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Abstract

This thesis is concerned with the study of the important effect of the gradient term

in parabolic problems. More precisely, we study the global existence or nonexistence

of solutions, and their asymptotic behaviour in finite or infinite time. Particularly

when the power of the gradient term can increase to the power function of the

solution. This thesis consists of five parts.

(i) Steady-State Solutions,

(ii) The Blow-up Behaviour of the Positive Solutions,

(iii) Parabolic Liouville-Type Theorems and the Universal Estimates,

(iv) The Global Existence of the Positive Solutions,

(v) Viscous Hamilton-Jacobi Equations (VHJ).

Under certain conditions on the exponents of both the function of the solution and

the gradient term, the nonexistence of positive stationary solution of parabolic prob-

lems with gradient terms are proved in (i).

In (ii), we extend some known blow-up results of parabolic problems with perturba-

tion terms, which is not too strong, to problems with stronger perturbation terms.

In (iii), the nonexistence of nonnegative, nontrivial bounded solutions for all nega-

tive and positive times on the whole space are showed for parabolic problems with
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a strong perturbation term. Moreover, we study the connections between parabolic

Liouville-type theorems and local and global properties of nonnegative classical so-

lutions to parabolic problems with gradient terms. Namely, we use a general method

for derivation of universal, pointwise a priori estimates of solutions from Liouville

type theorems, which unifies the results of a priori bounds, decay estimates and

initial and final blow up rates.

Global existence and stability, and unbounded global solutions are shown in (iv)

when the perturbation term is stronger.

In (v) we show that the speed of divergence of gradient blow up (GBU) of solutions

of Dirichlet problem for VHJ, especially the upper GBU rate estimate in n space

dimensions is the same as in one space dimension.
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Chapter 1

Introduction

The latest developments of reaction diffusion systems, including gas dynamics, fluid

mechanics, heat mass transfer, biology, ecology, engineering and many more, lead to

wide studies in several aspects of nonlinear parabolic and elliptic partial differential

equations. Because of the fast growth of reaction diffusion type of problems in

various different fields it is desirable to have a unified mathematical treatment and

practical methods for solving these problems.

Concerning the parabolic problems, it is known that many of these problems have

global solutions, particularly, stationary solutions. On the contrary, the solutions of

these problems may cease to exist in finite time. This is what we call singularities.

The most marked property that recognize nonlinear partial differential equations

from the linear partial differential equations is, the possibility of the formation of

singularities from perfectly smooth initial data. In other words, for classes of data

the theory of existence and uniqueness and continuity can be proved in small time

intervals (well-posedness). However, in linear problems, the singularities of the

solutions occur by singular coefficients or singular data of the problem, so-called

fixed singularities.

The occurrence of singularities in nonlinear problems may depend on the nonlinearity

of the terms in the problem and their time and location, which are called moving

singularities. The easiest way to describe the spontaneous singularities in nonlinear
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problems is, when the variable or variables go to infinity as time tends to a certain

finite time. This form of singularity is called a blow-up phenomenon. One of

the most important examples of blow-up phenomenon is the heat equation with a

source, namely,

ut −∆u = F (x, t, u,∇u), (1.1)

where the variable u represents the temperature in a chemical reaction, the second

order derivative ∆u appears as the diffusion, and the positive F is viewed as the

heat source.

When high temperatures speed up the chemical reaction, the chemical reaction will

generate more heat. As a consequence of this, the temperature will be very high,

unless the heat energy become dissipative through the processes of the diffusion.

For instance, in solid fuel ignition, there is a competition between the heat source

and the diffusion, which may lead to unbounded temperature in finite time. Physi-

cally speaking, the major increase of the temperature raises ignition. Hence, basic

questions can be asked like:

1. Will blow-up occur?

2. Where are the blow-up points if the solution has to blow up in finite time?

3. What are the blow-up rate and the asymptotic behaviour of the solution near

the blow-up time?

4. Will the solution continue after a finite time blow-up occurs?

These questions will be discussed in the next section.

In this thesis, we consider problems with nonlinearities depending on u and its space

derivatives

ut −∆u = F (u,∇u), x ∈ Ω, t > 0

u(x) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

 (1.2)
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where F = F (u, ξ) : R× Rn → R is a C1-function (except the problem (1.6) below

with 1 < q < 2).

In Chapter 2, we prove the nonexistence of positive radial ground states of the

quasilinear elliptic equation

∆u+ up − |∇u|q = 0 in Rn,

when p ≤ 1 + 2/n, p > q > 2p/(p+ 1) and n ≥ 1.

In Chapter 3, we consider the problem

ut = ∆u− h(|∇u|) + f(u) in Ω× (0, T )

u = 0 on ∂Ω× (0, T )

u(x, 0) = u0(x) in Ω,

 (1.3)

in the special case when f(u) = up, for p > 1, p > q > 2p/(p+ 1),

f ∈ C1([0,∞)), f(u) > 0 u > 0,

h ∈ C1([0,∞)), h(v) > 0, h
′
(v) ≥ 0 for v > 0, and

h̃(v) := vh
′
(v)− h(v) ≤ kvq for v > 0 and some 0 ≤ k <∞, q > 1. (1.4)

We study the blow-up set for the problem (1.3) when Ω is a convex bounded domain,

and we establish the blow-up rate estimate when Ω is a ball and Ω is a convex

bounded domain.

In Chapter 4, we prove the Liouville-type theorems for the parabolic problem

ut −∆u = up − µ|∇u|q, x ∈ Rn, t ∈ R,

when p > q > 2p/(p + 1) in radial case when p < 1 + 2/n, n ≥ 1, and in general

(nonradial) case when p < n(n + 2)/(n − 1)2, n ≥ 2. Moreover, in Chapter 4, in

case q = 2p
p+1

we derive the universal a priori bound for global solutions and usual

blow-up rate estimates for the problem

ut −∆u = up + g(u,∇u), x ∈ Ω, 0 < t < T

u = 0, x ∈ ∂Ω, 0 < t < T,


3



p < pB, or p < pS, Ω = Rn or BR, u = u(|x|, t), g = g(u, |ξ|), (1.5)

and the function g : R+ × Rn → R satisfies the growth assumption

|g(u, ξ)| ≤ C0(1 + |u|p1 + |ξ|q), for some 1 ≤ p1 ≤ p.

Furthermore, in Chapter 4 we establish the blow-up estimates and a priori bounds

of global solutions for the problem

ut −∆u = up − µ|∇u|q, x ∈ Ω, 0 < t < T,

u(x, t) = 0, x ∈ ∂Ω, 0 < t < T,


in the case q > 2p/(p+ 1) and where Ω is a convex bounded domain.

In Chapter 5, we consider two problems, are given by

ut −∆u = up − a · ∇(uq), x ∈ Rn, t > 0

u(x, 0) = u0(x), x ∈ Rn.

 , (1.6)

with p > 1, q ≥ 1, a is a non zero constant vector in Rn and

ut −∆u = up − µ|∇u|q , x ∈ Ω, t > 0

u(x, t) = 0 , x ∈ ∂Ω, t > 0

u(x, 0) = u0(x) , x ∈ Ω.

 , (1.7)

with p, q > 1 and µ > 0.

Under certain conditions, we prove that the blow-up occurs just in infinite time for

both problems (1.6) and (1.7).

In Chapter 6, we study the upper gradient blow-up rate estimate for the problem

ut −∆u = |∇u|p + λ, x ∈ Ω, t > 0,

u = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0, x ∈ Ω,


where Ω is a bounded convex domain, p > 2, λ > 0 and u0 ≥ 0.
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1.1. Background

1.1 Background

In the theory of ordinary differential equation (ODE), the blow-up are also analysed

by Osgood in 1898 (see [40]), he showed that, the positive solution of the equation

ut = f(u), (1.8)

will blow-up in finite time for any positive initial data, provided f is defined for all

sufficiently large u ∈ R and positive, and satisfies∫ ∞
M

du

f(u)
<∞, (1.9)

for some M > 0. This is Osgood’s criterion, and it is the necessary and sufficient

condition for occurrence of blow-up in finite time. The simplest example is the initial

value problem

ut = u2, t > 0; u(0) = a, a > 0.

We see that the unique solution takes the formula u(t) = 1
(T−t) , and it exists in the

time interval 0 < t < T = 1/a. It is obvious that the solution is a smooth function

for t < T and u(t)→∞ as t→ T−. Thus, we say that the solution u(t) has blow-up

in finite time T .

Blow-up in reaction diffusion equations, for example the equation (1.1), which have a

spatial structure, their solutions u(x, t) depend on the time in the interval 0 ≤ t < T

and space variable x ∈ Ω ⊆ Rn. Obviously, the spatial structure of the solutions

is the new element of consideration, which distinguish the evolution equation (1.1)

from the ordinary differential equation (1.8).

The idea of blow-up is built on the following points

1. The well-posedness of the parabolic problem in a certain space and for small

times. The existence and uniqueness theory for the Cauchy problem or for the

initial-boundary value problems in a certain class of bounded and nonnegative

data can be found by assuming nice regularity conditions on ∇u and F in

(1.1), in order to construct bounded solutions for some time 0 < t < T .
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1.1. Background

2. The regularity and continuation theory are involved in this structure, which

means that the bounded solutions have the necessary smoothness in order to

continue locally in time. Schauder estimates are used for proving this theory

for classical solutions of parabolic problems. This theory is also based on

corresponding estimates which exist for weak solutions in a Sobolev space.

In a more general structure, the study of blow-up can be considered as a particular

type of singularity that develops for a specific evolution process. For example, the

evolution process, which is described by the equation and the initial condition

ut = A(u) for t > 0, u(0) = u0.

Consider the solution u = u(t) as a curve living in a certain functional space X.

Commonly, it can be proved that the problem is well-posed for some time 0 < t < T

(i.e., the solution with the initial data u0 is well-defined and lives in the space X),

and the issue here is that the solution may leave the space when t approaches T−.

Now, from the previous illustration, we can define L∞ blow-up as follows.

Definition 1.1.1. We say that a solution u of (1.1) blows up at t = T if the solution

becomes infinite at some points or many points when t tends to the certain finite time

T , which is called the blow-up time. In other words, there is a finite time T such

that the solution is well defined for all 0 < t < T and

sup
x∈Ω
|u(x, t)| → ∞ as t→ T−.

In the next two definitions it can be seen that there are another situations where

the reaction diffusion equations do not have global solutions.

Definition 1.1.2. If the reaction term of the reaction diffusion equation (1.1) is

singular for finite u in finite time T , i.e., f → ∞ as u → K for some K > 0,

then the reaction term blows up, and the smooth solution ceases to exist. This

phenomenon is called quenching or extinction.

In fact, it can be shown that under suitable assumptions, quenching implies blow-up

of ut, namely limt→T− ‖ut‖∞ =∞.
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1.1. Background

A typical example of quenching phenomena is (1.1) with F (u) = −u−p, p > 0.

It is possible that there exists a finite time T such that u→ 0 as t→ T (see [50]).

Definition 1.1.3. If the solution of the reaction diffusion equation (1.1) can cease

to exist in finite time T only when

lim
t→T−

‖∇u(t)‖∞ =∞,

this is called gradient blow-up (GBU for short).

For instance, if the reaction term in (1.1) depends only on the spatial gradient,

GBU can occur, even if the solution stays bounded (see [47]).

Remark 1.1.4. The blow-up for elliptic and other stationary solutions of the cor-

responding parabolic equations are studied by many authors, they found that the

singularity can also occur at a certain point (or points).

Next, we analyse some existing questions from the literature of blow-up for re-

action diffusion equations.

1.1.1 Will the blow-up occur in finite time?

Where the existence and uniqueness can be commonly proved in different functional

spaces, and the blow-up occurs in that space when the solution cannot continue

up to or past a given time, the blow-up might occur in a one function space and

not in another one. This shows the rich structure of blow-up problems. The above

question can be answered in two directions:

i. The form of the problem (the equation’s coefficients and nonlinearities or more

widely its structural conditions), and also the form of the initial data. For

instance in [54] it has been shown that the Dirichlet problem for the parabolic

problem

ut = ∆u− µ|∇u|q + up in Ω× (0, T )

u(x, t) = 0 on ∂Ω× (0, T )

u(x, 0) = u0(x) in Ω,

 (1.10)

7



1.1. Background

in bounded domain has a finite-time blow-up for large initial data when p > q.

It was also proved that, the condition p > q is optimal, which guarantee that the

solution blows up in finite time in bounded domains (see [16],[46]). However, for

general unbounded domains the issue depends on the geometry of the domain,

through the notion of the inradius ρ(Ω) (see Chapter 6). It was shown that the

solution of the problem (1.10) is globally bounded for all nonnegative data if

ρ(Ω) <∞, and if ρ(Ω) =∞ the solution will either blow up in finite time or will

be an unbounded global solution (blow-up in infinite time). The blow-up can

be also generated by the nonlinearity of the boundary conditions, for example,

in [27] the Neumann problem

ut = ∆u, in BR × (0, T )

∂u

∂ν
= f(u), on ∂BR × (0, T )

u(x, 0) = u0(x), in BR,

 (1.11)

has been considered, where BR ⊂ Rn is a ball of radius R, ν is the unit exterior

normal vector, and f ∈ C1 is nondecreasing and satisfies (1.9). It was shown

that, for all u0 ≥ 0, the solution u blows up in a finite time.

ii. If the problems do exhibit blow-up in finite time, the question here is, which

solutions do blow up in finite time? The answer is either all solutions of the

problem blow up in finite time, which is called Fujita problem or for some

identified solutions. For instance, the Fujita results have been given in [37] for

the problem

ut = ∆u− µ|∇u|q + up x ∈ Rn, t > 0

u(x, 0) = u0(x) x ∈ Rn,

 (1.12)

which are, if p > 1, q = 2p/(p+ 1) and p < 1 + 2/n, then the solution blows up

in finite time for all u0 ≥ 0. However, the global existence of the solution for

small initial data is obtained when p > 1 + 2/n (see [47]).

In the case when the global existence of the solution can be found in a functional

space for all 0 < t <∞, but the solution becomes unbounded when t→∞, we say

8



1.1. Background

that the solution blows up in infinite time, and the solution in this case is called

unbounded global solution. For example, it is known in [55] that for the problem

(1.12) with q ≥ p > 1 and µ > 0, there exists u0 ≥ 0 with compact support, such that

the solution u blows up in infinite time and u is unbounded (even limt→∞ u(x, t) =∞

for all x ∈ Rn). Moreover, there is another case of blow-up, in which the solution

becomes unbounded (u(x, t) = ∞) for any arbitrarily small t > 0, this means that

the complete singularity happens at t = 0 and the nonexistence of nontrivial solution

is locally in time, this case is called instantaneous blow-up. For instance in the

latter case, in [42] the exponential reaction equation ut = ∆u+ λeu was considered

in a bounded domain Ω ⊂ Rn with initial data u0 and u = 0 on the smooth boundary

∂Ω. It was proved that the solution of this equation has instantaneous blow-up, if

u0 ≥ S(x) = −2 ln |x|, u0 6≡ S and n ≥ 10.

Therefore there are alternative options which can occur for the solution of reaction

diffusion problems, and they can be classified as follows:

(i) Bounded global solutions, which means that the solution remains uniformly

bounded in time, i.e., no blow-up occurs.

(ii) Unbounded global solutions, i.e., the solution blows-up at infinity.

(iii) Finite-time blow-up solutions, the solution becomes unbounded at a finite

time T .

(iv) Instantaneous blow-up solutions, which the solution blows-up at

T = 0.

Remark 1.1.5. We mean by the global solution the case (i) or (ii). Furthermore,

the case (iii) is called the standard blow-up case.

Next it comes to the second question, which is:

9



1.1. Background

1.1.2 Where are the blow-up points if the blow-up occurs

at a time T <∞ or at T =∞?

If the solution u blows-up in a finite time T or in infinite time “T =∞”, the blow-up

set B(u0) which is closed and subset of Ω ⊆ Rn is defined as follows:

Definition 1.1.6. We say that x ∈ Ω is a blow-up point, if there exists a sequence

{xn} and tn → T such that xn → x and |u(xn, tn)| → ∞. In other words,

B(u0) = {x ∈ Ω ∪ {∞} : ∃{xn, tn} ⊂ Ω× (0, T ), tn → T−, xn → x,

|u(xn, tn)| → ∞}.

Remark 1.1.7. In case of gradient blow-up phenomena, where the gradient of so-

lution ∇u blows up in finite time T , the blow-up set is

B(u0) = {x ∈ Ω : ∃{xn, tn} ⊂ Ω× (0, T ), tn → T−, xn → x, |∇u(xn, tn)| → ∞}.

It was proved in [21] that for the problem (1.10) in the radially symmetric case,

if u0 ≥ 0 be radial nonincreasing, 1 < q < p, µ > 0 and Ω = BR, then 0 is the only

blow-up point, which is called a single point blow-up. Also, it has been shown in

[13] that if Ω is convex and bounded, µ > 0 and q < 2p/(p+1), then the blow-up set

of any solution of (1.10) is a compact subset of Ω, which is called regional blow-up.

On the other hand, when µ < 0 in the problem (1.10) the situation is different, the

blow-up set consists of a single point when q = 2 and p > 1, regional blow-up when

p = 2, and global blow-up when 1 < p < 2 (see [33], [31], [23]).

Therefore, the blow-up set B(u0) can be classified as one of the following ways:

i. Single-point blow-up, where B(u0) contains a single point or of a finite num-

ber of points.

ii. Regional blow-up, in which the measure of B(u0) is finite and positive.

iii. Global blow-up, where B(u0) = Ω.

10



1.1. Background

Furthermore, the blow-up set of unbounded global solutions of the parabolic problem

(1.10) when q ≥ p > 1, have been studied in [55]. It was shown that, if Ω = Rn, then

there exists u0 compactly supported such that the solutions blow up everywhere in

infinite time, i.e., B(u0) = Rn. Moreover, it was proved that if Ω ⊂ Rn (unbounded),

q ≥ p > 1, µ > 0 and u0 is chosen such that either T = ∞ or T < ∞, then

B(u0) = {∞} if Ω 6= Rn and B(u0) = Rn ∪ {∞} or B(u0) = {∞} if Ω = Rn (see

[55]).

The next question is:

1.1.3 What are the blow-up rate and the asymptotic be-

haviour of the solution near the blow-up time?

When the solution of parabolic problem blows-up in a finite time, one might ask

about the space-time behaviour of the blow-up solution when t approaches T and

near or at blow-up points. There are several aspects to study the space-time be-

haviour of the blow-up solutions.

(i) Blow-up rate estimate:

It is the rate at which the solution u diverges as t approaches the blow-up time

and x approaches a blow-up point.

Where the nonlinearity in parabolic problems causes the blow-up in a finite

time in certain cases. Furthermore, the solution to the ODE

ut = up, t > 0, p > 1, u(0) = u0 > 0, (1.13)

is given by

u(t) = k(T − t)−1/(p−1), 0 < t < T, with k = (p− 1)−1/(p−1), (1.14)

and T = (p − 1)−1u1−p
0 . The blow-up rate for ODE is k(T − t)−1/(p−1). If we

consider the problem (1.10) and we assume that T <∞, a natural question is

whether the blow-up for the model problem (1.10) will be the same as that for

11



1.1. Background

the corresponding ODE. In other words, are the diffusion and gradient term

weak enough to have no impact on the blow-up rate estimate? Namely, the

rate takes the form

C1(T − t)−1/(p−1) ≤ ‖u(t)‖L∞ ≤ C2(T − t)−1/(p−1), (1.15)

where C1, C2 > 0. The answer depends on the structure of the problem, where

for some problems, the blow-up rate for (1.10) can be different from the ODE,

however, the rate estimates are of the same order for large class of the problems.

When the blow-up rate estimate for the parabolic problems remains the same as

for the corresponding ODE, the estimate is referred to be of type I, otherwise,

blow-up is referred to as type II. For instance, In [13, 12, 18, 58], under

some assumptions on Ω and p, the rate estimates of the blow-up solution of

the problem (1.10) were proved in the case q < 2p/(p+ 1), and the blow-up is

of the type I, and it takes the form

C1(T − t)−1/(p−1) ≤ ‖u(t)‖∞ ≤ C2(T − t)−1/(p−1), as t→ T, (1.16)

where C1, C2 > 0. Moreover, we proved in this thesis in Chapter 3 that for

stronger absorbing gradient term (q > 2p/(p + 1)) in the problem (1.10), the

blow-up rate becomes faster, or type II (see Theorem 3.3.5), and it takes the

form

u(x, t) ≤ C(T − t)
−q

2(p−q) , t ∈ (0, T ).

Moreover, it can be shown from the solution which constructed in the proof of

Proposition 3.2 in [55] that, the solution u of the problem (1.10) which blows-

up in infinite time, where Ω contains a cone, µ ≥ 0, q ≥ p > 1 and φ ≥ 0 with

compact support, it satisfies the estimate

C1 ≤ ‖u(t)‖∞ ≤ C2e
C3t, t→∞, C1, C2, C3 > 0.

(ii) Final blow-up profile:

It is asymptotic behaviour of the solution near the blow-up time, which is

12



1.1. Background

described as a limit of u(x, t) when t→ T− at the non-blowing points.

In [13] an interesting result is proved concerning the blow-up profile for the

solution of the problem (1.10) in the radial case. It was shown that, if the

solution u blows-up in finite time, 1 < q < p, µ > 0, Ω = BR, and u0 ≥ 0 be

radial nonincreasing, then 0 is the only blow-up point and the blow-up profile

of the solution takes the form

u(r, t) ≤ Cr−α, (r, t) ∈ (0, R]× [0, T ), (1.17)

for any α > 2/(p − 1) if 1 < q < 2p/(p + 1), and for any α > q/(p − q) if

2p/(p + 1) ≤ q < p. It was observed that the blow-up profile of the solution

is similar to the problem (1.10) without gradient term (µ = 0) when 1 < q <

2p/(p + 1), while for 2p/(p + 1) ≤ q < p, the gradient term has an important

effect on the profile, which becomes more singular due to q/(p−q) > 2/(p−1).

Moreover, the space profile of GBU of the solution of the viscous Hamilton-

Jacobi equation was studied in one space dimension by Quittner and Souplet

[47]

ut −∆u = |∇u|p, x ∈ Ω, t > 0,

u = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0, x ∈ Ω,

 (1.18)

for p > 2 and Ω = (0, 1), u0 ≥ 0 and t0 ∈ (0, T ). They found that, the bound

of GBU of ux away from x = 0 and x = 1, is given by,

ux(x, t) ≤ (p− 1)−1/(p−1)x−1/(p−1) + C1x, x ∈ (0, 1]

and

ux(x, t) ≥ −(p− 1)−1/(p−1)(1− x)−1/(p−1) − C1(1− x), x ∈ [0, 1),

for some C1 > 0 and all t ∈ (t0, T ). These profiles guarantee that x = 0 and

x = 1 are the only possible GBU points.

Now we come to the final question which is referred to the continuation of the

solution after a finite blow-up time as follows:

13
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1.1.4 Will the solution continue after a finite time blow-up

occur?

This question considers whether or not the blow-up solution can continue after a

finite blow-up time in some weak sense. There are three possible cases that might

happen after the occurrence of the blow-up in finite time:

i. Complete Blow-up, in which the solution cannot be continued after occur-

rence of the blow up, and if the solution is continued, it will be infinite every-

where.

ii. Incomplete Blow-up, in which the solution can be continued in subsets of the

space-time after a finite blow-up T , and the solution is infinite in the complement

of these subsets.

iii. Transient Blow-up, in which the solution becomes bounded again after the

blow-up occurs at a finite time T .

For instance on the complete blow-up phenomenon, it has been shown in [5] that

if µ = 0 in the problem (1.10), 1 < p < pS := n+2
n−2

if n ≥ 3 or 1 < p < ∞

if n = 1, 2. Then, the continuation of the solution after T is not possible and

the solution becomes infinite after a finite T . Moreover, it is known that under

restrictive assumption, the solution of the problem (1.10) blows up incompletely

when p > pS := n+2
n−2

, µ = 0, Ω is bounded and p > 1 (see [38, 24]). Furthermore, in

[24] a transient blow-up phenomenon was analysed for the slow diffusion equation

ut = ∆um+up for x ∈ Rn, t > 0 and p > m(n+2)/(n−2) for n ≥ 3, m > (n−2)/n.

It was proved that this problem has a radial solution which blows up at a single

point peak at t = T , and then the solution becomes bounded immediately for the

rest of the time t > T .

14
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1.2 Outline of the Thesis

This thesis analyses some problems concerning the qualitative study of solutions of

elliptic and parabolic equations with gradient terms, and with homogeneous Dirich-

let boundary conditions. The main purpose of this thesis is to investigate the impact

of the gradient terms on the global existence and nonexistence of the solutions, and

on their asymptotic behaviour in finite and infinite time. A number of qualitatively

new phenomena can appear by the presence of the gradient terms, in comparison

with the their absence, such as behaviour of blowing-up solutions, global existence

and stability, unbounded global solutions and critical exponents. The next four

chapters are organised as follows:

Chapter 2 is devoted to study the steady-state solution of quasilinear elliptic equa-

tion with a dissipative gradient term, ∆u + up − |∇u|q = 0, defined in the whole

space Rn, when p ≤ pF := 1 + 2
n

and 2p
p+1

< q < p. We prove the nonexistence of the

radial ground state of this equation, which will be a useful result in the investigation

of the corresponding parabolic problem. For this equation, we extend the known

nonexistence results by Serrin and Zou when 2p
p+1

< q < p and p ≤ n
n−2

, showing

that the nonexistence can be also shown by using the asymptotic behavior of the

solutions at infinity (see [51]).

Chapter 3 extends the results of Chlebik, Fila and Quittner [13] for the semi-

linear parabolic problem with a dissipative gradient term, under the condition

q < 2p/(p + 1) to the stronger condition q > 2p/(p + 1). The blow-up sets and the

upper blow-up rate estimates are derived for the problem in the radial symmetric

case where the domain is a ball and in the convex domain case when q > 2p/(p+ 1).

It is proved that the set of the blow-up is a compact subset of the domain in the

convex domain case. Moreover, we show that the stronger absorbing gradient term

has an important effect on the upper blow-up rate estimates in both cases, which

make them more singular than those known in [13] for q < 2p/(p+1). Applying the

maximum principle to suitable auxiliary function is used to determine the blow-up

set in the convex domain case, and to derive the rate estimates in both cases.
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Chapter 4 is devoted to study the parabolic Liouville-type theorems and the uni-

versal estimates. Two parabolic problems are considered in this chapter. Firstly, we

study the parabolic equation with a dissipative gradient term ut−∆u = up−µ|∇u|q,

defined in the whole space or in a convex bounded domain. Secondly, we study the

parabolic problem with first-order derivatives, namely, ut−∆u = up + g(u,∇u), de-

fined in the whole space or in a ball. The Liouville-type theorems for first equation

are proved in radial case for p < pF when 2p
p+1

< q < p, and in general (nonradial)

case for p < pB := n(n+2)
(n−1)2

, n > 1, when 2p
p+1

< q < p. The intersection-comparison

is used to prove Liouville theorem in radial case, while integral estimates are used

to prove the theorem in general case. Moreover, the universal a priori bounds for

global solutions and usual blow-up rate estimates are derived for two cases, when

q = 2p/(p+1) for the second problem, and when q > 2p/(p+1) for the first problem

in a convex bounded domain. We use a doubling lemma and a rescaling argument to

derive the estimate for the solution of the second problem when q = 2p/(p+ 1). On

the other hand, the method which is used to derive the estimate of the solution for the

first problem when q > 2p/(p+ 1) is based on energy, measure arguments, rescaling

and elliptic Liouville-type theorems. We show that the estimate for q = 2p/(p+ 1)

takes the same form as these known for the problem when q < 2p/(p+ 1) (see [47]).

However, we show that the universal bounds when q = 2p/(p + 1) do not remain

valid for the problem if the perturbation term is stronger, i.e., when q > 2p/(p+ 1).

Chapter 5 considers the existence of the positive solutions for the parabolic

equations with a gradient term. In this chapter, two special cases are studied.

First case is, the semilinear parabolic equation with a convective gradient term

ut −∆u = up − a · ∇(uq) for the Cauchy problem. The semilinear parabolic prob-

lem with a dissipative gradient term in the domain of infinite inradius is studied in

the second case. For the first problem, by building a self-similar supersolution for

the problem with a convective gradient term and using a comparison principle, we

show that the solution can exist globally when q > p > 1. For the problem with

a dissipative gradient term and under the condition p < pF , we use a technique
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which depending on the rescaling arguments, to show that the solution is bounded

for an initial data small enough. Furthermore, for positive initial data, global un-

bounded solutions are proved for the problem with a dissipative gradient term when

q ≥ p > 1.

Chapter 6 considers Viscous Hamilton-Jacobi Equations (VHJ) for p > 2. In this

chapter, we consider a VHJ parabolic equation with nonlinear term depending on

the gradient of the solution u, defined in a convex bounded domain Ω ⊂ Rn and

with a Dirichlet boundary condition. Namely, ut −∆u = |∇u|p, where p > 2. The

blow-up phenomena here are different, where the gradient of the solution of this

problem becomes unbounded in a finite time, while the solution itself remains uni-

formly bounded. The upper estimate of the gradient blow-up profile is considered,

showing that the gradient blow-up may just occur on the boundary of the domain.

We also use a suitable auxiliary function with application of the maximum principle

to prove that the analogue of the upper GBU rate estimate in one dimension is still

true in higher dimensions when p > 2.

In Chapter 7, the main results for every chapter are summarised in this chapter.

We collect a number of frequently used notations and results in four appendices:

Appendix A includes the geometric domain notation, definitions of radial func-

tions, and revision for some standard function spaces.

In Appendix B we introduce some basic inequalities which are employed through-

out this thesis.

In Appendix C we recall some fundamental estimates for elliptic and parabolic

equations. Moreover, we review some definitions of classical solutions, maximal so-

lutions, weak solutions, supersolutions and subsolutions.

In Appendix D we state some maximum and comparison principles, which we

frequently used in this study.
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1.3 Preliminaries

Through this thesis we denote by

X := {u ∈ BC1(Ω) : u = 0 on ∂Ω},

provided with the norm

‖w‖X := ‖w‖∞ + ‖∇w‖∞ ,

and X+ := {w ∈ X : w ≥ 0}. The general problem (1.2) with nonlinearities

depending on u and its space derivative is locally well-posed in X, where F =

F (u, ξ) : R × Rn → R is a C1-function (except the problem (1.6) with 1 < q < 2)

(see [47]). Moreover, the problem (1.6) with Ω = Rn, which is also well-posed in X

for all q ≥ 1, with Ω bounded or Ω = Rn (see [47]). Specifically,

if Tmax = Tmax(u0) <∞, then lim
t→Tmax

‖u(t)‖X =∞.

Furthermore, in [47] it has been shown that, the solution enjoys the regularity

property

u ∈ BC2,1(Ω× [t1, t2]), 0 < t1 < t2 < Tmax(u0). (1.19)

In particular, in the case of problem (1.7) is defined in a ball and u0 is radial, or

in Rn and u0 is radial nonincreasing, then the solution u enjoy the same property

(see [47]). Moreover, in this thesis, we will refer to the comparison principles, cf.

Proposition D.1.2, Proposition D.1.7 and Remark D.1.3 without explicit reference.

In addition, throughout this thesis we will use various critical exponents

pS :=


n+2
n−2

, if n ≥ 3.

∞, if n = 1, 2.

pB :=


n(n+2)
(n−1)2

, if n ≥ 2.

∞, if n = 1.

pF := 1 +
2

n
, n ≥ 1.
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Chapter 2

The Steady-State Solution of the

Quasilinear Elliptic Equation

When the solution of (1.10) is independent of t, it is called steady-state solution, or

stationary solution. This solution is the possible limit as t→∞ of the corresponding

time-dependent solutions if the time-dependent solution is global. The ground states

of the elliptic analogue which is the corresponding to the parabolic equation (1.10),

is a positive solution u in Rn, which tends to zero as |x| → ∞.

Our aim here is to prove that the nonexistence of radial ground states of ∆u +

up − |∇u|q = 0 will hold for p ≤ pF . Moreover, we show that, the nonexistence in

this problem depends on the specific values of the exponents of the function of the

solution and its gradient. In section 2.2 we present some preliminary results, which

we need to determine the asymptotic estimates in section 2.3. Section 2.4 is devoted

to the nonexistence of positive radial ground states for p ≤ pF when q > 2p/(p+ 1).
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2.1 Introduction

This chapter is concerned with the quasilinear elliptic equation

∆u+ up − |∇u|q = 0 in Rn, (2.1)

where p and q are given positive exponents and n ≥ 1.

The steady states of (1.10), i.e., the solutions of the elliptic problem

∆u+ up − µ|∇u|q = 0, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

 (2.2)

have been considered by many authors, e.g., [3, 10, 11, 15, 17, 41, 51, 61]. In

[26], the authors obtained an interesting result; they prove that the solution of (2.2)

on Rn or on a ball must be radial.

The interest in this problem arises particularly from the dependence of existence

and nonexistence on the specific values p, q, µ.

We are going to summarize the results about the existence and nonexistence of the

solutions to (2.2) in the case Ω = Rn and Ω is a ball BR in Rn. By “existence”, we

mean the existence of at least one classical positive solution of (2.2) on Ω.

First, when Ω = Rn, the following holds

i. If p > pS, the existence can be found for all q > 1 (see [51]);

ii. If p = pS, the existence is obtained if and only if q < p (see [51]);

iii. If p < pS

(a) the existence can be proved if q < 2p/(p + 1) or q = 2p/(p + 1) and µ is

large enough (see [11]);

(b) nonexistence holds if p ≤ n/(n− 2), n > 2 and q > 2p/(p+ 1) (see [51]);

(c) nonexistence holds if p < n/(n−2), n > 2 and q = 2p/(p+ 1) with µ small

enough (see [9, 17, 51]);
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(d) the nonexistence is proved if n ≥ 3, n/(n−2) < p < pS and q > q̄ for some

q̄ ∈ (2p/(p+ 1), p) (see [51])

Next, in the case Ω = BR in Rn, it holds:

i. The existence is proved if 1 < q < 2p/(p+ 1) and p < pS [11];

ii. If q = 2p/(p+ 1) then

(a) the nonexistence is obtained if p ≥ pS [51] or if p < pS and µ is large [11];

(b) the nonexistence can be proved if p ≤ n/(n − 2) and µ is small enough

[11, 17, 61];

iii. The existence can be found for µ small [11] and the nonexistence is proved for

µ large [10], if 2p/(p+ 1) < q < p and p < pS;

iv. If q ≥ p > 1, the existence is satisfied, if and only if µ ≤ µ0, for some

µ0 = µ0(p, n) > 0 [46, 61].

Moreover, there are some results, which are known when Ω is an arbitrary bounded

domain with smooth boundary:

i. If p < pS, the existence can be proved if µ is small enough [61];

ii. If q ≥ p > 1, the existence is satisfied if and only if µ ≤ µ0, for some µ0 =

µ0(p, n) [46, 61].

The aim of this chapter is to extend the known nonexistence results in [51], for

the elliptic equation with a gradient term when q > 2p/(p + 1) and p ≤ n/(n− 2),

showing that the nonexistence of the positive stationary solutions can also be proved

when q > 2p/(p+ 1) and p ≤ 1 + 2/n.
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2.2 Preliminary Results

In this chapter we consider the radial ground states u(r) of (2.1), where r = |x| is

the radius. Clearly, u(r) can be a solution of the following initial value problem

u′′(r) +
n− 1

r
u′(r) + up(r)− |u′(r)|q = 0, (2.3)

u(0) = ξ, u′(0) = 0,

with

u(r) > 0 for all r > 0, (2.4)

for some ξ > 0.

Furthermore, we also consider the solutions of (2.3) which do not satisfy (2.4), and

satisfy the conditions

u(r) > 0 for 0 ≤ r < R, u(R) = 0. (2.5)

Before proving the nonexistence of ground states of (2.1), we need to find the asymp-

totic behaviour of the solution of (2.3) at infinity, which is crucial for the argument

of the proof in Section 2.4. The proof of these estimates depend on some preliminary

lemmas which we will introduce in this section.

Now, concerning the proof of Theorem 2.2.3 below, we just need to recall

Lemmas 2.2.1 and 2.2.2, which have already been proved in [51].

Lemma 2.2.1. [51] Suppose that R > 1, p > 1, 2p/(p + 1) ≤ q < p holds, and we

define the set

A = interior{1 < r < R | S(r) ≥ 0}, (2.6)

where S(r) = Sγ(r) = up − 2|u′|γ, 0 < r < R, γ > 0. Then

u ≤ C2r
−2/(p−1), r ∈ A (2.7)

with

C2 = 42/(p−1) max{ξ, C1, [8n/(p− 1)]1/(p−1)}, C1 = [2q(n− 1)/p]σ and σ = q/(p− q).
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Lemma 2.2.2. [51] Suppose that R > 1, p > 1, 2p/(p + 1) ≤ q < p holds, and we

define the set

B = {1 < r < R | S(r) < 0}, (2.8)

where S(r) = Sγ(r) = up − 2|u′|γ, 0 < r < R, γ > 0. Then

u ≤ C3r
−2/(p−1), r ∈ B, (2.9)

where

C3 = max{(4σ)σ, 41/(p−1)C2}.

We have the following theorem

Theorem 2.2.3. Suppose that p > pF , n ≥ 1 and 2p/(p+ 1) ≤ q < p. Then

u ≤ C3r
−2
p−1 , (2.10)

|u′|q−1 ≤ C∗4r
−1−δ, 0 < r < R, (2.11)

where δ =
(p+ 1)q − 2p

p− 1
≥ 0, C∗4 =

[ (p− 1)Cp
3

n(p− 1)− 2

]q−1

.

Proof. The estimate (2.10) follows directly from (2.7) and (2.9) since

A ∪B = [1, R] and u ≤ ξr
−2
p−1 when 0 < r < 1.

To prove (2.11), multiply (2.3) by rn+1 and integrate from zero to r to get

rn+1|u′| =
∫ r

0

sn+1upds− 2

∫ r

0

snu′ds−
∫ r

0

sn+1|u′|qds

≤
∫ r

0

sn+1upds+ 2n

∫ r

0

sn−1uds

≤ Cp
3

[ ∫ r

0

sn+1− 2p
p−1 ds+

∫ r

0

sn−1uds
]

=
(p− 1)Cp

3

n(p− 1)− 2
rn−

2
p−1

since p > 1 + 2
n
, it follows

|u′|q−1 ≤
[ (p− 1)Cp

3

n(p− 1)− 2

](q−1)

r(q−1)(−1− 2
p−1

) = C∗4r
−1−δ, 0 < r < R,

where δ = (p+1)q−2p
p−1

≥ 0, C∗4 = [
(p−1)Cp3
n(p−1)−2

]q−1.
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2.3 Asymptotic Behaviour of Radial Solutions

In this section, we study the asymptotic behaviour at infinity of the solutions of

(2.3) which satisfy (2.4). This asymptotic behaviour will be essential to prove the

nonexistence of ground states of the problem (2.1).

We recall now the following theorem from [51], which gives the upper asymptotic

estimate for ground states of the problem (2.3). One of these estimates is important

to prove Theorem 2.3.2 and the nonexistence in the next section.

Theorem 2.3.1. [51] Suppose that u(r) is a solution of (2.3) which satisfies (2.4)

and that p ≥ 1, 2p/(p+ 1) < q < p holds. Then

1. If p < 1, there is no solution. (2.12)

2. If p = 1, then u = O
(
e−r
)

, u′ = O
(
e−r
)

as r →∞. (2.13)

3. If p > 1, then u = O
(
r−

2
p−1

)
, u′ = O

(
r−

p+1
p−1

)
as r →∞. (2.14)

The next theorem considers the upper asymptotic estimate of u′ for the problem

(2.3).

Theorem 2.3.2. Suppose that u(r) is a solution of (2.3) satisfying (2.4), 1 ≤ p ≤ pF

or p > pF . Then

u′ = O(r−
p+1
p−1 ) (2.15)

and ∫ ∞
0

|u′|q−1ds <∞. (2.16)

Proof. i. Assume p > pF . Equations (2.15) and (2.16) follow directly from the

argument of Theorem 2.2.3, where

|u′| ≤ (p− 1)Cp
3

n(p− 1)− 2
r−1− 2

p−1 = Cr−
p+1
p−1 = O(r−

p+1
p−1 ).

and ∫ ∞
0

|u′|q−1ds ≤ C

∫ ∞
0

s−1−δds <∞.
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2.3. Asymptotic Behaviour of Radial Solutions

ii. Assume p ≤ pF . We choose k > 2
p−1
− 1 and multiply (2.3) by rk and integrate

from zero to r to obtain

|u′|rk =

∫ r

0

upskds−
∫ r

0

|u′|qskds− (k − n+ 1)

∫ r

0

u′sk−1ds

≤
∫ r

0

upskds− (k − n+ 1)urk−1 + (k − n+ 1)(k − 1)

∫ r

0

usk−2ds

= O(rk+1− 2p
p−1 ).

Since k > 2
p−1
− 1 and u = O(r

−2
p−1 ), we have (2.15).

To prove (2.16), define δ = q(p+1)−2p
p−1

as in Theorem 2.2.3, so that δ > 0. By

(2.15), we have |u′|q−1 ≤ Cr−1−δ, hence∫ ∞
0

|u′|q−1ds ≤ C

∫ ∞
0

s−1−δds <∞.

As a consequence of Theorem 2.3.2, we obtain a lower asymptotic estimate for

ground states, which we obtained in the next corollary.

Corollary 2.3.3. Suppose p > 1 and q > 2p/(p + 1). Then for any ε > 0 there

exists a constant ρ > 0 such that

u ≥ cr2−n−ε, r ≥ ρ, (2.17)

where c is a positive constant.

Proof. Define δ = q(p+1)−2p
p−1

as in Theorem 2.2.3, so that δ > 0. By (2.15) we have

|u′|q−1 ≤ Cr−1−δ. Therefore, given ε > 0, we can suppose without loss of generality

that up ≥ 0 for r > ρ and ρ is large enough so that

u′′ +
n− 1 + ε

r
u′ + up ≤ 0, r > ρ,

Hence in turn

(rn−1+εu′)′ ≤ 0, r > ρ,
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2.4. Non-Existence of Ground States

and rn−1+εu′ is decreasing function. Since u′ obviously cannot be everywhere non-

negative, it follows that

rn−1+εu′ → negative limit (possibly−∞)

as r →∞, hence u′ < 0 for all suitably large r.

in particular for all large r, we have

rn−1+εu′ ≤ −C,

where C is some positive constant. Integrating this relation from any fixed value r

to ∞ yields (2.17).

2.4 Non-Existence of Ground States

Now, we are ready to prove the nonexistence of the radial ground states of the

problem (2.1), that is, nonnegative, nontrivial radial solutions defined for all r > 0.

Theorem 2.4.1. The equation (2.1) admits no positive radial ground states if

2p/(p+ 1) < q < p, p ≤ pF .

Proof. i. 1 ≤ p < pF and 2p/(p+ 1) < q < p.

The two estimates (2.17) and (2.14)1 contradict each other when

1 ≤ p < pF and ε ≤ 2p/(p− 1)− n.

ii. When p = pF , then q > (n+ 2)/(n+ 1).

By (2.15) and (2.16), then

u′ = O(r−(1+n)),∫ ∞
0

|u′|qsn+1ds ≤ C

∫ ∞
0

|u′|q−1ds <∞.

Multiplying (2.3) by rn+1 and integrating from zero to r to get

rn+1|u′| =
∫ r

0

sn+1upds− 2

∫ r

0

snu′ds−
∫ r

0

sn+1|u′|qds (2.18)
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2.4. Non-Existence of Ground States

=

∫ r

0

sn+1upds− 2rnu+ 2n

∫ r

0

sn−1uds−
∫ r

0

sn+1|u′|qds

≤
∫ r

0

sn+1upds+ 2n

∫ r

0

sn−1uds−
∫ r

0

sn+1|u′|qds.

Because the third integral is convergent, |u′|rn+1 has a finite limit. Indeed the

limit must be zero. For otherwise urn tends to a limit different from zero by

L’Hospitals’s rule, and |u′|rn+1 tends to infinity by (2.18), which is impossible.

If we now integrate from r to ∞, then

|u′|rn+1 = −
∫ ∞
r

upsn+1ds− 2

∫ ∞
r

|u′|rnds+

∫ ∞
r

|u′|qsn+1ds

≤
∫ ∞
r

|u′|qsn+1ds

≤ C

∫ ∞
r

s−q(
p+1
p−1

)sn+1ds

= C

∫ ∞
r

s−q(n+1)+(n+1)ds

= O(r1−(n+1)(q−1)).

Since (q − 1)(n+ 1) > 1, therefore

u = O(r2−q(n+1)).

But this contradicts (2.17) for any ε > 0 which is such that ε ≤ q(n+ 1)− n.

Remark 2.4.2. In the first case of Theorem 2.4.1, i.e., when 1 < p < pF and

q > 2p/(p+1), the equation (2.1) does not even admit singular radial ground states,

which is nonnegative solutions of (2.1) on Rn \ {0} that tends to infinity at the

origin. Indeed the proof only depends on the asymptotic behaviour of the solutions

at infinity, having nothing to do with the behaviour at the origin.
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Chapter 3

The Blow-up Behaviour of the

Positive Solutions

The semilinear parabolic problems which involve a dissipative gradient term were

introduced for the first time by Chipot and Weissler in [11]. The main issue in their

work was to extend Levine’s work (see [35]) for the problem without gradient term

to semilinear problems with gradient term, and more particularly, their objective

was to investigate the possible effect of the gradient term on global existence or

nonexistence of solutions.

The main purpose of this chapter is to show the important effect of the gradient

term on the blow-up rate estimate when the power of the gradient term can increase

to the power function of the solution. This chapter is organised as follows. In section

3.2 and 3.3 we extend the results of Chlebik, Fila and Quittner [13] for the problem

of the heat equation with a dissipative gradient term defined in a ball and in a

convex domain, respectively, considering the blow-up set in section 3.3 and observe

that the gradient term can have opposite effects on the blow-up rate estimate in

both domains: when the perturbation is strong (2p/(p + 1) < q < p), the estimate

is more singular than when the perturbation is weak (q < 2p/(p+ 1)), which is less

singular.
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3.1. Introduction

3.1 Introduction

In this chapter we study the problem

ut = ∆u− h(|∇u|) + f(u) in Ω× (0, T )

u = 0 on ∂Ω× (0, T )

u(x, 0) = u0(x) in Ω,

 (3.1)

where

f ∈ C1([0,∞)), f(u) > 0 u > 0,

h ∈ C1([0,∞)), h(v) > 0, h
′
(v) ≥ 0 for v > 0.

and

h̃(v) := vh
′
(v)− h(v) ≤ kvq for v > 0 and some 0 ≤ k <∞, q > 1. (3.2)

The Chipot-Weissler equation with Dirichlet boundary conditions and initial data is

a special case of the problem (3.1), when f(u) = up and h(|∇u|) = µ|∇u|q, namely

ut = ∆u− µ|∇u|q + up in Ω× (0, T )

u(x, t) = 0 on ∂Ω× (0, T )

u(x, 0) = u0(x) in Ω.

 (3.3)

The problem (3.3) was first introduced in [11] in order to investigate the possible

effect of a gradient term on global existence or nonexistence of solutions of the

problem (3.3). Moreover, the problem was studied later by many authors; they

considered and investigated the existence of global and nonglobal positive solutions

to (3.1), especially for µ > 0 (see for instance [16],[45]). In particular, it is known

from [54] that the finite time blow-up may occur for large initial data when p > q,

on the other hand all solutions are global and bounded if q ≥ p if Ω is bounded (see

[16],[46]). Furthermore, it has been shown in [54] that blow-up in finite time occurs

when p > q in Rn, and also unbounded solutions always exist for the problem (3.3)
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3.1. Introduction

when p > q in whole space (see [55]). Therefore, it can be understood that there

is a competition between the reaction term up, which may cause blow-up as in the

problem

ut −∆u = up, x ∈ Ω, t > 0,

u = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

 (3.4)

and the gradient term, which fights against the blow-up.

Besides, the results are known for blow-up behaviour of nonglobal solutions of (3.3)

near blow-up. For instance in [53] the self-similar solution is considered when q =

2p/(p + 1), and it has been proven that u blows up at the single point x = 0 and

admits a limiting profile given by

u(x, T ) = C|x|−2/(p−1), for all x 6= 0.

Moreover, in [13] the authors showed that if Ω = BR = {x ∈ R : |x| < R} and u0 is

radial nonincreasing, then the gradient term has a strong effect on the final blow-up

profile of the solution of (3.3) when 2p/(p+ 1) < q < p and it takes the form

u(r, t) ≤ Cr−α, (r, t) ∈ (0, R]× [0, T ) (3.5)

for any α > q/(p− q), while there is no difference between the final blow-up profile

of the problem (3.3) and (3.4) when q ∈ (1, 2p/(p+ 1)), since in both problems, the

final blow-up profile takes the form (3.5) for any α > 2/(p− 1). Also, it was proved

that x = 0 is the only possible blow-up point in the radial case, and the blow-up set

is a compact subset of Ω if Ω is convex and q < 2p/(p + 1), which means that the

blow up points will not occur on the boundary (see [13]).

With regard to the estimate of the blow-up rates of the problem (3.3), it has been

proved in [13, 12, 18, 58] in the case q < 2p/(p + 1) and u ≥ 0 that the upper

(lower) blow-up estimate takes a form similar to that of the equation (3.4), is namely

C1(T − t)−1/(p−1) ≤ ‖u(t)‖∞ ≤ C2(T − t)−1/(p−1), as t→ T. (3.6)

The estimates (3.6) hold under the following conditions:
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3.2. The Radially Symmetric Case

• when Ω = Rn, p ≤ 1 + 2/n [12];

• when Ω = Rn or Ω = BR, p < (n + 2)/(n − 2), u is nonincreasing radially

symmetric and ut ≥ 0 [58] ;

• when Ω is bounded convex and (ut ≥ 0 or p ≤ 1 + 2/n) [13];

• when Ω is arbitrary and p ≤ 1 + 2/(n+ 1) [18].

In this chapter our aim is to prove that the blow-up set of the problem (3.1) is

a compact subset of Ω if Ω is convex and q ∈ ( 2p
p+1

, p), and also to show that the

gradient term has remarkable influence on the upper blow up rate estimate of the

problem (3.3) when q ∈ ( 2p
p+1

, p), which is different from the upper rate estimate of

(3.4) (see (3.6)) where q ∈ (1, 2p
p+1

).

3.2 The Radially Symmetric Case

The following lemma is a modification of the argument in the proof of Lemma 2.1

in [22], which guarantees that ur < 0 in Ω∩{r > 0} and urr(0, t) < 0, for t ∈ (0, T ).

Lemma 3.2.1. Consider problem (3.3) with 1 < q < p, µ > 0, and Ω = BR. Let

u0 ∈ X+, be radial non-increasing, and assume T := Tmax(u0) <∞. Then

ur < 0 for all r ∈ (0, R], t ∈ (0, T )

and

urr(0, t) < 0 for t ∈ (0, T ).

Proof. Denote Ω1 := Ω ∩ {x : x1 > 0}. We notice that v := ux1 satisfies

vt −∆v = f
′
(u)v − (h

′
(|∇u|) ∇u

|∇u|
) · ∇v in Ω1,

since v = 0 for x ∈ ∂Ω1, x1 = 0, and v < 0 for x ∈ ∂Ω1, x1 > 0. Then the maximum

principle implies v < 0 for x ∈ Ω1 and vx1(0, t) = ux1x1(0, t) < 0 for t > 0. Hence

urr(0, t) < 0.
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3.2. The Radially Symmetric Case

Under an additional assumption of monotonicity in time, it can be seen in the

proof of Theorem 39.2 in [47] that there is a simple property of gradient solution of

the problem (3.3), which we shall show in the next theorem.

Theorem 3.2.2. Consider the problem (3.3) with 1 < q < p, µ > 0, and Ω = BR.

Let u0 ∈ X+, be radial non-increasing, ut ≥ 0 in QT , and assume T := Tmax(u0) <

∞. Then there exists C > 0 such that

‖ur(t)‖∞ ≤ C1u
γ(0, t), (3.7)

with γ = min
(
(p+ 1)/2, p/q

)
> 1.

Proof. Since ut ≥ 0 and ur ≤ 0, we have

∂

∂r

(1

2
u2
r +

1

p+ 1
up+1

)
= (urr + up)ur =

(
ut + µ|ur|q −

n− 1

r
ur

)
ur ≤ 0,

hence by integration with respect to r, we have(1

2
u2
r +

1

p+ 1
up+1

)
(r, t) ≤ 1

p+ 1
up+1(0, t).

Therefore, we get (3.7) with γ = (p+1)/2, C1 = C1(p). However, for every t ∈ (0, T ),

at a point r ∈ (0, R] where |ur(., t)| achieves its maximum, we have

µ|ur|q = up + urr − ut +
n− 1

r
ur ≤ up,

due to ut ≥ 0, ur ≤ 0 and urr(r, t) ≤ 0. This gives (3.7) with γ = p/q, and

C1 = µ−1/q.

3.2.1 Blow-up Rate Estimate

In order to derive a formula to the rate estimate for problem (3.3), we need first to

recall the following theorem in [13], which shows that r = 0 is the only blow up

point and the behaviour of solutions at blow-up is different for equations (3.4) and

(3.3) with q ∈ (2p/(p+ 1), p).
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3.2. The Radially Symmetric Case

Theorem 3.2.3. [13] Consider problem (3.3) under assumptions of Lemma 3.2.1.

Then 0 is the only blow-up point. Moreover, for all α > α0, it holds

u(r, t) ≤ Cαr
−α, 0 ≤ t < T, 0 < r ≤ R,

with

α0 =

 2/(p− 1) if 1 < q ≤ 2p/(p+ 1),

q/(p− q) if 2p/(p+ 1) < q < p.

We are ready now to derive a formula for the rate estimate for the blow-up

solutions of problem (3.3).

Theorem 3.2.4. Let Ω = BR, u be a blow-up solution to problem (3.1), where u0 ∈

X+ ∩ C2(B̄R), is radial non-increasing and satisfies the monotonicity assumption

∆u0 + f(u0)− h(|∇u0|) ≥ 0 in BR.

Let f(u) = up with p > 1, assume h satisfies (3.2) with some q ∈ (2p/(p + 1), p).

Then there exits C > 0 such that the upper blow-up rate estimate takes the following

form

u(0, t) ≤ C(T − t)
−q

2(p−q) ,

where T is the blow-up time.

Proof. We introduce the function

J = ut − δF (u), (x, t) ∈ BR × (0, T ),

where δ > 0 and F is a non-negative function to be determined, F
′ ≥ 0, F ′′ ≥ 0.

Since ut = δF + J ,

Jt −∆J = utt −∆ut − δF ′[ut −∆u] + δF ′′|∇u|2

= f ′[J + δF ]− h′. ∇u
|∇u|

.(∇J + δF ′.∇u)− δF ′[f − h] + δF ′′|∇u|2

= f ′J − h′. ∇u
|∇u|

.∇J + δf ′F − δF ′[h′.|∇u| − h]− δF ′f + δF ′′|∇u|2.
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3.2. The Radially Symmetric Case

Our aim is to prove

f ′F − F ′f + F ′′|∇u|2 − F ′[h′.|∇u| − h] ≥ 0. (3.8)

It will then follow that J cannot attain a negative minimum in Ω × (0, t] for any

t < T . From (3.7)

‖∇u‖∞ ≤ Cuγ(0, t), x ∈ BR, with γ = min
{p+ 1

2
,
p

q

}
.

Since q > 2p
p+1

then 2p
q
− 1 < p, hence γ = 2p

q
− 1. We choose F (u) = u

2p
q
−1. Then

from (3.2) and ur ≤ 0 (u is a non-increasing function) for 0 < t < T and 0 < r ≤ R

there is C > 1 such that u(0, t) = Cu(r, t)

f ′F − F ′f + F ′′|∇u|2 − F ′[h′.|∇u| − h] ≥ f ′F − F ′f + F ′′|∇u|2 − kF ′|∇u|q

=
(
p− 2p

q
+ 1
)
up+

2p
q
−2(r, t) +

(2p

q
− 1
)(2p

q
− 2
)
u

2p
q
−3(r, t)|∇u(r, t)|2

− kC1

(2p

q
− 1
)
up+

2p
q
−2(0, t)

=
(
p− 2p

q
+ 1
)
up+

2p
q
−2(r, t) +

(2p

q
− 1
)(2p

q
− 2
)
u

2p
q
−3(r, t)|∇u(r, t)|2

− kC2

(2p

q
− 1
)
up+

2p
q
−2(r, t) ≥ 0

for k > 0 small enough and k ≤ C3

(
q(p+1)−2p

2p−q

)
, C3 = C−1

2 . By Theorem 3.2.3, u

blows up in finite time at r = 0. Therefore, if ε > 0 is small enough then

F (u) ≤ C0 <∞ if x ∈ ∂Bε, 0 < t < T.

Then by applying the maximum principle to ut we also have ut ≥ c > 0 on the

parabolic boundary of Bε × (ε, T ). It follows that J > 0 on the parabolic boundary

of Bε × (ε, T ), which leads to

ut(0, t) ≥ δF (u(0, t)), t ∈ (ε, T ). (3.9)

Let G(s) =
∫∞
s

du
F (u)

. Then (3.9) implies that

−dG(t)

dt
=

ut
F (u)

≥ δ.
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3.3. The Convex Case

Hence by integration

G(u(0, t)) ≥ G(u(0, t))−G(u(0, T )) ≥ δ(T − t).

Therefore also

u(0, t) ≤ G−1(δ(T − t)), t ∈ (ε, T ). (3.10)

Since f(u) = up with p > 1, we can choose F (u) = u
2p
q
−1, hence (3.8) will be

satisfied. Then

u(0, t) ≤ C(T − t)
−q

2(p−q) .

3.3 The Convex Case

We need the simple properties of the time-derivative ut and the Laplacian of u to

the problem (3.1) if Ω is convex, which we will show in the next lemma

Lemma 3.3.1. Consider the problem (3.1-3.2), let Ω be a convex bounded domain.

If 1 < q < p, then there is Ω′ ⊆ Ω such that

i. ut ≥ C in Ω′ if ∆u0 + f(u0)− h(|∇u0|) ≥ 0 in Ω.

ii. ∆u(x, t) < 0 in Ω′.

Proof. Take any point y0 ∈ ∂Ω. Now, let new orthogonal coordinates be chosen in

such a way that y0 is the origin and (1, 0, ..., 0) is the outward normal at y0.

Let Ω′ := Ω ∩ {x ∈ Rn : x1 > a}, where a < 0.

i. Let w = ut.

Then

wt −∆w = f ′(u)w − h′(|∇u|) ∇u
|∇u|

· ∇w in Ω× (0, T )

w(x, t) = 0 on ∂Ω× (0, T )

w(x, 0) = w0(x) ≥ 0 in Ω.


(3.11)

From (3.11) and the maximum principle, there exists C such that w = ut ≥ C.
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3.3. The Convex Case

ii. Let v = ux1 .

We notice that v satisfies

vt −∆v = f ′(u)v − h′(|∇u|) ∇u
|∇u|

· ∇v in Ω′.

Since v = 0 for x ∈ ∂Ω′, x1 = a, and v < 0 for x ∈ ∂Ω′, x1 > a,

the maximum principle implies v < 0 for x ∈ Ω′ and vx1((a, 0), t) =

ux1x1((a, 0), t) < 0 for t > 0. Hence ∆u((a, 0), t) < 0. In the above proof it

can be shown that a can be chosen independently of the initial point y0 ∈ ∂Ω.

Hence, by varying y0 along ∂Ω we conclude that there is a subset Ω′ of Ω such

that ∆u(x, t) < 0 in Ω′ ⊆ Ω.

The following theorem shows simple properties of the first order spatial derivative

to the problem (3.3).

Theorem 3.3.2. Consider the problem (3.3) with 1 < q < p, µ > 0, and Ω is a

convex bounded domain, and assume in addition that ut ≥ 0 in QT . Then there is

Ω
′ ⊆ Ω such that

‖∇u(x, t)‖∞ ≤ C1u
γ(a, t), (x, t) ∈ Ω′ × (0, T ), (3.12)

where γ = min(p+1
2
, p
q
) > 1.

Proof. Let Ω′ be defined as previously in Lemma 3.3.1. Since ut ≥ 0, and ux1 < 0

in Ω′ ⊆ Ω as we explained in Lemma 3.3.1, we have

∇(
1

2
(∇u)2 +

1

p+ 1
up+1) = ∇u∆u+ up∇u = (∆u+ up)∇u = (ut + µ|∇u|q).∇u ≤ 0,

hence, in Ω′×(0, T ) at any (x, t) such that x = (x1, 0), a ≤ x1 < 0, and by integrating

with respect to x1 we get

(
1

2
(∇u)2 +

1

p+ 1
up+1)((x1, 0), t) ≤ 1

p+ 1
up+1((a, 0), t),
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3.3. The Convex Case

hence

‖∇u(t)‖∞ ≤ C1u
p+1
2 ((a, 0), t), C1 = C1(p).

Therefore, we get (3.12) with γ = (p+ 1)/2.

On the other hand, for each t ∈ (0, T ), at a point x = (x1, 0) ∈ Ω
′
, a ≤ x1 < 0

where |∇u(., t)| achieves its maximum, we have

µ|∇u|q = up + ∆u− ut ≤ up,

due to ut ≥ 0, ∇u ≤ 0 and ∆u(x, t) ≤ 0. This yields (3.12) with γ = p/q and

C1 = µ−1/q.

Hence, since a is chosen independently of the initial point y0 ∈ ∂Ω, and by varying

y0 along ∂Ω we obtain the claim (3.12).

3.3.1 Blow-up Set

We shall prove in the next theorem that the blow-up in the problem (3.1) takes

place away from the boundary if Ω is convex and q > 2p/(p+ 1). In order to prove

that, we need first to introduce the following lemma.

Lemma 3.3.3. If 2p
p+1

< q < p, γ = p
q

and k ∈ (0,∞), then for |a| small enough,

there holds

1

2
[(p− γ)up+γ−1 + 4|a|−2uγ] ≥ 4εγ|a|u2γ−1, (3.13)

for every u ≥ 0.

Proof. Young’s inequality

Aα

α
+
Bβ

β
≥ AB, A,B ≥ 0, α, β > 1,

1

α
+

1

β
= 1,

with the choice γ = p
q
,

α =
[q(p+ 1)− 2p] + 2(p− q)

p− q
, β =

q(p− 1)

p(q − 1)
,

Aα

α
=

1

2
(p− γ)up+γ−1,

Bβ

β
= 2|a|−2uγ,

which implies the claim.
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Theorem 3.3.4. Let Ω be a convex bounded domain. If f(u) = up, p > 1 and

h satisfies (3.2) with some q ∈ ( 2p
p+1

, p), then the blow-up set of any solution of

(3.1-3.2) is a compact subset of Ω.

Proof. We assume without loss of generality that

∂u0

∂ν
< 0 on ∂Ω, (3.14)

since ν is unit normal at any point x ∈ ∂Ω.

We take any point y0 ∈ ∂Ω. Now, let the new orthogonal coordinates be chosen in

such a way that y0 is the origin and (1, 0, ..., 0) is the outward normal at y0.

Let Ω+
a = Ω ∩ {x ∈ Rn : x1 > a}, where a < 0 .

Using standard reflection principle we easily conclude from (3.14) that

ux1 < 0 in Ω+
a × (0, T ), (3.15)

provided |a| is small enough. To obtain an estimate from below on −ux1 in Ω+
a ×

(0, T ), we introduce a function

J = ux1 + c(x1)F (u). (3.16)

in Ω+
a × (0, T ), where c, F are nonnegative functions to be determined, and c′ ≥ 0,

F ′ ≥ 0, F ′′ ≥ 0.

We compute that

Jt −∆J + h′.
∇u
|∇u|

.∇J − (f ′ + c′h′F.
1

|∇u|
− 2c′F ′)J

= cF ′f − cFf ′ + cF ′h̃(|∇u|)− cc′h′F 2.
1

|∇u|
+ 2cc′FF ′

− c′′F − c(J − cF )2F ′′.

Using the relation

(J − cF )2 = c2F 2 + (J − 2cF )J,

h̃(|∇u|) = h̃(−∇u) = h̃(cF − J) ≤ k(cF − J)q < kcqF q + |J |q.
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Then

Jt −∆J + h′.
∇u
|∇u|

.∇J − bJ ≤ c{F ′f − f ′F + kcqF ′F q − c′h′F 2.
1

|∇u|

+ 2c′FF ′ − c2F 2F ′′ − c′′

c
F}, (3.17)

where b = f ′ + c′h′F.
1

|∇u|
− 2c′F ′ + cF ′|J |q−1 − c(|J | − 2cF )F

′′
.

If F and c satisfy

f ′F − F ′f − 2c′F ′F − kcqF ′F q +
c′′

c
F + c2F 2F ′′ ≥ 0, (3.18)

then the right hand side in (3.17) is non-positive. Therefore, J cannot attain a

positive maximum in Ω+
a × (0, t] for every t < T .

Next, we show that (3.18) is satisfied for

c(x1) = ε(x1 − a)2,

with |a| small enough and some suitably chosen F .

Recall f(u) = up, p > 1, choosing F (u) = uγ, 1 < γ < p, it is sufficient to prove

(p− γ)up+γ−1 − 4εγ|a|u2γ−1 − εqkγ|a|2quqγ+γ−1

+ 2|a|−2uγ + ε2|a|2γ(γ − 1)u3γ−2 ≥ 0. (3.19)

For every u ≥ 0 and if |a| is small enough, we can prove that

1

2
(p− γ)up+γ−1 ≥ εqkγ|a|2quγq+γ−1 (3.20)

if we choose γ = p/q and ε < ( p−γ
2kγ|a|2q )

1
q .

Inequality (3.19) follows immediately from (3.20) and (3.13).

Next, observe that J < 0 on {x : x1 > a} by (3.15) and J < 0 on {t = 0} by (3.14).

The maximum principle yields also J < 0 on Γ×(0, T ), where Γ = ∂Ω∩{x : x1 > a}.

Hence, J < 0 in Ω+
a × (0, T ).

Consequently

−ux1 ≥ ε(x1 − a)2F (u)
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at any (x, t) such that x = (x1, 0), a ≤ x1 < 0.

Integrating with respect to x1 and denoting

G(s) =

∫ ∞
s

du

F (u)
,

we get

G[u((x1, 0), t), t] ≥
∫ x1

a

c(ρ)dρ =
1

3
(x1 − a)3

and therefore,

u((x1, 0), t) ≤ G−1[
1

3
(x1 − a)3]

Thus, u is uniformly bounded on

{(x1, 0) : x1 ∈ [
a

2
, 0]} × (0, T ).

Then we can chose a independently of the initial point y0 ∈ ∂Ω. Hence, by varying y0

along ∂Ω we conclude that there is neighbourhood Ω
′
of ∂Ω such that u is uniformly

bounded in Ω
′ × (0, T ).

3.3.2 Blow-up Rate Estimate

In this subsection we consider the upper blow-up rate estimates for the solutions of

problem (3.1) with (3.2).

Theorem 3.3.5. Let Ω be a convex bounded domain and let u0 ∈ X+ ∩ C2(Ω̄) be

such that

∆u0 + f(u0)− h(|∇u0|) ≥ 0 in Ω.

If f(u) = up with p > 1 and h satisfies (3.2) with some q ∈ ( 2p
p+1

, p), then any

solution u of (3.1) which blows up at t = T satisfies

u(x, t) ≤ C(T − t)
−q

2(p−q) . (3.21)
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Proof. For any η > 0 that is small enough, set

Ωη = {x ∈ Ω : dist(x, ∂Ω) > η}.

We shall derive a lower bound on ut away from the parabolic boundary of Ω×(0, T ).

We introduce the function

J = ut − δF (u),

where δ > 0 and F is a non-negative function to be determined, F
′ ≥ 0, F

′′ ≥ 0.

Since ut = δF + J , by the proof of Theorem 3.2.4, a direct calculation shows

Jt −∆J = f
′
J − h′ ∇u

|∇u|
· ∇J + δf

′
F − δF ′ [h′|∇u| − h]− δF ′f + δF

′′ |∇u|2.

and we have to prove that

f
′
F − F ′f + F

′′ |∇u|2 − F ′ [h′ |∇u| − h] ≥ 0. (3.22)

From (3.12)

‖∇u‖∞ ≤ Cuγ(x, t), x ∈ Ωη with γ = min
{p+ 1

2
,
p

q

}
and since q > 2p

p+1
then 2p

q
− 1 < p, hence γ = 2p

q
− 1. We choose F (u) = u

2p
q
−1,

then from (3.1) and arguing as in the proof of Lemma 3.3.1, ux1 < 0 for x1 > a,

we obtain for any (x, t) such that x = (x1, 0), a ≤ x1 < 0 that, u(x, t) = Cu(a, t),

C > 1,

f
′
F − F ′f + F

′′ |∇u|2 − F ′ [h′ .|∇u| − h] ≥ f
′
F − F ′f + F

′′ |∇u|2 − kF ′|∇u|q

=
(
p− 2p

q
+ 1
)
up+

2p
q
−2(x, t) +

(2p

q
− 1
)(2p

q
− 2
)
u

2p
q
−3(x, t)|∇u(x, t)|2

− kC1

(2p

q
− 1
)
up+

2p
q
−2(a, t)

=
(
p− 2p

q
+ 1
)
up+

2p
q
−2(x, t) +

(2p

q
− 1
)(2p

q
− 2
)
u

2p
q
−3(x, t)|∇u(x, t)|2

− kC2

(2p

q
− 1
)
up+

2p
q
−2(x, t) ≥ 0
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for k > 0 small enough and k ≤ C3

(
q(p+1)−2p

2p−q

)
, C3 = C−1

2 . We obtain that J cannot

attain a negative minimum in Ω × (0, t] for any t < T . By Theorem 3.3.4, the set

of blow-up points is compact subset of Ω. Therefore, if η > 0 is small enough then

F (u) ≤ C0 < ∞ if x ∈ ∂Ωη, 0 < t < T . By Lemma 3.3.1(i), ut ≥ C > 0 on

the parabolic boundary of Ωη × (η, T ) provided δ is chosen sufficiently small and

consequently J > 0 in Ωη × (η, T ).

Hence,

ut
F (u)

≥ δ in Ωη × (η, T ). (3.23)

Let G(s) =
∫∞
s

du
F (u)

. Then (3.23) implies that

−dG(t)

dt
=

ut
F (u)

≥ δ,

by integration

G(u(x, t)) ≥ G(u(x, t))−G(u(x, T )) ≥ δ(T − t).

Therefore,

u(x, t) ≤ G−1(δ(T − t)), (x, t) ∈ Ωη × (η, T ).

This gives an upper bound on the blow up rate as t→ T .

Since f(u) = up with p > 1, we can choose

F (u) = u
2p
q
−1

and (3.22) is satisfied. For this choice of F , we obtain the estimate

u(x, t) ≤ C(T − t)
−q

2(p−q) .
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Chapter 4

Parabolic Liouville-type Theorems

and the Universal Estimates

Parabolic Liouville-type theorems have important applications, they can be effi-

ciently used in the proofs of a priori bounds, singularity and decay estimates, see

[44]. Liouville-type theorems mean, the statement of nonexistence of nontrivial

bounded solutions that are defined for all negative and positive times on the whole

space.

The main aim of the chapter is to prove the Liouville-type theorems and to es-

tablish the universal initial and final blow-up rates for the parabolic problem

ut − ∆u = up − µ|∇u|q when q > 2p/(p + 1). In section 4.2 we derive criteria

for initial data which guarantee occurring the blow-up in finite time. Section 4.3 is

devoted to obtain the Liouville-type theorem under the restriction p < pF in the

radial case and under the stronger restriction p < pB in the general (nonradial) case.

Next we shall study in section four the (universal) a priori bound for global solutions

and the usual blow-up rate estimates for q = 2p/(p+ 1) and for q > 2p/(p+ 1).
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4.1 Introduction

In this chapter, we consider the parabolic equation

ut −∆u = up − µ|∇u|q, x ∈ Rn, t ∈ R, (4.1)

for p > 1 and p > q > 2p/(p+ 1).

It’s well known that both elliptic and parabolic Liouville-type theorems play an

important role in the study of a priori estimates and (blow-up) singularities. For

example, it has been shown in [25] that the nonlinear elliptic problem

−∆u = up in Rn

does not admit any positive solution if p < pS. It was proved also that even positive

supersolutions of the equation (4.1) cannot exist if p < n
n−2

(see Theorem 8.4 in

[47]).

General nonexistence results for the problem (4.1) were obtained in [4]. It has been

shown there that the differential inequality

−Qu ≥ f(u) in Rn \BR0 ,

where n ≥ 3 and Q is a fully nonlinear operator, does not admit positive solutions

provided that f is continuous and positive in (0,∞) and

lim
s→0+

inf f(s)/s
n
n−2 > 0.

It has been shown in [2] that for the problem

−∆u+ |∇u|q = λf(u) in Rn \BR0

positive supersolutions do not exist if q > 1 and the function f can be compared

with a power p near zero or infinity.

Furthermore, Liouville-type theorems for nonnegative supersolutions of the elliptic

problem

−∆u+ b(x)|∇u| = c(x)u in Rn \BR0 (4.2)
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4.1. Introduction

were proved, where b and c are allowed to be unbounded. It was shown that if

lim infx→∞ 4c(x)− b(x)2 > 0 then no positive supersolutions can exist. However, it

is known previously in [6] and [7] that if b, c ∈ C(Rn), the problem

−∆u+ b(x)∇u ≥ c(x)u in Rn

does not admit any positive solution provided that b and c are bounded and

lim
x→∞

inf
[
4c(x)− |b(x)|2

]
> 0. (4.3)

Moreover, as a particular case of generalization of fully nonlinear elliptic operator,

it has been obtained in [49] that, if b and c are bounded in Rn \BR0 and (4.3) holds,

then the problem (4.2) does not admit positive supersolutions.

On the other hand, the parabolic Liouville type theorem for all p < pS for the heat

equation

ut −∆u = up, x ∈ Rn, t ∈ R, (4.4)

in the case of radial solutions was proved in [43]. The previous theorem is optimal,

since it is known that for n ≥ 3 and p ≥ pS, (4.4) admits positive stationary solutions

which are radial and bounded. However, the Liouville type theorem for (4.4) in the

general case under stronger restriction p < pB has been obtained in [47].

In [44] Liouville-type theorems for the problem (4.4) in half space

Rn
+ = {x ∈ Rn : x1 > 0} with boundary condition have been studied, if n ≤ 2 or

p < pB(n− 1) and n ≥ 3.

Furthermore, in Section 4.4, we will study problems involving first-order derivative

ut −∆u = up + g(u,∇u), x ∈ Ω, 0 < t < T

u = 0, x ∈ ∂Ω, 0 < t < T.

 (4.5)

The special case of the model problem (4.5) that we will also study in this section is

ut −∆u = up − µ|∇u|q, x ∈ Ω, 0 < t < T,

u(x, t) = 0, x ∈ ∂Ω, 0 < t < T.

 (4.6)
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4.2. Blow-up

The (universal) a priori bound for global solution and the usual blow-up rate esti-

mate of the perturbed problem (4.5) has been studied in [47] when the perturbation

term is not too strong, it was proved that the universal bounds of the problem (4.5)

when g = 0 and p > 1, remain valid for the perturbed problem (4.5) if p > q > 1

and 1 < q < 2p/(p+ 1), and these estimates take the form

u(x, t) + |∇u(x, t)|
2
p+1 ≤ C(1 + t

−1
p−1 + (T − t)

−1
p−1 ), x ∈ Ω, 0 < t < T. (4.7)

Our purpose in this chapter is to present new Liouville-type theorems for parabolic

equations with a gradient term if q > 2p/(p+ 1) in radial case and in general case.

Furthermore, we prove that the estimate (4.7) is true for the problem (4.5) for the

value q = 2p/(p+ 1). On the other hand, we show that, the universal bounds of the

form (4.7) do not remain valid for the perturbed problem (4.6) if q > 2p/(p + 1),

which takes the form

u(x, t) ≤ C(p,Ω)
(
1 + t−q/2(p−q) + (T − t)−q/2(p−q)).

4.2 Blow-up

In this section we consider the model problem

ut −∆u = f(u)− h(|∇u|), x ∈ Ω, t > 0,

u = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω.

 (4.8)

We are going to give here a criterion for u0, which guarantees that blow-up occurs if

one starts above a positive equilibrium. In order to prove that, we need to prepare

the following lemma.

Lemma 4.2.1. Assume Ω bounded and consider problem (4.8) where f : R → R

is a convex C1-function with f(0) = 0. Let u0, u0 ∈ L∞(Ω) be such that u0 ≥ u0,

u0 6≡ u0. Let u, u be the corresponding solutions of (4.8), and fix τ ∈ (0, Tmax(u0)).
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Then Tmax(u0) ≥ Tmax(u0), and if f(u) = up, h(|∇u|) = |∇u|q, p > q, then there

exists α > 1 such that

u ≥ αu, τ ≤ t < Tmax(u0).

Proof. Since u0 ≥ u0, by comparison principle u ≤ u and hence there exists C > 0

such that

u ≤ u ≤ C, for all x ∈ Ω, and t < Tmax(u0). (4.9)

Also, because of the convexity of f and f(0) = 0,

ut −∆u+ h(|∇u|) = f(u) ≥ f
′
(0)u,

and by the maximum principle this implies

u(x, t) ≥ −C. (4.10)

By (4.9) and (4.10) this proves that u is uniformly bounded in (0, Tmax(u0)) and we

have

Tmax(u0) ≥ Tmax(u0).

Furthermore, by the strong maximum principle and Hopf maximum principle we

have

u(x, τ) > u(x, τ) in Ω and
∂u

∂ν
(x, τ) <

∂u

∂ν
(x, τ) on ∂Ω, τ ∈ (0, Tmax(u0))

Therefore, there exists α > 1 such that u(x, τ) ≥ αu(x, τ) in Ω, τ ∈ (0, Tmax(u0)).

Now, in special cases f(u) = up and h(|∇u|) = |∇u|q we have

f(αu)− h(|∇(αu)|) = (αu)p − |∇(αu)|q

= αpup − αq|∇u|q

≥ αpup − αp|∇u|q

≥ α(up − |∇u|q),
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hence

(αu)t −∆(αu)− (αu)p + µ|∇(αu)|q ≤ α(ut −∆u− up + µ|∇u|q) = 0,

and by using comparison principle we obtain

u ≥ αu, τ ≤ t < Tmax(u0).

Theorem 4.2.2. Assume Ω is bounded, p > 1 and p > q > 2p
p+1

. Assume that (4.8)

with f(u) = up, h(|∇u|) = µ|∇u|q, µ > 0 and p > q has a classical equilibrium v,

with v > 0 in Ω. If u0 ∈ L∞(Ω) satisfies u0 ≥ v, u0 6≡ v, then Tmax(u0) <∞.

Proof. By Lemma 4.2.1 applied with u0 = v, there exists α > 1 and τ ∈

(0, Tmax(u0)), such that

u(x, t) ≥ αv(x), t ∈ [τ, Tmax(u0)). (4.11)

Denote z = z(t) =
∫

Ω
u(t)v dx. Multiplying the equation in (4.8) with v, integrating

by parts, using (3.12),(4.11) and by Hölder inequality, we obtain

z
′
=

∫
Ω

utv dx =

∫
Ω

u∆v dx+

∫
Ω

upv dx− µ
∫

Ω

|∇u|qv dx

= µ

∫
Ω

u|∇v|q dx− µ
∫

Ω

v|∇u|q dx+

∫
Ω

(upv − vpu)dx

= µ

∫
Ω

u|∇v|q dx− µ
∫

Ω

v|∇u|qdx+

∫
Ω

(1− (v/u)p−1)upv dx

≥ αµ

∫
Ω

v|∇v|q dx− µC
∫

Ω

upv dx+ (1− α1−p)

∫
Ω

upv dx

≥ αµ

∫
Ω

v|∇v|q dx− µC
(∫

Ω

v dx
)1−p

zp + (1− α1−p)
(∫

Ω

v dx
)1−p

zp

≥ C1 + C2z
p ≥ C2z

p,

for C small enough, C1 = C1(v,∇v,Ω), C2 = C2(u, v,Ω) and t ∈ [τ, Tmax(u0)). It

follows that u cannot exist globally.

48



4.3. Liouville-type Theorems for Parabolic Equations with Gradient Terms

4.3 Liouville-type Theorems for Parabolic Equa-

tions with Gradient Terms

In this section we establish proofs of Liouville-type theorems for parabolic equations

with gradient terms for q > 2p/(p+ 1) in two cases.

4.3.1 The Case of Radial Solutions for p < pF

In order to prove Liouville-type theorem for parabolic equation with a gradient term

in the radial case, we need some preliminary observations concerning radial steady

states. Let ψ1 be the solution of the equation

ψ
′′

+
n− 1

r
ψ
′
+ ψp − |ψ′ |q = 0, (4.12)

satisfying ψ(0) = 1, ψ
′
(0) = 0. It is known that the solution is defined on some

interval and it changes sign due to p ≤ pF (this follows from Theorem 2.4.1). We

denote r1 > 0 its first zero. By uniqueness for the initial value problem, it holds

ψ
′
1(r1) < 0. We thus have

ψ1(r) > 0, in [0, r1) and ψ1(r1) = 0 > ψ
′

1(r1).

By scaling of ψ1, we denote ψα(r) := αψ1(α
p−q
q r), which is the solution of (4.12)

with ψ(0) = α, ψ
′
(0) = 0, and with the first positive zero rα = α−

p−q
q r1.

As a result for the properties of ψ1 we obtain the following lemma.

Lemma 4.3.1. For any m > 0, we have

lim
α→∞

(sup{ψ′α(r) : r ∈ [0, rα] is such that ψα(r) ≤ m}) = −∞.

We are ready now to prove Liouville-type result for the parabolic equation (4.1)

by using arguments of intersection-comparison with (sign-changing) stationary

solutions.
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Theorem 4.3.2. Let 1 < p < pF and q > 2p
p+1

. Then (4.1) has no positive, radial,

bounded classical solution.

Proof. The proof is by contradiction. Assume that u is a positive, bounded classical

solution of (4.1), u(x, t) = U(r, t), where r = |x|.

By boundedness assumption and parabolic estimates, U and Ur are bounded on

[0,∞)×R. It follows from Lemma 4.3.1 that if α is sufficiently large, then U(r, t)−ψα
has exactly one zero in [0, rα] for any t and the zero is simple.

Next we claim that

z[0,rα](U(r, t)− ψα) ≥ 1, t ≤ 0, α > 0, (4.13)

where z[0,α](w) denotes the zero number of the function w in the interval [0, rα].

Indeed, if not, then U(r, t0) > ψα in [0, rα] for some t0. By Theorem 4.2.2 we know

that each solution of the Dirichlet problem

ut −∆u = up − µ|∇u|q, |x| < rα, t > 0,

u = 0, |x| = rα, t > 0,

u(x, t0) = U0(|x|), |x| < rα


blows up in finite time and U0 > ψα in [0, rα). If we choose initial function U0

between ψα and U(r, t0) we obtain by comparison principle that u and u both blow

up in finite time. This is contradiction to the global existence assumption on u, and

this proves the claim.

We put

α0 := inf{β > 0 : z[0,rα](U(r, t)− ψα) = 1 for all t ≤ 0 and α ≥ β}.

Considering large α, we get α0 <∞. Also α0 > 0. Indeed, for small α > 0 we have

ψα(0) < U(0, t) for t > 0 small and for t = 0. By the properties of the zero number

(see Theorem D.2.2), we can choose t < 0 small such that ψα(0)− U(r, t) has only

simple zeros and then by (4.13), z[0,rα](U(r, t)− ψα) ≥ 2.

We conclude that there are sequences αk → α0 and tk ≤ 0 such that

z[0,αk](U(r, tk)− ψαk) ≥ 2, k = 1, 2, ....
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and also by Theorem D.2.2, we obtain

z[0,αk](U(r, tk + t)− ψαk) ≥ 2, t ≤ 0, k = 1, 2, .... (4.14)

If we choose tk → −∞, then by the boundedness assumption and parabolic estimates

in Theorem C.2.1, passing to a subsequence, we can assume that

u(x, tk + t)→ v(x, t), x ∈ Rn, t ∈ R,

which is converging in C2,1(Rn ×R). Then there is δ > 0 such that for each fixed t,

U(r, tk + t)− ψαk → V (r, t)− ψα0 (4.15)

in C1[0, rα0 + δ], since V (|x|, t) = v(x, t). Then (4.14) and (4.15) give that for all

t ≤ 0, V (r, t)− ψα0 has at least two zeros or multiple zero in [0, rα0).

By Theorem D.2.2, we can choose t < 0 such that V (r, t) − ψα0 has only simple

zeros (and hence at least two of them). Because U(r, tk + t)− ψα0 → V (r, t)− ψα0

in C1[0, rα0 ] if k is large, it has at least two simple zeros in [0, rα0) as well. However,

for α > α0, α → α0, the function u(r, tk + t) − ψα has at least two zeros in [0, rα),

this contradicts the definition of α0.

Then we conclude that the assumption u 6≡ 0 leads to a contradiction, which proves

the theorem.

4.3.2 The Case of Nonradial Solutions for p < pB

The proof of Theorem 4.3.6 below is based on integral estimates for (local) positive

solutions (cf. Proposition 4.3.5 below). Moreover, the proof of Proposition 4.3.5 is

based on a key gradient estimate for local solutions of (4.1) (see (4.17) below). To

establish this estimate, we prepare the following lemma, which provides a family of

integral estimates relating any C2-function with its gradient and its Laplacian. In

the rest of this section we use the notation
∫ ∫

=
∫ T
−T

∫
Ω

for simplicity.

For the proof of Lemma 4.3.4, we need the following lemma, which has been proved

in [47].
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Lemma 4.3.3. [47] Let Ω be an arbitrary domain in Rn, 0 ≤ φ ∈ D(Ω), and

0 < u ∈ C2(Ω). Fix q ∈ R and denote

I =

∫
Ω

φuq−2|∇u|4dx, J =

∫
Ω

φuq−1|∇u|2(∆u)dx, K =

∫
Ω

φuq(∆u)2dx.

Then, for any k ∈ R with k 6= −1, there holds

αI + βJ + γK ≤ 1

2

∫
Ω

uq|∇u|2(∆φ)dx+

∫
Ω

uq[∆u+ (q − k)u−1|∇u|2](∇u · ∇φ)dx,

where

α = −n− 1

n
k2 + (q − 1)k − q(q − 1)

2
, β =

n+ 2

n
k − 3q

2
, γ = −n− 1

n
.

Now, we turn to present Lemma 4.3.4 and its proof.

Lemma 4.3.4. Let Ω be an arbitrary domain in Rn, T > 0, and 0 ≤ φ ∈ D(Ω ×

(−T, T )). Let 0 < u ∈ C2,1(Ω× (−T, T )) be a solution of

ut −∆u = up − µ|∇u|q, p > 1, p > q >
2p

p+ 1
in Ω× (−T, T ). (4.16)

Consider any k ∈ R with k 6= −1 and denote

I =

∫∫
φu−2|∇u|4dxdt, L =

∫∫
φu2pdxdt,

where the above and below integrals are over Ω× (−T, T ). Then, it holds

αI+δL ≤ C(n, p, k, µ)

∫∫ {
φ[(ut)

2 + |ut|u−1|∇u|2 +up−1|∇u|2]+ |∇u|2|∆φ|
}

dxdt

+ C(n, p, k, µ)

∫∫ {
(up + |ut|+ u−1|∇u|2)|∇u.∇φ|+ up+1|φt|

}
dxdt, (4.17)

where

α = −((n− 1)k + n)
k

n
, δ = −(n− 1)(1 + 2µ+ µ2) + (n+ 2)(1 + µ)k/p

n
.

(4.18)

Assume that 1 < p < pB. Then the constants α, δ defined in (4.18) satisfy α, δ > 0,

where k = k(n, p) ∈ R, k 6= −1.

52



4.3. Liouville-type Theorems for Parabolic Equations with Gradient Terms

Proof. i. We apply Lemma 4.3.3 with q = 0. Denoting

J =

∫∫
φu−1|∇u|2∆u dxdt, K =

∫∫
φ(∆u)2 dxdt,

this gives us with using (3.12) and ∆u = ut − up + µ|∇u|q that

−
(
n− 1

n
k + 1

)
kI +

n+ 2

n
kJ − n− 1

n
K

≤ 1

2

∫∫
|∇u|2∆φ dxdt+

∫∫
[∆u− ku−1|∇u|2]∇u · ∇φ dxdt

≤ 1

2

∫∫
|∇u|2∆φ dxdt+

∫∫
(ut − up + µup − ku−1|∇u|2)∇u · ∇φ dxdt.

(4.19)

Now, since ∆u = ut − up + µ|∇u|q, we obtain

K =

∫∫
φ(ut)

2 dxdt+

∫∫
φu2p dxdt− 2

∫∫
φuput dxdt

+ 2µ

∫∫
φ|∇u|qut dxdt− 2µ

∫∫
φup|∇u|q dxdt+ µ2

∫∫
φ|∇u|2q dxdt.

Therefore,

−K ≥ −
∫∫

φ(ut)
2 dxdt−

∫∫
φu2p dxdt+ 2

∫∫
φuput dxdt

− 2µC

∫∫
φ|∇u|qut dxdt− 2µ

∫∫
φup|∇u|q dxdt− µ2

∫∫
φ|∇u|2q dxdt

hence, by (3.12) and by integrating by parts in t we obtain,

−K ≥ −
∫∫

φ(ut)
2 dxdt− (1 + 2µ+ µ2)L− (

2− 2µC

p+ 1
)

∫∫
up+1φt dxdt,

(4.20)

since ∆u = ut − up + µ|∇u|q, integrating by parts in x, and by (3.12), we have

pJ = −
∫∫

φ∇u · ∇(up) dxdt+ p

∫∫
φutu

−1|∇u|2 dxdt

+ pµ

∫∫
φu−1|∇u|2|∇u|q dxdt

=

∫∫
φ(∆u)up dxdt+

∫∫
(∇φ · ∇u)up dxdt+ p

∫∫
φutu

−1|∇u|2 dxdt

+ pµ

∫∫
φu−1|∇u|2|∇u|q dxdt
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= −
∫∫

φu2pdxdt+

∫∫
φuput dxdt+µ

∫∫
φup|∇u|qdxdt+

∫∫
(∇φ·∇u)updxdt

+ p

∫∫
φutu

−1|∇u|2 dxdt+ pµ

∫∫
φu−1|∇u|2|∇u|q dxdt

≥ −
∫∫

φu2p dxdt+

∫∫
φuput dxdt−µ

∫∫
φu2p dxdt+

∫∫
(∇φ ·∇u)up dxdt

+ p

∫∫
φutu

−1|∇u|2 dxdt− pµ
∫∫

φup−1|∇u|2 dxdt,

by integrating by parts in t we obtain

pJ ≥ −(1 + µ)L−
(

1

p+ 1

)∫∫
up+1φt dxdt+

∫∫
(∇φ · ∇u)up dxdt

+p

∫∫
φutu

−1|∇u|2 dxdt− pµ
∫∫

φup−1|∇u|2 dxdt.

(4.21)

Substituting (4.20) and (4.21) in (4.19),

−
(
n− 1

n
k + 1

)
kI +

{(
n+ 2

n

)
k
[
− 1

p
(1 + µ)

]
−
(
n− 1

n

)
(1 + 2µ+ µ2)

}
L

≤ C(n, p, k, µ)

∫∫ {
φ[(ut)

2 + |ut|u−1|∇u|2 + up−1|∇u|2] + |∇u|2|∆φ|
}

dxdt

+ C(n, p, k, µ)

∫∫ {
(up + |ut|+ u−1|∇u|2)|∇u · ∇φ|+ up+1|φt|

}
dxdt,

where

α = −
[
n− 1

n
k + 1

]
k = −[(n− 1)k + n]

k

n
,

δ =

{(
n+ 2

n

)
k

(
− 1 + µ

p

)
−
(
n− 1

n

)
(1 + 2µ+ µ2))

}
= −(n− 1)(1 + 2µ+ µ2) + (n+ 2)(1 + µ)k/p

n

In order to be δ > 0, we can say that

−(n− 1) + (n+ 2)k/p

n
> −(n− 1)(1 + 2µ+ µ2) + (n+ 2)(1 + µ)k/p

n
= δ > 0

ii. Therefore, for k < 0, the condition α, δ > 0 is equivalent to

(n− 1)p

n+ 2
< −k < n

n− 1
.

This choice of k < 0 is possible if p < pB.
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Proposition 4.3.5. Let 1 < p < pB and let B1 be the unit ball in Rn. There exist

r = r(n, p) > (n + 2)(p− 1)/2 such that if 0 < u ∈ C2,1(B1 × (−1, 1)) is a solution

of

ut −∆u = up − µ|∇u|q, p > 1, p > q >
2p

p+ 1
, |x| < 1, − 1 < t < 1,

then ∫ 1/2

−1/2

∫
|x|<1/2

urdxdt ≤ C(n, p). (4.22)

Proof. Taking k as in Lemma 4.3.4(ii), we will estimate the terms on the RHS of

(4.17). Firstly, we shall prepare a suitable test function, and we take ξ ∈ D(B1 ×

(−1, 1)) such that ξ = 1 in B1/2 × (−1/2, 1/2) and 0 ≤ ξ ≤ 1.

By taking φ = ξ
4p
p−1 , we have

|∇φ| ≤ Cφ
3p+1
4p , |∆φ| ≤ Cφ

p+1
2p , |φt| ≤ Cφ

3p+1
4p ≤ φ

p+1
2p . (4.23)

Secondly, we notice that∫∫
|∇u|2(|∆φ|+ φ−1|∇φ|2 + |φt|)dxdt ≤ η(I + L) + C(η), η > 0. (4.24)

Indeed, this follows from Young’s inequality and (4.23), by writing

|∇u|2(|∆φ|+ φ−1|∇φ|2 + |φt|) = uu−1φ1/2φ−1/2|∇u|2(|∆φ|+ φ−1|∇φ|2 + |φt|)

≤ ηφu−2|∇u|4 + C(η)φ−1u2(|∆φ|+ φ−1|∇φ|2 + |φt|)2

≤ ηφu−2|∇u|4 + C(η)φ−1u2(3φ
p+1
2p )2

= ηφu−2|∇u|4 + C(η)φ
1
pu2

≤ ηφu−2|∇u|4 + ηφu2p + C(η).

Now, we fix ε > 0. Using Young’s inequality, (4.23) and (4.24), we estimate the

RHS of (4.17) as follows∫∫ {
φ[(ut)

2 + |ut|u−1|∇u|2 + up−1|∇u|2] + |∇u|2|∆φ|
}

dxdt

+

∫∫ {
(up + |ut|+ u−1|∇u|2)|∇u · ∇φ|+ up+1|φt|

}
dxdt
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≤ ε

∫∫
φ[u2p + u−2|∇u|4]dxdt

+ C(ε)

∫∫
[φ(ut)

2 + |∇u|2(φ−1|∇φ|2 + |∆φ|) + (φ−(p+1)|φt|2p)
1
p−1 ]dxdt

≤ 2ε(I + L) + C(ε){1 +

∫∫
φ(ut)

2 dxdt}. (4.25)

For treating the last term in the above inequality, we will multiply the equation

(4.16) by φut and integrate by parts in x, we use (3.12), and integrate by parts in t,

we have∫∫
φ(ut)

2 dxdt =

∫∫
φut∆u dxdt+

∫∫
φuput dxdt− µ

∫∫
φ|∇u|qut dxdt

≤
∫∫

φut∆u dxdt+ (1 + |µ|)
∫∫

φuput dxdt

=

∫∫ {
φ∂t
[
(1 + |µ|) u

p+1

p+ 1
− |∇u|

2

2

]
− (∇φ · ∇u)ut

}
dxdt.

By integrating by parts in t, and then by using Young’s inequality, we obtain∫∫
φ(ut)

2dxdt =

∫∫ {[ |∇u|2
2
− (1 + |µ|) u

p+1

p+ 1

]
φt − (∇φ · ∇u)ut

}
dxdt

≤ 1

2

∫∫
|∇u|2(|φt|+ |∇φ|2φ−1)dxdt+

1

2

∫∫
φ(ut)

2dxdt

+
(1 + |µ|)
p+ 1

∫∫
up+1|φt|dxdt.

Thus by (4.24) and (4.23), and by Young’s inequality for η > 0, we have∫∫
φ(ut)

2dxdt ≤
∫∫
|∇u|2(|φt|+ |∇φ|2φ−1)dxdt+

2(1 + |µ|)
p+ 1

∫∫
up+1|φt|dxdt

≤ η(I + L) + C(η) + η

∫∫
φu2pdxdt+ C(η)

∫∫
φ−

p+1
p−1 |φt|

2p
p−1 dxdt

≤ 2η(I + L) + C(η). (4.26)

Combining (4.26) with η = ε(2C(ε))−1, (4.25) and (4.17), we will have

αI + δL ≤ C(n, p)ε(I + L) + C(ε).

Since α, δ > 0, and by choosing ε sufficiently small, we conclude that I, L ≤ C.
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Now, we state Liouville-type theorems for parabolic problems with a gradient

term for q > 2p/(p+ 1). The proof of Theorem 4.3.6 is a direct consequence of the

space-time integral estimates (4.22) for (local) solutions of (4.1). It is based on the

simple homogeneity argument.

Theorem 4.3.6. Let 1 < p < pB, then equation (4.16) has no positive classical

solution.

Proof. Let R > 0. Let u be a solution of (4.16). Then for each R > 0 , v(x, t) =

R2/(p−1)u(Rx,R2t) solves (4.16) in B1 × (−1, 1). It follows from Proposition 4.3.5

that ∫ R2/2

−R2/2

∫
|y|<R/2

ur(y, s)dyds = Rn+2

∫ 1/2

−1/2

∫
|x|<1/2

ur(Rx,R2t)dxdt

= Rn+2−2r/(p−1)

∫ 1/2

−1/2

∫
|x|<1/2

vr(x, t)dxdt ≤ C(n, p)Rn+2−2r/(p−1)

Since r > (n+2)(p−1)/2, and by lettingR→∞, we conclude that
∫∞
−∞

∫
Rn u

rdyds =

0, hence u ≡ 0.

Remark 4.3.7. It is clear that the estimate (3.21) implies nonexistence of positive

solution of (4.1). On the other hand, if Theorem 4.3.6 were known for all p > 1 and

p > q > 2p
p+1

, then this would imply Theorem 3.3.5 as well.

Moreover, Theorem 3.3.5 guarantees that Theorem 4.3.6 remains true for nontrivial

nonnegative radial classical solutions bounded or not.

4.4 A priori Bounds and Blow-up Rates

In this section we will consider the a priori bounds and blow up rates in two cases:

i. for q = 2p/(p+ 1)

ii. for q > 2p/(p+ 1)
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4.4.1 Case i: q = 2p/(p+ 1)

In this subsection we use a general method which unifies and improves many results

concerning universal (independent of the solution itself and even possibly of the

domain) a priori estimates of global solutions, blow up rates of non-global solutions,

initial blow-up rates of local solutions, decay rates of global solutions and spatial

singularity estimates for local solutions of the perturbed problem (4.5). This method

is based on a doubling lemma, a rescaling argument, and the parabolic Liouville-

type theorems. The solution that we consider are defined on an arbitrary spatial

domain, without any prescribed initial conditions, but they may or may not satisfy

boundary conditions.

In order to show that the universal bounds of the form (4.7) are also satisfied for

the problem (4.5) when q = 2p/(p+ 1), we need to recall the doubling lemma from

[44], and Liouville-type theorems from [43] and [44].

Lemma 4.4.1. [44] Let (X, d) be a complete metric space and let φ 6= D ⊂ Σ ⊂ X,

with Σ closed. Set Γ = Σ\D. Finally let M : D → (0,∞) be bounded on compact

subsets of D and fix a real k > 0. If there exists y ∈ D such that

M(y)dist(y,Γ) > 2k

then there exists x ∈ D such that

M(x)dist(x,Γ) > 2k, M(x) ≥M(y),

and

M(z) ≤ 2M(x) for all z ∈ D ∩BX(x, kM−1(x)).

Theorem 4.4.2. [43] Let 1 < p < pS. Then the equation

ut −∆u = up, x ∈ Rn, t ∈ R,

has no positive, radial, bounded classical solution.
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Theorem 4.4.3. [44] Let p > 1. Assume n ≤ 2, or p < (n − 1)(n + 1)/(n − 2)2

and n ≥ 3. Then the problem

ut −∆u = up, x ∈ Rn
+, t ∈ R,

u = 0, x ∈ ∂Rn
+, t ∈ R

 (4.27)

has no positive bounded classical solution.

The following result shows that universal bounds of the problem (4.5) when

q < 2p/(p+ 1) are the same as that of the problem (4.5) when q = 2p/(p+ 1).

Theorem 4.4.4. Let p > 1 and T > 0. Assume that either

p < pB, or p < pS, Ω = Rn or BR, u = u(|x|, t), g = g(u, |ξ|). (4.28)

Assume in addition that the function g : R+ ×Rn → R satisfies the growth assump-

tion

|g(u, ξ)| ≤ C0(1 + |u|p1 + |ξ|q)

for some 1 ≤ p1 ≤ p and q = 2p/(p+ 1).
(4.29)

Then for any non negative classical solution of (4.5), there holds

u(x, t) + |∇u(x, t)|
2
p+1 ≤ C(1 + t

−1
p−1 + (T − t)

−1
p−1 ), x ∈ Ω, 0 < t < T,

with C = C(p, p1, q, C0,Ω) > 0.

Proof. Assume the contrary. Then there exist sequences Tk ∈ (0,∞), uk, yk ∈ Ω,

sk ∈ (0, Tk) such that uk solves (4.5), and the function

Mk = u
p−1
2

k + |∇uk|
p−1
p+1 (4.30)

satisfies

Mk(yk, sk) > 2k(1 + d−1
k (sk)), (4.31)

where dk(t) = min(t, Tk − t)
1
2 . We will use Lemma 4.4.1 with X = Rn+1 equipped

with the parabolic distance

dp[(x, t), (y, s)] = |x− y|+ |t− s|
1
2 ,
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Σ = Σk = Ω̄× [0, Tk], D = Dk = Ω̄× (0, Tk) and Γ = Γk = Ω̄× {0, Tk}

dk(t) = distp((x, t),Γk), (x, t) ∈ Σk.

By Lemma 4.4.1, there exist xk ∈ Ω, tk ∈ (0, Tk) such that

Mk(xk, tk) > 2kd−1
k (tk), (4.32)

Mk(xk, tk) > Mk(yk, sk) > 2k

and

Mk(x, t) ≤ 2Mk(xk, tk), (x, t) ∈ Dk ∩ B̃k, (4.33)

where

B̃k = {(x, t) ∈ Rn+1 : |x− xk|+ |t− tk|
1
2 ≤ kλk}

and

λk = M−1
k (xk.tk)→ 0 (4.34)

and by (4.32) for all (x, t) ∈ B̃k, we have

|t− tk| ≤ k2λ2
k < d2

k(tk) = min {tk, Tk − tk}, t ∈ (0, Tk).

It follows that(
Ω ∩

{
|x− xk| <

kλk
2

})
×
(
tk −

k2λ2
k

4
, tk +

k2λ2
k

4

)
⊂ Dk ∩ B̃k.

Now we rescale uk by setting

vk(y, s) = λ
2
p−1

k uk(xk + λky, tk + λ2
ks), (y, s) ∈ D̃k, (4.35)

where

D̃k :=
(
λ−1
k (Ω− xk) ∩

{
|y| < k

2

})
×
(
− k2

4
,
k2

4

)
.
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The function vk solves

∂svk −∆yvk = vpk + gk, (y, s) ∈ D̃k,

vk = 0, y ∈ λ−1
k (∂Ω− xk) ∩ |y| <

k

2
, |s| < k2

4
,

 (4.36)

with

gk(y, s) = λ
2p
p−1

k g
(
λ
−2
p−1

k vk(y, s), λ
− p+1
p−1

k ∇vk(y, s)
)
.

Moreover we have

v
p−1
2

k (0) + |∇vk|
p−1
p+1 (0) = λku

p−1
2

k (xk, λk) + λpk|∇uk(xk, tk)|
p−1
p+1 = 1, (4.37)

and (4.33) implies

v
p−1
2

k (y, s) + |∇vk|
p−1
p+1 (y, s) ≤ 2, (y, s) ∈ D̃k. (4.38)

The growth assumption (4.29) implies

|gk| ≤ Cλmk , m = min
{2(p− p1)

p− 1
,
2p− q(p+ 1)

p− 1

}
= 0.

Let ρk = dist(xk, ∂Ω), then after passing to a subsequence either

ρk/λk →∞ (4.39)

or

ρk/λk → C ≥ 0. (4.40)

In case (4.39):

By using (4.36), (4.38), (4.34), Lp estimates and the embedding (C.9), we deduce

that some subsequence of vk converges in C1+σ,σ
2 (Rn × R), σ ∈ (0, 1) to a bounded

classical solution 0 ≤ v ∈ W 2,1;r(Rn × R), 1 < r < ∞, which satisfies vs − ∆v ≤

vp+C. Therefore we get v
p−1
2 (0)+ |∇v|

p−1
p+1 (0) = 1, so that v is non-trivial, moreover,

v and∇v are bounded. Since vs−∆v−vp−C ≤ 0 = ut−∆u−up, then by comparison

principle we have v ≤ u, since u ≥ 0 is the solution of (4.4) with u(0, 0) ≥ 1, also v
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satisfies vs−∆v ≥ vp−C. Furthermore, vs−∆v− vp +C ≥ 0 = ut−∆u− up, and

also by strong comparison principle (Proposition D.1.4) we obtain that v ≥ u. We

conclude that 0 ≤ v = u.

As a consequence of strong maximum principle (Proposition D.1.4), we have either

u > 0 in Rn+1, or

u = 0 in Rn × (−∞, t0] and u > 0 in Q := Rn × (t0,∞), (4.41)

for some t0 < 0. Sine u ≤ C due to (4.38), then in the latter case we have ut−∆u ≤

Cp−1u in Q and by using maximum principle in Proposition D.1.1, we have that

u = 0 in Q, which is a contradiction. Then u > 0 contradicts Theorem 4.4.2.

In the case (4.40):

Let x̃j ∈ ∂Ω be such that dj = |xj− x̃j| and let Rj be the orthogonal transformation

in Rn that maps −e1 = (−1, 0, ..., 0) onto the outer normal vector to ∂Ω at x̃j. Now

we define

vk(y, s) = λ
2
p−1

k u(λkRjy + xk, λ
2
ks+ tk)

for (y, s) ∈ ¯̃Dk ×
(
− k2

4
,
k2

4

)
,

where D̃k = {y ∈ Rn : λkRjy + xk ∈ Ω}.

Then vk is solution of

∂svk −∆kvk = vpk + gk in D̃k ×
(
− k2

4
,
k2

4

)
vk = 0 on ∂D̃k ×

(
− k2

4
,
k2

4

)
with

gk(y, s) = λ
2p
p−1

k g
(
λ
−2
p−1

k vk(y, s), λ
− p+1
p−1

k ∇vk(y, s)
)
.

Clearly D̃k approaches (locally) the half space Hc = {y1 > −c} as λk → 0.

From (4.36), (4.38), (4.34), interior estimates and embedding (C.9) we obtain sub-

sequence vk which converges in Cα(H̄c), 0 < α < 1 to a solution of

∂sv −∆yv = lvp + g, y ∈ Hc, s ∈ R
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v = 0 y ∈ ∂Hc, s ∈ R

with v(0, 0) = λ
2
p−1

k u(λkx̃j +xk, tk) = 1. Similarly as in the last case we obtain v > 0

which contradicts Theorem 4.4.3

As an interesting consequence of Theorem 4.4.4 in the case of Rn, we obtain the

universal decay of all nonnegative global solutions of (4.5) in Rn × (0,∞).

Corollary 4.4.5. Let p > 1 and u be a global (non-negative) solution of (4.5) on

Rn × (0,∞). Assume (4.29) and

p < pB, or p < pS, u = u(|x|, t), g = g(u, |ξ|). (4.42)

Then it holds

u(x, t) ≤ C(n, p)t−
1
p−1 , x ∈ Rn, t > 0.

4.4.2 Case ii: q > 2p/(p+ 1)

Deriving an universal a priori bound for global solution and the blow up rate estimate

based on deriving some basic estimates for positive solutions of (4.6) for

q > 2p/(p+ 1). These estimates can be shown in the next lemma.

Lemma 4.4.6. Assume Ω bounded and convex, p > 1, p > q > 2p/(p+ 1),

0 ≤ φ1 ∈ D(Ω×(−T, T )), and 0 < T <∞. Let u be a nonnegative classical solution

of (4.6) on (0, T ). Then for all t ∈ (0, T/2], there holds∫
Ω

u(x, t)φ1dx ≤ C(p,Ω)(1 + T−1/(p−1)), (4.43)

and∫ t

0

∫
Ω

(up(x, s)− µ|∇u(x, s)|q)φ1dxds ≤ C(p,Ω)(1 + t)(1 + T−1/(p−1)). (4.44)

Proof. Denote y = y(t) :=
∫

Ω
u(t)φ1dx, multiplying the equation (4.6) by φ1, inte-

grating by parts, using ∆φ1 = −φ1, and (3.12). We obtain

d

dt

∫
Ω

u(t)φ1dx−
∫

Ω

∆u(t)φ1dx =

∫
Ω

up(t)φ1dx− µ
∫

Ω

|∇u(t)|qφ1dx,
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hence

d

dt

∫
Ω

u(t)φ1dx =

∫
Ω

up(t)φ1dx− µ
∫

Ω

|∇u(t)|qφ1dx−
∫

Ω

uφ1dx

≥
∫

Ω

up(t)φ1dx− C
∫

Ω

up(t)φ1dx−
∫

Ω

u(t)φ1dx. (4.45)

By Jensen’s inequality, we obtain that

d

dt

∫
Ω

u(t)φ1dx ≥ C1

(∫
Ω

u(t)φ1dx
)p
−
∫

Ω

u(t)φ1dx.

Since u exists on (0, T ), we deduce that∫
Ω

u(t)φ1dx ≤ C2(p,Ω)(1 + (T − t)−1/(p−1)), 0 < t < T.

Now, integrating (4.45) in time over (τ, t), 0 < τ < t < T/2 and using (4.43), we

obtain∫ t

τ

∫
Ω

(
up(s)− µ|∇u(s)|q

)
φ1dxds =

∫ t

τ

∫
Ω

u(s)φ1dxds+

∫
Ω

u(t)φ1dx−
∫

Ω

u(τ)φ1dx

≤ C(p,Ω)(1 + t)(1 + T−1/(p−1)),

by letting τ → 0, we will have (4.44).

In Lemma 4.4.8 below, we will show a further estimate for positive solution of

(4.6) when q > 2p/(p+ 1), whose proof uses the special test-function constructed in

the following lemma (see [8] and [48]) by considering a singular elliptic problem.

Lemma 4.4.7. [8, 48] Assume Ω bounded and 0 < α < 1. Then the problem

−∆ξ = φ−α1 , x ∈ Ω,

ξ = 0, x ∈ ∂Ω,

 (4.46)

admits a unique classical solution ξ ∈ C(Ω̄) ∩ C2(Ω). Moreover, we have φ−α1 ∈

L1(Ω), ξ ∈ H1
0 (Ω), and

ξ(x) ≤ C(Ω, α)δ(x), x ∈ Ω.
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Lemma 4.4.8. Assume Ω bounded and convex, p > 1, p > q > 2p/(p+ 1), 0 < T <

∞ and ε ∈ (0, (p+1)/2]. Let u be a nonnegative classical solution of (4.6) on (0, τ).

Then for all t ∈ (0, T/2], there holds∫ t

0

∫
Ω

u
p+1
2
−εdxds ≤ C(p,Ω, ε)(1 + t)(1 + T−1/(p−1)).

Proof. For given 0 < α < 1, Lemma 4.4.7 guarantees the existence of a function

ξ ∈ C(Ω̄) ∩ C2(Ω) ∩H1
0 (Ω) such that −∆ξ = φ−α1 in Ω. Moreover, ξ satisfies

ξ(x) ≤ C(Ω, α)δ(x), x ∈ Ω. (4.47)

We choose α = r
′

r
, where r is defined by

1

r
=

1

2
− ε

p− 1
,

1

r′
= 1− 1

r
=

1

2
+

ε

p− 1
.

Taking ξ as a test function in (4.6) and integrating over (τ, t), we obtain∫ t

τ

∫
Ω

uφ−α1 dxds =

∫ t

τ

∫
Ω

[
up − µ|∇u|q

]
ξdxds+

∫
Ω

u(τ)ξdx−
∫

Ω

u(t)ξdx.

Due to (4.43), (4.44) and (4.47), we have∫ t

τ

∫
Ω

uφ−α1 dxds ≤ C

∫ t

τ

∫
Ω

[
up − µ|∇u|q

]
δ(x)dxds+ C

∫
Ω

u(τ)δ(x)dx− C
∫

Ω

u(t)δ(x)dx.

≤ C

∫ t

τ

∫
Ω

[
up − µ|∇u|q

]
φ1dxds+ C

∫
Ω

u(τ)φ1dx− c
∫

Ω

u(t)φ1dx,

hence ∫ t

τ

∫
Ω

uφ−α1 dxds ≤ C(p,Ω, ε)(1 + t)(1 + T−1/(p−1)).

By using Hölder’s inequality, the last estimate and (4.44) imply∫ t

0

∫
Ω

u
p+1
2
−ε =

∫ t

0

∫
Ω

(
up/rφ

1/r
1

)(
u1/r

′

φ
−1/r
1

)
dxdt

≤
(∫ t

0

∫
Ω

upφ1dxdt
)1/r(∫ t

0

∫
Ω

uφ−α1 dxdt
)1/r

′

≤ C(p,Ω, ε)(1 + t)(1 + T−1/(p−1)).
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Further theorems can be used in the proof of Theorem 4.4.12 below; see Theorems

4.4.9, 4.4.10 and 4.4.11 below, which are from [47], [25] and [51], respectively.

Theorem 4.4.9. [47] Let p > 1, u0 ∈ Lq(Ω), 1 ≤ q < ∞, q > n(p − 1)/2. Then

there exists T = T (‖u0‖q) > 0 such that problem (3.4) possesses a unique classical

Lq-solution in [0, T ) and the following smoothing estimate is true

‖u(t)‖r ≤ C ‖u0‖q t
−αr , αr :=

n

2

(1

q
− 1

r

)
, (4.48)

for all t ∈ (0, T ) and r ∈ [q,∞], with C = C(n, p, q) > 0. In addition, u ≥ 0

provided u0 ≥ 0.

Theorem 4.4.10. [25] Let 1 < p ≤ pS. Then the problem

−∆u = up, x ∈ Rn
+,

u = 0, x ∈ ∂Rn
+.


does not possess any positive classical solution.

Theorem 4.4.11. [51] Suppose that n > 2. Then the equation

∆u+ up − µ|∇u|q = 0 in Rn,

admits no positive radial ground states if either

q > min
{
p, 2p/(p+ 1)

}
, 0 < p ≤ n

n− 2
or q ≥ q̄,

n

n− 2
< p ≤ pS,

where q̄ is a function of p and n such that 2p/(p+1) < q̄ < p for n/(n−2) < p < pS

and q̄ = p for p = pS.

The proof of the following theorem is completely different from that in Case i,

which is based on energy, measure arguments, rescaling and elliptic Liouville-type

theorems.

Theorem 4.4.12. Let p > 1, q ≥ 1, p > q > 2p/(p + 1) and T > 0. Assume that

p < pS and Ω convex bounded. Then for any nonnegative classical solution of (4.6)

on QT that satisfies ut > 0, there holds

u(x, t) ≤ C(p,Ω)
(
1 + t−q/2(p−q) + (T − t)−q/2(p−q)). (4.49)
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Proof. Since u is a subsolution of the same problem with µ = 0 and the same initial

data (due to ut−∆u−up < ut−∆u−up+µ|∇u|q = 0). Moreover, p+1 > n(p−1)/2

due to p < pS. Then, by Theorem 4.4.9 in view of the comparison principle, it follows

that

inf
t∈(0,τ/2)

‖u(t)‖p+1 ≤ C(p,Ω, τ) ≤ C(p,Ω)
(
1 + t−q/2(p−q) + (T − t)−q/2(p−q)). (4.50)

We argue by contradiction and assume that for each k = 1, 2, ... there exists a global

solution uk ≥ 0 of (4.6) such that

‖uk(t)‖p+1 > k for all t ∈ (0, τ/2). (4.51)

Denote

Ek(t) = E
(
uk(t)

)
=

1

2

∫
Ω

|∇uk(t)|2dx− 1

p+ 1

∫
Ω

up+1
k (t)dx.

Recall that E
′
(t) = −

∫
Ω
u2
t (t)dx−

∫
Ω
ut|∇u|qdx ≤ 0 and that uk satisfies the identity

1

2

d

dt

∫
Ω

u2
kdx =

∫
Ω

up+1
k (t)dx−

∫
Ω

|∇uk(t)|2dx− µ
∫

Ω

uk|∇uk(t)|qdx

= −2Ek(t) +
p− 1

p+ 1

∫
Ω

up+1
k (t)dx− µ

∫
Ω

uk(t)|∇uk(t)|qdx.
(4.52)

Step 1. We claim that

Ek
(
τ/4
)
≥ k1/2 (4.53)

for all k ≥ k0 large enough.

Assume (4.53) fails. Using (4.52) and Hölder’s inequality, we obtain, for all t > τ/4.

1

2

d

dt

∫
Ω

u2
kdx ≥ −2k1/2 +

p− 1

p+ 1

∫
Ω

up+1
k (t)dx− µ

∫
Ω

uk(t)|∇uk(t)|qdx,

by using (3.12), then we have

1

2

d

dt

∫
Ω

u2
kdx ≥ −2k1/2 +

(p− 1

p+ 1
− µC

)∫
Ω

up+1
k (t)dx, (4.54)

hence

1

2

d

dt

∫
Ω

u2
kdx ≥ −2k1/2 + C

(∫
Ω

u2
k(t)dx

)(p+1)/2

.
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This implies ∫
Ω

u2
k(t)dx ≤ Ck1/(p+1), t ≥ τ/4, (4.55)

since otherwise
∫

Ω
u2
k(t)dx has to blow up in finite time. Integrating (4.54) over

(τ/4, τ/2) and using (4.51) and (4.55), we obtain

1

4
kτ ≤

∫ τ/2

τ/4

∫
Ω

up+1
k dxdt ≤ C(k1/(p+1) + k1/2τ)

and this is a contradiction for k ≥ k0 large.

Step 2. Let a > 0 to be fixed later and set Fk = {t ∈ (0, τ/4] : − E ′k ≥ E
1+1/a
k (t)}.

We claim that |Fk| < τ/8 for all k ≥ k0 large enough.

We note that Ek > 0 on (0, τ/4] for k ≥ k0 by (4.53), since E
′

k ≤ 0. By definition of

Fk, we have

(
aE
−1/a
k

)′
= −E ′kE

−1−1/a
k ≥ χFk on (0, τ/4].

By integration, we deduce that aE
−1/a
k

(
τ/4
)
≥ |Fk|. Hence by (4.53) we have

|Fk| < τ/8.

Step 3. We choose

a ≥ (p+ 1)/(p− 1). (4.56)

We claim that for all k ≥ k0 large,

‖∂tuk(t)‖2
2 ≤ C

(∫
Ω

up+1
k (t)dx

)a+1
a

for all t ∈ (0, τ/4] \ Fk. (4.57)

For all t ∈ (0, τ/4] \ Fk, we have

‖∂tuk(t)‖2
2 ≤ ‖∂tuk(t)‖

2
2 +

∫
Ω

|∇u|qutdx = −E ′k(t) ≤ E
1+1/a
k (t) ≤ ‖∇uk(t)‖2(1+1/a)

2 .

(4.58)

Hence, by (4.52), Hölder’s and Young’s inequalities, and (3.12)

‖∇uk(t)‖2
2 ≤

∫
Ω

up+1
k (t)dx+ ‖uk(t)‖2 ‖∂tuk(t)‖2 + µ

∫
Ω

up+1
k (t)dx
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≤ C

∫
Ω

up+1
k (t)dx+ ‖uk(t)‖2 ‖∇uk(t)‖

1+1/a
2

≤ C

∫
Ω

up+1
k (t)dx+ C1 ‖uk(t)‖p+1 ‖∇uk(t)‖

1+1/a
2

≤ C

∫
Ω

up+1
k (t)dx+ C1 ‖uk(t)‖

2a
a−1

p+1 +
1

2
‖∇uk(t)‖2

2

≤ C2

∫
Ω

up+1
k (t)dx+

1

2
‖∇uk(t)‖2

2 ,

where we used (4.56) and (4.51), hence

‖∇uk(t)‖2
2 ≤ C

∫
Ω

up+1
k (t)dx.

This estimate with (4.58) implies (4.57).

Step 4. Let 0 < r < (p+ 1)/2, b = (p+ 1− r)(a+ 1)/a and

Gk = {t ∈ (0, τ/4] : ‖∂tuk(t)‖2
2 ≤ C ‖uk(t)‖b∞}.

We claim that |Gk| > 0, where |Gk| means the Lebesgue measure of Gk.

Due to Lemma 4.4.8, for A = A(p, r,Ω, τ) > 0 large enough, the set

G̃k := {t ∈ (0, τ/4] :

∫
Ω

urk(t)dx ≥ A}

satisfies

|G̃k| < τ/8, (4.59)

We deduce from (4.51) that∫
Ω

up+1(t)dx ≤ C ‖uk(t)‖p+1−r
∞

∫
Ω

urk(t)dx ≤ C ‖uk(t)‖p+1−r
∞ .

Therefore, Gk ⊃ (0, τ/4] \ (Fk ∪ G̃k) by Step 3. The claim then follows from Step 2

and (4.59).

Step 5. Now, we will use rescaling argument to have a contradiction by using Step

4, for each large k, we may pick tk ∈ Gk. By (4.51), we can choose xk ∈ Ω such that

Mk = u
2(p−q)/q
k (xk, tk), denote λk = M

−2(p−q)/q
k and put

vk(y) = λ
q

2(p−q)
k uk(xk + λ

1/2
k y, tk),
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ṽk(y) = λ
2p−q
2(p−q)
k ∂tuk(xk + λ

1/2
k y, tk).

Then the functions vk, ṽk satisfy

λ
p(q+1)−2p

2(p−q)
k ṽk = λ

p(q+1)−2p
2(p−q)

k ∆vk + vpk − µ|∇vk|
q in Ωk,

vk = 0 on Ωk,

 , (4.60)

where Ωk = Ω−xk
λk

. Moreover, wk(0) = 1 and 0 ≤ vk(0) ≤ 1 = vk(0). We need to

show that the function vk are locally uniformly Hölder continuous and ṽk → 0 in an

appropriate way.

Let R > 0, BR(x0) = {x ∈ Ω : |x− x0| < R} and Bk
R = {y ∈ Ωk : |y| < R}. Since

tk ∈ Gk, we have ∫
BkR

|ṽk|2dy = λ
2p−q
p−q
k

∫
BkR

|∂tuk(xk + λ
1/2
k y, tk)|2dy

= λ
2p−q
p−q
k λ

−n/2
k

∫
BRλk(xk)

|∂tuk(x, tk)|2dx

≤ CM
−2(2p−q)

q

k M
n(p−q)

q

k M b
k = CMγ

k

for k ≥ k0, where

γ = −2(2p− q)
q

+
a+ 1

a
(p+ 1− r) +

n(p− q)
q

.

Due to (p− q)/q < (p− 1)/2 and 2p
q
− 1 ≤ p for 2p/(p + 1) < q < p. Furthermore,

by taking 2p
q
− 1 ≤ p close to p, r close to (p + 1)/2, (p − q)/q close to (p − 1)/2

and a sufficiently large, hence γ will be negative provided p < (n− 1)/(n− 3). (In

particular, it is true due to p < pS if n ≤ 4.)

Consequently, ∫
BkR

|ṽk(y)|2dy → 0

for any R > 0. since 0 ≤ vk ≤ 1 and vk solves (4.60), standard regularity theory

implies that vk is uniformly bounded in W 2,2(Bk
R). Since W 2,2 is embedded in the

space of Hölder continuous functions if n ≤ 3, we may pass to the limit in (4.60) in

order to get a limiting solution v ≥ 0 satisfying the equation

∆v + vp − µ|∇v|q = 0, (4.61)
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either in Rn or in a half-space (and satisfying the homogeneous Dirichlet boundary

conditions in the later case). Moreover, v ≤ 1 and v(0) = 1, which contradicts the

Liouville-type Theorem 4.4.11 in Rn. Furthermore, v is a supersolution of the same

problem with µ = 0 (0 = ∆v + vp − µ|∇v|q < ∆v + vp), in view of the comparison

principle (∆u + up > ∆v + vp) and Theorem 4.4.10, we have v < u = 0 in R+, a

contradiction

Remark 4.4.13. If parabolic Liouville-type Theorem 4.3.6 were known for all p <

pS, then this would imply Theorem 4.4.12 for all p < pS as well. Conversely, it

is clear that the estimate (4.49) implies nonexistence of positive solutions of (4.1).

We see that Liouville-type theorem and these universal estimates are thus equivalent.

On the other hand, Theorem 4.4.12 guarantees that Theorem 4.3.6 remains true for

nontrivial nonnegative classical solutions.
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Chapter 5

The Global Existence of the

Positive Solutions

The global existence and blow-up solutions for the parabolic equations with a gradi-

ent term have been investigated extensively by many authors. For example, Chipot

and Weissler [11] studied semilinear parabolic equation subject to the homogeneous

Dirichlet boundary condition. Existence of global solutions of parabolic equations

with a gradient term depends upon the balance between the power of the gradi-

ent term and that of the source nonlinearity. By using comparison principle and

constructing self-similar subsolution, they obtained sufficient conditions of global

existence and blow-up solutions.

The main purpose of this chapter is to show how the exponents of gradient and non-

linear terms and the geometry of the domain affect the existence of global bounded

and unbounded solutions. In Section 5.2 we show that there are bounded global

solutions for the semilinear parabolic problem with convective gradient terms for

the Cauchy problem, while we prove the global existence of semilinear parabolic

problem with dissipative gradient term for small initial data in Section 5.3. Section

5.4 is devoted to study the existence of unbounded global solutions in the domains

of infinite inradius.
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5.1 Introduction

We will consider in this chapter two problems. The first one is a semilinear parabolic

problem with a convective gradient term of Cauchy type, which takes the form

ut −∆u = up − a · ∇(uq), x ∈ Rn, t > 0

u(x, 0) = u0(x), x ∈ Rn.

 , (5.1)

with p > 1, q ≥ 1 and a is a non zero constant vector in Rn.

The second problem is the semilinear parabolic problem with a dissipative gradient

term of Dirichlet type, which is

ut −∆u = up − µ|∇u|q , x ∈ Ω, t > 0

u(x, t) = 0 , x ∈ ∂Ω, t > 0

u(x, 0) = u0(x) , x ∈ Ω.

 , (5.2)

with p, q > 1 and µ > 0.

The problem of semilinear convective reaction diffusion equation (5.1) in the one-

dimensional case on a bounded interval with homogeneous Dirichlet boundary condi-

tions has been introduced by several authors [9, 21, 36, 1]. Their results concerning

blow-up and global existence of solutions can be given as follows:

i. if p > q both global and blowing up solution exist, depending on the size of the

initial value.

ii. if p ≤ q all solutions are global.

Moreover, in [21] A. Friedman and A. A. Lacey showed that the problem (5.1)

has a single point blow-up for a large class of initial values if q = 2 and p > 3.

Furthermore, the problem (5.1) was considered on a bounded domain of Rn by A.

Friedman in [20], he proved that if p > q > 1 and the initial value is large enough

then the solution blows-up in finite time, which means that, in a bounded domain,

if p > q the convective term a.∇(uq) has no effect with respect to the global or local

character of the solutions, however, blow-up cannot occur when p ≤ q. Moreover,
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it is known in [55] that for all nontrivial u0 ≥ 0, the blow-up in finite or infinite

time can occur for (5.1) whenever q ≥ p > 1 and p < pF . On the other hand, it was

obtained in [18] that the blow up rate for the problem (5.1) has also the form

u(x, t) ≤ C(T − t)−
1
p−1 ,

in the subcritical case q < (p+ 1)/2.

S. Kaplan has considered in [29] the stability of the zero solution u ≡ 0 of the

problem (5.2) in bounded domains. It has been proved that, the solution is global,

bounded and decays exponentially to zero, for all nonnegative data of sufficiently

small L∞ norm.

Moreover, for Ω = Rn, some kind of stability can be found in [52] in the case q =

2p/(p+1), regardless of the sign and the size of µ. It has been shown that the solution

of (5.2) is global, decays to zero, and asymptotically self-similar, whenever the initial

data are small with respect to a special norm related to the heat semigroup.

On the other hand, it is known in [60] that the exact self-similar global solutions

are constructed and they take the form

u(t, x) = (t+ 1)−1/(p−1)U(|x|(t+ 1))−1/2).

In the case q ≥ p, it was shown in [16, 46] that for bounded domains, the dissipative

term µ|∇u|q prevents blow-up, neither in finite nor infinite time. Furthermore, the

problem (5.2) in [55] has been considered in arbitrary unbounded domains when

q ≥ p. It turns out that the geometry of Ω at infinity plays a determining role in

the problem, the relevant notion was the inradius of Ω (ρ(Ω)). It was proved that

if ρ(Ω) < ∞ then the solution of (5.2) is global and bounded, and if ρ(Ω) = ∞,

then there exist (possibly global) unbounded solutions for all q ≥ p and µ > 0 (see

[55, 56]).

Moreover, in [55] some results were obtained concerning global existence, bounded-

ness or unboundedness of solutions for the problem (5.2), which are summarized in

the following points
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• if Ω contains a cone (in particular Ω = Rn), and q ≥ p, then there exist

unbounded global solutions.

• if Ω = Rn and q ≥ p, then some solutions blow-up in infinite time at every

point of Rn, while, if Ω 6= Rn, blow-up can only occur at infinity.

• in any domain Ω (in particular in Rn), for q ≥ p, the solution exists globally

whenever u0 has exponential decay in at least one direction.

• If the restriction of u0 to some cone contained in Ω has a slow enough decay

at infinity when q ≥ p, the the solution blows-up in finite or infinite time.

• If Ω is contained in a strip, the solutions are global and uniformly bounded for

all u0 if q ≥ p, and for small u0 if 1 < q < p (with µ large if 1 < q < 2p/(p+1)).

• If Ω 6= Rn and q ≥ p, then the blow-up set of all unbounded solutions (global

or not) is {∞}. On the other hand, if Ω = Rn, then the blow-up set for any

unbounded solution is either Rn ∪ {∞} or ∞.

The aim of this chapter is to prove that the blow up of the problem (5.1) can occur

just in infinite time (Tmax =∞) for suitably small data. Furthermore, the stability

of the zero solution of the problem (5.2) is proved, when the inradius of the domain

is infinite. Finally, we show the unboundedness of the solutions of the problem (5.2)

in domains of infinite inradius.
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5.2 Small Data Global Solutions for the Cauchy

Problem

Global existence for the problem (5.1) with data dominated by a small multiple of

a Gaussian can be shown by the comparison principle argument, by looking for a

supersolution of the form v(x, t) = tαG̃(x, t), where α > 0 and using G̃t −∆G̃ = 0.

Theorem 5.2.1. Consider the problem (5.1) with q > p > 1 and p < pF then

Tmax(u0) =∞ for some nontrivial u0 ∈ X+.

Proof. We will build a self-similar supersolution of (5.1) in the form

v(x, t) = tαG̃(x, t)

for some α > n
2
, where G̃ = (4π)

n
2G, and G is the Gaussian heat kernel. By setting

k = α− n
2
, the function v satisfies

vt −∆v − vp + a · ∇(vq) = tα(G̃t −∆G̃) + αtα−1G̃− tαpG̃p + tαqa · ∇(G̃q)

= αtk−1e−
|x|2
4t − tkpe−

p|x|2
4t − qtkq+

1
2 (
x · a

2
)e−

q|x|2
4t

≥ (αtk−1 − tkp − Ctkq+
1
2 )e−

q|x|2
4t .

Here we used se−
q

s2 ≤ Ce−s
2
, s ≥ 0. Now, since p < pF := 1 + 2

n
and (q > p, we can

choose q < 1 + 3
n
), by taking α > 0 sufficiently small, it follows that

kp < k + 2
n
(α − n

2
) = k − 1 and kq < k + 3

n
(α − n

2
) = k − 3

2
, which is means

kq+ 1
2
< k − 1, so that vt−∆v− vp + a · ∇(vq) ≥ 0 in Rn for t ≥ t0, where t0 ≥ 1 is

large enough [since α is small enough, then k−1 is negative]. If u0(x) ≤ t
−n

2
0 e

− |x|
2

4t0 , the

comparison in proposition D.1.5 then guarantees that u(t) ≤ v(t0+t) on [0, Tmax(u0))

and u exists globally.
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5.3 Small Data Global Solutions for the Dirichlet

Problem

In Theorem 5.3.3 below, we shall need the notion asymptotically stable solution

which is defined as follows:

Definition 5.3.1. Assume that f(0) = 0 (so that u ≡ 0 is a solution to (4.8))

and that (4.8) is locally well-posed in a space X. We say that the zero solution is

asymptotically stable in X if there exists a constant η > 0 such that, for all

u0 ∈ X with ‖u0‖X ≤ η, there holds Tmax =∞ and

lim
t→∞
‖u(t)‖X = 0.

In order to prove that the zero solution is asymptotically stable in L1 if Ω has

infinite inradius, we need to recall the following proposition which has been proved

by Souplet and Weissler in (p. 349, [55]).

Proposition 5.3.2. Suppose the regular domain Ω contains a cone, µ ≥ 0, q ≥

p > 1. There exists some u0 ∈ C2(Ω̄), u0 ≥ 0, with compact support, such that the

solution u of (5.2) satisfies Tmax =∞ and

lim
t→∞
‖u(t)‖∞ =∞.

Theorem 5.3.3. Consider the problem (5.2) with q ≥ p > 1 and µ > 0.

Assume that p < 1 + pF . If ρ(Ω) =∞, then there is exist initial data u0 ∈ L1(Ω) of

arbitrary small L1-norm such that Tmax(u0) =∞.

Proof. Fix a test function φ ∈ D(Rn), φ ≥ 0, φ 6= 0 with supp(φ) ⊂ B := B(0, 1),

and let w be the solution of (5.2) with Ω replaced by B and u0 replaced by φ.

Due to Proposition 5.3.2, we can assume that w blows-up in infinite time.

Now since ρ(Ω) =∞, Ω contains some ball Bk(xk, k) for any integer k ≥ 1.

Let us set

uk(x, t) = k
−2
p−1w

(x− xk
k

,
t

k2

)
, u0,k = k

−2
p−1φ

(x− xk
k

)
.
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Due to the invariance of the equation under this scaling, it is easily verified that uk

solves the problem

∂tuk −∆uk = upk − µk
q(p+1)−2p

p−1 |∇uk|q , x ∈ Bk, t > 0

uk = 0 , x ∈ ∂Bk, t > 0

uk(x, 0) = u0,k(x) , x ∈ Bk.

 (5.3)

Let ũk be the solution of the problem (5.2) with u0 = u0,k. Since Bk is included in

Ω and ũk ≥ 0 on ∂Bk, it follows that the equation (5.3) for k →∞ become

∂tuk −∆uk − upk + µ|∇uk|q = −µ(k
q(p+1)−2p

p−1 − 1)|∇uk|q = −∞ < 0, x ∈ Bk, t > 0

uk = 0, x ∈ ∂Bk, t > 0

uk(x, 0) = u0,k(x) = 0, x ∈ Bk.


Then, by the comparison principle that ũk ≥ uk, hence ũk blows-up in infinite time.

Last, an easy calculation yields

‖u0,k‖1 = ‖k
−2
p−1‖1‖φ‖1 = k

−2
p−1

+n‖φ‖1→ 0 as k →∞.
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5.4 Global Unbounded Solutions in a Domain

with Infinite Inradius

The proof of unbounded global existence of Theorem 5.4.1 is based on a comparison

argument, by constructing a stationary supersolution v in the exterior of ball of small

radius ε, which is radial and whose minimum is larger than ‖u0‖∞. The solution u

is dominated by v, centered at points y such that B(y, ε) ⊂ Ωc. Since ρ(Ω) = ∞,

then any point x of Ω is at unbounded distance of such a point y. This guarantees

a unboundedness for u.

Theorem 5.4.1. Consider the problem (5.2) with q ≥ p > 1, µ > o. Assume

ρ(Ω) =∞. Then there exists u0 ∈ X+, such that Tmax(u0) =∞ and lim
t→∞
‖u(t)‖∞ =

∞.

Proof. We choose ε ∈ (0, 1) such that for a ball of radius ρ̃(Ω), B ∩ Ωc contains a

ball of radius ε, ρ̃(Ω) ≥ ρ(Ω).

Let a be a fixed point in Ω and we choose xa such that

B(xa, ε) ⊂ Ωc

and

|xa − a| ≤ ρ̃(Ω). (5.4)

We seek for a supersolution of (5.2) of the form v(x, t) = Keαr, r = |x− xa|, α ≥ 0.

The inequality Pv := vt −∆v + µ|∇v|q − vq ≥ 0 needs to be checked if r ≥ ε. To

ensure that, it must

0− α2Keαr − αn− 1

r
Keαr + µαqKqeαqr −Kpeαpr ≥ 0, r > ε,

which is satisfied if

µαqKq−1eα(q−1)r ≥ Kp−1eα(p−1)r + α2 + α
n− 1

ε
, r > ε.
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Since q ≥ p > 1, then we have

µαqKq−1 ≥ 2Kp−1 and µαqKq−1 ≥ 2α2 + 2α
n− 1

ε
.

It thus suffices to choose α = (2/µ)1/q and next

K = max{‖u0‖∞ , 1, (α
2 + α(n− 1)/ε)1/(q−1)}.

Then, it follows from comparison principle that 0 ≤ u(x, t) ≤ v(x, t) in Ω, as long

as u(t) exists. In particular, by using (5.4), we obtain

0 ≤ u(a, t) ≤ K exp[ρ̃(Ω) =∞] =∞.

Since a was an arbitrary point in Ω, we deduce that u(t) remains unbounded in L∞

on its existence interval. This implies unbounded global existence.
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Chapter 6

Viscous Hamilton-Jacobi

Equations (VHJ)

VHJ is the simplest type of a parabolic PDE with a nonlinear term depending

on the first order spatial derivative of u, where in [30],[32] VHJ is presented in

the physical theory of growth and roughening of the surfaces, which is defined

as Kardar-Parisi-Zhang equation. The blow-up phenomenon of this problem is

different from the equations with a nonlinearity depending on u, where the function

u itself remains uniformly bounded, but its gradient blows-up in finite time, and

this phenomenon is called gradient blow-up (GBU).

The main purpose of this chapter is to study whether the speed of divergence of

GBU of Dirichlet problem for VHJ with p > 2, specially the upper GBU rate

estimate in n space dimension is the same as in one space dimension. In section

6.2 we consider the upper estimates of the blow-up profile of ∇u for the solutions

of (6.1). Next we shall consider in section 6.3 the upper GBU rate estimate for the

problem (6.2) in a convex bounded domain.
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6.1 Introduction

Consider the following initial-boundary value problems with zero Dirichlet boundary

condition

ut −∆u = |∇u|p, x ∈ Ω, t > 0,

u = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0, x ∈ Ω.

 (6.1)

and

ut −∆u = |∇u|p + λ, x ∈ Ω, t > 0,

u = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0, x ∈ Ω,

 (6.2)

where Ω is a bounded convex domain, u0 ∈ X+, p > 2 and λ > 0.

The main idea of these problems is that the function u itself remain uniformly

bounded, but its gradient goes to infinity in finite time T . In other words,

‖∇u(t)‖∞ →∞, whereas sup
t∈[0,T )

‖u(t)‖∞ <∞.

The gradient blow-up phenomena has been studied for the first time in [19] by

Filippov, he considered a one dimensional problem with time-depending Dirichlet

boundary condition.

The problem (6.1) when p ≤ 2 was introduced in [47, 59], and they proved that all

solutions are global, i.e., T = ∞. However, if p > 2, then the GBU in finite time

is known to occur (see [59], [57]). For instance, in [57] Souplet showed that the

singularity may come from the suitably large initial data in finite time. Moreover,

it has been shown in [47] in one space dimension and Ω = (0, 1), that the bounds

of blow-up profile of ux take the form

ux(x, t) ≤ U
′
(x) + C1x, 0 < x ≤ 1 (6.3)

and ux(x, t) ≥ −U
′
(1− x)− C1(1− x), 0 ≤ x < 1
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The function U ∈ C([0,∞)) ∩ C1((0,∞)) is a solution (a singular steady state) of

V ′′ + V ′p = 0, x > 0, V (0) = 0.

and U := dpx
(p−2)/(p−1), U

′
(x) := d

′

p := x−1/(p−1), x > 0,

where dp = (p − 2)−1(p − 1)(p−2)/(p−1) and d
′
p = (p − 1)−1/(p−1), which shows that

the bounds on blow-up profile of ux is away from x = 0 and 1, and this means that

GBU may occur just on the boundary.

On the other hand, the lower GBU rate estimates for this problem have been con-

sidered by Guo and Hu in [28], it was shown that the lower GBU rate estimate take

the form

sup
s∈[0,t]

‖∇u(t)‖∞ ≥ C(T − t)−1/(p−2), t→ T.

Furthermore, the analogue of the lower estimates is also true in one space dimension

(see [14]), namely

‖ux(t)‖∞ ≥ C(T − t)−1/(p−2), t→ T.

Moreover, under additional assumptions u0,xx + |u0,xx|p ≥ 0 and u0 ∈ C2([0, 1]), the

corresponding upper GBU rate estimate can be established (see [28]) as follows

ux(0, t) ≤ C(T − t)−1/(p−2), t→ T. (6.4)

Similar result was obtained in [47] for the closely related one-dimensional problem

ut − uxx = |ux|p + λ, x ∈ (0, 1), t > 0,

u = 0, x ∈ {0, 1}, t > 0,

u(x, 0) = u0, x ∈ (0, 1).


with p > 2, λ > 0 and u0 ∈ X+.

The aim of this section is to show that the results of Quittner and Souplet in [47] of

the upper estimates of the blow-up profile (6.3) and the time rate of gradient blow

up (6.4) hold true for problem (6.2) in n-dimension.
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6.2 Upper Profile Estimates of GBU

This subsection considers the profile estimate of the gradient solutions of problem

(6.1), which shows that the gradient blow-up cannot occur in the interior of the

domain, as will be shown in Theorem 6.2.3.

In order to prove that, we need to recall the following lemma, which shows some

properties of the time-derivative ut, which has been proved in [47],[59].

Lemma 6.2.1. Consider problem (6.1) with p > 1 and u0 ∈ X+, and let 0 < t0 <

T := Tmax(u0). There exists C1 > 0 such that

|ut| ≤ C1, x ∈ Ω, t0 ≤ t < T. (6.5)

Proof. The function w := ut satisfies

wt −∆w = a(x, t) · ∇w, x ∈ Ω, 0 < t < T,

w = 0, x ∈ ∂Ω, 0 < t < T,

 (6.6)

where

a(x, t) = p|∇u|p−2∇u. (6.7)

By parabolic regularity results, we have ut ∈ C2,1(QT ), and due to (1.19) we have

ut ∈ BC(Ω̄ × [t0, t1]), 0 < t0 < t1 < T . As an consequence of (6.6) and of the

maximum principle in Proposition D.1.1 we obtain the upper estimate of ut.

The proof of Theorem 6.2.3 relies on using a modification of the Bernstein

technique and a suitable cut-off function, with considering a partial differential

equation satisfied by |∇u|2. We follow the procedure which has been used in [59].

Let x0 ∈ Ω be fixed, 0 < t0 < T < Tmax(u0), R > 0 such that B(x0, R) ⊂ Ω and we

write Qt0
T,R = B(x0, R)× (t0, T ).

Let α ∈ (0, 1) and set R
′

= 3R
4

. We select a cut-off function η ∈ C2(B̄(x0, R
′
)),

0 < η < 1, with η(x0) = 1 and η = 0 for |x− x0| = R
′
, such that

|∇η| ≤ CR−1ηα

|D2η|+ η−1|∇η|2 ≤ CR−2ηα

 for |x− x0| < R
′

84



6.2. Upper Profile Estimates of GBU

where C = C(α) > 0.

In order to show that the GBU in problem (6.1) occurs only on the boundary, we

need to state the following lemma.

Lemma 6.2.2. Let u0, u be positive solutions of (6.1). We denote w = |∇u|2 and

z = ηw. Then at any point (x1, t1) ∈ Qt0
T,R′

, such that |∇u(x1, t1)| > 0, z is smooth

and satisfies the following differential inequality

Lz + Czp ≤ C1 + CR
−2p
p−1 ,

Lz = ∂tz −∆z −H · ∇z,

H is defined by (6.9).

Proof. We know that ∇u ∈ C2,1 in a neighbourhood of such points and hence we

can differentiate the equation (6.1).

Assume that w = |∇u|2 satisfies the differential equation

∂tw −∆w − (pw
p−2
2 ∇u) · ∇w = −2|D2u|2.

Indeed, for i = 1, ..., N , put ui = ∂u
∂xi

and wi = ∂w
∂xi

. Differentiating (6.1) in xi, we

have

∂tui −∆ui =
p

2
w

p−2
2 wi. (6.8)

Multiplying (6.8) by 2ui, summing up, and using ∆w = 2∇u · ∇(∆u) + 2|D2u|2, we

deduce that

Lw = −2|D2u|2,

where

H = pw
p−2
2 · ∇u. (6.9)

Setting z = ηw, we get

Lz = L(ηw) = ∂t(ηw)−∆(ηw)−H · ∇(ηw)
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= ηLw + wLη − 2∇η · ∇w.

Now we shall estimate the different terms. In what follows δ > 0 can be chosen

arbitrary small.

• Estimate |2∇η · ∇w|.

Using Young’s inequality, we have

|2∇η · ∇w| ≤ Cη−1|∇η|2w + δη|D2u|2,

where we used the fact ∇w = 2D2u∇u.

• Estimate |wH · ∇η|.

|wH · ∇η| = |wpw
p−2
2 ∇u · ∇η|

= |pw
p
2w

1
2∇η|

= pw
p+1
2 |∇η|.

Finally choosing δ = 1, we have

Lz + η|D2u|2 ≤ C(p, n)w[|∆η|+ η−1|∇η|2] + C|∇η|w
p+1
2 .

Using the properties of the cut-off function η, we get

Lz + η|D2u|2 ≤ C(p, n)wR−2ηα + CR−1ηαw
p+1
2 . (6.10)

Using the result of Lemma 6.2.1, we shall estimate |D2u|2 in terms of a power of w.

For (x1, t1) ∈ Qt0
T,R′

, such that |∇u(x1, t1)| > 0, we have

|∇u(x1, t1)|p = ∂tu(x1, t1)−∆u(x1, t1)

≤ C1 +
√
N |D2u(x1, t1)|.

Hence

1

N
|∇u(x1, t1)|2p ≤ C1 + |D2u(x1, t1)|2.

86



6.2. Upper Profile Estimates of GBU

There are two cases

either
1

N
|∇u(x1, t1)|2p ≤ 2C1,

or
1

N
|∇u(x1, t1)|2p ≤ |D2u(x1, t1)|2.

In both cases we arrive at

1

C(N, p)
|∇u(x1, t1)|2p ≤ C1 + |D2u(x1, t1)|2.

Using this inequality, it follows from (6.10) that, at (x1, t1)

Lz +
η

C(N, p)
|∇u(x1, t1)|2p − C1η ≤ Lz + η|D2u|2

≤ C(N, p)wR−2ηα + CR−1ηαw
p+1
2

Hence

Lz +
η

C(N, p)
wp ≤ C1 + CwR−2ηα + CR−1ηαw

p+1
2 .

We take α = p+1
2p
∈ (0, 1). Using Young’s inequality, we have

CR−1η
p+1
2p w

p+1
2 ≤ CR

−2p
p−1 +

1

4C
ηwp,

CR−2η
p+1
2p w ≤ CR

−2p
p−1 +

1

4C
η
p+1
2 wp.

Using that η ≤ 1, we get

Lz +
η

C(N, p)
wp ≤ C1 + CR

−2p
p−1 +

1

2C
η|∇u|2p.

Hence

Lz +
1

2C(N, p)
zp ≤ C1 + CR

−2p
p−1 . (6.11)
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Theorem 6.2.3. Let p > 2, M > 0 and u0 ≥ 0, ‖∇u0‖L∞ ≤ M . Let u be solution

of (6.1), then

|∇u| ≤ C2δ
− 1
p−1 (x) + C3 in Ω× (0, Tmax(u0)).

This means the blow up may only take place on the boundary.

Proof. First let us note that by the local existence, there exists t0 ∈ (0, Tmax(u0))

with t0 = t0(M, p,N) such that

sup
0≤t≤t0

‖∇u‖L∞ ≤ C(p,Ω,M). (6.12)

We also know that ∇u is a locally Hölder continuous function and thus z is a

continuous function on B(x0, R
′)× [t0, T ] = Q, for any T < Tmax(u0). Therefore, z

must reach a positive maximum at some point (x1, t1) ∈ B(x0, R
′) × [t0, T ], unless

z = 0 in Q. Since z = 0 on ∂BR′ × [t0, T ], we deduce that x1 ∈ BR′ . Therefore,

∇z(x1, t1) = 0 and D2z(x1, t1) ≤ 0. Now we have either t1 = t0 or t0 < t1 < T .

If t0 = t1, then

z(x1, t1) = |∇u(x1, t1)| |η| ≤ ‖∇u(x1, t0)‖2
L∞ .

If t0 < t < T , we have ∂tz(x1, t1) ≥ 0 and therefore Lz ≥ 0. Using (6.11) we obtain,

1

2C(p,N)
zp(x1, t1) ≤ C1 + CR

−2p
p−1 ,

which is √
z(x1, t1) ≤ C1 + CR

−1
p−1 .

Since z(x0, t) ≤ z(x1, t1) and η(x0) = 1 we get,

|∇u(x0, t)| ≤ C1 + CR
−1
p−1 for t ∈ [t0, T ].

By taking R = δ(x0), letting T → Tmax(u0) and using (6.12) we have,

|∇u| ≤ C2δ
−1
p−1 (x0) + C3.
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6.3 Blow-up Rate Estimate

Theorem 6.3.3 below considers the upper bound of the blow-up rate for problem

(6.2), following the procedure used in [28], which used a suitable auxiliary function

with the application of the maximum principle.

In order to prove Theorem 6.3.3, we need to recall the following results which have

been proved in [47].

Proposition 6.3.1. Assume p > 1 and u0 ∈ X+. Let u be the solution of (6.1) and

let 0 < T < Tmax. Then

sup
t∈[0,T ]

‖∇u(t)‖∞ = sup
PT
|∇u|.

Theorem 6.3.2. Consider problem (6.1) with p > 2 and Ω 6= Rn. Let u0 ∈ X+ and

assume that T := Tmax(u0) <∞. Then there exists C > 0 such that

sup
x∈[0,t]

‖∇u(s)‖∞ ≥ C(T − t)−1/(p−2), t→ T. (6.13)

Proof. Denote

m(t) := sup
Ω×[T/2,t]

|∇u| = max
s∈[T/2,t]

‖∇u(s)‖∞ , T/2 ≤ t < T.

Step 1. We claim that w := ut satisfies

‖∇w(t)‖∞ ≤ Cmp−1(t), T/2 < t < T. (6.14)

Let t ∈ (T/2, T ), s ∈ (T/4, t), and put K = supσ∈[0,t−s] σ
1/2 ‖∇w(s+ σ)‖∞. For

τ ∈ (0, t− s), in view of (6.6), (6.7) and variation-of-constants formula, we have

w(s+ τ) = e−τAw(s) +

∫ τ

0

e−(τ−σ)A(a · ∇w)(s+ σ)dσ.

Using Proposition C.2.3, Lemma 6.2.1, and the fact that
∫ τ

0
(τ − σ)−1/2σ−1/2dσ =∫ 1

0
(1− z)−1/2z−1/2dz, it follows that

‖∇w(s+ τ)‖∞ ≤ Cτ−1/2 ‖w(s)‖∞ + C

∫ τ

0

(τ − σ)−1/2 ‖a · ∇w(s+ σ)‖∞ dσ
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6.3. Blow-up Rate Estimate

≤ Cτ−1/2 + Cmp−1(t)K.

Multiplying by τ 1/2 and taking the supremum for τ ∈ [0, t− s], we obtain

K ≤ C + C(t− s)1/2mp−1(t)K.

Now choosing s = t − (1/4) min(T, (Cmp−1(t))−2) ∈ (T/4, t), we obtain K ≤ 2C,

hence

‖∇w(t)‖∞ ≤ 2C(t− s)−1/2 ≤ 4C max(T−1/2, Cmp−1(t)).

Since m is positive nondecreasing, this implies Claim (6.14).

Step 2. We next claim that m is locally Lipschitz on (T/2, T ) and that

m′(t) ≤ Cmp−1(t), for a.e. t ∈ (T/2, T ). (6.15)

Let T/2 < t < s < T . For any τ ∈ [t, s] and x ∈ Ω, it follows that the mean-value

inequality and (6.14) that

|∇u(x, τ)−∇u(x, t)| ≤ (τ − t) sup
Ω×[t,τ ]

|∂t∇u| ≤ C(τ − t)mp−1(τ),

hence

|∇u(x, τ)| ≤ |∇u(x, t)|+ C(τ − t)mp−1(τ) ≤ m(t) + C(s− t)mp−1(s).

Taking the supremum for (x, τ) over Ω× [t, s], we get

0 ≤ m(s)−m(t) ≤ C(s− t)mp−1s.

Since m is continuous, the claim follows.

Finally, integrating (6.15) over (t, s) with T/2 < t < s < T , and using m(s) → ∞

as s→ T , we infer that

m(t) ≥ C(T − t)−1/(p−2),

which implies estimate (6.13).
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6.3. Blow-up Rate Estimate

Theorem 6.3.3. Consider the problem (6.2) with p > 2 and λ > 0. Let Ω be a

convex bounded domain and let u0 ∈ X+ ∩ C2(Ω) be such that

∆u0 + |∇u0|p + λ ≥ 0 in Ω.

If T := Tmax(u0) <∞, then there exists C > 0 such that

‖∇u(t)‖∞ ≤ C(T − t)−
1
p−2 , t→ T.

Proof. For any η > 0 is small enough, set

Ωη := {x ∈ Ω : d(x, ∂Ω) > η}.

we shall derive a lower bounded on ut away from the parabolic interior of Ω× (0, T ).

We consider the parabolic operator

Lφ := φt −∆φ− p|∇u|p−2∇u∇φ.

For σ ∈ (0, 1) and η ∈ (0, T ) to be chosen later, we introduce the function

w(x, t) =
(

1 +
1

mσ(t)

)(
1− |∇u|

m(t)

)
, x ∈ Ωη × (η, T ),

where

m(t) = max
x∈Ωη×[η,t]

|∇u(x, t)|, as t→ T. (6.16)

Step1. We shall show that for suitable η ∈ (0, T ) and C > 0, there holds

w + u ≤ Cut in Ωη × (η, T ). (6.17)

We may assume m(t) ≥ 1 without loss of generality. By the proof of Theorem 6.3.2,

m is locally Lipschitz on (T/2, T ) and (6.15) is satisfied.

A straight computation gives:

Lw =
(

1 +
1

mσ

) |∇u|m′
m2

− σm
′

mσ+1

(
1− |∇u|

m

)
. (6.18)

Since m
′ ≥ 0 a.e., we have

Lw =
m
′

mσ+1

(
− σ + (σ + 1)

|∇u|
m

+
|∇u|
m1−σ

)
≤ m

′

mσ+1

(
− σ + (σ + 2)

|∇u|
m1−σ

)
< 0,
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6.3. Blow-up Rate Estimate

in case |∇u(x, t)| < σ
σ+2

m1−σ(t).

However, if |∇u(x, t)| ≥ σ
σ+2

m1−σ(t), then by (6.18) and (6.15), we have

Lw ≤
(

1 +
1

mσ

) |∇u|m′
m2

≤ C|∇u|m
p−1

m2
≤ C

m

(σ + 2

σ

) p−2
1−σ |∇u|

p−1−σ
1−σ .

If we choose σ = 1/(p− 1), then (p− 1− σ)/(1− σ) = p. Then

L(w + u) ≤ C̃

m
|∇u|p − (p− 1)|∇u|p + λ, C̃ := C

(σ + 2

σ

) p−2
1−σ

.

Hence, for t close to T and by (6.16) we obtain

L(w + u) ≤ −(p− 1)

2
|∇u|p + λ, a.e. in Ωη × (η, T ).

If |∇u(x, t)|p ≥ 2λ/(p− 1), then L(w + u) ≤ 0.

In both cases we obtain L(w + u) ≤ 2λ(w + u), hence:

L(e−2λt(w + u)) ≤ 0 = Lut in Ωη × (η, T ). (6.19)

Due to Theorem 6.2.3, assume that x0 ∈ ∂Ω is a GBU point. By Proposition 6.3.1

that

m(t) = ‖∇u(t)‖∞ = |∇u(x0, t)|, η < t < T, (6.20)

by taking η closer to T if necessary. Thus,

[w + u](x, t) = 0 = ut(x, t), x ∈ ∂Ωη, (6.21)

and by applying maximum principle to ut we also have ut(x, η) > C > 0 on the

parabolic boundary of Ωη × (η, T ), and by Theorem 6.2.3, if η > 0 is small enough

then there exists C0 > 0 such that w ≤ −C0 < 0 on {x : x = η} , and since u ≤ C0

on {x : x = η}, then there exists C > 0 such that

[e−2λt(w + u)− Cut](η, t) ≤ 0 x ∈ ∂Ωη. (6.22)

Moreover, there exists C > 0 such that

[e−2λη(w + u)− Cut](η, t) ≤ 0 x ∈ Ωη. (6.23)
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6.3. Blow-up Rate Estimate

Using (6.19), (6.21), (6.22) and (6.23) and maximum principle in Proposition D.1.6,

we deduce e−2λt(w + u) ≤ Cut in Ωη × (η, T ), hence u+ w ≤ Cut.

Step2. As a result from (6.17) and (6.20), we have

C|∇ut(x0, t)| = lim
h→0

C|ut(x0 + h, t)|
|h|

≥ lim
h→0

∣∣[w + u](x0 + h, t)
∣∣

|h|

≥ lim
h→0

|w(x0 + h, t)|
|h|

= ∇|w(x0, t)| ≥
(

1 +
1

mσ(t)

)( |∆u(x0, t)|
m(t)

)
≥ |∇u(x0, t)|p

m(t)
= |∇u(x0, t)|p−1.

By integration from t to T we obtain

|∇u(x0, t)| ≤ C(T − t)−
1
p−2 , t→ T.
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Chapter 7

Conclusions

This thesis is devoted to investigate the possible effect of the gradient term depend-

ing nonlinearities, on the global existence or the nonexistence and the asymptotic

behaviour of the solutions of semilinear elliptic and parabolic equations, with the

presence (or not) of the reaction term up. For the elliptic problems whose nonlin-

earity depends on u and on the spatial derivative of u, we consider questions about

the nonexistence of the solutions under certain conditions on the exponents of non-

linearities in the whole space. Concerning parabolic problems with gradient terms,

it is known that the solution may cease to exist in a finite time: The solution blows

up, where we considered the nature of blow-up set and the rate estimate of blow-up

solutions. However, we showed that there are problems of this type that have global

solutions. Moreover, for the parabolic problems, we considered the nonexistence of

nontrivial bounded solutions which are defined for all negative and positive times on

the whole space (Liouville-type theorems). The gradient blow-up behaviour was also

studied for the viscous Hamilton-Jacobi problem with Dirichlet boundary condition

in n-dimension space.

The conclusion for every chapter can be summarized as follows:

1. For the quasilinear elliptic equation (2.1) defined in Rn, it has been proven in

[51] that the conditions q > 2p/(p + 1) and p ≤ n/(n − 2), n > 2 imply the

nonexistence of the positive radial ground states. This result can be extended
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to show that the nonexistence also holds when q > 2p/(p+ 1) and p ≤ pF .

2. For the Dirichlet problem (3.3) defined in a convex domain, we showed that

if q > 2p/(p + 1), then the set of blow-up points is a compact subset of

the domain. Furthermore, we established the blow-up rate estimates for this

problem when q > 2p/(p+ 1) in a ball and in a convex domain, showing that

the upper blow-up rate estimates are more singular than those known for the

problem (3.3) when q < 2p/(p+ 1) in both domains.

3. For the parabolic equation with a dissipative gradient term (4.1), which is

defined in the whole space Rn+1 = Rn × R, we proved the Liouville-type

theorems under the condition q > 2p/(p+ 1), in radial case when p < pF , and

in general case when p < pB. Moreover, we showed that the universal bounds

for the global solutions and the usual blow up rate estimates for the problem

(4.5) when q = 2p/(p + 1), is the same as that known when q < 2p/(p + 1).

On the other hand, we proved that the universal bounds for the problem (4.5)

when q < 2p/(p + 1) become false for stronger perturbation terms, i.e., when

q > 2p/(p+ 1).

4. For the Cauchy problem for the semilinear parabolic problem with a convective

gradient term (5.1), with a suitable positive small data, we proved that the

problem admits a bounded global solution when q > p > 1 and p < pF .

Moreover, for Dirichlet problem for the semilinear parabolic problem with a

dissipative gradient term defined in infinite inradius domain, and small initial

data, we showed that the zero solution is asymptotically stable and the blow-

up occurs in infinite time, if q ≥ p > 1 and p < pF . However, we showed that

if p < pF , then the problem (5.2) which is defined in infinite inradius domain,

has unbounded global solutions for some positive initial data.

5. For the viscous Hamilton-Jacobi problem (6.1) defined in a convex domain

subset of Rn, with the zero Dirichlet boundary condition, and nonnegative

initial data, it has been shown in [47] that, the gradient blow-up points of
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the problem (6.1) in one space dimension may occur only on the boundary.

We extended this result to the higher dimension, proving that the gradient

blow-up cannot occur in the interior of the domain. Moreover, we showed that

the upper estimate of the gradient blow-up in one space dimension is still true

in the higher dimension.
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Appendix A

Notation

A.1 Geometric notation

Let Ω be a domain, nonempty, connected, open subset of Rn and let k ∈ N, then

(i) We write Ω′ ⊂⊂ Ω if the closure of Ω′ is a compact subset of Ω.

(ii) Ω is a uniformly regular of class Ck, if either Ω = Rn or there exists a countable

family (Uj, ϕj), j = 1, 2, ... of coordinate charts with the following properties:

(a) Each ϕj is a Ck-diffeomorphism of Uj onto the open unit ball B1 in Rn

mapping Uj∩Ω onto the upper half-ball B1∩(Rn−1×(0,∞)) and Uj∩∂Ω

onto the flat part B1∩ (Rn−1×{0}). In addition, the function ϕj and the

derivatives of ϕj and ϕ−1
j up to the order k are uniformly bounded on Uj

and B1, respectively.

(b) The set
⋃
j ϕ
−1
j (B1/2) contains an ε-neighbourhood of ∂Ω in Ω for some

ε > 0.

(iii) δ(x) := dist(x, ∂Ω).

(iv) Inradius ρ(Ω) of a domain Ω is defined by

ρ(Ω) = sup{r > 0 : Ω contains a ball of radius r} = sup
x∈Ω

dist(x, ∂Ω).
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A.2. Notation for functions

Moreover, strict inradius ρ̃(Ω) ≥ ρ(Ω) is defined by

ρ̃(Ω) = inf{R > 0 : ∃ε > 0 such that for any ball B of radius R,

B ∩ Ωc contains a ball of radius ε}.

(v) ν(x) is the exterior unit normal on ∂Ω at a point x ∈ ∂Ω

(vi) QT := Ω× (0, T ), for 0 < T <∞,

ST := ∂Ω× (0, T ), for 0 < T <∞,

PT := ST ∪ (Ω× {0}), for 0 < T <∞.

A.2 Notation for functions

(i) By a solution of a PDE problem being positive, we mean that u(x) > 0 or

u(x, t) > 0 in the domain under consideration.

(ii) We say that a domain is symmetric if either Ω = Rn, or Ω = B = {x ∈

Rn| |x| < R}, or Ω = BR,R′ = {x ∈ Rn|R < |x| < R′}, where 0 < R < R′ ≤ ∞.

Where BR is an open ball in Rn with centre zero and radius R.

(iii) Denote r = |x| and J ⊂ R be an interval. A function u defined on a symmetric

domain Ω (resp., on Ω× J) is said to be radially symmetric. or simply radial,

if it can be written in the form u = u(r) (resp., u = u(r, t) for each J).

(iv) The function u is said to be radial nonincreasing, if it is radial, and if u is

nonincreasing as a function or r.

(v) The equilibrium solution of a PDE problem means that ut = 0.

A.3 Function space notation

i. C(Ω) = {u : Ω→ R| u continuous}

C(Ω) = {u ∈ C(Ω)| u is uniformly continuous on bounded subsets of Ω}.
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A.3. Function space notation

Ck(Ω) = {u : Ω→ R| u is k-times continuously differentiable}.

C∞(Ω) = {u : Ω→ R| u is infinitely differentiable}.

The support of a function u, denoted by Supp(u) is the closure of the set {x :

u(x) 6= 0}.

D(Ω), denote the functions in C∞ with compact support.

ii. Lp(Ω) = {u : Ω→ R| u is Lebesgue measurable, ‖u‖Lp(Ω) <∞}, where

‖u‖Lp(Ω) =
(∫

Ω

|f |pdx
)1/p

, 1 ≤ p <∞.

iii. Lploc(Ω) = {u :→ R| v ∈ Lp(Ω′) for each Ω′ ⊂⊂ Ω}.

iv. Let 1 ≤ p ≤ ∞ and k is a nonnegative integer, then the Sobolev space W k,p(Ω)

is the space of functions u ∈ Lp(Ω) satisfying Dαu ∈ Lp(Ω), |α| ≤ k.

v. W k,p
loc (Ω) = {u ∈ Lp(Ω)| Dαu ∈ Lploc(Ω) for all |α| ≤ k}.

vi. W 1,2
0 (Ω) is the closure of D(Ω) in W 1,2(Ω). In other words, W 1,2

0 (Ω) is

comprising the functions u ∈ W 1,2(Ω) such that u = 0 on ∂Ω. W 1,2
0 (Ω) will be

denoted as Hilbert space H1
0 (Ω).

vii. We denoted by BC2,1(Q) the space of functions u ∈ BC(Q) whose second

derivative in Ω and first derivative in (0, T ) are bounded and continuous. t.

viii. A function u ∈ C(Ω) is said to be Hölder continuous of order α ∈ (0, 1) if

Hα ≡ sup{|u(x)− u(ξ)|/|x− ξ|α| x, ξ ∈ Ω and x 6= ξ} <∞.

The Hölder norm of u is defined by

|u|α = ‖u‖∞ +Hα = sup
x∈Ω
|u(x)|+Hα.
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A.3. Function space notation

The set of all Hölder-continuous functions in Ω with finite norm is denoted by

BUCα(Ω). Note that if Ω is compact, then BUCα(Ω) = Cα(Ω).

When the domain Ω is replaced by QT we define the Hölder constant by

Hα ≡ sup{|u(x, t)− u(ξ, s)|/(|t− s|α/2 + |x− ξ|α)| (t, x), (ξ, s) ∈ QT}.

The Hölder norm of u is given by

|u|α = ‖u‖∞ +Hα = sup
(x,t)∈QT

|u(x, t)|+Hα.

The set of all Hölder-continuous functions in QT with finite Hölder norm is

denoted by Cα,α/2(QT ).

Let k be a nonnegative integer, α ∈ (0, 1) and a = k + α. Then we define the

set of functions in Cα(QT ) with finite norms

|u|1+α ≡ sup
QT

|u|+
∑
|Dxu|α + |ut|α

|u|2+α ≡ sup
QT

|u|+
∑
|Dxu|α +

∑
|D2

xu|α + |ut|α

...

|u|a = |u|k+α ≡ sup
QT

|u|+
∑
|Dxu|α +

∑
|D2

xu|α + ...+
∑
|Dk

xu|α + |ut|α

are denoted by Ca,a/2(QT ) or BUCa,a/2(QT ).

ix. D(Ω× (0, T )) is the space of C∞-functions with compact support in Ω× (0, T ).

x. If Q ⊆ Rn × R is a domain in space and time, then

C2,1(Q) = {u : Q→ R| u,Dxu,D
2
xu, ut ∈ C(Q)}.

xi. L∞(QT ) = {u : QT → R| u is Lebesgue measurable, ‖u‖L∞(QT ) <∞},

where

‖u‖L∞(QT ) = ess sup
QT

|u|.
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A.3. Function space notation

xii. Lp(QT ) = {u : QT → R| u is Lebesgue measurable, ‖u‖Lp(QT ) <∞},

where

‖u‖Lp(QT ) =
(∫∫

|u|pdxdt
)1/p

1 ≤ p <∞.

xiii. Lploc(QT ) = {u : QT → R| v ∈ Lp(Q′T ) for each Q′T ⊂⊂ QT}.

xiv. If Q ⊆ Rn×R, we denote by the Sobolev space W 2,1;p(Q), the space of functions

u ∈ Lp(Q) satisfying ut, Dxu,D
2
x ∈ Lp(Q), endowed with the norm

‖u‖2,1;p = ‖u‖2,1;p;Q := ‖u‖p;Q + ‖Dxu‖p;Q +
∥∥D2

xu
∥∥
p;Q

+ ‖ut‖p;Q .

xv. W 2,1;p
loc (QT ) = {u ∈ Lp(QT )| ut, Dxu,D

2
xu ∈ L

p
loc(QT )}.

101



Appendix B

Basic inequalities

In this appendix we will recall some basic inequalities as:

Young’s inequality

Let Ω be an arbitrary domain in Rn, 1 < p <∞, ε > 0 and q = p/(p− 1). Then

xy ≤ εpxp

p
+
ε−qyq

q
x, y > 0.

Hölder’s inequality

Let 1 ≤ p ≤ ∞ and q = p/(p− 1). Then

‖uv‖1 ≤ ‖u‖p ‖v‖q , u ∈ Lp(Ω), v ∈ Lq(Ω).

Jensen’s inequality

Assume that F : R → [0,∞) is a convex function, and that w : Ω → [0,∞] is

measurable and satisfies
∫

Ω
w(x)dx = 1. If u is a measurable function on Ω such

that uw, F (u)w ∈ L1(Ω), then

F
(∫

Ω

u(x)w(x)dx
)
≤
∫

Ω

F (u(x))w(x)dx.
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Appendix C

Fundamental materials for elliptic

and parabolic equations

In this appendix we list some essential estimates and some notations of solutions of

parabolic equations.

C.1 Model elliptic problems

C.1.1 Elliptic regularity

Consider the problem

Au = f in Ω, (C.1)

where f = f(x) is a given function, A is the second-order elliptic differential opera-

tors of the form

Au = −
n∑

i,j=1

aij
∂2

∂xi∂xj
u+

n∑
i=1

bi
∂

∂xi
u+ cu, (C.2)

with measurable coefficients aij, bi, c satisfying the condition∑
i,j

aij(x)ξiξj ≥ λ|ξ|2, for all x ∈ Ω, ξ ∈ Rn, λ > 0, (C.3)
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C.2. Model parabolic problems

with a uniform bound

|aij|, |bi|, |c| ≤ Λ, Λ > 0. (C.4)

C.1.2 Strong solutions

The strong solution of (C.1) is a function u ∈ W 2,1
loc which satisfies the equation (C.1)

a.e.

C.1.3 Interior-boundary elliptic Lp-estimates

Theorem C.1.1. Let Ω be an arbitrary domain in Rn and assume (C.3) and (C.4)

are satisfied. Let u ∈ W 2,p
loc ∩ Lp(Ω), 1 < p < ∞, be a strong solution of (C.1),

where aij are continuous and f ∈ Lp(Ω). Let Σ be an open subset of ∂Ω of class C2,

u ∈ W 2,p(Ω) and u = 0 on Σ. Let aij ∈ C(Ω ∪ Σ) and Ω′ ⊂⊂ Ω ∪ Σ. Then

‖u‖2,p;Ω′ ≤ C(‖u‖p + ‖f‖p), (C.5)

where C depends on n, p,Ω,Ω′, λ,Λ, the continuity of the aij on Ω, and on Σ.

C.2 Model parabolic problems

C.2.1 Parabolic regularity notations

Consider the problem

ut + Au = f in QT , (C.6)

Where f = f(x) is a given function, A is defined in (C.2), and the coefficients depend

on (x, t) ∈ Qt,∑
i,j

aij(x, t)ξiξj ≥ λ|ξ|2, for all (x, t) ∈ QT , ξ ∈ Rn, λ > 0, (C.7)

C.2.2 Strong solutions

The strong solution of (C.6) is a function u ∈ W 2,1;1
loc (QT ) satisfying (C.6) a.e.
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C.2. Model parabolic problems

C.2.3 Interior-boundary parabolic Lp-estimates

Theorem C.2.1. Let Ω be an arbitrary domain in Rn and assume (C.7) and (C.4)

are satisfied. Let u ∈ W 2,1;p
loc ∩ Lp(QT ), 1 < p < ∞, be a strong solution of (C.6),

where aij ∈ C(QT ) and f ∈ Lp(QT ). Let Ω be of class C2 and either Σ be an open

subset of ST or Σ = PT . Assume u ∈ W 2,1;p(QT ) and u = 0 on Σ. Let Q′ ⊂ QT ,

dist(Q′,PT \ Σ) > 0 if Σ 6= PT . Then

‖u‖2,1;p;Q′ ≤ C(‖u‖p;Qt + ‖f‖p;Qt), (C.8)

where C depends on n, p,Qt, Q
′, λ,Λ, the continuity of the aij, and on Σ.

C.2.4 The variation-of-constants formula

Definition C.2.2. The variation of constants formula of the solution of the problem

(C.6) is defined as

u(t) = e−(t−τ)Au(τ) +

∫ t

τ

e−(t−s)Af(u(s))ds, 0 < τ < t < T,

e−tA is the Dirichlet heat semigroup in Ω.

C.2.5 Gradient estimate for the heat semigroup

The following proposition from [34] gives the smooth estimate for the gradient term

of the heat semigroup.

Proposition C.2.3. Let Ω be a domain of class C2+α for some α ∈ (0, 1) and let(
e−tA

)
t≥0

be the Dirichlet heat semigroup in Ω. For all Φ ∈ L∞(Ω), there holds∥∥∇e−tAΦ
∥∥
∞ ≤ C(Ω)(1 + t−1/2) ‖Φ‖∞ , t > 0.

C.2.6 Embedding theorem

The following embedding theorem is from [34] and [39].

Theorem C.2.4. If p > n+ 2, a < 2− (n+ 2)/p and Ω is smooth enough, then

W 2,1;p(Q)→ BUCα,α/2(Q), α ∈ (0, 1). (C.9)
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C.2. Model parabolic problems

C.2.7 Notation for solutions of parabolic problems

C.2.7.1 Classical solutions

Let X be a given space of functions defined in Ω, u0 ∈ X and T ∈ (0,∞], we

say that the function u ∈ C([0, T ), X) is a solution or a classical X-solution of a

parabolic problem in [0, T ) if u ∈ C2,1(Ω× (0, T )) ∩C(Ω× (0, T )), u(0) = u0 and u

is a classical solution of the problem for t ∈ (0, T ).

C.2.7.2 Well-Posedness of the parabolic problem

We say that the parabolic problem is well-posed in X if, given u0 ∈ X, there exist

T > 0 and a unique classical X-solution of the problem in [0, T ].

C.2.7.3 Maximal solutions

Definition C.2.5. Let X be a given space of functions defined in Ω. Assume that

we have a parabolic problem possesses for each u0 ∈ X a unique classical solution

u in [0, T ], where T = T (u0). Then there exists Tmax = Tmax(u0) ∈ (T,∞] with the

following properties.

(i) The solution u can be continued (in a unique way) to a classical solution on

the interval [0, Tmax).

(ii) If Tmax < ∞, then u cannot be continued to a classical solution on [0, τ) for

any τ > Tmax.

(iii) Assume that T = T (‖u0‖X). Then

either Tmax =∞ or lim
t→Tmax

‖u(t)‖X =∞.

106



C.2. Model parabolic problems

C.2.7.4 Weak solutions

Definition C.2.6. We may define a weak solution of the parabolic problem

ut −∆u = F (u,∇u), x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω.

 , (C.10)

on [0, T ] to be a function u ∈ C([0, T ];L1(Ω)) such that f(u) ∈ L1(QT ) and such

that the equality∫
Ω

u(x, t2)φ(x, T2)dx−
∫

Ω

u(x, t1)φ(x, T1)dx−
∫ t2

t1

∫
Ω

uφtdxdt =

∫ t2

t1

∫
Ω

(u∆φ+ fφ)dxdt,

holds for every φ ∈ C2(QT ) with φ = 0 in ∂Ω× [0, T ] and 0 ≤ t1 ≤ t2 ≤ T .

C.2.7.5 Supersolutions and subsolutions

Definition C.2.7. A function ũ ∈ C([0, T ] × Ω) ∩ C1,2((0, T ] × Ω) is called a su-

persolution or (subsolution) of the problem

ut −∆u = F (u,∇u) in (0, T ]× Ω

u = 0 on (0, T ]× ∂Ω

u(0, x) = u0(x) in Ω,


if it satisfies the inequalities

ũt −∆ũ ≥ (≤) F (ũ,∇ũ) in (0, T ]× Ω

ũ ≥ (≤) 0 on (0, T ]× ∂Ω

ũ(0, x) ≥ (≤) u0(x) in Ω.


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Appendix D

Maximum and comparison

principles and zero number

D.1 Maximum and comparison principles

In this section we will present maximum and comparison principles, which we fre-

quently used in this study.

The following proposition from [47] is a basic maximum principle for classical solu-

tions:

Proposition D.1.1. Let Ω be an arbitrary domain in Rn, T > 0, b : QT → Rn,

c : QT → R, with supQT c < ∞. Assume that w = w(x, t) ∈ C2,1(QT ) ∩ C(QT )

satisfies w ≤ 0 on PT , supQT w <∞, and

wt −∆w ≤ b · ∇w + cw in QT .

If Ω is unbounded, assume in addition that either

lim
|x|→∞

sup
(x,t)∈QT

w(x, t) ≤ 0,

or

|b(x, t)| ≤ C1(1 + |x− a|−1), x ∈ QT ,

for some a ∈ Rn and C1 > 0. Then w ≤ 0 in QT .
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D.1. Maximum and comparison principles

The following proposition (see [47]) is a version of the comparison principle for

classical (sup-/super-) solutions

Proposition D.1.2. Let Ω be an arbitrary domain in Rn, T > 0, u, v ∈ C2,1(QT )∩

C(ΩT ). Assume that u ≤ v on PT and

∂tu−∆u− f(x, u,∇u) ≤ ∂tv −∆v − f(x, v,∇v) in QT , (D.1)

where f = f(x, s, ξ) : Ω×R×Rn → R is continuous in x and C1 in s and ξ. Assume

also that

u, v,∇v ∈ L∞(QT ), |u|, |v| ≤ C1, |∇v| ≤ C2

and

|fs(x, s, ξ)|+ (1 + |x|)−1|fξ(x, s, ξ)| ≤ Cf for all |s| ≤ C1, |ξ| ≤ C2 + 1.

Then u ≤ v in QT .

Remark D.1.3. In proposition (D.1.2) it is sufficient to assume that (D.1) holds

in Q̃T := {(x, t) ∈ QT : u(x, t) > v(x, t)}.

The following proposition from [47] is a version of the strong Hopf comparison

principle for general semilinear parabolic equations.

Proposition D.1.4. Let Ω be a bounded domain in Rn of class C2, p > n+ 2, and

T > 0. Let u, v ∈ W 2,1;p
loc (Ω× (0, T ]) ∩ C([0, T ], L2(Ω)) ∩ L∞(QT ). Assume

∂tu−∆u− f(x, t, u,∇u) ≤ ∂tv −∆v − f(x, t, v,∇v) in QT ,

where f = f(x, t, s, ξ) : Ω × [0, T ] × R × Rn → R is continuous in x, t and C1 in s

and ξ. Assume also that u(., 0) ≤ v(., 0), u(., 0) 6≡ v(., 0), and either

u ≤ v on ST

or

∂νu+ bu ≤ ∂νv + bv on ST , (D.2)
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where b ∈ C1(∂Ω). Finally, if f depends on ξ, we also assume that ∇u∇v ∈

L∞(QT ). Then

u < v in QT .

In addition, if u(x0, t0) = v(x0, t0) for some x0 ∈ ∂Ω and t0 ∈ (0, T ), then

∂νu(x0, t0) > ∂νv(x0, t0).

If (D.2) is true, then u < v in Ω× (0, T ).

Next proposition from [47] is a weak version of the comparison principle.

Proposition D.1.5. Let Ω be a bounded domain of class C2 or Ω = Rn. Let T > 0

and f, g : (t, u) ∈ [0, T ] × R → R be such that f, fu, g, gu are continuous. Let

u, v ∈ C2,1(Ω × (0, T )) ∩ L∞(QT ). If Ω = Rn assume in addition that ∇u∇v ∈

L∞loc((0, T ), L∞(Rn)). If u ≤ v on ST , lim supt→0(u− v)(x, t) ≤ 0 for all x ∈ Ω, and

∂tu−∆u− f(t, u)− div(g(t, u)) ≤ ∂tv −∆v − f(t, v)− div(g(t, v)) in QT ,

then u ≤ v in QT .

The next two propositions from [47] are a version of the weak maximum principle,

which apply to W 2,1;2
loc sub-/supersolutions.

Proposition D.1.6. Let 0 < T < ∞. Let Ω be an arbitrary domain in Rn, c be

measurable and a.e. finite on QT with supQT C < ∞, and K ≥ 0. Assume that

w ∈ C(Ω× (0, T )) ∩ C([0, T ), L2
loc(Ω)) satisfies

sup
QT

w <∞, wt,∇w,D2w ∈ L2
loc(QT ).

If w ≤ 0 on PT and

wt −∆w ≤ K|∇w|+ cw a.e. in QT ,

then

w ≤ 0 in QT .
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Proposition D.1.7. Let 0 < T < ∞, Ω be an arbitrary domain in Rn, and let

f = f(s, ξ) : R× Rn → R, be a C1-function. Let u ∈ C(Ω× (0, T )) satisfy

u ∈ C([0, T ], L2
loc(Ω)), u ∈ L∞(QT ), ut,∇u,D2 ∈ L2

loc(QT ),

and similarly for v. If f depends on ξ, we also assume that ∇u,∇v ∈ L∞(QT ). If

u ≤ v on PT and

ut −∆u− f(u,∇u) ≤ vt −∆v − f(v,∇v) a.e. in QT ,

then

u ≤ v in QT .

D.2 Zero number

In this section we define the zero number of functions, and we present the zero num-

ber argument which is restricted to one-dimensional or radially symmetric problems.

Definition D.2.1. The zero number of a function ψ ∈ C((0, R)) is defined as the

number of sign changes of ψ in (0, R);

z(ψ) = z[0,R](ψ) = sup{k ∈ N : there are 0 < x0 < x1 < ... < xk < R

such that ψ(xi)ψ(xi+1) < 0 for 0 ≤ i < k}.

Let BR = {x ∈ Rn : |x| < R}, t1 < t2, q ∈ L∞(BR, (t1, t2)), u ∈ C(BR× [t1, t2])∩

W 2,1;∞(BR × (t1, t2)) and

ut −∆u = qu a.e.in BR × (t1, t2). (D.3)

Assume that q(., t) and u(., t) are radially symmetric for all t, hence q(x, t) = Q(|x|, t)

and u(x, t) = U(|x|, t). Then

Ur − Urr −
n− 1

r
Ur = QU, r ∈ (0, R), t ∈ (t1, t2),

and Ur(0, t) = 0 for all t ∈ (t1, t2).
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D.2. Zero number

Theorem D.2.2. Let q, u be as above, u 6≡ 0, and either U(R, t) = 0 for all t ∈

[t1, t2] or U(R, t) 6= 0 for all t ∈ [t1, t2]. Let z = z[0, R] denote the zero number in

(0, R). Then

(i) z
(
U(., t)

)
<∞ for all t ∈ (t1, t2),

(ii) the function t 7−→ z
(
U(., t)

)
is nonincreasing,

(iii) if U(r0, t0) = Ur(r0, t0) for some r0 ∈ [0, R] and t0 ∈ (t1, t2), then z
(
U(., t)

)
>

z
(
U(., s)

)
for all t1 < t < t0 < s < t2.

Remark D.2.3. The assertion of Theorem D.2.2 remains true for more general

problems of the form

ut −∆u = qu+ bx · ∇u,

where b ∈ W 1,∞(BR × (t1, t2)), b(x, t) = B(|x|, t). This follows from the fact that

the function v(x, t) := e
1
2

∫ |x|
0 B(ξ,t)ξdξu(x, t) solves a problem of the form (D.3).
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