect

observations using gravitational lensing (Fosbury et al., 2003). These Population III stars

are more efficient and effective than Population II stars since they emit more reionising

photons (Tumlinson et al., 2002). They are currently considered to be the energy sources to

initiate the reionisation of the Universe (Alvarez et al., 2006). However, the contribution of

these massive metal-free stars is uncertain, as producing a number of photons able to ionize

the IGM would lead to an overproduction of metals. This implies that the transition to

metal-enriched Pop II stars would occur earlier. This problem will be solved if Population

III stars collapse to form black holes, then the ionising radiation from the accretion on

SN-induced seed black holes might be more significant than the primary emission (Ricotti

and Ostriker, 2004). Another suggestion is to differentiate very-massive metal free stars

and metal-free stars with masses less than 100M⊙, as in this way the formation of lower

mass Pop III stars would stop at lower redshifts due to metal enrichment and feedback,

and therefore their contribution would be more prominent (Schneider et al., 2006).

2.3.4 Other possible sources

Other possible sources for UV photons are: mini-quasars powered by intermediate mass

black holes (Madau et al., 2004); annihilations from Dark Matter particles like decaying

sterile neutrinos (Hansen and Haiman, 2004; Mapelli and Ferrara, 2005); X-ray photons

from binary stars in early mini-quasars, but also from thermal emission from the supernova

remnants, or Compton up-scattering of CMB photons by relativistic electrons produced by

supernova explosions (Venkatesan et al., 2001; Madau et al., 2004; Ricotti et al., 2005); en-

hanced structure formation from a non-scale-free isocurvature power spectrum (Sugiyama

et al., 2004); and non-Gaussian density fluctuations (Chen et al., 2003).

2.4 Reionisation of hydrogen in the IGM

There are several stages involving the reionsation of hydrogen in the IGM. We will give a

brief summary of this topic as an introduction. Further reading can be found in Gnedin

(2000); Loeb and Barkana (2001); Barkana and Loeb (2001); Meiksin (2009); Ferrara and

Pandolfi (2014); Robertson et al. (2010).
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Figure 2.4: Processes in the reionisation of hydrogen in the intergalactic medium.



20

Initially, the ionising photons from an individual ionising source begin to ionise its

surrounding IGM. The first generation galaxies usually form in the most massive haloes

at high redshift, which are biased and clustered around the high density peaks. Due

to the dense baryon contents, which is characterised by a high recombination rate, the

ionising photons emitted from the galaxies will have a short mean free path which make

it difficult to leave the high density peaks. When they are able to escape, the ionisation

fronts propagate more easily into the lower density regions, leaving pockets of neutral,

high density gas behind.

Once the neighbouring H II bubbles begin to overlap, any point in the merged regions

will be exposed to ionising photons from the sources in both former regions. Therefore,

the ionising photon density increases drastically and allows the combined regions extend

into high density gas in the neutral pockets, which were left behind due to the low ionising

intensity. As more H II bubbles overlap, combined regions are exposed to more ionising

sources, which accelerates the growth of ionised regions. At the end of this stage, the IGM

is highly ionised except the gas located inside self-shielded high density clouds.

Some gas can remain neutral within high-density structures, e.g. Lyman Limit systems

and damped Lyman-α systems, which can be observed at lower redshifts. The high-density

regions are progressively ionised as galaxies continue to form, which increase the ionising

photon abundance over time. When the ionising intensity is sufficient, the entire Universe

is highly ionised and exposed to ionisation radiation, which marks the end of the EoR.

2.5 Photo-evaporation of the gas in minihaloes during the

EoR

Virialised minihaloes are small haloes with virial temperatures, Tvir, below the limit of

atomic cooling transtion temperature, 104 K. These minihaloes are in the mass range

between the Jeans mass, minimum mass of a dark matter halo to retain baryons from

escaping to the IGM, i.e. MJ ∼ 104 M⊙, and the mass for which Tvir = 104 K which

corresponding to ∼ 108 M
⊙
. Their baryonic content is highly neutral because the temper-

atures are too low for collisional ionisation to be effective Shapiro et al. (2003); Iliev et al.

(2002, 2005).

As the gas in minihaloes gets exposed to ionising radiation, either from first generation

stars inside the minihaloes or the external UV background, it could be heated up to ∼1-

2×104 K. A major fraction of the collapsed gas, which had been bound to the minihaloes
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with a virial temperature less than ∼ 104 K, could be evaporated back into the IGM, due

to the lack off efficient cooling. These gas-poor minihaloes will affect the galaxy formation

just after reionisation, as well as at lower redshifts (Loeb and Barkana, 2001).

Figure 2.5, (taken from Figure 2 in Okamoto et al., 2008), shows the baryon fraction

inside halos as function of their total mass, M, for simulated haloes at redshifts z ∼ 9.3

(left), 5 (middle), and 2 (right) for all haloes in the simulations (top row) and “isolated

haloes”, which are the haloes outside a radius of 6Rvir, where Rvir is the virial radius

of the halo, from any haloes (bottom row). The cosmological baryon fraction ∼ 0.18 is

indicated as the dotted horizontal line. Plus signs and diamonds indicate haloes from the

low resolution and high resolution simulations respectively. The plots show, just after the

reionisation at z = 5, the baryon fraction of halos with mass less than the Jean mass of

the gass at T ∼ 104 K, 109 M⊙ gradually drops down to zero at around M ∼ 108 M⊙.

Long after the reionisation at z ∼ 2, the gas of the haloes with mass less than 109 M⊙, is

almost gone (this will be discussed in the next section). Please note that the simulation

used in Okamoto et al. (2008) assumes uniform external UV background radiation without

including the effect from local photonisation.

2.6 Suppression of the formation in low mass galaxies

After reionisation, the UV photons heat up the IGM to above ∼ 1− 2× 104 K, the linear

theory estimates the instantaneous Jeans mass to be

MJ = 4.1× 109 M⊙

(

T

104 K

)3/2( h2Ωm

0.1327

)−1/2(
h2Ωb

0.0216

)−3/5(
1 + z

10

)3/2

, (2.5)

which is roughly ∼ 109 M⊙ (e.g. Shapiro et al., 2004; Iliev et al., 2002, 2008a). However,

even in a minihalo with the mass less than the instantaneous Jeans mass, a fraction of

baryons from IGM still can collapse because the mass scale on which baryons successfully

collapse out of the IGM along with the dark matter is determined by integrating the

differential equation for perturbation growth over time for the evolving IGM (Shapiro

et al., 1994; Gnedin and Hui, 1998; Gnedin, 2000). A halo collapsing inside an ionised

region can only acquire enough gas to form stars if it is sufficiently massive. The minimum

mass depends on the detailed gas dynamics of the process and on radiative heating and

cooling. The drops in the baryon fraction in Figure 2.5 demonstrates the smooth transition

between the mass which a collapsing halo retains all its gas, and halo mass which the gas

does not collapse with the dark matter, not a sharp mass threshold to determine which
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Figure 2.5: Fraction of baryonic mass as function of total mass, M, for simulated haloes

at three redshifts z for all haloes (top row) and “isolated haloes”, which are the haloes

outside the 6Rvir radius from any haloes (bottom row). The cosmological baryon fraction

∼ 0.18 is indicated as the dotted horizontal line. Plus signs and diamonds indicate haloes

from the low resolution and high resolution simulations respectively (Figure. 2, Okamoto

et al., 2008).
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halo can or cannot accumulate baryons from the IGM.
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Part II

Semi-Analytic Modelling with

Radiative Feedback
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Chapter 3

Introduction

Understanding the physics of the IGM during the Epoch of Reionisation (EoR) is one of

the most important problems in modern cosmology. It offers crucial information about the

structure formation and physical processes in the early Universe. The discovery of high

redshift quasars by the Sloan Digital Sky Survey (SDSS) demonstrated that reionisation

was mostly completed by z ∼ 6 (Becker et al., 2001; Fan et al., 2006) but might fully finish

at z ∼ 5 (Becker et al., 2015b). Furthermore, absorption spectra from some higher redshift

quasars provide the evidence of a partially neutral IGM (e.g. Fan et al., 2006; Becker

et al., 2015b), although most of the interpretations are still under debate (Lidz et al.,

2006; Bolton and Haehnelt, 2007; Mesinger and Furlanetto, 2009). In order to observe the

geometry of ionised and neutral patches of hydrogen, the next generation radio telescopes

such as PAPER, LOFAR, MWA, and SKA are designed to be able to detect these features.

The theoretical methods to study the inter-galactic hydrogen during the EoR have been

rapidly developed in the past decades. Traditional approaches adopt analytic modelling

to investigate the average behaviours on the large scales but they cannot address the

complex feedback processes since the calculations are linear (e.g. Furlanetto and Loeb,

2003; Wyithe and Loeb, 2004, 2013). Numerical methods, on the other hand, include non-

linear recipes but require a large amount of computational time. These methods usually

begin with a collisionless dark matter N -body simulation and then halo catalogues are

extracted by a halo finder. Afterwards, a simple prescription is used to convert halo mass

to the ionising photon emitting rate. Then, a radiative transfer method will be used

to calculate the ionisation structure on the large scales (Mellema et al., 2006; Gnedin

and Abel, 2001; Maselli et al., 2003; Razoumov and Cardall, 2005; Ritzerveld et al., 2003;

Whalen and Norman, 2006; Rijkhorst et al., 2006). There are some methods employing N -

body simulation together with analytical methods, called semi-numerical methods, which
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are able calculate the reionisation structure in very large volume with a little computational

resources compared to a radiative transfer method. (Mesinger and Furlanetto, 2007; Zahn

et al., 2007; Geil and Wyithe, 2008; Lidz et al., 2009; Choudhury et al., 2009; Alvarez et al.,

2009; Santos et al., 2010). However, these methods only have the ability to construct the

reionisation structures and their evolution, but do not provide any information about the

galaxy formation and evolution in the EoR.

In order to understand the physics of galaxy formation, many hydrodynamic simu-

lations have been utilised to directly model the star formation in high redshift galaxies

and couple with sub-grid physical recipes such as feedback and metal enrichment. These

simulations are capable of producing the luminosities of the galaxies at high redshift (e.g.

Finlator et al., 2011; Salvaterra et al., 2011; Jaacks et al., 2012; Genel et al., 2014; Furlong

et al., 2015). However, a large amount of computational resources used by these simula-

tions make it impractical to simulate a large enough volume necessary for galaxy survey.

Another approach to model high redshift galaxies is to utilise semi-analytic models (SAMs)

of galaxy formation (Lacey and Cole, 1993; Kauffmann et al., 1993). This method gener-

ally requires relatively less computational expense than those of hydrodynamic simulations

of the same simulation size.

The frontier of galaxy survey has been expanded dramatically since the installation of

Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) in 2009 (e.g. Oesch

et al., 2010; Bouwens et al., 2010b; Bunker et al., 2010; Wilkins et al., 2010; Finkelstein

et al., 2010; McLure et al., 2010; Wilkins et al., 2011a,b; Lorenzoni et al., 2011; Bouwens

et al., 2011; McLure et al., 2011; Finkelstein et al., 2012a,b; Lorenzoni et al., 2013; McLure

et al., 2013; Duncan et al., 2014). The rest frame ultraviolet (UV) luminosity function

(LF), which is an important probe to constraint the star formation rates of the galaxies

in the early Universe, of almost 1000 galaxies at z ≥ 7 can be observed (Bouwens et al.,

2015b; Finkelstein et al., 2015). Furthermore, the next generation space observatory, the

James Webb Space Telescope (JWST) will be launched in a few years. However, the ability

to observe the faintest galaxies, which are expected to play the crucial role in driving the

reionisation of the neutral hydrogen in the inter galactic medium (IGM) after the dark

ages, will not be implemented in any observation in the near future (Robertson et al.,

2013; Duffy et al., 2014). It has been suggested that UV radiation during the EoR is

responsible for suppressing the star formation of these faintest galaxies. The suppression

is believed to be caused by 2 factors. One is from the photo-evaporation of the gas in

minihaloes, which are the small objects with virial temperature below the atomic line
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cooling temperature of 104 K (Barkana and Loeb, 1999; Shapiro et al., 2004; Iliev et al.,

2005). The other factor is the increase in pressure of the intergalactic gas due to the

photoheating from galaxies, which will suppress the baryonic infall process in the galaxy

formation and evolution (Shapiro et al., 1994; Gnedin, 2000; Hoeft et al., 2006).

Accounting for the suppression in small galaxies provides a solution to the “missing

satellites problem” (Klypin et al., 1999; Moore et al., 1999). The common approach is to

impose a simple parametrised model to approximate the average ionising background as a

function of redshift (Gnedin, 2000) in both hydrodynamic simulation Haardt and Madau

(1996, 2012); Okamoto et al. (2008); Pawlik et al. (2013); Wise et al. (2014); Jeon et al.

(2014); Rosdahl et al. (2015); Aubert et al. (2015) and semi-analytic modelling of galaxy

formation (Croton et al., 2006; Bower et al., 2006; De Lucia and Blaizot, 2007; Guo et al.,

2011; Henriques et al., 2015). There are hydrodynamical simulations of galaxy formation

with coupled radiative transfer have been used to address the effects of reionisation on

galaxy formation self-consistently recently (So et al., 2014; Norman et al., 2015). Recent

works such as Gnedin (2014) and Pawlik et al. (2015) managed to run this state-of-art ra-

diative hydrodynamic simulations with moderated box sizes and resolutions. Ocvirk et al.

(2016) also used a radiative hydrodynamic simulation of the local Universe to study the

suppression of the star formation by photo-ionisation heating. However, these simulations

came with a tremendous amount of computational expense, much greater than those of

normal hydrodynamic simulations. Furthermore, all simulations require calibrations of

sub-grid models. This leads to even more difficult computational tasks to overcome.

While the pure numerical methods are computationally impracticable, the semi-analytic

modelling of galaxy formation is a feasible approach to address this problem. It requires

much less computational resources but gives a robust prediction of high redshift galaxies

(Benson et al., 2006; Lacey et al., 2011; Raičević et al., 2011; Zhou et al., 2013; Clay

et al., 2015). By fully combining a SAM with a reliable recipe of reionisation, one can

self-consistently model the suppression of star formation from reionisation and the effects

of the reionising photon emission from galaxies on the inter-galactic medium. Recent

works by DRAGON project use this method and produced good results which agree with

observations (Graziani et al., 2015; Mutch et al., 2015; ?).

In this work, we used the very well-tested Munich semi-analytic modelling of galaxy

formation, L-Galaxies (Kauffmann, 1996; De Lucia and Blaizot, 2007; Guo et al., 2011,

2013; Henriques et al., 2015), coupled with the semi-numerical method of reionisation sim-

ulation described in Majumdar et al. (2014), on a very high resolution N -body simulation
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described in Section 4.1. The combination allows more capability in modelling the effect

from reionisation. We then use the newly created pipeline to create galaxy catalogues

and H II density fields which are investigated in Chapter 4. The framework used in this

work was developed to be flexible ensuring the compatibility with the new public version

of L-Galaxies and a radiative transfer simulations, e.g. C2-ray (Mellema et al., 2006),

which we will integrate into the pipeline in the near future.
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Chapter 4

Simulations and Results

4.1 The N-body dark matter simulation

A very high resolution N -body simulation of the formation of high-redshift structures in

Dixon et al. (2016) is used in this work to provide sufficient mass resolution to accur-

ately capture the low-mass galaxy population driving the reionisation of the Universe at

high redshift. It was generated by the cosmological N -body simulation code CubeP3M

(Harnois-Déraps et al., 2013) 1. The force smoothing length is set at 1/20th of the mean

inter-particle spacing. The linear power spectrum of density fluctuations was calculated

by using the code CAMB (Lewis et al., 2000). Initial conditions were generated using

the Zel’dovich approximation at a sufficiently high redshift zi = 300 to prevent numerical

artefacts (Crocce et al., 2006). The background cosmology is based on WMAP 5-year

data with constraints from baryonic acoustic oscillation and high redshift supernovae,

i.e. ΩM = 0.27, ΩΛ = 0.73, h = 0.701, σ8 = 0.8, n = 0.96 (Komatsu et al., 2009).

The simulation has the size of 47h−1 = 67 Mpc with corresponding particle number of

17283 (i.e. particle mass is 1.076 × 106M⊙) to ensure reliable halo identification down

to 108M⊙ (with 50 particles). 76 snapshots of particle data were recorded at intervals

equally spaced in time, ∆t = 11.5 Myr, from z = 30 to z = 6. The SPH-style smoothing

scheme using nearest neighbours to transform the data to lower resolution with 3063 or

6123 cells in order to used in the reionisation simulation. Dixon et al. (2016) showed the

convergence between the two resolutions so we will use only the coarser 3063 cells, with

the corresponding cell width of 219 kpc), in this work.

1See https://github.com/jharno/cubep3m
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Figure 4.1: The diagram represents the combination of L-Galaxies and the semi-

numerical reionisation simulation.

4.2 Halo finding and merger tree building

At each output time, the pipeline produced a friends-of-friends (FoF) catalogue by linking

particles with separation less than 0.2 of the mean value (Davis et al., 1985a). We define

the centre of a FoF group to be its potential minimum. The virial radius is defined as the

radius of the largest sphere around this centre and a mean density exceeding 200 times

the critical density of the Universe. The total mass within the virial radius is defined as

the virial mass of the group. Virial radius and virial mass are then related by

R200c =

[

G

100

M200c

H2(z)

]1/3

. (4.1)

Then, the Subfind algorithm was applied to each FoF group to identify all its self

gravitational bound structures, called subhaloes (Springel et al., 2001a). The most-massive

self-bound subhalo in a FoF group is classified as its main subhalo (sometimes the main

halo) and normally host most of its mass. Other subhaloes in the FoF group are classified

to as satellite subhaloes.

The merger trees in this project are constructed by LHaloTree algorithm, which

is described in the supplementary information of Springel et al. (2005b), by linking each

subhalo found in a given output to only one descendent at the later time using the particles

IDs which are assigned to every particles. Each particle ID is unique and fixed to only one
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particle across the simulation. The further comparisons of merger tree algorithms can be

found in Srisawat et al. (2013); Avila et al. (2014); Lee et al. (2014); Wang et al. (2016).

4.3 The Munich semi-analytic model of galaxy formation

L-Galaxies

The Munich SAM, or L-Galaxies (Springel et al., 2001a; De Lucia et al., 2004b; Kauff-

mann et al., 2004; Springel et al., 2005a; Croton et al., 2006; De Lucia and Blaizot, 2007;

Guo et al., 2011, 2013; Henriques et al., 2013, 2015), has been developed over decades

to include most of the relevant processes that affect galaxy evolution. A brief summary

of the galaxy formation recipes is in Appendix A, but we strongly encourage the readers

to the supplementary material of Henriques et al. (2015), Hen15 hereafter, for more de-

tailed descriptions. L-Galaxies has succeeded in predicting various physical properties

of galaxies in the local Universe and up to redshift z = 3 (Henriques et al., 2013, Hen13

hereafter). It also produces results to agree reasonably well with the observations at high

redshift (Clay et al., 2015). In this work, we deploy the physical recipes used in Hen15,

except the baryonic infall model which is discussed in Section 4.3.1, to use with the high

resolution N -body simulation described in Section 4.1.

4.3.1 Baryonic infall

We assume that collapsed dark matter haloes (FoF groups in this work) always have a

mass of associated baryons given by the universal baryon fraction, fb = Ωb/Ωm (White

and Frenk, 1991). This value specifies the maximum baryons a halo can possess. At any

time, the matter which has not previously accreted into any objects will be added into

the central objects in the form of primordial gas. However, some halos might not be able

to accrete the total amount of baryons due to many factors, especially the ionising UV

radiation which can heat the IGM (Efstathiou, 1992) and increase the local Jeans mass

(Dijkstra et al., 2004b). We parametrise the reduction of infall gas in terms of a baryon

fraction modifier, fmod, which specifies the total baryon mass a halo can capture in its

lifetime. We model the infall mass,

minfall = fmodfbM200c −mbaryon, (4.2)

where

mbaryon =

Ngal−1
∑

i=0

(mi
∗ +mi

cold +mi
hot +mi

ejected +mi
BH), (4.3)
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and 0 ≤ fmod ≤ 1. Ngal is the total number of galaxies inside the virial radius of the

halo. m∗, mcold, mhot, mejected, and mBH are the total mass of stars, cold gas disc, hot

atmosphere, ejected phase gas, and super massive black hole respectively.

Hen15 assumes that minfall is non-negative. If the right hand side of Equation 4.2 is

less than 0, minfall will be set to be 0 (we hereafter call this scheme as stripping scheme

“0”). fmod is a function of M200c, redshift and other local environment properties. In

the standard version of L-Galaxies, it only depends on M200c and redshift assuming

homogeneous reionisation (Gnedin, 2000; Okamoto et al., 2008). The ability to use local

environment properties, such as local ionised fraction, as a factor to calculate fmod is the

main feature of this work. The conditions used for fmod will be described in detail in

Section 4.4.

The excess baryon problem

According to Equation 4.2 and the assumption used in Section 4.3.1, fbaryon = mbaryon/M200c

can be greater than fb if the virial mass of a FoF group decreases over a time step, which

is unlikely to happen in ΛCDM cosmology. However, many factors such as discrete snap-

shots, halo finding methods, and merger tree building algorithms are able to trigger this

phenomenon. The data dark matter particles are stored at discrete time-steps. In order

to identify the bound structures, i.e. haloes, halo finder methods are applied to the stored

particle data. However, most of the available halo finder algorithms, including Subfind

which is used in this work, use the information from only one snapshot to identify bound

structures. Therefore, the temporal fluctuation of halo masses can arise any time. When

combine with merger tree builders, which track haloes in simulations across time-steps,

it is not uncommon to find that haloes decrease in mass at some point in their history.

(Srisawat et al., 2013; Avila et al., 2014). This issue will be discussed in detail in Part III

of this thesis.

By restricting minfall in Equation 4.2 to be non-negative, the baryon contents inside

haloes can be overestimated because the total baryon mass will be set to the maximum

fmodfbM200c in their lifetime. The spike in mass history, e.g. from host-subhalo misid-

entification, will lead to excess baryon content. Particularly, the halos with less than a

few hundred dark matter particles which the mass is less stable and prone to numerical

fluctuation. Figure 4.5 shows the average baryon fraction as a function of the virial mass

of FoF groups at redshift z = 6, 8 and 10. The coloured regions show the 68% confident

intervals (±1σ) of the distributions. The left panels are the plots for the stripping “0”
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scheme. They show that the average baryon fraction of a haloes, with virial mass less than

109 M⊙, using the“No suppression” model (see Section 4.5) are greater than the global

baryon fraction of the Universe using this stripping scheme.

We try to fix this issue by introducing a buffer gas phase called the “excess” state and

allowing minfall to be negative. Under these circumstances, material is moved from the

halo into this excess phase which therefore acts like a buffer between the primordial gas

from the IGM and the baryon reservoir inside the haloes.

If minfall > 0 and minfall > mexcess, where mexcess is the total mass of the excess state,

the total mass of minfall − mexcess is supplied from primordial gas from the surrounding

IGM and transferred into the hot gas phase. Then all the gas, including metals, in the

excess state will be distributed into the hot gas and ejected phases. The total mass of

mexcess

(

mhot
mhot+mejected

)

is given to the hot atmosphere and mexcess

(

mejected

mhot+mejected

)

is given

to the ejected state. The metal mass is also distributed at the same proportion as the

mass transferred to the respecting gas states. If minfall < mexcess, no primordial gas will

be accreted from the surrounding IGM. Then, the total mass of minfall

(

mhot
mhot+mejected

)

and

minfall

(

mejected

mhot+mejected

)

from the excess mass reservoir are given to the hot atmosphere and

the ejected state respectively.

If minfall < 0, the total baryon of |minfall| will be “stripped” from the hot gas and

ejected phase to the excess state. The total mass of |minfall|
(

mhot
mhot+mejected

)

≤ mhot from

the hot atmosphere and |minfall|
(

mejected

mhot+mejected

)

from the ejected state will be transferred

to the excess state. In the case that |minfall|
(

mejected

mhot+mejected

)

> mejected, the remaining mass,

(|minfall|
(

mejected

mhot+mejected

)

−mejected) ≤ mhot, from the hot atmosphere will be given to the

excess state. We hereafter call this the stripping “1” scheme. This scheme is expected to

reduce the effect from the mass fluctuation in merger trees, especially the overestimated

baryon content in low mass haloes.

4.3.2 UV Luminosity modelling

The initial mass functions (IMF) and stellar population synthesis (SPS) models are crucial

parts of galaxy formation theory as they link the masses, ages and metallicities predicted

for stars to the observable emission at various wavelengths. The UV luminosity of the

mock galaxies in this work is generated by following Hen15 to use Chabrier IMF (Chabrier,

2003) and the publicly released but still unpublished Charlot & Bruzual (2007) as the SPS

model. Since actively star-forming galaxies are known to be rich in dust which is able to

significantly absorb UV light, we model the dust absorption according to Section S1.14 of
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the supplementary material of Hen15.

4.4 Reionisation

We adopt the semi-numerical methods given in Majumdar et al. (2014), which is based

on the excursion-set formalism described in Furlanetto et al. (2004), and similar to Zahn

et al. (2007), Mesinger and Furlanetto (2007), Choudhury et al. (2009), and Santos et al.

(2010).

In this work, we assume that the number of reionising photons is proportional to the

number of hydrogen atoms in the forming stars inside galaxies, hence the rate of ionising

photons emitted into the IGM, Ṅγ , can be expressed as:

Ṅγ = Σesc
ṁ∗

mHI
, (4.4)

where Σesc is the the number of photons per a hydrogen atom of forming stars that escape

into the IGM, ṁ∗ is the gross star formation rate, and mHI is the mass of a hydrogen

atom. Σesc can be expressed as fescNi, where Ni is the mean number of ionising photons

produced by an atom cycled through stars, averaged over the initial mass function (IMF)

of the stars, and fesc is the fraction of these ionising photons that escapes into the IGM

(Haiman and Holder, 2003). In this work, we assume Σesc is a constant. In the future,

we will investigate Σesc as a function of redshift, metallicity, and the stellar age of the

galaxies.

L-Galaxies gives the information about locations and ṁ∗ of galaxies. We define

Nγ,total is the total number of ionising photons that have been emitted by a galaxy and

its progenitors into the IGM up to a given time, tf :

Nγ,total = Σesc

∫ tf

0

ṁ∗(t)

mHI
dt, (4.5)

where ṁ∗(t) is the total star formation rate of the galaxy or its progenitors at time t.

We then follows the reionisation recipe described in Section 2.3.1 of Majumdar et al.

(2014) to calculate the growth of H II bubbles. By assuming that dark matter and ba-

ryon are fully coupled with no bias, the number density field of neutral hydrogen can be

estimated as

nHI(x) =
fbXHI

mHI
ρDM(x), (4.6)
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where fb = Ωb/Ωm is the universal baryon fraction, ρDM(x) is the dark matter density

field, and XHI is the mass fraction of H I in the Universe.

We then estimate the average number density of photons within a spherical radius R

with the centre located at a coordinate x, ⟨nγ(x)⟩R, and compare it to the corresponding

average number density of neutral hydrogen ⟨nHII(x)⟩R. The smoothing radius, R, is

ranged from the grid cell size, Rcell, to a radius Rmax, which is determined by the assumed

mean free path of the photon at the concerned redshift. With Nrec as the averaged number

of recombinations per hydrogen atom in the IGM, which we assume to be uniformly

constant2,3.The cell located at a coordinate x is considered to be ionised if there exists a

radius R ∈ [Rcell, Rmax] such that

⟨nγ(x)⟩R ≥
⟨nHI(x)⟩R
(1 +Nrec)

. (4.7)

If the condition is not satisfied, the ionised fraction of the cell is given by the maximum,

over all R ∈ [Rcell, Rmax], of

xHII(x) =
⟨nγ(x)⟩R

⟨nHI(x)⟩R(1 +Nrec)
. (4.8)

Since we assume Σesc and the averaged number of recombinations per hydrogen atom

to be constant, the factor (1+Nrec) can be included within the definition of Σesc. In other

words, the effect of recombination can be compensated by increasing the efficiency of the

sources. Thus, we define the effective Σesc:

Σesc,eff =
Σesc

1 +Nrec
(4.9)

To be able to run the simulation repetitively to finely tune the free parameters in

the model, the method needs to be run in a fully parallel manner. We parallelise the

calculation by assigning N different values of the smoothing radius, R1, R2, R3, ..., RN ,

distributed to M ≤ N processors. When the ionisation fields for a given value smoothing

radius Ri, xHII,Ri
(x), are processed for all i ∈ {1, 2, 3, ..., N}, then the final result for the

cell at a given coordinate x;

xHII(x) = max
1≤i≤N

xHII,Ri
(x). (4.10)

This method is proven to scale well to M processor given that the memory is sufficient.

2It is also possible to incorporate a self-shielding criterion in this simulation based on a density de-

pendent recombination scheme (Equation 15 of Choudhury et al., 2009), which we do not consider in the

comparisons in this work.
3The effect of reionisation on the recombination , e.g. the reduction of the clumping factor (Pawlik

et al., 2009), is not considered in this comparison.
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4.5 Suppression models

In order to investigate the effect of the suppression caused by the reionisation, we compare

a simple patchy suppression model which the ionisation state of the local IGM is taken

into account, against the homogeneous suppression model which is the standard model for

L-Galaxies. We also include the model which does not include reionisation suppression

as a reference. The detailed descriptions of all models can be found below.

4.5.1 “No suppression” model

In this model, we assume that there is no suppression from reionisation. Therefore, we set

fmod in eq. 4.2 to 1. This implies the baryon fraction inside the virial radius of any halo

is the same as the universal baryon fraction.

4.5.2 “Homogeneous” model

This model assume homogeneous reionisation. Hen15 model utilises the results from

Gnedin (2000) who defines a filtering halo mass, MF(z), with a model of fmod as a function

of redshift and M200c of the halo;

fmod(z,M200c) =

(

1 + (2α/3 − 1)

[

M200c

MF(z)

]−α
)− 3

α

. (4.11)

For haloes with M200c > MF(z), suppression of the baryon fraction is small, but for

haloes with M200c ≪ MF(z) the baryon fraction drops to (M200c/MF(z))3. Hen15 adopts

α = 2 and take MF(z) from the numerical results of Okamoto et al. (2008). MF varies

from ∼ 6.5× 109M⊙ at z = 0, to ∼ 107M⊙ at z = 8. Figure 4.2 shows the relationships

between fmod and M200c at z = 6, 7, 8, and 9.

4.5.3 “Patchy” suppression model

We model a simple patchy suppression in the same manner as the mass-dependent sup-

pression of LMACHs (gS) model described in Section 3.2 of Dixon et al. (2016) to modify

fmod in Equation 4.2.

For an FoF group located at x, if the grid cell containing the centre of the FoF group

is considered to be ionised, xHII(x) > 0.5 in this work,

fmod =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

0 if M200c < 108M⊙

log10
(

M200c/108 M⊙

)

if 108M⊙ ≤ M200c < 109M⊙

1, if M200c ≥ 109M⊙.

(4.12)
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Figure 4.2: The the relationship between fmod and M200c of “patchy” model in ionised

regions, compared to the relationship between fmod and M200c from Okamoto et al. (2008)

at z = 6, 7, 8, and 9.

If the the grid cell is neutral, xHII(x) ≤ 0.5 in this work,

fmod = 1, for all mass range. (4.13)

Figure 4.2 shows the relationship between fmod and M200c of the patchy suppression

model in ionised regions, compared to the model described in Okamoto et al. (2008) at

different redshifts, z = 6, 7, 8, and 9.

4.6 Combination of L-Galaxies and the semi-numerical reion-

isation simulation

In order to couple galaxy evolution and reionisation in this work, we employ the algorithm

illustrated in Figure 4.1 which can be described below:

1. Start from the N -body simulation, merger trees are built from the halo catalogues

extracted from the simulation. All snapshots, S0, S1, S2, ..., SN−1, where N is total

number of the stored snapshots, are sorted by their expansion rates. The density
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field of dark matter particles of each snapshot is generated onto grids, then they can

be converted to the number density fields of neutral hydrogen using Equation 4.6.

2. To produce the galaxy catalogue of a snapshot Si, the merger trees and the ionised

fraction fields of the snapshot S0, ..., Si−1 are supplied to L-Galaxies. For any

snapshots Si where i < 0, which do not exist, the simulation box is assumed to be

entirely neutral.

3. To produce the integrated ionising photon field of a snapshot Si, the galaxy catalogue

at Si is used to supply the integrate star formation and average onto grids. The

relationship in Equation 4.5 is applied to convert the integrated star formation to

the amount of the integrated ionising photons.

4. To produce the ionised fraction field of a snapshot Si, the integrated ionising photon

field and the number density field of neutral hydrogen of the snapshot Si are supplied

to the reionisation simulation (see Section 4.4).

5. Repeat step 2-4 for all snapshots, from S0 to SN−1.

4.7 Model calibration

We make use of the UV luminosity function at z = 6, 7, and 8 described in Bouwens

et al. (2015b), which utilises the combination of data from HUDF09, HUDF12, ERS,

BoRG/HIPPIES, and CANDELS programs on HST, to calibrate the free parameters in

L-Galaxies model. The dataset contains a sample of more than 10000 galaxy candidates

at z ≥ 4, which resolves 857, 481, and 217 galaxies at z ∼ 6, z ∼ 7, and z ∼ 8 respectively.

The calibrating engine is the MCMC fitting engine in L-Galaxies, which is able to search

for the coordinate in high-dimensional parameter space to make the best fit to a given set

of observations (Henriques et al., 2009).

In Figure 4.3, we show the UV luminosity functions of the models at redshift z = 6, 7,

and 8, along with the constraining observations (Bouwens et al., 2015a) and some recent

observations, i.e. Bouwens et al. (2007, 2010a); Oesch et al. (2010); McLure et al. (2011);

Duncan et al. (2014); Bowler et al. (2014) at redshift z = 6, 7, and 8. The error bars

on the observed data points were contributed from Poisson noise and the uncertainties in

photometric redshift determination provided in the publications. We are able to achieve an

excellent match to the normalisation, shape, and evolution of the observed UV luminosity

function across all plotted redshifts. We found that there is no significant discrepancy in
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Figure 4.3: The UV luminosity function of galaxies from different models at z = 6 (top),

z = 7 (middle), and z = 8 (bottom).
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Table 4.1: The parameters, with the corresponding descriptive equations in the supple-

mentary material of Henriques et al. (2015), used in L-Galaxies in this work compared

to Henriques et al. (2013), Hen13, which assumed 7-year Wilkinson Microwave Anisotropy

Probe (WMAP7) cosmology and Henriques et al. (2015), Hen15, which assumed 1-year

PLANCK cosmology.

Parameter Hen13 Hen15 this work unit

αSF(SF eff - eq. S14) 0.055 0.025 0.18

mcrit,0(Gas mass threshold - eq. S15) 0.38 0.24 0.20 1010M⊙

αSF,burst(SF burst eff - eq. S33) 0.56 0.60 0.50

βSF,burst(SF burst slope - eq. S33) 0.70 1.9 0.56

kAGN(Radio feedback eff - eq. S24) - 5.3 ×10−3 3.0× 10−3 M⊙yr−1

fBH(BH growth eff - eq. S23) 0.015 0.041 0.015

vBH(Quasar growth scale - eq. S23) 280 750 280 km s−1

ϵ (Mass-loading eff - eq. S19) 2.1 2.6 2.1

vreheat (Mass-loading scale - eq. S19) 405 480 405 km s−1

β1 (Mass-loading slope - eq. S19) 0.92 0.72 0.92

η (SN ejection eff - eq. S17) 0.65 0.62 0.15

veject (SN ejection scale - eq. S17) 336 100 336 km s−1

β2 (SN ejection slope - eq. S17) 0.46 0.80 0.36

γ (Ejecta reincorporation - eq. S22) 1.8× 1010 3.0× 1010 1.8× 1010

mr.p. (Ram-pressure threshold) 0.0 1.2× 104 0.0 1010M⊙

Rmerger (Major-merger threshold) 0.3 0.1 0.3

αfriction (Dynamical friction - eq. S32) 2.0 2.5 2.0

y (Metal yield) 0.047 0.046 0.047

Σesc,eff (Effective ionising eff - Equation 4.9) - - 2523
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the UV luminosity functions, within the ranges of the constraining data set, between all

suppression models using the same set of L-Galaxies parameters. Hence, we will use

only one set of parameters to apply to all suppression models for each stripping scheme.

We deliberately plot the UV luminosity function to the lower brightness end to see in

what range of the absolute luminosity that the discrepancy between the model appears.

We can see that there is no significant difference between the “No Suppression” and the

“Homogeneous” models when the absolute UV magnitude M1500 − 5 log h < −14 and no

difference between the “No Suppression” and the “Patchy” models when the absolute UV

magnitude M1500 − 5 log h < −12.

Table 4.1 shows the parameters used in L-Galaxies in both stripping schemes in

this work compared to the work in Hen13 and Hen15. In both stripping schemes, the

calibrated parameters are similar to those used in Hen13, which assumed the cosmology

from 7-year Wilkinson Microwave Anisotropy Probe (WMAP7), with larger star formation

rate efficiency, αSF, which is 0.18 compared to 0.055 in Hen13 and 0.025 in Hen15. We

also found smaller value of supernova ejection efficiency, η, which is 0.15 compared to

0.65 in Hen13 and 0.62 in Hen15. The parameters provides an excellent match with the

constraining observational data across redshifts z = 6, 7, and 8. Due to the relatively

small size of the simulation, the number density of the galaxies of UV magnitude less than

−21 at z = 6, −20 at z = 7, and −19 at z = 8 diverges from the constraining observations,

but still reside within the large uncertainty regimes from the other observations.

In addition to the UV luminosity function at high redshifts, we use the measurement

of integrated optical depth to Thomson scattering of CMB photons by free electrons from

3-year data of Planck satellite (Planck Collaboration et al., 2015), to constrain Σesc,eff

in Equation 4.9, which determines the total ionising photons from galaxies. By assuming

that the fraction of the ionised helium is negligible, the integrated optical depth of electron

scattering, τe, can be calculated as:

τe(z0) =

∫ z0

0

cdt

dz
(1 + z)3σTx

m
HII⟨nH⟩dz, (4.14)

where σT = 6.652× 10−25 cm2 is the Thomson scattering cross section, xmHII is the mass-

weight global ionised fraction of hydrogen, and the average co-moving density of hydrogen

⟨nH⟩ = 1.88× 10−7(h2Ωb/0.022) cm−3.

For comparison, we use the same Σesc,eff for every suppression model in each stripping

scheme. Figure 4.4 shows the electron scattering optical depths of the models used in this

work, against the observational measurement from the Planck satellite (Planck Collabor-

ation et al., 2015). By using the calibrated sets of parameters in Table 4.1, we do not
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notice more than 1% difference in the integrated optical depth of electron scattering, τe,

across different suppression models in both stripping schemes.

Despite of numerous impressive efforts in both observational and theoretical studies to

quantify fesc, it remains largely uncertain, from one percent to unity. While there is no

consensus on the value of fesc, there are estimations from various methods. For example,

Bolton and Haehnelt (2007) used a large set of hydrodynamic simulations to estimate

fesc ∼ 20 − 30% at z ∼ 6 ; Finkelstein et al. (2012a) estimated average fesc to be ∼ 30%

in order to get a fully ionized IGM at z = 6; Kuhlen et al. (2012a) found a strong redshift

evolution of escape fraction, increasing from ∼ 4% at z = 4 to unity at higher redshifts, in

order to simultaneously satisfy reionisation and lower redshift Lyman-α forest constraints;

Mitra et al. (2015) used the high-redshift galaxy luminosity function data to estimate

fesc ∼ 10% at z = 6−9; Khaire et al. (2016) studied the contribution of QSOs and galaxies

to the hydrogen ionising emissivity to constrained fesc ∼ 0.14 − 0.22 at z > 5.5. Our

best estimated Σesc,eff to reproduce the observed value of the electron scattering optical

depths for both stripping “0” and “1” schemes is 2523. Depending on the IMF and the

average number of hydrogen recombination, Nrec, the corresponding escape fraction can

be anything from a few percents (a top-heavy IMF with very low recombination) to tens

of percent. If we assume Chabrier IMF with the star mass ranged between 0.001−120M⊙,

which provides Ni ∼ 50000 (Topping and Shull, 2015), the corresponding escape fraction

will be ∼ 0.10 for Nrec = 1 and ∼ 0.15 for Nrec = 2.

4.8 Results and discussions

4.8.1 Baryon fraction in haloes

The baryon content used in this work is defined in Equation 4.3. The baryon fraction in

a Type 0 galaxy can be expressed as:

fbaryon =
mbaryon

M200c
, (4.15)

where mbaryon (see Equation 4.3) and M200c are the total baryon contents inside the virial

radius and the virial mass of the host halo (FoF group in this work) the galaxy resides

in. Figure 4.5 shows the averaged baryon fractions as a function of the virial mass of FoF

groups at redshift 6 (top), 8 (middle), and 10 (bottom). The coloured shades show the 68%

confident intervals of the distributions. The black dashed lines are the models described

in Okamoto et al. (2008) at the respective redshifts. The corresponding mass-weighted

average H II fraction at z = 6, 8, and 10 are 100%, 70%, and 17% respectively.
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Figure 4.4: The integrated free electron scattering optical depth, τe, as a function of

redshift. The grey horizontal line and shaded region indicate the constraints on τe to

z ∼ 1100 from the Planck 2015 data release (Planck Collaboration et al., 2015).

The figure shows that the stripping “0” scheme overestimates the baryon contents

inside haloes. the “No Suppression” model gives the average baryon fractions of the haloes

with virial mass less than ∼ 109M⊙ about 5% less than the universal baryon fraction at

z = 6 and 8. Those with virial mass less than ∼ 108.5M⊙ at z = 10 also display the baryon

fraction which is 8% larger than the universal baryon fraction. the “Homogeneous” model

also produces an average baryon fraction which is larger than the model from Okamoto

et al. (2008) at all plotted redhshifts, especially for the haloes of M200c = 108M⊙ at

z = 6 which contain more than twice the expected value from the model. Note that we

use Okamoto et al. (2008) model to calculate the amount of infall for all galaxies. This

suggests that the stripping scheme is sensitive to the fluctuation in halo histories and

prone to overestimating the baryon contents in galaxies. In this stripping scheme, the

“Patchy” model shows more suppression power on those haloes with virial mass less than

∼ 109M⊙ than that of the “Homogeneous” model at all plotted redshifts. Compared to

the model from Okamoto et al. (2008), this model estimates ∼ 60% lower baryon fraction

for M200c = 108M⊙ haloes at z = 10 and ∼ 50% at z = 8. However, the “Patchy” model

agrees quite well with Okamoto et al. (2008) model at z = 6.

The stripping “1” scheme is able to constrain the average baryon fraction not to exceed
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t

Figure 4.5: The averaged baryon fractions as a function of the virial mass of FoF groups

at redshift 6 (top), 8 (middle), and 10 (bottom). The coloured shades show the 68%

confident intervals of the distributions. The black dashed lines are the models described

in Okamoto et al. (2008) at the respective redshifts.
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the universal baryon fraction produced for every models at all redshifts. By using this

stripping scheme, The average baryon fraction from the “Homogeneous” model matches

Okamoto et al. (2008) model. The difference in average baryon fraction from the “Patchy”

model between two stripping scheme is less noticeable, only a few percents apart.

We take some notes on the size of the uncertainty in the average baryon fractions

of both stripping schemes. The standard deviation of the average baryon fraction pro-

duced by the stripping “1” scheme is much smaller than those produced by the stripping

“0” scheme. For example, the uncertainties for M200c = 108M⊙ at z = 6 produced by

the “Homogeneous” model are 30% and 0.05% in stripping “0” and “1” schemes respect-

ively. However, the uncertainties of those produced by the “Patchy” model remain almost

identical across the stripping schemes.

We further investigated the contribution of baryonic components: hot gas, cold gas,

stars, and ejected mass, to the total baryon fraction of the galaxies (see the supplementary

material of Hen15 for details). Figure 4.6 shows the average mass fraction of the hot gas

(first row), cold gas (second row), stellar mass (third row), and ejected mass (forth row),

at z = 6 (left) and z = 8 (right). The key features of the plot can be summarised below.

• For the haloes with virial mass less than ∼ 108.2M⊙, which is corresponding to

the virial temperature Tvir ∼ 104 K, the hot gas cannot be cooled and form stars

efficiently. Hence, most of the baryon content remains in hot gas state. The plot of

hot gas fraction at z = 6 (first row, left panel) shows that the suppression model

greatly affects the amount of hot gas in these small haloes, similar to what we have

seen in the total baryon fraction in Figure 4.5.

• For haloes with virial temperature Tvir > 104 K, the baryon can be cooled and form

stars efficiently. However, the feedback from supernovae expels the baryons in the hot

atmosphere into the ejected mass state. The ejection largely minimises the effect

of reionisation feedback on the amount of the hot gas, hence the star formation,

as we can see the fraction of stellar mass is hardly affected by the suppression

model at both redshifts. However, the cooling model in this work assumes the

equilibrium cooling function for collisional processes from Sutherland and Dopita

(1993) which only depends on the metallicity and temperature of the gas but ignores

radiative ionisation effects. Efstathiou (1992) expected the suppression of cooling

rate for T > 104 K from the photoionisation, which might increase the effect from

the reionisation feedback in dwarf galaxies.

• The “Patchy” model displays its effects on the star formation in haloes with M200c >
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109M⊙, where the haloes are not suppressed in the ionised regions. The mass frac-

tions of hot gas and star are greater than other suppression model by about 10% for

M200c = 1011M⊙. This is because the “Patchy” model assumes that the infall into

the low mass haloes in ionised regions is suppressed due to the ionising background.

When they are accreted into larger systems, their new hosts are able to use the ba-

ryons which have not been used in the previous time to fuel the new star formation.

In the “No Suppression” model, this portion or baryons is accreted into those small

haloes then cooled and condensed into galaxies. When these haloes are accreted

into larger systems, their baryons remain locked up in the infalling satellite, making

them unusable for the Type 0 galaxies to supply the star formation.

4.8.2 Star formation rate distribution function

Figure 4.7 shows the star formation rate distribution function (SFRDF) at z = 6 (left)

and 7 (right) as predicted by the models along with the measurements from Smit et al.

(2012) and Duncan et al. (2014) at z = 6, where the IMF is converted to Chabrier IMF if

necessary.

Both stripping schemes produce the SFRDF’s which have a remarkable agreement

with Duncan et al. (2014) at redshift 6 and 7. The results from all suppression models are

generally identical. At z = 7, the uncertainty of the data from Duncan et al. (2014) gets

significantly larger than those from z = 6 and the data converges to those of Smit et al.

(2012), which agrees very well with the SFRDF predicted by all suppression models from

both stripping schemes.

4.8.3 Stellar mass

Figure 4.8 shows the stellar mass function (SMF) at z = 6 (left) and 8 (right) as predicted

by the models along with the observational estimates from González et al. (2011), Duncan

et al. (2014), and Song et al. (2016). It is important to note that the observationally derived

mass functions presented in Figure 4.8 used different m∗−MUV relationships to construct

the galaxy stellar mass functions. The effect of nebular emission, which can strongly

affected the estimated stellar mass (Wilkins et al., 2013), was included in Duncan et al.

(2014) and Song et al. (2016) but not in González et al. (2011). The accuracy/precision

of stellar mass estimates are also affected by the lower sensitivity and angular resolution

of the Spitzer/IRAC imaging.

The stellar mass function from all suppression model in both stripping “0” and “1”
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Figure 4.7: The star formation rate distribution functions (SFRDF) as predicted by the

models at z = 6 (left) and z = 7 (right), along with the measurements from Smit et al.

(2012) (the IMF is converted to Chabrier IMF) and Duncan et al. (2014).

schemes agree well with Song et al. (2016) at z = 6 and 7. Compared to Song et al.

(2016)Duncan et al. (2014) employed shallower slope ofm∗−MUV relation which translates

into a higher normallisation of the SMF. Similar to the SFRDF, we do not notice any

significant discrepancy in the stellar mass function between the suppression models in

both stripping schemes within the current observable range. The discrepancy between the

suppression models is only noticeable for the galaxies with stellar mass less than ∼ 106M⊙.

The number galaxies with stellar mass 104.5M⊙ produced from the “Homogeneous” model

and the “Patchy” model are ∼ 50% and ∼ 70% respectively less than that of the “No

Suppression” model at z = 6, and ∼ 15% and ∼ 50% respectively at z = 7. More

importantly, there is no detectable difference between the stripping schemes at all redshift

using the same set of parameters. This means even the stripping scheme “0” overestimates

the baryon contents inside galaxies, it is still able to deliver the stellar mass functions which

are identical to those of the stripping “1” scheme.

The population of the galaxies with stellar mass between 106 and 1010 M⊙ in this

work is expected to be lower than the work in Mutch et al. (2015), especially for low mass

galaxies. At z = 6, the models in this work predict less than a half of the population

density of the galaxies with m∗ ∼ 108M⊙ estimated by Mutch et al. (2015).

Figure 4.9 shows the average total stellar mass (i.e. summed over all galaxies) in each

halo (FoF group) at z = 6, 8, 10, 12, 14, and 16 as a function of virial mass of the

hosting halo, M200c. The coloured shades indicates the 68% confidence intervals. The

dashed lines on the left panels show the fitted function m∗ ∝ M1.7
200c. It shows excellent
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Figure 4.8: The stellar mass functions, SMF, at z = 6 (left) and 7 (right) as predicted by

the models along with the observational estimates from González et al. (2011), Duncan

et al. (2014), and Song et al. (2016), together with the SMF of both redshifts predicted

by Mutch et al. (2015).

agreement with simple energy conservation arguments which suggest a slope of ∼ 1.7 for

supernova feedback-regulated galaxy growth and a fixed cold gas mass fraction (Wyithe

and Loeb, 2013), including the result from a large sample of local galaxies to obtain

the relationship m∗ ∝ M5/3
halo for m∗ < 3 × 1010M⊙, where Mhalo is the mass of dark

matter haloes (Kauffmann et al., 2003). We also found the redshift dependent evolution

of the normalisation (see Wyithe and Loeb, 2003), which can be expressed as an empirical

relation:

log10(m∗/M⊙) = 1.7 log10(M200c/M⊙) + az + b, (4.16)

where the best estimated values for a and b from our result are −10 and 1/24 respectively.

At z = 6, the uncertainty of the total stellar mass of the halo withM200c < 109M⊙ increases

due to a combination of supernova and reionization feedback effects. The increase in the

total stellar mass of the haloes with M200c ∼ 108M⊙ due to the lack of supernova feedback

as we have seen in Figure 4.6.

4.8.4 Integrated star formation

We define the integrated star formation of a galaxy over the cosmic time, m∗,gross(tf ), as

the total star formed in the galaxy and its progenitors up to a specific time tf ;

m∗,gross(tf ) =

∫ tf

0
ṁ∗(t)dt, (4.17)

where ṁ∗(t) is the total star formation rate of the galaxy or its progenitors at time t.
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Figure 4.9: The average stellar mass, m∗, in each FoF group at z = 6, 8, 10, 12, 14, and

16, as a function of the virial mass of the hosting FoF group, M200c. The coloured shades

indicates the 68% confidence intervals. The dashed lines on the left panels show the fitted

function m∗ ∝ M1.7
200c. Both stripping schemes show identical relationship between m∗ and

M200c for each suppression model so we will show only the plots for one scheme.
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Figure 4.10: The average integrated star formation, m∗,gross up to z = 6, 8, 10, 12, 14,

and 16, as a function of the virial mass of the hosting FoF group, M200c. The coloured

shades indicates the 68% confidence intervals. The dashed lines on the left panels show

the fitted function m∗,gross ∝ M1.64
200c. Both stripping schemes show identical relationship

between m∗,gross and M200c for each suppression model so we will show only the plots for

one scheme.
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Figure 4.10 shows the average integrated star formation, m∗,gross up to z = 6, 8, 10,

12, 14, and 16, as a function of the virial mass of the host FoF group, M200c. The coloured

shades indicates the 68% confidence intervals. The dashed lines on the left panels show

the fitted function m∗,gross ∝ M1.64
200c. Both stripping schemes show identical relationship

between m∗,gross and M200c for each suppression model so we will show only the plots

of one scheme. The plots show a very linear relationship between log10(m∗,gross/M⊙)

and log10(M200c/M⊙) unless the galaxies are under the suppression from reionisation and

supernovae. The top left plot shows the average log10(m∗,gross/M⊙) at a function of

log10(M200c/M⊙) at redshift 6. There is a trace of the suppression mechanism on the haloes

with M200c < 109M⊙. The average integrated star formation of the“Homogeneous” and

the “Patchy” models are 50% and 75% lower than the “No Suppression” model respectively

for M200c ∼ 108.2M⊙.

The linear relationship between log10(m∗,gross/M⊙) and log10(M200c/M⊙) without the

suppression from reionisation can be expressed the same way as Equation 4.16:

log10(m∗,gross/M⊙) = m log10(M200c/M⊙) +Az +B. (4.18)

The results in this work show that the most fitted values for the parameters m, A, and

B are 1.64, 1/30, and −9.2 respectively for 108 < M200c/M⊙ < 1011. Equation 4.18

well represents the relationship between m∗,gross and M200c at all redshift. Although the

galaxies are under the supernova feedback and reionisation suppression around M200c ∼

108 M⊙, the scatter of the plot is large enough to estimate the linear log− log relation in

the equation.

We note that, as the result from our model, m∗,gross is proportional to M1.64
200c, it implies

that we have assumed the total number of ionising photons contributed by a halo of mass

Mhalo, Nγ ∝ M1.64
halo while the some works (e.g. Choudhury et al., 2009; Majumdar et al.,

2014) assumed Nγ,total ∝ Mhalo. Some assumed Ṅγ ∝ Mhalo (e.g. Iliev et al., 2006; Zahn

et al., 2007; Dixon et al., 2016). The recent work in Mutch et al. (2015) also assumes Ṅγ

within an ionised region to be proportional to m∗,gross/tH, where tH is the Hubble time,

but does not explicitly show the relationship between m∗,gross and the halo mass.

4.8.5 Clustering of galaxies

To study the changes in galaxy clustering between the models, we use the 2-point correl-

ation function (2PCF), ξ(r), which describes the excess of probability dP over a random

distribution of finding pairs of galaxies at a given separation r:
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Figure 4.11: 2-point correlation functions as a function of comoving radius, r, of three

subsets of galaxies within ionised regions from all models, 106.0 < m∗/M⊙ < 106.5 (top),

106.5 < m∗/M⊙ < 107.0 (middle), and 107.0 < m∗/M⊙ < 107.5(bottom) at z = 6 (left

panels) and z = 9 (right panels).
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dP = n(ξ(r) + 1)dV, (4.19)

where n is the number density of selected galaxies. We use a simple estimator described

by the following formula:

ξ(r) =
DD(r)

RR(r)
− 1, (4.20)

where DD(r) is the number of data pairs separated a distance r between them, and RR(r)

is the number of random pairs at the same distance.

To calculate the errors of the 2PCF we use the Jack-Knife method described in Norberg

et al. (2009). We divide the simulation box into 64 cubic subvolumes, and we measure

the 2PCF 64 times excluding each time only one of the subsamples. We obtain the error

from:

∆ξ(r) =

√

√

√

√

NJK − 1

NJK

NJK
∑

i=1

(ξi(r)− ξ̄(r))2, (4.21)

where NJK is the number of Jack-Knife subsamples used and ξi(r) corresponds to the

measurement of ξ(r) excluding the ith subsample.

Due to the suppression mechanism of the “Patchy” model which only suppress the

haloes in ionised regions, the clustering of the galaxies selected by a short stellar mass

range produced by this model should present some deviation from the reference the “No

Suppression” model. Figure 4.11 shows the 2-point correlation functions as a function

of comoving radius, r, of three subsets of galaxies in ionised regions from the models,

106.0 < m∗/M⊙ < 106.5 (top), 106.5 < m∗/M⊙ < 107.0 (middle), and 107.0 < m∗/M⊙ <

107.5(bottom) at z = 6 (left panels) and z = 9 (right panels). Although the deviation

is present, it is smaller than the errors calculated by Jack-Knife method. At z = 9,

we notice the results from the “Patchy” model displays very slightly lower ξ, less than

∼ 10%, than other models at r ∼ 200kpc with the selection of the galaxies with stellar

mass of 106 − 107M⊙. At z = 6, we notice less galaxy clustering from the selection of

106.5 < m∗/M⊙ < 107 from the “Patchy” model. The 2PCF of the “Patchy” model shows

that the probability to find other selected galaxies within comoving radius of r = 200kpc

is about 20% lower than other models. For 106 < m∗/M⊙ < 106.5, the “Patchy” model

also exhibits the 2PCF which is < 10% less than those estimated by the “No Suppression”

and the “Homogeneous” models which appear to be identical.
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Figure 4.12: The time evolution of mass-weighted average H II fraction of the simulation

box produced by each model (bottom) and corresponding ratios of mass-weighted and

volume-weighted ionised fractions (top), which are equal to the mean density of the ionised

regions in units of the mean density of the Universe. The bottom plot shows the percentage

residual offset from the mass-weighted average H II fraction predicted by “No suppression”

model using the stripping “0” scheme.
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4.8.6 The effects on reionisation history

Figure 4.12 presents the time evolution of mass-weighted average H II fraction of the sim-

ulation box produced by each model (middle) and corresponding ratios of mass-weighted

and volume-weighted ionised fractions (top), which are equal to the mean density of the

ionised regions in units of the mean density of the Universe. The bottom plot shows the

percentage residual offset from the mass-weighted average H II fraction predicted by “No

suppression” model using the stripping “0” scheme. Since we assume the recombination is

uniform, the mass-weighted H II fraction can be directly translated to the total number of

ionising photons produced in the simulation. The plot shows that the suppression models

in the stripping “1” scheme have about 1 − 2% more suppression power than their sup-

pression model in the stripping “0” scheme. This means the stripping “1” scheme which

we propose to avoid the overestimated baryon contents in the galaxies makes only 1− 2%

different in the total ionising photon emission. From z ∼ 15, the reionisation histories

of the “Homogeneous” and the “No Suppression” models are almost identical in both

stripping schemes across the cosmic time, except very modest difference up to 0.2% at

z < 8. Compared to “No Suppression” model, the “Patchy” model suppresses 6% of the

global ionising photons at z ∼ 12 then the suppression drops down to nothing at z ∼ 8.5.

After that, the “Patchy” model produce 1% and 2%, in the stripping “0” and “1” scheme

respectively, more ionising photons than the “No Suppression” model at z ∼ 8. This is

because the “Patchy” model assumes that the infall into the low mass haloes in ionised

regions is suppressed due to the ionising background. When they are accreted into larger

systems (or even become ones themselves), their new hosts are able to use the baryons

which have not been used in the previous time to supply new star formation. In the

“No Suppression”, this portion or baryons is accreted into those small haloes then cooled

and condensed into galaxies. When these haloes are accreted into larger systems, their

baryons remain locked up in the infalling satellite, making them unusable for the Type 0

galaxies to supply the star formation. Please note that there is no discrepancy in the ratio

of mass-weighted and volume-weighted ionised fractions between suppression models and

stripping schemes across the simulation time.

4.8.7 Ionisation morphology

In Figure 4.13, Figure 4.14, and Figure 4.15, we illustrate the evolution of H II fraction

density fields of all models when their average mass-weighted ionised fractions, ⟨xmHII⟩ are

0.3, 0.5, and 0.7 respectively. In despite of having different suppression models, the ba-
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sic features are similar for all models. At first, a large number of small, ∼ 1 Mpc-size

H II bubbles form. They are highly clustered, around the high number density regions of

ionising sources. These small H II bubbles merge into nearby bubbles, and create larger

ionised regions. When a half of the hydrogen in the simulation box is ionised, the per-

colation of H II regions can be spotted, and bubbles with size up to ∼ 10 Mpc form. We

note that these are perspective views of the ionisation field, and H II regions are not com-

pletely spherical, therefore they have different sizes depending on the viewing direction

(Iliev et al., 2008b). The H II regions continue to grow. At z ∼ 8, where ⟨xmHII⟩ ∼ 0.7,

some extend to a few ∼ 10 Mpc across.

In Figure 4.14, a trace of the baryon being restricted by the stripping “1” is shown

in the partly ionised area near the centre of the plotted space. A circular light blue area

appears to be ‘cleaner’ in the stripping “1” scheme (right panels) because the fluctuation

in the mass history of the haloes near the region causes the extra star formation in the

stripping “0” scheme (left panels). On the other hand, stripping “1” scheme has the

mechanism to prevent the extra baryons from the mass fluctuation and avoid the extra

star formation which we can see in stripping “0” scheme.

In Figure 4.15, an increasing of ionising photon emission in the “Patchy” model is seen

in the lower left part of the plotted space where the model displays a larger ionised region

in both stripping schemes. By using the same suppression model, the plot also shows that

the ionised region is slightly larger in the stripping “0” scheme.

Since it is difficult to spot the differences in the 2D H II fraction plots and we want

to extract more quantitative data, we continue to measure the size distribution of the

ionised regions based on the spherical average method used in Zahn et al. (2007) and

McQuinn et al. (2007). Figure 4.16 shows the probability distributions for the radius

of ionised regions, R, at ⟨xmHII⟩ ∼ 0.3, 0.5, and 0.7 for all models. “No Suppression” and

“Homogeneous” models show no discrepancy between them in all plots while the “Patchy”

model predicts slightly less probability to find small ionised bubbles than the other two

models. When ⟨xmHII⟩ ∼ 0.7, which is corresponding to z ∼ 8.1, the “Patchy” model

predicts, up to ∼ 10% at r = 0.1Mpc, less probability to find small ionised bubbles with

radius less than ∼ 8Mpc than other models. The distributions reflect the suppression

mechanism in the “Patchy” model which suppresses the baryonic infall of low mass haloes

in the ionised regions. Therefore, the galaxies reside in small haloes which are normally

responsible for the creation of small bubbles are suppressed and not able to create ionised

bubbles on their own, hence there are less small bubbles. When they are merged into
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Figure 4.13: The ionization structure of a 3 Mpc thick slab at the redshift corresponding

to a mass-weighted global neutral fraction of ⟨xmHII⟩ ∼ 0.3.
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Figure 4.14: The ionization structure of a 3 Mpc thick slab at the redshift corresponding

to a mass-weighted global neutral fraction of ⟨xmHII⟩ ∼ 0.5.
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Figure 4.15: The ionization structure of a 3 Mpc thick slab at the redshift corresponding

to a mass-weighted global neutral fraction of ⟨xmHII⟩ ∼ 0.7



61

0.1

1.0

R
d
P

(R
)/

d
R

⟨xm
HII⟩ = 0.3

No Suppression, stripping 0

Homogeneous, stripping 0

Patchy suppression, stripping 0

No Suppression, stripping 1

Homogeneous, stripping 1

Patchy Supression, stripping 1

0.1

1.0

R
d
P

(R
)/

d
R

⟨xm
HII⟩ = 0.5

10−1 100 101

R/Mpc

0.01

0.1

1.0

R
d
P

(R
)/

d
R

⟨xm
HII⟩ = 0.7
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larger systems, their unused baryons will be supplied to the host to form more new stars,

hence there are more large bubbles. This effect might be caused by the difference in ⟨xmHII⟩

between each model representing ⟨xmHII⟩ ∼ 0.7 (see Section 4.8.6). However, it should not

be the case since only 1% difference ⟨xmHII⟩ in can be seen between the “Patchy” model

and others at this particular snapshot.
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Chapter 5

Conclusions

In this work, we have presented a semi-analytic model of galaxy formation, using the

latest version of L-Galaxies (Henriques et al., 2015), and fully coupled with a semi-

numerical method of reionisation (Majumdar et al., 2014). It has been designed to study

the formation and evolution of the first galaxies and their effects on the reionisation.

By incorporating the method of reionisation simulation in the semi-analytic model, the

precise stage of the surrounding IGM around each galaxy can be fed into the model of

galaxy formation, thus the barynic infall can be modelled accordingly.

The model has been calibrated against the observed UV luminosity function at z =

6, 7, and 8 from Bouwens et al. (2015b), and the 3-year Planck constraint on the free

electron scattering optical depth (Planck Collaboration et al., 2015). The results in this

work excellently agree with those observations and reproduce the star formation rate

distribution function from Duncan et al. (2014) and the galaxy stellar mass function from

Song et al. (2016) at high redshift.

The stripping “1” scheme was designed to avoid overestimation of the baryon contents

inside galaxies caused by the fluctuation of halo mass across the cosmic history. While

the stripping schemes show the effects in the baryon reservoirs inside galaxies especially in

hot gas and ejected mass phases, it has a very minimal effect on the star formation. The

discrepancy in the mass-weighted average H II fraction between the stripping schemes is

only up to ∼ 2% at z ∼ 8 in this work.

We found no observationally detectable imprint in stellar masses ofm∗ > 105.5 at z ≥ 6,

while a recent similar work, Mutch et al. (2015), predicts the discrepancy to be observable

in the stellar mass of m∗ < 107.5M⊙. This might be due to the different prediction in the

population of low mass galaxies. Our models estimate the number density of the galaxies

with the stellar mass of ∼ 108M⊙ at z = 6 which is about less than a half of that predicted
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in Mutch et al. (2015).

Even by using the “Patchy” suppression model, we cannot find any detectable imprint

in the stellar mass function with stellar mass of m∗ > 105.5M⊙. However, the results from

the 2PCF of galaxies with stellar mass between 106 and 107 M⊙ show the suppression of

galaxy clustering due to the mechanism of the“Patchy” suppression. Thought it is small,

this imprint could be directly detectable in a high redshift Lyman-α emitter (LAE) survey;

e.g. Subaru telescope with its new Hyper Suprime-Cam, which is estimated to observe

∼5500 LAEs at z = 6.6 and ∼40 LAEs at z=7.3 (Ouchi 2012, private communication).

“Homogeneous” and “No Suppression” models agree very well in almost comparisons

in this work, especially above z = 8 for which they are identical. However the result from

Mutch et al. (2015) shows that the stellar mass of individual galaxies can vary by a factor

of 2-3 between the suppression models.

Compared to L-Galaxies’s standard, the “Homogeneous” model, the “Patchy” model

is slightly more effective at suppressing the total ionising photon emission up to z ∼ 8.5

which is corresponding to ⟨xmHII⟩ ∼ 0.5. When z < 8, the total ionising photon emission

exceed those of the other models until the box in fully ionised at z = 7.3. However,

the maximum difference of the total ionising photon emission between the models is only

5− 6% which occurred at z ∼ 15.

Overall, we agree with Mutch et al. (2015) that the reionisation history of the inter

galactic medium is insensitive to the reionisation feedback models that we use in this work.

However, if the process of reionisation is more extended than is predicted by our model (for

example, due to non-homogeneous recombinations in the IGM) then reionisation feedback

may play a more effective role. Furthermore, the equilibrium cooling function for collisional

processes from Sutherland and Dopita (1993) employed by L-Galaxies in the cooling

model only depends on the metallicity and temperature of the gas but ignores radiative

ionisation effects might cause L-Galaxies to overestimate the cooling rate of the gas

which is exposed to the ionisation radiation.

Since the volume of the simulation in this work is too small to be used for studying

the 21cm power spectrum (see Iliev et al., 2014), there is an ongoing work using this

simulation method with a larger simulation with a slightly lower resolution, 244 h−1Mpc

with 40003 particles as described in Dixon et al. (2016), to investigate the effect of local

UV suppression which could be detectable in the 21cm power spectrum measurements of

current and upcoming radio surveys.
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Part III

Merger Tree Comparisons
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Chapter 6

Sussing Merger Trees: The merger

tree comparison project

6.1 Introduction

As we outlined the procedures of the semi-analytic models (SAMs) of galaxy formation in

Part I and put an example into action in Part II of this thesis, we can see that they rely on

the accuracy of both the individual halo catalogues themselves as well as the framework

called merger tree that connects the halo catalogues from different snapshots together.

Merger tree represents the history of haloes which can be tracked across the cosmic time

by using a variety of tools and algorithms.

We will examine the accuracy of the trees (how often they link unrelated haloes to-

gether) and the smoothness of the tree growth. Both can lead to unrealistic galaxy growth

within a SA model. The results presented in this part arise out of the Sussing Merger

Tree workshop, that took place on July 7-12 2013. Different aspects relating to merger

trees have been investigated. Currently, there are 3 publications from the workshop;

• Srisawat, C., Knebe, A., Pearce, F. R., Schneider, A., Thomas, P. A., Behroozi, P.,

Dolag, K., Elahi, P. J., Han, J., Helly, J., Jing, Y., Jung, I., Lee, J., Mao, Y.-Y.,

Onions, J., Rodriguez-Gomez, V., Tweed, D., and Yi, S. K. (2013). Sussing Merger

Trees: The Merger Trees Comparison Project. MNRAS, 436:150162 (Srisawat et al.,

2013).

• Avila, S., Knebe, A., Pearce, F. R., Schneider, A., Srisawat, C., Thomas, P. A.,

Behroozi, P., Elahi, P. J., Han, J., Mao, Y.-Y., Onions, J., Rodriguez-Gomez, V.,

and Tweed, D. (2014). SUSSING MERGER TREES: the influence of the halo finder.
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MNRAS, 441:34883501 (Avila et al., 2014).

• Lee, J., Yi, S. K., Elahi, P. J., Thomas, P. A., Pearce, F. R., Behroozi, P., Han,

J., Helly, J., Jung, I., Knebe, A., Mao, Y.-Y., Onions, J., Rodriguez-Gomez, V.,

Schneider, A., Srisawat, C., and Tweed, D. (2014). Sussing merger trees: the im-

pact of halo merger trees on galaxy properties in a semi-analytic model. MNRAS,

445:41974210 (Lee et al., 2014).

The information in Part III will be very useful to introduce the necessary of proposing a

new baryonic infall mechanism in 4.3.1. The contents will be organised as follows:

• Chapter 6 gives the introduction of the work, including terminology and brief de-

scriptions of all merger tree generation algorithms used in the comparisons.

• In Chapter 7, we present the results from Srisawat et al. (2013), which give the

overall results of the merger tree comparison project. This give a clear distinction

between the results from different tree building methods, even their approaches are

very similar. The mass fluctuations , especially during the merging processes, are

discussed in detail.

6.2 Terminology

To avoid confusion, it is important that different researchers working on merger trees

speak the same language. We define here the terminology used in this paper and would

encourage others to adopt the same definitions:

• A halo is a dark-matter condensation as returned by a halo-finder (in our case

AHF). For the purposes of other definitions below, we assume that the IDs of the

particles attributed to each halo by the halo finder are known.

• Haloes may be spatially nested: in that case the outer halo is the main halo and the

other haloes are subhaloes. Note that the assignment of main halos and subhaloes

is a function of the halo-finder and one can envisage unusual geometries where this

allocation is not obvious; nevertheless, the picture of subhaloes orbiting within larger

ones ties in with our view of cosmic structure and is central to many SA models.

• If particles are allowed to be members of only one halo, (i.e. particles in sub-haloes

are not included in the particle ID list of the main halo, and particles in overlapping

haloes are assigned to just one of the two), then the haloes are said to be exclusive;

otherwise they are inclusive (AHF falls into this latter category).
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• Haloes are defined at distinct snapshots. Snapshots correspond to particular values

of cosmic time and contain the particle IDs, mass, location & velocity for each dark

matter particle in the simulation.

• For two snapshots at different times we refer to the older one (i.e. higher redshift)

as A and the younger one (i.e. lower redshift) as B.

• A graph is a set of ordered halo pairs, (HA, HB), where HA is older than HB. It

is the purpose of the merger-tree codes to produce a graph that best represents the

growth of structure over cosmic time. HA and HB are usually taken from adjacent

snapshots, but this is not a requirement as there are occasions where haloes lose

their identity and then reappear at a later time.

• Recursively, HA itself and progenitors of HA are progenitors of HB. Where it is

necessary to distinguish HA from earlier progenitors, we will use the term direct

progenitor.

• Recursively, HB itself and descendants of HB are descendants of HA. Where it

is necessary to distinguish HB from later descendants, we will use the term direct

descendant.

• In this paper we are primarily concerned with merger trees for which there is

precisely one direct descendant for every halo. Note that it is possible for haloes

near the minimum mass limit to have zero descendants: we omit such haloes from

our analysis.

• In the case that there are multiple direct progenitors, we require that precisely one

of these be labelled the main progenitor – this will usually be the most massive,

but other choices are permitted.

• The main branch of a halo is a complete list of main progenitors tracing back along

its cosmic history.1

Over the course of writing this paper it became clear that there has been confusion in

the past between what we call graphs and merger trees. Both are interesting in different

contexts. We limit ourselves here to an investigation of merger trees which are the more

relevant as an input to SA models.

1We note that, for main haloes rooted at z = 0, this main branch might more appropriately be called

a trunk, but it seems unnecessary to introduce a new term for this specific purpose.



70

0.0 0.2 0.4 0.6 0.8 1.0
t/t0

0

10

20

30

40

50

60

S
n
a
p
sh

o
t
ID

50.0 2.0 1.0 0.5 0.2 0.0
redshift

Figure 6.1: Snapshot ID versus time (lower x-axis, normalized to the present age of the

Universe) and redshift (upper x-axis).

6.3 Input halo catalogues

The halo catalogues used for this paper are extracted from 62 snapshots of a cosmological

dark matter only simulation undertaken using the Gadget-3 N -body code (Springel,

2005) with initial conditions drawn from the WMAP-7 cosmology (Komatsu et al., 2011b).

We use 2703 particles in a box of comoving width 62.5 h−1Mpc, with a dark-matter particle

mass of 9.31× 108h−1M⊙. The snapshots are labelled 0, 1, 2, . . . , 61 from redshift 50 to

redshift 0, as indicated in Figure 6.1.

The main halo finder used in this paper is AHF2 (Gill et al., 2004; Knollmann and

Knebe, 2009). It locates local overdensities in an adaptively-smoothed density field as pro-

spective halo centres. For each of these density peaks the gravitationally bound particles

are determined. Only peaks with at least 20 bound particles are considered as haloes and

retained for further analysis. The halo mass M200 is

M200 = 200ρc(z)
4π

3
R3

200, (6.1)

2The Amiga Halo Finder package is publicly available for download from http://popia.ft.uam.es/AHF
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where ρc(z) is the critical density of the Universe as a function of redshift z and R200 is

the radius enclosing a mean density that equals 200 times the critical density.

AHF generates inclusive data sets (i.e. particles in subhaloes are also included in the

main halo). As an input to the tree-building codes we provided the list of particle IDs

associated with each halo, alongside information about the (kinetic plus potential) energy,

position and velocity of each particle; we further made available the full halo catalogue

containing, besides the usual mass, position, and bulk velocity, an abundance of additional

information (e.g. energies, centre offsets, shapes, etc.).

The participants were asked to run their merger tree builders on the supplied data and

return, for each halo, a list of progenitor haloes and (unless the halo was newly-created)

the ID of a single main progenitor. For the purpose of comparing merger tree algorithms

we restricted participants to use only the information described above and did not give

them access to the raw N -body data. However, they were allowed to alter the original halo

catalogues by adding extra “fake” haloes and removing some “unreliable” haloes where

they felt that was appropriate.

6.4 Participated merger tree building algorithms

In this section we briefly describe, in alphabetical order, the participating merger tree

codes. Further details of algorithms can be found in the accompanying references.

The participants were asked to build trees starting from our input halo catalogues

described in Section 6.3. One of the features of a merger tree, as we define it, is that while

an object can have multiple progenitors, only one descendant is allowed. But many of the

algorithms tested did not, in the first instance, produce a tree. Instead they commonly

built graphs that allowed multiple descendents of a single progenitor halo. To allow con-

sistency and ensure a fair comparison we required each author to modify their algorithm

to return a tree. Nevertheless, the central process of linking haloes together between snap-

shots remains and exploring the various ways of achieving this is the main purpose of this

paper.

We note that some of the participating codes required modification in order to allow

them to take as input the AHF halo catalogues that we used for this comparison project.

To facilitate analysis of the returned merger trees, we have defined a common, minimal data

output format (described in the Appendix), and this has also required minor modifications

to some of them.

As a lot of methodology is similar across the various codes used here, we try to capture
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Figure 6.2: A summary of the main features and requirements of the different merger tree

algorithms. For details see the individual descriptions in the text.
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the main features and requirements in Figure 6.2 and Table 6.1. Note that only a single

code doesn’t use particle IDs to link haloes between snapshots: that potentially makes

it more widely applicable to legacy data but leads to problems with misidentification of

haloes, as will be seen later in Section 7.1 below.

Many tree-codes make use of a merit function

M(HA, HB) = f(NA, NB, NA∩B), (6.2)

where NA and NB are the number of particles in haloes HA and HB respectively. NA∩B

is the number of particles that are in both HA and HB, or

M(HA, HB) = f(RA∩B), (6.3)

where RA∩B is the ranking (decreasing binding mass or increasng halocentric radius) of

particles that are in both HA and HB. Such a function aims at identifying the most likely

progenitor/descendant of a given halo. A few of them use additional information such as,

for instance, the binding energy of the particles, properties of the haloes or information

about the snapshot times.

6.4.1 Consistent Trees

The Consistent Trees algorithm (Behroozi et al., 2013b) first matches haloes between

snapshots by identifying descendant haloes as those that have the maximum number of

particles from a given progenitor halo. It then attempts to clean up this initial guess by

simulating the gravitational bulk motion of the set of haloes given their known positions,

velocities, and mass profiles as returned by the halo finder. From haloes in any given

simulation snapshot, the expected positions and velocities of haloes at an earlier snapshot

may be calculated. In some cases, obvious inconsistencies arise between the predicted

and actual halo properties, such as missed satellite haloes (e.g. satellite haloes which pass

too close to the centre of a larger halo to be detected) and spurious mass changes (e.g.

satellite haloes which suddenly increase in mass due to temporary miss-assignment of

particles from the central halo). These defects are repaired by substituting predicted halo

properties instead of the properties returned by the halo finder. If a halo has no descendant

a merger is assumed to have occurred with the halo exerting the strongest tidal field across

it, unless no such suitable halo exists in which case the halo is presumed to have been

spurious and this branch is pruned from the merger tree. This process helps to ensure

accurate mass accretion histories and merger rates for satellite and central haloes; full
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details of the algorithm as well as tests of the approach may be found in Behroozi et al.

(2013b).

6.4.2 D-Trees

The D-Trees algorithm (Jiang et al., in preparation) is designed to work with the Subfind

group finder, which (likeAHF) can occasionally fail to detect haloes or subhaloes for one or

more snapshots. It therefore allows for the possibility that descendants may be identified

more than one snapshot later. Descendants are identified by following the most bound

“core” of each group – i.e. those particles with the lowest total energy.

To find the descendant at snapshot B, of a group which exists at an earlier snapshot,

A, the following method is used. For each group containing Np particles the Nlink most

bound particles are identified, where Nlink is given by

Nlink = min(Nlinkmax,max(ftraceNp, Nlinkmin)) (6.4)

with Nlinkmin = 10, Nlinkmax = 100 and ftrace = 0.1. Descendant candidates are those

groups at snapshot B that received at least one of the Nlink most bound particles from

the earlier group. If any of the descendant candidates received a larger fraction of their

Nlink most bound particles from the progenitor group than from any other group, then

the descendant is chosen from these candidates only and the group at snapshot A will

be designated the main progenitor of the chosen descendant; otherwise all candidates are

considered. The descendant of the group at snapshot A is taken to be the remaining

candidate which received the largest fraction of the Nlink most bound particles of the

progenitor group. For each group at snapshot B, this method identifies zero or more

progenitors of which at most one may be a main progenitor. Note that it is not guaranteed

that a main progenitor will be found for every group.

If a group is not found to be the main progenitor of its descendant, this may indicate

that the group has merged with another group and no longer exists in the simulation.

However, it is also possible that the group finder has simply failed to identify the object

at the later snapshot. In order to distinguish between these cases it is necessary to search

multiple snapshots.

For each snapshot A in the simulation descendants are identified at later snapshots

in the range A + 1 to A + Nstep using the method described above. For each group at

snapshot A this gives up to Nstep possible descendants. One of these descendants is picked

for use in the merger trees as follows: if the group at snapshot A is the main progenitor

of one or more of the descendants, the earliest of these descendants that does not have a
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main progenitor at a snapshot later than A is chosen. If no such descendant exists, the

earliest descendant found is chosen irrespective of main progenitor status.

This results in the identification of a single descendant for each group, which may be

up to Nstep snapshots later. Each group may also have up to one main progenitor which

may be up to Nstep snapshots earlier.

6.4.3 HBT

The Hierarchical Bound Tracing (HBT) algorithm (Han et al., 2012b) is a tracking halo

finder in the sense that it uses information from earlier snapshots to help derive the

latest halo catalogue. As such it naturally builds a merger tree. Starting from high

redshift, main haloes are identified as they form. The particles contained within these

haloes are then followed explicitly through subsequent snapshots, generating a merger

tree down to main halo level at the first stage. To extend the merger tree down to subhalo

level, HBT continues the tracing of merged branches, identifying the set of self-bound

particles that remain for every progenitor halo. These self-bound remnants are defined

as descendant haloes of their progenitors. With this kind of tracking, each halo has at

most one progenitor, which defines its main branch. The main branch extends until the

number of particles contained in the bound halo remnant drops below 20 particles. When

this occurs a final tracking step is undertaken to determine which halo it has fallen into,

adding minor branches to the tree.

The major challenge in this method is to robustly track haloes over long periods,

and HBT has been specifically tuned to achieve this. In addition, the merging hierarchy

among progenitor haloes is utilized to efficiently allow satellite-satellite mergers or satellite

accretion inside satellite systems.

Note that HBT is not designed to be a general purpose treebuilder for external halo

catalogues. To generate the trees used in this paper, HBT was run using only the main

haloes from the supplied catalogue as described in Section 6.3 as input. It then outputs

its own list of haloes and calculates the relevant properties for them, as well as returning

the merger tree built on top of these haloes.

HBT outputs exclusive halos. In order to give a mass which matches that of AHF

halos as closely as possible, for each halo, we first calculate an ’exclusive’ mass according

to Equation 6.1 using only particles from the halo itself. Then we add to each halo the

exclusive mass of all its subhaloes, to give an ’inclusive’ mass, which we use throughout

this paper.
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6.4.4 JMerge

The JMerge algorithm constructs a merger tree purely from aggregate properties (the

position, centre-of-mass velocity and mass) of the haloes identified by a halo finder (i.e.

it does not require the individual particle positions or particle IDs). It compares halo

catalogues from two snapshots separated by a known time interval. For the two sets of

haloes at times A and B, a new position is calculated for the centre of each halo by moving

the A haloes forward in time by half the timestep, and the B haloes backwards by half the

timestep assuming that they are moving at constant velocities. Then, starting from the

most massive halo and working towards smaller masses, for each halo in A, a best match

on position is found to a halo in B, together with constraints on the allowed change in

mass and maximum circular velocity. Mass is allowed to shrink by a factor of up to 0.7,

and to grow by a factor of up to 4. The search distance is limited to twice the radius

at which the enclosed density is 200 times the background density plus four times the

distance the halo has moved during the timestep. At this stage, each halo in B can only

be claimed once. This process attempts to trace haloes growing over time.

For those haloes that do not find an unclaimed descendant in B, two other processes

are implemented. Firstly, mergers are accounted for by finding so far unmatched haloes

at time A that can accrete onto B targets already accounted for, whilst still limiting the

total mass of the direct progenitors of each descendant to less than 1/0.7 times its mass.

Secondly, haloes that cannot find a suitable match are deemed to be numerical artifacts

and are pruned from the tree.

6.4.5 LHaloTree

L-HaloTree was the first merger-tree algorithm to construct trees based on subhaloes

instead of main halos. The LHaloTree algorithm is described in the supplementary in-

formation of Springel et al. (2005c) and the reader is referred there for further details. In

short, to determine the appropriate descendant, the unique IDs that label each particle

are tracked between outputs. For a given halo, the algorithm finds all halos in the sub-

sequent output that contain some of its particles. These are then counted in a weighted

fashion, giving higher weight to particles that are more tightly bound in the halo under

consideration, as listed in Table 6.1, and the one with the highest count is selected as the

descendant. In this way, preference is given to tracking the fate of the inner parts of a

structure, which may survive for a long time upon infall into a bigger halo, even though

much of the mass in the outer parts can be quickly stripped.
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To allow for the possibility that halos may temporarily disappear for one snapshot, the

process is repeated for Snapshot n to Snapshot n+2. If either there is a descendant found

in Snapshot n+2 but none found in Snapshot n+1, or, if the descendant in Snapshot n+1

has several direct progenitors and the descendant in Snapshot n+ 2 has only one, then a

link is made that skips the intervening snapshot.

6.4.6 MergerTree

The MergerTree routine forms part of the publicly available Amiga halo finder (AHF)

package. It is a simple particle correlator: it takes two particle ID lists (ideally coming

from an AHF analysis) and identifies for each object in listB those objects in listA (at

the previous snapshot) with which there N or more particles in common (N = 10 for this

comparison). Despite its name, therefore, it produces a graph mapping the connections

between objects rather than a tree, as each halo can have multiple descendants.

MergerTree also identifies a unique main progenitor for each object in listB as

found in listA. It achieves this by maximising a merit function (as shown in Table 6.1)

This has proven extremely successful (Klimentowski et al., 2010; Libeskind et al., 2011;

Knebe et al., 2013a). The code can hence not only be used to trace a particular object

backwards in time (or forward, depending on the temporal ordering of filesA and B), but

also to cross-correlate different simulations (e.g. different cosmological models run with

the same phases for the initial conditions).

To create an actual tree, we need to ensure that each halo has a unique descendant.

This is guaranteed by running MergerTree in a novel mode that applies the same merit

function in both directions when correlating two files. In practice this links haloes that

share the largest fraction of particles between the two snapshots as well as forcing a choice

between multiple possible descendants (of which now only the one maximising the merit

function in the direction A ,→ B is kept). The use of a merit function also eliminates any

need for all the particles in the input halo catalogues to only belong to a single object:

MAiBj
automatically takes care of particles that have been assigned to multiple objects.

6.4.7 SubLink

SubLink (Rodriguez-Gomez et al., in prep.) constructs merger trees at the subhalo level.

A unique descendant is assigned to each subhalo in three steps. First, descendant candid-

ates are identified for each subhalo as those subhaloes in the following snapshot that have

common particles with the subhalo in question. Second, each of the descendant candid-
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ates is given a merit function specified in Table 6.1. Third, the unique descendant of the

subhalo in question is the descendant candidate with the highest merit function.

Sometimes the halo finder does not detect a small subhalo that is passing through a

larger structure, because the density contrast is not high enough. SubLink deals with

this issue in the following way. For each subhalo from snapshot Sn, a ’skipped descendant’

is identified at Sn+2, which is then compared to the ’descendant of the descendant” at the

same snapshot. If the two possible descendants at Sn+2 are not the same object, we keep

the one obtained by skipping a snapshot since, by definition, it has the largest score at

Sn+2.

Once all descendant connections have been made, the main progenitor of each subhalo

is defined as the one with the ’most massive history’ behind it, following De Lucia &

Blaizot (2007). This information is rearranged into fully-independent merger trees.

6.4.8 TreeMaker

The TreeMaker algorithm was developed for the SA model GalICS (Galaxies in Cosmo-

logical Simulations) (Hatton et al., 2003). It was first used on Friends-of-Friends haloes

(Davis et al., 1985b), and later applied to main haloes and subhaloes extracted from a cos-

mological simulation with the AdaptaHOP group finder (Aubert et al., 2004; Tweed et al.,

2009). The code associates haloes from two consecutive time steps, listing all progenitors

(including particles accreted from the background) and descendants (multiple descendants

being allowed even if particles lost to the background are ignored). Here “background”

refers to particles not in any halo at the current time. This first step is completed by

using the particle IDs as tracers to identify haloes. Under our scheme a particle can only

belong to one single halo at a given step, meaning a particle in a subhalo belongs only to

that subhalo and not to any enclosing halo.

In order to create a “usable” merger tree a simplification stage is required. Exactly one

descendant per halo is selected and the list of progenitors updated to reflect this selection.

Selecting this unique descendant requires the use of a merit function. The first versions of

TreeMaker used a shared merit function. For this study, we tested various modifications

of this selection, but all gave similar results. We therefore include in this paper only the

normalised merit function M1 as shown in Table 6.1.
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6.4.9 VELOCIraptor

The halo merger tree algorithm used in VELOCIraptor is based on a particle correlator:

that is the algorithm compares two (or more) exclusive particle ID lists and produces a

catalogue of matches for each object in each list. Specifically, for each object i in catalogue

A, the algorithm finds all objects j in catalogue B that share particles, and calculates the

strength of each connection using the merit function M1 as shown in Table 6.1. The search

for connections is done in both directions. Any connection with a merit function within

Poisson fluctuations, MAiBj
≤ 1/(NAi

NBj
), is ignored. The connection that maximises

M for A → B is deemed the unique descendant (note that the original code returned

a graph that did not enforce this requirement of uniqueness). This approach is used as

particle ID lists produced by VELOCIraptor contain not only particles belonging to

bound (sub)haloes but also those in physically diffuse tidal debris. Consequently, tracking

object centres or weighting particles by a measure of how bound they are is meaningless.

Note that tidal debris candidates, due to their physically diffuse nature, can be artificially

fragmented into several VELOCIraptor groups. For example, a single bound (sub)halo

identified at time A is found to be the progenitor of several tidal debris fragments at time

B. Matching B → A, the fragments identify the (sub)halo as the primary progenitor,

however, the (sub)halo will identify the largest tidal fragment as its primary descendant.

For proposes the of a this paper, the other fragments are ignored. However, in the general

merger graph produced by VELOCIraptor, these fragments are flagged as secondary

descendants if fragment shares ≥ 5% of particles with the primary progenitor.

6.4.10 ySAMtm

The tree-making algorithm ySAMtm (Jung et al., in preparation) was developed to build

dark matter halo merger trees for the semi-analytic model ySAM (Lee and Yi, 2013). It

uses the particle information from two snapshot files or the particle IDs and locations

from a pre-calculated halo catalogue. First the ‘shared mass’, the mass contribution of

all progenitor haloes to each descendant halo, is calculated. At this stage, particles are

matched between haloes in the two snapshots by using the particle IDs. Individual particles

are only included in a single halo or subhalo and are not listed as members of the host halo

of the subhalo. Secondly, in order to convert our graph into an actual tree that could be

used by semi-analytic models, we define a unique descendant halo of each progenitor halo

by determining which descendant halo has the most shared mass among all descendants of

the progenitor halo, unless there exists a smaller halo which receives a larger fraction of its
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mass from the same progenitor. In this case we determine that the smaller one is the most

likely descendant halo of the progenitor even if its shared mass is not the largest amongst

all the descendants. This avoids defining the smaller descendant halo as a newly-formed

halo when it contains many particles that were members of an existing halo in the previous

snapshot. This process creates a true tree where one descendant halo can have multiple

progenitor haloes, while each progenitor halo has a unique descendant halo. Among those

progenitors, the main progenitor is determined by maximising the merit function M2 in

Table 6.1.
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Chapter 7

General Comparisons

7.1 Tree structure

In this section we look at the structure/geometry of trees. This includes a comparison

of measurable quantities like the tree-length along the main branch, the tree-branching

at every step, and the general consistency of the tree (i.e. possible mis-identification of

descendants).

7.1.1 Length of main branches

The most basic requirement of a tree-building code is to trace haloes back in time. The

length of the main branch gives a measure of how long single haloes can be followed through

the complicated merger history of structure formation. Figure 7.1 shows the number, N ,

of z = 0 haloes that have main branches extending for a given number of snapshots, l, for

all haloes within three different mass-ranges: haloes with M200 < 1011 h−1M⊙ (less than

∼ 100 particles) are shown in the top panel, 2 × 1011 h−1M⊙ < M200 < 5 × 1011 h−1M⊙

in the middle panel, and M200 > 1012 h−1M⊙ (more than ∼ 1000 particles) in the bottom

panel.

Large haloes (bottom panel of Figure 7.1) tend to have long main branches with l = 30–

50, which is in agreement with the picture of bottom-up structure formation, where larger

objects form through repeated mergers of smaller ones.

As one moves to smaller haloes the proportion of short branches increases. For M200 <

1011 h−1M⊙ the number of main branches per length is roughly constant from l = 0 until

about l = 30 (corresponding to z ≈ 5) and only drops to zero beyond l ≈ 50 (z ≈ 10).

Thus, even in a hierarchical structure formation scenario, dwarf-sized haloes that survive

to the current day have a wide variety of formation times.
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Figure 7.1: The length of the main branch for haloes identified at z = 0 (Snapshot 61).

The ordinate is l = 61−S, where S is the snapshot number at the high-redshift end of the

main branch. The upper, middle and lower panels show the halo mass ranges at z = 0, as

indicated in the panel, which correspond to roughly < 100, 200-500 and > 1000 particles

respectively.
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One oddity in Figure 7.1 is that most of the tree codes find a few large haloes with

very short main branches which is in contradiction to the common picture of structure

formation. Further investigation of these branches show that they are either truncated

due to a non-identification by the halo finder, or are due to an error in the halo assignment

of the tree building codes.

One such example is pictured in Figure 7.2 which shows two similarly-sized haloes

merging almost head-on. The red and blue circles show the two haloes at z = 0 (right-

hand column) and then traced back in time over several snapshots (successive columns

to the left - note that we have chose to omit Snapshot 58 as it added little to the plot).

The AHF halo finder (and other halo finders behave in a similar manner) assigns most

of the mass in overlapping objects to a single object, treating the other as substructure.

Unfortunately, this assignment can change between snapshots so that haloes centred on

the same clump of highly-bound particles can fluctuate wildly in size. Different tree codes

handle this in different ways, illustrated in the different rows of Figure 7.2.

• MergerTree fails to find a match for the smaller of the two haloes at Snapshot

60 and does not seek a match at earlier times. This halo therefore has no links in

its merger tree and appears to be created intact in the final snapshot. The other

merit function codes that use just 2 snapshots (TreeMaker, VELOCIraptor

and ySAMtm) behave in the same manner, as, in this case, does JMerge.

• LHaloTree does something similar, but due to its use of the most-bound particles

for halo identification, it matches the smaller of the two haloes at z = 0 to the

large one from the previous snapshot. While LHaloTree can cross-match haloesby

skipping a snapshot, that isn’t applied here as a descendent halo exists.

• D-Trees does the same as LHaloTree on Snapshot 60, but also manages to link

together the larger of the two haloes between Snapshots 61 & 59. This results in a

fluctuating mass for the both haloes, (low-high-low for red, high-low-high for blue).

• SubLink also manages to cross-match the larger of the haloes between Snapshots 61

& 59 but chooses a different association for the halo in Snapshot 60, thus avoiding

the large mass fluctuation. It links the smaller of the two halos in Snapshot 61

directly to that in Snapshot 59, skipping over the intermediate snapshot.

• Consistent Trees goes one step further and introduces a fake halo in Snapshot 60

to avoid a link in the merger tree that extends over more than one snapshot.
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Figure 7.2: An example of the merger of two haloes where the fluctuating centering and

size of causes difficulties for the merger-tree algorithms. The red and blue circles show two

haloes selected at z = 0 (right-hand column) and then traced back in time over several

snapshots (successive columns to the left - note that we have chosen to omit Snapshot 58

as it added little to the plot).
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Figure 7.3: Histograms of the number of haloes with Ndprog direct progenitors, using all

halos from z = 0 to z = 2.

• Finally, HBT redefines both haloes and outputs a smoother variation of mass over

time.

From these descriptions, it may seem like the above is an ordered list of improving per-

formance, from top to bottom. However, we stress that this is true only for this particular

merging event and that different codes cope better in different situations. The purpose

here was more to illustrate the variety of behaviours that are possible.

7.1.2 Branching ratio

Another interesting statistical quantity is the number of branches (i.e. the number of

direct progenitors) at every node of the merger tree. This will depend upon the spacing

between snapshots, and so the precise values are not important, but the differences between

algorithms are still of interest.

In Figure 7.3 we plot the number of tree nodes with Ndprog direct progenitors, including

all haloes between redshift zero and two. In this range the timestep ∆t between snapshots
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is roughly constant with ∆t ∼ 0.4Gyr. The most common situation is to have a single

progenitor (i.e. the halo existed in the previous snapshot but no merging took place),

followed by zero progenitors (i.e. the halo appears for the first time). However, in some

cases, and depending on the tree-builder, the number of direct progenitors can exceed 20.

HBT has the lowest branching ratio, perhaps because it allows itself to modify the

halo catalogue to extend the life of subhaloes. JMerge also has a low branching number

because its non-use of particle IDs gives it freedom to link together haloes that other

algorithms classify as unrelated. Next come D-Trees and Consistent Trees which

both use information extended over several timesteps to follow haloes that temporarily

disappear (for instance when a subhalo comes close to the centre of its host halo).

Although multiple direct progenitors are rare, it can be seen that the choice of tree

code can make a significant difference to the ability to follow substructures and hence to

the length of time a subhalo exists before it is subsumed into the host halo.

7.1.3 Misidentifications

Most tree-building algorithms link together haloes on the basis of having particles in

common. However, there are some that do not (in this paper, JMerge), and there are

occasions when this association is not clear-cut. So we wish to test how often an obvious

mis-identification occurs.

One way of doing this is to quantify how far haloes are displaced from their expected

locations in moving from one snapshot to the next. This is hard to predict for sub-haloes

that may be moving around inside a larger object and so we restrict our attention to main

haloes only. To measure this deviation we use the statistic

∆r =
|rB − rA − 0.5(vA + vB) (tB − tA)|

0.5 (R200A +R200B + |vA + vB|(tB − tA))
(7.1)

which stays small as long as there is approximately uniform acceleration and no error in

the halo linking. Here t is cosmic time, r & v are the haloes’ positions and velocities,

and R200 the radius that encloses an overdensity of 200 times the critical density. The

subscripts A and B refer to two linked haloes along the main branch of any tree.

Figure 7.4 shows a histogram of ∆r for each algorithm, for all main haloes and their

corresponding main progenitors. Most algorithms agree on the bulk of the distribution,

and this likely represents the true behaviour for the AHF haloes considered here, with

deviations from ∆r = 0 being caused by curved trajectories and/or merging of subhaloes.

The difference in HBT’s result from the others is partly due to different tree-links but

also because the HBT halo catalogue has an intrinsically lower ∆r.
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Figure 7.4: Histograms of the displacement statistic, ∆r, for main haloes and their main

progenitor for which both of them have M200 > 1012 h−1M⊙. The vertical lines show

the 90th and 99th percentiles for MergerTree (but are approximately the same for all

algorithms except HBT).

JMerge occasionally shows much larger deviations, suggesting that it does have a

tendency to link together unassociated haloes. Consistent Trees also shows large out-

liers in this test and Figure 7.5 shows a typical example of how this comes about. Here

we see an interaction in which the assignment of main halo alternates between successive

snapshots:

• Most algorithms (top row) link together the visually correct group of particles and

have small ∆r, but will have a large fluctuation in halo mass along the main branch.

• JMerge requires smooth changes in mass and so it follows the main halo between

Snapshots 58 & 59, leading to a large value of ∆r.

• Consistent Trees follows the main branch across all three snapshots, giving large

values of ∆r for both links. It (correctly) fails to associate the top-right halo in
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Figure 7.5: An example of a situation where the halo finder assigns main halos differently

between snapshots. The red haloes in each row show the main branch of the largest halo

on the right-hand side.

Snapshot 59 with the central one in Snapshot 58, so it removes the latter and creates

a fake halo to take its place.

• HBT resolves the situation by creating a halo catalogue in which the mass evolution

is smoother. It also inserts an extra subhalo on the bottom-right that is not returned

by any of the other algorithms.

7.1.4 The loss of particles during halo growth

During mergers (and, indeed, during quiescent evolution) particles can be lost from haloes.

As a measure of this, we use the statistic

∆N =
N∪Ai

−N(∪Ai)∩B

N∪Ai

, (7.2)

where, for a given halo B, the union runs over all direct progenitors, Ai. Here N is the

number of particles in ∪Ai and B or common to them both, as indicated by the subscript.
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Figure 7.6: The distribution function of the fraction of lost particles, ∆N for haloes along

the main branch with M200 > 1012 h−1M⊙. The vertical lines show the 90th and 99th

percentiles for MergerTree (but are approximately the same for all algorithms). Please

note that Consistent Trees cannot be included in this test because the added halos

specified by the code do not have particle information.

The distribution function of the fraction of lost particles, ∆N for haloes along the

main branch with M200 > 1012 h−1M⊙ (corresponding to about 1000 particles) is shown

in Figure 7.6. Note the extensive wing on this plot that extends to ∆N = 0.4. For small

values of ∆N , this is due to changes in the shape of the halo, and to natural particle

orbits that results in material moving out across the radius (here R200) used to define the

edge of the halo. Large values of ∆N can occur when haloes reduce their size significantly

between snapshots. An example of this situation has already been shown in the third row

of Figure 7.2 which illustrates how the halo finder alternates between allocating most of

the mass to one or other of two haloes as they fly by one another.

All halo finders roughly agree on the number of haloes for which ∆N < 0.4, but

there are signficant differences for larger values – these are most probably due to mis-

identifications. It is perhaps not surprising that JMerge has occasional very poor matches,
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Figure 7.7: The mass history of the blue halo (top) and the red halo (bottom) in Figure 7.2

specified by each merger-tree code.

given that it does not use particle IDs, but rare examples of apparently erroneous links

are found in many other algorithms too.

7.2 Mass growth

In this section we look at the mass evolution of haloes, primarily along their main branches,

which is a key input for most SA models. While main haloes are expected to grow in mass

through accretion and mergers, sub-haloes can lose mass through tidal stripping.

Consider first Figure 7.7 which shows the mass evolution along the main branch for

the red and blue haloes illustrated Figure 7.2. The large mass fluctuations seen on the

right-hand side of this plot correspond to the rightmost panels in Figure 7.2 and illustrate

how poorly-constrained the mass evolution is during that merger – most SA models would

struggle to cope with this kind of fluctuating mass behaviour.
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Figure 7.8: Distribution function of logarithmic mass growth, αM along halo main

branches. We have included all pairs of haloes for which both the masses exceed 1012

h−1M⊙.

7.2.1 Mass growth along the halo main branch

The logarithmic growth rate of main branch haloes, dlogM/dlog t is approximated dis-

cretely by

d logM

d log t
≈ αM(A,B) =

(tB + tA)(MB −MA)

(tB − tA)(MB +MA)
, (7.3)

where MA and MB are the masses of a halo and its descendent at times tA and tB,

respectively. The distribution function of αM is shown in Figure 7.8 for every pair of

main-branch haloes for which the mass of each exceeds 1012 h−1M⊙ (corresponding to

about 1000 particles).

As demonstrated in Figure 7.8, most of the time haloes are growing but there is a

significant proportion of the time (about 30%) during which mass loss occurs. Such a

large fraction is unlikely to be due to stripping (as this result is restricted to high-mass

main-branch haloes) but some apparent mass loss can occur due to changes in the shape

of haloes during their evolution, especially following a major merger.
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Strong mass loss, however, is unphysical and is due to failures in the halo-finding and

linking process, as illustrated in Figures 7.2, 7.5 & 7.7. The halo evolution seen in the

rightmost columns of Figure 7.2 correspond to the wings in Figure 7.8.

7.2.2 Mass fluctuations of subhalo main branches

Abrupt fluctuations up and down in mass can be quantified with a statistic

ξM (k) = arctanαM (k, k + 1)− arctanαM (k, k − 1). (7.4)

where αM is as defined in Equation 7.3 and k−1, k & k+1 represent successive timesteps.

This measures the change in the slope of the mass accretion rate between two consecutive

steps and thus ranges from −π to π. The main purpose of this statistic is to detect

temporary mass fluctuations that occur either as a result of the natural growth process,

or because of halo misidentification.

Large, negative values of ξM correspond to sharp temporary peaks in mass, and positive

values to dips in mass. Somewhat surprisingly |ξM | exceeds π/3 10 per cent of the time,

and 2π/3 1 per cent of the time. Thus strong mass variations are relatively common.

Note that the apparent discrepancy of HBT is because, for the purposes of this paper,

they construct masses only from the supplied AHF halo catalogues. We have checked

that, on applying HBT to the full simulation data, this discrepancy goes away.

7.3 Discussion

This paper summarises the results of a merger tree comparison project. The comparison

was completed, and the paper drafted, in advance of the Sussing Merger Trees Work-

shop in Midhurst, Sussex in July 2013. The aim of the workshop was not only to compare

the existing status of merger tree codes, but also to get people thinking about the desirable

features of such codes, in particular for their use as backbones for SA modelling.

Ten different merger tree builders contributed to this comparison project, as listed in

Table 6.1. Although many of these adopted similar approaches, no two gave identical

results.

In order to enable the comparison, we desired that each merger tree code should use

the same haloes as input. It soon became apparent that the halo finder can be intimately

linked to the tree-builder itself, and so some tree-building codes needed modification to

enable them to take part. For two of the codes (Consistent Trees & HBT), we had

to allow modification of the halo catalogue. For this reason, and because the quality of a
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Figure 7.9: Mass fluctuations, ξM , for sets of 3 consecutive haloes along a main branch for

which the mass of each exceeds 1012 h−1M⊙. The vertical lines show the two-sided 90th

and 99th percentiles for MergerTree (but are approximately the same for all algorithms

except HBT). Note that the apparent discrepancy of HBT is because, for the purposes of

this paper, they construct masses only from the supplied AHF halo catalogues. We have

checked that, on applying HBT to the full simulation data, this discrepancy goes away.

merger tree depends in some unspecified way upon the particular scientific use to which it

will be put, we avoid making conclusive statements here about which algorithms perform

better than others.

In Section 6.2, we defined some terminology that we used throughout the paper. This

proved essential to get everyone talking a common language (for example, some algorithms

did not initially return merger trees at all, in the sense that every halo did not have a

unique descendent). We encourage other members of the community to use the same

nomenclature.
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7.3.1 Summary of results

Here we present a brief summary of our findings:

• Imperfections in the halo finder can lead to great difficulties for tree-building al-

gorithms. The particular halo finder that we used in this project was AHF, but

we would expect similar behaviour with other halo finders and a study of this is

presently under way.

• The temporary loss of a halo during the merger of two haloes (see, e.g. Figure 7.2)

is disastrous for tree-building algorithms that examine only two adjacent snapshots.

In such cases, it is possible for haloes containing over 1000 particles to apparently

appear out of nothing between two adjacent snapshots.

• Although they were working with the same input halo catalogue, different algorithms

varied in their ability to link together subhaloes, leading to significantly different

branching ratios for the trees.

• Due to the limitations of the halo finder, codes that do not use particle IDs to link to-

gether haloes can occasionally produce clear mis-identifications (see, e.g. Figure 7.5).

• Even when haloes persist between snapshots, the halo finder will sometimes alter

which of the two it treats as the main halo, and this can lead to large oscillations in

mass. Different tree-builders handle this in different ways.

• The slope of the logarithmic mass growth curve, dlogM/dlog t has a very broad

distribution with a peak around 0.5 to 1 but extending beyond the range −10 to 10.

Much of this is due to genuine fluctuations in mass, although the extremes are due

to failures in the combined halo finder and tree builder.

We suggest that any optimal tree-building algorithm will require a high-quality input halo

catalogue that minimises ’lost’ haloes and mass fluctutations, and in addition will possess

the following:

• the use of particle IDs to match haloes between snapshots;

• the ability to skip at least one, and preferably more, snapshots in order to recover

subhaloes that are temporarily lost by the halo finder (for instance when they transit

the centre of the host halo);

• the ability to cope with (and ideally smooth out) large, temporary fluctuations in

halo mass.



96

7.4 Acknowledgements

The authors contributed in the following ways to this paper: CS, AK, FRP, AS, PAT

organised this project. They designed the comparison, planned and organised the data,

performed the analysis presented and wrote the paper. CS is a PhD student supervised

by PAT. The other authors (as listed in Section 7.1) provided results and descriptions of

their respective algorithms; they also helped to proof-read the paper.



97

Bibliography

Aghanim, N., Majumdar, S., and Silk, J. (2008). Secondary anisotropies of the CMB.

Reports on Progress in Physics, 71(6):066902. 13

Alvarez, M. A., Bromm, V., and Shapiro, P. R. (2006). The H II Region of the First Star.

ApJ, 639:621–632. 18

Alvarez, M. A., Busha, M., Abel, T., and Wechsler, R. H. (2009). Connecting Reionization

to the Local Universe. ApJ, 703:L167–L171. 26

Aubert, D., Deparis, N., and Ocvirk, P. (2015). EMMA: an adaptive mesh refinement

cosmological simulation code with radiative transfer. MNRAS, 454:1012–1037. 27

Aubert, D., Pichon, C., and Colombi, S. (2004). The origin and implications of dark

matter anisotropic cosmic infall on L* haloes. 352:376–398. 78

Avila, S., Knebe, A., Pearce, F. R., Schneider, A., Srisawat, C., Thomas, P. A., Behroozi,

P., Elahi, P. J., Han, J., Mao, Y.-Y., Onions, J., Rodriguez-Gomez, V., and Tweed,

D. (2014). SUSSING MERGER TREES: the influence of the halo finder. MNRAS,

441:3488–3501. 31, 32, 68

Backer, D. C., Parsons, A., Bradley, R., Parashare, C., Gugliucci, N., Mastrantonio, E.,

Herne, D., Lynch, M., Wright, M., Werhimer, D., Carilli, C., Datta, A., and Aguirre, J.

(2007). PAPER: The Precision Array To Probe The Epoch Of Reionization. In Amer-

ican Astronomical Society Meeting Abstracts, volume 39 of Bulletin of the American

Astronomical Society, page 133.02. 14

Barkana, R. and Loeb, A. (1999). The Photoevaporation of Dwarf Galaxies during Reion-

ization. ApJ, 523:54–65. 27

Barkana, R. and Loeb, A. (2001). In the beginning: the first sources of light and the

reionization of the universe. Phys. Rep., 349:125–238. 11, 12, 16, 18



98

Barnes, J. and Hut, P. (1986). A hierarchical O(N log N) force-calculation algorithm.

Nature, 324:446–449. 4

Baugh, C. M., Cole, S., and Frenk, C. S. (1996). Evolution of the Hubble sequence in

hierarchical models for galaxy formation. MNRAS, 283:1361–1378. 5

Becker, G. D., Bolton, J. S., and Lidz, A. (2015a). Reionization and high-redshift galaxies:

the view from quasar absorption lines. ArXiv e-prints. 10, 13

Becker, G. D., Bolton, J. S., Madau, P., Pettini, M., Ryan-Weber, E. V., and Venemans,

B. P. (2015b). Evidence of patchy hydrogen reionization from an extreme Lyα trough

below redshift six. MNRAS, 447:3402–3419. 25

Becker, R. H., Fan, X., White, R. L., Strauss, M. A., Narayanan, V. K., Lupton, R. H.,

Gunn, J. E., Annis, J., Bahcall, N. A., Brinkmann, J., Connolly, A. J., Csabai, I.,

Czarapata, P. C., Doi, M., Heckman, T. M., Hennessy, G. S., Ivezić, Ž., Knapp, G. R.,
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Appendix A

The Munich semi-analytic model

of galaxy formation L-Galaxies

This chapter is a brief summary of description of L-Galaxies described in the supple-

mentary material of Henriques et al. (2015). However, we strongly encourage the readers

to the referred document for more details.

A.1 Baryonic infall

We assume that collapsed dark matter haloes (FoF groups in this work) always have a

mass of associated baryons given by the universal baryon fraction, fb = Ωb/Ωm (White

and Frenk, 1991). This value specifies the maximum baryons a halo can possess. At any

time, the matter which has not previously accreted into any objects will be added into

the central objects in the form of primordial gas. However, some halos might not be

able to accrete the total amount of baryons due to many factors, especially the ionising

UV radiation which can heat the IGM and increase the local Jeans mass (Dijkstra et al.,

2004b). We parametrize the reduction of infall gas in terms of a non-negative baryon

fraction modifier, fmod, which specifies the total baryon mass a halo can capture in its

lifetime. We model the infall mass,

minfall = fmodfbM200c −

Ngal−1
∑

i=0

(mi
∗ +mi

cold +mi
hot +mi

ejected +mi
BH), (A.1)

where 0 ≤ fmod ≤ 1 and Ngal is the total number of galaxies inside the virial radius,

R200c, of the halo. m∗, mcold, mhot, mejected, and mBH are the total mass of stars, cold

gas disc, hot atmosphere, ejected phase gas, and super massive black hole respectively. In
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the standard model in L-Galaxies, minfall is always equal or greater than 0. If the right

hand side of Equation 4.2 is negative, minfall is set to 0.

A.2 Gas cooling

We follow White and Frenk (1991) and Springel et al. (2001a) that the infall gas which

is accreted into the halo will be shock-heated up to the virial temperature of the host

halo and added to the hydrostatic hot gas reservoir. This gas will be assumed, in the

quasi-static regime, to be cooled down. The cooling time at a given radius, r, is then

given by

tcool(r) =
3µmHkTvir

2ρhot(r)Λ(Thot, Zhot)
(A.2)

where µmH is the mean particle mass, k is the Boltzmann constant, ρhot(r) is the hot

gas density, and Zhot is the hot gas metallicity. Thot is the temperature of the hot

gas which is assumed to be the virial temperature of the halo given by Tvir = T200c =

35.9(v200c/kms−1)2 K (for subhaloes we use this temperature as estimated at infall).

Λ(Thot, Zhot) is the equilibrium cooling function for collisional processes, which depends

both on the metallicity and temperature of the gas but ignores radiative ionization ef-

fects (Sutherland and Dopita, 1993). The hot gas density as a function of radius for an

isothermal model is given by

ρhot(r) =
mhot

4πR200cr2
. (A.3)

The cooling time is assumed to be equal to the halo dynamical time

rcool =

[

tdyn,hmhotΛ (Thot, Zhot)

6πµmHkTvirR200c

]
1
2

, (A.4)

where tdyn,h is the halo dynamic time defined as Rvir/vvir = R200c/v200c = 0.1/H(z) (De

Lucia et al., 2004a). Thus, the cooling rate is given by Guo et al. (2011) as

ṁcool =

⎧

⎪

⎨

⎪

⎩

mhot
rcool
R200c

1
tdyn,h

, if rcool < R200c

mhot
tdyn,h

, if rcool > R200c.
(A.5)

A.3 Disc formation

We follow the simple model in Guo et al. (2011) such that when the material accretes

into a halo, its dark matter and baryonic components are expected to have the same



126

angular momenta. When some of this gas is added to the central galaxy, the remaining

angular momentum will determine the radius at which it settles inside the galactic disc.

The properties of the cold gas and stellar discs are modelled separately. The angular

momentum of the cold gas disc is given by

∆Jgas = ∆Jgas,cooling +∆Jgas,SF +∆Jgas,acc, (A.6)

where ∆Jgas,cooling,∆Jgas,SF, and ∆Jgas,acc are the changes as the results of cooled gas,

star formation, and accreted gas from minor mergers respectively. This can be expressed

as

∆Jgas =
JDM

MDM
ṁcool∆t−

Jgas

mgas
((1−Rrec) ṁ∗∆t+∆mreheat) +

JDM

MDM
msat,gas, (A.7)

where Jgas and MDM are the angular momentum and total mass of the FoF group respect-

ively. ∆t is the time interval considered, (1− Rrec)ṁ∗ is the formation rate of long lived

stars (see Equation A.13), ∆mreheat is the cold gas reheated into hot atmosphere due to

the star formation described in Section A.5, ṁcool is the cooling rate from Equation A.5,

and msat,gas is the cold gas mass from merging satellites.

For stellar and gas discs, we assume them to be thin, in centrifugal equilibrium and

have exponential surface density profiles:

Σgas(R) = Σgas,0 exp(−R/Rgas) (A.8)

and

Σ∗(R) = Σ∗,0 exp(−R/R∗), (A.9)

where Σgas,0 = mgas/2πR2
gas and Σgas,0 = m∗/2πR2

∗. By assuming flat circular velocity

curve, the corresponding scale-lengths are given by

Rgas =
Jgas

2mgasvmax
(A.10)

and

R∗ =
J∗

2m∗,dvmax
, (A.11)

where mgas and m∗,d are the total mass of the gas and stellar discs respectively.

A.4 Star formation

We assume stars to form from cold gas in the disc according to the simplified version

of the empirical relation in Kennicutt (1998). Stars form efficiently only in the regions
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where the surface mass density is greater than a critical surface density (Toomre, 1964).

In this work, we follow Guo et al. (2011) to assume a flat rotation curve and a gas velocity

dispersion of 6 km/s. Then, we use the model suggested by Kauffmann (1996), Croton

et al. (2006) and Henriques et al. (2015) to estimate the critical mass:

mcrit = mcrit,0

( vmax

200 kms−1

)

(

Rgas,d

10 kpc

)

M⊙, (A.12)

where mcrit,0 is a free parameter. The amount of the cold disc gas which is used to form

long-lived per unit time is

ṁ∗ = αSF
(mcold −mcrit)

tdyn,disk
(A.13)

where tdyn,disk = R∗/vmax is the characteristic dynamical time of the disc and αSF is the

star formation coefficient.

A.5 Supernova feedback

In the final phase of massive stars, a large number of them explode as supernovae. The en-

ergy released by these supernovae drastically affects the surrounding inter-stellar medium

(ISM). This causes some of the cold gas to heat up and become hot gas. It also heats hot

gas up and cause some of it to flow out of galaxy in a wind. This phenomenon is called

supernova feedback (SN feedback). This process is the main agent controlling the overall

efficiency of star formation (Larson, 1974; White and Rees, 1978; Dekel and Silk, 1986;

Benson et al., 2003). Therefore, we assume that SN feedback injects gas from cold gas to

hot gas and, in addition, can transfer hot gas to the ejected gas reservoir which it may or

may not be reincorporated at later time, depending on the mass of the halo hosting the

galaxies (Guo et al., 2011).

We follow Henriques et al. (2015) to estimate the energy from supernovae

∆ESN = ϵhalo ×
1

2
∆m∗v

2
SN, (A.14)

where 1
2v

2
SN is the mean energy per unit mass of formed stars and the efficiency

ϵhalo = η ×

[

0.5 +

(

vmax

vejected

)−β2
]

, (A.15)

as η and β2 are parameters. The mass of cold gas reheated by star formation and added

into hot atmosphere is assumed to be

∆mreheat = ϵdisk∆m∗ (A.16)
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where the efficiency is

ϵdisk = ϵ×

[

0.5 +

(

vmax

vreheat

)−β1
]

, (A.17)

as ϵ and β1 are parameters. We assume the energy required for reheating:

∆Ereheat =
1

2
∆mreheatv

2
200c. (A.18)

We assume that the required energy for reheating ∆Ereheat =
1
2mreheatv2200c. If ∆Ereheat >

∆ESN, the reheated mass will be set at the maximum value of ∆mreheat = ∆ESN/
(

1
2v

2
200c

)

.

If ∆Ereheat ≤ ∆ESN, the leftover energy from reheating is used to eject a mass of ∆mejected

from hot gas into the ejected gas reservoir, where

1

2
∆mejectedv

2
200c = ∆ESN −∆Ereheat. (A.19)

The discussions of this topic can be found in Henriques et al. (2015).

A.6 Reincorporation of ejected gas

We follow Henriques et al. (2013) to assume that the increase rate of hot gas taken from

ejected phase:

ṁejected = −
mejected

treinc
, (A.20)

where the reincorporation time-scale:

treinc = γ
1010 M⊙

M200c
, (A.21)

where γ is a parameter.

A.7 Metal enrichment

We follow Henriques et al. (2015) to assume that, when stars die, they release newly

formed heavy elements into surrounding aside from mass and energy. Star formation

process converts a fixed proportion of material of raw material into metals. The newly

formed metals are mixed instantly into the cold gas.

A.8 Satellite galaxies

We classify galaxies into three types according to their relationship with dark matter

haloes (Guo et al., 2011):
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• Type 0 galaxies (main galaxies) are the central galaxies of the main subhaloes

in FoF groups and can be considered as the main galaxies of their FoF groups.

• Type 1 galaxies (satellites) are at the centres of non-dominant subhaloes.

• Type 2 galaxies (orphan galaxies) are the galaxies which are not in any dark

matter subhalos any more.

All galaxies are born as type 0. When the subhaloes they reside in fall into groups or

clusters, they become type 1. Later, when the dark matter subhaloes they reside in merge

into the main subhaloes or they cannot be resolved, they will become type 2 galaxies.

When galaxies become satellites of larger systems, they will be influenced by tidal

force. This effect will remove materials and modify the structure and evolution of the

galaxies. We follow the processes from Guo et al. (2011) and Henriques et al. (2015) to

model this effect.

A.8.1 Tidal and ram-pressure stripping

When a subhalo falls in to a larger system, the tidal force will begin to remove its dark

matter (De Lucia et al., 2004a). We follow Guo et al. (2011) to assume that there is no

baryonic infall in this subhalo and its hot gas will be stripped away as follows:

mhot(Rtidal)

mhot,infall
=

MDM

MDM,infall
(A.22)

where the limiting radius, Rtidal, is given by a simple isothermal model,

Rtidal = RDM,infall ×

(

MDM

MDM,infall

)

. (A.23)

MDM,infall and RDM,infall are M200c and R200c of the halo just before the infall. mhot,infall

is the hot gas mass of the main galaxy prior to the infall. MDM and mhot are M200c of the

halo and the hot gas of the main galaxies at the current time respectively. Thus, the tidal

stripping will remove all hot gas once the subhalo is not resolved and the galaxy becomes

an orphan.

Ram pressure can strip hot gas from a satellite as soon as it enters the virial radius of

massive host (here we use a threshold of 1014 M⊙). At a distance Rr.p. from the centre of

the satellite, its self-gravity is approximately equal to the ram pressure:

ρsat(Rr.p.)v
2
sat = ρhost(R)v2orbit, (A.24)

where ρsat(Rr.p.) is the hot gas density of the satellite at radius Rr.p., vsat is the virial

velocity of the subhalo which we assume to be constant as it orbits around the main halo,
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ρhost(R) is the hot gas density of the host at the distance R from the centre of the potential

well to the satellite, vorbit is the orbital velocity of the satellite, which we assume circular

orbiting. The densities here are assume to be ρ ∝ r−2 according to a simple isothermal

model.

A.8.2 Tidal disruption

Following Guo et al. (2011) to assume that disruption only occur on Type 2 galaxies

which has depleted their hot gas. The condition for disruption is, if the baryon (cold

gas + stellar mass) density within the half mass radius, ρsat = msat/R3
sat,half , is less than

the dark matter density of the main halo within the pericentre of the satellite’s orbit,

ρDM,host = MDM,host(Rperi)/R3
orbit, the satellite is completely disrupted. Its stars will be

added to the intracluster light (ICL) and its cold mass will be added to the hot gas of the

central galaxy. We assume the exponential surface density profiles for stars and ICL and

a surface density proportional to r1/4 for hot gas.

By assuming conservation of energy and angular momentum and a singular isothermal

potential for the orbit, φ(R) = v2200c lnR, where R is the distance from the centre of halo

to the satellite. The orbital pericentre can be calculated as

(

R

Rperi

)2

=
2 lnR/Rperi + (v/v200c)2

(vt, v200c)2
, (A.25)

where v and vt are the total and tangential velocities of the satellite respect to its host

halo centre.

A.9 Mergers and bulge formation

A.9.1 Positions and velocities of orphans

After the disruption, the positions and velocities of Type 2 galaxies are linked to their

most bound dark matter particles just before they were disrupted. As soon as a disruption

happens, the satellite will be assumed to spiral into the central object through the dynam-

ical friction. We estimate the time taken in this process by using Binney and Tremaine

(1987) formula:

tfriction = αfriction
v200cr2sat

Gmsat lnΛ
, (A.26)

where msat is the total mass of the satellite, lnΛ = ln(1 + M200c/msat) is the Coulomb

algorithm and αfriction = 2.4 (De Lucia and Blaizot, 2007).
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As usual, we follow Guo et al. (2011) to model the decay of satellite’s orbit due to

dynamical friction by placing the Type 2 galaxy not at at a position whose (vector) offset

from the central galaxy is reduced from that of the particle by a factor of (1−∆t/tfriction)

where ∆t is the time since the disruption. The velocity of the orphan galaxy is set equal

to that of the most bound particle. tfriction is the total time the orphan takes to merge

into the central galaxy.

A.9.2 Bulge formation

We separate mergers into two categories. A major merger is when the ratio between the

total baryonic mass of the smaller galaxy and the total baryonic mass of the larger galaxy

exceeds a fractional value, 0 ≤ Rmerger ≤ 1. In this work, we set Rmerger = 0.1 (Henriques

et al., 2015). In a major merger, the discs of the two progenitors are destroyed and all their

stars become part of the bulge of the descendent together with the star formed during the

merger. For a minor merger, the disc of the larger progenitor survives and accretes the

cold gas from the the smaller galaxy. The forming bulge receives all star from the smaller

galaxy while the stars formed during the merger stay in the disc of the descendent (see

A.9.3). In both cases, cold gas is transferred to the central black hole (see Section A.10).

By assuming energy conservation and virial theorem, the change in sizes in both minor

and major mergers:

m2
new,bulge

Rnew,bulge
=

m2
1

R1
+

m2
2

R2
+ 2αinter

m1m2

R1 +R2
, (A.27)

where m1 and m2 are the baryonic masses of the two progenitors. αinter is coefficient

for binding energy in the orbit relative to that in the individual system. It is set to

0.5 and have a good agreement with SDSS data (Guo et al., 2011). When either of

the progenitors is a composite disc-and-bulge system, its half-mass radius is calculated

assuming an exponential disc and an r1/4-law bulge.

The disk instabilities is an important factor in bulge growth. They transport mater-

ials from the disc to the bulge. This happens in galaxies where self-gravity of the disc

domimates the gravitational effects of the bulge.

The criterion for disc instability is

vmax <

√

Gm∗,d

3R∗,d
, (A.28)

where m∗,d and R∗,d are the stellar mass and exponential scale-length of the stellar disc

and vmax is the maximum circular velocity of the host dark matter halo hosting the galactic

disc Guo et al. (2011).
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When the eq. A.28 is satisfied, some of stellar mass from the disc is transferred to the

bulge to stabilise the disc. We estimate the transferred mass,

∆m∗ = 2πΣ∗,0

[

R∗,d − (Rb +R∗,d) exp

(

−Rb

R∗,d

)]

, (A.29)

where Σ∗,0 and R∗,d is the central surface density and the scale-length of the unstable

disc respectively. We assume that the angular momentum of the transferred material is

negligible so R∗,d will increase due to the conservation of angular momentum (Guo et al.,

2011).

A.9.3 Star burst from mergers

We follow Somerville et al. (2001) to estimate the star formation during a merger,

m∗,burst = αSF,burstmcold

(

m1

m2

)βSF,burst

(A.30)

where m1 < m2 are the baryonic masses of the two galaxies and mcold is their total cold

gas mass. αSF,burst and αSF,burst are free parameters.

A.10 Black holes

A.10.1 Black hole growth - quasars

When galaxies merge, their cold gas components are pulled into the bulge. A large amount

of gas will be in the near the inner region of the galaxy where it might form a black hole

or be accreted into the existing black hole. If both progenitor galaxies contain pre-existing

black holes, they will be combined in the descendent.

The amount of gas accreted into the quasar is taken to be:

∆mBH,Q =
fBHmcold(msat/mcen)

1 + (vBH/v200c)2
, (A.31)

where mcen and msat are total baryonic masses of the central galaxy and the merging

satellite respectively, fBH and vBH are adjustable parameters, mcold is the total cold gas

mass of the system, and v200c is the virial velocity of the central halo.. The final mass of

the black hole at the centre of the descendent halo mBH = mBH,1 +mBH,2 +mBH,Q where

mBH,1 and mBH,2 are the mass of the two progenitor black holes.

A.10.2 Black hole radiative feedback

We assume that the central supermassive black holes accrete materials from hot gas at-

mosphere continuously. This produce the feedback by injecting energy into the hot gas.
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We follow Henriques et al. (2015) to approximate the accretion rate:

ṁBH = kAGN

(

mhot

1010 M⊙

)(

mBH

108 M⊙

)

. (A.32)

The accretion will produce relativistic jets which transfer energy into the hot gas. The

energy input rate is

Ėradio = ηṁBHc
2, (A.33)

where η = 0.1 is an efficiency parameter and c is the speed of light. This energy suppresses

the cooling from hot gas to cold disc. The effective cooling rate becomes

ṁcool,eff = max
[

ṁcool − 2Ėradio/v
2
200c, 0

]

(A.34)

Here, we assume that if of the cooling flow also cuts off the supply of gas to the black hole,

so that heating of the hot atmosphere beyond this point is not possible.

A.11 Stellar populations synthesis

Stellar population synthesis models are a very important part of galaxy formation theory as

they link the masses, ages and metallicities predicted for stars to the observable emission at

various wavelengths. We use the publicly released but still unpublished Charlot & Bruzual

(2007) because there is a number of authors suggest that it has a better agreement with

the observations than Bruzual and Charlot (2003) (Henriques et al., 2011, 2012, 2015;

Tonini et al., 2009, 2010; Fontanot and Monaco, 2010; Gonzalez-Perez et al., 2014).

A.12 Dust model

Since dust is able to significantly absorb optical/UV photons, it will have a significant

effect on the observation of star-forming galaxies which are expected to be rich in dust.

Therefore, dust-dominated galaxies will generally have red colours even if they are actively

star-forming. For that reason, we summarise the dust model of Henriques et al. (2015)

here: more detailed description can be found in Section 1.14 of the supplementary material

in that paper.

By considering dust extinction separately for the diffuse interstellar medium (ISM)

and for the molecular birth clouds within which stars form. The optical depth of dust as

a function of wavelength is computed separately for each component. Then, we combine

them as the descriptions below to compute the total extinction of the relevant populations.



134

A.12.1 Extinction by the ISM

The optical depth of diffused dust in galactic discs is assumed to depend on wavelength

as

τ ISMλ = (1 + z)−1

(

Aλ

AV

)

Z⊙

(

Zgas

Z⊙

)s

×

(

⟨NH⟩

2.1× 1021 atom cm−2

)

, (A.35)

where

⟨NH⟩ =
mcold

1.4πmp(aRgas,d)2
(A.36)

is the mean column density of hydrogen, 1.4 accounts for the presence of helium, Rgas,d is

the cold disc scale-length and a = 1.68. Following the results in Guiderdoni and Rocca-

Volmerange (1987), the extinction curve in Equation A.35 depends on the gas metallicity

and is based on the observation in local Universe: s = 1.35 for λ < 2000Åand s = 1.6 for

λ > 2000Å. The extinction curve for solar metallicity, (Aλ/AV)Z⊙
, is taken from Mathis

(1983).

A.12.2 Extinction by molecular birth clouds

This second source of extinction affects only young stars, for which we assume a lifetime

of 10 Myr. The relevant optical depth is taken to be

τBC
λ = τ ISMλ

(

1

µ
− 1

)(

λ

5500Å

)−0.7

, (A.37)

where µ is given by a random Gaussian deviate with mean 0.3 and standard deviation 0.2,

truncated at 0.1 and 1.

A.12.3 Overall extinction curve

In order to get the final overall extinction, every galaxy is assigned an inclination, θ, given

by the angle between the disc angular momentum and the z-direction of the simulation

box, and a “slab” geometry is assumed for the dust in the diffuse ISM. For sources that

are uniformly distributed within the disc then the mean absorption coefficient is

AISM
λ = −2.5 log10

(

1− exp−τ ISMλ sec θ

τ ISMλ sec θ

)

, (A.38)

Emission from young stars embedded within birth clouds is subject to an additional ex-

tinction of

ABC
λ = −2.5 log10

(

exp−τBC
λ

)

. (A.39)
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Appendix B

The tree data format

In order to facilitate comparison and use of merger tree data, it is our intention to define

in a future paper a common merger tree data format. This should make provision for:

required minimal data to define a merger tree; desired fields to ease use; and the ability

to include optional additional data that may prove useful. At the time of writing (prior

to the Sussing Merger Trees Workshop) that format had not been defined and so we

restrict ourselves to outlining here the minimal data format that was used for the work

described in this paper.

We supplied each participant in the tree comparison project with a list of haloes,

together with their properties (as described in Section 6.3) and an inclusive list of particle

IDs. Each halo had a identifier (halo ID) that was unique across snapshots.

We required participants to return their results in the ascii format described in

Table B.1, where there is an entry for each halo. That contains enough information

for us to be able to reconstruct the merger trees and, in conjuntion with the original halo

list, to follow the growth of haloesover time.
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Table B.1: The ascii data format that participants were asked to use to return their

merger tree results.

Information to be returned Notes

FormatVersion = 1 – an integer indicating the format version

Description Name of code, version/date of generation; max 1024 characters

Nhalo Total number of haloes specified in this file

HaloID1, N1 Halo’s ID and number of direct progenitors

Progenitor1 Halo ID of main progenitor of halo HaloID1 (where N1 > 0)

Progenitor2 Halo IDs of other progenitors of halo HaloID1

. . . . . .

ProgenitorN1 Halo ID of last progenitor of halo HaloID1

. . . . . .

HaloIDNhalos, NNHalo Halo’s ID and number of direct progenitors

ProgenitorNHalo Halo ID of main progenitor of halo HaloIDNHalo (where NNHalo > 0)

Progenitor2 Halo IDs of other progenitors of halo HaloIDNHalo

. . . . . .

ProgenitorNNHalo
Halo ID of last progenitor of halo HaloIDNHalo

END String ’END’ indicating the last line of the output file
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