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Summary

Cytoplasmic dynein 1 is crucial for many cellular processes including endocytosis and cell di-

vision. Dynein malfunction can lead to neurodevelopmental and neurodegenerative disease, such

as intellectual disability, Charcot-Marie-Tooth disease and spinal muscular atrophy with lower ex-

tremity predominance. We formulate, based on physical principles, a mechanical model to describe

the stepping behaviour of cytoplasmic dynein walking on microtubules. Unlike previous studies

on physical models of this nature, we base our formulation on the whole structure of dynein to

include the temporal dynamics of the individual components such as the cargo (for example an

endosome or bead), two rings of six ATPase domains associated with diverse cellular activities and

the microtubule binding domains. This mathematical framework allows us to examine experimen-

tal observations across different species of dynein as well as being able to make predictions (not

currently experimentally measured) on the temporal behaviour of the individual components of

dynein.

Initially, we examine a continuous model using plausible force functions to model the ATP force

and binding affinity to the microtubule. Our results show hand-over-hand and shuffling stepping

patterns in agreement with experimental observations. We are able to move from a hand-over-

hand to a shuffling stepping pattern by changing a single parameter. We also explore the effects

of multiple motors.

Next, we explore stochasticity within the model, modelling the binding of ATP as a random

event. Our results reflect experimental observations that dynein walks using a predominantly

shuffling stepping pattern. Furthermore, we study the effects of mutated dynein and extend the

model to include variable step sizes, backward stepping and dwelling. Independent stepping is

studied and the results show that coordinated stepping is needed in order to obtain experimental

run lengths.
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Chapter 1

Introduction

Cytoplasmic dynein 1, a motor protein present in eukaryotic cells, is involved in a vast range

of cellular activities in metazoan cells including the transport of a multitude of organelles, cell

division, and cell migration (see review [1] for further details). The devastating effect of dynein

malfunction presented in mutation studies on mouse models as well as in humans shows the need

for greater understanding of the mechanics and processes used by dynein [2, 3, 4, 5]. The dynein

family is particularly interesting as it has evolved separately from the other motor protein families,

of kinesin and myosin, and has a very different structure and mechanics (see review [6]).

The dynein family includes three classes: cytoplasmic dynein 1, cytoplasmic dynein 2 (or in-

traflagellar transport (IFT) dynein), and axonemal dyneins [7, 8]. Compared to cytoplasmic dynein

1, cytoplasmic dynein 2 has a slightly different structure and is involved with transport along flag-

ella [7, 8]. Axonemal dynein is involved with the beating of cilia and flagella [7]. There are seven

types of axonemal dynein, with both outer and inner arm forms [7, 8]. The main structural dif-

ference is that outer arm dynein can have two to three head domains, whilst inner arm dynein

can have one to two heads [7, 8]. This thesis will be based on cytoplasmic dynein 1, although this

study could be easily extended to cytoplasmic dynein 2 as well as being able to be adapted to

study flagella dynein.

Cytoplasmic dynein 1 (hereafter referred to as dynein) is vital to the transportation of cellular

cargo such as vesicles, endosomes or organelles in a process known as endocytosis. For example,

in mammalian cells epidermal growth factor (EGF) receptors activated by EGF are transported

from the cell membrane to the perinucleur region to be degraded or recycled back to the cell

membrane (see Figure 1.1 [9]) [10]. Activated EGF receptors are transported in clathrin-coated
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vesicles which undergo fusion to form early endosomes [10, 11]. Receptors to be degraded will

then be transported in late endosomes which fuse with lysosomes [10, 11, 12]. Endosomes are

bidirectional and experience fusion and fission along the endocytic pathway [12, 13, 14].

The endocytic pathway involves the action of motor proteins which attach to the vesicles or

endosomes and move along microtubules or actin filaments which form the cytoskeleton. Micro-

tubules are polarised, with the plus-end usually pointing towards the cell membrane, away from

the nucleus [11]. Vale et al., suggest a ‘toolbox’ of five motor proteins required for intracellular

transport which includes three types of kinesin, myosin V, and cytoplasmic dynein [15]. Different

motor proteins are involved in the process at different stages [13, 16, 17, 18, 19, 20, 21]. Kinesins

are motor proteins which usually move towards the plus-end of microtubules, i.e. towards the cell

membrane, however there are notable exceptions such as KIFC2 and KIFC3 which are minus-end

directed [6, 15, 22]. Myosins move on actin filaments and can be processive, such as myosin V, or

non-processive, such as myosin II [6, 15]. It is a topic of debate as to whether motor proteins act

on cargoes to pull in different directions, with the resultant movement determined by a tug-of-war

effect, or whether there is some switch that enables one type of motor protein to become inactive

and then to activate again when needed [14, 23, 24].

The largest components of the dynein complex are two homodimerized heavy chains, each of

which is made up of a tail and a motor domain. The N-terminal tail domain (residues 1 to ∼1400)

binds to other regulatory and structural components of dynein, through which cargo and adaptor

proteins bind to the complex. The motor (or head) domain at the C-terminal consists of six ATPase

domains associated with diverse cellular activities (AAA+), of which only four are thought to bind

ATP, and a microtubule-interacting stalk region [4, 25, 26, 27]. The coupling of ATP hydrolysis

and force generation is not yet fully understood, although recent progress has been made with

structural cycles being suggested by Carter et al., and Lin et al., [28, 29]. The stalk is formed

of an anti-parallel coiled-coil, which extends from between the AAA4 and AAA5 domains ending

with a microtubule binding domain (MTBD); a recently identified component labelled a strut or

buttress is proposed to support the stalk under load [25, 26, 27].

Dynein moves in the centripetal direction along microtubules, i.e. from the cell membrane

towards the nucleus. Research has shown that dynein moves processively, i.e. takes multiple steps

without detaching from the microtubule, using a variable step size but with the majority of steps

being 8nm in distance [30]. However, this reflects the position of the tail of dynein rather than

the motor domain, and further investigations have shown that the motor domain moves with a

usual step size of around 16nm [30, 31, 32]. We note that dynein steps are not always parallel
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Figure 1.1: From the cell membrane to the nucleus: A schematic diagram of the clathrin-mediated
endocytic pathway for EGF receptors. (i) Activated EGF receptors and the surrounding mem-
brane invaginates whilst a clathrin coat forms around it. (ii) The clathrin coat dissembles and
the receptors are transported along microtubules in vesicles, which undergo fusion to form early
endosomes. (iii) Endosomes undergo fission, resulting in the separation of the contents destined
for degradation and those to be recycled back to the cell membrane. (iv) Activated receptors to
be degraded will then be transported in late endosomes which fuse with lysosomes. The transport
process involves the action of motor proteins which attach to the vesicles or endosomes and move
along microtubules. Reproduced from Bulletin of Mathematical Biology, From the Cell Membrane
to the Nucleus: Unearthing Transport Mechanisms for Dynein, v.7, 2012, p.2032, Laurie Crossley,
Caroline A. Garrett, Majid Hafezparast and Anotida Madzvamuse, (© Society of Mathematical
Biology 2012) with permission of Springer [9].

to the microtubule and usually have off-axis components [30, 31, 32]. Backwards stepping also

occurs, with experiments showing approximately 13% of the total number of steps for a single

motor domain. Dynein is seen to dwell between steps, with an average dwell time of 2s best fit to

an exponential distribution [30]. Papers by DeWitt et al., and Qiu et al., have found that dynein

can use both uncoordinated and co-ordinated stepping, with a random stepping pattern occurring

when the distance between the two motor domains is small, and the pattern becoming more co-

ordinated as this distance increases; hence it is proposed that tension within dynein may govern

its stepping mechanism [31, 32, 33]. Qiu et al., found that 74% of steps taken by dynein alternated

in time and that 83% did not pass each other, suggesting that dynein may move predominantly

by shuffling rather than in a hand-over-hand fashion [32].

Mutations in cytoplasmic dynein heavy chain 1 (DYNC1H1 ) cause spinal muscular atrophy

with lower extremity predominance (SMA-LED), Charcot-Marie-Tooth disease type 2 (CMT2),

and intellectual disability (reviewed in ref. [4]; [5, 34]). Investigations into mutations in dynein
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have shown particular behavioural differences, such as a decrease in velocity and distance travelled

in a mouse strain known as Legs at odd angles (Loa) [2, 35, 36]. Hafezparast et al., have shown that

the Dync1h1F580Y mutation in the Loa mouse strain negatively affects fast retrograde transport

mediated by dynein, including an increase in pauses in motion [2, 3]. Work by Deng et al., has

shown that the Loa mutation gives rise to a lower affinity of dynein to dynactin [37], which regulates

cargo binding and dynein processivity.

In the following chapter we review the relevant literature, looking at what experimental data

is available for dynein and discussing significant mathematical models in the field. In Part I we

present a continuous model for the motion of dynein along a microtubule. In Chapter 3 we derive

the model from first principles and in Chapter 4 we present results for numerical simulations of the

model, including model refinements exploring alternative ways to model ATP force and multiple

motors. Next, in Part II we look at a stochastic model. We derive a model of continual forward

stepping in Chapter 5 and study various numerical simulations. In Chapter 6 we extend the model

to consider backward stepping, variable step size and dwelling. In Chapter 7 we look at independent

head domains and the effects on run length. The key differences between the stochastic models

are presented in Table 1.1. Finally in Chapter 8 we present our conclusions and discuss possible

future work.

Chapter/ Step Backward Dwelling Multi-scale Coordinated/Independent
Section Sizes Stepping Stepping

5 Fixed No No No Coordinated
6.2 Fixed Yes Yes No Coordinated
6.3 Variable Yes Yes No Coordinated
6.4 Variable Yes Yes Yes Coordinated
7 Fixed No Yes Yes Independent

7.2.1 Variable Yes Yes Yes Independent

Table 1.1: Key differences between the stochastic models presented in this study: modelling fixed
versus variable step sizes, backward stepping, and dwelling between steps; whether a multi-scale
framework is used; modelling coordinated versus independent stepping of the two motor domains.
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Chapter 2

Literary Review

The structure, function and behaviour of dynein is a topic at the forefront of current research.

Crystallographic structures have only recently revealed the detailed conformations of dynein’s

motor domain, and the precise mechanisms behind dynein’s stepping behaviour are still to be

discovered. Below we discuss the relevant literature on dynein’s structure, stepping mechanism

and behaviour.

2.1 Experimental results for cytoplasmic dynein 1

2.1.1 Structure

Dynein consists of heavy chains, intermediate chains, light intermediate chains and light chains

(see Figure 2.1) [1, 15, 38, 39, 40, 41]. Intermediate chains, light intermediate chains and other

subunits of dynein have been identified with cargo binding [1, 15, 42]. The motor domain of

dynein lies in the heavy chain, and is composed of an AAA+ ring, linker unit, C-sequence domain,

stalk, microtubule binding domain (MTBD) and a newly identified component known as a strut

or buttress [25, 26, 27, 43] (discussed in [28, 44, 45, 46]).

AAA+ ring

The AAA+ ring is formed of six AAA modules, AAA1 to AAA6 ordered around the central pore,

each with structural variations in order to serve different functions [28, 47, 56]. Every module is
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Figure 2.1: A schematic diagram of cytoplasmic dynein protein complex. A) Cytoplasmic dynein
is a protein complex consisting of two homodimerized heavy chains (DYNC1H1) and associated
proteins intermediate (DYNC1I), light intermediate (DYNC1LI), and light chains (DYNLRB,
DYNLL, DYNLT). The C-terminal portion of the heavy chain encompasses the microtubule bind-
ing (MTBD) and motor domains. The N-terminal domain is responsible for the heavy chain
homodimerization and binding of accessory proteins to the complex. B) DYNC1H1 domains and
the site of the Legs at odd angles mutation in the mouse protein. Reproduced with permission
from M. Hafezparast
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formed of a large subdomain (α/β-domain) and a small subdomain (α-domain) [25, 26, 27, 43, 47].

Carter et al., found the ring to be slightly asymmetric with gaps between both the AAA1-AAA2

and AAA5-AAA6 domains for a functional dimer of yeast cytoplasmic dynein from Saccharomyces

cerevisiae in the nucleotide free state [25]. Kon et al., studied a motor domain of cytoplasmic dynein

with ADP from Dictyostelium discoideum and found that the small subdomains were arranged in

‘pseudo-six-fold-symmetry’ whereas the large subdomains were arranged in two groups [27]. The

AAA5, AAA6 and AAA1 large domains were loosely packed together in one half of the ring,

whilst the AAA2, AAA3 and AAA4 large domains were tightly packed on the other half, with

no direct contact between the two halves [27]. This differs from the findings of Carter et al., as

these results give a gap between AAA4-AAA5, rather than AAA5-AAA6, although they do also

give the AAA1-AAA2 gap [25, 27]. This may be an interspecies difference, a result of the different

nucleotide states or due to differences in experimental procedures. These results suggest that the

conformation of the ring depends on the ATPase state, with the gaps closing during the ATPase

cycles of the domains. Indeed, Roberts et al., also find a gap between the AAA1-AAA2 domains

in dynein c from Chlamydomonas reinhardtii flagella in the absence of nucleotide and they propose

that this is an ‘intrinsic feature’ of the AAA+ ring in this state [48]. They also find that in the

primed state, i.e. ATP or ADP and vanadate (ADP.Vi) bound, where vanadate inhibits ATPase

activity, trapping the ring in the primed state, the gap between the AAA1 and AAA2 domains of

dynein c closes and that there is a change near the contact site of the linker to the ring at AAA4 or

AAA5 [48]. Schmidt et al., study the motor domain of human cytoplasmic dynein 2 in the ADP.Vi

state and also find that the gap between the AAA1 and AAA2 domains is closed [49].

Of the six AAA+ domains, only four are able to bind ATP and the specific roles they play

in the mechanics of dynein are still unclear [47]. Nucleotide binding sites lie between two AAA+

domains, suggested to be between one AAA module and the large domain of the adjacent module

[27, 43]. Domains AAA5 and AAA6 cannot bind or hydrolyse ATP and Cho et al., find that

‘a single nucleotide binding site dominates the ATPase reaction’, hence the four domains serve

different functions during the cycle [50].

The first domain, AAA1, is the primary site for ATP hydrolysis and is essential for motility [51].

Schmidt et al., find that in the nucleotide free state, the Saccharomyces cerevisiae AAA1 domain

has a low affinity to the nucleotide and suggest that this may stop the nucleotide becoming trapped

in the motor and hence stalling the ATP cycle [43]. Nicholas et al., found that ADP binding at

the AAA1 domain causes the head domain to exhibit stronger binding to microtubules [52], whilst

DeWitt et al., found that ATP binding at the AAA1 domain, as opposed to hydrolysis, causes the

head domain to release from microtubules [53].
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Studies have found that the AAA2 domain serves a purely structural role, with Kon et al.,

suggesting that it can bind either ATP or ADP but cannot perform hydrolysis [27] whereas Schmidt

et al., find that it is ‘tightly closed and appears unlikely to open’ [43]. Mutations in this domain,

causing an inability to bind ADP or ATP, do lead to a reduction in ATPase rates, but these changes

are mild compared to mutations in the other domains and it is suggested that they may in fact

only have an effect through altered communication [43, 51].

The function of the AAA3 domain has been the subject of recent study with Nicholas et al., and

DeWitt et al., making clear progress [52, 53]. Studies of this domain have shown that its function

is related to microtubule binding, with mutation studies showing an increase in the affinity to

microtubules, a decrease in velocity and longer attachment times to the microtubule [50, 51]. Cho

et al., found that the mutant forms of dynein still exhibited processive behaviour and only gave a

small reduction in run length [50]. Kon et al., propose that AAA3 domain functionality is crucial

for the ‘ATP-induced release of dynein from microtubules’ [51], whereas Schmidt et al., suggest

that the AAA3 domain can ‘contribute to the catalytic cycle, without being essential’ [43]. Nicholas

et al., and DeWitt et al., have found that the AAA3 domain plays a significant role in microtubule

release during the ATP cycle [52, 53]. Nicholas et al., find that ADP binding to the AAA3 domain

weakens microtubule binding and propose that ADP may only be bound ‘at “appropriate” points

in the cycle’ [52]. DeWitt et al., find that the ATP hydrolysis cycles of the AAA1 and AAA3

domains are not directly coordinated, with only ‘a single hydrolysis event per step’, and that the

AAA3 domain ‘hydrolyses ATP at an order of magnitude more slowly’ than the AAA1 domain

[53]. They propose that a functional AAA3 domain is required to enable communication between

the AAA1 domain and the MTBD, with mutations in the AAA3 domain impeding ATP induced

microtubule release [53]. They go further in their analysis proposing that the AAA3 domain acts

as a ‘switch’ for the function of dynein required in the cell, suggesting that regulation by the

AAA3 domain can switch the purpose of dynein from transport, with the AAA3 domain switched

‘on’, to an anchoring function, with the AAA3 domain switched ‘off’ [53]. Bhabha et al., also

propose that the AAA3 domain can serve a regulatory function, suggesting that ATP binding to

the AAA3 domain ‘blocks the conformational change’ of the motor domain and hence allows the

dynein complex to remain tightly bound to microtubules or reduces its velocity [54].

The AAA4 domain can also bind ADP but studies by Schmidt et al., on nucleotide free yeast

cytoplasmic dynein from Saccharomyces cerevisiae found that it is unlikely to be able to ‘catalyse

ATP hydrolysis’ and its role in the ATP hydrolysis cycle is uncertain [43]. Studies by Kon et al.,

show that mutations in this domain lead to lower ATPase rates [51], whilst Cho et al., show that

they cause a ‘modest decrease in velocity’ and a ‘[two]-fold increase in run length’ [50]. Schmidt et
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al., suggest that it may become activated during the hydrolysis cycle under a conformational change

of the ring [43], whilst Kon et al., suggest that a functional AAA4 domain may not be required

but that it might ‘ensure maximum stimulation of microtubule-activated ATPase activity’ or that

it might regulate the step size in response to force [51].

Linker

The linker unit, found to be 10nm long in flagella dynein from Chlamydomonas reinhardtii, is

located across the front of the AAA+ ring and is connected to the tail (or stem) [55]. The

linker is normally docked but can become undocked [55]. Work by Roberts et al., on a functional

motor domain of cytoplasmic dynein from Dictyostelium discoideum, suggests that in the unprimed

position the linker spans the ring from the AAA1 domain to near the base of the stalk (around

AAA4-AAA5) and then during the priming stroke the linker moves to a position close to the AAA2

domain [56].

Detailed crystallographic structures have built on this work. Studies by Carter et al., on a

functional dimer of yeast cytoplasmic dynein from Saccharomyces cerevisiae, in a nucleotide free

state, show that the linker ‘arches over the centre of the ring’ with its C-terminus interacting with

the AAA1 domain and the small domain of AAA6 whilst its N-terminus interacts with the AAA5

large domain [25]. Roberts et al., also find that in the nucleotide free state, the linker domain of

dynein c from Chlamydomonas reinhardtii flagella interacts with the AAA5 domain [48]. Whilst

studies by Kon et al., looking at the motor domain of cytoplasmic dynein from Dictyostelium

discoideum with ADP, showed the linker lying over the hole of the ring between the AAA1 and

AAA4 domains [26, 27]. The different nucleotide states of the motor domains may have a significant

impact on the location of the linker domain, with a movement of the linker from AAA5 to AAA4

from the nucleotide free state to binding ADP suggested by Roberts et al., [48]; although species

and experimental differences may also have had an affect.

Further studies by Schmidt et al., have shown that the linker is composed of four subdomains,

with the first subdomain making contacts with the large domain of the AAA5 module, the second

subdomain bridging the hole of the ring, and the third and fourth subdomains interacting exten-

sively with the large domain of AAA1 [43]. Alternatively, Kon et al., suggest that the linker has

five subdomains and only interacts through the AAA1 and AAA6 domains, with two subdomains

‘sandwiched’ between the large and small domains of AAA1 and the small domain of AAA6, as

well as the AAA2 domain, through two inserts [27]. Schmidt et al., identify AAA2 as an alternative

docking site for the linker [43].
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Roberts et al., find that the base of the linker does not appear to move significantly and hence

suggest that the movement between states is caused by ‘a rotation of the distal segment relative

to the base’ [48]. Schmidt et al., find that there is a ‘deep cleft’ between the second and third

subdomains of the linker which could act like a hinge [43]. Two possible models of linker movement

are proposed by Roberts et al., in the first they propose that the linker could be flexible at the site

of the cleft however they favour a second scenario in which the linker is stiff and hinging at the

cleft site requires ‘energy from interactions with the AAA+ modules’ [48]. Schmidt et al., later

find that, in the ADP.Vi state of the human cytoplasmic dynein 2 motor domain, the linker is

bent by 90° between subdomains two and three (of four) [49]. They propose that the linker bend

is caused by a ‘steric clash’ between the linker and the AAA4 domain (specifically a PS-I insert),

causing subdomains one and two to bend whilst subdomains three and four remain static due to

their interactions with the AAA+ ring [49].

C-sequence

The C-sequence lies on the back of the AAA+ ring across the AAA1, AAA5 and AAA6 small

subdomains [25, 26, 27]. Numata et al., found that the processivity of dynein homodimers was

reduced after a deletion of the distal segment of the C-sequence [57], Roberts et al., propose that

linker undocking is preferred under a deletion of the C-sequence [56], and Kon et al., suggest that

it is ‘crucial for communication’ [27]. The structure of dynein is generally conserved across species,

however yeast dynein lack the final 32kDa section of the C-terminal, also known as the CT-cap [58].

Nicholas et al., found that the differences in behaviour between species, as described in Section

2.1.4 below, are likely to be caused by the presence of the CT-cap, in particular the removal of the

CT-cap caused increased processivity and stall force in mammalian dynein [58].

Stalk

The AAA+ ring is responsible for the hydrolysis cycle of dynein, whereas microtubule binding is

performed by a stalk structure extending from the ring and ending with a ‘globular’ microtubule

binding domain [59]. A relatively new structure, known as a strut or buttress, has also been found

as an additional coiled coil that extends from the AAA5 small domain and contacts the stalk

[25, 26, 27]. The stalk extends from the AAA4 small domain as a coiled coil, with two helices

denoted by CC1 and CC2 [25, 26, 27, 60, 61]. Carter et al., studied the crystal structure of the

MTBD and the distal portion of the stalk in a mouse cytoplasmic dynein [60]. They find that the

MTBD is composed of six α helices, labelled H1 to H6, where docking to the microtubule places
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H1 and H3 in ‘a groove [on the microtubule] at the interface between the α and β tubulin subunits’

[60]. Redwine et al., suggest that the interactions between the microtubule and the MTBD are

at the H1-H2 loop, H3 and H6, with intramolecular salt bridges formed by residues in H1 and

H6 in a low affinity conformation which change to intermolecular salt bridges in a high affinity

conformation [62].

Carter et al., find that the stalk helices CC1 and CC2 connect to the MTBD α helices in the

following way:

‘The distal portion of CC2 makes extensive hydrophobic interactions with H2, H4, H5

and H6, whereas CC1 makes only a few contacts with H4 . . . before joining directly

into H1. This asymmetry suggests that the interface between the stalk and the MTBD

serves an important role in the dynein mechanism. ’ [60].

Indeed, the possible mechanisms for modulating the microtubule binding affinity are considered

extensively in the literature. Gibbons et al., propose that sliding movements between the two

helices of the stalk coiled coil could regulate the affinity of the MTBD [63]. Kon et al., also found

that by fixing the registry of the stalk coiled coil the microtubule binding affinity could be trapped

into a strong or weak binding state [64]. Nishikawa et al., suggest that binding to the microtubule

may anchor the CC2 helix in place, which could in turn cause a registry shift in the stalk coiled

coil [61]. Carter et al., find a kink in the coiled coil of the stalk, caused by a pair of prolines and

leading to a change in registry of CC1 compared to CC2 by a half-heptad [60]. Burgess et al.,

also find a kink 5nm from the tip in the stalk of flagella dynein from Chlamydomonas reinhardtii

in the nucleotide free state [55]. Imai et al., describe a flexible ‘hinge’ within the stalk close to

the MTBD and find that the stalk angles vary significantly but exhibit some dependence on the

distance between the MTBDs [65].

Carter et al., propose that the ‘movement of CC1 is responsible for bidirectional communication

along the stalk’ [60]. Roberts et al., find that the stalk tilts between different nucleotide states,

with a shift from the nucleotide free or ADP to ADP.Vi state causing a shift of 5nm of the MTBD

[56]. They hypothesize that the priming stroke of dynein causes the MTBD to ‘skate along the

[microtubule] surface’ [56]. Kon et al., also found two distinct conformations of the stalk, in one

conformation it is straight and in another there is a 37° kink below the strut; they suggest that

the stalk is therefore flexible and that the strut supports the stalk under load [26]. In the second

conformation they also saw a change in the MTBD, and they suggest that the kinked stalk may

‘modulate [microtubule] binding affinity’ [26]. Schmidt et al., also observed a kink in the CC2 helix



12

of the stalk near to the contact site of the strut, in human cytoplasmic dynein 2 in the ADP.Vi

state, causing the CC2 helix to ‘slip relative to CC1’ [49].

Nicholas et al., find that the backward force required to unbind a dynein monomer from the

microtubule is much greater than in the forwards direction [52]. In particular they find that dynein

exhibits slip bonding in the forwards direction, where the ‘unbinding rate increases with increasing

load’, whereas ‘slip-ideal bonding’ is exhibited in the backwards direction, here the ‘unbinding rate

increases only up to [loads of] ∼ 2pN and then remains relatively constant as greater forces are

applied’ [52].

2.1.2 Stepping mechanism

Here we discuss the current knowledge on the mechanism dynein uses to walk along microtubules.

It is of note that dynein can take steps of a variable step size and direction, as discussed below

in Section 2.1.4, however it is unclear how these variations are achieved. Carter et al., suggest

that the angle of attachment of MTBD determines the direction of dynein’s step, rather than the

position of the AAA+ ring [60]. Whilst Gennerich et al, have found that applied force can alter

dynein’s stepping behaviour, discussed in more detail below in Section 2.1.4 [66]. The main features

of dynein’s stepping mechanism are the ATPase cycle, allosteric communication and interhead

coordination.

ATPase cycle

Adenosine triphosphate (ATP) hydrolysis, where ATP is converted to adenosine diphosphate

(ADP) and phosphate (Pi), is used by dynein in order to release energy to power its movement

along the microtubule. This ATPase activity must be coordinated with its mechanical cycle so

that dynein can walk processively along microtubules (reviewed in [67]). Although four of the

AAA domains can bind ATP, it is thought that only one ATP hydrolysis event initiates a step, at

the AAA1 domain, with the other AAA sites performing regulatory functions [30, 50, 53, 54]. The

structural conformations of dynein are usually classified as pre- and post-power-stroke conforma-

tions, the power stroke changes dynein from the pre- to the post-power-stroke conformation, and

the recovery stroke changes dynein from the post- to the pre-power-stroke conformation. Imamula

et al., [68] propose the following model for the ATP cycle of dynein:

• Initially dynein, in the post-power-stroke conformation and nucleotide free, is bound to the
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microtubule.

• After ATP binds to the complex, it ‘rapidly dissociates’ from the microtubule and dynein

changes to the pre-power-stoke conformation.

• ATP hydrolysis converts ATP to ADP.Pi.

• The power stoke occurs where Pi is released, dynein changes to the post-power stroke con-

formation and dynein binds back on to the microtubule.

• ADP is then released and the cycle starts again.

The authors suggest that in order for the recovery stroke to be successful, the dissociation from

the microtubule must occur before the ‘tail swing’ [68]. Carter et al., suggest a similar structural

cycle with specific timings after ATP hydrolysis, proposing that Pi is released before dynein binds

back on to the microtubule, and then the power stroke occurs once it is bound [28].

Lin et al., studied dynein from sea urchin sperm flagella and found two distinct pre-power-

stroke conformations, one unbound from the microtubule (‘pre-I’) and the other bound to the

microtubule (‘pre-II’) with a 20° difference in orientation of the heads [29]. Previous studies

have focused on the conformational change of the linker, however Lin et al., found that the most

significant movement was that the head pivoted around the C-terminal of the linker swinging the

stalk along the microtubule [29]. Lin et al., [29] propose a similar model to that described above,

where ATP binding to the AAA1 domain causes the microtubule binding affinity to weaken and

leads to the MTBD detaching from the microtubule, the conformational changes then occur in the

following order:

• The recovery stroke causes the stalk to rotate towards the minus end of the microtubule

(pre-I).

• Tilting of the stalk then allows the MTBD to bind to the microtubule (pre-II), weakly at

first but then strongly once Pi is released.

• The power stroke then pulls the tail and cargo towards the minus end of the microtubule

(post-power-stroke).

Note that the recovery stroke could also accompany the dissociation step [29]. A study by Burgess

et al., looked at flagella dynein from Chlamydomonas reinhardtii using electron microscopy and

image processing [55] (discussed in [69]). They found that the emergence points of the tail and



14

stalk from the AAA+ ring were closer in the nucleotide free state compared to the ADP.Vi state,

the mean angle increased from 136° to 160°, whilst the MTBD was displaced by 15nm [55].

Allosteric communication

The separation between the ATP binding site in the AAA+ ring and the microtubule binding

domain at the end of the stalk means that there must be some form of communication between the

two sites in order to coordinate the ATP activity with the microtubule binding activity, which is the

subject of much debate in the literature (reviewed in [70]). Carter et al., suggest that microtubule

binding could cause a structural change in the MTBD leading to a shift in CC1 compared to

CC2, which then causes a conformational change in the AAA+ ring and hence triggers part of

the ATPase cycle and vice versa [60]. Kon et al., found that sliding of the helices in the stalk

relative to one another changes the microtubule binding affinity and the ATPase rate, providing

an important link between the two activities [64].

Roberts et al., suggest that the conformation of dynein in the unprimed position (post-power-

stroke) has the linker domain lying across the ring between the AAA1 domain and the AAA4/AAA5

domains, whilst in the primed position (pre-power-stroke) the linker moves to the AAA2 domain

[56]. In later work, they suggest that the binding of ATP to the AAA1 domain leads to confor-

mational changes in the AAA+ ring which causes the linker to hinge thereby enabling the stalk

to reach further along the microtubule, whilst the release of ADP and Pi after microtubule bind-

ing causes the linker to straighten and hence pull the complex and its associated cargo forwards

[48]. Carter et al., propose that ATP binding at the AAA1 domain closes the gap in the ring

between the AAA1 and AAA2 domains and the change ‘propagates around the ring’, potentially

causing the linker to detach from the AAA5 domain and a conformational change in the stalk [25].

Schmidt et al., propose that the linker then attaches at the AAA2 domain and that the release of

phosphate may cause the linker to move back to the AAA5 domain [43]. Interestingly, Bhabha et

al., find that ATP binding to the AAA1 domain can cause a conformational change in the linker,

but suggest that this is only when the AAA3 domain has ADP bound and that ATP bound to

the AAA3 domain prevents this change [54]. In later work, Schmidt et al., propose that once

the AAA1-AAA2 gap opens again, ‘the bent linker reverts to its preferred straight conformation

and generates force’ [49]. Alternatively, Kon et al., suggest that rather than changes propagating

around the ring to the AAA4/AAA5 linker contact site, it is the inserts in the AAA2 domain

that interact with the linker and cause it to bend, whilst they suggest that the C-terminal is also

essential for communication across the ring [27]. However, Schmidt et al., find that the inserts in
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the AAA2 domain ‘contact only the static part of the linker’ and propose instead that it is a ‘steric

clash’ with an insert in the AAA4 domain which causes the linker to bend [49]. Bhabha et al.,

propose that the linker could also act in a regulatory capacity, suggesting that the gap between

the AAA1-AAA2 domains cannot close completely until the linker has undocked from the AAA5

domain [54].

Kon et al., propose that the strut (buttress) plays an important role in communication, with

conformational changes in the stalk and strut, between straight and kinked profiles, coordinating

the ATPase cycle and microtubule binding [26, 27]. Carter et al., also suggest that the buttress

may effect the conformation of the stalk and may play a part in translating changes in the AAA+

ring to the stalk [25]. In a recent study on the motor domain, Schmidt et al., propose that the

closure of the AAA1-AAA2 gap causes conformational changes in the ring, ultimately causing a

rotation of the AAA5 small and AAA6 large domains which then moves the buttress relative to

the CC1 helix of the stalk whilst the CC2 helix moves with the buttress [49].

Interhead coordination

Dynein requires both head domains in order to achieve processive movement, which suggests that

interhead coordination plays an important role in dynein’s stepping mechanism [71]. However, it

is unclear how this occurs with possible mechanisms including AAA+ ring interactions, tension

within the complex and a high duty ratio (reviewed in [28, 41, 72]). Belyy et al., find that each head

domain has a different stall force depending on its state, the bound head domain has a much higher

stall force than an unbound head domain undergoing a search for a binding site [73]. Hence, they

propose a ‘load-sharing’ model for the stepping of a dynein dimer, where the backward force from

the cargo is balanced by the bound head alone whilst the unbound head diffuses to the next binding

site, the load is then shared when both are bound; the work done to move the cargo forwards is

carried out by the priming stroke of the stepping head once bound to the microtubule [73]. However,

it is unclear what mechanism would enable the attached head domain to take the full load of the

cargo whilst the other head is detached. Imai et al., used cryo-electron microscopy to study the

structure of a dynein homodimer as it moves on microtubules (using artificially dimerized dynein

from Dictyostelium discoideum with the MTBD from human axonemal dynein 7) [65]. They found

that the dynein dimer adopted a wide variety of positions, classified by two groups in which the

AAA+ rings were either ‘offset’ or ‘superposed’, and propose that in the superposed conformation

the two head domains interact in a front-to-back-conformation via the linker and C-terminal [65].

Nicholas et al., propose that tension could regulate dynein’s stepping by increasing the strength of
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microtubule binding, inhibiting ATP binding or hydrolysis at the AAA1 domain, and modulating

communication between the AAA1 and AAA3 domains [52]. Kon et al., suggest that tension could

cause the stalk to tilt and hence change the microtubule binding affinity of the MTBD [64].

2.1.3 Dynactin and dynein regulatory proteins

Regulators of cargo binding include dynactin, nuclear distribution E (NudE), NudE-like (NudEL),

lissencephaly 1 (Lis1), and Bicaudal D (reviewed in [38, 39, 40, 41]; [1, 15, 74, 75, 76, 77, 78]).

The presence of dynactin is essential for dynein to perform most of its diverse roles [38, 39, 79].

The structure of the dynactin complex includes an actin related protein-1 (Arp1) minifilament,

which enables cargo binding to the Golgi and other membranous cargoes, and p150Glued, which

also enables cargo binding, has microtubule binding domains at the N-terminus, and can bind

to dynein’s intermediate chains [38, 39, 40, 41, 79]. The presence of dynactin has been found to

increase dynein processivity [78, 79, 80], with disruptions to dynein-dynactin interactions causing

a reduction in processivity [81]. Ross et al., found that the motion of the dynein-dynactin complex

was bidirectional [82], whilst Kardon et al., found that the addition of dynactin did not affect the

direction of movement [80]. King and Schroer suggest that dynactin may act as a ‘tether’ to the

microtubule, stopping the cargo diffusing away so that dynein can easily rebind to the microtubule

if it becomes dissociated [79]. However, Kardon et al., find that in yeast, dynactin increases dynein

processivity independently of dynactin’s microtubule binding activity [80]. Dynactin also helps to

target dynein to the plus ends of microtubules [38].

2.1.4 Stepping patterns

Dynein moves processively towards the minus end of microtubules [83]. Reck-Peterson et al., have

shown that two motor domains are required for processive motion, however only part of the heavy

chain is required with an artificially dimerized truncated form named GST-Dyn1314kDa suggested

to be the minimal form which gives processive motion [30]. Processivity may only require one

functional motor domain as DeWitt et al., have shown that a complex with one wild-type motor

domain and one mutant motor domain, which lacks the ability to hydrolyse ATP at the AAA1

domain, is able to walk processively along microtubules [31]. Typical run lengths for cytoplasmic

dynein vary by species, with bovine dynein having an average run length of 700nm compared to

300nm for murine dynein, which increases to 1.5µm and 800nm respectively in the presence of

dynactin [84]. In vivo measurements have shown that most species of dynein are capable of high

velocities, with ranges given from 500nm s−1 to 1.5µm s−1 [83, 84]. However, dynein in mammalian
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neurons can reach speeds of 2 to 3µm s−1 [84] and yeast dynein species move much slower with

Reck-Peterson et al., recording velocities averaging 90nm s−1 in vitro [30].

Step sizes

The stepping of dynein has been shown to be highly variable compared to other motor proteins.

Although the predominant direction of travel along microtubules is towards the minus end, here-

after described as the forwards direction, dynein can also take backward steps [66, 31, 32, 30, 83].

Reck-Peterson et al., studied GST truncated yeast cytoplasmic dynein from Saccharomyces cere-

visiae and found that when labelled at the tail domain 20% of steps moved backwards, compared

to 13% of steps when labelled at the AAA+ ring [30]. Qiu et al., and DeWitt et al., also studied

yeast cytoplasmic dynein and found that 23% and 20% of steps moved backwards respectively

[31, 32]. The step size of dynein is highly variable with most studies finding the predominant step

size of the tail domain to be 8nm with larger steps of 12 to 24nm present [32, 30, 66, 83, 85],

although DeWitt et al., find the distribution of step sizes to peak at 4.8nm and 8.7nm [31]. When

labelled at the motor domain, the predominant step size is found to be 16nm by Reck-Peterson

et al., although Qiu et al., find it to be slightly smaller and DeWitt et al., find it to be slightly

larger at 17.5nm as well as suggesting another peak at 9.3nm [30, 31, 32]. Backward steps were

found to be predominantly 8 to 16nm [30, 66, 83]. The steps of dynein are not one-dimensional

and have been shown to have an off-axis component, i.e. can step sideways as well as along the

microtubule [30, 32]. Reck-Peterson et al., find that 18% of motor domain labelled steps had an

off-axis component which ranged in size from 4 to 40nm [30]. Qiu et al., find the two-dimensional

step size of dynein to be 10nm when labelled at the tail domain and between 14 to 16nm when

labelled at the motor domain [32].

The variability of dynein’s stepping behaviour has raised the question of how this benefits the

motor in order for it to accomplish its cellular tasks. Mallik et al., looked at bovine cytoplasmic

dynein and found step sizes of predominately 8nm under high load, which then increased to 24 to

32nm under close to zero loads [85]. They suggest that dynein could act like a ‘gear’ by reducing

its step size in order to increase the productive force to move larger loads [85]. However, Toba et

al., studied porcine cytoplasmic dynein and found that the step size was independent of both the

applied force and ATP concentration (for forces in the range of 0 to 7pN and ATP concentrations

in the range of 10µM to 1mM) [83]. It is unclear whether these contrasting results are caused

by experimental differences [83, 84]. Studies by Gennerich et al., on artificially dimerized yeast

cytoplasmic dynein find that the applied force affects the distribution of step sizes with higher
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loads, in the range of 6 to 10pN, increasing the prevalence of steps of 4nm and intermediate loads

(3 to 6pN) increasing the prevalence of large steps of 12 to 20nm [66].

Stepping patterns

How the two motor domains coordinate their stepping in order to achieve high velocities and long

run lengths has been a topic of interest and developments in experimental techniques have enabled

the two motor domains to be labelled individually in order to compare their stepping trajectories.

Studies by Qiu et al., and DeWitt et al., who both looked at artificially dimerized yeast cytoplasmic

dynein from Saccharomyces cerevisiae, found that dynein exhibits a predominantly alternating

stepping pattern, with Qiu et al., finding that 74% of steps alternated in time compared to 68%

in experiments by DeWitt et al., [31, 32]. Qiu et al., also found that 83% of steps did not pass

the stationary motor domain [32]. Both studies found distinct characteristics between the leading

and lagging heads, with the leading head more likely to be on the right, when looking along the

direction of motion [31, 32]. DeWitt et al., found that the leading head took much shorter steps of

1.5nm and was more likely to step backwards (45% of steps); where as, the lagging head took larger

forward steps of 17.5nm but was less likely to step backwards (14% of steps) [31]. Qiu et al., found

that the lagging head is likely to spend less time attached to the microtubule, with the mean time

a lagging head spends attached to the microtubule when both heads are bound at 4.3s compared to

5.4s for the leading head [32]. The mean duration that both heads were bound to the microtubule

decreased as the separation distance between the two motor domains increased [32]. Both DeWitt

et al., and Qiu et al., propose that the two motor domains walk along different protofilaments

of the microtubule, with DeWitt et al., suggesting that a stacking interaction between the two

AAA+ rings is excluded by the large distance separating the heads (23nm) [31, 32]. Qiu et al., and

DeWitt et al., also find that when the motor domains are in close proximity, along the length of

the microtubule, then they both have an equal probability of stepping, but that the lagging head

is increasingly likely to step as the separation distance between them is increased [32]. Qiu et al.,

propose that dynein can use both stochastic and tension-based stepping, with stochastic stepping

used when the two motor domains are close together and moving to tension based stepping as

they separate over larger distances [32]. DeWitt et al., also suggest that the tension within the

complex may cause the lagging head to detach when the two motor domains are separated over

larger distances [31].
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Dwell times

The dwell time is defined as the period of time before the step that the complex, if labelled at

the tail, or motor domain, if labelled at the AAA+ ring, takes. Reck-Peterson et al., analysed the

dwell times of tail labelled GST truncated yeast cytoplasmic dynein from Saccharomyces cerevisiae

and found that they fit to a single exponential distribution with an average dwell time of 2s [30].

They suggest that this relates to a single ATP binding event per step of the tail [30]. They also

found that the dwell times of the motor domains were best fit to a distribution of a convolution of

two exponentials and suggest that each motor domain steps only once for every two ATP cycles of

the entire complex [30]. DeWitt et al., also find that the motor domain dwell times are best fit to

a convolution of two exponentials, with one slow and one fast rate, however they also fit the tail

dwell times to a convolution of two exponentials with two unequal rate constants [31]. Toba et al.,

find that dwell times for tail labelled porcine dynein under load (3 to 5pN) fit a single exponential

distribution with mean 27ms, while the average dwell time in the absence of load is 10ms [83].

Force

In vivo dynein will be subjected to load, such as that from vesicles it is transporting, or force,

for example from a tug-of-war with positively directed motors. The response to load or force can

be studied in experiments by the use of an optical trap. Mallik et al., find that the stall force of

bovine cytoplasmic dynein is 1.1pN at saturating levels of ATP [85], and similar stall forces have

been found for both rat and murine dynein [35, 84]; whilst Toba et al., [83] find the stall force for

porcine cytoplasmic dynein to be 7pN, independent of ATP concentration.

Gennerich et al., initially studied native yeast cytoplasmic dynein attached to a 1µm bead

and bound to sea urchin axonemes and found the stall force to be 7pN independent of the ATP

concentration [66]. An interesting finding of their study was that dynein was shown to walk in the

absence of ATP, with a 10pN force (opposing the minus end directed motion of dynein) causing

dynein to move processively towards the plus end and a −3pN force causing minus end directed

motion [66]. Their results showed clear stepping along the microtubule with a predominant step

size of 8nm [66]. They also investigated stepping in the presence of ATP (1mM), a small rearward

load (1pN) led to mainly minus end direction motion with 30% of steps in the backwards direction,

a higher load of 7pN caused approximately equal numbers of forward and backward steps, whilst

a load of 10pN saw predominantly backward stepping, with only 25% of steps in the forwards

direction [66]. They propose that the stepping behaviour can be split into two types, an ‘advancing

mode ’ and a ‘non-advancing mode’ [66]. The advancing mode is defined by two or more successive
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steps in one direction and dominates at low forces with mainly small step sizes of around 4 to 8nm

[66]. Whereas the non-advancing mode is defined as two or more successive forward then backward

steps usually of the same large step size and becomes more prevalent as the load increases [66].

Gennerich et al., propose that the forward step in the non-advancing mode is driven by ATP

whereas the backward step is caused by the leading head detaching from the microtubule and

rebinding to a rearward site [66]. They suggest that the strength of the binding affinity of the

MTBD to the microtubule is dependent on the angle of the stalk and that the asymmetry in the

applied force required for movement biases the motor to be directed towards the minus end of

microtubules [66].

2.1.5 Mutations

Mouse models have been used to study the effects of mutations in the dynein heavy chain including

the Legs at odd angles (Loa), Cramping 1 (Cra1 ) and Sprawling (Swl) mutants. The Loa mutation

occurs in the tail domain at a site identified as the binding site for dynein intermediate chains and

also the proposed site of homodimerization [3]. Hafezparast et al., find that the percentage of high

speed carriers falls from 67% in wild-type neurons to 21% in Loa/Loa mutants and that there was

an increase in pauses in mutants [3]. Garrett et al., tracked endosomes in Loa/Loa mutant mouse

embryonic fibroblasts (MEFs) and neurons, finding lower numbers of high speed carriers and an

increase in plus-end directed motion [2]. Endosomes in Loa/Loa mutant MEFs travelled with a

median speed of 0.11µm s−1 compared to 0.17µm s−1 for wild type cells and after ten minutes

Loa/Loa mutant endosome displacement was only 4.4µm compared to 13.4µm for wild type cells

[2]. Ori-McKenney et al., also study the Loa mutation and found that the average run length

in vitro fell from 339nm for wild type dynein to 259nm in Loa +/- mutants and to 175nm in

Loa -/- mutants [35]. Interestingly, they found no difference in average velocity or step size and

little change in stall force in vitro [35]. However, they do find reduced average velocity in vivo

for lysosome transport in neurons with velocity falling by 22% and 43% for Loa +/- and Loa -/-

respectively compared to wild type velocity [35]. They suggest that this is a result of an increase in

run terminations and find no change in the instantaneous velocity [35]. They also find a reduction

in run length in vivo by 53% and 83% for Loa +/- and Loa -/- respectively compared to wild type

[35]. Both studies by Garrett et al., and Ori-McKenney et al., found an increase in the number of

off axis steps for Loa mutants [2, 35]. Ori-McKenney et al., additionally found a reduced affinity

for microtubules in the Loa +/- mutant in the presence of ATP and a decreased Michaelis constant

for ATP which they suggest is a result of early binding of ATP to an attached motor domain (i.e.

whilst the other is detached) through a problem with communication between the head domains
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[35]. Sivagurunathan et al., study the Loa mutation in Neurospora crassa, also finding a decrease

in minus-end directed velocity and run length [36].

Deng et al., find that there are fewer interactions with the p150Glued subunit of dynactin

for Loa/Loa mutants in mice and that there is an increase in the binding affinity of the dynein

intermediate chains, dynein light intermediate chains and Tctex-1 [37]. They find that the homod-

imerization of the dynein complex is not affected and instead suggest that the mutation causes a

reduction in dynein-dynactin complexes available for cargo transport and hence reduces endosome

velocity [37]. Whilst Sivagurunathan et al., found that dynactin still co-localized with a Loa mu-

tant dynein in Neurospora crassa and suggest that the Loa mutation could cause a problem with

interhead coordination between the two motor domains [36].

The Cra1 mutation lies in the proposed homodimerization site of the dynein heavy chain and

presents with a similar phenotype to the Loa mutant [3]. Chen et al., study the Swl mutation which

also presents a similar phenotype to the Loa mutation and occurs in the dynein heavy chain in the

cargo binding region and also in the proposed site of homodimerization [86]. They suggest that this

mutation is connected to hereditary sensory neuropathy or some forms of Charcot-Marie-Tooth

disease [86].

Mutations in the dynein heavy chain 1 (DYNC1H1) have been identified in humans with

Charcot-Marie-Tooth disease type 2 (CMT2), spinal muscular atrophy with lower extremity pre-

dominance (SMA-LED) and intellectual disability [5, 34] (reviewed in [4]). Weedon et al., find

a DYNC1H1 mutation in three individuals with CMT2 which occurred in the proposed homod-

imerization domain [34]. Scoto et al., suggest that the mutations that they identify in humans

with SMA-LED, occurring in the tail and motor domain of DYNC1H1, have a similar effect to the

Loa mutation and cause SMA-LED with malformation of cortical development [5]. Fiorillo et al.,

present two mutations in DYNC1H1, one occurring in the neck and the other in the motor do-

main, which result in a phenotype of ‘congenital motor neuron disease associated with focal areas

of cortical malformation’ [87]. Schiavo et al., report that genetic background may be significant

in the resulting phenotype from a specific mutation in the DYNC1H1 [4]. Banks et al., study a

mutation in the light intermediate chain of dynein and find that the mutant mice have altered

neural development and suffer from increased anxiety [88].

The interactions of dynein with its regulators are also important, with mutations in Lis1 causing

severe neuronal migration defects [89]. Whilst mutations in p150Glued of dynactin have been found

in patients with amyotrophic lateral sclerosis (ALS) and distal spinal and bulbar muscular atrophy

(SBMA), as well as being linked to Perry syndrome [90].
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2.2 Relevant models

Endocytosis and intracellular transport has been a significant topic of interest for modelling as well

as the motion and distribution of kinesin motors, however in comparison relatively few authors

have studied dynein and its processes. Lan and Sun model myosin monomers, dimers and collective

assemblies of motors by studying the ‘energy landscape’, which can be reduced to ratchet, power

stroke or Markov models depending on the assumptions made; their work can also be applied to

other motor proteins [91]. Relevant models are discussed below.

2.2.1 Intracellular transport

Intracellular transport is a wide field of study, for example Rubinow and Blum model general

transport in axons [92], I. A. Kuznetsov and A. V. Kuznetsov model the transport of short micro-

tubules in an axon [93], and Gou et al., model the transport of early endosomes in fungal hyphae

[94]. Of particular interest is the model by Smith and Simmons [95] on bi-directional transport

by motor proteins, described in detail below, which has been extended and studied by several

other authors [96, 97, 98, 99, 100, 101]. Gou et al., model dynein population densities studying

various mechanisms for the transition between dynein walking along microtubules to being carried

by kinesin-3 in the opposite direction [94].

Lipowsky et al., have studied lattice models for motor proteins using an asymmetric simple

exclusion process (ASEP), with a specific focus on kinesin motors, modelling the microtubule as

a one-dimensional line within a three-dimensional lattice [102, 103, 104, 105]. They model motor

motion as a random walk, either stepping on the microtubule or unbinding and diffusing, in both

open and closed domains [102, 103, 104, 105]. Klumpp and Lipowsky extend this work to patterns

of filaments with opposite polarities, from two parallel filaments to square lattices with intersecting

filaments [106]. In another paper by Klumpp et al., they study multiple microtubules arranged in

either parallel or radial arrangements with the same polarity [107]. Chai et al., consider stepping,

binding and unbinding defects within the model [108]. In their later work, Chai et al., model

the population dynamics of multiple types of motor proteins together in a domain, where the

microtubule continues to be modelled as a one dimensional lattice, motors perform random walks

biased towards a certain direction depending on the species and are considered as part of a reservoir

when unbound [109].

Ashwin et al., [110] study the population dynamics of dynein on tracks also using an asymmetric

simple exclusion process, described in detail below, the model is extended in later papers by the
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group [111, 112] and a general model is analysed by Juhász [113, 114]. Ebbinghaus and Santen

study a two lane lattice model for intracellular transport, using one lane to model transport on

the microtubule and the other for diffusion in the cytoplasm [115]. In later work Ebbinghaus et

al., extend this model to include a dynamic track where binding sites can be eliminated [116]

Many authors have also considered multiple-motor transport, by motors of either the same

or different types. Klumpp and Lipowsky consider a cargo pulled by N motors of the same

type which can bind to and from the microtubule or filament modelling this as a continuous-

time Markov process [117]. This model is extended to study a tug-of-war between two types of

motor proteins acting on a cargo [118, 119, 120]. Berger et al., study the elastic coupling between

two motor proteins [121, 122, 123]. Kunwar et al., model multiple-motor transport by kinesin

motors, modelling the kinesin motors as springs and the attachment to and from the microtubule

stochastically [124]. Korn et al., also study transport by multiple kinesin motors using a Langevin

equation to model the dynamics of the cargo, modelling the kinesin motors as either a harmonic

spring or a cable, and microtubule binding is modelled stochastically [125]. Driver et al., look at

the behaviour of two kinesin-1 motors, with each motor modelled as a linear spring and connected

together by a rigid rod whilst using a kinetic model for stepping [126].

Reaction diffusion transport model

Smith and Simmons model the bi-directional motion of organelles and vesicles, referred to as

particles, along microtubules both when attached and when diffusing freely [95]. Focusing on

transport in axons and dendrites, they consider one spatial dimension and make the following

assumptions:

1. “a ‘particle ’ consists of a complex between an organelle or vesicle and motor proteins (per-

manently attached to the surface membrane);

2. particles either diffuse freely in solution or move on a filament at a steady velocity v (the

‘motor velocity ’), which may depend on the number of motors on the particle;

3. binding to and detachment from filaments are kinetic processes specified by first-order rate

constants, which include factors as appropriate for lateral diffusion and the density of motor

proteins and filaments; and

4. in the general case of bidirectional transport, binding is followed by motion in either direction,

as a result of the presence of filaments and/or motors with both polarities. ” [95]
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For simplicity they further assume that the filaments solely determine the direction of travel [95].

The following reaction-diffusion-transport equations are thus derived:

∂n0(x, t)

∂t
−D

∂2n0(x, t)

∂x2
=− (k+ + k−)n0 + k′+n+ + k′−n−, (2.1)

∂n±(x, t)

∂t
+ v±

∂n±(x, t)

∂x
=k±n0 − k′±n±, (2.2)

where n0(x, t) is the density of free particles and n±(x, t) are the densities on the outward (+)

and inward (−) filaments, at time t and position x [95]. The parameters v+ > 0 and v− < 0 are

the motor velocities, k+ and k− are the rate constants for binding to filaments, k′+ and k′− are

the rate constants for detachment, all on outward and inward filaments respectively; and D is the

diffusion constant for free particles [95].

This model is helpful in understanding the macroscopic behaviour of endosomes, however we

are concerned with the particular mechanisms of cytoplasmic dynein which cannot be studied using

this model. A drawback with this model is the use of constant velocity, where experiments have

shown oscillatory velocity profiles [2]. The presence of free diffusion in the model is questionable

due to the crowded nature of the cytoplasm. The high speeds seen in experiments for axonal

transport would also suggest that there is little diffusion, and the transport is solely through the

action of motor proteins. The large numbers of different motor proteins acting on an endosome at

any one time would also limit the possibility for free diffusion. The pauses and changes in direction

of organelles may instead be caused by the interactions of multiple motor proteins, such as the

effects caused by a tug-of-war.

Asymmetric simple exclusion process model

Ashwin et al., propose a bi-directional transport model for the population dynamics of dynein on

a single microtubule where either dynein moves by itself to the minus end or is carried by kinesin

to the plus end [110]. They make the following assumptions:

• “All the motors are of one of two types - moving either to the right or to the left.

• Right and left moving motors pass without interaction, but there is an ‘exclusion principle’

that means a motor can only move forwards if the site ahead is free of motors of the same

type.

• In the dilute state, the motors move at a mean velocity v+ and v− to the right/left, respec-

tively.
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• There is a random switching of direction where right-moving motors change to left-moving

at a rate pd, and left-moving motors change to right-moving at a rate pu, where pd,u can

be expressed by velocities and Ma,r, the mean free run length of left (right) moving motors

before turning as pd = v+/Ma (pu = v−/Mr).” [110]

• “The right boundary of the MT has no-flux boundary conditions.

• The right-moving motors appear at the left boundary with flux rate α+ = Fin while the

left-moving motors exit without impediment.

• The system is in statistical equilibrium.” [110]

The microtubule is discretized into two tracks, a mean field approximation and further simplifica-

tions are used in order to obtain the following system of partial differential equations:

∂ρ

∂t
= −pdρ(1 − σ) + puσ(1 − ρ) +

v+
L

(2ρ− 1)
∂ρ

∂x
+ δ

v+
2L

∂2ρ

∂x2
, (2.3)

∂σ

∂t
= pdρ(1− σ)− puσ(1 − ρ) +

v−
L

(1− 2σ)
∂σ

∂x
+ δ

v−
2L

∂2σ

∂x2
, (2.4)

where ρ and σ represent the densities for the right and left tracks respectively, t is the time variable,

v+ and v− are the mean velocities of the right and left motors respectively, and δ = h
L
where h is

the spatial step and L is the spatial length of the simulation [110]. In this paper they focus on the

effects of queueing, assuming that there is zero flux at the plus end of the microtubule and studying

the accumulation of motors at this end [110]. The model produces results similar to experimental

observations [111]. They extend this model in later work to include thirteen tracks, in order to

reflect the thirteen protofilaments comprising a microtubule, and allowing some loss of dynein at

the plus end of the microtubule to account for detachment [111]. They continue to use a fixed step

size of 8nm [111], which does not reflect the variability in step size or the step size of the MTBD

which is primarily 16nm [30]. The possibility of dynein side stepping to a different protofilament

is included however they do not include backward steps taken by dynein [111]. In later work, the

original model is extended to study the transportation of early endosomes via two microtubules

arranged in an antipolar bundle (i.e. two parallel microtubules with one orientated from minus

to plus end and the other orientated from plus to minus end, which overlap for a portion of their

minus ends allowing motors to switch between the two microtubules in this section) [112].

The mathematical framework provides a significant contribution to the understanding of the

behaviour of dynein populations on microtubule tips as well as the transportation of early en-

dosomes, however the mechanism employed by individual dynein motors is not considered. We

wish to consider a more detailed model of the involvement of dynein within the transport process,
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concentrating on the mechanics of a single dynein rather than the population in order to fully

understand how mutation will effect the transport process.

2.2.2 Kinesin

Several authors have studied the stepping and processes of kinesin from various different ap-

proaches. Liepelt and Lipowsky study the chemomechanical cycle of kinesin using a six and seven

state model describing the motor dynamics as a continuous-time Markov process, this model is

extended in later work [127, 128, 129, 130, 131]. Keller et al., extend this model to consider the

transport of a cargo by kinesin-1 motor proteins [132]. Munárriz et al., model the stepping of

kinesin using a simple flashing ratchet model [133]. Bier proposes that motor proteins can be mod-

elled as a Brownian ratchet [134], extending this simple model to the stepping of kinesin for which

the stepping cycle is categorised by two distinct phases: a ‘power stroke phase’ and a ‘ratcheted

diffusion phase’ [135, 136]. In later work Bier suggests that the ‘flashing ratchet’ model best de-

scribes kinesin monomers whilst a ‘feedback control ratchet’ is more appropriate to describe kinesin

dimers [137]. Bier later considers backward stepping of kinesin, assuming that a backward step is

caused by the rearward head re-binding to the same binding site [138]; whilst Bier and Cao propose

that these backward steps can actually maximise the speed of kinesin [139]. Zhang builds on earlier

work by Bier including an additional phase to categorise ATP binding in order to account for ATP

dependence [140]. In other work, Zhang studies the mechanochemical cycle of kinesin obtaining an

expression for the mean velocity [141]. Fisher and Kolomeisky propose a mechanochemical model

for kinesin that describes the transitions between the chemical states [142, 143]. In work by Zhang

and Fisher, they study the proposed ‘limping’ of kinesin [144]. Imafuku et al., model the ‘hopping’

of kinesin, which occurs when the attached head becomes detached from the microtubule due to

external load before reattachment at an alternative binding site [145]. Hendricks et al., look at the

components of the kinesin complex in more detail, deriving a mechanistic model to describe the

stepping process, as discussed below [146].

Lisowski et al., consider a model in which kinesin serves purely as a ‘tether’ to keep the cargo

attached to the microtubule whilst it undergoes diffusion [147]. In other work, Lisowski et al.,

develop a model for a general two head motor using overdamped Langevin equations where the

motor is subjected to Lévy white noise, the two heads are connected by a harmonic spring, experi-

ence repulsion when they are too close to each other and their interaction with the microtubule (or

track) is modelled using a ratchet potential which is anisotropic and periodic [148]. Jamali et al.,

model kinesin stepping using a stochastic model with Gaussian white noise, including potentials
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representing the elastic interaction between the two heads of the dimer, repulsion between head

domains from other kinesins, and a ratchet potential for the interaction with the microtubule [149].

Mechanistic model for kinesin

Hendricks et al., derive a mechanistic model to describe the transient dynamics of kinesin [146].

They study the motion of the individual components of kinesin (the strongly bound head, weakly

bound head, neck and linker) attached to a bead [146]. In the model the two head domains connect

to a neck via a spring, and the neck is also connected to the cargo by a spring [146]. The motion of

the bead, strongly bound head and neck are then described by the following system of first order

differential equations:

γbẋb = −FL +Kb(xn − xb), (2.5)

γsẋs = Ks(u− xs) +Kh(Ψs − ψs), (2.6)

γnẋn = −Kb(xn − xb)−Kh(Ψs − ψs)−Kh(Ψw − ψw), (2.7)

where x is the position, with the subscripts b, s, n and w referring to the bead, strongly bound

head, neck and weakly bound head respectively, ψs = xs−xn, and ψw = xw−xn [146]. The model

parameters are as follows: γ is the viscous damping coefficient, FL is the external load acting on

the bead, spring constants Kb and Kh for the springs connecting the bead to the neck and the

neck to the head respectively, the equilibrium positions Ψs and Ψw of the neck with respect to the

strongly and weakly bound heads respectively, spring constant Ks representing the affinity to the

microtubule in the strongly bound state, and u the binding site [146]. The motion of the weakly

bound head, which is assumed to be the rearward head, is modelled separately [146]. It is assumed

that the weakly bound head is propelled forward by the elastic forces acting on it and that it moves

to the next available binding site through Brownian motion. This diffusion process is modelled

using the mean first-passage time based on past and future potentials for the microtubule binding

affinity and the internal stresses of the complex [146]. Once the weakly bound head binds to a

binding site, the two heads switch states, so that the strongly bound head now becomes the weakly

bound head and vice versa [146]. This switching is modelled by a single variable, assuming inter-

head coordination, using Michaelis-Menton kinetics [146]. The model agrees well with experimental

results for the behaviour of kinesin velocity under varying load and ATP concentrations, however

it is limited as it does not include backward stepping and can not be used to study mean run

length due to the use of a single variable to describe the chemical state.
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2.2.3 Dynein

The stepping process of kinesin has been much more widely studied than that of dynein, studies

of dynein have generally focused on the mechanochemical cycle. Singh et al., use Monte Carlo

simulations in order to model dynein, they assume that dynein has a single head and that the

step size is determined by the chemical state of the secondary ATP binding sites [150]. These

are significant assumptions as interhead coordination plays an important role in dynein stepping

and there is little evidence that suggests that the step size is governed by the secondary binding

sites. Mukherji proposes a model for dynein based on its chemical transition rates and studies the

probabilities of the molecule being at certain points on a lattice in a certain chemical state, however

their model is fairly simplistic as in particular they treat dynein as a single head hence neglecting

interhead coordination [151]. Tsygankov et al., also consider the mechanochemical cycle but here

they look at a two-headed complex, discussed in more detail below [152]. They couple this model

to Langevin equations in order to model the structural conformation of the complex, again this is

discussed in more detail below [153]. Šarlah and Vilfan also study the structural conformation of

the molecule and use a kinetic model of the ATP cycle to study the stepping patterns, see below for

more detail [154]. Zheng uses an elastic network model to study the conformations and transitions

between the pre-power-stroke and post-power-stroke states of a single dynein motor domain [155].

Chemomechanical model for dynein

Tsygankov et al., study the coordinated stepping of cytoplasmic dynein by modelling its chemo-

mechanical cycle [152, 153]. In their first model, they initially consider stepping in the absence

of ATP induced by applied force, studying the association and dissociation rates of the two head

domains using the Arrhenius Equation:

k = A exp(
−Ea

kBT
), (2.8)

where k is the rate constant, A a prefactor known from experiments, Ea the activation energy,

kB the Boltzmann constant and T absolute temperature [152]. The prefactors are taken to be

the association and disassociation rates in the absence of force from experimental data; and the

activation energy is taken to be DiF for i = 1, 2, 3, 4 where D1 − D2 + D3 − D4 = ∆x, given

∆x as the step size of the motor, and F is the horizontal force applied to the motor [152]. They

proceed to derive expressions for the mean run time, run length and velocity, and analysis of these

results shows that as the force increases the mean velocity also increases however the mean run
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time decreases illustrating a ‘trade-off’ between high processivity and high velocity [152]. This

raises the question of whether this trade off is species specific, as different species exhibit different

velocities and run lengths, as well as how the presence of dynactin might effect this trade off given

its positive impact on run length. Tsygankov et al., introduce ATP hydrolysis into their model by

considering both a four and six state cycle, and within their analysis they propose a set of minimal

chemomechanical cycles of two distinct types: one head at a time and out of phase motion [152].

The authors propose that coordination between the two motor domains in the ATP hydrolysis

cycle is required to achieve the high velocity and run length seen in experiments [152].

In later work Tsygankov et al., studied conformations of the dynein homodimer, moving be-

tween pre-power-stroke and post-power-stroke states whilst the forward MTBD remains fixed to

the microtubule [153]. They develop a stochastic model using Langevin equations to model the

dynamics of the angles determining the conformation of the motor; representing the curvature of

the tail and stalk, the angle between the positions that the tail and stalk exit the AAA+ ring,

the angle of MTBD attachment and the angle describing the relative orientation of the two head

domains [153]. Their results show that the stepping MTBD is constrained to motion in one dimen-

sion along the microtubule and to a position close to the binding site 8.2nm away from the bound

MTBD [153]. Tsygankov et al., combine this structural model with their previous chemomechani-

cal model as described above, the results show processive motion with both forward and backward

steps, although they do not achieve the range of step sizes seen experimentally [153]. The authors

suggest that interhead coordination may occur between the two AAA+ rings at a site which is

located in the same region as the C-sequence domain when the rings are in close proximity [153].

They also suggest that both the power stroke and recovery stroke are needed in order to move the

MTBD to the next binding site [153].

This work provides significant insight into the stepping process of dynein. However, alternative

models may be of more interest when studying how tension and force affect the complex. For

example, the effects of force are only studied through dissociation and association rates within

this model [153]. Alternative approaches to modelling may also be of more interest when studying

mutations which occur outside of the motor domain if their mechanistic effects do not directly

impact on the chemical cycle or conformation of the motor domain.

Winch model for dynein

Šarlah and Vilfan also propose a mechanochemical model for cytoplasmic dynein combining an

elastomechanical with a kinetic approach under the assumption that dynein behaves like a winch,
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with its MTBD moving forward to the next binding site and then pulling the cargo forwards

[154]. They model the AAA+ ring as a rigid disc, the linker as a rigid rod which can take two

conformations, the stalk is modelled as an ideal elastic rod, and the dimerized tails are modelled

as an elastic cord [154]. The two AAA+ rings are assumed to interact with this interaction

modelled by: ‘hard-core repulsion between two cylinders and an additional attractive interaction

that [favours] parallel stacking of the two rings’. They then compute the conformations of the

dynein homodimer with minimal energy using Monte Carlo methods, assuming that the molecule

prefers to be in a front-to-back conformation of the AAA+ rings [154]. A kinetic model for the

ATP hydrolysis cycle is then used in order to model the stepping of the dimer [154]. Their results

reflect experimental observations on the effects of applied force, however the step size distributions

do not exhibit the larger step sizes seen in experiments or the proportion of off axis stepping [154].

They do find comparable levels of alternating stepping when modelling loosely coupled dimers but

their model still gives a predominately hand-over-hand stepping pattern rather than the shuffling

seen for this complex, this may be due to the existence of ring-to-ring interactions still present in

the loosely coupled model which may weaken or disappear if the two head domains are located far

enough apart as suggested in some experiments [154].

We therefore set out to derive a mechanistic model from first principles to describe the stepping

behaviour of cytoplasmic dynein 1. We wish to consider a general integrative model for dynein

attached to a cargo, which could be applied to an individual species by the choice of parameters and

considers the motion of the various structural components such as the MTBDs and AAA+ rings

separately. Research outcomes for the study are to develop a mathematical model that corroborates

and investigates current experimental observations, to make predictions that are experimentally

testable and to study the mechanistic effects of mutations on dynein function.
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Part I

Continuous Model
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Chapter 3

Derivation of the Mechanical

Model

We propose a general integrative mechanical model for the motion of a single dynein, attached

to a cargo, walking along a single microtubule [9]. The cargo modelled represents various cellular

objects such as a vesicle or endosome in vivo or a bead in vitro, and any regulators of cargo binding,

such as dynactin, are modelled as part of the cargo. We model the cargo, AAA+ rings, and MTBDs

as spheres with small Reynolds numbers, as shown in Figure 3.1 [9]. The stalks and associated

strut or buttress are modelled as springs. The tail section of dynein is modelled as two springs

each connecting an AAA+ ring to the cargo. The fixed part of the linker domain is assumed to

be modelled as part of the sphere representing the AAA+ ring and the rest of the linker domain

is modelled as part of the tail spring. The microtubule is modelled as a one-dimensional line with

positive direction towards the nucleus (and therefore negative direction towards the membrane, the

inverse of usual signs). We will only consider movement along this microtubule, leaving detachment

and switching between microtubules for later studies. For simplicity we will only consider one space

dimension, looking at forces and movement in the horizontal direction, leaving higher dimensions to

future studies. Let xC(t), xA(t), xB(t), xD(t) and xE(t) denote the positions of the cargo, AAA+

rings A and B, and MTBDs D and E respectively at time t ∈ [0, T ] for some end time T > 0,

taking x = [xC(t), xA(t), xB(t), xD(t), xE(t)]. We define FC(t) to be a force acting on the cargo

from external effects that varies over time. This force could be caused by other motor proteins,

such as kinesins, for example. In order to model the effects of ATP hydrolysis we initially assume

that a force, denoted by FA(x, t) and FB(x, t), acts on AAA+ rings A and B respectively and

is dependent on the positions of the AAA+ rings and MTBDs and varies over time. We assume
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that there are forces acting between the microtubule and the MTBDs. We refer to these forces as

binding affinities and denote them by gD(x, t) and gE(x, t) for MTBDs D and E respectively. We

assume that they depend on the positions of the AAA+ rings and MTBDs and vary over time.

Figure 3.1: Schematic diagram of the mechanical model. The cargo is modelled as a sphere
and depicted in grey. The dynein motor domain is modelled by two spheres, representing the
AAA+ rings and depicted in green, connected via springs, representing the stalks, to two smaller
spheres, representing the MTBDs D and E; depicted in yellow and orange respectively. The tail
section of the dynein complex is modelled as two springs connecting the AAA+ rings to the
cargo. The microtubule is modelled as a line and is depicted in red. Reproduced from Bulletin of
Mathematical Biology, From the Cell Membrane to the Nucleus: Unearthing Transport Mechanisms
for Dynein, v.7, 2012, p.2032, Laurie Crossley, Caroline A. Garrett, Majid Hafezparast and Anotida
Madzvamuse, (© Society of Mathematical Biology 2012) with permission of Springer [9].

Three main results are used to model the forces acting on the complex: Newton’s second law

of motion, Hooke’s law, and Stokes’ law. Newton’s second law of motion states that the rate of

change of momentum of a body must be equal to the net forces acting on it:

d

dt

(

m(t)
dx(t)

dt

)

=
n∑

i=1

Fi(x, t),

where m(t) is the mass, x(t) is the position of the body at time t and Fi are the n forces acting

on the body. We assume that the masses of the cargo, AAA+ rings and MTBDs remain constant

and hence this translates to equating the mass multiplied by the acceleration to the net force:

m
d2x(t)

dt2
=

n∑

i=1

Fi(x, t).

If we assume that the springs are linear, then we can use Hooke’s law to model the force exerted
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by the springs, this states that the spring force is proportional to the displacement:

F1(t) = K(y(t)− l), (3.1)

where F1 is the force exerted by the spring, l is the unstressed length of the spring, y is the length

of the spring and K is the associated spring constant [156]. We are considering the motion of a

complex inside the cytoplasm in vivo or in a viscous medium in vitro, hence the complex and the

cargo will experience viscous drag. Stokes’ law states that for a spherical body with low Reynolds

number the viscous drag can be modelled as proportional to the settling velocity:

F2 = −6πηRv, (3.2)

where F2 is the frictional force, η the dynamic viscosity, R the radius of the sphere and v the

settling velocity [156].

Remark 3.0.1. In order to apply Stokes’ law, we assume that the viscous forces dominate the

motion and that the cargo and components of the complex have a low Reynolds number. The

Reynolds number is given by Re = ρLv
η

where η is the viscosity, ρ is the density of the fluid, L

is the length and v is the velocity [156]. Howard gives the Reynolds number for a protein and

bacterium to be 0.05 and 5 × 10−5 respectively [156], if we use similar values for the viscosity

and density of the fluid we obtain Re ≤ 3 × 10−6 for a maximum length of 1000nm (see Table

3.1) and maximum velocity of 3µms−1 [84]. Therefore, the assumption of low Reynolds number is

appropriate.

Remark 3.0.2. For Stokes’ law to apply, the Knudsen number (Kn) must also be low, with Kn < 1.

The Knudsen number is given by Kn = λ
L
where λ is the mean free path and L is the representative

physical length [157]. The mean free path in an aqueous solution under normal conditions can be

computed to be approximately λ = 0.1 to 0.3nm [157]. Assuming a no-slip condition, the Knudsen

number must satisfy Kn < 0.01 [158] and hence the characteristic length must satisfy L > 30nm.

Given the size of the cargo, with radius greater than 100nm (see Table 3.1), the characteristic

length would indeed exceed 30nm. Note that the characteristic lengths of the AAA+ rings and

MTBDs satisfy Kn < 0.1, which suggests that continuum methods can be used but that there may

be benefits from applying statistical mechanics, which could be the subject of future research [157].

It should also be noted that the mean free path in the cytoplasm could be much lower than in

an aqueous solution due to the presence of other molecules, organelles and cytoskeletal structures

which may reduce the value of the Knudsen number further, thereby strengthening the case for

the use of the continuum model.
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Using these results, the following system of second order non-linear ordinary differential equa-

tions (ODEs) is derived:

mC

d2xC
dt2

=KB,C

[

xB − xC − LB,C cos[θB,C(x, t)]
]

−KA,C

[

xC − xA − LA,C cos[θA,C(x, t)]
]

− FC − γC
dxC
dt

, (3.3)

mA

d2xA
dt2

=FA(x, t) +KA,C

[

xC − xA − LA,C cos[θA,C(x, t)]
]

−KA,D

[

xA − xD − LA,D cos[θA,D(x, t)]]− γA
dxA
dt

, (3.4)

mB

d2xB
dt2

=FB(x, t) +KB,E

[

xE − xB − LB,E cos[θB,E(x, t)]
]

−KB,C

[

xB − xC − LB,C cos[θB,C(x, t)]
]

− γB
dxB
dt

, (3.5)

mD

d2xD
dt2

=gD(x, t) +KA,D

[

xA − xD − LA,D cos[θA,D(x, t)]
]

− γD
dxD
dt

, (3.6)

mE

d2xE
dt2

=gE(x, t)−KB,E

[

xE − xB − LB,E cos[θB,E(x, t)]
]

− γE
dxE
dt

, (3.7)

for t ∈ [0, T ] and x = [xC , xA, xB, xD, xE ]. Note that we denote by B,C the connection between

B and C and similarly for other connections. The full derivations are detailed below.

Remark 3.0.3. The assumption that the mass of the cargo will remain constant is significant

for modelling in vivo events. During endocytosis the mass of a vesicle or endosome will change

significantly as it moves from the cell membrane towards the nucleus due to fission and fusion [12,

14]. For in vitro events, latex beads or Qdots are used in experiments which can be approximated

well by spheres with constant mass. In future studies, a more complex system could be derived in

order to model the mass and shape changes of an endosome in vivo.

First, the derivation of the equation of motion for the cargo (3.3) is presented. Let mC denote

the mass of the cargo, then on the left hand side of the equation we have the mass multiplied by

the acceleration, i.e.

mC

d2xC
dt2

.

The right hand side is given by the net forces acting on the cargo. There are two spring forces

acting on the cargo: the spring force between the cargo and AAA+ ring A, denoted by FA,C , and

the spring force from the spring connecting the cargo to AAA+ ring B, similarly denoted by FB,C .

Using Hooke’s law, (3.1), and evaluating the force in the horizontal direction by trigonometry gives:

FB,C = KB,C

[ xB − xC
cos[θB,C(x, t)]

− LB,C

]

cos[θB,C(x, t)],

where KB,C is the spring constant associated with the spring, LB,C is the unstressed length of the
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spring, θB,C(x, t) is the acute angle of the spring from the horizontal and

xB − xC
cos[θB,C(x, t)]

is the length of the spring at time t. This simplifies to:

FB,C = KB,C

[

xB − xC − LB,C cos[θB,C(x, t)]
]

.

Similarly, the spring force for the spring connecting the cargo to AAA+ ring A is given by:

FA,C = −KA,C

[

xC − xA − LA,C cos[θA,C(x, t)]
]

,

where KA,C is the spring constant, LA,C is the unstressed spring length and θA,C(x, t) is the acute

angle of the spring from the horizontal. Note, that this force is acting in the negative direction.

As described above, a force FC also acts on the cargo from external sources. This force is assumed

to be constant over time and is fixed as a parameter value. The cargo will also be subjected to

viscous drag, denoted by DC , which can be modelled using Stokes’ law, (3.2):

DC = −γC
dxC
dt

,

where γC = 6πηRC is the damping coefficient with η the viscosity of the cytoplasm and RC the

radius of the cargo. The force is negative as it acts in the opposite direction to the velocity to

oppose motion. The forces FB,C , FA,C , FC and DC can then be summed to obtain the right hand

side of equation (3.3). This completes the derivation of the equation of motion for the cargo.

The equation of motion for AAA+ ring A (3.4) is derived in a similar fashion, with the left

hand side given by

mA

d2xA
dt2

where mA denotes the mass of AAA+ ring A. For the right hand side of the equation, the net force

is considered. To model the effects of ATP hydrolysis, it is assumed that AAA+ ring A produces a

force FA(x, t), the exact form of this function will be investigated in Chapter 4. As derived above,

the spring force between AAA+ ring A and the cargo is given by:

−FA,C = KA,C

[

xC − xA − LA,C cos[θA,C(x, t)]
]

,

with the force acting in the positive direction with respect to AAA+ ring A. There is also a spring

force from the spring connecting AAA+ ring A to MTBD D, denoted by FA,D. Using Hooke’s law
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the force can be expressed as:

FA,D = −KA,D

[

xA − xD − LA,D cos[θA,D(x, t)]
]

,

where KA,D is the spring constant, LA,D is the unstressed spring length and θA,D(x, t) is the acute

angle of the spring. Note that this spring force also acts in the negative direction. The viscous

drag acting on the AAA+ ring, denoted DA, is modelled using Stokes’ law and hence:

DA = −γA
dxA
dt

,

where γA = 6πηRA is the damping coefficient with RA the radius of the AAA+ ring A. These

forces are summed to give the right hand side of equation (3.4).

The equation of motion for AAA+ ring B (3.5) can be derived similarly with parameters KB,E,

LB,E and θB,E(x, t) representing the spring constant, unstressed length and acute angle for the

spring between AAA+ ring B and MTBD E respectively; γB the damping coefficient with RB the

radius; FB(x, t) the force produced by AAA+ ring B during ATP hydrolysis and mB the mass of

AAA+ ring B.

Let mD denote the mass of MTBD D, then the left hand side of the equation of motion of

MTBD D (3.6) is given by:

mD

d2xD
dt2

.

To obtain the right hand side of equation (3.6) the forces acting on MTBD D must be balanced.

The spring force between MTBD D and AAA+ ring A is given as above:

−FA,D = KA,D

[

xA − xD − LA,D cos[θA,D(xA, xB)]
]

,

where the force acts in a positive direction on MTBD D. It is also assumed that there is a binding

force acting on the MTBD in order to keep it bound to the microtubule. This binding affinity is

denoted by gD(x, t) and the form of the function will be investigated later in the study. A viscous

drag will also act on MTBD D, denoted by DD and given by:

DD = −γD
dxD
dt

,

from Stokes’ law where γD = 6πηRD is the damping coefficient with RD the radius of MTBD D.

The derivation of the equation of motion of MTBD E is similar, where gE(x, t) denotes the
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binding affinity, γE the damping coefficient with RE the radius, and mE the mass of MTBD E.

To proceed, the following reasonable mathematical assumptions are made:

• The springs between the AAA+ rings and the cargo are equivalent;







KA,C = KB,C =: KC ,

LA,C = LB,C =: LC .

(A1)

• The springs between the AAA+ rings and the MTBDs are equivalent;







KA,D = KB,E =: KS ,

LA,D = LB,E =: LS .

(A2)

• The masses of the AAA+ rings are equal and the masses of the MTBDs are equal;







mA = mB =: mM ,

mD = mE =: mS .

(A3)

• The damping coefficients of the AAA+ rings are equal and the damping coefficients of the

MTBDs are equal;







γA = γB =: γM ,

γD = γE =: γS .

(A4)

• The cargo is allowed to move freely, it is only subjected to the action of a single motor in a

viscous medium and undergoes no fusion or fission. Hence, there is no added force such as

that from other motors or from an optical trap;

FC = 0. (A5)

• The cargo is pulled by dynein such that its tail section is horizontal;







θB,C = 0,

θA,C = π.

(A6)
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• The stalks are at an angle such that:







cos[θA,D(x, t)] ≈ 0,

cos[θB,E(x, t)] ≈ 0.

(A7)

Note that some of the above assumptions, (A5) - (A7), will be adapted in later chapters and

relaxed in future studies. The goal here is to derive the most amenable model possible.

Remark 3.0.4. The simplifying assumption of fixed angles means that the AAA+ rings and cargo

will move according to the extension and relaxation of the springs horizontally. This is an ap-

propriate assumption for the model whilst we remain in one space dimension but will need to be

considered when moving to higher dimensions. It is likely that there is some rigidity within the

complex with regards to these angles, with the main variation arising from the conformational

change under ATP hydrolysis. A stochastic model in two space dimensions with variable angles is

considered in Chapter 5.1.

Using assumptions (A1), (A2), (A5)-(A7) reduces equations (3.3) - (3.7) to:

mC

d2xC
dt2

+ γC
dxC
dt

+ 2KCxC = KC(xA + xB − 2LC),

mA

d2xA
dt2

+ γA
dxA
dt

+ (KC +KS)xA = FA(x, t) +KCxC +KSxD +KCLC ,

mB

d2xB
dt2

+ γB
dxB
dt

+ (KC +KS)xB = FB(x, t) +KCxC +KSxE +KCLC ,

mD

d2xD
dt2

+ γD
dxD
dt

+KSxD = gD(x, t) +KSxA,

mE

d2xE
dt2

+ γE
dxE
dt

+KSxE = gE(x, t) +KSxB .

Applying the further assumptions (A3) and (A4) gives the following system of ordinary differ-

ential equations:

mC

d2xC
dt2

+ γC
dxC
dt

+ 2KCxC = KC(xA + xB − 2LC), (3.8)

mM

d2xA
dt2

+ γM
dxA
dt

+ (KC +KS)xA = FA(x, t) +KCxC +KSxD +KCLC , (3.9)

mM

d2xB
dt2

+ γM
dxB
dt

+ (KC +KS)xB = FB(x, t) +KCxC +KSxE +KCLC , (3.10)

mS

d2xD
dt2

+ γS
dxD
dt

+KSxD = gD(x, t) +KSxA, (3.11)

mS

d2xE
dt2

+ γS
dxE
dt

+KSxE = gE(x, t) +KSxB . (3.12)

for t ∈ [0, T ].
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3.1 Non-dimensionalisation

To achieve appropriate scaling we proceed to nondimensionalise the model system given by equa-

tions (3.8) - (3.12), setting:

xC = x̂CχC , xA = x̂AχA, xB = x̂BχB, xD = x̂DχD, xE = x̂EχE , and t = t̂τ ;

with x̂i, t̂ the characteristics and χi, τ the nondimensional variables for i = A,B,C,D,E. For

scaling purposes, we will assume that the ATP force and binding affinities can be written in the

form:

FA(x, t) = HF̄A(χ, τ), FB(x, t) = HF̄B(χ, τ), gD(x, t) = GḡD(χ, τ), and gE(x, t) = GḡE(χ, τ),

where H and G represent the maximum force produced during ATP hydrolysis or microtubule

binding. Let M , L and T denote mass, length and time respectively, with megadaltons (MDa),

nanometres (nm) and nanoseconds (ns) as the units of mass, length and time respectively. The

dimensions of the model parameters are:

[mC ] = [mM ] = [mS ] =M,

[γC ] = [γM ] = [γS ] =MT−1,

[KC ] = [KS ] =MT−2,

[G] = [H ] =MLT−2,

[LC ] = L.

The dimensions of the model variables are:

[xC ] = [xA] = [xB ] = [xD] = [xE ] = L, and [t] = T.

The characteristics are chosen as follows:

xC =LCχC , xA =
H

KC +KS

χA, xB =
H

KC +KS

χB,

xD =
G

KS

χD, xE =
G

KS

χE , and t =
γC
KC

τ.
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Substituting in equations (3.8) - (3.12) and simplifying gives:

ǫ1
d2χC

dτ2
+
dχC

dτ
+ 2χC = b1(χA + χB)− 2, (3.13)

ǫ2
d2χA

dτ2
+ a2

dχA

dτ
+ χA = F̄A(χ, τ) + b2χC + c2χD + b2, (3.14)

ǫ2
d2χB

dτ2
+ a2

dχB

dτ
+ χB = F̄B(χ, τ) + b2χC + c2χE + b2, (3.15)

ǫ4
d2χD

dτ2
+ a4

dχD

dτ
+ χD = ḡD(χ, τ) + b4χA, (3.16)

ǫ4
d2χE

dtτ2
+ a4

dχE

dτ
+ χE = ḡE(χ, τ) + b4χB, (3.17)

where

ǫ1 =
mCKC

γ2C
, ǫ2 =

mMK
2
C

(KC +KS)γ2C
, ǫ4 =

mSK
2
C

KSγ2C
,

a2 =
γMKC

γC(KC +KS)
, a4 =

γSKC

γCKS

, b1 =
H

LC(KC +KS)
,

b2 =
KCLC

H
, b4 =

HKS

G(KC +KS)
, c2 =

G

H
.

It is reasonable to assume that 1 ≤ KC ,KS ≤ 20 [146], and using the values of our parameters

given in Table 3.1 (converted to MDa, nm and ns) gives:

ǫ1 ≤ mC

36000π2
, ǫ2 ≤ mM

7200π2
, and ǫ4 ≤ mS

3600π2
.

Hence, if the masses are small compared to the denominators, the coefficients of the acceleration

terms in our equation will also be small. The mass of the dynein complex is 1.2MDa [26] hence

mS < 1.2 and mM < 1.2. It follows that ǫ2 ≪ 1 and ε4 ≪ 1. To the author’s knowledge

there are no experimental ranges for the mass of an endosome, hence our model parameter mC is

unknown. For experimental purposes Qdots can be used for monitoring endocytosis in cells. The

largest Qdots, supplied by Invitrogen - Life Technologies (personal communication, 2012 [159]),

are 800nm in size and have an estimated mass of 2MDa. We assume that Qdots can approximate

endosomes well in experiments and hence take mC ≤ 2. It follows therefore that ε1 ≪ 1. The

experimental data suggests strongly that the acceleration is small and the viscous forces dominate

the dynamics [9, 146], therefore we assume that ǫ1
d2χC

dτ2 ≪ 1, ǫ2
d2χM

dτ2 ≪ 1 and ǫ4
d2χS

dτ2 ≪ 1. We
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can now neglect the acceleration terms and our system becomes:

dχC

dτ
+ 2χC = b1(χA + χB)− 2, (3.18)

a2
dχA

dτ
+ χA = F̄A(χ, τ) + b2χC + c2χD + b2, (3.19)

a2
dχB

dτ
+ χB = F̄B(χ, τ) + b2χC + c2χE + b2, (3.20)

a4
dχD

dτ
+ χD = ḡD(χ, τ) + b4χA, (3.21)

a4
dχE

dτ
+ χE = ḡE(χ, τ) + b4χB, (3.22)

where

a2 =
γMKC

γC(KC +KS)
, a4 =

γSKC

γCKS

, b1 =
H

LC(KC +KS)
,

b2 =
KCLC

H
, b4 =

HKS

G(KC +KS)
, and c2 =

G

H
.

3.2 Parameter values

From Stokes’ law the damping coefficients are given by:

γC = 6πηRC , γM = 6πηRM and γS = 6πηRS

where η is the viscosity, RC , RM and RS are the radii of the cargo, AAA+ rings and microtubule-

binding domains respectively. Hence, the coefficients in equations (3.18) - (3.22) can be expressed

as:

a2 =
RMKC

RC(KC +KS)
, a4 =

RSKC

RCKS

, b1 =
H

LC(KC +KS)
,

b2 =
KCLC

H
, b4 =

HKS

G(KC +KS)
, and c2 =

G

H
.

From experimental measurements, the motor domain exhibits a predominant step size of 16nm

[30], with potential binding sites located approximately 8nm apart due to the structure of the

microtubule [60, 160]. Hence, it is initially assumed that a MTBD binds to binding sites that are

16nm apart (see Remark 3.2.1). Furthermore, it is assumed that only one MTBD can bind to a

binding site at any one time. The microtubule is modelled as a one dimensional line with possible

binding sites 8nm apart. Let pn, n ∈ N0, be the position of a binding site on a microtubule, where

pn+1 − pn = 8. MTBD D is assumed to bind to binding sites p2b and MTBD E is assumed to bind

to binding sites p2b+1 for b ∈ N0 (see Figure 3.2 [9]).
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Figure 3.2: Diagram depicting the binding sites on the microtubule. Here the microtubule is
modelled as a line. The +ve represents the cell membrane location and -ve the nucleus location.
Reproduced from Bulletin of Mathematical Biology, From the Cell Membrane to the Nucleus:
Unearthing Transport Mechanisms for Dynein, v.7, 2012, p.2032, Laurie Crossley, Caroline A.
Garrett, Majid Hafezparast and Anotida Madzvamuse, (© Society of Mathematical Biology 2012)
with permission of Springer [9].

Remark 3.2.1. Fixing the step size to 16nm with predetermined binding sites is a strong assumption

on where the MTBDs can bind. The MTBD is restricted to binding to specific sites on the

microtubule due to the position of tubulin [60, 160]. The displacement of the MTBD, under a

conformational change during the ATP cycle, has been suggested to be close to the 16nm step size

[55], with this being the predominant step size in studies [30]. Other step sizes have been recorded

and shall be explored using a stochastic model in Chapter 6, however, here we will consider the

simplest model of dynein stepping in one space dimension.

Consider a scaling parameter G representing the size of the force applied by the binding affinity

to the microtubule. Assume that the binding affinity opposes the spring force applied by the stalk,

with the maximum corresponding with a displacement of half the distance between the binding

sites, hence G = 4KS. The model parameters therefore consist of radii (RC , RM , RS), spring

constants (KC ,KS), natural spring length (LC) and force (H). The measured values of these

parameters are given in Table 3.1.

3.3 Initial conditions

For simplicity the initial position of the cargo is taken to be at zero; the AAA+ rings are taken

to be at a distance equal to the natural spring length (LC) from the cargo; MTBD D is bound to

initial binding site p0 and MTBD E is bound to binding site p1 = p0 + 8:







xC(0) = 0,

xA(0) = LC

xB(0) = LC ,

xD(0) = p0,

xE(0) = p1 = p0 + 8.
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Parameter Meaning Experimental Ref. Primary Value
Values (MDa,nm,ns)

RC Radius of the cargo 100-500 nm [159, 161, 30] 100
RM Radius of the AAA+ ring 6.5 nm [55] 6.5
RS Radius of the MTBD 2-4 nm [59] 3
LC Unstressed length between 8-28 nm [55] 10

the AAA+ ring and cargo
KC Spring constant between the Unmeasured Estimated 1

cargo and the AAA+ ring [146, 162]
KS Spring constant between the Unmeasured Estimated 7

AAA+ ring and the MTBD [146, 162]
H Force produced by the 1-10 pN [6] 10

AAA+ ring
η Viscosity of the cytoplasm 2-50 cP [163] 2

Table 3.1: Dimensional parameters, their given ranges and the primary values used in the math-
ematical model except where it is specified otherwise. Here we also include references for those
parameter values we could find in the literature. The rest are estimated using plausible exper-
imental ranges. Modified from Bulletin of Mathematical Biology, From the Cell Membrane to
the Nucleus: Unearthing Transport Mechanisms for Dynein, v.7, 2012, p.2032, Laurie Crossley,
Caroline A. Garrett, Majid Hafezparast and Anotida Madzvamuse, (© Society of Mathematical
Biology 2012) with permission of Springer [9].

It is assumed for simplicity that the AAA+ rings start in a symmetrical position between the

binding sites and hence p0 = LC−4. Applying the non-dimensionalistation to the initial conditions

gives:







χC(0) = 0,

χA(0) = LC

H
(KC +KS),

χB(0) = LC

H
(KC +KS),

χD(0) = p0

4 ,

χE(0) = p0+8
4 .
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3.4 The model

Therefore the non-dimensional model system is given by:

dχC

dτ
+ 2χC = b1(χA + χB)− 2, (3.23)

a2
dχA

dτ
+ χA = F̄A(χ, τ) + b2χC + c2χD + b2, (3.24)

a2
dχB

dτ
+ χB = F̄B(χ, τ) + b2χC + c2χE + b2, (3.25)

a4
dχD

dτ
+ χD = ḡD(χ, τ) + b4χA, (3.26)

a4
dχE

dτ
+ χE = ḡE(χ, τ) + b4χB, (3.27)

with initial conditions

χC(0) = 0, (3.28)

χA(0) =
LC

H
(KC +KS), (3.29)

χB(0) =
LC

H
(KC +KS), (3.30)

χD(0) =
p0

p0 + 8− LC

, (3.31)

χE(0) =
p0 + 8

p0 + 8− LC

, (3.32)

and coefficients

a2 =
γMKC

γC(KC +KS)
, a4 =

γSKC

γCKS

, b1 =
H

LC(KC +KS)
,

b2 =
KCLC

H
, b4 =

HKS

G(KC +KS)
, and c2 =

G

H
,

with model parameters given in Table 3.1. In Chapter 4, the model is solved numerically and

plausible force functions are discussed. Two amendments to the model are discussed including the

impact of the ATP force acting on the MTBD rather than the AAA+ ring and a multiple motor

model.

3.5 Numerical simulations

The model system (3.23) - (3.27) with initial conditions (3.28) - (3.32) is solved numerically using

the MATLAB solver ode45 [164], for the time interval [0, τFinal] and tolerances as given in Table

3.2. The ode45 solver uses an explicit Runge-Kutta method with an adaptive time step; the
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stopping criteria of each step in the ODE solver is:

|ei| ≤ max{RelT ol|yi|, AbsTol},

where ei is the estimated local error and yi is the solution of the ODE at the ith step [164].

Remark 3.5.1. Smaller values of both the relative and absolute error tolerances were explored and

the default values were found to be sufficient.

Parameter Meaning Primary Value

RelTol Relative error tolerance 10−3

AbsTol Absolute error tolerance 10−6

[0, τFinal] Time interval to solve over [0, 7260KC

γC
]

Table 3.2: Numerical parameters used for the numerical solver unless stated otherwise [164]. Note
that the time intervals used for the stochastic models are more complex and are discussed in the
relevant sections.

Remark 3.5.2. The derivation of the model formed part of previous work which was published

under Bulletin of Mathematical Biology, From the Cell Membrane to the Nucleus: Unearthing

Transport Mechanisms for Dynein, v.7, 2012, p.2032, Laurie Crossley, Caroline A. Garrett, Majid

Hafezparast and Anotida Madzvamuse, (© Society of Mathematical Biology 2012) with permission

of Springer [9]. The system was initially reduced to a three equation system, where the results were

compared to experimental observations and parameter variations studied [9]. Previous work also

explored and compared several types of functions to model the forces for the given five equation

model [165].
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Chapter 4

Continuous Five Equation Model

To investigate the behaviour of dynein during the transport process we explore plausible functions

for both the ATP force and the binding affinity to the microtubule. As derived in the previous

chapter, the model system is given by:

dχC

dτ
+ 2χC = b1(χA + χB)− 2, (4.1)

a2
dχA

dτ
+ χA = F̄A(χ, τ) + b2χC + c2χD + b2, (4.2)

a2
dχB

dτ
+ χB = F̄B(χ, τ) + b2χC + c2χE + b2, (4.3)

a4
dχD

dτ
+ χD = ḡD(χ, τ) + b4χA, (4.4)

a4
dχE

dτ
+ χE = ḡE(χ, τ) + b4χB, (4.5)

with initial conditions

χC(0) = 0,

χA(0) =
LC

H
(KC +KS),

χB(0) =
LC

H
(KC +KS),

χD(0) =
p0
4
,

χE(0) =
p0 + 8

4
,
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where

a2 =
γMKC

γC(KC +KS)
, a4 =

γSKC

γCKS

, b1 =
H

LC(KC +KS)
,

b2 =
KCLC

H
, b4 =

HKS

G(KC +KS)
, and c2 =

G

H
,

and model parameters are given in Table 3.1. We consider several plausible forcing functions,

focusing on trigonometric functions although heavy-side and delta functions are also explored.

4.1 Spatially-dependent trigonometric force functions

In all cases we assume that the ATP cycle occurs continuously and we link the ATP force to the

binding of the MTBD to the microtubule. In the first case, the binding affinities are modelled by

cosine functions and are assumed to peak at the binding sites:

gD(x, t) =
G

2

[

cos
(π

8
(xD − xD(0))

)

+ 1
]

, (4.6)

and

gE(x, t) =
G

2

[

cos
(π

8
(xE − xE(0))

)

+ 1
]

. (4.7)

This is plausible as the force acts at the binding site, preventing backward motion in order for

dynein to step forwards. We also assume that there is a force near to the binding site that accounts

for weakly bound heads and a bias for the MTBD to bind at the specific binding site. We assume

that the force produced by the AAA+ ring would have a similar profile and choose that the force

peak midway between the binding sites for its corresponding MTBD

FA(x, t) =
H

2

[

cos
(π

8
(xD − xD(0))− π

)

+ 1
]

, (4.8)

and

FB(x, t) =
H

2

[

cos
(π

8
(xE − xE(0))− π

)

+ 1
]

. (4.9)

This is plausible as the ATP cycle is linked to the binding of the MTBD to the microtubule.

Remark 4.1.1. Variation of the position where the maximum force occurs between the binding

sites does not affect our qualitative results; it only changes the step size of the MTBDs. We are

only concerned with qualitative results for our initial studies hence the choice of this peak can be

considered arbitrary. See Section 4.1.1 below.

Remark 4.1.2. We assume that the ATP cycle occurs continuously and choose periodic functions



49

in order to model coordinated motion. Stochasticity of the ATP cycle and uncoordinated motion

is explored in Part II.

Figure 4.1 shows the transport profiles of the cargo, AAA+ rings A and B, MTBDs D and

E, and the velocity profiles of the cargo, AAA+ rings and MTBDs, where H = 10 and LC =

10. The profiles of the AAA+ rings and MTBDs show the hand-over-hand profile which persists

almost periodically for all time. The cargo is moving progressively along the microtubule with an

oscillatory velocity profile, reflecting what is seen in experiments [2, 9].
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Figure 4.1: Plots of the numerical solutions to the model system (4.1) - (4.5) with functions as
defined in equations (4.6) - (4.9) where we take our parameters to be at their primary values as
given in Table 3.1, in particular H = 10 and LC = 10, giving β = 1. See Section 3.5 for details
of the numerical method. The profiles of the AAA+ rings and MTBDs show the hand-over-hand
profile which persists almost periodically for all time. The cargo moves progressively along the
microtubule with an oscillatory velocity profile, reflecting experimental observations (see [2, 9]).
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4.1.1 Variation in the position of the maximum force on the microtubule

ATP hydrolysis by the motor domain is coordinated with the binding of the MTBD, hence we

choose to model these forces using similar functions to those modelling the binding affinities. We

model the binding affinities such that the force peaks at the corresponding binding sites, given

previously by (4.6) and (4.7):

gD(x, t) =
G

2

[

cos
(π

8
(xD − xD(0))

)

+ 1
]

,

and

gE(x, t) =
G

2

[

cos
(π

8
(xE − xE(0))

)

+ 1
]

.

We want to use a similar function to model the ATP force, however it is unclear where the maximum

of this force would occur with respect to the distance from a binding site. We therefore vary the

point between the binding sites that the ATP force peaks by using the parameter w1:

FA(x, t) =
H

2

[

cos
(π

8
(xD − xD(0)) + w1π

)

+ 1
]

, (4.10)

and

FB(x, t) =
H

2

[

cos
(π

8
(xE − xE(0)) + w1π

)

+ 1
]

. (4.11)

The results all gave a walking profile with an oscillatory velocity profile (see Figure 4.2). The

resultant change in profile is a change in the period of the steps over time, with the highest

frequency of steps for w1 = 1 and the lowest for w1 = 0. Therefore, the choice of the parameter

w1 is arbitrary in order to achieve qualitatively accurate profiles.

4.1.2 Force strength variations

We consider the impact of a weak and strong binding affinity within the model, using the parameters

wD, wE ∈ [0, 1] such that:

gD(x, t) = wD

G

2

[

cos
(π

8
(xD − xD(0))

)

+ 1
]

, (4.12)

and

gE(x, t) = wE

G

2

[

cos
(π

8
(xE − xE(0))

)

+ 1
]

. (4.13)
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Figure 4.2: Plots of the numerical solutions to the model system (4.1) - (4.5) with functions as
defined in equations (4.6), (4.7), (4.10) and (4.11) where we take parameters to be at their primary
values as given in Table 3.1, in particular H = 10 and LC = 10, giving β = 1. See Section 3.5
for details of the numerical method. The parameter w1 determines the point between the binding
sites that the ATP force peaks (see equations (4.10) and (4.11)). Here we see that for all cases we
have the same qualitative profiles, but that the change in location of the peak of the force on the
microtubule leads to a qualitative change for the distance travelled by the cargo, step size of the
MTBD and the range in which the velocity of the cargo oscillates. The highest number of steps
occurs for w1 = 1 and the lowest for w1 = 0.

Setting wD = 1 − wE and varying wE ∈ [0.5, 1] shows an increase in wE , and decrease in wD,

leads to a change from a hand-over-hand walking to a shuffling stepping pattern and a reduction

in the frequency of the steps (see Figure 4.3). We also tested the parameters jointly in both sets of

functions for the specific values given by Qiu et al., [32], who found that 74% of steps alternated

and 83% of steps did not pass in time (see Figure 4.4). These results showed a clear shuffling

pattern with one head in front of the other and alternating steps. Although one MTBD had a
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more defined stepping profile suggesting that the rearward head was pulled forwards by the leading

motor to some extent. The corresponding profiles for the cargo, AAA+ rings and their velocities

for wD = 0.2 and wE = 0.8 are given in Figure 4.5. The AAA+ rings also exhibit the shuffling

stepping pattern and the velocity of the cargo continues to be oscillatory with a less regular profile.
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Figure 4.3: Plots of the numerical solutions to the model system (4.1) - (4.5) with functions as
defined in equations (4.8), (4.9), (4.12) and (4.13) where we take parameters to be at their primary
values as given in Table 3.1, in particular H = 10 and LC = 10, giving β = 1. See Section 3.5 for
details of the numerical method. Here we vary the parameters wD and wE , where wD = wE − 1
(a) wE = 0.5, (b) wE = 0.6, (c) wE = 0.7, (d) wE = 0.8, (e) wE = 0.9 and (f) wE = 1. We see
that increasing wE , and decreasing wD, which increases the difference between the respective sizes
of the forces, leads from a hand-over-hand profile to a shuffling profile.

We also consider using the parameters wA and wB for the ATP forces:

FA(x, t) = wA

H

2

[

cos
(π

8
(xD − xD(0))− π

)

+ 1
]

, (4.14)

and

FB(x, t) = wB

H

2

[

cos
(π

8
(xE − xE(0))− π

)

+ 1
]

. (4.15)

Again, increasing wA, and decreasing wB , leads to a change from a hand-over-hand walking to a

shuffling stepping pattern and a reduced frequency of steps (see Figure 4.6). We further tested the
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Figure 4.4: Plots of the numerical solutions to the model system (4.1) - (4.5) with functions as
defined in equations (4.8), (4.9), (4.12) and (4.13) where we take parameters to be at their primary
values as given in Table 3.1, in particular H = 10 and LC = 10, giving β = 1. See Section 3.5 for
details of the numerical method. Here we vary the parameters wD and wE , where wD = wE − 1
(a) wE = 0.74 and (b) wE = 0.83. We see that both values give a shuffling profile, with the trailing
head having a slightly more pronounced step for the higher value.

parameters jointly in both sets of functions for the specific values given by Qiu et al., [32], who

found that 74% of steps alternated and 83% of steps did not pass in time (see Figure 4.7). These

results showed a hand-over-hand walking pattern with one MTBD predominantly in the lead. The

AAA+ rings also follow this pattern of stepping and whilst the velocity profile of the cargo remains

oscillatory the magnitude of the oscillations are greater (see Figure 4.8).

We further study the effects of implementing both modified functions together. We assume

that one head produces a stronger force but has a weaker binding affinity (wA = 0.8, wD = 0.2),

whilst the other head produces a weaker force but has a stronger binding affinity (wB = 0.2,

wE = 0.8). For this, we observe some interesting behaviour, there is a hand-over-hand pattern

with one MTBD clearly stepping, whilst there are no discernible steps for the other MTBD (see

Figure 4.9). Hence we made a slight change to the binding affinities by swapping the weakly and

strongly bound MTBDs such that one head now produced a stronger force and had a stronger

binding affinity (wA = 0.8, wD = 0.8), whilst the other head produced a weaker force and had a

weaker binding affinity (wB = 0.2, wE = 0.2). Here, we again observe a hand-over-hand stepping

pattern, however both heads now display a pronounced stepping profile (see Figure 4.10).

4.2 Bifurcation parameter

Numerical experiments reveal the existence of a bifurcation parameter β = LC

H
. Let δ± ≪ 1, taking

1− δ− < β < 1 + δ+ causes the cargo to move forwards over time with a bounded velocity profile

for the plausible functions considered. Taking β > 1 + δ+ gives a velocity profile which increases

exponentially over time and by taking β < 1 − δ− the cargo moves backwards tending towards

stationary behaviour. Taking β ∈ [1−δ−, 1+δ+] gives results reflecting experimental observations.
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Figure 4.5: Plots of the numerical solutions to the model system (4.1)-(4.5) with functions as
defined in equations (4.8), (4.9), (4.12) and (4.13) where wD = 0.2, wE = 0.8 and we take
parameters to be at their primary values as given in Table 3.1, in particular H = 10 and LC = 10,
giving β = 1. See Section 3.5 for details of the numerical method. The profiles of the AAA+ rings
and MTBDs show the shuffling profile which persists almost periodically for all time; one MTBD
moves with a more pronounced stepping pattern suggesting that the lagging head is being dragged
along the microtubule. The cargo moves progressively along the microtubule with an oscillatory
velocity profile, reflecting experimental observations (see [2, 9]).

Other results may be a consequence of restrictions in our model, as dynein is a processive motor

we would not expect to see exponential or stationary profiles. However, these profiles may reflect

a parameter set for which dynein may fall off the microtubule or detach from the cargo, which is

not possible in our current model but can be considered in future studies.

Within our studies on trigonometric functions we also found results that gave stationary be-

haviour for β = 1. For all functions resulting in this behaviour, regardless of their type, we also

found that the cargo moved backwards for β < 1. This enables model selection as it limits the

available functions to model the normal behaviour of dynein and may reflect the presence of steady
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Figure 4.6: Plots of the numerical solutions to the model system (4.1) - (4.5) with functions as
defined in equations (4.14), (4.15), (4.6) and (4.7) where we take our parameters to be at their
primary values as given in Table 3.1, in particular H = 10 and LC = 10, giving β = 1. See Section
3.5 for details of the numerical method. Here we vary the parameters p1 and p2, where p2 = 1−p1
(a) p1 = 0.5, (b) wA = 0.6, (c) wA = 0.7, (d) wA = 0.8, (e) wA = 0.9 and (f) wA = 1. We see that
increasing wA, and decreasing wB , which increases the difference between the respective sizes of
the forces, leads from a hand-over-hand profile to a shuffling profile.
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Figure 4.7: Plots of the numerical solutions to the model system (4.1) - (4.5) with functions as
defined in equations (4.14), (4.15), (4.6) and (4.7) where we take parameters to be at their primary
values as given in Table 3.1, in particular H = 10 and LC = 10, giving β = 1. See Section 3.5 for
details of the numerical method. Here we vary the parameters wA and wB , where wB = wA − 1
(a) wA = 0.74 and (b) wA = 0.83. Both profiles show a hand-over-hand profile but for the higher
value of wA the predominantly trailing head is in the lead for a small amount of time at each step.
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Figure 4.8: Plots of the numerical solutions to the model system (4.1) - (4.5) with functions
as defined in equations (4.14), (4.15), (4.6) and (4.7) where wA = 0.8, wB = 0.2 and we take
parameters to be at their primary values as given in Table 3.1, in particular H = 10 and LC = 10,
giving β = 1. See Section 3.5 for details of the numerical method. The profiles of the AAA+ rings
and MTBDs show the hand-over-hand profile which persists almost periodically for all time, with
steps relatively close together. The cargo is moving progressively along the microtubule with an
oscillatory velocity profile, reflecting what is seen in experiments (see [2, 9]).

states within the model, which would not be suitable to model the processive nature of dynein.

Steady states of the model satisfy:

2χC = b1(χA + χB)− 2, (4.16)

χA = F̄A(χ, τ) + b2χC + c2χD + b2, (4.17)

χB = F̄B(χ, τ) + b2χC + c2χE + b2, (4.18)

χD = ḡD(χ, τ) + b4χA, (4.19)

χE = ḡE(χ, τ) + b4χB. (4.20)
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Figure 4.9: Plots of the numerical solutions to the model system (4.1) - (4.5) with functions as
defined in equations (4.14), (4.15), (4.12) and (4.13) where wA = 0.8, wB = 0.2, wD = 0.2,
wE = 0.8 and we take parameters to be at their primary values as given in Table 3.1, in particular
H = 10 and LC = 10, giving β = 1. See Section 3.5 for details of the numerical method. The
profiles of the AAA+ rings and MTBDs show the hand-over-hand profile which persists almost
periodically for all time; one MTBD has a more pronounced stepping pattern suggesting the other
MTBD is being pushed or pulled along the microtubule. The cargo moves progressively along the
microtubule with an oscillatory velocity profile, reflecting experimental observations (see [2, 9]).

Substituting for χD and χE in equations (4.17) and (4.18) gives:

χA =
1

(1− c2b4)
[F̄A(χ, τ) + b2χC + c2ḡD(χ, τ) + b2], (4.21)

χB =
1

(1− c2b4)
[F̄B(χ, τ) + b2χC + c2ḡE(χ, τ) + b2]. (4.22)
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Figure 4.10: Plots of the numerical solutions to the model system (4.1) - (4.5) with functions
as defined in equations (4.14), (4.15), (4.12) and (4.13) where wA = 0.8, wB = 0.2, wD = 0.8,
wE = 0.2 and we take our parameters to be at their primary values as given in Table 3.1, in
particular H = 10 and LC = 10, giving β = 1. See Section 3.5 for details of the numerical method.
The profiles of the AAA+ rings and MTBDs show the hand-over-hand profile which persists almost
periodically for all time, with steps relatively close together. The cargo moves progressively along
the microtubule with an oscillatory velocity profile, reflecting experimental observations (see [2, 9]).

By substituting for χA and χB in equation (4.16) we obtain:

2χC =
b1

(1− c2b4)
(F̄A(χ, τ) + F̄B(χ, τ) + 2b2χC

+ c2ḡD(χ, τ) + c2ḡE(χ, τ) + 2b2)− 2. (4.23)

This simplifies to

F̄A(χ, τ) + F̄B(χ, τ) + c2ḡD(χ, τ) + c2ḡE(χ, τ) = 0. (4.24)
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Hence, if the functions are defined such that this will never hold, there will be no stationary steady

states ensuring processive motion. This is the case in our main choice of functions, with the

dimensional forms defined by:

FA(x, t) =
H

2

[

cos
(π

8
(xD − xD(0))− π

)

+ 1
]

, (4.25)

FB(x, t) =
H

2

[

cos
(π

8
(xE − xE(0))− π

)

+ 1
]

, (4.26)

gD(x, t) =
G

2

[

cos
(π

8
(xD − xD(0))

)

+ 1
]

, (4.27)

gE(x, t) =
G

2

[

cos
(π

8
(xE − xE(0))

)

+ 1
]

, (4.28)

(and the variations of these given above). For this choice of functions we see that by taking

1 − δ− < β < 1 + δ+ for some δ+,− ≪ 1, the cargo moves forwards over time with a velocity

profile that oscillates (See Figures 4.11 and 4.12). Taking β > 1+ δ+ gives a velocity profile which

increases exponentially over time and by taking 1 − δ− > β the cargo moves backwards or tends

towards stationary behaviour (See Figures 4.11 and 4.12).

Remark 4.2.1. We note that this specific behaviour only occurs for the plausible functions consid-

ered. Alternative functions give stationary profiles for 1− δ− < β < 1+ δ+ and backwards motion

for β < 1− δ−. However, all functions tested give a velocity profile which increases exponentially

over time for β > 1 + δ+. (See Section 4.4.)

4.3 Parameter sensitivity analysis

We conducted a full parameter sensitivity analysis on our model and found in particular that for all

the functions a decrease in parameters LC and KC , representing the spring length and constant of

the spring connecting the cargo with the AAA+ ring, gave a reduced distance travelled and lower

velocity for all functions (see Figure 4.13). This is significant in terms of the application of the

model to mutation. For example mutations in the tail section of cytoplasmic dynein could impact

on the model through the associated parameters within this section, that is the natural length LC

and the spring constant KC . With regards to the Loa mutation, which occurs in this particular

section of the structure of dynein, experimental evidence has shown that it causes a reduction in

velocity and distance travelled which is achieved here through a reduction in LC or KC [2, 35, 36].
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Figure 4.11: Plots of the numerical solutions to the model system (4.1) - (4.5) with functions as
defined in equations (4.6) - (4.9) where we take parameters to be at their primary values as given
in Table 3.1, and vary H and LC . See Section 3.5 for details of the numerical method. We see
that for β = 1 the cargo moves forwards over time with a velocity profile that oscillates. Taking
β = 1.5 gives a velocity profile which increases exponentially over time and by taking β = 0.5 the
cargo moves backwards and tends towards stationary behaviour.

4.4 Alternative spatially-dependent functions

Other forms of spatially-dependent functions were also explored including Dirac delta and heavy-

side functions. These were considered plausible as they enable the forces to be switched on and off

at certain points along the microtubule.

The Dirac delta function can be expressed in the form

δa(x) =
1

a
√
π
e

−x
2

a2
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(b) H = 20, LC = 20, β = 1
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Figure 4.12: Plots of the numerical solutions to the model system (4.1) - (4.5) with functions as
defined in equations (4.6) - (4.9) where we take parameters to be at their primary values as given
in Table 3.1, and vary H and LC . See Section 3.5 for details of the numerical method. We see
that for β = 1 the cargo moves forwards over time with a velocity profile that oscillates. Taking
β = 2 gives a velocity profile which increases exponentially over time and by taking β = 0.8 the
cargo tends towards stationary behaviour.

where we let a→ 0. The parameter a can be used to control both the maximum value attained by

the function δa(x) and the width. We assume that the AAA+ ring produces a force at all points

except when its corresponding MTBD is at a binding site, setting:

FA(x, t) = 1−
∞∑

i=0

He−H2π(xD−p2i)
2

, (4.29)

and

FB(x, t) = 1−
∞∑

i=0

He−H2π(xE−p2i+1)
2

, (4.30)

where p2i and p2i+1 are the binding sites for MTBDs D and E respectively. For the binding affinity,

we assume that it is present when the MTBD is at, or very close to, a binding site. Additionally,
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Figure 4.13: Plots of the dimensional numerical solutions to the model system (4.1) - (4.5) with
parameter variations, with H = 10, LC = 10, KC = 1, except where specified otherwise, and
all the other parameters are taken at their primary value given in Table 3.1. See Section 3.5 for
details of the numerical method. We see that a decrease in parameters LC and KC , representing
the spring length and constant of the spring connecting the cargo with the AAA+ ring, results in
a reduced distance travelled and lower velocity.

we assume that it is acting in the positive direction when the corresponding MTBD is ahead of the

other one, and in the negative direction when it is behind. That is, the binding affinity prevents

the MTBD from moving backwards when it is in front but opposes motion when it is behind:

gD(x, t) =
xD − xE
|xD − xE |

∞∑

i=0

Ge−G2π(xD−p2i)
2

, (4.31)

and

gE(x, t) =
xE − xD
|xE − xD|

∞∑

i=0

Ge−G2π(xE−p2i+1)
2

. (4.32)

Note that if xD = xE we take the binding affinity to act in the positive direction. Figure 4.14

shows the numerical results of the model system (4.1) - (4.5) with Dirac delta forcing functions.

Here we see less oscillatory profiles than for the trigonometric functions. The two MTBDs follow

similar trajectories, suggesting that these functions are less appropriate for modelling the behaviour

of dynein. In general, similar results were achieved for all functions based on the Dirac delta

functions, however for the parameter set H = 10 and LC = 10 (i.e. β = LC

H
= 1) most results gave
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stationary profiles.
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Figure 4.14: Plots of the numerical solutions to the model system with functions as defined in
equations (4.29) - (4.32) where we take parameters to be at their primary values as given in Table
3.1, in particular H = 10 and LC = 10, giving β = 1. See Section 3.5 for details of the numerical
method. We see that the cargo moves progressively along the microtubule over time with an
oscillatory velocity profile. The two MTBDs and two AAA+ rings move along similar trajectories,
not in a clearly defined hand-over-hand or shuffling profile.

We also considered heavy-side functions, modelling the force produced by the AAA+ ring such

that it produces a force when the distance between its corresponding MTBD and the other MTBD

is less than 8nm, or it is behind the other MTBD. We set

FA(x, t) =







H if xD − xE < 8,

0 otherwise,

(4.33)

and

FB(x, t) =







H if xE − xD < 8,

0 otherwise.

(4.34)

For the binding affinities, we consider using them to impose in the model that the MTBD has zero

velocity when it is ahead of the other MTBD and at a binding site i.e. it is not moving. We take
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the binding affinity to be zero otherwise. This gives:

gD(x, t) =







KS(xA − xD) if xD > xE and xD = p2b for b ∈ N,

0 otherwise,

(4.35)

and

gE(x, t) =







KS(xB − xE) if xE > xD and xE = p2b−1 for b ∈ N,

0 otherwise.

(4.36)

Figure 4.15 shows the numerical results of the model system (4.1) - (4.5) with heavy-side forcing

functions. Here, we see that both MTBDs follow similar trajectories again suggesting that these

functions are less appropriate for modelling the forces. We considered several other heavy-side

functions, all giving similar results; however, most results again gave stationary profiles for the

parameter set H = 10, LC = 10, β = 1.
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Figure 4.15: Plots of the numerical solutions to the model system with functions as defined in
equations (4.33) - (4.36) where we take parameters to be at their primary values as given in Table
3.1, in particular H = 10 and LC = 10, giving β = 1. See Section 3.5 for details of the numerical
method. The cargo moves progressively along the microtubule with velocity that tend towards
being constant over time. The two AAA+ rings, and the two MTBDs, follow the same trajectory
after the initial time period, not exhibiting either a hand-over-hand profile or shuffling profile.
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4.5 ATP force location

In the model we have assumed that the ATP force produced by the AAA+ ring acts on the ring

itself, however models in the literature suggest that the force could act by swinging the MTBD

forward [29]. Therefore, we refine the model by allowing the force associated with ATP to act on

the MTBD instead of the AAA+ ring. The model equations are derived as in Chapter 3, however

the forces FA(x, t) and FB(x, t) are now associated with the equations of motion of MTBDs D and

E respectively. Therefore, the model system becomes:

dχC

dτ
+ 2χC = b1(χA + χB)− 2, (4.37)

a2
dχA

dτ
+ χA = b2χC + c2χD + b2, (4.38)

a2
dχB

dτ
+ χB = b2χC + c2χE + b2, (4.39)

a4
dχD

dτ
+ χD = F̄A(χ, τ) + ḡD(χ, τ) + b4χA, (4.40)

a4
dχE

dτ
+ χE = F̄B(χ, τ) + ḡE(χ, τ) + b4χB. (4.41)

We study this adapted model using the same functions within our previous analysis, first using

the trigonometric functions described by equations (4.6) - (4.9). Despite the change in location of

the ATP force, we achieved remarkably similar results to our previous model, with qualitatively

the same profiles for all components of the complex (see Figure 4.16). This result would suggest

that the specifics of the ATP cycle may not have a significant impact on dynein’s stepping ability.

For example, an ATP force that acts on the AAA+ ring could reflect a scenario where the MTBD

is still bound to the microtubule and hence the conformational change swings the AAA+ ring

forwards before the head detaches. Whereas, an ATP force that acts on the MTBD would suggest

that it is this component that swings forwards under the conformational change. This might be

biologically useful, for example if the MTBD cannot detach immediately.

For the delta functions, as described by equations (4.29) - (4.32), slightly different profiles are

achieved when compared to previous results (see Figure 4.17). The MTBDs and AAA+ rings

followed clearly separate trajectories, with one head domain consistently behind the other. The

velocity profile is also less oscillatory. These profiles vary greatly from experimental observations

and so these types of functions are not suitable to model these forces.

We also considered the heavy-side functions as previously described by equations (4.33) - (4.36).

The results of these simulations give the same profiles as previous results; the cargo moves forwards

with an initially increasing velocity profile which then settles to a constant (see Figure 4.18).
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Figure 4.16: Numerical solutions to the model system (4.37) - (4.41) with functions as defined in
equations (4.6) - (4.9) where we take our parameters to be at their primary values as given in Table
3.1, in particular H = 10 and LC = 10. See Section 3.5 for details of the numerical method. Plots
over the whole time corresponding to (a) trajectory of the cargo, (b) velocity profile of the cargo,
(c) trajectory of the AAA+ rings, and (d) trajectory of the MTBDs.

The MTBDs follow identical trajectories, as do the AAA+ rings. Again, this does not reflect

experimental observations, suggesting that the forces are not suitable to model dynein stepping.

So far we have only considered spatially dependent functions however the ATP force may be

better modelled by a time dependent function. We assume that the ATP cycle follows a regular

cycle and hence can be modelled by a periodic function over time. For MTBD D we define:

FA(t) = Hcos(
2π

P
t), (4.42)

where P is the period of the ATP force. For MTBD E we assume that the timing of it’s ATP cycle

is highly coordinated with the other MTBD but shifted in time and hence we take:

FB(t) = Hsin(
2π

P
t). (4.43)

For the binding affinities we continue to use cosine spatial functions as defined in equations (4.6)

and (4.7). The results for these functions were very similar with clear stepping patterns, however
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Figure 4.17: Numerical solutions to the model system (4.37) - (4.41) with functions as defined in
equations (4.29) - (4.32) where we take our parameters to be at their primary values as given in
Table 3.1, in particular H = 10 and LC = 10. See Section 3.5 for details of the numerical method.
Plots over the whole time corresponding to (a) trajectory of the cargo, (b) velocity profile of the
cargo, (c) trajectory of the AAA+ rings, and (d) trajectory of the MTBDs.

they exhibited slightly more noise in each step (see Figure 4.19).

4.6 Multiple motor model

In vivo a cargo will be attached to multiple motors, with experimental observations reporting one

to eight dyneins and one to five kinesins in various combinations [14, 21, 23]. To investigate the

behaviour of multiple motors on a single cargo, the model is extended to include N(t) dyneins

attached to the cargo at time t whilst FC(t) represents a backward force from kinesin motors. For

simplicity, it is assumed that each dynein motor moves identically and is attached to the same

point on the cargo. Therefore the equation of motion for the cargo becomes:

mC

d2xC
dt2

= N(t)
[

KC(xB − xC − LC cos θBC)−KC(xC − xA − LC cos θAC)
]

︸ ︷︷ ︸

Force from N(t) dynein complexes

−FC(t)− γC
dxC
dt

,

(4.44)
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Figure 4.18: Numerical solutions to the model system (4.37) - (4.41) with functions as defined in
equations (4.33) - (4.36) where we take our parameters to be at their primary values as given in
Table 3.1, in particular H = 10 and LC = 10. See Section 3.5 for details of the numerical method.
Plots over the whole time corresponding to (a) trajectory of the cargo, (b) velocity profile of the
cargo, (c) trajectory of the AAA+ rings, and (d) trajectory of the MTBDs.

where we obtain equation (3.3) when N(t) = 1. The AAA+ rings and MTBDs are modelled using

the equations (3.4) - (3.7). Possible values for N(t) are N(t) = d where 1 ≤ d ≤ 8 is a fixed

constant [14, 21, 23], alternatively N(t) corresponds to a function modelling the attachment to the

cargo, where dynein motors can both attach and detach from the cargo. We have initially chosen

to take N(t) constant, and we see that increases in N(t) lead to an increase in velocity (see Figure

4.20). We further consider a constant value for the external fore FC(t) = Fk, by increasing this

parameter we see that the velocity falls and eventually leads to backward motion (see Figure 4.21).

4.7 Discussion

Our results show a remarkable qualitative agreement with experimental observations. We can

achieve desirable stepping patterns and specific behaviour through the use of particular functions

and parameter values. We have shown that the stepping pattern can move from a hand-over-hand

walking profile to a shuffling profile by changing a single parameter describing the relative strength
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Figure 4.19: Numerical solutions to the model system (4.37) - (4.41) with functions as defined in
equations (4.42) - (4.42) and (4.6) - (4.7) where we take P = 1000 and our parameters to be at
their primary values as given in Table 3.1, in particular H = 10 and LC = 10. See Section 3.5 for
details of the numerical method. Plots over the whole time corresponding to (a) trajectory of the
cargo, (b) velocity profile of the cargo, (c) trajectory of the AAA+ rings, and (d) trajectory of the
MTBDs.

of the forces applied to each motor domain. Therefore, experimental observations into the relative

ATP force produced by each motor, or the affinity to the microtubule would be beneficial to our

model. Our model also makes the prediction that a dynein complex where one AAA+ ring has

increased ATP activity or one MTBD has a stronger affinity to the microtubule will move with

a shuffling profile, whilst if the ATP activity and affinity to the microtubule is equal within the

complex, then it will step with a hand-over-hand profile.

We have seen that we can vary some model parameters to account for the effects of mutation,

linking the resultant behaviour seen for cytoplasmic dynein to possible mechanistic causes by

the mutation. Decreasing LC and KC is associated with a shorter natural length and lower spring

constant of the tail section of dynein and lead to a reduced distance travelled by the cargo, through

the effect on tension within the model. This reflects results found by Garrett et al., Ori-McKenney

et al., and Sivagurunathan et al., [2, 35, 36], who found a decrease in velocity and distance travelled

for the Loa mutation which occurs in this section of dynein.
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Figure 4.20: Numerical solutions to the model system (4.44), (3.4) - (3.7) with functions as defined
in equations (4.6) - (4.9) where we take our parameters to be at their primary values as given in
Table 3.1, in particular H = 10 and LC = 10. See Section 3.5 for details of the numerical method.
Plots over the whole time corresponding to (a) trajectory of the cargo, and (b) velocity profile of
the cargo. We set FC(t) = 0 and vary N(t).

A simple model of multiple motor transport has been studied, showing that an increase in the

number of dynein motors leads to an increase in velocity of the cargo. This is to be expected

as there are more dyneins to carry a large load. However, this simple model does not consider

the implications of crowding or other restrictions which may limit gains in velocity, such as a
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Figure 4.21: Numerical solutions to the model system (4.44), (3.4) - (3.7) with functions as defined
in equations (4.6) - (4.9) where we take our parameters to be at their primary values as given in
Table 3.1, in particular H = 10 and LC = 10. See Section 3.5 for details of the numerical method.
Plots over the whole time corresponding to (a) trajectory of the cargo, and (b) velocity profile of
the cargo. We set N(t) = 1 and vary FC(t).

lack of available binding sites or ATP which may actually slow the process down. Future work

would need to consider how to implement these possibilities in the model, possibly by using a more

sophisticated attachment function. Future investigations would also need to consider the evolving

shape of the cargo in order to study fission and the effects of a tug of war.
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This initial model is a simplification of dynein’s stepping process, with limitations including the

assumptions of continual stepping, a fixed step size and highly coordinated motion between the

two head domains. In reality, the binding of ATP is a stochastic process and hence stochasticity

would need to be introduced into the model in order to explore the stepping pattern of dynein

further. This is introduced to the model in Part II, where variable step sizes and uncoordinated

motion are also considered. The model has so far considered that the tail can be modelled as

two springs connecting the AAA+ ring immediately to the cargo, however this may not be the

most appropriate model and the tail may be more accurately modelled by introducing a mass and

additional spring to model the connection to the cargo from the tail domain. This adaptation is

also considered in the next chapter.
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Part II

Stochastic Model
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Chapter 5

Stochastic Mechanical Model with

Fixed Step Size

5.1 Derivation of the stochastic model

So far we have modelled ATP hydrolysis as a continuous process, assuming that dynein steps

continually with a fixed step size. However, in reality the binding of ATP to a dynein head domain

is a random process. The model is therefore refined to include this stochastic process. The tail

domain has been modelled as two springs directly connecting the AAA+ rings to the cargo, however

this may not be the most suitable model. Hence, the model is adapted as follows: the tail domain

is now modelled as two identical springs, from the AAA+ rings, connected to a sphere with small

Reynolds number and constant mass. The flexible section of the linker is modelled as part of these

springs. The binding between the tail and the cargo is modelled via another spring connecting the

tail domain to the cargo. See Figure 5.1 for a schematic diagram illustrating the whole structure

on which the mathematical model is based and Table 5.1 for a list of parameter values. We make

four simplifying assumptions:

• The spring between the cargo and tail domain is parallel to the microtubule.

• The springs between the tail domain and AAA+ rings are at a fixed angle to the microtubule.

• The stalks are at a fixed angle to the microtubule.

• There are no external forces acting on the cargo, such as those from other motor proteins or

an optical trap.
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Figure 5.1: A schematic diagram of the mechanical model (adapted from [9]). The cargo is modelled
as a sphere (grey) and regulators of binding to dynein are modelled as part of this cargo. The
binding of the cargo to the tail domain is modelled by a spring. The tail of dynein is modelled by
a sphere connected by two springs to the AAA+ rings. The AAA+ rings, depicted in green, and
the MTBDs, depicted in yellow and orange, are modelled as spheres. The stalks are modelled as
springs. The microtubule is modelled as a line (red).

Variable angles are briefly explored in Section 5.5.

Remark 5.1.1. We continue to assume that both of the motor domains in the dynein dimer are

identical and so can be modelled using the same parameter values, given in Table 5.1. However,

this may not be the case, for example leading and lagging heads may have different properties

[31, 32], and DeWitt et al., consider a dynein heterodimer in which one head domain is wild type

and one is mutated [31]. This is explored in Section 5.6.

We derive from first principles a system of six second order non-linear ordinary differential

equations to model the transport mechanisms of a single dynein acting on a cargo. Let xC(t),

xT (t), xA(t), xB(t), xD(t) and xE(t) denote the positions of the cargo, tail, AAA+ rings A and

B, and the MTBDs D and E, respectively, at time t ∈ [0, TFinal] for some end time TFinal > 0.

The coordinates xA and xD represent one head domain of dynein with the coordinates xB and xE

representing the other (see Figure 5.1). We continue to model the microtubule as a one-dimensional

line with binding sites 8nm apart; we only consider motion along this line. Using Newton’s second

law we study the net forces acting on the system. For the cargo there is a spring force, viscous

drag and an external force acting on it. By Hooke’s law we take the spring force to be:

FSpring(t) = KC

(

xT (t)− xC(t)− LC

)

,



76

Figure 5.2: A schematic diagram of the dashpot-spring model for the conformational change in
dynein resulting from the binding of ATP. For the time interval [ti, ti+1] the MTBD is at the
binding site pn at time ti and moves to the binding site pn+2 by time ti+1 with a step size of LATP .

where KC is the spring constant and LC is the natural length. We obtain the viscous drag by

Stokes’ law:

FDrag(t) = γC
dxC
dt

,

where the damping coefficient γC = 6πηRC with η the viscosity and RC the radius of the cargo.

For completeness we include an external force FC that is exerted on the cargo, although throughout

the model this is assumed to equal zero. Therefore, the equation of motion for the cargo can be

modelled by:

mC

d2xC
dt2

= KC

(

xT − xC − LC

)

− FC − γC
dxC
dt

.

The equations of motion for the tail domain and AAA+ rings can be derived similarly. Therefore

we obtain the following system of ordinary differential equations for the cargo, tail and AAA+

rings respectively:

mC

d2xC
dt2

= KC

(

xT − xC − LC

)

− FC − γC
dxC
dt

,

mT

d2xT
dt2

= KT

(

xB − xT − LT cos(θBT )
)

−KT

(

xT − xA − LT cos(θAT )
)

−KC

(

xT − xC − LC

)

− γT
dxT
dt

,

mM

d2xA
dt2

= KT

(

xT − xA − LT cos(θAT )
)

−KS

(

xA − xD − LS cos(θAD)
)

− γM
dxA
dt

,

mM

d2xB
dt2

= KS

(

xE − xB − LS cos(θBE)
)

−KT

(

xB − xT − LT cos(θBT )
)

− γM
dxB
dt

.

We wish to model the mechanics of ATP hydrolysis on the motor domain of dynein. The binding

of ATP occurs randomly and is followed by microtubule release of the corresponding MTBD and

a recovery stroke towards the next binding site [28, 29]. Hence, we will assume that there are two

MTBD states:

• Bound: This is defined to be when the MTBD is bound to the microtubule and hence is
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stationary.

• Unbound: Defined to be when the MTBD is unbound from the microtubule and undergoing

the recovery stroke towards the next binding site.

It is hypothesized that ATP hydrolysis induces a conformational change in dynein, potentially

causing a 37° kink in the stalk and swinging the MTBD forwards [26, 29]. Hence, for the unbound

state the conformational change is modelled by a dashpot and spring acting solely on the MTBD

(see Figure 5.2) [156]. It is assumed that this force is independent of the particular interval on the

microtubule, defined by x ∈ [pj(t), pj+1(t)] and it is also assumed to be identical for the two head

domains. Binding sites are taken to be 8nm apart on the microtubule with each MTBD binding

to distinct binding sites, given a step size of nLATP . The current model is one dimensional and

hence it is assumed that this force acts only in the horizontal direction. The force produced by the

dashpot is proportional to the velocity and the spring force is proportional to the displacement,

hence

FATP (x(t)) = −γATP

dx

dt
+KATP (nLATP − (x(t) − x(0))),

where γATP and KATP are parameters determining the size of the ATP force, with estimated

values given in Table 5.1. The term nLATP represents the unstressed length of the spring and is

taken to be the step size of the head domain, with LATP the distance between binding sites and

n a parameter reflecting the magnitude and direction of the step. If MTBD D is in an unbound

state and MTBD E is in a bound state, then the equations of motion can be shown to be given by

mS

d2xD
dt2

= −γATP

dxD
dt

−KATP (xD − pj − nLATP )− γS
dxD
dt

−KS(xD − xA + LS cos(θAD)),

dxE
dt

= 0,

for t ∈ [ti, ti+1] for i ∈ N such that 0 ≤ ti < ti+1, where pj with j ∈ N0 is the binding site that

MTBD D was bound to at time t = ti. The equations are similar for when MTBD E is in an

unbound state and MTBD D is in the bound state:

dxD
dt

= 0,

mS

d2xE
dt2

= −γATP

dxE
dt

−KATP (xE − pj+1 − nLATP )− γS
dxE
dt

−KS(xE − xB − LS cos(θBE)),

again for t ∈ [ti, ti+1] and where pj+1 with j ∈ N0 is the binding site that MTBD E was bound

to at time t = ti. Here, we are assuming some inherent coordination between the two MTBDs to

keep the motor attached to the microtubule as one motor is unable to bind ATP whilst the other

is detached. The MTBDs are assumed to become unbound once the corresponding AAA+ ring
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Parameter Description Value Ref.

MC Mass of the cargo 2MDa Estimated [159]
MT Mass of the tail component 0.14MDa Estimated [2]
MM Mass of the AAA+ ring 0.5MDa Estimated [37]
MS Mass of the MTBD 0.03MDa Estimated [37]
RC Radius of the cargo 460nm [66]
RT Radius of the tail domain 3nm [55]
RM Radius of the AAA+ ring 6.5nm [55, 59]
RS Radius of the MTBD 1.5nm [59]
LC Unstressed length between the cargo and tail 12nm [55]
LT Unstressed length between the AAA+ ring 8nm [55]

and tail
LS Unstressed length between the AAA+ ring 15nm [55]

and MTBD
KC Spring constant between the cargo and the tail 1MDa ns−2 Estimated
KT Spring constant between the tail and the 1MDa ns−2 Estimated

AAA+ ring
KS Spring constant between the AAA+ ring and 10MDa ns−2 Estimated

the MTBD
η Viscosity of the cytoplasm 1.2MDa nm−1 ns−1 [163]
LATP Approximated ATP force: unstressed length 8nm Estimated

between the binding sites
KATP Approximated ATP force: spring constant 10MDa ns−2 Estimated
γATP Approximated ATP force: drag coefficient 10MDa ns−2 Estimated
θA,D Angle of the stalk between AAA+ ring A 53° [55]

and MTBD D
θB,E Angle of the stalk between AAA+ ring B 53° [55]

and MTBD E
θA,T Angle of the spring between AAA+ ring A and 33° [55]

the tail domain
θB,T Angle of the spring between AAA+ ring B and 33° [55]

the tail domain

Table 5.1: Dimensional parameters and the primary values used in the mathematical model system
(5.4) - (5.9).

binds ATP. This occurs randomly and the transition between states is explained below in Section

5.2.

We prescribe initial conditions as follows: MTBD D and E are taken to be at binding sites p0

and p1 = p0 + 8 respectively. The cargo is taken to be at the origin and the tail component is set

to be at its natural length LC from the cargo. The AAA+ rings are taken to be at the same point

midway between the MTBDs, at a distance of the natural length LT from the tail. Therefore, the

initial conditions are set to be

xC(0) = 0, xT (0) = LC , xA(0) = LC + LT , xB(0) = LC + LT ,

xD(0) = p0 = LC + LT − 4, xE(0) = p1 = LC + LT + 4.
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5.2 Stochastic stepping

First, we study a simple model of continual forward stepping with a fixed step size. The predom-

inant step size given in the literature is 16nm [30], and the displacement of the MTBD under a

conformational change during the ATP cycle has been suggested to be close to this step size [55];

hence we fix n = 2. Binding sites are taken to be p2k for MTBD D and p2k+1 for MTBD E with

k = 0, 1, 2, ... and p2k+1−p2k = 8, binding sites are 8nm apart on the microtubule, corresponding to

the length of the tubulin heterodimers that form the microtubule [160], with each MTBD binding

to distinct binding sites that are 16nm apart.

To model the continual stepping by dynein over a microtubule, stochasticity is introduced to

the model via the randomness in which an AAA+ ring binds ATP and hence a MTBD becomes

unbound. Let the probability that MTBD E steps given that MTBD D stepped previously be

given by Pr(Ei+1 | Di) = PD for step i ∈ N; hence Pr(Di+1 | Di) = 1 − PD as the complement

is given by EC
i+1 = Di+1. Similarly, let the probability that MTBD E steps given that MTBD E

stepped previously be given by Pr(Ei+1 | Ei) = PE ; hence Pr(Di+1 | Ei) = 1 − PE . Given that

EC
i = Di the following equation must be satisfied:

Pr(Di | Ei+1) + Pr(Ei | Ei+1) = 1.

Then by applying Bayes’ Theorem we obtain:

Pr(Ei+1 | Di) Pr(Di)

Pr(Ei+1)
+

Pr(Ei+1 | Ei) Pr(Ei)

Pr(Ei+1)
= 1. (5.1)

We assume that the probability that a MTBD steps does not change over time, hence Pr(Ei+1) =

Pr(Ei) ∀i ∈ N, and similarly Pr(Di+1) = Pr(Di) ∀i ∈ N. We also make the further assumption

that, given no information about the previous step, both MTBDs are equally likely to step, hence

Pr(Ei) = Pr(Di) = 0.5 for i ∈ N. Thus equation (5.1) simplifies to:

Pr(Ei+1 | Di) + Pr(Ei+1 | Ei) = 1.

Therefore, our parameters PD and PE satisfy PD + PE = 1.

Consider t ∈ [0, TFinal] with TFinal > 0 and ti = ti−1 + TFinal

N
for i = 1, 2, ..., N . Let q =

{qi}i=1:N be a random vector where qi is from the uniform distribution on (0, 1). We assign

the value d to be the maximum separation distance that can occur between the MTBDs. If the

maximum separation between the MTBDs has been exceeded then it is assumed that the rearward
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head steps; else, given that MTBD j stepped previously, if qi < Pj then MTBD E is set to be in

the unbound state (i.e. unbound from the microtubule and undergoing the recovery stroke) and

MTBD D is set to be in the bound state (i.e. bound to the microtubule). Otherwise we assume

that the MTBD D is in the unbound state and MTBD E in the bound state. Hence, we can define

a step-function hE given by

hE(t, xD, xE , d) =







1 if xD − xE > d or if (qi < Pj and xE − xD ≤ d),

0 otherwise;

(5.2)

where MTBD j stepped previously and similarly

hD(t, xD, xE , d) = 1− hE(t, xD, xE , d), (5.3)

for t ∈ [ti, ti+1] with i = 1, 2, ..., N . This does assume some coordination between the two head

domains of dynein as only one head will step during each time interval, but it does not enforce

coordination of the stepping pattern itself if the head domains are allowed to separate past con-

secutive binding sites. The rearward head always steps if the two head domains become too far

apart. This is used in order to ensure that the two head domains cannot diverge away from each

other which would be biologically unrealistic. The system of ODEs is therefore given by:

mC

d2xC
dt2

= KC

(

xT − xC − LC

)

− FC − γC
dxC
dt

, (5.4)

mT

d2xT
dt2

= KT

(

xB − xT − LT cos(θBT )
)

−KT

(

xT − xA − LT cos(θAT )
)

−KC

(

xT − xC − LC

)

− γT
dxT
dt

, (5.5)

mM

d2xA
dt2

= KT

(

xT − xA − LT cos(θAT )
)

−KS

(

xA − xD − LS cos(θAD)
)

− γM
dxA
dt

, (5.6)

mM

d2xB
dt2

= KS

(

xE − xB − LS cos(θBE)
)

−KT

(

xB − xT − LT cos(θBT )
)

− γM
dxB
dt

, (5.7)

mShD(t, xD, xE , d)
d2xD
dt2

= hD(t, xD, xE , d)
[

− γATP

dxD
dt

−KATP (xD − pi − 2LATP )

−KS(xD − xA + LS cos(θAD))
]

− γS
dxD
dt

, (5.8)

mShE(t, xD, xE , d)
d2xE
dt2

= hE(t, xD, xE , d)
[

− γATP

dxE
dt

−KATP (xE − pi+1 − 2LATP )

−KS(xE − xB − LS cos(θBE))
]

− γS
dxE
dt

, (5.9)

for t ∈ [0, TFinal].

Remark 5.2.1. In this refined model we only consider continual stepping therefore we fix the size of

the time interval for each step TStep = ti+1 − ti and hence TFinal will depend on the time interval

TStep and the number of steps N . Therefore, the stepping rate of the motors is predetermined.



81

Variable dwell times between steps will be considered in Chapters 6 and 7.

Remark 5.2.2. The binding sites are predetermined. The initial binding site p0 is assigned a value

and all binding sites are taken to be 8nm away from the previous binding site. For each time step,

the binding site is updated by taking the next binding site of the unbound MTBD. For example,

if a MTBD is unbound on [ti, ti+1] and bound to pj at time t = ti, then the binding site will be

updated to pj+2 = pj + nLATP for t = ti+1.

5.2.1 Non-dimensionalisation

To nondimensionalise the model let xC = LCχC , xT = LTχT , xA = LSχA, xB = LSχB, xD =

LSχD, xE = LSχE and t = mC

γC
τ . We assume that the acceleration terms are small and that the

dynamics are dominated by the viscous drag. Hence, the second derivatives are neglected to obtain

the following non-dimensional system:

αC

dχC

dτ
=

( 1

ρ1
χT − 1

)

− λ− χC , (5.10)

αT

dχT

dτ
=

( 1

ρ2
(χB + χA)− cos(θBT ) + cos(θAT )

)

+ ρ1κ1(χC + 1)− (2 + κ1)χT , (5.11)

αM

dχA

dτ
= ρ2κ2

(

χT − cos(θAT )
)

+
(

χD + cos(θAD)
)

− (κ2 + 1)χA, (5.12)

αM

dχB

dτ
=

(

χE − cos(θBE)
)

+ ρ2κ2

(

χB + cos(θBT )
)

− (κ2 + 1)χB, (5.13)

(

αS + αATPhD(τ, χD, χE , δ)
)dχD

dτ
= hD(τ, χD, χE , δ)

[

κ3(βi + 2ρ3)

+
(

χA − cos(θAD)
)

− (1 + κ3)χD

]

, (5.14)

(

αS + αATPhE(τ, χD, χE , δ)
)dχE

dτ
= hE(τ, χD, χE , δ)

[

κ3(βi+1 + 2ρ3)

+
(

χB + cos(θBE)
)

− (1 + κ3)χE

]

. (5.15)

The nondimensional parameters are given by

αC =
γCγC
mCKC

, αT =
γT γC
mCKT

, αM =
γMγC
mCKS

, αS =
γSγC
mCKS

, αATP =
γATPγC
mCKS

,

ρ1 =
LC

LT

, ρ2 =
LT

LS

, ρ3 =
LATP

LS

,

κ1 =
KC

KT

, κ2 =
KT

KS

, κ3 =
KATP

KS

,

βi =
pi
LS

, λ =
FC

KCLC

, δ =
d

LS

.
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See Table 5.1 for dimensional parameter values. The nondimensional initial conditions are given

by:

χC(0) = 0, χT (0) = ρ1, χA(0) = ρ2 + ρ1ρ2, χB(0) = ρ2 + ρ1ρ2,

χD(0) = β0, and χE(0) = β1. (5.16)

5.3 Numerical experiments

The scheme is implemented in MATLAB for N intervals of [0, τFinal] with τFinal = 108 and

N = 100 using the solver ode45 [164]. The initial conditions are given by equations (5.16). For

the initial step it is assumed that MTBD D is in an unbound state and MTBD E is in a bound

state. For each following step a random number qi is generated from the uniform distribution on

(0, 1) to determine which head steps (see equation (5.2)) and the initial conditions are given by

the values from the previous simulation: χC(τi), χT (τi), χA(τi), χB(τi), χD(τi) and χE(τi).

5.3.1 Stochastic stepping with limited coordination

Initially we assume that the motor domains bind ATP at random when they are both attached

to the microtubule, therefore we take PD = PE = 50%. The primary value of the maximum

separation distance is taken to be d = 48nm. The results show a mixed stepping pattern for both

the MTBDs and AAA+ rings with both shuffling and hand-over-hand patterns present (Figure

5.3(e) and (f)). This matches experimental observations on yeast cytoplasmic dynein, labelled at

the AAA+ rings [31, 32]. Here, we are able to compare the trajectories of AAA+ ring and MTBDs

which is not yet achievable in experiments as tagging functional MTBDs is technically challenging.

The tail domain also moves with a stepping profile, as seen in experiments on dynein labelled at

the tail domain (Figure 5.3(c) and (d)). The cargo moves along the microtubule with increasing

velocity and oscillatory profile (Figure 5.3(a) and (b)). By computing the simulations over a larger

interval, with end time τFinal = 109 and N = 1000, the velocity of the cargo reaches a relative

plateau, where it stops increasing over time and oscillates within a small band (see Figure 5.4 (a)

and (b)) matching observations by Garrett et. al [2].

In order to make statistical comparisons with experimental observations, we compiled data from

100 simulations of the model, extending this to 1000 simulations for optimum parameter values.

Observations by Qiu et al. [32] show that approximately 83% of steps did not pass each other and
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Figure 5.3: Numerical solutions to the model equations (5.10) - (5.15) with maximum separation
distance between MTBDs at 48nm and the probability that MTBD E steps at 50%. Plots over
the whole time corresponding to (a) trajectory of the cargo, (b) velocity profile of the cargo, (c)
trajectory of the tail domain, (d) trajectory of the tail domain for a representative subinterval, (e)
trajectory of the AAA+ rings, and (f) trajectory of the MTBDs.
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Figure 5.4: Numerical solutions to the model equations (5.10) - (5.15) with maximum separation
distance between MTBDs at 48nm and the probability that MTBD E steps at 50%, with end time
τFinal = 109 and N = 1000. (a) Velocity profile of the cargo for τ ∈ [0, 109]. (b) Velocity profile of
the cargo for a representative subinterval illustrating the long-time dynamics of the cargo.
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Figure 5.5: Bar charts showing the mean percentage of steps: (a) passing vs not passing and
(b) alternating vs not alternating. The data represents the results of 1000 simulations with the
probability that MTBD E steps set at 50% and the maximum separation distance set to be 48nm.

d % Not Passing Steps % Alternating Steps

8 49.45 75.36
16 65.68 66.24
24 73.08 61.65
32 79.17 60.43
40 83.66 57.25
48 84.70 57.20
56 86.21 55.38
64 87.13 54.68

Table 5.2: Mean percentage of not passing steps and alternating steps given a range of values for
the maximum separation distance d. The data represents the results of 100 simulations with the
probability that MTBD E steps set at 50%. If x% of steps are not passing then 1 − x% of steps
are passing. Similarly, if x% of steps are alternating then 1− x% of steps are not alternating.

in our simulations we have an average of 84.05% steps not passing (see Figure 5.5(a)). However,

experimental results also show that dynein moves with predominately an alternating stepping

pattern with approximately 74% of steps alternating in time [32], whereas our simulations show

only 56.89% of steps alternating in time (see Figure 5.5(b)). This may be due to the randomness

in the model where the probability of stepping is independent of which head stepped previously.

Remark 5.3.1. The choice of 48nm for the maximum separation distance gives the optimum pro-

portion of non-passing steps. Lower values increase the prevalence of passing steps and higher

values allow the components of the complex to diverge which may not be physically realistic, see

Table 5.2.

Remark 5.3.2. Many experiments on cytoplasmic dynein, including the experiments by DeWitt et

al., and Qiu et al., [31, 32], use dimerized yeast dynein. We have therefore also looked at a reduced

version of the model for a dimerized dynein motor with no cargo and we get similar results for the

stepping pattern and trajectories (see Section 5.4 for results).
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PD PE % Not Passing Steps % Alternating Steps

0 100 85.15 14.00
10 90 85.25 22.52
20 80 85.14 31.43
30 70 85.21 40.19
40 60 84.45 49.65
50 50 83.51 55.98
60 40 83.94 65.93
70 30 81.45 74.15
80 20 81.85 82.16
90 10 75.76 91.25
100 0 100 100

Table 5.3: Mean percentage of not passing steps and alternating steps given a range of values for
the stepping probabilities of MTBD E. The data represents the results of 100 simulations with the
maximum separation distance set to be 48nm. If x% of steps are not passing then 1− x% of steps
are passing. Similarly, if x% of steps are alternating then 1− x% of steps are not alternating.

5.3.2 Interhead coordination

If dynein uses a more extensive form of interhead coordination, the probability that each MTBD

steps will depend on the previous step. Therefore, the impact of dependent stepping probabilities on

the model is investigated by taking PD 6= PE , whilst we continue to take the maximum separation

distance to be d = 48nm. It is assumed that the probability that MTBD E steps increases if MTBD

D stepped previously and decreases if MTBD E stepped previously. By taking PD = 70% and

PE = 30% the results show the same mode of stepping to previous results, with a mixed stepping

pattern of 82.60% not passing steps reflecting experimental observations of 83% (see Figures 5.6 and

5.7(a)). However, in comparison to our previous results, these results also resemble experimental

observations with 73.82% of steps alternating in our simulations and 74% in experiments (see

Figure 5.7(b)). This suggests that some form of coordination, in relation to the ATP cycles of each

head domain, occurs between the motor domains of dynein, with one domain being more likely to

step if the previous step was taken by the other motor domain. The proportion of alternating steps

increases with an increase in the probability that MTBD E steps given that MTBD D stepped

previously, with a completely hand-over-hand stepping profile associated with a probability of

100% (see Table 5.3 for results).

5.4 Artificially dimerized model in the absence of cargo

Many stepping experiments studying dynein are conducted using an artificially dimerized form. To

study a dimerized form of dynein a shorter form of dynein’s tail is modelled by using two identical

springs connecting the tail to each of the AAA+ rings, this tail can be shortened according to the
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Figure 5.6: Numerical solutions to the model equations (5.10) - (5.15) with maximum separation
distance between MTBDs at 48nm and the probability that MTBD E steps set at 70% if the
previous step was taken by MTBD D, and 30% otherwise. Plots over the whole time corresponding
to (a) trajectory of the cargo, (b) velocity profile of the cargo, (c) trajectory of the tail domain,
(d) trajectory of the AAA+ rings, and (e) trajectory of the MTBDs.
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Figure 5.7: Bar charts showing the mean percentage of steps: (a) passing vs not passing and
(b) alternating vs non-alternating. The data represents the results of 1000 simulations with the
probability that MTBD E steps set at 70% if MTBD D stepped previously and 30% otherwise.
The maximum separation distance is set to be 48nm.
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specific dimerization by the use of the parameter LT . It is also assumed that there is no cargo. The

Qdots in these experiments tend to be attached to the AAA+ rings themselves and it is assumed

that the effect of these Qdots on the dynamics can be ignored. The model equations (5.4)-(5.9)

can be modified to:

mT

d2xT
dt2

= KT

(

xB − xT − LT cos(θBT )
)

−KT

(

xT − xA − LT cos(θAT )
)

− γT
dxT
dt

, (5.17)

mM

d2xA
dt2

= KT

(

xT − xA − LT cos(θAT )
)

−KS

(

xA − xD − LS cos(θAD)
)

− γM
dxA
dt

, (5.18)

mM

d2xB
dt2

= KS

(

xE − xB − LS cos(θBE)
)

−KT

(

xB − xT − LT cos(θBT )
)

− γM
dxB
dt

, (5.19)

mShD(t, xD, xE , d)
d2xD
dt2

= hD(t, xD, xE , d)
[

− γATP

dxD
dt

−KATP (xD − pi − 2LATP )

−KS(xD − xA + LS cos(θAD))
]

− γS
dxD
dt

, (5.20)

mShE(t, xD, xE , d)
d2xE
dt2

= hE(t, xD, xE , d)
[

− γATP

dxE
dt

−KATP (xE − pi+1 − 2LATP )

−KS(xE − xB − LS cos(θBE))
]

− γS
dxE
dt

, (5.21)

for t ∈ [0, TFinal] with initial conditions:

xT (0) = 0, xA(0) = LT , xB(0) = LT , xD(0) = p0 = LT − 4, and xE(0) = p1 = LT + 4.

The non-dimensionalistation is implemented similarly with a notable change for the time charac-

teristic:

xT = LTχT , xA = LSχA, xB = LSχB, xD = LSχD, xE = LSχE , and t =
mT

γT
τ.

Hence, the non-dimensional model system is given by the following ODEs:

αT

dχT

dτ
=

( 1

ρ2
(χB + χA)− cos(θBT ) + cos(θAT )

)

− 2χT , (5.22)

αM

dχA

dτ
= ρ2κ2

(

χT − cos(θAT )
)

+
(

χD + cos(θAD)
)

− (κ2 + 1)χA, (5.23)

αM

dχB

dτ
=

(

χE − cos(θBE)
)

+ ρ2κ2

(

χB + cos(θBT )
)

− (κ2 + 1)χB, (5.24)

(

αS + αATPhD(τ, χD, χE , δ)
)dχD

dτ
= hD(τ, χD, χE , δ)

[

κ3(βi + 2ρ3)

+
(

χA − cos(θAD)
)

− (1 + κ3)χD

]

, (5.25)

(

αS + αATPhE(τ, χD, χE , δ)
)dχE

dτ
= hE(τ, χD, χE , δ)

[

κ3(βi+1 + 2ρ3)

+
(

χB + cos(θBE)
)

− (1 + κ3)χE

]

. (5.26)
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Figure 5.8: Numerical solutions to the model equations (5.22) - (5.26) with maximum separation
distance between MTBDs at 48nm and the probability that MTBD E steps at 70% if the previous
step was taken by MTBD D, and 30% otherwise. Plots over the whole time corresponding to (a)
trajectory of the tail, (b) velocity profile of the tail, (c) trajectories of the AAA+ rings, and (d)
trajectories of the MTBDs.

The nondimensional parameters are given by

αT =
γ2T

mTKT

, αM =
γMγT
mTKS

, αS =
γSγT
mTKS

, αATP =
γATPγT
mTKS

, ρ2 =
LT

LS

, ρ3 =
LATP

LS

,

κ2 =
KT

KS

, κ3 =
KATP

KS

, βi =
pi
LS

, and δ =
d

LS

.

See Table 5.1 for dimensional parameter values. The trajectories for the tail, AAA+ rings and

MTBDs are similar to results from the full model (see Figure 5.8). The statistics for the stepping

patterns are also similar with 82.80% not-passing steps and 73.86% alternating steps (see Figure

5.9). This is to be expected as these statistics reflect the stochastic parameters controlling the

stepping of the complex which are unchanged in this variant of the model.

5.5 Variable angles

If the assumption that the angles in the model are fixed is relaxed then we must solve a two-

dimensional system. Let yC , yT , yA, yB, yD and yE represent the height of the cargo, tail, AAA+

rings A and B, and MTBDs D and E respectively. The only forces applied vertically are the spring

forces and drag, by using Hooke’s Law to model the spring force and equating the mass multiplied
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Figure 5.9: Bar charts showing the mean percentage of steps: (a) passing vs not passing and
(b) alternating vs non-alternating. The data represents the results of 1000 simulations with the
probability that MTBD E steps set at 70% if the previous step was taken by MTBD D, and 30%
otherwise. The maximum separation distance is set to be 48nm.

by the acceleration to the net force we derive the following system of equations for the cargo, tail

and AAA+ rings:

mC

d2yC
dt2

= −KC(yC − yT − LC sin(θCT ))− γC
dyC
dt

, (5.27)

mT

d2yT
dt2

= KC(yC − yT − LC sin(θCT ))−KT (yT − yB − LT sin(θBT ))

−KT (yT − yA − LT sin(θAT ))− γT
dyT
dt

, (5.28)

mA

d2yA
dt2

= KT (yT − yA − LT sin(θAT ))−KS(yA − yD − LS sin(θAD))− γA
dyA
dt

, (5.29)

mB

d2yB
dt2

= KT (yT − yB − LT sin(θBT ))−KS(yB − yE − LS sin(θBE))− γB
dyB
dt

, (5.30)

with the angles defined by:

θCT = arctan
( yC − yT
xT − xC

)

, θAT = arctan
( yT − yA
xT − xA

)

, θBT = arctan
( yT − yB
xB − xT

)

,

θAD = arctan
( yA − yD
xD − xA

)

, and θBE = arctan
( yB − yE
xE − xB

)

.

For the MTBDs it is assumed that they do not move away from the microtubule. This is a valid

assumption while they are attached and biophysical models have predicted that the movement of

the MTBDs under the action of ATP hydrolysis is one-dimensional along the microtubule [153].

Therefore yD = 0 and yE = 0. The vertical components are non-dimensionalised as follows:

yC = LCψC , yT = LTψT , yA = LSψA, yB = LSψB, yD = LSψD, yE = LSψE and t = mC

γC
τ and

acceleration is assumed to be small. Therefore, the following system of nondimensional ODEs is
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obtained:

αC

dψC

dτ
= −(ψC − 1

ρ1
ψT − sin(φCT )), (5.31)

αT

dψT

dτ
= κ1(ρ1ψC − ψT − ρ1 sin(φCT ))− (ψT − 1

ρ2
ψB − sin(φBT ))

− (ψT − 1

ρ2
ψA − sin(φAT )), (5.32)

αM

dψA

dτ
= κ2(ρ2ψT − ψA − ρ2 sin(φAT ))− (ψA − ψD − sin(φAD)), (5.33)

αM

dψB

dτ
= κ2(ρ2ψT − ψB − ρ2 sin(φBT ))− (ψB − ψE − sin(φBE)), (5.34)

dψD

dτ
= 0, (5.35)

dψE

dτ
= 0; (5.36)

where

αC =
γCγC
mCKC

, αT =
γTγC
mCKT

, αM =
γMγC
mCKS

,

ρ1 =
LC

LT

, ρ2 =
LT

LS

,

κ1 =
KC

KT

, κ2 =
KT

KS

,

with the angles are given by:

φCT = arctan
(ρ1ψC − ψT

χT − ρ1χC

)

, φAT = arctan
(ρ2ψT − ψA

ρ2χT − χA

)

, φBT = arctan
(ρ2ψT − ψB

χB − ρ2χT

)

,

φAD = arctan
(ψA − ψD

χD − χA

)

, and φBE = arctan
(ψB − ψE

χE − χB

)

.

Initial conditions are given by

ψC(0) =
1

ρ1
sin(φBT (0)) +

1

ρ1ρ2
sin(φBE(0)), ψT (0) = sin(φBT (0)) +

1

ρ2
sin(φBE(0)),

ψA(0) = sin(φAD(0)), ψB(0) = sin(φBE(0)), ψD(0) = 0, ψE(0) = 0,

with angles defined by:

φCT (0) = π, φAT (0) =
33π

180
, φBT (0) =

33π

180
, φAD(0) =

53π

180
, and φBE(0) =

53π

180
,

given our previous assumption on the position of the spring connecting the cargo to the tail

domain and using experimental results by Burgess et al., for all other angles [55]. These results

show very similar trajectories for the cargo, tail, AAA+ rings and MTBDs for the horizontal

motion (see Figure 5.10). The statistics for the stepping pattern are also very similar with 82.60%
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Figure 5.10: Numerical solutions to the model equations (5.10) - (5.15), (5.31) - (5.36) with
maximum separation distance between MTBDs at 48nm and the probability that MTBD E steps
at 70% if the previous step was taken by MTBD D, and 30% otherwise. Plots over the whole
time corresponding to (a) trajectory of the cargo, (b) velocity profile of the cargo, (c) trajectory
of the tail domain, (d) trajectories of the AAA+ rings, and (e) trajectories of the MTBDs; in the
horizontal direction.

non-passing steps and 73.77% alternating steps (see Figure 5.12). This is to be expected as the

stochastic parameters modelling the stepping behaviour are unchanged in this model. The vertical

trajectories do not appear to reflect experimental observations (see Figure 5.11) [55]. Allowing

the angles to vary freely may not be biologically realistic and so further work needs to be carried

out in order to model the changes in these angles appropriately. Furthermore, these preliminary

results do suggest that the assumption on fixed angles in the current model is unlikely to affect

our results negatively and is therefore a reasonable assumption.
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Figure 5.11: Numerical solutions to the model equations (5.10) - (5.15), (5.31) - (5.36) with
maximum separation distance between MTBDs at 48nm and the probability that MTBD E steps
at 70% if the previous step was taken by MTBD D, and 30% otherwise. Plots over the whole time
corresponding to (a) trajectory of the cargo, (b) trajectory of the tail domain, (c) trajectories of
the AAA+ rings, and (d) trajectories of the MTBDs; in the vertical direction.
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Figure 5.12: Bar charts showing the mean percentage of steps: (a) passing vs not passing and
(b) alternating vs non-alternating. The data represents the results of 1000 simulations with the
probability that MTBD E steps set at 70% if the previous step was taken by MTBD D, and 30%
otherwise. The maximum separation distance is set to be 48nm.
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5.6 Non-identical head domains

Dynein uses both motor domains to step processively, however it is unclear if both motor domains

need to produce force using ATP hydrolysis or if the microtubule binding ability is sufficient.

Hence we relax our assumption that the ATP force is the same for both MTBDs and use different

parameters for each MTBD: γATP,i, KATP,i and LATP,i for MTBD i in equations (5.8) and (5.9).

The equations of motion for the cargo, tail and AAA+ rings A and B continue to be modelled in

the same way by equations (5.4) - (5.7). However, rather than solving over a fixed time interval

ti+1 − ti =
1
N
TFinal for each step, we end our time interval once the MTBD has reached the next

binding site; taking the interval [ti, ti+1] ⊂ [ti, ti + tmax] with

ti+1 = min
{

t ∈ [ti, ti + tmax] : xi(t) ≥ pj+2

}

where pj+2 is the next binding site for the unbound MTBD i. This allows the two MTBDs to take

different lengths of time to reach the next binding site.

We consider a model in which one of the motor domains is the wild type and the other is

mutated. We assume that the mutated domain cannot bind ATP and hence produces no ATP

force. Therefore, we set the probability that MTBD E, the mutated domain, steps at 0% and

the parameters γATP,E and KATP,E equal to zero. All other parameters are modelled using their

primary values in Table 5.1 with γATP,D = γATP , KATP,D = KATP and LATP,D = LATP,E =

LATP . The results show that in this case the wild type domain steps ahead of the mutant domain,

with the mutant domain unbinding from the microtubule when the maximum separation distance

is reached and moving solely due to the tension within the complex (see Figure 5.13 (e)). The

velocity of the cargo is significantly lower than in the wild type models (see Figure 5.13 (b)). The

stepping profile also differs from the wild type model with a primarily non-alternating pattern and

a solely shuffling stepping profile (see Figure 5.14). This is to be expected as the mutant head can

only move through tension. We note that the velocity of the cargo falls back to zero during the

early stage of transport (see Figure 5.13 (b)), this is likely to be caused by the slow movement of

the mutant head domain compared to the faster stepping of the wild type head.

DeWitt et al., consider a similar mutation where ATP can bind but cannot be hydrolysed at

the AAA1 domain [31]. Their results showed that in a heterodimeric dynein, composed of one wild

type and one mutant head lacking the ability to hydrolyse ATP, only one wild type force generating

head was needed for processive movement. The mutant domain was weakly associated with the

microtubule and usually stepped towards the wild type domain with occasional stepping in front of
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Figure 5.13: Numerical solutions to the mutated model equations (5.10) - (5.15) as described in
Section 5.6 with maximum separation distance between MTBDs at 48nm and the probability that
MTBD E steps set to be 0%, γATP,E = 0 and KATP,E = 0. Plots over whole time corresponding
to (a) trajectory of the cargo, (b) velocity profile of the cargo, (c) trajectory of the tail domain,
(d) trajectory of the AAA+ rings, and (e) trajectory of the MTBDs.

the wild type domain or taking backward steps. Our results reflect the general profiles of forward

stepping by the complex however there are some behaviours that they do not account for such

as backward stepping and a variable step size. The limitations in our model of allowing the wild

type domain to only step forwards and fixing the step size are likely to be the causes of this. For

example, the model only considers continuous forward stepping by the wild type domain and so

we do not see it stepping back from the lead. The presence of ATP in the AAA1 site may prevent

rebinding to the microtubule which is not considered in our model. The mutation modelled does

not allow ATP to bind and hence we are only modelling detachment through tension, whereas

the other types of motion seen experimentally could be accounted for by ATP binding causing

detachment from the microtubule prematurely.
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Figure 5.14: Bar charts showing the mean percentage of steps: (a) passing vs not passing, and
(b) alternating vs non-alternating. The data represents the results of 1000 simulations with the
probability that MTBD E steps set to be 0%, γATP,E = 0 and KATP,E = 0. The maximum
separation distance is set to be 48nm.

5.7 Discussion

In this chapter, we have derived a general stochastic mechanistic model that describes the transport

mechanism of cytoplasmic dynein under continual forward stepping with a fixed step size. Our

results give a mixed stepping pattern with a predominantly shuffling stepping profile matching

experimental observations. We have shown that there is likely to be some form of interhead

coordination between the timing of the ATP cycles of the two AAA+ rings in order to account

for the alternating pattern seen in experiments. In comparison to results for limited coordination,

through attachment to the microtubule only, we see that the velocity is the same. Hence, this form

of coordination has no direct effect on the velocity.

We have also been able to model some form of mutation where one motor domain is unable

to perform ATP hydrolysis leading to a decrease in velocity. This model needs to be validated

experimentally so that the effect of this mutation can be analysed directly through tension based

detachment and movement only. Further development of the model to allow for backward stepping,

variable step size and random detachment of the mutated domain would be beneficial to make

comparisons to experimental work.

Experimental observations also show pausing, backward motion and a variable step size; this is

not achieved here due to restrictions within the model, however the model can be easily extended

to include these characteristics and this is explored in Chapter 6.
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Chapter 6

Stochastic Model with Backwards

Stepping, Variable Step Size and

Dwelling

Experimental observations have shown that dynein exhibits backward stepping for both the tail

domain (20 − 23% of steps) and the motor domain (13 − 20% of steps) [30, 31, 32]. Dynein

also exhibits a variable step size with Reck-Peterson et al., reporting a predominant step size of

16nm for the motor domain but with a large number of longer steps sizes including step sizes

greater than 56nm (not exceeding 64nm) [30]. Therefore, we aim to introduce these characteristics

into the model. Dynein has been shown to dwell between steps, with measured dwell times for

the tail domain averaging 2s and is well described by an exponential distribution [30]. In order

to incorporate this into the model we include a variable time interval between steps when both

MTBDs are bound, i.e. dxD

dt
= 0 and dxE

dt
= 0. A dwell time of 2s is of a significantly larger

scale than the current time scale, i.e. 2 × 109 ns, which reflects reasonably sized parameters (see

Sections 3.1 and 5.2.1). Hence, we shall take two approaches for modelling dwelling processes. In

the first instance, we will model minimal dwelling within the same scales as our other parameters

(see Sections 3.1 and 5.2.1), whilst introducing backward stepping and a variable step size. Next,

we will look at a multi-scale framework, using a different scaling of time for stepping and dwelling

intervals.
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6.1 Stochastic stepping with minimal dwelling

Stochasticity is modelled in the following ways: randomness in which AAA+ ring binds ATP:

AAA+ ring A or B, randomness in when an AAA+ ring binds ATP: time tbind, randomness in

the direction of motion of the unbound MTBD, and step size. We therefore define the following

parameters for use in the numerical simulations: the value of PD (similarly PE) is assigned to

the probability that MTBD E steps given that MTBD D (similarly E) stepped previously. The

maximum separation distance d that can occur between the MTBDs and the mean dwell time

between steps µ are predefined. Let n be a parameter modulating the step size, i.e. the step size

is given by nLATP , and the probability that random backward stepping occurs, PBack, is also

predefined. Consider t ∈ [0, TF + QF ] with TF > 0 and QF =
∑N

k=1 q1,k. Here, N represents

the total number of steps, TF the total time spent stepping and QF the total time spent dwelling

with q1,k the length of individual intervals of dwelling. Let q1 = {q1,k}k=1:N be a random vector

where q1,k is from the exponential distribution with mean µ. Furthermore, let q2 = {q2,k}k=1:N

and q3 = {q3,k}k=1:N be random vectors where q2,k and q3,k are from the uniform distribution on

(0, 1); these will determine the choice of AAA+ ring and the direction of stepping respectively. We

continue to use a fixed time interval for stepping, TStep, giving TF = NTStep.

For t ∈ [ti, ti+1], where ti+1 = ti +
TF

N
, given that MTBD j stepped previously if q2,i < Pj

then MTBD E is set to be in the unbound state and MTBD D is set to be in the bound state.

Otherwise we assume that the MTBD D is in the unbound state and MTBD E in the bound state.

This is described by the step functions h2,D and h2,E :

h2,E(t) =







1 if q2,i < Pj ,

0 otherwise;

(6.1)

and similarly

h2,D(t) = 1− h2,E(t). (6.2)

Note that these step functions differ from Chapter 5 equations (5.3) - (5.2) as they do not depend

on the maximum separation distance, which is used to determine the direction of a step rather

than which head steps as in the previous chapter. If the unbound MTBD is ahead of the other and

the maximum separation distance has been reached or if q3,i < PBack then the unbound MTBD is
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set to move backwards; otherwise it steps forwards. This can be defined by the step function:

gD(xD, xE , t, d, n) =







−n if xD − xE > d or q3,i < PBack,

n otherwise,

(6.3)

where n is a parameter modulating the step size. The equivalent function for MTBD E can be

defined similarly with

gE(xD, xE , t, d, n) =







−n if xE − xD > d or q3,i < PBack,

n otherwise.

(6.4)

Then, given q1,i the system is set to dwell for t ∈ [ti+1, ti+1 + q1,i], i.e. both MTBDs are set to be

in the bound state. Here, we can define a step function hq(t, ti+1) given by:

hq(t, ti+1) =







1 if t ≤ ti+1

0 otherwise;

(6.5)

for t ∈ [ti, ti+1 + q1,i] with i = 1, 2, ..., N . Define h3,j(t) = hq(t, ti+1)h2,j(t) for j = D,E. The

equations (5.8) -(5.9) are therefore amended to obtain the following ODEs for MTBDs D and E:

mSh3,D(t)
d2xD
dt2

= h3,D(t)
[

− γATP

dxD
dt

−KATP

(

xD − pi − gD(xD, xE , t, d, n)LATP

)

−KS

(

xD − xA + LS cos(θAD)
)]

− γS
dxD
dt

, (6.6)

mSh3,E(t)
d2xE
dt2

= h3,E(t)
[

− γATP

dxE
dt

−KATP

(

xE − pi+1 − gE(xD, xE , t, d, n)LATP

)

−KS

(

xE − xB − LS cos(θBE)
)]

− γS
dxE
dt

, (6.7)

for t ∈ [0, TF +QF ]. The motion of the cargo, tail and AAA+ rings continues to be modelled by

equations (5.4) - (5.7). The model is non-dimensionalised as in Section 5.2.1 and the second order

derivatives are neglected; the motion of the cargo, tail and AAA+ rings continue to be described

by equations (5.10) - (5.13), whilst the MTBDs are described by the following equations:

(

αS + αATP ĥD(τ)
)dχD

dτ
= ĥD(τ)

[

κ3

(

βi + ĝD(χD, χE , τ)ρ3

)

+
(

χA − cos(θAD)
)

− (1 + κ3)χD

]

, (6.8)

(

αS + αATP ĥE(τ)
)dχE

dτ
= ĥE(τ)

[

κ3

(

βi+1 + ĝE(χD, χE , τ)ρ3

)

+
(

χB + cos(θBE)
)

− (1 + κ3)χE

]

, (6.9)
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for τ ∈ [0, τFinal] where τFinal =
γC

mC
(TF + QF ). We take ĝj(χD, χE , τ) = gj(χD, χE , τ, δ, n) and

ĥj(τ) = hq(τ, τi+1)h2,j(τ) for j = D,E. The initial conditions continue to be given by equations

(5.16).

6.2 Backwards stepping with fixed step size

First, we consider backward stepping with a fixed step size. We allow n ∈ {2,−2}, where n = 2

represents a forward step of size 16nm, the predominant forward step size [30], and n = −2

represents a backward step of size 16nm (see equations (6.3) and (6.4)). The scheme is implemented

in MATLAB for N intervals of [0, τFinal] with the non-dimensional time for each stepping interval

taken to be τstep = 106 and using the solver ode45 and tolerances given in Table 3.2 [164]. We

consider N = 100 steps with minimal mean dwell time µ = 2ns. In order to explore the effect

of random backward stepping within the complex we take PBack = 10%. The primary value for

the probability that MTBD E steps given that MTBD D (E) stepped previously is taken to be

PD = 74% (PE = 26%), reflecting experimental observations by Qiu et al., [32], and the primary

value of the maximum separation distance between the two MTBDs is taken to be 56nm. Variations

in these values are explored below. For the initial step MTBD D is assumed to be in the unbound

state and MTBD E is in an bound state and the system is solved for the initial conditions given

by equations (5.16).

For each subsequent step a random number q1,i is generated from the exponential distribution

with mean µ and the system of ODEs is solved for τ ∈ [τi+1, τi+2] in the dwelling state where

τi+2 = τi+1 + γC

mC
q1,i (see equation (6.5)). Initial conditions are given by the values from the

previous simulation:

χC(τi+1), χT (τi+1), χA(τi+1), χB(τi+1), χD(τi+1) and χE(τi+1).

Random numbers q2,i and q3,i are then generated from the uniform distribution on (0, 1) to deter-

mine which head domain steps and in which direction (see equations (6.1) - (6.4)). The resulting

ODE system is solved for τ ∈ [τi+2, τi+3], where τi+3 = τi+2 + τstep, with the initial conditions

taken from the end values of the dwelling simulation:

χC(τi+2), χT (τi+2), χA(τi+2), χB(τi+2), χD(τi+2) and χE(τi+2).

The results show a trajectory for the cargo moving forwards with a more varied velocity profile
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than in previous results, with some instances of decreasing velocity as opposed to a profile that

increases over an initial transitory period and then oscillates within a band (see Figure 6.1). This

is likely to be a result of the backward steps being predominant enough to slow motion, but not

present enough to move the cargo backwards. In comparison the tail domain does not move solely

in the forward direction, but does itself exhibit some backward motion. As implemented in the

model, there are now backward steps taken by the MTBDs, whilst both passing and non-passing

steps remain present (see Figure 6.1). In comparison to experimental observations on yeast stepping

patterns we are able to achieve similar patterns with 74.03% alternating steps, as prescribed in

the model, and more significantly 82.45% non-passing steps, which is not prescribed but arises

from the model (see Figure 6.2). We can also achieve a range of backward steps in the model, in

particular taking the probability of backward stepping to be 20% and the maximum separation

distance to be 48nm results in 24.91% backward steps by the MTBDs to achieve similar levels to the

experimental observations of Qiu et. al., (23%) (see Figure 6.2), while to match the observations

of Reck-Peterson et. al., of 13% we can take the probability of backward stepping to be 10% and

the maximum separation distance to be 56nm [32, 30] (see Table 6.1).

We explored variations in the maximum separation distance on the stepping patterns (see Table

6.2). We see that the percentage of alternating steps is not effected by the change in maximum

separation distance, as this is prescribed by the model, however there is an effect on non-passing

steps and backward steps. The reduction in maximum separation distance, below 56nm, increases

the likelihood of backward stepping, this is to be expected as backward stepping is directly related

to the separation distance in the model, with an unbound head stepping backwards if it is too far

in front of the other MTBD. We also see that reducing the maximum separation distance increases

the likelihood of passing steps, which is plausible as closer MTBDs are more likely to cross over

one another during stepping.

Increasing the stepping probability of MTBD E after MTBD D has stepped, decreases the

percentage of not passing steps slightly and also decreases the percentage of backward steps (see

Table 6.3). This is likely to occur as the increased coordination would create a more efficient

stepping pattern reducing the prevalence of wasteful backward steps by keeping the motor domains

closer together and hence passing steps would also be more likely to occur.

Variations in backward stepping were explored with different maximum separation distances (see

Table 6.1). A probability of backward stepping of 0% does not mean that there will be no backward

stepping in the model since we use this parameter to represent random backward stepping, which

we differentiate from tension related backward stepping. If we assume that there is no random
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d PBack % Not Passing Steps % Alternating Steps % Backward Steps

48 0 80.28 74.52 2.57
10 81.68 73.53 13.19
20 82.25 74.49 24.58

56 0 84.05 74.71 1.75
5 84.19 74.07 7.33
10 84.50 74.35 12.90
15 85.97 74.18 17.78
20 85.80 73.80 22.87
25 84.90 74.36 28.24
50 86.45 73.37 53.43

64 0 83.87 73.71 1.59
10 85.72 73.43 12.96
20 85.41 74.49 23.19

Table 6.1: Mean percentage of not passing, alternating and backward steps given a range of values
for the probability of random backward stepping PBack. The data represents the results of 100
simulations with the probability that MTBD E steps set at 74% if MTBD D stepped previously
and 26% otherwise. The mean dwell time is taken to be 2ns and the maximum separation distance
is d as given. If x% of steps are not passing then 1− x% of steps are passing. Similarly, if x% of
steps are alternating then 1− x% of steps are not alternating.

backward stepping, then the only backward stepping present in the model is through the corrective

backward steps taken when the MTBDs are too far apart. We see from the results that this gives

a very low presence of backward stepping, much lower than in experimental results. Hence, this

suggests that the MTBDs might randomly step backwards or that something external/excluded

from the model may be causing it. Studies have shown that dynactin plays an important role

in the directionality of dynein and hence we may need to explore these effects in greater detail

[78]. The effects of two dimensional steps along the microtubule may also play a role in backward

stepping if the motor domain rotates due to the off-axis components of the steps. We are currently

setting external forces to be zero but these forces may play a role in the directionality of the head

domain for in vivo studies. Increases in the probability of backward stepping only cause a slight

increase in non passing steps once random backward stepping reaches 50% (see Table 6.1). This

is an interesting result as the existence of random backward steps would be expected to allow the

MTBDs to remain closer together compared to simulations without these steps, and hence lead to

an increase in passing steps. However, this effect may in fact not be occurring and the random

backward steps may be exacerbating the separation of the MTBDs or may not be prevalent enough

to pull a forward MTBD back to the rearward MTBD.
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d % Not Passing Steps % Alternating Steps % Backward Steps

8 49.36 73.90 26.63
16 53.57 74.39 20.88
24 68.05 73.73 17.14
32 75.45 74.31 15.80
40 80.85 74.73 14.47
48 81.68 73.53 13.19
56 84.50 74.35 12.90
64 85.72 73.43 12.96
72 85.89 74.30 12.08
80 87.29 73.67 12.70

Table 6.2: Mean percentage of not passing, alternating and backward steps given a range of values
for the maximum separation distance d. The data represents the results of 100 simulations with
the probability that MTBD E steps set at 74% if MTBD D stepped previously and 26% otherwise.
The probability of random backward stepping is set to be 10% and the mean dwell time is taken
to be 2ns. If x% of steps are not passing then 1−x% of steps are passing. Similarly, if x% of steps
are alternating then 1− x% of steps are not alternating.

d PD PE % Not Passing Steps % Alternating Steps % Backward Steps

56 20 80 88.00 19.93 23.01
30 70 87.13 29.90 17.87
40 60 87.29 39.74 16.49
50 50 86.23 50.06 15.41
60 40 85.87 60.51 13.44
70 30 84.17 70.82 13.28
80 20 84.81 80.18 12.90

Table 6.3: Mean percentage of not passing, alternating and backward steps given a range of values
for the stepping probabilities of MTBD E. The data represents the results of 100 simulations with
the maximum separation distance set to be dnm as given. The probability of random backward
stepping is set to be 10% and the mean dwell time is taken to be 2ns. If x% of steps are not
passing then 1− x% of steps are passing. Similarly, if x% of steps are alternating then 1− x% of
steps are not alternating.
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Figure 6.1: Numerical solutions to the model equations (5.10) - (5.13), (6.8) - (6.9) with n = 2
fixed, maximum separation distance between MTBDs at 48nm and the probability that MTBD E
steps set at 74% if the previous step was taken by MTBD D, and 26% otherwise. The mean dwell
time is taken to be 2ns and the probability of random backward stepping is taken to be 20%. Plots
over the whole time corresponding to (a) trajectory of the cargo, (b) velocity profile of the cargo,
(c) trajectory of the tail domain, (d) trajectories of the AAA+ rings, and (e) trajectories of the
MTBDs.

6.3 Variable step size

Dynein exhibits a variable step size in experiments, with a predominant step of 16nm, with both

smaller and larger step sizes present [30]. We therefore extend the model to incorporate this

variability in step sizes by allowing the parameter n in the above model to vary (see equations

(6.3) and (6.4)). The numerical results are run as in the backward stepping model above, however

before each step we generate the step size randomly. We take n from the Poisson distribution about

2 to give the step size nLATP nm for the forward step sizes and n from the Poisson distribution

about 1 for the backward steps to give the step size −nLATP nm. Experimental results show

backward steps to be smaller than forward steps, with a predominant step size of 8nm [30]. The

use of a Poisson distribution allows the possibility of the MTBD to take a step size of 0. This

would represent the possibility of the MTBD detaching from the microtubule but then rebinding

in the same place which is biologically realistic. However, experimental data may not include these
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Figure 6.2: Bar charts showing the mean percentage of steps: (a) passing vs not passing, (b)
alternating vs non-alternating, and (c) forward vs backward. The data represents the results of
1000 simulations for n = 2 fixed with the probability that MTBD E steps set at 74% if MTBD D
stepped previously and 26% otherwise. The maximum separation distance is set to be 48nm, the
mean dwell time is 2ns and the probability of random backward stepping is taken to be 20%.

incidents as steps and so this must be taken into account when making statistical comparisons.

The simulations are therefore run using three scenarios:

• Option 1: Zero steps are included in the model but not counted as part of the alternating

stepping pattern.

• Option 2: Zero steps are not included. (An alternative n will be computed if n = 0 is

generated.)

• Option 3: Zero steps are included in the model and counted in the alternating stepping

pattern.

Our numerical results show similar trajectories to the previous model with a clear varied step size

for the MTBDs (see Figure 6.3). Due to the presence of zero sized steps (option 1), in order to

achieve similar results to experiments we needed to take the probability that MTBD E steps set at

84% if the previous step was taken by MTBD D, and 16% otherwise; this results in 82.72% non-

passing steps, 74.68% alternating steps and 20.91% backward steps (see Figure 6.4). Approximately

10% of steps by the MTBDs were of a zero step size, the majority of steps were of 8 − 16nm and



105

histograms of both forward and backward step distributions (not including zero steps) are given

in Figure 6.5.

We explored variations in the probability of backward stepping alongside variations in the

maximum separation distance for all three stepping options (see Table 6.4). We see similar results

to the previous model (for backward stepping) with a reduction in maximum separation distance

reducing the prevalence of non-passing steps and increasing the proportion of backward steps.

However, we do see differences in the percentage of alternating steps for the three different options,

this count is lower in the case where zero steps exist but are not counted. It is likely that dynein

does experience step sizes of ‘zero’ length, i.e. detaches but rebinds to the same point on the

microtubule, but that these would not be picked up by step finding algorithms used in experimental

data analysis. This suggests that the coordination between head domains is actually higher in

reality than recorded in experiments. It should also be noted that in the case where zero steps

are excluded from the model, there is a higher prevalence of backward steps. This is likely to

be due to the larger step sizes causing the leading head to move too far ahead of the other head

domain and hence more backward steps would be required to keep the complex together. There is

no significant difference in the proportion of non-passing steps.

We also explored variations in the probabilities that MTBD E stepped for all three options (with

MTBD E more likely to step if MTBD D stepped previously (PD ≥ 50%)), this had a limited effect

on the proportion of not passing steps when zero steps were included in the model but no noticeable

effect when they were not (see Table 6.5). In all cases backward stepping increased as the likelihood

that MTBD E stepped after MTBD D (PD) fell, as with the previous model. The percentage of

alternating steps coincided with the probability that MTBD E stepped after MTBD D as expected

when zero steps were either not included or counted. However, they did not coincide when zero

steps were not counted and this discrepancy increased as PD increased. Again, this suggests that

if zero steps are present in reality then coordination may be higher than measured experimentally.

6.4 A multi-scale approach for large scale dwelling

Previously, we used a fixed time interval TF

N
for the stepping of a single MTBD, however the

unbound stepping of the MTBD should end when the MTBD binds to the microtubule. Consider

the interval [ti, ti+1] ⊂ [ti, ti + tmax] where

ti+1 = min
{

t ∈ [ti, ti + tmax] : xi(t) ≥ pj+2

}
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d PBack % Not Passing Steps % Alternating Steps % Backward Steps
1 2 3 1 2 3 1 2 3

40 0 80.40 77.55 80.00 70.01 74.79 74.36 6.16 6.82 6.02
10 80.64 79.96 78.13 69.60 74.62 73.92 14.00 17.28 14.12
20 80.09 79.83 79.60 68.47 74.41 73.99 22.24 28.51 22.77

48 0 82.47 81.40 82.89 70.66 74.01 74.18 5.08 5.09 5.17
5 82.69 82.55 83.06 69.64 73.75 73.88 9.15 10.94 9.11
10 83.36 81.59 83.01 68.83 73.66 74.13 13.33 15.91 13.48
15 81.77 81.50 83.07 70.22 73.93 74.66 17.18 21.74 17.57
20 82.23 81.75 81.84 69.08 74.57 74.16 20.95 27.00 21.15
25 81.68 82.42 83.83 68.30 74.11 73.79 25.85 33.37 25.48

56 0 84.29 84.27 84.28 69.60 74.52 73.76 4.20 4.54 4.32
10 84.90 84.29 83.50 68.34 74.06 72.89 12.73 15.21 12.37
20 85.14 84.01 84.13 68.23 73.64 73.95 20.69 25.19 21.11

64 0 86.95 85.07 86.00 70.72 73.91 74.42 3.48 3.90 3.64
10 85.16 86.20 85.64 68.77 74.00 74.46 11.29 14.69 11.35
20 85.10 85.21 85.51 68.98 74.56 73.70 19.74 25.05 19.47

72 0 85.60 85.97 85.47 69.48 73.57 74.36 3.50 3.51 3.13
10 86.72 86.44 87.27 69.18 74.01 74.18 11.56 14.30 11.79
20 87.74 87.01 84.42 68.30 74.20 74.14 19.40 24.34 19.21

Table 6.4: Mean percentage of not passing, alternating and backward steps given a range of values
for the maximum separation distance d and the probability of random backwards stepping PBack%.
The data represents the results of 100 simulations with the probability that MTBD E steps set at
74% if MTBD D stepped previously and 26% otherwise. The mean dwell time is taken to be 2ns.
The three options represent the following assumptions: (1) zero steps are included in the model
but not counted as part of the alternating stepping pattern; (2) zero steps are not included; (3)
zero steps are included in the model and counted in the alternating stepping pattern. If x% of
steps are not passing then 1 − x% of steps are passing. Similarly, if x% of steps are alternating
then 1− x% of steps are not alternating.

PD PE % Not Passing Steps % Alternating Steps % Backward Steps
1 2 3 1 2 3 1 2 3

50 50 83.85 82.99 83.08 50.81 49.80 50.53 22.90 28.31 23.73
60 40 82.12 83.86 83.04 59.35 60.27 60.44 22.74 27.93 21.94
70 30 82.72 82.08 82.19 65.81 69.99 70.45 21.95 26.53 21.55
80 20 81.69 82.69 81.73 71.57 80.39 79.68 21.96 26.35 21.17
90 10 83.32 82.89 81.96 78.19 90.20 90.05 20.25 26.35 20.11
100 0 82.34 82.26 81.69 84.36 100.00 100.00 19.95 26.75 19.54

Table 6.5: Mean percentage of not passing, alternating and backward steps given a range of values
for the stepping probabilities of MTBD E. The data represents the results of 100 simulations with
the maximum separation distance set to be 48nm. The probability of random backwards stepping
is set to be 12.5% and the mean dwell time is taken to be 2ns. The three options represent the
following assumptions: (1) zero steps are included in the model but not counted as part of the
alternating stepping pattern; (2) zero steps are not included; (3) zero steps are included in the
model and counted in the alternating stepping pattern. If x% of steps are not passing then 1−x% of
steps are passing. Similarly, if x% of steps are alternating then 1−x% of steps are not alternating.
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Figure 6.3: Numerical solutions to the model equations (5.10) - (5.13), (6.8) - (6.9) with maximum
separation distance between MTBDs at 48nm and the probability that MTBD E steps set at 84%
if the previous step was taken by MTBD D, and 16% otherwise. The mean dwell time is taken
to be 2ns and the probability of random backward stepping is taken to be 20%. Zero steps were
included in the model. Plots over the whole time corresponding to (a) trajectory of the cargo, (b)
velocity profile of the cargo, (c) trajectory of the tail domain, (d) trajectories of the AAA+ rings,
and (e) trajectories of the MTBDs.

where pj+2 is the next binding site for the unbound MTBD i. Hence, the total time spent stepping

is given by TF =
∑N

i=1(ti+1 − ti).

6.4.1 Multi-scale non-dimensionalisation

In order to model dwelling over large time scales we take a multi-scale approach by using one time

scale for stepping and one for dwelling. We continue to model stepping by the non-dimensional
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Figure 6.4: Bar charts showing the mean percentage of steps: (a) passing vs not passing, (b)
alternating vs not alternating, and (c) forward vs backward. The data represents the results
of 1000 simulations with the probability that MTBD E steps set at 84% if MTBD D stepped
previously and 16% otherwise. Zero steps were included in the model but not counted as part of
the alternating stepping pattern. The maximum separation distance is set to be 48nm, the mean
dwell time is 2ns and the probability of random backward stepping is taken to be 20%.
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Figure 6.5: Histograms showing the distribution of step sizes: (a) forward steps and (b) backward
steps. The data represents the results of 1000 simulations with the probability that MTBD E steps
set at 84% if MTBD D stepped previously and 16% otherwise. The maximum separation distance
is set to be 48nm, the mean dwell time is 2ns and the probability of random backward stepping is
taken to be 20%.



109

model system as given in Section 6.1 with hq = 1:

αC

dχC

dτ1
=

( 1

ρ1
χT − 1

)

− λ1 − χC , (6.10)

αT

dχT

dτ1
=

( 1

ρ2
(χB + χA)− cos(θBT ) + cos(θAT )

)

+ ρ1κ1(χC + 1)− (2 + κ1)χT , (6.11)

αM

dχA

dτ1
= ρ2κ2

(

χT − cos(θAT )
)

+
(

χD + cos(θAD)
)

− (κ2 + 1)χA, (6.12)

αM

dχB

dτ1
=

(

χE − cos(θBE)
)

+ ρ2κ2

(

χB + cos(θBT )
)

− (κ2 + 1)χB, (6.13)

(

αS + αATPh2,D(τ1)
)dχD

dτ1
= h2,D(τ1)

[

κ3

(

βi + ĝD(χD, χE , τ1)ρ3

)

+
(

χA − cos(θAD)
)

− (1 + κ3)χD

]

, (6.14)

(

αS + αATPh2,E(τ1)
)dχE

dτ1
= h2,E(τ1)

[

κ3

(

βi+1 + ĝE(χD, χE , τ1)ρ3

)

+
(

χB + cos(θBE)
)

− (1 + κ3)χE

]

, (6.15)

for the stepping intervals τ1 ∈ [τ1,i, τ1,i+1] and with non-dimensional parameter values:

αC =
γCγC
mCKC

, αT =
γT γC
mCKT

, αM =
γMγC
mCKS

, αS =
γSγC
mCKS

, αATP =
γATPγC
mCKS

,

ρ1 =
LC

LT

, ρ2 =
LT

LS

, ρ3 =
LATP

LS

,

κ1 =
KC

KT

, κ2 =
KT

KS

, κ3 =
KATP

KS

,

βi =
pi
LS

, λ1 =
FC

KCLC

, δ =
d

LS

.

For the dwelling intervals, the dimensional model is given by:

mC

d2xC
dt2

= KC

(

xT − xC − LC

)

− FC − γC
dxC
dt

, (6.16)

mT

d2xT
dt2

= KT

(

xB − xT − LT cos(θBT )
)

−KT

(

xT − xA − LT cos(θAT )
)

−KC

(

xT − xC − LC

)

− γT
dxT
dt

, (6.17)

mM

d2xA
dt2

= KT

(

xT − xA − LT cos(θAT )
)

−KS

(

xA − xD − LS cos(θAD)
)

− γM
dxA
dt

, (6.18)

mM

d2xB
dt2

= KS

(

xE − xB − LS cos(θBE)
)

−KT

(

xB − xT − LT cos(θBT )
)

− γM
dxB
dt

, (6.19)

dxD
dt

= 0, (6.20)

dxE
dt

= 0, (6.21)

for t ∈ [ti+1, ti+1 + q1,i] where we continue to take q1,i from the exponential distribution with

mean µ. Here, ti+1 = mC

γC
τ1,i+1 with mC

γC
the non-dimensional stepping time characteristic. To

non-dimensionalise the dwelling model we continue to use the same spatial characteristics, taking
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xC = LCχC , xT = LTχT , xA = LSχA, xB = LSχB, xD = LSχD and xE = LSχE . For the

time characteristic, we scale by the mean dwell time µ, hence t = µτ2. Again, we assume that

the acceleration is small and that the dynamics are dominated by the viscous drag, hence the

acceleration terms can be neglected and we obtain the following non-dimensional system:

dχC

dτ2
= µ

[

α1

( 1

ρ1
χT − 1

)

− λ2 − α1χC

]

, (6.22)

dχT

dτ2
= µ

[

α2

( 1

ρ2
(χA + χB) + cos(θAT )− cos(θBT )

)

+ α3ρ1(χC + 1)− (2α2 + α3)χT

]

, (6.23)

dχA

dτ2
= µ

[

α4ρ2(χT − cos(θAT )) + α5(χD + cos(θAD))− (α4 + α5)χA

]

, (6.24)

dχB

dτ2
= µ

[

α5(χE − cos(θBE)) + α4ρ2(χT + cos(θBT ))− (α4 + α5)
]

, (6.25)

dχD

dτ2
= 0, (6.26)

dχE

dτ2
= 0, (6.27)

for τ2 ∈ [τ2,i, τ2,i+1] with dimensional parameters:

α1 =
KC

γC
, α2 =

KT

γT
, α3 =

KC

γT
, α4 =

KT

γM
, α5 =

KS

γM
,

ρ1 =
LC

LT

, ρ2 =
LT

LS

, and λ2 =
FC

γCLC

.

As we have used the same spatial non-dimensionalisation, the initial conditions are given by:







χC(τ2,i) = χC(τ1,i+1), χT (τ2,i) = χT (τ1,i+1), χA(τ2,i) = χA(τ1,i+1),

χB(τ2,i) = χB(τ1,i+1), χD(τ2,i) = χD(τ1,i+1), χE(τ2,i) = χE(τ1,i+1).

Similarly the ODE system modelling MTBD stepping following the dwell time will have initial

conditions:







χC(τ1,i+1) = χC(τ2,i+1), χT (τ1,i+1) = χT (τ2,i+1), χA(τ1,i+1) = χA(τ2,i+1),

χB(τ1,i+1) = χB(τ2,i+1), χD(τ1,i+1) = χD(τ2,i+1), χE(τ1,i+1) = χE(τ2,i+1).

6.4.2 Multi-scale numerical experiments

The model is solved numerically in MATLAB for N = 100 steps using ode45 for the stepping model

and the stiff solver ode15s for the dwelling model with the tolerances given in Table 3.2 [164]. The

nondimensional systems are solved and then converted back to dimensional results so that they

can be presented together on the same time scale. The maximum length of the stepping time
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interval is taken to be τmax = 106. The primary values are taken as follows: the probability that

MTBD E steps given that MTBD D (E) stepped previously is taken to be PD = 84% (PE = 16%),

the maximum separation distance is taken to be 48nm and the probability of backward stepping

is set to be 20%. The mean dwell time is taken to be µ = 2 × 109 as experimental results have

shown the average dwell time for dynein to be 2s [30]. For each step, we take n from the Poisson

distribution about 2 to give the step size nLATP nm for the forward step sizes and n from the

Poisson distribution about 1 for the backward steps to give the step size −nLATP nm. We now

assume that zero steps are possible but they are not counted towards alternating or non-alternating

steps.

The results show similar profiles for the tail, AAA+ rings and MTBDs, with the increased

dwell times between steps, however we see a significant difference for the velocity of the cargo (see

Figure 6.6). The cargo now dwells between steps, with an oscillatory velocity profile that returns

to zero between steps which is similar to the in vivo results by Garrett et al., [2]. Using the

primary values for the parameters results in a maximum velocity of the cargo of 15 × 105nms−1

and a velocity of up to 2 × 108nms−1 for the tail domain. This is much higher than velocities

measured experimentally with dynein typically moving at speeds of 600nms−1 at saturating ATP

levels and at room temperature with in vivo velocities reaching up to 3µms−1 in mammalian

neurons, although yeast dynein moves at slower speeds of around 50 to 80nms−1 [84]. A full

parameter analysis of all unknown model parameters needs to be conducted in order to establish

the parameter set which gives quantitatively accurate values for the velocity for each species and

context, and we challenge experimentalists to measure these parameters.

Remark 6.4.1. The statistics for the stepping patterns are similar to the previous model in Section

6.3, with 82.30% not passing steps, 74.74% alternating steps, and 20.64% backward steps (see

Figure 6.7). This is to be expected as these statistics reflect the stochastic parameters controlling

the stepping of the complex which are unchanged when extending the model to a multi-scale

framework.

6.5 Discussion

In this chapter we have extended the mechanical stochastic stepping model to incorporate backward

stepping, a variable step size and dwelling over large time scales. The results give trajectories for

the complex and cargo that qualitatively match experimental observations.

We have also shown that backward stepping that is directly related to the separation within
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Figure 6.6: Dimensional numerical solutions to the model equations (6.10) - (6.15) and (6.22)
- (6.27) with maximum separation distance between MTBDs at 48nm and the probability that
MTBD E steps set at 84% if the previous step was taken by MTBD D, and 16% otherwise. Zero
steps were included in the model. The mean dwell time is taken to be 2 seconds and the probability
of backward stepping is 20%. Plots over the whole time corresponding to (a) trajectory of the cargo,
(b) velocity profile of the cargo, (c) trajectory of the tail domain, (d) velocity profile of the tail
domain, (e) trajectories of the AAA+ rings, and (f) trajectories of the MTBDs.

the complex cannot account for the high percentages of backward stepping seen experimentally,

and hence there must be something else external to this model causing these characteristics. We

suggest that the impact of dynactin on the transport mechanisms and the two dimensional nature

of dynein need to be explored further with regards to their impact on backward stepping.

By prescribing the levels of coordination within the model we can match experimental observa-

tions of the alternating stepping pattern, but when considering the possibility of ‘zero’ step sizes

the model predicts that this coordination must be higher than that seen in experimental observa-

tions, as zero steps are not identified in tracking experiments and hence not counted. The model

predicts the preference of dynein to the shuffling stepping pattern when the motor is allowed to

separate (which is realistic due to the large step sizes seen in experiments), and this matches exper-

imental observations [31, 32]. The model also predicts that species of dynein which prefer a tighter

conformation may be more likely to experience backward steps and have a higher prevalence of
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Figure 6.7: Bar charts showing the mean percentage of steps: (a) alternating vs not alternating, (b)
passing vs not passing. The data represents the results of 1000 simulations with the probability
that MTBD E steps set at 84% if MTBD D had stepped previously and 16% otherwise. Zero
steps were included in the model but not counted as part of the alternating stepping pattern. The
maximum separation between MTBDs is set to be 48nm and the probability of random backward
stepping is 20%.
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passing steps. Stronger coordination between the two motor domains could also reduce backward

stepping which leads to more efficient stepping as backward steps may be wasteful.

Coordination of the head domains may impact on velocity and run length in ways beyond the

simplified model. Our model only considers behaviour when dynein is attached to the microtubule,

lack of coordination may lead to detachment from the microtubule thereby decreasing run length

and velocity. In the following chapter we consider independent stepping by allowing each head

domain to step independently of the state of the other domain.



115

Chapter 7

ATP Dependent Motion with

Independent Head Domains

We have previously assumed some coordination between the two motor domains of dynein, with

only one MTBD being able to detach from the microtubule at a time. However, in reality dynein

does regularly become completely detached from the microtubule although the conditions under

when this occurs are unclear. It has also been proposed that it is the coordination between the

two motor domains that keeps the complex attached to the microtubule so that the long processive

runs seen in experiments can be achieved. We therefore investigate the scenario where there is

no coordination between the two motor domains to test this hypothesis, assuming that the motor

domains bind ATP randomly and the MTBDs can detach irrespective of the ATP cycle of the

other motor domain.

7.1 Stochastic stepping

The dwell time before the binding of ATP for each motor domain is modelled by the exponential

distribution (see Remark 7.1.1). We assume that these waiting times for each motor domain are

independent of each other and are given by qD = {qiD}i∈N for MTBD D and qE = {qiE}i∈N for

MTBD E with qiD and qiE taken from the exponential distribution with mean dwell time µ. The

system continues to be modelled by equations (5.4) - (5.7), with different stepping functions to

hD, hE in equations (5.8) - (5.9). For MTBD D we assume that it steps after qiD seconds, hence
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we define the following step function:

h4,D(t,qD) =







1 if t ∈ [ti + qiD, ti+1]

0 if t ∈ [ti, ti + qiD]

where ti and ti+1 are the times when MTBD D binds back on to the microtubule after stepping

with t0 the initial time. The stepping function for MTBD E can be defined similarly:

h4,E(t,qE) =







1 if t ∈ [tj + qiE , tj+1]

0 if t ∈ [tj , tj + qiE ]

with tj and tj+1 the times when MTBD E binds to the microtubule. Here, tj denotes different

time intervals to ti. Therefore, the ODEs for MTBDs D and E become:

mSh4,D(t,qD)
d2xD
dt2

= h4,D(t,qD)
[

− γATP

dxD
dt

−KATP (xD − pi − nLATP )

−KS(xD − xA + LS cos(θAD))
]

− γS
dxD
dt

, (7.1)

mSh4,E(t,qE)
d2xE
dt2

= h4,E(t,qE)
[

− γATP

dxE
dt

−KATP (xE − pi+1 − nLATP )

−KS(xE − xB − LS cos(θBE))
]

− γS
dxE
dt

, (7.2)

for t ∈ [0, TFinal].

Remark 7.1.1. Experimental observations suggest that the dwell times of tail labelled dynein can

be well fit by an exponential distribution and have average dwell times of 2s per ATP cycle, whilst

head labelled dynein dwell times are a convolution of two exponential distributions [30, 31]. As

we are assuming independent head domains, we use a single exponential distribution for each head

domain with identical mean dwell times. However, this work could be extended to explore different

mean dwell times fit to more complex distributions in order to study interhead coordination and

different characteristics of leading and lagging heads.

7.1.1 Multi-scale non-dimensionalisation

We take a multi-scale approach when non-dimensionalising the model, using one fast time scale

for the stepping and one slow time scale for the dwelling, similarly to the previous chapter. For
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the dwelling interval, we non-dimensionalise the system as in Section 6.4.1 with tc = µ:

dχC

dτ1
= µ

[

α1

( 1

ρ1
χT − 1

)

− λ2 − α1χC

]

, (7.3)

dχT

dτ1
= µ

[

α2

( 1

ρ2
(χA + χB) + cos(θAT )− cos(θBT )

)

+ α3ρ1(χC + 1)− (2α2 + α3)χT

]

, (7.4)

dχA

dτ1
= µ

[

α4ρ2(χT − cos(θAT )) + α5(χD + cos(θAD))− (α4 + α5)χA

]

, (7.5)

dχB

dτ1
= µ

[

α5(χE − cos(θBE)) + α4ρ2(χT + cos(θBT ))− (α4 + α5)
]

, (7.6)

dχD

dτ1
= 0, (7.7)

dχE

dτ1
= 0, (7.8)

for τ1 ∈ [τ1,k, τ1,k+1] where τ1,k+1 = τ1,k + 1
µ
qij for j = D or j = E. Note that the time intervals

associated with stepping will depend on the random vectors qD and qE and will be discussed in

more detail below in Section 7.2. For the stepping intervals we take tc =
mC

γC
the system of ODEs

is given as:

αC

dχC

dτ2
=

( 1

ρ1
χT − 1

)

− λ1 − χC , (7.9)

αT

dχT

dτ2
=

( 1

ρ2
(χB + χA)− cos(θBT ) + cos(θAT )

)

+ ρ1κ1(χC + 1)− (2 + κ1)χT , (7.10)

αM

dχA

dτ2
= ρ2κ2

(

χT − cos(θAT )
)

+
(

χD + cos(θAD)
)

− (κ2 + 1)χA, (7.11)

αM

dχB

dτ2
=

(

χE − cos(θBE)
)

+ ρ2κ2

(

χB + cos(θBT )
)

− (κ2 + 1)χB, (7.12)

(

αS + αATPh4,D(τ2,qD)
)dχD

dτ2
= h4,D(τ2,qD)

[

κ3(βi + nρ3)

+
(

χA − cos(θAD)
)

− (1 + κ3)χD

]

, (7.13)

(

αS + αATPh4,E(τ2,qE)
)dχE

dτ2
= h4,E(τ2,qE)

[

κ3(βi+1 + nρ3)

+
(

χB + cos(θBE)
)

− (1 + κ3)χE

]

, (7.14)

for τ2 ∈ [τ2,k, τ2,k+1], where τ2,k = mC

γC
τ1,k+1, and with non-dimensional parameter values:

αC =
γCγC
mCKC

, αT =
γT γC
mCKT

, αM =
γMγC
mCKS

, αS =
γSγC
mCKS

, αATP =
γATPγC
mCKS

,

ρ1 =
LC

LT

, ρ2 =
LT

LS

, ρ3 =
LATP

LS

,

κ1 =
KC

KT

, κ2 =
KT

KS

, κ3 =
KATP

KS

,

βi =
pi
LS

, λ1 =
FC

KCLC

.
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7.2 Numerical experiments

Numerical simulations are run in MATLAB using the solver ode15s for the dwelling period and

ode45 for the stepping intervals with tolerances given in Table 3.2 [164]. Due to the independence

of the two MTBDs, both MTBDs could become detached from the microtubule, if this occurs then

we end our simulation, recording the number of steps and the run length. Initially we consider

forward stepping with a fixed step size, taking n = 2 to give a step size of 16nm. We consider a

maximum of N = 100 steps with mean dwell time of µ = 2s for each head domain. The initial

dwell times q1D, q1E are generated and the system is set to dwell for τ ∈ [0, 1
µ
min{q1D, q1E}], hence

the system is solved for the initial conditions (5.16).

If q1D < q1E the system is then solved for MTBD D unbound for τ ∈ [ γC

mC
q1D,min{ γC

mC
q1E ,

γC

mC
q1D+

Tstep}] where we take TStep = 106. This is necessary as the ODE system will become stiff if the

time scales are too large. The initial conditions are taken to be those at the end of the dwelling

interval:

χC(τ2,k) = χC(τ1,k+1), χT (τ2,k) = χT (τ1,k+1), χA(τ2,k) = χA(τ1,k+1),

χB(τ2,k) = χB(τ1,k+1), χD(τ2,k) = χD(τ1,k+1), χE(τ2,k) = χE(τ1,k+1),

for τ1,k+1 = 1
µ
min{q1D, q1E} and τ2,k = γC

mC
q1D. The solution is then truncated to the point when

the MTBD reaches the binding site, time tbind, a new dwell time q2D is generated and we compare

this dwell time with q1E − tbind. If the MTBD does not reach the binding site within the time

interval, i.e. the other MTBD detaches early, then the simulation is ended. The system is solved

similarly for the case q1D > q1E but with MTBD E unbound and τ2,k = γC

mC
q1E . This process is

repeated until there have been N = 100 steps or both MTBDs have detached.

Example trajectories are plotted in Figure 7.1 with stepping statistics for optimal parameter

values plot in Figure 7.2. The steps taken by the MTBDs can be seen to move through the system

to the cargo, with clear stepping by both the cargo and the tail domain, and the variable dwell

times can also be observed (see Figure 7.1).

By analysing the stepping behaviour of this model we see that for larger values of KATP , in the

400 to 1000 range in Table 7.1, we achieve 83.63% to 86.97% not passing steps on average which

is close to the 83% seen in experiments. However, all values of KATP in Table 7.1 give much lower

values for the average percentage of alternating steps than seen in experiments (predominantly

around 50% compared to 74%). This suggests that this independent form of stepping cannot

account for the alternating stepping patterns seen in experiments and hence there must be some
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Figure 7.1: Dimensional numerical solutions to the model equations (7.3) - (7.8) and (7.9) - (7.14)
with fixed step size (n = 2) forwards and parameters KATP = 500, γATP = 10 with all other
parameters taken to be at their primary values given in Table 5.1. Plots over the whole time
corresponding to (a) trajectory of the cargo, (b) velocity profile of the cargo, (c) trajectory of the
tail domain, (d) trajectories of the AAA+ rings, and (e) trajectories of the MTBDs.

form of coordination acting between the two head domains to account for this behaviour.

Variations in the values of KATP show that run lengths are highly dependent on this parameter

(see Table 7.2). We see that for KATP = 10 and KATP = 100 the mean number of steps in a

run is less than one, suggesting that most times the run is terminated before the first step can be

completed (see Table 7.1). Processivity is therefore dependent on the value of KATP , although this

parameter cannot be directly measured in experiments as it is an approximation of the effects of the

ATP force, it suggests that if the ATP cycle of the detached head domain is not completed quickly

enough, then an uncoordinated detachment of the attached MTBD is likely to occur and hence the

run will be terminated after fewer steps. The optimum value for this parameter is KATP ≈ 500 to

give a mean number of steps of 33.50 and mean run lengths of 275.95nm for the cargo and 276.69nm

for the tail domain (see Tables 7.1 and 7.2). Although KC = 550 gives the highest run lengths,

these run lengths are still much lower than seen in experiments, with typical run lengths of 800nm

and 1.5µm measured for murine and bovine dynein in vitro [84]. This suggests that although some
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Figure 7.2: Bar charts showing the mean percentage of steps: (a) passing vs not passing, and (b)
alternating vs not alternating. The data represents the results of 100 simulations with KATP = 500
and γATP = 10.

KATP γATP % Not Passing Steps % Alternating Steps Mean Number of Steps

10 10 100 0∗ 0.36
100 10 100 33.60 0.75
250 10 46.80 66.08 9.56
400 10 83.63 43.89 29.28
500 10 85.56 46.40 33.50
550 10 85.19 50.49 33.37
600 10 86.97 49.22 30.99
750 10 86.39 50.40 27.65
1000 10 84.56 48.07 22.92

500 1 85.06 47.12 32.90
500 10 85.56 46.40 33.50
500 100 84.52 43.58 26.71
500 1000 78.55 46.11 14.84

Table 7.1: Mean percentage of not passing and alternating steps, and mean number of steps in a
run given a range of values for the parameters KATP and γATP . The data represents the results
of 100 simulations with a mean dwell time of µ = 2s. If x% of steps are not passing then 1−x% of
steps are passing. Similarly, if x% of steps are alternating then 1−x% of steps are not alternating;
except for the case labelled ∗ where the number of steps in a run were always less than or equal to
one and hence neither alternating or non-alternating steps were present.

processivity can be achieved with independent head domains, coordination is important to obtain

the higher run lengths that are seen in experiments. However, the measured run lengths are close

to the run lengths of murine dynein in the absence of dynactin measured to be approximately

300nm [84, 35] which may suggest that dynactin has an effect on the coordination of the motor or

influences the motor in another way which we have not accounted for in the model.

Variations in γATP have little effect on the percentage of not passing and alternating steps,

however they do have an effect on run length, with an increase in γATP > 10 leading to a fall in

the mean number of steps in a run and lower run length for all variables (see Tables 7.1 and 7.2).
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KATP γATP Cargo Tail

10 10 10.96 15.54
100 10 14.09 19.12
250 10 84.52 88.87
400 10 242.20 243.79
500 10 275.95 276.69
550 10 277.54 277.79
600 10 255.87 255.95
750 10 229.17 229.18
1000 10 191.34 191.34

500 1 271.15 271.69
500 10 275.95 276.69
500 100 221.65 222.60
500 1000 126.70 129.37

Table 7.2: Mean run lengths in nanometres for the cargo and tail domain given a range of values for
the parameters KATP and γATP . The data represents the results of 100 simulations with a mean
dwell time of µ = 2s. If x% of steps are not passing then 1− x% of steps are passing. Similarly, if
x% of steps are alternating then 1− x% of steps are not alternating.

7.2.1 Variable step size with backward stepping

We extend the model to include a variable step size and random backward stepping. The step size

is taken to be nLATP nm where n is taken from the Poisson distribution about 2 for forward steps,

giving a predominant step size of 16nm, and −n is taken from the Poisson distribution about 1 for a

backward step to give a step size of −8nm. Steps of ‘zero ’ length are excluded although can easily

be included in the model. Random backward stepping is determined by a predetermined value for

the probability of backward stepping PBack and a step is set to move backwards if qBack < PBack

where qBack is taken from the uniform distribution on (0, 1) for each step. An example plot of the

trajectories is given in Figure 7.3, here we can clearly see backward stepping by the MTBDs which

feeds through the system resulting in backward steps by the tail domain and cargo.

The addition of a variable step size does appear to reduce the number of steps in a run, from

an average of 33.50 to 19.29 (see Tables 7.1 and 7.3), and also sees a reduction in run length, with

the average run length of the cargo reducing from 275.95nm to 182.23nm (see Tables 7.2 and 7.4).

The mean number of steps in a run and the average run length can be increased by increasing the

parameter KATP to 750 MDa ns−2 (see Tables 7.3 and 7.4), however these values are still lower

than with fixed step sizes. This reduction in run length may be caused by a larger increase in

smaller step sizes (shorter than 16nm) in comparison to the prevalence of larger step sizes (longer

than 16nm). However, a reduction in the mean number of steps in a run is an unexpected result.

This may be due to larger steps taking longer for the MTBD to reattach and hence the other

MTBD may be more likely to detach from the microtubule during these steps. This effect is only

likely to occur in reality if the two head domains of dynein are truly independent of each other.
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The addition of backward stepping increases the mean number of steps in a run however it

reduces the mean run length in comparison to a model with variable step sizes (see Tables 7.5 and

7.6). The reduction in mean run length is to be expected as the increased prevalence of backward

steps will delay the complex from progressing along the microtubule. The increase in the mean

number of steps was not expected. This may be due to an increase in the prevalence of smaller steps,

with backward steps modelled to be predominantly 8nm whilst forward steps are predominantly

16nm. These smaller steps may attach back on to the microtubule more quickly, making it less

likely that the other head domain will detach whilst the other head domain is completing a step

and therefore detached, terminating a run. We note that the mean number of steps in a run is still

significantly lower than for the model of forward stepping with fixed step size.
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Figure 7.3: Dimensional numerical solutions to the model equations (7.3) - (7.8) and (7.9) - (7.14)
with a variable step size (+n taken from the Poisson distribution about 2 and −n taken from the
Poisson distribution about 1). The probability of random backward stepping is set to be 10%.
Plots over the whole time corresponding to (a) trajectory of the cargo, (b) velocity profile of the
cargo, (c) trajectory of the tail domain, (d) trajectories of the AAA+ rings, and (e) trajectories of
the MTBDs.
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KATP γATP % Not Passing Steps % Alternating Steps Mean Number of Steps

250 10 74.53 60.76 7.38
500 10 77.70 42.32 19.29
750 10 85.95 48.79 22.41
1000 10 84.50 51.36 18.80

500 1 78.92 45.16 20.71
500 10 77.70 42.32 19.29
500 100 78.87 45.51 18.38
500 1000 79.51 50.15 11.48

Table 7.3: Mean percentage of not passing and alternating steps, and mean number of steps in a
run given a range of values for the parameters KATP and γATP . The data represents the results
of 100 simulations with a mean dwell time of µ = 2s. If x% of steps are not passing then 1−x% of
steps are passing. Similarly, if x% of steps are alternating then 1−x% of steps are not alternating;
except for the case labelled ∗ where the number of steps in a run were always less than or equal to
one and hence neither alternating or non-alternating steps were present.

KATP γATP Cargo Tail

250 10 71.61 78.56
500 10 182.23 185.29
750 10 216.31 216.80
1000 10 186.40 186.49

500 1 193.62 196.30
500 10 182.23 185.29
500 100 175.45 178.46
500 1000 112.12 117.54

Table 7.4: Mean run lengths in nanometres for the cargo and tail domain given a range of values for
the parameters KATP and γATP . The data represents the results of 100 simulations with a mean
dwell time of µ = 2s. If x% of steps are not passing then 1− x% of steps are passing. Similarly, if
x% of steps are alternating then 1− x% of steps are not alternating.

pBack % Not Passing Steps % Alternating Steps Mean Number of Steps

0 77.70 42.32 19.29
10 79.80 46.71 20.64
20 80.09 45.81 24.19

Table 7.5: Mean percentage of not passing and alternating steps, and mean number of steps in
a run given a range of values for the probability of backward stepping. The data represents the
results of 100 simulations with a mean dwell time of µ = 2s, KATP = 500 and γATP = 10. If x%
of steps are not passing then 1− x% of steps are passing. Similarly, if x% of steps are alternating
then 1− x% of steps are not alternating; except for the case labelled ∗ where the number of steps
in a run were always less than or equal to one and hence neither alternating or non-alternating
steps were present.
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PBack Cargo Tail

0 182.23 185.29
10 169.98 171.63
20 158.22 159.34

Table 7.6: Mean run lengths in nanometres for the cargo and tail domain given a range of values
for the probability of backward stepping. The data represents the results of 100 simulations with
a mean dwell time of µ = 2s, KATP = 500 and γATP = 10. If x% of steps are not passing then
1− x% of steps are passing. Similarly, if x% of steps are alternating then 1− x% of steps are not
alternating.

7.3 Discussion

We have been able to model uncoordinated motion and have shown that dynein can still achieve

some level of processivity through this mechanism although it can not achieve the high run lengths

observed in experiments. We do however, achieve run lengths close to those seen for murine dynein

in the absence of dynactin, when using a fixed forward stepping pattern [35, 84]. This may suggest

that either dynactin has some influence on the coordination of the motor domains or that we need

to account for the effect of dynactin in our model in another way.

Loa mutants in mice have been shown to exhibit shorter run lengths than wildtype complexes

[2, 3, 35, 36]. Ori-McKenney et al., measure run lengths of 259nm for Loa+/− mutants and

175nm for Loa−/− mutants and we are able to achieve similar run lengths by our choice of

parameters and stepping patterns [35]. Ori-McKenney et al., suggest that the Loa mutation may

cause altered coordination in the motor domain of dynein [35]. Our results also suggest that it

may be possible that this mutation disrupts the coordination within the complex leading to more

frequent detachment of the motor from the microtubule and shorter run lengths. Deng et al., have

shown that the Loa mutation causes dynein to have a lower affinity to dynactin, and so it may be

through this disruption that the mutation affects the transport mechanisms of dynein [37].

We have also shown that when using this mode of stepping, there is unlikely to be a preference

for either an alternating or non-alternating stepping pattern, which suggests that the alternating

stepping patterns seen for yeast dynein by Qiu et al., and DeWitt et al., must have arisen through

some form of coordination within the complex [31, 32].

The mean dwell times for each head domain are assumed to be equivalent, however it would

be interesting to investigate the effect of differences in these dwell times. In particular, allowing

the lagging and leading heads to have different dwell times may encourage a more coordinated

stepping pattern and experiments have shown that the lagging and leading heads have different

stepping characteristics [31, 32]. Currently, the motor domain can diverge as we assume that once



125

the MTBD is bound it is bound until a chemical change from ATP hydrolysis occurs, it would

therefore be interesting to introduce the effect of forces on detachment in this model. It has been

shown by Gennerich et al., that dynein can walk through applied force alone and so these forces

are important to the model [66].
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Chapter 8

Conclusions and Future Work

Cytoplasmic dynein 1 is a motor protein that is crucial for many cellular activities and its mal-

function has been implicated in neurodegenerative and neurodevelopmental diseases [1, 3, 2, 4, 5].

Developing a complete understanding of its mechanics is therefore important in order to under-

stand these cellular processes and to discover potential medical solutions to manage these diseases.

Relatively few models studying dynein’s mechanism have been developed, with the main focus

being on the chemical cycle [150, 151, 152, 153, 154, 155]. Although some intracellular transport

models have been developed with a specific focus on dynein, they do not consider the intrinsic

mechanisms employed by dynein [94, 110, 111]. Therefore, we set out to develop a mathematical

model from a mechanistic approach in order to study the transport mechanisms of cytoplasmic

dynein that could be used to study the mechanistic effects of mutations.

In this study we have derived a general integrative mechanical model that describes the trans-

port mechanisms of cytoplasmic dynein 1. We initially considered a continuous model of transport

by dynein undergoing continual stepping along the microtubule in the minus end direction. We

were able to obtain either shuffling or hand-over-hand stepping patterns by the choice of functions

and parameter values. The model predicts that the relative forces of the two head domains can

determine the stepping pattern. This suggests that if one head domain is mutated to reduce its

ATPase activity or causes it to bind weakly to the microtubule, then the stepping profile exhibits

shuffling as opposed to hand-over-hand stepping.

The model was then developed to incorporate stochasticity in order to reflect the random

binding of ATP and random stepping behaviour. The stochastic model is able to describe the

shuffling stepping profile as an emergent process, reflecting the experimental observations seen in
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the literature [31, 32]. The model also predicts that this pattern is only exhibited when the two

head domains are allowed to separate over large distances, and that when dynein is fixed in a

tighter conformation the prevalence of both passing and backward steps increases.

We have investigated different levels of interhead coordination within the model framework

and shown that this is essential in order to achieve the long run lengths and alternating stepping

patterns seen in experiments [31, 32, 84]. We also suggest that the levels of coordination seen

in experiments will be higher in reality due to the presence of steps of ‘zero’ length, i.e. detach

and reattach at the same point on the microtubule, as these are not considered in step tracking

experiments [31, 32]. Significantly, allowing the head domains to step independently results in run

lengths similar to those exhibited by Loa mutants, which supports the hypothesis by Ori-McKenney

et al., that the mutation affects the coordination between the motor domains of dynein [35]. In

the absence of a variable step size and backward stepping, we are also able to achieve run lengths

seen for murine dynein in the absence of dynactin, which suggests that dynactin could play a role

in coordinating the two head domains. This would support the findings of Deng et al., [37] who

found that the Loa mutation caused a lower affinity of dynein to dynactin, hence the lower run

lengths seen for Loa dynein could also be caused by a lower affinity to dynactin [2, 3, 35, 36].

We note that our stepping parameters are based on yeast dynein, and so the stepping behaviour

of mammalian dynein may be significantly different. It would therefore be beneficial to our mod-

elling for experimentalists to categorise the different stepping behaviours of different species. How-

ever, our modelling can be used to predict these behaviours and future work could involve testing

combinations of different distributions of step sizes, proportions of backward stepping, and dwell

times in order to predict the likely behaviours of different species according to existing knowledge

of their behaviour.

Quantitative comparisons for agreement will require experiments to be carried out on the whole

dynein structure to provide modelling with detailed experimental values. This requires experimen-

talists to design new whole-structure experiments that would aid substantially model refinement

and prediction. Parameter optimisation methods may need to be carried out on the given model

in order to find appropriate parameter values to achieve the velocities seen in experiments for each

of the species and various truncated forms of dynein, both for in vivo and in vitro experiments.

Variable dwell times for each head domain have been implemented in a model for independent

stepping, however extending this model to include some coordination within the dwell times may be

beneficial. It is unclear whether dynein’s coordination occurs through a gating mechanism, which

would prohibit detachment from the microtubule whilst the other head domain is detached (as we
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have modelled), or through another mechanism such as a high duty ratio (reviewed in [28, 41, 72]).

Hence, exploring these possible mechanisms further could enhance current understanding. Leading

and lagging head domains have been shown to exhibit different stepping characteristics [31, 32],

this could be incorporated into the model through distinct dwell times and other parameters.

The model is limited in its description of variable step sizes and backward stepping as random

processes, and extensions to the model need to be incorporated in order to investigate the mechanics

of these phenomena. The influence of dynactin and other regulatory and accessory proteins could

also be considered. The three-dimensional nature of the dynein complex needs to be explored

further, to investigate how the angle of the stalk and positions of the AAA+ rings play a role in

the stepping direction of the motor. Future work to introduce the possibility of strain dependent

movement in the model would be beneficial, as the strain within the complex may influence the

step size. This would allow a more accurate representation of dynein stepping as the strain within

the complex may cause a motor domain to detach independently of ATP. These forces may be

significant as Gennerich et al., have shown that dynein can walk through applied force alone [66].

In conclusion, we have derived a general mechanistic model from first principles to describe the

stepping behaviour of dynein attached to a cargo. We have been able to describe the behaviour

of the whole structure, including the MTBDs which are technically challenging to observe in

experiments. The model is used to make several significant predictions about how differences

within the complex may result in different stepping patterns, the impact of coordination, and how

mutation may effect the stepping ability. We hope that experimentalists can use our model to make

new predictions and design new experiments in order to validate the current model predictions.

Further development of the model could also lead to valuable insight on how dynein achieves a

variable step size and backward stepping which are currently open questions within the literature.

Future work will investigate the effects of variable dwell times and strain dependent stepping

to establish a complete model which incorporates all aspects of the transport mechanisms for

cytoplasmic dynein 1. Therefore, this work has created new insight into the behaviour of dynein

and the potential impact of mutations, and can be used as a springboard for further in-depth

studies on the function and mechanisms of dynein.



129

Bibliography

[1] A.J. Roberts, T. Kon, P.J. Knight, K. Sutoh, and S.A. Burgess. Functions and mechanics of

dynein motor proteins. Nature Reviews Molecular Cell Biology, 14(11):713–726, 2013.

[2] C.A. Garrett, M. Barri, A. Kuta, V. Soura, W. Deng, E.M.C. Fisher, G. Schiavo, and

M. Hafezparast. Dync1h1 mutation alters transport kinetics and erk1/2-cfos signalling in a

mouse model of distal spinal muscular atrophy. Brain, 137(7):1883–1893, 2014.

[3] M. Hafezparast, R. Klocke, C. Ruhrberg, A. Marquardt, A. Ahmad-Annuar, S. Bowen,

G. Lalli, A.S. Witherden, H. Hummerich, S. Nicholson, P.J. Morgan, R. Oozageer, J.V.

Priestley, S. Averill, V.R. King, S. Ball, J. Peters, T. Toda, A. Yamamoto, Y. Hiraoka,

M. Augustin, D. Korthaus, S. Wattler, P. Wabnitz, C. Dickneite, S. Lampel, F. Boehme,

G. Peraus, A. Popp, M. Rudelius, J. Schlegel, H. Fuchs, M.H. De Angelis, G. Schiavo, D.T.

Shima, A.P. Russ, G. Stumm, J.E. Martin, and E.M.C. Fisher. Mutations in dynein link

motor neuron degeneration to defects in retrograde transport. Science, 300(5620):808–812,

2003.

[4] G. Schiavo, L. Greensmith, M. Hafezparast, and E.M.C. Fisher. Cytoplasmic dynein heavy

chain: The servant of many masters. Trends in Neurosciences, 36(11):641–651, 2013.

[5] M. Scoto, A.M. Rossor, M.B. Harms, S. Cirak, M. Calissano, S. Robb, A.Y. Manzur, A.M.

Arroyo, A.R. Sanz, S. Mansour, P. Fallon, I. Hadjikoumi, A. Klein, M. Yang, M. De Visser,

W.C.G.T. Overweg-Plandsoen, F. Baas, J.P. Taylor, M. Benatar, A.M. Connolly, M.T. Al-

Lozi, J. Nixon, C.G.E.L. De Goede, A.R. Foley, C. McWilliam, M. Pitt, C. Sewry, R. Phadke,

M. Hafezparast, W.K.K. Chong, E. Mercuri, R.H. Baloh, M.M. Reilly, and F. Muntoni.

Novel mutations expand the clinical spectrum of dync1h1-associated spinal muscular atrophy.

Neurology, 84(7):668–679, 2015.

[6] M. Schliwa and G. Woehlke. Molecular motors. Nature, 422(6933):759–765, 2003.



130
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[58] M.P. Nicholas, P. Höök, S. Brenner, C.L. Wynne, R.B. Vallee, and A. Gennerich. Control

of cytoplasmic dynein force production and processivity by its c-terminal domain. Nature

Communications, 6:6206, 2015.

[59] M.A. Gee, J.E. Heuser, and R.B. Vallee. An extended microtubule-binding structure within

the dynein motor domain. Nature, 390(6660):636–639, 1997.

[60] A.P. Carter, J.E. Garbarino, E.M. Wilson-Kubalek, W.E. Shipley, C. Cho, R.A. Milligan,

R.D. Vale, and I.R. Gibbons. Structure and functional role of dynein’s microtubule-binding

domain. Science, 322(5908):1691–1695, 2008.

[61] Y. Nishikawa, T. Oyama, N. Kamiya, T. Kon, Y.Y. Toyoshima, H. Nakamura, and G. Kurisu.

Structure of the entire stalk region of the dynein motor domain. Journal of Molecular Biology,

426(19):3232–3245, 2014.
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