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ABSTRACT 

 

Over the past century there have been substantial declines in farmland biodiversity as a result 

of the intensification of agricultural practice. Concerns over these declines have led to the 

development of agri-environment schemes designed to mitigate the effects of intensive 

agriculture and to benefit biodiversity. Prior to commencing this thesis it was not clear if 

flower-rich, pollinator-focused agri-environment schemes had a population level impact on 

wild bees on farmland. Whilst previous work has shown that the creation of flower-rich habitat 

can provide suitable foraging resources for bumblebees, little was known about the impact of 

this management on bumblebee population sizes and even less on whether these resources 

were used by and benefited solitary bees. This thesis compares bee populations between 

farms with and without flower-rich, pollinator focused agri-environment schemes in 

Hampshire and West Sussex, UK. Using genetic techniques to estimate colony density, and 

hence population size, farms implementing targeted schemes had a significantly higher density 

of bumblebee nests for the four species studied (212 nests/km2 against 112 nests/km2). 

However, there was no difference in the species richness of bees between these different farm 

types. When assessing pollen use by solitary bees, flowering plants sown as part of pollinator-

focused agri-environment schemes were not widely used, representing 27% of pollen foraging 

observations and 23% of pollen collected by volume. Only 35% of solitary bee species were 

found to use sown plants for pollen to a meaningful extent, with most pollen collected from 

plants persisting in the wider environment. The creation of flower-rich habitat significantly 

increased resource availability, but did not increase resource diversity. These results indicate 

that if diverse bee populations are to be maintained on farmland then agri-environment 

schemes must be developed that effectively increase the number of flowering plant species 

present at the farm scale.  
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‘Let us turn elsewhere, to the wasps and bees, who unquestionably come first in the 

laying up of a heritage for their offspring.’ 

J-H Fabre 
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Chapter 1 –  General introduction 
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1.1 A changing agricultural landscape 

 

The 20th century saw global change at an unprecedented scale, with great political, economic 

and social upheaval that affected all parts of the world. Agriculture was no exception and was 

strongly affected by the defining conflict of the 20th century, the Second World War. In Britain, 

low levels of domestic food production combined with the disruption to food imports caused 

by the war resulted in food shortages and mass rationing that persisted long after the 

cessation of hostilities. The combined desires to end rationing, to increase the general 

standard of living and to reduce food imports that were negatively affecting Britain’s balance 

of payments led to the introduction of the 1947 Agriculture Act which sought to achieve self-

sufficiency in food production (Blaxter and Robertson 1995; Robinson and Sutherland 2002). 

As stated by the Minister of Agriculture in cabinet briefings in 1945, the aim of the reform to 

agriculture would be “to promote a healthy and efficient agriculture capable of producing that 

part of the nation's food which is required from home sources at the lowest price consistent 

with the provision of adequate remuneration and decent living conditions for farmers and 

workers, with a reasonable return on capital invested” (The National Archives 1945).  

 

The new Act brought in two major changes. Firstly, guaranteed prices were introduced for 

principal agricultural products, namely milk, fat livestock, eggs, cereals, potatoes and sugar 

beet. Secondly, a large programme of capital investment and subsidies was launched to 

encourage investment in agriculture. The major effect of this and subsequent policies was to 

increase agricultural output, principally through an increase in the area of arable land in the UK 

as farmers increased cereal production (Figure 1.1, Robinson and Sutherland 2002). 

Agricultural output grew faster between 1945 and 1965 than at any other period in history, 

before or after (Brassley 2000, Figure 1.2). Since the 1980s, UK agricultural output has been 

essentially stable, though productivity has increased as inputs have fallen (Figure 1.3, DEFRA 

2016).  
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Figure 1.1. The amount of annually tilled land, as a percentage of total farmed area by county 

in 1875, 1935, 1970 and 1995. Based on DEFRA statistics. Reproduced from Robinson and 

Sutherland 2002.  
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Figure 1.2. Changes in the volume of agricultural output in Britain, 1867-1985. Reproduced 

from Brassley 2000.  

 

 

 

Figure 1.3. Productivity index for the UK agriculture industry (1973=100). Solid line = total 

factor productivity, dashed line = agricultural output, dotted line = all inputs. Reproduced from 

DEFRA 2016.  
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In addition to the increase in the area of land used for agriculture there were substantive 

changes to the manner in which the land itself was farmed. Farming became more dependent 

on widespread industrial scale input of inorganic chemical pesticides and fertilisers. The 

number of chemical compounds approved for agricultural use increased from 37 in 1955 to 

344 in 1997 (Robinson and Sutherland 2002). The area sprayed with pesticides increased 

markedly over this period (Figure 1.4 a and b). The use of inorganic fertilisers applied to crops 

and grasslands also increased substantially during this time period (Figure 1.4 c). In 1962 

nitrogen fertiliser was applied to 37% of permanent grassland across England and Wales. This 

rose to 77% of permanent grassland by 1982 with the application rate also rising from 20 to 96 

kg ha-1 in the same time period (Wells and Sheail 1988). The programme of capital investment 

grants saw many farmers expand their operations with the purchase of modern agricultural 

machinery such as tractors and combine harvesters (Figure 1.4 d).  

 

The combined effects of these changes led to an increased proportion of specialised farms, 

focused on either arable or pastoral production (Figure 1.1). The ability to increase soil fertility 

with the use of chemical inputs reduced the need for rotational farming that would previously 

have been used to return nutrients to the soil, allowing continual cash cropping year after 

year. Inorganic fertilisers also reduced the requirement for animal manure, further driving a 

division between arable and pastoral farming.  Due to the large capital overheads associated 

with machinery, the drive towards mechanisation favoured larger farms. Between 1949 and 

1999 the number of farms declined by 35% and the proportion of farms over 500 ha in size 

increased from 1% to 6% (Robinson and Sutherland 2002). This increased use of machinery 

required fewer farm labourers, with a 77% decline in the same time period. The horse was 

replaced as a beast of burden, and the loss of horses from arable farms can be seen in the 

steady decline in oat cultivation from the 1940s onwards (Brassley 2000). In the 1960s 

hedgerows began to be removed on a large scale to increase field size (Figure 1.5) in order to 

make fields more accessible and amenable to larger machinery. This effect was most 

pronounced in more arable areas such as Cambridgeshire as there was no requirement for 

livestock, and therefore no need for stock-proof hedging, with an increase in average field size 

from 6.5 ha to 16.0 ha between 1945 and 1994. This compares with an increase of 5.5 ha to 

9.5 ha in the more pastoral counties of Dorset and Somerset (Robinson and Sutherland 2002). 

The relative length of hedgerows in arable counties is now only around 20-30% of that found in 

pastoral counties (Barr et al. 1993; Westmacott and Worthington 1997).  
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Figure 1.4. (a) Areas sprayed with insecticide in England and Wales (line and far right hand 

axis) and amount (active ingredient) of each type of insecticide used (bars and far left axis): 

carbamates (white), organochlorines (heavy stippling), organophosphates (light stippling) and 

pyrethroids (black), this breakdown not available for 1974. (b) Areas sprayed (right axis) with 

herbicides in England and Wales (at 1970, top line), fungicides (at 1970, middle line) and sown 

with chemically treated seeds (at 1970, bottom line). Bars (and left axis) indicate weight of 

herbicide (active ingredient) applied. (c) Total amount of fertiliser applied in Britain (bars and 

left axis): nitrogen (open) phosphate (filled) and average application rates of nitrogen to all 

crops (line and right axis). (d) Number of tractors (filled bars and left axis) and combine 

harvesters (open bars and right axis) in use in the UK. Reproduced from Robinson and 

Sutherland 2002.  
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Figure 1.5. Published estimates of hedgerow length in England and Wales; dots indicate 

(mean) estimates, bars ranges. Slope of regression (1960-1998): -13,000 km year, R2=0.74. 

Reproduced from Robinson and Sutherland 2002.  

 

The magnitude of these post-war changes has led to this period being described as a second 

agricultural revolution, following on from the first British agricultural revolution in the late 17th 

to early 19th centuries (Blaxter and Robertson 1995). More broadly, many of the same desires 

drove reform of European agriculture and similar policies, namely guaranteed prices and 

efficiency investments, are outlined in the Common Agricultural Policy (CAP) of the European 

Union (EU) that was first adopted in 1962. Most of the trends seen in Britain are consequently 

reflected across much of Western Europe (Potter 1997; Donald et al. 2002). When measured in 

terms of food production, the post-war period of British and European agriculture was hugely 

successful, generating vast surpluses neutrally referred to as ‘intervention stocks’ by the EU 

but dubbed ‘wine lakes’ and ‘butter mountains’ by the Press (Krebs et al. 1999). However, this 

enormous increase in agricultural productivity has come at a substantial environmental cost.  

 

1.2 Farmland biodiversity in decline across Europe 

 

By the early 2000s concern was growing over the state of nature on British and European 

farmland. Due to the high level of public interest in bird watching and the historic strength of 

ornithology in the UK, robust long term datasets exist that chart the relative success of many  
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Figure 1.6. The relative population trends of different UK bird groups since 1970. Reproduced 

from DEFRA 2014. 

 

 

 

 

Figure 1.7. The relationship between mean farmland bird population trend and cereal yield 

across Europe (r30= -0.66, P<0.001). Open squares: Eastern Europe, filled squares: European 

Union member states. Reproduced from Donald et al. 2002. Note, this analysis was conducted 

before the 2004 enlargement of the European Union that brought in eight Eastern European 

states.  
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bird species over the past century. Whilst farmland birds recovered from earlier losses in the 

1920s and 1930s to reach a high point in the 1970s (Gibbons et al. 1996), since that time they 

have declined substantially to less than half the population size (Figure 1.6, DEFRA 2014). 

During the period of most significant decline, between 1979 and 1999, an estimated 10 million 

breeding individuals of 10 species of farmland birds were lost from the British countryside 

(Krebs et al. 1999). Similar declines have been observed for European farmland birds over the 

same time period (Donald et al. 2001), with the greatest declines in the most intensively 

farmed areas.  

 

Arable intensification has resulted in a simplification of the farmed environment and a 

consequent simplification of the plant and animal communities that inhabit it. In short, the 

more that farmland is focused on the goal of food production, the fewer resources remain for 

wild plants and animals. In assessing population trends in European farmland birds, average 

grain yield alone explains 30% of the variation in relative population decline (Figure 1.7, 

Donald et al. 2002). Most low intensity grassland has been lost from intensified agricultural 

systems, with over 90% of unimproved lowland grassland disappearing between 1930 and 

1984 (Fuller 1987; Wilson 1992). In Central England, within agriculturally productive lowlands, 

most grasslands were directly replaced with arable fields (Hodgson et al. 2005). Within 

grasslands, increases in fertiliser application and more regular cutting for silage, rather than a 

less frequent cut for hay, has resulted in a decline in grassland diversity through favouring 

competitive species such as rye-grasses Lolium and meadow-grasses Poa (Peel et al. 1985; 

Wilson et al. 1999). Fertiliser drift into uncropped field margins and hedge bottoms has 

changed the nutrient balance in these areas, further reducing plant diversity as low-nutrient 

specialist species were outcompeted by more generalist plants (Marshall 1988; Boatmann et 

al. 1994). The level of direct fertiliser input is also important, with nitrogen input strongly 

negatively associated with plant diversity across both arable and grassland fields in multiple 

European countries (Kleijn et al. 2009).  

 

As well as the effects on birds and plants, many invertebrate groups have also declined as a 

result of this intensification. Multiple studies link an increase in agricultural intensity to a 

decline in the abundance and diversity of farmland invertebrate populations (Woiwod and 

Harrington 1994; Wilson et al. 1999; Ewald and Aebischer 1999; Sotherton and Self 2000; 

Benton et al. 2002). Data is particularly good for butterflies and moths. Analyses have 

illustrated widespread declines in both common and rare species in Britain (Conrad et al. 2006; 

Fox et al. 2013) and elsewhere in Europe (Mattila et al. 2006; van Swaay et al. 2006; Franzen 



 
 

10 
 

and Johannesson 2007; Groenendijk and Ellis 2011). This decline has been most pronounced in 

agricultural areas such as Flanders in Belgium where 19 of the 64 indigenous butterfly species 

became extinct during the 20th century (Maes and van Dyck 2001), the most pronounced loss 

anywhere in Europe.  

 

 

Figure 1.8. Maps of species richness for British bumblebees from the Bumblebee Distribution 

Maps Scheme data measured at the scale of 50 x 50 km grid cells for (a) former richness (pre 

1960 and 1960 onwards records); (b) declines in richness (pre 1960s records); (c) present 

richness (1960 onwards records). Equal frequency grey-scale classes are used to maximise 

differentiation among regions. Reproduced from Williams 2005.  

  

For bees, the data is most complete for European bumblebees (Bombus) which have also 

shown substantial post-war declines (Williams 1986; Williams 2005; Kosior et al. 2007; Goulson 

et al. 2008; Williams and Osborne 2009). In Britain, the most pronounced declines are in areas 

of greater agricultural intensification, such as Central and Eastern England (Figure 1.8, compare 

with Figure 1.1). Other bee species have also been affected with declines across Britain and 

Europe linked to agricultural intensification (Biesmeijer et al. 2006; Potts et al. 2010; Ollerton 

et al. 2014). However, there is a general lack of information about the status and population 

trends of most bee species due to the lack of national monitoring and recording schemes. In a 

recent assessment of European bee species, 1,101 out of a total of 1,942 species were listed as 

Data Deficient under IUCN criteria, and no population trend could be calculated for 79% of 

species (Nieto et al. 2014).  
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It is important to note that some authors have argued that the pre- and post-war analysis is 

oversimplified. In compiling a cumulative extinction curve of British bees and flower-visiting 

wasps, Ollerton et al. (2014) noted that the process of species extinction had been in progress 

long before the passing of the 1947 Agriculture Act (Figure 1.9). Whilst output itself did not 

increase as spectacularly as during the 1945-1965 period (Figure 1.2), there were extensive 

changes in agricultural practices during the 1874-1939 period, such as the large scale 

importation of South American guano as a grassland fertiliser (Brassley 2000). Nonetheless, 

the financial support provided by central government and the resulting widespread changes in 

agricultural practice marks a discrete change in societal attitude towards farming in Britain and 

makes the immediate post-war period an important cultural reference point from which the 

events of the 20th century can be viewed.  

 

 

 

Figure 1.9. Cumulative British bee and flower-visiting wasps extinctions, 1851-1994. Data are 

plotted as cumulative number of extinctions per year (vertical grey bars). The four estimated 

break points are shown as vertical dotted black lines, with 99% confidence intervals depicted 

as transparent grey-shaded rectangles. The identified line segments are given by solid black 

lines, with 99% confidence intervals indicated by dashed lines. The smaller vertical tick marks 

on the x-axis show decades starting at 1850. Reproduced from Ollerton et al. 2014. 
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Whilst most groups of plants and animals living on farmland have been negatively affected by 

the intensification of agriculture, this thesis focuses on farmland bees. In recent years much 

research has focused on the global importance of bees as agricultural pollinators (Klein et al. 

2007; Garibaldi et al. 2011; Garibaldi et al. 2013) and pollinators of wild plants (Ashman et al. 

2004; Ollerton et al. 2011). As a result, the observed declines of wild bees are particularly 

concerning from both an environmental and an agricultural perspective. The domesticated 

honeybee (Apis mellifera) is used to pollinate crops all over the world and the physical 

importation of this species into fields remains the mainstream management approach to 

enhance agricultural pollination (Garibaldi et al. 2014). However, recent work has questioned 

the effectiveness of this approach. Studies have found that most agricultural pollination is 

carried out by wild bees, hoverflies and other insects (Winfree et al. 2008; Breeze et al. 2011; 

Woodcock et al. 2013). Honeybees are even less important when the pollination of wild plants 

is considered (Ollerton et al. 2012).  

 

Not only do such wild pollinators provide a pollination service, the quality of this service 

increases with the diversity of the pollinator community (Klein et al. 2003). A diverse pollinator 

community can increase yield regardless of honeybee abundance (Garibaldi et al. 2013) and 

can actually make honeybee pollination more efficient through competition for resources 

(Brittain et al. 2013). Even with large numbers of imported honeybees, the stability of 

pollination services decreases with increasing isolation from natural areas (Garibaldi et al. 

2011), highlighting that neglect of the wild pollinator community cannot be offset simply by 

bringing in more domesticated honeybees.  

 

1.3 Reversing declines and benefiting bee populations on farmland 

 

By the 1990s European food stockpiles were beginning to build up and the need for ever 

increasing agricultural production was being questioned (Marren 2002). The large cost of the 

CAP (peaking at some 73% of the EU budget in 1985, European Commission 2016) combined 

with the planned expansion of the EU led to concerns that its structure was not viable (Donald 

et al. 2002). Efforts were made to decouple subsidies from production, resulting in the 

publication of Agenda 2000 (Krebs et al. 1999). Though agri-environment schemes were 

initially introduced in the 1992 reform of the CAP, Agenda 2000 further supported their 

development (Stoate et al. 2001). Through financial incentives, these schemes encourage 

farmers to set aside land for nature and to farm in a less intensive manner. Continued reform 

to the CAP throughout the 2000s led to a further decoupling of subsidies and food production 
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and increased support for agri-environment schemes (Stoate et al. 2009). The stated goals of 

these schemes include reducing fertiliser and pesticide use, protecting biodiversity, restoring 

landscapes and preventing rural depopulation (Kleijn and Sutherland 2003).  

 

The desire to improve European farming through the use of agri-environment schemes offers 

the opportunity to conserve and benefit bee populations on farmland. In England, agri-

environment schemes are modular and optional, with the farmer selecting which schemes to 

implement. Much of current pollinator-focused scheme design is based around the foraging 

requirements of those bumblebees that have shown the greatest declines. When concerns 

over bumblebee decline were raised in earnest in the 1990s, five of the most negatively 

affected bumblebees were designated as Biodiversity Action Plan species. Research into their 

ecological requirements was carried out, highlighting the importance of Fabaceae and of 

widespread resources at a landscape scale (Edwards 1999). As a result, Fabaceae featured 

prominently in pollinator-focused agri-environment scheme design. Farms can implement 

three main scheme types. Pollen and nectar margins are short lived (4-5 year) rotational strips 

of flowers, predominantly made up of Fabaceae such as red clover Trifolium pratense. Florally-

enhanced margins are non-rotational grassland alongside field edges containing a mixture of 

grasses and flowering plants such as bird’s-foot trefoil Lotus corniculatus and common 

knapweed Centaurea nigra. The final scheme is the most extensive and comprises creation, 

restoration and maintenance of low-intensity species rich grassland. A reasonable number of 

studies have looked at the response of foraging bumblebees to these schemes, and other agri-

environment scheme habitats, and found that they can have a positive impact, with targeted 

schemes providing appropriate forage for a wide range of bumblebee species (Edwards 2003; 

Pywell et al. 2006; 2011a; Carvell et al. 2006b; 2007).  

 

However, there are a number of outstanding issues surrounding this research. Bumblebees are 

large, strong flying insects and have been shown to congregate in appropriate foraging habitat, 

with the strength of the response modulated by relative forage availability in the surrounding 

landscape (Heard et al. 2007). Whilst previous studies have demonstrated a response to these 

schemes, it is not clear to what extent these schemes are having a population level effect, 

rather than simply redistributing foragers in the landscape (Holland et al. 2015). As eusocial 

insects, bumblebees form colonies, and consequently, bumblebee effective population size is 

the number of colonies in an area. Nesting densities of wild bumblebees are poorly 

understood and direct surveys are infrequent and labour intensive (Fussell and Corbet 1992; 

Osborne et al. 2008a; O’Connor et al. 2012). However, the use of molecular genetic techniques 
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has enabled estimates of bumblebee nesting density in a given area to be made (Knight et al. 

2005; Goulson et al. 2010; Carvell et al. 2012), allowing an assessment of the population size at 

the farm level to be made. If these agri-environment schemes are having a positive population 

level impact, then a molecular genetic comparison between resource-rich and resource-poor 

farms can be used to demonstrate this.  

 

Another similar problem is the issue of measuring changes in diversity. Several European 

studies have found that, when compared to control areas, a greater diversity of bees can be 

found in pollinator-focused agri-environment schemes (Knop et al. 2006; Albrecht et al. 2007; 

Kohler et al. 2008). It has been argued that in order to demonstrate the efficacy of a scheme, a 

before and after control impact assessment should be made, requiring surveying of the same 

area before and after the intervention (Kleijn et al. 2006). When employed, this approach also 

demonstrates a positive effect of targeted schemes on bee diversity (Scheper et al. 2015). 

However, both approaches suffer from the same problem. Even small bees are surprisingly 

mobile and can travel hundreds of metres to forage (Beil et al. 2008; Zurbuchen et al. 2010). 

Whilst the presence of a bee in a scheme area would suggest that this area is suitable for 

foraging, this does not mean that the bee was not present on the wider farm, just that it was 

not previously recorded in either control or before intervention areas. Observation cannot 

prove a negative. For example, take a farm with 50 bee species present in a variety of habitats. 

A  before intervention piece of grassland is surveyed, revealing 10 of the 50 species. After 

habitat creation the survey is repeated and now 30 of the 50 species are recorded. Has the 

diversity of bees on the farm increased? Demonstrating that agri-environment scheme habitat 

attracts more bee species and provides more resources for them than alternative habitat is an 

important aim. However, an assessment at the level of the farm, including surveys of non-

scheme habitats, is necessary to make a wider assessment of whether or not schemes are 

having a real and positive impact on bee diversity.  

 

1.4 Aims and objectives for this thesis 

 

Despite the desire for a strong evidence base empirically demonstrating the impact of agri-

environment schemes on farmland bee populations, the number of studies that have 

attempted to do this is remarkably low. Consequently, it is the aim of this project to 

determine: 
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a) If current pollinator-focused agri-environment schemes significantly increase the 

population size of widespread bumblebee species 

and 

b) If current pollinator-focused agri-environment schemes significantly increase the 

diversity of the bee community at the farm scale. 

In addressing these questions, this thesis will provide a strong empirical base that will help 

answer the broader question of whether current measures are sufficient to effectively 

promote farmland bee populations. These stated aims will be addressed through an extensive 

programme of field data collection backed up with laboratory based identification and 

molecular work. The main objectives of this work are as follows: 

 

 1. Genetic samples were collected from a range of farmland bumblebee species in 

order to allow estimation of population size at the farm scale, enabling the comparison of 

population sizes on farms with and without agri-environment schemes targeted at bees 

2. Farmland bee populations (all species) were extensively surveyed over multiple 

years using a combination of active and passive sampling techniques 

and 

3. Wild bee floral preferences and pollen diets were quantified in relation to flowers 

sown as part of agri-environment schemes and those persisting in the wider environment.  
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2.1 Abstract 

 

Agri-environment schemes have been implemented across the European Union in order to 

reverse declines in farmland biodiversity. To assess the impact of these schemes for 

bumblebees, accurate measures of their populations are required. Here we compared 

bumblebee population estimates on sixteen farms using three commonly used techniques: 

standardised line transects, coloured pan traps and molecular estimates of nest abundance. 

There was no significant correlation between the estimates obtained by the three techniques, 

suggesting that each technique captured a different aspect of local bumblebee population size 

and distribution in the landscape. Bumblebee abundance as observed on the transects was 

positively influenced by the number of flowers present on the transect. The number of 

bumblebees caught in pan traps was positively influenced by the density of flowers 

surrounding the trapping location, and negatively influenced by wider landscape 

heterogeneity. Molecular estimates of the number of nests of Bombus terrestris and Bombus 

hortorum were positively associated with the proportion of the landscape covered in oilseed 

rape and field beans. Both direct survey techniques are strongly affected by floral abundance 

immediately around the survey site, potentially leading to misleading results if attempting to 

infer overall abundance in an area or on a farm. In contrast, whilst the molecular method 

suffers from an inability to detect sister pairs at low sample sizes it appears to be unaffected 

by the abundance of forage and thus is the preferred survey technique. 

 

2.2 Introduction 

 

In addition to facilitating the reproduction of wild plants, pollinating animals provide a valuable 

ecosystem service to food producers with approximately 35% of the world’s plant based food 

supply dependent to a greater or lesser extent on animal pollination (Klein et al. 2007). The 

importance of wild pollinators for agricultural pollination has received more recognition in 

recent years, with wild populations providing an important service independent of the size of 

honey bee populations (Garibaldi et al. 2011; Garibaldi et al. 2013). Given the well 

documented declines in honey bee stocks in both the US and Europe in recent years (NRC 

2006; Potts et al. 2010), it is even more important to maintain wild bee populations to provide 

the continuation of pollination services (Winfree et al. 2007a) through their synergies with 

managed honey bees (Brittain et al. 2013), as well as for their contributions in areas where 

they provide the majority of crop pollination (Klein et al. 2003). 
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Bumblebees (Bombus spp.) are probably the most important wild pollinators in the UK for both 

crops and wild plants (Osborne and Williams 1996; Goulson 2010). Along with many other 

pollinating insects (Biesmeijer et al. 2006), the abundance and distribution of bumblebee 

species has declined substantially across Europe and North America since the Second World 

War (Kosior et al. 2007; Grixti et al. 2009; Williams and Osborne 2009). In common with many 

other taxa, declines in wild bumblebees have been particularly acute in intensively farmed 

areas and consequently the UK and the European Union have introduced agri-environment 

schemes to counteract and reverse declines in biodiversity. These schemes offer the 

opportunity to provide resources for wild bumblebee populations. Previous work has 

highlighted the importance of robust and accurate population measurements of target taxa in 

order to determine the impact of agri-environment schemes (Kleijn and Sutherland 2003; 

Kleijn et al. 2006). Whilst there have been comparisons of the relative ability of different 

sampling techniques to measure bee diversity (e.g. Roulston et al. 2007; Westphal et al. 2008), 

there has been little assessment of the techniques used to measure the size of bumblebee 

populations. 

 

The most commonly used technique to assess bumblebee abundance has been direct 

observations on standardised transect walks, based on the method for surveying butterflies 

(Pollard and Yates 1993) and modified for bees (e.g. Steffan-Dewenter et al. 2002; Westphal et 

al. 2006; Carvell et al. 2007). Transect walks are relatively time consuming and require trained 

surveyors and consequently low effort passive sampling techniques such as pan traps have 

been used to sample bee populations (e.g. Leong and Thorp 1999; Cane et al. 2000). Passive 

blue vane traps designed for sampling beetles have also been shown to capture a high 

proportion of bumblebees (Stephen and Rao 2005), but this technique is not in common 

usage. The use of pan traps in sampling bumblebee populations has been limited, in part 

because it is thought that they under-sample large bodied bees (Toler et al. 2005). 

Nevertheless, because other passive sampling techniques such as trap nests are limited to 

cavity nesting bees (Tscharntke et al. 1998), pan traps are one of the few passive sampling 

techniques that can be used to survey bumblebees.   

 

Bumblebee population estimates have also been obtained through the use of microsatellite 

markers. As eusocial insects, bumblebees form colonies, and because the queen is the 

dominant reproductive unit the effective population size can be estimated from the number of 

colonies in an area. Nesting densities of wild bumblebees are poorly understood and direct 

surveys are infrequent and labour intensive (Osborne et al. 2008a; O’Connor et al. 2012). 
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Because bumblebee colonies are founded by a single queen, and most species are 

monoandrous (Estoup et al. 1995; Schmid-Hempel and Schmid-Hempel 2000), the resulting 

high relatedness between workers makes social bumblebees amenable to identification of 

sisters using molecular techniques, such as microsatellite sequencing, enabling an estimation 

of the number of nests present in an area (e.g. Knight et al. 2005; Goulson et al. 2010).  

 

Bumblebees are known to be highly mobile insects, sometimes travelling up to several 

kilometres to forage (Walther-Hellwig and Frankl 2000; Knight et al. 2005). Where foraging 

resources are scarce, such as in intensively farmed landscapes, bumblebees may respond more 

strongly to the presence of sown forage patches (Heard et al. 2007; Scheper et al. 2013), and 

hence a direct survey of these areas may over-represent the total population present in the 

area. Here we compare bumblebee population estimates using all three techniques on 16 

farms in Southern England. Using transects and pan traps we examine abundance of all 

bumblebee species present, and we also estimate nest density via genetic sampling for two 

species, Bombus terrestris, a short tongued bumblebee and Bombus hortorum, a long tongued 

bumblebee. We then investigate local and landscape factors that may affect the bumblebee 

population estimates provided by these survey techniques. Our results have clear implications 

for future effective assessment and interpretation of bumblebee survey data.  

 

 2.3 Materials and methods 

 

2.3.1 Study area 

 

Sixteen farms were selected in north Hampshire and West Sussex, UK, representing a range of 

farming intensities and landscape gradients. The minimum distance between a pair of farms 

was 5 km. Farms were predominantly arable or mixed arable/dairy with wheat, barley, oilseed 

rape and permanent/silage grassland as the major crops. 

 

2.3.2 Sampling methods 

 

A standardised 3 km line transect was designed for each farm passing through semi-natural 

habitats, primarily grass or floristically enhanced margins alongside agricultural fields, 

hedgerows and woodlands. Regularly grazed and mown grassland and cropped areas were not 

surveyed. Transects preferentially passed through areas of flower-rich habitat that were 

present. Moving at a standard pace, all bumblebees within 2 m of the surveyor were recorded 
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to species level. Transects were walked three times throughout the summer of 2013, between 

25th May - 5th June, 26th June - 15th July and the 3rd - 11th August (henceforth described as 

rounds one, two and three). Transects were subdivided into habitat sections, and for each 

section, the number of flowering units of each plant species was recorded during each of the 

sampling periods. This assessment followed Carvell et al. (2007) with one flower cluster (e.g. 

an umbel, a capitulum) counted as a single unit. All sampling was conducted between 0930-

1700 hours and conformed to meteorological guidelines from the UK butterfly monitoring 

scheme (Pollard and Yates 1993).  

 

Twelve pan traps were placed out on each farm. Pan traps consisted of 500 ml plastic bowls 

and were spray-painted fluorescent blue, yellow or white (Sparvar Leuchtfarbe, Spray-Color 

GmbH). One of each colour, adjacent to each other, were attached to a wooden post at an 

approximate height of 60 cm. On farms where flower-rich margins had been sown (8 farms), 

two such posts were placed in a flower-rich margin and two were placed in a general grass 

margin. On farms lacking any sown flower-rich margins (8 farms), two posts were placed in 

each of two separate grass margins. Twenty-seven of the 32 sampled margins were also 

surveyed as part of the transect, allowing for calculation of the floral density at the trapping 

location for each sampling round. Posts in the same margin were separated by a distance of 25 

m. Sampled margins were not closer than 200 m. Traps were filled with approximately 400 ml 

of water with a few drops of odourless liquid detergent (Surcare Sensitive). Traps were left out 

for 96 h before being collected. All farms were sampled at the same time so they were all 

subject to the same weather conditions. Traps were set three times on the 10th-15th June, 8th-

12th July and the 1st-5th of August (henceforth described as rounds one, two and three). 

Invertebrate samples were stored in 70% ethanol and pinned prior to identification.  

 

Genetic samples of B. hortorum and B. terrestris workers were collected between 26th June 

and 15th July. Each farm was divided into four sections and each quarter was searched for 

approximately 90 min, giving a total collection period of six hours. This sampling area 

conformed to a circle with radius 800 m and covered the majority of each farm. Non-lethal 

tarsal samples (Holehouse et al. 2003) were taken from the mid-leg of collected workers. Tarsi 

were stored immediately in 95% ethanol for later DNA extraction.  
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2.3.3 Molecular methods 

 

DNA was extracted from the tarsal sample using the HOTShot protocol (Truett et al. 2000) and 

amplified at nine polymorphic microsatellite loci (B100, B118, B132, B10, B11, B96, B119, 

B124, B126, Estoup et al. 1995, 1996). Polymerase chain reactions (PCR) were carried out on 

samples using the QIAGEN Multiplex PCR kit. Multiplex PCRs were run for combinations of the 

loci B100(VIC)-B118(NED)-B132(FAM), B10(VIC)-B11(NED)-B96(FAM) and B119(FAM)-

B124(NED)-B126(PET) (fluorescent markers indicated in parenthesis). B119 amplified weakly in 

B. hortorum and was removed from further analysis. PCR reactions were 10 µl in volume and 

contained 1 µl of Q-solution, 5 µl of PCR MasterMix, 1.8 µl of RNAse free water, 1.2 µl of 

primer solution (6 x 0.2 µl of each primer, forward primers labelled with VIC, NED, FAM and 

PET dyes, Applied Biosystems) and 1 µl of template DNA . Samples were denatured at 95oC for 

15 min, followed by 35 cycles of 94oC for 30 s, 54oC annealing for 90 s and 72oC for 90 s. This 

was followed by a final step at 72oC for 10 min. PCR products were visualised on an ABI 3730 

capillary DNA sequencer with a 1:125 dilution before the run and using a GeneScan LIZ 500 

internal size standard. Fragments were sized using GeneMapper software (Applied 

Biosystems).  

 

Colony v2.0.5.0 (Jones and Wang 2009) was used to assign workers to unique colonies within 

each farm. This program uses maximum likelihood methods to assign sibship or parent-

offspring relationships, and has been found to be the most reliable method available for 

assigning sibship in bumblebees (Lepais et al. 2010). Genotyping error was set at 2% (allele 

dropout 0.5% and other errors 1.5%). DNA-based capture–recapture models allow for multiple 

sampling of an individual, and the frequency distribution of the number of times each 

individual is recaptured can be used to estimate the population size. Instead of trying to 

estimate the number of individuals we were interested in estimating the number of nests 

represented by our sample of workers. Following Goulson et al. (2010) the program Capwire 

(Miller et al. 2005) was used to estimate the number of colonies present on each farm using 

the Two Innate Rate Model.  

 

2.3.4 Landscape analysis 

 

A buffer 1 km in radius was drawn around the centre point of each transect covering the 

majority of each farm and some of the surrounding area. The buffer covered the entirety of 

the 3 km transect. Using satellite imagery, ordinance survey maps and extensive ground 
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truthing during the survey period, detailed land cover maps to a resolution of 2 m2 were 

created in Google Earth (Google Inc). Habitat types were binned into nine discrete biotope 

classes: i) crops non-attractive to bumblebees (wheat, barley, maize); ii) crops attractive to 

bumblebees (oilseed rape, field beans); iii) permanent grassland (grassland that is continuously 

grazed through the year or regularly cut for silage); iv) general grass (agri-environment grass 

margins, road verges, grassed access tracks, flower-poor grassland which is not regularly cut or 

grazed); v) woodland (broadleaf, coniferous and mixed); vi) hedgerow (the woody centre, not 

including associated hedge bottom grass strips, maximum width 4 m); vii) flower-rich (florally 

enhanced margins, species-rich grassland and wild bird seed margins containing a high density 

of bumblebee attractive plants); viii) water (including drainage ditches, rivers and ponds) and 

ix) urban (farm buildings, paved roads, private houses and gardens). These habitat maps were 

exported to ArcGIS 10.1 (ESRI Inc 2013) where the total area covered by each biotope was 

calculated. Following Fuentes-Montemajor et al. (2012), a Shannon diversity index was 

calculated from the number of different habitat types and their proportional abundance as a 

measure of landscape heterogeneity. Each of these factors was selected for inclusion in the 

initial model on the basis that they are likely to impact the size and distribution of bumblebee 

populations across the landscape.  

 

2.3.5 Data analysis 

 

Bumblebee population results obtained by the different sampling techniques were summed 

across all sampling rounds and tested for significant correlation using Spearman’s rank 

correlation test.  

 

Generalised linear models (GLMs) were run to investigate the impact of landscape variables on 

the number of bumblebees recorded along transects, caught in the pan traps and the 

estimated number of bumblebee colonies present on each farm. Models were run for the 

abundance of all bumblebee species and the abundance of the four most common bumblebee 

species, B. hortorum, B. lapidarius, B. pascuorum and B. terrestris, with the transect and pan 

trap data summed across all sampling rounds. Before performing the main analysis, 

explanatory factors were tested for collinearity revealing a group of significantly 

intercorrelated variables. This group represented farming intensity, with the cover of non-

attractive crops and hedgerow positively correlated with each other and negatively correlated 

with the landscape Shannon diversity index, the cover of woodland and cover of permanent 

grassland. Following Fuentes-Montemayor et al. (2012) these explanatory factors were 
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correlated with the response variable for each model, and the most strongly correlated factor 

was selected for inclusion in the initial model. The following explanatory factors were not 

significantly correlated with any other factor and were always included in the initial model; 

cover of attractive crops, cover of general grass, cover of flower-rich grass, cover of water and 

cover of urban. Models were simplified using a backward-stepwise approach until only 

significant factors (p=0.05) remained. At each step models were assessed using an ANOVA for 

a significant increase in residual deviance. If removing a non-significant term led to a 

significant increase in residual deviance the factor was returned to the model.  

 

Generalised linear mixed effect models (GLMMs) were run to investigate the impact of floral 

abundance on the number of bumblebees recorded on the transects and caught in pan traps. 

For the transect abundance model, floral abundance was measured by the number of floral 

units counted on each transect for each sampling round. Data were not summed across 

rounds; instead sampling round was included as a random factor to account for temporal 

variation. Floral abundance was included as a fixed factor. For the pan trap model, floral 

density measurements were available for 27 of the 32 margins in which pan traps were placed, 

so data without density measurements was excluded from this analysis. The number of 

bumblebees caught in the six traps placed out in each margin were summed, to give two 

measurements per farm per sampling round. The farm nested within sampling round were 

included as random factors to account for spatial and temporal variation. Floral density was 

included as a fixed factor.  

 

The strength of the impact of floral density on both survey techniques was investigated 

further. The pan trap data was recalculated to provide a single bumblebee total and floral 

density measurement for each farm in each sampling round. A floral density score was 

calculated for each transect in each sampling round. A GLMM was run with floral density, 

survey type and their interaction as fixed factors, with sampling round as a random factor.  

 

All GLMMs were compared by ANOVA with a null model to test for significance. GLMs and 

GLMMs were run with a Gaussian, negative binomial or Poisson/quasi-poisson error 

distribution for the response variable where appropriate and were tested for overdispersion. 

All data analysis was conducted in R version 3.0.2 using the lme4 package for GLMMs (R 

Development Core Team).  
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2.4 Results 

 

2.4.1 Bumblebee abundance 

 

A total of 6,014 bumblebees of 14 species were recorded on the transects. The 14 bumblebee 

species comprised the ubiquitous social species B. terrestris, B. lucorum, B. pratorum, B. 

pascuorum, B. hortorum and B. lapidarius as well as B. jonellus, B. hypnorum and B. ruderatus. 

Five cuckoo bumblebee species (Psithyrus) were also recorded comprising B. vestalis, B. 

barbutellus, B. rupestris, B. sylvestris and B. campestris. A total of 1,980 bumblebees of 12 

species were recorded in the pan traps. The 12 bumblebee species were the same as those 

recorded on the transects, less B. barbutellus and B. ruderatus. A total of approximately 3.5 

million flowering units of 209 species of insect pollinated flowering plants were recorded on 

the transects.  

 

A total of 386 B. hortorum and 593 B. terrestris workers were genotyped for eight and nine 

microsatellite loci, respectively. Eighty-five B. hortorum sister pairs and 58 B. terrestris sister 

pairs were identified. No ‘noncircular’ nests were identified. Out of the 16 farms studied, no 

sister pairs were found for B. hortorum on four farms and no sister pairs for B. terrestris on 

four farms (i.e. all bees sampled were from unique nests). Consequently, no estimate of the 

number of undetected nests could be made for these farms, leaving a total of 12 farms for 

each species. Estimated numbers of colonies per farm from Capwire ranged from 107 to 412 

for B. hortorum and from 92 to 1,000 for B. terrestris. 

 

2.4.2 Relationship between different survey techniques 

 

There were few similarities between the different sampling techniques. The abundance of 

bumblebees observed on the transects was not correlated with the number of bumblebees 

caught in the pan traps (Spearman’s rho=0.18, n=16, P=0.50). The Shannon diversity index of 

bumblebees observed on the transects was not correlated with the diversity of bumblebees 

caught in the pan traps (Spearman’s rho=0.19, n=16, P=0.47). The molecular estimate for the 

number of B. terrestris nests in an area was not correlated with either the abundance of B. 

terrestris seen on the transects (Spearman’s rho=0.26, n=12, P=0.42) or caught in the pan traps 

(Spearman’s rho=0.16, n=12, P=0.63). The molecular estimate of the number of B. hortorum 

nests in an area was not correlated with either the abundance of B. hortorum seen on the 
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transects (Spearman’s rho=0.11, n=12, P=0.73) or caught in the pan traps (Spearman’s 

rho=0.06, n=12, P=0.85).  

 

2.4.3 Effects of the surrounding landscape 

 

Sampled farms varied considerably in land use types (Table 2.1) with an average of 72.1 ± 2.7% 

of land covered in crop or permanent grassland and 21.8 ± 2.8% covered by semi-natural 

habitat. Few landscape variables were significantly associated with bumblebee abundance 

across the sampling techniques. Final model results are summarised in Table 2.2. There were 

no significant interactions between any of the final explanatory variables.  

 

 

Table 2.1. Land use types for surveyed farms within a 1 km radius. Means ± 1 SE are given for 

the 16 selected farms.  

 

Land use type Area (%) Minimum (%) Maximum (%) 

Attractive crops 10.99 ± 1.81 3.13 32.58 

Non-attractive crops 46.52 ± 4.23 16.68 70.59 

Permanent grassland 14.62 ± 2.52 0.68 34.32 

Woodland 11.49 ± 3.01 0.85 35.18 

Hedgerow 2.10 ± 0.24 0.39 3.34 

Flower-rich 0.99 ± 0.32 0.00 4.36 

General grass 7.23 ± 0.99 2.88 16.17 

Water  1.05 ± 0.84 0.00 13.44 

Urban 5.00 ± 0.52 1.83 7.44 
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Table 2.2. Summary table showing significant effects of landscape variables on bumblebee 

population metrics. 

 
  Variable df t P sig. 

Transect abundance all species 

 

No significant factor     

Pan trap abundance all species 

 

Landscape heterogeneity 1,15 -2.382 0.032 * 

 

Bombus terrestris 

Molecular nest estimate 

Transect abundance 

Pan trap abundance 

 

Bombus hortorum 

Molecular nest estimate 

 

Transect abundance 

 

Pan trap abundance 

 

Bombus lapidarius 

Transect abundance 

Pan trap abundance 

 

Bombus pascuorum 

Transect abundance 

Pan trap abundance 

 

Attractive crop cover 

No significant factor 

Landscape heterogeneity 

 

 

Attractive crop cover 

General grass cover 

Flower-rich cover 

General grass cover 

General grass cover 

 

 

No significant factor 

No significant factor 

 

 

No significant factors 

No significant factors 

 

1,11 

 

1,15 

 

 

1,11 

1,11 

1,15 

1,15 

1,15 

 

 

 

 

 

 

 

2.226 

 

-2.681 

 

 

2.948 

-2.316 

3.259 

-2.524 

-2.143 

 

 

 

 

 

 

 

0.0502 

 

0.018 

 

 

0.016 

0.046 

0.0062 

0.025 

0.0502 

 

 

 

 

 

 

 

 

. 

 

* 

 

 

* 

* 

** 

* 

. 

 

 

 

 

 

 

 

 

 

Landscape heterogeneity was significantly negatively associated with both the total number of 

bumblebees caught in pan traps (GLM, t1,15=-2.382, P=0.032) and the number of B. terrestris 

(GLM, t1,15=-2.681, P=0.018), the most commonly caught bumblebee (n=925). The number of B. 

hortorum caught in pan traps was marginally non-significantly negatively associated with the 

cover of general grass habitats (GLM, t1,15=-2.143, P=0.0502, Figure 2.1b). For the transect 

data, only the abundance of B. hortorum was associated with landscape variables, being 

positively associated with the area of flower-rich habitat (GLM, t1,15=-3.259, P=0.0062) and 

negatively associated with the cover of general grass habitats (GLM, t1,15=-2.524, P=0.025, 

Figure 2.1a).  
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Figure 2.1. Effect of the proportion of general grass habitats on Bombus hortorum as measured 

by (a) the total number of individuals counted on the transect, GLM t1,15=-2.524 p=0.025 (b) 

the total number of individuals captured in pan traps, GLM t1,15=-2.143 p=0.0502 and (c) the 

molecular estimate of number of nests, GLM t1,11=-2.316 p=0.046. 
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For the molecular estimates of the number of colonies present, B. hortorum was significantly 

(GLM, t1,11=2.948, P=0.016) and B. terrestris marginally non-significantly (t1,11=2.226, P=0.0502) 

associated with the cover of attractive crops. In addition, the abundance of B. hortorum 

colonies was negatively associated with the cover of general grass habitats (GLM, t1,11=-2.316, 

P=0.046, Figure 2.1c). 

 

2.4.4 Effect of local floral abundance 

 

Bumblebee abundance on the transects was strongly associated with recorded floral 

abundance on the transects (χ2=30.9, P<0.001, Figure 2.2). The number of bumblebees caught 

in pan traps was also strongly associated with the density of flowers in the margin in which 

they were placed (χ2=8.1, P=0.004, Figure 2.3). This effect was similar for both methods with 

the inclusion of the interaction between floral density and survey technique not significantly 

improving the model (χ2=0.8, P=0.364). 

 

 

Figure 2.2. Relationship between floral abundance and number of observed foraging 

bumblebees on 3 km transects during the May-August sampling period. Sampling round one = 

circles, round two = open squares, round three = triangles. GLMM, χ2=30.9, P<0.001. Note log 

scale used on x-axis. 
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Figure 2.3. Relationship between floral density and the number of bumblebees caught in pan 

traps placed out in agricultural margins during the May-August sampling period. Sampling 

round one = circles, round two = open squares, round three = triangles. GLMM, χ2=8.1, 

P=0.004. Note log scale used on x-axis. 

 

2.5 Discussion 

 

If we are to devise sensible management strategies for bumblebees or other pollinators, to 

conserve rare species or maintain adequate populations of common species to deliver 

pollination services, then it is important that we have accurate means of measuring their 

populations. Without such measures we are unable to detect population change, compare 

populations in regions, or detect the effectiveness of different management techniques.  It is 

thus of considerable concern that the three techniques here, all of which are in common use, 

appear to produce population measurements that do not correlate with one another. Rather 

than accurately measuring the bumblebee population at the farm level, each technique seems 

to capture a different aspect of local bumblebee abundance and distribution throughout the 

landscape. Such parallels can also be found with other invertebrate sampling techniques; for 

example pitfall traps have long been regarded as measuring invertebrate activity rather than 

just abundance, where activity is governed by factors such as the availability of food resources 

and vegetation density (Sunderland et al. 1995). 
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Semi-natural environments on agricultural land can provide suitable foraging resources and 

nesting sites for bumblebees and are expected to be beneficial to bumblebee populations 

(Kells and Goulson 2003; Pywell et al. 2006). However, in our study, only one positive 

association with semi-natural habitats or factors correlated with semi-natural habitats was 

found, that of the abundance of B. hortorum to the area covered in flower-rich habitat. 

Instead, in common with other studies, the number of bumblebees recorded on the transects 

was strongly associated with floral abundance on the transect itself (Pywell et al. 2006; Carvell 

et al. 2007).  

 

Whilst previous pan trap studies have caught few large bodied bees (Toler et al. 2005; 

Westphal et al. 2008), pan traps in this study caught large numbers of bumblebees (1,980 

individuals representing 70% of the total number of bees caught in pan traps). Whilst this 

represents a smaller proportion than the transects where the 6,014 bumblebees represented 

93% of the total bees recorded, our data show that bumblebees can be attracted to pan traps 

in large numbers. The total number of bumblebees caught in pan traps over the survey period 

on each farm depends on the wider landscape structure, with a greater number caught in 

more intensively farmed, less heterogeneous environments. It has been argued that landscape 

heterogeneity is important for farmland biodiversity (Benton, Vickery and Wilson 2003) and it 

seems unlikely that less heterogeneous landscapes genuinely support more bumblebees, as 

the process of agricultural intensification that reduces landscape heterogeneity is the primary 

reason behind the decline in agricultural bumblebee populations (Goulson et al. 2005; 

Williams 2005; Carvell et al. 2006a). It is well known that bumblebees forage over large areas, 

in particular B. terrestris (Walther-Hellwig and Frankl 2000; Knight et al. 2005; Westphal et al. 

2006), which was the most common bee caught in the pan traps. In landscapes with lower 

heterogeneity, bumblebees may have to travel greater distances to find suitable forage, and 

are more likely to encounter pan traps than bees in a more heterogeneous landscape where 

resources are more widely distributed. This may result in an overestimation of the total 

population with the largest effect found in those species with the greatest dispersal ability. 

Previous studies have found that pan traps catch more bees in flower-poor areas, arguing that 

the relative lack of resources may make the pan traps more attractive (Baum and Wallen 2011; 

Morandin and Kremen 2013). It is consequently surprising that, as with transect surveys, our 

results suggest that pan traps catch more bumblebees in areas with a greater density of 

flowers. Despite the differences in this relationship, pan traps are clearly strongly influenced 

by both landscape structure and floral availability and are not suitable for measuring 

bumblebee population sizes.  
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Previous studies have highlighted the lack of an apparent relationship between observed 

bumblebee abundance and the presence of varying areas of semi-natural habitat (e.g. 

Westphal et al. 2003; Hermann et al. 2007). It has been argued that as the proportion of arable 

land increases the abundance of semi-natural forage is reduced, resulting in sown forage 

patches being relatively more exploited because they represent a greater proportion of the 

total forage available in an area (Heard et al. 2007), making it difficult to assess the true 

benefit of semi-natural habitats to bumblebee populations. This is borne out by Carvell et al. 

(2011) who found that densities of B. lapidarius, B. pascuorum, B. hortorum and B. terrestris 

agg. on sown forage patches were significantly higher in areas with a greater proportion of 

arable land. Moreover, bumblebees also exhibit a degree of site constancy once lucrative 

locations have been found (Osborne et al. 1999), leading to a greater accumulation of workers 

where alternative forage is scarce. This ‘ecological contrast’ between sown floral resources and 

the resources present in the wider environment has been shown to affect how strongly 

pollinators respond to agri-environment schemes (Scheper et al. 2013). Given the strong 

aggregative effect of highly contrasting floral resources and the lack of similarity between 

different population measurements, it is not clear that a strong response to agri-environment 

schemes necessarily translates into a positive population level impact for bumblebees.  

 

Whilst these aggregative effects may influence the distribution of foraging bumblebees 

throughout the landscape, they should not affect the distribution of workers from the same 

colony. Unlike honeybees, bumblebees lack a directional recruitment mechanism between 

foragers (Dornhaus and Chittka 1999), so sister workers should be distributed randomly 

throughout the environment. Consequently, even if samples are collected from an aggregation 

of foraging bees it should still be representative of the number of colonies present in an area. 

The molecular nest estimates for both B. hortorum and B. terrestris showed a positive 

association with the percentage of the landscape covered with oilseed rape and field beans. It 

has been argued that these mass flowering crops are good for providing resources for 

bumblebees in intensively farmed environments, and their presence has been associated with 

higher observed densities of bumblebees on sown forage patches (Westphal et al. 2003) and 

on transect walks (Hermann et al. 2007). Whilst this may also be as a result of bumblebee 

aggregation, our molecular estimates suggest that there may be a real beneficial effect of mass 

flowering crop on the number of colonies founded in an area.  

 

However, the molecular population estimates obtained in this study show marked variation, 

particularly for B. terrestris. True nesting densities of wild bumblebees are poorly understood 
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so it is not possible to comment on whether these colony abundance estimates are 

reasonable, but the lack of detection of sister pairs from 4 sites suggests that sampling the 

same site over multiple days may be required to detect sufficient sister pairs to make more 

comprehensive population estimates. Additionally, the low similarity between the results 

obtained from the molecular estimates and those from the direct sampling techniques may be 

due to differences in average nest size between farms. Bumblebee colonies placed in resource-

rich areas develop faster than those in resource-poor areas, though their reproductive output 

was unaffected (Goulson et al. 2002; Williams et al. 2012). Colony growth of wild bumblebee 

nests is poorly understood, but with variable emergence and colony establishment dates for 

individual queens it seems unlikely that consistent differences in nest size would exist between 

farms, but this is an issue that requires further study. Despite these shortcomings, the 

molecular technique does not appear to be biased by floral abundance in the study area and is 

likely to be a more accurate measure of bumblebee population size than the direct survey 

techniques.  

 

The presence of general grass habitats was negatively associated with population estimates for 

the long tongued B. hortorum across all three sampling techniques. The majority of the general 

grass biotope comprised 2 to 6 m grass margins, usually located alongside field edges. This 

negative association may also be as a result of dilution, with B. hortorum preferring these 

habitats, leading to a reduced detection in other areas. However, this seems unlikely as from 

personal observation (TJW), during the transects and the collection of sampling techniques, 

few B. hortorum were seen foraging in general grass habitats because these areas did not 

provide suitable forage plants, in contrast to hedgerows and flower-rich grassland. General 

grass margins tend to be comprised of coarse grasses which may repress forage plants such as 

Stachys sylvatica. This is a typical hedgerow plant that is not included in conservation mixes 

and was the most popular forage plant for B. hortorum in this study, representing 62% of 

worker foraging visits during the collection of genetic samples and 38% of visits by all castes 

over the whole survey period. Given that the majority of the conservation priority bumblebee 

species in Britain are also long tongued and favour similar plant species to B. hortorum 

(Goulson et al. 2005), a potentially negative impact of general grass margins requires further 

investigation.  
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2.6 Conclusions 

 

Distinguishing between factors that have a genuine population level effect and factors that 

simply cause a redistribution of individuals around the landscape is vitally important if the 

drivers of bumblebee population size at the farm scale are to be identified, understood and 

integrated into contemporary management schemes. Our results suggest that the bumblebee 

population size estimates from both transects and pan traps are highly affected by the 

availability of forage in both absolute terms and in relationship to the floral resources present 

in the wider environment, potentially leading to an overestimation of the population in 

intensively farmed areas and an underestimation of the population in less intensively farmed 

areas. Whilst the molecular technique does not appear to be affected by bumblebee 

aggregation it is substantially more expensive and time consuming and may not produce useful 

results if insufficient samples to detected sister pairs are collected. However, in the absence of 

a true population measurement it appears to be the best technique. Further detailed work is 

needed to determine a practical and cost effective way to accurately measure bumblebee 

populations in agricultural regions.  
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Chapter 3 –  Targeted agri-environment schemes significantly improve the 

  population size of common farmland bumblebee species 
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3.1 Abstract 

 

Changes in agricultural practice across Europe and North America have been associated with 

range contractions and local extinction of bumblebees (Bombus spp.). A number of agri-

environment schemes have been implemented to halt and reverse these declines, 

predominantly revolving around the provision of additional forage plants. Although it has been 

demonstrated that these schemes can attract substantial numbers of foraging bumblebees, it 

remains unclear to what extent they actually increase bumblebee populations. We used 

standardised transect walks and molecular techniques to compare the size of bumblebee 

populations between Higher Level Stewardship (HLS) farms implementing pollinator friendly 

schemes and Entry Level Stewardship (ELS) control farms. Bumblebee abundance on the 

transect walks was significantly higher on HLS farms than ELS farms. Molecular analysis 

suggested maximum foraging ranges of 566 m for Bombus hortorum, 714 m for B. lapidarius, 

363 m for B. pascuorum and 799 m for B. terrestris. Substantial differences in maximum 

foraging range were found within bumblebee species between farm types. Accounting for 

foraging range differences, B. hortorum (47 vs 13 nests/km2) and B. lapidarius (45 vs 22 

nests/km2) were found to nest at significantly greater densities on HLS farms than ELS farms. 

There were no significant differences between farm type for B. terrestris (88 vs 38 nests/km2) 

and B. pascuorum (32 vs 39 nests/km2). Across all bumblebee species, HLS management had a 

significantly positive effect on bumblebee nest density. These results show that targeted agri-

environment schemes that increase the availability of suitable forage can significantly increase 

the size of wild bumblebee populations.  

 

3.2 Introduction 

 

Since the Second World War, many bumblebee species have suffered severe range 

contractions and local extinctions across Europe and North America (Kosior et al. 2007; Grixti 

et al. 2009; Williams and Osborne 2009). This decline has been particularly severe in arable 

areas, mirroring a wider decline in farmland biodiversity in this time period (Robinson and 

Sutherland 2002). The speed of this decline has been quite striking, with species considered 

widespread in Free and Butler (1959) described as rarities in Alford (1975).  

 

The use of Fabaceae pollen by bumblebees and the decline in Fabaceae across the wider 

countryside has received a great deal of attention in recent years (Rasmont and Mersch 1988; 

Carvell et al. 2006a). Bumblebees that have declined most seriously tend to be medium to 
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long-tongued species that have more restricted diets and collect a greater proportion of their 

pollen from Fabaceae (Goulson et al. 2005). Analysis of pollen from museum specimens shows 

that before the 1950s, bumblebee species that subsequently declined collected pollen from 

almost one third fewer plant species than bumblebee species that have remained stable (Kleijn 

and Raemakers 2008). More generally, the loss of appropriate pollen host plants has been 

implicated as a key driver behind the loss of wild bee diversity (Biesmeijer et al. 2006; Scheper 

et al. 2014). In addition, it has been argued that certain species are inherently more 

susceptible to intensification as a result of their climatic and habitat specialisation. Aspects of 

their life history such as emergence period have also been implicated, with late emerging 

species more vulnerable to a shortage of summer forage compared to better established 

spring emerging species (Williams et al. 2009). Consequently, in order to counteract these 

declines the creation of Fabaceae-rich habitats has become an important part of the design 

and assessment of agri-environment schemes for bumblebees (Edwards 2003; Carvell et al. 

2007). 

 

Across the European Union, agri-environment schemes are now funded as part of the Common 

Agricultural Policy. In England, two tiers of environmental stewardship operated between 2005 

and 2014. Entry Level Stewardship (ELS, DEFRA 2005a) was open to all farmers. Higher Level 

Stewardship (HLS, DEFRA 2005b) provided greater financial rewards for more substantial and 

rigorous agri-environmental schemes, often in targeted high priority areas. There are three 

main pollinator-focused HLS options. HF4 pollen and nectar mixes are rotational plots or strips 

sown with a mixture of predominantly leguminous plants such as Trifolium pratense L. and 

Trifolium hybridum L. which tend to be resown within a 5 year period. HE10 floristically 

enhanced grass buffer strips are non-rotational grassland alongside fields and are composed of 

a mixture of grasses and plants such as Centaurea nigra L. and Lotus corniculatus L. HK6/7/8 

focus on the maintenance, restoration and creation of species rich grassland. These schemes 

are aimed at increasing the availability of forage in farmed environments to support 

populations of bumblebees and other pollinators. A number of studies have assessed how well 

flower-rich agri-environment schemes establish and provide resources throughout the year, 

specifically for bumblebees (Carvell et al. 2006b; Pywell et al. 2006; Carvell et al. 2007), but 

little work has been done to establish if these schemes are having a population level impact 

and are actually increasing the size of bumblebee populations, rather than simply 

redistributing existing foragers in the landscape (Holland et al. 2015).  
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As eusocial insects, bumblebees form colonies, and consequently bumblebee effective 

population size is the number of colonies in an area. Nesting densities of wild bumblebees are 

poorly understood and direct surveys are infrequent and labour intensive (Fussell and Corbet 

1992; Osborne et al. 2008a; O’Connor et al. 2012). Moreover, previous studies that have 

assessed how agri-environment schemes have affected pollinators predominantly use counts 

of foraging workers when ideally we need to know how the schemes affect the abundance of 

bumblebee colonies. Bumblebee colonies are founded by a single queen, and most species are 

monoandrous (Estoup et al. 1995; Schmid-Hempel and Schmid-Hempel 2000; Hughes et al. 

2008). The resulting high relatedness between workers makes social bumblebees amenable to 

identification of sisters using molecular techniques, such as microsatellite sequencing. These 

techniques have been used to quantify foraging distance and nesting density (Darvill et al. 

2004; Knight et al. 2005; Carvell et al. 2012), conservation genetics and population structuring 

(Ellis et al. 2006; Charman et al. 2010) and dispersal distances of reproductive castes (Kraus et 

al. 2009; Lepais et al. 2010). Moreover, the development of molecular capture-recapture 

models (e.g. Miller et al. 2005) has enabled estimation of the number of bumblebee colonies 

present in an area, allowing assessment of nest mortality rates (Goulson et al. 2010). These 

studies have provided a novel understanding of bumblebee ecology that could not have been 

achieved with conventional techniques.  

 

The aim of this study was to evaluate the effectiveness of pollinator-targeted HLS schemes in 

boosting bumblebee populations by comparing farms with and without such HLS schemes 

using a combination of molecular techniques and direct surveys. The molecular studies of nest 

density and foraging range focus on the four most common bumblebee species on farmland in 

Southern England: Bombus hortorum, Bombus lapidarius, Bombus pascuorum and Bombus 

terrestris. All species are members of the ‘big six’ bumblebee species that remain common in 

the UK, being found in almost every habitat (Goulson et al. 2006). They differ markedly in 

tongue length and hence the flowers that they visit. B. lapidarius and B. terrestris are 

ubiquitous short-tongued bumblebees and B. pascuorum has a medium length tongue. B. 

hortorum has a much longer tongue than the other members of this group, of around 13 mm 

compared to 5-8 mm (Goulson et al. 2008a). Both B. pascuorum and B. hortorum have 

remained relatively common whilst most long and medium-tongued bumblebees have 

declined markedly in western Europe in the last 60 years (Goulson et al. 2005; Kosior et al. 

2007).  
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The relative success of these four contrasting bumblebees will therefore provide greater 

insight into the suitability of farm management for other bumblebee species and potentially 

other pollinators. In addition to the molecular studies of the nesting density of these four 

species, we investigate more broadly how the provision of additional forage for insect 

pollinators has affected populations of all bumblebee species using standard field surveys. Our 

results are examined in relationship to management type and floral availability and have clear 

implications for the management of pollinator populations on agricultural land.  

 

3.3 Materials and Methods 

 

3.3.1 Study area 

 

Nine ELS and nine HLS farms were selected in north Hampshire and West Sussex, UK (Figure 

3.1). On average, HLS farms covered 256.22 ± 37.80 ha, significantly more than ELS farms 

which covered 156.67 ± 22.07 ha (t-test, t16=2.565, p=0.021). Selected HLS farms had been 

implementing an average of 5.56 ± 0.13 ha of pollinator focused flower-rich options 

representing 2.17 ± 0.05% of the farm area for a minimum of three years. Almost all farms in 

lowland England implement some form of agri-environment scheme and consequently basic 

ELS farms were selected as the control group. ELS farms were not implementing any pollinator 

focused schemes. The centre points of the two closest farms were 5.4 km apart. At this 

distance it is unlikely that bumblebees will be able to regularly travel between farms on 

foraging trips (see Knight et al. 2005; Osborne et al. 2008b). There was no pairing of farms. 

Farms were predominantly arable or mixed arable/dairy with wheat, barley, oilseed rape and 

permanent/silage grassland as the major crops. 
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Figure 3.1. Map of the study area showing Higher Level Stewardship farms (black squares) and 

Entry Level Stewardship Farms (grey squares).  

 

3.3.2 Line transect counts 

 

A standardised 3 km line transect was designed for each farm. Transects on HLS farms were 

designed to pass through as many areas of flower-rich options as possible. Bumblebee activity 

was recorded along each transect following standard bee walk methodology (see Carvell et al. 

2004). All bumblebees within 2 m of the recorder were recorded to species and caste level. 

The first flowering species visited and the purpose of the visit, for either pollen or nectar, was 

recorded. Bumblebees collect pollen by loading it onto specially adapted grooves on their hind 

legs. Many foraging bumblebees will visit a flower for nectar with pollen collected from 

different plant species, so only bees actively grooming pollen onto their hind legs were 

recorded as collecting pollen. For each transect, the number of flowering units of each plant 

species within 2 m of the recorder were estimated. This assessment followed Carvell et al. 

(2007) with one flower cluster (e.g. an umbel, a head, a capitulum) counted as a single unit. 

 

Sixteen farms (8 HLS, 8 ELS) were surveyed in 2013. Transects were walked three times 

throughout the year, between 25th May - 5th June, 26th June - 15th July and 3rd - 11th August. 

Seventeen farms (8 HLS, 9 ELS) were surveyed in 2014. Transects were walked three times 

throughout the year, between 17th - 27th May, 21st June - 9th July and 3rd - 15th August. Each of 

these six sampling periods are henceforth referred to as sampling rounds. This sampling 

followed the UK butterfly Monitoring Scheme guidelines (Pollard and Yates 1993) with all 
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surveys conducted between 0930-1700 hours when the temperature was above 13oC with at 

least 60% clear sky, or above 17oC with any sky conditions. Observation time was randomised 

between farms. No surveys were conducted when it was raining.  

 

3.3.4 Genetic sample collection 

 

Genetic samples were collected at the end of June and beginning of July as colony size should 

be approaching its peak at this time before the production of reproductive castes. Farms were 

sampled under the same climatic conditions as for the transects. B. hortorum and B. terrestris 

samples were collected from 8 HLS and 8 ELS farms between 26th June and 15th July 2013. HLS 

and ELS farms were visited on alternating days. B. lapidarius and B. pascuorum samples were 

collected from 8 HLS and 9 ELS farms between 21st June and 9th July 2014. From the centre of 

each farm an area of a circle with radius 800 m was searched for bumblebee workers on one 

day for six hours. The circle was divided into quarters and each part was searched for 90 min 

to maximise the detection of unique colonies present on each farm. The total area covered the 

majority of each farm and all flower-rich options present. Non-lethal tarsal samples 

(Holehouse et al. 2003) were taken from the mid-leg of collected workers. Tarsi were stored 

immediately in 95% ethanol for later DNA extraction. A GPS reading accurate to the nearest 

few metres was taken at the location of each sample. If the sampled bee had been visiting 

flowers, the first flowering species the bee had been seen to visit and the purpose of the visit, 

for either pollen or nectar, was recorded for B. lapidarius and B. pascuorum, but not for B. 

hortorum and B. terrestris.  

 

3.3.5 Molecular methods 

 

DNA was extracted from the tarsal sample using the HotSHOT protocol (Truett et al. 2000) and 

amplified at nine polymorphic microsatellite loci (Estoup et al. 1995, 1996). All species used 

the same nine markers (B100, B118, B132, B10, B11, B96, B119, B124, B126), with the 

exception of B100 replaced with B121 for B. pascuorum and B119 replaced with B131 in B. 

pascuorum and B. lapidarius. Polymerase chain reactions (PCR) were carried out on samples 

using the QIAGEN Multiplex PCR kit. Multiplex PCRs were run for combinations of the loci 

B100(VIC)/B121(VIC)-B118(NED)-B132(FAM), B10(VIC)-B11(NED)-B96(FAM) and 

B119(FAM)/B131(FAM)-B124(NED)-B126(PET) (fluorescent markers indicated in parenthesis). 

B119 amplified weakly in B. hortorum and was removed from further analysis. PCR reactions 

were 10 µl in volume and contained 1 µl of Q-solution, 5 µl of PCR MasterMix, 1.8 µl of RNAse 
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free water, 1.2 µl of primer solution (6 x 0.2 µl of each primer, forward primers labelled with 

VIC, NED, FAM and PET dyes, Applied Biosystems) and 1 µl of template DNA. Samples were 

denatured at 95oC for 15 min, followed by 35 cycles of 94oC for 30 s, 54oC annealing for 90 s 

and 72oC for 90 s. This was followed by a final step at 72oC for 10 min. PCR products were 

visualised on an ABI 3730 capillary DNA sequencer with a 1:125 dilution before the run and 

using a GeneScan LIZ 500 internal size standard. Fragments were sized using GeneMapper 

software (Applied Biosystems).  

 

3.3.6 Identification of unique colonies 

 

COLONY v2.0.5.0 (Jones and Wang 2009; Wang 2013) was used to assign workers to unique 

colonies within each farm. This program uses maximum likelihood methods to assign sibship or 

parent-offspring relationships, and has been found to be the most reliable method available 

for assigning sibship in bumblebees (Lepais et al. 2010) and has been used extensively for this 

purpose (Charman et al. 2010; Carvell et al. 2012). The analysis was run globally with all farms 

included. Genotyping error was accounted for in the analysis by setting the error rate at 2% 

(allele dropout 0.5% and other errors 1.5%), rates typical for bumblebee genotyping (Lepais et 

al. 2010; Goulson et al. 2010). This procedure may regroup a small fraction of unrelated 

individuals into a common colony (Type I errors, Lepais et al. 2010). Type I errors for this 

number of loci with an average of ten alleles per loci are expected to occur with a frequency of 

<0.005 (Wang 2013) which would lead to less than one worker from each species being falsely 

grouped. Global analysis resulted in a number of sister pairs identified between farms at 

distances of over 6 km (see results) and these are highly likely to be spurious. The proportion 

of false sister pairs was 0.0207 for B. hortorum, 0.0181 for B. lapidarius, 0.0334 for B. 

pascuorum and 0.0202 for B. terrestris. These false positive rates were used for the calculation 

of species specific foraging range estimates. Given that any falsely accepted sisterhoods within 

farms would be randomly distributed this was not considered to have a significant effect on 

the estimation of the number of unique colonies. Where markers departed from Hardy-

Weinburg Equilibrium (HWE) or were in linkage disequilibrium they were individually removed 

and a separate analysis conducted to determine their impact on sister pair identification.   

 

3.3.7 Genetic parameters 

 

Due to high relatedness between sister pairs, only one worker per colony was randomly 

selected for the following analyses. Genepop v4.2 (Rousset 2008) was used to calculate F-
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statistics, to test for genotypic linkage disequilibrium between pairs of loci, and the HWE of 

each locus on each farm. Bonferroni corrections for multiple tests were used to minimise type I 

errors (Rice 1989).  

 

3.3.8 Estimation of number of unique colonies 

 

DNA-based capture–recapture models allow for multiple sampling of an ‘individual’, and the 

frequency distribution of the number of times each ‘individual’ is sampled can be used to 

estimate the population size. In most instances, the individual will correspond to a single 

vertebrate organism. However, for bumblebees the colony represents the reproductive 

individual and capturing two sisters from the same colony is analogous to sampling the same 

individual twice. Instead of trying to estimate the number of individual workers we are 

interested in estimating the number of nests represented by our sample of workers. The 

program Capwire (Miller et al. 2005) can be used to obtain point estimates of the number of 

bumblebee colonies present  at a farm from a subsample of workers (Goulson et al. 2010; 

Stanley et al. 2013). Capwire uses two different estimation methods, an Even Capture Model 

(ECM) that assumes equal chance of sampling workers from the same colony and a Two Innate 

Rate Model (TIRM) that assumes unequal sampling chance. Heterogeneity of capture 

probability is a characteristic of bumblebee nests so the TIRM model was chosen as it probably 

gives more accurate estimates of the number of nests present at a site (Goulson et al. 2010). 

Capwire models were run in 0.1 increments with capturability ratios of minimum 1, maximum 

20; 95% confidence intervals for the estimate on population size based on 1000 bootstrap 

replicates and a largest population size of 2000 for dimensioning. 

 

3.3.9 Estimation of foraging range and nesting density 

 

A foraging range estimate was calculated for each species on each farm type from an analysis 

of the distribution of identified sisters. GPS marked sisters were plotted in Google Earth 

(Google Inc.) and the distance between them was measured. Sister pairs were ranked by 

distance of separation and plotted as a cumulative proportion of total sister pairs. A 

logarithmic line of best fit as measured by the highest adjusted R2 was then plotted using the 

formula y=a(ln(x+b))+c and was used for foraging range calculations (Knight et al. 2005). The 

true separation distance was calculated for the point at which the proportion of sister pairs 

falls to the false positive rate as calculated for each species (see above). The resulting value 

was then halved to give an estimated maximum foraging range for each species, with the most 
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conservative assumption being that two detected sisters were both foraging equidistant from 

their nest but in opposite directions. It is highly likely that bumblebees will forage over greater 

distances than this estimate, but the chances of detecting sister pairs at great distances 

becomes remote and hence this estimate is best referred to as a minimum estimate of the 

maximum foraging distance (see Knight et al. 2005).  

 

Whilst the area searched on each farm was a circle with radius 800 m, bumblebees are mobile 

organisms and the true area sampled is a function of the foraging range of each bumblebee 

species. A bumblebee sampled on the edge of the 800 m sampling area may have flown there 

from many hundreds of meters away. Consequently, estimates of nesting density were 

obtained by dividing the molecular estimate of the number of colonies present by the area of a 

circle of radius 800 m plus the estimated foraging range of the respective species on each farm 

type to more accurately reflect the size of the sampled area.  

 

3.3.10 Data analysis 

 

The effect of environmental stewardship on total bumblebee abundance and the abundance 

of the six most common bumblebee species was tested using Generalised Linear Mixed-Effect 

Models (GLMMs) with management type as a fixed factor. Each sampling round, nested within 

sampling year was included in the models as a random factor to account for the temporal data 

structure. Models were fitted with a negative binomial error structure. Differences in the 

number of genetic samples collected and the estimated nest density between farm types for 

each sampled bumblebee species were compared using Student t-tests. The effect of 

management type on estimated bumblebee nest density was tested in a GLMM as a fixed 

factor with bumblebee species included as a random factor. Models were fitted with a 

negative binomial error structure. The proportion of pollen visits to plants sown as part of HLS 

management and members of Fabaceae was calculated for B. hortorum, B. lapidarius, B. 

pascuorum and B. terrestris for all farms over the two year sampling period. For each 

bumblebee species, proportions were only calculated for farms with a minimum of five 

recorded pollen visits. Differences were tested in a GLMM with bumblebee species included as 

a random factor. Models were fitted with a binomial error structure.  

 

All GLMMs were tested for over dispersion to ensure appropriate error structure selection. No 

models were significantly over dispersed. Final models were compared by ANOVA with a null 

model containing the same random factors to test for significance. All data analysis was 



 
 

44 
 

conducted in R version 3.1.1 (R Development Core Team) using the lme4 package for the 

GLMMs (Bates et al. 2014).  

 

3.4 Results 

 

3.4.1 Transect counts 

 

A total of 9,436 bumblebees of 15 species were recorded. The 15 bumblebee species 

comprised the ubiquitous social species B. terrestris, B. lucorum, B. pratorum, B. pascuorum, B. 

hortorum and B. lapidarius as well as B. jonellus, B. hypnorum, B. ruderarius and B. ruderatus. 

Five cuckoo bumblebee species (Psithyrus) were also recorded comprising B. vestalis, B. 

barbutellus, B. rupestris, B. sylvestris and B. campestris.  

 

Significantly greater numbers of bumblebees were recorded on HLS farms over the two year 

sampling period (χ2=8.5, p=0.004). Of the six most abundant species, B. lapidarius (χ2=11.5, 

p<0.001), B. pascuorum (χ2=8.4, p=0.004) and B. terrestris (χ2=8.3, p=0.004) were significantly 

more abundant on HLS farms. B. hortorum (χ2=0.3, p=0.589), B. lucorum (χ2=2.1, p=0.145) and 

B. pratorum (χ2=0.2, p=0.654) showed no difference in abundance between farm types.   

 

3.4.2 Genetic samples 

 

A total of 386 B. hortorum (24.00 ± 3.69 samples per farm), 771 B. lapidarius (45.36 ± 7.02), 

598 B. pascuorum (35.18 ± 4.44) and 593 B. terrestris workers (37.06 ± 4.45) were collected. 

There was no significant difference in the number of samples collected between farm types for 

B. hortorum (HLS 24.00 ± 4.83 against ELS 24.00 ± 5.93, t10=0.118, p=0.908), B. pascuorum 

(32.75 ± 4.77 against 37.33 ± 7.44, t15=0.183, p=0.857) and B. terrestris (36.00 ± 6.34 against 

38.13 ± 6.65, t10=0.057, p=0.956). Significantly more B. lapidarius samples were collected on 

HLS farms than ELS farms (72.75 ± 3.80 against 21.00 ± 4.27, t8.071=5.953, p<0.001). Allelic 

diversity was high with an average of 18.88 ± 2.55 alleles per locus in B. hortorum, 9.56 ± 0.85 

alleles per locus in B. lapidarius, 12.44 ± 2.29 alleles per locus in B. pascuorum and 14.67 ± 2.02 

alleles per locus in B. terrestris.  

 

At one farm only one individual B. hortorum sample was taken, which was excluded from the 

following assessments. For B. hortorum (364 unique colonies), departures from Hardy-

Weinberg were significant after Bonferroni correction in a total of 16 out of 120 tests. Marker 
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B118 showed departure at 10 out of 15 farms. Significant linkage disequilibrium was found for 

B100 & B126, B118 & B132, B126 & B132 and B96 & B126. For B. lapidarius (664 unique 

colonies) departure from Hardy-Weinberg was significant after Bonferroni correction in a total 

of 3 out of 144 tests. No significant linkage disequilibrium was found. For B. pascuorum (488 

unique colonies), departure from Hardy-Weinberg was significant after Bonferroni correction 

in a total of 6 out of 153 tests. Significant linkage disequilibrium was found for B96 & B126 and 

B96 & B132. For B. terrestris (580 unique colonies), departure from Hardy-Weinberg was 

significant after Bonferroni correction in a total of 7 out of 144 tests. Significant evidence of 

linkage disequilibrium was found for B124 & B126.  

 

The inbreeding coefficient was low with Fis=0.0969 ± 0.0387 for B. hortorum, Fis=0.0091 ± 

0.0113 for B. lapidarius, Fis=0.0468 ± 0.0171 for B. pascuorum and Fis=0.0948 ± 0.0139 for B. 

terrestris. Overall genetic differentiation between farms was very low with Fst=0.001 ± 0.001 

for B. hortorum, Fst=0.001 ± 0.0001 for B. lapidarius, Fst=0.001 ± 0.001 for B. pascuorum and 

Fst=0.003 ± 0.001 for B. terrestris.  

 

3.4.3 Identification of unique colonies 

 

Eighty-five B. hortorum sister pairs (n=386, 8 loci), 185 B. lapidarius sister pairs (n=771, 9 loci), 

193 B. pascuorum sister pairs (n=598, 9 loci) and 58 B. terrestris sister pairs (n=593, 9 loci) 

were identified. No ‘noncircular’ nests where sister A and sister B were both related to sister C, 

but not to each other, were identified. Global analysis identified a number of sister pairs 

between farms at distances over 6 km (8 pairs for B. hortorum, 14 pairs for B. lapidarius, 20 

pairs for B. pascuorum and 12 pairs for B. terrestris). At these distances such sister pairs are 

highly likely to be spurious. Further analysis with the removal of markers that departed from 

HWE and were in linkage disequilibrium identified some additional sister pairs between farms 

at large distance (over 10 km), and these are also highly likely to be spurious. No existing sister 

pairs within farms were discarded. The use of these linked markers does not appear to be 

affecting the identification of sisters within farms. Out of the 16 farms studied in 2013, no 

sister pairs were found for B. hortorum on four farms and no sister pairs for B. terrestris on 

four farms (i.e. all bees sampled were from unique nests). Out of the 17 farms studied in 2014, 

no sister pairs were found for B. lapidarius on one farm. As at least one ‘recapture’ is required 

to estimate numbers of colonies present, no estimate of undetected nests could be made for 

these farms, leaving a total of 12 farms (6 HLS, 6 ELS) for B. hortorum and B. terrestris and 16 

farms (8 HLS, 8 ELS) for B. lapidarius for which we can estimate nest density.  
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Point estimates from Capwire of the number of colonies present on each farm ranged from 64 

to 412 for B. hortorum, 9 to 579 for B. lapidarius, 30 to 329 for B. pascuorum and 92 to 1,780 

for B. terrestris. An average of 193 ± 63 nests of B. hortorum, 114 ± 37 nests of B. lapidarius, 

152 ± 35 nests of B. pascuorum and 482 ± 185 nests of B. terrestris were detected on ELS 

farms.  An average of 173 ± 36 nests of B. hortorum, 336 ± 55 nests of B. lapidarius, 140 ± 30 

nests of B. pascuorum and 630 ± 236 nests of B. terrestris were detected on HLS farms.  

 

3.4.4 Estimation of foraging range and nesting density 

 

Foraging range estimates showed considerable differences between bumblebee species. B. 

hortorum was estimated to forage up to 566 m (Figure 3.2a), B. lapidarius up to 714 m (Figure 

3.2b), B. pascuorum up to 363 m (Figure 3.2c) and B. terrestris up to 799 m (Figure 3.2d). Large 

differences in foraging range estimates were found between farm types, although the 

direction of change differed between species. On ELS farms B. hortorum was estimated to 

forage up to 1415 m (Figure 3.3a), B. lapidarius up to 484 m (Figure 3.3b), B. pascuorum up to 

313 m (Figure 3.3c) and B. terrestris up to 1196 m (Figure 3.3d). On HLS farms, B. hortorum was 

estimated to forage up to 282 m, B. lapidarius up to 746 m, B. pascuorum up to 377 m and B. 

terrestris up to 709 m. 

 

Using these foraging range estimates, significant differences in bumblebee nest density were 

found between farm types (Figure 3.4). Both B. hortorum and B. lapidarius were found at 

significantly greater nesting density on HLS farms than ELS farms (t10=4.014, p=0.002 and 

t13.983=2.232, p=0.043, respectively). There were no differences in the nesting density of B. 

terrestris or B. pascuorum between farm types (t10=1.907, p=0.0885 and t15=0.323, p=0.751, 

respectively). Overall, HLS farms had a significantly higher estimated bumblebee nesting 

density across all four species (χ2=7.7, p=0.006).  
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Figure 3.2. Separation distance of sister pairs for a) Bombus hortorum, b) Bombus lapidarius, c) 

Bombus pascuorum and d) Bombus terrestris across all farm types.  

 

Figure 3.3. Separation distance of sister pairs for a) Bombus hortorum, b) Bombus lapidarius, c) 

Bombus pascuorum and d) Bombus terrestris for Higher Level Stewardship farms (white circles 

with line of best fit) and Entry Level Stewardship farms (black triangles with dotted line of best 

fit).  
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Figure 3.4. Differences in the nesting density of four bumblebee species between Higher Level 

Stewardship farms (white bars) and Entry Level Stewardship farms (grey bars). Errors bars are 

± 1 standard error of the mean. Different letters above columns indicate farm types which 

differed significantly in a sampling round. * p<0.05; ** p<0.01; *** p<0.001. 

 

3.4.5 Bumblebee foraging preferences 

 

A total of approximately 9.69 million flowering units of 237 insect pollinated flowering plant 

species were recorded on the transects. A total of 9,288 foraging trips to 110 species were 

recorded by bumblebees with 102 species visited for nectar (n=7,823) and 47 species visited 

for pollen (n=1,465). Centaurea nigra was the most popular choice for nectar, accounting for 

51% of visits. Lotus corniculatus was the most popular choice for pollen, accounting for 19% of 

visits. Nectar collection was dominated by visits to Asteraceae, whilst pollen collection was 

equally dominated by visits to Fabaceae (Table 3.1). Including pollen visitation data from the 

genetic sample collection during 2014 (n=898), substantial differences in pollen preferences 

were found between the four most abundant bumblebee species across farm types (Table 3.2). 

All four species collected a significantly higher proportion of their pollen from plants sown as 

part of HLS management on HLS farms compared to ELS farms (χ2=11.8, p<0.001). The 

proportion of pollen collected from Fabaceae was also significantly higher on HLS farms, 

increasing by an average of 26.9 ± 2.31 percentage points (χ2=12.2, p<0.001). Across all farm 

types, B. lapidarius visited Fabaceae most extensively, comprising 90% of total pollen visits. 
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Whilst still the most popular family, Fabaceae comprised between 26-49% of total pollen visits 

for the other three bumblebee species. B. lapidarius also visited plants sown as part of 

pollinator friendly HLS management most extensively, with these plants comprising 75% of 

total pollen visits compared to between 16-41% for the other three species.  

 

Table 3.1. Percentage of visits for pollen and nectar recorded by bumblebees on the transects. 
The top ten most popular flowering plant families for each group over the sampling period are 
shown. 
 

Family Pollen (%) Nectar (%) 

Apiaceae 3.21 0.82 

Asteraceae 2.12 66.33 

Boraginaceae 0.68 3.13 

Brassicaceae 0.89 - 

Dipsacaceae - 3.32 

Fabaceae 60.27 12.58 

Lamiaceae 15.09 7.27 

Rosaceae 4.44 2.05 

Orobanchaceae 

Scrophulariaceae 

Ranunculaceae 

11.13 

- 

0.41 

1.05 

1.60 

0.63 

Resedaceae 1.09 - 

Total 99.32 98.77 
 

 

3.5 Discussion 

 

A consistent problem in assessing the response of bumblebees to agri-environment schemes 

has been that it is unclear whether a high observed abundance of bumblebees was merely an 

attraction of workers to sown forage patches or a genuine population level increase. Here we 

show for the first time that the management of uncropped land under Higher Level 

Stewardship can significantly increase the size of bumblebee populations, and specifically 

those of B. hortorum and B. lapidarius. 

 

Whilst the observed numbers of bumblebee species recorded over the study were high, 

comprising over half of the extant species in Britain, no sightings were made of B. sylvarum, B. 

humilis or B. muscorum, and B. ruderarius and B. ruderatus were only observed in very low 

numbers. These five medium to long-tongued bumblebees are the most threatened lowland 

England species and are most in need of assistance. All except B. ruderatus are members of the 

subgenus Thoracobombus.
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Table 3.2. Percentage of pollen collected from different flowering plant species on different farm types by the four most abundant bumblebee 
species. Plant species highlighted in bold are commonly sown as part of pollinator friendly HLS management and are also found growing wild on all 
farm types.  
 

Entry Level Stewardship farms       

Flowering plant  

species (n=8) 

Bombus hortorum  

(visits n=106) 

Flowering plant 

species (n=13) 

Bombus lapidarius  

(visits n=150) 

Flowering plant  

species (n=15) 

Bombus pascuorum  

(visits n=393) 

Flowering plant 

species (n=15) 

Bombus terrestris  

(visits n=78) 

Lamium album 39.62 Trifolium repens 48.00 Stachys sylvatica 38.42 Rubus fruticosus agg. 23.08 

Trifolium pratense 30.19 Lotus corniculatus 11.33 Odontites verna 20.10 Odontites verna 16.67 

Stachys sylvatica 25.47 Rubus fruticosus agg. 10.67 Trifolium repens 17.56 Heracleum sphondylium 10.26 

Other (<2%) 4.72 Reseda lutea 6.00 Trifolium pratense 10.69 Trifolium repens 10.26 

  Trifolium hybridum 5.33 Lamium album 3.05 Rosa arvensis 7.69 

  Brassica napus 4.67 Lotus corniculatus 3.05 Brassica napus 6.41 

  Centaurea nigra 4.00 Ballota nigra 2.04 Lamium album 5.13 

  Odontites verna 4.00 Rubus fruticosus agg. 2.04 Bryonia dioica 3.85 

  Trifolium pratense 3.33 Other (<2%) 3.05 Plantago media 3.85 

  Other (<2%) 2.67   Barbarea vulgaris 2.56 

      Chaerophyllum temulum 2.56 

      Pulicaria dysenterica 2.56 

      Rhinanthus minor 2.56 

      Other (<2%) 2.56 

Total sown 30.19  24.67  15.01  0.00 

Total Fabaceae 30.19  68.00  33.59  10.26 

Higher Level Stewardship farms       

Flowering plant  

species (n=9) 

Bombus hortorum  

(visits n=93) 

Flowering plant 

species (n=19) 

Bombus lapidarius  

(visits n=936) 

Flowering plant  

species (n=23) 

Bombus pascuorum  

(visits n=438) 

Flowering plant 

species (n=14) 

Bombus terrestris  

(visits n=96) 

Trifolium pratense 49.46 Lotus corniculatus 39.64 Trifolium pratense 36.30 Heracleum sphondylium 26.04 

Stachys sylvatica 25.81 Trifolium hybridum 33.33 Stachys sylvatica 22.83 Trifolium repens 18.75 

Clinopodium vulgare 7.53 Trifolium repens 11.43 Lotus corniculatus 9.59 Trifolium hybridum 11.46 

Vicia sepium 6.45 Melilotus officinalis 5.13 Odontites verna 5.94 Rubus fruticosus agg. 10.42 

Rosa arvensis 4.30 Centaurea nigra 2.35 Trifolium hybridum 3.88 Lotus corniculatus 7.29 

Lamium album 2.15 Odontites verna 2.35 Trifolium repens 3.88 Phacelia tanacetifolia 7.29 

Vicia sativa 2.15 Trifolium pratense 2.24 Lamium album 3.42 Odontites verna 6.25 

Other (<2%) 2.15 Other (<2%) 3.53 Vicia cracca 2.51 Reseda lutea 4.17 

    Medicago sativa 2.28 Genista tinctoria 3.13 

    Other (<2%) 9.36 Other (<2%) 5.21 

Total sown 51.61  83.33  58.68  27.08 

Total Fabaceae 58.06  93.38  64.61  38.54 

All farm types        

Total sown 41.21  75.32  36.58  16.09 

Total Fabaceae 43.72  89.87  49.94  26.44 
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Bombus pascuorum is the final member of Thoracobombus in Britain and showed no 

difference in nesting density between farm types, despite using sown plants more extensively 

than B. hortorum. Plants sown as part of HLS provided good bumblebee forage with all four 

common species favouring them for pollen collection when they were present, and the 

provision of large quantities of Fabaceae has clearly benefited Fabaceae specialists like B. 

lapidarius. However, this management does not appear to have benefited rarer species which 

were formerly found more extensively in this part of England.  

 

It has been argued that dietary specialisation alone is not sufficient to explain patterns of 

bumblebee decline. Species that have declined mostly emerge late from hibernation, and it 

has been suggested that such species may be more susceptible to a loss of food plants during 

mid to late colony development (Williams et al. 2009). Moreover, it has long been suspected 

that bumblebees with smaller colonies forage over shorter distances (Free and Butler 1959). 

Large colonies require more resources and, all else being equal, should have to travel further 

to collect sufficient food. Bombus pascuorum, along with other members of the 

Thoracobombus, tends to have small nests with around 20-100 workers, whilst B. lapidarius 

and B. terrestris nests are larger, with 100-400 workers (Sladen 1912; Alford 1975). B. 

hortorum nests tend to be more similar to B. pascuorum, with seldom more than 100 workers 

produced (Sladen 1912). Studies suggest that Thoracobombus have short foraging ranges, with 

B. muscorum only observed foraging up to 125 m (Walther-Hellwig and Frankl 2000). Species 

with shorter foraging ranges may be more susceptible to habitat fragmentation because 

resources are spread out over larger distances in such landscapes. Both B. muscorum and B. 

sylvarum show significant population structuring between their remaining habitat patches 

(Darvill et al. 2006; Ellis et al. 2006), and such small, isolated populations are unlikely to be 

viable in the long term, with metapopulation breakdown likely to be behind the extinction of 

B. subterraneus in Britain (Goulson, Lye and Darvill 2008b). Providing extra foraging resources 

may be sufficient to benefit those bumblebees with greater foraging ranges, but such options 

have had low uptake across England (Clothier and Pike 2013), and such forage patches may be 

too few and too scattered in the landscape to benefit those species unable to cover larger 

distances. Concentrated efforts on agricultural land surrounding existing populations in semi-

natural habitats should therefore be prioritised for these species. Additionally, improving the 

quality of existing buffer strips and hedgerows, many of which have become dominated by 

nitrophilous species, would provide a more homogenous supply of suitable forage compared 

to isolated pollinator-friendly agri-environment schemes.  
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Numerous studies have measured bumblebee foraging range using direct observations such as 

marking workers (Walther-Hellwig and Frankl 2000; Wolf and Moritz 2008) and genetic 

markers (Knight et al. 2005; Carvell et al. 2012, Table 3.3). Our suggested foraging ranges for B. 

pascuorum (363 m) and B. terrestris (799 m) compare reasonably well with previous studies. 

The situation is less similar for our estimate for B. lapidarius (714 m), though the authors of the 

previous study note that their estimate of 450 m was likely an underestimate (Knight et al. 

2005). To the best of our knowledge, these are the first data presented on the foraging range 

of B. hortorum (566 m). Despite considerable variation, probably due to inherent difference in 

the various techniques used, the same broad trends are found, with bumblebee species with 

larger colony sizes foraging over greater distances.  

 

Table 3.3. Estimated foraging distances of worker bumblebee species included in this study.  

Species Maximum foraging distance (m) Method Reference 

B. hortorum 566 Genetic markers Present study 

B. lapidarius 450 Genetic markers Knight et al. (2005) 

 714 Genetic markers Present study 

 1,032 Genetic markers Carvell et al. (2012) 

 1,500 Direct (marked workers) Walther-Hellwig and Frankl (2000) 

B. pascuorum 363 Genetic markers Present study 

 449 Genetic markers Knight et al. (2005) 

 990 Genetic markers Carvell et al. (2012) 

B. terrestris 631 Direct (radar tracking) Osborne et al. (1999) 

 758 Genetic markers Knight et al. (2005) 

 799 Genetic markers Present study 

 800 Direct (marked workers) Wolf and Moritz (2008) 

 1,500 Direct (marked workers) Osborne et al. (2008b) 

 1,750 Direct (marked workers) Walther-Hellwig and Frankl (2000) 

 
 
 

It is noteworthy that there were considerable differences in foraging range within species in 

different landscapes. As highly mobile foragers, bumblebees are capable of making profitable 

foraging trips over long distances and have the ability to respond to an increase in floral 

availability at the landscape scale. When seeking to maximise the amount of pollen and nectar 

brought back to the nest, the most important factor in the final profitability of the trip is the 

time spent foraging, as whilst travelling longer distances incurs a slightly higher energetic cost, 

the bigger cost is the lost time that could have been spent foraging for resources (Beutler 

1951). Consequently, we would expect bumblebees to favour shorter foraging trips wherever 

possible (Heinrich 1979). Using molecular markers, Carvell et al. (2012) found that the foraging 

range of both B. lapidarius and B. pascuorum increased as the availability of semi-natural 

habitat decreased, increasing the average distance between bumblebee nests and the nearest 

forage patch and forcing workers to make longer foraging trips. However, in our study, whilst 



 
 

53 
 

 

B. hortorum and B. terrestris foraged over shorter distances on resource rich HLS farms, B. 

lapidarius actually foraged further on HLS farms than on ELS farms. If highly rewarding forage 

patches are added to a landscape, the quality of the resources they provide may offset the 

time cost of travelling to these patches, enabling profitable foraging trips to be made over 

larger distances. However, it is unclear why different species should respond in opposite ways 

to the provision of extra foraging resources. Whilst it is difficult to draw wider conclusions with 

so few studies having assessed this question directly, it may be the case that bumblebees will 

not always prefer a closer patch of forage to a further patch if the quality of the latter is 

sufficiently high.  

 

3.6 Conclusions 

 

It is not clear how we might define what a desirable bumblebee population density should be, 

either from a conservation or an ecosystem services provisioning perspective. Are 

conservation schemes for pollinators aimed at conserving rare species, providing high seed set 

in commercial crops or ensuring adequate pollination for wild flowers? In identifying key 

knowledge needs in the conservation of wild pollinators, Dicks et al. (2013) highlighted the 

importance of understanding the relationship between pollinator populations and the 

ecosystem services they provide. Our work suggests that current HLS conservation measures 

significantly increase populations of at least two of the bumblebee species studied, and it 

seems likely that this will boost pollination services for crops and wildflowers. On the other 

hand, our study farms do not appear to be supporting viable populations of any rare 

bumblebee species, many of which were formerly found in this region. These rarer species 

require more specific and geographically focused management that takes into account their 

shorter foraging range and other ecological requirements if they are to persist in agricultural 

landscapes.  
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Chapter 4 –  Pollinator-friendly management does not increase the  

  diversity of farmland bees and wasps 
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4.1 Abstract 

 

In order to reverse declines in pollinator populations, numerous agri-environment schemes 

have been implemented across Europe, predominantly focused on increasing the availability of 

floral resources. Whilst several studies have investigated how bees and wasps (aculeates) 

respond to management at the scale of the scheme (i.e. within the flower patch) there has 

been little assessment of how schemes affect diversity at the farm scale. In the current work 

we assessed whether farms implementing flower-rich schemes had richer aculeate 

communities than farms without such habitats. A total of 104 species of bee and 44 species of 

aculeate wasp were recorded. Farms providing flower-rich habitats had significantly greater 

floral abundance but there were no differences in the total number of aculeate or flowering 

plant species recorded compared to farms without these habitats. Using a rarefaction analysis 

to account for differences in sample size, farms without flower-rich habitats had more diverse 

aculeate communities, as the communities on farms providing flower-rich habitat were 

dominated by large numbers of bumblebees (Bombus spp.) and honeybees (Apis mellifera). 

These two groups foraged strongly from sown flowers, but the majority of bee species 

preferred wild plants that are not included in flower-rich schemes. Maintaining large numbers 

of bees is important for the delivery of ecosystem services, but the creation of pollinator-

friendly habitats has not increased the diversity of flowering plants at the farm scale and 

consequently, such schemes will only benefit a limited suite of aculeate species. If diverse 

aculeate communities are to be retained and restored on farmland, agri-environment schemes 

that provide foraging and nesting resources for a wider range of pollinator species must be 

developed. A clearer understanding of the primary purpose of agri-environment schemes is 

necessary in order to evaluate their success in this regard.  

 

4.2 Introduction 

 

The process of agricultural intensification has resulted in a simplified and less heterogeneous 

landscape across Europe and North America and it is the primary driver behind long-term 

declines in farmland biodiversity (Benton, Vickery and Wilson 2003; Tscharntke et al. 2005). As 

with many taxa, wild bees have been negatively affected with serious declines across Europe 

and North America (Biesmeijer et al. 2006; Osborne and Williams 2009; Potts et al. 2010), 

though there is evidence that rates of decline are slowing (Carvalhiero et al. 2013). These 

declines are of serious concern as pollinators, particularly bees, provide an important 

pollination service which both supports wild plant communities (Ashman et al. 2004) and 
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affects the yield for approximately 70% of crop species worldwide, representing around 35% of 

total global food production (Klein et al. 2007). Up to 80% of this pollination service has been 

attributed to honeybees Apis mellifera L. (Carreck and Williams 1998), but more recent studies 

have highlighted the importance of the service provided by wild pollinators. The quality of this 

service depends on the diversity of the pollinator community, with richer assemblages 

improving yields in many crop species (Westerkamp and Gottsberger 2000; Klein et al. 2003; 

Hoehn et al. 2008). Wild bee pollinators can provide the majority of crop visitation, even in 

contemporary intensive farming systems (Winfree et al. 2008), and enhance fruit set 

regardless of honeybee abundance (Garibaldi et al. 2013), leading to suggestions that the role 

of honeybees as agricultural pollinators has been overstated (Breeze et al. 2011; Ollerton et al. 

2012). Pollinator communities are sensitive to habitat loss (Kremen, Williams and Thorp 2002; 

Steffan-Dewenter et al. 2002), and consequently the service they provide can reduce as 

agricultural intensification degrades the semi-natural environments upon which they depend 

(Garibaldi et al. 2011).  

 

In order to reverse the decline in farmland biodiversity, agri-environment schemes are now 

funded across the European Union as part of the Common Agricultural Policy. These schemes 

offer opportunities to create pollinator-friendly habitats with the objectives of increasing both 

pollinator abundance and diversity. In England, two tiers of environmental stewardship were 

established in 2005. Entry Level Stewardship (ELS, Natural England 2013a) was open to all 

farmers. Higher Level Stewardship (HLS, Natural England 2013b) which was targeted to high 

priority areas provided greater financial rewards for more substantial and rigorous agri-

environmental schemes. Most agricultural land in England is under some form of 

environmental stewardship with 72% of land under at least ELS management and around 21% 

of this total under HLS management as of 2014. (JNCC 2014). There are three main pollinator-

focused HLS options. HF4 pollen and nectar mixes are rotational plots or strips sown with a 

mixture of predominantly leguminous plants such as Trifolium pratense L. and Trifolium 

hybridum L. which tend to be resown within a 5 year period. HE10 floristically enhanced grass 

buffer strips are non-rotational grassland alongside fields and are composed of a mixture of 

grasses and plants such as Centaurea nigra L. and Lotus corniculatus L. HK6/7/8 focus on the 

maintenance, restoration and creation of species rich grassland.  

 

The response of bumblebees to the creation of flower-rich schemes has received a great deal 

of attention. From the initial designation of five UK bumblebees as Biodiversity Action Plan 

species of conservation concern, and the resulting research into their ecological requirements, 
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it was argued that without landscape scale habitat restoration these species would continue to 

decline (Edwards 1999). Many bumblebee species that have suffered substantial declines 

tended to collect a large proportion of pollen from Fabaceae (Goulson et al. 2005), and 

consequently leguminous plants became an important part of agri-environment scheme 

design. A number of studies have focused on the response of foraging bumblebees to these 

schemes and other agri-environment scheme habitats (Edwards 2003; Pywell et al. 2006; 

Carvell et al. 2007; Pywell et al. 2011a; Holland et al. 2015), but the response of other bees to 

these options has received much less attention and is correspondingly less well characterised, 

both in the UK and abroad (Haaland et al. 2011). Studies suggest that the wider bee 

community can respond well to management at a local level, with higher species richness 

recorded in targeted areas, such as field margins or meadows, compared to unmanaged 

control areas (Knop et al. 2006; Albrecht et al. 2007). However, there has been little 

comparison of diversity between farms at a scale greater than that of the targeted area. It is 

not clear to what extent any positive benefits extend to the wider landscape, as species 

richness can drop off sharply outside target areas (Albrecht et al. 2007; Kohler et al. 2008). If 

schemes are effectively increasing species diversity we would expect farms implementing 

appropriate management to support significantly more diverse pollinator communities. Bees 

and wasps can be highly aggregative, congregating on appropriate habitat (Heard et al. 2007), 

but not all species will be attracted to agri-environment schemes, necessitating more 

extensive surveying within and between targeted areas to accurately capture the community 

present at any one site.   

 

In a recent survey of insect pollination scientists and conservation practitioners, the top 

research priority identified was to understand how important the diversity of pollinator 

species was to the resilience and reliability of the pollination service (Dicks 2013). Other than 

bumblebees, there is little knowledge as to which bee and aculeate wasp species (henceforth 

collectively referred to as aculeates) persist on agricultural land and how they respond to agri-

environment schemes. Without an appropriate evidence base, conservation interventions 

generally, and agri-environment schemes in particular are unlikely to be effective (Kleijn and 

Sutherland 2003; Sutherland et al. 2004). In this study we assess whether farms implementing 

pollinator-friendly management schemes support richer and more diverse aculeate 

communities at the farm level. Our results have clear implications for the future management 

of farmland aculeate populations.  
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4.3 Materials and Methods 

 

Nine HLS and nine ELS farms were selected in Hampshire and West Sussex, UK. On average, 

HLS farms were significantly larger (256.22 ± 37.80 ha) than ELS farms (156.67 ± 22.07 ha, t-

test, t16,17=2.565, p=0.021). The selected HLS farms had been implementing an average of 5.56 

± 0.13 ha of pollinator focused flower-rich options representing 2.17 ± 0.05% of the farm area 

by ownership for a minimum of three years. As the majority of farms in England are in some 

form of environmental stewardship, ELS management was chosen as the control group for this 

study. Whilst pollinator-focused flower-rich options are available as part of ELS management, 

the selected ELS farms were not implementing any such schemes. Farms were predominantly 

arable or mixed arable/dairy with wheat, barley, oilseed rape and permanent/silage grassland 

as the major crops. 

 

As the proportion of the landscape which is comprised of semi-natural habitat can affect the 

species richness of bees (Steffan-Dewenter et al. 2002; Holzschuh et al. 2010), the farms were 

mapped to ensure their overall similarity. A detailed land cover map to a resolution of 2 m2 

was constructed in Google Earth (Google Inc) based on detailed surveys during the field season 

and satellite imagery. A 1 km buffer was drawn around the centre point of each transect 

covering the majority of each farm and some of the surrounding area. Semi-natural habitats 

fell into four broad groups i) flower-rich agri-environment scheme grassland ii) flower-poor 

general grassland (not including permanent pasture and silage grassland, categorised as 

intensive grassland) iii) hedgerows and iv) woodland (Table 4.1). There was no significant 

difference in the proportion of the landscape covered by semi-natural habitats between farm 

types (GLM, t16,17=0.147, p=0.885). The presence of water and urban structures can also affect 

the species richness of bees and wasps by creating moisture gradients that increase floral 

abundance and by providing floral resources and nesting areas (Goulson et al. 2002; Winfree et 

al. 2007b). There was no significant difference in the proportion of the landscape covered by 

either of these habitat types (GLM, t16,17=1.256, p=0.232, t16,17=0.064, p=0.949 respectively).  
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Table 4.1. Habitat composition within a 1 km radius for selected farms in Hampshire and West 

Sussex, UK. Means ± 1 SE are given for nine study sites per farm type. Habitat types marked 

with a * were categorised as semi-natural.  

Habitat type Area (%) Minimum (%) Maximum (%) 

(a) Higher Level Stewardship farms    

      Arable land 59.73 ± 5.13 28.18 72.99 

      Flower-rich grassland * 1.77 ± 0.41 0.38 4.36 

      Flower-poor general grassland * 8.36 ± 1.43 3.02 16.19 

      Intensive grassland 14.15 ± 3.34 3.57 34.32 

      Water 0.34 ± 0.22 0.00 2.01 

      Hedgerows * 1.96 ± 0.24 0.77 3.12 

      Urban 4.89 ± 0.79 1.83 8.60 

      Woodland * 8.81 ± 3.06 0.84 24.96 

(b) Entry Level Stewardship farms    

      Arable land 55.76 ± 6.06 25.08 78.23 

      Flower-rich grassland * 0.05 ± 0.05 0.00 0.47 

      Flower-poor general grassland * 5.73 ± 1.03 2.88 12.40 

      Intensive grassland 15.93 ± 3.18 0.68 30.77 

      Water  1.52 ± 1.49 0.00 13.44 

      Hedgerows * 2.26 ± 0.36 0.39 3.40 

      Urban 4.82 ± 0.58 2.68 7.44 

      Woodland * 13.92 ± 4.41 1.52 35.17 

 

A standardised 3 km transect was designed for each farm. Transects on HLS farms were 

designed to pass through as many pollinator-focused schemes as possible. HLS transects 

passed through an average of 1496 ± 148 m of flower-rich habitat in an average of 3.77 ± 0.24 

discrete habitat patches. Aculeate activity was recorded along each transect following 

standard bee walk methodology (Carvell et al. 2007). On each 3 km transects all aculeates 

within 2 m of the recorder were identified to species level. Specimens which could not be 

immediately identified in the field were netted and later identified in the laboratory. Aculeate 

floral preferences were measured on the transects, with the first flowering plant species 

visited recorded for both observed and netted individuals. All surveys were conducted 

between 0930-1700 hours when the temperature was above 13oC with at least 60% clear sky, 

or above 17oC with any level of cloud. No surveys were conducted when it was raining. On 

each transect, the number of flowering units of each plant species was estimated. Grasses, 

sedges and rushes were not recorded. This assessment followed Carvell et al. (2007) with one 

flower cluster (e.g. an umbel, a head, a capitulum) counted as a single unit. All aculeate and 

floristic surveys were conducted by the same individual (TJW) to minimise recorder bias.  

 

Sixteen farms (8 HLS, 8 ELS) were surveyed in 2013. Transects were walked three times 

throughout the year, between 25th May - 5th June, 26th June - 15th July and 3rd - 11th August. 
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Seventeen farms (8 HLS, 9 ELS) were surveyed in 2014. Transects were walked three times 

throughout the year, between 17th - 27th May, 21st June - 9th July and 3rd - 15th August.  

 

Twelve pan traps were placed out on each farm. Pan traps consisted of 500 ml plastic bowls 

and were spray-painted fluorescent blue, yellow or white (Sparvar Leuchtfarbe, Spray-Color 

GmbH, Germany). One of each colour was attached to a wooden post of approximate height 

60 cm. On HLS farms two such posts were placed in a flower-rich margin and two were placed 

in a flower-poor general grass margin. On ELS farms two posts were placed in each of two 

separate flower-poor general grass margins. Posts in the same margin were separated by a 

distance of 25 m. Sampled margins were no closer than 200 m from each other. Traps were 

filled with approximately 400 ml of water with a few drops of unscented washing up liquid 

(Surcare Sensitive, UK). Traps were left out for 96 h before being collected.  

 

Sixteen farms (8 HLS, 8 ELS) were surveyed in 2013. Traps were set three times between 10th-

14th June, 8th-12th July and 1st-5th of August. Fourteen farms (7 HLS, 7 ELS; all of these farms 

were surveyed with transect walks) were surveyed in 2014. Trap placement was staggered 

over two days, with half of the farms (4 HLS, 3 ELS) trapped on day one and the other half of 

the farms (3 HLS, 4 ELS) trapped on day two. Traps were set three times between 29th/30th 

May - 2nd/3rd June, 10th/11th - 14th/15th July and 12th/13th - 16th/17th August. Invertebrate 

samples were stored in 70% ethanol and pinned prior to identification. 

 

Differences in aculeate and floristic species richness between farm types were investigated 

using rarefaction and extrapolation curves. Both the transect and the pan trap techniques 

produce replicated sample-based abundance data, where it is the sampling unit rather than 

the individual species that is sampled randomly and independently (Gotelli and Colwell 2001). 

Following Colwell et al. (2012), this sample-based abundance data was converted to sample-

based incidence data to calculate incidence-based extrapolation curves using a Bernoulli 

product model. Differences in the number of individuals per sampling unit is accounted for by 

rescaling the X-axis to individuals (Gotelli and Colwell 2001), allowing for a more meaningful 

comparison between assemblages of differing sample sizes. Rarefaction curves with 95% 

confidence intervals were produced using EstimateS 9.1.0 (Colwell 2013). Curves were 

calculated without replacement and were extrapolated to twice the number of collected 

samples. Similarity in community composition between different farm types was assessed 

using Simpson’s similarity index (Simpson 1960). This index was chosen as it accounts for 

variable sampling effort between sites, as not every site was surveyed with transects or pan 
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traps in every year. Community similarity within and between farm management types was 

compared using a permutation ANOVA following Chase (2007).  

 

The impact of the proportion of the landscape represented by semi-natural habitats (flower-

rich grassland, flower-poor grassland, hedgerow, woodland and all habitats combined) on the 

number of aculeate species recorded on the transect and in the pan traps was investigated 

using Generalised Linear Models. No significant relationships were found (Appendix A).  

 

Differences in total number of aculeate and flowering plant species between farm types were 

investigated using Generalised Linear Mixed-Effect Models (GLMMs). The total number of 

species recorded by each sampling technique was calculated for each farm in each year. 

Sampling year was included in the model as a random factor to account for temporal 

pseudoreplication. Differences in floral abundance between management types was tested 

with a GLMM with sampling round nested within sampling year included as random factors to 

account for the temporal data structure. The impact of floristic richness on aculeate richness 

was also tested using a GLMM. Sampling year was included in the model as a random factor. 

Models were fitted with a Gaussian error distribution unless found to be significantly non-

normal. Where models were significantly non-normal they were fitted with Poisson error 

distributions though in all cases they were found to be significantly over dispersed and so were 

fitted with negative binomial error distributions instead. Final models were compared by 

ANOVA with a null model containing the same random factors to test for significance. 

Differences in the proportion of visits to plants sown as part of HLS management by different 

bee groups were tested using 2-sample tests for equality of proportions. All data analysis was 

conducted in R version 3.1.1 (R Development Core Team) using the package fossil to calculate 

Simpson’s similarity indices, the package coin for the permutation ANOVA and the package 

lme4 for the GLMMs. 

 

4.4 Results 

 

A total of 16,821 aculeates of 148 species were recorded comprising 104 species of bee and 44 

species of wasp, including 21 species of conservation concern (Table 4.2). This follows the 

rarity classifications in Falk (1991) but excludes Lasioglossum malachurum Kirby, L. pauxillum 

Schenck and Bombus rupestris Fabricus which have become much more widespread since this 

classification and no longer merit nationally scarce status (S. Falk, pers. comm.). The 

bumblebee B. ruderarius Müller is also included due its recent decline in the UK and 
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designation as a Biodiversity Action Plan species. Both Nomada flava Panzer and N. panzeri 

Lepeletier were recorded but as the males are indistinguishable these two species were 

merged for analysis purposes.  

 

Table 4.2. Species of conservation concern recorded during the survey and the number of 

individuals recorded on HLS and ELS farms. Rarity status from Falk (1991), also includes 

Biodiversity Action Plan (BAP) species. RDB1 = Red Data Book 1 species in danger of extinction, 

RDB3 = Red Data Book 3 species estimated to occur in fewer than 15 10 km squares, Na = 

Nationally Scarce A species estimated to occur within 16 to 30 10 km squares and Nb = 

Nationally Scarce B species estimated to occur within 31 to 100 10 km squares. 

 

 

 

Species Rarity Number of individuals 

recorded on HLS 

farms 

Number of individuals 

recorded on ELS 

farms 

Andrena alfkenella (Perkins 1914) RDB3 2 1 

Andrena florea (Fabricius 1793) RDB3 1 7 

Andrena fulvago (Christ 1791) Na  1 

Andrena humilis (Imhoff 1832) Nb  2 

Andrena labiata (Fabricius 1781) Na  1 

Andrena minutuloides (Perkins 1914) Na 1  

Bombus ruderarius (Müller 1776) BAP 4  

Bombus ruderatus (Fabricius 1775) Nb/BAP 5  

Hoplitis claviventris (Thomson 1872) Nb 1  

Hylaeus cornutus (Curtis 1831) Na 15  

Hylaeus signatus (Panzer 1798) Nb  1 

Lasioglossum puncticolle (Morawitz 

1872) 

Nb 4  

Lasioglossum xanthopus (Kirby 1802) Nb 1  

Melitta tricincta (Kirby 1802) Nb 18 43 

Microdynerus exilis (Herrich-Shäffer 

1839) 

Nb 1 1 

Mimumesa unicolor (Vander Linden 

1829) 

Na  2 

Nomada flavopicta (Kirby 1802) Nb  1 

Nomada guttulata (Schenck 1861) RDB1 1  

Nysson trimaculatus (Rossi 1790) Na 2  

Osmia bicolor (Schrank 1781) Nb 2 1 

Sphecodes niger (von Hagens 1874) RDB3  3 
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Figure 4.1. Rarefaction and extrapolation curves for aculeate richness recorded on the 

transects for ELS farms (upper grey line with dashed and dotted-line 95% confidence intervals) 

and HLS farms (lower black line with dashed-line 95% confidence intervals). 

 

On the transects 12,136 aculeates of 112 species were recorded, with a total of 82 and 89 

species found on HLS and ELS farms, respectively (Appendix B). There was no difference in the 

total number of species recorded between farm types (χ2=0.1, p=0.767). Rarefaction analysis 

showed that ELS farms had significantly more diverse aculeate communities than HLS farms 

after approximately 2000 sampled individuals (Figure 4.1). The pan traps caught 4,685 

aculeates of 115 species, with a total of 89 and 98 species found on HLS and ELS farms, 

respectively (Appendix B). There was no difference in the total number of species recorded 

between farm types (χ2=1.6, p=0.203). Rarefaction analysis showed that there was no 

significant difference aculeate community diversity between farm types, though ELS farms 

tended to have more species (Figure 4.2). Aculeate community composition of farms did not 

more closely resemble farms of the same management type than farms of the other 

management type (permutation ANOVA, Z=1.594, p=0.108). 
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Figure 4.2. Rarefaction and extrapolation curves for aculeate richness recorded in the pan 

traps for ELS farms (upper grey line with dashed and dotted-line 95% confidence intervals) and 

HLS farms (lower black line with dashed-line 95% confidence intervals). 

 

Figure 4.3. Rarefaction and extrapolation curves for floristic richness recorded on the transects 

for ELS farms (upper grey line with dashed and dotted-line 95% confidence intervals) and HLS 

farms (lower black line with dashed-line 95% confidence intervals). 
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On the transects 9.69 million flowering units of 237 species of flowering plant were recorded, 

with a total of 198 and 190 flowering plant species found on HLS and ELS farms respectively 

(Appendix C). Floral abundance was significantly greater on HLS farms than ELS farms (502,523 

± 74,324 flowering units/year against 93,608 ± 22,703 flowering units/year, χ2=49.0, p<0.001). 

There was no difference in the number of flowering plant species between farm types (χ2=1.1, 

p=0.293), but rarefaction analysis showed that ELS farms whad a significantly more diverse 

flowering plant community (Figure 4.3). Floristic richness had a significant effect on the 

richness of bees recorded on the transects, but not the richness of aculeate wasps (χ2=12.6, 

p<0.001, χ2=0.6, p=0.797, respectively). Floristic richness had no effect on the richness of bees 

recorded in the pan traps and a significantly negative effect on the richness of aculeate wasps 

(χ2=0.0, p=0.948, χ2=6.6, p=0.010, respectively). 

 

On the transects 11,661 foraging trips to 124 species of flowering plant were recorded by 81 

species of bee. Plants sown as part of HLS management were visited extensively by both 

bumblebees (Bombus spp.) and honeybees (Apis mellifera), with visits to these plants 

accounting for 69% (n=6441/9288) and 68% (n=1147/1698) of total visits, respectively, a 

similar overall proportion (χ2=2.1, p=0.149). However, only 32% (n=23/72) of the non-

corbiculate bee species recorded on the transects were ever observed to visit sown flowers 

(including visits to the sown species growing wild on both farm types), these plants 

representing 33% (n=224/675) of total visits, a significantly lower proportion than for 

bumblebees (χ2=370.0, p<0.001) and honeybees (χ2=232, p<0.001). The sweat bee 

Lasioglossum malachurum accounted for 72% (n=157/218) of these visits to sown flowers. 

Only six species of non-corbiculate bees were observed visiting Fabaceae flowers (a dominant 

component of most sown flower mixes), representing 3% (n=23/675) of total visits. Excluding 

sown species, non-corbiculate bees foraged heavily from Asteraceae and Apiaceae, accounting 

for 73% (n=261/457 and n=74/457) of total visits, in particular Heracleum sphondylium L. 

(n=69), Hypochaeris  radicata L. (n=54) and Tripleurospermum inodorum (L.) Schultz Bip (n=44).  

 

Wasps rarely visit flowers, instead provisioning their offspring with invertebrates. A total of 91 

visits to 13 species of flowering plant were recorded by 17 species of wasp. Plants sown as part 

of HLS management were seldom visited by wasps, accounting for 22% (n=20/91) of total 

visits. Wasps predominantly visited Apiaceae, accounting for 85% (n=77/91) of total visits, in 

particular Heracleum sphondylium (n=44), Daucus carota L. (n=17) and Angelica sylvestris L. 

(n=10). The most popular forage plants for different bee and wasp groups are shown in Table 

4.3.  
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Table 4.3. The ten most popular forage plants for different aculeate groups. Plants sown as 

part of pollinator friendly management are highlighted in bold. 

Bombus spp. Visits 

(%) 

Apis mellifera Visits 

(%) 

Other bees Visits 

(%) 

Wasps Visits 

(%) 

Centaurea nigra 43.21 Centaurea nigra 32.08 Centaurea nigra 18.52 Heracleum sphondylium 48.35 

Lotus corniculatus 5.23 Trifolium hybridum 15.60 Heracleum sphondylium 10.22 Daucus carota 18.68 

Trifolium pratense 5.23 Heracleum sphondylium 8.83 Hypochaeris radicata 8.00 Angelica sylvestris 10.98 

Trifolium hybridum 4.73 Melilotus officinalis 6.24 Leucanthemum vulgare 7.11 Cirsium arvense 6.59 

Cirsium vulgare 3.62 Rubus fruticosus agg. 5.06 Tripleurospermum inodoroum 6.52 Pastinaca sativa 4.40 

Stachys sylvatica 3.47 Phacelia tanacetifolia 3.65 Crepis capillaris 6.07 Achillea millefolium 2.20 

Arctium minus 2.99 Sonchus arvensis 3.59 Odontites verna 4.89 Scrophularia auriculata 2.20 

Lamium album 2.84 Origanum vulgare 2.77 Pulicharia dysenterica 4.59 Anthriscus sylvestris 1.10 

Dipsacus fullonum 2.80 Pulicharia dysenterica 2.77 Picris hieracioides 3.26 Euphorbia amygdaloides 1.10 

Trifolium repens 2.77 Reseda lutea 2.65 Taraxacum agg. 3.26 Leucanthemum vulgare 1.10 

 

 

4.5 Discussion 

 

The 104 bee species recorded in the current work represent approximately half of the bee 

species found in the south-east of England, with 198 and 199 species recorded since 1970 from 

the neighbouring counties of Surrey and Kent, respectively (Baldock 2008). Given that many 

habitat specialists are unlikely to be found on farmland this number is a substantial fraction of 

all possible species, with many European studies only recording around 40-70 bee species (e.g. 

Holzschuh et al. 2008; Kovács-Hostyánszki 2013; Le Féon 2013), despite surveying a more 

extensive European fauna, though see Batáry et al. (2010). Direct surveys for farmland wasps 

are uncommon, with most studies assessing trap nesting wasps only (e.g. Holzschuh et al. 

2010). Bee faunas are known to be locally diverse, variable in space and time and rich in rare 

species with up to 50% of species represented by singletons, even in studies recording several 

thousand individuals (Williams et al. 2001). Our results show that reasonably high aculeate 

diversity, including species of national conservation concern, can persist in agricultural 

environments containing 21-22% semi-natural habitat. This proportion of semi-natural habitat 

is high, as areas where comparable studies have been carried out in continental Europe often 

have considerably less semi-natural habitat, typically 5-10% (e.g. Steffan-Dewenter et al. 2002; 

Westphal et al. 2003; Herrmann et al. 2007). It has been argued that landscape complexity is 

more important than local management, with positive benefits of management seen only in 

simple landscapes (Tscharntke et al. 2005). The addition of 5.5 ha of flower-rich habitat to a 

landscape which already has around 20% semi-natural habitat may not be enough to make a 

significant difference to existing aculeate populations. It may be the case that current HLS 

prescriptions will significantly increase floristic and aculeate diversity in simpler, more 

intensively farmed landscapes comprising around 5-10% semi-natural habitat, but this remains 

to be tested.  
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The loss of meadows and leys rich in Fabaceae has been particularly associated with 

bumblebee declines (Carvell et al. 2006a; Williams and Osborne 2009), and many species that 

have declined substantially have likewise been shown to collect a larger proportion of their 

pollen from Fabaceae (Goulson et al. 2005; Kleijn and Raemakers 2008). It has also been 

argued that the abundance of the most rewarding forage plants is more important than the 

overall diversity of flowering plants for maintaining diverse bumblebee communities (Williams 

1989). As a result, increasing floral abundance, particularly the abundance of leguminous 

forage, and observing the response of foraging bumblebees has been an important part of the 

design and assessment of pollinator-friendly agri-environment schemes (Edwards 2003; Pywell 

et al. 2006; Carvell et al. 2007). However, there has been relatively little assessment of the 

response of other wild bees to these options (Haaland et al 2011), despite the fact that these 

other bees make up the large majority of species diversity. Where studies have been 

conducted, non-corbiculate bees show little preference for sown species. Carreck and Williams 

(2002) recorded only six species of non-corbiculate bees visiting annual wildflower mixes, 

representing just 1% (n=223/21841) of total visits by all bees. Our results demonstrate that 

whilst bumblebees and honeybees foraged strongly from sown flowers, the majority of non-

corbiculate bee species were not observed visiting these plants, even when growing wild as 

part of an existing flora. Non-corbiculate species predominantly favoured Asteraceae and 

Apiaceae growing in wayside and hedgerow habitats. Whilst wasps visit flowers much less 

frequently, similar patterns were observed, with the majority of visits being to non-scheme 

plants, particularly Apiaceae.  

 

Bee community richness has been frequently linked to floristic richness (Tscharntke et al. 

1998; Potts et al. 2003; Batáry et al. 2010), and a loss of plant species has been associated with 

a decline in bee diversity in agricultural habitats (Banaszak 1992; Biesmeijer et al. 2006; 

Scheper et al. 2014). Options for establishing floristically enhanced habitats as part of HLS 

management typically involve sowing mixes containing around 20 native species of wildflowers 

(Carvell et al. 2007; Pywell et al. 2011a). However, the systematic addition of inorganic 

fertilisers over the past 60 years has negatively affected floral diversity in field margins and 

other non-cropped areas, primarily by increasing the competiveness of coarse grasses (Kleijn 

and Verbeek 2000). High nutrient levels are not easily reduced and grasslands can suffer 

chronically low levels of biodiversity for decades after enrichment has ceased (Isbell et al. 

2013). Consequently, establishing diverse floral communities on enriched soils faces a number 

of difficulties, with the most successful programmes requiring deep cultivation and sowing of a 

selection of ecologically appropriate species (Pywell et al. 2002).  
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In addition to foraging resources, aculeates require suitable nesting habitat to complete their 

lifecycles. Cavity nesting bees and wasps are generally thought to be limited by cavity 

availability (Holzschuh et al. 2010), and the provision of trap nests can significantly increase 

their abundance (Gathmann and Tscharntke 1997). Whilst the majority of bees are ground 

nesters, the availability of nesting resources can play a small but important role in organising 

bee communities (Potts et al. 2005). There has been little assessment of how well agri-

environment schemes can provide appropriate habitat for nesting bees other than for 

bumblebees (Lye et al. 2009). Deliberate habitat manipulation to create nesting habitat for 

aculeates on agricultural land has been advocated (Kremen et al. 2007), but there are currently 

no specific schemes under HLS management with this aim in mind.  

 

Many farmers lack the requisite knowledge to restore grassland communities and the created 

habitats are often dominated by relatively few species, often Centaurea nigra, Lotus 

corniculatus and Trifolium spp. Whilst the creation of flower-rich habitats significantly 

increased floral abundance, in our study it did not significantly increase floral diversity at the 

farm level. Whilst the flower species that are currently sown and establish well in flower-rich 

margins provide attractive forage for bumblebees and honeybees, they are of limited use to 

the majority of bee species. Given that current schemes were designed around the foraging 

requirements of bumblebees, whilst they can significantly increase the population size of 

common bumblebee species (Wood et al. 2015a), it is perhaps not surprising that they are only 

visited by a restricted suite of aculeates. Because of the strong response of bumblebees and 

honeybees to sown plants and their consequent high abundance on HLS farms, the rarefaction 

analysis suggests that HLS farms are less diverse purely because they have large numbers of 

bees, even though there is no total difference in species richness. Whilst it is the case that a 

random sample of 10 bees from and HLS farm will probably contain fewer species that a 

sample from an ELS farm, and could consequently be considered less diverse, it is clear that 

HLS farms should not be described as less species rich, or supporting a smaller aculeate 

community.  

 

Increasing the number of pollinators is important, as larger wild bee populations can 

significantly increase the quality of the pollination service provided (Blaauw and Isaacs 2014).  

Recent work has also highlighted the importance of a diverse pollinator community for 

providing a high quality pollination service (Westerkamp and Gottsberger 2000; Klein et al. 

2003; Hoehn et al. 2008; Garibaldi et al. 2013). The extent to which agri-environment schemes 

should focus on ecosystem service delivery or biodiversity conservation is not clear, with most 
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schemes benefiting generalist pollinators that can respond rapidly to habitat creation (Scheper 

et al. 2013). Since both pollinator diversity and abundance are important for crop pollination 

(Garibaldi et al. 2014), such objectives may not be greatly opposed. Bumblebees and 

honeybees are important pollinators, and increasing the size of their populations is an 

appropriate goal, but a better appreciation that current schemes predominantly benefit 

corbiculate bees and are of limited use to the wider aculeate community is also desirable. 

Complementary ‘non-corbiculate-focused’ schemes should be developed and implemented, as 

in their current form pollinator-focused agri-environment schemes do not provide suitable 

resources to support a significantly more diverse aculeate community.  

 

4.6 Conclusions 

 

Increasing the size of pollinator populations is an important aim of environmental stewardship, 

but management that focuses purely on increasing floral abundance may fail to support a 

diverse aculeate community. Despite the lack of evidence that Fabaceae-rich options provide 

resources for non-corbiculate bees, they are the most highly appraised pollinator-focused agri-

environment scheme (Breeze et al. 2014). Our results show that current management 

techniques described as pollinator-friendly appear to benefit only a limited suite of aculeate 

species, predominantly a small number of bumblebee species and honeybees. The majority of 

bee species foraged heavily from naturally regenerating Asteraceae and Apiaceae in non-

scheme areas; it is these and other non-Fabaceae plant groups that also need to be 

encouraged to maintain a diverse bee community. Consequently, agri-environment schemes 

that enable land managers to create and maintain local floral diversity should be developed 

and investigated to more effectively retain and restore aculeate diversity on farmland.  
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Chapter 5 –  Providing foraging resources for solitary bees on farmland:

  current schemes for pollinators benefit a limited suite of 

  species 
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Wood, T.J., Holland, J.M. and Goulson, D. (2016) Providing foraging resources for solitary bees 

 on farmland: current schemes benefit a limited suite of species. Journal of Applied 

 Ecology, currently online only 

 doi: 10.1111/1365-2664.12718 

 

All authors commented on draft versions of the manuscript, and a slightly amended version of 

the published paper is presented here.  
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5.1 Abstract 

 

Changes in agricultural practice across Europe and North America have been associated with 

range contractions and a decline in the abundance of wild bees. Concerns at these declines has 

led to the development of flower-rich agri-environment schemes as a way to enhance bee 

diversity and abundance. Whilst the effect of these schemes on bumblebee species (Bombus 

spp.) has been well studied, their impact on the wider bee community is poorly understood. 

We used direct observations of foraging bees and pollen load analysis to quantify the relative 

contribution that sown flowers (i.e. those included in agri-environment scheme seed mixes) 

make to the pollen diets of wild solitary bees on Higher Level Stewardship farms (HLS) 

implementing pollinator-focused schemes and on Entry Level Stewardship farms (ELS) without 

such schemes in Southern England, UK. HLS management significantly increased floral 

abundance, and as the abundance of sown flowers increased these sown plants were utilised 

for pollen by a greater proportion of the solitary bee species present. However, the overall 

proportion of pollen collected from sown plants was low for both direct observations (27.0%) 

and pollen load analysis (23.3%). At most only 25 of the 72 observed species of solitary bee 

(34.7%) were recorded utilising sown plants to a meaningful degree. The majority of solitary 

bee species did not collect pollen from flower species sown for pollinators. Total bee species 

richness was significantly associated with plant species richness, but there was no difference in 

the total species richness of either bee or flowering plant species between HLS and ELS farms. 

Our results show that the majority of solitary bee species present on farmland in the south-

east of England collect most of their pollen from plants that persist unaided in the wider 

environment, and not from those included in agri-environment schemes focused on 

pollinators. If diverse bee communities are to be maintained on farmland, existing schemes 

should contain an increased number of flowering plant species and additional schemes that 

increase the diversity of flowering plants in complementary habitats should be studied and 

trialled.  

 

5.2 Introduction 

 

Wild bees, in common with many other taxa, have experienced declines in richness and 

abundance across Europe and North America (Biesmeijer et al. 2006; Williams and Osborne 

2009; Bartomeus et al. 2013; Goulson et al. 2015). This is of concern as pollinating insects, of 

which bees are the dominant group, provide a highly valuable pollination service to both crops 

and wild plants (Ollerton et al. 2011; Garibaldi et al. 2013). With the demand for increased 
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agricultural yields growing across the world, potential pollination deficits have increased the 

pressure to develop effective management techniques to conserve and maintain bee 

populations on agricultural land.  

 

There is an increasing consensus behind the idea that food resources are the most important 

limiting factor for bee populations on farmland (Roulston and Goodell 2011), and that loss of 

flowering resources resulting from agricultural intensification is the major cause behind the 

declines in bee populations seen in the 20th century (Carvalheiro et al. 2013; Ollerton et al. 

2014; Scheper et al. 2014). Moreover, a reduction in the diversity of pollen sources can have 

negative impacts on bee fitness through reduced development and immunocompetence 

(Alaux et al. 2010). As a result, the creation of flower-rich habitat through agri-environment 

schemes has been advocated and trialled as the primary means of conserving and enhancing 

bee abundance and diversity on farmland (Carvell et al. 2007; Winfree 2010). In the United 

Kingdom, much of the early work on agri-environment schemes focused on bumblebees 

(Bombus spp.), due in part to their particularly pronounced declines in agricultural areas 

(Goulson et al. 2005). Schemes were consequently designed with the foraging requirements of 

bumblebees in mind, specifically including a large Fabaceae component comprised of plants 

such as Trifolium pratense, T. hybridum and Lotus corniculatus  (Edwards 2003; Carvell et al. 

2007). Research has shown that these sown resources are attractive to a wide variety of 

common and threatened bumblebees (Carvell et al. 2006b; Carvell et al. 2007), and that when 

present in sufficient quantities they can significantly increase the population size of common 

bumblebee species (Wood et al. 2015a). However, much less work has been carried out on the 

impact of agri-environment schemes on the wider bee community. 

 

In temperate areas such as Britain bumblebees make up only a small part of the overall bee 

community, representing around 10% of the total species list (25 out of c. 250 species), and in 

the larger continental faunas of Europe and North America they represent an even smaller 

proportion. The wider bee community consists of predominantly solitary species (and their 

associated kleptoparasites) that collect pollen to provision their own offspring. The fauna 

contains a number of species within the Halictidae that show variably developed and 

expressed eusocial behaviour (Plateaux-Quénu 2008). Whilst not technically correct, the term 

‘solitary bees’ is generally used as an all-encompassing term to include the eusocial species of 

the Halictidae with all non-parasitic, non-corbiculate (non-Apis and non-Bombus) bees found in 

temperate regions, with this synthetic group the focus of this study.  
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In order to assess the benefit of an agri-environment scheme, field trials have often compared 

target areas with control areas and have recorded an increase in bee species richness and 

abundance (e.g. Knop et al. 2006 ; Kohler et al. 2007; Pywell et al. 2011a) or an increase in 

important behaviours, such as bumblebee queen nest site searching (Lye et al. 2009). Ideally, 

measures should be assessed by comparing bee trends on sown flower strips before and after 

implementation of the schemes (Kleijn et al. 2006), with such studies finding a positive impact 

on bee species richness and abundance (Holland et al. 2015; Scheper et al. 2015). However, 

whilst these studies show that enhanced areas provide resources for a greater variety of bee 

species than before, it is not clear that the overall bee community has become richer as a 

result of the intervention, as some bees that were already present in the landscape may simply 

have been attracted to enhanced areas. Moreover, the relative contribution of pollen from 

sown plants to the diet of different solitary bee species is poorly known, and whilst they may 

be attracted to sown flowers these resources may not make up a significant proportion of their 

overall diet. Data on Bombus species, other than presence, was not collected due to the 

extensive previous work conducted on this group on farmland and their response to agri-

environment schemes (Carvell et al. 2006b; Carvell et al. 2007).  

 

In this study we conducted extensive surveys across a range of farms in Southern England and 

quantified the pollen diets of wild solitary bees using direct observations and pollen load 

analysis to address the following objectives. (i) To compare the contribution that plants sown 

as part of agri-environment schemes make to the pollen diet of solitary bees relative to that 

provided by wild plants. We predict that as sown resources increase in relative abundance 

they will increase in relative utilisation by solitary bees. (ii) To quantify the proportion of 

solitary bee species using sown resources. We predict that as sown resources increase in 

relative abundance, they will be utilised by a relatively greater proportion of solitary bee 

species. (iii) To identify solitary bee species most likely to be benefiting from currently sown 

resources. (iv) To identify potential temporal resource gaps in current agri-environment 

scheme design, or key wild flowering plant species not currently included in seed mixes. This 

study will provide valuable information to scientists, governments and land managers in 

designing more effective measures to conserve the broader wild bee community on 

agricultural land. 
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5.3 Methods 

 

5.3.1 Study area 

 

Nine HLS and ten ELS farms were selected in Hampshire and West Sussex, UK. The selected HLS 

farms had been implementing an average of 5.56 ± 0.13 ha of pollinator-focused flower-rich 

schemes representing 2.17 ± 0.05% of the farm area by ownership for a minimum of three 

years. As 70% of farms in England were at the time in some form of environmental 

stewardship (Elliot et al. 2010), ELS farms were chosen as the control group for this study. 

Flower-rich schemes were available under ELS, but these schemes had a low uptake so only 

basic ELS farms without such management were selected for this comparison. Pollinator-

focused flower-rich schemes were typically established with a seed mix containing c.15-30 

flowering forb species (Carvell et al. 2007; Pywell et al. 2011a). Additional plant species such as 

Hypochaeris radicata and Trifolium repens are sometimes included in experimental mixes (i.e. 

Scheper et al. 2015), but this did not represent the situation in our study area and so these 

species were not characterised as sown. Whilst there were no such flower-rich areas on ELS 

farms, most of the species included in these seed mixes can be found growing in a wild state 

on these farms. Consequently, in order to allow a comparison of pollen choice preferences and 

relative rates of utilisation across farm types, plant species included in pollinator-friendly agri-

environment schemes were characterised as ‘sown’ even when found growing wild as part of 

the wider plant community. For a full list of the plant species characterized as being sown as 

part of pollinator-focused management, see Appendix D. Farms were predominantly arable, or 

mixed arable/dairy with wheat, barley, oilseed rape and permanent/silage grassland as the 

major crops. 

 

5.3.2 Bee and floristic surveys 

 

In 2013 and 2014, a standardised 3 km transect was designed for each farm, passing through 

all major habitat types present. For HLS farms this included pollinator-focused flower-rich 

schemes (HE10 floristically enhanced grass margins, HK7 species-rich grassland restoration, 

HF4 pollen and nectar mixes), non-agricultural grass margins and hedgerow and woodland 

edge habitats. For ELS farms only non-agricultural grass margins and hedgerow and woodland 

edge habitats were surveyed, as no pollinator-focused schemes were present. Crops and areas 

of agricultural grassland were not surveyed. Each transect was subdivided into discrete 

sections, with each section covering a distinct habitat type. Transects on HLS farms were 
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designed to survey as many pollinator-focused schemes as possible whilst remaining 

contiguous and passed through an average of 1496 ± 148m of flower-rich habitat in an average 

of 3.77 ± 0.24 discrete habitat patches per farm.  

 

Bee activity was recorded along the transect following standard bee walk methodology (Carvell 

et al. 2007), with all bees within 2 m of the recorder identified to species level. Individuals that 

could not be identified in the field were netted for later identification. The first flowering plant 

species visited and the purpose of the visit, for either pollen or nectar, was recorded. Hylaeus 

species, which lack scopal hairs on their body, instead ingesting pollen and regurgitating it in 

the nest, cannot reliably be determined to be foraging for pollen and so all plant visits were 

recorded simply as visits. On each transect, the number of species of flowering plants and the 

number of flowering units of each plant species within 2 m of the recorder was estimated 

within each discrete transect section. Grasses, sedges and rushes were not recorded as these 

plant species are not attractive to bees in the study region. This assessment followed Carvell et 

al. (2007) with one flower cluster (e.g. an umbel, a head, a capitulum) counted as a single unit. 

Sixteen farms (eight HLS, eight ELS) were surveyed in 2013. Transects were walked three times 

through the season, between 25th May–5th June, 26th June–15th July and 3rd–11th August. 

Seventeen farms (eight HLS, nine ELS) were surveyed in in 2014. Transects were walked three 

times through the season, between 17th– 27th May, 21st June–9th July and 3rd–15th August. 

These discrete sampling blocks are henceforth referred to as ‘sampling rounds’.  

 

In 2015 farms were surveyed for a fixed period of time rather than using distance based 

transects. ELS farms were surveyed for 3 hrs with 1.5 hrs spent on non-agricultural grass 

habitats and 1.5 hrs on woody hedgerow/woodland edge habitats. HLS farms were surveyed 

for 3 hrs with 1 hr on pollinator-focused flower-rich schemes, 1 hr on non-agricultural grass 

habitats and 1 hr on woody hedgerow/woodland edge habitats. The survey followed standard 

bee walk methodology as described above, but at a reduced pace to ensure thorough 

sampling. All bees within 2 m of the recorder were identified to species level. The first 

flowering plant species visited and the purpose of the visit, for either pollen or nectar, was 

recorded. Solitary bees with clearly visible pollen on their body were collected, placed in 

individual Eppendorf tubes and frozen. The collection of pollen loads from foraging bees may 

overestimate pollen use of more easily observable flowers. Ideally, pollen would be sampled 

from bees as they return to their nest, but this method was not chosen for this study as is 

often time consuming and may lead to low sample sizes for species with difficult to locate 

nests. All flowering plant species present on the transects were recorded, but their abundance 
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was not quantified. Pollen samples from insect visited flowering plant species present were 

collected to form a pollen reference library. Pollen reference slides were prepared by 

transferring pollen-laden anthers to a drop of water on a microscope slide. The slide was 

gently heated to allow grains to absorb water and achieve their maximum size and to 

evaporate excess water. The remains of the anthers were removed, molten glycerine jelly 

stained with fuchsin was added and the slide was sealed with a coverslip. For a full list of 

sampled flowering plant species, see Appendix E. Fourteen farms (7 HLS, 7 ELS) were surveyed 

in 2015. Transects were walked four times throughout the season, between 22 April– 13th 

May, 26th May– 17th June, 25th June– 4th July and 29th July– 10th August. All bee surveys 

were conducted between 0930 and 1700 hrs when the temperature was above 13oC with at 

least 60% clear sky, or above 17oC with any level of cloud. No surveys were conducted when it 

was raining. All bee and floristic surveys were conducted by the same individual (TJW) to 

minimise recorder bias. 

 

5.3.3 Pollen identification 

 

The scopal pollen load of foraging solitary bees collected in 2015 was analysed by light 

microscopy using the method outlined by Westrich and Schmidt (1986). Before removing 

pollen from the scopae, the total load was estimated relative to a full load for that species, 

ranging from 8/8 (full load) to 1/8 (one eighth load). The pollen grains were removed from the 

scopae using an entomological pin and transferred to a drop of water on a microscope slide. 

Pollen that was not clearly held in the scopae was not sampled as this may have become 

attached to other parts of the body during nectar visits to non-host plant flowers. The slide 

was gently heated to allow grains to absorb water and achieve their maximum size and to 

evaporate excess water. Molten glycerine jelly stained with fuchsin was then added and the 

slide was sealed with a coverslip. The proportion of the load comprised of different plant 

species was estimated along three randomly selected lines across the cover slip at a 

magnification of x400. The proportion of the load by volume was estimated by the relative 

area of the slide occupied by each plant species, rather than the absolute number of grains, in 

order to better reflect the total volume of pollen collected, an important correction in mixed 

loads where pollen grains of different plant species often differ widely in size (Cane and Sipes, 

2006). Species representing less than 1% of the load were excluded from further analysis as 

their presence may have arisen from contamination (Westrich and Schmidt 1986).  
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The proportions of pollen collected were corrected according to the overall size of each load to 

give a final weight, e.g. a full load (8/8) comprised of 50% Centaurea nigra and 50% 

Leucanthemum vulgare would receive a final C. nigra weight of 50 and a final L. vulgare weight 

of 50, whereas a quarter load (2/8) comprised of 100% Hypochaeris radicata would receive a 

final H. radicata weight of 25. The pollen grains were identified to species using Sawyer (1981) 

and the reference collection assembled during the project. The majority of samples were 

identified to species level, but where this was not possible pollen was identified to genus, for 

example in Brassica, Plantago and Geranium. For a full list of taxa and the level of 

identification, to either species or genus, see Appendix F. 

 

5.3.4 Statistical analysis 

 

Generalised Linear Mixed-Effect Models (GLMMs) were used to test for the impact of 

management type on bee and plant species abundance and diversity and the impact of plant 

species richness on bee species diversity and diet breadth. Models were fit using the maximum 

likelihood (Laplace Approximation) method. All data analyses were conducted in R version 

3.1.1 (R Development Core Team) using the lme4 package for the GLMMs (Bates et al. 2014). 

All models were fitted with Poisson and negative binomial error distributions and were tested 

for overdispersion. In all cases negative binomial error structures were the most appropriate 

and final models were not overdispersed. Final models were compared by ANOVA with a null 

model containing the same random factor to test for significance. 

 

Differences in the total number of bee and plant species and total floral abundance recorded 

between different farm types were analysed using GLMMs with management type as a fixed 

factor. Sampling year was included as a random factor to take account of the temporal data 

structure and differences in sampling methods. The abundance analysis used the 2013-2014 

data and the species richness analysis used the 2013-2015 data. The impact of plant species 

richness on bee species richness (including Apis, Bombus and kleptoparastic bee species) and 

oligolectic solitary bee species richness was analysed using GLMMs with plant species richness 

as a fixed factor and sampling year as a random factor. This analysis used the 2013-2015 

species richness data.  

 

The impact of plant species richness on the number of pollen species detected in bee pollen 

loads was analysed using a GLMM with plant species richness as a fixed factor and sampling 

round (April/May, May/June, June/July and July/August) as a random factor. The number of 
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pollen species detected in bee pollen loads was also calculated for the seven most common 

polylectic bee species for which a total of 30 pollen loads had been collected from each 

species, representing the majority of the pollen load data (759 of 1054 samples, Andrena 

chrysosceles, A. flavipes, A. haemorrhoa, A. semilaevis, Lasioglossum calceatum, L. 

malachurum and L. pauxillum). The number of species detected in pollen loads was summed 

over the year for each species to reduce temporal variation. Farms where no samples of a 

species were taken were excluded from that species’ analysis, as the species may have been 

absent from the sample for reasons other than floristic composition, e.g. nesting site 

availability, low detection rate etc. The relationship between plant species richness and the 

number of pollen species collected by polylectic bee species was analysed using a GLMM with 

plant species richness as a fixed factor and bee species as a random factor. Both these analyses 

used the 2015 microscopic pollen load analysis data.  

 

The proportion of sown flowers relative to total flowers was calculated for each farm over the 

2013-2014 period. The proportion of observed solitary bee pollen visits to sown flowers and 

the proportion of solitary bee species visiting sown flowers for pollen was also calculated over 

the 2013-2014 period. The impact of the proportion of sown flowers on the proportion of 

observed solitary bee pollen visits and the proportion of solitary bee species visiting sown 

flowers was analysed using Spearman’s rank correlation tests, as in each case the response 

variable could not be transformed to normality.  

 

Differences in the proportion of pollen collected from different plant types were analysed 

using binomial tests. For the observational data, the proportion of pollen visits to sown and 

wild plants was calculated for each sampling round across all years for both farm types. For the 

pollen load data, a third category of crop plant data was included. A number of pollen loads 

contained Brassica type pollen, most of which is highly likely to have come from the crop plant 

oilseed rape Brassica napus. No wild Brassica species such as B. nigra  were recorded during 

floristic surveys with the only other source being small areas of B. rapa that is sometimes sown 

as part of conservation management for birds. As a result, we are confident that the majority 

of the Brassica type pollen originated from crop plants and so this was excluded from the 

comparison between sown and wild plant pollen use. As the pollen load data is non-integer 

(with variably full pollen loads with mixed species composition), the proportion of each pollen 

type was used to calculate an appropriate value from the number of collected samples, i.e. 

where 173 bees were collected with pollen loads in total comprised of 9.7% pollen from sown 

plants and 90.3% pollen from wild plants by volume this was calculated as 17 samples from 
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sown plants and 156 samples from wild plants. These calculated values were used in the 

binomial tests. 

 

5.4 Results 

 

A total of 105 species of bee was recorded over the survey period. This comprised the honey 

bee Apis mellifera, 15 species of bumblebee Bombus (including five parasitic Psithyrus spp.), 72 

species of solitary bee and 17 species of parasitic bee (Appendix G). There was no difference in 

the total number of bee species recorded on each farm type in each year (mean HLS 23.2 ± 2.4, 

mean ELS 21.5 ± 2.1, χ2=0.6, p=0.418). A total of 9.69 million flowering units was recorded on 

the transects in 2013-2014. Floral abundance was significantly greater on HLS farms than on 

ELS farms in each year (mean HLS 501,758 ± 74,397 flowering units, mean ELS 97,530 ± 22,703 

flowering units, χ2=32.6, p<0.001). A total of 6.24 million flowering units of plant species 

characterised as sown was recorded on the transects in 2013-2014. Sown floral abundance 

was more than ten times higher on HLS farms than on ELS farms in each year (mean HLS 

354,271 ± 71,761, mean ELS 33,579 ± 12,739, χ2=23.0, p<0.001). A total of 291 species of 

flowering plants was recorded over the survey period. There was no difference in the total 

number of plant species recorded on each farm type in each year (mean HLS 75.2 ± 4.2, mean 

ELS 68.8 ± 3.1, χ2=1.9, p=0.171). 

 

Figure 5.1. Relationship between plant species richness and bee species richness on surveyed 

farms. Squares = 2013, triangles = 2014, circles = 2015. 
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Over the whole survey period, bee species richness was significantly associated with plant 

species richness (χ2=33.7, p<0.001, Figure 5.1). A total of 16 oligolectic bee species was 

recorded following Westrich (1989), and oligolectic bee species richness was also significantly 

associated with plant species richness (χ2=10.0, p=0.002).  

 

Fifty-six species of solitary bee were observed making 1,416 pollen foraging trips. One 

thousand and fifty-four individual bees with pollen loads from 47 bee species were collected 

for microscopic pollen analysis. The number of species of pollen detected in pollen loads on 

each farm was significantly associated with the number of flowering plants recorded on the 

transects, with this effect consistent over the survey period (χ2=16.8, p<0.001, Figure 5.2). 

However, for the seven most common polylectic bee species representing the bulk of the 

pollen load data (759 out of 1054 samples) there was no significant relationship between diet 

breadth and observed plant species richness (χ2=0.7, p=0.416), suggesting that the relationship 

is instead driven by the addition of more specialised bees to the community in floristically 

richer environments that collect pollen from a different suite of host plants. 

 

 

Figure 5.2. Relationship between plant species richness and the species richness of pollens 

detected in bee pollen loads on surveyed farms across the season. Open circles = late 

April/early May; open squares = late May/early June; closed circles = late June/early July; 

closed triangles = late July/early August. 
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Across all farms, as the proportion of sown plants increased, so the proportion of observed 

pollen foraging visits to sown plants increased as well (Spearman’s rho=0.920, p<0.001, Figure 

5.3). However, the proportion of pollen collected by solitary bees from sown plants varied 

greatly throughout the year and between farm types. In late April/early May no pollen visits to 

sown plants were observed on either farm type (Figure 5.4 a, b). In late May/early June the 

proportion of observed pollen visits to sown plants was similarly low on both ELS and HLS 

farms (HLS 13.1%, ELS 9.4%, χ2=0.83, p=0.364, Figure 5.4 a, b). In late June/early July the 

proportion of observed pollen visits to sown plants increased to 60.1% of visits on HLS farms 

compared to 18.5% of visits on ELS farms, a significantly higher proportion (χ2=113.92, 

p<0.001, Figure 5.4 a, b). In late July/early August the proportion of pollen visits to sown plants 

decreased on both farm types, though it was still significantly greater on HLS farms (HLS 21.1%, 

ELS 10.1%, χ2=4.5, p=0.033, Figure 5.4 a, b). 

 

 

 

 

 

 

Figure 5.3. Relationship between availability of flowering units of plant species sown as part of 

pollinator friendly management and their observed utilisation for pollen by solitary bees on 

surveyed farms.  
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Figure 5.4. Proportion of pollen collected by solitary bees from a) observed pollen foraging 

trips on ELS farms, b) observed pollen foraging trips on HLS farms, c) pollen load analysis from 

ELS farms and d) pollen load analysis from HLS farms. Triangles = plant species sown as part of 

agri-environment management, squares = wild plant species and circles = crop plant species 

(Brassica spp). Sampling round one, late April/early May; sampling round two, late May/early 

June; sampling round three, late June/early July; sampling round four, late July/early August. 

A similar trend was observed in the analysis of collected pollen samples.  

 

Excluding oilseed rape type (Brassica type) pollen from the analysis, no pollen was collected 

from sown plants in late April/early May. In late May/early June the proportion of pollen 

collected from sown plants was similarly low (ELS 15.4%, HLS 10.6%, χ2=1.2, p=0.283, Figure 

5.4 c, d). In late June/early July the proportion of pollen collected from sown plants increased 

to 47.4% on HLS farms compared to 16.5% on ELS farms, a significantly higher proportion 

(χ2=46.2, p<0.001, Figure 5.4 c, d). In late July/early August the proportion of pollen collected 

from sown plants decreased to a similar level on both HLS and ELS farms (ELS 18.3, HLS, 21.1, 

χ2=0.1, p=0.824, Figure 5.4 c, d). 

 



 
 

83 
 

 

 

Figure 5.5. Relationship between availability of sown floral resources and the proportion of 

solitary bee species utilising them for pollen on surveyed farms. 

 

Across all farms, as the proportion of sown plants increased the proportion of solitary bee 

species present observed making pollen foraging trips to sown plants increased as well 

(Spearman’s rho=0.743, p<0.001, Figure 5.5). However, at best only 46.2% of solitary bee 

species were observed visiting sown plants for pollen. Over the whole survey period, pollen 

collected from sown plants by solitary bees represented only 27.0% of pollen visitation 

observations and 23.3% of pollen collected by volume. The most popular sown plants were 

Leucanthemum vulgare, Centaurea nigra and Daucus carota (Table 5.1). Of the 72 species of 

solitary bee only 31 species had five analysed pollen loads or five observed pollen visits. Of 

these, 14 species collected at least 10% of their pollen from sown plants (Table 5.2) with 17 

species collecting a lower proportion than this. Of the 41 species with fewer than five analysed 

loads or five observed visits, 11 were observed visiting, or their pollen loads contained pollen 

from, sown plants (Andrena wilkella, Hylaeus brevicornis, H. cornutus, H. dilatatus, 

Lasioglossum albipes, L. smeathmenellum, Megachile centuncularis, M. versicolor, M. 

willughbiella, Osmia leaiana and O. spinulosa). This list includes Hylaeus species which lack 

scopal hairs on their body, making accurate determination of pollen visits impossible in the 

field. However, all British species with the exception of Hylaeus signatus are known to be 

polylectic (Westrich 1989), and so any observed visits to sown plants were included in this list, 
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but not included in the main pollen visitation analysis. Five species were only recorded in the 

male sex and there was no evidence that females of the final 25 species visited sown plants for 

pollen. This most liberal estimate of 25 out of 72 solitary bee species (34.7%) likely to be using 

sown plants to a greater or lesser extent is similar to the overall observed proportion of pollen 

collected from sown plants. 

 

5.5 Discussion 

 

Our results show that, as expected, increasing resource availability through the creation of 

flower-rich habitat increased both the utilisation rates of sown plants for pollen by solitary 

bees and the proportion of solitary bee species utilising sown plants for pollen. These findings 

are in line with studies that have found that sown resources can provide improved resources 

for wild bees in enhanced areas (Knop et al. 2006; Kohler et al. 2007; Pywell et al. 2011a; 

Scheper et al. 2015). However, whilst utilisation rates of sown flowers were higher in areas in 

which they were abundant, the proportion of solitary bee species utilising sown plants for 

pollen was always a minority, even in areas where sown resources represented the vast 

majority of available forage. It is important to note that this study was conducted in a study 

region in which the landscape is composed of 21-22% semi-natural habitat (Wood et al. 

2015b). This is considerably more than areas of conventional farmland in many developed 

European countries which often contain between 5-10% semi-natural habitat (e.g. Westphal et 

al. 2003; Herrmann et al. 2007). As such, the relatively high bee diversity and low sown 

resource utilisation may reflect the less intensified nature of this area, and more studies of a 

similar nature should be conducted in more intensified landscapes.  
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Table 5.1. Most important pollen forage plants for solitary bees at different times of the year from field observations and pollen analysis. Plant 

species sown as part of agri-environment management are marked in bold. Sampling round one, late April/early May; sampling round two, late 

May/early June; sampling round three, late June/early July; sampling round four, late July/early August. 

 

Observations (2013-2015)        

Round one % of visits Round two % of visits Round three % of visits Round four % of visits 

Taraxacum agg. 66.89 Chaerophyllum temulum 19.37 Tripleurospermum inodorum 26.67 Pulicaria dysenterica 17.36 
Sinapis arvensis 11.49 Heracelum sphondylium 14.25 Centaurea nigra 23.26 Senecio jacobea 12.81 
Brassica rapa 10.14 Crataegus monogyna 9.69 Leucanthemum vulgare 16.15 Odontites vernus 11.98 
Crataegus monogyna 4.05 Leucanthemum vulgare 7.69 Heracelum sphondylium 7.26 Daucus carota 11.16 
Anthriscus sylvestris 2.70 Tripleurospermum inodorum 7.41 Hypochaeris radicata 5.19 Heracleum sphondylium 9.92 
Alliaria petiolata 2.03 Hypochaeris radicata 7.12 Bryonia dioica 3.85 Rubus fruticosus agg. 9.09 
Bellis perennis 0.68 Sisymbrium officinale 4.84 Crepis capillaris 3.70 Tripleurospermum inodorum 8.26 
Hyacinthoides non-scripta 0.68 Ranunculus repens 4.56 Chaerophyllum temulum 1.63 Picris hieracioides 5.79 
Lamium album 0.68 Oenanthe crocata 3.99 Achillea millefolium 1.48 Hypochaeris radicata 1.65 
Prunus spinosa 0.68 Crepis vesicaria 2.85 Trifolium repens 1.04 Centaurea nigra 1.65 

Pollen analysis (2015 only)        

Round one % of pollen Round two % of pollen Round three % of pollen Round four % of pollen 

Brassica spp. 31.22 Heracleum sphondylium 11.17 Tripleurospermum inodorum 27.52 Senecio jacobea 21.66 
Taraxacum agg. 29.84 Chaerophyllum temulum 9.66 Leucanthemum vulgare 14.62 Rubus fruticosus agg. 17.52 
Alliaria petiolata 13.41 Sisymbrium officinale 8.04 Centaurea nigra 12.53 Daucus carota 12.55 
Sinapis arvensis 9.78 Crataegus monogyna 8.00 Rubus fruticosus agg. 4.50 Pulicaria dysenterica 11.58 
Bellis perennis 3.48 Tripleurospermum inodorum 7.90 Heracleum sphondylium 4.43 Heracleum sphondylium 7.43 
Acer campestre 3.07 Leucanthemum vulgare  6.06 Sisymbrium officinale 3.17 Tripleurospermum inodorum 6.03 
Hyacinthoides non-scripta 1.79 Hypochaeris radicata 5.88 Brassica spp. 3.10 Centaurea nigra 4.11 
Lamium album 1.36 Brassica spp. 5.19 Sonchus arvensis 3.06 Odontites vernus 3.74 
Glechoma hederacea 1.28 Oenanthe crocata 4.35 Bryonia dioica 2.23 Trifolium hybridum 2.21 
Crataegus monogyna 1.19 Crepis vesicaria 3.60 Ranunculus repens 2.18 Trifolium repens 2.07 
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Table 5.2. Solitary bee species potentially benefiting from plant species sown as part of agri-environment schemes. Selected species had a minimum 

of five analysed pollen loads or five observed pollen foraging visits and collected a minimum of 10% of their pollen from sown plant species in either 

category. n p, total number of pollen loads; n obs, total number of pollen foraging observations. * data only available for summer generation females. 

 

   Utilisation of sown plants   

Species n p n obs % of pollen 
collected 

% of observed 
pollen visits 

Important sown pollen sources (pollen analysis) Important sown pollen sources (observations) 

Andrena alfkenella* 6 10 78.6 90.0 Daucus carota (78.6) Daucus carota (90.0) 
Andrena flavipes 45 70 17.7 17.1 Centaurea nigra (8.9), Trifolium hybridum (5.2), Leucanthemum vulgare (3.4) Leucanthemum vulgare (7.1), Centaurea nigra (4.3), Trifolium hybridum (2.9), 

Trifolium pratense (2.9) 
Andrena minutula 15 30 19.8 26.7 Daucus carota (19.8) Daucus carota (20.0), Centaurea nigra (3.3), Sonchus arvensis (3.3) 
Andrena minutuloides* 8 10 85.0 70.0 Daucus carota (85.0) Daucus carota (70.0) 
Colletes daviesanus 2 5 100.0 40.0 Achillea millefolium (100.0) Achillea millefolium (40.0) 
Halictus tumulorum 21 23 46.5 34.8 Ranunculus acris (20.2), Leucanthemum vulgare (10.8), Trifolium pratense (6.2), 

Medicago lupulina (3.7), Centaurea nigra (3.7), Silene dioica (1.9) 
Leucanthemum vulgare (17.4), Ranunculus acris (4.3), Centaurea nigra (4.3), 
Medicago lupulina (4.3), Trifolium pratense (4.3) 

Lasioglossum calceatum 38 70 13.2 21.4 Leucanthemum vulgare (7.7), Centaurea scabiosa (3.0), Phacelia tanacetifolia (1.8), 
Knautia arvensis (0.6) 

Leucanthemum vulgare (11.4), Knautia arvensis (2.9), Leontodon hispidus (2.9), 
Centaurea nigra (1.4), Centaurea scabiosa (1.4), Phacelia tanacetifolia (1.4) 

Lasioglossum leucozonium 21 51 12.8 3.9 Leontodon hispidus (8.9), Centaurea nigra (4.0) Leontodon hispidus (3.9) 
Lasioglossum malachurum 437 553 32.1 47.2 Leucanthemum vulgare (14.8), Centaurea niga (12.0), Plantago spp (1.5), Phacelia 

tanacetifolia (0.9), Melilotus officinalis (0.9), Achillea millefolium (0.7), others (1.2) 
Centaurea nigra (26.8), Leucanthemum vulgare (17.7), Achillea millefolium (1.3), 
Phacelia tanacetifolia (0.5), others (0.9) 

Lasioglossum pauxillum 70 93 19.5 15.1 Leucanthemum vulgare (14.1), Centaurea nigra (2.7), Daucus carota (1.1), Plantago 
spp (0.8), other (0.8) 

Leucanthemum vulgare (11.8), Centaurea nigra (1.1), Leontodon hispidus (1.1), 
Daucus carota (1.1) 

Lasioglossum puncticolle 2 8 100.0 37.5 Centaurea nigra (100.0) Centaurea nigra (37.5) 
Lasioglossum villosulum 25 32 34.8 21.9 Leontodon hispidus (34.8) Leontodon hispidus (18.8), Sonchus arvensis (3.1) 
Lasioglossum xanthopus 7 8 67.9 100.0 Leucanthemum vulgare (67.9) Leucanthemum vulgare (100.0) 
Lasioglossum zonulum 4 7 33.4 14.3 Centaurea nigra (20.6), Silene dioica (12.9) Centaurea nigra (14.3) 
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The most important sown plants for solitary bees were Leucanthemum vulgare, Centaurea 

nigra and Daucus carota. The former two were widely used by polylectic Lasioglossum species 

with D. carota an important pollen source for scarce late summer species such as Andrena 

alfkenella and A. minutuloides. Plants from the family Fabaceae are often a major component 

of pollinator-focused agri-environment schemes, since many schemes were designed primarily 

to provide resources for threatened bumblebees that show close association with members of 

the Fabaceae (Edwards 2003; Goulson et al. 2005). These schemes can have significantly 

positive effects on the size of bumblebee populations on farmland (Carvell et al. 2015; Wood 

et al. 2015a), and whilst some threatened solitary bee species are dependent on Fabaceae 

(e.g.  Eucera longicornis, Westrich 1989, not recorded in this study), overall use of Fabaceae as 

a pollen source by solitary bees was very low at 2.3% of pollen visitation observations and 

3.0% of pollen collected by volume.   

 

In contrast, an important pollen source for solitary bees in the spring was the genus Brassica. 

This predominantly comprises oilseed rape (Brassica napus), a major crop in England. Brassica 

species are also sometimes included in wild bird focused agri-environment schemes to provide 

winter seeds, but the area under this form of management is dwarfed by the area cropped 

with oilseed rape. Brassica type pollen was collected by 12 species of Andrena, in particular A. 

scotica (40.2% of total pollen collected by volume), A. haemorrhoa (23.1%), A. minutula 

(20.2%), A. nitida (19.1%), A. cineraria (15.7%) and A. subopaca (14.2%). Mass flowering crops, 

in particular oilseed rape, have been associated with higher densities of foraging bumblebees, 

larger bumblebee colonies and larger numbers of bumblebee colonies in agricultural 

environments, due to increased resources availability during early colony development 

(Westphal et al. 2003; Herrmann et al. 2007; Wood et al. 2015b). However, oilseed rape is 

widely treated with pesticides including neonicotinoids that have been linked to bee declines 

around the world (see Goulson et al. 2015). There are few field studies of impacts on solitary 

bees, but one study found reduced numbers of solitary bees foraging on neonicotinoid-treated 

oilseed rape and neighbouring field margins compared to controls, and also reduced 

occupancy of nest holes by Osmia bicornis (Rundlöf et al. 2015), so the net benefits of this 

mass flowering crop for solitary bees may depend upon its wider agricultural management.  

 

The area of land cropped with oilseed rape in the UK has increased markedly in the past 30 

years, from 269,000 ha in 1984 to a peak of 756,000 ha in 2012, driven mainly by rising 

commodity prices and demand for biofuels (DEFRA 2015). This increased availability of pollen 

and nectar resources during the period before agri-environment schemes begin to flower may 
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partly explain positive trends in some spring Andrena species in the UK. Widespread in the 

north and the west of the UK, A. cineraria had been scarce in the south of England until the 

1990s when it markedly expanded its range (Baldock 2008). In addition, a number of scarce 

and threatened parasitic insects use spring flying mining bees such as A. cineraria as a host, 

specifically the oil beetle Meloe proscarabaeus, the bee fly Bombylius discolor (Nationally 

Scarce), the parasitic bee Nomada lathburiana (Red Data Book 3) and the conopid fly Myopa 

pellucida (Red Data Book 3). National recording efforts and county atlases show that these 

species have all increased in range and frequency since the 1990s, particularly in the south 

east of England (M. Edwards pers. comm., Baldock 2008; Baldock and Early 2015), with the 

latter three species being recorded during this study.  

 

Oilseed rape is an increasingly widely grown crop across much of the world and is the most 

important insect pollinated crop in arable areas of England. Whilst it can be wind pollinated, 

insect pollination increases seed yield, quality and market value (Bommarco et al. 2012). 

Solitary bees from the genera Andrena, Osmia and Lasioglossum are more efficient pollinators 

of oilseed rape than bumblebees and honeybees in Britain (Woodcock et al. 2013). However, 

current pollinator-focused schemes are dominated by herbaceous grassland plants which 

produce their peak flower abundance in July and August. These options provide low to non-

existent resources in the spring, with none of the univoltine spring flying Andrena collecting 

more than 10% of their pollen from sown plants. Instead, visits to plants associated with 

woodland, hedgerow, grassland and arable weed habitats predominated. However, increasing 

floral abundance in the late summer is important, as pollen demand for larval rearing by social 

bumblebees is at its highest at this point (Dicks et al. 2015). Identifying bee species that are 

resource limited on farmland is an important part of targeted agri-environmental 

management, and it has been argued that current agricultural landscapes are particularly 

flower poor in the summer (Holland et al. 2015), with availability of suitable forage decreasing 

through the season (Scheper et al. 2014). The creation of 2% of predominantly summer 

flowering flower-rich habitat by farm area is sufficient to consistently supply a suite of 

common farmland bumblebee species with enough pollen to raise their larvae throughout the 

season (Dicks et al. 2015).  

 

Current seed mixes biased towards summer flowering plants may consequently be an 

appropriate focus, but a change in composition to include more attractive species that flower 

in May and early June would support a greater variety of bee species, including important crop 

pollinators. Conservation management that takes land out of production can both benefit 
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biodiversity and increase agricultural yields, essentially making the intervention economically 

neutral (Pywell et al. 2015). However, as the majority of pollination is carried out by the most 

abundant bee species in any location, usually representing a small fraction of the total number 

of species present, a purely economic argument is insufficient to justify conserving bee 

diversity in general (Kleijn et al. 2015). In addition to bees being a valid conservation target in 

their own right, it has been argued that maintaining pollinator species diversity is crucial for 

providing ecosystem resilience in the face of future environmental change (Senapathi et al. 

2015). Bee communities are strongly structured by, and associated with, plant species diversity 

(Tscharntke et al. 1998; Potts et al. 2003; Batáry et al. 2010), and so management that does 

not increase plant species diversity at the farm level is unlikely to increase bee diversity either, 

no matter the total increase in resource availability. Increasing the diversity of plants species 

included in wild seed mixes is likely to increase their efficacy (Scheper et al. 2015), and the 

inclusion of grassland species such as Taraxacum agg., Hypochaeris radicata and Ranunculus 

repens would provide resources for a wider variety of species. However, hedgerow plants such 

as Heracleum sphondylium, Chaerophyllum temulum and Alliaria petiolata and arable plants 

such as Sinapis arvensis, Sisymbrium officinale and Tripleurospermum inodorum are also 

popular, and their management relies on wider farmland management such as herbicide and 

hedge cutting regimes. Agri-environment schemes promoting improved hedgerow 

management and various uncropped or unharvested headlands for arable plants currently 

exist, but their ability to increase the abundance and diversity of pollen sources for solitary 

bees is poorly studied. These and similar schemes should be trialled as complementary 

methods to benefit solitary bee populations on farmland.  

 

5.6 Conclusions 

 

Current pollinator-focused agri-environment management can increase floral abundance and 

provide pollen resources for a limited suite of farmland bee species. However, in our study the 

majority of solitary bee species foraged from other plants persisting in the wider farm 

environment. As a taxon almost entirely dependent upon flowering plants for food, an 

association between bee species richness and flowering plant richness is to be expected. As 

the addition of flower-rich schemes as part of pollinator-friendly management did not 

significantly increase flowering plant richness at the farm scale, it should not be surprising that 

bee species richness was also not significantly different at this level. Management that 

increases resource availability is important, but our results suggest that techniques that 
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increase floristic richness at the farm scale are necessary if we wish to conserve a richer bee 

community on farmland.   
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Chapter 6 –  Diet characterisation of solitary bees on farmland: dietary 

  specialisation predicts rarity 
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6.1 Abstract 

 

Changes in agricultural practice across Europe and North America have been associated with 

declines in wild bee populations. Bee diet breadth has been associated with sensitivity to 

agricultural intensification, but much of this analysis has been conducted at the categorical 

level of generalist or specialist, and it is not clear to what extent the level of generalisation 

within generalist species is also associated with species persistence. We used pollen load 

analysis to quantify the pollen diets of wild solitary bees on 19 farms across Southern England, 

UK. A total of 72 species of solitary bees were recorded, but only 31 species were abundant 

enough to allow for formal diet characterisation. The results broadly conformed to existing 

literature with the majority of species polylectic and collecting pollen from a wide range of 

plants. Pollen load analysis consistently identified pollens from more plant species and families 

from each bee species than direct observation of their foraging behaviour. After rarefaction to 

standardise pollen load sample sizes, diet breadth was significantly associated with frequency 

of occurrence, with more generalist bees present on more farms than less generalist bees. Our 

results show that the majority of bee species present on farmland in reasonable numbers are 

widely variable in their pollen choices, but that those with the broadest diet were present on 

the greatest number of farms. Increasing the diversity of plants included in agri-environment 

schemes may be necessary to provide a wider range of pollen resources in order to support a 

diverse bee community on farmland. 

 

6.2 Introduction 

 

Since the Second World War, many wild bee species have undergone substantial range 

contractions and extinctions across Europe and North America (Biesmeijer et al. 2006; Kosior 

et al. 2007; Goulson et al. 2008b; Bartomeus et al. 2013). These declines have been linked to 

changes in agricultural practice which have reduced the abundance and diversity of flowering 

plants, reducing the amount and range of food resources available to foraging bees (Ollerton 

et al. 2014; Scheper et al. 2014; Goulson et al. 2015). A loss of bees from agricultural areas is of 

concern because of their important role as pollinators of both wild and crop plants (Ollerton et 

al. 2011; Garibaldi et al. 2013).  

 

Partly to address these declines in wild bees, agri-environment schemes have been 

implemented across the European Union as part of the Common Agricultural Policy. Designed 

to deal with more general declines in agricultural biodiversity, they offer an opportunity to 
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provide important foraging resources for wild bees. However, there are still important 

knowledge gaps relating to the conservation of wild bees, in part relating to an incomplete 

understanding of their agro-ecology (Dicks et al. 2013). Previous authors have found that bee 

diet breadth is associated with sensitivity to habitat loss and agricultural intensification, with 

generalists faring better than specialists (Bommarco et al. 2010; De Palma et al. 2015). 

However, much of this analysis has been conducted at the categorical level of generalist or 

specialist, and it is not clear to what extent the level of generalisation within generalist species 

is also associated with species persistence. Providing appropriate foraging resources for wild 

bees on farmland is important if their populations are to be maintained, but the lack of data on 

their contemporary diets is detrimental as the assessment of the efficacy of current agri-

environment schemes often has to work with an incomplete knowledge of bee species 

requirements (Dicks et al. 2015).  

 

Whilst there has been reasonable assessment of the diet of bumblebees on and off agricultural 

land (Goulson et al. 2005; Carvell et al. 2006b; 2007; Kleijn and Raemakers 2008), less is known 

about the diet of the wider bee community (though see Scheper et al. 2014). In terms of the 

number of species, the bee fauna in temperate regions is dominated by ‘solitary’ bees that live 

independently and collect pollen to provision their own offspring. This term is used generically 

to contrast this group against the social bumblebees and the honeybee Apis mellifera. 

However, the ‘solitary’ bees include many species within the Halictidae that show variably 

expressed eusocial behaviour (Plateaux-Quénu 2008; Davison and Field 2016). Consequently, 

whilst not technically correct, the term solitary bees is used from here on to mean any non-

parasitic (i.e. they forage for their own pollen), non-corbiculate (i.e. non-Bombus, non-Apis) 

bee species. 

 

Some field studies have used direct field observations of pollen foraging behaviour to identify 

pollen preferences in wild bees (e.g. Minckley et al 1999; Steffan-Dewenter and Tschantke 

2001; Goulson et al. 2005). However, many wild bees are not flower constant and do not 

exclusively use the same flower species during a foraging trip, instead visiting and carrying 

pollen from many different flowering plants at once (Westrich 1989; Beil et al. 2008). 

Additionally, wild bees can forage over considerable distances (Beil et al. 2008; Zurbuchen et 

al. 2010) and may visit flowers inaccessible to or outside the areas visited by recorders. As a 

result, direct observations may not capture the full range of plant species visited for pollen, 

and may not accurately measure the relative contribution that different host plants make to 

the overall diet as the proportion of pollen collected from each particular plant species is 
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unknown. In establishing more definitive pollen preferences and diet breadth ranges, 

microscopic analysis of pollen loads has been favoured as the total volume of pollen collected 

from different sources can be quantified. The level of specialisation, as either oligolectic 

(collecting pollen from one plant family or genus) or polylectic (collecting pollen from many 

plant families) can then be made with greater confidence (Westrich 1989; Müller 1996; Müller 

and Kuhlmann 2008). The use of pollen load analysis is becoming more widely used in field 

studies to assess pollen utilisation of both semi-natural and agri-environment scheme plants 

(Carvell et al. 2006b; Kremen and Williams 2007; Beil et al. 2008) and to quantify historical bee 

diets through the analysis of remaining pollen loads present on museum specimens (Kleijn and 

Raemakers 2008; Scheper et al. 2014).  

 

In this study we characterise the pollen foraging diets of wild solitary bees on farmland in 

Southern England, UK using pollen load analysis. Within a British context this is the most 

comprehensive assessment of solitary bee species since Chambers (1968). We examine the 

diet breadth results in the context of frequency of occurrence, with the prediction that those 

species with a wider diet will be present on a greater number of farms. This information will be 

of use to land managers and policy makers interested in maintaining pollinator populations on 

agricultural land.  

 

6.3 Methods 

 

6.3.1 Study area 

 

In England, two tiers of environmental stewardship were established in 2005. Entry Level 

Stewardship (ELS, Natural England, 2013a) was open to all farmers. Higher Level Stewardship 

(HLS, Natural England, 2013b) which was targeted to high priority areas provided greater 

financial rewards for more substantial and rigorous agri-environmental schemes. At the time 

of the study, around 70% of farms in England were in some form of environmental stewardship 

(JNCC 2014). Nineteen farms were selected in Hampshire and West Sussex, UK. Nine farms 

were under HLS management and were implementing pollinator-friendly management. This 

consisted of an average of 5.6 ± 0.1 ha of flower-rich grassland per farm, typically established 

by sowing areas with seed mixes containing c.15-30 flowering forb species (Carvell et al. 2007). 

Ten farms were under ELS and were not implementing any pollinator-friendly management. 

ELS management can include schemes targeted at pollinators that can benefit wild bee 
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populations (Pywell et al. 2012), but the overall uptake of such schemes within ELS is low 

(Elliot et al. 2010). Consequently, general ELS farms not implementing any specifically 

pollinator-friendly management were selected as the control group for this study. The floral 

communities on the studied farms consequently consisted of sown plants in conservation 

areas and wild plants persisting in the wider farmed environment. Farms were predominantly 

arable, or mixed arable/dairy with wheat, barley, oilseed rape and permanent/silage grassland 

as the major crops representing the dominant agricultural practices in this region.  

 

6.3.2 Bee surveys and sample collection 

 

In 2013 and 2014, a standardised 3 km transect was designed for each farm, passing through 

all major habitat types present, excluding crops. These habitats types can be divided into 

flower-rich pollinator-focused schemes, non-agricultural grassland and hedgerows and 

woodland edges. Transects on HLS farms were designed to survey as many pollinator-focused 

schemes as possible and passed through an average of 1496 ± 148m of flower-rich habitat in 

an average of 3.8 ± 0.2 discrete habitat patches. Solitary bee activity was recorded along the 

transect following standard bee walk methodology (Carvell et al. 2007), with all solitary bees 

within 2 m of the recorder identified to species level. Individuals that could not be named in 

the field were netted for later identification. The first flowering plant species visited and the 

purpose of the visit, for either pollen or nectar, was recorded. Hylaeus species, which lack 

scopal (pollen collecting) hairs on their body, instead ingesting pollen and regurgitating it in 

the nest, cannot be reliably determined to be foraging for pollen and so all plant visits were 

recorded simply as visits. Sixteen farms (eight HLS, eight ELS) were surveyed in 2013. Transects 

were walked three times through the season, between 25th May–5th June, 26th June–15th 

July and 3rd–11th August 2013. Seventeen farms (eight HLS, nine ELS) were surveyed in in 

2014. Transects were walked three times through the season, between 17th– 27th May, 21st 

June–9th July and 3rd–15th August 2014. 

 

In 2015 farms were surveyed on time based rather than distance based transects. ELS farms 

were surveyed for 3 hrs with 1.5 hrs on non-agricultural grass habitats and 1.5 hrs on woody 

hedgerow/woodland edge habitats. HLS farms were surveyed for 3 hrs with 1 hr on pollinator-

focused flower-rich schemes, 1 hr on non-agricultural grass habitats and 1 hr on woody 

hedgerow/woodland edge habitats. The survey followed standard bee walk methodology as 

described above, but at a reduced pace to ensure thorough sampling. In addition, female bees 

with clearly visible pollen on their body were collected, placed in individual Eppendorf tubes 
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and frozen. Samples of all flowering plant species present were collected to form a pollen 

reference library. Fourteen farms (7 HLS, 7 ELS) were surveyed in 2015. Transects were walked 

four times throughout the season, between 22 April– 13th May, 26th May– 17th June, 25th 

June– 4th July and 29th July– 10th August 2015. All bee surveys were conducted between 

0930 and 1700 h when the temperature was above 13oC with at least 60% clear sky, or above 

17oC with any level of cloud. No surveys were conducted when it was raining. All bee surveys 

were conducted by the same individual (TJW) to minimise recorder bias. 

 

6.3.4 Pollen identification 

 

The scopal pollen load of foraging bees collected in 2015 was analysed by light microscopy 

using the method outlined by Westrich and Schmidt (1986). Before removing pollen from the 

scopae, the total load was estimated relative to a full load for that species, ranging from 8/8 

(full load) to 1/8 (one eighth load). The pollen grains were removed from the scopae using an 

entomological pin and transferred to a drop of water on a microscope slide. Pollen that was 

not clearly held in the scopae was not sampled as this may have become attached to other 

parts of the body during nectar visits to non-host plant flowers. The slide was gently heated to 

allow grains to absorb water and achieve their maximum size and to evaporate excess water. 

Molten glycerine jelly stained with fuchsin was then added and the slide was sealed with a 

coverslip. The proportion of the load comprised of different plant species was estimated along 

three randomly selected lines across the cover slip at a magnification of x400. The proportion 

of the load by volume was estimated by the relative area of the slide occupied by each plant 

species, rather than the absolute number of grains, in order to better reflect the total volume 

of pollen collected, an important correction in mixed loads where pollen grains of different 

plant species often differ widely in size (Cane and Sipes, 2006). Species representing less than 

1% of the load were excluded from further analysis as they may have arisen from 

contamination (Westrich and Schmidt 1986). As specimens were individually netted and stored 

in clean Eppendorf tubes such contamination was expected to be minimal.  

 

The proportions of pollen collected were corrected according to the overall size of each load to 

give a final weight, e.g. a full load (8/8) comprised of 50% Centaurea nigra and 50% 

Leucanthemum vulgare would receive a final C. nigra weight of 50 and a final L. vulgare weight 

of 50, whereas a quarter load (2/8) comprised of 100% Hypochaeris radicata would receive a 

final H. radicata weight of 25. The pollen grains were identified to species using Sawyer (1981) 

and the reference collection assembled during the project. Where identification to species 



 
 

97 
 

level was not possible, pollen was identified to genus, for example in Brassica, Plantago and 

Geranium.  

 

6.3.5 Diet characterisation 

 

Characterisation of floral preferences in pollen host plants was carried out for species with a 

minimum of three pollen load samples following Müller and Kuhlmann (2008). A small sample 

size may result in mischaracterisation of bee diets as certain plant families may be under or 

overrepresented. However, in all cases for bees with sample sizes of less than five the results 

conformed closely to more extensive previous studies (see Results). Consequently, for species 

with small sample sizes the results presented here should be viewed within this broader 

context. In characterising diet we used the categories laid out by Müller and Kuhlmann (2008) 

who modified the work of Cane and Sipes (2006) to include additional subcategories of 

oligolecty and polylecty. This modification added the category ‘polylectic with a strong 

preference’ as this pattern of host use exists in many species (Müller 1996). Müller and 

Kuhlmann (2008) used two approaches to characterise oligolecty for a given bee species using 

microscopic analysis of pollen loads. The first averages use over all individuals so a bee species 

is deemed oligolectic if 95% of the pollen grains (or 95% of the pollen by volume) is from one 

plant family or genus (Müller 1996). The second approach looks at the proportion of pure and 

mixed pollen loads so a bee species is deemed oligolectic if 90% of females collect pure pollen 

loads of one plant family or genus (Sipes and Tepedino 2005). Both methods produce similar 

results (Müller and Kuhlmann 2008), but in the few cases where they produced different 

answers the category with the lower degree of specialisation was used in our analysis.  

 

Flower visit observations from the 2013, 2014 and 2015 transects were pooled. Differences in 

the number of plant species and families utilised for pollen detected by the direct observation 

and pollen load analysis techniques were tested using Mann Whitney U tests. When comparing 

diet breadth between different bee species, rarefaction must be used to reduce the impact of 

differing samples sizes between species and the consequent effect on diet breadth calculations 

(Williams 2005). A rarefaction procedure was used to calculate the number of pollen types 

from different plant species (pollens) each different bee species would be expected to collect 

for a standardised number of pollen loads. Here we rarefied the diets of bees for i) species 

with a minimum of 10 pollen loads and ii) species with a minimum of three pollen loads. A 

subsample of i) 12 pollen loads (smallest sample size over 10, Andrena subopaca see Table 6.1) 

and ii) three pollen loads is made from the observed frequency of pollens collected, chosen at 
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random without replacement 1000 times. As this procedure is designed for use on integer 

data, the pollen load data was first transformed. For example, with a sample size of 14, the 

percentage of pollen collected from each plant species was multiplied by the sample size to 

give a whole pollen load equivalent, e.g. 40% becomes 5.6 pollen loads. These values were all 

multiplied by 10 and rounded to the nearest whole number to give an integer equivalent that 

was used in the rarefaction procedure. For the group with a minimum sample size of 10 pollen 

loads the relationship between diet breadth (the number of pollens collected) and frequency 

of occurrence (the number of farms at which the bee species was recorded at least once over 

the three year survey period) was tested using a linear model with a Gaussian distribution as 

the response variable conformed to a normal distribution. Bee family was included in the 

model as a fixed factor to control for the possible impact of bee phylogeny on the results. For 

the group with a minimum sample size of three pollen loads the response variable could not 

be transformed to normality, and for this dataset the relationship between diet breadth and 

frequency of occurrence was tested using Spearman’s rank correlation. 

 

Additionally, we also investigated the impact of farm type (HLS or ELS) on diet breadth and 

frequency of occurrence to ensure that the effect was consistent across different management 

types. Fourteen bee species had a minimum of 10 pollen loads from either HLS or ELS farms (9 

species had a minimum of 10 pollen loads from both farm types, 5 species has a minimum of 

10 pollen loads from only one farm type). Following the same protocol these data were 

rarefied to a sample size of 10 pollen loads and were tested in a linear model with a Gaussian 

distribution with diet breadth and farm management type included as fixed factors. All 

statistical analyses were conducted in R version 3.1.1 (R Development Core Team) using the 

package vegan (Oksanen et al. 2015) to calculate diet rarefaction scores.  

 

6.4 Results 

 

A total of 72 species of solitary bee was recorded over the sampling period. Fifty-six solitary 

bee species were observed making 1,416 pollen foraging trips to 62 flowering plant species 

from 19 families.  One thousand and fifty-four bees with pollen loads from 47 solitary bee 

species were collected for microscopic pollen load analysis. Pollen analysis detected 93 pollen 

types from 32 plant families. Thirty-one solitary bee species were collected in sufficient 

quantities to allow diet breadth characterisation (Table 6.1).  
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Table 6.1. Host plant spectrum and inferred category of host use in sampled farmland solitary bee 

species. Only species with a minimum of three collected pollen loads are included. n, total number 

of pollen loads; N, number of pollen loads from different localities. s.s. = sensu strictu. Plant taxa: 

ACE, Aceraceae; API, Apiaceae; AST, Asteraceae; BER, Berberidaceae; BRA, Brassicaceae; CAM, 

Campanulaceae; CAP, Caprifoliaceae; CAR, Caryophyllaceae; CUC, Cucurbitaceae; FAB, Fabaceae; 

GER, Geraniaceae; LAM, Lamiaceae; LIL, Lilaceae; MAL, Malvaceae; OLE, Olaceae; ORO, 

Orobanchaceae; RES, Resedaceae; RAN, Ranunculaceae; RHA, Rhamnaceae; ROS, Rosaceae; RUB, 

Rubiaceae; SOL, Solanaceae; VER, Veronicaceae. * pollen data only available for summer 

generation females. 

 

Bee species n N Results of microscopic analysis of pollen grains (% 

pollen grains) 

% pure loads of 

preferred host 

% loads with 

preferred host 

Host range Host range in the 

literature 

Andrena alfkenella 6 3 API 97.0, other 3.0 33.3 100.0 Broadly oligolectic 

(Apiaceae) * 

Polylectic 

Andrena bicolor 16 7 AST 29.6, BRA 21.4, CUC 13.7, API 13.7, CAM 10.5, 

LIL 7.8, other 2.0 

37.5 37.5 Polylectic s.s. Polylectic 

Andrena chrysosceles 32 9 API 45.6, BRA 32.1, ROS 14.9, MAL 3.1, AST 2.2, 

other 2.1 

43.8 78.1 Polylectic s.s. Polylectic 

Andrena cineraria 9 3 BRA 53.8, API 27.9, ROS 12.9, RHA 3.2, other 2.2 33.3 77.8 Polylectic s.s. Polylectic 

Andrena dorsata 22 9 ROS 66.6, API 11.8, BRA 9.7, AST 7.3, FAB 4.7 50.0 68.2 Polylectic s.s. Polylectic 

Andrena flavipes 45 10 AST 56.0, BRA 20.1, FAB 10.5, ROS 5.1, API 5.0, 

other 3.3 

15.6 86.7 Polylectic s.s. Polylectic 

Andrena florea 3 2 CUC 100.0 100.0 100.0 Narroly oligolectic (Bryonia 

dioica) 

Narrowly oligolectic 

(Bryonia) 

Andrena haemorrhoa 40 12 ROS 37.8, BRA 31.5, AST 14.7, RES 6.3, CAP 4.9, 

other 3.0 

10.0 45.0 Polylectic s.s. Polylectic 

Andrena labiata 3 1 CAR 50.0, VER 16.7, RAN 12.5, BRA 10.8, AST 7.5, 

GER 2.5 

0.0 66.7 Polylectic s.s. Polylectic 

Andrena minutula 15 8 API 56.4, BRA 23.6, ROS 11.6, AST 8.0, other 0.4 20.0 60.0 Polylectic s.s.  Polylectic 

Andrena minutuloides 8 2 API 100.0 100.0 100.0 Broadly oligolectic 

(Apiaceae) * 

Polylectic 

Andrena nigroaenea 16 6 API 39.4, AST 34.5, BRA 14.2, RAN 6.3, RES 3.1, 

other 2.5 

18.8 62.5 Polylectic s.s. Polylectic 

Andrena nitida 23 10 BRA 45.6, API 16.3, ACE 9.9, RHA 9.1, AST 4.7, SOL 

3.8, LAM 3.8, ROS 2.4, other 4.5 

21.7 69.6 Polylectic s.s. Polylectic 

Andrena scotica 18 7 BRA 65.7, ACE 19.6, API 5.4, ROS 4.2, other 5.1 55.6 77.8 Polylectic s.s. Polylectic 

Andrena semilaevis 97 9 API 91.3, BRA 5.3, VER 1.9, other 1.5 75.3 97.9 Polylectic with a strong 

preference (Apiaceae) 

Polylectic 

Andrena subopaca 12 4 API 48.4, BRA 19.3, ROS 18.2, VER 9.2, FAB 2.6, 

other 2.3 

33.3 50.0 Polylectic s.s. Polylectic 

Halictus tumulorum 21 10 AST 24.2, RAN 22.2, FAB 16.9, ROS 13.9, BRA 12.4, 

RUB 6.82, LIL 3.0, other 2.62 

38.1 71.4 Polylectic s.s. Polylectic 

Lasioglossum albipes 3 2 RAN 65.3, ROS 33.3, other 1.3 33.3 66.7 Polylectic s.s. Polylectic 

Lasioglossum calceatum 38 11 AST 46.9, BRA 17.5, ROS 11.3, API 6.0, LAM 3.9, 

BER 3.7, OLE 3.5, RAN 2.6, other 4.6 

42.1 68.4 Polylectic s.s. Polylectic 

Lasioglossum fulvicorne 7 2 BRA 67.2, ROS 26.9, API 5.0, other 0.8 57.1 71.4 Polylectic s.s. Polylectic 

Lasioglossum lativentre 9 3 FAB 95.3, RAN 2.6, AST 2.1 77.8 88.9 Polylectic with a strong 

preference (Fabaceae) 

Polylectic 

Lasioglossum leucopus 7 6 BRA 68.1, API 22.9, RAN 6.3, AST 2.5, other 0.3 0.0 57.1 Polylectic s.s. Polylectic 

Lasioglossum leucozonium 21 6 AST 95.3, RAN 4.7 71.4 100.0 Polylectic with a strong 

preference (Asteraceae) 

Polylectic 

Lasioglossum malachurum 437 12 AST 73.1, BRA 9.9, ROS 3.3, other 13.7 53.3 83.3 Polylectic with a strong 

preference (Asteraceae) 

Polylectic 

Lasioglossum morio 7 5 BRA 51.2, AST 15.1, API 12.1, CAP 11.2, ROS 8.4, 

other 2.1 

28.6 42.9 Polylectic s.s. Polylectic 

Lasioglossum parvulum 7 5 ROS 28.5, LAM 23.5, RAN 20.2, API 11.2, ACE 9.4, 

AST 5.9, other 1.3 

0.0 42.9 Polylectic s.s. Polylectic 

Lasioglossum pauxillum 70 10 AST 62.1, API 9.8, RAN 9.4, ROS 8.7, BRA 3.5, VER 

2.3, FAB 2.2, other 2.0 

45.7 68.6 Polylectic s.s. Polylectic 

Lasioglossum villosulum 25 5 AST 100.0 100.0 100.0 Broadly oligolectic 

(Asteraceae) 

Polylectic 

Lasioglossum xanthopus 7 3 AST 67.8, BRA 32.0, other 0.2 42.9 85.7 Mesolectic Polylectic 

Lasioglossum zonulum 4 1 ROS 53.6, AST 21.6, CAR 12.9, RAN 6.1, CAP 4.3, 

other 1.4 

0.0 100.0 Polylectic s.s. Polylectic 

Melitta tricincta 3 1 ORO 100.0 100.0 100.0 Narrowly oligolectic 

(Odontites vernus) 

Narrowly oligolectic 

(Odontites) 
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The host plant use results broadly conformed to existing literature (Chambers 1968; Westrich 

1989; Amiet et al. 2010), with the majority of species characterised as polylectic or polylectic 

with some preferences. Five species (Andrena alfkenella, A. florea, A. minutuloides, 

Lasioglossum villosulum and Melitta tricincta) were characterised as oligolectic. However, A. 

alfkenella, A. minutuloides and L. villosulum are not considered oligolectic by other authors 

(see Discussion). Excluding these three doubtful species a total of 15 solitary bee species well 

known to be oligolectic was recorded (Table 6.2). Only A. florea and M. tricincta were collected 

in sufficient numbers to allow formal diet characterisation. For the other 13 oligolectic species, 

observed pollen visits were in line with their expected host preferences. Important pollen 

sources in the study region are summarised in Table 6.2, with likely pollen host plants based on 

observed nectar visits to suitable plants present at the localities where they were recorded.  

 

Table 6.2. Oligolectic solitary bee species recorded during the survey and their observed pollen 

host plants in the study area. Likely pollen sources are based on nectar visits to suitable host 

plants present at the locality. Plants sown as part of pollinator-friendly management are 

highlighted in bold.  

Bee species Pollen sources in the study area Host range in the literature 

Andrena florea Bryonia dioica Narrowly oligolectic (Bryonia) 

Andrena fulvago none recorded (likely Hypochaeris radicata) Broadly oligolectic (Asteraceae) 

Andrena humilis Hypochaeris radicata Broadly oligolectic (Asteraceae) 

Andrena nitidiuscula none recorded (likely Heracleum sphondylium, Daucus carota) Broadly oligolectic (Apiaceae) 

Andrena wilkella Trifolium repens, Trifolium hybridum, Lotus corniculatus Broadly oligolectic (Fabaceae) 

Anthophora furcata Stachys sylvatica Broadly oligolectic (Lamiaceae) 

Chelostoma campanularum none recorded (likely Campanula trachelium) Narrowly oligolectic (Campanula) 

Chelostoma florisomne Ranunculus repens Narrowly oligolectic (Ranunculus) 

Colletes daviesanus Achillea millefolium, Tripleurospermum inodorum, Leucanthemum vulgare Broadly oligolectic (Asteraceae) 

Hylaeus signatus Reseda lutea Narrowly oligolectic (Reseda) 

Melitta leporina Trifolium repens Broadly oligolectic (Fabaceae) 

Melitta tricincta Odontites vernus Narrowly oligolectic (Odontites) 

Osmia leaiana Centaurea nigra, Crepis capillaris Broadly oligolectic (Asteraceae) 

Osmia spinulosa Achillea millefolium, Helminthotheca echioides Broadly oligolectic (Asteraceae) 

Panurgus calcaratus none recorded (likely Hypochaeris radicata) Broadly oligolectic (Asteraceae) 

 

Excluding the narrowly oligolectic A. florea and M. tricincta (that each only collect pollen from 

one plant species in Britain), direct observation recorded bees collecting pollen from an 

average of 6.9 ± 1.0 plant species from an average of 3.4 ± 0.3 plant families per bee species 

(Table 6.3). Microscopic pollen analysis detected significantly more pollens from an average of 

13.6 ± 1.9 plant species from an average of 7.6 ± 0.9 plant families per bee species (W=211.5, 

p=0.001; W=151.5, p<0.001 respectively). Of the 13 additional plant families detected in pollen 

load analysis, seven were represented by woody genera in the study area, specifically 

Aceraceae (Acer), Aquifoliaceae (Ilex), Berberidaceae (Berberis), Cornaceae (Cornus), Fagaceae 

(Castanea, Fagus), Malvaceae (Tilia) and Rhamnaceae (Rhamnus). For the 17 species with a 

minimum sample size of 10 analysed pollen loads, after rarefaction there was a significant 
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relationship between diet breadth and frequency of occurrence (Figure 6.1, t14,16=3.411, 

p=0.004, adjusted R2=0.413). There was no impact of bee family on this relationship 

(t14,16=0.186, p=0.855). After removing bee family from the model diet breadth was still a 

significant predictor of frequency of occurrence (t15,16=3.756, p=0.002, adjusted R2=0.450).  

 

Table 6.3. Number of pollens from different flowering plant species and flowering plant 

families collected by solitary bee species (excluding narrowly oligolectic species), by direct 

observation and pollen load analysis. Data was rarefied for species with a minimum of 10 

pollen loads. obs, number of observations; n, number of pollen loads. 

   Number of plant species  Number of plant families 

Bee species obs n Observations Pollen loads Rarefied Observations Pollen loads 

Andrena alfkenella 10 6 2 7  1 5 

Andrena bicolor 17 16 5 11 9.61 4 9 

Andrena chrysosceles 38 32 7 16 13.40 4 8 

Andrena cineraria 16 9 6 9  3 6 

Andrena dorsata 34 22 9 15 10.30 5 5 

Andrena flavipes 70 45 14 28 18.06 4 12 

Andrena haemorrhoa 43 40 6 18 11.03 5 11 

Andrena labiata 2 3 1 6  1 6 

Andrena minutula 30 15 9 11 9.78 3 5 

Andrena minutuloides 10 8 2 2  1 1 

Andrena nigroaenea 13 16 5 16 11.07 4 10 

Andrena nitida 24 23 7 16 14.14 5 12 

Andrena scotica 13 18 4 12 11.24 3 9 

Andrena semilaevis 127 97 7 18 10.33 3 9 

Andrena subopaca 7 12 3 13 11.00 3 8 

Halictus tumulorum 23 21 14 19 16.14 5 11 

Lasioglossum albipes 3 3 2 4  2 4 

Lasioglossum calceatum 70 38 17 31 19.76 7 16 

Lasioglossum fulvicorne 6 7 3 4  3 4 

Lasioglossum lativentre 8 9 3 5  2 3 

Lasioglossum leucopus 5 7 2 8  2 5 

Lasioglossum leucozonium 51 21 9 8 7.56 2 2 

Lasioglossum malachurum 553 437 22 50 22.98 8 22 

Lasioglossum morio 6 7 6 11  5 7 

Lasioglossum parvulum 6 7 4 9  4 7 

Lasioglossum pauxillum 93 70 17 28 18.09 4 12 

Lasioglossum villosulum 32 25 7 5 3.93 1 1 

Lasioglossum xanthopus 8 7 1 5  1 4 

Lasioglossum zonulum 7 4 5 9  4 6 

Average   6.9 ± 1.0 13.6 ± 1.9 12.9 ± 1.2 3.4 ± 0.3 7.6 ± 0.9 
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Figure 6.1. The relationship between diet breadth of solitary bee species (n=17) after 

rarefaction (to a standardised sample size of 12 pollen loads) and the number of farms each 

bee species was recorded on. Circles = bee species from the family Andrenidae, Squares = bee 

species from the family Halictidae. 

 

The same relationship was found if the analysis is repeated for all 31 species with a minimum 

of 3 analysed pollen loads (Spearman’s rho=0.794, p<0.001). There was no impact of farm 

management type on the relationship between diet breadth and frequency of occurrence 

(t20,22=0.616, p=0.545) with diet breadth remaining significant with (t20,22=2.384, p=0.027, 

adjusted R2=0.150) and without (t21,22=2.379, p=0.027, R2=0.175) the inclusion of this term in 

the model.  

 

6.5 Discussion 

 

Amongst the solitary bee species found on contemporary farmland in Southern England, the 

majority of common species are polylectic and forage from a wide range of flowering plants. 

Whilst overall bee diversity was high, representing almost half the regional total (Baldock 

2008), most of the generalist solitary bee species and almost all the specialised oligolectic 

solitary bee species were too scarce to allow formal diet characterisation. Within characterised 

bees there was a strong relationship between diet breadth and frequency of occurrence, with 

more generalist species found on a greater number of farms. Whilst earlier studies have shown 

that generalist bees are less sensitive to agricultural intensification (Bommarco et al. 2010; De 



 
 
 

 

103 
 
 

 

Palma et al. 2015), the level of generalisation has not previously been shown to be a good 

predictor of frequency of occurrence. As more specialised bees are de facto less flexible in 

their dietary choices, the loss of floristic diversity resulting from agricultural intensification is 

likely to be the main driver behind their range declines over the past century (Scheper et al. 

2014; Ollerton et al. 2014). Since bee species richness is strongly associated with plant species 

richness (Potts et al. 2003; Wood et al. 2015c), the effectiveness of agri-environment schemes 

in providing resources for a wider variety of bee species is likely to be enhanced by increasing 

the number of flowering plant species in seed mixes (Scheper et al. 2015). For oligolectic 

species, only five out of 14 species were recorded collecting pollen from plant species 

currently sown as part of agri-environment schemes (Table 6.2). The addition of a wider range 

of species such as H. radicata to these mixes would provide resources for a wider variety of 

specialised bee species. However, increasing floristic diversity is not a straightforward process 

as sown species do not always develop or persist depending on the local soil type, the plant 

establishment method, competition between sown and unsown plants and subsequent 

management (Pywell et al. 2011b). Many of these important plant species are associated with 

low intensity grassland and hedgerow habitats, so complementary techniques that maintain 

and improve floristic richness in long term habitats may also be effective.  

 

Pollen load analysis provided a more complete description of solitary bee pollen diets than 

direct observation, consistently detecting pollens from a greater number of plant families 

across all bee species. In particular, this analysis identified plant families represented by woody 

plant genera whose flowers are often located well above the height of the surveyor. Due to 

this spatial structuring, these woody genera are consequently under-recorded as pollen 

sources by direct observations, and as a result their importance to bees may be widely 

underestimated. Beil et al. (2008) produced similar findings with a small number of bees 

collected on low growing herbaceous plants found to be carrying pollen from woody plant 

genera. In some cases in this study the nearest trees of this type were located over 1000 

metres away from the collection point. There is a positive relationship between bee body size 

and foraging distance, with small bees predicted to have a maximum foraging distance of only 

a few hundred metres (Greenleaf et al. 2007). However, detailed study of experimental 

solitary bee populations confirms that whilst the majority of individuals do only forage over 

distances of a few hundred metres, a small proportion are able to successfully forage over 

1000 metres from their nest, even in small bees such as Hylaeus (Zurbuchen et al. 2010). Since 

at least a proportion of solitary bee individuals are capable of making long pollen foraging trips 
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of over 1000 metres, the importance of flowering plants that may not be immediately 

apparent in the sampling location and their contribution to the diet of farmland bees should 

be considered, further emphasising the importance of pollen load analysis for building a more 

complete picture of solitary bee diets. 

 

Whilst host plant use for studied species broadly conformed to the literature, three polylectic 

species were characterised here as oligolectic. All analysed pollen loads of Lasioglossum 

villosulum were comprised of Asteraceae pollen, 98.2% from the ‘hawkish’ Asteraceae genera 

Hypochaeris (49.3%), Leontodon (34.8%) and Crepis (14.0%). This would clearly suggest broad 

oligolecty under the conditions laid out by Müller and Kuhlmann (2008), but L. villosulum is 

known to be at least occasionally polylectic, for example in the Mediterranean collecting 

pollen from Ecballium elaterium, a member of the Cucurbitaceae (Rust et al. 2003). At least in 

Britain, L. villosulum should probably be considered an oligolectic species, or a polylectic 

species with an extremely strong preference for Asteraceae. Both A. alfkenella and A. 

minutuloides were characterised as oligolectic on Apiaceae, though only summer generation 

females were collected. Both species are bivoltine in mainland Europe (Amiet et al. 2010), but 

in Britain it has been noted for a long time that both species are markedly less common in the 

spring generation (Perkins 1919; Baldock 2008). In the present study no spring generation 

males or females were recorded. Both species are considered polylectic as the spring 

generation forages from various plant families but the summer generation shows a strong 

preference for Apiaceae (Perkins 1919; Westrich 1989; Amiet et al. 2010). Because of the lack 

of spring females, neither species was considered to be oligolectic in this study. 

 

The basal clades of most bee families include a high proportion of oligolecs (Westrich 1989; 

Wcislo and Cane 1996) and it has been argued that oligolecty is the basal state in bees with 

polylecty being a derived state with multiple origins (Müller 1996; Danforth et al. 2013). One 

of the suggested mechanisms by which oligolecty is maintained is that plants may chemically 

protect their pollen to prevent overexploitation, thus necessitating specialisation to process 

difficult metabolites (Praz et al. 2008). Asteraceae pollen is known to have a low protein 

content (Roulston et al. 2000; Hanley et al. 2008), is lacking in essential amino acids (Wille et 

al. 1985) and may possess a toxic pollenkitt, the oily liquid found on the surface of the pollen 

grain (Williams 2003). Consequently Asteraceae pollen is difficult to utilize by non-specialised 

bees, even in widely polylectic species such as the honey bee (Herbert et al. 1970) and solitary 

bees such as Osmia lignaria (Williams 2003). Even bees specialised on Asteraceae pollen may 



 
 
 

 

105 
 
 

 

incur other costs such as extended development time, as in a comparison of specialised bees 

the Asteraceae oligolec Heriades truncorum had the longest development time on its preferred 

pollen despite being the smallest bee in the comparison (Praz et al. 2008). In reviewing host 

plant use and diet breadth in 60 species of Western Palearctic Colletes, Müller and Kuhlmann 

(2008) found that 12 species collected pollen exclusively from Asteraceae with a further two 

showing a strong preference. However, amongst widely polylectic species Asteraceae pollen 

played a very marginal role, with pollen loads from 27 species not containing Asteraceae 

pollen at all. This striking difference, suggesting a high degree of specialisation or almost total 

avoidance, is referred to as the Asteraceae paradox.   

 

Interestingly, in the present study we found that four clearly polylectic solitary bee species 

collected a substantial proportion of their pollen from Asteraceae in the study area, these 

species being Andrena flavipes (56.0%), Lasioglossum calceatum (46.9%), L. malachurum 

(73.1%) and L. pauxillum (62.1%). The three Lasioglossum species also collected small amounts 

of Ranunculus pollen, a genus known to have pollen toxic to insects (Jürgen and Dötterl 2004). 

Additionally, after rarefaction, these four species had the widest diet of any of the 

characterised species and were each present on at least three-quarters of all surveyed farms. 

That these broad polylecs have developed the physiological mechanisms to digest a range of 

difficult pollens may be related to their long flight periods. A. flavipes is bivoltine, flying in the 

spring and again in the summer in discrete generations. L. malachurum and L. pauxillum are 

obligately primitively eusocial (Plateaux-Quénu 2008) and L. calceatum is facultatively eusocial 

with the eusocial phenotype dominating in the south of England (Davison and Field 2016). 

Producing two generations in a season, or in the case of social Lasioglossum, a worker and a 

reproductive generation, necessitates the ability to collect and digest pollen collected over a 

long flowering season from April to September. In contrast to these effectively bivoltine 

species, the Western Palearctic Colletes are almost always univoltine and the resultant shorter 

flight season and temporally limited resource competition may favour an all or nothing 

investment in the physiological capacity to process Asteraceae pollen. Indeed, xeric 

environments with short flowering seasons tend to have bee faunas with a greater degree of 

pollen specialisation (Minckley and Roulston 2006; Michener 2007). A more thorough 

understanding of the physiological mechanisms used by both specialised and generalist bees 

to detoxify and digest chemically protected pollen is necessary to better explain the different 

strategies pursued by foraging bees (Praz et al. 2008). 
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6.6 Conclusions 

 

The majority of solitary bees persisting on farmland in reasonable numbers are polylectic and 

make use of a wide variety of flowering plants. However, the level of generalisation is 

important, with the species with the widest diet breadth being found on the greatest number 

of farms. The ability to digest pollens from a large number of plant species is one reason that 

these more generalised bees are better able to deal with a wider variety of agricultural 

landscapes than bees with a narrower diet. Given that current agri-environment schemes 

targeted at pollinators do not result in an increase in either floristic or bee species richness at 

the farm scale (Wood et al. 2015c), if the aim of agri-environment schemes is to support a 

diverse community of farmland bees this will require a change in design to provide more 

appropriate foraging resources for more specialised bee species. This may rely on increasing 

the number of flowering plant species than are currently included in agri-environment 

schemes for pollinators.  
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Chapter 7 –  General discussion and synthesis 
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7.1 Main findings 

 

At the start of this thesis in January 2013, although much work had been conducted on the 

observable response of foraging bumblebees to agri-environment schemes, there was a lack of 

evidence as to whether or not these schemes significantly increased bumblebee population 

size. Because of the aggregative foraging behaviour seen by worker bumblebees, whereby 

large numbers of bees are attracted to patches of high density rewards, assessing whether 

high observed abundance was reflective of a genuinely larger population size or simply 

redistribution in the landscape was not straightforward. The development of bumblebee 

genetic profiling techniques over the past 20 years has enabled this question to be answered 

empirically and in the affirmative for three of the four common bumblebee species studied.  

 

Even though there had not been a definitive demonstration of the effect of agri-environment 

schemes on bumblebee population size, bumblebees had generally received a lot of attention 

and study from the 1990s onwards as concern over the extent of their declines grew. As a 

result, their foraging ecology both on farmland and in the wider environment is generally well 

understood for most species. In contrast, whilst general pollen preferences have been 

established for many Central European solitary bee species with publications such as Westrich 

(1989), Müller (1996), Müller and Kuhlmann (2008) and Sedivy et al. (2013), there was a lack of 

data on solitary bee pollen use on agricultural land, their use of agri-environment scheme 

plants for pollen and whether or not the schemes significantly increase the diversity of the 

overall bee community. Moreover, there was a lack of knowledge of the British species in 

particular, with the last published work on pollen use by British solitary bees published by 

Chambers (1968), from data collected in the 1940s. The data presented here demonstrate that 

current schemes only provide appropriate pollen resources for a minority of solitary bee 

species, with most species collecting most of their pollen from plants persisting unaided in the 

wider environment. In addition, the diversity of the bee community is no different between 

farms with and without pollinator-friendly schemes, suggesting that the schemes are not 

effective at increasing bee diversity.   
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7.2 The response of bumblebees to agri-environment schemes – are all species equal? 

 

The causes of decline of British bumblebees specifically and worldwide bumblebees more 

generally has been extensively discussed and debated by previous authors. Relative diet 

breadth and loss of key forage plants (Goulson et al. 2005; Goulson et al. 2008a; Kleijn and 

Raemakers 2008), time of initiation of the colony cycle and climatic niche breadth (Williams 

2005; Williams and Osborne 2009) have all been implicated in their differing fortunes over the 

20th and early 21st centuries. The work presented here has shown that by increasing food 

resources, current agri-environment schemes help three of the common farmland 

bumblebees, B. lapidarius, B. hortorum, and B. terrestris, but not B. pascuorum, despite the 

suitability of sown resources for this latter species. The relative response of bumblebee species 

can be explained by their differing ecology and life history traits as well at their diet breadth. 

 

The most declined bumblebees of lowland England belonged to the following subgenera: B. 

humilis, B. sylvarum, B. muscorum, B. ruderarius (Thoracobombus), B. soroeensis 

(Kallobombus), B. subterraneus, B. distinguendus (Subterraneobombus, both extinct) and B. 

ruderatus (Megabombus) (Williams 1986; 2005; Goulson et al. 2008). The example of B. 

ruderatus is particularly interesting and illustrative of the variable trials and tribulations of 

British bumblebees over the past 70 years. After declining in the post-war period, by the 1990s 

it was largely restricted to river valleys in the Midlands and East Anglia where it predominantly 

foraged on yellow iris Iris pseudacorus, marsh woundwort Stachys palustris, comfreys 

Symphytum spp. and other deep flowered plants of damp habitats (Edwards and Jenner 2005). 

Its fortunes contrast greatly with B. hortorum, the only other member of Megabombus in 

Britain which has remained widespread during this period of decline. In common with the 

declined bumblebees, B. ruderatus favours Fabaceae and has a narrow diet, narrower than 

that of B. hortorum (Kleijn and Raemakers 2008). However, since the 1990s, a period that 

coincides with the expansion of Fabaceae-rich agri-environment schemes, B. ruderatus has 

become much more common in Central and Eastern England (Falk 2011; BWARS data, M. 

Edwards, pers. comm.). It can now be commonly found visiting agri-environment scheme sown 

red clover Trifolium pratense in these areas and is now frequent enough to be included in 

genetic studies of farmland bumblebees in certain regions (e.g. Buckinghamshire, Dreier et al. 

2014). Whilst B. ruderatus is the most improved of the six scarce lowland species it still 

remains uncommon in Southern England, with only two males collected from two different 

Hampshire farms during data collection for this thesis. Why has B. ruderatus responded so 
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much more positively to these schemes than the members of the Thoracobombus? The answer 

may lie in their differing ecology.  

 

B. ruderatus is one of Britain’s largest bumblebees and forages over longer distances than B. 

hortorum. Using a different metric of foraging range than the one employed in this thesis, 

mean worker foraging distances rather than maximum foraging range estimates, Redhead et 

al. (2016) estimated B. terrestris, B. lapidarius and B. ruderatus were to have mean foraging 

distances of 551 m, 536 m and 501 m respectively compared to distances of 336 m and 272 m 

for B. hortorum and B. pascuorum. As previously discussed in Chapter 3, members of the 

Thoracobombus tend to have small nests with under 100 workers. B. ruderatus has much 

larger colonies of up to 400 workers, much larger than its close relative B. hortorum (Sladen 

1912). The longer foraging range of B. ruderatus would agree with the hypothesis that foraging 

range at the species level is driven by colony size, with the larger colonies requiring more 

resources and hence requiring the ability to travel further to find sufficient forage. Most 

published estimates of bumblebee foraging range generally agree with this trend, though given 

the various differing techniques and interpretations there is a wide degree of variability (Table 

7.1). One surprising result is that of B. distinguendus which in Britain has declined precipitously 

across the whole British Isles and is now found only in northernmost Scotland. B. distinguendus 

has small nests with very seldom more than 100 workers (Löken 1973), so the foraging ranges 

estimated by Charman et al. (2010) are surprisingly high compared to those obtained for B. 

pascuorum and B. hortorum which have colonies of similar sizes (Chapter 3; Redhead et al. 

2015).  

 

Two other important life-history strategies relate to emergence date and nesting ecology. B. 

ruderatus emerges in April, which puts it much closer to the March-April emergence time of 

the big six (big seven with the addition of B. hypnorum) than to the late May-June emergence 

time of the declined species of Thoracobombus. Late emergence date is a good predictor for 

declining bumblebees across the world as it makes them more susceptible to changes in 

agricultural practice that reduce floral availability in the summer (Williams and Osborne 2009; 

Williams et al. 2009). This is mirrored in the wider bee community as bees associated with 

summer flowering plants have declined more than those associated with spring flowering 

plants (Scheper et al. 2014). Secondly, B. ruderatus is a cavity nester like B. hortorum, not a 

surface nester like most of the Thoracobombus. The loss of flower-rich grassland has not only 

deprived summer flying bumblebees of their forage, but also their nesting habitat. Both B. 
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distinguendus and B. subterraneus, as the name suggests, nest underground but have late 

emerging queens, like the Thoracobombus. Interestingly, B. pascuorum is the most catholic in 

its nest choice amongst the Thoracobombus, another factor that may help explain its success 

relative to its sister species.  

 

The difference in the strong response of B. ruderatus at a country level and the neutral 

response for B. pascuorum presented here (and absence of a response from the rest of the 

Thoracobombus) suggests that whilst the foraging resources created by agri-environment 

schemes are appropriate in composition, if they are not provided at a small enough spatial 

scale and with appropriate nearby nesting habitat then surface nesting bumblebee species 

with small foraging ranges will not be able to take advantage of this. Short-term rotational 

pollen and nectar mixes do not provide appropriate nesting habitat for surface nesters. Long-

term species rich grassland should be favoured for the conservation of Thoracobombus in 

conjunction with rotational pollen and nectar mixes. Though anecdotal in nature, where 

concerted efforts have been made to increase the abundance of appropriate forage as well as 

suitable undisturbed grassland as part of the B. subterraneus reintroduction project at 

Dungeness and Romney Marsh in Kent, there have been substantial increases in abundance of 

scarce species such as B. humilis, B. ruderatus, B. muscorum and even a return of previously 

absent species such as B. ruderarius, B. sylvarum and B. soroeensis (N. Gammans, pers.  

comm.), probably because all aspects of their life-cycle are being catered for, not just their 

dietary requirements.  

 

The differing response of bumblebees to intensification depending on their individual 

ecologies can equally be seen in the response of the wider bee community. The traits of a 

narrower diet and smaller foraging range are also important predictors for the response of 

solitary bees to agricultural intensification (Bommarco et al. 2010; De Palma et al. 2015). 

However, it bears repeating that these traits are not always perfect predictors in and of 

themselves. Some highly specialised bees remain common where their host plants have 

remained common, for example the spring flying mining bee Andrena praecox collects pollen 

from willows (Salix spp.), and both have remained common and relatively unaffected by 

agricultural intensification. In contrast, the summer flying Andrena hattorfiana and Andrena 

marginata have been negatively affected as they collect pollen only from scabiouses (Knautia, 

Succisa and Scabiosa species), plants that are dependent on the maintenance of low-intensity 
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grassland and consequently both bee species have fared poorly in recent years. It is the 

relative fortune of the host plants that determines the success of the species that feed on 

them (Scheper et al. 2014). However, it should not be surprising that bee diet breadth alone is 

a generally good predictor of their persistence, given the far-reaching negative effects of 

intensification on most agricultural plant communities. Few British bee species are specialised 

on the kind of woody plants that have remained relatively common in the farmed landscape, 

and so the reduction in herbaceous plant diversity has affected the majority of bee species 

present on farmland.  

 

Table 7.1. Estimated foraging ranges of worker bumblebees (Bombus).  

 Foraging distance 

(m) 

  

Species Average Maximum Method Reference 

B. distinguendus 391 955 Genetic markers Charman et al. 2010 

B. hortorum - 556 Genetic markers Wood et al. 2015a 

 336 - Genetic markers Redhead et al. 2015 

B. lapidarius - 450 Genetic markers Knight et al. 2005 

 536 - Genetic markers Redhead et al. 2015 

 - 714 Genetic markers Wood et al. 2015a 

 260 1,500 Direct (marked 

workers) 

Walther-Hellwig and Frankl 

2000 

B. muscorum 55 125 Direct (marked 

workers) 

Walther-Hellwig and Frankl 

2000 

B. pascuorum 272 - Genetic markers Redhead et al. 2015 

 - 363 Genetic markers Wood et al. 2015a 

 - 449 Genetic markers Knight et al. 2005 

B. pratorum - 674 Genetic markers Knight et al. 2005 

B. ruderatus 501 - Genetic markers Redhead et al. 2015 

B. terrestris 275 631 Direct (radar tracking) Osborne et al. 1999 

 - 758 Genetic markers Knight et al. 2005 

 - 799 Genetic markers Wood et al. 2015a 

 267 800 Direct (marked 

workers) 

Wolf and Moritz 2008 

 - 1,500 Direct (marked 

workers) 

Osborne et al. 2008b 

 551 - Genetic markers Redhead et al. 2015 

 663 1,750 Direct (marked 

workers) 

Walther-Hellwig and Frankl 

2000 
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7.3 What should the countryside look like? 

 

Humans have been present across Europe for thousands of years, and the habitats and species 

assemblages present are predominantly as a result of human activities. Habitats such as open 

arable farmland, deforested heathlands, coppiced woodlands and grazed moorlands would not 

exist without the influence of man. Arable ‘weeds’ such as corn marigold Chrysanthemum 

segetum and corn buttercup Ranunculus arvensis are archeophytes, introduced to Britain 

many hundreds of years ago through the trade of crop seeds (Stace 2010). These species are 

essentially Mediterranean in distribution and can only persist in Britain in the pseudo-

Mediterranean conditions resulting from the annual cultivation typical of arable farming. Now 

modern herbicides, improved seed sorting and winter sowing of cereal crops have changed 

this environment drastically, and these introduced species have become exceedingly scarce 

(Wilson 1992; Stewart et al. 1994). 

 

The nature of agricultural change is important to bear in mind when considering post-war 

declines in bumblebee species in the UK. The species that have suffered the greatest declines 

mostly show a preference for Fabaceae, the abundance of which has declined as low-intensity 

agricultural grassland was replaced with arable or high-input grassland. It has been argued 

that, as farming practices have changed this flower-rich habitat has been lost, and the 

bumblebees that depend on it have consequently disappeared from agricultural habitats, 

unable to cope with this changed environment (Rasmont and Mersch 1988; Goulson et al. 

2005; Carvell et al. 2006a). However, much of this flower-rich grassland was a relatively recent 

part of the British landscape. Prior the 17th century most agriculture occurred in large open 

field systems with common grazing rights and minimal crop rotation, with a large proportion of 

the land standing fallow to recover fertility (Overton 1996). It was not until the 17th and 18th 

centuries that the land began to be enclosed in a meaningful way. Enclosure was the transfer 

of common land to private ownership and private grazing and agricultural practice, with 

associated demarcation of boundaries. Much of the hedging in England was created as a result 

of the 18th century Enclosure Acts (Pollard, Hooper and Moore 1974). This system of private 

ownership allowed the extensive uptake of the more effective Norfolk four-course crop 

rotation including the import and widespread planting of legumes (Fabaceae) to increase 

nitrogen levels in the soil. Fallow consequently decreased from around 20% of the arable land 

area in England in 1700 to around 4% by 1900 (Overton 1996). Moreover, growing 

international trade in food imports in the 1870s subjected British arable farmers to intense 
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competition, especially from North American cereals. By the 1930s grain acreage had fallen by 

33% (3,402,000 ha to 2,291,000 ha) as farmers shifted from arable to pastoral production, with 

a 51% increase in the acreage of permanent grassland (4,890,000 ha to 7,389,000 ha, Brassley 

2002; see General Introduction Figure 1.1).  

 

All in all, the widespread shift to a patchwork of smaller fields including a large legume-rich 

permanent grassland component was a radical departure from the previous open field system. 

As a result of these major changes, the landscape seen in the early part of the 20th century may 

have been supporting an ‘unnaturally’ high density of bumblebees that favour Fabaceae 

pollen, or at least a density that may only have been representative of a few hundred years of 

farming practice at most. A study of bumblebee pollen diet based on specimens collected 

between 1878 and 1949 in Britain, Belgium and the Netherlands, countries with similar 

changing agricultural practices, found that bumblebee species that subsequently declined in 

the post-war period had a narrower diet than bumblebee species that did not decline over the 

same period (Kleijn and Raemakers 2008). Additionally, a similar analysis looking at the genetic 

diversity of bumblebee species collected in the Netherlands between 1918-1926 showed that 

the species that subsequently declined had a lower genetic diversity than bumblebees that 

have remained stable (Maebe et al. 2015).  

 

All this suggests that the decline of Fabaceae favouring bumblebees may be a regression 

towards a historic mean. Is there a moral difference between the agricultural intensification 

that led to a mass expansion of Fabaceae-rich grassland, and the agricultural intensification 

that led to its subsequent destruction? Both were changes freely made with the aim of 

increasing agricultural productivity and human wellbeing. What of the forgotten species 

characteristic of fallow land that would have dwindled to obscurity in the landscape of 1900? 

When considering what changes to make to the countryside, we have to ask what kind of a 

world do we want to see? What world do we want to promote and conserve?  

 

7.4 Concluding remarks 

 

In his 1917 lecture ‘Science as a Vocation’ (Gerth and Wright Mills 1946) the sociologist Max 

Weber argues that science can provide an explanation of natural phenomena and provide 

support and justification for holding a position, but it cannot explain why it is worth holding 

that position in the first place. The question – ‘do agri-environment schemes benefit farmland 
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bee populations’ can be answered empirically. The question ‘should farmland bees be 

conserved’ cannot. The role of bees as agricultural pollinators is clearly of great importance, 

but justifying their conservation on this basis relies on the supposition that we value our own 

continued survival and quality of life, and in providing a pollination service bees contribute 

towards our desired outcomes. In other words, we value them for what they provide us with, 

not for what they are.  

 

When considering this pollination service, the diversity of the pollinator community is an 

important factor. Wild bees can provide an important pollination service independent of 

honeybee abundance (Garibaldi et al. 2013), with more diverse pollinator communities directly 

increasing crop yields (Westerkamp and Gottsberger 2000; Klein et al. 2003; Hoehn et al. 

2008). The presence of different bee species can even increase the efficiency of honey bee 

pollination (Brittain et al. 2013). However, whilst diversity is important, this is not a sufficient 

argument to conserve the overwhelming majority of bee species, as most agricultural 

pollination is carried out by a small minority of the bee community present in any one area 

that can be enhanced through relatively simple conservation measures (Kleijn et al. 2015). For 

example, approximately 20-25% of named bee species are obligate parasites of other bees and 

provide a very limited pollination service due to their reduced need to visit flowers and greatly 

reduced body hair (Michener 2007).  

 

However, as it stands, people do not value bees as purely for the pollination service they 

provided. Britain is a wealthy nation, and the factors that motivated the post-war 

intensification of agriculture are less pressing than they were. The strength of feeling in the 

general public, as seen in the membership of organisations such as the National Trust, the 

Royal Society for the Protection of Birds and many others show that there is a desire to protect 

nature and for the negative effects of intensified agriculture to be mitigated and diminished. 

Bees, along with other wild organisms are valued for their aesthetic and cultural benefits, and 

people do not want to see a countryside denuded of variation and diversity. Moreover, as well 

as concern over short term extinction of species, maintaining diversity within agroecosystems 

is desirable over the medium to long term as well. Bee and plant communities are highly 

interdependent and declines in one are closely linked to declines in the other (Biesmeijer et al. 

2006; Scheper et al. 2014). The loss of species and simplification of plant-pollinator 

communities suggests that these networks will be less resilient to future change (Burkle et al. 

2013). Given the ongoing challenge of climate change that has the potential to seriously affect 
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global agriculture, it is likely that only sufficiently diverse agroecosystems in complex 

landscapes will have the capacity to adapt to changing conditions (Tcharntke et al. 2005). In 

short, whilst most agriculture can probably get by with low levels of biodiversity for now, it is 

prudent to conserve biodiversity because of the strong possibility of future change. 

 

This thesis demonstrates that agri-environment schemes in their current form can, at the farm 

scale, significantly increase the population size of common bumblebees but do not increase 

the diversity of the bee community or the plants that they feed on. Whilst providing important 

resources for common species they fail to meet the needs of species with more particular 

requirements and preferences. As it stands, current schemes provide a good baseline measure 

for what conservation intervention can achieve, but given the importance of maintaining 

diverse bee communities on farmland it would be reasonable to develop additional techniques 

and schemes that effectively increase the diversity of flowering plants present on farmland, 

rather than just increasing their abundance. Attention needs to be paid to the ecology of 

different bee species in order to cater to their specific requirements which can be markedly 

different even within genus level groups, and a more detailed knowledge of the autoecology of 

individual species will further inform our understanding of why species thrive or dwindle. Agri-

environment schemes will never be able to provide all resources to all species, and there will 

have to be separate measures that look after the rarest parts of the fauna, but a more in depth 

knowledge of the bee community is key to benefiting the majority of species and to the 

maintenance of a more biodiverse countryside.  
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Appendix A - Impact of the proportion of semi-natural habitats on aculeate diversity 

Number of aculeate species Variable df t P 

Recorded on transects Flower-rich agri-environment grassland 16,17 -0.636 0.534 

 Flower-poor general grassland 16,17 -0.614 0.548 

 Hedgerow 16,17 -1.524 0.147 

 Woodland 16,17 1.063 0.304 

 Total semi-natural 16,17 0.744 0.467 

Recorded in pan traps Flower-rich agri-environment grassland 15,16 -0.636 0.534 

 Flower-poor general grassland 15,16 -0.745 0.468 

 Hedgerow 15,16 -0.624 0.542 

 Woodland 15,16 1.704 0.109 

 Total semi-natural 15,16 1.393 0.184 
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Appendix B - Abundance of aculeate species recorded on transects and in pan traps  
 

Transects 
 

Pan traps 
 

 
Entry Level 

Stewardship 

Higher Level 

Stewardship 

Entry Level 

Stewardship 

Higher Level 

Stewardship 

Ancistrocerus gazella 0 2 1 3 

Ancistrocerus parientinus 
  

0 1 

Ancistrocerus trifasciatus 1 0 2 2 

Andrena alfkenella 1 2 
  

Andrena barbilabris 0 1 
  

Andrena bicolor 3 3 43 18 

Andrena carantonica 2 4 7 6 

Andrena chrysosceles 2 1 0 5 

Andrena cineraria 3 7 28 23 

Andrena dorsata 10 12 0 1 

Andrena flavipes 6 8 43 13 

Andrena florea 7 1 10 27 

Andrena fulva 1 0 1 0 

Andrena fulvago 1 0 3 6 

Andrena haemorrhoa 7 10 43 73 

Andrena helvola 
  

15 0 

Andrena humilis 1 0 1 0 

Andrena labialis 0 4 2 2 

Andrena labiata 
  

1 0 

Andrena minutula 15 8 42 23 

Andrena minutuloides 0 1 
  

Andrena nigroaenea 9 3 32 32 

Andrena nitida 1 9 8 5 

Andrena semilaevis 4 5 1 0 

Andrena subopaca 0 2 3 2 

Andrena synadelpha 
  

1 0 

Andrena wilkella 0 3 
  

Anoplius nigerrimus 
  

5 4 

Anthidium manicatum 0 1 
  

Anthophora furcata 1 4 1 0 

Anthophora plumipes 1 0 
  

Apis mellifera 377 1338 289 446 

Arachnospila anceps 
  

2 0 

Arachnospila spissa 0 1 
  

Arachnospila trivialis 
  

2 2 

Bombus barbutellus 3 5 
  

Bombus campestris 3 1 1 2 

Bombus hortorum 313 343 112 71 

Bombus hypnorum 27 19 13 8 

Bombus jonellus 2 0 2 1 

Bombus lapidarius 1710 3566 190 264 

Bombus lucorum 82 98 184 130 
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Bombus pascuorum 590 1054 108 141 

Bombus pratorum 75 82 78 45 

Bombus ruderarius 0 5 
  

Bombus ruderatus 0 7 
  

Bombus rupestris 46 10 6 8 

Bombus sylvestris 3 1 503 478 

Bombus terrestris 396 905 10 3 

Bombus vestalis 54 36 32 20 

Caliadurgus fasciatellus 
  

1 1 

Cerceris rybyensis 5 0 1 2 

Chelostoma campanularum 0 1 50 1 

Chelostoma florisomne 2 0 1 0 

Chrysis ignita 
  

3 1 

Chrysis impressa 
  

4 1 

Chrysis impressa 1 0 
  

Chrysis mediata 
  

1 0 

Colletes davesianus 5 2 
  

Crabro cribrarius 
  

0 1 

Crossocerus cetratus 1 0 
  

Crossocerus nigritus 1 0 
  

Crossocerus podagricus 7 2 4 3 

Crossocerus megacephalus 
  

1 0 

Crossocerus nigritus 
  

2 0 

Crossocerus quadrimaculatus 1 0 
  

Dolichovespula saxonica 2 0 
  

Dolichovespula sylvestris 7 9 5 0 

Ectemnius continuus 2 0 3 2 

Ectemnius lituratus 7 22 11 2 

Ectemnius rubicola 1 0 
  

Gorytes quadrifasciatus 0 1 
  

Halictus rubicundus 1 2 17 3 

Halictus tumulorum 13 8 24 33 

Hoplitis claviventris 0 1 
  

Hylaeus brevicornis 
  

1 1 

Hylaeus communis 7 1 25 9 

Hylaeus confusus 
  

4 3 

Hylaeus cornutus 0 14 0 1 

Hylaeus dilatatus 
  

0 1 

Hylaeus signatus 1 0 
  

Hylaeus pectoralis 
  

1 0 

Lasioglossum albipes 1 0 8 3 

Lasioglossum calceatum 28 24 116 133 

Lasioglossum fulvicorne 0 1 4 6 

Lasioglossum laevigatum 
  

1 0 

Lasioglossum lativentre 2 0 
  

Lasioglossum leucopus 5 1 21 2 
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Lasioglossum leucozonium 29 8 3 3 

Lasioglossum malachurum 47 191 52 65 

Lasioglossum minutissimum 1 0 
  

Lasioglossum morio 17 29 45 39 

Lasioglossum parvulum 1 0 3 0 

Lasioglossum pauxillum 14 29 25 17 

Lasioglossum puncticolle 0 4 
  

Lasioglossum smeathmanellum 1 0 
  

Lasioglossum villosulum 5 7 3 3 

Lasioglossum xanthopus 0 1 
  

Lasioglossum zonulum 1 4 0 4 

Lindenius albilabris 1 0 1 5 

Megachile centuncularis 3 3 1 1 

Megachile ligniseca 1 2 0 2 

Megachile versicolor 0 3 
  

Megachile willughbiella 1 3 1 1 

Megachile versicolor 
  

1 2 

Melitta haemorrhoidalis 
  

2 7 

Melitta leporina 0 1 
  

Melitta tricincta 40 16 3 2 

Microdynerus exilis 1 0 0 2 

Mimumesa unicolor 1 0 1 0 

Myrmosa atra 
  

0 1 

Nomada fabriciana 1 1 5 2 

Nomada flava/panzeri 31 20 9 6 

Nomada flavoguttata 1 1 1 2 

Nomada flavopicta 1 0 3 1 

Nomada goodeniana 12 7 
  

Nomada guttulata 
  

0 1 

Nomada marshamella 4 0 2 1 

Nomada ruficornis 1 3 3 6 

Nomada sheppardana 2 0 
  

Nomada striata  
  

0 1 

Nysson trimaculatus 
  

0 2 

Osmia bicolor 1 2 
  

Osmia bicornis 0 2 1 3 

Osmia caerulescens 0 1 
  

Osmia leaiana 2 2 1 1 

Osmia spinulosa 
  

0 1 

Panurgus calcaratus 3 0 1 0 

Passaloecus corniger 
  

1 0 

Passaloecus singularis 1 0 2 0 

Pemphredon inornata 
  

2 0 

Pemphredon lethifer 1 2 0 1 

Prionemis exaltata 1 0 1 1 

Psenulus pallipes 
  

0 1 
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Sphecodes crassus 0 1 3 0 

Sphecodes ephippius 2 1 3 1 

Sphecodes geoffrellus 
  

1 1 

Sphecodes monilicornis 0 3 
  

Sphecodes niger 
  

3 0 

Spilomena beata 
  

1 0 

Stigmus solskyi 
  

1 1 

Tiphia femorata 6 6 7 4 

Trypoxylon attenuatum 
  

0 11 

Trypoxylon clavicerum 
  

4 0 

Vespa crabro 1 1 2 0 

Vespula germanica 5 3 16 8 

Vespula vulgaris 23 8 30 23 
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Appendix D List of flowering plant species recorded during surveys  

Species marked with * were sown as part of HLS management 

 

Species recorded on ELS farms 

 
Achillea millefolium 

Aesculus hippocastanum 

Agrimonia eupatorium 

Ajuga reptans 

Alliaria petiolata 

Allium ursinum 

Anagallis arvensis 

Anchusa arvensis 

Anthriscus sylvestris 

Anthyllis vulneraria 

Aquilegia vulgaris 

Arctium minus 

Artemisia vulgaris 

Ballota nigra 

Barbarea vulgaris 

Bellis perennis 

Brassica napus 

Bryonia dioica 

Calystegia sepium 

Calystegia silvatica 

Campanula trachelium 

Capsella bursa-pastoris 

Cardamine pratensis 

Carduus crispus 

Carduus nutans 

Centaurea nigra 

Centaurea scabiosa 

Centaurium erythraea 

Cerastium fontanum 

Chaerophyllum temulum 

Chamerion angustifolium 

Chelidonium majus 

Cichorium intybus 

Circaea lutetiana 

Cirsium arvense 

Cirsium palustre 

Cirsium vulgare 

Clematis vitalba 

Clinopodium vulgare 

Conium maculatum 

Convolvulus arvensis 

Conyza canadensis 

Cornus sanguinea 

Crataegus monogyna 

Crepis capillaris 

Crepis vesicaria 

Cruciata laevipes 

Cytisus scoparius 

Dactylorhiza fuchsii 

Daucus carota 

Digitalis purpurea 

Dipsacus fullonum 

Epilobium hirsutum 

Eupatorium cannabinum 

Euphorbia helioscopia 

Euphorbia lathyris 

Euphrasia spp. 

Fragaria vesca 

Species recorded on HLS farms 
 

* Achillea millefolium 

Aegopodium podagraria 

Aethusa cynapium 

Agrimonia eupatorium 

Ajuga reptans 

Alliaria petiolata 

Anacamptis pyramidalis 

Anagallis arvensis 

Angelica sylvestris 

* Anthemis austriaca 

Anthriscus sylvestris 

* Anthyllis vulneraria 

Arctium minus 

Artemisia vulgaris 

Ballota nigra 

Barbarea vulgaris 

Bellis perennis 

Betonica officinalis 

* Borago officinalis 

* Brassica rapa 

Bryonia dioica 

Calystegia sepium 

Calystegia silvatica 

Campanula rotundifolia 

Campanula trachelium 

Capsella bursa-pastoris 

Cardamine pratensis 

Carduus crispus 

Carduus nutans 

* Centaurea cyanea 

* Centaurea nigra 

Centaurea scabiosa 

Centaurium erythraea 

Cephalanthera longifolia 

Cerastium fontanum 

Chaerophyllum temulum 

Chamerion angustifolium 

Chelidonium majus 

* Cichorium intybus 

Cirsium arvense 

Cirsium eriphorum 

Cirsium palustre 

Cirsium vulgare 

Clematis vitalba 

Clinopodium acinos 

* Clinopodium vulgare 

Conium maculatum 

Convolvulus arvensis 

Cornus sanguinea 

Crepis capillaris 

Crepis vesicaria 

Cruciata laevipes 

Dactylorhiza fuchsii 

* Daucus carota 

* Digitalis purpurea 

* Dipsacus fullonum 

Epilobium hirsutum 

Epilobium montanum 
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Fumaria officinalis 

Galeopsis tetrahit 

Galium aparine 

Galium mollugo 

Galium odoratum 

Galium verum 

Geranium columbinum 

Geranium dissectum 

Geranium molle 

Geranium pratense 

Geranium pyrenaicum 

Geranium robertianum 

Geum urbanum 

Glechoma hederacea 

Helminthotheca echioides  

Heracleum sphondylium 

Hieracium agg. 

Hyacinthoides non-scripta 

Hyacinthoides x massartiana 

Hypericum perforatum 

Hypochaeris radicata 

Kickxia elatine 

Knautia arvensis 

Lamiastrum galeobdeon 

Lamium album 

Lamium purpureum 

Lapsana communis 

Lathyrus pratensis 

Leontodon hispidus 

Leucanthemum vulgare 

Ligustrum vulgare 

Linaria vulgaris 

Linum usitatissimum 

Lithospermum officinale 

Lonicera periclymenum 

Lotus corniculatus 

Lotus pedunculatus 

Lychnis flos-cuculi 

Malva moschata 

Malva sylvestris 

Matricaria discoidea 

Medicago arabica 

Medicago lupulina 

Melilotus officinalis 

Mentha spicata 

Myosotis arvensis 

Myosotis sylvestris 

Odontites verna 

Oenanthe crocata 

Onobrychis viciifolia 

Origanum vulgare 

Orobanche elatior 

Papaver dubium 

Papaver rhoeas 

Pastinaca sativa 

Persicaria lapathifolia 

Persicaria maculosa 

Phacelia tanacetifolia 

Picris echioides 

Pilosella officinarum 

Pimpinella saxifraga 

Plantago lanceolata 

Plantago media 

Potentilla anserina 

Potentilla reptans 

Primula veris 

Galeopsis tetrahit  

Galium aparine 

Galium mollugo 

Galium palustre 

Galium verum 

Genista tinctoria 

Euphorbia amygdaloides 

Euphorbia helioscopia 

Euphrasia spp. 

* Fagopyrum esculentum 

Fragaria vesca 

Fumaria officinalis 

Geranium columbinum 

Geranium dissectum 

Geranium molle 

Geranium pratense 

Geranium pyrenaicum 

Geranium robertianum 

Geum urbanum 

Glechoma hederacea 

Helianthemum nummularium 

* Helianthus annuus 

Helminthotheca echioides  

Heracleum sphondylium 

Hesperis matronalis 

Hieracium agg. 

Hyacinthoides x massartiana 

Hypericum perforatum 

Hypericum pulchrum 

Hypericum tetrapterum 

Hypochaeris radicata 

Inula conyza 

Kickxia elatine 

* Knautia arvensis 

Lamiastrum galeobdeon 

Lamium album 

Lamium purpureum 

Lapsana communis 

* Lathyrus pratensis 

Lathyrus nissolia 

Leontodon hispidus 

* Leucanthemum vulgare 

Ligustrum vulgare 

Linaria vulgaris 

Linum catharticum 

Linum usitatissimum 

Lithospermum officinale 

* Lotus corniculatus 

Lotus pedunculatus 

* Lychnis flos-cuculi 

Lythrum salicaria 

Malva moschata 

Malva sylvestris 

Matricaria discoidea 

* Medicago lupulina 

* Medicago sativa 

*Melilotus alba 

* Melilotus officinalis 

Mentha arvensis 

Myosotis arvensis 

Myosotis ramosissima 

Odontites verna 

Oenanthe crocata 

* Onobrychis viciifolia 

* Origanum vulgare 

Ornithogalum angustifolium 
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Primula vulgaris 

Prunella vulgaris 

Pulicaria dysenterica 

Ranunculus acris 

Ranunculus repens 

Reseda lutea 

Rhinanthus minor 

Rosa arvensis 

Rosa canina agg. 

Rosa rubiginosa 

Rubus fruticosus agg. 

Rumex acetosa 

Sambucus nigra 

Sanguisorba minor muricata 

Sanicula europaea 

Scabiosa columbaria 

Scrophularia auriculata 

Scrophularia nodosa 

Senecio erucifolius 

Senecio jacobea 

Senecio vulgaris 

Sherardia arvensis 

Silene dioica 

Silene latifolia 

Silene vulgaris 

Silene x hampeana 

Sinapis arvensis 

Sison amomum 

Sisymbrium officinale 

Solanum dulcamara 

Solanum nigrum 

Sonchus arvensis 

Sonchus asper 

Sonchus oleraceus 

Stachys sylvatica 

Stellaria graminea 

Stellaria holostea 

Symphytum grandiflorum 

Symphytum orientale 

Tamus communis 

Tanacetum vulgare 

Taraxacum agg. 

Torilis japonica 

Tragopogon pratensis 

Trifolium campestre 

Trifolium dubium 

Trifolium hybridum 

Trifolium pratense 

Trifolium repens 

Tripleurospermum inodorum 

Ulex europaeus 

Valerianella locusta 

Verbascum nigrum 

Verbascum thapsus 

Verbena officinalis 

Veronica chamaedrys 

Veronica montana 

Veronica persica 

Viburnum lantana 

Vicia cracca 

Vicia faba 

Vicia hirsuta 

Vicia sativa agg. 

Vicia sepium 

Vicia tetrasperma 

Viola arvensis 

Orobanche minor 

Papaver rhoeas 

Pastinaca sativa 

* Persicaria maculosa 

* Phacelia tanacetifolia 

Picris hieraciodies 

Pimpinella saxifraga 

Plantago lanceolata 

* Plantago media 

Polygonatum multiflorum 

Potentilla anserina 

Potentilla reptans 

Primula veris 

* Prunella vulgaris 

Pulicaria dysenterica 

* Ranunculus acris 

Ranunculus bulbosus 

Ranunculus repens 

Raphanus raphanistrum 

Reseda lutea 

* Rhinanthus minor 

Rosa arvensis 

Rosa canina agg. 

Rubus caesius 

Rubus fruticosus agg. 

* Rumex acetosa 

Sambucus nigra 

* Sanguisorba minor minor 

* Sanguisorba minor muricata 

Sanicula europaea 

Senecio erucifolius 

Senecio jacobea 

Senecio vulgaris 

Sherardia arvensis 

* Silene dioica 

Silene latifolia 

Silene vulgaris 

Silene x hampeana 

* Sinapis alba 

Sinapis arvensis 

Sisymbrium officinale 

Solanum dulcamara 

* Sonchus arvensis 

Sonchus asper 

Spergularia arvensis 

Stachys palustris 

Stachys sylvatica 

Stellaria graminea 

Stellaria holostea 

Taraxacum agg. 

Torilis japonica 

Tragopogon pratensis 

Trifolium campestre 

Trifolium dubium 

* Trifolium hybridum 

* Trifolium incarnatum 

* Trifolium pratense 

Trifolium repens 

Tripleurospermum inodorum 

Verbascum thapsus 

Verbena officinalis 

Veronica arvensis 

Veronica chamaedrys 

Veronica montana 

Veronica officinalis 

Veronica persica 
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Veronica serpylifolia 

Viburnum lantana 

* Vicia cracca 

Vicia hirsuta 

* Vicia sativa agg. 

Vicia sepium 

Vicia tetrasperma 

Viola arvensis 
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Appendix D - Flowering plants sown as part of pollinator-focused agri-environment 

schemes and their average abundance per farm 2013-2014 
 

Carvell, C., Meek, W.R., Pywell, R.F. and Nowakowski, M. (2004) The response of foraging 

 bumblebees to successional change in newly created arable field margins. Biological 

 Conservation, 188, 327-339 

Carvell, C. Meek, W.R., Pywell, R.F., Goulson, D. and Nowakowski, N. (2007) Comparing the 
 efficacy of agri-environment schemes to enhance bumblebee abundance and diversity 
 on arable field margins. Journal of Applied Ecology, 44, 29-40 
Pywell, R.F., Meek, W.R., Loxton, R.G., Nowakowski, M., Carvell, C. and Woodcock, B.A. (2011) 

 Ecological restoration on farmland can drive beneficial functional responses in plant 

 and invertebrate communities. Agriculture, Ecosystems and Environment, 140, 62-67 

 

Plant species Average abundance 2013-2014 Relative proportion of  
ELS to HLS sown flowers 
(%) 

 Entry Level 
Stewardship 

Higher Level 
Stewardship 

 

Achillea millefolium 127.88±59.35 1519.00±706.11 8.42 
Centaurea cyanus 0.0±0.0 2.13±2.06 0.0 
Centaurea nigra 12996.18±6591.33 56632±17910.19 22.95 
Centaurea scabiosa 19.47±10.88 88.12±57.22 22.09 
Daucus carota 2000.65±1320.72 8450.63±4188.34 23.67 
Galium verum 1172.94±855.57 545.88±181.96 214.87 
Geranium pratense 1.76±1.34 17.88±12.92 9.87 
Knautia arvensis 236.53±192.43 425.44±160.67 55.59 
Lathyrus pratensis 106.59±31.43 608.19±306.90 17.52 
Leontodon hispidus 164.18±161.75 829.69±579.29 19.78 
Leucanthemum 
vulgare 

3428.59±2200.02 13355.88±4763.56 25.67 

Lotus corniculatus 1416.12±588.41 84387.44±24117.45 1.68 
Lotus pedunculatus 17.65±17.64 1282.94±880.30 1.38 
Lychnis flos-cuculi 1.0±0.79 5.0±3.02 20.00 
Malva moschata 2.65±1.80 48.13±37.94 5.50 
Medicago lupulina 803.89±456.77 20192.06±13736.21 3.98 
Medicago sativa 0.0±0.0 4603.81±2441.53 0.0 
Melilotus officinalis 5.59±5.59 20872.50±20.789.15 0.0 
Onobrychis viciifolia 17.12±8.24 121.43±75.99 14.09 
Origanum vulgare 19.70±10.80 13418.56±6655.28 0.14 
Phacelia tanacetifolia 400.18±400.18 11237.50±4655.08 3.56 
Plantago lanceolata 533.65±302.01 533.69±166.25 99.99 
Plantago media 142.23±110.29 0.81±0.75 17505.88 
Primula veris 16.76±9.33 2.13±1.88 650.52 
Prunella vulgaris 336.88±180.26 1653.06±729.86 20.56 
Ranunculus acris 1646.88±1013.00 1018.25±372.06 161.73 
Rhinanthus minor 2473.77±1657.92 85.93±82.66 2878.56 
Rumex acetosella 10.18±8.58 49.69±27.72 20.48 
Sanguisorba minor 11.12±7.40 5.875±4.02 189.24 
Silene dioica 144.00±57.13 1658.94±1173.54 8.68 
Sonchus arvensis 73.12±31.22 1553.25±915.34 4.71 
Trifolium hybridum 168.59±63.83 53810.75±25635.92 0.31 
Trifolium pratense 5083.23±4828.95 55254.06±20521.24 9.20 

Total 33579.06±12739.26 354270.88±71760.77 9.47 
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Appendix E - Plant species included in the pollen reference library 

 

Acer campestre 

Acer pseudoplatanus 

Achillea millefolium 

Aegopodium podagrica 

Alliaria petiolata 

Anthriscus sylvestris 

Arctium minus 

Bellis perennis 

Berberis vulgaris 

Brassica napus 

Brassica rapa campestris 

Bryonia dioica 

Campanula trachelium 

Cardamine hirsuta 

Carduus acanthoides 

Centaurea nigra 

Centaurea scabiosa 

Cerastium fontanum 

Chaerophyllum temulum 

Chamerion angustifolium 

Cirsium arvense 

Cirsium vulgare 

Clematis vitalba 

Clinopodium vulgare 

Convolvulus arvensis 

Cornus sanguinea 

Crataegus monogyna 

Crepis capillaris 

Crepis vesicaria 

Daucus carota 

Dipsacus fullonum 

Euphorbia amygdaloides 

Fagopyrum esculentum 

Galium aparine 

Genista tinctoria 

Geranium columbinum 

Geranium pyrenaicum 

Glechoma hederacea 

Helminthotheca echioides 

Heracleum sphondylium 

Hyacinthoides non-scripta 

Hypericum perforatum 

Hypericum pulchrum 

Hypochaeris radicata 

Knautia arvensis 

Lamium album 

 

Lamium purpureum 

Lapsana communis 

Lathyrus pratensis 

Leontodon hispidus 

Leucanthemum vulgare 

Ligustrum vulgare 

Lonicera periclymenum 

Lotus corniculatus 

Lotus pedunculatus 

Malva sylvestris 

Medicago lupulina 

Medicago sativa 

Melilotus officinalis 

Mentha arvensis 

Myosotis arvensis 

Odontites verna 

Oenanthe crocata 

Origanum vulgare 

Pastinaca sativa 

Persicaria lapathifolia 

Phacelia tanacetifolia 

Picris hieraciodies 

Plantago lanceolata 

Plantago media 

Potentilla anserina 

Potentilla reptans 

Primula veris 

Prunella vulgaris 

Prunus spinosa 

Pulicaria dysenterica 

Ranunculus acris 

Ranunculus bulbosus 

Ranunculus ficaria 

Ranunculus repens 

Raphanus raphanistrum 

Reseda lutea 

Rhamnus cathartica 

Rosa arvensis 

Rosa canina agg. 

Rubus fruticosus agg. 

Sambucus nigra 

Senecio erucifolius 

Senecio jacobea 

Senecio vulgaris 

 Silene dioica 

Sinapis arvensis 
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Sisymbrium officinale 

Sonchus arvensis 

Sonchus asper 

Stachys sylvatica 

Stellaria graminea 

Stellaria media 

Taraxacum agg. 

Torilis japonica  

Trifolium campestre 

Trifolium dubium 

Trifolium hybridum 

Trifolium pratense 

Trifolium repens 

Tripleurospermum inodorum 

Veronica chamaedrys 

Veronica persica 

Viburnum lantana 

Viburnum opulus 

Vicia sepium 

  



 
 
 

 

148 
 
 

 

Appendix F - Plant species identified in pollen analysis and level of taxonomic detail 

  

Species identified to species level 

 

Acer campestre 

Acer pseudoplatanus 

Achillea millefolium 

Aegopodium podagraria 

Alliaria petiolata 

Anthriscus sylvestris 

Bellis perennis 

Berberis vulgaris 

Bryonia dioica 

Campanula trachelium 

Carduus acanthoides 

Castanea sativa 

Centaurea nigra 

Centaurea scabiosa 

Cerastium fontanum 

Chaerophyllum temulum 

Chamerion angustifolium 

Cirsium arvense 

Cirsium vulgare 

Clinopodiumm vulgare 

Convolvulus arvensis 

Cornus sanguinea 

Crataegus monogyna 

Crepis capillaris 

Crepis vesicaria 

Daucus carota 

Euphorbia amygdaloides 

Fagus sylvatica 

Galium aparine 

Glechoma hederacea 

Helminthotheca echioides 

Heracleum sphondylium 

Hyacinthoides non-scripta 

Hypochaeris radicata 

Ilex aquifolium 

Knautia arvensis 

Lamium album 

Leontodon hispidus 

Leucanthemum vulgare 

Ligustrum vulgare 

Lonicera periclymenum 

Lychnis flos-cuculi 

Medicago lupulina 

Medicago sativa 

Melilotus officinalis 

Odontites verna 

Oenanthe crocata 

Origanum vulgare 

Phacelia tanacetifolia 

Potentilla reptans 

Prunella vulgaris 

Prunus spinosa 

Pulicharia dysenterica 

Ranunculus acris 

Ranunculus bulbosus 

Ranunculus repens 

Raphanus raphanistrum 

Reseda lutea 

Rhamnus cathartica 

Rosa arvensis 

Rosa canina agg. 

Rubus fruticosus agg. 

Sambucus nigra 

Senecio jacobea 

Senecio vulgaris 

Sherardia arvensis 

Silene dioica 

Sinapis arvensis 

Sisymbrium officinale 

Solanum dulcamara 

Sonchus arvensis 

Sonchus asper 

Stachys sylvatica 

Stellaria graminea 

Taraxacum agg. 

Torilis japonica 

Trifolium campestre 

Trifolium dubium 

Trifolium hybridum 

Trifolium pratense 

Trifolium repens 

Tripleurospermum inodorum 

Veronica chamaedrys 

Veronica persica 

Viburnum lantana 

Viburnum opulus 

 

Species identified to genus level 

 

Brassica 
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Geranium 

Phlox 

Plantago 

Tilia 

Vicia 
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Appendix G - Full list of bee species recorded during the study with species authorities 

  

Andrena angustior Kirby 1802 

Andrena alfkenella Perkins 1914 

Andrena bicolor Fabricius 1775 

Andrena bucephala Stephens 1846 

Andrena chrysosceles Kirby 1802 

Andrena cineraria Linnaeus 1758 

Andrena dorsata Kirby 1802 

Andrena flavipes Panzer 1799 

Andrena florea Fabricius 1793 

Andrena fulva Müller 1766 

Andrena fulvago Christ 1791 

Andrena haemorrhoa Fabricius 1781 

Andrena helvola Linnaeus 1758 

Andrena humilis Imhoff 1832 

Andrena labialis Kirby 1802 

Andrena labiata Fabricius 1781 

Andrena minutula Kirby 1802 

Andrena minutuloides Perkins 1914 

Andrena nigroaenea Kirby 1802 

Andrena nitida Müller 1776 

Andrena nitidiuscula Schenck 1853 

Andrena scotica Perkins 1916 

Andrena semilaevis Perez 1903 

Andrena subopaca Nylander 1848 

Andrena trimmerana Kirby 1802 

Andrena wilkella Kirby 1802 

Anthidium manicatum Linnaeus 1758 

Anthophora furcata Panzer 1798 

Anthophora plumipes Pallas 1772 

Apis mellifera Linnaeus 1758 

Bombus barbutellus Kirby 1802 

Bombus campestris Panzer 1801 

Bombus hortorum Linnaeus 1761 

Bombus hypnorum Linnaeus 1758 

Bombus jonellus Kirby 1802 

Bombus lapidarius Linnaeus 1758 

Bombus lucorum Linnaeus 1761 

Bombus pascuorum Panzer 1801 

Bombus pratorum Linnaus 1761 

Bombus ruderarius Müller 1776 

Bombus ruderatus Fabricius 1775 

Bombus rupestris Fabricius 1793 

Bombus sylvestris Lepeletier 1832 

Bombus terrestris Linnaeus 1758 

Bombus vestalis Geoffroy 1785 

 

Chelostoma campanularum 1802 

Chelostoma florisomne Linnaeus 1758 

Colletes daviesanus Smith 1846 

Halictus rubicundus Christ 1791 

Halictus tumulorum Linnaeus 1758 

Hoplitis claviventris Thomson 1872 

Hylaeus brevicornis Nylander 1852 

Hylaeus communis Nylander 1852 

Hylaeus confusus Nylander 1852 

Hylaeus cornutus Curtis 1831 

Hylaeus dilatatus Kirby 1802 

Hylaeus hyalinatus Smith 1842 

Hylaeus signatus Panzer 1798 

Lasioglossum albipes Fabricius 1781 

Lasioglossum calceatum Scopoli, 1763 

Lasioglossum fulvicorne Kirby 1802 

Lasioglossum laevigatum Kirby 1802 

Lasioglossum lativentre Schenck 1853 

Lasioglossum leucopus Kirby 1802 

Lasioglossum leucozonium Schrank 1781 

Lasioglossum malachurum Kirby 1802 

Lasioglossum minutissimum Kirby 1802 

Lasioglossum morio Fabricius 1783 

Lasioglossum parvulum Schenck 1853 

Lasioglossum pauperatum Brule 1832 

Lasioglossum pauxillum Schenck 1853 

Lasioglossum puncticolle Morawitz 1872 

Lasioglossum smeathmanellum Kirby 1802 

Lasioglossum villosulum Kirby 1802 

Lasioglossum xanthopus Kirby 1802 

Lasioglossum zonulum Smith 1848 

Megachile centuncularis Linnaeus 1758 

Megachile ligniseca Kibry 1802 

Megachile versicolor Smith 1844 

Megachile willughbiella Kirby 1802 

Melitta leporina Panzer 1799 

Melitta tricincta Kirby 1802 

Nomada fabriciana Linnaeus 1767 

Nomada flava Panzer 1798 

Nomada flavoguttata Kirby 1802 

Nomada fucata Panzer 1798 

Nomada goodeniana Kirby 1802 

Nomada hirtipes Perez 1844 

Nomada lathburiana Kirby 1802 

Nomada marshamella Kirby 1802 
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Nomada ruficornis Linnaeus 1758 

Nomada sheppardana Kirby 1802 

Osmia bicolor Schrank 1781 

Osmia bicornis Linnaeus 1758 

Osmia caerulescens Linnaeus 1758 

Osmia leaiana Kirby 1802 

Osmia spinulosa Kirby 1802 

Panurgus calcaratus Scopoli 1763 

Sphecodes crassus Thomson 1870 

Sphecodes ephippius Linnaeus 1767 

Sphecodes geoffrellus Kirby 1802 

Sphecodes monilicornis Kirby 1802 

Sphecodes niger von Hagens 1874 

Sphecodes puncticeps Thomson 1870 

Sphecodes spinulosus von Hagens 1875 
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