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Abstract

In this thesis we present a range of different knot theories and then generalise them. Working
with this, we focus on biquandles with linear and quadratic biquandle functions (in the quad-
ratic case we restrict ourselves to functions with commutative coefficients). In particular, we
show that if a biquandle is commutative, the biquandle function must have non-commutative
coefficients, which ties in with the Alexander biquandle in the linear case.

We then describe some computational work used to calculate rack and birack homology.



Chapter 1

Introduction

The study of quandles and racks is a very fruitful and interesting field, with many applications,

particularly to knot theory. Biquandles and biracks, while introduced in 1992/1995 in [FRS93;

FRS95], have only recently begun to be taken seriously as a field of research and promise rich

pickings in the future. We hope to have added some interesting results and ideas, particu-

larly on biquandles with polynomial functions (Chapter 5) and the study of the homology of

biquandles (Chapters 6 and 7).

1.1 History and Literature Review

We are now giving a short history of the subject, including some important literature for the

field, which is heavily influenced by [Car12; EN15].

Arguably, the first time quandle-like structures were described was in a paper from 1927

by Burstin and Mayer on Finite Distributive Groups ([BM29]; translation by the author of this

thesis in [BM14b]). Keis, which we now know as involutive quandles, were defined in 1943

in [Mit43] by Takasaki. The more general racks, 1959 defined as wracks were discussed in

an unpublished correspondence between John Conway and Gavin Wraith. In 1982, the term

quandles was first coined by David Joyce in [Joy82], while at the same time Matveev discussed

them as distributive groupoids ([Mat82], translation: [Mat84]). Shortly afterwards, Brieskorn

in [Bri88] knew them as automorphic sets.

In 1992, Colin Rourke and Roger Fenn then re-introduced the quandle idea in [FR92],

introducing the term racks based on Conway and Wraiths term wracks and their application

to knot theory. They further generalised this concept with Brian Sanderson to biracks and

1
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biquandles in 1993/1995 in [FRS93; FRS95]. Biquandles in particular were further researched

by Louis Kauffman in [KR03]. In [Kau99], Louis Kauffman in 1999 introduced virtual knots

and connected virtual knots and biquandles in 2005/2007 in [KM05; HK07].

The first mention of quandle homology we found was in [Car+01] from 1999. Two papers

that we found helpful in our research on quandle homology are [NP09; Nie09]. A particularly

interesting result is that the quandle chain complex from Equation (6.1) splits, as was shown

in [LN03].

Birack and biquandle homology are more recent and very much in flux with the first inkling

probably in [Car+09]. We do give a definition in Definition 6.6 but apart from that, not much

is known about it. There is some mention in [Fen+14, Section 6.2] and there is a definition

for augmented biracks in [Cen+14] and it was mentioned in passing in [Fen12b, Chapter 6].

However, this is still a very new area of research and not much is known1.

1.2 Structure

This thesis is divided into three main parts: Chapters 2 and 3 should be read as a general

introduction to classical and other knot theories and quandles, racks, biquandles and biracks,

respectively. Additionally, we calculate biquandle generators and relations for some welded

knots that were found via a nontrivial welded knot search in [BF11]. The second part, com-

prising Chapters 4 and 5, is a closer look at biquandles with linear and quadratic functions,

respectively. In Chapter 5, we present some results for commutative biquandles with both com-

mutative and non-commutative coefficients. The third part, consisting of Chapters 6 and 7,

concerns itself with the new field of biquandle homology. In Chapter 6, we describe the the-

ory and give a new closed form definition of biquandle homology before presenting our pro-

gramme that calculates said biquandle homology in Chapter 7. As this programme is adaptable

for quandle homologies as well, we hope that it may see fruitful use in this area of research.

In Appendix A, we provide the code used for some of the calculations in Chapter 5. Ap-

pendix B presents drawings of the welded knots in Chapter 3 as closed braids while the paper

[FW16] on which Chapter 7 is based, can be found in Appendix C.

1For example, at the time of writing Google scholar has three hits for "biquandle homology" and six for "birack
homology".

1.2. STRUCTURE 1. Introduction
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Chapter 2

Knots and other Prerequisites

This chapter introduces the necessary prerequisites for understanding (bi)racks and (bi)quandles.

In particular, knot theory and the labelling of knots is discussed. The material on classical knot

theory is based on the work presented in [Cro04] and [Man04], with some additional material

from [Fen12a]. The general knot theory section is based on [Fen15].

2.1 Classical Knot Theory

Classical knot theory as we understand it has been around for a bit longer than 100 years,

although its origins go back to Gauss and Euler. There are a number of good resources available

online and in print, for example [Prz07; TG96], so we will refrain from providing more details.

Definition 2.1 (Geotopy). Two maps f , g : X → Y are geotopic if there are homeomorphisms

s : X → X and t : Y → Y such that the following diagram commutes:

X
f

−−−−→ Y




y

s t





y

X −−−−→
g

Y

Definition 2.2 (Knots; Knot Diagram). A classical knot (or link) is the geotopy class of an

embedding of circles into R3,

f : S1 t · · · t S1 ,→ R3. (2.1)

If two knots K1 and K2 are geotopic, we write K1
∼= K2 and call them equivalent.

4
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If we have a knot with l components and each component spans a disk disjoint from all the others,

we call this the unknot and represent it by l flat circles in space, separated by planes.

In addition, if we can represent a class of knots with a knot which has continuous non-zero

tangents at every point, we call this class tame. Otherwise, we call it wild.

We then define a diagram of a knot as follows: Suppose a classical knot is represented by an

embedding f as in Equation (2.1), then the composition

S1 t · · · t S1 f
,→ R3 π

→ R2, (2.2)

where π : R3→ R2 is a projection, is called a knot diagram if the following holds:

1. The composition is an immersion into the plane in general position, that is the singularities

are all double points (which we call crossings).

2. At the double points the over and under information is given as in Figure 2.1, where the break

indicates the under part of the double point.

Figure 2.1: Crossing for a Classical Knot Diagram

In particular, we have positive and negative crossings as in Figure 2.2.

(a) Positive Crossing (b) Negative Crossing

Figure 2.2: Positive and negative Crossing for a Classical Knot

2.1.1 Reidemeister Moves

Consider the well-known diagram of the figure 8 as presented in Figure 2.3. One can take one

end and twist it, thereby getting an unknot.

2.1. CLASSICAL KNOT THEORY 2. Knots and other Prerequisites
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∼=

Figure 2.3: The Figure 8 is the Unknot

In order to better classify knots, we need to generalise and formalise such moves. This

results in the four Reidemeister moves.

Definition 2.3 (Classical Reidemeister Moves).

R0 : This is the topological equivalence of the original immersion in the surface, but can also be

interpreted as geotopy.

R1 : This is a twist or untwist in either direction, see Figure 2.4.

Figure 2.4: Reidemeister 1 Move

R2 : This moves a loop over another, creating or removing it, see Figure 2.5.

Figure 2.5: Reidemeister 2 Move

R3 : This moves a string along, over or under a crossing, see Figure 2.6.

Figure 2.6: Reidemeister 3 Move

Theorem 2.4 (Reidemeister Moves). Any two knot diagrams of the same knot can be related

via a sequence of the four Reidemeister moves.

A proof of Theorem 2.4 can be found in [Rei26].

2.1. CLASSICAL KNOT THEORY 2. Knots and other Prerequisites
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Combining R2 and R3 moves only, the knot-theory equivalent of regular homotopy is ob-

tained. There is a continuous non-zero tangent vector at every point, something that does

not hold for R1 moves. By changing the parametrisation we can assume all tangent vectors to

be unit vectors and we therefore get a map from S1 to itself. The homotopy number of this

map then defines the so called turning number which is an invariant of regular homotopy, see

[Whi37]. In particular, the theorem in [Whi37] states that regular homotopy classes of maps

of a circle into the plane are classified by their turning numbers.

Definition 2.5 (Standard Immersed Curve). Using the turning number, we can define the stand-

ard immersed curve, CN . Starting with an anticlockwise oriented circle, if N > 0, we attach N−1

monogons to the inside. If, on the other hand, N ≤ 0 we attach 1− N monogons to the outside.

Remark. Note that this immersed curve is regularly homotopic to any curve with turning number

N.

2.2 Knot Codes

In order to distinguish knots, we associate a code to their diagrams. Initially, the Gauss Code

is associated to just the immersion of the circle in the plane; the over/under information at

crossings being omitted.

Definition 2.6 (Gauss Code). Label all n crossings 1,2, . . . , n. Then start at any point of the

knot and go around following the orientation and noting the crossing labels. Eventually, one ends

up with a sequence i1, i2, . . . , i2n. This sequence is called the Gauss code.

Remark. Of course, this is not unique. If there are k components, the Gauss code will have k such

sequences as above, one for each component.

Unfortunately, this is a rather long code, especially for knots with several components and

a large number of crossings. In order to simplify this, the DT-code (see e.g. [Fen12a]) was

developed. This labels the edges of a diagram sequentially, changing at each crossing. We can

start anywhere on the knot, labelling the edge we start on 1 and following the knot along its

orientation, labelling the edges 2, 3, etc. up to 2n as we progress (for n crossings, if n ≥ 2).

This gives every crossing a unique incoming edge labelled with an even integer, 2k, say. We

name this crossing k. In addition, there will also be an odd labelled incoming edge labelled

2 j − 1, say, see Figure 2.7.

2.2. KNOT CODES 2. Knots and other Prerequisites
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We thus associate k 7→ j as a permutation and we name the crossings Type I if the even edge

comes in from the top (northwest), see Figure 2.7 (a), and Type II if it come from the bottom

(southwest), see Figure 2.7 (b). For Type II crossings, we underline the label.

2 j − 1

2 j2k

2k+ 1

k

(a) Type I Crossing

2k

2k+ 12 j − 1

2 j

k

(b) Type II Crossing

Figure 2.7: Type I and Type II Crossing with Permutation k 7→ j

2.2.1 DT Code Examples

The Trefoil

Consider the immersion associated with the trefoil, where the crossings are all of Type II. We

have,

1 7→ 3, 2 7→ 1,3 7→ 2

⇔ (132)

2

5

4 61 3

12

3

I II I

I I

Figure 2.8: The Trefoil with its DT Code, 132

2.2. KNOT CODES 2. Knots and other Prerequisites
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The Figure 8 knot

Let us consider a more interesting example, the Figure 8 knot as in Figure 2.9, as it has cross-

ings of both types, I and I I . As can be seen from the diagram, we have two permutation or

conjugacy classes,

Type I I : 1 7→ 3 7→ 1

Type I : 2 7→ 4 7→ 2

⇔ (13)(24).

1 7

8

3 5

26

4

1

2

3

4
I

I I

I

I I

Figure 2.9: The Figure 8 Knot with its DT Code, (13)(24)

We can further enhance the DT code by adding information about the sign of the crossing,

e.g. positive or negative. Thus, the trefoil in Figure 2.8 has the enhanced code 132+++ with

three positive crossings, see Figure 2.10 (a). The enhanced code 132−−− gives us the left

handed trefoil, see Figure 2.10 (b). The Figure 8 knot in Figure 2.9 thus has the enhanced

code (13)(24)−−++.

2.2.2 Non-classical Knots arising from DT Codes

In this section, we consider DT codes that do not correspond to immersions such as those

present in Equations (2.1) and (2.2). As a simple example, consider 132, which gives rise to

the knot diagram in Figure 2.11.

2.2. KNOT CODES 2. Knots and other Prerequisites
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12

3

++

+

(a) The right-handed Trefoil

12

3

−−

−

(b) The left-handed Trefoil

Figure 2.10: Right- and left-handed Trefoil with their enhanced DT Codes,132±±±

2

5

6

3

1

4

1 23

I I I I

Figure 2.11: Knot Diagram for DT code 132

2.3 Virtual Knot Theory

This knot diagram is impossible to realise without the introduction of virtual crossings, shown

in the diagram with small enclosing circles. They will be considered next. Virtual knots were

introduced in 1999 by Louis Kauffman in [Kau99].

2.3.1 Virtual Crossing

By changing the immersion in Equation (2.2) from R3 to other surfaces embedded in R3, for

example a torus (T2), other crossing types arise. For ease of drawing, we then project into R2.

Then, the knot may not have any crossing in the new surface, but when projecting the diagram

into R2, we get a virtual crossing, as in Figure 2.12 and, in closer detail, in Figure 2.13 where

the virtual crossings are indicated by ⊗. Note that there is no inverse (or negative) virtual

crossing.

2.3. VIRTUAL KNOT THEORY 2. Knots and other Prerequisites
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T2

R2

Figure 2.12: Simple Torusunknot projected into R2

Figure 2.13: Virtual Crossing

Note that both classical and virtual crossings can appear in the same knot diagram. As in the

classical case, they are related by Reidemeister moves.

2.3.2 Virtual Reidemeister Moves

The virtual Reidemeister moves include all of the classical moves, as listed in Definition 2.3.

Additionally, they also include the virtual crossings as in Definition 2.7:

Definition 2.7 (Virtual Reidemeister Moves). VR1 : This move is a twist or untwist in either

direction. See Figure 2.14.

Figure 2.14: Virtual Reidemeister 1 Move

2.3. VIRTUAL KNOT THEORY 2. Knots and other Prerequisites
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VR2 : This moves a loop over another, creating or removing two points. See Figure 2.15.

Figure 2.15: Virtual Reidemeister 2 Move

VR3 : This moves a string with 2 crossings past a third virtual crossing. See Figure 2.16.

Figure 2.16: Virtual Reidemeister 3 Move

In addition, we have the following mixed Reidemeister move, involving both classical and

virtual crossings.

VR4 : This moves two virtual crossings over a classical crossing. See Figure 2.17.

Figure 2.17: Virtual Reidemeister 4 Move

Forbidden Moves

Note that moving two classical crossings over or under a virtual crossing is not permitted. See

Figures 2.18 and 2.19 for relevant examples. If we allow the first forbidden move, this results

in the theory of Welded Knots, which was first introduced in [FRR97]. If both are allowed, the

theory collapses in the sense that all knots are the unknot, see [Nel01].

Figure 2.18: First forbidden Move in Virtual Knot Theory

2.3. VIRTUAL KNOT THEORY 2. Knots and other Prerequisites
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Figure 2.19: Second forbidden Move in Virtual Knot Theory

2.4 Further Knot Theories

There exist other crossing types, for example singular or doodle crossings, which give rise to

other knot theories.

2.4.1 Doodle Crossing

Should we have no information about the crossing, we could also have a doodle, see Figure 2.20

(b). This type of crossing can for example be generated by "doodling", for example when one is

on the phone. Doodle crossings were introduced by Fenn and Taylor in 1979 in [FT79]. Note

that Doodles do not allow an R3 move (as the theory then collapses everything to unknots).

(a) Virtual Crossing (b) Doodle Crossing

Figure 2.20: Virtual and Doodle Crossing

2.4.2 Virtual Doodles and Flat Virtual Knot Theory

These two theories are very similar. The Virtual Doodles arise from a virtualisation of doodles,

whereas the Flat Virtual Knot Theory arises from a flattening of Virtual Knot Theory. These

differences manifest themselves in the permissible R3 moves who will be considered in greater

detail in Section 2.5.4.

2.4. FURTHER KNOT THEORIES 2. Knots and other Prerequisites
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2.4.3 Singular Crossing

Singular crossings were first introduced in [Vas90; Vas92].

(a) Positive singular Crossing (b) Negative singular Crossing

Figure 2.21: Positive and negative singular Crossing

2.4.4 Flat Singular Knot Theory

Combining doodle crossings (Figure 2.20(b)) and singular crossings (Figure 2.21) results in

the Flat Singular Knot Theory. Its Reidemeister moves are discussed in more detail in Sec-

tion 2.5.4.

2.5 General Knot Theory

We can combine all of the previously discussed knot theories into one unified knot theory, the

general knot theory. This will be introduced in this section, which is heavily based on [Fen15;

KM15].

Definition 2.8 (Generalised Knots). We consider a knot diagram, K, as in Definition 2.2 with

an underlying graph, Γ (K). This graph consists of edges, which we call arcs and vertices, which

are the crossings of the knot. In the classical case, the crossings would be the singularities (or

double points). We note that the arcs may or may not be oriented.

The vertices are equipped with crossing type information. In particular, there is a positive and

a negative crossing which may or may not be distinct. For example, in the classical case they are

distinct (see Figure 2.2) and in the virtual and doodle case, they are the same (see Figure 2.20).

As in the classical case, a general knot is the equivalence class of its diagram, which is defined

as in the classical case.

In general knot theory, we denote a crossing of type Ci by i if it is a positive crossing and

by ı if it is a negative crossing, see Figure 2.22.

2.5. GENERAL KNOT THEORY 2. Knots and other Prerequisites
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i

(a) Positive Crossing of Type Ci

ı

(b) Negative Crossing of Type Ci

Figure 2.22: Positive and negative Crossing of Type Ci

2.5.1 General Reidemeister Moves

In the case of the general knot theory, we extend the four Reidemeister moves as follows:

Definition 2.9 (Generalised Reidemeister Moves). R0 : This is the same as in the classical case

(see Definition 2.3).

R1 : This is the same as in the classical case, just for general crossing types. See Figure 2.23.

i ı

Figure 2.23: Generalised Reidemeister 1 Move

R2 : This introduces or removes two parallel opposite crossings as well as the bigon defined between

them. See Figure 2.24.

i ı ı i

Figure 2.24: Generalised Reidemeister 2 Move

R3 : This passes two crossings of type i through a dominated crossing of type j. See Figure 2.25.

i′′ i′

j i′′

j

i′

Figure 2.25: Generalised Reidemeister 3 Move (Ci dominates C j)

In addition, we have the following, new, fourth Reidemeister move, which exists in two different

versions, commuting and anti-commuting.

2.5. GENERAL KNOT THEORY 2. Knots and other Prerequisites
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R4
a : This exchanges two parallel copies of type Ci and C j . See Figure 2.26.

i j j i

Figure 2.26: Generalised Reidemeister 4 Move (Commuting)

R4
b : This exchanges two parallel copies of type Ci and C j while changing the sign of one crossing.

See Figure 2.27.

i j  i

Figure 2.27: Generalised Reidemeister 4 Move (Anti-Commuting)

We say that R4
a is commuting and that R4

b is anti-commuting.

In addition, the different moves may or may not be always permissible, except for R2 which

we assume to be always possible.

Remark. Note that the theoretical R4
c move, where we alter the sign of both crossings, is equi-

valent to R4
a, by virtue of changing the orientation via an R0 move.

2.5.2 Reidemeister Moves in different Knot Theories

Both classical and virtual knot theories have been investigated before and are thus omitted.

Doodles

Doodles have, as mentioned before, no allowed R3 move. They do admit an R0 move, an R1

move and an R2 move. The R4 move for doodles is not considered as there is only one type of

crossing.

Flat Virtual Knot Theory

There exists an R0 move, two R1 moves (one for each crossing type) and two R2 moves. In

addition, there are three R3 moves (see Figure 2.37). One interesting further avenue of re-

search would be to see what happens if we do a flat virtualization and introduce a commuting

R4 move, similar as to what was done for classical knots in [Kau99].

2.5. GENERAL KNOT THEORY 2. Knots and other Prerequisites
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Virtual Doodles

In this case, we have the same moves as in the case of the Flat Virtual Knot Theory minus one

R3 move (see Figure 2.37, the now-forbidden R3 move is Figure 2.37 (c)).

Singular Knot Theory

For Singular Knot Theory, we have all the Reidemeister moves from the classical case, see Defin-

ition 2.3. In addition, there are two R2 moves, four R3 moves and four commuting R4 moves.

However, there is no R1 move for singular crossings.

Flat Singular Knot Theory

In this case we have one R1 move, two R2 moves, three R3 moves and two R2 moves, which

are discussed in more detail in Section 2.5.4.

2.5.3 Impact of Reidemeister Moves on Orientation

In this part, we are going to research how the four generalised Reidemeister moves are affected

by the orientation of the crossings and the arcs of a generalised knot diagram.

R0: An orientation reversing homeomorphism of the plane, changing the sign of the crossing

types, is called a mirror and the resulting diagram is called the mirror diagram. The reverse

of a diagram is created by changing the orientation of some or all of the immersed spheres.

Changing the signs of all the crossings results in the inverse of the diagram.

Should a diagram be equivalent to its mirror image then we call it amphicheiral. It is

reversible if equivalent to its reverse and invertible if equivalent to its inverse.

R1: As this is depending on the orientation of the monogon and the crossing, there are four

cases in total.

R2: Similarly to R1, there are four cases.

R3: A naive counting results in a total of 32 options (two possibilities each for the orientation

of the three crossings as well as the inner and outer faces). However, after careful con-

sideration, it turns out that there are only 8 cases. This will be explored in detail next,

see Theorem 2.10.

2.5. GENERAL KNOT THEORY 2. Knots and other Prerequisites



18

R4: First, we consider a commuting R4 move. In this case, we can have an oriented bigon or a

non-oriented bigon, resulting in a total of three cases. Should we have an anti-commuting

R4 move, we have six cases, the three from the commuting move plus the mirror images.

Orientation effects on R3 moves

First, we will assume that the sign of the crossing labelled i′′ in Figure 2.25 is unchanged by

the move. We then have the following three possibilities for orientation.

1. If the triangle formed by the three arcs is oriented, we call the move oriented. In particular,

the orientation of the triangle is reversed after the move, see Figure 2.28 (a).

2. All three arcs are oriented from left to right. Then we call the move braid-like, see Fig-

ure 2.28 (b).

3. If the move is neither braid-like nor oriented, we call it mixed, see Figure 2.28 (c).

(a) Oriented (b) Braid-like (c) Mixed

Figure 2.28: Examples for oriented, braid-like and mixed Orientation before R3 Move

Theorem 2.10 (General R3 Moves). Because R2 moves are always permitted, there are at most

8 cases, i.e. we only need to consider braid-like moves.

In order to prove this theorem, we need both the following notation and Lemma 2.11.

2.5. GENERAL KNOT THEORY 2. Knots and other Prerequisites
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Notation. We can always rotate the diagram so that the arc connecting the two crossings of the

same type is oriented from left to right and we then denote by R(u, v;ε,η;ξ) the most general R3

move as in Figure 2.29.

uv
ε η

ξ ε

u

ξ

η
v

Figure 2.29: Generalised Reidemeister 3 Move Notation

Here, u and v denote the orientation of the two arcs. The third arc is always oriented from left to

right. The orientations, or signs of the three crossings are given by ε,η for the Ci ’s and ξ for C j .

As each of those has two possibilities, there are 25 = 32 possibilities in total.

Lemma 2.11 (Equivalent R3 Moves). The following R3 moves are equivalent:

R3(u, v;ε,η;ξ)∼= R3(v,u;η,ε;ξ)∼= R3(u,v;ε,η;ξ)∼= R3(v, u;η,ε;ξ)

This Lemma will be proved using a trick invented by Turaev. The proof is taken from [Fen15].

Proof. The three diagrams below, Figures 2.30 to 2.32, are a pictorial proof. Each figure shows

an R2 move which creates a bigon, after which an R3 move is made. Then the bigon is removed

by another R2 move, which completes the original R3 move. In particular, this sequence of

moves can be undone, that is, it is reversible.

u v
ε η

ξ ε

ε

u v
ε

η

ξ

ε

ε

Figure 2.30: R3(u, v;ε,η;ξ)∼= R3(v,u;η,ε;ξ)

v u
η ε

ξ η

η

v u
η

ε

ξ

η

η

Figure 2.31: R3(v,u;η,ε;ξ)∼= R3(u,v;ε,η;ξ)

2.5. GENERAL KNOT THEORY 2. Knots and other Prerequisites



20

u v

ε η

ξ ε

ε

u v
ε

η

ξ

ε

ε

Figure 2.32: R3(u,v;ε,η;ξ)∼= R3(v, u;η,ε;ξ)

q.e.d.

From Lemma 2.11 it follows that the orientations of the two other arcs, u and v can be as-

sumed to be left-to-right. This means it is sufficient to consider only the braid-like moves as

in Figure 2.28 (b).

Corollary 2.12 (Braid-like R3 Moves are sufficient). It is sufficient to only consider braid-like

R3 moves.

Thus, we can shorten our notation to R3(ε,η;ξ). For this, see Figure 2.33.

ε η

ξ ε

ξ

η

Figure 2.33: Generalised Reidemeister 3 Move Notation

Proof of Theorem 2.10. By Lemma 2.11, we can assume that the only R3 moves are R3(ε,η;ξ).

This leaves 23 = 8 possible orientation combinations, 2 each for the three crossings. q.e.d.

Further Reductions

Lemma 2.13 (Reduction of R3 Moves for one Crossing Type). If there is only one type of crossing

involved then the following moves are equivalent:

(a) R3(ε,η;ξ) and R3(ε,ξ;η).

(b) R3(ε,η;ξ) and R3(ξ,η;ε).
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Proof. Consider the following Figure 2.34 where we add an ε crossing on both sides, at the

upper left and lower right.

ε η

ξ

ε

ε

Figure 2.34: Generalised Reidemeister 3 Move

Cancelling the ε,ε bigon on the left, we arrive at the finish of an R3(ε,ξ;η) move. Cancel-

ling the ε,ε bigon on the right, we arrive at the beginning of an R3(ε,ξ;η) move.

Together, this proves (a).

Adding two η crossings instead of the ε crossings and repeating the argument proves (b).

q.e.d.

Theorem 2.14 (Equivalent R3 Moves; one Crossing). If only one type of crossing is involved in

an R3 move, then the only possible R3 moves are R3(+,+;+) and R3(+,+;−).

Proof. By Lemma 2.13 (a), we can always assume the first entry, ε, to be positive. This

leaves four possibilities, namely R3(+,±;±). By Lemma 2.13 (b), R3(+,+;+) is equival-

ent to R3(+,−;+) By repeated application of (a), (b) and (a), R3(+,−;+) is equivalent to

R3(+,−;−). q.e.d.

Remark. Should the positive and the negative crossing be equivalent (such as in the virtual or

the doodle case, for example), there is at most one possible R3 move.

2.5.4 Examples of Reidemeister Moves in different Knot Theories

In this section, we are going to apply Theorems 2.10 and 2.14 to different knot theories. Note

that neither doodles nor virtual doodles are considered, as these theories do not admit any R3

moves.

Classical Case

In the classical case, the eight possible R3 moves are reduced by Theorem 2.14 to two. These

two R3 moves are shown in Figure 2.35. Note that the second move (b) is forbidden and that

the allowed move has some form of hierarchy. As in the virtual case (Definition 2.7), if the
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forbidden move is allowed then the theory collapses, at least for knots. In the case of links

(that is, more than one embedded circle), the theory does not collapse, see e.g. [Nel01]. The

orientation of a classical crossing has been defined earlier in Figure 2.2.

(a) R3(+,+;+)

(b) R3(+,+;−) (forbidden)

Figure 2.35: Reidemeister 3 Moves in Classical Knot Theory

Virtual Knot Theory

In the virtual case, we have seven different R3 moves as in Figure 2.36 where only (a) to (c)

are allowed. We also have the allowed R3 moves from the classical case, see Figure 2.35.

Virtual Doodles and Flat Virtual Knot Theory

For both these theories, there are four R3 moves in Figure 2.37. In Flat Virtual Knot Theory, Fig-

ure 2.37 (a) to (c) hold, whereas for virtual doodles Figure 2.37 (c) and (d) are forbidden and

(a) and (b) hold.

Singular Knot Theory

In Singular Knot Theory, we have all the classical R3 moves, see Figure 2.35. In addition, there

are two purely singular ones with only positive or negative singular crossings, all of which are

forbidden, see Figure 2.38. Furthermore, there are 16 mixed R3 moves, of which a further

four are allowed (Figures 2.39 and 2.40). In total, of the 26 possible R3 moves, only 12 are

allowed.

Flat Singular Knot Theory

R1 : Flat Singular Knot Theory has one R1 move, for the doodle crossing (Figure 2.41).
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(a) R3(v, v; v)

(b) R3(v, v;−)

(c) R3(v, v;+)

(d) R3(−,+; v) (1st forbidden move, allowed in welded knots)

(e) R3(+,−; v) (2nd forbidden move)

(f) R3(−,−; v) (forbidden)

(g) R3(+,+; v) (forbidden)

Figure 2.36: Virtual Reidemeister 3 Moves in Virtual Knot Theory

Figure 2.41: Flat Singular: Reidemeister 1 Move

R2 : There is one R2 move for the doodle only, one for the singular crossings and no combin-
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(a) R3(v, v; v)

(b) R3(v, v; d)

(c) R3(d, d; d) (forbidden for Virtual Doodles only)

(d) R3(d, d; v) (forbidden)

Figure 2.37: Reidemeister 3 Moves in Flat Virtual Knot Theory and Virtual Doodles

(a) R3(s+, s+; s+) (forbidden)

(b) R3(s+, s+; s−) (forbidden)

Figure 2.38: Singular only Reidemeister 3 Moves in Singular Knot Theory (all forbidden)

ations (Figure 2.42).

(a) Doodle R2 move

(b) Singular R2 move

Figure 2.42: Flat Virtual: Reidemeister 2 Moves
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(a) R3(s+, s−;+) (forbidden)

(b) R3(s+, s−;−) (forbidden)

(c) R3(s−, s+;+) (forbidden)

(d) R3(s−, s+;−) (forbidden)

(e) R3(s−, s−;−) (forbidden)

(f) R3(s+, s+;+) (forbidden)

(g) R3(s+, s+;−) (forbidden)

(h) R3(s−, s−;+) (forbidden)

Figure 2.39: R3(., .;±) in Singular Knot Theory (all forbidden)
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(a) R3(+,−; s+)

(b) R3(+,−; s−)

(c) R3(−,+; s+)

(d) R3(−,+; s−)

(e) R3(−,−; s−) (forbidden)

(f) R3(+,+; s+) (forbidden)

(g) R3(+,+; s−) (forbidden)

(h) R3(−,−; s+) (forbidden)

Figure 2.40: R3(., .; s±) in Singular Knot Theory
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R3 : There are a total of 9 different R3 moves, six of which are forbidden (Figures 2.43 and 2.44).

In the diagrams, d denotes a doodle crossing and s± a positive or negative singular cross-

ing, respectively.

(a) R3(d, d; d)

(b) R3(s+, s−; d) (forbidden)

(c) R3(s−, s+; d) (forbidden)

(d) R3(s+, s+; d) (forbidden)

(e) R3(s−, s−; d) (forbidden)

Figure 2.43: Flat Singular: Reidemeister 3 Moves R3(., .; d)

R4 : There are two commuting R4 moves (Figure 2.45).

(a) First Commuting R4 move

(b) Second Commuting R4 move

Figure 2.45: Flat Singular: Reidemeister 4 Moves
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(a) R3(d, d; s+)

(b) R3(d, d; s−)

(c) R3(s+, s+; s+) (forbidden)

(d) R3(s+, s+; s−) (forbidden)

Figure 2.44: Flat Singular: Reidemeister 3 Moves R3(., .; s±)

2.5. GENERAL KNOT THEORY 2. Knots and other Prerequisites



Chapter 3

Quandles, Biquandles and all that

This chapter introduces several algebraic structures, quandles, biquandles, racks and biracks.

First, the maps of those structures are introduced before the effect of Reidemeister moves on

those maps is investigated. We are going to give some examples of the maps and the effects on

them. After this, we are defining quandles, biquandles, racks and biracks before calculating

the biquandle generators and relations of some welded knots.

Most of this chapter is based on [Fen15] with some additional information from [EN15;

FR92; Fen12b]. The welded knots in the last section were found in [BF11].

The intention of this chapter is to develop a framework to show how to start from a knot

diagram and construct a map to a biquandle that is independent of the allowed Reidemeister

moves for that type of knot.

3.1 Sideways Map and Switch

In this section, we are defining the sideways map and the switch and how they relate to a knot

crossing.

Definition 3.1 (Sideways Map; Switch). We first define the sideways map, F : X × X → X × X

from one algebraic structure X to itself, preserving structure on X if there exists one. F is defined

by two other functions fx , f x : X → X , written a 7→ ax , ax for all a, x ∈ X via F(a, b) =

( fa(b), f b(a)). We require both F and fx , f x to be bijective. In the expressions ax and ax the

element a ∈ X is well defined since for a1, a2, x ∈ X ,

ax
1 = ax

2 ⇒ f x(a1) = f x(a2) ⇒ a1 = a2

29
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(a1)x = (a2)x ⇒ fx(a1) = fx(a2) ⇒ a1 = a2.

Furthermore, let T (x , y) = (y, x). Then we can define the dual of F as

F∗(a, b) = T ◦ F ◦ T (a, b) = (ba, ab)

and this makes clear that F∗ is bijective as well. Additionally, we define the switch corresponding

to F by S : X × X → X × X : (ba, a) 7→ (ab, b) or ( fa(b), a) 7→ ( f b(a), b) and its inverse

S−1 : X × X → X × X : (ba, a) 7→ (ab, b).

Notation. We denote multiple up and down operations as follows:

fc( fb(a)) = (ab)c = abc

and similarly for up operations or combinations of up and down operations.

Futhermore,

f c( f b(a)) =
�

ab
�c
= abc

Inverse operations are denoted as
�

f b
�−1
(a)

and

ab−1
=
�

f b
�−1
(a)

and can be combined as well.

Proposition 3.2 (The Switch is bijective). The switch is bijective.

The proof will follow later.

Remark. To understand the definition of the sideways and the switch maps better, consider Fig-

ure 3.1.

3.1. SIDEWAYS MAP AND SWITCH 3. Quandles, Biquandles and all that
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a

abba

b

S

F

(a) Sideways and Switch Map Diagram
for positive crossing

ba

ba

ab

S−1

F*

(b) Sideways and Switch Map Diagram
for negative crossing

Figure 3.1: Sideways and Switch Map Diagram for positive and negative crossings

We can now define sx , s y by

S(x , y) =
�

sx(y), sy(x)
�

.

S gives rise to the following relations between fa, f b and sx , sy ,

sy(x) = b = f −1
a (ba) = f −1

y (x) (3.1)

sx(y) = f b(a) = f b(y) = f f −1
y (x)(y). (3.2)

These functions can also be defined diagrammatically, see Figure 3.2.

y = a

ab = sx(y)x = ba

b = sy(x)

(a) Sideways and Switch Map Diagram
for Relations, positive crossing

x = ba

b = s−1
y (x)y = a

ab = (sx)−1 (y)

(b) Sideways and Switch Map Diagram
for Relations, negative crossing

Figure 3.2: Sideways and Switch Map Diagram for Relations

This leads to the following Lemma 3.3.

Lemma 3.3 (Switch Functions are bijective). The switch functions sx , sy as defined earlier are

bijective.

Proof. This follows from Equations (3.1), (3.2) and the fact that fa, f a are bijective (see Defin-

ition 3.1). q.e.d.

Proof of Proposition 3.2. This follows from Lemma 3.3. q.e.d.

Corollary 3.4. It follows from Lemma 3.3 that S−1 is bijective.
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3.2 Relation of Sideways Map and Switch to the generalised Re-

idemeister Moves

In this chapter we consider the effect of the Reidemeister moves on the switch and sideways

maps.

3.2.1 R1

Let us consider the following Figure 3.3.

b

baa

ab

i a a b

ba
a

ab

ı̄

+aa −aa

Figure 3.3: Generalised Reidemeister 1 Move, Switch and Sideways Maps

Thus, a = b and aa = aa. We label the left crossing +aa and the right one −aa.

3.2.2 R2

Next, examine the following Figures 3.4(a) and 3.4(b).

x

dy

c

b

a
i ı̄

b b
a a

y

c
x

d
b

a
ı̄ i

(a) Generalised Reidemeister 2 Move, same Orientation
x

dy

c

b

a
i ı̄

b b
a a

y

a
x

b
d

c
ı̄ i

(b) Generalised Reidemeister 2 Move, opposite Orientation

Figure 3.4: Generalised Reidemeister 2 Moves

If we go from inside out, i.e. that the bigon is about to disappear, labels x , y are given and

we must show that a = c and b = d. If the bigon is just born, we need to find unique labels

x , y .
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In the left case of Figure 3.4(a), from the i crossing we have that a = yb and x = b y . From

the ı̄ crossing, we get c = yd and x = d y . If the bigon is about to disappear, then it holds

d = x y−1
= b and c = yd = yb = a. If the bigon has just been created, then y = ab−1 and

x = bab−1 .

In the right case of Figure 3.4(a), from the ı̄ crossing we have x = dy and c = yd . From

the i crossing, we get that x = by and a = y b. If the bigon is about to disappear, we have

that d = x y−1 = b as well as c = yd = y b = a. If it has just been created, then the labels are

y = ab−1
and x = bab−1 .

In the left case of Figure 3.4(b), if the bigon is about to disappear, we have F−1(y, x) =

(b, a) = (d, c) which is possible as F is invertible. If it has just been created we have (y, x) =

F(b, a).

In the right case of Figure 3.4(b), if the bigon is about to disappear, then F(x , y) = (a, b) =

(c, d) holds. If it has just been created, then (x , y) = F−1(a, b) as F is invertible.

3.2.3 R3

As shown in Theorem 2.10, only braid-like moves need to be considered. Thus, for R3(ε,η;ξ),

we need the set-theoretic Yang-Baxter-Equation1 for the switch S of the Ci crossing and the

switch T of the C j crossing, according to the notation given in Figure 2.33,

(Sε × 1)(1× Tξ)(Sη × 1) = (1× Sη)(Tξ × 1)(1× Sε) (3.3)

where ε,η,ξ= ±1.

In terms of diagrams, see the following Figure 3.5. One thinks about this similar as to a

braid.

ε η

ξ

i′ i′′
j

ε

ξ

η

i′i′′
j

Figure 3.5: Generalised Reidemeister 3 Move and Yang-Baxter

1For an introduction to this in terms of knots, braids et al. see for example [YG89; YG94; Eis05] or for a more
general introduction that is not focused on knots or braids, see [Jim94] or [Nic12].

3.2. REIDEMEISTER, SWITCH AND SIDEWAYS MAP 3. Quandles, Biquandles and all that



34

3.2.4 R4

If S1 and S2 are the corresponding switches and F1 and F2 the corresponding sideways maps,

then the fourth generalised Reidemeister moves requires them to commute in pairs, that is

S1S2 = S2S1 and F1F2 = F2F1.

3.3 Yang-Baxter in different Knot Theories

In this section, we present some examples of different cases of the Yang-Baxter Equations for

different knot theories.

3.3.1 Involutive Crossings

If a crossing is the same as its inverse, it holds that S2 = id and F = F∗ for the switch and the

sideways map, respectively. This leads, in particular, to the following theorem.

Theorem 3.5 (Involutive Crossings; up & down Operations). If the crossing is involutive, then

the up and down operations satisfy ab = ab for all a, b.

3.3.2 R3 Move with one Type of Crossing

Let us first consider those R3 moves with only one type of crossing. As there is only one type

of crossing, there is only one type of switch. This gives us the following Yang-Baxter Equations

from Equation (3.3):

(S × 1)(1× S)(S × 1) = (1× S)(S × 1)(1× S) (3.4)

(S × 1)(1× S−1)(S × 1) = (1× S)(S−1 × 1)(1× S). (3.5)

Thus, for doodles, none of these should hold as there is no permissible R3 move. In the classical

case, Equation (3.4) must be true and Equation (3.5) must fail.

The condition in Equation (3.4) implies the following relations,

abcb = acbc
, cbab = caba

, ba
ca = bc

ac . (3.6)

These can be visualised in Figure 3.6, where the crossings appear to lie on the surface of a

cube.

3.3. YANG-BAXTER IN DIFFERENT KNOT THEORIES 3. Quandles, Biquandles and all that
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a

ba
b

ab

abcb

cbab
cb

c

bc

a

ac

acbc

caba

ca
c

ba

ba
ca

bc
ac

bc

Figure 3.6: Relations (3.6) arising from Equation (3.4), visualised

3.3.3 R3 Move with two Crossings

In this section, we investigate which relations arise from R3 moves with two types of crossing

for zero, one or two involutive crossing types. In particular, we only investigate crossings with

both crossing types present, as the case with only one crossing has already been considered

earlier in Section 3.3.2. Note that we always have some version of the Yang-Baxter Equation

with only one crossing type for both crossing types as well, as in Equations (3.4) and (3.5).

Two involutive Crossings

As both types are involutive, we have the following version of the Yang-Baxter Equation (3.3):

(S × 1)(1× T )(S × 1) = (1× S)(T × 1)(1× S), (3.7)

and interchanging of S and T is possible.

Example. Examples for this kind of knot theory with two involutive crossings are the Flat Vir-

tual Knot Theory and the Virtual Doodles, see Section 2.5.4. As a reminder, the R3 moves are

described in Figure 2.37, Chapter 2. These give rise to the following four versions of the Yang

Baxter Equation (3.3),

(T × 1)(1× T )(T × 1) = (1× T )(T × 1)(1× T ) (3.8)

(T × 1)(1× S)(T × 1) = (1× T )(S × 1)(1× T ) (3.9)

(S × 1)(1× S)(S × 1) = (1× S)(S × 1)(1× S) (3.10)

(S × 1)(1× T )(S × 1) = (1× S)(T × 1)(1× S) (3.11)

3.3. YANG-BAXTER IN DIFFERENT KNOT THEORIES 3. Quandles, Biquandles and all that
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where S stands for the doodle and T for the virtual crossing. Note that in the case of Flat Virtual

Knot Theory, Equations (3.8) to (3.10) hold while Equation (3.11) is not fulfilled. In the case of

Virtual Doodles, Equations (3.8) and (3.9) hold, but Equations (3.10) and (3.11) do not.

One involutive Crossing

In this case, we have to consider two cases as exactly one of the crossings is involutive. Let

us first assume that the i-type crossings are involutive. The notation for this is the same as in

Figure 3.5. This gives the following versions of the Yang-Baxter Equation (3.3):

(S × 1)(1× T )(S × 1) = (1× S)(T × 1)(1× S)

(S × 1)(1× T−1)(S × 1) = (1× S)(T−1 × 1)(1× S)

In the second case, assume the j-type crossing is involutive. This gives the following ver-

sions of the Yang-Baxter Equation (3.3):

(S × 1)(1× T )(S × 1) = (1× S)(T × 1)(1× S)

(S−1 × 1)(1× T )(S × 1) = (1× S)(T × 1)(1× S−1)

(S × 1)(1× T )(S−1 × 1) = (1× S−1)(T × 1)(1× S)

(S−1 × 1)(1× T )(S−1 × 1) = (1× S−1)(T × 1)(1× S−1)

Example. Examples for this type of knot theory are Virtual Knot Theory or Flat Singular Knot The-

ory, see Sections 2.3 and 2.4.4. Their respective R3 moves are presented in Figures 2.16 and 2.44.

The Virtual Knot Theory gives rise to the following versions of the Yang-Baxter Equation (3.3), all

of which must hold. Here, S and S−1 denote a classical positive and negative crossing, respectively,

and T a virtual crossing.

(S × 1)(1× S)(S × 1) = (1× S)(S × 1)(1× S)

(T × 1)(1× T )(T × 1) = (1× T )(T × 1)(1× T )

(T × 1)(1× S)(T × 1) = (1× T )(S × 1)(1× T )

(T × 1)(1× S−1)(T × 1) = (1× T )(S−1 × 1)(1× T )

3.3. YANG-BAXTER IN DIFFERENT KNOT THEORIES 3. Quandles, Biquandles and all that



37

The following virtual knot theory Yang-Baxter Equations must not hold:

(S × 1)(1× S−1)(S × 1) = (1× S)(S−1 × 1)(1× S)

(S × 1)(1× T )(S−1 × 1) = (1× S−1)(T × 1)(1× S) (3.12)

(S−1 × 1)(1× T )(S × 1) = (1× S)(T × 1)(1× S−1) (3.13)

(S−1 × 1)(1× T )(S−1 × 1) = (1× S−1)(T × 1)(1× S−1)

(S × 1)(1× T )(S × 1) = (1× S)(T × 1)(1× S)

Note that Equation (3.12) must hold for welded knots as this equation arises from the first for-

bidden move, see Figure 2.36(d). If additionally Equation (3.13) holds, the theory collapses as

this arises from the second forbidden move, see Figure 2.36(e).

For the Flat Singular Knot Theory, the following Yang-Baxter Equations must hold, where S

and S−1 are the positive and negative singular crossings, respectively and T is the doodle crossing:

(T × 1)(1× T )(T × 1) = (1× T )(T × 1)(1× T )

(T × 1)(1× S)(T × 1) = (1× T )(S × 1)(1× T )

(T × 1)(1× S−1)(T × 1) = (1× T )(S−1 × 1)(1× T )

The following must not hold:

(S × 1)(1× T )(S−1 × 1) = (1× S−1)(T × 1)(1× S)

(S−1 × 1)(1× T )(S × 1) = (1× S)(T × 1)(1× S−1)

(S × 1)(1× T )(S × 1) = (1× S)(T × 1)(1× S)

(S−1 × 1)(1× T )(S−1 × 1) = (1× S−1)(T × 1)(1× S−1)

(S × 1)(1× S)(S × 1) = (1× S)(S × 1)(1× S)

(S × 1)(1× S−1)(S × 1) = (1× S)(S−1 × 1)(1× S)

3.3. YANG-BAXTER IN DIFFERENT KNOT THEORIES 3. Quandles, Biquandles and all that
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No involutive Crossings

In this case of no involutive crossings, we then have the following versions of the Yang-

Baxter Equation (3.3):

(S × 1)(1× T )(S × 1) = (1× S)(T × 1)(1× S)

(S−1 × 1)(1× T )(S × 1) = (1× S)(T × 1)(1× S−1)

(S × 1)(1× T )(S−1 × 1) = (1× S−1)(T × 1)(1× S)

(S−1 × 1)(1× T )(S−1 × 1) = (1× S−1)(T × 1)(1× S−1)

(S × 1)(1× T−1)(S × 1) = (1× S)(T−1 × 1)(1× S)

(S−1 × 1)(1× T−1)(S × 1) = (1× S)(T−1 × 1)(1× S−1)

(S × 1)(1× T−1)(S−1 × 1) = (1× S−1)(T−1 × 1)(1× S)

(S−1 × 1)(1× T−1)(S−1 × 1) = (1× S−1)(T−1 × 1)(1× S−1)

Example. A good example for this type of knot theory is Singular Knot Theory, see Section 2.4.3.

Its R3 moves are presented in Figures 2.38 to 2.40. The allowed moves give rise to the following

Yang-Baxter Equations, where S and S−1 are the positive and negative classical knot crossing, and

T and T−1 the positive and negative singular crossing, respectively:

(S × 1)(1× T )(S−1 × 1) = (1× S−1)(T × 1)(1× S)

(S × 1)(1× T−1)(S−1 × 1) = (1× S−1)(T−1 × 1)(1× S)

(S−1 × 1)(1× T )(S × 1) = (1× S)(T × 1)(1× S−1)

(S−1 × 1)(1× T−1)(S × 1) = (1× S)(T−1 × 1)(1× S−1)

(S × 1)(1× S)(S × 1) = (1× S)(S × 1)(1× S)

The forbidden moves give rise to the following Yang-Baxter Equations, which therefore must

not hold:

3.3. YANG-BAXTER IN DIFFERENT KNOT THEORIES 3. Quandles, Biquandles and all that



39

(T × 1)(1× T )(T × 1) = (1× T )(T × 1)(1× T )

(T × 1)(1× T−1)(T × 1) = (1× T )(T−1 × 1)(1× T )

(S−1 × 1)(1× T−1)(S−1 × 1) = (1× S−1)(T−1 × 1)(1× S−1)

(S × 1)(1× T )(S × 1) = (1× S)(T × 1)(1× S)

(S × 1)(1× T−1)(S × 1) = (1× S)(T−1 × 1)(1× S)

(S−1 × 1)(1× T )(S−1 × 1) = (1× S−1)(T × 1)(1× S−1)

(T × 1)(1× S)(T−1 × 1) = (1× T−1)(S × 1)(1× T )

(T × 1)(1× S−1)(T−1 × 1) = (1× T−1)(S−1 × 1)(1× T )

(T−1 × 1)(1× S)(T × 1) = (1× T )(S × 1)(1× T−1)

(T−1 × 1)(1× S−1)(T × 1) = (1× T )(S−1 × 1)(1× T−1)

(T−1 × 1)(1× S−1)(T−1 × 1) = (1× T−1)(S−1 × 1)(1× T−1)

(T × 1)(1× S)(T × 1) = (1× T )(S × 1)(1× T )

(T × 1)(1× S−1)(T × 1) = (1× T )(S−1 × 1)(1× T )

(T−1 × 1)(1× S)(T−1 × 1) = (1× T−1)(S × 1)(1× T−1)

3.3.4 R4 Move

Let S1, S2 and F1, F2 be the corresponding switches and sideways maps, respectively, then for

the general R4 move, they must commute in pairs,

S1S2 = S2S1 and F1F2 = F2F1

3.4 Definition Quandle, Biquandle and Others

In this section we give definitions of quandles, racks, biquandles and biracks which are the

structures we study in the rest of this thesis.

This part is inspired by [EN15] but reformulated to take into account the results of the

previous sections in this chapter.
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Definition 3.6 (Definition Birack, Biquandle). Let X be a set with two binary functions

fa, f a : X × X → X .

(X , fa, f a) is a birack if the two functions define a switch map (as defined in Definition 3.1) on X

and they fulfil the requirements arising from the R3 move, see Section 3.2.3 and particularly Equa-

tion (3.3). Thus, the following requirements must hold:

• abcb = acbc
, cbab = caba

, ba
ca = bc

ac (From Equation (3.6), Section 3.3.2)

• fa, f b must be invertible (From Section 3.1)

X is a biquandle if additionally the following requirement hold:

• aa = aa (From Section 3.2.1)

Definition 3.7 (Definition Rack, Quandle). Let X be a set with one binary function f a : X×X →

X . Then (X , f a) is a rack if and only if (X , f a, fa = id) is a birack. Similarly, (X , f a) is a quandle

if and only if (X , f a, fa = id) is a biquandle.

Remark. There are other structures arising when relaxing or removing some of the requirements,

for example keis, shelves or spindles. These structures are not discussed in this thesis, but an

overview can be found in [Cra04].

3.5 Application to Welded Knots

In this chapter we calculate generators and relations of the knot biquandles for those welded

knots found in the table in [BF11, p. 13]. For ease of reference, we have reproduced the

relevant parts of the table here, Table 3.1.

knot braid word
w3.1 σ1τ2σ3σ

−1
2 σ

−1
2 σ

−1
1 τ2σ

−1
3 σ2

w3.2 τ1σ
−1
2 τ1σ

−1
1 σ

−1
1 τ2

w4.1 σ1τ1σ
−1
1 σ2σ1τ1σ

−1
1 σ

−1
2

w4.2 σ−1
1 σ

−1
2 σ3τ2σ1σ

−1
4 σ3τ2σ3σ4σ

−1
3 σ

−1
2

w4.3 σ−1
1 σ2σ3τ2σ1σ

−1
4 σ3τ2σ3σ4σ

−1
3 σ2

w4.4 σ−1
1 σ2σ3τ2σ1σ

−1
4 σ3σ

−1
2 σ3σ4σ

−1
3 τ2

w4.5 τ1σ2σ
−1
1 τ1σ1σ2

w4.6 σ−1
1 σ

−1
2 τ3σ

−1
2 σ1σ

−1
4 τ3σ

−1
2 σ

−1
3 σ4σ

−1
3 σ2

w6.1 σ−1
1 σ

−1
2 σ

−1
2 σ

−1
2 σ1σ

−1
3 σ

−1
2 σ

−1
2 σ

−1
2 σ3τ2

Table 3.1: Braid words for welded braids
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We can turn these braids into knots by connecting the respective end points. We have

reproduced them in closed braid form as knots in Appendix B.

The calculation of a knot biquandle works similarly as to that of a knot quandle, see for

example [EN15].

In the following Table 3.2, we present the generators and relations for the different welded

knots. The calculation of biquandles from this is highly nontrivial and goes beyond the scope

of this thesis. While the number of generators could conceivably be lower, in case of doubt we

made the decision to go for easier readability at the expense of more generators, except in the

case of w3.1 and w4.4.

knot generators relations

w3.1 a, b, c, d da
ba

d = abd , cba = abdda
ba

,

ba
c = dda

ba

ab , ba
dab = c, ba

c = dda
ba

ab

w3.2 a, b, c ca = ba, bc = ac , cb = ab

w4.1 a, b, x , y yxab
x
= x y

aba
, b = xab

, y = ax y
, ab

x
yx = ba

x y
a

w4.2 a, b, c, e, x , z xz = ababc , ec
abcd
= baxzx

, ba = ze, cab = eba
,

ababc = xz , xba = ce, z x
bax = abcaec

w4.3 a, b, c, d, x xab = cd , dab
= cba

, xab d = baba
c ,

abxab
d x = dc

ba
cba

, ba
cba

dc
= ab

d x abx

w4.4 a, b, c, x xab = baba
c , ccba

ab

= xab
cba

,

cba
ab

c

ba
cba

= ab
cba

xabx

, ba
cba

cba
ab

c
= abx

ab
cba

x

w4.5 a, b, c, y ccy b = ba, bac
= ab, y c = a, bcy

= y

w4.6 a, b, c, e, x , y cab = eba , ab
c = xba

e , ebaabc
= y baex

,

abc
eba = ba

ex
y , x bae

= cab
, y = bae

x

w6.1 a, b, c, y, z c y = bac , cy = ba
y , z y = ay , yz = cba

z
,

zcba ab
= ya yba , yba ya = ab

zcba

Table 3.2: Biquandle generators and relations for welded braids
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Chapter 4

Relations, Quaternions and More

In this part we are considering relations and restrictions on different types of biquandle maps.

In this chapter, we consider linear operations in more detail and derive some extra require-

ments where the coefficients are quaternions. In the next chapter, we consider quadratic bi-

quandle operations. This is done by plugging the different types in the usual biquandle axioms:

Definition 4.1 (Biquandle Axioms). The biquandle axioms are as follows for up and down op-

erations notation as defined in Definitions 3.1 and 3.6.

aa = aa (4.1)

abcb
= acbc (4.2)

ab
cb = ac

bc (4.3)

abcb = acbc
(4.4)

We also investigate the inverse functions with Maple, [Map15]. The code for this can be

found in Appendix A.

We also calculate some restrictions via a graphical approach, where we colour the R3 move.

First, we are going to introduce quaternions.

4.1 Quaternions

Quaternions were first described by Hamilton in 1843 in a letter to his friend John Graves and

it was first published in [Ham44]. However, we are going to use their generalisation, general

43



44

quaternions. Most of the theory in this chapter is based on [BF04; BF08b; Fen08; Fen01]while

the calculations are loosely based on [BF08a]. Some points have been added from [FT07]. The

following Definition 4.2 is taken from [Fen08].

Definition 4.2 (Quaternions). Let F be a field of characteristic not equal to two. Take any two

non-zero λ,µ ∈ F. Denote the algebra of dimension four over F with basis {1, i, j, k} and relations

i2 = λ, j2 = µ, i j = − ji = k by
�

λ,µ
F

�

or by Q. The multiplication table of this algebra is given

in Table 4.1:

i j k

i λ k λ j
j −k µ −µi
k −λ j µi −λµ

Table 4.1: Multiplication Table of
�

λ,µ
F

�

We will call the elements ofQ (generalised) quaternions. F is called the underlying field and

the parameters of the quaternion algebra are λ and µ. The quaternions are denoted by upper-case

letters (A, B, . . .).

Generally, a quaternion has the form A = a0 + a1i + a2 j + a3k with a0, a1, a2, a3 ∈ F. The

coordinate a0 is called the scalar part of A and the vector a = a1i + a2 j + a3k is called the pure

part of A. This allows us to rewrite A= a0+a. Equivalently, a quaternion is scalar if its pure part

is zero and pure if its scalar part is zero. We will denote the scalar element by lower case letters

(a, b, . . .), and the pure element by bold lower case letters (a, b, . . .).

We can retrieve the classical quaternions with this approach as
�−1,−1
R

�

. The algebra of 2× 2

matrices with entries in F can be written as M2(F) = Mat2×2 =
�−1,1
F

�

.

Definition 4.3 (Conjugation, Norm & Trace of Quaternions). The conjugate of a quaternion

A is A= a0 − a, its norm is given by N(A) = AA and the trace of A is defined as tr(A) = A+A=

a0 + a+ a0 − a = 2a0.

Conjugation is an anti-isomorphism of order 2, that is,

A+ B=A+B, AB=AB, aA= aA, A= A.

In addition, A=Aif and only if A is scalar and A= −Aif and only if A is pure.

Furthermore, N(AB) = N(A)N(B) and we note that this is a scalar and we denote the set

of values of the norm function by N . In particular, N ⊂ F and it is multiplicatively closed.

4.1. QUATERNIONS 4. Relations, Quaternions and More
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In addition, N ∗ =N −{0} is a multiplicative subgroup of F∗.

Similar as for complex numbers, we define the inverse of a quaternion A as A−1 = A
N(A) , so the

inverse exists if and only if N(A) 6= 0.

Definition 4.4 (Multiplication of Quaternions). Let A, B be two quaternions. Then there is a

bilinear form given by

A · B =
1
2

�

AB+ BA
�

=
1
2

�

AB +BA
�

=
1
2

tr
�

AB
�

= a0 b0 −λa1 b1 −µa2 b2 +λµa3 b3. (4.5)

Since λ,µ 6= 0, this is non-degenerate. The corresponding quadratic form is given by

N(A) = a2
0 −λa2

1 −µa2
2 +λµa2

3.

We can also define a cross product symbolically for pure quaternions as

a× b =

�

�

�

�

�

�

�

�

�

−µi −λ j k

a1 a2 a3

b1 b2 b3

�

�

�

�

�

�

�

�

�

.

This cross product has the usual rules as the standard cross product of bilinearity and skew sym-

metry.

Additionally, it holds that

AB = ab− a · b+ ba+ ab+ a× b. (4.6)

Now let a, b be pure quaternions. Then we can restrict Equation (4.6) to

ab = −a · b+ a× b

where for pure quaternions

a · b = −λa1 b1 −µa2 b2 +λµa3 b3.
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Furthermore,

a× (b× c) = (c · a) b− (b · a) c.

The equivalent scalar triple product is

[a, b, c] = a · (b× c) = λµ

�

�

�

�

�

�

�

�

�

a1 a2 a3

b1 b2 b3

c1 c2 c3

�

�

�

�

�

�

�

�

�

.

Definition 4.5 (Commutator). We define the following two commutators of quaternions

[A, B] = AB − BA = 2a× b (4.7)

(A, B) = A−1B−1AB = |A|−2 |B|−2ABAB.

Remark. Note that the first Commutator in (4.7) is also more generally known as the Lie Bracket

for vector fields. For further reading, see [War71] or [EW06].

4.2 Relations for Linear Operations

In this section we are developing restrictions on linear biquandle operations arising from the

Biquandle axioms and invertibility of the operations. The results will rely on comparing coef-

ficients. This gives at the least sufficient conditions and, in our opinion, necessary conditions

for biquandles.

Remark. Let X be a biquandle with an algebraic structure, then it should have "dimension" at

least 3 in the sense that there are 3 elements a, b, c ∈ X such that if Pa + Qb + Rc = 0, then

P =Q = R= 0. In other words, they should be at least 3 linearly independet elements.

This also ensures that coefficient comparisons give necessary conditions for biquandles.

First, let us assume that the up and down operations are linear. In particular, let A, B, C , D ∈

R, a possibly non-commutative, associative ring of some sort. This gives us the general form

f b(a) = ab = C ∗ a+ D ∗ b (4.8)

fa(b) = ba = A∗ a+ B ∗ b. (4.9)

4.2. RELATIONS FOR LINEAR OPERATIONS 4. Relations, Quaternions and More
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Equivalently, this can be written in matrix notation:





fa(b)

f b(a)



=





A B

C D









a

b



 . (4.10)

Furthermore, we assume that the biquandle X has the structure of an R-module, i.e.

X = R [x1, . . . , xn], ring variables with coefficients in R, generated by monomials in x1, . . . , xn

which may or may not commute.

For our purposes, translation by λ does not change any results and in fact, by aa = aa,

they would have to be translated by the same λ. This follows from easily from Definition 4.1.

One can think of λ as the constant that gets added (and usually ignored) when integrating a

function.

The graphical equivalent is shown in Figure 4.1.

a

(C ∗ a+ D ∗ b)(A∗ a+ B ∗ b)

b

(a) Positive Crossing

(C ∗ y + D ∗ x)

yx

(A∗ y + B ∗ x)

(b) Negative Crossing

Figure 4.1: Positive and negative Crossing for a Classical Knot with linear Functions

4.2.1 Relations arising from Biquandle Axioms

Theorem 4.6 (Linear biquandle relations). For a linear biquandle X over a ring R with opera-

tions of the form (4.8), (4.9), the following equations hold:

A+ B = C + D, [B, C] = 0, [A, B] = AD (4.11)

where AD = 0 in the commutative case, i.e. either one of them is zero or a zero-divisor.
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Proof. First, we are considering the Biquandle Axioms. Using Equations (4.8), (4.9) in Ax-

ioms (5.5) to (5.8) gives us the following relations:

C + D = A+ B (4.12)

CB = BC (4.13)

AC = DA+ CA (4.14)

DB = AD+ BD (4.15)

AC = BA+ AA (4.16)

AB = AD+ BA (4.17)

DC = C D+ DA (4.18)

DB = C D+ DD (4.19)

which is our desired result. q.e.d.

Combining (4.15) and (4.19) gives

(A+ B)D = (C + D)D.

From (4.14) and (4.16), we get

(D+ C)A= (B + A)A.

The following relation arises from (4.16) and (4.17)

AC = AB − AD+ AA

and (4.14) and (4.18) give

(A− D)C = C(A− D).

4.2. LINEAR OPERATIONS RELATIONS 4. Relations, Quaternions and More
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In particular, we can combine Equations (4.12), (4.13) and (4.14) (where we assume A to

be invertible) to get the following:

D = A+ B − C

AC = A2 + BA

C = A+ A−1BA

AB + A−1BAB = BA+ BA−1BA

4.2.2 Relations from Invertibility

After studying the relations arising from Reidemeister diagrams and biquandle axioms, we are

now considering invertibility.

Furthermore, as we require the up and down operations in (4.8) and (4.9) to be invertible,

we get the following relations:

Define

fa(b) = A∗ a+ B ∗ b =: x .

Hence,

f −1
a (x) = X ∗ x + Y ∗ a = XA∗ a+ X B ∗ b+ Y ∗ a = b

and from this we get,

X B = I⇔ X = B−1

as well as

XA+ Y = 0⇔ Y = −XA= −B−1A.

Thus,

f −1
a (x) = B−1(x − A∗ a). (4.20)

4.2. LINEAR OPERATIONS RELATIONS 4. Relations, Quaternions and More
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Furthermore, define

f b(a) = C ∗ a+ D ∗ b := y.

Hence,
�

f b
�−1
(y) = Z ∗ y +W ∗ b = ZC ∗ a+ Z D ∗ b+W ∗ b = a

and from this we get,

ZC = I⇔ Z = C−1

as well as

Z D+W = 0⇔W = −Z D = −C−1D.

Thus,
�

f b
�−1
(y) = C−1(y − D ∗ b). (4.21)

Example. In particular, in [Fen12b] it has been shown that for doodles the up action is equal to

the down action, that is

ab = ba = A(a+ b)

with A invertible and A 6= 0. This gives a useful invariant for doodles, as defined in [Fen08].

Alternatively, we can write this in terms of matrix requirements as defined in Equation (4.10).

In particular, we require both B and C to be invertible, i.e. both B−1 and C−1 exist. In order

to calculate the coefficients of the inverse functions, we can solve the following equation:





A B

C D









X Y

Z W



=





1 0

0 1





We note that for this to be solvable, we require the matrix
�

A B
C D

�

to be invertible. This, then,

requires that both B−1 and C−1 exist. In addition we require the following two invariants to

be a unit,

∆ = 1− B−1AC−1D

∆′ = 1− C−1DB−1A
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as this is a matrix over a non-commutative ring. Finally, the result is given as follows,

X =−C−1D∆−1B−1 (4.22)

Y = ∆′
−1C−1 (4.23)

Z = ∆−1B−1 (4.24)

W =−B−1A∆′−1C−1 (4.25)

which is the same for both approaches.

4.2.3 Back to Quaternions

In this section, we are applying the results of this chapter to the quaternions introduced earlier.

This is based on [BF04; BF08a; BF08b; Fen08].

In general, the following is also a switch:

S =





A tB

t−1C D





where t ∈ Z(R), the center of the ring with A, B, C , D ∈ R. Furthermore, both S−1 and ST are

switches.

Let us now consider these results in the context of the switch as introduced in Definition 3.1,

in particular the case with only one type of switch as in Equation (3.4),

(S × I)(I× S)(S × I) = (I× S)(S × I)(I× S)

where, as in Equation (4.10),

S =





A B

C D





with A, B, C , D ∈Q, the quaternions and B, C are invertible. In this case, both of the following

are also valid:

S∗ =





Ā B̄

C̄ D̄



 and ST ∗ =





D̄ B̄

C̄ Ā




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Another example is the so-called Budapest Switch with

S =





1+ i − j

j 1+ i



 .

We can generalise this to

S =





1+ U −V

V 1+ U





with U , V ∈ S2, the set of pure unit quaternions and U⊥V and then, from Lemma 8.2 in [BF08a]

we know that in fact, all switches with entries in the ring of quaternions with integer coeffi-

cients are of Budapest type with U , V ∈ {±i,± j,±k}.

In particular, from Lemma 3.2 in [BF08a], it holds that both A, B and |A− 1| are units.

Graphically, this looks like in Figure 4.2:

10 2

A
B

Figure 4.2: Quaternions for linear Biquandles
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Chapter 5

Relations arising from quadratic up

and down Operations

In this chapter, we are extending the results and methods from the previous Chapter 4 to the

quadratic case. This chapter is based entirely on our own research.

Let us assume that the up and down operations are quadratic. In particular, let Ai , Bi , Ci , Di ∈

R, an associative, commutative ring of i = 1, 2,∅. We also assume a ∗ A= A∗ a for A∈ R and

a ∈ BQ, a biquandle, which may be commutative or not. As in the previous chapter, we assume

the biquandle is a ring of variables R [x1, . . . , xn] in x1, . . . , xn with coefficients in R, generated

by monomials in x1, . . . , xn, which may or may not commute. Furthermore, we assume the

biquandle admits some multiplication for x , y ∈ BQ, r ∈ R such that r ∗ (x · y) = (r ∗ x)y =

x(r ∗ y).

The general form is thus given by

f b(a) = ab = C0 ∗ a+ C1 ∗ a2 + C ∗ a · b+ D0 ∗ b+ D1 ∗ b2 + D ∗ b · a (5.1)

fa(b) = ba = A0 ∗ a+ A1 ∗ a2 + A∗ a · b+ B0 ∗ b+ B1 ∗ b2 + B ∗ b · a. (5.2)

It holds that any translation by a scalar (λ) has to be the same for both equations and does not

give rise to any new relations. In particular, as the functions have to be bijective, A1 = B1 =

C1 = D1 = 0 if BQ is commutative.
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As in the linear case, we can write this in matrix form,





f b(a)

fa(b)



=





A0 A1 A2 B0 B1 B2

C0 C1 C2 D0 D1 D2





�

a a2 a · b b b2 b · a
�T

or, for just one of the functions in the commutative case,

fa(b) =
�

b2 b 1
�











a2 a 1

b2 0 0 0

b 0 A A0

b 0 B0 0





















a2

a

1











and similarly for f b(a).

In particular, we write A∗ a as Aa and a · b as ab for simplicity where it is unambigious.

As in the linear case, linear independence holds. Additionally, quadratic independence is

necessary.

5.1 Commutative Biquandles

We first consider the case where the biquandle is commutative. As in this case A1 = B1 = C1 =

D1 = 0, we have biquandle functions of the general form

f b(a) = ab = C0a+ Cab+ D0 b (5.3)

fa(b) = ba = A0a+ Aab+ B0 b (5.4)

Furthermore, as in the linear case, we require B0, C0 to be invertible.

5.1.1 Relations arising from Axioms

We now consider relations arising from the biquandle axioms. As a reminder, we now list the

biquandle axioms as discussed in Chapter 3.
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Definition 5.1 (Biquandle Axioms). The biquandle axioms are as follows for up and down op-

erations notation as defined in Definitions 3.1 and 3.6.

aa = aa (5.5)

abcb
= acbc (5.6)

ab
cb = ac

bc (5.7)

abcb = acbc
(5.8)

The four axioms in Equations (5.5) to (5.8) give rise to the following Theorem 5.2.

Theorem 5.2 (Commutative quadratic Biquandle with commutative Coefficients; Axioms).

Let BQ be a commutative biquandle with a structure as described before. If the up and down

functions are of quadratic form and have commutative coefficients, they are always of the form

fa(b) = A0 ∗ a+ B0 ∗ b+λ ∗ a · b (5.9)

f b(a) = C0 ∗ a+ D0 ∗ b+λ ∗ a · b (5.10)

and the following relations

A0D0 = 0

λ2A0 = 0

λA2
0 = 0

λ3 = 0

λ2D0 = 0

λD2
0 = 0

λA0B0 = λA0C0

λ2B0 = λ2C0

λB0D0 = λC0D0

λB2
0 = λB0D0 +λB0

λC2
0 = λA0B0 +λC0

λA0B0 +λD0 = λC0D0 +λA0

λB0C0 = λC0D0 +λC0

= λA0B0 +λB0

hold.

Proof. This follows from plugging in the equations into the axioms and compare coefficients

via the code in Appendix A. Additionally, we used (5.12) and the fact that B0, C0 have to be

invertible).
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In particular, when considering Axiom (5.5), we get

A0a+ B0a+ Aa2 = C0a+ D0a+ Ca2.

Thus we have the two relations

A0 + B0 = C0 + D0 (5.11)

and

A= C . (5.12)

If either A, C = 0 this collapses to the linear case. q.e.d.

5.1.2 Relations from Invertibility

From Definitions 3.1 and 3.6, we require the biquandle functions to not only be bijective but

also explicitedly invertible. The relations arising from this requirement are calculated in this

section and lead to Theorem 5.3.

Theorem 5.3 (Commutative quadratic Biquandle with commutative Coefficients; Invertibil-

ity). For a commutative biquandle, where the biquandle functions have commutative coefficients

and the biquandle functions are of general quadratic form as in Theorem 5.2, we have the follow-

ing inverses and conditions on the coefficients:

f −1
a (b) = B−1

0 x − B−1
0 A0a−

�

B−1
0

�2
λxa

( f b)−1(a) = C−1
0 y − C−1

0 D0 b− (C02−1)2λy b

where x = fa(b), y = f b(a) and, additionally, λ2 = λA0 = λD0 = 0 as well as B0, C0 6= 0.

Proof. First, let the functions be as in Theorem 5.2. We define fa(b) =: x , f b(a) =: y . Fur-

thermore, let us assume that the inverse is of similar quadratic form, i.e.

f −1
a (x) = X0 x + Y0a+µxa = b

( f b)−1(y) = Z0 y +W0 b+ νy b = a.

Considering first fa and its inverse, we get the following set of relations by plugging x into

f −1
a .
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X0A0 + Y0 = 0

X0B0 = I

X0λ+µB0 = 0

µA0 = 0

µλ = 0

From this after simplification the result as detailed in Theorem 5.3 follows.

The proof for ( f b)−1)(a) works analogously. q.e.d.

Corollary 5.4. We can simplify the list relations in Theorem 5.2 with the results of Theorem 5.3

to

A0D0 = 0

λ2 = 0

λA0 = 0

λD0 = 0

λB2
0 = λB0

λC2
0 = λC0

λB0C0 = λC0

= λB0

and so λB0 = λC0 = λ= λB2
0 = λC2

0 .

Remark. For the linear case there is only one possible case, namely

ab = λa+ (1−λµ) b, ab = µa

where a, b ∈ BQ, a Z
�

λ±1,µ±1
�

module, see [Saw99].

Theorem 5.5. Similarly to the linear case, in the quadratic case we have a biquandle with

ab = Aa+ Bb+λab, ba = Ca+ Db+λab

with A+ B = C + D,λ2 = AD = λA= λD = 0 as well as λB = λC = λ. As a special case of this

general form, we have

ab = ba = a+λ (1+ a) b

where λ 6= 0,λ2 = 0.

Proof. Follows from Theorems 5.2 and 5.3 and corollary 5.4. q.e.d.
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5.2 Non-Commutative Biquandles

Next, we consider non-commutative quadratic biquandles with commutative coefficients and

quadratic inverses. Let us start by considering invertibility instead of the axioms.

5.2.1 Relations arising from Invertibility

As in the commutative case in Section 5.1 we require the up and down operations in (5.1)

and (5.2) to be invertible. In order to simplify matters, we restrict ourselves quadratic inverse

functions. In this case we get the following relations:

Let

fa(b) = A0a+ A1a2 + Aab+ B0 b+ B1 b2 + Bba =: x .

We can then define

f −1
a (x) = X0 x + X1 x2 + X xa+ Y0a+ Y1a2 + Yax .

Furthermore, let

f b(a) = C0a+ C1a2 + Cab+ D0 b+ D1 b+ Dba := y.

Thence we can define

f −1 b(y) = Z0 y + Z1 y2 + Z y b+W0 b+W1 b2 +W b y

from which Theorem 5.6 follows.

Theorem 5.6 (Non-commutative quadratic Biquandle with commutative Coefficients; Invert-

ibility). For a non-commutative biquandle BQ with quadratic up and down functions with com-

mutative coefficients of the form,

fa(b) = A0a+ A1a2 + Aab+ B0 b+ B1 b2 + Bba =: x

f b(a) = C0a+ C1a2 + Cab+ D0 b+ D1 b2 + Dba =: y

we first consider the case where it holds that A1 = B1 = C1 = D1 = A2 = B2 = C2 = D2 = 0.
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Furthermore, the quadratic inverses of fa, f b are of one of the following forms

f −1
a (x) = Aax + A0B0a− (AA0 + BA0) a

2 − B0 x + Bxa

= (Aa− B0) (x − A0a)− BA0a2

�

f b
�−1
(y) = C b y + D0C0 b− (C D0 + DD0) b2 − C0 y + D y b

= (C b− C0) (y − D0 b)− DD0 b2

where a, b ∈ BQ, BQ a non-commutative biquandle and A, B, C , D, A0, B0, C0, D0 ∈ R, a commut-

ative, associative ring. Special cases of inverses for either of A, B, C , D = 0 ater given by

f −1
a (x) = A0B0a− B0 x − BA0a2 + Bxa = (Ba− B0) (x − A0a)

f −1
a (x) = Aax + A0B0a− AA0a2 − B0 x = (Aa− B0) (x − A0a)

�

f b
�−1
(y) = D0C0 b− C0 y − DD0 b2 + D y b = (Db− C0) (y − D0 b)

�

f b
�−1
(y) = C b y + D0C0 b− C D0 b2 − C0 y = (C b− C0) (y − D0 b) .

Another form is as follows, where A1, B1, C1, D1 are not necessarily zero. Let B1, C1 6= 0 be a zero

divisor. Then we have the following two special cases for inverses:

f −1
a (x) = A0B−1

0 x + B−1
0 A1 x2 + B−1

0 a

f −1
a (x) = A0B−1

0 x + A0(B
−1
0 )

2(A+ B)x2 + B−1
0 a− A(B−1

0 )
2 xa− B(B−1

0 )
2ax

�

f b
�−1
(y) = D0C−1

0 y + C−1
0 D1 y2 + C−1

0 b
�

f b
�−1
(y) = D0C−1

0 y + D0(C
−1
0 )

2(D+ C)y2 + C−1
0 b− D(C−1

0 )
2 y b− C(C−1

0 )
2 b y.

In the first case, (B−1
0 )

2 = (C−1
0 )

2 = 0. In the second case, all of A1, D1 are zero divisors as well

and AB = A2 = B2 = C D = C2 = D2 = 0 6= (B−1
0 )

2, (C−1
0 )

2.

In the proof we use Lemma 5.7.

Lemma 5.7 (Restriction of non-commutative quadratic down Function; Invertibility). Let fa, f b be

as in Theorem 5.6. Then the following holds:

(i) The inverse of the down function is as in Theorem 5.6.

(ii) The inverse of the up function is as in Theorem 5.6.
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Proof. We only show (i); (ii) follows similarly.

In case (i), we define

fa(b) = A0a+ A1a2 + Aab+ B0 b+ B1 b2 + Bba =: x .

We can then define

f −1
a (x) = X ax + X0a+ X1a2 + Y0 x + Y1 x2 + Y xa = b,

which after expanding becomes

f −1
a (x) = X a

�

Aa2 b+ A1a3 + B1ab2 + A0a2 + B0ab+ Bba
�

+ X1a2+

+Y1

�

Aab+ A1a2 + B1 b2 + A0a+ B0 b+ Bba
�2
+ X0a+

+Y0

�

Aab+ A1a2 + B1n2 + A0a+ B0 b+ Bba
�

+

+Y
�

Aab+ A1a2 + B1n2 + A0a+ B0 b+ Bba
�

a

= b.

After further expansion and coefficient comparison, we get the following relations:

a4 : 0 = Y1A2
1 (5.13)

a3 : 0 = XA1 + YA1 + 2Y1A0A1

(5.14)

a3 b : 0 = YA1A (5.15)

a2 : 0 = X1 + XA0 + Y0A1 + YA0 + Y1A2
0

(5.16)

a2 b : 0 = XA+ Y1A0A+ Y1A1B0

(5.17)

a2 b2 : 0 = Y1A1B1 (5.18)

a2 ba : 0 = Y1A1B (5.19)

a : 0 = X0 + Y0A0 (5.20)

ab : 0 = X B0 + Y0A+ Y1A0B0 (5.21)

ab2 : 0 = X B1 + Y1A0B1 + Y1AB0

(5.22)

ab3 : 0 = Y1AB1 (5.23)

aba : 0 = X B + YA+ Y1A0B + Y1AA0

(5.24)

aba2 : 0 = Y1AA1 (5.25)

abab : 0 = Y1A2 (5.26)

ab2a : 0 = Y1AB (5.27)

b4 : 0 = Y1B2
1 (5.28)

b3 : 0 = Y1B0B1 (5.29)

b3a : 0 = Y1B1B (5.30)
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b2 : 0 = Y0B1 + Y1B2
0 (5.31)

b2a : 0 = Y B1 + Y1B0B + Y1B1A0

(5.32)

b2a2 : 0 = Y1B1A1 (5.33)

b2ab : 0 = Y1B1A (5.34)

ba : 0 = Y0B + Y B0 + Y1B0A0 (5.35)

ba2 : 0 = Y B + Y1B0A1 + Y1BA0

(5.36)

ba3 : 0 = Y1BA1 (5.37)

bab : 0 = Y1B0A+ Y1BB0 (5.38)

bab2 : 0 = Y1BB1 (5.39)

baba : 0 = Y1B2
1 (5.40)

ba2 b : 0 = Y1BA (5.41)

b : I = Y0B0 (5.42)

Thus, by Equations (5.42) and(5.20), we have

Y0 = B−1
0 (5.43)

B0 6= 0 (5.44)

X0 =B−1
0 A0.

Next, let us consider Equations (5.13) and (5.28) from which follows

0= Y1A2
1 = Y1B2

1 .

Thus, we have the following 5 cases:











































A1 = B1 = 0, Y1 6= 0 (5.45)

Y1 = 0, A1, B1 6= 0 (5.46)

A2
1 = B2

1 = Y1 = 0, A1, B1 6= 0 (5.47)

A2
1 = B2

1 = 0, A1, B1, Y1 6= 0 (5.48)

A1 = B1 = Y1 = 0 (5.49)

Case 1: Let us first consider case (5.45), that is, A1 = B1 = 0 and Y1 6= 0.

By Equations (5.31), (5.32) and (5.42), we have

0=
=0
︷︸︸︷

Y0B1+Y1B2
0 =

=0
︷︸︸︷

Y B1 +Y1B0B +
=0

︷ ︸︸ ︷

Y1B1A0 = Y1BA

⇔ Y1B2
0 = Y1B0B = Y1BA.
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Thus, as both B0, Y1 6= 0, B2
0 = 0 holds. Furthermore, it follows that B = 0, B0 =

B = A or that B 6= 0 is a zero divisor for Y1. Consider first B = A = B0. Then

Equations (5.35) and (5.36) become

0= Y0B + Y B0 + Y1B0A0 =
=I
︷︸︸︷

Y0B0+Y B + Y1BA0

0=Y B + Y1B0A1
︸ ︷︷ ︸

=0

+Y1BA0 = Y B + Y1BA0

⇔ I+ Y B + Y1BA0 = Y B + Y1BA0

I= 0,

E

which is a contradiction. So, consider B = 0. Then Equation (5.22) can be written as

0= X B1
︸︷︷︸

=0

+Y1A0B1
︸ ︷︷ ︸

=0

+Y1AB0 = Y1AB0.

Thus, either A = 0, which is the linear case, or A = B0. In the latter case, it follows

from Equation (5.35) that

0=
=0
︷︸︸︷

Y0B +Y B0 + Y1B0A0⇔ Y1B0A0 = Y B0.

We then combine Equations (5.17) and (5.21) and get a contradiction with

XA
︸︷︷︸

=X B0

+ Y1A0A
︸ ︷︷ ︸

=Y1A0B0

+Y1A1B0
︸ ︷︷ ︸

=0

= X B0 + Y0A
︸︷︷︸

=Y0B0=I

+Y1A0B0.⇔ 0= I.

E

The case with B 6= 0 a zero divisor for Y1 can be contradicted in a similar way by

comparing Equations (5.17) and (5.21) in the case of A= B0. E

Thus, Case (5.45) cannot hold.
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Case 2: Next, consider Y1 = 0 and A1, B1 6= 0, i.e. Case (5.46).

By combining Equations (5.31) and (5.32), we get

Y0B1 + Y1B2
0

︸︷︷︸

=0

= Y B1 + Y1B0B
︸ ︷︷ ︸

=0

+Y1B1A0
︸ ︷︷ ︸

=0

and thus Y = Y0 = B−1
0 as B1 6= 0. Alternatively, B1 is a zero divisor. First, assume

Y = Y0 = B−1
0 - Following from Equations (5.35) and (5.36), we have

=Y
︷︸︸︷

Y0 B +

=B−1
0

︷︸︸︷

Y B0
︸ ︷︷ ︸

=I

+
=0

︷ ︸︸ ︷

Y1B0A0= 0

Y B + Y1B0A1
︸ ︷︷ ︸

=0

+Y1BA0
︸ ︷︷ ︸

=0

= 0

⇔ I = 0,

E

which is a contradiction. Thus, Case (5.46) cannot hold either.

In the case of B1 a zero divisor, the following additional relations hold:

0 = XA1 + YA1

= YA1A

= X1 + XA0 + Y0A1 + YA0

= XA

= Y B

= X B + YA

= Y0B + Y B0.

By rearranging we get X = −A(B−1
0 )

2, Y = −B(B−1
0 )

2. By XA1+YA1 = 0, either A1 = 0,

which was considered earlier already, (B−1
0 )

2 = 0, B−1
0 = A1 or A1 is a zero divisor.

If we have (B−1
0 )

2 = 0, then both X , Y = 0 and X1 = B−1
0 A1 as in the theorem.

If B−1
0 = A1, X = Y = X1 = 0 which is the linear case, as Y1 = 0.

So assume A1 is a zero divisor, then X1 = A0(B−1
0 )

2(A+B), as in the theorem. Further-
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more, by XA= Y B = 0, A2 = B2 = 0 as (B−1
0 )

2 = 0 would be the linear case. However,

by 0= X B + YA, AB = 0 as well.

Case 3: In particular, with the same reasoning as in the previous case, Case (5.47) does not

hold either.

Case 4: Next, let us consider A2
1 = B2

1 = 0 and A1, B1, Y1 6= 0, i.e. Case (5.48). First consider

Equations (5.18) and (5.19). From this, we get B1 = B. Furthermore, from (5.23),

we get A= A1 and so, by (5.27), it holds that A= B. Thus, from (5.29),A= B = A1 =

B1 = B0 follows. However, from (5.31),

0= Y0B1 + Y1 B2
0

︸︷︷︸

=0

= Y0B1 = B1
0B0 = I.

E

This is again a contradiction and thus Case (5.48) cannot hold.

Case 5: Finally, consider Case (5.49). In this case we assume A1 = B1 = Y1 = 0.

Thus, Equation (5.17) can be written as

0= XA+ Y1A0A
︸ ︷︷ ︸

=0

+Y1A1B0
︸ ︷︷ ︸

=0

= XA. (5.50)

Hence, we have two cases, namely either at least one of A, X is equal to 0 or both

A, X 6= 0 and XA= 0.

First, consider the case where at least one of A, X is zero. Then Equation (5.21) results

in

0= X B0 + Y0A+ Y1A0B0
︸ ︷︷ ︸

=0

⇔ X B0 = −Y0A.

As both B0, Y0 6= 0 by Equations (5.43) and (5.44) we have X = A= 0, since at least

one of them is zero by Equation (5.50).

Furthermore, Equation (5.36) can be written as

0= Y B + Y1B0A1
︸ ︷︷ ︸

=0

+Y1BA0
︸ ︷︷ ︸

=0

= Y B.

Thus, either at least one of Y, B is zero or both are nonzero and Y B = 0. However,
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Equation (5.35) gives

0= Y0B + Y B0 + Y1B0A0
︸ ︷︷ ︸

=0

= Y0B + Y B0.

Since at least one of B, Y is zero and both B0, Y0 6= 0, we must have Y = B = 0 and

thus the linear case follows.

Instead, consider Y, B 6= 0 and Y B = 0. By multiplying Equation (5.35) with B on

both sides, we arrive at

Y0B2 = 0

and thus Y = B. In this case, we then have

f −1
a (x) = A0B0a− B0 x − BA0a2 + Bxa = (Ba− B0) (x − A0a) . (5.51)

Now let us consider A, X 6= 0 and XA = 0. Then, with a similar reasoning as before,

Y = B = 0 or Y B = 0 with Y, B 6= 0. This gives us the following two possibilities:

f −1
a (x) = Aax + A0B0a− AA0a2 − B0 x

= (Aa− B0) (x − A0a) (5.52)

f −1
a (x) = Aax + A0B0a− (AA0 + BA0) a

2 − B0 x + Bxa

= (Aa− B0) (x − A0a)− BA0a2. (5.53)

Here, (5.52) is the case for Y = B = 0 and (5.53) for Y B = 0, Y, B 6= 0, respectively.

Thus, the only three possible cases for non-commutative biquandles with quadratic

down functions with commutative coefficients are given in Equations (5.51), (5.52) and (5.53).

q.e.d.

Proof of Theorem 5.6. By Lemma 5.7 (i) and (ii), the equations stated in Theorem 5.6 are the

only possible forms.

In addition, considering the proofs of both part (i) and (ii) of Lemma 5.7, we see that

the additional restrictions on the coefficients in the theorem hold true and thus the theorem

follows. q.e.d.
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5.2.2 Relations arising from Axioms

Using the axioms stated in Definitions 3.1 and 3.6, in this section we derive further restrictions

on biquandle functions as in Theorem 5.6.

Remark. We restrict ourselves to the case A1, B1, C1, D1 = 0 due to space and time constraints,

as this does not lead to nice close-form functions but rather to a whole new theory. We aim to

explore this further in future research.

We will first consider Axiom (5.5). Using the quadratic up and down functions as in The-

orem 5.6, we get:

A0a+ B0a+ Aa2 + Ba2 = C0a+ D0a+ Ca2 + Da2.

Thus we have the first two relations,

A0 + B0 = C0 + D0 (5.54)

and

A+ B = C + D, (5.55)

where at least one of A, B, C , D is nonzero and, by (5.55) and Theorem 5.6, we must have at

least two of A, B, C , D nonzero. Otherwise, the theory collapses to the linear case.

From the other three axioms in Equations (5.6) to (5.8) we get the following Theorem 5.8.

Theorem 5.8 (Non-commutative quadratic Biquandle with commutative Coefficients; Ax-

ioms). Let BQ be a non-commutative biquandle. If the up and down functions are of quadratic

form with quadratic inverse and commutative coefficients, they always have one of the following

forms:
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Case 1:

fa(b) = A(ab+ ba) + A0a+ B0 b

f b(a) = A(ab+ ba) + B0a+ A0 b

or

fa(b) = A(ab+ ba+ a+ b) + b

f b(a) = A(ab+ ba+ a+ b) + a

or

fa(b) = A(ab+ ba+ a+ b) + b

f b(a) = A(ab+ Bba) + a

or

fa(b) = A(ab+ ba) + b

f b(a) = A(ab+ ba+ a+ b) + a

or

fa(b) = A(ab+ ba) + b

f b(a) = A(ab+ ba) + a

or

fa(b) = Aab+ Bba+ A0(a+ b) + b with A2
0 = 0

f b(a) = Aab+ Bba+ A0(a+ b) + a

Case 2c:

fa(b) = Aab+ A0a+ b with A0 ∈ {A, 0}

f b(a) = Aab+ a+ A0 b

Case 3c:

fa(b) = Bba+ A0a+ b with A0 ∈ {B, 0}

f b(a) = Bba+ a+ A0 b

Case 4:

fa(b) = A0a+ b with A0 ∈ {C , 0}

f b(a) = C(ab− ba) + a+ A0 b

or

fa(b) = Bba+ A0a+ b with A0 ∈ {B, 0}

f b(a) = Bab+ a+ A0 b

or

fa(b) = Aab+ A0a+ b with A0 ∈ {A, 0}

f b(a) = Aab+ a+ A0 b

or

fa(b) = A(ab− ba) + A0a+ b with A0 ∈ {A, 0}

f b(a) = a+ A0 b

Case 5a:

fa(b) = (C + D)ba+ b with C ∈ {0, D}

f b(a) = Cab+ Dba+ a

or

fa(b) = (C + D)ab+ b with D ∈ {0, C}

f b(a) = Cab+ Dba+ a

or

fa(b) = Aab+ Bba+ b with A∈ {0, B}

f b(a) = (A+ B)ba+ a

or

fa(b) = Aab+ Bba+ b with B ∈ {0, A}

f b(a) = (A+ B)ab+ a

or

fa(b) = A(ab+ ba) + b

f b(a) = C(ab+ ba) + a
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where in all cases A2 = B2 = C2 = D2 = 0 and all coefficients are elements of a commutative,

associative ring. Additionally, the coefficients of b (in fa(b)) and a (in f b(a)) are invertible.

Proof. From the other three Axioms (5.6), (5.7) and (5.8), we get the following relations via

the code in Appendix A with (5.55) and the fact that A2 = B2 = C2 = D2 = 0 the following

relations:

0 = BB0D (5.56)

0 = AA0B (5.57)

0 = AA0C (5.58)

0 = AB0C (5.59)

0 = ABC

0 = A0BD

0 = ABD

0 = A0BC

0 = BC D0 (5.60)

0 = BC D

0 = AA0D

0 = A0D0

0 = AC D0 (5.61)

0 = AC D

0 = BDD0

0 = BC D

0 = ADD0

0 = ACC0 (5.62)

0 = C DD0

0 = BC0D (5.63)

0 = 2A0C D

0 = 2ABA0

0 = 2ABD0

0 = A2
0C + A2

0D

0 = AD2
0 + BD2

0

0 = AA2
0 + A2

0B

0 = C D2
0 + DD2

0

BB0 + A0BB0 = BB0C0 (5.64)

ABB0 = BB0C (5.65)

BB2
0 = BB0 + BB0D0 (5.66)

A2
0 + A0B0 = A0C0 (5.67)

AA0 + A0BB0 = A0C + AA0C0 (5.68)

AA0B0 + AB0 = AB0C0 (5.69)

ABB0 = ABC0 (5.70)

A0B + AA0B0 = A0D+ A0BC0 (5.71)

ABB0 = AB0D

AB2
0 = AB0D0 + AB0 (5.72)

BC0 + A0B0C = BC2
0 (5.73)

B2
0C = B0C + BC0D0 (5.74)

BB0C = BCC0

AC0 + A0B0D = AC2
0

A0B0C + AD0 = A0C + AC0D0

AB0D = AC0D

B2
0 D = AC0D0 + B0D (5.75)
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BB0D = BC0D

BD0 + A0B0D = A0D+ BC0D0

CC2
0 = CC0 + A0CC0 (5.76)

CC0 + CC0D0 = B0CC0 (5.77)

CC0D = BCC0 (5.78)

C2
0 D = C0D+ A0C0D

CC0D = B0C D

C D0 + C0DD0 = B0C D0 + AD0 (5.79)

CC0D = AC0D

C0D0 + D2
0 = B0D0

C0D+ C0DD0 = B0C0D (5.80)

CC0D0 + DD0 = BD0 + B0DD0 (5.81)

We first notice that by Equations (5.64), (5.66), (5.72), (5.74), (5.76), (5.77) and (5.80), Equa-

tion (5.54) and the invertibility of B0, C0, we get

X = X (C0 − A0) = X (B0 − D0) , (5.82)

where X = A, B, C , D and so, as B0 − D0 = C0 − A0 = I and B0, C0 6= 0, either C0 = A0 + I,

B0 = D0 + I or B0 = I, D0 = 0, C0 = I, A0 = 0 or a combination of them. Furthermore,

by Equations (5.65), (5.70) and (5.78) and the invertibility of B0, C0, it holds

AB = BC = AD = C D (5.83)

and by comparing Equations (5.62) and (5.63), we note that AC = BD.

Using this in Equations (5.56), (5.58), (5.61) and (5.62), we get

ACX0 = 0,

where X0 = A0, B0, C0, D0. With Equations (5.57) and (5.60) it follows

ABA0 = ABD0 = 0.

However, since B0, C0 6= 0, AC = BD = 0 holds. Thus, we have one of the following cases:

Case 1: A= C , B = D, all nonzero

Case 2: A= C and

Case 2a: B = 0, A, C , D 6= 0

Case 2b: D = 0, A, B, C 6= 0
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Case 2c: B, D = 0, A, C 6= 0

Case 3: B = D and

Case 3a: A= 0, B, C , D 6= 0

Case 3b: C = 0, A, B, D 6= 0

Case 3c: A, C = 0, B, D 6= 0

Case 4: Case 4a: A, B = 0, C , D 6= 0

Case 4b: A, D = 0, B, C 6= 0

Case 4c: B, C = 0, A, D 6= 0

Case 4d: C , D = 0, A, B 6= 0

Case 5: Alternatively, due to Equation (5.54) we have the following two cases

Case 5a: A0 = D0 = 0, B0 = C0

Case 5b: A0 = B0 = C0 = D0.

We shall now discuss all of these cases:

Case 1: A= C , B = D, all nonzero:

Then by Equation (5.70), either A = B or B0 = C0 as A, B, C , D are non-zero. First,

assume A = B. Then, by Equations (5.68) and (5.81), either B0 = C0 or one of the

following:

(i) A0 = D0 = A

(ii) A0 = A, D0 = 0

(iii) D0 = A, A0 = 0

(iv) A0 = D0 = 0

First, assume B0 = C0. Then, by Equation (5.54), A0 = D0, as required.

Thus, one of the following must hold:

(i) A0 = D0 = A.

Then, by Equations (5.54) and (5.82), B0 = C0 = I+ A, as required.
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(ii) A0 = A, D0 = 0.

Then, by Equation (5.82), B0 = I and C0 = A+ I, as required.

(iii) D0 = A, A0 = 0.

Then, by Equation (5.82), C0 = I and B0 = a+ I, as required.

(iv) A0 = D0 = 0.

Then, by Equation (5.82), B0 = C0 = I, as required.

Alternatively, let B0 = C0. Then, by Equation (5.54), A0 = D0. Thus, by Equa-

tion (5.67), A2
0 = 0 and so B2

0 = B0 + A0 (see Equation (5.82)), as required.

Case 2: A= C and

Case 2a: B = 0, A, C , D 6= 0:

By Equation (5.55), we have A= A+ D and so D = 0, which is a contradic-

tion. E

Case 2b: D = 0, A, B, C 6= 0:

By Equation (5.55), we have A+ B = A and so B = 0, which is a contradic-

tion. E

Case 2c: B, D = 0, A, C 6= 0:

By Equation (5.71), AA0B0 = 0 and so, by Equation (5.69),

AB0C0 = AB0⇔ A= AC0

follows as B0 is invertible. Hence, with Equation (5.68),

AA0C0 = 0⇔ AA0 = 0.

Similarly, with Equations (5.75) and (5.77), we get A = AB0 and by Equa-

tion (5.81), AD0 = 0.

Now, as A 6= 0 (since otherwise we have the linear case), B0 = C0 = I.

Furthermore, either A0 = A= D0 or A0 = 0= D0, as required.
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Case 3: B = D

Case 3a: A= 0, B, C , D 6= 0:

By Equation (5.55), we have B = B + C and so C = 0, which is a contradic-

tion. E

Case 3b: C = 0, A, B, D 6= 0:

By Equation (5.55), we have A+ B = B and so A= 0, which is a contradic-

tion. E

Case 3c: A, C = 0, B, D 6= 0:

Similarly to Case 2c, by Equations (5.71) and (5.73), BC0 = B and BA0 = 0.

By Equations (5.79) to (5.81), BD0 = 0 and BC0 = 0 and so, B0 = C0 = I

and either A0 = D0 = 0 or A0 = D0 = B, as required.

Case 4: Case 4a: A, B = 0, C , D 6= 0:

By Equation (5.55), we have C = −D. Then, by Equation (5.75), D = DB0

and so, as both are nonzero, B0 = I. Furthermore, by Equations (5.68)

and (5.76), we have DA0 = 0 and DC0 = D and so C0 = I. Hence, by Equa-

tion (5.82), DD0 = 0. Thus, by Equation (5.54), either D0 = A0 = 0 or

A0 = D0 = D, as required.

Case 4b: A, D = 0, B, C 6= 0:

By Equation (5.55), we have C = B. Similarly as in Case 4a, we have B0 =

C0 = I and A0 = D0 with either A0 = C or A0 = 0.

Case 4c: B, C = 0, A, D 6= 0:

By Equation (5.55), we have A= D. Similarly as in Case 4a, we have B0 =

C0 = I and A0 = D0 with either A0 = D or A0 = 0.

Case 4d: C , D = 0, A, B 6= 0:

By Equation (5.55), we have A = −B. Similarly as in Case 4a, we have

B0 = C0 = I and A0 = D0 with either A0 = A or A0 = 0.
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Case 5: Case 5a: A0 = D0 = 0, B0 = C0:

In this case we have

X B0 = X

for X = A, B, C , D by Equation (5.82). Thus, B0 = I as at least two of

A, B, C , D are non-zero and by Equations (5.56) and (5.59), BD = AC = 0.

Assume without loss of generality that A = 0. Then B = C + D and BD =

C D + DD = C D = 0. Thus, either C = 0 or C = D. If C = 0, B = D. If

C = D, B = 2D.

Similarly, if B = 0, A= 2C or A= C , if C = D or D = 0, respectively.

Similarly, if C = 0, D = 2B or D = B, if B = A or A= 0, respectively.

Similarly, if D = 0, C = 2A or C = A, if A= B or B = 0, respectively.

If all are non-zero, B = D and A= C .

Case 5b: A0 = B0 = C0 = D0:

Then by Equation (5.82), X = 0 for all X = A, B, C , D, which is the linear

case and hence a contradiction. E

q.e.d.
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Chapter 6

Quandle and Biquandle Homology

In this chapter, we define quandle homology, as, for example, stated in [NP09], and extend

this definition to biquandle homology.

6.1 Homology

In this section we state the definition of homology as given in [Bre93].

Definition 6.1 (p-simplex). Let R∞ have the standard basis (ei)i≤0. Then the standard

p-simplex is given by ∆p =
�

x =
∑p

i=0λiei |
∑

λi = 1,0≤ λi ≤ 1
	

. The λi are called bary-

centric coordinates.

Definition 6.2 (Affine Singular n-simplex; Face Map). Given points vo, . . . , vn ∈ Rn, let [vo, . . . , vn]

denote the map∆n→ Rn, taking
∑

i λiei 7→
∑

i λi vi , which is called an affine singular n-simplex.

The affine singular simplex
�

eo, . . . , bei , . . . , ep

�

: ∆p−1 → ∆p, where e1, . . . , bei , . . . , en means

every ek except ei , is called the ith face map and is denoted by F p
i .

Definition 6.3 (Boundary Map). If X is a topological space, then a singular p-simplex of X is

a map σp : ∆p → X . The singular p-chain group ∆p(X ) is the free abelian group based on the

singular p-simplices.

If σ : ∆p → X is a singular p-simplex, then the ith face of σ is given by σ(i) = σ ◦ F p
i . The

boundary of σ is ∂pσ =
∑p

i=0(−1)iσ(i), a (p-1)-chain. If c =
∑

σ nσσ is a p-chain, then we put

∂pc = ∂p

�∑

σ nσσ
�

=
∑

σ nσ∂pσ. That is, ∂p is extended to∆p(X ) so as to be a homomorphism,

∂p :∆p(X )→∆p−1(X ).
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In addition, note that ∂p∂p+1 = 0. This is commonly also denoted as ∂ 2 = 0.

Definition 6.4 (Chain Complex; Homology Group). We define the following chain complex

. . . −−−−→ ∆p+1(X )
∂p+1
−−−−→ ∆p(X )

∂p
−−−−→ ∆p−1(X ) −−−−→ . . .

Chains in the kernel of ∂p are called p-cycles or Zp(X ) and chains in the image of ∂p+1(X ) are

called p-boundaries or Bp(X ).

Then the pth singular homology group of a space X is defined as

Hp(X ) = Zp(X )/Bp(X ) = (ker∂p)/(im ∂p+1)

6.2 Quandle Homology

In this section we state the definition of the quandle homology, as given in [NP09] for example.

Definition 6.5 (Rack, Degenerate, Quandle Chain Complex; L.E.S of Quandle Homologies).

(i) For a given rack X , let CR
n (X ) be the free abelian group generated by n-tuples

(x1, x2, . . . , xn), x i ∈ X , i.e. CR
n (X ) = ZX n = (ZX )⊗n. Define a boundary homomorphism

∂ n : CR
n (X )→ CR

n−1(X ) by

∂ n(x1, x2, . . . , xn) =
n
∑

i=2

(−1)i
�

(x1, . . . ,Òx i , . . . , xn)−
�

x x i
1 , x x i

2 , . . . , x x i
i−1, x i+1, . . . , xn

��

.

Then (CR
∗ (X ),∂

n) is called a rack chain complex of X and we usually write ∂ instead of ∂ n.

(ii) Let X be a quandle. Then there is a subchain complex, C D
n (X ) ⊂ CR

n (X ), generated by n-

tuples (x1, . . . , xn) where x i = x i+1 for some i. This subchain complex, (C D
n (X ),∂ ) is called

a degenerate chain complex of a quandle X .

(iii) The quotient chain complex CQ
n (X ) = CR

n (X )/C
D
n (X ) is also called the quandle chain com-

plex. We now have the short exact sequence of chain complexes:

0 −−−−→ C D
n (X ) −−−−→ CR

n X −−−−→ CQ
n (X ) −−−−→ 0 (6.1)
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As shown by Litherland and Nelson in [LN03], this short exact sequence splits via the splitting

map α : CQ
n (X )→ CR

n (X ) where

α(x1, . . . , xn) = (x1, x2 − x1, x3 − x2, . . . , xn − xn−1).

In particular, α is a chain complex monomorphism and HR
n(X ) = HD

n (X )⊕α∗(H
Q
n (X )).

(iv) The homology of rack, degenerate and quandle chain complexes are called rack, degenerate

and quandle homology, respectively. We then have the long exact sequence of the homology

of quandles:

. . . −−−−→ HD
n (X ) −−−−→ HR

n(X ) −−−−→ HQ
n (X ) −−−−→ HD

n−1(X ) −−−−→ . . .

(v) For an abelian group G, define the chain complex CQ
∗ (X ; G) = CQ

∗ ⊗ G, with ∂ = ∂ ⊗ id.

The groups of cycles and boundaries are denoted by ker(∂ ) = ZQ
n (X ; G) ⊂ CQ

n (X ; G) and

Im(∂ ) = BQ
n (X ; G) ⊂ CQ

n (X ; G), respectively. Then the nth quandle homology group of a

quandle X with coefficient group G is defined as

HQ
n (X ; G) = Hn(C

Q
∗ (X ; G)) = ZQ

n (X ; G)/BQ
n (X ; G).

6.3 Biquandle Homology

The Definition of the Homology of a Quandle as in Definition 6.5 can be extended naturally

to Biquandles.

Remark. We are not aware of any complete definition in the literature. There is some men-

tion in [Fen+14, Section 6.2] and there is a definition for Augmented Biracks in [Cen+14] but

while Definition 6.6 is indeed the natural generalisation of rack/quandle homology, the only other

mention we could find is in [Fen12b, Chapter 6]. There is also a definition in [Car+09, Section

3], but it is incomplete and thus not very usable for our purposes.
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Definition 6.6 (Birack, Degenerate, Biquandle Chain Complex; L.E.S of Biquandle Homolo-

gies).

(i) For a given birack X , let CR
n (X ) be the free abelian group generated by n-tuples

(x1, x2, . . . , xn), x i ∈ X , i.e. CR
n (X ) = ZX n = (ZX )⊗n. Define a boundary homomorphism

∂ : CR
n (X )→ CR

n−1(X ) by

∂ (x1, x2, . . . , xn) =
n
∑

i=2

(−1)i
�

(x1, . . . ,Òx i , . . . , xn)−
�

x x i
1 , x x i

2 , . . . , x x i
i−1, x i+1 x i

, . . . , xn x i

��

.

Then (CR
∗ (X ),∂ ) is called a birack chain complex of X .

(ii) Let X be a biquandle. Then there is a subchain complex, C D
n (X ) ⊂ CR

n (X ), generated by n-

tuples (x1, . . . , xn) where x i = x i+1 for some i. This subchain complex (C D
n (X ),∂ ) is called

a degenerate chain complex of a biquandle X .

(iii) The quotient chain complex CQ
n (X ) = CR

n (X )/C
D
n (X ) is also called the biquandle chain

complex. We now have the short exact sequence of chain complexes:

0 −−−−→ C D
n (X ) −−−−→ CR

n X −−−−→ CQ
n (X ) −−−−→ 0 (6.2)

We think this sequence splits usefully as in the quandle case; see Conjecture 6.7. It is clear

that this sentence splits as every x∗ ∈ CR
n (X ) is either in CQ

n (X ) or C D
n (X ), but never in both

(or none).

(iv) The homology of birack, degenerate and biquandle chain complexes are called birack, de-

generate and biquandle homology, respectively. Thus, have the long exact sequence of the

homology of biquandles:

. . . −−−−→ HD
n (X ) −−−−→ HR

n(X ) −−−−→ HQ
n (X ) −−−−→ HD

n−1(X ) −−−−→ . . .

(v) For an abelian group G, define the chain complex CQ
∗ (X ; G) = CQ

∗ ⊗ G, with ∂ = ∂ ⊗ id.

The groups of cycles and boundaries are denoted by ker(∂ ) = ZQ
n (X ; G) ⊂ CQ

n (X ; G) and

Im(∂ ) = BQ
n (X ; G) ⊂ CQ

n (X ; G), respectively. Then the nth biquandle homology group of

a biquandle X with coefficient group G is defined as

HQ
n (X ; G) = Hn(C

Q
∗ (X ; G)) = ZQ

n (X ; G)/BQ
n (X ; G).

6.3. BIQUANDLE HOMOLOGY 6. Quandle and Biquandle Homology



79

6.3.1 Splitting Biquandle Homology Conjecture

We had a closer look at the proof in [LN03, Chapter 2] and think it adaptable enough to state

the following conjecture.

Conjecture 6.7 (The Biquandle Chain Complexes split). The short exact sequence of (biquandle)

chain complexes

0 −−−−→ C D
n (X ) −−−−→ CR

n X −−−−→ CQ
n (X ) −−−−→ 0

splits usefully.
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Chapter 7

Homology Computation

In this chapter we present an algorithm that calculates biquandle and quandle homologies.

First, we discuss the theory on which the algorithm is based on. After this, we describe the

algorithm used and give an example of this algorithm. We then present notes on the imple-

mentation before the chapter finishes with background on the Smith Normal Form of a matrix.

7.1 Theory

We introduce preliminaries and define the algorithm which is the basis of [FW16] afterwards.

7.1.1 Preliminaries

This section is based on [EH10] and conversations with Roger Fenn, see e.g. [Fen14]. A more

gentle introduction can be found in [Zom05].

Let F, G be two linear boundary maps, where F : U → V , G : V → W and G ◦ F = 0. As

we are only interested in Homology with coefficients in Z, let U , V, W = Z{p,q,r}, respectively.

Furthermore, assume that F, G are defined by (p × q) and (q × r) matrices, respectively. In

other words, F = ( fi j) and G = (gi j) with fi j , gi j ∈ Z. Thus, we have the following:

Zp

1× p

F
→

p× q
Zq

1× q

G
→

q× r
Zr

1× r

Now let B = im(F) and Z = ker(G). Since B ⊂ Z , we can define H := Z/B, the homology

group of this sequence.
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Note that the notation ni j and ni, j is used interchangeably in this chapter. Let ri denote

the ith row of F , i ∈ Zp. Then we can write

F =
�

r1, r2, . . . , rp

�T

and since ei F = ri , we see that B is in the row space of F , i.e. B ∈ span(ri). Similarly, let cT
i

denote the ith column of G, i ∈ Zr . Then

G =
�

cT
1 , cT

2 , . . . , cT
r

�

.

From this, it follows that Z = ker(G) = {λ|λG = 0}, i.e. Z⊥ = span(ci).

7.1.2 Algorithm

Next, we present the individual steps in the calculation of quandle and biquandle homology.

Let X ∈ Zq×q, Y ∈ Zr×r be elementary matrices such that

X GY =





D 0

0 0





where D is a p× p invertible matrix, p is the rank of G and all of the other matrix entries are

zero. Let zi = eiX , then the last q − p rows of X are a basis of Z . Since ker(G) ⊃ im(F), we

can find unique ni j ∈ Z, i = 1, . . . , p, j = 1, . . . , q− p such that

ri =
q−p
∑

j=1

ni j z j

or, equivalently,

F = N ∗ X (q)(p)

where X (q)(p) denotes the last q− p rows of X and N = (ni j). Thus, the homology H = Z/B has

N as a presentation matrix as an abelian group.

Reducing N to its Smith Normal Form,

SN =





∆ 0

0 0




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where ∆= diag(1, . . . , 1, d1, . . . , dk) is a diagonal matrix of size s× s, with 1< d1|d2| · · · |dk.

Then the homology is

H ∼= Zp−s ⊕Zd1
⊕Zd2

⊕ · · · ⊕Zdk
.

7.2 Quandle Homology Calculation Example

As an example, we will calculate the second quandle homology group of the Dihedral Quandle

of order 3, namely HQ
2 {R3}. The Dihedral Quandle of order 3 is defined over Z3 with the

quandle operation x y = 2 ∗ y − x mod 3. More generally, the Dihedral Quandle of order n is

defined over Zn with x y = 2 ∗ y − x mod n.

The quandle homology has been defined in Definition 6.5 and we note that degenerate

words are put equal to zero.

Here, we have U = {010,012, 020,021, 101,102, 120,121, 201,202, 210,212},

V = {01,02, 10,12, 20,21} and W = {0,1, 2}, the words of length three, two and one, respect-

ively. This leads to the following two maps,

G =































0 1 2

01 −1 0 1

02 −1 1 0

10 0 −1 1

12 1 −1 0

20 0 1 −1

21 1 0 −1






























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and

F =





































































01 02 10 12 20 21

010 1 −1 0 0 1 0

012 1 −1 −1 0 0 0

020 −1 1 1 0 0 0

021 −1 1 0 0 −1 0

101 0 0 1 −1 0 1

102 −1 0 1 −1 0 0

120 0 0 −1 1 0 −1

121 1 0 −1 1 0 0

201 0 −1 0 0 1 −1

202 0 0 0 1 1 −1

210 0 0 0 −1 −1 1

212 0 1 0 0 −1 1





































































where we show the words as row names and the boundaries as column names. As an example,

∂ (01) = 1− 0− 1+ 2= −1 · 0+ 1 · 2.

After Gaussian Elimination, this results in the following elementary matrix X . Here, the

matrix D is not in the lower right but in the upper left corner.

G =































0 0 0 0 0 −1

0 0 0 0 −1 0

1 0 0 0 0 1

0 1 0 0 −1 1

0 0 1 0 1 −1

0 0 0 1 1 0





























































1 0 −1

0 1 −1

0 0 0

0 0 0

0 0 0

0 0 0































Y

Thus, as ρ = 2, the last 4 rows are the required basis.
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In addition, we calculate a basis for the row space of F:

















1 0 0 0 0 1

0 1 0 0 −1 1

0 0 1 0 1 −1

0 0 0 1 1 0

















plus 8 rows of zeros. Using standard calculation, we then find the matrix N :

N =

















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

















plus 8 rows of zeros, which has the following Smith Normal Form:

SN =

















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

















with an additional 8 rows of zeros.

As there are only ones in the diagonal, it holds that HQ
2 (R3) = ;.

7.3 Implementation

We have programmed the algorithm from Section 7.1.2 in R [R C13] with the help of some

third-party libraries [BM14a; VR02; Bor14]. The corresponding paper, [FW16], is accepted for

publication in a peer reviewed Open Access journal, the Journal of Open Research Software

(JORS). We reproduced the paper in Appendix C.

7.3.1 S Test

In addition to the above mentioned algorithm we have implemented S Test. This may be used

to test whether a given set in combination with an up and a down action gives rise to a quandle

or biquandle. For this one has to test if:

7.3. IMPLEMENTATION 7. Homology Computation
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1. The Switch, the up and the down action (i.e. S, fa, f a) are all bijective.

2. The Yang-Baxter Equation S1S2S1 = S2S1S2 holds, where S1(a, b, c) = (S(a, b), c) and

S2(a, b, c) = (a, S(b, c)).

Implementation of the Tests

input : k, an integer
output: TRUE/FALSE

1 XSquare = allCombinations(k);
2 SX = XSquare[,2:1];
3 SX[,2] = UpAction(XSquare[,1],SX[,1],k);
4 XSquare[, 2] = DownAction(SX[, 1], XSquare[, 1], k);
5 permutationsS = checkpermutations(SX);
6 permutationsf = checkf(SX, k, XSquare);
7 permutationsg = checkf(XSquare, k, SX);
8 YangBaxter = checkYB(SX, k, XSquare);
9 print(paste0("The permutation checks hold that S is ", permutationsS, ", f is ",

permutationsf, " and g is ", permutationsg, " and that the Yang-Baxter check holds ",
YangBaxter, "."));

10 return(all(permutationsS,permutationsf,permutationsg,YangBaxter));

Figure 7.1: S Test Algorithm

Here k is the order of the Biquandle in question. Upaction and downaction calculate the up

and down function for the two elements and the order of the biquandle. Note that in the

package it is by default set up for the dihedral quandle. checkpermutations checks that the

switch function as defined in Definition 3.1 is bijective. Checkf does the same for the up and

down functions while checkYB checks if the Yang-Baxter Equation (3.3) holds.

XSquare can be thought of as the left side of the sideways map while SX is the right side.

In other words, XSquare = (ba, a)→ (ab, b) = SX and this is calculated in rows 2-4.

input : B, a matrix

1 C = unique(B);
2 if all(C != B) then
3 return(FALSE);
4 end
5 return(TRUE);

Figure 7.2: checkpermutations

The checkpermutations function checks if all rows of a matrix are unique.
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input : SX, a matrix, XSquare, a matrix, k, an integer

1 S = unique(cbind(XSquare[, 1], SX[, 1:2]));
2 if nrow(S) != (k * k) then
3 return(FALSE);
4 end
5 return(TRUE);

Figure 7.3: checkf

The checkf works similarly as the checkpermutations function. It tests the biquandle functions

rather than the sideways map.

input : S, a matrix, X, a matrix, k, an integer

1 for i = 0, . . . , (k− 1) do
2 for j = 1, . . . , nrow(S) do
3 LHS <- c(i, S[j, ]);
4 RHS <- LHS;
5 LHS[1:2] <- findSresult(LHS[1:2], X, S);
6 LHS[2:3] <- findSresult(LHS[2:3], X, S);
7 LHS[1:2] <- findSresult(LHS[1:2], X, S);
8 RHS[2:3] <- findSresult(RHS[2:3], X, S);
9 RHS[1:2] <- findSresult(RHS[1:2], X, S);

10 RHS[2:3] <- findSresult(RHS[2:3], X, S);
11 if !all(LHS == RHS) then
12 return(FALSE);
13 end
14 end
15 end
16 return(TRUE);

Figure 7.4: checkYB

The checkYB function calculates both sides of the Yang Baxter equation and compares them. If

they agree, it returns TRUE, otherwise FALSE.
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input : x, a matrix with two columns, X, a matrix, k, an integer

1 for i = 1, . . . , nrow(X ) do
2 if all(X[i, ] == x) then
3 match.id = i;
4 break;
5 end
6 end
7 return(S[match.id, ]);

Figure 7.5: findSresult

The sideways map for two given values is calculate here by the findSresult function.

7.4 Hermite and Smith Normal Form

For homology calculations, we need the Smith Normal Form, which is introduced in this sec-

tion. The algorithm for its calculation is presented as well.

The Hermite Normal Form is named after Charles Hermite (1822 - 1901, [Her51]) and the

Smith Normal Form is named after Henry John Stephen Smith (1826 - 1883, [Smi61]). They

are both normal forms of a matrix.

7.4.1 Definition

This chapter is based on [Coh93] with some additional material from [JW09], where the au-

thors use the lower triangular Hermite Normal Form.

Quadratic Matrices

Definition 7.1 (Hermite Normal Form; Cohen). Let M =
�

mi, j

�

be a n× n matrix with integer

coefficients. M is in Hermite Normal Form (HNF) if there exists an r ≤ n and a strictly increasing

map f : [r + q, n]→ [1, m] satisfying the following properties:

(1) For r + q ≤ j ≤ n, m f ( j), j ≥ 1, mi, j = 0 if i > f ( j) and 0≤ m f (k), j < m f (k),k if k < j.

(2) The first r columns of M are equal to 0.

Equivalently, a matrix is HNF if all mi, j = 0 for i > j, the pseudo diagonal mi,i are positive and

mi,i > mi, j for j > i.
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Definition 7.2 (Smith Normal Form; Cohen). An n×n matrix M is in Smith Normal Form (SNF)

if M is a diagonal matrix with some non-negative integer coefficients such that mi+1,i+1|mi,i . In

other words, it looks as follows:































d1 0 0 . . . 0 0

0 d2 0 . . . 0 0

0 0 d3 . . . 0 0
...

...
...

. . .
...

...

0 0 0 0 dn−1 0

0 0 0 0 0 dn































where di+q|di and if dk = 0, dl = 0 for l > k.

Rectangular Matrices

In [JW09], a more general definition for rectangular matrices with integer entries is given by:

Definition 7.3 (Hermite Normal Form; Jäger). A matrix A = (Ai, j)1≤i≤m,1≤ j≤n ∈ Zm×n with

rank r is in Hermite Normal Form if the following conditions hold:

(i) ∃i1, . . . , ir with 1 ≤ i1 < · · · < ir ≤ m with Ai j , j ∈ Z− 0 for 1 ≤ j ≤ r. We call those Ai j , j

pseudo diagonal elements.

(ii) Ai, j = 0 for 1≤ i ≤ i j − 1,1≤ j ≤ r.

(iii) The columns r + 1, . . . , n are all zero.

(iv) Ai j ,l =ψ(Ai j ,l , Ai j , j) for 1≤ l < j ≤ r, where for a, b ∈ Z, b 6= 0, ψ(a, b) := a−
� a

b

�

b.

The matrix A is in left Hermite Normal Form if its transpose AT is in Hermite Normal Form.
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Definition 7.4 (Smith Normal Form; Jäger). A matrix A= (Ai, j)1≤i≤m,1≤ j≤n ∈ Zm×n with rank

r is in Smith Normal Form if the following conditions hold:

(i) A is a diagonal matrix.

(ii) Ai,i ∈ Z− 0 for 1≤ i ≤ r.

(iii) Ai,i|Ai+1,i+1 for 1≤ i ≤ r − 1.

(iv) Ai,i = 0 for r + 1≤ i ≤min(m, n).

Theorem 7.5 (Transformation Matrix for HNF). Let A ∈ Zm×n. Then there exists a matrix

V ∈ GLn(Z) such that H = A ∗ V is in Hermite Normal Form, where H is uniquely determined.

The matrix V is called the corresponding transformation matrix for the Hermite Normal Form.

This theorem also holds for the left Hermite Normal Form with U ∈ GLm(Z). The proof

for Theorem 7.5 can be found in [Her51].

7.4.2 Calculation - Algorithm

This section is again based on [JW09]. We use the Kannan-Bachem algorithm, see [KB79], for

the calculation of the Smith Normal Form as described in the aforementioned paper.

Kannan-Bachem Algorithm

The Kannan-Bachem algorithm is given by:

input : A∈ Zm,n, U ∈ GLm(Z), V ∈ GLn(Z)
output: (A,U,V)

1 while A is not in diagonal form do
2 (A,V)=HermiteNormalForm(A,V);
3 (AT ,U)=HermiteNormalForm(AT ,U);
4 end
5 (A,U,V)=DiagonalMatrixToSmithNormalForm(A,U,V);

Figure 7.6: SmithNormalForm Algorithm

In short, the Kannan-Bachem Algorithm alternately computes the Hermite Normal Form and

the left Hermite Normal Form, the Hermite Normal Form of the matrix transpose, until the

matrix is in diagonal form. In the last step, the diagonal matrix is turned into Smith Normal

Form via the DiagonalMatrixToSmithNormalForm algorithm.
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In order to apply the Kannan-Bachem algorithm we first need to define the HermiteNormal-

Form algorithm.

HermiteNormalForm Algorithm

input : A∈ Zm,n, V ∈ GLn(Z)
output: (A,V)

1 for t = 1, . . . , n do // Compute HNF of first t columns
2 r = 0;
3 for s = 1, . . . , m do
4 if As,r+1 6= 0∨ As,t 6= 0 then
5 r = r + 1;
6 ir ;
7 if t = r then
8 if As,t 6∈ Z then
9 β = sign(As,t);

10 at = β ∗ at ;
11 vt = β ∗ vt ;
12 else
13 RowOneGC D(A, V, s, r, t);
14 end
15 end
16 for l = 1, . . . , r − 1 do // Here, ψ is as in Definition 7.3
17 β =ψ(As,l , As,r);
18 al = al − β ∗ ar ;
19 vl = vl − β ∗ vr ;
20 end
21 if t = r then
22 t = t + 1;
23 next;
24 end
25 end
26 end
27 end

Figure 7.7: HermiteNormalForm Algorithm

In Steps 4 - 13, the current pseudo diagonal element As,r is computed. Rows 16 - 19 ensure

that Condition (iv) from Definition 7.3 holds. When, after this, t = r, the new pseudo diagonal

element is found and we go on to the next column.

For the sake of completeness and readability, we define the function RowToGCD separately.
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RowOneGCD Algorithm

input : A∈ Zm,n, V = [v1, . . . , vn] ∈ GLn(Z), i, j, l with 1≤ i ≤ m, 1≤ j < l ≤ n
output: (A,V)

1 if Ai, j 6= 0∨ Ai, j 6= 0 then
2 Compute d :=gcd(Ai, j , Ai,l) and u, v with d = u ∗ Ai, j + v ∗ Ai,l ;

3
�

a j , al

�

=
�

a j , al

�

∗

�

u −Ai,l
d

v
Ai, j

d

�

;

4
�

v j , vl

�

=
�

v j , vl

�

∗

�

u −Ai,l
d

v
Ai, j

d

�

;

5 end

Figure 7.8: RowOneGCD Algorithm

In step 2, the algorithm computes gcd(x , y) and u, v with gcd = ux + v y via the well-known

Euclidean Algorithm. In steps 3 and 4, the jth and lth column in both the original and the

transformation matrix are changed and switched in such a way that the conditions for Ai, j , Ai,l

in the HNF algorithm are fulfilled.

Finally the DiagonalMatrixToSmithNormalForm function needs to be defined in order to

be able to execute the Kannan-Bachem algorithm.
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DiagonalMatrixToSmithNormalForm Algorithm

input : A∈ Zm,n in diagonal form,
U = [u1, . . . , um]

T ∈ GLm(Z), V = [v1, . . . , vn] ∈ GLn(Z)
output: (A,U,V)

1 for k = 1, . . . ,min(m, n)− 1 do
2 for l =min(m, n)− 1, . . . , k do
3 if Al,l - Al+1,l+1 then
4 g = Al,l ∗ Al+1,l+1;
5 Al,l =gcd(Al,l , Al+1,l+1);
6 Al+1,l+1 = g/Al,l ;
7 Compute d :=gcd(Al,l , Al+1,l+1) and u, v with d = u ∗ Al,l + v ∗ Al+1,l+1;

8 [ul , ul+1]
T =

�

u v
−Al+1,l+1

d
Al,l
d

�

∗ [ul , ul+1]
T ;

9 [vl , vl+1] = [vl , vl+1] ∗

�

1 −v ∗ Al+1,l+1
d

1 u ∗ Al,l
d

�

;

10 end
11 end
12 end
13 for l = 1 . . . , min(m, n) do
14 if Al,l 6= 0 then
15 β = sign(Al,l);
16 Al,l = β ∗ Al,l ;
17 vt = β ∗ vt ;
18 end
19 end

Figure 7.9: DiagonalMatrixToSmithNormalForm Algorithm

In steps 4-6, the two neighbouring diagonal elements Al,l , Al+1,l+1 are replaced by their gcd

and lcm, respectively. Steps 7-9 follow from the following equation from [Her51],





u v

−Al+1,l+1
d

Al,l
d









Al,l 0

0 Al+1,l+1









1 −v ∗ Al+1,l+1
d

1 u ∗ Al,l
d



=





d 0

0 lcm(Al,l , Al+1,l+1)



 .

These steps are then repeated until conditions (iii) and (iv) from Definition 7.4 hold true. After

steps 13-17, (ii) holds as well and (i) is one of the requirements for this algorithm. According

to [JW09], this algorithm does not need more than min(m, n)2 gcd computations.
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Conclusion

This thesis had two main foci, restrictions on biquandle functions in the linear and quadratic

case and biquandle homology.

We first gave an introduction to Knot Theory in Chapter 2. This chapter started with an

introduction to Classical Knot Theory in Section 2.1 which included the three different Re-

idemeister moves, see Section 2.1.1, Definition 2.3 and particularly Figures 2.4 to 2.6. Fol-

lowing this, we presented possibilities of describing knots with different codes in Section 2.2.

This started with the simple Gauss Code, see Definition 2.6 which was gradually developed,

including more and more information until culminating in the enhanced DT code, see e.g.

Figure 2.10.

In Section 2.2.2, we considered knots arising from given DT codes and used this to in-

troduce virtual crossings in Sections 2.3 and 2.3.1. After this, we enhanced the classical Re-

idemeister moves with virtual crossings in Section 2.3.2 and particularly Definition 2.7. These

were in essence the classical Reidemeister moves as in Definition 2.3, but with virtual crossings

instead. We also introduced a new Reidemeister 4 move, which combined both classical and

virtual crossings in one move, see Figure 2.17.

The combinations introduced a new concept, forbidden Reidemeister moves in Defini-

tion 2.7 as moving a classical crossing over or under a virtual crossing is not permitted. Allow-

ing the first forbidden move gives rise to a different knot theory, welded knots, allowing both

forbidden moves causes everything to collapse to the unknot.

From this, in Section 2.4 we introduced other knot theories, incorporating doodle, clas-

sical, virtual and singular crossings in various combinations. We then generalised this to a

generalised knot theory in Section 2.5, Definition 2.8. Reidemeister moves were similarly

93



94

generalised in Section 2.5.1, Definition 2.9. In Section 2.5.2 this result was then applied to

the different, previously introduced knot theories, see Section 2.4.

In Section 2.5.3, we considered the impact the different Reidemeister moves have on Ori-

entation. A particularly rich example was the Reidemeister 3 move in Section 2.5.3 and for

which we found in Theorem 2.10 that only braid-like moves need to be considered, a result

which shortened the necessary notation, see Figure 2.33. For Reidemeister 3 moves with only

one crossing type, this result was further improved:

Theorem 2.14 (Equivalent R3 Moves; one Crossing). If only one type of crossing is involved in

an R3 move, then the only possible R3 moves are R3(+,+;+) and R3(+,+;−).

We finished Chapter 2 with examples of Reidemeister 3 moves in different knot theories,

which can be found in Section 2.5.4.

After this we defined biquandles in Chapter 3. First, in Section 3.1 we defined the sideways

map and switch:

Definition 3.1. We first define the sideways map, F : X → X from one algebraic structure

X to itself, preserving structure on X if there exists one. F is defined by two other functions

fx , f x : X → X , written a 7→ ax , ax for all a, x ∈ X via F(a, b) = ( fa(b), f b(a)). We require both

F and fx , f x to be bijective. In the expressions ax and ax the element a ∈ X is well defined since

for a1, a2, x ∈ X ,

ax
1 = ax

2 ⇒ f x(a1) = f x(a2) ⇒ a1 = a2

(a1)x = (a2)x ⇒ fx(a1) = fx(a2) ⇒ a1 = a2.

Furthermore, we define the switch corresponding to F by S : X → X : S(ba, a) → (ab, b) or

( fa(b), a) 7→ ( f b(a), b).

We also showed that both of the switch and sideways map as well as their functions,

fa, f a, sx , s y , are all bijective and gave a graphical definition in Figure 3.1 where we defined

S(x , y) := (sx(y), sy(x)).

Following this, we explored the relationship between the Reidemeister moves and the

switch and sideways maps in Section 3.2, from which the Yang-Baxter Equation (3.3) naturally

arose. We then considered examples of the Yang-Baxter Equation in Section 3.3 for knot the-

ories with involutive crossings (Section 3.3.1) and only one type of crossing (Section 3.3.2).

8. Conclusion
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We further examined those with two types of crossings (Section 3.3.3) of which both (Sec-

tion 3.3.3), exactly one (Section 3.3.3) or no crossing was involutive (Section 3.3.3).

We were then in position to give the definition of biquandles and quandles in Section 3.4,

where quandles are biquandles with one of the function being the identity.

Definition 3.6 (Definition Birack, Biquandle). Let X be a set with two binary functions

fa, f a : X × X → X .

(X , fa, f a) is a birack if the two functions define a switch map (as defined in Definition 3.1) on X

and they fulfil the requirements arising from the R3 move, see Section 3.2.3 and particularly Equa-

tion (3.3). Thus, the following requirements must hold:

• abcb = acbc
, cbab = caba

, ba
ca = bc

ac (From Equation (3.6), Section 3.3.2)

• fa, f b must be invertible (From Section 3.1)

X is a biquandle if additionally the following requirement hold:

• aa = aa (From Section 3.2.1)

The Chapter was finished with the calculation of generators and relations of biquandles of

certain welded knots, see Table 3.1 in Section 3.5.

After two introductory chapters, the second part on restrictions on biquandle functions star-

ted with the linear case in Chapter 4. We first introduced general quaternions in Section 4.1,

and here particularly Definition 4.2, before calculating restrictions or relations on biquandles

with linear functions in Section 4.2. In particular, let A, B, C , D ∈ R, a non-commutative, asso-

ciative ring of some sort. This gives us the general form

f b(a) = ab = Ca+ Db

fa(b) = ba = Aa+ Bb.

Equivalently, this can be written in matrix notation:





fa(b)

f b(a)



=





A B

C D









a

b




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For these, we first calculated relations based on the biquandle axioms in Section 4.2.1. We also

calculated relations arising from invertibility in Section 4.2.2, where we both inverted directly

to a linear function (Equations (4.20) and (4.21)) and used matrix inversion (Equations (4.22)

to (4.25)). Then the chapter finished with an application of the results to general quaternions

in Section 4.2.3 and particularly Figure 4.2.

The quadratic case was considered next in Chapter 5. We first considered the case of com-

mutative biquandles, where the biquandle functions have commutative coefficients in Sec-

tion 5.1. Considering the biquandle axioms, we calculated restrictions as follows:

Theorem 5.2 (Commutative quadratic Biquandle with commutative Coefficients; Axioms).

Let BQ be a commutative biquandle with a structure as described before. If the up and down

functions are of quadratic form and have commutative coefficients, they are always of the form

fa(b) = A0 ∗ a+ B0 ∗ b+λ ∗ a · b (5.9)

f b(a) = C0 ∗ a+ D0 ∗ b+λ ∗ a · b (5.10)

and the following relations

A0D0 = 0

λ2A0 = 0

λA2
0 = 0

λ3 = 0

λ2D0 = 0

λD2
0 = 0

λA0B0 = λA0C0

λ2B0 = λ2C0

λB0D0 = λC0D0

λB2
0 = λB0D0 +λB0

λC2
0 = λA0B0 +λC0

λA0B0 +λD0 = λC0D0 +λA0

λB0C0 = λC0D0 +λC0

= λA0B0 +λB0

hold.

However, considering invertibility in Section 5.1.2, we arrived at one of the main results

of this thesis:

Theorem 5.3 (Commutative quadratic Biquandle with commutative Coefficients; Invertibil-

ity). For a commutative biquandle, where the biquandle functions have commutative coefficients
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and the biquandle functions are of general quadratic form as in Theorem 5.2, we have the follow-

ing inverses and conditions on the coefficients:

f −1
a (b) = B−1

0 x − B−1
0 A0a−

�

B−1
0

�2
λxa

( f b)−1(a) = C−1
0 y − C−1

0 D0 b− (C02−1)2λy b

where x = fa(b), y = f b(a) and, additionally, λ2 = λA0 = λD0 = 0 as well as B0, C0 6= 0.

In the second part of this chapter, Section 5.2, we then considered non-commutative bi-

quandles with commutative coefficients and quadratic inverses. We examined invertibility for

which we got a nice result as well:

Theorem 5.6 (Non-commutative quadratic Biquandle with commutative Coefficients; Invert-

ibility). For a non-commutative biquandle BQ with quadratic up and down functions with com-

mutative coefficients of the form,

fa(b) = A0a+ A1a2 + Aab+ B0 b+ B1 b2 + Bba =: x

f b(a) = C0a+ C1a2 + Cab+ D0 b+ D1 b2 + Dba =: y

we first consider the case where it holds that A1 = B1 = C1 = D1 = A2 = B2 = C2 = D2 = 0.
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Furthermore, the quadratic inverses of fa, f b are of one of the following forms

f −1
a (x) = Aax + A0B0a− (AA0 + BA0) a

2 − B0 x + Bxa

= (Aa− B0) (x − A0a)− BA0a2

�

f b
�−1
(y) = C b y + D0C0 b− (C D0 + DD0) b2 − C0 y + D y b

= (C b− C0) (y − D0 b)− DD0 b2

where a, b ∈ BQ, BQ a non-commutative biquandle and A, B, C , D, A0, B0, C0, D0 ∈ R, a commut-

ative, associative ring. Special cases of inverses for either of A, B, C , D = 0 ater given by

f −1
a (x) = A0B0a− B0 x − BA0a2 + Bxa = (Ba− B0) (x − A0a)

f −1
a (x) = Aax + A0B0a− AA0a2 − B0 x = (Aa− B0) (x − A0a)

�

f b
�−1
(y) = D0C0 b− C0 y − DD0 b2 + D y b = (Db− C0) (y − D0 b)

�

f b
�−1
(y) = C b y + D0C0 b− C D0 b2 − C0 y = (C b− C0) (y − D0 b) .

Another form is as follows, where A1, B1, C1, D1 are not necessarily zero. Let B1, C1 6= 0 be a zero

divisor. Then we have the following two special cases for inverses:

f −1
a (x) = A0B−1

0 x + B−1
0 A1 x2 + B−1

0 a

f −1
a (x) = A0B−1

0 x + A0(B
−1
0 )

2(A+ B)x2 + B−1
0 a− A(B−1

0 )
2 xa− B(B−1

0 )
2ax

�

f b
�−1
(y) = D0C−1

0 y + C−1
0 D1 y2 + C−1

0 b
�

f b
�−1
(y) = D0C−1

0 y + D0(C
−1
0 )

2(D+ C)y2 + C−1
0 b− D(C−1

0 )
2 y b− C(C−1

0 )
2 b y.

In the first case, (B−1
0 )

2 = (C−1
0 )

2 = 0. In the second case, all of A1, D1 are zero divisors as well

and AB = A2 = B2 = C D = C2 = D2 = 0 6= (B−1
0 )

2, (C−1
0 )

2.

Furthermore, we then applied part a of this result to the biquandle axioms which led to:

Theorem 5.8 (Non-commutative quadratic Biquandle with commutative Coefficients; Ax-

ioms). Let BQ be a non-commutative biquandle. If the up and down functions are of quadratic

form with quadratic inverse and commutative coefficients, they always have one of the following

forms:
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Case 1:

fa(b) = A(ab+ ba) + A0a+ B0 b

f b(a) = A(ab+ ba) + B0a+ A0 b

or

fa(b) = A(ab+ ba+ a+ b) + b

f b(a) = A(ab+ ba+ a+ b) + a

or

fa(b) = A(ab+ ba+ a+ b) + b

f b(a) = A(ab+ Bba) + a

or

fa(b) = A(ab+ ba) + b

f b(a) = A(ab+ ba+ a+ b) + a

or

fa(b) = A(ab+ ba) + b

f b(a) = A(ab+ ba) + a

or

fa(b) = Aab+ Bba+ A0(a+ b) + b with A2
0 = 0

f b(a) = Aab+ Bba+ A0(a+ b) + a

Case 2c:

fa(b) = Aab+ A0a+ b with A0 ∈ {A, 0}

f b(a) = Aab+ a+ A0 b

Case 3c:

fa(b) = Bba+ A0a+ b with A0 ∈ {B, 0}

f b(a) = Bba+ a+ A0 b

Case 4:

fa(b) = A0a+ b with A0 ∈ {C , 0}

f b(a) = C(ab− ba) + a+ A0 b

or

fa(b) = Bba+ A0a+ b with A0 ∈ {B, 0}

f b(a) = Bab+ a+ A0 b

or

fa(b) = Aab+ A0a+ b with A0 ∈ {A, 0}

f b(a) = Aab+ a+ A0 b

or

fa(b) = A(ab− ba) + A0a+ b with A0 ∈ {A, 0}

f b(a) = a+ A0 b

Case 5a:

fa(b) = (C + D)ba+ b with C ∈ {0, D}

f b(a) = Cab+ Dba+ a

or

fa(b) = (C + D)ab+ b with D ∈ {0, C}

f b(a) = Cab+ Dba+ a

or

fa(b) = Aab+ Bba+ b with A∈ {0, B}

f b(a) = (A+ B)ba+ a

or

fa(b) = Aab+ Bba+ b with B ∈ {0, A}

f b(a) = (A+ B)ab+ a

or

fa(b) = A(ab+ ba) + b

f b(a) = C(ab+ ba) + a
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where in all cases A2 = B2 = C2 = D2 = 0 and all coefficients are elements of a commutative,

associative ring. Additionally, the coefficients of b (in fa(b)) and a (in f b(a)) are invertible.

In the third and last part of the main body of this thesis, the focus was on computational

work around biquandle homology. First, in Chapter 6, we stated the definition of homology

in general in Section 6.1. In Section 6.2 the definition of quandle homology was presented,

see Definition 6.5. We then proceeded in Section 6.3 by giving a new definition of biquandle

homology:

Definition 6.6 (Birack, Degenerate, Biquandle Chain Complex; L.E.S of Biquandle Homolo-

gies).

(i) For a given birack X , let CR
n (X ) be the free abelian group generated by n-tuples

(x1, x2, . . . , xn), x i ∈ X , i.e. CR
n (X ) = ZX n = (ZX )⊗n. Define a boundary homomorphism

∂ : CR
n (X )→ CR

n−1(X ) by

∂ (x1, x2, . . . , xn) =
n
∑

i=2

(−1)i
�

(x1, . . . ,Òx i , . . . , xn)−
�

x x i
1 , x x i

2 , . . . , x x i
i−1, x i+1 x i

, . . . , xn x i

��

.

Then (CR
∗ (X ),∂ ) is called a birack chain complex of X .

(ii) Let X be a biquandle. Then there is a subchain complex, C D
n (X ) ⊂ CR

n (X ), generated by n-

tuples (x1, . . . , xn) where x i = x i+1 for some i. This subchain complex (C D
n (X ),∂ ) is called

a degenerate chain complex of a biquandle X .

(iii) The quotient chain complex CQ
n (X ) = CR

n (X )/C
D
n (X ) is also called the biquandle chain

complex. We now have the short exact sequence of chain complexes:

0 −−−−→ C D
n (X ) −−−−→ CR

n X −−−−→ CQ
n (X ) −−−−→ 0 (6.2)

We think this sequence splits usefully as in the quandle case; see Conjecture 6.7. It is clear

that this sentence splits as every x∗ ∈ CR
n (X ) is either in CQ

n (X ) or C D
n (X ), but never in both

(or none).

(iv) The homology of birack, degenerate and biquandle chain complexes are called birack, de-

generate and biquandle homology, respectively. Thus, have the long exact sequence of the
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homology of biquandles:

. . . −−−−→ HD
n (X ) −−−−→ HR

n(X ) −−−−→ HQ
n (X ) −−−−→ HD

n−1(X ) −−−−→ . . .

(v) For an abelian group G, define the chain complex CQ
∗ (X ; G) = CQ

∗ ⊗ G, with ∂ = ∂ ⊗ id.

The groups of cycles and boundaries are denoted by ker(∂ ) = ZQ
n (X ; G) ⊂ CQ

n (X ; G) and

Im(∂ ) = BQ
n (X ; G) ⊂ CQ

n (X ; G), respectively. Then the nth biquandle homology group of

a biquandle X with coefficient group G is defined as

HQ
n (X ; G) = Hn(C

Q
∗ (X ; G)) = ZQ

n (X ; G)/BQ
n (X ; G).

From this, a conjecture arose, finishing this chapter:

Conjecture 6.7 (The Biquandle Chain Complexes split). The short exact sequence of (biquandle)

chain complexes

0 −−−−→ C D
n (X ) −−−−→ CR

n X −−−−→ CQ
n (X ) −−−−→ 0

splits usefully.

The last chapter of this thesis, Chapter 7, concerned itself entirely with the computation

of biquandle homology. It started with an introduction to the algorithm used in Section 7.1,

discussing first the theory behind the algorithm and then the algorithm itself. After this, an

example calculation of the second quandle homology group of the dihedral quandle of order

3 was presented in Section 7.2 (HQ
2 (R3) = ;).

After this example calculation, remarks on the implementation were made in Section 7.3.

An extra programme, testing whether a set of given order with two given functions gives rise to

a biquandle was presented in Section 7.3.1 before the chapter finished with an introduction to

Hermite and Smith Normal Forms of Matrices in Section 7.4, covering both definition and the-

ory for both quadratic and rectangular matrices in Section 7.4.1. Finally, the Kannan-Bachem

algorithm for the calculation of the Smith Normal Form was presented in Section 7.4.2.

The resulting paper, [FW16], is shown a submitted for publication in Appendix C. This

software is another main result of this thesis.
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8.1 Outlook

We now want to give an idea of further promising research related to this thesis. For fur-

ther research, several possible avenues exist, for example the calculation of the biquandles

of the welded knots in Section 3.5. This would probably require an extension of the calcu-

lation of quandles via the fundamental group of knots. If a way could be found to calculate

the biquandle based on the knot generators, this would allow a much faster computational

calculation of biquandles of any knot.

Another promising area would be higher order biquandle functions, which could be even

or odd, commutative or not. While we made a start on quadratic biquandles with commutat-

ive coefficients in the biquandle functions, it would be interesting to see the results for non-

commutative coefficients. It would also be promising to research biquandle functions of dif-

fering order. We think that two promising approaches are via Sylvester matrices and their

extensions to multivariate polynomials via tensor and also via some of the techniques that

arose from [Kul53]. In particular, automorphisms of polynomial rings in several variables or

Cremona groups could be useful. We hope in particular that these methods would prove fruit-

ful in treating any case with at least one of the coefficients and biquandle non-commutative.

During our research, we did not find much, if any, references to Flat Singular Knot Theory

and this should be an interesting field to study. Similarly, Flat Virtual Knot Theory and the

effects of a commuting move on it is presently unknown. Research in both of those areas

could improve our understanding of knot theories with two types of crossings, for example.

Finally, more computational work is required. The algorithm used is memory hungry and

preliminary work in adapting it to C++ shows approximately 60-70% reduction in memory

requirements for the boundary matrix calculations. Additionally, the software as a whole could

be optimised and parallelised, such that one could calculate higher order homology groups of

larger biquandles.

8.1. OUTLOOK 8. Conclusion



Appendix A

Code used in Chapter 3 to calculate

relations arising from biquandle

conditions

This code has been written in MAPLE (see [Map15]) and calculates the coefficients for abcb
. It

is adaptable adapted to the other relations as defined in Section 4.2, Axioms (5.5) to (5.8). It

is also adaptable to the non-commutative case in which case matrices should be used.
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>  >  

(6)(6)

(4)(4)

(1)(1)

>  >  

>  >  

>  >  

(12)(12)

(8)(8)

(3)(3)

>  >  

(2)(2)

>  >  

>  >  

>  >  

(9)(9)

(5)(5)

>  >  

>  >  

>  >  

>  >  

>  >  

(7)(7)

(11)(11)

(13)(13)

>  >  

>  >  

(10)(10)

(14)(14)

>  >  

>  >  



(13)(13)

(8)(8)

>  >  

>  >  

>  >  

>  >  

>  >  

(3)(3)
>  >  

(5)(5)

(11)(11)

(4)(4)

(12)(12)

(6)(6)

(7)(7)

>  >  

(9)(9)

>  >  

>  >  

>  >  

>  >  

>  >  
>  >  

(1)(1)

>  >  

(14)(14)

(2)(2)

(10)(10)

>  >  

>  >  



>  >  

(15)(15)

(21)(21)

>  >  

>  >  

>  >  

>  >  

>  >  

(22)(22)

>  >  

>  >  

(17)(17)

(20)(20)

(16)(16)

>  >  
(19)(19)

(18)(18)



(28)(28)

>  >  

(15)(15)

(24)(24)

>  >  

(25)(25)

(26)(26)

>  >  

>  >  

(22)(22)

>  >  
(23)(23)

>  >  

(27)(27)

>  >  

>  >  

(29)(29)

>  >  



(31)(31)

(15)(15)

(37)(37)

>  >  

>  >  
(32)(32)

>  >  

(30)(30)

(33)(33)

>  >  

(35)(35)

(22)(22)

>  >  

>  >  

>  >  

>  >  

>  >  

(36)(36)

(29)(29)

>  >  

(34)(34)

>  >  



Appendix B

Welded Braids drawn as Knots

We have drawn the welded braids from Section 3.5 in the following pages. The diagram

generators are presented in the following Table B.1.

knot braid word Diagram

w3.1 σ1τ2σ3σ
−1
2 σ

−1
2 σ

−1
1 τ2σ

−1
3 σ2 Figure B.1

w3.2 τ1σ
−1
2 τ1σ

−1
1 σ

−1
1 τ2 Figure B.2

w4.1 σ1τ1σ
−1
1 σ2σ1τ1σ

−1
1 σ

−1
2 Figure B.3

w4.2 σ−1
1 σ

−1
2 σ3τ2σ1σ

−1
4 σ3τ2σ3σ4σ

−1
3 σ

−1
2 Figure B.4

w4.3 σ−1
1 σ2σ3τ2σ1σ

−1
4 σ3τ2σ3σ4σ

−1
3 σ2 Figure B.5

w4.4 σ−1
1 σ2σ3τ2σ1σ

−1
4 σ3σ

−1
2 σ3σ4σ

−1
3 τ2 Figure B.6

w4.5 τ1σ2σ
−1
1 τ1σ1σ2 Figure B.7

w4.6 σ−1
1 σ

−1
2 τ3σ

−1
2 σ1σ

−1
4 τ3σ

−1
2 σ

−1
3 σ4σ

−1
3 σ2 Figure B.8

w6.1 σ−1
1 σ

−1
2 σ

−1
2 σ

−1
2 σ1σ

−1
3 σ

−1
2 σ

−1
2 σ

−1
2 σ3τ2 Figure B.9

Table B.1: Braid words for welded braids

The biquandle relations and generators of the knots in Table B.1 can be found in Table 3.2

in Section 3.5.

Figure B.1: Closed Braid w3.1
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Figure B.2: Closed Braid w3.2

Figure B.3: Closed Braid w4.1

Figure B.4: Closed Braid w4.2

Figure B.5: Closed Braid w4.3

B. Welded Braids drawn as Knots
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Figure B.6: Closed Braid w4.4

Figure B.7: Closed Braid w4.5

Figure B.8: Closed Braid w4.6

Figure B.9: Closed Braid w6.1

B. Welded Braids drawn as Knots



Appendix C

R Software Paper

Here we present the R software papers, [FW16]. It is reproduced ’as is’.
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UP JORS software paper template version 0.1

Software paper for submission to the Journal of Open Research 
Software

Please submit the completed paper to: editor.jors@ubiquitypress.com

(1) Overview

Title Quandle and Biquandle Homology Calculation in R

Paper Authors
Fenn, Roger
Wenzel, Ansgar

Paper Author Roles and Affiliations
University of Sussex
University of Sussex

Abstract
In knot theory several knot invariants have been found over the last decades. 
This paper concerns itself with invariants of several of those invariants, 
namely the Homology of racks, quandles, biracks and biquandles. The 
software described in this paper calculates the rack, quandle and degenerate 
homology groups of racks and biracks. It works for any rack/quandle with finite
elements where there are homology coefficients in Zk . The up and down 
actions can be given either as a function of the elements of Zk  or provided 
as a matrix. When calculating a rack, the down action should coincide with the
identity map. We have provided actions for both the general dihedral quandle 
and the group quandle over S3 . We also provide a second function to test if
a set with a given action (or with both actions) gives rise to a quandle or 
biquandle. The program is provided as an R package and can be found at 
https://github.com/ansgarwenzel/quhomology.

Keywords
Homology, Quandle, Biquandle, Rack, Birack, R, Knot Theory
AMS subject classification: 57M27, 57M25 

Introduction 
This introduction is divided into two parts: First, we are going to give 
some mathematical background before introducing the software itself.

Mathematical Background

Racks and Quandles were first described by John Conway and Gavin 
Wraith in 1959 in unpublished correspondence. In [2], David Joyce 
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showed that racks are indeed a knot invariant. Subsequently, Fenn and 
Rourke introduced racks as proper knot invariants in [3]. It is instructive 
to consider racks as groups without their multiplicative elements. 
Formally, a rack is defined as a set of elements endowed with a binary 
operation which satisfies the following axioms (where the third axiom 
holds only for a quandle, not for a rack) for all a ,b , c  in the 
rack/quandle R:

1. ∀ a ,b∈R∃!c∈Rs .t . ac
=b

2.

b
a

( c)(b
c)

(c )=a❑

3. aa
=a  (only quandle)

Biracks and Biquandles are defined similarly, now with two operations, 
satisfying the following axioms:

1. abc b=acbc

2. abc b
=acbc

3. ab
cb=ac

bc

4. aa
=aa  (only biquandle)

In addition, both operations satisfy the rack axiom 1.

Here, the up and down actions allow us to introduce a switch map via
f a ( x )=xa , f a ( x )=xa  as S (a , f a (b ) )=S (b , f b (a ) ) . The utility of this is 

clear when one observes that the axioms can be reformulated using the
switch map:

 S , f a  and f a  are all bijective.
 Yang Baxter Equation: S1S2S1=S2S1S2 , where

S1 ( a ,b , c )=(S (a ,b ) , c )  and S2 (a ,b , c )=(a ,S (b , c ) ) .
This reformulation is more amenable to computational work.

The homology of the biquandle is defined as follows:
Let X be a birack. Then Cn

R ( X )  be the free abelian group generated by
n-tuples (x1 x2…xn ) , xi∈ X , that is, Cn

R ( X )=Z Xn .
We define a boundary homomorphism by

∂ (x1 x2…xn )=∑
i=2

n

(−1 )
i [ (x1… x̂ i …xn )−x1

xi …xi− 1
x i (x i+1 )x i

(xn )xi ]
and (C❑

R ( X ), ∂ )  is called a chain complex of X.

Furthermore, we have a subchain complex Cn
D ( X )⊂Cn

R ( X ) , generated 
by degenerate n-tuples (x1 x2…xn ) , xi∈ X  with x i=x i+1  for some i. 
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Together with the boundary homomorphism, (C❑
D ( X ) , ∂ )  is is called the 

degenerate chain complex of X.
Using both of those chain complexes, we can define the biquandle 
chain complex via the quotient chain complex, Cn

Q ( X )=Cn
R ( X )/Cn

D ( X ) . 
This gives the following short exact sequence of chain complexes,

0→Cn
D ( X )→C n

R ( X ) →Cn
Q ( X ) →0 .

We can then define the birack, biquandle and degenerate homology 
groups in the usual way. In addition, we have the following long exact 
sequence of homology groups

…→H n
D ( X ) →H n

R ( X ) →Hn
Q ( X )→ H n−1

D ( X ) …

The algorithm for the homology calculation is described in [1] for this 
specific software.

Software

The software, which is provided as an R package, can be accessed on 
github. It provides two primary functions. One of these calculates the 
homology of racks and biracks, whilst the other verifies if a rack or 
birack is induced by a given set with one or two actions.
Implementation and architecture
This software is implemented in R. It has been tested on MacOS X, 
CentOS/Ubuntu and Windows without any problems.

The algorithm for the homology calculation is described in the paper [1].

The program is divided into the following two main parts: The calculation
of the boundary matrix and the subsequent calculation of the Homology.
For a graphical description see the following figure, which was created 
with the following code: 
library(proftools)
Rprof(tmp <- tempfile(), line.profiling = T); 
homology(4,5,F);Rprof(append=F); pd <- readProfileData(tmp)
plotProfileCallGraph(pd,style=google.style,score="total",nodeSizeScore 
= "none",layout="dot",rankDir = "LR")
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The boundary matrices are computed using the functions 
boundary_matrix (for quandle and rack boundary matrices) and 
boundary_matrix_degenerate (for degenerate boundary matrices), 
respectively. The methodology of both functions is similar, differing only 
in the manner in which degenerate or non-degenerate entries are 
removed where required. In particular, after creating a right-sized matrix,
they call boundary_names or boundary-names_degenerate to create 
the row and column names of the boundary matrix. After this, they loop 
through the column names to calculate their boundaries and construct 
the matrix (for details see [1]). These boundary matrices represent the 
boundary maps of the simplicial complex of the rack/birack.

After both boundary matrices have been calculated, they are returned to
the homology and degenerate_homology functions, respectively. As is 
the case for the boundary matrices functions, these two functions only 
differ in the boundary functions called and in their respective output 
texts.
As an aside, those two functions should be the only ones that would 
have to be called by the user in order to calculate a homology. 
Following on with the algorithm described in [1], those two functions 
calculate the image and kernel of the boundary map representations 
(the boundary matrices) before finding a representation of the homology
group. For this, they call various functions, namely findX, which "finds X"
(this is defined in [1]), row_space, which calculates a basis of the row 
space of a matrix, matrix_rank, which calculates the rank of a matrix 
and GaussianElimination, a function written by Prof John Fox (see [4] 
for a source) which does a Gaussian Elimination on a matrix and returns
its reduced row echelon form.
Using the function smith, the smith natural form is obtained from the 
representation matrix of the homology. This is done via repeated 
calculation of the hermite normal form of the matrix and its transpose, 
using the hermiteNF function from the numbers package, [8]. In 
addition, this function checks if the diagonal of the matrix is in the 
correct form via the function check_more_push and, if required, will call 
push_down to do what the name implies.

Finally. The homology group is obtained using the diagonal of the smith 
normal form.

The second function of this package, the testing if a give operation or 
operations give rise to a quandle or biquandle is done via the function 
S_test. This function receives as input the order of the underlying set 
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and then proceeds to test the two requirements for a quandle/biquandle 
as described before.

Quality control 
The results of the program have been compared to known results and in
addition, R CMD check has been used to quality check the code itself.
Additionally, a few tests have been provided in test/testthat.R.

(2) Availability 

Operating system
Any OS that can install and run R (at least version 3.0.0).

Programming language
R 3.0.0+.

Additional system requirements
The more RAM, the higher the homology groups that can be calculated.
Presently, output is on screen, but can be changed to a file, if 
necessary.
Required input devices: keyboard only.

Dependencies
The program requires the R standard installation, together with the 
packages MASS and numbers.

Software location:
Archive

Name: CRAN
Persistent identifier: https://cran.r-
project.org/web/packages/quhomology/index.html
Licence: GNU GPL v3.0
Publisher: Ansgar Wenzel
Date published: 02/05/2016
Version: 1.1.0

Code Repository
Names: GitHub
Identifier: 
https://github.com/ansgarwenzel/quhomology
License: GNU GPL v3.0
Date published: 05/05/2016
Version: 1.1.0
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