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Abstract 

Sustained neural activity critically relies on the ongoing function of small central 

synapses. In particular, activity-driven fusion and recycling of neurotransmitter-filled 

vesicles at presynaptic terminals are key processes responsible for information transfer. 

Despite the fact that vesicle exocytosis and endocytosis are of great interest, the 

mechanisms of their regulation are still poorly understood. Moreover, hippocampal 

synapses exhibit high levels of variability in their structure and function, but the basis for 

this remains unclear. The aim of this work was to investigate these fundamental 

properties and establish key rules of regulation. Specifically, we wanted to test whether 

the timing of endocytosis of single synaptic vesicles was characteristic at individual 

boutons, and to investigate structural and molecular properties of synapses that underlie 

their particular behaviour. To explore this, we used a variety of optical imaging 

techniques in rat hippocampal neurons based on acutely applied probes such as FM1-

43 dye, fluorescently tagged antibodies and genetically encoded reporters of presynaptic 

function, as well as ultrastructural readouts using electron microscopy. We found that 

although the timing of vesicle retrieval, measured with the optical reporter sypHy2x, was 

highly variable across the population of synapses, individual boutons showed signature 

endocytic kinetics. We also uncovered the properties of synapses that determine this 

behaviour, and demonstrated that these could be modulated, leading to predictable 

changes in the timing of recycling. These findings offer new insights into the rules that 

govern the function of presynaptic terminals. A second related objective examined was 

whether amyloid beta, the misfolding protein implicated in Alzheimer’s disease, causes 

changes that are detrimental for efficient vesicle recycling. We showed that oligomeric 

amyloid beta 1-42 impaired endocytosis and disrupted other related presynaptic 

processes. We suggest that vesicle recycling mechanisms are important target 

substrates in Alzheimer’s disease providing potential new avenues for development of 

therapeutic approaches. 
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1 INTRODUCTION  
 

 

 

 

 

1.1 Neurons and synapses: building blocks of the nervous 
system  

The function of our brain, relies on the efficient transfer of information between the 

specialized cells called neurons, which were first described as a basic structural 

component of the nervous system by Santiago Ramon y Cajal (Glickstein, 2006). 

Neurons form highly complex, dynamic networks and communicate with each other via 

synapses. The term describing this anatomically distinct structure was first introduced by 

Charles Sherrington in 1897 and was derived from Greek words “syn” – together and 

“haptein” - join (Bennett, 1999). Synapses are structurally and molecularly specialized 

connection points which rapidly pass on signals, in the form of released neurotransmitter, 

from one neuron to another or from a neuron to a target tissue (e.g. muscle fibres). 

Synaptic dysfunction has been indicated as an underlying cause of symptoms in various 

neurological diseases (Marcello et al., 2012; Picconi et al., 2012; Zoghbi and Bear, 

2012). Synapses not only convey the information between neurons, but are also 

responsive to the history of their own activity, the demands of the network, and are 

capable of adjusting their structure and function in various forms of plasticity (Hopf et al., 

2002; O’Rourke et al., 2012; Regehr, 2012).  They are therefore critical sites for the 

effective operation of our nervous system and hence studying their function is of great 

importance.  

Interneuronal communication can take place via electrical or chemical synapses, 

nevertheless, the majority of communication in the mammalian CNS occurs via chemical 

synapses, on which this work focuses. The pioneering discoveries on the function of 
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presynaptic terminals were made in the early 1950s and 1960s in experiments on the 

frog neuromuscular junction. During electrophysiological measurements, the authors 

observed that the distribution of amplitudes of spontaneous miniature end-plate 

potentials (MEPPs) revealed unitary nature of synaptic responses (Del Castillo and Katz, 

1954; Fatt, and Katz, 1952). This quantal nature of MEPPs was later linked to the 

presence at ultrastructural level of small, membranous structures in presynaptic 

terminals - synaptic vesicles. These two findings combined led to the formulation of the 

quantal hypothesis of neurotransmitter release (De Robertis and Bennett, 1955; Palay, 

1956). A more direct proof of concept, that a single synaptic vesicle contains a quantum 

of neurotransmitter and is responsible for the smallest unitary postsynaptic response, 

came from studies which combined stimulation with rapid freezing of the sample for 

electron microscopy (Heuser and Reese, 1973; Kononenko and Haucke, 2015; Miller 

and Heuser, 1984). Stimulus evoked release and loading of synaptic vesicles with 

horseradish peroxidase (HRP), which appears as a dense product on electron 

micrographs, provided the evidence that synaptic vesicle membrane is recycled back 

into the presynaptic terminal after neurotransmitter release via clathrin-mediated 

endocytosis (Heuser and Reese, 1973). The following years brought about significant 

advances in our knowledge on the structure, molecular composition and function of 

synapses. 

 

1.2 Synapse structure  

Despite their functional differences (O’Rourke et al., 2012), chemical synapses share 

similar structural characteristics: in particular, a presynaptic terminal, postsynaptic 

compartment and a ~15-20 nm gap called the synaptic cleft that separates the two 

(Fig.1.1) (De Robertis and Bennett, 1955). The presynaptic compartment is 

characterized by the presence of neurotransmitter filled synaptic vesicles, which are 
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easily identifiable in electron micrographs, and some of which are docked at the active 

zone (AZ) (Südhof, 2012). The postsynaptic membrane of glutamatergic synapses can 

be identified by the presence of electron-dense postsynaptic density (PSD), which is 

composed of multiple membranous and cytoplasmic proteins and neurotransmitter 

receptors localized in a direct apposition to the release site of SVs (Fig.1.1) (Okabe, 

2007). This organization ensures efficient information transfer between pre- and 

postsynaptic neuron. 

 

 

Figure 1.1 Synapse structure. A) Schematic showing major components of the 
synapse. Figure modified from (Südhof, 2012). B) Electron micrographs of hippocampal 
synapses. Green arrowhead and green line indicate active zone, yellow arrowhead and 
yellow line postsynaptic density, red arrowheads synaptic vesicles and dark red 
arrowheads docked synaptic vesicles. Scale bars, 100 nm.  
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1.2.1 The presynaptic terminal   

1.2.1.1 Ultrastructure and organization 

The most prominent ultrastructural feature of presynaptic terminals, allowing us to 

unequivocally recognize this cellular compartment, is the presence of small, round 

membranous structures – synaptic vesicles (SVs) (Fig.1.1). They were identified in the 

electron micrographs of synapses from frog and earthworm (De Robertis and Bennett, 

1955), and also in rat tissue (Palay and Palade, 1955). These neurotransmitter filled 

structures release their neurotransmitter content into the synaptic cleft in an activity 

dependent manner. In rat hippocampal neurons the average diameter of SVs was found 

to be ~40 nm with an inner diameter of ~23 nm, and an overall variation in size ranging 

from 20 to 66 nm (Harata et al., 2001; Harris and Sultan, 1995; Schikorski and Stevens, 

1997). The size of synaptic vesicles is thought to be determined by the need to 

accommodate structures necessary for their function. For example, vesicles which were 

missing glutamate transporters were found to be smaller than those expressing this 

protein (Daniels et al., 2006). Some of the vesicles appear to be in a direct contact with 

the active zone, which is in turn aligned with the PSD, and are referred to as docked 

vesicles (Fig.1.1). These associated with the AZ vesicles were found to be slightly 

smaller in diameter (23-49 nm) than the non-docked vesicles (20-60 nm) (Harris and 

Sultan, 1995). However, the opposite observation was made in a hippocampal 

preparation in a more recent study using high pressure freezing as a fixation method 

(Fernández-Busnadiego et al., 2010). These differences might be due to the specific 

experimental approach and the fixation technique used. In a study carried out by Harris 

& Sultan 1995, the tissue was fixed with 2% paraformaldehyde/2.5% glutaraldehyde, 

which might have led to the release of some of the vesicle content at the time of fixation 

(Harris and Weinberg, 2012). The other study on the other hand used high pressure 

freezing as a method of fixation (Fernández-Busnadiego et al., 2010). 
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The cryo-electron tomography revealed that SVs are organized into clusters of as little 

as 2 or up to around 50 vesicles interconnected via filamentous connectors with more 

than 20 such vesicle clusters per terminal (Fernández-Busnadiego et al., 2010). It has 

been hypothesized that the filaments that connect SVs into clusters might be composed 

of synapsin (Siksou et al., 2007). Indeed, synapsin was later found to be an important 

regulator of vesicle clustering providing link between the SVs and the actin cytoskeleton 

(Orenbuch et al., 2012).  Nevertheless the exact composition of these connectors and 

the clustering mechanisms of SVs are still debated (Shupliakov et al., 2011).  

Fernández-Busnadiego et al. 2010 also showed that most docked vesicles were not in a 

direct contact with the presynaptic membrane, as previously thought, but instead were 

attached to AZ via short tethers (Fernández-Busnadiego et al., 2010).  On the other 

hand, Watanabe et al., 2013 in a technique combining optogenetic stimulation with rapid 

high-pressure freezing of the samples observed that vesicles were indeed in a direct 

contact with the plasma membrane and identified these as docked vesicles. These 

authors also reported the presence of vesicles which were in close apposition to the 

plasma membrane and attached to it via ~30 nm long tethers (Watanabe et al., 2013). 

The extent of the connectivity between vesicles was linked to the activity state of the 

synapses, with resting synapses exhibiting higher extent of clustering (Fernández-

Busnadiego et al., 2010). This shows the dynamic relationship between structure and 

function of presynaptic terminals, and that structural adjustments that are being made 

depend on the activity state of the boutons.  

In addition to small, neurotransmitter filled vesicles, other round membranous structures 

can be found at presynaptic terminals: endosomes (60 -100 nm) and large dense core 

vesicles (80 -120 nm). Nevertheless, these are much less abundant than the small SVs 

(Aravanis et al., 2003; Harris and Weinberg, 2012). Similarly, mitochondria were found 

in only half of the synapses in hippocampal neurons (Shepherd and Harris, 1998).  
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Various structural presynaptic parameters not only showed strong correlations with each 

other, but were also linked with the functional characteristics of presynaptic terminals. 

One of the most important of functional presynaptic properties, which sets the synaptic 

strength, is the probability of release (pr); that is, the likelihood of a release of a single 

vesicle upon the arrival of nerve impulse (Branco and Staras, 2009; Murthy et al., 1997).  

A detailed analysis of the relationship between the function and structure of individual 

hippocampal synapses, using a correlative transmission electron microscopy (TEM) 

approach, revealed that pr was strongly correlated with the number of docked vesicles 

at the AZ (Branco et al., 2010). In another study, the number of docked vesicles was 

shown to scale linearly with the AZ area and the probability of release,  hence pr  has 

also has been linked with the active zone area (Holderith et al., 2012). This can be 

extrapolated further. Smaller synapses (200 +) were found to have 2-6 docked vesicles, 

whereas larger synapses had 13-16 docked vesicles out of a total pool of 450 or more 

vesicles (Harris and Sultan, 1995). Taken together, larger synapses, with higher number 

of SVs, would be expected to display a higher pr than the small synapses. Nevertheless, 

this relationship was found not true, which was attributed to the high variability in the size 

of recycling versus total vesicle pool at individual synapses (Branco et al., 2010). This 

sets the scene of an enormous complexity of the relationships between presynaptic 

parameters that determine their function. These structural relationships are not only valid 

in hippocampal synapses, but also in other systems. Detailed analysis of morphological 

features in ventral horn boutons revealed that may properties such as AZ number and 

area, mitochondrial volume or vesicle number scaled positively with synaptic size (Pierce 

and Mendell, 1993). 

Despite the fact that these relationships between presynaptic parameters were found, 

the authors often commented on the large heterogeneity in the structural and functional 

properties within homogenous populations of synapses (Branco et al., 2010; Harris and 

Sultan, 1995; Holderith et al., 2012; Murthy et al., 1997; Pierce and Mendell, 1993) 



21 
 

highlighting the need for further exploration of function-determining presynaptic 

properties.  

 

1.2.1.2 Molecular composition and protein sorting 

Presynaptic terminals are not only characterized by complex structure but also by a huge 

abundance and variety of proteins, all serving very specific functions. Despite the fact 

that the role of many of the individual SVs proteins has been extensively studied, there 

is not much information on the overall protein composition of SVs. Three comprehensive 

studies in the last decade were carried out providing with a  detailed analysis of the 

presynaptic proteins (Burré et al., 2006; Takamori et al., 2006; Wilhelm et al., 2014). 

Synaptosomal preparation was used in each case, allowing the determination of 

parameters such as copy number of a given protein per vesicle or their subcellular 

distribution and organization. Based on that data, 3D representations of presynaptic and 

vesicular architecture were created (Fig.1.2). 

The analysis of the protein composition of purified synaptic vesicles with mass 

spectrometry revealed 410 different proteins, of which at least 80 were identified as 

integral membrane proteins (Takamori et al., 2006). This points towards a huge 

molecular diversity and complexity within these small organelles. Proteins important for 

exocytosis and endocytosis of synaptic vesicles were found to be present in high 

numbers: 70, 32, 9-14, 10, 8 and 15 copies of synaptobrevin, synaptophysin, 

neurotransmitter transporters, Rab3A, synapsin and synaptotagmin, respectively 

(Takamori et al., 2006). Nevertheless, synaptic vesicles contained only a single copy of 

vacuolar proton-ATPase (v-ATPase), which suggests that some vesicles might 

occasionally fail to contain this important for reacidification protein, and as a result lack 

neurotransmitter (Takamori et al., 2006).   
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Some proteins were shown to directly scale with certain structural components. RIM 

proteins, localized to AZ, are important regulators of the number of docked vesicles and 

for coupling of Ca2+ to SVs, which makes them of value for the maintenance of efficient 

transmitter release (Han et al., 2011). The number of RIM1/2 proteins and of voltage-

gated calcium channel subunit Cav2.1 was also strongly correlated with the area of AZ 

(Holderith et al., 2012) demonstrating an association between the molecular composition 

and the structural elements. Other presynaptic proteins show strong correlation with 

each other and a precise ratio of the two is critical for efficient vesicle recycling. 

Synaptophysin and synaptobrevin form large complexes with a ratio of 1:2 and this ratio 

was critical for the correct trafficking of synaptobrevin to SVs and efficient synaptic 

performance (Gordon et al., 2016). The stoichiometry of these two proteins is also in 

agreement with upper mentioned copy numbers for the two proteins as reported by the 

Takamori et al., 2006 study. Wilhelm et al., 2014 demonstrated that the copy number of 

certain proteins scales linearly with synaptic size (measured against the amount of 

synaptophysin), whereas the copy number of others, in particular endocytic proteins, 

scales in an exponential manner, meaning that larger synapses have proportionally more 

of these proteins, than the small ones.  

How is the precise copy number of various proteins maintained at presynaptic terminals 

and more importantly at the level of individual vesicles? This question is directly linked 

to the debate as to whether synaptic vesicles are recycled intact or whether some 

intermixing of the plasma membrane proteins occur when a new vesicle is internalized 

during endocytosis. This matter is discussed in section 1.3.4. Assuming that synaptic 

vesicles lose their identity during recycling to some extent, certain mechanisms should 

be in place to ensure appropriate protein sorting, allowing SVs to retain specific 

composition. It appears that some proteins are sorted with higher precision than others. 

Analysis of the intravesicular variability in protein composition was high for 

VAMP2/synaptobrevin 2, synaptophysin and synaptogyrin, whereas the copy number of 
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SV2, v-ATPase,  vesicular glutamate transporter 1 (vGlut1) and synaptotagmin 1 were 

very uniform across vesicles (Mutch et al., 2011). It has been suggested that the proteins 

of which function is more redundant and replaceable by another protein are less strictly 

controlled than those with unique functions (Mutch et al., 2011). Certain proteins have 

been identified to preserve the composition of SVs. As an example, endocytic adaptor 

protein, stonin 2 (Stn2) was important for determining the subcellular distribution of 

synaptotagmin 1 (sytI) (Kononenko et al., 2013). In the absence of Stn2 in KO mice, sytI 

was missorted to the plasma membrane and despite the overall copy number of this 

protein remaining unchanged, this phenotype was associated with faster rate of 

endocytic retrieval of SVs in Stn2 KO neurons (Kononenko et al., 2013). The loss of Stn2 

was not associated with compromised sorting of other proteins such as synaptophysin 

or synaptobrevin (Kononenko et al., 2013). This study shows the importance of precise 

control of not only copy numbers, but also subcellular distribution of proteins crucial for 

synaptic function. Other pairs of protein-mediated protein sorting include recruitment of 

VAMP2 by synaptophysin I (Pennuto et al., 2003) and localization and stabilisation of 

synaptojanin by endophilin I (Schuske et al., 2003).  

The complexity of protein composition of synaptic vesicles not only comes from the 

abundance of various proteins, but also from the presence of different isoforms. Weston 

et al., 2011 showed an important interaction between the 3 vGlut isoforms expressed in 

mammalian brain and endophilin I. Synaptic vesicles expressing vGlut1 were 

characterized by lower pr due to its endophilin I binding ability and inhibition of endophilin 

I driven facilitation of SVs release, whereas vesicles containing vGlut2, which did not 

associate with endophilin, had high pr  (Weston et al., 2011). This shows how interactions 

between certain proteins specifically shape important aspects of presynaptic function. 

Despite the structural-functional relationships discovered so far and the efforts invested 

into discovering the molecular composition of presynaptic terminals, the overall 

consensus is that presynaptic terminals show a large degree of heterogeneity in their 
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structure and function, and further investigation of the influence of ultrastructural diversity 

and molecular composition on the function is needed (Holderith et al., 2012). Proteomic 

analysis requires pooling together material from diverse synaptic populations and 

therefore does not allow to examine whether there are molecular difference between 

individual synapses (O’Rourke et al., 2012). Molecular diversity of synapses together 

with their structural characteristics might contribute to their specific behaviour and 

function within the network, and therefore are of great interest.   
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Figure 1.2 3D models of organization of presynaptic proteins. A) Presynaptic 
terminal (Figure from Wilhelm et al. 2014). B) Zoom view of a distribution of some 
synaptic vesicle proteins in a mid-section of SV (Figure modified from Takamori et al. 
2006).  
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1.3 Synaptic vesicle cycle 

The observation that synaptic vesicles recycle following their release was made in the 

frog neuromuscular junction. Electrophysiology was combined with electron microscopy 

to show that synaptic vesicle fuse with the membrane, release their neurotransmitter 

content and are subsequently reformed from the presynaptic membrane and stored at 

the terminal (Ceccarelli et al., 1973). The early studies on synaptic vesicle cycle 

concluded that the entire process from docking of synaptic vesicle to its availability at the 

active zone following endocytosis roughly takes a minute to complete (Betz and Bewick, 

1992). There are two main steps in synaptic vesicle cycle: exocytosis – fusion of the SV 

with the plasma membrane and release of its neurotransmitter content, followed by 

endocytosis – reclamation of SVs via fission of presynaptic membrane and formation of 

new, functional vesicles (Fig.1.3).  

 

 

Figure 1.3 Summary of major steps in synaptic vesicle cycle. A) Some SVs undergo 
docking and later priming at the AZ. B) Influx of Ca2+ triggers fusion of the vesicles with 
the membrane and release of their neurotransmitter content. C) The vesicle membrane 
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collapses into the plasma membrane and it has to be cleared away from the release site 
to prevent clogging of the AZ with proteins. D) At a location peripheral to the AZ, new 
SVs vesicle are formed and reclaimed into the presynaptic terminal. E) These newly 
formed synaptic vesicles are reacidified and filled with neurotransmitter by specific 
vesicular neurotransmitter transporters and returned to the vesicle cluster. Figure 
modified from (Haucke et al., 2011) 

 

 

1.3.1 Synaptic vesicle exocytosis  

The exocytosis of SVs at the active zone is mediate by “soluble NSF attachment receptor 

proteins” (SNAREs) and Sec1/Munc18-like proteins (SM) (Südhof, 2013b) In order for 

the synaptic vesicle to fuse with the membrane, a-helical trans-SNARE complex is 

formed between synaptic vesicle SNARE protein, synaptobrevin/VAMP, and plasma 

membrane SNAREs: syntaxin 1 and SNAP-25, which brings the vesicle membrane and 

AZ membrane in close proximity (Fig.1.4) (Rizzoli, 2014; Südhof and Rizo, 2011). It is 

thought that the subsequent interaction of the SM proteins with the trans-SNARE 

complex leads to the opening of the fusion pore and the release of neurotransmitter 

(Südhof and Rizo, 2011). The two membranes fuse, which is then followed by 

disassembly of the SNARE complex mediated by α/β-SNAPs (Burgalossi et al., 2010; 

Haucke et al., 2011). It has been shown recently that a single SNARE complex is 

sufficient to drive membrane fusion  (van den Bogaart et al., 2010).   

Fusion of SVs and the release of neurotransmitter is preceded by 2 important steps in 

SVs cycle: docking and priming. These two steps ensure the presence of fusion 

competent vesicles at the AZ and ultrafast release of neurotransmitter in response to 

Ca2+ influx. AZ proteins RIM, RIM-BP and Munc13 have been shown to play a 

signification role in synaptic vesicle priming and docking (Fig.1.4) (Kaeser et al., 2011; 

Südhof, 2013a). RIM and RIM-BP were also shown to be crucial for localizing N- and 

P/Q-type Ca2+ channels at the active zone, in the proximity of the docked vesicles, which 

makes them important organizers of the site of exocytosis (Kaeser et al., 2011). The 

fusion of synaptic vesicles with the membrane is triggered by Ca2+ influx via N- and P/Q-
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type Ca2+ channels into the presynaptic terminal (Südhof, 1995). Calcium sensor 

synaptotagmin, a transmembrane vesicular protein, interacts with SNARE complex,  and 

by acting on protein complexes associated with primed vesicles initiates their fusion 

(Südhof, 2013a). 

Despite the fact that functions of many proteins in this process have been elucidated, 

the exact mechanism and regulation of various steps in SVs exocytosis are to be further 

investigated.  

 

 

 

 

Figure 1.4 Summary of the process of synaptic vesicle exocytosis. Proteins crucial 
for consecutive steps leading to synaptic vesicle release are indicated. Figure modified 
from Südhof, 2013a. 
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1.3.1.1 Variation in quantal size  

Despite the fact that synaptic vesicles seemingly appear very similar ultrastructurally, a 

considerable variability in the size of postsynaptic responses following single vesicle 

release has been reported. Not only has this variability been observed across multiple 

boutons (Karunanithi et al., 2002), but also at the level of individual synapses (Liu and 

Tsien, 1995). There are many sources that can contribute to this and they can be 

attributed to either pre- or postsynaptic properties such as: i) the size of SVs; ii) glutamate 

content of SVs; iii) concentration of neurotransmitter in the synaptic cleft; iv) location of 

the release of SVs on the active zone; v) concentration and the number of activated 

receptors on the postsynaptic membrane.  

Harris and Sultan, 1995 showed that SVs from the hippocampus differ in size, ranging 

from 20 to 66 nm in diameter, with docked vesicles mostly found to be at the bottom end 

of this distribution. This was associated with variation in the concentration of glutamate 

in individual vesicles  which was estimated to be between 0.24 to 11 mM (Harris and 

Sultan, 1995). Nevertheless, these values were calculated from reconstructed images of 

hippocampal synapses and based on measurements of volumes of synaptic vesicles, 

therefore not providing a very accurate readout (Harris and Sultan, 1995). Another 

measurement of glutamate content of synaptic vesicles isolated from rat cerebral cortex 

revealed that individual vesicles are loaded with at least 60 mM of this neurotransmitter 

(Burger et al., 1989). The concentration of glutamate sufficient to saturate postsynaptic 

receptors in cultured hippocampal synapses was originally found to be 1.1 mM  (Frerking 

and Wilson, 1996), suggesting, that the transmitter content of a single synaptic vesicle 

would be enough to achieve that. The opposite finding was made in the calyx of Held 

where the release of the content of single synaptic vesicles did not lead to saturation of 

glutamate receptors (Ishikawa et al., 2002). Subsequent electrophysiological analysis of 

postsynaptic currents revealed that the same applies to hippocampal synapses (Liu et 
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al., 1999). This indicates that the variation in postsynaptic response is likely to result from 

factors associated with presynaptic site.  

Results based on both Monte Carlo simulation and originating from simultaneous 

capacitance and miniature excitatory postsynaptic currents (mEPSCs) recordings in 

calyx of Held, suggest that variation in the concentration of neurotransmitter in the 

synaptic cleft has been found to be the major contributor to the varied amplitude of 

postsynaptic response with the concentration of glutamate, and not the size of synaptic 

vesicles as such being the crucial factor for this variability (Franks et al., 2003; Wu et al., 

2007). The variability in glutamate concentration might not only result from the size of 

individual synaptic vesicles but also from the amount of glutamate loaded into individual 

SVs. The level of expression of vGlut1 in mice hippocampal culture was associated with 

the regulation of quantal size, which was decreased in vGlut1 KO neurons but increased 

when vGlut1 was overexpressed (Wojcik et al., 2004). This also suggests that vesicles 

in wild type neurons are not filled with neurotransmitter to their maximum capacity 

(Wojcik et al., 2004). It has been hypothesized that the osmotic pressure resulting from 

neurotransmitter concentration at individual vesicles affects their size (Qu et al., 2009). 

However, modulation in osmolarity was not reflected in the change in size of synaptic 

vesicles, which demonstrates the separation between the vesicle size and 

neurotransmitter content in hippocampal preparation (Qu et al., 2009). The fact that 

synaptic vesicles are not filled to the upper limit allows for scope in dynamic regulation 

of the quantal size and in effect for the regulation of transmission efficiency at small 

central terminals.    

Opposing results on the source of quantal variability were found in a study on the 

Drosophila neuromuscular junction. In this system, quantal response size was correlated 

with the volume of presynaptic vesicles, which suggests that vesicular size is the 

determinant of quantal size and that vesicle refilling with glutamate is tightly regulated 

with uniform concentration of this neurotransmitter being loaded into individual vesicles 



31 
 

(Karunanithi et al., 2002). Daniels et al. 2006 also in a study using Drosophila found that 

a single glutamate transporter was sufficient to fill a synaptic vesicle with glutamate to 

their maximum capacity, whereas in mice hippocampal neurons the level of refilling was 

closely associated with the number of vGlut1 transporters per vesicle (Wojcik et al., 

2004). This highlights differences between the operation of different experimental 

systems.   

Despite the potential experimental issues arising from this variability, multiple groups 

successfully established the range of fluorescence amplitudes at presynaptic terminals 

corresponding to single vesicle release events in live-cell imaging experiments (Balaji 

and Ryan, 2007; Gandhi and Stevens, 2003; Lemke, 2005; Zhu et al., 2009).   

 

 

1.3.2 Synaptic vesicle endocytosis 

Presynaptic terminals contain a limited number of neurotransmitter filled synaptic 

vesicles. It is necessary that the excess membrane added during exocytosis is removed 

to restore membrane tension and to clear and recycle proteins. Endocytic clearance of 

proteins from the neuronal membrane is thought to be one of the rate limiting steps in 

synaptic vesicle cycle (Haucke et al., 2011). Despite the model of vesicle retrieval via 

clathrin-mediated endocytosis, initially proposed by Heuser and Reese in 1970s (Heuser 

and Reese, 1973), later studies pointed towards another recycling mechanism, without 

the involvement of clathrin. In this model the vesicles are thought to transiently fuse with 

the plasma membrane, release their content via fusion pore and to be recycled back into 

the terminal whilst retaining their identity (Ceccarelli et al., 1973, 1972). Later on this 

mechanism was referred to as ‘kiss and run’ (Fesce et al., 1994). Since then, 4 modes 

of endocytosis have been described in hippocampal neurons: i) clathrin-mediated 

endocytosis (CME); ii) kiss-and-run endocytosis; iii) ultrafast endocytosis; iv) bulk 

endocytosis. Following their endocytosis, synaptic vesicles are reacidified by v-ATPase, 
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which produces electron gradient needed for re-filling the vesicles with neurotransmitter 

(Südhof, 2004). This step is carried out by neurotransmitter-specific vesicular 

transporters such as vGAT for GABA or vGlut1 for glutamate (Zander et al., 2010).  

 

 

1.3.2.1 Clathrin-mediated endocytosis  

Clathrin mediated endocytosis has been considered to be the most prevalent mechanism 

of SVs retrieval at presynaptic terminals. CME has been described in four (recruitment, 

budding, fission, uncoating) or five sequential steps (nucleation, cargo selection, coat 

assembly, scission and uncoating) (Fig.1.5) (McMahon and Boucrot, 2011; Schuske et 

al., 2003). 

The presence of SV proteins on the plasma membrane, creates a nucleation site and 

initiates recruitment and binding of endocytic factors (McMahon and Boucrot, 2011). 

Phosphatidylinositol 4,5-bisphosphate PI(4,5)P2 enriched plasma membrane 

demarcates the binding site for these early endocytic proteins such as FCHO1/2 

(Fer/Cip4 homology domain-only proteins 1 and 2), AP2 (assembly peptide 2) and 

AP180 (assembly protein 180) (Puchkov and Haucke, 2013). AP2 recruits further 

endocytic adaptors and clathrin coat composed of clathrin triskelia is formed (Rizzoli, 

2014). Initially shallow clathrin coated pits mature and gradually invaginate in a process 

mediated by proteins containing BAR domain such as: endophilin and amphiphysin 

(Frost et al., 2009). These proteins in turn recruit GTPase dynamin, (Frost et al., 2009; 

Milosevic et al., 2011), which upon GTP hydrolysis induces the fission of a new synaptic 

vesicle from the membrane (Roux et al., 2006). The last step in CME is uncoating - 

disassembling of the clathrin coat from the newly formed synaptic vesicles. This step is 

facilitated by synaptojanin 1, Hsc70 and auxilin/GAK (Rizzoli, 2014). Endophilin 1, in 

addition to its dynamin recruiting function, has been also shown to recruit and stabilize 

synaptojanin to newly recycled vesicles (Schuske et al., 2003).  
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It is apparent from this short account on this extremely complex process that each 

individual step is crucial for the next stage of CME to occur. Over the years multiple 

proteins and lipids have been identified to be involved in the process in CME (Fig.1.5.B). 

The list of proteins with identified function in endocytosis exceeds 30 (McMahon and 

Boucrot, 2011). Our knowledge on exactly how some of the crucial steps proceed is still  

limited, for example, it is still debated whether dynamin driven fission of vesicles is via 

membrane constriction or twisting (Kononenko and Haucke, 2015; Roux et al., 2006). 

Nevertheless, unlike in the case with exocytosis, perturbation in expression of many of 

these proteins often resulted in only subtle endocytic deficiency (Dittman and Ryan, 

2009). This suggests that endocytosis might proceed via a different pathway or that the 

function of some specific protein is somewhat redundant, and readily fulfilled by different 

proteins (Dittman and Ryan, 2009). However, deletion of certain proteins led to severe 

impairments in endocytosis. For example, accumulation of clathrin coated vesicles was 

observed in endophilin TKO synapses, which was accompanied by slower endocytic 

kinetics and early lethality in the TKO animals (Milosevic et al., 2011). On the other hand 

dynamin DKO, led to perinatal lethality, slower endocytic kinetics measured with vGpH 

and accumulation of clathrin coated pits  (Raimondi et al., 2011). These results show 

that disturbance of any critical protein (and its isoforms) leads to severe impairment in 

retrieval of synaptic vesicles, with in vivo consequences. 
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Figure 1.5 Summary of clathrin-mediated endocytosis of synaptic vesicles. A) 
Steps leading to formation of clathrin-coated vesicles and the major proteins involved. 
B) Network of protein-protein interactions involved in CME. The most important proteins 
for progression between the consecutive stages are represented with a circle. Figure 
modified from McMahon and Boucrot, 2011.  

 

 

 

1.3.2.2 Kiss-and-run endocytosis  

Unlike in CME, in kiss-and-run endocytosis, SVs are thought to maintain their identity 

(Harata et al., 2006). In this mode, vesicles transiently fuse with the plasma membrane, 

release their neurotransmitter content which is followed by an almost instantaneous 

closure of the fusion pore (Alabi and Tsien, 2013). Kiss-and-run has been observed using 

the same optical techniques that were used for monitoring CME and these include: i) 

FM-dyes destaining experiments (Fig.1.6.A) (Richards, 2010); ii) pHluorin based probes 

(Fig.1.6.B) (Zhang et al., 2009a); iii) quantum dots (Fig.1.6.C) (Zhang et al., 2009b) and 

in capacitance recordings (Xu et al., 2008). The optical reporters listed above are 

described in details in Section 1.6. 
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The molecular mechanisms of kiss-and-run are still very much unknown. However, an 

endophilin-dependent mechanism with timing corresponding to kiss-and-run was found 

to operate at ribbon synapses without the involvement of clathrin and AP2 (Llobet et al., 

2011). One of the most puzzling aspects of kiss-and-run is the mechanism that would 

prevent the fusion of the vesicles with the plasma membrane following the formation of 

the fusion pore. The hypothesis is that the fusion promoting force resulting from zippering 

of the SNARE complexes at the plasma membrane might be enough for generation of 

the transient fusion pore as observed in kiss-and-run, but, on occasion, not enough to 

trigger the full fusion of the vesicles (Alabi and Tsien, 2013). In addition to this, tethers, 

that link individual vesicles, might restrain the primed vesicle from fully collapsing into 

the plasma membrane (Alabi and Tsien, 2013). 

 

 

Figure 1.6 Comparison of functional fluorescence readouts of CME and kiss-and-
run kinetics. All profiles were collected in experiments carried out on hippocampal 
synapses. Figure modified from Alabi & Tsien 2013. 
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1.3.2.3 Ultrafast endocytosis and bulk endocytosis 

Recently another mode of endocytosis has been described. Optogenetics, with a 

stimulus optimized to elicit single action potential, was combined with rapid freezing and 

electron microscopy – ‘flash-and-freeze’ (Watanabe et al., 2013). This method allowed 

to fix the cells within 15 ms post stimulation and to collect the samples at various intervals 

post-stimulus (Watanabe et al., 2013). The full collapse of docked vesicles into the 

membrane was achieved within 30 ms post-stimulus (Watanabe et al., 2013). Large 

endocytic invaginations (~80 nm) were observed within 100 ms in the areas flanking  the 

active zone (Watanabe et al., 2013). Individual synaptic vesicles were formed from the 

endosome within 5-6 s after stimulation (Watanabe et al., 2014) (Fig.1.7.C). Further 

investigation revealed that membrane retrieval via ultrafast endocytosis was dependent 

on actin polymerization, whereas clathrin was critical for the regeneration of SVs from 

the endosome (Watanabe et al., 2014). This mode of endocytosis differs from kiss-and-

run in that SVs are not directly retrieved from the membrane, and the much faster fission 

rate and the lack of clathrin coat further separates it from CME.  

In some aspects, bulk endocytosis might appear similar to ultrafast endocytosis. During 

bulk endocytosis a large portion of plasma membrane is invaginated at sites flanking the 

active zone. It is thought that synaptic vesicles bud-off endosomes in a clathrin-

dependent manner, which is similar to ultrafast endocytosis (Kasprowicz et al., 2008; 

Watanabe et al., 2014). However, unlike ultrafast endocytosis, which occurs following 

single action potential, bulk endocytosis occurs after a very intense stimulation (Clayton 

and Cousin, 2009). Recently synaptotagmin-11 was found to inhibit both CME and bulk 

endocytosis (Wang et al., 2015), which demonstrates an overlap in the mechanism of 

these two processes. Nevertheless, the precise mechanism behind bulk endocytosis and 

its relation to ultrafast endocytosis still needs to be elucidated (Kononenko and Haucke, 

2015). 
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1.3.2.4 Kinetics of endocytosis and the predominant mode of 

endocytosis at hippocampal synapses 

The kinetics of these different modes of endocytosis have been measured using various 

techniques and tissue preparations. In hippocampal cultures the timing of CME has been 

reported to be ~14-20 s following single AP stimulation (Fig.1.7.B) (Balaji and Ryan, 

2007; Granseth et al., 2006). Zhu et al. 2009 showed that the retrieval time can be very 

varied with most boutons completing the endocytosis after single vesicle release events 

within around 30 s mark. This and other studies also reported varied dwell times, 

corresponding to the time vesicles reside at the plasma membrane and perhaps time 

needed for the assembly of endocytic machinery, and reacidification (Balaji and Ryan, 

2007; Zhu et al., 2009). Kiss-and-run on the other hand has been reported to operate 

within a matter of seconds (Fig.1.7.A) (Harata et al., 2006; Zhang et al., 2009b). Ultrafast 

endocytosis is thought to take place within milliseconds following the release, however 

the recovery of the synaptic vesicles from the endosomes takes at least 3 seconds, with 

the majority of the vesicles being recovered within 10-30 seconds post stimulus 

(Fig.1.7.C) (Watanabe et al., 2014). 

 

Which mode of endocytosis is predominant a hippocampal synapses? Different types of 

endocytosis have been observed within the same set of synapses (Richards 2010; 

Zhang et al. 2009b;  and different studies argue for or against predominance of CME or 

kiss-and-run at hippocampal synapses (Granseth et al., 2006; Smith et al., 2008; Zhang 

et al., 2009a). The discrepancies between studies regarding the main mode of 

endocytosis might simply reflect the experimental conditions and the sampling errors. 

Watanabe et al., 2014 showed that at room temperature, at which most imaging studies 

are carried out, clathrin-mediated endocytosis is a dominant form of vesicle retrieval, 

whereas ultrafast endocytosis was a major mode at 34°C. The mode of endocytosis 

might also depend on the intrinsic properties of synapses. Release probability was found 
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to be a determinant of the retrieval mode, with low pr synapse preferentially recycling 

vesicles via kiss-and-run, whereas those with high pr via CME (Gandhi and Stevens, 

2003). Pr of individual synapses combined with stimulus frequency might determine 

which mode is the most likely to occur at a given synapse. During high frequency 

stimulation, synapses with lower pr  would be recruited which would result in an increased 

occurrence of kiss-and-run (Gandhi and Stevens, 2003). This leaves a lot of uncertainty 

as to how hippocampal synapses truly operate under physiological conditions. There has 

been a suggestion of a unified model. It has been proposed that synapses are capable 

of separating the retrieval of the membrane from the actual generation of the new 

synaptic vesicles depending on their activity level (Kononenko and Haucke, 2015). 

Calcium influx during stimulation might play an important role in determining the 

endocytic mode, and so SVs, can be regenerated via CME under low frequency 

stimulation, when the level of intracellular Ca2+ is relatively low; or via ultrafast 

endocytosis when synapses fire at high frequencies and presynaptic Ca2+ is high 

(Kononenko and Haucke, 2015). Stimulation with the same number of action potentials 

but at different frequencies, 5 Hz or 40 Hz, led to accumulation of either clathrin-coated 

pits at the membrane or a presence of large endosome-like structures (Kononenko et 

al., 2014), which supports the hypothesis relating the type of endocytosis used by the 

synapse depending on the stimulus intensity and therefore activity level of the synapse. 
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Figure 1.7 Schematic summary of different modes of endocytosis at hippocampal 
synapses. The difference in the timing of these different mechanisms is striking 
considering the essential role of the synapses to sustain the demands of the network. A) 
Vesicles transiently fuse with the plasma membrane, release neurotransmitter, which is 
followed by fusion pore closing. B) In CME vesicles fully collapse into the membrane, 
which is followed by vesicle retrieval away from the fusion site. C) Ultrafast endocytosis 
operates via rapid internalization of a large vesicle, which is then resolved into small 
synaptic vesicles in a clathrin-dependent manner. Figure modified from Watanabe, 2015.  

 

 

 

1.3.3 Exocytosis-endocytosis coupling   

Without stringently regulated coupling of exo- and endocytosis, an excess of SVs 

material at the plasma membrane would lead to gradual swelling of the terminal, change 

in the membrane tension and clogging-up of the release sites preventing the synapse 

from carrying out further release events. Mechanisms that orchestrate these two 

processes have to be in place in order to ensure seamless function of presynaptic 

terminals. Despite a lot of controversy in the subject, some mechanisms have been 

proposed to coordinate the timing of exo- and endocytosis. 

With increased intracellular Ca2+ exocytic rate is also elevated, which leaves more 

membrane to be retrieved by endocytosis (Dittman and Ryan, 2009). Therefore, calcium 

is one of the candidates as an important regulator of exo-endocytic coupling. 
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The precise location of voltage gated Ca2+ channels is crucial for presynaptic operation 

as pr was shown to correlate with the spatial organization of these channels in relation to 

releasing vesicles (Meinrenken et al., 2002). Removal of RIM1/2 resulted in a decreased 

density of Ca2+ channels at the active zone, which was accompanied by a reduction in 

the size of the RRP, decrease number of docked vesicles and coupling between these 

vesicles and Ca2+ (Han et al., 2011). The proximity of Ca2+ domain and the local level of 

intracellular Ca2+ determined whether synaptic vesicles were retrieved via fast or slow 

mechanism at calyx of Held (Kim and von Gersdorff, 2009). Moreover, Ca2+ might also 

modulate the activity of  calcineurin, which is a Ca2+/calmodulin-dependent phosphatase, 

which in turn might dephosphorylate various endocytic proteins such as dynamin, 

amphiphysin or synaptojanin, leading to the enhancement of their interactions with other 

proteins and an acceleration of endocytosis (Saheki and De Camilli, 2012).  

Nevertheless, the role of calcium in exocytic-endocytic coupling is still debated and many 

contradictory findings have been made as to whether, and how calcium regulates the 

endocytic machinery (reviewed by Leitz & Kavalali 2015). In addition to calcium, various 

proteins involved in exocytosis and endocytosis have also been found to modulate this 

process. Synaptobrevin-2, which is one of SNARE proteins, critical for SVs fusion, was 

shown to play a vital role in exo-endocytic coupling (Deák et al., 2004). Hippocampal 

synaptobrevin-2 KO cultures were characterized by delayed endocytic retrieval time, and 

defects in the size and shape of SVs were observed in electron micrographs (Deák et 

al., 2004). The role of synaptotagmin I in exo-endocytic coupling has also been shown 

in synaptotagmin KO cortical neurons in which the endocytosis was threefold slower in 

relation to exocytosis, in comparison to the WT synapses (Nicholson-Tomishima and 

Ryan, 2004).  

Proteins implicated in endocytosis were also shown to serve this function. Endophilin 

was found to directly interact with voltage-gated Ca2+ channels in a Ca2+ dependent 

fashion, which regulated endophilin-dynamin binding (Chen et al., 2003). This shows the 
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important role of this protein in coupling exo- and endocytosis in addition to its modulation 

of endocytosis. Other endocytic proteins implicated in coordinating the timing of 

exocytosis and endocytosis are synaptotagmin 11 and dynamin (Haucke et al., 2011; 

Wang et al., 2015). Change in mechanical forces accompanying the release of SVs might 

also be the trigger for endocytosis, which suggests that synapses might be equipped 

with some sort of tension detecting mechanism (Saheki and De Camilli, 2012). 

It is apparent from this that the exocytic and endocytic machinery cooperate to efficiently 

clear the release site, making it available for the next rounds of release. There are two 

processes that are important for AZ clearance, the clearance of proteins by endocytosis 

and also their lateral movement within the membrane. The cytoskeletal components such 

as actin, intersectin, piccolo or septins, and their interactions with endocytic proteins such 

as dynamin might regulate and direct the diffusion of proteins away from the active zone 

(Haucke et al., 2011; Sakaba et al., 2013). 

 

1.3.4 Synaptic vesicle identity  

One of the pressing issues is the fate of SVs proteins following vesicle collapse into the 

membrane. Efficient clearance of the release site of endocytic proteins is crucial for 

docking of the next set of vesicles at the active zone (Hosoi et al., 2009; Kim and von 

Gersdorff, 2009). The main questions here are whether: i) synaptic vesicle proteins are 

trafficked in the plasma membrane in association with each other, creating a patch of 

endocytic proteins on the plasma membrane or whether they disperse; ii) proteins from 

newly endocytosed vesicles mix with the proteins already present at the membrane. 

 Studies suggest that in hippocampal neurons a significant level of intermixing between 

proteins residing on the plasma membrane and proteins from recently exocytosed 

vesicle contribute towards newly reformed vesicles (Fernández-Alfonso et al., 2006; 

Wienisch and Klingauf, 2006). And yet, other groups observed the opposite (Murthy and 
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Stevens, 1998; Opazo et al., 2010). One possibility for the discrepancy is the protein 

used to monitor the intermixing: synaptobrevin (Fernández-Alfonso et al., 2006; 

Wienisch and Klingauf, 2006), synaptophysin (Wienisch and Klingauf, 2006), 

synaptotagmin (Fernández-Alfonso et al. 2006; Opazo et al. 2010). As mentioned before, 

the level of control of protein sorting differs for different proteins (Mutch et al., 2011), and 

hence these 3 proteins might have been treated differently at the plasma membrane 

giving rise to contradictory results. Nevertheless, the proteins used in these studies 

overlapped and yet the groups arrived at different conclusions. The other variable is in 

the level of stimulation used by these studies. Opazo et al., 2010 observed that vesicles 

retained their identity at low stimulation level (40 APs 20 Hz), but not at 600 APs 20 Hz. 

The lowest stimulation in the studies that observed a high level of intermixing was 100 

APs 20 Hz, which could explain the discrepancy between the results (Fernández-Alfonso 

et al., 2006; Wienisch and Klingauf, 2006).  

It has been proposed that a patch of stranded proteins persists at the plasma membrane, 

and this surface population of preassembled protein complexes was referred to as 

readily retrievable pool  (Wienisch and Klingauf, 2006). Moreover this protein pool was 

depleted with stimulation level larger than 40 APs 20 Hz, suggesting that it may be 

sufficient to replenish the size of the readily releasable pool of vesicles (RRP) (Wienisch 

and Klingauf, 2006). Taken together this suggests that some mechanisms are in place 

that prepare the synapse for efficient endocytosis and to ensure uniformity of SVs. The 

fact that synaptic vesicle proteins are not fully dispersed but organized into patches also 

fits within the framework that multiple adaptors proteins are needed to trigger 

endocytosis, which wouldn’t be possible with single SVs proteins diffused throughout the 

membrane (Rizzoli, 2014).  

Considering the enormous number of different proteins and their isoforms at SVs, and 

the fact that some of the proteins are present in just a few copy numbers suggest that 

mechanisms that stringently control the stoichiometry of different proteins exist. Although 
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overexpression of synaptophysin resulted in a higher amount of this protein stranded at 

the membrane, the copy number of this protein at SVs was not changed (Wienisch and 

Klingauf, 2006). This shows that, indeed some strict mechanisms are in place. Although 

the precise mechanisms have not been identified, CME-associated adaptors proteins 

and clathrin itself are thought to be the major players in protein sorting (Kononenko and 

Haucke, 2015). As mentioned before, one such protein is stonin 2, the deletion of which, 

led to missorting of synaptotagmin 1 and perturbed the protein composition of SVs 

(Kononenko et al., 2013) 

 

1.4 Synaptic vesicle pools 

Despite the fact that synaptic vesicles appear morphologically homogenous, different 

vesicle populations that share similar structural or functional characteristics have been 

identified and termed ‘pools’, which are essentially sub-classes of vesicles within the total 

vesicle content (Fowler and Staras, 2015). This categorisation has been widely used, 

providing a framework for studying presynaptic properties. 

The total recycling pool (TRP) together with resting pool (RtP) constitute the entire 

complement of vesicles at a given synapse (Fig.1.8). The estimated size of the TRP is 

widely variable between boutons and values as low as 15-20% to up to >70% of the total 

pool of vesicles have been reported (Harata et al., 2001; Ikeda and Bekkers, 2009). 

Nevertheless, only a small pool or recycling vesicles (1-5%) is thought to be sufficient to 

sustain transmission  (Denker et al., 2011a). The maintenance of a large resting fraction 

of synaptic vesicles at first sight seems energetically unfavourable. However, recent 

studies report that the vesicles from RtP are a source of soluble proteins important for 

vesicle recycling (Denker et al., 2011b). For example, endophilin I has been shown to be 

associated with synaptic vesicles in the vesicle cluster, from which it was unbound in an 

exocytosis-dependent manner and delivered to vesicles undergoing endocytosis (Bai et 

al., 2010). 
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The readily releasable pool (RRP) has been defined as those vesicles that are first to be 

exocytosed in response to the arriving action potential (Rosenmund and Stevens, 1996). 

Depending on the stimulation paradigm used, the size of the RRP is estimated to be 5-

15 vesicles (Dobrunz and Stevens, 1997; Murthy and Stevens, 1998). Murthy et al. 2001 

in a correlative microscopy experiment showed that the size of the RRP was correlated 

with the number of docked vesicles at individual boutons. Nevertheless, this view might 

not be exactly accurate as electron microscope studies, in which all vesicles in TRP were 

labelled never observed that all docking sites were filled with recycling vesicles only, 

suggesting that some docking sites were occupied by RtP vesicles (reviewed by Fowler 

& Staras 2015). Despite the possible controversy as to whether the docked vesicle pool 

represents the RRP, the number of docked vesicles was reduced in preparations fixed 

by high-pressure freezing within 15 ms after the onset of the stimulation and recovered 

within 3.8 s which corresponds well with 4.3 s measured for RRP recovery in 

electrophysiological study using hippocampal neurons (Pyott and Rosenmund, 2002; 

Watanabe et al., 2013). However, in this type of approach, different synapses are 

measured at each time point and perhaps the view that docked vesicle pool represents 

a major fraction of the RRP, but that not all RRP vesicles are docked more precisely 

reflects the presynaptic organization (Fowler and Staras, 2015). 

The nature of the vesicles in a spontaneous vesicle pool, that is vesicles which are 

released in the absence of stimulation, is highly debated and various studies reported 

hugely conflicting results. Some studies suggested that there is a discrete pool of 

vesicles, most likely a subset of RtP, specifically accessed during spontaneous release 

(Fredj and Burrone, 2009; Sara et al., 2005). Studies with the view that spontaneous pool 

is a part of TRP can also be found (Groemer and Klingauf, 2007; Hua et al., 2010). 

Further investigation is therefore needed to establish the origin of these vesicles.  

Relatively recently a new pool emerged that spans vesicles that are dynamically 

exchanged between synapses (Staras et al., 2010). The important feature of these 
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trafficking vesicles is that they can be released along the axon but also at the new ‘host’ 

synapse (Darcy et al., 2006a; Ratnayaka et al., 2011).These mobile vesicles might be 

important for regulation of synaptic strength by modifying the proportion of vesicles in 

different vesicle pools and could account for synapse-synapse variability in properties 

such as pr or plasticity (Staras and Branco, 2010)       

 

1.4.1 Regulation of vesicle pool sizes  

Considering the fact that presynaptic properties are correlated with the sizes of different 

vesicle pools, mechanisms that modulate the proportion of vesicles contributing to these 

pools must be in place to meet the functional demands placed upon an individual 

synapse. The size of the TRP and RRP has been linked with pr at individual presynaptic 

boutons (Dobrunz and Stevens, 1997; Murthy et al., 2001, 1997) which attracted interest 

in the regulatory mechanism behind the sizes of these two pools.   

RtP might not only provide a reservoir of soluble proteins but also vesicles that can be 

recruited into the TRP. Fluoxetine, a clinically used antidepressant drug, was shown to 

expand the TRP at the expense of non-recycling vesicles from RtP and therefore 

restored synaptic function following exhaustive stimulation (Jung et al., 2014). Similarly 

inhibition of cyclin-dependent kinase 5 (CDK5) with roscovitine led to increased size of 

the recycling fraction via recruitment of vesicles from RtP, whereas removal of 

calcineurin had the opposite effect (Kim and Ryan, 2010). This study provided with an 

important mechanisms for presynaptic homeostatic scaling via regulation of TRP size by 

CDK5. An NMDA-dependent form of synaptic potentiation was shown to operate via the 

same mechanisms - by changing the balance between the TRP and RtP (Ratnayaka et 

al., 2012).  These studies show common mechanisms for improving synaptic strength. 

An increase in the RRP size at glutamatergic synapses and its refilling rate was achieved 

via phorbol esters mediated activation of protein kinase C (PKC) (Stevens and Sullivan, 
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1998; Waters and Smith, 2000). An increase in pr accompanied by a rise in the size of 

RRP was induced by brain-derived neurotrophic factor (BDNF) and was attributed as a 

mechanism via which it modulates synaptic plasticity (Tyler et al., 2006). 

Despite the fact that we have some knowledge on the factors regulating the vesicle pools 

fractions, what remains largely unresolved is whether synaptic vesicles that belong to a 

certain pool, have a specific molecular signature that ‘assigns’ them to that particular 

pool, and confers certain functional advantages. Some synaptic vesicles might show 

higher copy numbers of certain proteins than others. Recycling pool vesicles were shown 

to exhibit a high level of VAMP2 and vGlut1, whereas those in resting pool were 

characterised by an abundance of VAMP7 (Hua et al., 2011). Nevertheless, such a 

molecular tag in a form of membrane associated protein could only be useful if vesicles 

remain constant in their molecular identity, that is, there is a limited intermixing of 

vesicular membrane cluster with plasma membrane.  Soluble proteins, such as synapsin, 

which in response to activity-driven calcium entry into the terminal, unbinds from the 

vesicles, conferring them more mobile (Kamin et al., 2010), is a candidate for being a 

discriminator of pool classes. Synapsin TKO neurons showed increased mobility of RtP 

vesicles, their increased axonal trafficking and redistribution into adjacent boutons and 

therefore contribution to the increased size of the superpool (Orenbuch et al., 2012). A 

tag for vesicles in spontaneous vesicle pool (assuming that such exists), was also 

identified as a soluble protein – DOC2, a calcium sensor of which deletion significantly 

decreased the frequency of spontaneous neurotransmission with no effect on evoked 

release (Crawford and Kavalali, 2015; Groffen et al., 2010; Pang et al., 2011).  

This shows that some molecular ‘code’ exists behind the segregation of vesicles into the 

vesicle pools. In support of this, it has been shown that a larger than predicted by chance 

portion of vesicles from the RRP, returns to the positions close to the plasma membrane 

and is preferentially reused during the next RRP-mobilizing stimulation (H. Park et al., 

2013; Rey et al., 2015). These preferentially reused RRP vesicles might originate from 
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the readily retrievable pool at the plasma membrane that might undergo some strict 

sorting rules ensuring consistent protein composition of these vesicles and targeting 

them to the RRP. Nevertheless there are still major deficits in our knowledge. One of the 

major challenges is posed by the enormous number of different proteins associated with 

SVs and limitations of the available techniques. The most pressing questions concerning 

molecular discrimination, nature and stability of the pools as well as relationship of these 

variables with the synaptic function are still to be answered. Integration of novel super-

resolution imaging techniques such as stimulated emission depletion (STED) 

microscopy or stochastic optical reconstruction microscopy (STORM)  with ultrastructural 

and connectivity readouts, as well as with live cell imaging, should allow us to study the 

molecular composition combined with functional properties of individual synapses.   

 

Figure 1.8 Summary of classification of synaptic vesicle pools. 1. Total recycling 
pool (TRP) and resting pool (RtP) electron micrographs showing photoconverted (dark 
lumen) recycling vesicles and clear vesicle from the RtP. Fluorescence panels on the 
right illustrate functional readout allowing to measure TRP and RtP size. 2. Functionally 
labelled RRP vesicles showed in electron micrograph and 3D reconstruction of a 
synapse. 3. Electron micrograph of spontaneous pool - HRP-labelled, dark vesicles. 4. 
Docked synaptic vesicles appear to be in direct contact with the membrane. 5. Superpool 
of vesicles that are shared between neighbouring synapses.  Figure modified from 
Fowler & Staras 2015. 
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1.5 Presynaptic dysfunction in disease 

Disturbance in the kinetics at any stage of synaptic vesicle cycle, in the balance within  

synaptic vesicle pools, or any changes in the expression or function of important 

presynaptic protein, could have detrimental effects for the function of the synapse and in 

effect, produce neurological symptoms and cognitive decline (Kavalali, 2006). What 

follows is a brief account on presynaptic factors found to be affected in neurological 

diseases.  

Presynaptic protein, α-synuclein of which soluble oligomers have been linked with 

pathology observed in Parkinson’s disease (Stefanis, 2012), is thought to be important 

for  the maintenance of the abundance of vesicles at presynaptic terminals; some studies 

also reported that it modulates neurotransmitter release thorough its interaction with 

SNARE complexes (Murphy et al., 2000; Stefanis, 2012). Synaptotagmin 11, which is 

crucial for CME and bulk endocytosis, has been identified as a susceptibility gene for 

schizophrenia (Wang et al., 2015). Also,  analysis of post-mortem brain tissue from 

patients suffering from this disorder revealed modified expression patterns of genes 

encoding for synapsin-2 and synaptojanin, all these involved in recycling of SVs 

(Kavalali, 2006). Reduction in the expression of key presynaptic proteins such as 

synaptophysin, synaptobrevin or synapsin was reported in in vivo prion disease model, 

which coincided with the onset of behavioural abnormalities reported in this 

neurodegenerative disease (Gray et al., 2009).  Endophilin, an important regulator of 

endocytic kinetics has been reported to bind to numerous proteins such as Parkin, 

Huntingtin and ataxin-2, all associated with neurodegenerative diseases (Milosevic et 

al., 2011).  

Not only might the function of proteins be disturbed in various neurological disorders, but 

also lipids metabolism. Increasing the level of PI(4,5)P2, which is crucial for many 

presynaptic functions  (and yet the level of which was found to be perturbed in 

Alzheimer’s Disease), significantly improved the results of behavioural tests in 
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Alzheimer’s Disease (AD) mice model TG2576 (McIntire et al., 2012). This elevation in 

PI(4,5)P2 was brought about by deletion of synaptojanin 1, a major phosphatase in the 

mammalian brain (McIntire et al., 2012). This shows the importance of protein-lipid 

interactions in synaptic homeostasis.  

These examples clearly show how critical the efficient function of exocytic and endocytic 

machinery is for CNS performance. Identification of disease associated changes in 

synaptic vesicle pools and cycle might provide with novel therapeutic targets. As an 

example, fluoxetine, drug used to treat depression was recently shown to act via 

increasing the size of the recycling pool (Jung et al., 2014).  

 

1.5.1 Alzheimer’s disease and presynaptic function  

Alzheimer’s disease is a neurodegenerative dementia, affecting a large proportion of the 

population over 70 years of age, clinically characterized by a progressive memory loss 

(Alzheimer’s society, 2016). Pathologically, this disease is associated with the presence 

of large deposits of misfolded proteins: neurofibrillary tangles composed of 

phosphorylated tau, and senile plaques containing amyloid-beta peptide (Aβ) (Benilova 

et al., 2012). Gradual loss of synapses, proceeding the loss of neurons, has been found 

to be the best correlate with the cognitive decline (Serrano-Pozo et al., 2011; Walsh and 

Selkoe, 2007). Unlike originally thought, the synaptic deficits, loss of synapses or their 

dysfunction, have been linked to the toxic effects of small, soluble, oligomeric Aβ species, 

rather than large fibrils (Murphy and LeVine III, 2010).  

Aβ is derived from amyloid-precursor protein (APP), via sequential cleavage of this 

protein carried out by β- and γ- secretases, resulting in a production of either 40 or 42 

amino acid long peptide (Pimplikar, 2009). Out of the two, Aβ1-42 is thought to be more 

toxic, and it has been linked to a wide range of synaptic deficits (Walsh and Selkoe, 

2007). Although postsynaptic effects of Aβ have been extensively studied (De Felice et 
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al., 2007; Lambert et al., 1998; Sheng et al., 2012; Walsh et al., 2002), the presynaptic 

mechanisms of Aβ toxicity have been given less attention, however some studies 

focused on this compartment in their investigation. Aβ has been found to decrease the 

rate of synaptic vesicle endocytosis by reducing the level of dynamin, which led to 

redistribution of amphiphysin, which is another protein important for endocytosis (Kelly 

et al., 2005; Kelly and Ferreira, 2007). A similar observation on the detrimental effect of 

Aβ on the kinetics of endocytosis was made by another group, which also exposed Aβ-

induced reduction in recycling vesicle pool size, accompanied by an increased resting 

pool fraction (J. Park et al., 2013). It has also been reported that Aβ competed with 

VAMP2 for binding of synaptophysin, which could lead to an increased number of primed 

vesicles resulting in higher neurotransmitter release (Russell et al., 2012). A meta-

analysis of synaptic markers associated with pre- and postsynaptic pathology, strongly 

indicated that presynaptic terminals were affected more in AD post-mortem brain 

samples, further highlighting the importance of exploring deficiency in this synaptic 

compartment (de Wilde et al., 2016).   

Despite the fact that discoveries point toward a strong association between Aβ and wide-

range of synaptic dysfunctions, this is not reflected in the progress of therapeutic 

approaches (Amanatkar et al., 2016). It is therefore paramount to continue the search 

for important loci of this disease, and to consolidate the knowledge that we have gained 

so far in a rigorous and systematic way.  

 

1.6 Tools for monitoring presynaptic function  

The very small size of presynaptic terminals and their ultrastructural components, 

combined with the immense speed of the processes accompanying synaptic vesicle 

release and recycling, poise huge technical challenges. The early studies relied on 

electrophysiological measurements of postsynaptic depolarizations, which provided with 
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a very indirect method of studying presynaptic function as it was based on the activity of 

postsynaptic ligand-gated ion channels (Del Castillo and Katz, 1954; Kavalali and 

Jorgensen, 2013). The combination of membrane capacitance measurements with 

recording of mEPSCs offers a powerful tool for examining the release of synaptic 

vesicles and the postsynaptic consequence of neurotransmitter release (Sun et al., 

2002). Nevertheless, although this method is widely used in large terminals, such as 

calyx of Held, it is unsuitable to be performed in hippocampal terminals which are only 

0.12-0.54 µm in size (Harris and Sultan, 1995; Yang et al., 2005). Other methods for 

directly measuring neurotransmitter release, such as continuous amperometry, offer high 

temporal resolution but low selectivity due to potential contamination of the 

measurements with other oxidizable molecules (Benoit-Marand et al., 2007). Electron 

microscopy opened another avenue for examining presynaptic function and structure. 

Although this method allows us to explore ultrastructure in details in three dimensional 

reconstructions, it captures just a particular moment in the life of a synapse. Moreover, 

the sample has to be fixed, dehydrated and embedded, and various preparation 

protocols can induce different structural artefacts. The development of fluorescence 

markers in the early 1990s for monitoring presynaptic function allowed us to more directly 

study their behaviour. The techniques described below include the fluorescent probes 

that were used in this study. Other emerging techniques involve: quantum dots, super-

resolution microscopy such as STED and STORM, and electron microscopy techniques, 

for example FIBSEM (focused ion beam milling scanning electron microscopy).  

 

1.6.1 Acutely applied probes 

1.6.1.1 FM dyes 

The FM dyes were developed by Betz et al. 1992 by improving the structure of existing 

styryl dyes. FM dyes have an amphiphilic nature, a positively charged head group arrests 
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them in the outer membrane, and a lipophilic tail, of which length determines how quickly 

they departition from the membrane i.e. how “sticky” the dye is (Brumback et al., 2004). 

The more hydrophobic dyes, with longer tails, such as FM1-43, leave the membrane 

slower than the counterparts with shorter hydrophobic tail such as FM2-10  (Zenisek et 

al., 2002). Nevertheless, in comparison to other dyes, FM1-43 was among those with 

the highest fluorescence intensity (Wu et al., 2009). The number of double bonds 

between the head and the tail determines the spectral properties of FM dyes. The higher 

the number of the bonds, the more red shifted the dye is (FM1-43, single double bond, 

excitation within green spectra; FM4-64, 3 double bonds, excitation and emission red-

shifted) (Brumback et al., 2004). The properties of FM dyes that made them extremely 

useful in studying vesicle recycling are: i) they partition into membranes which is 

accompanied by a large increase in fluorescence; ii) their membrane binding is 

reversible, meaning they can be washed off the surface of the cell and destained from 

the previously loaded SVs; iii) they remain in the outer portion of the membrane and are 

not capable of penetrating the full membrane thickness (Betz et al., 1992; Brumback et 

al., 2004). These properties are a result of the particular design of their structure.  

Incubation of neurons with FM1-43 results in the binding of this dye to the outer leaflet 

of the plasma membrane. Stimulation evoked release and subsequent endocytosis of 

synaptic vesicles, leads to the internalization of this dye and labelling of the recycling 

vesicles only (Cousin, 2008). The surface dye is washed off and the remaining 

fluorescence corresponds to the dye trapped in the vesicles that underwent the recycling. 

The subsequent stimulation leads to the loss of the dye and a rapid drop in fluorescence 

intensity, as the dye departitions from the membrane after vesicle fusion (Betz et al., 

1992). Not only has FM1-43 been used to monitor the kinetics of SVs exocytosis during 

live imaging, but also as a means  of observing recycling SVs under electron microscope.  

In the presence of 3,3’-diaminobenzidine (DAB) and under prolonged fluorescent 

illumination, an electron dense product is formed in the structures containing FM1-43, 
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which can be observed under the electron microscope (Darcy et al., 2006b). For this 

reason, FM1-43 also allows the examination of the ultrastructural properties of functional 

terminals and is a very valuable tool in examining structural correlates of presynaptic 

function (Branco et al., 2010). 

 

1.6.1.2 Fluorescently tagged antibody - sytI-Oyster550 

Another reporter used in this study is a red fluorescent marker of presynaptic terminals 

sytI-Oyster550, which allows to identify presynaptic boutons. SytI-Oyster550 is an 

Oyster-550 labelled antibody raised against the epitope of the N-terminal domain 

(lumenal domain) of the synaptic vesicle protein, synaptotagmin I (sytI). Synaptotagmin 

I is a sensor of presynaptic Ca2+ influx and therefore an important protein for SVs 

exocytosis (Südhof and Rizo, 1996). Unlike other members of the synaptotagmin family, 

sytI is specifically targeted to presynaptic terminals, precisely to synaptic vesicles, which 

makes it an ideal marker for these structures  (Kang et al., 2004; Zhang et al., 2004). In 

a similar fashion to FM1-43, sytI-Oyster550, can be loaded into the recycling presynaptic 

vesicles. 

 

1.6.2 Genetically encoded fluorescence probes 

The engineering of pH-sensitive mutants of green fluorescence protein by Miesenbock 

et al. 1998 that can be tagged onto various presynaptic proteins, has offered the 

opportunity to monitor the behaviour of presynaptic terminals down to single synaptic 

vesicle resolution; an approach that was difficult to achieve with the acutely applied 

probes, such as FM1-43 dye. More importantly, these genetic constructs, allow for more 

specific measurement of the fluorescence signal than in the case of acute probes. That 

is because in these constructs pHluorin molecule is tagged onto a specific synaptic 
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vesicle protein in contrast to the fluorescence originating from lipid insertion of the dye 

as in the case of FM1-43 (Kavalali and Jorgensen, 2013).   

 

1.6.2.1 sypHy 

sypHy is a genetically encoded probe developed by (Granseth et al., 2006).This 

construct is comprised of a super-ecliptic pHluorin molecule fused to the second 

intravesicular loop of synaptophysin (Granseth et al., 2006). pHluorin was developed via 

structure-directed combinatorial mutagenesis of green fluorescent protein leading to the 

development of a pH-sensitive version of GFP: fluorescence is quenched at an acidic pH 

and an increase in fluorescence intensity is observed at a neutral or near neutral pH 

(Miesenböck et al., 1998). The synaptic vesicle lumen is characterized by acidic pH (5.5) 

(Kavalali, 2006), when the vesicle fuses with the membrane and the lumenal GFP is 

exposed to the extracellular environment with neutral pH, an increase in fluorescence 

intensity can be observed. Due to tight coupling of exocytosis and endocytosis of 

synaptic vesicles, as described above, SVs are recycled back into the presynaptic 

terminal and reacidified by vATPase. This is again reflected in the fluorescence intensity 

of sypHy which is re-quenched during this process. SypHy2x therefore allows to readout 

synaptic vesicle exocytosis and reacidification of newly formed vesicles.  

Initially the pHluorin molecule was fused to synaptic vesicle protein synaptobrevin and 

the construct called synaptopHluorin (Miesenböck et al., 1998; Sankaranarayanan and 

Ryan, 2000). Nevertheless, this plasmid showed a high level of surface fluorescence and 

lateral diffusion of tagged protein into neighbouring axon (Granseth et al., 2006). Based 

on the analysis of immunofluorescence data, Granseth et al., 2006 created a new 

construct by fusing the pHluorin molecule to synaptophysin. This construct called sypHy, 

had improved properties: significantly less surface fluorescence, better signal-to-noise 

ratio and less lateral movement. In our study we used a modified version of this probe 
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which has two pHluorin molecules in the second intravesicular loop of synaptophysin 

(Zhu et al., 2009). 

 

1.6.2.2 vGlut1-pHluorin  

Since the development of ecliptic pHluorin (Miesenböck et al., 1998), this engineered 

GFP has been successfully fused with various synaptic vesicle proteins such as 

synaptobrevin, synaptotagmin I or synaptophysin. One major difference between these 

probes was their surface expression resulting from the differences in the amount of these 

synaptic vesicle proteins on the plasma membrane at rest. SynaptopHluorin (pHluorin 

fused to synaptobrevin) was characterized by 15% (Sankaranarayanan and Ryan, 

2000), synaptotagmin I by 23% (Fernández-Alfonso et al., 2006) and synaptophysin by 

9% (Granseth et al., 2006) surface expression. A high level of baseline fluorescence is 

one of factors that could hinder the detection of single-vesicle fusion events. Designed 

specifically with this in mind, a single pHluorin was fused to vesicular glutamate 

transporter 1 (vGlut1) creating another reported called vGpH (Balaji and Ryan, 2007; 

Voglmaier et al., 2006). vGlut1 mediates glutamate uptake into SVs and is preferentially 

expressed over vGlut2 in hippocampal neurons (Zander et al., 2010). The surface 

expression of vGpH was only 2%, which is superior to proteins mentioned above, 

indicating that vGlut1 is targeted even more specifically to synaptic vesicles than other 

SVs proteins, which makes it a perfect candidate probe for single vesicle imaging (Balaji 

and Ryan, 2007). 

 

1.6.2.3 syGCaMP 

Another group of genetically encoded probes are genetically encoded calcium indicators 

(GECIs). During action potential firing, Ca2+ enters presynaptic compartment, leads to 

SVs exocytosis and contributes to exo-endocytic coupling. Ca2+ imaging provides with a 
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direct, simultaneous measurement of Ca2+ transients within multiple presynaptic 

terminals which can provide with invaluable information on the function of these 

synapses as well as their behaviour within the network.  

Synthetic Ca2+ indicators, such as Oregon green (OGB), offer a range of characteristics, 

high Ca2+ sensitivity and speed (Paredes et al., 2008).  However, novel GECIs show 

several advantages over the synthetic probes. Firstly, they can be targeted to a specific 

cell type by being under control of cell-type specific promoter such as glial fibrillary acidic 

protein (GFAP) for examining Ca2+ transients in astrocytes (Akerboom et al., 2012). 

Synthetic Ca2+ indicators require another marker, such as sytI-Oyster550, in order to 

reveal the compartments of experimental interest. GECIs can be targeted to report Ca2+ 

influx into a specific cellular compartment, such as synaptic boutons (syGCaMP2) 

(Dreosti et al., 2009), plasma membrane or dendritic spines (Mao et al., 2008). Thirdly, 

GECIs also allow for efficient and long-term monitoring of Ca2+ in vivo (Mao et al., 2008). 

The GCaMP probe is comprised of 3 main components: single, circularly permuted GFP 

(cGFP), calmodulin (CaM) and M13 fragment from myosin light chain kinase, which is a 

Ca2+/CaM-binding peptide (Nakai et al., 2001). Calcium binding induces conformational 

change in the CaM – M13 complex which in turn leads to conformational change in cGFP 

and which is manifested as an increase in fluorescence intensity (Nakai et al., 2001). 

This original GCaMP probe (Nakai et al., 2001), has been further improved via target 

mutagenesis and structure-based mutagenesis resulting  in sensors with much improved 

calcium affinity, brightness of the calcium-bound state, reporting kinetics and signal-to-

noise ratio (Akerboom et al., 2012; Chen et al., 2013). These improved GECIs are 

therefore the probes of choice over the synthetic Ca2+ indicators for monitoring Ca2+ 

transients in specific cells or cellular compartments. Fusion of GCaMP with the 

cytoplasmic side of synaptophysin led to the expression of the construct in presynaptic 

terminals and therefore allowed for the detection of Ca2+ influx specifically into that 

compartment (Dreosti et al., 2009). In this study we used syGCaMP6f, which is GCaMP 
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variant fused with synaptophysin for presynaptic targeting and characterized by the 

fastest kinetics amongst GCaMP probes, and similar Ca2+ sensitivity to OGB (Chen et 

al., 2013; Dreosti et al., 2009).  

 

1.6.2.4 iGluSnFR 

In recent years yet another probe has emerged: intensity-based glutamate-sensing 

fluorescent reporter (iGluSnFR). As the name indicates iGluSnFR allows the detection 

of glutamate released from the presynaptic terminals. iGluSnFR is comprised of a 

circularly permutated GFP (cpGFP) fused to glutamate type 1 transporter from E coli 

(Marvin et al., 2013). This construct is targeted to the plasma membrane and expressed 

on the extracellular side thanks to another component, a transmembrane domain of 

platelet-derived growth factor receptor  (Marvin et al., 2013). The principle working of 

iGluSnFR relies on ligand-induced conformational change to cpGFP. In a ligand-free 

state iGluSnFR fluorescence is very faint, however, glutamate binding induces 

conformational change within the sensor and a rapid increase in fluorescence intensity 

(Marvin et al., 2013). iGluSnFR was found to be uniformly distributed on extrasynaptic 

membrane, photostable, fast and sensitive (its signals correlated with simultaneous 

electrophysiological recordings) (Marvin et al., 2013). iGluSnFR under synapsin 

promoter was also developed in order to drive the expression only in neurons (Marvin et 

al., 2013). 
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1.7 Aims 

From the studies presented, it is apparent that synapses in the CNS show an enormous 

diversity in their structural, functional and molecular properties. Despite the available 

information on correlations between individual parameters, very few studies attempted 

to consolidate the structural and molecular characteristics of individual presynaptic 

terminals with their functional properties.  

Efficiently operating endocytosis is crucial for renewing the pool of SVs at presynaptic 

terminals and clearing the release site, however, the exact regulation of endocytic 

retrieval is unknown. Here, we do not attempt to characterize the endocytosis per se but 

rather to test, whether individual synapses exhibit conserved endocytic behaviour. 

Evidence suggests that synapses in retinal bipolar neuron are capable of retrieving 

vesicles with different kinetics depending on the conditions (Neves and Lagnado, 1999). 

This suggests that the machinery required to utilize different recycling pathways is 

present at individual boutons. Different endocytic mechanisms have also been identified 

to operate at hippocampal synapses, which indicates that these terminals are also 

capable of carrying out various modes of vesicle recycling (Alabi and Tsien, 2013). But 

what determines the selection of endocytosis mode? One possibility is that this is 

determined by molecular and structural characteristics of individual synapses. In various 

knockout experiments different presynaptic proteins have been shown to modulate the 

kinetics of endocytosis (Kononenko et al., 2013; Milosevic et al., 2011). Structural 

organization of the presynaptic terminals have also been found to underlie the functional 

properties of individual synapses (Branco et al., 2010; Tyler et al., 2006). Nevertheless, 

the relationships between various molecular and structural factors in native terminals, 

and the efficiency of endocytic retrieval have not been explored. The unresolved question 

is - to what extent can we predict the functional properties of presynaptic terminals based 

on their morphological characteristics and molecular composition? We hypothesized that 

individual synapses might exhibit a signature mode of endocytic behaviour, and the 
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“choice” of the path they take might result from inherent molecular or structural properties 

of these synapses.  

The main aims of this study were: 

1) To determine whether individual presynaptic boutons exhibit signature kinetics of 

retrieval of single synaptic vesicles 

2) To identify underlying structural and molecular correlates of behaviour of 

individual presynaptic terminals 

In the recent years evidence has been accumulated suggesting the involvement of 

presynaptic dysfunction in various neurological and psychiatric disorders such as 

Parkinson’s disease, schizophrenia or autism (Südhof, 2013a). Despite the fact that 

impairment in postsynaptic function in Alzheimer’s disease has been widely studied, the 

knowledge on the presynaptic component is limited. The aim of this study was to 

examine the effects of amyloid beta oligomers on the different components of synaptic 

vesicle cycle with major focus on endocytosis.     
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2 METHODS AND MATERIALS 
 

 

 

 

 

2.1 Animal Handling  

 

All animal handling and experimental procedures were carried in accordance with the 

Animals (Scientific Procedures) Act 1986. Sprague Dawley rat pups (P0-P1) were 

purchased from Harlan Scientific or fortnightly littered onsite.  

 

2.2 Dissociated rat hippocampal cell culture  

Table. 2.1.  

Product Product Code Supplier 

Basal Medium Eagle (BME) 21010046 GibcoTM 

Foetal Bovine Serum (FBS) 10500056 GibcoTM 

Sodium Pyruvate (100 mM) 11360070 GibcoTM 

GlutaMAXTM Supplement (100X) 35050061 GibcoTM 

B-27 Supplement (50X), serum free  17504044 GibcoTM 

HEPES H4034 Sigma-Aldrich  

Glucose (45%) G8769 Sigma-Aldrich 

Penicillin-Streptomycin (100X) P4333 Sigma-Aldrich 

Hanks Balanced Salt Solution (HBSS) (10X) 14065056 GibcoTM 

Trypsin-EDTA (0.05%), phenol red 25300054 GibcoTM 

Trypan Blue Solution (0.4%) T8154 Sigma-Aldrich 

Poly-D-lysine hydrobromide P1024 Sigma-Aldrich 

Cytosine β-D-arabinofuranoside (ara-C) C1768 Sigma-Aldrich 

 

Table 2.2. 

Solution Composition  Storage Used at  

Poly-D-Lysine (PDL) 20 μg/ml in H20 4 mg/ml stock 
at -20°C 

37°C 

Dissection Solution HBSS (1x), 10 mM HEPES (1 
M, pH 7.35 solution) in H20 

4°C Ice cold 

Astrocyte Growth 
Media  

BME, 20 mM Glucose, 10 mM 
HEPES, 1 mM Sodium 
Pyruvate, 10% FBS, 1% 
Penicillin-Streptomycin 

4°C 
 

37°C 
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Neuronal Growth 
Media  

BME, 20 mM Glucose, 10 mM 
HEPES, 1 mM Sodium 
Pyruvate, 2% FBS, 1% 
Penicillin-Streptomycin, 1% 
GlutaMAX, 2% B-27 

4°C 37°C 

Cytosine β-D-
arabinofuranoside 
(ara-C) 

8.7 μM ARA-C in Neuronal 
Growth Media  

-20°C as 5 mM 
stock 

37°C 

 

 

Neuronal cultures were prepared using a modified version of the protocol first described 

by (Banker and Cowan, 1977). A two-step culturing process was employed in which 

hippocampal neurons were plated on top of the astrocyte feeder layer (Fig.2.1). The 

sections below describe in details the consecutive steps leading to viable neuronal 

culture.  

 

Figure 2.1 Schematic representing timeline of culturing protocol of rat 
hippocampal neurons.  

 

 

2.2.1 Coverslip preparation and plating astrocyte feeder layer 

Circular glass coverslips (12 mm, Fisher) were sterilized in absolute ethanol and 

individually placed in the 8 middle wells of a 24-well plate in order to ensure even 

evaporation of media during culturing. The remaining outer wells were filled with sterile 

water. Coverslips were incubated overnight at 37°C with 20 μg/ml PDL. The following 

day, wells were copiously washed with sterile H20 and coverslips were allowed to dry 

under the sterile hood during the preparation of astrocytes. 9-10 day old astrocytes, 

grown in 25 cm2 flask (CLS430639, Sigma-Aldrich), were plated on these PDL coated 

coverslips. Cells were briefly washed with 1x sterile PBS and trypsinized at room 
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temperature with 0.05% Trypsin-EDTA for 5-10 minutes. Trypsin was carefully removed 

and replaced with 2 ml of pre-warmed astrocyte growth media (composition in Table 2.2). 

The flask was briskly tapped a few times in order to encourage the detachment of 

astrocytes from the plastic into the media. The cell suspension was carefully drawn and 

transferred into a 15 ml falcon tube where the cells were gently triturated a few times. 

The number of viable astrocytes in the suspension was calculated using 

haemocytometer and 0.04% trypan blue solution. Astrocytes were plated at the density 

of 3500-5000 cells/well which was usually equivalent to 200-500 μl of the cell 

suspension. This ensured an astrocytic layer that was dense enough for favourable 

growth of neurons but not obstructive for imaging purposes. Diluted cell suspension was 

added at 0.7 ml per well and plates placed in the incubator at 37°C with 5% CO2. 

Astrocytes were allowed to settle in media containing 10% FBS, which promotes their 

growth (Ye and Sontheimer, 1998), for 4-5 days prior to plating hippocampal neurons. 

The source of astrocytes is described in the section below. 

        

2.2.2 Dissection 

Sprague Dawley P0-P1 rat pups were sacrificed by cervical dislocation according to 

Schedule 1.  The head was removed with the scissors and 2 incisions on both sides of 

the head (from the base of the skull towards the eyes) were made with fine scissors, the 

skull was peeled off in a single motion whilst the head was held at the base. This 

decreased the time between the sacrifice of the animal and tissue dissection yielding 

more viable cells. The brain was gently separated from the underlying tissue, lifted up 

with a spatula and immediately placed into a petri dish filled with ice cold dissection 

solution (Table 2.2). From now on the dissection was carried out under the microscope. 

The brain was placed dorsal side up, the olfactory bulb and cerebellum were removed 

and the two hemispheres were separated with a cut along the central sulcus with a sterile 

scalpel blade (No#22). The hemispheres were placed cortex side down (sagittal view) 
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and the hippocampus was gently dissected out by ‘rolling it out’ and separating it from 

the cortex. The meninges were carefully removed using fine forceps. The hippocampal 

tissue was then transferred into 15 ml falcon with dissection solution and kept on ice 

whilst the process was repeated on the other hemisphere.  

 

2.2.3 Culturing hippocampal neurons  

Dissection solution was carefully removed and the dissected out hippocampus was 

washed three times with 2 ml of warm neuronal growth media (Table 2.2). Tissue was 

gently triturated in 2 ml neuronal growth medium using Gilson pipette until the 

suspension was uniform and there was no sign of tissue fragments. The cells were 

counted using a haemocytometer and 0.04% trypan blue solution. 35,000 cells per well 

were plated in neuronal growth medium onto the previously prepared astrocyte feeder 

layer (section 2.2.1). This density was optimal for imaging experiments, for which, fairly 

sparse neuronal networks are most desirable. Neurons were incubated at 37°C, 5% CO2 

until mature and used for experiments DIV 13-18. The remaining concentrated cell 

suspension (usually ~0.4 ml) was transferred into T25 flask and 5 ml of astrocyte growth 

media (Table 2.2) was added. These cells were allowed to grow for 9 -10 days following 

which they were transferred onto the coverslips as described in section 2.2.1. In order to 

prevent further astrocytic proliferation in neuronal culture, a mitotic inhibitor ara-C (final 

concentration 3.3 μM in neuronal growth media), was added on day 2-4 to neuronal 

cultures. The decision on the timing of ara-C treatment was based on the level of 

astrocyte confluency in the culture. It was important to provide neurons with well-

established astrocytic islands supporting their growth and function.        

The major factor discriminating between the growth of neurons or astrocytes in this 

culturing method is the concentration of FBS used. The reduction of FBS from 10% to 

2%, and the addition of ara-C provides with the environment favourable for neuronal 
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growth, whereas 10% FBS supports astrocytic growth (Ye and Sontheimer, 1998). Also, 

ara-C added to neuronal culture not only inhibits proliferation of astrocytes, but was also 

shown to promote neurite outgrowth whilst limiting non-neuronal cells growth  (Oorschot 

and Jones, 1986).  

 

2.3 Transfection of hippocampal neurons  

Table 2.3. 

Product Product code Supplier 

ProFection Mammalian 
Transfection System 

E1200 Promega 

Kynurenic acid K3375 Sigma-Aldrich 

 

Table 2.4. 

Solution Composition  Storage Used at  

20X Kynurenic acid 20 mM Kynurenic acid, 10 mM MgCl2, 

5 mM HEPES, pH 7.5 with NaOH 
-20°C 37°C 

Transfection media  1 mM Kynurenic acid in 10% HEPES 
BME 

Prepared 
fresh  

37°C 

Neuronal Growth 
Media  

BME, 20 mM Glucose, 10 mM 
HEPES, 1 mM Sodium Pyruvate, 2% 
FBS, 1% Penicillin-Streptomycin, 1% 
GlutaMAX, 2% B-27 

4°C 37°C 

 

Table 2.5. 

Insert Vector Readout Supplier 

CMV:SypHy1x pcDNA3 Vesicle Recycling Gift from Ruud Toonen 

CMV:SypHy2x pcDNA3 Vesicle Recycling Gift from Ruud Toonen 

CMV:SypHy4x pcDNA3 Vesicle Recycling Gift from Ruud Toonen 

hCMV:iGluSnFR mEGFP Glutamate release Gift from Leon Lagnado  

 

Dissociated rat hippocampal neurons were transfected at DIV 6-9 using modified Ca2+ 

phosphate protocol. It is the most widely used method for transfecting neuronal cultures 

due to its low toxicity and relatively high efficiency achieved with some optimization (up 

to 50% transfected neurons) (Micheva et al., 2003; Passafaro et al., 2003; Sun et al., 

2013; Xia et al., 1996). This method relies on the endocytic uptake of DNA-Ca2+-

phosphate precipitate into neurons and the expression of foreign DNA in the nucleus 
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(Sun et al., 2013). The important factors affecting the toxicity and efficiency of this 

method are the even size and the amount of precipitate particles added to the cells, and 

the time of neuronal exposure to the precipitate (Jiang and Chen, 2007; Xia et al., 1996). 

The use of kynurenic acid, an inhibitor of ionotropic glutamate receptors, further reduces 

the neurotoxicity associated with transfection (Xia et al., 1996).  

BME media containing 10% HEPES (1 M, pH 7.35) with added 1 mM kynurenic acid was 

used as a transfection media (Table 2.4). Conditioned media was removed from the 

wells, kept for later at 37°C and immediately replaced with 500 μl transfection media per 

well. Cells were incubated in this media for 30 min during which the transfection reactions 

were prepared. ProFection Mammalian Transfection System was used to deliver DNA to 

the neurons. 2x HEPES from this kit was pipetted into 15 ml falcon tubes and nuclease 

free water into Eppendorf tubes (one per reaction). 2-6 μg of plasmid DNA was added to 

the tubes containing nuclease free water, which was followed by the addition of CaCl2 

accompanied by vigorous pipetting up and down to ensure adequate mixing. DNA 

suspension was pipetted dropwise into the tubes containing 2X HEPES whilst being 

vortexed for 30 s. This suspension was incubated for ~10 min and later added dropwise 

to the cells. The incubation time with the DNA-Ca2+-phosphate precipitate was ~45 min. 

Cells were washed three times with neuronal growth media (Table 2.4) and placed in 

50/50 conditioned/fresh neuronal media. DNA concentration, the timing of incubation 

with the precipitate and the transfection day were optimized for each construct. Following 

transfection, fine DNA-Ca2+-phosphate precipitate was observed, which gradually 

disappeared over the next 24 h. Neurons were used for experiments at 13 -18 days in 

vitro which gave at least 4 days for expression.  
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2.4 Infection of hippocampal neurons with AAV-based 
constructs  

Table 2.6. 

Insert Serotype Readout Supplier 

pCAG:SypHy2x AAV-9 Vesicle recycling Gift from Tiago Branco  

pCAG:syGCaMP6f AAV-6 Ca2+ influx Gift from Tiago Branco 

pCAG:iGLuSnFR AAV-9 Glutamate release Penn Vector Core 

 

Despite the fact that good efficiency of calcium phosphate transfection was achieved in 

our system (~30% transfected cells), and steps minimizing the stress to the neurons 

were employed, some level of toxicity was always observed as primary neurons are very 

sensitive to changes in their micro-environment (Sun et al., 2013). The use of Adeno 

Associated Viruses (AAV) is an alternative method for gene delivery into postmitotic cells 

such as hippocampal neurons. AAV virions were found to enter the cells via clathrin-

mediated endocytosis and were detected in cytosol of HeLa cells within 30 min after 

infection and transported to the nucleus within 3-4 h post infection (Bartlett et al., 2000). 

There are numerous AAV serotypes which display species and tissue tropism and 

therefore the selection of the capsid derived from the right serotype is crucial for 

successful transduction (Watakabe et al., 2015). Royo et al., 2008 analysed multiple 

AAV serotypes for the efficiency of expression and toxicity in primary hippocampal 

neurons. Out of 7 serotypes tested, AAV9 exhibited no neuronal toxicity and a very high 

level of stable expression over time – 80% of cells displayed GFP fluorescence (Royo et 

al., 2008). AAV6 also showed high level of expression (72% cells) out of which 85% were 

neurons, making it the most neuron specific serotype (over astrocytes), nevertheless, at 

high doses (2.5×1011 genome copies (GC)) AAV6 led to increased neuronal toxicity and 

hence had to be used at lower doses (2.5 × 109 GC) (Royo et al., 2008).  

AAV vectors used in this study were made by Tiago Branco’s lab. AAV.sypHy2x was 

based on our cDNA sypHy2x plasmid. AAV.sypHy2x or AAV.syGCaMP6f were added to 

cell culture at day 4-6 in vitro at a concentration of 0.5 μl/well (AAV.sypHy2x 2.2-2.9 x 
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1012  GC; AAV.syGCaMP6f 2.6 x 1012 GC) and at least 7 days were allowed to establish 

the expression. At these concentrations, the transduction efficiency was very satisfactory 

for both constructs and we did not observe any toxicity which significantly improved the 

experimental output in comparison to the transfected cells. Most of the initial experiments 

aiming to optimize the imaging system, stimulation protocols and other experimental 

conditions were carried out using cDNA constructs. These settings were directly 

transferable to the experiments using AAV-based vectors from which the majority of the 

data presented here originates.  

 

2.5 Plasmid DNA amplification and purification.  

Table 2.7. 

Product Product Code Supplier 

Tryptone T7293 Sigma-Aldrich 

Yeast extract 70161 Sigma-Aldrich  

Ammonium chloride A3920/53 ThermoFisher Scientific 

Agar L2897 Sigma-Aldrich 

Kanamycin K1377 Sigma-Aldrich 

Ampicillin A0166 Sigma-Aldrich 

DH5 alpha 18263012 Invitrogen 

QIAprep Spin Miniprep Kit 27115 Qiagen 

Agarose A9539 Sigma-Aldrich 

50X Tris-Acetate-EDTA B49 ThermoFisher Scientific 

Ethidium Bromide 15585011 ThermoFisher Scientific 

Nucleobond Xtra Midi/Maxi 740414.10 Macherey-Nagel 

 

Table 2.8. 

Solution Composition  Storage Used at 

LB (Luria-Bertani) 
Broth 

0.01 g/ml Tryptone, 0.005 g/ml 
Yeast extract, 0.01 g/ml NH4Cl in 
H20 

21°C 
 

37°C 

 

Bacterial transformation was carried out in order to amplify cDNA constructs which were 

used for transfecting hippocampal neurons. Transformed bacteria were first inoculated 

on agar plates, followed by expanding the individual colonies into liquid culture. DNA was 

isolated in a mini-prep, allowing for the selection of the right colony for further 
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amplification. Bacterial culture was further increased in size and DNA was isolated and 

purified in a maxi-prep. Details of this process are described below.   

The amplification of cDNA constructs was carried out using DH5α competent cells. 1-3 

µg of cDNA was added to DH5α cells, incubated on ice for 10 min and transformed into 

the DH5α cells by a heat shock (50 s at 42°C). Following 2 min incubation on ice, SOC 

media was added to each tube and the mixture incubated for 1 h at 37°C in an orbital 

shaker (225 rpm). Transformed bacteria were diluted in LB Broth containing either 

kanamycin (30 µg/ml) or ampicillin (50 µg/ml), depending on the antibiotic resistance 

gene of each construct, plated onto agar plates and incubated overnight at 37°C. Single 

colonies were picked the next day, transferred into falcon tubes containing 5 ml of LB 

with the corresponding antibiotic (kanamycin or ampicillin) and incubated overnight in the 

orbital shaker (250 rpm, 37°C). In order to test which colony has the highest bacterial 

density and also to assess the integrity of the plasmid, DNA from liquid colonies was 

isolated using QIAprep Spin Miniprep Kit (Protocol followed: Plasmid DNA Purification 

using the QIAprep Spin Miniprep Kit and a Microcentrifuge). In short, bacteria were 

pelleted, and lysed which was followed by DNA isolation from the cell debris. The eluted 

DNA was run on agarose gel (0.75% agarose in 1x TAE with added 0.5 µg/ml ethidium 

bromide) and imaged using a UV illuminator. Bands of the DNA isolated from the mini 

prep were compared against each other and against the old gel images of the construct. 

Any unusual pattern could indicate potential mutation and any such colony would be 

eliminated from further inoculation. Colonies with the brightest bands that were similar to 

the original construct were selected for further amplification. Following the identification 

of the best colony, bacteria were inoculated into conical flasks with 400 ml LB and 

appropriate for the construct antibiotic and incubated overnight in the orbital shaker (250 

rpm, 37°C). DNA was extracted and purified using Nucleobond Xtra Midi/Maxi kit, 

resuspended in 150 µl of TE buffer, measured and stored at -20°C until needed.     
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2.6 Imaging system 

 

Table 2.9. 

Optimized EMCCD camera settings 

Construct Stimulation Exposure (ms) EM Gain Imaging 
frequency (Hz) 

SypHy2x 4 APs 40 40 11.2 

40 APs 40 10 11.2 

syGCaMP6f 4 APs 40 20 13.5 

40 APs 40 10 13.5 

vGpH 4 APs 70 60 11.2 

iGluSnFR 2 APs 10 20 23.5 

For all the constructs the remaining settings were as follows: binning 4 x 4, readout 
speed 13,000 MHz, pre-amplification gain 3.8, cooling temperature -77°C. 

 

 

All experiments were carried out on an upright microscope BX61WI using x60 1.0 NA 

dipping objective with the mercury lamp light source. Experimental data was collected 

using either charge-coupled device camera (Olympus XM10) or cooled electron 

multiplying charge-coupled device camera (EMCCD) (Andor Ixon) depending on the 

experimental needs. EMCCD camera due to its superior dynamic range, quantum 

efficiency and sensitivity was used for high-speed imaging of experiments aiming to 

image low level of fluorescence change. The camera settings were optimized for imaging 

of single vesicle release events and synaptic performance following small stimulation 

protocols with various constructs (Table 2.9). The emission and excitation filters were as 

follows: 480/20, 520/35 for sypHy, syGCaMP6f, iGluSnFR, FM1-43, FM1-43FX, OGB 

and bassoon; 470/22, 624/40 for FM4-64; 556/20, 609/54 for sytI-Oyster550; 556/20, 

624/40 for endophilin I and vGlut1 and vGlut2 imaging. For the imaging of single vesicle 

release events a blackout curtain was mounted around the stage. The temperature in 

the room was kept at 23°C for all the experiments.   
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2.7 Field stimulation 

Table 2.10. 

Product Product Code Supplier 

Sodium Chloride (NaCl) S5886 Sigma-Aldrich 

Potassium Chloride (KCl) P5404 Sigma-Aldrich 

Calcium Chloride (CaCl2 · 2H20) C7902 Sigma-Aldrich 

Magnesium Chloride (MgCl2 · 6H20) M2393 Sigma-Aldrich 

D-glucose  G7021 Sigma-Aldrich 

HEPES H3784 Sigma-Aldrich 

CNQX disodium salt 1045 Tocris Bioscience 

D-AP5 0106 Tocris Bioscience 

 

Table 2.11 

Solution Composition Storage Used at 

External bath 
solution (EBS) 

In mM: 137 NaCl, 5 KCl, 2.5 
CaCl2, 1 MgCl2, 10 D-Glucose, 
5 HEPES 

4°C 21°C 

 

In order to measure the activity of cultured hippocampal neurons a field stimulation was 

used, allowing to simultaneously induce action potential firing in all the neurons in the 

culture. Specifically for this purpose a custom built imaging chamber was designed, 

consisting of a plastic chamber with a gridded glass coverslip at the base (Fig.2.2). Two 

platinum wire electrodes (0.5 mm diameter) were positioned 1 cm apart, in parallel to 

each other, and were connected to a Grass stimulator (Astro-Med Inc, USA) for field 

stimulation (20 Hz, 1 ms pulse duration, 20-22.5 V – calibration shown below). The level 

of applied stimulation was controlled via custom-written Macromanager scripts. Although 

we were able to monitor the number of action potentials delivered to the cells, the level 

of cellular response elicited by a given stimulus was beyond our control. Therefore from 

now on, when we, for example, refer to 4 action potential stimulus (4 APs), this only 

signifies the number of pulses delivered to the cells and not the extent of the response 

of the neurons. For the experimental purposes, cultured hippocampal neurons were 

transferred straight from the cell culture media into the stimulation chamber containing 

pre-warmed HEPES-buffered extracellular bath solution (EBS) supplemented with 20 µM 

CNQX and 50 µM AP5, which are AMPAR and NMDAR blockers, respectively. This 
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ensured that neurons were exposed to the ionic concentrations similar to their usual 

extracellular environment and the use of blockers prevented propagation of 

spontaneously generated signals and recurrent post-stimulus activity. These conditions 

were maintained across all the experiments unless indicated otherwise.  

 

 

Figure 2.2 Stimulation and imaging chamber. A) Custom made imaging chamber with 
magnetic strips attached at the bottom for stability during imaging. B) Schematic of the 
chamber with the coverslip in the middle.  

 

 

2.7.1 Calibration of stimulation intensity 

 
Table 2.12 

Product Product Code Supplier 

Oregon Green™ 488 BAPTA -1 O-6807 Life Technologies 

SytI-Oyster550 105 011C3 SySy 

 
 
A key starting point for this work was to demonstrate that observed synaptic responses 

resulted from a specific delivered stimulus, to calibrate the intensity of the applied 
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stimulus and to make sure that it is sufficient to reliably elicit synaptic response with the 

chamber used. Oregon Green™ 488 BAPTA -1 (OGB) was the optical reporter used for 

this experiment. OGB is a membrane-permeable Ca2+ indicator with relatively high Ca2+ 

affinity, which displays a rise in fluorescence intensity upon binding to Ca2+ (Paredes et 

al., 2008).  

Cultures were incubated with 12 µM of OGB for 2 h (37°C in 5% CO2) allowing the 

passive uptake of this dye into the cultured neurons. Coverslips were then transferred 

into an imaging chamber and washed with EBS with blockers (section 2.7) to remove 

any free dye. After this, cells labelled with OGB were easily identifiable (Fig.2.3.A). The 

baseline fluorescence of OGB appeared very non-localized within neuronal processes 

(Fig.2.3.A). Therefore, in order to make sure that we read out fluorescence fluctuations 

resulting from stimulation driven Ca2+ influx, specifically at the presynaptic terminals, we 

loaded our samples with 1:100 sytI-Oyster550 in EBS with blockers, by applying 1200 

APs, 20 Hz stimulation (stimulation and loading protocols are described in section 2.8). 

SytI-Oyster550 is a fluorescently tagged anti-synaptotagmin 1 (sytI) antibody which upon 

applied stimulation is localized in the internal lumen of synaptic vesicles and hence 

marks functional presynaptic terminals. This aided the selection of the regions of interest 

targeting discrete synaptic terminals (Fig.2.3.A and B). OGB is not eliminated from the 

cells during the stimulation which allowed for multiple imaging of the same region as well 

as multiple regions on the same coverslip. Time lapse images were collected (12.3 Hz; 

81 ms per frame) whilst 10 AP (10 Hz) stimulation was delivered with the voltage being 

gradually increased by increments of 5 V from 0 V to 30 V. ImageJ was used for image 

analysis. Regions showing robust responses to stimulation were identified based on 

OGB fluorescence by subtracting the fluorescence intensity of the baseline (average of 

5 frames) from the fluorescence at the peak of the stimulus (average of 5 frames). This 

subtracted OGB image was overlaid with sytI-Oyster550 labelling to identify regions 

corresponding to presynaptic terminals and select ROIs (Fig 2.3.B).  
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There was a noticeable increase in the fluorescence intensity during the stimulus, 

followed by the return of the fluorescence to baseline levels (Fig.2.3.B and C). 

Application of stimulus at 5 V or 10 V resulted in no fluorescence increase and no 

synaptic response similarly to when no stimulus was applied (0 V) (n=7 regions (620 

synapses), One-way ANOVA with Tukey’s post-hoc analysis: 0V-5V, 0V-10V, 5V-10V, 

P > 0.9999, P > 0.9999 and P > 0.9999, respectively) (Fig.2.3.D). However, when the 

cells were subjected to 15 V stimulus an increase in fluorescence intensity followed by 

its decay was seen. This observable response, which exceeded baseline represents a 

clear stimulus-response relationship at this voltage (One-way ANOVA with Tukey’s post-

hoc analysis: 0V-15V, 5V-15V, 10V-15V, P = 0.6535, P = 0.5962 and P = 0.6017, 

respectively) (Fig.2.3.C and D). This signified that 15 V was the minimum voltage that 

resulted in some presynaptic Ca2+ influx measured by OGB. A saturation point in 

response amplitude was found at 20-25 V and further increases in voltage did not lead 

to additional rise in fluorescence amplitude. (n = 7 regions (620 synapses), One-way 

ANOVA with Tukey’s post-hoc analysis: 15V-20V, P = 0.0033; 20-25V, P = 0.4366; 20V-

30V, P = 0.4005; 25-30V, P > 0.9999).  

This experiment allowed us to demonstrate stimulus-related synaptic response in our 

system, and to select submaximal stimulus voltage. For this particular chamber 22.5 V 

was used as optimal for synaptic activation. Another chamber was also used for which 

the optimal voltage was 20 V.  
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Figure 2.3 Establishing optimal stimulation intensity using OGB.  A) Representative 
image of primary hippocampal culture (top left) which was incubated in the presence of 
OGB (top right, baseline fluorescence) and subsequently loaded with sytI-Oyster550 
antibody (bottom left). Presynaptic terminals (red) are clearly identifiable against OGB 
background (bottom right). Images were acquired using cooled EMCCD camera (-77°C), 
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60x objective, 1x1 binning. Scale bar 50 μm. B) Left panel shows sytI-Oyster550 
fluorescence. Arrowheads indicate ROIs (2.5 x 2.5 μm) encapsulating example individual 
boutons selected for the analysis. Subsequent panels display change in OGB 
fluorescence in response to Ca2+ influx resulting from the applied stimulation (40 APs, 20 
Hz). C) Mean responses of 620 presynaptic terminals to stimuli of varied voltage. Data 
from 3 coverslips, n=7 regions, shown as average ± SEM. D) Quantification of Ca2+  influx 
evoked by different voltages measured as a difference between the peak fluorescence 
and the baseline prior to the stimulation. Stimuli at 0 V, 5 V and 10 V did not cause any 
rise in fluorescence (n = 7 regions, 620 synapses, One-way ANOVA with Tukey’s post-
hoc analysis: 0V-5V, 0V-10V, 5V-10V, P > 0.9999, P > 0.9999 and P > 0.9999, 
respectively). The first significant rise in fluorescence was observed at 15 V (n = 7 
regions, 620 synapses, One-way ANOVA with Tukey’s post-hoc analysis: 0V-15V, 5V-
15V, 10V-15V, P = 0.6535, P = 0.5962 and P = 6017, respectively). Next incremental 
increase of voltage from 15 V to 20 V led to significant increase in fluorescence but any 
further rise in voltage, 25 V or 30 V, did not led to further change in fluorescence (n = 7 
regions, 620 synapses, One-way ANOVA with Tukey’s post-hoc analysis: 15V-20V, P = 
0.0033; 20-25V, P = 0.4366; 20V-30V, P = 0.4005; 25-30V, P > 0.9999). 
 
 

2.8 FM1-43 and live antibody labelling protocols  

Table 2.13 

Product  Product Code Supplier 

FM1-43 T35356 Life Technologies 

FM1-43FX F35355 Life Technologies 

FM4-64 T3166 Life Technologies 

SytI-Oyster550 105 011C3 SySy 

 

 

Figure 2.4 Loading and imaging protocol with FM1-43 dye for labelling vesicles in 
the recycling pool and FM dye destaining.  

 

In order to visualize functional presynaptic terminals, coverslips with cultured 

hippocampal neurons were labelled with fluorescent indicators of synaptic function. 

Coverslips were transferred straight from culturing plates into the imaging chamber 

containing 0.6 ml of pre-warmed EBS with blockers (20 µM CNQX and 50 µM AP5). EBS 

solution was exchanged to EBS containing 10 µM FM1-43 dye and the cells were 
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incubated for 60 s prior to the onset of the loading stimulation (Fig.2.4). A stimulus with 

the chosen number of action potentials was applied in order to induce exo-endocytic 

cycle, allowing synaptic vesicles to take up the dye. Typically 40 APs, 600 APs or 1200 

APs stimulation at 20 Hz was used. Following the stimulus, the cells were kept in the 

presence of FM1-43 for a further minute, to permit vesicle recycling to be completed. The 

dye was washed at least 3 times with EBS with blockers in order to remove all traces of 

FM-dye from the solution and any residual dye remaining at the cell surface. The protocol 

summarized in Figure 2.4 represents the routine for loading all vesicles in the recycling 

vesicle pool. The same loading protocol was used for labelling synapses with FM1-43FX, 

FM4-64 and sytI-Oyster550 antibody. 

 

2.9 Measuring synaptic vesicle pool sizes  

Table 2.14 

Product  Product Code Supplier 

Ammonium Chloride A0171 Sigma-Aldrich 

Bafilomycin A1 B1793 Sigma-Aldrich 

 
Table 2.15 

Solution Composition Storage Used at 

Ammonium 
chloride EBS 

In mM: 50 NH4Cl, 
87 NaCl, 5 KCl, 2.5 CaCl2, 1 
MgCl2, 10 D-Glucose, 5 
HEPES 

4°C 21°C 

 

Measurement of the sizes of distinctive vesicle pools was carried out in 3 steps based 

on the use of sypHy2x expressing hippocampal neurons. First, a culture was transferred 

to the stimulation chamber and a fluorescence region with functional synapses was 

identified by stimulating neurons with 10 APs, 20 Hz stimulus. Cells were stimulated 10x 

with 4 APs to collect data for functional analysis of presynaptic terminals. The protocol 

for measuring vesicle pool sizes is summarized in Figure 2.5. For readily-releasable pool 

(RRP), synaptic responses were imaged after 2 minutes recovery using a 40 APs, 20 Hz 

stimulation, which recycles this whole pool. Following another 2 min recovery, the EBS 
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in the chamber was replaced with 0.6 ml of EBS with blockers containing 1 µM 

bafilomycin (baf), a v-ATPase blocker, which prevents reacidification of newly formed 

synaptic vesicles (Fernández-Alfonso and Ryan, 2004). Neurons were incubated in this 

drug for 30 s prior to imaging background fluorescence. Due to slow, spontaneous 

increase in baseline fluorescence caused by prolonged exposure to baf  (Li et al., 2005), 

the imaging was limited to 30 s including focusing time. Stimulus of 600 APs, 20 Hz was 

applied to the cells in order to release the entire recycling pool, which was locked in the 

alkaline state in the presence of bafilomycin (Fernández-Alfonso and Ryan, 2004; Rey 

et al., 2015). Immediately after the end of the stimulation the sample was imaged for 30 

s which allowed the measurement of the fluorescence corresponding to the size of the 

recycling pool. EBS-containing baf was exchanged for NH4Cl solution by copiously 

washing the sample 2-3 times with NH4Cl for 30 s to ensure the full replacement of the 

solution. NH4Cl leads to neutralization of the vesicular lumen which reveals all the 

sypHy2x fluorescence, and enables the measurement of the total vesicle pool within the 

terminals. Cells were imaged for a further 30 s and the fluorescence from this final step 

represented the size of the total vesicle pool. All the solution exchanges were carried out 

with extreme care to ensure that the coverslip was not moved in the process. The timing 

for solution exchanges and imaging was also very strictly maintained in the consecutive 

experiments, to ensure highly reproducible methodology.      

 

       

Figure 2.5 Summary of the protocol measuring the size of synaptic vesicle pools.  
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2.10 Pharmacological disturbance of endocytic kinetics 

 

Table 2.16 

Product  Product Code Supplier 

Dynasore D7693 Sigma-Aldrich 

Dimethyl sulfoxide (DMSO) D/4121/PB08 Fisher Scientific 

 

In order to test whether we can disrupt the endocytic kinetics of synaptic vesicles at 

hippocampal neurons, we used a blocker of dynamin function, Dynasore. Dynamin was 

shown to be involved in both clathrin dependent and independent endocytosis 

(Delvendahl et al., 2016; Hayashi et al., 2008; Voglmaier and Edwards, 2007). The 

selection of this drug therefore ensured that we targeted more than one endocytic 

mechanism in our experiment. AAV.sypHy2x expressing cells were placed in a 

stimulation chamber with 0.6 ml EBS + blockers and imaged during 6 x 4 APs stimulation 

trials. Dyansore was diluted to 10 µM in EBS with blockers (20 µM CNQX and 50 µM 

AP5) and only half of the solution was exchanged in the chamber to achieve the final 

concentration of 5 µM dynasore. The cells were incubated with the drug for 10 min prior 

to the next round of stimulation and imaging (5 x 4 APs). The concentration of dynasore 

was optimized to only induce sub-threshold block of dynamin function (Macia et al., 2006; 

Newton et al., 2006). 

 

2.11 Immunocytochemistry  

Table 2.17 

Product Product Code Supplier Dilution used 

Rabbit anti-Endophilin I antibody 159002 SySy 1:500 

Rabbit anit-vGlut1 antibody 135303 SySy 1:1000 

Guinea pig anti-vGlut2 antibody 135404 SySy 1:2000 

Goat anti-Rabbit Alexa Fluor ® 568 175471 Abcam 1:1000 

Goat anti-Guinea pig Alexa Fluor ® 568 175714 Abcam 1:1000 
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Table 2.18 

Product Product Code Supplier 

Paraformaldehyde (PFA) 16% AGR1026 Agar Scientific 

Triton X-100 T9284 Sigma-Aldrich 

Foetal Bovine Serum (FBS) 10500056 GibcoTM 

Bovine Serum Albumin (BSA) A2153 Sigma 

 

Table 2.19 

Solution Composition Storage Used at 

4% PFA 4 ml 4% PFA in 16 
ml 1x PBS 

Prepared fresh 21°C 

Triton X-100 0.1% 1 µl Triton X-100 in 
1 ml 1x PBS 

Prepared fresh 21°C 

Saturation FBS 1 ml FBS in 10 ml 
1x PBS 

Prepared fresh 21°C 

0.1% BSA 0.01 g BSA in 10 
ml 1x PBS  

Prepared fresh 21°C 

 

Antibody labelling was carried out for the purpose of identification of glutamatergic 

terminals and for measuring the level of endophilin I. Coverslips with cultured 

hippocampal neurons were transferred into imaging chamber containing EBS with 

blockers (20 µM CNQX and 50 µM AP-5). Regions expressing AAV.sypHy2x were 

identified and the protocols for functional readouts were carried out. Differential 

interference contrast (DIC) images were taken for identification of imaged region 

following antibody labelling. Immediately after imaging, neurons were transferred into 4% 

PFA, fixed for 30 min at room temperature and washed 3 times with 3x PBS. In all the 

following incubations, neurons were placed on a rocking platform. Cells were 

permeabilized with 0.1% Triton for 10 min to allow antibody penetration and after 3 

washes with 1x PBS, in order to saturate non-specific binding sites, samples were 

incubated in 10% FBS for 20 min and washed once before adding primary antibody 

diluted in 0.1% BSA (for antibody dilutions refer to Table 2.15). Following 1h incubation, 

cells were washed 3 times with 1x PBS and incubated for 30 min with secondary antibody 

made up in 0.1% BSA (for concentrations refer to Table 2.15). Samples were washed 3 

times with PBS 1x and either imaged immediately or mounted, stored at 4°C, and imaged 

within a week post-labelling.    
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2.12  Electron microscopy 

Table 2.20 

Product Product Code Supplier 

Ammonium chloride A0171 Sigma-Aldrich 

Diaminobenzidine (DAB) 4170 Kem-En-Tec 

DDSA DO27 TAAB Laboratories 
Equipment 

DMP-30 DO32 TAAB Laboratories 
Equipment 

25% glutaraldehyde AGR1020 Agar Scientific 

Glycine G8898 Sigma-Aldrich 

MNA M011 TAAB Laboratories 
Equipment 

Osmium tetroxide  O012 TAAB Laboratories 
Equipment 

16% paraformaldehyde AGR1026 Agar Scientific 

Phosphate Buffered Saline (PBS) 18912-014 Life Technologies 

Potassium ferrocyanide 455989 Sigma-Aldrich 

Propylene oxide AGR1080 Agar Scientific 

Sodium cacodylate AGR1104 TAAB Laboratories 
Equipment 

Sodium sulphate, anhydrous 798592 Sigma-Aldrich 

TAAB 812 TO23 TAAB Laboratories 
Equipment 

Tannic acid  202420050 ACROS Organics 

Uranyl acetate AGR1260A Agar Scientific 

 

Table 2.21 

Solution Composition Storage Used at 

Anhydrous sodium 
sulphate  

1% anhydrous sodium 
sulphate in 0.05 M cacodylate 
buffer 

Prepared 
fresh 

21°C 

Ammonium chloride 
solution  

100 mM in 1x PBS 4°C 21°C 

DAB 1 mg/ml in 1x PBS Prepared 
fresh 

21°C 

EPON solution  Ratio of 24 TAAB 812 : 9.5 
DDSA : 16.5 MNA : 1 DMP30  

Prepared 
fresh 

21°C and 
60°C 

Fixative 2% paraformaldehyde, 2% 
glutaraldehyde in 1x PBS 

Prepared 
fresh 

21°C 

Glycine 100 mM in 1x PBS -20°C  21°C 

Sodium cacodylate 
buffer  

0.2 M sodium cacodyalte in 
dH20, pH 7.4 with HCl  

4°C 21°C 

Tannic acid 1% solution in 0.05 M sodium 
cacodylate  

Prepared 
fresh 

21°C 

Uranyl acetate 4% uranyl acetate in 70% 
ethanol, vortexed for 5 min and 
filtered 

Prepared 
fresh 

21°C 
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In addition to functional readouts, hippocampal neurons were prepared for correlative 

ultrastructural analysis of individual presynaptic terminals. Protocol for sample 

preparation with some modifications was followed as previously established and 

described by (Darcy et al., 2006b).  

 

2.12.1  Fixation  

A coverslip with 12-18 DIV hippocampal neurons expressing AAV.sypHy2x was etched, 

which helped in establishing the correct orientation of the coverslip later on during the 

experiment, and transferred into the imaging chamber containing EBS with blockers. 

Cells were imaged with 10 x 4 APs stimulation protocol to obtain functional readouts of 

individual presynaptic boutons. Multiple 60x and 10x DIC images were collected in order 

to allow relocalization of the area of interest. Samples were loaded with FM1-43 FX 

during 10 APs, 20 Hz stimulation according to the protocol described in section 2.8. 

However, the sample was washed only once in order to shorten the time between the 

end of the experiment and fixation. Until photoconversion, great care was taken to protect 

the sample from the light. The coverslip was transferred straight from the imaging 

chamber (EBS with blockers) into fixative (2% paraformaldehyde, 2% glutaraldehyde) 

and incubated for 15 min at room temperature under cover. Following fixation, the 

coverslip was washed 3 times with 100 mM glycine and incubated in this solution for an 

hour. The sample was then washed for 1 min in NH4Cl solution and copiously rinsed 

three times in 1x PBS.  

 

2.12.2 Photoconversion of DAB  

The region of interest was relocated with the aid of DIC images taken at the end of the 

functional imaging of sypHy2x. 1x PBS solution was exchanged for 1 mg/ml DAB solution 

in 1x PBS in which the sample was incubated for 10 min in the dark. After that time had 
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elapsed, half the solution was exchanged for fresh DAB, focus was established and the 

sample was continuously illuminated for 10 – 15 min with a dedicated 40x NA 0.8 water 

immersion objective (excitation 480/20), to drive the photoconversion reaction. From this 

point onwards, the sample was not light sensitive anymore. After copious washing with 

1x PBS the coverslip was ready for electron microscopy processing.        

 

2.12.3  Sample preparation for electron microscopy  

The coverslip was transferred into 0.1 M cacodylate buffer and then placed in fixative/ 

staining solution comprised of 1.5% potassium ferrocyanide, 1% osmium tetroxide in 0.1 

M cacodylate buffer for 1 h then washed 3 times with 0.1 M cacodylate buffer. Further 

staining was carried out using 1% solution of tannic acid in 0.05 M for 45 min, followed 

by a 5 min wash in 1% anhydrous sodium sulphate in 0.05 M sodium cacodylate. The 

coverslip was taken through a series of dehydration steps with ethanol, each wash 

lasting 5 min: 1 x 50%, 2 x 70%, 2 x 90%, 3 x 100%. During the last wash with 70%, 

sample was stained en-bloc with 4% uranyl acetate in 70% ethanol for 30 min. The 

dehydrated sample was placed in 1:1 EPON/propylene oxide mix for 1 h following which 

it was transferred into EPON (for composition refer to Table 2.21) and incubated in the 

resin for 4 h. The coverslip was then placed on top of a block of pre-polymerized resin 

with the cells facing the EPON block, making sure that the region of interest (based on 

the notch in the coverslip) lay within the diameter of the block. Finally, sample was 

polymerized overnight at 60°C.  

 

2.12.4  Region identification and serial sectioning  

Following polymerization, the coverslip was removed from the resin block by dipping it 

into liquid nitrogen, and discarded. This exposed the cells on the resin block, which were 

now easily visualized under an inverted microscope. Using DIC images from the 
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beginning of the experiment, the photoconverted region was identified and marked using 

scalpel blade (No#10A) on the resin block, which was then mounted onto a Leica EM 

UC7 ultramicrotome. The excess resin was carefully trimmed around the region of 

interest with a single-edge razor blade aiming to leave only as little surrounding resin as 

possible. This process was carefully monitored against the printed out image of the 

photoconverted region. Once trimming was completed, 60 nm serial sections were cut 

using a diamond knife and collected from the water boat, attached to the knife, onto a 

formvar coated slot grids (Agar Scientific). Serial sectioning was carried out by Catherine 

Smith.     

 

2.12.5 Imaging  

Grids with serial sections were imaged using a JEOL 1200 transmission electron 

microscope with a mounted Gatan OneView camera. Depending on the intended use of 

the images, the micrographs were typically collected using 6000-15000x magnification.  

 

2.13  Image analysis  

2.13.1  Fluorescence  

Fluorescence time lapse images were analysed using ImageJ. The general approach for 

the analysis of genetically expressed fluorescence constructs included several steps. 

Synapses responding to the stimulation were identified based on the subtracted image 

of the average baseline fluorescence before the stimulation from the average 

fluorescence intensity at the peak of the stimulation. Square ROIs of 2.8 x 2.8 µm were 

drawn around individual responding boutons. In the protocols with repeated stimulation 

at least half of the trials were screened for the responding boutons.  The selected ROIs 

were applied back to the original images and inspected for any oversaturated 
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regions/responses and if any identified, those ROIs were removed from the analysis. The 

background fluorescence was also examined and any ROIs positioned within large 

fluorescence regions were removed from the set. Any ROIs containing obvious moving 

fluorescence package were also eliminated. Once these criteria were satisfied the mean 

grey value was measured for the selected synapse and the readouts were transferred to 

Excel and saved in a format acceptable for the Matlab analysis. Details of Matlab 

analysis are explained under individual sections in the Results chapter. Matlab scripts 

were written with assistance from Prof Kevin Staras.  

The analysis of FM1-43 data followed the same basic rules, with the exception of the 

order of image subtraction. In the case of FM1-43-labelling, the starting fluorescence is 

at the peak of the fluorescence, and for the analysis of destain the average of the end 

imaging frames was subtracted from the average of the baseline level fluorescence prior 

to the stimulation begin. This revealed those synapses that underwent the stimulus-

evoked release of synaptic vesicles. The fluorescence puncta at the peak of fluorescence 

had to be fully encapsulated within the 2.8 x 2.8 µm ROIs, to ensure that synapses of 

comparable sizes are sampled. The mean grey values were measured for all ROIs in 

ImageJ and data transferred to Excel for further analysis. Other experiment-specific 

details of the analysis approach are described under the respective Results sections.  

 

2.13.2  TEM micrographs 

For correlative microscopy, images of the experimental regions were identified with the 

aid of DIC and fluorescence images prior to the sample fixation. This allowed us to 

relocate the cellular process of interest. Low magnification TEM images of middle 

sections were taken and aligned with DIC and fluorescence images in order to identify 

specific synaptic boutons, which were then traced and imaged in the consecutive serial 

sections.  
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Light microscopy and TEM Images alignment was carried out in Xara Designer Pro (Xara 

Ltd, UK). Alignment of TEM images and their annotation was also performed in this 

software. More detailed measurement of presynaptic properties (total number of vesicles 

and synaptic volume), were extracted using Reconstruct software (Fiala, 2005). 3D 

reconstructions of the presynaptic terminals were also carried out in this software.  

     

2.14  Amyloid Beta preparation  

Table 2.22 

Product Product Code Supplier 

Recombinant Aß1-42 A-1163-2 rPeptide 

Variant Aβ1-42 Custom made JPT 

1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) 52517 Sigma-Aldrich 

Dry DMSO 326881000 Sigma-Aldrich 

Zeba 7K MWCO 89890 Thermo Scientific 

 

Table 2.23 

Solution Composition Storage Used at 

HEPES buffer 10 mM HEPES, 50 mM NaCl, 1.6 
mM KCl, 2 mM MgCl2, 3.5 mM 
CaCl2, pH to 7.4 with NaOH 

4°C 21°C 

 

Amyloid Beta 1-42 (Aβ1-42) and variant peptide (vAβ1-42) were prepared according to 

the modified method developed by (Broersen et al., 2011).  LoBind Eppendorfs and tips 

(Alpha Laboratories) were used for the preparation of these peptides. To disaggregate 

the peptides, 0.2 mg of Aβ1-42 and vAβ1-42 were solubilized in 200 µl HFIP. The vials 

containing the peptides were vortexed for 60 s and sonicated for 5 min in a 50/60 Hz 

bath sonicator. HFIP was evaporated under a low stream of nitrogen gas which resulted 

in dry films of Aβ1-42 and vAβ1-42, which were next dissolved in 200 µl dry DMSO, 

vortexed for 1 minute and sonicated for one minute. In the meantime, a zeba buffer-

exchange column was equilibrated with HEPES buffer. Prior to addition of Aβ1-42 and 

vAβ1-42 solutions, 40 µl of HEPES buffer was added as a stack, immediately followed 

by the two peptides, which were eluted from the column by centrifugation at 1000 g for 
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2 min at 4°C into a fresh, non-stick microcentrifuge tube. Protein eluates were maintained 

on ice, whilst being measured using a NanoDrop spectrophotometer at 280 nm (molar 

absorption coefficient 1490 M-1cm-1). Aβ1-42 and vAβ1-42 were immediately diluted to 

50 µM with HEPES buffer to ensure a uniform aggregation of the peptides. Following a 

2 h incubation, peptides were added to cultured neurons at 0.1 µM or 1 µM and HEPES 

buffer was added as a vehicle control.   

 

2.15  Statistical analysis 

Most data is presented as a mean value of a group ± standard error of the mean, unless 

indicated otherwise. Typically, two-tailed Student’s t-test (paired or unpaired), and one-

way ANOVA with post-hoc analysis, were used to compare two or more groups, 

respectively. Where appropriate, the decision between parametric and nonparametric 

tests was made based on the normality of the data in conjunction with the sample size. 

The binomial test was used for the analysis of synapse similarity in Chapters 4 and 5. 

Pearson’s correlation coefficient was used to examine the extent of relationship between 

two variables. Kolmogorov-Smirnov test was used for comparing distributions, and 

variability within data sets was measured using coefficient of variation.    
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3 ESTABLISHING IMAGING 

METHODS USED FOR 

STUDYING FUNCTION OF 

PRESYNAPTIC TERMINALS 
 

 

 

 

 

 

HIGHLIGHTS  

 

 FM1-43 can be used for identification of functional synapses, 

monitoring the dynamics of synaptic vesicle pools and 

measuring the kinetics of synaptic vesicles exocytosis 

 

 SytI-Oyster550 is suitable for the identification of presynaptic 

terminals and measuring their size 

 

 SypHy2x is the probe of choice for monitoring of exo- and 

endocytosis of single synaptic vesicles 

 

 SyGCaMP6f can be used to measure stimulus-evoked 

presynaptic Ca2+ influx 
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3.1 Introduction 

Chemical synapses in the central nervous system are highly specialized contact points 

between cells, and are composed of two major components: the presynaptic and 

postsynaptic terminal. Information transfer in the CNS relies on the generation of a 

postsynaptic response as a result of neurotransmitter released from synaptic vesicles. 

These reside at the presynaptic terminals, are organized in clusters and can be easily 

identified under electron microscope (Harris and Sultan, 1995; Harris and Weinberg, 

2012). Despite the fact that all synaptic vesicles have a uniform ultrastructural 

appearance, they can be divided into distinct, functionally described vesicle pools: the 

readily releasable pool (RRP), recycling pool or resting pool. The way SVs are sorted 

into these different pools, and other parameters regulating important aspects of 

presynaptic function, are largely unknown. Despite a great level of heterogeneity in the 

behaviour of presynaptic population, the outstanding question is how and whether 

structural and molecular components regulate/affect the performance of the individual 

boutons.  

Our knowledge on presynaptic terminals has been hindered, in comparison to the 

postsynaptic compartment, by the limits of the available techniques. However, the 

development of imaging tools in the last 20-25 years has provided us with new strategies 

for examining otherwise inaccessible presynaptic terminals of small central synapses, 

and broadened our understanding of their function, regulation of their performance, 

plasticity and disease-associated changes (Kavalali and Jorgensen, 2013; Maschi and 

Klyachko, 2015; Sebastião et al., 2013). However, despite this major progress there still 

remains uncertainty about how the properties of individual presynaptic terminals (e.g. 

strength, release probability or recycling kinetics) are shaped by their history, and how 

these properties are attuned to meet the functional needs of the network, to ensure 

information transmission between cells. Effective synaptic transmission relies on the 

efficiency of the exocytosis and endocytosis of synaptic vesicles, yet the factors that 
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influence these two processes are largely unexplored, and will the major objective of this 

work. Given that the kinetics of recycling of multiple vesicles will mask the intricate details 

of the timing of this process at individual synapses, key aspect of the approach used 

here was to obtain measurements at the level of single vesicle release events.    

The objective of this chapter was to validate available imaging probes and to identify 

appropriate tools for achieving the goal of imaging single vesicle recycling kinetics. The 

first section verifies approaches using acutely applied imaging probes: FM1-43 and sytI-

Oyster550 for the purpose of detection, characterization and functional monitoring of 

presynaptic terminals in the remaining chapters of this thesis. The second section 

characterizes genetically encoded reporters of synaptic function suitable for monitoring 

the recycling of synaptic vesicles, presynaptic Ca2+ influx and glutamate release. The 

validation of the tools used for measuring single vesicle recycling kinetics is presented 

in this section and was crucial for the fulfilment of the major aims of this study (section 

1.7).  

 

 

3.2 Fluorescent tools used to readout properties of recycling 
vesicles 

The first objective was to establish whether we can observe functional synapses in 

primary hippocampal cultures. To do this we used two approaches exploiting acutely 

applied fluorescence markers: FM1-43 and sytI-Oyster550, which was utilized to validate 

the findings with FM1-43.    

 

3.2.1 Culturing primary hippocampal neurons 

A key objective of this work was to establish an approach for high-sensitivity single 

vesicle imaging. Towards this goal, it was important to first establish viable hippocampal 
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cultures. Hippocampal cell culture is a universally employed system in studies, focusing 

on cellular and molecular function of neurons (Grabrucker et al., 2009). Precise control 

over plating density was one of the advantages of choosing this model for this study 

(Kaech and Banker, 2006). 

The dissociated rat hippocampal culture preparation used in our laboratory is a modified 

version of the method first developed by Banker and Cowan, 1977. As described in detail 

in the Methods chapter, culturing was performed in two steps: the hippocampus was 

dissected out from P0-P1 rat pups and plated onto an astrocyte feeder layer, which was 

prepared 5 days in advance. Initially, astrocytes were cultured in 10% FBS which 

encourages their growth (Ye and Sontheimer, 1998). Once neurons were plated, the 

FBS concentration was reduced to 2% and 0.6 µM cytosine arabinoside (ara-C), a DNA 

synthesis inhibitor, was added to restrict astrocytic proliferation. This protocol ensured 

reliable, healthy and robust neuronal cultures as evidenced by Figure 3.1.A. The 

rationale for this two-step protocol using astrocyte pre-plating – as opposed to astrocyte-

free cultures, which were also successfully trialled - was based on previous work 

suggesting that this feeder layer provides important structural and metabolic support to 

neurons (Melcangi et al., 1997). As such, the presence of astrocytes allowed us to study 

neurons under more physiologically relevant conditions (Anderl et al., 2009) and this was 

especially crucial for the analysis of the effects of Aβ1-42 (Chapter 6). Another critical 

factor for experimental success, was to ensure that the density was optimal; fairly low-

density cultures were preferable so that individual processes could be easily resolved 

(Fig.3.1.A and B). Cultures were maintained in an incubator at 37°C in 5% CO2 and were 

used at DIV 13-18, once they matured and developed synaptic connections (Grabrucker 

et al., 2009).  

Upon maturation, a coverslip with neurons was transferred into a custom built imaging 

and stimulation chamber (refer to Fig.2.2) with two platinum electrodes positioned in 

parallel, ~1 cm apart, and the wires were connected to a Grass stimulator for field 
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stimulation of the culture (Fig.3.1.C). All experiments (unless indicated otherwise) were 

carried out in pH 7.3 external bath solution (EBS) with ionic composition, mimicking the 

ionic concentration of the extracellular environment, supplemented with blockers 

(AMPAR blocker: 20 µM CNQX; NMDAR blocker: 50 µM AP5) to prevent repeated 

excitation of the network following stimulation and to limit propagation of spontaneously 

fired action potentials. The presence of functional presynaptic terminals was verified in 

experiments using FM1-43 and sytI-Oyster550, which are described below. 

 

 

 

 

Figure 3.1 Successful culturing of primary hippocampal neurons. A) Primary rat 
hippocampal neurons in culture (DIV 14). DIC image acquired using 10x objective, 1 x 1 
binning. Scale bar 100 μm. B) Networks formed by cultured hippocampal neurons. DIC 
image acquired using 60x objective, 1 x 1 binning. Scale bar 20 μm. C) Schematic 
showing the custom made chamber with a coverslip. 
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3.2.2 Labelling of synapses with FM1-43 dye 

The development of styryl dyes by Betz and colleagues has revolutionized the study of 

physiology of presynaptic terminals (Betz et al., 1992). It allowed for optical monitoring 

of synaptic vesicle recycling in living cells.  Since then FM1-43 has been used in a variety 

of studies examining synaptic vesicle recycling properties (Li et al., 2005; Rey et al., 

2015; Ryan and Smith, 1995). In short, FM1-43 stains functional presynaptic terminals 

in an activity dependent fashion. It partitions into the outer leaflet of the lipid bilayer and 

is internalized into synaptic vesicles during the endocytic phase that follows stimulus 

driven exocytosis (Fig.3.2.A). The remaining FM1-43 dye can be washed off the cell 

surface. For a detailed description of FM1-43 structure and mechanism see Introduction.  

The FM1-43 loading protocol was carried out as described in Methods 2.8. Mature 

hippocampal neurons (DIV 13-18) were placed in the imaging chamber, which was 

positioned on the stage of an upright microscope, and incubated for 60 s in the presence 

of 10 µM FM1-43 dye in EBS with blockers: 20 µM CNQX and 50 µM AP-5. Cultures 

were stimulated for 30 s with 1200 APs, 20 Hz stimulation which mobilizes vesicles in 

the recycling pool (Ratnayaka et al., 2012). Following stimulation, an additional 60 s was 

allowed for the completion of endocytosis, after which the FM1-43 was washed out with 

fresh EBS with blockers (Fig.3.2.B). FM1-43 loaded regions of interest were then 

identified on the basis of fluorescence puncta present along neuronal processes 

(Fig.3.2.C). This clearly demonstrates the presence of functional presynaptic terminals 

in our hippocampal cell culture preparation, which were successfully labelled with FM1-

43 dye.  
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Figure 3.2 Visualization of hippocampal synapses loaded with FM1-43. A) 
Schematic representation of the labelling mechanism with FM1-43 dye. Due to its 
lipophilic nature, FM1-43 binds to the outer leaflet of the presynaptic membrane (1 and 
2). Stimulation driven exocytosis of synaptic vesicles leads to FM1-43 uptake by 
subsequently endocytosing vesicles and staining of the luminal face of their membrane 
(3). The remaining surface dye is removed by washing with dye-free EBS solution (4) 
allowing to image fluorescence that originates from the labelled vesicles (5). B) Timeline 
illustrating the protocol followed for FM1-43 labelling of recycling vesicles. C) Example 
image of FM1-43 labelling following 1200 APs, 20 Hz stimulus. Punctate fluorescence 
represents labelled terminals.   
 

 



94 
 

3.2.3 Functional readout using FM1-43 dye 

FM1-43 not only allows for identification of functional presynaptic boutons but more 

importantly provides an approach to monitor their function during subsequent exocytosis 

(Richards et al., 2005; Welzel et al., 2011). Hence, it can be used to examine the effects 

of various drugs, neurotoxic proteins such as Aβ1-42 (Chapter 6) or to scrutinize the 

behaviour of SVs in synaptic vesicle pools (Rey et al., 2015). This functional readout 

relies on the reversible nature of FM1-43 partitioning into the membranes, such that the 

dye is ‘unloaded’ from presynaptic terminals during stimulus-driven exocytosis of 

synaptic vesicles during further rounds of stimulation (Fig 3.3.A). Specifically, when the 

SVs are exocytosed, FM1-43 departitions from the vesicular lumen into the extracellular 

medium and this should be observed as a decrease in fluorescence during time-lapse 

imaging. The amount of dye loss therefore represents the extent of SVs exocytosis.  

To confirm this in our system, previously loaded cells (as described in section 3.2.2) were 

imaged every 1 s and stimulated with 1200 APs, 20 Hz stimulus. In order to identify 

stable presynaptic terminals 10 s of baseline fluorescence was recorded, followed by 60 

s of stimulation (Fig.3.3.B and C). ROIs of equal size were drawn and the fluorescence 

level of each synapses was measured over time using ImageJ. As shown in Fig.3.3.C 

and D, following the initial pre-stimulus plateau, fluorescence loss was apparent with a 

timecourse consistent with single exponential decay. When fluorescence readouts were 

normalized to the baseline, it was clear that individual synapses exhibit high levels of 

variability in the fraction of dye loss (Fig.3.3.C). On average 67.17 ± 0.01% of the dye 

was lost as a result of stimulation (n = 428 synapses). The remaining fluorescence 

presumably corresponds to residual dye trapped in non-vesicular compartments, or 

potentially reflects the transfer of labelled vesicles into non-functional pools. This type of 

readout can be used to compare different treatment groups in terms of the dynamics of 

vesicle pools (Chapter 6). By fitting single exponential curves, it is possible to measure 

the time constant of the decay (τ) providing information on the kinetics of exocytosis. The 
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fit showed here was constrained to the average of 5 frames before the onset of the 

stimulation. The average destain timing as a result of 1200 APs 20 Hz stimulation of 428 

successfully fitted synapses was 9.4 ± 0.36 s (Fig.3.3.D).    

This confirms that we can successfully load presynaptic terminals with the FM dye for 

the purpose of their identification and, with further stimulation, use it to assay functional 

properties of these synapses. This includes synaptic vesicle pool dynamics, kinetics of 

exocytosis, lateral mobility of vesicles, or perhaps even membrane-associated 

abnormalities. 

 
 
 
Figure 3.3 Functional readout of synaptic vesicles exocytosis with FM1-43. A) 
Schematic showing destaining of labelled synaptic vesicles. In response to applied 
stimulus FM1-43 is lost during vesicle exocytosis and it eventually diffuses away from 
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the plasma membrane into the aqueous solution. B) Images collected from time laps 
imaging showing decrease in fluorescence intensity resulting from FM1-43 destaining. 
Yellow boxes indicate example ROIs (2 x 2 μm). C) Quantification of the change in 
fluorescence level from time laps imaging. Individual curves are examples of FM1-43 
destaining profiles from single synapses. D) Destaining curve allows to measure the 
kinetics of exocytosis: red curve is the average of 428 destain curves from individual 
synapses ± SEM, green curve is a single exponential curve constrained to the 
fluorescence value prior to the stimulation.   
 
 
 
   

3.2.4 Labelling of synapses with sytI-Oyster550 

SytI-Oyster550 is another acutely applied probe that can be used to label and monitor 

synaptic behaviour. We validated this reporter for its ability to label functional presynaptic 

terminals, its utilization as a marker of synaptic size that could be used in conjunction 

with other fluorescent probes and whether it can be used as a reporter of synaptic 

function in a similar fashion to FM1-43.  

SytI-Oyster550 is an antibody against synaptotagmin 1, conjugated with a fluorescent 

tag - Oyster550. Application of sytI-Oyster550 during stimulation leads to labelling of 

recycling synaptic vesicles during endocytosis and ultimately labelling of functional 

synapses. Following extensive washing out of the surface bound sytI-Oyster550, red, 

vesicle-specific punctate fluorescence can be observed, which validates the presence of 

functional presynaptic terminals that can be identified with this probe (Fig.3.4.A).  

Due to its red tag and specificity to synaptic vesicles, sytI-Oyster550 is a widely used 

probe in the remaining chapters of this work in conjunction with green genetically 

encoded reports. We therefore carried out a pilot experiment testing whether sytI-

Oyster550 can be used to monitor presynaptic properties such as relating the size of the 

active zone to the presynaptic size. Due to the resolution limitation of light microscopy, it 

is not possible to accurately quantify the size of the active zone. Nevertheless, this can 

be overcome by measuring the amount of fluorescently-tagged active zone specific 

protein. Bassoon was shown to be highly concentrated at the active zone cytomatrix (tom 

Dieck et al., 1998) and it has been widely used as a marker of AZ (Grabrucker et al., 
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2009; Matz et al., 2010). Loading with sytI-Oyster550 at 1200 APs, 20 Hz ensures 

labelling of the entire recycling pool of synaptic vesicles (Ratnayaka et al., 2012). The 

size of the recycling pool was previously shown to correlate with the size of the synapse, 

measured as total vesicle pool size (Marra et al., 2012), and therefore can be used as 

an indirect measure of the synaptic size. The size of the active zone in an ultrastructural 

study, in addition to being positively correlated with the docked vesicle pool, also scaled 

with the synaptic volume (Murthy et al., 2001). We therefore concluded that sytI-

Oyster550 from maximally loaded synapses should correlate with the size of the active 

zone.  

We expressed GFP-tagged bassoon in primary rat hippocampal neurons. The delivery 

of the construct was carried out at 9 DIV, via modified calcium-phosphate transfection 

method (details in section 2.3). After a week of GFP-bassoon expression, cultures were 

labelled with sytI-Oyster550 and imaged. Cells were incubated for 1 min in the presence 

of 1:100 sytI-Oyster550 in EBS with blockers to prevent repeated excitation of the 

network (AMPAR blocker: 20 µM CNQX; NMDAR blocker: 50 µM AP5), and then 

stimulated with 1200 APs at 20 Hz. The sample was kept for a further 60 s in sytI-

Oyster550 in order to allow for the complete endocytic recovery of the vesicles, following 

which the culture was washed with EBS with blockers to remove surface bound antibody. 

The synapses that responded to the stimulation and taken-up sytI-Oyster550 can be 

clearly identified as red fluorescence puncta along neuronal processes (Fig.3.4.B). ROIs 

of even size were drawn around the presynaptic terminals expressing GFP-bassoon and 

fluorescence was quantified for both GFP-bassoon and sytI-Oyster550 using ImageJ.  

The results showed that there was a strong correlation between the two measurements 

(Fig.3.4.C) suggesting a relationship between the AZ size and the size of the TRP 

(Pearson’s correlation test, n = 27 synapses, r = 0.6737, P = 0.0001) (Fig.3.4.C). We 

therefore established that sytI-Oyster550 is a good marker, which allows us to 
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quantitatively explore the properties of presynaptic terminals, in this case to relate the 

size of the active zone to the size of the synapse.  

Having established sytI-Oyster550 as a good marker for identification of presynaptic 

terminals and their properties, we wanted to test whether sytI-Oyster550 can be used to 

measure the kinetics of exocytosis in a similar fashion of FM1-43. When subjected to 

1200 APs, 20 Hz stimulation, sytI-Oyster550 fluorescence loss was observed, however, 

only 37.12 ± 0.01% of the signal was lost in comparison to a 67% destain in the FM1-43 

experiment (Fig.3.4.D). This high level of fluorescence retention is due to high affinity of 

sytI-Oyster550 to its target protein synaptotagmin I, whereas FM1-43 is characterized by 

fast departition from the membrane.   

Despite the fact that sytI-Oyster550 is not a probe of choice for measuring synaptic 

vesicle cycle, it provides with a useful tool for localization of functional presynaptic 

terminals and measuring their size. Its photostability also offers advantage over other 

probes for measuring synaptic vesicle mobility (Ratnayaka et al., 2011). 
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Figure 3.4 Readout of presynaptic properties with sytI-Oyster550. A) Bright field 
(left) and fluorescence (right) images of presynaptic terminals labelled with sytI-
Oyster550 with stimulation of 1200 APs at 20 Hz. Images taken with 60x objective, 1x1 
binning. Scale bar 20 μm. B) Fluorescent images of sytI-Oyster550 labelled (left) and 
bassoon expressing neurons (middle). Bassoon expressing, responsive to stimulation 
terminals can be identified from the composite (right). Images taken with 60x objective, 
4 x 4 bin. Scale bar 10 μm. C) Presynaptic size, expressed as a size of recycling vesicle 
pool (measure of sytI-Oyster550 fluorescence), is strongly correlated with the size of the 
active zone (Pearson’s correlation test, n = 27 synapses, r = 0.6737, P = 0.0001). D) 
Stimulation driven destaining of sytI-Oyster550 from labelled presynaptic terminals. 
Graph represents the average destaining curve of 395 boutons ± SEM. Stable baseline 
fluorescence and the decrease in fluorescence intensity upon stimulation can be 
observed on the panels. Scale bar 5 μm.   
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3.3  Genetically encoded probes of synaptic function 

The key aim of this work was to characterize the fundamental rules that underlie the 

recycling kinetics at individual presynaptic terminals. In order to achieve that goal, 

exocytosis and endocytosis needed to be sampled over time, which made FM1-43 and 

sytI-Oyster550 unsuitable for this purpose due to their destaining with each stimulation 

round. Tools allowing to repeatedly image vesicle recycling over multiple trials, were 

required for this purpose. Genetically encoded probes offer a wide range of readouts, 

allowing us to measure important steps of the neurotransmitter release and synaptic 

vesicle cycle: calcium influx, exocytosis and endocytosis of synaptic vesicles and 

glutamate release. In this section of the chapter we validate different genetically encoded 

probes, characterize and select the best tools enabling us to answer our aims of assaying 

recycling profiles of vesicle pools, and relating these to neurotransmission.   

 

3.3.1 Readout of synaptic vesicle exo and endocytosis with sypHy2x 

SypHy2x comprises of 2 super-ecliptic pHluorin molecules fused to the second 

intravesicular loop of synaptophysin (Granseth et al., 2006) (Fig.3.5.A). It is a pH 

sensitive reporter of synaptic vesicles exocytosis and their subsequent endocytosis. 

These can be measured as an increase in fluorescence intensity upon vesicle fusion with 

the presynaptic membrane (exocytosis), and gradual fluorescence decay, which 

represents the reacidification of synaptic vesicles that follows their endocytosis 

(Fig.3.5.B). We validated this construct as a candidate for imaging and measuring 

synaptic vesicles recycling kinetics. 

Initially, in order to introduce sypHy2x to the cells, we transfected DIV 6-8 cells using 

modified Ca2+ phosphate method (described in detail in section 2.3.). Nevertheless a 

viral form of sypHy2x using AAV vector, based on our cDNA construct, was made by 

Tiago Branco’s laboratory (Cambridge). The kinetics of AAV.sypHy2x responses was 
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identical to cDNA plasmid, however, the cell viability and the efficiency of expression 

were improved based on our observations. Therefore, AAV-based sypHy2x expressing 

cells were used for most of the experiments shown here. Hippocampal neurons were 

infected on DIV 4-6 and used for experiments on days 13-18, when the expression levels 

were established. Figure 3.5.C shows a representative image of hippocampal culture 

(left) expressing AAV.sypHy2x construct (right). The change of sypHy2x fluorescence 

can be monitored and quantified over time (Fig.3.5.D-F). SypHy2x showed low levels of 

baseline fluorescence, which increased following the administration of the stimulus, in 

this case 40 APs, 20 Hz, and decreased again when the stimulus ceased and SVs were 

reacidified (Fig.3.5.D and E).  In order to quantify the change in fluorescence, square 

ROIs of equal size were drawn based on subtracted images before and at the peak of 

stimulation (Fig.3.5.D). We were able to identify at least 20-100 responding boutons 

within a single field of view (132 x 132 μm) The size of the ROIs was optimized for 

capturing the endocytosis rather than outward movement of sypHy2x (2.8 x 2.8 μm) 

(Granseth et al., 2006) and was larger than for FM1-43 readouts (2.5 x 2.5 μm). It was 

also crucial that only individual synapses, and those with the fluorescence at the peak of 

the response that was completely encapsulated within the ROI boundary, were chosen 

for the analysis. This also helped to ensure that individual synapses and not clusters of 

presynaptic terminals were included in the data set. After the initial selection of ROIs, 

images were screened for any possible oversaturated responders or apparent moving 

packages, which were eliminated from the analysis. These mobile packages represent 

extrasynaptic vesicles exchanged between synapses (Kamin et al., 2010; Ratnayaka et 

al., 2011). Figure 3.6.E shows example profiles of fluorescence measured from individual 

boutons in response to 40 APs, 20 Hz stimulation.  

Similarly to FM1-43 dye, sypHy2x allows for quantification of the kinetics of synaptic 

vesicle exocytosis, but additionally provides detailed information on endocytosis. The 

decay of normalized sypHy2x fluorescence represents the endocytosis of synaptic 
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vesicles, and can be fitted with single exponential curves (Fig.3.5.F). The time course of 

fluorescence recovery following 40 APs, 20 Hz stimulation in our system was τ = 16.8 ± 

0.28 s, which is comparable to previously reported measurement (Granseth et al., 2006).  
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Figure 3.5 Detection and measuring of synaptic responses using sypHy2x. A) 
Schematic representation of sypHy2x. (Figure adapted from Zhu et al., 2009) B) 
Schematic representation of sypHy2x mechanism of reporting synaptic vesicle cycle. At 
rest sypHy2x is quenched inside the acidic lumen of synaptic vesicle. When SVs are 
released in response to the stimulation, sypHluorin is exposed to the neutral pH of the 
extracellular environment which results in the increase of fluorescence intensity. 
Synaptic vesicles are then retrieved back into the presynaptic terminal. Following 
endocytosis newly formed vesicles are reacidified by v-ATPase which results in re-
quenching and decline of sypHy 2x fluorescence. C) DIC image (left) of sypHy 2x 
expressing neuron (right, fluorescence at rest). Scale bar 20 μm. D) Subsequent panels 
represent change in sypHy 2x fluorescence over time in response to 40 APs at 20 Hz 
stimulus. Stimulation was applied at 3.5 seconds and lasted for 2 seconds. Yellow boxes 
encapsulate example of synaptic boutons chosen for analysis. Scale bar 10 μm. E) 
Examples of fluorescence readouts from individual synapses expressing sypHy2x 
subjected to 40 APs stimulation at 20 Hz. Dark green trace represents the average of 
491 responses. Stimulus is indicated by the orange panel. F) SypHy 2x fluorescence 
allows to measure the kinetics of synaptic vesicle recycling. The average of 491 
responses (dark green trace) reveals the kinetics of vesicles recovery of τ = 16.8 ± 0.28 
s (single exponential fit in green).      
 

 

 

3.3.1.1 Comparison of sypHy1x, sypHy2x and sypHy4x constructs 

One of the main aims of this work was to establish whether individual boutons show 

signature recycling behaviour of single synaptic vesicles. In other words, are the vesicles 

at a given terminal predisposed to a certain timing of their retrieval, which is determined 

by the properties of that particular synapse?  In order to confidently visualize the release 

and endocytosis of single synaptic vesicles, a probe with the best signal intensity had to 

be selected. Zhu, Xu, & Heinemann, 2009 used sypHy4x for their study of single vesicle 

endocytosis after concluding its superior signal-background ratio in comparison to other 

constructs: synaptopHluorin, sypHy1x and sypHy2x.  

 

We carried out analysis of these constructs in our cell culture system. The structural 

difference between sypHy1x, sypHy2x and sypHy4x lies in the number of pHluorins in 

the intravesicular loop of synaptophysin (Fig.3.6.A). These constructs have one, two and 

four pHluorins, respectively. Responses to 40 APs, 20 Hz stimulation were recorded and 

measured for all three probes (Fig.3.6.B). The fluorescence amplitude was calculated by 
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taking the average fluorescence value at the peak of each response and subtracting the 

baseline fluorescence for each readout.  SypHy2x showed twofold improvement in the 

fluorescence amplitude in comparison to sypHy1x (Fig.3.6.B and C). In this case 

doubling the number of pHluorins was directly translated into the extent of fluorescence 

amplitude multiplication.  

 

A similar increase might have been expected when sypHy4x is compared to sypHy2x. 

However, that was not the case; in a previously reported study there was only ~23% 

improvement in the signal-background ratio between sypHy2x and sypHy4x (Zhu et al., 

2009). In our hands, the fluorescence amplitude was only 15% larger in sypHy4x in 

relation to sypHy2x (Fig.3.6.C). We also observed that the long term health of cultures 

was compromised by sypHy4x construct, and fewer functional boutons were routinely 

identified. Based on the marginal gains in signal and concerns over cell health, the 

decision was made to use sypHy2x for the remainder of this study.    
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Figure 3.6 Comparison between sypHy constructs with varied number of fused 
pHluorins. A) Schematic representation of structural differences between sypHluorins 
constructs with varied number of pHluorin molecules (figure adapted from Zhu et al., 
2009). B) Average sypHy signal (n = 115, n = 75, n = 108 synapses for sypHy1x, sypHy2x 
and sypHy4x, respectively ± SEM) in response to 40 APs stimulus at 20 Hz (indicated 
by the brown panel). For all three constructs fluorescence was normalized to the signal 
intensity at the peak of sypHy4x response and frames before the stimulation from each 
data set. C) Quantification of the responses from (B) revealed significant difference 
between the fluorescence intensity of sypHy 1x in comparison to sypHy2x and sypHy4x 
(One-way ANOVA with Tukey’s post-hoc analysis: sypHy1x - sypHy2x, P < 0.0001; 
sypHy1x - sypHy4x, P < 0.0001). There was no significant difference in the intensity of 
fluorescence between sypHy2x and sypHy4x 40 APs responses (P = 0.0649, One-way 
ANOVA with Tukey’s post-hoc analysis). Raw, baseline subtracted data was used for 
quantification. 
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3.3.2 Measuring exo- and endocytosis at excitatory synapses using 

vGlut1-pHluorin 

Another reporter allowing to monitor synaptic vesicle release and endocytosis is vGlut1-

pHluorin. Due to the fact that it has been previously successfully used to monitor single 

synaptic vesicles exocytosis and endocytic coupling (Balaji and Ryan, 2007), we 

therefore wanted to test this construct in our system. In the case of vGlut1-pHluorin, a 

single pHluorin molecule was fused to vesicular glutamate transporter 1. vGlut1-pHluorin 

(vGpH) unlike sypHy2x not only allows to observe the endocytosis and exocytosis of 

synaptic vesicles, but allows to isolate these events to glutamate releasing terminals. In 

that way it provides more specific information than sypHy2x in terms of the population of 

tested synapses.  

We expressed vGpH in DIV6-8 hippocampal neurons, which were used for experiments 

6-10 days after transfection. Figure 3.7. A and B show representative images of vGpH 

at rest and at the peak of the stimulation with 4 APs. Similarly to sypHy2x data, detection 

of the responding synapses was carried out based on fluorescence difference between 

the peak of the stimulation and the baseline fluorescence. Individual responding 

presynaptic terminals were clearly discernible (Fig.3.7.B), and upon stimulation with 4 

APs, a rise in vGpH fluorescence was observed followed by a gradual decline of the 

signal during reacidification (Fig.3.7.C).   

Despite the advantages of vGpH, such as low surface expression and more specificity 

in term of the population of measured synapses, we found that the imaged responses to 

4 APs were similar or even noisier than those obtained with sypHy2x. The transfection 

efficiency and neuronal health were also more compromised with this construct. 

Therefore sypHy2x remained the probe of choice for single vesicle imaging. Perhaps 

vGpH with two pHluorin molecules would have been the most optimal probe for single 

vesicle imaging.  
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Figure 3.7 Detection and measuring synaptic response with vGlut-pHluorin 
(vGpH). A) Fluorescent image of baseline vGpH expression. Scale bar 20 μm. B) Panels 
showing method used for detection of responding boutons. Baseline level of 
fluorescence (top panel) is subtracted from the fluorescence level at the peak of the 
response (middle panel). The resulting image allows for clear identification of responding 
presynaptic terminals (bottom panel). Scale bar 10 μm. C) Fluorescent profile reflecting 
response of 119 boutons to 4 APs stimulus. Data, shown as average ± SEM, was bleach 
corrected and normalized to the frames prior to and at the peak of the response. The 
green line indicates the length of the applied stimulus.  
 

 

3.3.3 SyGCaMP6f allows to monitor presynaptic Ca2+ influx 

Some of the work in this project focuses on the mechanisms of the disturbance of vesicle 

recycling caused by neurotoxic peptide – amyloid beta. Exo-endocytic coupling is 

thought to be regulated by stimulus evoked presynaptic Ca2+ influx. The disturbance in 

Ca2+ dynamics could therefore provide with some mechanistic explanation of the 

abnormal timing of the endocytosis of synaptic vesicles. The aim of this experiment was 
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to establish the readout of presynaptic Ca2+ influx in response to small stimulation over 

multiple trials. 

Neurons were infected with AAV.syGCaMP6f construct at DIV 4-6 and experimented on 

at least 10 days post infection (Construct made by Tiago Branco’s laboratory at 

Cambridge). syGCaMP6f is targeted to presynaptic terminals by fusing GCaMP to 

cytoplasmic domain of synaptophysin. It is characterized by high sensitivity and the 

fastest reporting kinetics out of GCaMP family (Chen et al., 2013; Dreosti et al., 2009). 

Due to a low level of baseline fluorescence, the identification of expressing neurons often 

had to be carried out based on low level stimulus (Fig.3.8.A). In order to examine the 

presynaptic expression of our construct, we loaded syGCaMP6f expressing cells with 

1:100 sytI-Oyster550 antibody (1200 APs 20 Hz stimulation; protocol as described in 

section 2.8 and 3.2.4). The syGCaMP6f and sytI-Oyster550 fluorescence co-localized 

well, confirming presynaptic localization of our construct (Fig.3.8.A and B).  

SyGCaMP2  was previously used to detect presynaptic calcium influx associated with 

single AP stimulation in primary hippocampal neurons (Dreosti et al., 2009).  We 

therefore wanted to test if we can monitor presynaptic Ca2+ changes in response to 4 

APs stimulus with syGCaMP6f. In a similar fashion to sypHy2x experiments, the 

responding boutons were identified on the basis of subtracted images, and ROIs of even 

size (2.8 x 2.8 µm) were drawn encapsulating responding boutons. A very sharp increase 

in fluorescence signal in response to stimulation was observed (Fig.3.8.C and D). 

syGCaMP6f is therefore a suitable tool allowing to measure Ca2+ dynamics in response 

to minimal stimulation.  
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Figure 3.8 Detection of presynaptic Ca2+ influx with syGCaMP6f. A) Fluorescent 
image of baseline level of syGCaMP6f expression (top left) and the fluorescence level at 
the peak following 4 APs stimulus (top right). syGCaMP6f expressing cells were loaded 
with sytI-Oyster550 antibody to label presynaptic terminals (1200 APs at 20 Hz; bottom 
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left). Calcium influx (syGCaMP6f ΔFluorescence) in response to the applied stimulus can 
be clearly identified at the presynaptic sites (bottom right). Scale bar 20 μm. B) 
Fluorescence intensity profile of syGCaMP6f and sytI-Oyster550 fluorescence measured 
along the yellow line on the bottom right image in A. C) Normalized mean response of 
100 synaptic terminals to 4 APs stimulation ± SEM. Orange panel indicates the length of 
the stimulus. D) Subsequent panels show change in syGCaMP6f fluorescence in 
response to 4 APs stimulation over time. Scale bar 10 μm. 
 

 

3.3.4 Detecting glutamate release with iGluSnFR  

In this chapter so far we presented tools allowing detailed monitoring of recycling 

properties of synaptic vesicles (FM1-43, sypHy2x and vGpH) and the presynaptic influx 

of calcium (syGCaMP6f). These measurements however do not give any information 

regarding the actual release of neurotransmitter as a result of vesicles fusion. This is 

also an important measure for assaying changes in synaptic performance. A newly 

developed probe by (Marvin et al., 2013) provides information on this permitting a direct 

readout of released glutamate.  

The expression of intensity-based glutamate-sensing fluorescent reporter (iGluSnFR) in 

our hippocampal culture, resulted in a diffuse appearance of the fluorescence at rest, 

with a localized increase in fluorescence amplitude as a result of stimulation (Fig.3.9.A). 

In order to localize functional terminals, we loaded neurons with FM4-64, a red version 

of FM1-43, with 1200 APs stimulation at 20 Hz. The ROIs were based on the subtracted 

image of iGluSnFR response to 2 APs stimulation. There was a strong correlation 

between FM4-64 and iGluSnFR fluorescence, indicating that the iGluSnFR signals 

measured were as a result of glutamate release from functional presynaptic terminals 

(Pearson’s correlation test, n = 63 synapses, r = 0.5486, P<0.0001) (Fig.3.9.B). In order 

to test how well iGluSnFR reports the release of glutamate during small synaptic events, 

we stimulated our cells with 2 APs (Fig.3.9.C). There was a sharp increase in 

fluorescence immediately at the onset of the stimulation, and the peak of the response 

was reached within 42 ms. A decrease in fluorescence took place immediately after the 
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end of the stimulus (Fig.3.9.D). In order to test this construct for imaging the behaviour 

of presynaptic terminals over multiple trials, we stimulated cells 10 times in a train of 2 

APs every ~2 s. We were able to observe responses of varying amplitudes as well as 

failures when no stimulation was delivered (Fig.3.9.E). iGluSnFR is therefore a suitable 

probe for detecting localization and magnitude of glutamate release at presynaptic 

terminals.     
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Figure 3.9 iGluSnFR allows to monitor the release of glutamate at presynaptic 
terminals. A) iGluSnFR transfected cells (top left) were loaded with FM4-64 for 60 s at 
20 Hz (top right). Overlaid FM fluorescence allowed to identify iGluSnFR expression at 
presynaptic sites (bottom left). Scale bar 20 μm. B) The analysis of FM fluorescence 
against iGluSnFR fluorescence at the peak of the response revealed correlation between 
the two supporting the reporting of presynaptic glutamate release (bottom right, 
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Pearson’s correlation test, n = 63 synapses, r = 0.5486, P < 0.0001). C) Change in 
iGluSnFR fluorescence in response to 2 APs stimulation can be traced on the 
consecutive panels. The last image represents the fluorescence baseline subtracted 
from the fluorescence at the peak of the stimulation, which aids the choice of responding 
regions. Scale bar 10 μm. D) Average response of 3 synapses to 2 APs stimulation ± 
SEM shown as change in fluorescence over time. Orange panel represents the length of 
the stimulation. E) Average response of synapses to a train of 10 x 2 APs stimulation 
trials (n = 11 synapses).  
 

 

3.4 Discussion 

3.4.1 The use of acutely applied fluorescence probes in hippocampal 

neurons  

The development of styryl dyes and fluorescently labelled antibodies offered a new 

approach for studying function of presynaptic terminals. In turn, expanding our 

knowledge on principle workings of presynaptic terminals is important for dissecting 

disease associated or plasticity induced changes in hippocampal neurons. Hippocampal 

culture, used in this study, has been widely employed for this purpose due to its 

convenience for imaging, genetic manipulations, and dyes and drug applications (Balaji 

and Ryan, 2007; Evans and Cousin, 2007; Richards et al., 2005; Shields et al., 2015).  

The all-encompassing objective of this chapter, was to establish the methodology for the 

readout of synaptic function, and to optimize the relevant approaches required to allow 

single vesicle imaging. The starting point was to confirm the generation of suitably 

healthy cultured neuronal networks, and to establish the presence of functional boutons. 

The ultrastructural data, combined with immunohistochemical analysis of cultured 

hippocampal neurons, revealed that mature excitatory synapses were observed from 

day 10 in culture, and characterized by a very regular developmental timeframe 

(Grabrucker et al., 2009). We showed in our loading experiments using FM1-43 and sytI-

Oyster550 antibody, that mature, functional presynaptic terminals were present in our 
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culture, and that we can successfully load the synapses with these probes in an activity-

dependent manner.  

FM1-43 and sytI-Oyster550 antibody not only allow for the identification of presynaptic 

terminals in the culture, but more importantly for measuring the functional properties of 

individual presynaptic terminals. The time course of stimulus-driven FM1-43 destaining 

for mobilizing the entire recycling pool (1200 APs, 20 Hz) was 9.4 ± 0.36 s (decay 

constant, τ) in our preparation. This is highly comparable with a previous study. 

Ratnayaka et al. 2011 reported a τ = 7 ± 1 s under 1200 APs, 40 Hz stimulus in mature 

hippocampal cultures, a relevant experimental set-up to the one used in this study 

(Ratnayaka et al., 2011).  The rate of FM1-43 destain scales with the stimulus frequency 

(Ratnayaka et al., 2011), hence the measurement reported in this study is well-aligned 

with the previously reported value.  

The extent of the FM1-43 loss represents the extent of exocytosis, and therefore gives 

important information on the dynamics of synaptic vesicle pools. Following the 

endocytosis in the presence of the dye, the recycled vesicles are incorporated back into 

the synaptic vesicle pool. These vesicles can be either integrated into the recycling or 

resting pool, or transported into another bouton.  In our experiment we observed a big 

variability in the extent of dye loss (Fig.3.3.C) suggesting that there is heterogeneity 

between synapses in how they partition vesicles into distinctive vesicle pools. A similar 

observation was made by Welzel et al., 2011 who reported that larger synapses, 

although characterized by bigger RP, tend to release fewer vesicles, and therefore retain 

more FM1-43 fluorescence, than smaller synapses. The availability of recently recycled 

vesicles was found  to be time dependent and that their releasability increased as more 

time between consecutive stimulations elapsed (15 s to 90 s) (Ryan and Smith, 1995). 

A recent study (carried out by Milena Maria Wagner and others) also showed that only a 

subset of the vesicles are preferentially recycled back into the RRP, whereas the rest 
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takes up random positions within the pool (Rey et al., 2015). These examples illustrate 

how FM1-43 can be used to examine the dynamics of synaptic vesicle pools.  

We tested sytI-Oyster550 antibody in a similar fashion to FM1-43 in terms of its ability to 

report synaptic vesicle exocytosis. We found that although sytI-Oyster550 provides with 

very clear labelling of presynaptic terminals, due to the high affinity of this antibody for 

synaptotagmin I, the activity-dependent fluorescence loss was almost half that observed 

with FM1-43 (37.12 ± 0.01% for sytI-Oyster550 and 67% for FM1-43). Nevertheless, due 

to its stable labelling and photostability, sytI-Oyster550 is a better probe for long term 

imaging, for example, during monitoring synaptic vesicle mobility (Ratnayaka et al., 

2011). FM1-43, on the other hand is the probe of choice for examining the kinetics of 

turnover of synaptic vesicles.  

Probes such as FM1-43 and sytI-Oyster550 provide information about the localization of 

presynaptic terminals and some readout of fundamental presynaptic properties. 

Nevertheless, these two reporters often rely on applying a strong loading stimuli prior to 

assaying their function, potentially influencing the synaptic operation being investigated. 

Moreover, the presence of these indicators within the terminal critically relies on exo- 

and endocytosis of synaptic vesicles; hence if vesicle recycling is affected by 

experimental conditions (neurotoxic proteins or drugs), the population of labelled 

vesicles might be biased towards those from synapses with higher pr, or those belonging 

to a neuron that was not strongly affected. Also, these probes do not permit imaging of 

synaptic vesicle over multiple trials due to destaining. As such, the development of 

genetically encoded probes offers some major advantages in the studies of vesicle 

recycling, by allowing the monitoring of presynaptic properties such as synaptic vesicle 

recycling, calcium influx and glutamate release, without the need to first subject the 

sample to additional stimulation.  
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3.4.2 Genetically encoded reporters of synaptic function  

Unlike the acutely applied probes, genetically encoded reporters of synaptic function do 

not need to be loaded in an activity dependent fashion. They are delivered into cells via 

transfection or through infection with viral constructs, followed by the expression of 

fluorescently tagged protein. The development of these probes was possible thanks to 

the engineering of a pH-sensitive mutant of GFP – known as ‘pHluorin’ molecule 

(Miesenböck et al., 1998). Its fluorescence emission is quenched in the acidic pH of the 

lumen of synaptic vesicles, but significantly increases when SVs are released and 

intravesicular membranes are exposed to the neutral extracellular environment 

(Granseth et al., 2006; Miesenböck et al., 1998). AAV based viral constructs were 

primarily used in the present study due to their stable expression, high percentage of 

transduced cells and less compromised neuronal health than in the case with cDNA 

reporters that require transfection (Royo et al., 2008). 

 

3.4.2.1 Measuring synaptic vesicle recycling 

In this work we explored the properties of probes designed to measure the kinetics of 

vesicle recycling: sypHy and vGpH. One of the main objectives was to identify a probe 

that allows us to reliably image the exocytosis of single synaptic vesicles. vGpH, in which 

pHluorin molecule is attached to the vesicular glutamate transporter vGlut1, has been 

successfully used to image single synaptic vesicles (Balaji and Ryan, 2007). 

Nevertheless, in our hands the signal from vGpH was very noisy, transfection efficiency 

low and neuronal health compromised. We therefore turned our attention to sypHy 

constructs in search for the suitable tool. sypHy was developed by Granseth et al., 2006 

who fused pHluorin molecule to synaptophysin. A detailed analysis of this construct by 

these authors revealed that sypHy was localized to synapses, did not affect exocytosis 

and allowed to monitor single vesicle fusion events (Granseth et al., 2006). Moreover, it 
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had less background fluorescence than previously developed constructs based on 

synaptobrevin (synaptopHluorin) (Granseth et al., 2006; Sankaranarayanan and Ryan, 

2000), which is an important factor for imaging the events associated with single synaptic 

vesicles. The retrieval kinetics of sypHy were found to be comparable with 

synaptopHluorin but sypHy fluorescence exhibited less lateral movement (Granseth et 

al., 2006), which again makes it superior to synaptopHluorin. The kinetics of fluorescence 

decay is typically measured by fitting single exponential function. In our experiment, the 

fluorescence recovery after 40 APs 20 Hz stimulation was τ = 16.8 ± 0.28 s. As in the 

case of FM1-43 (Ryan and Smith, 1995; Welzel et al., 2011; Zakharenko et al., 2001), 

not many papers provide their tau readouts and often rely on different stimulation 

intensities, but approximate comparisons are possible. Sankaranarayanan and Ryan et 

al., 2000 reported τ of 10 s for 20 APs and τ = 23 s for 100 APs. Granseth et al., 2006 

compared the kinetics of vesicles retrieval following stimulation ranging from 1 to 40 APs 

at 20 Hz and found that the endocytic kinetics were very similar within this stimulation 

range with an average of τ = 23 ± 1.5 s, whereas the endocytic recovery following 400 

APs, 20 Hz stimulus was 50 s (Granseth et al., 2006). Our readout is therefore in a broad 

agreement with these studies. The direct comparison of the kinetics between different 

research groups poses many problems. One possible explanation of variability between 

studies is the concentration of Ca2+ used in the external bath solution. It was 

demonstrated that endocytic kinetics increased with increasing extracellular calcium 

(Sankaranarayanan and Ryan, 2001). In our experiments Ca2+ concentration was 0.5 

mM higher than in the two mentioned studies, which could therefore explain readout of 

faster kinetics. Another reason for this difference might be the temperature at which the 

experiments were carried out, as endocytosis is temperature dependent (Granseth and 

Lagnado, 2008). This highlights the importance of strict control of experimental 

conditions.  
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The timing of endocytosis in our study strongly indicates the prevalence of clathrin-

mediated endocytosis (section 1.3.2). However, the main aim of this work was not to 

decipher the endocytic mode behind vesicle retrieval, but the properties of synapses that 

contribute to the determination of timing of this process at individual boutons. Hence, the 

actual timing of endocytosis was not the major concern here. Assuming that other modes 

of endocytosis, such as kiss and run, also contributed to our result, the relevant question 

for this study was whether a specific timing of endocytic retrieval is characteristic at 

individual synapses.  

Having identified a synaptophysin-based probe as the reporter of choice for our study, 

we considered the advantages/disadvantages of different numbers of copies of pHluorin 

molecules in our construct, with 1, 2 or 4 pHluorin variants available. Based solely on the 

number of pHluorins, and the expected signal-to-noise, sypHy4x should be the best 

probe for monitoring single vesicle kinetics. However, despite the fact that we observed 

a twofold increase in response amplitude between sypHy1x and sypHy2x, there was only 

15% improvement between sypHy2x and sypHy4x. Similar observations were made by 

Zhu et al., 2009, who also found that there was only limited improvement in the 

fluorescence in sypHy4x in comparison to sypHy2x. The health of cultures was 

compromised with sypHy4x construct and the transfection efficiency low, and therefore, 

we decided to use sypHy2x for future experiments.  

SypHy2x not only allows to monitor the endocytosis of synaptic vesicles but also 

exocytosis, therefore functional information on both processes can be obtained from the 

same set of synapses. This is useful for examining the coupling of exo- and endocytosis 

(Chapter 6) or for examining endocytic curves within a given range of responses as 

exploited in Chapter 4.   
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3.4.2.2 Monitoring of glutamate release and presynaptic Ca2+ influx  

Despite the fact that sypHy2x should be a good indicator of the synaptic vesicle cycle, it 

does not provide any information on the consequence of exocytosis – the release of 

neurotransmitter. Until recently, the available method for measuring this was continuous 

amperometry or electrophysiology, which, as explained earlier, are not feasible in small 

central synapses. The development of iGluSnFR, a probe that permits the optical 

monitoring of synaptically released glutamate, opened new possibilities for studying 

presynaptic terminals. This probe expressed on the extracellular surface of plasma 

membrane, permits the translation of glutamate-receptor binding events into the 

fluorescence signal.  As such, it provides a live readout of stimulus-evoked glutamate 

release and synaptic transmission (Marvin et al., 2013). iGluSnFR shows diffuse 

expression along the membranes, which made the localization of individual presynaptic 

terminals impossible. However, we showed that fluorescence ‘hot-spots’ at the peak of 

the stimulation overlap with the presynaptic marker FM4-64. This confirms that measured 

glutamate originates from synaptic boutons. The reporting kinetics of this construct is 

also satisfactory for our purposes (40 ms to reach the peak) as we were not aiming to 

resolve glutamate release events from individual action potentials, but rather to measure 

overall amplitude of fluorescence following the applied stimulus. Using iGluSnFR we also 

demonstrated that with minimal stimulus (2 APs), we evoked responses of varied 

amplitudes and that the fluorescence increase was stimulus-related. iGluSnFR is 

characterized by a very good signal-to-noise ratio as well as photostability (Marvin et al., 

2013), which is also evident from our experiment. It is a relatively new tool, which so far 

has been successfully used to explore glutamate release at bipolar synapses in vitro and 

to explore cortical circuitry in mice in vivo (Borghuis et al., 2013; Xie et al., 2016).  

Last but not least, in order to fully examine presynaptic function, it is crucial to measure 

presynaptic stimulus-evoked Ca2+ dynamics. Over the years, improved genetically 

encoded calcium indicators have been developed (summarized in the Introduction). 
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These constructs allow the monitoring of presynaptic Ca2+ influx during action potential 

firing as a response to delivered stimulus. Although initially GECIs, such as GCaMP, 

were characterized by lower sensitivity than the synthetic calcium indicators such as 

oregon green (OGB), recent developments have led to significant improvements in the 

dynamic range of these constructs, making them the probes of choice (Akerboom et al., 

2012; Chen et al., 2013). For the purpose of this study we chose syGCaMP6f. This probe 

is presynaptically expressed, which we confirmed by loading expressing cells with sytI-

Oyster550 antibody, and suitable for imaging of fast Ca2+ transients in response to small 

stimulation – 4 APs. Very low baseline fluorescence and punctate appearance of 

responding boutons aided the selection of responding synapses. This probe was used 

to investigate whether Aβ1-42 induces abnormalities in presynaptic Ca2+ dynamics.   

 

3.4.3 Other available tools for studying presynaptic function  

Most of the available genetically encoded fluorescence probes are GFP-based, and 

those with red tags are inferior in comparison to their green counterparts. One example 

of such a construct is sypTomato which is a red tagged synaptophysin with pH sensitive 

red fluorescence protein pHTomato (Li and Tsien, 2012). We tested this probe in the lab 

as it would allow for simultaneous imaging of vesicular release with, for example, pre- or 

postsynaptic calcium transients, and would provide with more comprehensive data on 

the function of a particular synapse. Nevertheless, the responses were very difficult to 

observe and hence the probe was unsuitable for our purposes. Recently, an improved 

red version of GECIs with characteristics similar to GCaMP6 sensitivity has been 

developed (Dana et al., 2016), which could make possible the simultaneous imaging of 

Ca2+ transients and vesicle recycling with GFP-based probe such as sypHy2x.  

Another group of reporters are genetically encoded fluorescent voltage indicators 

(GEVIs). Although calcium imaging can provide information on action potential 
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generation, it has several disadvantages. The temporal dynamics of calcium reporters 

are often not sufficiently fast to capture events arising from generation of individual action 

potentials (Peterka et al., 2011). They are also not suitable for imaging sub-threshold 

events (Peterka et al., 2011). The development and design of satisfactory functioning 

GEVIs poses several challenges some of which are: targeting the probe to the thin, two-

dimensional membrane, rapid dissipation of electrical field, binding of the probe to 

internal membranes and intensity of emitted light (Peterka et al., 2011). Recently 

engineered, ArcLight overcomes this shortfall, with significantly improved signal-to-noise 

ratio in comparison to its predecessors, allowing to image single action potentials (Cao 

et al., 2013; Jin et al., 2012). We tried this probe but identification of responding cells 

was very cumbersome and neuronal health compromised, which prevented its use in this 

study. Alternative to GEVIs are high sensitivity voltage probes suitable for intracellular 

application such as JPW3028 used to study signal processing in axons in pyramidal 

neurons (Popovic et al., 2011). Nevertheless, unlike GEVIs which are expressed in 

multiple neurons, these dyes require delivery via a patch pipette, which largely limits the 

number of readouts that can be obtained in a given experiment. This approach would be 

irrational for the type of the experiments carried out in this study.  

Alternative methods for studying vesicle recycling are emerging. Quantum dots (Qdots), 

which are small enough in size (12-25 nm) to fit within the lumen of synaptic vesicles, 

and loosely attach to neuronal membranes allowing for their endocytic uptake (Zhang et 

al., 2009b). These small particles with a crystal core and hydrophilic coating, are 

characterized by very bright photoluminescence and great photostability, making them 

superior to FM1-43 dyes in this regard, and exhibit pH-dependent fluorescence, similar 

to that of pHluorin molecules (Zhang et al., 2009b). Qdots therefore seem like the probe 

of choice for long term imaging of single synaptic vesicles. Indeed, they have been 

successfully used for this purpose, in the studies deciphering the dominant mode of 

endocytosis at hippocampal neurons (H. Park et al., 2013; Zhang et al., 2009b). 
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Nevertheless, one of the major drawbacks of this method is that Qdots exhibit  ‘blinking’ 

of the fluorescence of random occurrence and duration, which can complicate 

interpretation of the measurements (Zhang, 2013). Moreover, Qdots have the tendency 

to form aggregates, which have to be removed via size exclusion column before 

application to neurons. 

This demonstrates that the current tools have many drawbacks, but inevitably, in time 

the ability to optically monitor the function of presynaptic terminals will doubtless lead us 

to new discoveries and deeper understanding of the subject. The ability to 

simultaneously monitor multiple processes within the same boutons, for example Ca2+ 

influx and SVs recycling, at the level of single synaptic vesicles, is the highly desirable 

tool that is missing, but one that is already under development (Li et al., 2011). The 

improvements in photostability, signal-to-noise ratio, toxicity, specificity and reporting 

kinetics would all facilitate the progress in our understanding of the events accompanying 

the release of synaptic vesicles.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



123 
 

4 CHARACTERIZATION OF 

SINGLE VESICLE 

ENDOCYTOSIS 
 

 

 

 

 

 

HIGHLIGHTS 

 

 The timing of synaptic vesicles endocytosis is highly 

heterogeneous within synapse populations 

 

 Fluorescence amplitude of sypHy2x corresponding to single 

vesicle exocytosis is established 

 

 Individual synapses exhibit signature timing of endocytosis 

following single vesicle release events 

 

 The similarity measures cannot be explained by experimental 

or analysis factors   
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4.1 Introduction 

In the previous chapter we validated available tools for optical analysis of presynaptic 

function. SypHy2x was identified as the most suitable probe for our study – investigation 

of the timing of synaptic vesicles endocytosis and elucidating the properties of 

presynaptic terminals underlying them. Small central synapses show a high level of 

variability in their structure and function across the population of synapses (Dreosti et 

al., 2009; Harata et al., 2001; Ratnayaka et al., 2012). This variability is shaped by the 

recent history of their activity to meet the functional demands. Previous studies showed 

that hippocampal synapses were found to have a variable recycling pool fraction (Kim 

and Ryan, 2010; Marra et al., 2012; Ratnayaka et al., 2012), a high level of heterogeneity 

in pr (Branco et al., 2008; Branco and Staras, 2009) and a large variation in the number 

of docking sites (Pulido et al., 2015). These properties are key determinants of synaptic 

strength. The expression of important for transmission proteins, such as Munc18, was 

also found to vary from synapse-to-synapse (Cijsouw et al., 2014). The expression of 

vGlut1 or vGlut2 isoforms on synaptic vesicles was found to be an important locus for 

regulation of release probability and diversity between synapses (Weston et al., 2011). 

Another parameter highly variable between individual boutons was the destaining 

kinetics of FM1-43 (Klingauf et al., 1998). Although sometimes not directly commented 

on by the authors, from the representative examples of fluorescence profiles, the 

variability in the kinetics of fluorescence decay during endocytosis from pHluorin based 

studies is very apparent (Balaji & Ryan, 2007; Dean et al., 2012; Gandhi & Stevens, 

2003; Sankaranarayanan & Ryan, 2000; Zhu, Xu, & Heinemann, 2009). Similar 

observation can be made based on the example endocytic profiles generated with Qdots 

(Zhang et al., 2009a). Collectively, these studies demonstrate that presynaptic function 

is very varied, and yet the basis of this variability is still not well-understood. Defining the 

regulatory rules that are responsible for the behaviour of neurons and synapses is one 

of the major aims in neuroscience. A deep understanding of these rules could not only 
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contribute to our knowledge of the workings of the nervous system, but could also prompt 

identification of disease-associated changes in synapses in the future. We therefore 

decided to test the hypothesis that although there might be a high heterogeneity in the 

kinetics of endocytosis at the level of population of synapses, individual boutons might 

exhibit signature patterns of single vesicles endocytosis.  

In the first section of this chapter we tested for variability in the endocytic kinetics 

observed after 40 APs stimulation. Of course, some temporal information might be 

masked through the summing of multiple vesicle recycling events. For this reason, in the 

second part of this chapter we decided to take the novel approach of examining variability 

in endocytosis following single vesicle release events. 

Studies on single synaptic vesicles provided important information on many aspects of 

presynaptic function. Balaji and Ryan, 2007 showed that the kinetics of single synaptic 

vesicle endocytosis is highly variable and stochastic within a population of responses 

from multiple individual vesicles. The copy number of an important exocytic protein, 

synaptobrevin, sufficient for vesicle fusion, was deciphered in a study looking at single 

vesicle release events (Sinha et al., 2011). The disputed origin and properties of synaptic 

vesicles released during evoked or spontaneous neurotransmission were also examined 

by tracking the behaviour of single synaptic vesicles (Peng et al., 2012).  

The quantal nature of neurotransmitter release was established from 

electrophysiological studies. The measurement of miniature excitatory postsynaptic 

current (mEPSC), which corresponds to the release of neurotransmitter content of a 

single synaptic vesicle, was the basis for the formulation of the hypothesis of the quantal 

nature of synaptic transmission (Del Castillo & Katz, 1954; Fatt, & Katz, 1952). 

Subsequently, capacitance measurements at presynaptic terminals combined with 

postsynaptic mEPSC recordings were used to monitor the fusion and endocytosis of 

single synaptic vesicles and to directly link these presynaptic events to the postsynaptic 

currents (Sun et al., 2002). Nevertheless, the available methods, which allowed these 
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events to be studied in larger synaptic terminals such as neuromuscular junction, Calyx 

of Held or retinal bipolar synapses, are substantially less useful in the small central 

synapses, due to the very small size and surface area of these synapses. Moreover, 

electrophysiological recordings do not provide information on the behaviour of individual 

boutons, but rather report the postsynaptic effect of the SVs release from multiple 

terminals and neurons. It is also important to note that the findings on the behaviour of 

single synaptic vesicles in these other preparations cannot always be faithfully translated 

to hippocampal synapses (Aravanis et al., 2003). For these reasons, the advent of 

powerful imaging methods and the development of optical reporters such as FM1-43, 

vGpH or sypHy have been critical in permitting the direct monitoring of single synaptic 

vesicle behaviour at individual synapses, where other methods are not readily available. 

Single synaptic vesicles have been successfully imaged using both vGpH and sypHy 

(Balaji and Ryan, 2007; Gandhi and Stevens, 2003; Granseth et al., 2006; Zhu et al., 

2009).  

The main aims of this chapter were to establish: i) the sources of variability in the kinetics 

of endocytosis at individual synapses; ii) whether we could determine sypHy2x 

fluorescence amplitude corresponding to the release of single synaptic vesicle; iii) 

whether, despite the high level of heterogeneity in retrieval kinetics in the population, 

individual synapses show signature kinetics of endocytosis following single vesicle 

release events.  

 

4.2 Heterogeneity in the timing of synaptic vesicle endocytosis 
amongst synapses 

4.2.1 High variability in endocytosis following RRP mobilizing stimulus  

We first set out to examine the variability within endocytic profiles resulting from 

stimulation with 40 APs at 20 Hz, an activity protocol which is known to mobilize the RRP. 
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For this purpose, we used sypHy2x, a genetically-encoded construct validated in the 

previous chapter. We reasoned that 40 APs would recruit sufficient vesicles to allow us 

to robustly visualize fluorescence changes during time-lapse imaging and provide a 

baseline measure of variability with good signal-to-noise.  

The preparation of the cell culture, AAV.sypHy2x infection and experimental conditions 

were as described in section 3.3.1.  Prior to the stimulation trials that were used for the 

analysis, cells were stimulated once with 40 APs and imaged. This allowed the 

identification of responding regions and the pre-bleaching of the sample (that is to 

remove the residual surface fluorescence). The following stimulation and imaging rounds 

were used for the analysis. ROIs of equal size were drawn around individual responding 

terminals and were positioned on the basis of subtracted images (peak response–

baseline), which allowed for easy identification of responding boutons. The fluorescence 

at the peak of the response had to be fully encapsulated within the ROIs in order for the 

synapse to be included in the analysis. 

The first striking observation in the baseline subtracted data was the variability between 

different boutons in the size of the responses evoked with 40 APs 20 Hz stimulation 

(Fig.4.1.A). This high variability in the level of the release can be caused by various 

factors such as pr of individual boutons, the distribution of Ca2+ channels or the size of 

the active zone (Eggermann et al., 2011; Holderith et al., 2012; Marra et al., 2012; Matz 

et al., 2010). Nevertheless, the interest of this study was focused on the variability in the 

kinetics of endocytosis. In order to test this we fitted traces with single exponential curves 

constrained to the average of 3 frames following the response peak. The analysis was 

carried out on bleach corrected, non-normalized data. For presentation purposes, traces 

were normalized to the baseline and to the peak of the stimulation. Figure 4.1.B. shows 

15 traces from Figure 4.1.A fitted with a single exponential curve. The high variability in 

the endocytic kinetics between the synapses is apparent (Coefficient of variation: 

83.32%) (Fig.4.1.C and D). The analysis of the timing of endocytosis at the calyx of Held 
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following various stimulation intensities revealed differences in the retrieval time, 

depending on the frequency of action potentials and as a consequence of the number of 

vesicle released (Sun et al., 2002). In our case, the fluorescence amplitude represents 

the number of released vesicle at a given synapse, which is shown in Fig.4.1.A and which 

was highly variable in synapses measured. For a more detailed analysis, we therefore 

selected a subset of traces within a defined amplitude range, in order to examine the 

extent of endocytic rate variability when the amplitude of exocytosis was constrained.  

All the responses were filtered according to the selected fluorescence range (ΔF = 80-

120 a.u.) (Fig.4.1.E) and again fitted with single exponential decay profiles (Fig.4.1.F). 

The variability in tau readouts in this limited data set was still high (Coefficient of variation: 

29.9%), although significantly lower than for all data (n = 51 and 331 synapses, 

respectively, two-tailed unpaired Student’s t-test, P = 0.03).  

These data suggest that the endocytic kinetics following the RRP mobilizing stimulus are 

highly variable between synapses.  The lower endocytic variability within a given range 

of response amplitudes suggests that there is at least a partial dependency of the 

retrieval kinetics on the number of vesicles released. Nonetheless, even when 

constrained to a small range of response amplitudes, variability in endocytosis is still 

preserved. This implies that heterogeneity is a central feature of homogeneous synaptic 

populations, even under circumstances when the data are corrected for the number of 

vesicles released. The other conclusion to be drawn from this is that it is highly important 

to consider the response amplitude in experiments aiming to compare endocytic kinetics 

between different treatment groups when protocols leading to multivesicular release are 

used. 
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Figure 4.1 Variability in the kinetics of synaptic responses to 40 APs, 20 Hz 
stimulus (sypHy2x readouts). A) The degree of discrepancy in the size of the response 
of individual synapses to stimulation with 40 APs at 20 Hz (example traces from 42 
synapses, 5 coverslips). B) Traces (green) were normalized between the baseline and 
the peak of the response and single exponential (red) was fitted to each trace revealing 
high variability in the kinetics of endocytosis (n = 15 example synapses from 5 
coverslips). C) Average kinetics of all the traces (green) fitted with single exponential 
(red) used for tau analysis in D (n = 331 synapses from 5 coverslips). D) Whisker plot 
illustrating variability in tau measurements across synapses. Graphs E-H mirror A-D but 
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for limited range of responses. E) Responses of 57 synapses (5 experiments) to 40 APs 
stimulation within 80-120 fluorescence range. F) Examples of normalized traces (green) 
fitted with single exponential (red) (n = 21 from 5 experiments). G) Average of all traces 
from 80-120 range (green) fitted with single exponential (red) (n = 51 synapses from 5 
experiments). H) Whisker plot summarizing variability in tau within the chosen range of 
responses (n = 51 synapses from 5 experiments).       
 

 

4.2.2 Examining the possible source of variability 

Having established that there is a variability in the rate of endocytosis following 40 APs, 

20 Hz stimulus, even within data limited to the responses within a range of exocytic 

amplitude (ΔF = 80-120 a.u.), we wanted to test, firstly, whether this variability might be 

related to the bleaching rate of the baseline fluorescence, and secondly, whether the 

endocytic rate is varied depending on the number of vesicles released within this 

fluorescence range. Assuming that the size of the response had an effect on the retrieval 

rate, that could mean two things: i) the bleaching rate is different in case of larger 

responses due to more unquenched fluorescence on the surface upon vesicle release; 

ii) the endocytic machinery copes differently with the endocytic load when fewer or more 

vesicles are released. In order to examine these possibilities, we measured the slope of 

the baseline fluorescence prior to the onset of the stimulation and the amplitude of the 

responses for each analysed profile.  

The same data as in Figure 4.1.G was used for this analysis. The slope of the baseline 

was calculated on the basis of the average of 3 frames at the beginning of imaging, which 

was divided by the average fluorescence just before the onset of the stimulation, and by 

the total number of baseline frames (40 frames, 3.6 s) (Fig.4.2.A). The amplitude of the 

response was calculated by subtracting the baseline fluorescence (average of 3 frames 

before the onset of the stimulation) from the average of 20 frames spanning the peak of 

the stimulation (Fig.4.2.A). Both readouts were plotted against tau measurements for 

each synapse (fitting described in previous section). We found that there was neither a 
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correlation between the rate of vesicles retrieval and the baseline bleaching rate (n = 51 

synapses, Pearson’s correlation test, r = 0.1029, P = 0.491) (Fig.4.2.B), nor between the 

response amplitude and the tau readouts (n = 51 synapses, Pearson’s correlation test, r 

= 0.1130, P = 0.4497) (Fig.4.2.C) in synapses within a set range of response amplitudes 

(ΔFexo = 80-120 a.u.).  

These results suggest that the variability of the kinetics of endocytosis cannot be simply 

explained by the variable sypHy2x baseline fluorescence or the difference in the 

endocytic load resulting from the number of vesicles released by a given synapse. 

 

Figure 4.2 Rate of synaptic vesicle endocytosis does not depend on the baseline 
fluorescence or the response amplitude. A) Schematic illustrating methods of 
measurements used. The slope of the baseline was calculated by taking the average 
fluorescence of 3 frames at the beginning of the imaging and 3 frames before the onset 
of the stimulation, divided by the number of frames (left). The amplitude of the responses 
was found by subtracting the baseline fluorescence (average of 3 from prior to the 
stimulation) from the average fluorescence of 20 frames at the peak of the stimulation 
(right). There was no correlation between the kinetics of endocytosis and baseline slope 
(B, n = 51 synapses, Pearson’s correlation test, r = 0.1029, P = 0.491) and the amplitude 
of the response (C, n = 51 synapses, Pearson’s correlation test, r = 0.1130, P = 0.4497).  
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4.2.3 High variability between synapses of the same type  

Another possibility explaining high variability in the endocytic kinetics across boutons 

might be heterogeneity of the population of sampled synapses. Unlike vGpH, which is 

only expressed in excitatory synapses (vesicles carrying vesicular glutamate transporter 

1), sypHy2x does not discriminate between inhibitory and excitatory synapses. Although 

most synapses in hippocampal cultures are glutamatergic (Benson and Cohen, 1996; 

Gulyá et al., 1999), it is possible that our population contains both inhibitory and 

excitatory boutons and the variability is a result of the difference in the behaviour of these 

two populations of synapses. The proteomic analysis of the core proteins involved in 

vesicle docking and exocytosis showed no difference between GABAergic and 

glutamatergic terminals and the two populations only differed in neurotransmitter-specific 

enzymes and transporters (Boyken et al., 2013). Perhaps the same rule applies to 

endocytic proteins. Nevertheless, we wanted to test whether the population of 

glutamatergic synapses alone exhibits similar extent of variation in the timing of vesicle 

endocytosis. In order to achieve this we labelled cultures with vGlut1 and vGlut2 

antibodies. 

First we carried out a functional readout of endocytosis with sypHy2x expressing cells 

during 40 APs, 20 Hz stimulation. DIC images at 10x magnification were taken to 

facilitate refinding of the region of interest following antibody labelling. Immediately after 

imaging cultures were fixed with 4% PFA, permeabilized, blocked and co-labelled with 

vGlut1 and vGlut2 antibodies (1:1000 and 1:2000, respectively) (protocol in section 

2.11). The reason for co-labelling comes from a study which showed that neocortical 

synapses in primary culture exhibited the developmental switch in the expression of 

these two transporters (Berry et al., 2012). The proportion of vGlut1-expressing 

synapses and the level of this transporter at individual synapses was gradually 

increasing at the expense of vGlut2 as the cells and synapses matured (Berry et al., 

2012). The purpose of our experiment was to identify all glutamatergic boutons in the 
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preparation; hence we labelled our samples with both vGlut1 and vGlut2 antibodies and 

used secondary antibodies, which were both GFP-tagged. Details on the 

immunolabelling protocol are in section 2.11 and the results of the control experiment for 

the specificity of secondary antibody binding in the Appendix I, Figure 1.    

Following the labelling, previously imaged sypHy2x expressing regions were relocated. 

The analysis showed that boutons expressing sypHy2x, responding to 40 APs, 20 Hz 

stimulation, were well colocalized with vGlut1 and vGlut2 fluorescence (Fig.4.3.A). The 

analysis of fluorescence profiles revealed a very close overlap of vGlut1 and vGlut2, and 

sypHy2x fluorescence (Fig.4.3.B). Despite the fact that fluorescence profile of sypHy2x 

before and after staining was perfectly matched in this particular experiment, due to the 

fact that multiple coverslips and regions had to be relocated, it often proved to be difficult 

to seamlessly align the images from before and after staining for the purpose of 

fluorescence correlation. We also tested whether sypHy2x baseline fluorescence was 

comparable before and after staining (Fig.4.3.B). The results in Fig.4.3.C are from the 

experiment where images before and after staining were perfectly overlaid. From this, it 

is apparent that vGlut1 and vGlut2 is well correlated with sypHy2x signal (Pearson’s 

correlation test, n = 41 synapses, r = 0.7493, P < 0.0001), confirming the glutamatergic 

nature of the analysed boutons. In order to improve the number of boutons available for 

the analysis, the same set of ROIs was used as in the functional part of the experiment, 

but ROIs were carefully adjusted for each synapse in the images following labelling to 

account for the shift in the regions originating from repositioning of the coverslips for 

imaging. This allowed us to evaluate vGlut1 and vGlut2 fluorescence against the 

sypHy2x fluorescence background following the labelling (Fig.4.3.D). With this result we 

were therefore able to confirm that all the synapses selected for functional analysis were 

glutamatergic (Pearson’s correlation test, n = 154 synapses, r = 0.7234, P < 0.0001) 

(Fig.4.3.D). 
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Having identified that the boutons selected for the analysis are glutamatergic we focused 

on the analysis of the endocytic variability within this population of synapses. As before, 

the endocytic kinetics of glutamatergic boutons was measured by fitting single 

exponential function to bleach-corrected, non-normalized 40 APs response profiles of 

individual synapses. The analysis revealed high variability in the timing of vesicle 

endocytosis within these synapses (Coefficient of variation: 38.3%) (Fig.4.3.E). In order 

to test whether other factors affected this variability (as described in sections above), we 

again filtered data according to the response amplitude and selected boutons with ΔF = 

80-120 a.u. for the analysis. For visualization purposes, example profiles were 

normalized to the peak of their response. Although slightly lower, we still observed 

variability within this data set that could impact on the efficiency of function of a particular 

synapse (Coefficient of variation: 24%) (Fig.4.3.F. and G.). From this we can conclude 

that high variability of endocytic kinetics from individual synapses cannot be attributed to 

the difference in the nature of the synapses compared: GABAergic versus glutamatergic.  

 

We recognize that many factors can contribute to variability in the recycling kinetics 

resulting from a stimulation protocol that recruits a sizeable vesicle pool, and where the 

precise number of released and recycled vesicles is stochastic and uncontrollable. In 

order to more reliably scrutinize the properties of individual synapses, we consequently 

decided to switch to an approach where we could examine the behaviour of single 

synaptic vesicles at individual presynaptic boutons. By constraining our investigation in 

this way, we could eliminate the variability arising from stochastic recruitment, and thus 

explore the inherent heterogeneity, or not, in vesicle profiles. Our approach was also 

designed to allow us to compare recycling kinetics across multiple trials, permitting us to 

test whether a particular response profile was preserved across time at individual 

synapses. In the next section of this chapter we first outline the rationale for the approach 

used for measuring endocytic kinetics of single vesicle release events and subsequently 

outline the principal findings.  
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Figure 4.3 Responses to 40 APs, 20 Hz stimulation show high variability in retrieval 
kinetics in the population of glutamatergic synapses. A) Fluorescent image of 
sypHy2x expressing synapses (left). Background was subtracted from frames at the top 
of the stimulation to reveal synapses responding to 40 APs shown here. Presynaptic 
terminals labelled with vGlut1 and vGlut2 antibody (middle). The overlay of sypHy2 and 
vGlut1 and 2 fluorescence (right). The white line indicates the area for which 
measurement is shown in B. Scale bar 10 μm. B) Fluorescence intensity profiles of 
vGlut1 and 2 staining, and sypHy2x baseline before staining and sypHy2x fluorescence 
after staining. C) Correlation between vGlut1 and vGlut2 fluorescence and sypHy2x 
baseline prior to staining (Pearson’s correlation test, n = 41 synapses, r = 0.7493, P < 
0.0001) and (D) between vGlut1 and 2 and sypHy2x fluorescence after staining 
(Pearson’s correlation test, n = 154 synapses, r = 0.7234, P < 0.0001). E) Variability in 
the kinetics of endocytosis following 40 APs, 20 Hz stimulation in excitatory synapses (n 
= 159 synapses, 3 regions from 2 coverslips). F) Examples of profiles from 19 excitatory 
synapses from 3 coverslips of which responses to 40 APs, 20 Hz stimulus were within 
80-120 ΔF a.u. fitted with single exponential constrained to 1. G) Variability in the kinetics 
(τ (s)) of synapses from 80-120 ΔF a.u. range (n = 36 synapses, 3 experiments, 2 
coverslips).   
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4.3 Synapse-specific timing of single vesicle endocytosis 

4.3.1 Visualization of single vesicle release events  

Having identified high variability in endocytic kinetics following 40 APs 20 Hz stimulation, 

we wanted to test whether the same applies to the retrieval kinetics of single synaptic 

vesicles. As a starting point for this kind of approach, it is necessary to establish the 

signal corresponding to a single vesicle fusion event. For the purposes of this work, and 

in line with the assumptions made by others previously, we reason that a change in the 

fluorescence corresponding to vesicle fusion events conforms to a quantal distribution 

profile. In this way, the smallest quantal responses should correspond to single vesicle 

fusion profiles. A fluorescence value corresponding to single vesicle release event has 

been successfully determined by a few research groups in their imaging systems using: 

FM1-43 (Aravanis et al., 2003; Chen et al., 2008; Ryan et al., 1997), synaptopHluorin 

(Gandhi and Stevens, 2003), sypHy (Zhu et al., 2009), vGpH (Balaji and Ryan, 2007) 

and iGluSnFR (Marvin et al., 2013). The first step in this work was to establish the 

fluorescence value that reflects single vesicle release events in our system.  

Cells were infected with AAV.sypHy2x viral construct. 10 days were allowed for the 

expression of the construct following which the cultures were used for imaging. After a 

suitable region was found, a culture was imaged whilst being stimulated 10 times with 4 

APs 20 Hz stimulus in EBS with blockers (20 µM CNQX, 50 µM AP-5) (Fig.4.4.A). The 

stimulation with 4 action potentials was chosen based on our knowledge of the probability 

of release at hippocampal synapses.  Although highly variable, this has been estimated 

to be 0.22 ± 0.03 at hippocampal neurons (Branco et al., 2008), meaning that at 1 AP 

stimulation there is ~25% chance for a release event to occur. Therefore, by using 

stimulation at 4 APs, we significantly increased the likelihood of capturing a single vesicle 

fusion event, ultimately reducing the exposure of the sample to blue excitation light. For 

the purpose of analysis we discarded the first trial as a bleaching trial and used the 

profiles from the remaining 9 trials. The practise of pre-bleaching was previously 
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employed by (Gandhi and Stevens, 2003) who showed that although the fluorescence 

quenched in resting synaptic vesicles is not affected,  pre-bleaching the sample for 2 min 

resulted in 90% attenuation of the background fluorescence. As the surface expression 

of synaptophysin is nearly half of that of synaptobrevin (refer to section 1.6.2.2), 40 

seconds pre-bleaching was sufficient in our system. Longer bleaching times could have 

added unnecessary imaging time and resulted in the production of toxic to cells reactive 

oxygen species (Peterka et al., 2011). The synapses used for analysis were rigorously 

selected. At least 5 images from the 9 trials were screened, and the synapses had to 

conform to a set of pre-set rules in order to be included in the analysis: i) stable, low level 

baseline fluorescence puncta, ii) clear separation from the neighbouring synapse, iii) the 

fluorescence at the peak of the response had to be well encapsulated within the 

boundary of the ROI (2.8 x 2.8 µm) and not saturated.  

 

The variation in the size of 250 example responses to the same 4 APs level of 

stimulation, is clearly apparent (Fig.4.4.B). Figure 4.4.C shows the behaviour of a 

representative synapse to the consecutive stimulation rounds. From these responses, 

we can fairly confidently establish how many vesicles were released in a given round of 

stimulation: 1, 2 or none. We found that the distribution of fluorescence amplitudes 

resulting from 699 events from 80 synapses, was well-described by a multiple Gaussian 

fit (P (χ² ≤ CV) = 1, χ² test, d.f. = 53) (Fig.4.4.D). The first peak was located near 0 a.u. 

intensity and corresponds to those events that did not result in vesicle release, reflecting 

the noise in the baseline fluorescence. The second peak, positioned at ΔF = 124.6 ± 3.5 

a.u. reflects the responses of 1 quantum – single synaptic vesicle release events. The 

width of the peak was used for determining the range of 1 quantum sizes (ΔF1Q = 92.2-

157 a.u.). Peaks corresponding to 2 and 3 quantum events were also clearly 

distinguishable. The analysis of the positions of the peaks established from the multiple 

Gaussian fit, shows that ΔF increased by uniform increments of the same fundamental 

value, corresponding to the fluorescence resulting from single vesicle release (Pearson’s 
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correlation test, r = 0.999, P = 0.0014) (Fig.4.4.D, inset). We therefore established the 

fluorescence amplitude corresponding to single vesicle release events in our system.  

 

In order to confirm our result we applied the identified fluorescence amplitudes for 1 

quantum and 2 quanta values to our data. Figure 4.4.E shows representative images of 

synaptic responses identified to be a single vesicle and 2 vesicle release events. 

Responses were filtered according to our values determined for 1 and 2q,  ΔF = 92.2-

157 a.u. and ΔF = 210-247 a.u., respectively. There was an apparent difference between 

the responses falling within the two ranges. 1q responses were also distinctly identifiable 

from the failures – noise within the system (Fig.4.4.F). 

 

We showed that we were able to confidently identify the fluorescence amplitude in our 

system corresponding to single vesicle release events and that we were able to isolate 

fluorescent profiles according to their quantal size.    
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Figure 4.4 Establishing fluorescence amplitude of single vesicle release events. 
A) Schematic represents the protocol used for data collection. Synapses were imaged 
whilst being stimulated 10 times with 4 APs stimulus. B) 250 fluorescent profiles resulting 
from 4 APs stimulation showed high variability in the size of the response. C) Responses 
to repeated stimulation (10 trials at 4 APs) from a single synapse reveal quantal nature 
of the synaptic behaviour and occasional failures to respond. D) Histogram of 
fluorescence amplitudes of 699 events from 80 synapses, 3 experiments. Red line 
represents multiple Gaussian fit revealing peaks at 12.8 ± 3.23, 124.6 ± 3.48, 288.5 ± 
3.15 and 316.5 ± 4.2 ΔFluorescence values corresponding to 0q, 1q, 2q and 3q release 
events (values summarized in the table; P (χ² ≤ CV) = 1,  χ² test, d.f. = 53). The width of 
the peak (red dashed lines) was used as a boundary for determining the size of 
ΔFluorescence range corresponding to single vesicle release (fluorescence 124.6 ± 
32.4). The position of the peaks obtained from Gaussian fit revealed that these fall as 
multiples of single quantal unit (Inset, Pearson’s correlation test, r = 0.999, P = 0.0014). 
E) Change in fluorescence corresponding to either single or two vesicle release events. 
F) Examples of profiles falling within the 0q, 1q and 2q ranges. Red lines represent the 
averages of the profiles shown in green.  
 
 

 

4.3.2 Variability in fluorescence retrieval after stimulation evoked release   

events 

Following the observation that endocytic kinetics after 40 APs, 20 Hz stimulation are 

highly variable, we set out to explore whether profiles arising from 4 APs stimulation 

protocol reveal similar variability, and if so, to later investigate whether the kinetics of 

retrieval might be governed at the level of individual synapses. Variability in the 

endocytosis of single synaptic vesicles was previously described in a study using 

synaptopHluorin, where single vesicle retrieval times were classified into 3 distinct 

categories (Gandhi and Stevens, 2003). Others using either vGpH (Balaji and Ryan, 

2007) or sypHy4x (Zhu et al., 2009) did not comment on this variability despite the fact 

that it is apparent from the representative traces shown in their figures.  

 

As outlined above, we stimulated the AAV.sypHy2x-expressing hippocampal neurons 

10x with 4 APs, leading to the release of small number of vesicles or failures. The 

histogram in Fig.4.5.A shows responses from 50 synapses, which were ordered 

according to the amplitude of the response. In this experiment, ~30-35% of trials resulted 

in failures, confirming that the logic behind using 4 APs stimulation is correct and we 
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were able to elicit more release events than previously reported for 1 AP stimulation (pr 

= 0.22 ± 0.03 of hippocampal neurons) (Branco et al., 2008). As mentioned in section 

4.2.1, only 9 trials were used for the analysis with the first trial used as a photobleaching 

step for the reasons described above. The heatplot in Figure 4.5.B allows us to trace the 

responses of individual synapses shown in Figure 4.5.A. in the subsequent trials (looking 

vertically), but also enables the investigation of the behaviour of synapses across an 

individual trial (looking horizontally). High variability of synaptic performance is very 

apparent from this figure. Not only is it manifested in the size of the responses, but also 

in the timing of endocytosis, which are depicted here by the intensity and the length of 

the green bars, respectively. This variability can be directly visualized in the individual 

endocytic profiles. Figure 4.5.C shows examples of responses from 14 synapses in 5 

consecutive trials. The variability in the fluorescence amplitudes and the timing of 

endocytosis are apparent. A few responses from individual synapse in 4.5.C are 

displayed in isolation for better visualization of this (Fig.4.5.D). Taken together, these 

data demonstrated that high variability exists in endocytic kinetics following single vesicle 

release events. The next focus of this work was on characterizing the regulatory rules, if 

any, that specify the endocytic kinetics at individual synapses.  
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Figure 4.5 Variability in the synaptic responses to 4 APs stimulation. A) Heat plot 
summarizing responses of 50 synapses to 10 x 4 APs stimulation arranged according to 
the size of the response: failures on the left, largest responses on the right, dark area at 
the bottom is the baseline. The number of imaging frames (460) corresponds to 41 s of 
imaging time. B) Variability in the responses can be horizontally traced along trials or 
vertically along individual synapses. C and D) Examples of profiles from the same 
synapses over multiple trials.  
 

 

4.3.3 Establishing method for measuring single vesicle kinetics 

For the purposes of a detailed characterization, it was important to establish a method 

for quantifying kinetics of these single vesicle profiles. Specifically, the aim was to find a 

quantitative, descriptive approach to characterize and compare the kinetics of traces with 

different retrieval profiles. As is observed in Fig. 4.5 and in the examples in Figure 4.6.B 

and D, there is a huge variety in the shapes of these profiles. The challenge was to 

establish a quantitative approach that would encapsulate the features of these profiles 

and that would permit comparisons to be made between traces. We therefore trialled 
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different approaches to establish a suitable analysis strategy for describing profiles and 

the timing of fluorescence decay.  

The endocytic decay of signals from pHluorin-based constructs has been typically 

described and measured using single exponential fits (Balaji et al., 2008; Budzinski et 

al., 2011; Granseth et al., 2006; Voglmaier et al., 2006; Zhao et al., 2014). Nonetheless, 

many of these studies are considering profiles arising from larger stimulation protocols 

(for example, 40 APs), where the timecourse of fluorescence change is an average 

product of multiple vesicles undergoing recycling. We were unsure if the same approach 

would be suitable for single vesicle kinetics where, as outlined above, variable profiles 

are readily apparent. To test this, a custom written Matlab script was used to select 

endocytic profiles following single vesicle release events based on the identified 1q 

response amplitude. We found that a single exponential decay curve was an excellent fit 

for the average curve of fluorescence decay arising from these 1q responses (Fig.4.6.A). 

However, it was clear that individual profiles were not adequately described by the same 

single exponential fit approach (Fig.4.6.B). To provide a better description of these 

profiles, we tested various functions in search for the best approach for comparing these 

complicated traces. All functions were fitted to the same number of frames starting from 

the peak of the response to the end of each profile and fits were not constrained to any 

values. We trialled various strategies: fitting individual profiles with single and double 

exponential, linear, as well as 2nd and 3rd order polynomial functions. We then calculated 

the R2 for each profile and averaged the values for all synapses, for each function. Where 

the function was not successfully converged we assigned the R2 as 0 and reported the 

number of unsuccessful fits (Fig.4.6.C). In the case of single and double exponential 

functions, a substantial fraction of profiles, 16 and 12%, respectively, could not be fitted 

(Fig.4.6.C). The linear fit produced a reliable fit for every trace, although this was not 

necessarily a perfect description of the profile in all cases. We reasoned that the 

simplicity of this fit and the single slope value that represented fluorescence decay would 

be most suitable for estimating the kinetics of traces, allowing us to preserve as many 



144 
 

profiles as possible and reliably evaluate the behaviour of the majority of synapses. Third 

order polynomial fit was, as expected, the best for describing the complex shapes 

observed in some traces (Fig.4.6.C and D). For this reason, we chose to use this function 

for our analysis of the similarity between traces since it faithfully represented all features 

of the profiles – important for our comparative analysis - and also allowed us to limit the 

basal signal noise, which would otherwise contaminate comparisons. 

 

In summary, from this analysis we determined the most suitable functions that will be 

used for the analysis of behaviour of single vesicles at individual synapses: linear, for 

estimating the kinetics of the traces, and third order polynomial, for the analysis of the 

similarity of the profiles.  

 

 
 
Figure 4.6 Selection of the best function describing endocytic retrieval following 
single vesicle fusion events. A) Average of 123 1q responses from 3 experiments fitted 
with single exponential fitted to the mean trace (R2 = 0.9853). B) Examples of individual 
single vesicle response traces that were not successfully fitted with single exponential. 
C) Table summarizing goodness of fit of various functions to single vesicle traces. All 
functions were fitted to the same number of x values and not constrained to any value (n 
=123 1q traces from 3 experiments). D) 3rd order polynomial function describes well the 
shape of the traces. 
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4.3.4 Behaviour of single vesicles at individual synapses  

Having established the fluorescence amplitude corresponding to single vesicle release 

events and the functions best describing the kinetics and the shape of fluorescence 

decay, we turned our attention to examining the endocytic profiles from individual 

synapses following single vesicle fusion events. The logic for this is as follows. Although 

our initial work reveals substantial variability across the population of synapses and trials, 

we wondered whether less variable responses might be observed where we limit our 

investigation to individual terminals. In other words, could we see evidence for ‘signature’ 

profiles at single synapses, with endocytic kinetics preserved across trials? Such an idea 

would offer evidence for underlying order in the apparently random fluorescent decay 

kinetics observed at the population level. To test this hypothesis, the protocol previously 

described was followed by one where AAV.sypHy2x-expressing cells were repeatedly 

stimulated with 4 APs and the single vesicle release profiles were filtered from all the 

responses using custom written Matlab scripts (Fig.4.7.A). Although, as expected, there 

was a high variability in the individual profiles (Fig.4.6.B and D), our objective was to 

determine if individual synapses have preserved endocytic kinetics and thus whether this 

heterogeneity in the population of the responses is mainly driven by the differences 

between synapses. We analysed our responses with a Matlab script which not only 

chooses the responses of a given amplitude (1q), but also fits third order polynomial 

function to all selected traces, and maintains the profiles assigned to their individual 

synapse. Thanks to this we were able to screen multiple 1q responses within individual 

synapses. The outcome of this approach indicated that despite the high variation 

between the different synapses, the timing of endocytic profiles might indeed have a 

synapse-specific component to it (Fig.4.7.B). This similarity of profiles from different 

trials, and in some cases, even complex features of these profiles, were faithfully 

replicated at individual synapses. The next step was to design an approach to formally 
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quantify this similarity of endocytic timing within a synapse versus the population of 

synapses.  

 

 
 
Figure 4.7 Individual synapses exhibit signature endocytosis kinetics. A) Cartoon 
representing experimental and analysis approaches. Single vesicle responses (green) 
at each synapse were selected from 9 x 4 APs trials. B) Examples of single vesicle 
responses from individual synapses (grey). All traces were fitted with 3rd order 
polynomial function (green) revealing varied and yet synapse-specific kinetics of 
endocytosis.  
 

 

4.3.5 Measuring the homogeneity of behaviour of vesicles at individual 

synapses 

One of the biggest challenges of this study was to devise a reliable method for 

comparison of the traces at individual synapses and for comparing them to the population 

of the responses from multiple synaptic boutons. As shown in Figure 4.6. and 4.7. single 

vesicle endocytic profiles have complex, multi-step kinetics, which in many studies is 

obscured by averaging across all the responses. Although single vesicle profiles are 

clearly distinguishable from baseline signal in our imaging system, their inherently noisy 
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nature complicates approaches for comparing them. To circumvent this, we elected to 

use the 3rd order polynomial function fit, which provides a good representation of the 

properties of individual profiles. The next step was to establish a way of measuring the 

differences between these fitted profiles. We reasoned that the simplest method was to 

calculate point-by-point differences between 1q traces within a given synapse, and to 

generate an average of these giving a measure of Within Synapse Similarity (WSS). For 

a comparative quantification, we needed to test the WSS values obtained against similar 

values, calculated for all the responses in the population of other synapses; in other 

words, within synapse versus between-synapse analysis. Our initial approach for this 

between-synapse analysis was to calculate similarity for all responses from other 

synapses, within a given experiment, excluding the synapse in question. However, we 

subsequently reasoned that this approach had a major drawback. Although there is a 

high variability between the individual profiles, it is also very likely that multiple synapses 

exhibit fairly similar profiles. In this analysis we were therefore arriving at a measurement 

of a deviation from the average of individual profiles within the population, and so 

ultimately we were comparing deviation within a synapse in question to the average 

deviation within the population. This was not the objective of this analysis. Moreover, 

many synapses could have exhibited responses similar to the average response and yet 

have conserved characteristics, which this analysis did not pick up on.  

 

For this reason, we designed another approach summarized in Figure 4.8.A. The 

rationale for this was as follows: if the vesicle retrieval time at individual boutons is 

stochastic, what is the likelihood that profiles with similar kinetics occur at any given 

synapse? In order to answer this question for each experimental synapse, we created a 

randomised synapse. These randomized synapses exactly matched the experimental 

synapse in question in terms of the number of single vesicle responses. These 

responses were randomly drawn from the pool of all single vesicle responses from a 

given experiment in our Matlab script, but excluding the responses originating from the 
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synapse in question. This process was repeated 100 times for each synapse and 

replicated for all the synapses in a given experiment. Employing this method of 

comparing experimental synapses to randomised synapses, we carried out two types of 

analysis: point-by-point analysis and rate analysis, of which results are described in the 

following sections 
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Figure 4.8 Quantification of similarity in single vesicle kinetics at individual 
boutons. A) Schematic representation of the experimental approach. For the analysis 
of similarity within experimental synapse, single vesicle traces were selected from all the 
responses from the particular synapse. Each synapse was compared to a random 
synapse with the same number of single vesicles responses, which were randomly 
drawn from other synapses from the experiment. This was repeated 100 times for each 
experimental synapse. Traces were fitted with 3rd order polynomial function and 
compared within experimental synapse and within each randomized synapse using 
point-by-point analysis, which allowed to establish similarity value for the two. The 
obtained values were used for comparison between experimental synapse and random 
synapse. B) Example of experimental synapse fitted with 3rd order polynomial (left) and 
2 random synapses generated using 1q profiles from other experimental synapses. For 
the example synapse shown, within synapse similarity index (WSS = 0.396) shows less 
variability between the traces in this synapse when compared to the average of similarity 
of 100 random, matching synapses (Random synapse similarity (RSS) = 0.477). C) Data 
comprising of all 1q profiles from a given experiment including single 1q profiles. 98 out 
of 100 trials showed higher variability in the randomized trials than in the experimental 
synapses (data from 25 experiments, binomial test, n = 100, k = 98, p = 0.5, P < 0.0001). 
D) Graph showing comparison between WSS and RSS values. WSSave shown as the 
average of Matlab readouts of WSS from all the synapses ± SEM. RSSave represents the 
average value of RSSsynapse, which in turn is the average of 100 RSS readouts for a given 
synapse ± SEM (two-tailed paired Student’s t-test, P = 0.024, n = 372 synapses from 25 
experiments). E) Analysis by synapse revealed that 64% of randomized synapses were 
more variable than experimental synapses (data from 25 experiments, binomial test, n = 
372, k = 238, p = 0.5, P < 0.0001). F) RSSave value was 64.3% higher than WSSave. Data 
shown as average of 372 synapses ± SEM.  
 

 

4.3.5.1 Point-by-point analysis 

As mentioned above, the first strategy was to carry out point-by-point analysis of the 

traces in experimental synapses and to compare them to the randomized synapses. Just 

to reiterate, single vesicle responses from our 4 APs protocol were selected according 

to the determined fluorescence amplitude for single vesicle exocytosis. The point-by-

point difference was calculated for all responses fitted with 3rd order polynomial function 

within a given synapse and compared to the results from a randomised synapse, which 

was matched to the experimental synapse in terms of the response number. For each 

experimental synapse, 100 randomised iterations were created. The profiles for 

randomised synapses were drawn from the pool of all single vesicle responses within 

the experiment, and point-by-point analysis was carried out for each randomised 

synapse in the same fashion as in the experimental synapse (Fig.4.8.A). The rules for 



150 
 

the selection of traces for randomised synapses were as follows: i) traces from the 

synapse in question were excluded from the pool; ii) each trace could only be selected 

once in a given round; iii) 2 traces from the same synapse could not be selected for 

randomized synapse; iv) traces from synapse with only one single vesicle response were 

included in the pool. From this we obtained a single readout of ‘within synapse similarity’ 

(WSS) and 100 readouts for ‘randomized synapse similarity’ (RSS) to compare with each 

experimental synapse. Figure 4.8.B shows an example of experimental synapse and two 

randomized synapses. The smaller the value of WSS or RSS, the lesser the difference 

between the profiles, and thus, the bigger the similarity in endocytosis within a given 

synapse. 

 

Based on our results, we carried out a series of comparisons ‘by trial’ and ‘by synapse’. 

For the descriptions of the abbreviation of the particular measures refer to Appendix I, 

Figure 2. In the analysis ‘by trial’ we first calculated how many randomised trials had a 

higher RSStrial value than WSSave obtained for experimental synapses. This analysis 

shows whether the similarity in the endocytic decay, as seen in the experimental 

synapses, can be achieved by chance. We averaged RSS values from all synapses in a 

given trial (RSStrial) and compared that value for each trial to the average WSS from all 

experimental synapses (WSSave). Notably, our results showed that 98% of randomized 

trails had higher RSStrial value than the WSSave readout for experimental synapses (data 

from 25 experiments, binomial test, n = 100, k = 98, p = 0.5, P < 0.0001). This suggests 

that the similarity between the profiles within a given synapses is not by chance.  

 

We carried out another analysis of the difference in the point-by-point readout values for 

the experimental and randomized synapses. This result provides information about 

whether the overall variability within the randomized profiles is higher than in the 

experimental ones. We averaged the RSS readouts from 100 trials for each synapse in 

order to obtain a single value of variability for each randomised synapse (RSSsynapse), 
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which we then averaged for all randomised synapses to achieve RSSave. From this we 

found that there was significantly higher variability within the profiles of randomised 

synapses than experimental ones (two-tailed paired Student’s t-test, P = 0.024, n = 372 

synapses from 25 experiments) (Fig.4.8.D).  

 

An alternative way of looking at the data is ‘by synapse’. Here we used the averaged 

RSS values from 100 trials for each randomised synapse (RSSsynapse), in order to test 

whether randomised synapses are likely to show comparable similarity of their profiles 

to the experimental ones. We tested how many randomised synapses were more 

variable than the experimental ones. This comparison was based on WSS and RSSsynapse 

measurements. We found that 64% of randomised synapses were more variable than 

the experimental ones, again confirming that within synapse similarity is not an effect of 

a random process (n= 372 synapses, data from 25 experiments, binomial test, n = 372, 

k = 238, p = 0.5, P < 0.0001) (Fig.4.8.E). Extension of this analysis was the comparison 

of the WSS and RSSsynapse values. In effect, we asked whether RSSsynapse readouts are 

more variable than WSS and, if so, how much more variable. Our analysis showed that 

RSSsynapse readouts yielded 64% more variability between the profiles than WSS 

(Fig.4.8.F), meaning that individual randomised synapses exhibited more variability 

between their profiles than the experimental synapses.   

 

Taken together, these results clearly demonstrate that the properties of endocytic profiles 

are synapse-specific and that the comparable level of similarity cannot be achieved if the 

timing of vesicle retrieval was entirely stochastic at individual boutons.  

 

We wanted to test our data by applying even more strict rules for the selection of profiles 

for the randomized synapses and hence we carried out two more investigations. In this 

analysis the rules for random picking were as indicated above, however, the traces from 

synapses which only exhibited one single vesicle release event were excluded from the 
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available drawing pool. This decision was based on the fact that these individual profiles 

might correspond to a non-standard population; for example, we reasoned that they 

could be populations of travelling vesicles or extrasynaptic release sites, rather than 

conventional synapses (Ratnayaka et al., 2011). As such, they might be characterized 

by different timing of endocytosis and add to the variability in the pool used for 

randomized synapses. In the first version of the analysis in which we excluded these 

traces, we permitted for them to be drawn only where there was no other possibility for 

matching randomized synapses to the experimental ones whilst conforming to the other 

rules described before: i) traces from the synapse in question were excluded from the 

pool; ii) each trace could only be selected once in a given round; iii) 2 traces from the 

same synapse could not be selected for randomized synapse. We carried out the same 

analysis as described above. In this analysis, 72 out 100 randomized trials were more 

variable than the experimental data (data from 25 experiments, binomial test, n = 100, k 

= 72, p = 0.5, P < 0.0001), 60.5% of synapses had more variable RSSsynapse 

measurement than the WSS readout for experimental synapses (data from 25 

experiments, binomial test, n = 372, k = 225, p = 0.5, P < 0.0001), and randomized 

synapses were also 52.4% more variable than the experimental ones (Fig.4.9.A and B). 

As such, the same findings were still preserved.    
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Figure 4.9 Quantification of similarity in single vesicle kinetics at individual 
boutons II. The top row comprises of data where the use 1q profiles was only allowed 
when all other options for drawing profiles from synapses with multiple 1q responses 
were exhausted. Data shown in the bottom row only includes synapses with multiple 
responses within 1q range. A) 72% of randomized trials showed higher variability than 
the experimental synapses (data from 25 experiments, binomial test, n = 100, k = 72, p 
= 0.5, P < 0.0001). B) Comparison of variability across synapses demonstrates 60.5% 
synapses from randomized group were more variable than experimental synapses (data 
from 25 experiments, binomial test, n = 372 synapses, k = 225, p = 0.5, P < 0.0001). 
Analysis of RSSsynapse and WSS showed 52.4% more variability in the profiles in the 
randomized group in comparison to experimental synapses. Data shown as average of 
372 synapses ± SEM. Data in C and D mimics A and B under different rules for drawing 
1q profiles for randomised synapses. C) Data from 25 experiments, binomial test, n = 
100 iterations, k = 68, p = 0.5, P =0.0004. D) Pie graph, data from 25 experiments, 
binomial test, n = 372, k = 227, p = 0.5, P < 0.0001. Bar graph, percentage variability in 
RSSsynapse in comparison to WSSI. Data shown as average of 372 synapses ± SEM. 
   

 

In the third, and most critical analysis approach, we totally excluded synapses where 

there was only one single vesicle trace. To do this, we also had to amend our rule of 

using only a single trace from experimental synapse per randomized synapse; if this was 

not the case, the script could fail to random-match all the synapses due to the difference 

in the number of responses between synapses. This means that in some cases we could 

have compared ‘within synapse’ to other ‘within synapse’ values, especially in those 

experiments with fewer synapses, but with multiple single vesicle responses. This 

analysis could therefore undermine the true differences between ‘within’ and ‘between’ 

comparison by contaminating the random group. Nevertheless, this analysis still yielded 

the same outcome, and thus further added to our confidence that our observation reflects 

biological properties of synapses. In this case, we found that 68 out of 100 randomized 

trials were more variable than experimental synapses (data from 25 experiments, 

binomial test, n = 100, k = 68, p = 0.5, P = 0.0004), 61% of randomized synapses were 

more variable than the experimental ones (25 experiments, binomial test, n = 372, k = 

227, p = 0.5, P < 0.0001) and the variability in randomized group was 51% higher than 

in the experimental group (Fig.4.9.C and D).  
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Taken together it can be concluded from this analysis that the similarity of endocytic 

profiles exhibited within individual synapses is not due to chance but that it reflects a true 

difference in the function between these synapses. In Chapter 5 we explore synaptic 

properties that may account for their conserved behaviour.  

 

4.3.5.2 Rate analysis  

In addition to our point-by-point analysis, which compares the shapes of the profiles, we 

also carried out analysis of the rate difference between the profiles. The point of this was 

not to measure the absolute kinetics of these events, since we have already discussed 

the challenges associated with the complex multi-element nature of the profiles seen 

after single vesicle responses; rather it was to reliably compare the timing of the decay 

at individual synapses and to compare the results to randomized population of synapses 

as described above. In order to do that we used the linear fit. Our goal was to maximize 

the number of measurements, hence we chose linear fit over more conventional single 

or double exponential fits, which often failed to successfully fit our traces (detailed 

analysis in section 4.3.3).  

 

Randomized synapses were generated in the same way as described above, and the 

same analysis logic was followed, only in this case all single vesicle traces were fitted 

with linear fit instead of polynomial, and the difference in the slope between all the traces 

within experimental and randomised groups was calculated (Fig.4.10.A) The smaller the 

returned value (within synapse rate similarity (WSRS)), the more similar were the profiles 

within the tested synapse (Fig.4.10.B). This analysis was carried out based on the data 

set including the responses from synapses which only exhibited one single vesicle 

release as we felt that when these are excluded, effectively we might be comparing 

experimental synapses to themselves. ‘By trial’ analysis revealed that in 95 trails the rate 

difference was larger in randomized synapses than in the experimental ones (data from 
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25 experiments, binomial test, n = 100, k = 95, p = 0.5, P < 0.0001) (Fig.4.10.C), and in 

the analysis ‘by synapse’ we found that 62.1% of randomized synapses were more 

variable than the experimental synapses (data from 25 experiments, binomial test, n = 

372, k = 231, p = 0.5, P < 0.0001) (Fig.4.10.D).  

 

We also tested how the two analysis types, profile shape-based and kinetics-based 

analysis, compare to each other. Do synapses which have more variable profiles (higher 

WSS), also have more variable kinetics (higher WSRS)? The logical answer to this is 

that these two measurements should correlate to each other fairly well but they might 

not need to necessarily be perfectly matched. Even though the profiles might follow a 

similar shape, it is enough if one of the profiles has a slightly more steep decay in the 

initial stages of the retrieval, which can affect the rate difference measurement. 

Nevertheless, there was a strong correlation between the two measures, which in a way 

provides an internal control of the two approaches (Pearson’s correlation test, n = 372 

synapses from 25 experiments, r = 0.755, P < 0.0001) (Fig.4.10.E). 
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Figure 4.10 Quantification of the similarity in the rate of endocytosis within 
individual presynaptic terminals. A) Schematic representing the analysis approach. 
Endocytic traces from 1q responses for both experimental and randomized synapse 
were fitted with linear function. The difference in the slope between the fits was used as 
a measure of similarity. For more detailed description of the initial stages of the protocol 
to Figure 4.8. B) Example of experimental synapse and a randomized synapse fitted with 
linear fit constrained to the peak of the response. For the example synapse displayed 
here, within synapse rate similarity (WSRS) indicated lower variability between the 
profiles in comparison to the random synapse rate similarity (RSRS) generated from 
analysis of 100 random, matching synapses. C) 95% of randomized trials were more 
variable than the experimental synapses (data from 25 experiments, binomial test, n = 
100, k = 95, p = 0.5, P < 0.0001). D) 62.1% of randomized synapses exhibited higher 
rate difference than the experimental synapse (data from 25 experiments, binomial test, 
n = 372, k = 231, p = 0.5, P < 0.0001). E) Strong positive correlation between the WSRS 
and WSS (Pearson’s correlation test, n = 372 synapses from 25 experiments, r = 0.755, 
P < 0.0001). 
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To summarize, experimental synapses exhibited higher levels of similarity in the 

endocytic rates at individual synapses, than the randomized synapses, which represent 

responses from the population of synapses, and were characterized by more variable 

rates of fluorescence decay (Fig.4.11). Our results therefore suggest a strong level of 

preservation of endocytic timing at individual presynaptic boutons, which might result 

from specific properties of these single synapses that will be explored in Chapter 5. 

 

 

 

Figure 4.11 Signature endocytic kinetics at individual synapses. The kinetics of 
single vesicle responses is preserved at the level of individual synapse but varied across 
the population of synapses. 
 

 

 

4.3.6 Experimental factors that may impact on the results 

Having established that individual synapses exhibit signature endocytic behaviour, we 

wanted to explore whether imaging-related factors could have influenced our results. 

Although neuronal cell culture is essentially two dimensional, without much depth, and 

despite the fact that great care was taken when focusing and choosing synapses for the 

analysis to make sure that only those in the middle of the focus were selected, we wanted 

to test whether there might be a difference in the fluorescence signal collected from 
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synapses that are perhaps nearer to the top of the culture (away from astrocytes) or 

those closer to the astrocytic layer. If yes, could this account for the differences in the 

population of profiles while preserving the homogeneity of fluorescence decay within a 

given synapse? 

 

In order to test this we imaged cells during 4 APs stimulation whilst alternating the focus 

within a 4.5 µm depth. This allowed us to image the responses from all the synapses at 

the top and the bottom of the focus, therefore imitating the presence of the synapses 

within different depths within the culture. The fluorescence at the furthest points, at the 

top and bottom of the focus along the profile, were selected to compare the slope of 

fluorescence decay between these profiles (Fig.4.12.A). These points (8 for each focus 

position) were normalized, and when plotted, we found that there was no difference 

between the slope of fluorescence values at the top and at the bottom of the focus (n = 

8 points, two-tailed unpaired Student’s t-test, P = 0.987) (Fig.4.12.B). This means that 

the position of the synapses within the focus range did not influence the shape of the 

profiles. 

 

Secondly, we tested whether baseline slope has an effect on the endocytic decay. Single 

vesicle responses within a given synapse were fitted with linear fit between baseline 

frames (1-39) and immediately following the peak of the response to the end of each 

profile using the same Matlab script as in our similarity analysis. We found that there was 

no correlation between the baseline rate of fluorescence and endocytic decay rate 

(Pearson’s correlation test, n = 74 synapses from 7 experiments, r = 0.087, P = 0.457) 

(Fig.4.12.C).  

 

Thirdly, we examined whether the amount of baseline fluorescence may have an effect 

on the fluorescence amplitude within the responses of 1q size. This can test for two 

different things: i) on the assumption that baseline level of fluorescence reflects synaptic 
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size (section 5.2.1.), we can check whether the quantal size in larger synapses is pushed 

towards the upper range of our 1q range; ii) if the baseline level only reflects the 

difference in the expression of sypHy2x we would expect that the fluorescence amplitude 

of a single vesicle release event would be larger in synapses with higher baseline level 

fluorescence. We calculated the average of 3 frames at the beginning of the profiles and 

plotted it against the fluorescence amplitude, which was calculated by subtracting the 

average of 3 frames just after the peak of the response and the baseline fluorescence, 

average of 3 frames just before the stimulus. We found that there was no correlation 

between the level of baseline fluorescence and the fluorescence amplitude arising from 

single vesicle exocytosis (Pearson’s correlation test, n = 429 single vesicle responses 

from 7 experiments, r < 0.0004, P = 0.994) (Fig.4.12.D). 

 

To conclude, we showed that the shape of single endocytic profiles is not affected by the 

position of the synapse in culture or the accuracy of the focus, neither is it affected by 

the bleaching kinetics of baseline level of sypHy2x fluorescence. We also showed that 

fluorescence amplitude of single vesicle responses is not related to the sypHy2x baseline 

level fluorescence.  
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Figure 4.12 Imaging and other experimental factors. A) Average of responses from 
42 synapses to 4 APs stimulation representing experimental and analysis design. The 
responding synapses were imaged with alternating focus over 4.5 µm depth. 10 frames 
at the top of the focus (brown) and 5 frames at the bottom of the focus (blue) were 
averaged giving 8 points along the profile for each the top and the bottom of the focus. 
B) 3 consecutive images were analysed according to the description in A and the two 
traces obtained normalized. The kinetics of the decay didn’t change between the bottom 
(blue) or the top of the focus (brown) (n = 126 responses from 42 synapses ± SEM). C) 
There is no significant correlation between baseline kinetics (horizontal axis) and the 
kinetics of the endocytosis (vertical axis) (Pearson’s correlation test, n = 74 synapses 
from 7 experiments, r = 0.087, P = 0.457, ns). D) There is no significant relationship 
between the amount of baseline fluorescence (vertical axis) and the size of the response 
within 1q size (ΔFexo horizontal axis) (Pearson’s correlation test, n = 429 single vesicle 
responses from 7 experiments, r < 0.0004, P = 0.994, ns).    
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4.4 Discussion 

In this chapter we showed that small central synapses show a high level of variability in 

response amplitude to a given stimulus, and more importantly in the timing of endocytic 

retrieval of vesicles. We demonstrated that this variability is not associated with 

experimental factors and that it is not due to multiple types of synapses as it can be 

readily observed within a population of glutamatergic synapses. Despite the apparent 

variability in the timing of retrieval of single synaptic vesicles within the population of 

synapses, we made an important finding, namely, that individual synapses are 

characterized by signature retrieval profiles.   

 

4.4.1 Variability in synaptic vesicle endocytosis  

Individual hippocampal synapses have been shown to exhibit high variability in their 

properties. They have been found to differ in their structure, protein expression or 

distribution of calcium channels, which all shape and underlie their function (Dreosti et 

al., 2009; Harata et al., 2001; Michel et al., 2015). We observed in our study that profiles 

from populations of synapses exhibited a high level of variability in the response 

amplitude, which is in line with the studies cited above. This variability might result from 

different pr levels of these synapses with stronger synapses releasing more vesicles in 

response to the same stimulation (Atwood and Karunanithi, 2002; Branco and Staras, 

2009). Not only did we observe high variability in synaptic vesicle exocytosis, but also in 

the timing of endocytosis, which was the main interest of this study. The next relevant 

issue is to try and understand the source of this variability. Firstly, we should consider 

the nature of the reported fluorescence decay profiles with sypHy2x. SypHy2x reports 

the reacidification of SVs, which follows endocytic internalization of newly formed 

vesicles (Granseth et al., 2006). It is therefore possible that the variability in our profiles 

arises because of two main reasons: i) in relation to exocytosis, the onset of endocytosis 
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might be delayed at some synapses; ii) endocytosis proceeds immediately after release 

but perhaps some vesicles are reacidified with a delay. We directly address this in 

Chapter 5 using dynasore, a pharmacological blocker of dynamin function. The variability 

in the endocytic profiles has been reported before and some suggestions about the basis 

for this have been put forward in the literature. Balaji and Ryan, 2007, using vGpH 

construct (pHluorin tagged vGlut1) in hippocampal neurons showed a wide range of 

retrieval times following single vesicle exocytosis. They attributed this to a varied dwell 

time at the plasma membrane of vesicles, to be retrieved prior to their reacidification 

(Balaji and Ryan, 2007). Despite the fact that the average dwell time was reported to be 

τ ~14 s, the timing of individual events varied from instantaneous fluorescence decay, to 

no decay observed within 20 s post stimulus, perhaps indicating imperfect coupling 

between exo- and endocytosis (Balaji and Ryan, 2007). This, however, was not observed 

by Granseth et al., 2006, who saw that the sypHy2x signals always recovered following 

the stimulation. Gandhi and Stevens, 2003 using SpH also showed high variability in the 

retrieval kinetics and classified the profiles into 3 major modes. Notwithstanding, it is 

apparent that the variability in the profiles is more complex than just the 3 patterns 

described by these authors (Gandhi and Stevens, 2003). They also identified one basis 

for this, which was the pr of individual terminals: synapses with a high release probability 

tend to use slower, clathrin mediated endocytosis, whereas those with lower pr 

predominantly retrieved their vesicles via kiss-and-run (Gandhi and Stevens, 2003). The 

fact that the variability has been reported with 2 other construct shows that it is not an 

artefact of sypHy2x.  

The variability in the profiles from the population of synapses might not only be due to 

the differences in the endocytic and reacidification kinetics, but it might also arise from 

sampling of synapses of either glutamatergic or GABAergic nature. These two types of 

synapses are known to exhibit structural and functional differences. Nevertheless, 

neurons in hippocampus were found to be mostly glutamatergic with only 20% 
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GABAergic connections (Li et al., 2005). Moreover, the analysis of the type of synapses 

in hippocampal culture revealed that the density of GABAergic connections was 

significantly higher on the somata of hippocampal cells but non-GABAergic connections 

dominated in the processes (Benson and Cohen, 1996; Gulyá et al., 1999). Sampling of 

the somatic region was avoided in our study due to a higher chance of high background 

fluorescence level, and a difficulty in distinguishing individual presynaptic terminals, 

which was very important for similarity analysis. 

Although it has been reported that there was no difference in the way inhibitory and 

excitatory synapses recruit and sort vesicles into distinct vesicle pools following their 

endocytic internalization (Li et al., 2005), glutamatergic synapses expressing 

synaptopHluorin were found to exhibit much bigger variability in fluorescence amplitudes 

in response to 100 APs 20 Hz stimulation than the inhibitory synapses (Moulder et al., 

2007). This was not attributable to the difference in the baseline fluorescence between 

the two populations, but was explained by higher variability in the recycling vesicle pool 

sizes at excitatory synapses (Moulder et al., 2007). The analysis of variability in vGlut1 

and vGlut2-expressing synapses in our culture revealed a high level of variability in the 

kinetics of endocytosis within the glutamatergic population of boutons, in agreement with 

the study above. This provides further evidence against this variability being a result of 

sampling synapses of different types, but rather due to a large variability within the 

glutamatergic population of synapses.  

 

4.4.2 Synapse-specific vesicle retrieval timing  

Having identified this wide spread variability in the fluorescence decay, and having 

excluded experimental conditions as a sole source of this variability, we set out to 

examine whether individual presynaptic boutons might be characterized by signature 

retrieval profiles. Various presynaptic properties have been found to be synapse-specific, 



164 
 

and to undergo synapse-specific regulation. The diameter of SVs was found to be 

regulated at a synapse rather than neuronal level (Hu et al., 2008; Qu et al., 2009). The 

size of the active zone was shown to be subjected to synapse-specific regulation and 

was strongly correlated with the pr at a given bouton (Matz et al., 2010). Similarly, the 

expression level of CDK5 at individual synapses determined the size of the recycling 

pool at specific terminals (Kim and Ryan, 2010). This demonstrates that individual 

synapses are highly predisposed/attuned to the function that they serve in a given 

circuitry. However, a report of cell-wide rather than synapse-specific regulation of 

endocytic timing can also be found. Armbruster et al., 2011, in a study on hippocampal 

neurons concluded that endocytic kinetics following 100 APs, 10 Hz stimulus is a cell-

wide, rather than a synapse-specific property. Upon close inspection of their data, in the 

first example given, there is a large variability in the endocytic timing across boutons 

from a given cell, which is not apparent in the examples given later on. Moreover, these 

findings suggest that endocytosis is uncoupled from other presynaptic properties that 

have been shown to be determined at synapse-specific level (Armbruster and Ryan, 

2011; Branco et al., 2008). In addition to this, measurement of simultaneous endocytosis 

of multiple vesicles might obscure the timing of their retrieval, as endocytosis might begin 

before all the vesicles are released, and this will make it impossible to accurately resolve 

the timing of fluorescence decay at individual boutons. Also, the stimulation used by 

Armbruster & Ryan, 2011 is largely above the usual physiologically relevant activity of 

these neurons. We therefore decided to explore this at the level of single vesicle retrieval. 

In order to do this, we first determined the fluorescence amplitude corresponding to the 

release of single vesicles, which itself posed some technical challenges.  

 

4.4.3 Establishing quantal size  

Despite the potential advantage of monitoring endocytosis in single vesicles, this readout 

presents possible challenges of interpretation, arising from the biological variability in 
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quantal size. As described in detail in the Introduction, the variation in the quantal 

response size, measured on the postsynaptic site, can result from either pre- or 

postsynaptic factors.  

In particular, the size of synaptic vesicles is one key factor that could affect our 

measurements of fluorescence level corresponding to single vesicle release. 

Ultrastructural analysis of thousands of hippocampal SVs revealed that their diameters 

vary from 20 to 66 nm with an average size being 35.2 ± 3.4 nm (Harris and Sultan, 

1995; Schikorski and Stevens, 1997). Nevertheless, it is possible that this variability has 

arisen due to vesicles from different types of synapses being included in the analysis. 

Synapses 1b and 1a in Drosophila neuromuscular junction were found to have 

significantly different boutons specific quantal size (Karunanithi et al., 2002). Similar 

observations were made in excitatory synapses of CA1 region of hippocampus, where 

the size of SVs ranged from 34.9 to 42.8 nm and in hippocampal culture in which SVs 

diameter was 32.4-48.8 nm (Hu et al., 2008). This size difference equated to a 5-fold 

difference in the volume between the smallest and the largest vesicles, indicating a big 

difference for neurotransmitter storage capacity between these vesicles (Hu et al., 2008). 

This variability in ultrastructural measurement of vesicle size might be introduced by 

sampling errors and might also result from sectioning. A portion of a membrane of a 

given SV might appear on a neighbouring section, giving a false impression of smaller 

structures (Kim et al., 2000). The error in the ultrastructural evaluation of SVs size in 2D 

sections was found to be 9% which equates to 3.2 nm (Feuerverger et al., 2000). 

Nevertheless, to account for this possible variability in SVs size, the measurement of 

fluorescence corresponding to the release of single quantal events in our study was 

based on multiple Gaussian distribution of response amplitudes, with the width of the 

peak representing the variability in the measurements, and being used as a boundary 

for the quantal size. This resulted in quantal response of ΔF = 124.6 ± 26% of 

fluorescence amplitude. This boundary is more than sufficient to cover the quantal size 
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variability arising due to different vesicle sizes, which was calculated to be 20% based 

on the data discussed above.  

In the case of using sypHy2x, the variability in the quantal size might also result from the 

different levels of synaptophysin at individual vesicles and the expression level of this 

construct. Synaptophysin I accounts for 10% of total protein found in SVs, followed by 

synaptobrevin, with 32 molecules per vesicle  (Takamori et al., 2006). This number might 

not only differ between vesicles in different types of synapses, but it may also vary to a 

certain extent between vesicles at a given synapse. However, the proteomic analysis of 

isolated GABAergic and glutamateric docked vesicles revealed a few differences in the 

protein composition between these terminal types, other than proteins specific for these 

neurotransmitters (Boyken et al., 2013). Similar results were reported in other studies 

(Takamori et al., 2000a, 2000b). This was also observed at the level of isolated synaptic 

vesicles from the two populations of synapses (Takamori et al., 2000b) (Takamori et al., 

2000a). This indicates that the variability in quantal size is unlikely to arise due to 

sampling of synapses of different type. Moreover, most boutons in hippocampal 

preparations are glutamatergic, which further reduces this possibility. However, many 

presynaptic proteins have been found to be present in multiple isoforms (Jahn and 

Südhof, 1994). Synaptophysin II, also referred to as synaptoporin, was found to be co-

expressed with synaptophysin I at hippocampal synapses, with varied distribution of the 

two isoforms between boutons (Singec et al., 2002). Nevertheless, the expression of 

synaptoporin was mostly localized to GABAergic terminals of hippocampal interneurons, 

whereas synaptophysin I was present in all synapse types (Singec et al., 2002). Despite 

all this variability, multiple groups have successfully established the fluorescence 

amplitude corresponding to single vesicle release events using sypHy (Granseth et al., 

2006; Royle et al., 2008; Zhu et al., 2009). Numerous steps were taken in this study in 

order to ensure the most accurate measurement of quantal size. For the analysis, we 

used regions which had comparable baseline level fluorescence. The use of AAV based 
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construct also gave more uniform expression than cDNA construct (observation). It is 

also very unlikely that our fluorescence measurement for 1q represents higher 

magnitude of responses and their multiples. This can be concluded from the combination 

of the fact that we observed failures to release at 2 APs stimulation using iGluSnFR, 

which has very good signal-to-noise ratio and allows confident visualisation of single 

vesicle release events (Marvin et al., 2013), and that we also observed failures to 

respond with sypHy2x at 4 APs stimulation level. Even under circumstances that our 

measurement represents higher order responses, this measurement gives the 

confidence that the endocytosis following release events of a similar magnitude was 

examined in our study. Nevertheless, the fact that the peaks in our quantal profile were 

evenly distributed for failures, single and double quantal events, also suggests that we 

were not looking at larger responses.  

 

4.4.4 Synapse-specific kinetics of single vesicle endocytosis  

Our results strongly indicate that the kinetics of retrieval of single synaptic vesicles is 

regulated at the level of individual synapses. We showed this in two types of analysis: 

point-by-point and rate analysis. In the first one the ‘shapes’ of profiles, and in the second 

one the rate of the fluorescence decay, were compared to the population of synapses 

with randomly picked responses. In both cases we observed that synapses exhibited 

signature fluorescence profiles of endocytic retrieval. How can this fidelity of single 

vesicle retrieval be maintained at individual synapses?  

Opazo et al., 2010 reported that following 40 APs at 20 Hz stimulation (mobilizing the 

RRP) synaptic vesicles remained at the cell surface as a ‘patch’ of molecules following 

the exocytosis. These membrane associated protein clusters, with very limited lateral 

diffusion,  were also retrieved as a unit to create a new vesicle (Opazo et al., 2010). This 

could certainly give rise to recycling kinetics of vesicles that were repeated over time at 
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individual boutons. These authors also observed dispersion of synaptotagmin from the 

retrieval site following larger stimulation (600 APs at 20 Hz). This can explain why under 

stronger stimulations, such as 100 APs used by Armbruster et al., 2011, the 

phenomenon of synapse-specific recycling was not observed. The preservation of the 

general structure of SVs at the membrane seems like a very energetically favourable 

solution, and additional proteins could be easily added to this unit. Nevertheless, other 

groups observed a significant level of mixing of SV proteins with those already present 

at the cell membrane (Fernández-Alfonso et al., 2006; Wienisch and Klingauf, 2006). 

These studies, however, used fairly large stimulations, with 120 APs being the lowest, 

which again, could influence the level of dispersion and intermixing of proteins. The same 

authors showed a preferential recycling of vesicles from the surface stranded pool, which 

was depleted with stimulation over 40 APs (Wienisch and Klingauf, 2006). This indicates 

the presence of a population of preassembled vesicles that are mobilized at the low 

stimulation level, such as in our study, and could therefore explain later similarities in 

their behaviour. How is the protein sorting achieved at the membrane? Although the local 

regulation of proteins in synapses is still not very well understood (Rizzoli, 2014), certain 

proteins have been implicated in this function. Stonin 2 has been found to control the 

sorting of SV proteins, by controlling the amount of synaptotagmin 1 at the neuronal 

surface, and the loss of it was associated with an increased rate of endocytosis 

(Kononenko et al., 2013). Studies on Drosophila neuromuscular junctions showed that 

the presynaptic protein levels are locally controlled by ubiquitin proteasome system 

(UPS) and this in turn had an effect on the strength of neurotransmission (Speese et al., 

2003). The interaction of various proteins and regulation of endocytic kinetics will be 

explored in more depth in the Discussion in Chapter 5. The other possibility of how 

vesicles retain their molecular identity is via kiss-and-run endocytosis. However, the 

timing of vesicle retrieval observed in our study does not suggest that this process, which 

is within ms, was a predominant mode of recycling in our system (Alabi and Tsien, 2013).  
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One limitation of this study which deserves consideration, is the possibility that these 

various profiles are due to the diffusion of the GFP-tagged proteins away from the 

release site. It has been observed that the lateral movement of pHluorin tagged proteins 

was even more pronounced than that of native, untagged proteins (Opazo et al., 2010). 

Nevertheless, if this is a major factor giving rise to the variability of some profiles, it is 

surprising that these events are also consistent at a given synapse, indicating that 

specific protein sorting mechanisms operate at a given bouton. Not only do the kinetics 

of vesicle retrieval appears to be synapse-specific; Waters & Smith, 2002, in their study 

of the synaptic properties that influence the kinetics of vesicles release in hippocampal 

neurons, showed that although the destaining rates at 1 Hz were highly variable across 

synapses, measurements from individual boutons revealed reproducible FM1-43 

fluorescence decay over repeated trials, and characteristic for a given synapse profile. 

As FM1-43 measurement is independent of any protein, and is known to have no toxic 

effects on synaptic properties, this strengthens the finding made in this study that 

synapse-specific mechanisms operate at individual boutons giving rise to their signature 

behaviour.     

Future experiments, expanding the issues raised in the discussion, could involve 

comparing retrieval profiles at individual synapses following 2 or 3 vesicle release events 

and after larger stimulation paradigms (40 or 100 APs at 20 Hz) within the same set of 

synapses. Another interesting experiment would be to compare the similarity of 

behaviour of synapses, which are situated on the same axon, and of those synapses 

with a common dendritic target. Branco et al., 2008, demonstrated that synapses from 

the same axon, which shared a dendritic branch, were characterized by highly correlated 

pr. Perhaps the kinetics of endocytic retrieval, in a similar fashion, is set and regulated 

locally in order to adapt to the demand of the network, and is highly coordinated with the 

postsynaptic neuron (Liu and Tsien, 1995). In the next chapter, we explore synaptic 

properties that may underlie the signature endocytic behaviour of individual synapses.  
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5 THE INVESTIGATION OF 

SYNAPTIC CHARACTERISTICS 

THAT UNDERLIE THEIR 

ENDOCYTIC BEHAVIOUR 
 

 

 

 

HIGHLIGHTS 

 SypHy2x baseline fluorescence can be used as a measure of 

synaptic size 

 

 Larger synapses exhibit faster rates of endocytosis 

 

 The size of the total vesicle pool rather than the recycling 

fraction determines the kinetics of endocytosis 

 

 Larger synapses exhibit higher variability in the timing of 

endocytosis  

 

 Larger synapses have higher level of endophilin I 

 

 Treatment with dynasore leads to homogenization of the timing 

of endocytosis across synapses  

 

 Larger synapses have lower density of synaptic vesicles than 

the small ones  
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5.1 Introduction 

In the previous chapter, it was demonstrated that properties of single vesicle response 

profiles were preserved across multiple trials at single synapses (sections 4.3.5.1 and 

4.3.5.2). In other words, presynaptic terminals appear to be predisposed to have a 

particular endocytic timing, which is repeatedly expressed in the fluorescent decay 

profiles of retrieved vesicles after they undergo fusion. Our next goal was to determine 

what synaptic properties might underlie this behaviour. There are a number of possible 

candidate parameters which could contribute to this. This chapter explores these 

parameters first in further functional experiments, and then in ultrastructural correlates 

of synaptic function.  

 

We hypothesized that one of the factors that might affect the endocytic kinetics is 

synaptic size. The basis for this is the fact that measures of synaptic ultrastructure, such 

as vesicle pool sizes or total vesicle numbers, have already been shown to vary between 

synapses, and are recognized factors influencing the efficacy of synaptic performance 

and processing of the information within neural networks (Branco and Staras, 2009; 

Welzel et al., 2011). In order to test the robustness of our results, we chronically silenced 

synapses, and examined whether the properties that we previously described scaled 

with their size. We also further examined properties of large synapses, including the 

expression of the important endocytic kinetics modulator – endophilin I. The question 

raised in Chapter 4 as to whether the variability in the kinetics between synapses 

reported by sypHy2x is due to the difference in the kinetics of endocytic retrieval or 

reacidification, is also addressed here. In order to do that we used a blocker of dynamin 

function – dynasore.  

 

The second half of this chapter is dedicated to ultrastructural exploration of synaptic 

properties that explain their behaviour. Despite the fact that functional studies provide us 
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with a powerful approach to monitor synapses in their native state, various properties 

cannot be reliably measured due to the small size of presynaptic terminals and their 

components. Here we addressed this limitation by carrying out ultrastructural 

investigation of parameters that might correlate with functional properties of individual 

presynaptic boutons.  

 

5.2 Properties of small and large synapses 

5.2.1 Larger synapses exhibit faster rate of endocytosis 

We set out to test whether synaptic size contributes to the regulation of vesicle recycling 

kinetics of individual synapses as outlined in the previous chapter. We reasoned that the 

baseline fluorescence of sypHy2x might provide a correlate of synaptic size that we could 

use for the purpose of this study. In order to test this, alongside our sypHy readout, we 

used an independent measure of pool size based on an acutely-applied probe, sytI-

Oyster550. This fluorescently tagged antibody and its principles of action are described 

in detail in section 3.2.4. Specifically, we loaded AAV.sypHy2x-expressing cells with sytI-

Oyster550 in an activity-dependent manner using a saturating loading stimulus (600 APs 

20 Hz) that recruits all available recycling vesicles. After labelling and washing, cultures 

were imaged in two colours to allow us to visualize both sypHy2x signal (green-emitting) 

and Oyster signal (red-emitting). From the analysis of fluorescence profile across 

individual boutons we found that the signals from the two probes showed good co-

localization (Fig.5.1.A and B). Moreover, we found that there was a strong positive 

correlation between AAV.sypHy2x baseline and sytI-Oyster550 fluorescence size 

(Pearson’s correlation test, n = 180 synapses from 5 regions, r = 0.760, P < 0.0001) 

(Fig.5.1.C). Taken together, this provides strong justification for the use of sypHy2x 

baseline fluorescence as a convenient measure of synaptic size. In later sections of 
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Chapter 5 we also present two more methods confirming the reliability of this readout 

(sections 5.2.2.2 and 5.4.6).  

 

Having confirmed a sypHy2x-based size measurement, we could now use this to 

investigate whether synaptic size was correlated with the recycling kinetics at individual 

boutons. Using our Matlab script, we selected synapses with at least 2 single vesicle 

responses within the defined 1q size (ΔF = 92.2-157 a.u.) for the analysis. The sypHy2x 

baseline fluorescence (frames 1-39, stim frame 40) from the first analysed trial was used 

as a measure of synaptic size. When we plotted this size measure against the rate of 

endocytosis, we observed a strong correlation (Pearson’s correlation test, n = 150 

synapses from 9 experiments, r = -0.653, P < 0.0001) (Fig.5.1.D), suggesting that there 

was a clear relationship between these variables. Specifically, we found that larger 

synapses were characterized by faster rates of endocytic retrieval, and smaller ones, by 

slower rates (Fig.5.1.D and E).  

 

From this analysis we identified an inherent characteristic of synapses, namely, that 

synaptic size contributes to their single vesicle behaviour. As yet, it is not clear whether 

these variables are correlated, perhaps through another parameter that determines both, 

or causal, where synaptic size dictates the timing of recycling. In order to test these 

alternative possibilities, we next carried out experiments to modulate the parameters 

associated with synaptic size. In the later sections of this chapter we consider other 

possibilities for how size could influence the endocytic kinetics, and examine other 

synaptic parameters, molecular and structural, explaining their behaviour. 
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Figure 5.1 SypHy2x baseline fluorescence reflects the size of the synapse. A) 
Baseline fluorescence of sypHy2x expressing synapses (top). Synapses were loaded 
with sytI-Oyster550 antibody using 600 APs, 20 Hz stimulation (middle). Merged image 
of sypHy2x and sytI-Oyster550 fluorescence (bottom). The profile shown in B) was 
measured along the yellow line. Scale bar 5 μm. B) Fluorescence intensity profiles of 
sypHy2x and sytI-Oyster550 fluorescence. C) Correlation between sypHy2x baseline 
fluorescence and sytI-Oyster550 fluorescence (Pearson’s correlation test, n = 180 
synapses from 5 regions, r = 0.760, P < 0.0001). D) Strong correlation between the 
baseline SypHy2x fluorescence and the rate of endocytosis of single synaptic vesicle 
(Pearson’s correlation test, n = 150 synapses from 9 experiments, r = -0.653, P < 
0.0001). E) Schematic summarizing the results: smaller synapses exhibit slower rate of 
endocytosis than larger synapses.  
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5.2.2 Homeostatic scaling as a form of modulation of synaptic properties 

To this point, we have identified that individual synapses have conserved endocytic 

timing and that larger synapses exhibit faster rates of endocytosis. In this section of 

Chapter 5 we investigate the robustness of this result by attempting to modulate synaptic 

properties and exploring their effect on synaptic function.  

  

Disuse hypersensitivity is a form of homeostatic plasticity in central synapses which 

employs pharmacological block of excitatory synaptic transmission for several days, and 

which leads to the increase in synaptic strength of presynaptic terminals (Murthy et al., 

2001). In previous work, this type of modulation, based on the use of an AMPA blocker 

(10 μM NBQX, 2 days incubation) was associated with presynaptic changes in cultured 

hippocampal neurons in the form of increased pr and synaptic size, and changes to other 

structural properties: boutons volume, total number of vesicles, number of docked 

vesicles, size of the active zone (Murthy et al., 2001). An increase in the size of the 

recycling pool was linked to the modulation in protein expression as a result of silencing 

with 1 μM TTX for 72 h (Kim and Ryan, 2010). Welzel et al., 2011, also showed that a 

10.5% increase in the recycling pool size in hippocampal neurons following 3 days 

incubation with 0.5 μM TTX led to significant increase in the timing of exocytosis.  

 

We decided to employ this approach in our study to test the hypothesis that the rate of 

endocytosis is coupled with synaptic size, and that by increasing synaptic size, we should 

increase the rate of endocytosis if the two variable are linked. This would be a direct test 

of correlation versus causality of the two key variables. 

 

5.2.2.1 Measuring synaptic vesicle pool sizes 

Prior to homeostatic scaling experiments, the first step was to establish a method for 

measuring the size of the recycling and total vesicle pools in our cultures following 
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functional readouts with sypHy2x. As previously, AAV.sypHy2x-expressing cells were 

stimulated 10x with 4 APs (40 s apart) and after a 2 min recovery period, 40 APs 20 Hz 

stimulation was applied, allowing the measurement of the size of the RRP. Following 

another 2 min recovery period, 1 μM bafilomycin A1 (baf) was added to the culture. 

Bafilomycin is a cell-permeable, potent inhibitor of v-ATPase and it acts by blocking the 

reacidification of newly endocytosed vesicles (Fernandez-Alfonso and Ryan, 2008), 

providing a readout of the amount of fluorescence signal originating from exocytosis 

without contamination from the endocytic phase that follows. Previous work has shown 

that bafilomycin does not have any effect on synaptic vesicle exocytosis or endocytosis 

over the timescales relevant to our work here (Sankaranarayanan and Ryan, 2001) and 

therefore stimulation in the presence of this drug allowed us to lock the recycling pool of 

vesicles in an alkaline state, and to fully evaluate its size by measuring the corresponding 

fluorescence. We imaged baseline baf fluorescence for 30 s following which we 

stimulated the cells with 600 APs 20 Hz stimulation to mobilize the recycling pool 

(Fig.5.2.A and B). In order to avoid the possibility of bleaching the signal, instead of 

imaging the sample during the stimulation, we imaged immediately after the end of the 

stimulation for 30 s. The timing of the experiment (imaging and washing stages) from baf 

application onwards was very important because of a very slow, gradual increase in 

baseline fluorescence resulting from baf application over longer time periods due to 

spontaneous alkalization (Atluri and Ryan, 2006; Sankaranarayanan and Ryan, 2001). 

Hence, if the timing of individual experiments was not controlled properly, the results 

could have been influenced by this effect of baf. Following stimulation and imaging in the 

presence of baf, the sample was incubated in NH4Cl-containing bath solution. The 

presence of NH4Cl neutralizes the pH of all the remaining synaptic vesicles within the 

terminals, providing a measure of the size of the total vesicle pool (Miesenböck et al., 

1998). Following 30 s of incubation in the presence of NH4Cl, fluorescence intensity 

corresponding to the total vesicle pool size was imaged for 30 s (Fig.5.2.A and B). The 

protocol for this experiment is summarized in Figure 5.2.A and the representative images 
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of synapses imaged using this protocol are shown in Figure 5.2.B. This optical method 

of measuring synaptic vesicle pool sizes has been widely employed in studies aiming to 

assess the size of the recycling fraction  (Fernandez-Alfonso and Ryan, 2008; Ikeda and 

Bekkers, 2009) to verify the origin of fluorescence signals (Balaji and Ryan, 2007), to 

measure the kinetics of synaptic vesicle reacidification (Atluri and Ryan, 2006; Budzinski 

et al., 2011) and to confirm the expression of a newly-developed construct within synaptic 

vesicles (Hua et al., 2011).  

 

This protocol allowed us to explore the relationships between different pool sizes. The 

fluorescence measurement spanned 2.5 s of stable fluorescence signal from imaging at 

each stage of the protocol: baseline, 600 APs, 20 Hz + baf (recycling pool) and NH4Cl 

(total pool) was averaged for each synapse in order to obtain a readout of the pool sizes 

for a given synapse. The size of the RRP was calculated based on the fluorescence 

amplitude between the peak of the stimulation and the baseline fluorescence from 40 

APs, 20 Hz stimulation. The analysis of the data showed that there was a strong 

correlation between the size of the recycling and total pool (Pearson’s correlation test, n 

= 174 synapses from 7 experiments, r = 0.756, P < 0.0001) (Fig.5.2.C). The size of the 

RRP was also strongly correlated with the recycling pool (Pearson’s correlation test, n = 

174 synapses from 7 experiments, r = 0.736, P < 0.0001) and the total pool size 

(Pearson’s correlation test, n = 174 synapses from 7 experiments, r = 0.651, P < 0.0001) 

(Fig.5.2.D). We also explored the size of the recycling fraction using readouts for 

recycling and total vesicle pool size. Our data showed a high variability in the size of the 

recycling pool fraction between synapses with a mean value of 0.48, SD: 0.24, a very 

comparable value to that reported previously from research in our lab (0.49, SD: 0.16) 

(Ratnayaka et al., 2012) and other studies (Fernandez-Alfonso and Ryan, 2008; Kim and 

Ryan, 2010). 
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Figure 5.2 Measuring the size of RRP, recycling and total vesicle pools. A) Timeline 
illustrating the protocol followed for measuring the size of the vesicle pools. Top row 
shows the stimulation, timing and imaging and the bottom row shows the solutions used. 
B) Schematic showing the experimental steps allowing to quantify the sizes of vesicle 
pools and recycling fraction. Images represent fluorescence intensity at the 
corresponding stages of the experiment. C) The relationships between different vesicle 
pools. Baseline level of fluorescence for each synapse was subtracted from the readouts 
for total pool and recycling pool. The size of the RRP was calculated from the amplitude 
of the response of synapses to 40 APs stimulation. (n = 174 synapses from 7 
experiments, Pearson’s correlation test: total pool vs RP, r = 0.756, P < 0.0001; RP vs 
RRP, r = 0.736, P < 0.0001; total pool vs RRP, r = 0.651, P < 0.0001). D) Measurement 
of the recycling fraction revealed high variability in this parameter between synapses. 
Mean recycling fraction (0.48 ± 0.018) is indicated by the black circle (n = 174 synapses 
from 7 experiments).   
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5.2.2.2 Correlation between presynaptic size and the rate of 

endocytosis 

Having established a method for measuring the size of synaptic vesicle pools, we wanted 

to explore the relationship between the recycling and total pool sizes in order to 

determine the correlation of endocytosis at individual boutons. From our sypHy2x and 

sytI-Oyster550 analysis, we established that sypHy2x baseline fluorescence correlates 

with the synaptic size and that larger synapses exhibit faster endocytic kinetics (section 

5.2.1). The results from this experiment allowed us to explore this further, make new 

findings and to validate previous results using a different method. 

The kinetics of endocytosis were measured with linear fit in synapses that underwent at 

least 2 single vesicle release events in response to 9 rounds of 4 APs stimulation and 

only these synapses were chosen for the analysis of vesicle pool sizes. The readouts of 

recycling and total pool were carried out according to the protocol described in the 

section above. First, we confirmed that the rate of endocytosis is correlated with sypHy2x 

baseline fluorescence in this new set of experiments (Pearson’s correlation test, n = 116 

synapses from 6 experiments, r = -0.698, P < 0.0001) (Fig.5.3.A). The relationship 

between the size of presynaptic terminals and the kinetics of endocytosis was maintained 

as previously described: larger synapses exhibit a faster rate of endocytosis than small 

ones. In addition, we tested whether sypHy2x baseline reflects the size of the synapses 

by testing the relationship of this measure to the size of the total vesicle pool measured 

using NH4Cl. We found a very strong correlation between the measure of total vesicle 

pool and sypHy2x baseline fluorescence (Pearson’s correlation test, n = 116 synapses 

from 6 experiments, r = 0.796, P < 0.0001) (Fig.5.3.B). This strongly confirms the 

rationale for using sypHy2x baseline fluorescence as a measure of synaptic size. 

Following this logic, the size of the total pool should correlate with the rate of endocytosis 

in the same manner as sypHy2x baseline fluorescence. We saw a strong positive 

correlation between the total vesicle pool size and the rate of endocytosis (Pearson’s 
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correlation test, n = 116 synapses from 6 experiments, r = -0.694, P < 0.0001) 

(Fig.5.3.C).  

 

So far, we found that the kinetics of endocytosis correlated very well with the total vesicle 

pool size that represents the total size of the synapse, supporting the finding that the 

kinetics of endocytosis is influenced by the overall size of the synapse. Next, we asked 

whether the endocytic retrieval is dependent on the size of the recycling vesicle pool 

size. To reiterate the result showed in Fig.5.2.C, there was a strong correlation between 

the size of the total and recycling pool in this new data set (Pearson’s correlation test, n 

= 116 from 6 experiments, r = 0.728, P < 0.0001) (Fig.5.3.D) and hence one would expect 

a good relationship between the recycling pool and the endocytic rate. However, despite 

this relationship, there was a less robust correlation between the recycling vesicle pool 

size and the rate of endocytosis (Pearson’s correlation test, n = 116 synapses, 6 

experiments, r = -0.398, P < 0.0001) (Fig.5.3.E). We explored the possible reason for 

this and found that the correlation between the recycling pool fraction, which is influenced 

by both the size of the recycling and total pool, and the total pool size exhibited only a 

moderate level of correlation (Pearson’s correlation test, n = 116 synapses, 6 

experiments, r = -0.343, P = 0.0002) (Fig.5.3.F). This large variability in the relationship 

between these two pools gives an explanation for the limited relationship between the 

recycling pool and endocytic kinetics. 
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Figure 5.3 Relationship between the synaptic size and the rate of endocytosis. A) 
SypHy2x fluorescence shows strong negative correlation with the rate of endocytosis 
(Pearson’s correlation test, n = 116 synapses from 6 experiments, r = -0.698, P < 
0.0001). B) The size of synapses expressed as the size of total vesicle pool shows strong 
positive correlation with the baseline sypHy2x fluorescence (Pearson’s correlation test, 
n = 116 synapses from 6 experiments, r = 0.796, P < 0.0001). C) Rate of endocytosis 
shows strong negative correlation with the total vesicle pool size (Pearson’s correlation 
test, n = 116 synapses from 6 experiments, r = -0.694, P < 0.0001). D) Relationship 
between the recycling and total vesicle pool size (Pearson’s correlation test, n = 116 from 
6 experiments, r = 0.728, P < 0.0001). E) The size of the recycling pool only moderately 
correlates with the rate of endocytosis (Pearson’s correlation test, n = 116 synapses, 6 
experiments, r = - 0.398, P < 0.0001). F) There is a weak correlation between the 
recycling fraction and the total pool size at individual synapses (Pearson’s correlation 
test, n = 116 synapses, 6 experiments, r = -0.343, P = 0.0002). 
 

     

 

5.2.2.3 Modulation of synaptic size and its effect on endocytic rate 

Building on the data shown so far on the relationship between synaptic size and 

endocytic rate, this and the following section further examines the robustness of this 

relationship. To address the causal relationship between rate and size, we 
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pharmacologically silenced synapses by treating the cell culture for 3 days with 20 µM 

CNQX. CNQX is an AMPA antagonist, which blocks the synaptic transmission and leads 

to synaptic changes associated with their disuse, such as an increase in active zone 

size, bouton size, number of docked vesicles or total vesicle number in the presynaptic 

terminals (Murthy et al., 2001). We therefore decided to employ this method to examine 

the causal nature of the relationship between endocytic rate and synaptic size. The 

hypothesis under test was that the rate of endocytic retrieval will increase along with the 

increase in synaptic size as a result of homeostatic plasticity.  

  

In all synapses measured in the experiment, we saw an increase in the total pool size 

between the CNQXAll treated group and the ControlAll (n = 435 and 424 synapses for 

ControlAll and CNQXAll, respectively. Two-tailed unpaired Student’s t-test, P = 0.012), and 

no difference in the size of the recycling pool in these two groups (n = 435 and 424 

synapses for ControlAll and CNQXAll, respectively. Two-tailed unpaired Student’s t-test, 

P = 0.14) (Fig.5.4. A and B). In these measurements, we also saw that the size of the 

recycling fraction was smaller in CNQXAll than in the ControlAll group (n = 435 and 424 

synapses for ControlAll and CNQXAll, respectively. Two-tailed unpaired Student’s t-test, P 

= 0.007) (Fig.5.4.B and C). This result is conflicting with the effect of similar treatment 

reported by Kim and Ryan, 2010. In their study they saw an increase in the recycling 

fraction resulting from silencing (Kim and Ryan, 2010). Nevertheless, in their published 

results all the values were normalized to the total pool size and they didn’t report whether 

they observed any difference in this parameter between the two treatment groups. In 

contrast, a parallel increase in all synaptic parameters whilst retaining the relationship 

between them was observed by other group (Murthy et al., 2001). We therefore reasoned 

that this apparently smaller size of recycling pool fraction in CNQXAll group might be a 

result of a larger total pool size seen in the CNQXAll group in our experiment. If that was 

the case, any possible modulation of the fraction size by CNQX becomes diluted by the 

increase in the total pool size.  We therefore decided to explore our data in more detail. 
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Firstly, for the purpose of further analysis we only selected synapses that responded with 

at least two single vesicle release events over 9x 4 APs stimulation trials, in order to 

have a population with a measure of endocytic kinetics (For the legend of data 

processing refer to the Appendix I, Figure 3). We observed that within this population, 

there was no statistical difference in the sypHy2x baseline fluorescence (n = 157 and 

132 synapses for Control and CNQX, respectively. Two-tailed unpaired Student’s t-test, 

P = 0.604) (Fig.5.4.D) or endocytic rate between Control and CNQX (n = 157 and 132 

synapses for Control and CNQX, respectively. Two-tailed unpaired Student’s t-test, P = 

0.384) (Fig.5.4.E). However, the size of the recycling pool fraction in CNQX, although 

not substantially, was larger in the CNQX population than in the Control (n = 157 and 

132 synapses for Control and CNQX, respectively. Two-tailed unpaired Student’s t-test, 

P = 0.033) (Fig.5.4.F). This shows that synapses of comparable size were characterized 

by a bigger recycling pool fraction in the CNQX treated group than the Control group, 

which confirms that our homeostatic adjustment protocol induced changes in the 

presynaptic characteristics is comparable with those previously reported in literature 

(Kim and Ryan, 2010). This also gives an indication that the endocytic rate is not 

dependent on the recycling fraction. Now that we established that our plasticity protocol 

had a desired effect, we wanted to address the main question that is the identification of 

synaptic properties that determined the kinetics of endocytosis.  
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Figure 5.4 Modulation of synaptic properties with CNQX. A) Quantification of the size 
of the recycling pool and total pool according to the protocol showed in Figure 5.2 for 
Control and 3 days 20 µM CNQX treated cells (n = 435 and 424 synapses from 8 and 7 
experiments for ControlAll and CNQXAll, respectively. Two-tailed unpaired Student’s t-
test: recycling vesicle pool, P = 0.14; total vesicle pool, P = 0.012). B) Measurements of 
the pool sizes normalized to the total vesicle pool size for each group. C) Quantification 
of the recycling fraction for both treatment groups (n = 435 and 424 synapses for 
ControlAll and CNQXAll, respectively ± SEM. Two-tailed unpaired Student’s t-test, P = 
0.007). D) Comparison of sypHy2x baseline level fluorescence of synapses that 
responded at least twice in 9 rounds of 4 APs stimulation (n = 157 and 132 synapses for 
Control and CNQX, respectively ± SEM. Two-tailed unpaired Student’s t-test, P = 0.604). 
E) Summary of the rate of endocytosis of synapses in Control and CNQX groups (n = 
157 and 132 synapses for Control and CNQX, respectively ± SEM. Two-tailed unpaired 
Student’s t-test, P = 0.384). F) Graph showing comparison of the recycling fraction in the 
two treatment groups (n = 157 and 132 synapses for Control and CNQX, respectively. 
Two-tailed unpaired Student’s t-test, P=0.033).  

 

 

5.2.2.4 Comparison of synapses from the same population 

Before examining the relationship between endocytic kinetics and pool sizes in the two 

groups: control and CNQX treated, we firstly looked at our data in a different way and 

asked whether we can isolate two populations within control synapses and examine the 
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characteristics of these synapses. We examined Control data alone by splitting it into 

two distinct populations. We calculated median for the sypHy2x baseline fluorescence 

and applied that value across the data in order to obtain two populations of small and 

large synapses (n = 79 and n = 78 synapses for Controlsmall and Controllarge, respectively. 

Kolmogorov-Smirnov test, P < 0.0001) (Fig.5.5.A). As expected, the measurement of the 

size of the total pool confirmed that we isolated small and large population of synapses 

within the control group (n = 79 and n = 78 synapses for Controlsmall and Controllarge, 

respectively. Kolmogorov-Smirnov test, P < 0.0001) (Fig.5.5.B). Further analysis of the 

results showed that the small population of synapses on average was characterized by 

a slower rate of endocytosis than the large ones, which were 36% faster (n = 79 and n = 

78 synapses for Controlsmall and Controllarge, respectively. Two-tailed unpaired Student t-

test, P < 0.0001) (Fig.5.5.C). We also noted that small synapses were characterized by 

a significantly larger recycling pool fraction than the large synapses (n = 79 and n = 78 

synapses for Controlsmall and Controllarge, respectively. Two-tailed unpaired Student t-test, 

P < 0.0001) (Fig.5.5.D). These results clearly show a big difference in the recycling pool 

fraction size within the population of synapses of different size. From this, it is again 

evident that the rate is highly dependent on either total vesicle pool size or the recycling 

fraction.  

In order to further explore the relationship in the principle properties of synapses, the 

recycling pool fraction size and synapse size, we separated Control data based on the 

average size of the recycling pool fraction (those synapses over and under recycling 

fraction 0.482). We ended up with two populations, one of large synapses with smaller 

recycling fraction (ControlsmallFr) and another one of small synapses with a large recycling 

fraction (ControllargeFr) (n = 74 and 83 for ControllargeFr and ControlsmallFr, respectively. 

Kolmogorov-Smirnov test: synaptic size (sypHy2x baseline fluorescence), P < 0.0001; 

recycling fraction: P < 0.0001) (Fig.5.5.E). This data shows as important relationship 

between synaptic size and the size of the recycling fraction.  
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Finally, having previously established that the endocytic kinetics either depends on the 

size of the total pool or the recycling fraction, we set ourselves a challenge to resolve 

this matter in Control and CNQX data. In light of the results above, we had to establish 

populations of synapses in the two groups with comparable synaptic size. Firstly, we 

applied the average recycling fraction from the Control group to the CNQX data in order 

to reveal the synapses which underwent the scaling in this parameter. We noticed, 

however, that the sypHy2x fluorescence baseline of the ControllargeFr was still larger than 

in the CNQXlargeFr data, suggesting that the size of the synapses in the two groups was 

not equal (n = 74 and 70 for ControllargeFr and CNQXlargeFr, respectively. Two-tailed 

unpaired Student’s t-test, P = 0.007). We therefore adjusted sypHy2x fluorescence 

baseline of the ControllargeFr population with a recycling pool fraction size over 0.482 to 

the baseline fluorescence level of CNQXlargeFr set. We finally arrived with the population 

of Control synapses which were the best comparison for the CNQXlargeFr data for the 

relationship between recycling fraction and endocytic kinetics as there was no difference 

in sypHy2x baseline fluorescence (n = 57 and 70 synapses for ControllargeFrAdj and 

CNQXlargeFr, respectively. Two-tailed unpaired Student’s t-test, P = 0.967), the size of the 

recycling (n = 57 and 70 synapses for ControllargeFrAdj and CNQXlargeFr, respectively. Two-

tailed unpaired Student’s t-test, P = 0.312), and total pool size (n = 57 and 70 synapses 

for ControllargeFrAdj and CNQXlargeFr, respectively. Two-tailed unpaired Student’s t-test, P = 

0.922) between the two treatment groups. Despite the significant difference between the 

size of the recycling fraction pool (n = 57 and 70 synapses for ControllargeFrAdj and 

CNQXlargeFr, respectively. Two-tailed unpaired Student’s t-test, P = 0.038) (Fig.5.5.F), 

there was no difference in the kinetics of single vesicle endocytosis between the two 

groups (n = 57 and 70 synapses for ControllargeFrAdj and CNQXlargeFr, respectively. Two-

tailed unpaired Student’s t-test, P=0.163) (Fig.5.5.G). This suggests that the size of the 

recycling fraction does not influence the endocytic kinetics.  
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Taken together, the results indicated that: i) the size of total vesicle pool and the recycling 

fraction were significantly increased by CNQX treatment; ii) the kinetics of single vesicle 

endocytosis is not dependent on the size of the recycling fraction but on the size of the 

total vesicle pool; iii) smaller synapses have a larger recycling fraction than the big 

synapses; iv) small synapses in CNQX treated group have an even larger recycling 

fraction when compared to Control synapses of the same size. This unequivocally 

strengthens the finding that it is not the recycling pool fraction but the total vesicle pool 

size (and ultimately the size of the synapse) that determines the endocytic kinetics of 

single synaptic vesicles.     

 

Figure 5.5 Comparison of endocytic kinetics in limited population of synapses. A) 
Comparison of the synaptic size measured on the basis of sypHy2x baseline 
fluorescence for Controlsmall and Controllarge, groups (n = 79 and n = 78 synapses for 
Controlsmall and Controllarge, respectively. Two-tailed unpaired Student’s t-test, P < 
0.0001). B) Graph showing total recycling pool size for Controlsmall and Controllarge, (n = 
79 and n = 78 synapses for Controlsmall and Controllarge, respectively. Two-tailed unpaired 
Student’s t-test, P < 0.0001). C) Summary of the comparison of the endocytic rate in 
Controlsmall and Controllarge, (n = 79 and n = 78 synapses for Controlsmall and Controllarge, 
respectively. Two-tailed unpaired Student t-test, P < 0.0001). D) Comparison of the 
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recycling pool fraction (n = 79 and n = 78 synapses for Controlsmall and Controllarge, 
respectively. Two-tailed unpaired Student t-test, P < 0.0001). E) Relationship between 
the synaptic size (sypHy2x baseline fluorescence) and the recycling fraction in two 
Control populations: ControllargeFr (dark blue) and ControlsmallFr (light blue). F) Comparison 
of the recycling fraction between ControllargeFrAdj (blue) and CNQXlargerFr (grey) (n = 57 and 
70 synapses for ControllargeFrAdj and CNQXlargeFr, respectively. Two-tailed unpaired 
Student’s t-test, P = 0.038). G) Quantification of endocytic rate in ControllargeFrAdj and 
CNQXlargeFr (n = 57 and 70 synapses for ControllargeFrAdj and CNQXlargeFr, respectively. 
Two-tailed unpaired Student’s t-test, P = 0.163). 
 

 

5.2.3 Large synapses have tendency to more variable kinetics 

So far we have shown that larger synapses exhibit a faster rate of endocytosis than small 

synapses. To explore other possible relationships we also considered whether variability 

was influenced by size. In other words, are small or large synapses more likely to have 

higher levels of conserved behaviour in their endocytic retrieval times, or is this an 

independent from size variable? To answer this question we plotted sypHy2x baseline 

fluorescence against the Within Synapse Similarity (WSS) readout. To reiterate, WSS 

measures the point-by-point differences between all the endocytic traces that follow 

single vesicle release events at a given synapse (for more details refer to section 4.3.5.). 

We found that large synapses have a strong tendency to show higher WSS readouts 

than small synapses, and also exhibit a large variability in the WSS values, ranging from 

low similarity index indicating very similar endocytic profiles to more variable readouts 

(Pearson’s correlation test, n = 150 synapses from 9 experiments, r = 0.45, P < 0.0001) 

(Fig.5.6.A). In order to test the robustness of this result we also tested whether the rate 

of endocytosis is correlated with the WSS. From previous analysis we know that larger 

synapses show a faster rate of endocytosis and therefore if larger synapses are more 

variable, a faster rate should also correlate with higher variability within synapse, higher 

WSS. As expected, we saw that synapses with faster endocytic rate had more variable 

WSS index scores (Pearson’s correlation test, n = 150 synapses from 9 experiments, r 

= -0.540, P < 0.0001) (Fig.5.6.B). From this we can conclude that large synapses are not 
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only faster but also that they exhibit more variability in the timing of vesicle retrieval within 

a given synapse. 

 

 

Figure 5.6 Relationship between the size of the synapse and variability in 
endocytic kinetics. A) Moderate correlation between SypHy2x baseline fluorescence 
and WSS (Pearson’s correlation test, n = 150 synapses from 9 experiments, r = 0.45, P 
< 0.0001). B) Moderate correlation between WSS and the rate of endocytosis (Pearson’s 
correlation test, n = 150 synapses from 9 experiments, r = -0.540, P < 0.0001).  
  

 

5.2.4 Variability in the amount of soluble protein between synapses of 

various sizes 

We reasoned that the influence of size on endocytic kinetics that we have observed, 

might reflect the level of expression of specific endocytic factors within a terminal, which 

would define the properties of the endocytic waveform. We contemplated a number of 

possibilities and considered that one candidate in particular, endophilin, could be an 

important potential contributor. Endophilin I is the most abundant out of 3 endophilin 

isoforms expressed in the brain (Ringstad et al., 2001) and it has been previously found 

to be an important regulator of the kinetics of endocytosis. Despite the fact that in 

endophilin triple knockout mice experiments, its absence did not lead to a complete block 

of synaptic transmission, a severe impairment in the timing of endocytosis was observed 

(Milosevic et al., 2011). Most endophilin I within presynaptic terminals is bound to 
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synaptic vesicles; however, the soluble pool of this protein originates from adjacent 

vesicles from which endophilin I unbinds with an exocytosis-dependent rate (Bai et al., 

2010). Major binding partners of endophilin I were identified as dynamin and 

synaptojanin I (Ringstad et al., 2001); and it is also thought to be an important factor in 

Ca2+-dependent coupling of exo- and endocytosis (Haucke et al., 2011). Endophilin I is 

therefore an important candidate as a regulator of the timing of the synaptic vesicle cycle. 

Based on this, we decided to test the amount of endophilin I in our synapses in order to 

decipher whether the variability in this protein can underlie the observed differences in 

the rate between small and large synapses.  

 

AAV.sypHy2x-expressing neurons were labelled with anti-endophilin I antibody (1:500) 

and an Alexa Fluor ® 568 secondary antibody (1:1000) (detailed protocol in section 

2.11). For the control experiment for secondary antibody specificity refer to Appendix I, 

Figure 4.  The average intensity projections of Z-stacks of 2.5 μm in depth (10 frames x 

0.25 μm) were generated for sypHy2x and endophilin fluorescence. Great care was 

taken to minimize the exposure of the sample to light in order to avoid photobleaching. 

The ROIs were selected on the basis of sypHy2x fluorescence as, even though most, 

not all synapses within a given field of view expressed the construct. A line profile of 

sypHy2x and endophilin I fluorescence showed very good overlay of the two signals, 

confirming that the labelling was confined to presynaptic terminals (Fig.5.7.A and B).  

 

Next we wanted to explore the relationship between the synapse size and the amount of 

endophilin I. SypHy2x fluorescence was binned within increments of 10 a.u. and 

endophilin I fluorescence from corresponding boutons was averaged. We found that the 

relationship between the two variables was described best by an exponential function 

(R2 = 0.86) and that the correlation between the amount of endophilin and synaptic size 

was very strong (n = 24 increments summarizing data from 1242 synapses, 11 regions, 

3 coverslips. Spearman correlation test, r = 0.95, P < 0.0001) (Fig.5.7.C). Next, we 
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explored whether there were any differences between the small and large synapses in 

the amount of endophilin I at individual terminals. In order to do that we generated two 

populations of 124 small synapses (10% smallest sypHy2x baseline readouts) and 124 

large synapses (10% largest sypHy2x baseline readouts). From this we saw that the 

level of endophilin I staining was highly variable within large synapses and it ranged from 

comparable levels of fluorescence as seen in small synapses to a value exceeding 

double the amount (Fig.5.7.D). To quantify this, we measured standard deviations for 

these two groups, showing that the level of fluorescence variability in large synapses 

was ~5.5 times larger than in small ones (n = 124 synapses for both populations) 

(Fig.5.7.E). Another measure of variability, the coefficient of variation, was almost twice 

as high in large synapses versus the small ones (CV small synapses = 31.3%; CV large 

synapses = 59%) (Fig.5.7.F). In the previous sections, we demonstrated that larger 

synapses exhibited a higher rate of endocytic retrieval of synaptic vesicles than the small 

synapses. Here, we explored this further, expressing the endophilin I fluorescence as a 

function of sypHy2x baseline to find out whether large synapses have proportionally 

more endophilin I than small synapses. We reasoned that this could help to explain the 

faster endocytic rate in large versus small synapses. Data showed that large synapses, 

on average, had almost twice as much endophilin I as small ones, suggesting that this 

might be a factor for their improved endocytic performance (n = 124 synapses for each 

group, Two-tailed unpaired Student’s t-test, P < 0.0001) (Fig.5.7.G).   

 

These results suggest that there is higher variability of endophilin I in large synapses, 

which might help to explain the variability of the behaviour of these synapses. Moreover, 

large synapses on average exhibit higher levels of endophilin I than the small ones, 

proportionally to their size, which might account for their better endocytic rate. The level 

of endophilin I therefore does not scale linearly with the synaptic size.  
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Figure 5.7. Expression of endophilin I in small and large synapses. A) Fluorescence 
images of endophilin I labelled terminals (left), sypHy2x baseline (middle) and merged 
image of the two (right). Yellow line indicates the ROI along which the profile shown in B 
was measured. Scale bar 5 μm. B) Fluorescence intensity profiles of endophilin I and 
SypHy2x show overlap. C) Graph showing the relationship between synaptic size 
(sypHy2x) and the amount of endophilin I of which fluorescence was averaged within 
increments of 10 a.u. sypHy2x fluorescence (n = 24 increments summarizing data from 
1242 synapses, 11 regions, 3 coverslips. Exponential fit, R2 = 0.86. Spearman correlation 
test, r = 0.95, P < 0.0001). D) Graph showing endophilin readouts for 10% smallest and 
10% largest synapses as measured by sypHy2x fluorescence (n = 124 synapses in each 
range). E) Comparison of the endophilin I variability between small and large synapses. 
Average of endophilin I fluorescence in the two synaptic size ranges ± SD (SD small 
synapses = 346.3; SD large synapses = 1929.7). F) Coefficient of variation in the level 
of endophilin I in small and large synapses (n = 124 synapses). G) The relationship 
between endophilin I and sypHy2x fluorescence in small and large synapses ± SEM (n 
= 124 synapses for each group, Two-tailed unpaired Student’s t-test, P < 0.0001). 
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5.3 Modulation of synaptic behaviour with dynasore 

The assumption that underpins the similarity of endocytic retrieval timing at individual 

presynaptic terminals is that the difference within the population arises from variation in 

the timing of the membrane retrieval itself or reacidification kinetics at single boutons. 

This issue of the source of variability has been raised in Chapter 4. If the fission of the 

vesicles from the membrane is the main factor contributing to the observed phenomenon, 

then modulation of this process should result in homogenization of the responses within 

the population. We put this to the test by using a pharmacological block of dynamin 

function.  

 

Dynamin belongs to the family of GTPases and it is an important protein for the fission 

of synaptic vesicles from the membrane following their internalization (section 1.3.2.1). 

It has been implicated in both clathrin-dependent and -independent endocytosis 

(Delvendahl et al., 2016; Hayashi et al., 2008; Voglmaier and Edwards, 2007). Blocking 

dynamin is a good test of the nature of variability in our endocytic decay profiles. In order 

to address this question we used a pharmacological method for disrupting dynamin 

function. 

 

 

5.3.1 Dynasore decreases the rate of endocytosis 

Dynasore has been identified via a high-throughput screen as a small-molecule 

compound that noncompetitively inhibits GTPase activity of dynamin (IC50 = 15 μM), 

effectively blocking endocytic processes (Macia et al., 2006). It is cell-permeable, and 

does not require a long incubation time and therefore permits the monitoring of changes 

associated with dynamin inhibition within a relatively short time-scale (Macia et al., 2006). 

In hippocampal neurons expressing sypHy, dynasore was previously shown to block 

endocytosis in a dose-dependent manner and to have no effect on synaptic vesicle 
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exocytosis (Newton et al., 2006). The ultrastructural analysis of samples treated with 

dynasore also revealed a higher occurrence of endocytic intermediates (invaginated, 

omega-shaped membranous structures) and clathrin-coated pits, which again supports 

the efficiency of this drug at blocking endocytosis (Newton et al., 2006). We therefore 

decided to use this drug in order to test the source of variation in endocytic kinetics in 

our system.  

AAV.sypHy2x-expressing neurons were stimulated 6 times with the 4 APs protocol from 

which 5 trials were used for the analysis (first trial used for identification of responding 

synapses but removed from the data set as a bleaching trial). Following this set of 

stimulations, 5 μM dynasore was added to the cell culture and the cultures were 

incubated with this drug for 10 min prior to the next set of stimulation (5 x 4 APs). The 

fluorescence profiles of individual synapses from all the images, before and after, were 

measured and the results were screened for single vesicle response events (ΔF = 92.2-

157 a.u.) using a custom-written Matlab script. The profiles for the analysis were fitted 

with third order polynomial functions to reflect the shape of the fluorescence decay. All 

single vesicle responses for both before and after dynasore groups were averaged and 

this revealed a slowing down effect of dynasore on the endocytic kinetics (Fig.5.8.A). 

Due to the fact that this figure represents all single vesicle responses, some of which 

might not have been from the same synapse before and after incubation of the drug, we 

also screened endocytic traces following single vesicle fusion events but originating from 

the same synapse, to confirm, that the effect is not due to different synapses being 

measured, but due to the effect of dynasore on individual boutons (Fig.5.8.B). In order 

to compare the rate of endocytosis before and after the incubation with the drug, single 

vesicle response traces were fitted with a linear fit and the average of the measurements 

of fluorescence decay from synapses that responded with at least 2 single vesicle 

release events before and after addition of dynasore were analysed. We found that the 

rate of endocytosis was decreased by 31.8 ± 7.1% following 10 min incubation with 

dynasore in comparison to the endocytic kinetics before the treatment with this drug (n 
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= 99 not matched synapses for both groups, two-tailed unpaired Student t-test, P < 

0.0001) (Fig.5.8.C and D).  These results show that dynasore was successfully used in 

our culture to modulate the efficiency of endocytosis. The purpose of this experiment 

was not to completely abolish the endocytosis, but to affect the efficiency of the endocytic 

machinery, which was achieved with the chosen concentration and incubation timing of 

dynasore used here. The next section exploits this drug to further validate the results of 

vesicle retrieval similarity within individual synapses. 

 

 
 
 
Figure 5.8 The effect of 5 μM dynasore on the kinetics of endocytosis.  A) Average 
of 1q responses before and after treatment with dynasore. Data showed as average ± 
SEM (light green shade) of n = 327 and n = 274 1q responses before dynasore and after 
10 min dynasore treatment, respectively, from 6 coverslips. B) Normalized traces from 
the same synapses before and after treatment. Data showed as average of 6 traces ± 
SEM. Brown lines represent linear fits constrained to 1. C) Comparison of the rate of 
single vesicle endocytosis before and after dynasore treatment (n = 99 synapses for both 
groups, two-tailed unpaired Student t-test, P < 0.0001). D) The rate of endocytosis of 
single vesicles decreased by 31.8% in dynasore treated group (n = 99 synapses for 
dynasore ± SEM).   
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5.3.2 Similarity measure of synapses treated with dynasore 

Our results so far show that individual synapses exhibit signature endocytic behaviour, 

and that we can modulate the endocytic kinetics of the retrieval of single vesicles 

(sections 4.3.5 and 5.3.1). From this, we formed a hypothesis that if the conservation of 

the endocytic kinetics within each synapse is truly due to synaptic properties that dictate 

their behaviour, we might, by affecting function of a protein important in endocytosis, be 

able to cause synapses to lose their specific characteristics and thus behave in a more 

homogeneous way across the population. To test this, we used the same similarity 

analysis method as described in detail in section 4.3.5. In short, for each experimental 

synapse which responded with at least 2 single vesicle responses within 5 trials before 

or after the addition of the drug, 100 randomised synapses were generated by drawing 

1q traces from other synapses within the experiment. The average of similarity measures 

of 1q profiles from individual synapses (WSSave), based on point-by-point difference 

between the traces was calculated and compared to the same measure in 100 

randomised trials (RSStrial). DMSO at a final concentration of 0.005% was used as a 

control.  

We found that synapses before dynasore and DMSO treatment exhibited a high level of 

similarity, scoring lower variability at individual synapses in 85 and 90 randomised trials, 

respectively (Fig.5.9.A). Following 10 min incubation with 5 μM dynasore we observed a 

dramatic drop in the number of more variable randomised trials, which was not the case 

for the DMSO treated group (Fig.5.9.A). In other words, dynasore treated cells exhibited 

a 49.4% decrease in similarity within synapses, whereas it only decreased 4.4% in 

DMSO control (Fig.5.9.B). This result suggests that dynasore treatment led to 

homogenization of the endocytic kinetics across the synapses, which wasn’t observed in 

DMSO group and was therefore unlikely to occur as a result of experimental design.  

The analysis presented so far was based on synapses which were not matched in the 

before and after groups, meaning that some synapses that were included in the analysis 
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in the before group might not have had two single vesicle responses following 10 min 

incubation, and vice versa. We therefore identified synapses that were measured in both 

groups which, however, dramatically decreased the number of synapses available for 

the analysis (from 99 to 49). The results for DMSO control were not included due to a 

very small number of synapses available for analysis. Within this smaller population of 

before and after matched synapses, we observed an 18.6% decrease in similarity in 

synaptic characteristics (Fig.5.9.C). Another line of comparison came from the actual 

measure of similarity, WSSave and RSSave, before and after dynasore application. This 

was also carried out on the synapse-matched data. The results showed that RSSave was 

significantly larger than WSSave before the treatment with dynasore (n = 49 before-and-

after matched synapses. Two-tailed paired Student’s t-test, P = 0.020). This strongly 

indicates that, based on the same profiles, the variability in the randomly generated 

synapses was much larger than in experimental synapses (Fig.5.9.D). Despite the fact 

that the WSSave after dynasore treatment was not significantly different from WSSave 

before the application of the drug (n = 49 synapses, two-tailed paired Student’s t-test, P 

= 0.500), the measurement for RSSave was significantly smaller than RSSave before the 

incubation with dynasore (n = 49 synapses, two-tailed, paired Student’s t-test, P < 

0.0001), but not different from the WSSave readouts in before and after groups (n = 49 

synapses, two-tailed paired Student’s t-test, P = 0.854 and P = 0.416 for WSSave before 

and after, respectively) (Fig.5.9.D).   

 

These results very strongly indicate that the modulation of the efficiency of endocytosis 

with dynasore led to homogenization of the kinetics of single vesicle retrieval timing 

amongst the synapses and therefore strengthens the findings that the conserved 

behaviour of individual synapses stems from the characteristic properties of individual 

synapses.  
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Figure 5.9 The effect of dynasore treatment on single vesicle endocytic similarity 
within individual synapses. A) Before dynasore treatment 85 out of 100 randomized 
trials showed higher variability in 1q profiles than the experimental synapses which 
decreased to 43 trials following 10 min dynasore treatment (data from 99 synapses from 
6 experiments, binomial test, n = 100, k = 85, p = 0.5, P < 0.0001). Following dynasore 
treatment profiles from individual synapses became homogenized with the population 
losing their individual characteristics (data from 99 synapses from 6 experiments, 
binomial test, n = 100, k = 43, p = 0.5, P = 0.193). DMSO treated synapses retained their 
characteristics (data from 71 (before DMSO) and 64 (after DMSO) synapses from 4 
experiments, binomial test: before DMSO, n = 100, k = 100, p = 0.5, P < 0.0001 and after 
10 min DMSO, n = 100, k = 86, p = 0.5, P < 0.0001). B) There was 49.4% decrease in 
similarity of the endocytic behaviour of single vesicles at individual synapses observed 
in dynasore treated group in comparison to only 4.4% decrease in DMSO treated group. 
C) Only synapses that responded with at least 2 1q before dynasore treatment and after 
dynasore treatment were selected for analysis shown in C) and D) (n = 49 from 5 
experiments). DMSO control is not included due to a very small number of such 
synapses (n = 28). Synapses treated with dynasore became 18.6% more similar to the 
population in their endocytic kinetics of single synaptic vesicles. D) Before dynasore 
treatment WSSave was significantly smaller than RSSave (n = 49 synapses, two-tailed 
paired Student’s t-test, P = 0.020) but did not differ from WSSave or RSSave after 10 min 
dynasore (n = 49 synapses, two-tailed paired Student’s t-test, P = 0.500 and P = 0.854, 
respectively). Following 10 min incubation with dynasore RSSave significantly decreased 
in relation to RSSave before dynasore treatment (n = 49 synapses, two-tailed paired 
Student’s t-test, P < 0.0001) and was not significantly different from WSSave following the 
incubation with the drug (n = 49 synapses, two-tailed paired Student’s t-test, P = 0.416).  
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5.4 TEM analysis of presynaptic properties  

The readouts of presynaptic properties presented so far were solely based on functional 

studies of vesicle behaviour. Although these experiments provide important information 

on synaptic operation, the conclusions that can be drawn are limited by the lack of 

morphological information about individual synapses. For example, precise readouts of 

nanoscale parameters such as vesicle pool sizes, number of active zones and their 

organization, presynaptic volume, vesicle clustering densities, docked vesicle pool 

count, and functional vesicle pool organization, are almost completely unavailable. An 

approach for accessing these parameters is based on the use of electron microscopy 

imaging, although this is not trivial, given the need for correlative approaches to link 

synapses targeted in light imaging with those in embedded tissue at ultrastructural level. 

A major additional challenge of this type of experiment is to find an approach to link the 

fluorescence signal from an individual presynaptic bouton to its ultrastructure in an 

unambiguous way. However, this challenge can be addressed by the use of the fixable 

form of FM1-43 (FM1-43FX), the styryl dye introduced in Chapter 3. This dye, which is 

taken up into endocytosing vesicles, can be used to drive the photo-oxidation of 

diaminobenzidine (DAB) in the presence of intense blue excitation light. In the next 

sections of this chapter we further validate our stimulation protocols and fluorescence 

readouts with electron micrographs containing photoconverted vesicles. We established 

an approach for the identification of imaging of individual presynaptic terminals in a 

correlative manner and, more importantly, we explored ultrastructural properties of 

synapses with characteristic kinetic behaviour. The specific aims were: i) to check at the 

ultrastructural level that the number of vesicles recruited during stimulation was as 

expected; ii) to confirm whether sypHy2x baseline fluorescence reflects the size of 

synapses; iii) to search for characteristic ultrastructural features that align with functional 

synaptic properties, for example synaptic volume and the number of vesicles.  
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5.4.1 Establishing loading protocols  

We first wanted to define a suitable stimulation protocol for the TEM work. In the majority 

of sypHy2x experiments, cells were stimulated with 4 APs (median pr at hippocampal 

neurons 0.22 ± 0.03 (Branco et al., 2008)) in order to increase the likelihood that single 

release events would occur. However, we reasoned that such a protocol is not optimal 

for experiments where FM1-43FX loading is followed by TEM analysis. There are a 

number of reasons for this: first, the expectation for the number of loaded vesicles at this 

level of stimulation is 0-4 per synapse with a single active zone, which is the case for 

most hippocampal synapses (Schikorski and Stevens, 1997). This would make the 

localization of synapses with photoconverted vesicles (those vesicles that endocytosed 

in the presence of FM1-43FX) very difficult. Without full reconstructions for every 

synapse, this would likely favour identification of synapses with multiple PC+ vesicles. 

More importantly, one has to take into account the possibility of spontaneous vesicle 

fusion in the presence of FM1-43FX, which would falsely increase the ultrastructural 

readout of the number of vesicles that recycled during the applied stimulation. At this 

minimal stimulation level, this could have had a significant impact on the obtained 

readout. Also, fluorescence identification of 4 APs FM1-43-loaded synapses, although 

possible (Ryan et al., 1997), proved to be difficult due to the low fluorescence level of 

FM1-43 in comparison to sypHy2x (Appendix I, Figure 5, pilot experiment). For these 

reasons, we therefore decided to use a stronger loading protocol based on 10 APs 

stimulation. 40 APs stimulation at 20 Hz was chosen as a comparison readout since it 

has been widely used across different studies, and is well described in the literature. The 

use of this stimulation level is very common due to its relevance to synaptic performance 

as it is thought to mobilise the vesicles in RRP (Li et al., 2005; Murthy and Stevens, 1998; 

Opazo et al., 2010; Schikorski and Stevens, 2001). First we wanted to confirm whether 

we achieved a detectable difference in the fluorescence intensity between 40 APs and 

10 APs loading. The protocol used is summarized in Figure 5.10.A. Due to the 
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quantitative nature of this experiment, it was important to wash out any surface bound 

FM1-43 and hence a 10 min washing followed by 10 min incubation and another wash 

were carried out. The selection of boutons was critical and therefore only puncta with no 

other background fluorescence were selected for the analysis. The representative 

fluorescence images showed the apparent difference in the fluorescence intensity 

between the two loading groups. (Fig.5.10.B). The quantification of the signal revealed 

36.6% less fluorescence in 10 APs loading group than in 40 APs loading (Fig.5.10.C). 

This measurement provides good reference for the comparison of the fluorescence 

readout with the ultrastructural results, in which the number of vesicles that underwent 

recycling can be visualized. 
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Figure 5.10 Comparison of the level of loading FM1-43 loading following 40 APs 
and 10 APs stimulus. A) Timeline demonstrating the protocol used for labelling 
recycling vesicles at different intensities of the stimulus. B) Images showing the 
difference in the level of fluorescence intensity corresponding to the level of loading. 
Scale bar 40 μm. C) Quantification of fluorescence intensities of boutons loaded with 
either 40 APs and 10 APs reveals 36.6% less fluorescence in 10 APs loaded samples in 
relation to 40 APs loaded cells (n = 112 and n = 124 synapses for 40 APs and 10 APs 
loading from 2 and 3 coverslips, respectively. Two-tailed unpaired Student’s t-test, P < 
0.00001). 
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5.4.2  TEM procedure and identification of fluorescence region on the 

resin block  

As mentioned above, one of the most challenging aspects of correlative TEM is the 

relocation of the imaged region, and the even more demanding task of relocation of 

individual fluorescent synapses at the ultrastructural level. Approaches such as CLEM 

(Correlative Light-Electron Microscopy) offer a solution to this problem by allowing the 

imaging of the ultrastructure in the region previously examined for its function using 

fluorescence readouts. Recent technological advances offer the possibility of imaging 

fluorescence at the ultrastructural level improving the experimental output of this 

technique. Nevertheless, this also has its drawbacks. The preservation of GFP signals 

relies on the usage of minimal concentrations of heavy metals such as uranyl acetate in 

order to avoid quenching of the fluorescence of traditional fluorescent proteins. Heavy 

metals on the other hand are crucial for the preservation and good contrast of the 

samples at the ultrastructural level. A new, synthetic range of fluorophores is under 

development which will overcome the problem of GFP quenching in this method in the 

future (Perkovic et al., 2014).  

The sample preparation was carried out according to the method described by Darcy et 

al., 2006 and in section 2.12. The summary of the process is shown in Figure 5.11.A. 

The selection of an appropriate region was crucial for this type of experiment. Following 

functional imaging of sypHy2x signals during 4 APs stimulation, DIC images using 4x 

and 10x objective were taken allowing for the later relocation of the target region 

(Fig.5.11.B). It was important to find a cell expressing sypHy2x with a reasonable number 

of functional boutons and which was positioned next to a distinguishable landmark such 

as a characteristic group of cells (Fig.5.11.B). This was necessary to help later relocation 

of the ROI. The cells were then loaded with FM1-43FX at 40 APs or 10 APs stimulation, 

permitting comparison with our fluorescence imaging (see previous section). One minute 

after the onset of stimulation, cells were rapidly fixed with 2% paraformaldehyde/2% 
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glutaraldehyde. The coverslip was then placed back under the microscope and the target 

region was relocated. Photoconversion was carried out in the presence of 1 mg/ml DAB 

solution during continuous illumination for 15 min under 480 nm light. This process 

exploits the photolabile nature of FM1-43FX and the reducing property of DAB. Free 

radicals are released during photoexcitation of FM1-43FX which then drive the oxidation 

of DAB and lead to the formation of electron dense product that can be visualized under 

the TEM (Branco et al., 2010; Henkel et al., 1996). This results in the dark appearance 

of vesicles loaded with FM1-43FX under TEM. In order to ensure that the entire ROI was 

illuminated, the objective used for photoconversion was 40x and therefore fully 

encapsulating the area imaged during functional analysis (Fig.5.11.C). The sample was 

prepared for TEM and embedded in EPON (for details refer to section 2.12). Following 

overnight polymerisation at 60°C and transfer of the cells onto the resin block, the block 

was searched for the ROI with the aid of DIC images taken. Once relocated, the ROI 

was marked and the block was trimmed as close to the ROI as possible (Fig.5.11.D). 

The structures showed on DIC images were clearly identifiable on the resin block which 

allowed for very precise positioning of the target processes and synapses (Fig 5.11.E). 

Ultrathin serial sections, 60 nm thick, were cut using a diamond knife and placed as a 

ribbon on formvar-coated grids. Sectioning was carried out by Catherine Smith. This 

made it possible to 3D reconstruct the target synapses and examine their architecture. 
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Figure 5.11 Selection of sypHy2x expressing region for TEM analysis and its 
relocalization following embedding. A) Schematic representation of the protocol used. 
Following identification of expressing neuron, cells were imaged during 10x stimulation 
with 4 APs. Recycling synaptic vesicles were labelled with 10 APs or 40 APs stimulus at 
20 Hz with FM1-43FX following which the cells were fixed. The ROI was relocated and 
the coverslips were incubated in 1 mg/ml DAB solution prior to 15 min photoconversion 
by irradiation with 488 nm light. Samples were prepared for TEM as described in 
methods section. B) 10x images were taken to facilitate relocation of the ROI. ROI 
indicated by green square (left). Scale bar 100 µm. Selected region with clearly visible 
cell body and fairly dense network (middle). Scale bar 50 µm. Fluorescence image of 
sypHy2x expressing synapses (right). Scale bar 50 µm. C) Relocation of ROI. Dark green 
square indicates ROI (60x objective) and light green square marks the photoconverted 
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region (40x objective) which fully encapsulates the original ROI (left and middle images). 
Scale bar 100 µm (left) and 50 µm (right). DIC image showing the relationship between 
the original ROI (dark green) and the photoconverted region (right). Scale bar 50 µm. D) 
EPON block with embedded neurons. The target region was relocated (green arrow is 
pointing at the cell of interest) and the resin was marked with some margin around it 
(left). In preparation for sectioning the resin was trimmed closer to the target region 
(middle and right). Scale bars 200 µm. E) ROI (green square) was easily identifiable on 
the trimmed resin block (left). Middle image shows 60x DIC image (70% transparency) 
of ROI perfectly matching the embedded cells. Scale bars 200 µm. Structures of interest 
can be readily distinguished on the ultrathin sections (right). F) Example of ultrathin 
section on which cellular structures can be readily distinguished.         
 

5.4.3 Visualization of sypHy2x-expressing, functional synapses at the 

ultrastructural level and 3D reconstruction 

Correlative microscopy identifying individual FM1-43 labelled terminals at the 

ultrastructural level, has been widely used to study the relationship between structure 

and function of individual presynaptic terminals (Branco et al., 2010; Darcy et al., 2006a; 

Harata et al., 2001). Important features of presynaptic terminals emerged from these 

studies, which would have not been possible to be measured using other techniques or 

with lesser confidence. Despite the fact that the technique has been well established for 

ultrastructural examination of fluorescently imaged FM1-43-loaded synapses, in this 

study it has been attempted for the first time to scrutinize features of sypHy2x expressing 

boutons under the TEM. This represents another tool for deciphering characteristic 

features of boutons that exhibited interesting behaviour during functional sypHy2x 

imaging. It also provides an approach to further confirm the use of sypHy2x baseline 

fluorescence as a measure of synaptic size. 

Following functional imaging with 10x 4 APs protocol, sypHy2x expressing neurons were 

loaded with 10 APs or 40 APs FM1-43Fx (protocol in Figure 5.10) fixed, photoconverted 

and processed for TEM as described in section 5.4.2. The cell of interest was identified 

and the EPON block sectioned. Subsequently the analysis of sypHy2x responses to 

repeated 4 APs stimulation was carried out and synapses with signature behaviour with 

conserved timing of vesicle retrieval were picked for the analysis. From this type of data 

we were able to measure the morphological parameters of these synapses (bouton 
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volume and total number of vesicles), which may help to explain the difference in the 

endocytic behaviour of individual terminals. This section shows the process of 

identification of one such synapse at the ultrastructural level. 

A synapse of interest was identified and traced back to DIC images with the aid of 

fluorescence images (Fig.5.12.A-C). Following the 4 APs trials, cells were stimulated 

with 40 APs, 20 Hz, prior to FM1-43 loading, in order to assist with mapping of the 

synapse thanks to much brighter fluorescence rise than during 4 APs stimulation. From 

this, the area containing the synapse of interest was determined (Fig.5.12.D-G). Bright 

field images at 10x and 60x were used for identification of the region of interest under 

TEM. A very tight trimming of the block around the imaged area vastly reduced the time 

needed to relocate the structures. Middle sections were used for this purpose as the 

most representative of the overall morphology of the region. The ultrastructural images 

mapped perfectly on top of the DIC image (Fig.5.12.H). From this we were able to more 

precisely determine the area containing the synapse of interest. Figure 5.12.I shows the 

electron micrograph with overlaid sypHy2x fluorescence. We then took images at a 

higher magnification of the target area to find a seamless overlay of fluorescence over 

the ultrastructural image (Fig.5.12.J and K).    

Once we were confident that we had identified the ultrastructural region which contains 

the synapse of interest, we traced this region in the remaining serial sections. This 

allowed the collection of consecutive images of the synapse (Fig.5.13.A). These images 

were meticulously aligned, and three dimensional reconstruction of the presynaptic 

terminal and surrounding structures was created using Reconstruct software 

(Fig.5.13.B). We identified the membranes surrounding the presynaptic bouton and its 

axon and labelled the dendritic compartment. The total number of SVs within the bouton 

was counted and the area of the active zone was marked out. To sum up, we developed 

an approach allowing the unambiguous identification of a sypHy2x-expressing synapse 

at an ultrastructural level.  
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Figure 5.12 Example of correlative approach allowing to visualize sypHy2x 
expressing terminal under TEM. A-C) Light microscopy images of cell culture 
expressing sypHy2x. Yellow rectangle represents region encapsulating synapse of 
interest, which is indicated by the red arrow. Scale bar 50 µm, A) DIC image, B) SypHy2x 
baseline fluorescence, C) Synaptic responses to 40 APs 20 Hz stimulation. D-F) Region 
of interest form the yellow box. G) Overlay of DIC and fluorescence image of the 
responding synapse. H) Overlay of DIC, fluorescence and ultrastructural image. I) Low 
magnification ultrastructural readout with overlaid fluorescence. J) Low magnification 
electron micrograph overlaid with higher magnification TEM image and fluorescence. 
Scale bar images D-J, 10 µm. K) Magnification of fluorescence and electron micrograph 
overlay. Scale bar 1 µm. 
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Figure 5.13 An example 3D reconstruction of a fluorescently imaged synapse. A) 
Consecutive images of the serial sections of the region containing synapse of interest. 
B) Three-dimensional reconstruction of the synapse. The two images show the same 
synapse from different perspective. The area shaded in grey represents presynaptic 
terminal and part of the axon. Green spheres are the synaptic vesicles. Active zone is 
highlighted in red. Dendrite is represented by the blue structure. Scale bar 500 nm.  
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5.4.4 Robust method for identification of photoconverted vesicles 

The reliability of the results from photoconversion experiments heavily relies on the 

unambiguous identification of photoconverted vesicles. This is especially critical in this 

study, due to the very low level of stimulation used as every misidentified vesicle could 

potentially affect the results. Strict rules were therefore put in place to ensure a uniform 

analysis across samples. A detailed description of how to distinguish non-

photoconverted from photoconverted vesicles has been previously provided by many 

authors (Darcy et al., 2006a; Harata et al., 2001; Schikorski and Stevens, 2001). 

There was a very clear observable distinction between non-photoconverted (PC-) and 

(PC+) vesicles (Fig.5.14.A). The PC- vesicles were characterized by a dark membrane 

and a clear lumen. These were the vesicles that were not released in response to the 

stimulus and therefore did not take up FM1-43 dye. The lumen of PC+ vesicles appeared 

black and was evidently darker than the surrounding membrane (Fig.5.14.B). These 

electron-dense vesicles were those that underwent endocytosis in the presence of FM1-

43FX, and were therefore photoconverted in the presence of DAB. The difference 

between PC+ and PC- vesicles can be quantified by analysing their density profiles. A 

line of equal length was drawn across PC+ and PC- vesicles and cross-sectional density 

was measured. Non-photoconverted vesicles showed an increase in density 

corresponding to the membrane, with a drop in the middle which reflects the vesicular 

lumen. Photoconverted vesicles on the other hand showed the same increase in density 

across the SVs membrane as PC- vesicles, but they were also characterised by a central 

peak with density much higher than any other point across the structure (Fig.5.14.C). 

Furthermore another set of measurements were employed in order to avoid any 

confusion between PC+ and PC- vesicles. Lumenal densities were measured from 10 

pixel diameter circular ROIs placed in the centre of the vesicle lumen. There was a clear 

bimodal distribution of densities with peaks at very different values for PC- and PC+ 

vesicles, which allows the reliable identification of these two groups of vesicles 
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(Fig.5.14.D). Various controls were carried out in our laboratory showing that black, 

photoconverted vesicles were only present in experiments with prior FM1-43FX 

exposure (Rey et al., 2015). Henkel et al., 1996, carried out similar control experiments 

to also conclude that the presence of electron dense product in SVs is specific for 

vesicles exposed to FM1-43.   

GFP was previously reported to undergo sufficient photo-oxidation to drive DAB 

conversion into electron-dense product (Horstmann et al., 2013). To control for the 

effects of sypHy2x expression we carried out a control experiment in sypHy2x expressing 

cells and carried out the photoconversion protocol as normal to find that there were no 

photoconverted vesicles in our preparation (data not shown).  

We therefore established a method for confident identification of photoconverted 

vesicles.  
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Figure 5.14 Identification of photoconverted vesicles on electron micrographs. A) 
TEM image of a sample loaded with FM1-43 dye (40 APs at 20 Hz) and subsequently 
photoconverted. Red arrowheads indicate all photoconverted vesicles in this presynaptic 
terminal. Orange shade marks postsynaptic region. Scale bar, 500 nm. B) Higher 
magnification image of photoconverted vesicle with dark lumen (red arrowhead) and non-
photoconverted vesicle (green arrowhead). Scale bar, 50 nm. C) Density measure of the 
cross sections of PC- and PC+ vesicles (inset). The lumen of the PC+ is the densest 
area of PC + vesicle, denser than the membrane (red trace). The densest portion of the 
PC- vesicle is the membrane with a dip indicating the lumen of the PC- vesicle (green 
trace). Data showed as average of 4 vesicles for both groups ± SEM. D) Distribution plot 
of lumenal densities of PC- (n = 65, green trace) and PC+ (n = 60 red trace) vesicles. 
Two clear peaks are revealed aiding identification of PC- and PC+ vesicles.        
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5.4.5 Photoconverted vesicles under different stimulation conditions 

Having established a reliable protocol for the identification of photoconverted vesicles, 

we next wanted to establish how well our fluorescence intensity readouts at 40 APs and 

10 APs stimulation protocols (section 5.4.1) aligned with the findings from ultrastructural 

experiments. The size of the RRP has been estimated to comprise of 5-15 synaptic 

vesicles in various hippocampal preparations (Dobrunz & Stevens, 1997 (5 ± 3, 

hippocampal slice); Murthy & Stevens, 1998 (7.7 ± 4.4 hippocampal cell culture); 

Stevens & Tsujimoto, 1995 (15, hippocampal culture)). Therefore these studies provide 

a good reference for the quantification of the number of mobilized quanta under 40 APs 

and 10 APs stimulation.  

Within photoconverted regions we observed that there were few PC+ vesicles in 

individual synapses from 40 APs stimulation, whereas, in 10 APs loading there were 

mostly single PC+ vesicles in single sections (Fig.5.15.A). Due to the fact that sampling 

of individual sections can lead to sampling errors and overestimation of the number of 

photoconverted vesicles, we used 3D reconstructions of 10 APs loading for evaluation 

of the percentage of PC+ vesicles. We found that the percentage of photoconverted 

vesicles was 3.61 ± 1.96 % (n = 17 synapses). In a study with a protocol essentially 

identical to the one used here, the percentage of photoconverted vesicles following 40 

APs, 20 Hz stimulation in 3D reconstructed synapses was 5.36% (Schikorski and 

Stevens, 2001). This suggests that the loading in our 10 APs protocol was 32.7% smaller 

than in 40 APs stimulation as reported by (Schikorski and Stevens, 2001), which is 

strikingly similar to the value that we reported from the fluorescence readout (Fig.5.10).  

While it may seem unlikely, it is possible to mistake photoconverted vesicles with other 

membranous structures with round a appearance. Miscounting other vesicles for PC+ 

could contaminate the data, hence it is important to recognize and avoid structures which 

deviate from ~40 nm diameter spheres. Endosomes and large core vesicles can be 

mistaken for photoconverted SVs (Fig.5.15.B). However, they are not as numerous as 
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SVs (Harata et al., 2001) and larger than SVs (large dense core vesicles: 80-120 nm 

(Harris and Weinberg, 2012); endosomes: 60-100 nm (Aravanis et al., 2003). Synapses 

were always screened for these bigger than SVs, rounded structures, and it was ensured 

that they were not included in the analysis. 

The outcome of these two experiments, live cell imaging and ultrastructural analysis, 

provides good evidence for the robustness of the experimental and analysis approaches 

in our system.  

 



215 
 

 

Figure 5.15 Quantification of PC+ vesicles in 40 APs and 10 APs loaded samples. 
A) Representative electron micrographs of synapses from 40 APs and 10 APs loading 
samples. Orange shade marks postsynaptic region and orange arrow postsynaptic 
density, yellow line represents AZ, green dots were placed over PC- vesicles and red 
dots over PC+. Scale bar, 500 nm. B) Various types of vesicles present in presynaptic 
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terminals: non-photoconverted small synaptic vesicles (green arrowheads), 
photoconverted SV (red arrowhead), large clear vesicles (orange arrows), dense core 
vesicles (blue arrows), and electron-dense endosome (yellow arrow). Scale bar 500 nm. 

 

 

 

5.4.6 Ultrastructural correlates of synapse-specific behaviour 

Being equipped with all the necessary tools, we can finally explore the ultrastructural 

characteristics of the synapses which exhibited signature functional profiles. Having 

identified in functional experiments that the size of the total vesicle pool correlated with 

endocytic kinetics, we wanted to confirm this at the ultrastructural level.  

 

AAV.sypHy2x expressing neurons were imaged whilst being stimulated 9 x 4 APs, and 

detailed DIC images of the region of interest and its surrounding area were collected, in 

order to aid later relocation of the region as described in detail in section 5.4.3. The 

sample processing for TEM was carried out as described in Methods 2.12. The synapses 

for correlative analysis were chosen on the basis of a few criteria: similarity measure, 

endocytic kinetics, and size measured with sypHy2x baseline fluorescence. This ensured 

that we sampled a range of synapses with different properties. Nevertheless, due to 

technical reasons we only collected images for full reconstruction of 3 boutons. The 3D 

models of these synapses are shown in Fig.5.16.A and are accompanied by 1q 

fluorescence traces from these synapses. From the traces alone, it is apparent that the 

largest bouton (on the right) was characterized by the fastest vesicle retrieval kinetics. 

We plotted various functional and structural properties against each other in order to see 

whether there are any relationships between them. Although we are aware that 3 

readouts are not enough to make any concrete conclusions, we decided to fit the points 

with a function, in order to obtain some indication as to whether various parameters show 

any signs of scaling together. Nevertheless, we would not have the confidence to 
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comment on the exact nature (linear or monotonic) of these relationships based on only 

3 points.    

First, one of the most important results that we were hoping to obtain here, was 

confirmation of whether sypHy2x baseline correlates with the actual presynaptic size. 

We saw a very clear positive scaling of the volume and the total number of vesicles with 

this fluorescence measurement (Fig.5.16.B and C), which further validated our previous 

attempts to show this (sections 5.2.1 and 5.2.2.2). Second, the established hypothesis, 

that small synapses might exhibit a much more crowded environment than in large 

synapses, as far as protein numbers are concerned (Wilhelm et al., 2014), made us 

hypothesise whether this might also be reflected in the density of the vesicles within 

boutons. The plot of the relationship of the number of vesicles in the bouton per volume, 

revealed an interesting result (Fig.5.16.D), which we decided to explore in more 

synapses (data shown in Fig.5.17). Last but not least, we wanted to explore whether the 

rate of endocytosis correlates with ultrastructural components. We checked whether in 

the synapses analysed, endocytic rate scaled with sypHy2x baseline fluorescence, as it 

had in our previous results (Fig.5.16.E). Although slightly scattered for these 3 synapses, 

the relationship was maintained. This evidently shows the need for more experiments, 

as in our larger data sets (Fig.5.1.D), this relationship was very clear. Surprisingly, 

however, the scaling of the rate with ultrastructural readouts, volume of the synapse and 

total vesicle count, was very clear (Fig.5.16.F and G). This confirms that the rate of 

endocytosis correlates with presynaptic properties, specifically, the volume of the bouton 

and the total number of synaptic vesicles, with larger synapses exhibiting a faster rate of 

endocytosis than the small synapses.  

 

This data validated our observations from functional experiments regarding the 

relationship of endocytic retrieval with synaptic size, allowing us to unequivocally 

measure synaptic volume and the total number of synaptic vesicles. We also uncovered 
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a potentially interesting relationship between the number of vesicles per bouton and 

presynaptic volume, which we decided to explore further.    

 

 

 

Figure 5.16 Ultrastructural presynaptic properties that correlate with synaptic 
behaviour. A) 3D reconstructions of the chosen terminals (top row). Green circles 
represent synaptic vesicles, purple area active zone and brown structure mitochondria, 
only present in the right bouton. Scale bar, 500 nm. Bottom row shows 1q responses 
from the reconstructed boutons. Grey and green profiles show responses with slower 
and faster kinetics, respectively. Scale bar 10 s.  B-G) Graphs representing relationships 
between various functional and ultrastructural measurements: sypHy2x baseline 
fluorescence, volume, number of vesicles and rate of endocytosis. Plots B-D relate 
various measurements of the size, whereas plots E-G show relationship between the 
rate of endocytosis and size parameters.   
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5.4.7 Difference in vesicle density between small and large synapses  

In the correlative TEM experiment, not only did we confirm our functional measurements, 

but we also uncovered another potential parameter that could influence the kinetics of 

single vesicle retrieval. In previous sections (5.2.1, 5.2.2.2, 5.2.23 and 5.2.2.4), we 

showed that larger synapses are characterized by a faster rate of endocytic retrieval 

following single vesicle release events. We reasoned that one possible explanation for 

this might be the density of synaptic vesicles within synapses.  

High variability in vesicle density between synapses has previously been reported in 

reconstructed Ia presynaptic terminals from the ventral horn (Pierce and Mendell, 1993). 

Measurements of the total number of vesicles of cultured hippocampal neurons also 

showed high variability in the count between different synapses (Branco et al., 2010). 

Despite the fact that the size of the total pool has been previously linked with other 

structural parameters (Pierce and Mendell, 1993), very little attention has been paid to 

the effect of density of synaptic vesicles on presynaptic performance. It is important to 

bear in mind that the presynaptic terminal is a crowded environment with an average of 

300,000 proteins per synapse (Wilhelm et al., 2014). Wilhelm et al., 2014, carried out a 

detailed analysis of the protein composition of hippocampal neurons and using 

synaptophysin fluorescence as a measure of size they made an interesting observation 

that small synapses contain more protein per volume than the large ones. This can be 

as a result of two things. One possibility is that small synapses may simply have a higher 

copy number of proteins. Alternatively, they could have a higher density of synaptic 

vesicles, and, resulting from this, a higher copy number of proteins. Our ultrastructural 

analysis provides us with the opportunity to directly test this using three dimensional 

reconstructions of hippocampal boutons. We reasoned that a higher density of vesicles, 

and associated proteins could serve as a spatial hindrance within smaller boutons, 

contributing to their slower rate of endocytosis in comparison to the large synapses. 
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In order to accurately measure the density of vesicles within presynaptic volume, we had 

to set out clear rules for demarcating the boundary of vesicles within the bouton versus 

those belonging to the axon. We therefore classified vesicles into two groups: i) 

intrasynaptic vesicles were within the main cluster of vesicles at each synapse, they were 

in close proximity to each other, and they demarcated the boundary of the presynaptic 

compartment; ii) extrasynaptic vesicles were the axonal vesicles, away from the main 

cluster, and, if that distinction was ambiguous, they had to be separated from the 

intrasynaptic cluster with a distance equivalent to 3 vesicles diameter (Fig.5.17. A and 

B).  The boundary of the bouton area was either established on the basis of the presence 

of the membrane, or in the case of much wider or unclear ultrastructural boundaries, 

~100-120 nm away from the outermost vesicles in the intrasynaptic cluster. The total 

number of vesicles and the synaptic volume were measured in Reconstruct in fully 

reconstructed terminals. The analysis revealed a monotonic relationship (R2 = 0.935; 

linear fit for comparison: R2 = 0.677) between the number of vesicles and synaptic 

volume (n = 18 3D reconstructed synapses. Spearman correlation test, r = 0.963, P < 

0.0001) (Fig.5.17.C and D), indicating that SVs are less densely packed in large 

synapses than in the small ones. It may well be that the results were driven by one 

significantly larger bouton. Nevertheless, when this synapse was excluded from the 

analysis as an outlier the outcome was still the same (n = 17 3D reconstructed synapses. 

Spearman correlation test, r = 0.9559, P < 0.0001). This suggests that the number of 

vesicles does not scale linearly with the synaptic volume, instead, large boutons are 

characterized by fewer vesicles per volume than the small ones, which may contribute 

to their more efficient recycling kinetics.   
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Figure 5.17 Small and large synapses differ in the density of synaptic vesicles. A) 
Example shows vesicles identified on a basis of single sections from the same region. 
Vesicles from intrasynaptic cluster show much higher density than extrasynaptic 
vesicles. Scale bar 1 µm. The boundary of the intrasynaptic cluster was assigned based 
on the outermost vesicles that were within 3 vesicles width away from the main cluster. 
The boundary for presynaptic volume calculation was drawn within 2 vesicles width from 
the outermost vesicles in the cluster or if closer, within the ultrastructural boundary of the 
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synapse. B) TEM images of 2 consecutive section with green lines indicating the area 
considered for volume analysis and blue lines marking processes with extrasynaptic 
vesicles. Scale bar 1 µm. C) 3D reconstructions of small (left) and large (right) synapses. 
Scale bar 1 µm. D) Very strong positive monotonic correlation between the total number 
of intrasynaptic vesicles and the volume of presynaptic terminal. (Spearman correlation 
test, n = 18 3D reconstructed synapses, r = 0.963, P < 0.0001).    

 

5.5 Discussion 

The functional properties of small central synapses such as release probability, quantal 

size or plasticity, vary greatly between individual boutons. Underlying this variability must 

be differences in the structure between synapses such as shape, size, vesicle pool sizes 

and molecular composition of individual boutons. Nevertheless, there is still limited 

information on how the behaviour of individual boutons is shaped by their properties. The 

aim of this chapter was to explore the properties of individual presynaptic terminals that 

dictate their endocytic behaviour. We successfully identified structural and molecular 

correlates of the rate of endocytosis at individual boutons.  

 

5.5.1 Synaptic size determines presynaptic properties  

The efficacy of presynaptic performance has been previously linked with the size of the 

boutons (Branco et al., 2010; Welzel et al., 2011). We therefore hypothesized that 

synaptic size might also determine the timing of the retrieval of synaptic vesicles. Firstly 

we examined whether sypHy2x baseline fluorescence can be used as a measure of 

synaptic size.  Loading synapses with sytI-Oyster550 antibody revealed that the size of 

the recycling pool correlated with sypHy2x baseline fluorescence, indicating that these 

parameters were linked and that sypHy2x baseline can be used as a measure of synaptic 

size. Nevertheless, both these readouts are based on the amount of proteins, 

synaptotagmin I and synaptophysin, at individual synapses and this result might 

therefore reflect the relationship in the ratio between the two proteins rather than the 
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synaptic size per se. However, the correlative TEM experiment confirmed that sypHy2x 

baseline reflects the overall synaptic volume (section 5.4.6).  

Our analysis showed that the kinetics of endocytosis at individual synapses correlated 

well with their size: larger synapses exhibited faster rates of endocytosis, whereas 

smaller synapses showed slower kinetics of vesicle retrieval. Next, we explored this 

result in depth looking for more specific correlates. Is it the overall synaptic volume or 

perhaps the size of the recycling pool or recycling pool fraction that dictates the endocytic 

kinetics? The size of the recycling pool has been previously linked with the kinetics of 

exocytosis at hippocampal synapses (Welzel et al., 2011). Boutons with a larger 

recycling pool showed slower kinetics of exocytosis measured with FM1-43 (Welzel et 

al., 2011). However, an another study showed that the kinetics of exocytosis was not 

related to the recycling pool fraction size (Fernandez-Alfonso and Ryan, 2008). We 

therefore tested whether it is the total pool size, recycling pool size or the recycling 

fraction, or a combination of these that contribute to the recycling kinetics. 

We saw a strong positive correlation between the rate of endocytosis and the size of the 

total vesicles pool, but there was only moderate correlation between the endocytic rate 

and the recycling pool. This might appear very surprising considering the fact that the 

recycling pool scales well with the total vesicle pool. The measurement of the recycling 

fraction in this study (48% ± 0.018) corresponds well with previously reported values in 

the literature (50.3%, 50% and 49% in Kim and Ryan, 2010 Fernandez-Alfonso and 

Ryan, 2008 and Ratnayaka et al., 2012, respectively). The analysis of the recycling 

fraction against the total pool size revealed that this parameter is highly variable across 

synapses. A similar observation was previously made in other studies (Branco et al., 

2010; Fernandez-Alfonso and Ryan, 2008; Harata et al., 2001; Marra et al., 2012). This 

therefore explains the poorer correlation between the endocytic kinetics and the recycling 

pool or the recycling pool fraction. We explored this further in our homeostatic scaling 

data.  
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5.5.1.1 Rate of endocytosis scales with synaptic size 

Presynaptic properties such as vesicle trafficking or synaptic strength have been shown 

to be regulated in order to sustain neurotransmission and to respond and adapt to the 

levels of changing network activity (Murthy et al., 2001; Turrigiano, 2011; Virmani et al., 

2006). In order to further validate our findings on the correlation between synaptic size 

and vesicle endocytosis we decided to silence synapses for 3 days using CNQX, an 

AMPA/kainate blocker. This type of silencing induces disuse hypersensitivity and leads 

to both pre- and postsynaptic changes. Although the mechanisms of this are not fully 

understood, changes in presynaptic parameters, such as sizes of synaptic vesicle pools, 

induced by this form of silencing, have been reported (Kim & Ryan, 2010; Murthy et al., 

2001). 

In an experiment blocking postsynaptic activity by incubating hippocampal cell culture 

for 2 days with 10 μM NBQX Murthy et al., 2001, observed that multiple presynaptic 

parameters scaled together: total vesicle pool size, synaptic volume, number of docked 

vesicles and active zone area. These results suggest that although an overall increase 

in the synaptic size was observed, the relationships between variables were maintained 

with disuse hypersensitivity. In our study, we observed an increase in the total vesicle 

pool size accompanied by a decrease in the recycling fraction in CNQX-treated cells. 

Nevertheless, when synapses of the same size were being compared the recycling 

fraction in the CNQX group was significantly larger than the control. At first glance this 

seem like a contradicting result, but we found that the reason for this might be an 

important presynaptic property. Our investigation showed that small synapses have 

larger recycling fractions than the larger boutons. It has been previously reported that a 

larger recycling pool in synapses was associated with a smaller fraction of the RRP, than 

in those synapses with small recycling pools (Welzel et al., 2011). In a comparable 

experiment to ours, Fernandez-Alfonso and Ryan, 2008. used the alkaline trapping 

method with a spH reporter and saw conflicting results. In one experiment, larger 
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synapses had smaller recycling fraction than the small synapses, whereas the opposite 

was observed in another experiment, with an extremely slight tendency for the larger 

synapses to have a larger recycling fraction (Fernandez-Alfonso and Ryan, 2008). The 

authors did not comment on the discrepancy of their data. A tendency, although not 

statistically significant, for small synapses to exhibit larger recycling pool fraction than 

large synapses, can be observed in results from ultrastructural analysis of recycling  

vesicles (Marra et al., 2012). Our results showing that larger synapses have smaller 

recycling fraction explain why CNQX-treated synapses, which were larger in terms of 

their total vesicle pool size, had smaller recycling fractions than the control data. On the 

other hand, CNQX treated synapses of the same size as the control group exhibited an 

even larger recycling fraction than the control synapses, indicating that the modulation 

not only increased the overall size of synapses, but also the recycling fraction in smaller 

synapses. In this sense, our results are consistent with the study by Murphy et al., 2001, 

but also with Kim and Ryan, 2010, who showed an increase in the recycling pool size 

following silencing with TTX. Having established that our modulation worked, we showed 

that the rate of endocytosis did not scale with the increase in the recycling pool fraction 

but was correlated with the total vesicle pool size. 

How can the total vesicle pool size influence the kinetics of endocytosis? We explore this 

question further in the sections of this discussion devoted to the results of endophilin I 

labelling experiment and TEM results, and in the general discussion.  

 

5.5.1.2 Larger synapses exhibit higher variability in their properties 

Larger synapses not only exhibited a faster rate of endocytosis but also potential for 

greater variability in the retrieval kinetics at individual synapses. From our WSS 

measurement we found that large synapses can show very similar patterns of single 

vesicle retrieval kinetics over multiple trials or very variable ones. This suggests that the 



226 
 

regulatory mechanisms and endocytic machinery are not as tightly controlled in large 

synapses as they are in the small synapses, which show more conserved behaviour over 

time. If that is the case, the molecular composition of large synapses is likely to reflect 

this. We tested this hypothesis by measuring the level of one of the most important 

proteins for endocytosis – endophilin I. 

Firstly, however, we sought to determine whether the endocytic kinetics difference 

between small and large synapses could be explained by varied amounts of endocytic 

protein present at these synapses. Antibody staining revealed varied expression of 

important vesicular proteins such as SV2, synaptophysin and synaptotagmin 1 between 

individual sympathetic varicosities in mice (Knight et al., 2005). A detailed analysis of 

proteomics of presynaptic terminals revealed that not all the proteins scale linearly with 

synaptic size measured as the amount of synaptophysin (Wilhelm et al., 2014). We 

identified endophilin I as a possible target protein responsible for the differences in 

kinetics between synapses.  Endophilin I was found to recruit and stabilize synaptojanin, 

an important protein involved in triggering clathrin uncoating (Schuske et al., 2003), and 

more importantly in knock out experiments in mice to be a positive regulator of retrieval 

kinetics (Milosevic et al., 2011), and of exocytosis (Weston et al., 2011). Our results 

showed that endophilin I does not scale linearly with synaptic size. Despite the fact that 

it would be expected that large synapses have more protein than the small ones, large 

synapses had double the endophilin I than would be expected from the proportional 

increase of the two variables: endophilin I and size. In other words, we found that large 

synapses have up to twice as much of this protein than the small synapses when the two 

measurements are expressed as a function of size. This difference in abundance of 

endophilin I could be one of the factors contributing to the overall faster endocytic 

retrieval that we observed at larger boutons.      

Not only did we see that larger synapses, proportionally to size, have more endophilin I, 

but we also observed that the variability in the amount of this protein is considerably 
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higher in larger boutons. This can offer an explanation of the higher variability in 

endocytic kinetics within large boutons. Let us assume two situations: a large synapse 

with little endophilin I and a large synapse with an abundance of endophilin I. Most of 

this protein is associated with SVs from which it is unbound in an exocytosis-dependent 

manner, and delivered to the endocytic zones (Bai et al., 2010). It is therefore possible 

that in large synapses with little endophilin I, the time taken for this protein to be delivered 

to the endocytic site might be more variable in the consecutive endocytic rounds than in 

a large synapse where this protein is more abundant. Thus, availability of endophilin I 

could make the retrieval kinetics across multiple trials more similar and consequently 

lower the WSS value at large synapses with an abundance of endophilin I in comparison 

to large synapses with less endophilin I.   

This raises the question of how the amount of protein might be regulated at individual 

synapses. Despite the fact that the roles of many proteins involved in endocytosis, as 

well as their interactions, have been identified, protein sorting and recycling at 

presynaptic terminals still remains largely unclear. Nevertheless, a variability in the 

amount and composition, of exocytic proteins between synapses has been previously 

reported (Knight et al., 2005). It was hypothesized that this variability might be one of the 

factors underlying the strength of individual synapses (Knight et al., 2005). It is therefore 

possible that the amount of endophilin I is regulated locally, based on the strength of a 

given synapse. Also, hippocampal synapses are extremely plastic with synapse-specific 

structural changes that occur on a timescale of minutes and affect functional properties 

of individual boutons such as pr (Matz et al., 2010). Perhaps the large synapses with 

higher functional variability or low endophilin I levels reflect the boutons that are 

undergoing plasticity. 
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5.5.2 Timing of endocytic kinetics is determined by the fission of the 

vesicles from the membrane  

The question unresolved so far is whether the variability in the kinetics of fluorescence 

decay reported with sypHy2x (Chapter 4) is due to different timing of vesicle retrieval 

between boutons or reacidification kinetics. Rapid quenching of the surface fluorescence 

with acid has been used to isolate the kinetics of these two processes (Atluri and Ryan, 

2006). Nevertheless, this technique was not applicable in our system. It has been 

estimated with this method that reacidification kinetics were very consistent at 4-5 s 

following 40-300 APs, 10 Hz stimulus (Atluri and Ryan, 2006). Shorter reacidification 

time has been reported following single vesicle release events (Gandhi and Stevens, 

2003). However, no data was given by these authors that would allow us comment on 

the variability of this process between synapses. Nevertheless, following their 

observation of variability in retrieval timing, Gandhi and Stevens, 2003, attributed this 

variability to the time taken by the endocytic machinery to assemble at the retrieval site. 

We hypothesized that we can test this by blocking dynamin function at sub-optimal level, 

which will unify the kinetics of endocytic retrieval across the population of synapses. 

Using dynasore, we manipulated synapses into behaving in a uniform way and 

eradicated synapse-specific features of the fluorescence decay, making all the retrieval 

events at individual synapses more similar to the population of synapses. This 

demonstrates that the variability in vesicle retrieval is due to differences in the time taken 

to assemble the endocytic machinery at different synapses, and due to the timing of 

fission of the vesicles from the membrane.  

It is not only the protein composition that may affect synaptic performance (as discussed 

above), but also lipid composition. Plasma membrane is composed of a variety of 

different phospholipids, sphingolipids and sterols which will confer various characteristics 

on the membrane (Rohrbough and Broadie, 2005). The composition of the membrane 

can influence SVs exo- and endocytosis by regulating membrane fluidity and curvature 
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(Rohrbough and Broadie, 2005), and by doing so, affecting the function of curvature-

sensing proteins such as endophilin I. Moreover, these lipids organize into functional 

domains called lipid rafts, which many synaptic vesicle proteins have been shown to 

associate with (Sebastião et al., 2013).  For example, endophilin I has been shown to 

interact with phospholipids before recruiting synaptojanin, which is important for 

uncoating of newly formed SVs (Kononenko and Haucke, 2015; Schuske et al., 2003). 

Depletion of PI(4,5)P2 from neuronal membranes led to accumulation of clathrin-coated 

pits at the surface (Posor et al., 2013), confirming the importance of protein-lipid 

interactions. Unlike the modulation of dynamin function with dynasore, which unified all 

the responses, we hypothesized that disruption of lipid rafts would have the opposite 

effect, and would increase variability within individual synapses and within the 

population. Preliminary experiments using methyl-β-cyclodextrin (MβCD), a drug which 

extracts cholesterol from the membrane, were performed. MβCD was previously shown 

to impair endocytosis in rat Calyx of Held but it was also found to reduce exocytosis (Yue 

and Xu, 2015), which we also observed in our system, and further optimization of the 

experimental conditions would be needed.   

5.5.3 Density of synaptic vesicles in synapses of various sizes 

Our correlative light-electron microscopy analysis, allowed us to unequivocally verify 

using sypHy2x baseline fluorescence as a measure of synaptic size. We also showed 

that the rate of endocytosis increases with synaptic volume and the total number of 

vesicles, which again strengthens our results from functional data. From this data, we 

also discovered an interesting relationship between the volume of the boutons and the 

density of SVs. Further analysis revealed that the density of SVs at large synapses was 

smaller than in small synapses, which could contribute to the reason for smaller 

synapses being characterised by slower rates of endocytosis than large ones.  

Presynaptic terminals are extremely crowded cellular compartments with hundreds of 

thousands of proteins interacting together, creating exceedingly efficient machinery. 
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Detailed analysis of the absolute copy numbers of presynaptic proteins revealed that 

small synapses contain proportionally more proteins than large synapses (Wilhelm et al., 

2014). This could imply that small synapses should be more efficient in their function. 

However, presumably, it could also work in the opposite way, creating a very crowded 

environment, which could actually impede effective presynaptic function.  

We hypothesized that this higher protein concentration could be caused by a higher 

density of SVs in small terminals in comparison to the large ones. The size of the 

measured synapses in our study is highly comparable with the previously reported 

volume for hippocampal boutons (0.12 to 0.54 µm3 ) (Harris and Sultan, 1995; Yang et 

al., 2005). Our analysis of 3D reconstructions revealed that the density of SVs does not 

scale linearly with synaptic volume and that larger synapses are characterized by a lower 

SV density than small ones. What mechanism could lead to higher SVs density at smaller 

synapses? It has been shown in an in vivo study in Drosophila that mechanical tension 

promotes actin polymerisation which stimulates vesicle clustering at presynaptic 

terminals of neuromuscular junction (Siechen et al., 2009). Importantly, the opposite was 

also true: the release of tension led to actin depolymerisation which could led to 

dispersion of the vesicle cluster (Hirata et al., 2008; Siechen et al., 2009). The authors 

concluded that the application of stretch led to tension build-up in the membrane, which 

in turn promoted actin polymerisation and vesicle clustering (Siechen et al., 2009). It 

might be therefore possible that the cytoskeletal and membrane forces in small and large 

synapses are different and therefore lead to various levels of actin polymerisation and 

lower or higher densities of vesicle clustering. Moreover, actin polymerisation was shown 

to be increased in hippocampal cultures following intensive stimulation (Colicos et al., 

2001). Perhaps the release of a synaptic vesicle, and the following endocytosis in small 

synapses, brings about bigger changes in membrane tension, and therefore to increased 

actin polymerisation and denser vesicle clustering as observed in our experiment.      

 



231 
 

5.5.4 Concluding remarks and future directions   

The results presented in this chapter point towards an enormous complexity in the factors 

influencing presynaptic behaviour. Nevertheless, we identified structural properties that 

determine endocytic kinetics at individual boutons. We confirmed that the kinetics of 

retrieval of single synaptic vesicles scales with synaptic size, and we identified precise 

correlates of endocytic behaviour, including: the total number of vesicles, the presynaptic 

volume and the amount of endophilin I. All these properties might be shaped by the 

precise role a given synapse has in the network, and might be substrates for the 

expression of plasticity associated changes. Future experiments in relation to this, could 

involve examining the similarity measurements in synapses that had undergone 

plasticity. If consistency of endocytic behaviour at individual synapses somehow confers 

functional advantages, or if it is associated with the strength of the synapse, then 

induction of LTP might be expected to result in a more unified behaviour, across all the 

boutons. More detailed correlative investigation of ultrastructural-functional properties 

such as overall synaptic shape, size and position of active zone, number of docked 

vesicles, and position and number of vesicles recently recycled in the presence of FM 

dye, could reveal more parameters underlying the basis of the operation of individual 

boutons. A direct correlation of the level of endophilin I with the behaviour of individual 

boutons, would also allow us to further verify claims made here regarding the interplay 

between synaptic size, the amount of endophilin I and the level of similarity in the 

behaviour of consecutive recycling vesicles at individual synapses. As mentioned earlier 

in the discussion, manipulation of the constituency of lipid rafts would also be interesting, 

and it would provide us with another line of enquiry as to what aspects of presynaptic 

structure affect similarity.   

In Chapter 7 we propose a model summarizing the regulation of the endocytic kinetics 

following single vesicle exocytosis. 
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6 THE EFFECTS OF AMYLOID 

BETA 1 - 42 ON FUNCTION OF 

PRESYNAPTIC TERMINALS 
 

 

 
 
 
HIGHLIGHTS  
 

24 hour treatment with 1 μM Aβ 1-42 leads to: 

 Reduced density of functional synapses 

 

 Impairment in the kinetics of exocytosis during medium and 

large stimulation trains 

 

 An increased number of vesicles being released in response 

to small and medium stimulation  

 

 Reduced rate of endocytosis following medium stimulation but 

does not affect the endocytosis of single synaptic vesicles 

 

 Larger Ca2+ influx in response to small and medium stimulation  

 

 Larger Ca2+ influx during repeated stimulation trains in 

comparison with the controls  
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6.1 Introduction  

Alzheimer’s disease (AD) is a leading cause of dementia in the elderly, affecting a 

significant proportion of the population over 65 years of age. The cost of care for the 

patients in the UK alone, exceeds £26 billion per annum (Alzheimer’s society, 2016). 

Despite huge research efforts, the available drugs, such as acetylcholinesterase 

inhibitors, offer only symptomatic treatment, with limited effectiveness and common side 

effects (Galimberti and Scarpini, 2011). Recent therapeutic developments, attempting to 

halt the disease with encouraging results in animal experiments should be treated with 

caution as most of them failed to show efficacy at the level of clinical trials (Amanatkar 

et al., 2016; Davtyan et al., 2016; Karran and Hardy, 2014). The pathogenesis of AD has 

been strongly linked with the loss of synapses and synaptic dysfunction due to 

accumulation, and toxicity exerted by Aβ peptide (Murphy and LeVine III, 2010). 

However, it is not fully understood how this protein leads to synaptic dysfunction and 

eventually to synaptic degeneration. The postsynaptic mechanisms of Aβ toxicity have 

been studied in more depth (Hsieh et al., 2006; Renner et al., 2010) in comparison to the 

presynaptic changes induced by this protein, which will be explored in this work.  

 

Following  the first description of the symptoms and the accompanying brain pathology 

by Alois Alzheimer, the plaques and neurofibrillary tangles he associated with the 

disease have later been found to contain fibrillar Aβ and hyperphosphorylated tau, 

respectively (Karran et al., 2011). Aβ is generated by two sequential enzymatic 

cleavages of amyloid precursor protein (APP) by β-secretase 1 (BACE1) and 

subsequently by γ-secretase to produce either a 40 or 42 amino acid long Aβ peptide 

(Pimplikar, 2009). Aβ1-40 and Aβ1-42 have been shown to form aggregates of various 

sizes ranging from small soluble oligomers to larger oligomers, protofibrils and fibrils 

(Sakono and Zako, 2010). Over the years the consensus as to which is the most toxic 

Aβ species has changed. Soluble oligomers have been attributed to an extensive range 

https://en.wikipedia.org/wiki/Gamma-secretase
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of cytotoxic effects (Soura et al., 2012) and in the last decade the belief has emerged 

that they are the major cause of AD pathology (Bieschke et al., 2012; Sakono and Zako, 

2010). In human brain samples, the severity of synaptic pathology was strongly 

correlated with the abundance of soluble Aβ1-40 and Aβ1-42, but not the fibrillar form of 

this protein (Lue et al., 1999). Aβ1-42 is considered to be the more toxic peptide in 

comparison to 40 amino acid long Aβ, and it is also thought to have a higher propensity 

to form toxic oligomers (Walsh and Selkoe, 2007). We therefore chose to carry out our 

study using small oligomeric Aβ1-42.  

 

Aβ has been found to have a profound effect on synaptic function, affecting a wide range 

of synaptic properties. Some of the known, reproducible effects of Aβ on postsynaptic 

function include: i) impairment of long-term potentiation (Lambert et al., 1998; Walsh et 

al., 2002) and induction of long term depression mediated by AMPA-R internalization 

(Sheng et al., 2012); ii) NMDA-Rs dependent overproduction of reactive oxygen species 

(ROS) and dendritic spine loss (De Felice et al., 2007; Shankar et al., 2007); iii) blockade 

of inhibitory postsynaptic potentials by inducing GABAA receptor internalization (Ulrich, 

2015). Other sites of toxicity involve stimulation of mitochondrial apoptotic pathway, 

impaired cellular metabolism and disrupted Ca2+ signalling  (Sheng et al., 2012). These 

results show a widespread detrimental effect of Aβ on neuronal homeostasis.  

 

Despite the fact that the presynaptic effects of Aβ have not been extensively examined, 

there is some indication in the literature of Aβ-induced disturbance in the function of this 

compartment (Kelly and Ferreira, 2007; J. Park et al., 2013). Nevertheless, it is difficult 

to draw concrete conclusions regarding the effect of Aβ due to differences in the peptide 

used (Aβ1-40 versus Aβ1-42), concentration and incubation timing in different studies. 

Here follows a summary on the current knowledge of presynaptic changes induced by 

Aβ.  
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It has been demonstrated that the treatment of hippocampal neurons for 24 h with a 

mixture of fibrillar and oligomeric synthetic Aβ1-40 (2 μM) led to an endocytic deficiency 

in neurons stimulated with high potassium (90 mM K+) (Kelly and Ferreira, 2007). 

However, this type of stimulation does not allow for precise control of the level of release 

(Ryan and Smith, 1995). Similar observations were made in another study using 

hippocampal neurons employing more defined stimulation paradigm. In this case, the 

cells were incubated with 0.2 μM Aβ1-42 for 2 h (J. Park et al., 2013), a tenfold lower 

concentration and significantly shorter incubation time than in the other study (Kelly and 

Ferreira, 2007). Stimulation with 600 APs at 20 Hz led to a significant decrease in the 

rate of endocytosis measured with vGpH (J. Park et al., 2013) and a longer incubation 

time (72 h) led to even greater deficit in endocytic timing (J. Park et al., 2013). Despite 

their experimental differences both studies observed impairment in endocytosis following 

treatment with Aβ. It was also observed that the size of the resting pool increased in Aβ1-

42 treated cells at an expense of the recycling pool fraction (J. Park et al., 2013). 

However, the effects of Aβ were explored at large, non-physiological stimulation levels 

(600 APs at 20Hz). In this study, we exploited the sensitive imaging approaches we 

developed in previous chapters, to test the toxicity of Aβ at a range of different stimuli, 

so that we could investigate whether the level of activity influences the functional 

disturbance caused by this peptide. 

 

Other deleterious effects of Aβ for presynaptic function include: i) disruption in the 

formation of functionally important presynaptic protein complexes (Russell et al., 2012); 

ii) disturbance in the function of synaptic mitochondria (Reddy and Beal, 2008); iii) 

perforation of neuronal membranes (Peters et al., 2014); iv) disruption of the integrity of 

lipid rafts and proteins associated with it (Rushworth and Hooper, 2010). The disturbance 

in lipid rafts can be especially damaging for efficient presynaptic function. Proteins such 

as VAMP2, syntaxin 1A, Munc18, SNAP-25, synaptotagmin and synaptophysin, which 

are important for synaptic vesicle recycling, have been shown to interact with these 
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cholesterol-rich domains at the plasma membrane (Chamberlain et al., 2001; Sebastião 

et al., 2013). 

  

The difficulty in comparing and relating published studies not only comes from the 

differences in the concentration and the incubation time of the Aβ, but also from the 

differences in the method used for preparation of the Aβ and the type of the control used 

(Gilson et al., 2015; J. Park et al., 2013; Peters et al., 2014; Yu et al., 2010). The Aβ1-

42 used in this study was prepared in the same way as described in Marshall et al., 2016 

(modified method from Soura et al., 2012) which ensures the presence of small 

oligomeric Aβ1-42 species. It is also important that the solvents used during preparation 

of the peptide, HFIP and DMSO, are removed, as they themselves can be toxic to cells 

(Soura et al., 2012) or influence the rate with which Aβ1-42 forms aggregates (Broersen 

et al., 2011). Some authors do not report taking crucial steps to remove these solvents, 

which makes the validity of their interpretation of the results ambiguous, and raises the 

possibility of false positive results.  

 

One of the major limitations of studies using exogenously applied Aβ is the lack of 

suitable control. The use of reversed, scrambled or rodent Aβ1-42 has been previously 

reported, nevertheless, the structural, assembly and toxicity information on these 

peptides is not available (Marshall et al., 2016). A recently developed vAβ1-42 peptide, 

which differs in only 2 amino acids from Aβ1-42, offers a new solution to this problem 

(Marshall et al., 2016). Unlike Aβ1-42, vAβ1-42 did not form oligomers and had no effect 

on the viability of hippocampal neurons, making it the most suitable control available 

(Marshall et al., 2016). 

 

Considering the fact that current therapeutic approaches have failed to halt the disease 

and only offer some symptomatic relief, it is important to further explore mechanisms of 

Aβ toxicity. As described above, the effects of Aβ on the function of presynaptic terminals 
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have not been extensively investigated, despite the fact that this structure is critical for 

the maintenance of effective neurotransmission. We therefore wanted to explore whether 

Aβ has an effect on crucial parameters of presynaptic performance: exocytosis and 

endocytosis of synaptic vesicles and stimulus-evoked Ca2+ influx, this will further expand 

our knowledge on the Aβ-induced synaptic pathology, and potentially allow us to identify 

novel treatment targets. We also validated whether recently developed vAβ1-42 

(Marshall et al., 2016) has an effect on presynaptic function and therefore, whether it is 

a suitable control for functional studies in hippocampal neurons.  

 

6.2 FM dye imaging of cells treated with 1 μM Aβ1-42 for 24 
hours  

6.2.1 The effect of Aβ1-42 on the number functional presynaptic 

terminals  

 

One of the clinical representations of AD is the loss of neurons, preceded by the loss of 

synapses (Scheff et al., 2006). Before embarking on a detailed analysis of Aβ1-42 effects 

on presynaptic function, we wanted to test whether our oligomeric Aβ1-42 preparation 

has any effect on synapses in hippocampal cell culture. The toxicity of Aβ1-42 would be 

manifested in lower number of synapses recruited during the stimulation. We also 

wanted to establish whether, similarly to Aβ1-42, vAβ leads to synaptic loss and therefore 

whether it is a suitable control. 

 

Cells were treated for 24 h with 1 μM Aβ1-42, 1 μM vAβ or a corresponding volume of 

HEPES based buffer, which was used for the preparation of the two peptides (for protocol 

refer to section 2.14). The concentration of Aβ1-42 used here was tenfold lower than in 

toxicity experiments carried out on the same system by Dr Karen Marshall (Marshall et 

al., 2016). This ensured that the amount of Aβ1-42 added and the incubation timing didn’t 
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primarily induce cell death, but led to functional disturbances. The experimenter was 

blind to the treatment protocol whilst carrying out the experiments and during the 

analysis. In order to investigate the effects of Aβ1-42 and vAβ on the synaptic 

homeostasis we used FM1-43. Recycling vesicles in treated neurons were subjected to 

field stimulation (1200 APs at 20 Hz) in the presence of FM-dye (loading protocol 

summarized in Fig.6.1.A). The labelling procedure was similar to the protocol explained 

in section 2.8 and 3.2.2. FM1-43 dye was applied to the cell culture, after 1 min of 

incubation with the dye, then 1200 APs 20 Hz stimulus was delivered in order to label all 

recycling vesicles. To allow for endocytosis to complete, cells were left for 2 min in the 

presence of the dye, following which the dye was washed out. Representative images of 

loaded regions were collected from multiple coverslips for each condition (Fig.6.1.B).  

 

In order to quantify the number of functional synapses that responded to the delivered 

stimulation, the ImageJ isodata thresholding algorithm was applied on raw, non-filtered 

maximum intensity projections (4 x 0.5 μm image stacks). The number of ROIs identified 

from the thresholding was summarised for the treatment groups. The results showed that 

Aβ1-42 led to a significant decrease in the number of functional synapses recruited 

during the applied stimulation in comparison to vAβ or buffer treated cells (n= 20, 30 and 

30 images for Aβ1-42, vAβ and buffer treated, respectively. Kruskal-Wallis one-way 

ANOVA with Dunn’s multiple comparison test: Aβ1-42:vAβ, P = 0.0074; Aβ1-42:buffer 

treated, P < 0.0001), whereas there was no difference between the cells incubated with 

vAβ and the buffer treated cells (n = 20, 30 and 30 images for Aβ1-42, vAβ and buffer 

treated, respectively. Kruskal-Wallis one-way ANOVA with Dunn’s multiple comparison 

test: vAβ: buffer treated, P = 0.235) (Fig.6.1.C). These findings are in line with previous 

work indicating that oligomeric Aβ1-42 is associated with a loss of functional synapses 

(Kelly and Ferreira, 2007; Shankar and Walsh, 2009). The results also validate the use 

of vAβ as a control in our system.  
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Figure 6.1 Quantification of functional boutons in Aβ1-42 treated cells. A) Summary 
of FM1-43 loading protocol, described in details in Fig 3.2.A. B) Representative images 
of Aβ1-42 (top left), vAβ (top right) and buffer treated neurons (bottom left), loaded with 
FM1-43 dye (1200 APs at 20 Hz). Examples of discrete functional terminals are indicated 
by white arrowheads. Scale bar 20 μm. C) Quantification of the number of functional 
terminals in the treatment groups. Data showed as media ± IQR (Aβ1-42: 218 IQR 134-
273, vAβ1-42: 315 IQR 253-359, buffer: 355 IQR 278-420, n = 20, 30, 30 images, 
respectively; Kruskal-Wallis one-way ANOVA, P < 0.0001 with Dunn’s multiple 
comparison test: Aβ1-42:vAβ, P = 0.0074; Aβ1-42:buffer treated, P < 0.0001; vAβ:buffer 
treated, P = 0.235). Figure modified from Marshall et al., 2016, data collected and 
analysed by Milena Maria Wagner. 
 

 

6.2.2 The effect of Aβ1-42 on synaptic function  

FM1-43 not only permits a readout of the number of functional boutons, but also provides 

information on the behaviour of synapses. In particular, it allows to measure the kinetics 

of exocytosis during activity-driven FM1-43 dye-loss. Cells loaded with FM1-43 (1200 

APs at 20 Hz) were stimulated with 1200 APs at 20 Hz in order to release all recycling 
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vesicles (Fig.6.2.A). Boutons responding to the stimulation were identified by subtracting 

the images before and after the destaining. ROIs (2.1 x 2.1 μm) were drawn around 

fluorescence puncta. Firstly we looked at the % dye loss in each treatment group. In 

order to quantify this, the background fluorescence was subtracted for each ROI. Traces 

were normalised to the baseline fluorescence before the stimulation (average of 5 

frames) and the average of the last 5 imaging frames was used to calculate the % 

destaining. We found that the level of dye-loss was significantly less in Aβ1-42 treated 

cells than in vAβ or buffer alone conditions, which were markedly similar to each other 

(n = 218, 428 and 560 synapses for Aβ1-42, vAβ and buffer treated, respectively. 

Kruskal-Wallis one-way ANOVA with Dunn’s multiple comparison test: Aβ1-42:vAβ, P < 

0.0001; Aβ1-42:buffer treated, P < 0.0001; vAβ:buffer treated, P = 0.09) (Fig.6.2.B and 

C).  

 

These results provide strong evidence that an impairment in synaptic vesicle use occurs 

in the presence of Aβ1-42. To investigate the nature of this impairment in more detail, 

we next sought to examine how Aβ1-42 might influence the kinetics of vesicle release, 

in addition to its impact on the number of vesicles that are recruited in response to the 

stimulation. To do this, data was normalized to the baseline fluorescence (average of 5 

frames before the stimulation) and to the average of 5 frames at the end of imaging, 

allowing a direct comparison of the rate of dye-loss for each condition. Single exponential 

curves, constrained to the baseline fluorescence for each synapse, were then fitted for 

each destaining curve. The summary of tau measurements revealed that Aβ1-42 group 

had significantly slower destaining rate than the vAβ and buffer treated samples (n = 

202, 415 and 547 synapses for Aβ1-42, vAβ and buffer treated, respectively. One-way 

ANOVA with Tukey’s post-hock analysis: Aβ1-42:vAβ, P < 0.0001; Aβ1-42:buffer treated, 

P < 0.0001; vAβ:buffer treated, P = 0.35) (Fig.6.2.D and E). Taken together, these results 

indicate that oligomeric Aβ1-42-induced deficits in presynaptic function; these might 

include synaptic vesicle pool organization, synaptic vesicle endocytosis or exocytosis.  
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Figure 6.2 Aβ1-42 affects synaptic vesicle exocytosis under 1200 APs stimulation 
protocol. A) Schematic showing the protocol for FM1-43 destaining. B) FM1-43 
destaining profiles (1200 APs at 20 Hz) of normalized fluorescence for the treatment 
group. Data showed as average of destaining fluorescence of n = 218 for Aβ1-42, n = 
428 for vAβ and n = 560 synapses for buffer treated group. The inset shows 
representative images of destaining synapses at various time points of the destain. 
Shaded area indicates SEM. C) Quantification of % dye loss showed in (B). Data showed 
as mean ± IQR (Aβ1-42: 50 IQR 36-61, vAβ1-42: 71 IQR 56-82, buffer: 72 IQR 60-83, n 
= 218, 428, 560 synapses, respectively; Kruskal-Wallis one-way ANOVA, P < 0.0001 
with Dunn’s multiple comparison test: Aβ1-42:vAβ, P < 0.0001; Aβ1-42:buffer treated, 
p<0.0001; vAβ:buffer treated, P = 0.09). D) Example FM1-43 destaining curves (stim. 
1200 APs at 20 Hz) normalized to the frames before and at the end of the stimulation. 
Data showed as average ± SEM (n = 8 synapses for Aβ1-42, vAβ and buffer treated, 
respectively). E) Histogram summary of destaining kinetics expressed as τ 
measurements. Data showed as averages ± SEM. Only data with successful fitting of 
single exponential was included in the analysis (n = 202, 415, 547 synapses for Aβ1-42, 
vAβ and buffer treated, respectively; One-way ANOVA, p<0.0001 with Tukey’s post-hock 
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analysis: Aβ1-42:vAβ, P < 0.0001; Aβ1-42:buffer treated, P < 0.0001; vAβ:buffer treated, 
P = 0.35). Figure modified from Marshall et al., 2016, data collected and analysed by 
Milena Maria Wagner.  
 

 

6.3 Treatment with 1 μM Aβ1-42 for 24 hours affects synaptic 
vesicle cycle 

Our FM1-43 data offers some insights into the recycling properties of synapses treated 

with Aβ1-42, but interpretation of these results is limited when it comes to a more detailed 

analysis. There are a number of reasons for this. First, the dye needs to be loaded into 

synaptic vesicles prior to assaying synaptic function; as such, its internalization will be 

biased by any underlying deficiencies in synaptic vesicle exocytosis or endocytosis. Only 

functional vesicles will take up dye, which effectively leads to unintended preselection of 

recycling vesicles, which can confound interpretation of results. A related issue is that all 

tests of FM-dye-evoked exocytosis have to necessarily follow a strong stimulation for 

loading; the specific consequences of such a loading protocol on subsequent release 

kinetics are unclear. Moreover, although FM1-43 fluorescence is sufficient to observe 

release events following a limited stimulation protocol such as 10 APs 20 Hz stimulus 

(cell culture experiments carried out by Milena Maria Wagner, published in Rey et al., 

2015), its relatively high photobleach rate makes it less appropriate tool for imaging of 

smaller events. Therefore, in order to investigate the effect of Aβ1-42 on the function of 

presynaptic terminals in more detail, we made use of the genetically-encoded reporter, 

sypHy2x (described in details in previous chapters), which overcomes these problems. 

This allowed us to monitor both exocytosis and endocytosis of synaptic vesicles, 

following protocols mobilising only small number of SVs.        
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6.3.1 Aβ1-42 affects the kinetics of endocytosis 

Primary hippocampal neurons were infected with the AAV-based sypHy2x construct at 

DIV 4-6, allowed to mature and to establish sufficient expression before being used for 

experiments DIV 14-17. Cells were treated with 1 μM Aβ1-42 or buffer alone for 24 h 

prior to imaging. Regions with sypHy2x expression were identified using the baseline 

fluorescence level. There was no discernible difference in sypHy2x expression between 

the Aβ1-42 or buffer only treated cells (Fig.6.3.A). Each region was imaged 4 times 

during 40 APs, 20 Hz stimulation, however the first trial was discarded as a bleaching 

trial, but along with other trials was used for identification of functional boutons. The 

average of all responses for 40 APs, 20 HZ stimulation revealed that cells treated with 

Aβ1-42 display larger responses to the same stimulus than buffer treated cells (n = 1129 

and 2171 responses for Aβ1-42 and buffer treated, respectively. Two-tailed unpaired 

Student’s t-test, P < 0.0001) (Fig.6.3.B). The cumulative distribution of ∆Fexo  revealed a 

difference between the two treatment groups, exposing the tendency of  Aβ1-42 treated 

synapses to respond with a higher number of released vesicles than the buffer control 

group (n = 1129 and 2171 responses for Aβ1-42 and buffer treated groups, respectively, 

from 3 independent experiments. Kolmogorov-Smirnov test, P < 0.0001) (Fig.6.3.C). 

 

We then explored whether Aβ1-42 has an effect on the endocytosis of synaptic vesicles 

following 40 APs, 20 Hz stimulation. All responses were normalized to the peak of the 

response (average of 10 frames) and the average of 50 frames at the end of each trace. 

Profiles were then fitted with single exponentials constrained to the average of 5 frames 

before and after the fitting frame. Due to the appearance of slower and faster component 

of endocytosis within the profiles, the frame for the beginning of the fit was at a point 

immediately following the fast endocytic component. Aβ1-42 was found to decrease the 

rate of endocytic retrieval of synaptic vesicles following 40 APs 20 Hz stimulation by 21% 

in relation to buffer treated cells (n = 1101 and 2130 responses from Aβ1-42 and buffer 
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treated groups from 3 independent experiments. Two-tailed unpaired Student’s t-test, P 

< 0.0001) (Fig.6.3.D). Taken together, these results indicate Aβ1-42 induced impairment 

in synaptic vesicle recycling.  

 

However, this raises the question of whether this apparent difference in the recycling 

kinetics of these two treatment groups can be a consequence of the discrepancy in the 

response sizes in each group. Based on our previous data, this is unlikely under this 

moderate level of stimulation, nevertheless, we set out to compare endocytic kinetics 

within data sets with comparable distribution of response sizes. More importantly, we 

decided to test whether Aβ1-42 has a different effect on endocytosis when few or multiple 

vesicles need to be internalised, which might be informative about its mode of toxicity.  
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Figure 6.3 The effect of 24 h 1 μM Aβ1-42 treatment on synaptic vesicle exocytosis 
and endocytosis. A) Representative images of Aβ1-42 and buffer treated cells. Top row 
DIC images, bottom row sypHy2x fluorescence at the peak of response. Scale bar 20 
μm. B) Average of all responses to 40 APs, 20 Hz stimulation in Aβ1-42 (red) and buffer 
treated (green) cells (n = 1129 and 2171 responses for Aβ1-42 and buffer treated groups, 
respectively ± SEM, from 3 experiments). C) Cumulative probability distribution of 
response sizes following 40 APs, 20 Hz stimulation in Aβ1-42 (red) and buffer treated 
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(green) cells (n = 1129 and 2171 responses for Aβ1-42 and buffer treated groups, 
respectively, from 3 experiments. Kolmogorov-Smirnov test, P < 0.0001). Inset 
represents the variability in the spread of ∆Fexo in both groups (Aβ1-42, red; buffer 
treated, green) and the table provides the summary of the values. D) Normalized 
sypHy2x readouts of 40 APs, 20 Hz responses of Aβ1-42 (red, n = 1101 responses) and 
buffer treated (green, n = 2130 responses) cells. Light green and light red lines indicate 
single exponential fit for buffer treated and Aβ1-42 groups, respectively.  The inset shows 
summary of tau readouts for both groups (n = 1101 and 2130 responses from Aβ1-42 
and buffer treated groups from 3 experiments.  Two-tailed unpaired Student’s t-test, P < 
0.0001). 
 

 

   

6.3.2 The effect of Aβ1-42 is more pronounced in larger responses  

In order to address the question whether Aβ1-42 might differentially affect vesicle 

retrieval time following responses of various sizes, we split response amplitudes to 40 

APs, 20 Hz stimulation into increments of 20 a.u. ∆Fexo (Appendix I, Fig. 6). This initial 

treatment of the data allowed us to independently examine endocytosis following small 

and large responses to 40 APs, 20 Hz stimulation. Moreover, for each sub-group, we 

could explore recycling kinetics independently of the number of vesicles recruited. The 

outcome of this approach was striking; specifically, we revealed that the endocytic rate 

was not affected in low responding Aβ1-42-treated synapse, compared to matched 

controls, but the kinetics of endocytosis of larger fusion events was significantly slower 

(Appendix I, Fig.6). Based on these incremental graphs, the two ranges of responses 

were selected for further analysis: low range (∆Fexo  0-100 a.u.) and a high range (∆Fexo  

160-400 a.u.). These fluorescence ranges were applied across the 40 APs, 20 Hz data 

in order to reveal the population of responses within each range. 

  

The analysis of the low range showed that there was neither a difference in the average 

size of the responses between Aβ1-42 and buffer treated groups (n = 683 and 1549 

responses for Aβ1-42 and buffer treated. Two-tailed unpaired Student’s t-test, P = 0.866) 

(Fig.6.4.A), nor any difference in the distribution of the response amplitudes in these two 
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groups (n = 683 and 1549 responses for Aβ1-42 and buffer treated, respectively. 

Kolmogorov-Smirnov test, P = 0.1749) (Fig.6.4.B and C). Consistent with this, similar 

observations were made for the high range responses. There was no difference in the 

∆Fexo (n = 232 and 296 responses for Aβ1-42 and buffer treated. Two-tailed unpaired 

Student’s t-test, P = 0.549) (Fig.6.4.E) and in the distribution of response sizes (n = 232 

and 296 responses for Aβ1-42 and buffer treated. Kilmogorov-Smirnov test, P = 0.670) 

(Fig.6.4.F and G). We therefore established 2 sets of data comprised of identical sets of 

responses for both treatment groups. This allows for unequivocal comparison of the 

endocytic kinetics between the two treatment groups.  

 

Unexpectedly, we saw that the exocytosis in the high range responses seemed slower 

in the Aβ1-42 than in the buffer treated group (Fig.6.4.E) and we decided to further 

explore this observation. In order to quantify the kinetics of exocytosis, we average 

fluorescence values for each trace within 20-80% of the total fluorescence rise within the 

same time frame for Aβ1-42 and for the buffer treated synapses. We did this in both high 

and low response groups. The reason for this was to make sure that we captured the 

same, straight line fluorescence increase for each synapse. The higher the average 

fluorescence value, the faster the kinetics of exocytosis. We saw that in the low range of 

responses group there was no difference in the kinetics of exocytosis (Fig.6.4.D) (Two-

tailed unpaired Student’s t-test, P = 0.07), whereas the release time was significantly 

longer in Aβ1-42 treated cells in the high range of responses (Fig.6.4.H) (Two-tailed 

unpaired Student’s t-test, P < 0.0001), which is consistent with our FM1-43 data.  

 

Going back to endocytosis, the comprehensive investigation of endocytic timing based 

on response size revealed that although the Aβ1-42 endocytic kinetics was 13% slower 

than in the buffer treated group in the low range of responses (n = 657 and 1501 

responses for Aβ1-42 and buffer treated. Two-tailed unpaired Student’s t-test, P = 0.006) 

(Fig.6.4.I), an even more pronounced effect was observed for data set comprising of high 
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range of responses (Fig.6.4.J). The retrieval time in Aβ1-42 was reduced by 45% in 

comparison to buffer treated group following larger release events (n = 231 and 295 for 

Aβ1-42 and buffer treated, respectively. Two-tailed unpaired Student’s t-test, P < 0.0001) 

(Fig.6.4.J). Moreover, although there was no statistical difference between the endocytic 

kinetics of low and high range of responses from buffer treated cells (n = 1501 and 295 

responses for low and high range, respectively. Two-tailed unpaired Student’s t-test, P 

= 0.2689), vesicle retrieval time in high range responses from Aβ1-42 was significantly 

slower than in the low range (n = 657 and 231 responses for low and high range, 

respectively. Two-tailed unpaired Student’s t-test, P < 0.0001).   

 

Taken together, this data shows that exocytic and endocytic machinery is less affected 

by Aβ1-42 during small release and retrieval events, than when more vesicles are 

released and recycled back into the presynaptic terminals.  As a consequence these 

results provide an important clue to the possible mode of synaptic impairment induced 

by Aβ1-42, which will be discussed later.  
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Figure 6.4 Treatment with 1 μM Aβ1-42 for 24 hours has effect on the kinetics of 
endocytosis only following larger responses. A) Average of the exocytic profiles of 
Aβ1-42 (red) and buffer treated (green) cells from the lower range (∆Fexo  0-100 a.u.) of 
responses to 40 APs, 20 Hz stimulation (n = 683 and 1549 responses for Aβ1-42 and 
buffer treated groups respectively). B) Cumulative probability distribution of ∆Fexo 
response sizes from the synapses from the low range for both groups (n = 683 and 1549 
responses for Aβ1-42 (red) and buffer treated (green) groups, respectively. Kolmogorov-
Smirnov test, P = 0.1749). C) Whisker plot represents the variability in the spread 
between both groups (n = 683 and 1549 responses for Aβ1-42 (red) and buffer treated 
(green) groups, respectively). The values are summarized in the table. D) Comparison 
of the kinetics of exocytosis in Aβ1-42 (red) and buffer treated (green). Data shown as 
average ± SEM. (n = 683 and 1549 responses for Aβ1-42 and buffer treated, 
respectively. Two-tailed unpaired Student’s t-test, P = 0.07). Figures E, F, G and H mirror 
figures A,B, C and D but show data for the high range of response sizes (∆Fexo  160-400 
a.u.). Within this range there were 232 and 296 analysed responses for Aβ1-42 and 
buffer treated groups, respectively. F) Cumulative probability distribution (Kolmogorov-
Smirnov test, P = 0.670). H) Comparison of kinetics of exocytosis (Two-tailed unpaired 
Student’s t-test, P < 0.0001). I) and J) Normalized fluorescence profiles of sypHy2x 
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responses to 40 APs, 20 Hz stimulation fitted with single exponential (Aβ1-42, light red; 
buffer treated, light green). I) Summary of the low range of response (n = 657 and 1501 
responses for Aβ1-42 (red) and buffer treated (green) groups, respectively. Inset 
summary of tau readouts (Two-tailed unpaired Student’s t-test, P = 0.006). Values were 
normalized to the average value for the slower treatment group. J) Summary of the high 
range of responses (n = 231 and 295 for Aβ1-42 (red) and buffer treated (green) groups, 
respectively). Inset summarises tau readouts. Values were normalized to the average 
for the slower group (Two-tailed unpaired Student’s t-test, P < 0.0001). 

 
 

 

6.3.3 vAβ has no effect on the rate of endocytosis  

Next, we examined whether vAβ has a similar effect to oligomeric Aβ1-42 on synaptic 

vesicle endocytosis. As previously described vAβ was prepared and treated according 

to the protocol that was identical to Aβ1-42 protocol (section 2.14). SypHy2x expressing 

cells were incubated with 1 μM vAβ and the corresponding volume of buffer for 24 h 

(Fig.6.5.A). Time-lapse images of sypHy2x expressing and responding to stimulation 

regions were collected during 40 APs, 20 Hz stimulation. Image analysis was performed 

as described above. Low (∆Fexo 1-50 a.u.) and high range (∆Fexo 80-200 a.u.) of 

responses were determined independently based on the population of collected 

responses for this experiment. 

 vAβ did not have any detrimental effect on the kinetics of endocytosis, at either low (n = 

410 and 341 responses for buffer and vAβ treated cells, respectively. Two-tailed 

unpaired Student’s t-test, P = 0.287) (Fig.6.5.B) or high range of responses (n = 48 and 

300 responses for buffer and vAβ treated groups, respectively. Two-tailed unpaired 

Student’s t-test, P = 0.442) (Fig.6.5.C). It appears that, vAβ might have slightly 

accelerated the kinetics of endocytosis in the high range responses. However, this was 

not significant and could relate to the sampling difference – a relatively small number of 

responses in the buffer control group for this range. This result shows that vAβ has no 

detrimental effect on presynaptic function and further validates the use of vAβ as a 

control for oligomeric Aβ1-42 in functional studies.  
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Figure 6.5 Treatment with 1 μM vAβ for 24 hours had no effect on synaptic vesicles 
endocytosis.  A) DIC (top row) and sypHy2x baseline fluorescence (bottom row) images 
of buffer and vAβ treated neurons. Scale bar 50 μM. B) SypHy2x profiles (low range, 
∆Fexo 1-50 a.u.) following 40 APs, 20 Hz stimulation. Light grey and dark grey lines 
indicate single exponential fit for vAβ and buffer treated cells, respectively. Inset shows 
summary of tau readouts for both groups (n = 410 and 341 responses for buffer treated 
and vAβ treated cells, respectively. Two-tailed unpaired Student’s t-test, P = 0.287). C) 
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Average of high range of responses (∆Fexo 80-200 a.u.) following 40 APs, 20 Hz 
stimulation with single exponential fits (light grey for vAβ and dark grey for buffer treated). 
Inset represents summary of tau readouts within this range of responses (n = 48 and 300 
responses for buffer and vAβ treated groups, respectively. Two-tailed unpaired Student’s 
t-test, P = 0.442). 
 

 

6.4 24 hour treatment with 0.1 μM Aβ1-42 had no effect on 
synaptic vesicles endocytosis  

There is a substantial body of research showing that lower than 1 μM concentration of 

oligomeric Aβ1-42 had an effect on presynaptic properties (Kelly et al., 2005; J. Park et 

al., 2013; Russell et al., 2012). We therefore decided to test whether 24 hour treatment 

with oligomeric Aβ1-42 at lower concentration (0.1 μM) has a similar endocytic effect to 

1 μM Aβ1-42. Responses following 40 APs, 20 Hz stimulation were analysed in 24 h 0.1 

μM Aβ1-42 and buffer treated groups. Data analysis and single exponential fitting was 

identical to the method described above.  

 

Similar to the observation made following 24 hour 1 μM Aβ1-42 treatment, the analysis 

of 40 APs, 20 Hz stimulation data revealed that 0.1 μM Aβ1-42 treated cells showed 

higher ∆Fexo than the buffer only group (n = 648 and 668 responses for Aβ1-42 and buffer 

treated group, respectively. Kolmogorov-Smirnov test, P = 0.0006) (Fig.6.6.A,B and C). 

However, the tau measurements of all responses showed no difference in the endocytic 

kinetics of traces from 0.1 μM Aβ1-42 group when compared to buffer treated cells (n = 

610 and 608 responses for Aβ1-42 and buffer treated, respectively. Two-tailed unpaired 

Student’s t-test, P = 0.850) (Fig.6.6.D). To investigate this result further, the approach of 

separating data into a low and high range of responses was employed. Tau 

measurements were made for low (∆Fexo  0-10 a.u.) and high range of responses (∆Fexo  

20-50 a.u.). There was no significant difference in the retrieval time between 0.1 μM Aβ1-

42 and buffer only traces in either low (n = 272 and 318 responses for Aβ1-42 and buffer 

treated, respectively. Two-tailed unpaired Student’s t-test, P = 0.183) (Fig.6.6.E) or high 
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range responses (n = 110 and 64 responses for Aβ1-42 and buffer treated, respectively. 

Two-tailed unpaired Student’s t-test, P = 0.901) (Fig.6.6.F). Nevertheless, there was 

some tendency for the Aβ1-42 traces to exhibit a slower rate of endocytosis than the 

buffer treated control in the high range of responses (Fig.6.6.F). It can be therefore 

concluded that, although 24 h treatment with 0.1 μM Aβ1-42 has some effect on the 

homeostasis of presynaptic terminals, unlike higher Aβ1-42 concentration, it does not 

lead to any dramatic impairment in the recycling of synaptic vesicles.       

 

 

Figure 6.6 The effect of 24 hour 0.1 μM Aβ1-42 treatment on synaptic vesicle 
exocytosis and endocytosis. A) Profiles representing the average of all 40 APs, 20 Hz 
responses of Aβ1-42 (red) and buffer treated (green) cells (n = 648 and 668 responses 
for Aβ1-42 and buffer treated group, respectively ± SEM). B) Cumulative probability 
distribution of ∆Fexo for  Aβ1-42 and buffer treated group (n = 648 and 668 responses for 
Aβ1-42 and buffer treated group, respectively. Kolmogorov-Smirnov test, P = 0.0006). 
C) Whisker plot represents variability in the spread of ∆Fexo data (Aβ1-42,red; buffer 
treated, green). Table summarizes the results. D) Summary of tau measurements for 
Aβ1-42(red) and buffer treated (green) groups (n = 610 and 608 responses for Aβ1-42 
and buffer treated, respectively. Two-tailed unpaired Student’s t-test, P = 0.850). E) 
Summary of tau measurement for low range of responses (∆Fexo  0-10 a.u.) for Aβ1-42 
(red) and buffer treated (green) groups (n = 272 and 318 responses for Aβ1-42 and buffer 
treated, respectively. Two-tailed unpaired Student’s t-test, P = 0.183). F) Summary of 
tau measurement for high range of responses (∆Fexo  20-50 a.u.) for β1-42 (red) and 
buffer treated (green) groups (n = 110 and 64 responses for Aβ1-42 and buffer treated, 
respectively. Two-tailed unpaired Student’s t-test, P = 0.901). 
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6.5 The effect of 1 μM Aβ1-42 on single vesicle endocytosis  

The results illustrated in Figure 6.4 point towards a very compelling endocytic deficit 

induced by 24 h treatment with 1 μM oligomeric Aβ1-42 in the larger range of responses 

elicited by 40 APs, 20 Hz stimulation. The lack of the effect of Aβ1-42 in the smaller 

response range might indicate a more global effect of Aβ1-42 during conditions where 

the endocytic machinery is overwhelmed. To provide evidence for this idea, we next used 

our single vesicle fusion approach to test whether Aβ1-42-driven endocytic defects were 

visible at the level of quantal event profiles. The aim of this experiment was therefore to 

further dissect the substrate of Aβ1-42 related impairment in the recycling kinetics.  

 

The cells were prepared according to the usual protocol and Aβ1-42 treatment carried 

out as described elsewhere (sections 2.2, 3.2.1, 6.2.1). AAV.sypHy2x expressing cells 

were stimulated 10 times with 4 APs. The first trial was used to identify the responding 

region and was discarded as a bleaching trial. In agreement with results for 40 APs, 20 

Hz stimulation, Aβ1-42 treated cells responded with higher number of vesicle released 

than the buffer treated control (n = 510 and 725 responses for Aβ1-42 and buffer treated, 

respectively. Kolmogorov-Smirnov test, P = 0.48) (Fig.6.7.A, B and C). The lower 

fluorescence range for 1q size (92.2 a.u.) was used as a limit for the smallest responses 

included in this analysis. This was to avoid the possibility that many failures to respond 

in the 4 APs stimulation protocol would have been included in the analysis, and therefore 

might have contaminated the results. There was no upper limit for the response size.   

 

In order to ascertain whether oligomeric Aβ1-42 had any effect on the endocytic kinetics 

of single synaptic vesicles, the established fluorescence value corresponding to 1q 

release was applied across the data. Due to the possibility of Aβ1-42 affecting the 

quantal size, we first examined the quantal size in Aβ1-42 treated cells. From multiple 

Gaussian fit in the experiment that exhibited signs of quantal distribution, we found that 
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the value of fluorescence corresponding to 1 quanta was 87.4-144 (a.u.). It is reasonable 

to conclude that these values are sufficiently similar to apply the standard in this study 

value of 92.2-157(a.u.) fluorescence corresponding to single vesicle release.    

 

Single quantum responses were filtered out for the Aβ1-42 treated and buffer treated 

groups. The analysis of distribution of sizes within 1 quantum range revealed no 

difference between these two treatment groups (n = 372 and 224 responses for Aβ1-42 

and buffer treated group, respectively. Kolmogorov-Smirnov test, P = 0.8) (Fig.6.7.D, E 

and F). The kinetics of responses within individual synapses were calculated using linear 

fits, starting at the frames just past the peak of the responses and ending with the 

average of the last 10 imaging frames. This allowed us to establish the slope of the 

decay. We found that there was no difference in the kinetics of single vesicle endocytosis 

in Aβ1-42 and buffer treated cells (n = 61 and 100 synapses in Aβ1-42 and buffer treated 

groups, respectively. Two-tailed unpaired Student’s t-test, P = 0.64) (Fig.6.7.G, H and I). 

It can therefore be concluded that Aβ1-42 has no effect on the endocytosis of single 

synaptic vesicles and that the endocytic deficit described earlier develops only after 

larger vesicle recruitment to the membrane, and is presumably associated with increased 

recycling demand. 
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Figure 6.7 Aβ1-42 does not affect the kinetics of endocytosis following single 
vesicle release events.  A) Average profiles of responses to 4 AP stimulation at 20 Hz 
(n = 510 and 725 responses for Aβ1-42 (red) and buffer treated (green), respectively ± 
SEM). B) Cumulative probability distribution of ∆Fexo in response to 4 AP stimulation (n = 
510 and 725 responses for Aβ1-42 (red) and buffer treated (green), respectively. 
Kolmogorov-Smirnov test, P = 0.48). C) Whisker plot illustrating the variability of 
responses to 4 AP in Aβ1-42 (red) and buffer treated (green) groups. Table shows the 
summary of the data shown. D) Average profiles of 1q responses for buffer (green) and 
Aβ1-42 (red) treated groups (n = 372 and 224 responses for buffer treated and Aβ1-42, 
respectively ± SEM). E) Cumulative probability distribution of the response sizes within 
1q range for Aβ1-42 and buffer treated groups (n = 372 and 224 responses for Aβ1-42 
and buffer treated group, respectively. Kolmogorov-Smirnov test, P = 0.8). F) Whisker 
plot illustrating the variability within 1q range of responses for both Aβ1-42 (red) and 
buffer treated (green) groups. Table shows the values for both groups. G) Example of 
endocytic profiles in Aβ1-42 and buffer treated synapses. Data showed as average of 3 
profiles for each group ± SEM, fitted with linear fit. H) Cumulative probability distribution 
plot of the endocytic rates within 1q range (n = 61 and 100 synapses for Aβ1-42 (red) 
and buffer treated (green) groups, respectively. Kolmogorov-Smirnov test, P = 0.4). I) 
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Summary of the endocytic rate readouts following single vesicle release events (n=61 
and 100 synapses in Aβ1-42 (red) and buffer treated (green) groups, respectively. Two-
tailed unpaired Student’s t-test, P = 0.64). 
 
 
 

6.6 The effect of 1 μM Aβ1-42 on stimulation evoked Ca2+ influx  

The results presented so far indicate that Aβ1-42 leads to increased release of synaptic 

vesicles, as a response to medium (40 APs, 20 Hz) and small (4 APs, 20 Hz) stimuli. 

What factors could underlie the larger vesicle recruitment seen with Aβ1-42 treatment? 

This section of the chapter broadens the exploration of Aβ1-42 – associated changes to 

include its effect of stimulus-driven Ca2+ influx into the presynaptic terminal. To test this, 

we used syGCaMP6f, a reporter of free cytoplasmic calcium, characterized by fast 

fluorescence rise and decay kinetics (Chen et al., 2013), described in detail in section 

3.3.3. This allowed us to address the following questions in relation to Aβ1-42 induced 

presynaptic changes: i) is the increase in SV release resulting from elevated Ca2+ influx?; 

ii) is the Ca2+ dependent exo- endocytic coupling disturbed by the Aβ1-42? 

 

 

6.6.1 The effect of 1 μM Aβ 1-42 on Ca2+ influx at larger stimulations 

Cells, Aβ1-42 and vAβ preparation were carried out as in previous experiments. In short, 

primary hippocampal neurons were infected with AAV based syGCaMP6f construct (DIV 

4-6), and treated for 24 h with 1 μM Aβ1-42 or vAβ, applied 10 days later. Representative 

regions were imaged (13.7 Hz, 70 ms per frame), while being stimulated 4 times with 40 

APs, 20 Hz stimulation with 1 min intervals between each stimulation (Fig.6.8.A). Due to 

the low level of syGCaMP6f baseline fluorescence, the first trial was used for region 

recognition in order to match sypHy2x based protocols, and was discarded from the 

analysis 
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The summary of raw fluorescence values from all responses from the first of the 3 x 40 

APs experimental trials showed striking difference between the Aβ1-42 and the control 

groups. Figure 6.8.B shows the average profiles for the three treatment groups and the 

dark grey panel indicates the frames that were used for the analysis of the rise in 

fluorescent signal.  The quantification of the fluorescence amplitude showed that Aβ1-

42 treated neurons had significantly larger Ca2+ influx as a result of responses to this 

stimulation than vAβ and buffer controls, which showed no difference between one 

another (n = 315, 232 and 317 synapses for buffer treated, vAβ and Aβ1-42, respectively. 

One-way ANOVA with Tukey’s post-hock analysis: buffer: vAβ, P = 0.054; buffer: vAβ, P 

< 0.0001; vAβ: Aβ1-42, P < 0.0001) (Fig.6.8.B and C).  

 

The other question to ask was whether this Aβ1-42 induced increase in Ca2+ influx can 

be sustained over multiple stimulation rounds. In order to investigate this we normalized 

all responses in the 1st and 3rd trial for all the groups to the largest response (Aβ1-42 in 

the 1st trial) (Fig.6.8.D). We then analysed the % decrease in Ca2+ influx in the 3rd trial in 

relation to the 1st trial, and we found that although a similar decrease was found in buffer 

treated and vAβ groups, this decline was significantly smaller in Aβ1-42 treated cells 

(One-way ANOVA with Tukey’s post-hock analysis: buffer:vAβ, P = 0.054; buffer:vAβ, P 

< 0.0001; vAβ:Aβ1-42, P < 0.0001) (Fig.6.8.E). These results indicate that Aβ1-42 not 

only leads to more Ca2+ influx, but it also sustains this high level of Ca2+ during 

consecutive stimulations. 

 

However, these results need to be treated with caution. A plausible explanation for this 

could relate to differences in the size of synapses responding in different treatment 

groups. We therefore decided to carry out more detailed analysis of this data. Firstly, we 

selected responses from synapses within a certain range of baseline level fluorescence, 

secondly, we looked at the responses within a given range of the rise in syGCaMP6f 

fluorescence, which will be discussed in the next sections. 
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Figure 6.8 Measurements of Aβ1-42 effect on stimulation evoked presynaptic Ca2+ 
influx. A) syGCaMP6f fluorescence at the peak of responses. Scale bar 50 μm.  B) 
Summary of the size of syGCaMP6f responses to 40 APs, 20 Hz stimulation. Light grey 
panel indicates the length of the stimulation. Dark green panel indicates the frames used 
for calculation of ΔF (n = 315, 232 and 317 synapses for buffer treated (dark green), vAβ 
(light green) and Aβ1-42 (red), respectively). C) Quantification of ΔF syGCaMP6f 
fluorescence (n = 315, 232 and 317 synapses for buffer treated (dark green), vAβ (light 
green) and Aβ1-42 (red), respectively ± SEM. One-way ANOVA with Tukey’s post-hock 
analysis: buffer:vAβ, P = 0.054; buffer:vAβ, P < 0.0001; vAβ:Aβ1-42, p<0.0001). D) 
syGCaMP6f fluorescence in response to 40 APs, 20 Hz stimulation. The responses in 
first and 3rd trial were normalized to the peak fluorescence from 1st trial for each synapse 
(n = 315, 232 and 317 synapses for buffer treated (dark green), vAβ (light green) and 
Aβ1-42 (red), respectively). E) Graph showing the average % decrease in fluorescence 
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between 1st and 3rd trial. (n = 315, 232 and 317 synapses for buffer treated (dark green), 
vAβ (light green) and Aβ1-42 (red), respectively ± SEM. One-way ANOVA with Tukey’s 
post-hock analysis: buffer:vAβ, P = 0.054; buffer:vAβ, P < 0.0001; vAβ:Aβ1-42, P < 
0.0001).  
 

 

6.6.1.1 Sub selection of responses within the same baseline range 

The analysis of the baseline syGCaMP6f fluorescence revealed a big disparity in this 

parameter between the 3 groups (Fig.6.9.A and B). The results revealed significant 

differences in the distribution of the baseline fluorescence in the different conditions, with 

the Aβ1-42 treated group showing the largest baseline fluorescence and also the largest 

variability (Coefficient of variation: 15.37%, 15.09% and 40.97% for buffer treated, vAβ 

and Aβ1-42, respectively). In order to more reliably compare the behaviour of similar 

populations of synapses, we decided to limit our measurements to synapses within a 

given range of baseline fluorescence (315-415 a.u.) (Coefficient of variation: 6.06%, 

5.74% and 5.74% for buffer treated, vAβ and Aβ1-42, respectively). SyGCaMP6f 

baseline fluorescence only moderately correlates with synaptic size (Pearson’s 

correlation test for syGCaMP6f baseline fluorescence and 600 APs, 20 Hz sytI-Oyster 

550 loading fluorescence, n = 100 synapses, r = 0.49, P < 0.0001), hence we can only 

assume that synapses within this range of baseline fluorescence are approximately of 

similar size. In this population we again looked at the behaviour of synapses in the 1st 

and 3rd 40 APs, 20 Hz stimulation trials. We found that within this group of synapses, the 

% decrease in syGCaMP6f signal was again smaller in Aβ1-42 than in buffer treated and 

vAβ group, which showed no difference between them (n = 245, 148 and 121 synapses 

buffer treated, vAβ and Aβ1-42, respectively. One-way ANOVA with Tukey’s post-hock 

analysis: buffer:vAβ, P = 0.825; buffer:Aβ1-42, P < 0.0001; vAβ:Aβ1-42, P < 0.0001) 

(Fig.6.9.C). The fluorescence decrease in Aβ1-42 in the population of synapses was 

even smaller than in the entire population of synapses previously reported in the Figure 

6.8.D and E.  
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A drawback of this approach is that all synapses are assumed to have lower calcium 

influx in the third trial than in the first one. We therefore decided to test how many 

synapses in each treatment group displayed activity driven increases in the syGCaMP6f 

fluorescence amplitude in the 3rd trial in comparison to the 1st one. We found that only 

6.5% and 6.1% of synapses showed this tendency in buffer and vAβ treated cells, 

respectively, but as much as 25.6% synapses in Aβ1-42 group were characterised by 

this behaviour (Fig.6.9.D). This suggests that the apparently smaller decrease in 

fluorescence amplitude in Aβ1-42 is driven by the actual increase in calcium influx in this 

group. This points toward higher excitability in Aβ1-42 treated cells and may potentially 

contribute to the increased excitotoxicity as a result of it.  
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Figure 6.9 The effect of Aβ1-42 on Ca2+ influx in population of synapses of similar 
size.  A) Cumulative probability distribution of syGCaMP6f baseline fluorescence for 
each experimental group (n = 315, 232 and 317 synapses for buffer treated (dark green), 
vAβ (light green) and Aβ1-42 (red), respectively. Kolmogorov-Smirnov test: buffer:vAβ, 
p<0.0001; buffer:Aβ1-42, P < 0.0001; vAβ:Aβ1-42, P < 0.0001). B) Whisker plot 
summarizing the difference in the distribution of syGCaMP6f baseline fluorescence (n = 
315, 232 and 317 synapses for buffer treated (dark green), vAβ (light green) and Aβ1-
42 (red), respectively). C) Graph summarizing the % decrease in ΔF syGCaMP6f 
between 1st and 3rd trial for the data from baseline range 315-415 (a.u.) (n = 245, 148 
and 121 synapses buffer treated (dark green), vAβ (light green) and Aβ1-42 (red), 
respectively ± SEM. One-way ANOVA with Tukey’s post-hock analysis: buffer:vAβ, P = 
0.825; buffer:Aβ1-42, P < 0.0001; vAβ:Aβ1-42, P < 0.0001). D) Quantification of the 
number of responses that were bigger in the third trial in comparison to the first trial 
(16/245, 9/148 and 31/121 synapses for buffer treated (dark green), vAβ (light green) 
and Aβ1-42 (red), respectively).    
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6.6.1.2 Sub selection of responses with the same response size 

As previously mentioned the syGCaMP6f baseline fluorescence doesn’t accurately 

reflect the size of the synapses (section 6.6.1.1). We therefore employed yet another 

approach and selected population of synapses which fell within ΔF 1-100 a.u. range of 

response amplitude in the first trial. This allows us to compare synapses with similar 

properties, regardless whether the size of the responses was driven by potential effect 

of Aβ1-42 on excitability or number of Ca2+ channels.  

 

There was no difference in the distribution of the fluorescence amplitudes within the 

defined range between the buffer and vAβ group, and buffer and Aβ1-42 (n= 233,112 

and 91 synapses for buffer treated, vAβ and Aβ1-42, respectively. Kolmogorov-Smirnov 

test: buffer:vAβ, P = 0.724; buffer:Aβ1-42, P = 0.051) (Fig.6.10.A and B). Despite the 

fact that there was a small difference in the response distribution between vAβ and Aβ1-

42, we do not think this will have an impact on later measurements as the distribution in 

Aβ1-42 is only slightly shifted towards a smaller size responses within this range (n = 

112 and 91 synapses for vAβ and Aβ1-42, respectively. Kolmogorov-Smirnov test: 

vAβ:Aβ1-42, P = 0.013) (Fig.6.10.A and B).   

We carried out similar analysis to the one shown in Figure 6.9 by comparing the 

amplitude of response from the 3rd 40 APs trial to the one from the 1st trial. Within our 

population of synapses we found that despite the fact that there was no difference 

between buffer and vAβ treated cells, there were significant differences between these 

two groups and Aβ1-42 (n = 233,112 and 91 for buffer treated, vAβ and Aβ1-42, 

respectively. One-way ANOVA with Tukey’s post-hock analysis: buffer:vAβ, P = 0.743; 

buffer:Aβ1-42, P < 0.0001; vAβ:Aβ1-42, P < 0.0001) (Fig.6.10.C). The average decrease 

for Aβ1-42 was negative (-3.5%), which actually suggests a high proportion of larger 

responses in the 3rd trial than in the first one. Indeed, we found that almost 40% of 

synapses had more Ca2+ influx in the 3rd trial in comparison to the first round of 
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stimulation, whereas it was 9.4% and 10.7% for buffer control and vAβ groups, 

respectively (Fig.6.10.D). This suggests disruption of presynaptic Ca2+ influx caused by 

Aβ1-42. 

 

 

 
Figure 6.10 The effect of Aβ1-42 on Ca2+ influx in population of synapses of similar 
response amplitude. A) Cumulative distribution plot of the syGCaMP6f responses 
within the range of ΔF 1-100 (n = 233,112 and 91 synapses for buffer treated (dark 
green), vAβ (light green) and Aβ1-42 (red), respectively. Kolmogorov-Smirnov test: 
buffer:vAβ, P = 0.724; buffer:Aβ1-42, P = 0.051; vAβ:Aβ1-42, P = 0.013). B) Whisker plot 
showing summarizing the spread of responses within 1-100 ΔF range (n = 233,112 and 
91 for Buffer treated (dark green), vAβ (light green) and Aβ1-42 (red), respectively). C) 
Summary of the % decrease in response size between the 1st and 3rd 40 APs, 20 Hz 
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stimulation trial (n = 233,112 and 91 for buffer treated (dark green), vAβ (light green) and 
Aβ1-42 (red), respectively ± SEM. One-way ANOVA with Tukey’s post-hock analysis: 
buffer:vAβ, P = 0.743; buffer:Aβ1-42, P < 0.0001; vAβ:Aβ1-42, P < 0.0001). D) Graph 
summarizing the percentage of synapses that showed larger ΔF in the third trial in 
comparison to the first trial (22/233, 12/112 and 36/91 for buffer treated (dark green), 
vAβ (light green) and Aβ1-42 (red), respectively). 
 

 

6.6.2 The effect of 1 μM Aβ1-42 on Ca2+ influx in response to minimal 

stimulus 

In the previous sections we demonstrated, that under moderate stimulation (40 APs, 20 

Hz) Aβ1-42 treated cells exhibited higher stimulation-related Ca2+ influx than the control 

synapses (buffer treated and vAβ). We now wanted to test whether the same 

phenomenon can be observed in response to smaller stimuli. For this purpose, we 

employed stimulation protocols that were similar to sypHy2x data; we stimulated 5 times 

with 4 APs, each 1 minute apart.  

 

There was no difference in the baseline fluorescence level between the treatment 

groups, suggesting that the synapses were of similar size (n = 372, 199 and 296 

synapses for buffer:vAβ, P = 0.899; buffer:Aβ1-42, P = 0.998; vAβ:Aβ1-42, P = 0.885). 

Initially we looked at all 5 trials separately and a recurring pattern emerged. Ca2+ influx 

in response to 4 APs stimulation was always larger in Aβ1-42 than in the buffer treated 

and vAβ in all 5 trials (Fig.6.11.A and B). For easier comparison, we pulled the data 

together from all the trials to reveal that Ca2+ influx in Aβ1-42 treated cells was 

significantly larger than in buffer treated and vAβ controls, which were not different from 

each other (n = 5 trials, One-way ANOVA with Tukey’s post-hock analysis: buffer:vAβ, P 

= 0.358; buffer:Aβ1-42, P = 0.0002; vAβ:Aβ1-42, P < 0.0001) (Fig.6.11.C and D). This 

strengthens the finding that treatment with Aβ1-42 leads to increased Ca2+ influx in 

response to stimulation.  
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Figure 6.11 Aβ1-42 leads to increased Ca2+ influx in response to 4 APs stimulation. 
A) Baseline subtracted traces of 5 consecutive trials at 4 APs. B) The quantification of 
the size of the responses in the treatment groups ± SEM (n = 590, 199, 532 synapses 
from 9, 6 and 11 regions for buffer treated, vAβ and Aβ1-42 groups, respectively). C) 
Summary of responses from buffer treated (dark green), vAβ (light green) and Aβ1-42 
groups (red) across 5 trials. D) Summary of the response sizes across 5 trials ± SEM (n 
= 5 trials, One-way ANOVA with Tukey’s post-hock analysis: buffer:vAβ, p=0.358; 
buffer:Aβ1-42, P = 0.0002; vAβ:Aβ1-42, P < 0.0001). 
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6.7  Discussion 

Despite an enormous body of work, the mechanisms of toxicity of Aβ1-42 are still largely 

unknown and highly debated (Benilova et al., 2012). Considering the inconceivable 

diversity of the targets reported in studies on Alzheimer’s Disease, any attempt to identify 

the main toxicity loci in this disease seems to be utterly bewildering (Fig.6.12). 

Nevertheless, presynaptic terminals have emerged as an important potential site for 

expression of the pathogenesis of neurodegenerative disorders. For example, the loss 

of synapses, and in particular the selective loss of presynaptic terminals, which preceded 

the atrophy of cell bodies, was identified as an early component leading to behavioural 

deficits in prion disease (Gray et al., 2009). Proteins aberrantly expressed in familial 

Parkinson’s Disease such as α-Synuclein, Parkin or Lrrk2 were found to disrupt synaptic 

vesicle trafficking and to directly bind and regulate presynaptic proteins such as SNARE 

complex proteins (Esposito et al., 2012). Meta-analysis of 103 studies conducted on 

post-mortem brain samples from Alzheimer’s sufferers, revealed that presynaptic 

markers were predominantly affected over postsynaptic markers, suggesting strong 

involvement of presynaptic component in the pathology of this disease (de Wilde et al., 

2016).    

Here we focused our efforts on understanding how presynaptic properties change in the 

presence of oligomeric Aβ1-42. Our main findings on Aβ1-42 effects on presynaptic 

terminals in hippocampal neurons include: i) reduced density of functional boutons; ii) 

possible aberrant sorting of vesicles; iii) impaired kinetics of exocytosis during large 

stimulation trains; iv) higher numbers of vesicle released at small/medium stimulation 

levels; v) slower rates of endocytosis following medium release events; vi) larger Ca2+ 

influxes in response to small to medium stimulation; vii) larger Ca2+ influxes over multiple 

stimulation trains in comparison to the  controls. These results suggest a wide range of 

Aβ1-42 - induced impairments at different stages of synaptic vesicle cycle, with a 
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tendency towards a higher degree of presynaptic deficiency during large bursts of 

activity.  

 

Figure 6.12 Summary of signalling pathways identified to be affected in 
Alzheimer’s Disease – “AlzPathway”. The map encapsulates intra, inter and 
extracellular pathways, includes 1347 molecules and 1070 reactions in various cells 
types and specific cellular compartments demonstrating shear complexity of AD. 
Presynaptic terminal highlighted with a red frame. Figure modified from Mizuno et al. 
2012. 

 

6.7.1 Oligomeric Aβ1-42 reduces the number of functional synapses  

Our first observation using FM1-43 dye was that 24 hour treatment with 1 μM Aβ1-42 

significantly reduced the number of functional boutons. This suggests that many 

presynaptic terminals were either lost or simply non-functional. Electron microscopy 

analysis of synapse density in post-mortem brain samples from the dentate gyrus of 

patients with AD and mild cognitive impairment (MCI), revealed significantly reduced 
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numbers of synapses in patients with AD and some level of reduction in MCI (Scheff et 

al., 2006). A recent meta-analysis concluded that at early stages of AD, oligomeric Aβ 

affects the presynaptic machinery, including proteins from the SNARE-complex and 

calcium sensors (de Wilde et al., 2016). Considering the role of these proteins in synaptic 

vesicle release, impairment in their expression or function could result in a lower number 

of FM1-43 loaded synapses in our cell culture. In line with our results, a reduction in the 

number of FM1-43 loaded synapses (600 APs, 20 Hz) was observed in another study 

(Abramov et al., 2009). This was a very encouraging finding, which validated the 

concentration and the timing of the incubation with Aβ1-42 in our system, and gave us 

confidence for further detailed exploration of its effects on SVs cycle.  

 

6.7.2 Oligomeric Aβ1-42 affects synaptic vesicle exocytosis  

Firstly, we examined whether Aβ1-42 affects the kinetics of exocytosis. Our results 

indicate that the level of destaining was lower, and the kinetics of vesicle release slower 

in Aβ1-42 treated synapses, than in the vAβ and buffer treated groups. We hypothesized 

whether these results could arise due to Aβ1-42 interfering with departitioning of the FM 

dye from the membrane. Abnormal lipid membrane profile and increased membrane 

viscosity was found in tissue from frontal cortex from AD patients (Sebastião et al., 2013). 

FM1-43 insertion into the membrane and departitioning relies on a hydrophobic reaction 

of hydrocarbon tail of this dye with the lipids in the bilayer (Cousin, 2008). Hence any 

interference with the membrane lipids induced by Aβ1-42 could potentially affect the 

destaining rate of FM1-43. Nevertheless, a study using liposomes with increasing 

percentages of cholesterol to influence the membrane fluidity, found that the membrane 

composition had a minimal influence on the dissociation kinetics of FM dyes (Wu et al., 

2009). Similarly, analysis of single vesicle destaining revealed that neither the lipid nor 

protein composition of the membrane contributed to changes in departitioning kinetics of 

FM1-43 (Richards et al., 2005). It is therefore unlikely that the difference between the 
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Aβ1-42 and the control groups observed in our results arose due to a technical 

component.  

The reduced level of FM1-43 dye loss could result from a combination of 2 factors: 

impaired sorting of SVs to the vesicles pools upon recycling and/or impeded kinetics of 

exocytosis. An increase in resting pool fraction at the expense of recycling pool fraction 

has been reported and linked to  Aβ1-42 – mediated activation of CDK5 activity (J. Park 

et al., 2013). In addition to this, the recovery of fusion-competent vesicles, specifically 

their repriming rate, was found to be severely impaired (J. Park et al., 2013). These 

factors together could explain a significant decrease in destaining level and in the kinetics 

of exocytosis revealed in our results.   

Nevertheless, FM1-43 experiments conducted here used a very high level of stimulation 

(1200 APs, 20 Hz), which turns over the entire recycling pool. This level of activity would 

not be observed physiologically, unless perhaps during seizure. We therefore decided to 

employ smaller stimulation protocols, 40 APs and 4 APs at 20 Hz, in sypHy2x 

experiments, which allowed us to monitor both exo – and endocytosis of SVs under 

different level of activity. Interestingly, we observed that the kinetics of exocytosis was 

not affected when few vesicles were released (responses to 4 APs and low amplitude 

range of responses to 40 APs), but was significantly slower in responses where multiple 

vesicles were released in response to 40 APs. As well as this, the amplitude of exocytosis 

was increased in Aβ1-42 treated cells under this small to medium stimulation. These 

results at first glance appear to be contradictory to the results obtained with FM1-43 

where fewer vesicles were released in response to a large stimulation. Nevertheless, it 

has been previously found that Aβ1-42 increased the number of primed vesicles in 

culture hippocampal neurons (Russell et al., 2012). Moreover, inhibition of degradation 

of endogenous Aβ was found to be positively regulating the probability of release in 

hippocampal cultures (Abramov et al., 2009). It is therefore possible that at lower 

stimulation protocols, when primed vesicles are available in abundance, together with 
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higher pr, the number of vesicles released in Aβ1-42 treated was higher, whereas the 

availability of vesicles to be released at high stimulation was limited due to a smaller 

recycling pool size and slower repriming rate.  

We also saw that Aβ1-42 treated cells were characterized by a significantly higher level 

of Ca2+ influx than buffer control or vAβ, which might have contributed to the higher 

amplitude of exocytosis in this group. This increased Ca2+ influx could be due to Aβ1-42 

effect on P/Q-type Ca2+ currents. Oligomeric Aβ1-42 was indeed shown to reduce the 

threshold for opening of P/Q-type Ca2+ channels and therefore leading to a bigger Ca2+ 

influx and facilitation of the number of vesicles released (Mezler et al., 2012). Our results 

also indicate that with multiple rounds of stimulation, evoked Ca2+ influx did not decrease 

in Aβ1-42 treated cells in a similar fashion to buffer control and vAβ.  This higher Ca2+ 

influx could lead to excitotoxicity and loss of functional synapses as it was observed in 

our FM1-43 experiment.  

Despite the increase in the amplitude of exocytosis, we also saw slower kinetics of 

vesicle release in Aβ1-42 treated neurons in responses with higher amplitude. The 

obvious target to consider was proteins associated with SNARE complex. Oligomeric 

Aβ1-42 was shown to affect SNARE complex formation, by directly interacting with 

syntaxin 1 in a dose-dependent manner (Yang et al., 2015). Counterintuitively, the 

authors saw that vesicle docking was not affected and concluded that Aβ1-42 inhibits 

fusion pore formation, allowing only partial SNARE assembly (Yang et al., 2015). This 

study was carried out in a cell free environment using proteoliposomes. Perhaps, this 

effect of Aβ1-42 on the function of SNARE complexes was reflected in our results and 

aggravated during increased demand on the system.  

Our results strongly indicate a deficiency in exocytosis caused by oligomeric Aβ1-42 

which is apparent when higher demand is placed upon exocytic machinery. We make 

some predictions as to why that is the case in the model of Aβ1-42 toxicity (section 6.7.4). 
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6.7.3 Oligomeric Aβ1-42 affects synaptic vesicle endocytosis 

After observing that Aβ1-42 has detrimental effect on synaptic vesicle exocytosis and 

Ca2+ influx, we also wanted to explore whether endocytosis is affected by this protein in 

order to have a full picture of its mode of toxicity. Our results showed a significant 

decrease in the rate of endocytosis, which was more pronounced as the number of 

vesicles to be retrieved increased. Notably, the kinetic properties of endocytosis following 

single vesicle release were not affected at all. Unlike Aβ1-42, vAβ had no detrimental 

effect on SVs endocytosis.  

SypHy2x reports reacidification of synaptic vesicles following their internalization. The 

decrease in the rate of endocytosis in Aβ1-42 treated synapses could therefore arise due 

to either delayed endocytic retrieval of plasma membrane, slower reacidification kinetics 

or a combination of both. Based on our results from minimal stimulation (4 APs) and  

experiments with Dynasore,  we concluded that slower recovery of sypHy2x signals in 

40 APs stimulation resulted from delayed vesicle retrieval rather than impaired 

reacidification kinetics. This is based on the fact that individual vesicles contain a single 

copy of v-ATPase (Takamori et al., 2006). If the reacidification kinetics were affected by 

Aβ1-42, it would be likely that we would observe a slower endocytic decay following 

single vesicle fusion events, which was not observed in our study. We therefore 

concluded that the endocytic deficiency is likely due to Aβ1-42 disturbed vesicle retrieval.   

Other studies suggested endocytic deficiency in Aβ1-40 treated neurons, which was 

attributed to dynamin 1 depletion (Kelly and Ferreira, 2007). Similarly, a decrease in 

dynamin 1 was also observed in Aβ1-42 treated hippocampal neurons and in AD mouse 

model - Tg2576 (Kelly et al., 2005). Dynamin inhibition was found to have similar 

endocytic consequences as oligomeric Aβ (Kelly and Ferreira, 2007), strengthening the 

possibility of dynamin involvement in Aβ1-42 mediated toxicity in our study. In the 

experiment in Chapter 5 using a dynamin blocker, Dynasore, we saw a significant 
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reduction in the endocytic rate. Loss of dynamin or its function, could be therefore 

responsible for the endocytic deficiency in Aβ1-42 treated neurons.  

Not only was dynamin shown to be affected by oligomeric Aβ, but abnormal cellular 

redistribution and accumulation of amphiphysin at the plasma membrane was also found 

(Kelly and Ferreira, 2007). Amphiphysin, similarly to endophilin I, is a BAR domain 

protein, and together with endophilin, intersectin and syndapin acts to recruit dynamin I 

to the cell membrane (Haucke et al., 2011; Murthy and De Camilli, 2003). Depletion of 

amphiphysin or a block of its function was shown to inhibit endocytic retrieval in various 

systems  (Hosoi et al., 2009; Meinecke et al., 2013). Therefore, not only might dynamin 

be depleted, but also proteins important for dynamin recruitment to the endocytic sites 

might be affected by Aβ1-42, resulting in a decrease in the rate of endocytic retrieval. 

Despite the fact that the increased stimulation-driven Ca2+ influx in Aβ1-42 treated cells 

was likely to contribute to the increased number of exocytosed vesicles, it did not seem 

to have any rescue on the rate of endocytosis. What does that tell us about the exo – 

endocytosis coupling?  Elevated intracellular calcium during sustained activity has been 

linked with an increased rate of endocytosis by its modulatory effect on the number of 

available endocytic sites (Balaji et al., 2008). Nevertheless, despite increased exocytosis 

and Ca2+ influx, endocytosis was slower in Aβ1-42 suggesting disturbed coupling 

between exocytosis and endocytic retrieval of SVs. Ca2+/calmodulin-dependent 

phosphatase calcineurin (CaN), which is an important positive regulator of SVs 

endocytosis by its modulation of activity of dephosphorins (dynamin, amphiphysin or 

synaptojanin) (Evans and Cousin, 2007), could be a target for Aβ1-42. However, the 

effects of Aβ1-42 on CaN expression and activity are inconclusive (Agostinho et al., 

2008; Celsi et al., 2007). SNARE proteins, including syntaxin, have been recently 

implicated in regulating the rate of endocytosis and in coupling exo- and endocytosis in 

the calyx of Held (Xu et al., 2013). Considering the possible interaction of Aβ1-42 with 
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syntaxin (Yang et al., 2015), the slower rate of endocytosis might be caused by disruption 

of function of proteins not classically associated with endocytosis.   

Taking into account the complexity of cellular effects of Aβ1-42 and the variety of 

pathways it has been found to disrupt (Fig.6.12), it is perhaps not surprising that we find 

it difficult to point towards a single mechanism that would explain our results.  

Nevertheless, we attempted to unify our findings in a more general model of Aβ toxicity.  

 

6.7.4 Model of Aβ1-42 toxicity in presynaptic terminals  

So far we considered the effect of Aβ1-42 on various proteins important for vesicle 

exocytosis and endocytosis. This however does not inform us on the global mechanism 

of Aβ1-42 induced presynaptic impairment. Most studies examining the effects of Aβ 

average the values across all the responses to a given stimulus. Considering a large 

variability in presynaptic function emphasized elsewhere in this study, we decided to look 

at how presynaptic function is affected by Aβ1-42 depending on the level of activity. The 

important pattern emerged from this study, which suggests that Aβ1-42 affected vesicle 

recycling only during increased demand on exocytic and endocytic machinery, whereas 

release and retrieval of small number of vesicles occurred with no obvious impediments. 

We therefore propose a model of Aβ1-42 mediated presynaptic toxicity, which is based 

on general effect on the plasma membrane and associated with it exocytic/endocytic 

machinery.  

Before that, we need to consider the site of Aβ1-42 toxicity: extracellular (membrane 

bound) or intracellular. Oligomeric Aβ1-42 applied to our cultured hippocampal neurons 

was shown to associate with membranes and/or be internalized (Marshall et al., 2016). 

Aβ1-42 was found to associate with gangliosides, a glycosphingolipid enriched in the 

outer leaflet of plasma membrane, leading to the disruption of the integrity of plasma 

membrane (Williams et al., 2015). Experiments using the neuroblastoma cell line N2A, 
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showed that Aβ1-42 was internalization was via dynamin-dependent endocytosis (Yu et 

al., 2010). The effects observed here might therefore arise from both Aβ1-42 associated 

with the plasma membrane and from internalized oligomers. It is well known that in the 

presence of Aβ1-42 membrane integrity, structure and function of membrane associated 

proteins are severely affected by a variety of factors: i) Aβ1-42 insertion into the plasma 

membrane (Williams et al., 2015, 2010); ii) abnormal cellular distribution and 

accumulation of proteins at plasma membrane (Kelly and Ferreira, 2007); iii) direct 

binding of Aβ1-42 to important presynaptic proteins and a block of their normal function 

(Yang et al., 2015); iv) disruption of integrity and lipid and protein composition of lipid 

rafts (Rushworth and Hooper, 2010). We therefore propose that exo-endocytic 

deficiencies in the presence of Aβ1-42 might be associated with structural and functional 

disturbance of the membrane caused by this peptide.  

Kelly & Ferreira 2007 only observed endocytic deficiency in the presence of amyloid beta 

when synapses had to cope with sustained, intense levels of activity, whereas 

spontaneous activity, which is low in hippocampal neurons, did not lead to similar 

impairment. It was hypothesized in a different study that at low frequency firing, 

membranes remain organized and synaptic vesicle proteins clustered, hence the future 

vesicles retain their identity, whereas during more intense stimulation, the membrane 

becomes more disorganized and more protein intermixing occurs (Kim and von 

Gersdorff, 2009). We therefore propose that during low demand on exo-endocytic 

machinery, assembled patches of lipids with associated proteins from readily retrievable 

pool are available at the plasma membrane. Perhaps some of these pre-organized 

“vesicles” are not affected by Aβ1-42 and would be the first ones to undergo endocytosis 

at low level activity. With increasing number of vesicles to be retrieved, these patches 

would become depleted, and further endocytic retrieval would require a high level of 

protein sorting and trafficking at and in the vicinity of the plasma membrane, which might 

be impeded by Aβ1-42 via its disrupting effects on the integrity of the plasma membrane. 
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In addition to this, the function of individual proteins crucial for exo- and endocytosis 

might be disrupted by Aβ1-42 as discussed above. Perhaps during low level activity, 

neurons can overcome this by recruiting fully functional proteins, whereas at high levels 

of activity, this distinction cannot be made, leading to functional impairment.  

The dose–dependence of the disruptive effects of Aβ1-42 readily apparent in our study, 

might be supportive of the model put forward above. At 10-times lower concentration the 

number of exocytosed vesicles was still increased, whereas the kinetics of endocytosis 

was not affected. Perhaps this initial increase in the number of released vesicles, 

combined with membrane deficits induced by Aβ1-42, leads to a gradual clogging-up of 

the membrane with proteins, change in membrane curvature and fluidity, which in turn 

affects endocytic proteins and leads to endocytic impairment. Interestingly, endophilin I 

expression has been found to be increased in AD brain (Ren et al., 2008), which might 

be suggestive of some homeostatic mechanism that is activated to maintain sufficient 

recycling. However, subsequent activation of c-Jun N-terminal kinase (JNK), which is a 

stress kinase, by endophilin I, might lead to the death of neurons and AD pathology (Ren 

et al., 2008). Therefore, this potential rescuing mechanism might have unfavourable long 

term consequences.  

  

6.7.5 Summary and future directions  

Our results point towards a wide spread effect of Aβ1-42 on presynaptic machinery, 

which is apparent during high level activity. By contrast, vAβ had no detrimental effects 

on the synaptic vesicle cycle, making it a suitable control for studies using hippocampal 

neurons. It is therefore critical to further explore Aβ1-42 effects on presynaptic 

homeostasis in order to find causal relationship between different aspects of the synaptic 

cycle that are affected by Aβ1-42. 
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Prevention of Aβ1-42 binding to the membranes with agents such as europium (Williams 

et al., 2015) could provide a first step towards elucidating the beginning of the 

presynaptic cascade, leading to numerous presynaptic dysfunctions. In addition to this, 

dynamin blockers such as dynasore, could be used during incubation times with Aβ1-42 

in order to distinguish between extracellular versus intracellular effects of Aβ1-42. 

Experiments conducted here inform us about the effects of Aβ1-42 on the synaptic 

vesicle cycle and calcium influx. The important consequence of these processes is the 

release of neurotransmitter molecules from the SVs. Additional experiments in our 

culture system using iGluSnFR, could be performed in order to address the efficiency of 

transmission in Aβ1-42 treated cells. In order to further reinforce the findings made here, 

other widely employed models of Alzheimer’s disease, such as Tg2576 mice or ApoE 

mice model, could be used in a similar set of experiments.  
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7 GENERAL DISCUSSION 
 

 

 

 

 

The events associated with synaptic vesicle recycling have usually been considered to 

occur in a stochastic way (Balaji and Ryan, 2007; Ribrault et al., 2011). The assumption 

that expression of presynaptic operation is largely random, is both very easily made, due 

to an enormous variability of parameters, and yet quite puzzling, considering the 

precision with which the presynaptic processes have to take place in both space 

(nanometres) and time (milliseconds) to ensure effective neurotransmission. In this work 

we addressed one of the fundamental questions about the sources of heterogeneous 

behaviour of the population of synapses, and uncovered rules that underlie the synapse-

specific kinetics of endocytosis.  

The two main aims of this work were to establish whether individual synapses show 

signature endocytic behaviour, and to determine to what extent the presynaptic 

performance is linked to the underlying synaptic characteristics. The results presented 

here indicate that the endocytic retrieval of synaptic vesicles at individual presynaptic 

terminals proceeds with signature kinetics, determined by structural and molecular 

characteristics of the synapses. We identified synaptic size, the size of the total vesicle 

pool, vesicle density and protein composition as determinants of endocytic kinetics at 

individual presynaptic terminals. Our findings are summarized in Figure 7.1. Based on 

these results, in section 7.2, we propose a model of the regulation of the kinetics of 

endocytosis at individual synapses. 

The significance of these results lies in the role of synapses within neuronal networks. 

Changes in presynaptic function and structure underlie various forms of plasticity; in turn 
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this modulation of synaptic properties has an effect on the information flow and storage 

within a given network (Takeuchi et al., 2014). Conversely, the behaviour and 

characteristics of a given synapse is closely shaped by its function within the network 

(Evergren et al., 2006). Nevertheless, the regulation and expression of synaptic 

strengths and precision behind this regulation still remain unknown (Bartol et al., 2015). 

The finding made here of synapse-specific kinetics of single vesicle endocytosis could 

reflect adaptation of a given synapse to its role within the network. Perhaps synapses 

with a more unified endocytic behaviour are the stronger, more reliable synapses, and 

the consistency of their operation might reflect plasticity-induced adaptation, based upon 

an individual synapse. If that is the case, the signature behaviour of a given synapse 

could be a locus for disease associated disturbance of synaptic function, which could be 

reflected at the level of the entire network.   

In addition to synapse-specific timing of vesicle retrieval, we observed that larger 

synapses are characterized by a faster rate of endocytosis. This again might reflect 

adaptation to higher functional needs placed upon these boutons. Tonic synapses, in 

lamprey spinal cord, which are adapted to a continuous high level of activity, showed a 

greater level of endocytic proteins such as dynamin and amphiphysin, than phasic 

synapses, which only sporadically release neurotransmitters (Evergren et al., 2006). In 

line with this, in our study we found that the level of endophilin I, an important regulator 

of endocytic kinetics, in large synapses was proportionally higher than in the small 

synapses, which was accompanied by faster kinetics of endocytosis in large boutons. 

This shows that the efficiency of synaptic machinery is highly linked with the molecular 

composition of a given synapse. The need for faster vesicle endocytosis in large 

synapses, might also stem from the fact that despite their overall bigger size, we found 

that these synapses are characterized by a smaller recycling fraction, relative to the small 

synapses. As such, they might therefore need a more efficient way of replenishing their 
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recycling pool of vesicles in order to sustain high levels of activity. Taken together, our 

findings uncover important functional parameters of hippocampal neurons.  

In addition to this, we explored changes inflicted on the synaptic vesicle cycle by 

oligomeric amyloid beta. Our findings strongly suggest that small Aβ1-42 oligomers 

disrupt endocytic machinery under more intense stimulation paradigms, whereas no 

effect was observed during single vesicle endocytosis. We also observed an increase in 

the number of exocytosed vesicles and an increase in the stimulation-evoked Ca2+ influx. 

Collectively, these presynaptic dysfunctions might be a prerequisite for the synaptic loss 

observed in Alzheimer’s disease (Shankar et al., 2007). We proposed that Aβ1-42 

toxicity is exerted by an overwhelming of the presynaptic machinery, through increasing 

the release of SVs. This may then serve to disrupt membrane integrity, and the function 

of endocytic proteins associated with it. Taken together, these findings offer new insight 

into the on the mechanisms of toxicity evoked by Aβ1-42 oligomers.  

In the first results chapter we validated optical tools suitable for various experimental 

needs. As far as acutely applied probes are concerned, FM1-43 was most appropriate 

for monitoring synaptic vesicle exocytosis and dynamics of synaptic vesicle pools and 

sytI-Oyster550 for unambiguous identification of presynaptic terminals and relating 

presynaptic properties. Most of the functional experiments were carried out using 

sypHy2x, which was identified as the most suitable construct for monitoring single vesicle 

release and recovery events in our system. Ultrastructural analysis of presynaptic 

terminals allowed to verify our experimental approaches and uncover more properties of 

synapses that determine their functional behaviour.    
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Figure 7.1 Summary of presynaptic properties and correlates associated with 
endocytic timing at small and large synapses. A) Variables associated with slower or 
faster kinetics included: synaptic size, size of the total pool, vesicle density and level of 
endophilin I. Despite the fact that the size of the total pool is directly linked to the synaptic 
size, we listed it separately to highlight the fact that it correlates better with the endocytic 
rate than the size of the recycling pool or recycling pool fraction. B) In addition to 
parameters summarized, small synapses were found to be less variable in terms of their 
endocytic kinetics and endophilin I expression, than large synapses. Examples of three 
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different scenarios for the behaviour of large synapses (right hand side cluster (green 
synapses): i) large synapse with low level of endophilin I, comparable to the amount in 
small synapses, behaving in a more variable way (top); ii) large synapse with more 
endophilin and more unified behaviour (right); iii) large synapse with high level of 
endophilin and fast, unified behaviour (left). The basis for this is further extrapolated in 
discussion in Chapter 5 section 5.5.1.2.   

 

 

7.1 Synapse specific timing of single vesicle retrieval kinetics  

We observed in our experiments a large variability in the endocytic kinetics in individual 

fluorescence profiles originating from the population of synapses. Based on our findings 

and available literature we established that this variability was not related to experimental 

conditions (endocytic load, focus, sampled population, and lateral diffusion of sypHy). 

The possibility that it was due to the differences in reacidification kinetics was also low 

considering the reported presence of a single v-ATPase per vesicle (Takamori et al., 

2006). We therefore concluded that this variability most likely results from heterogeneity 

in the timing of vesicle endocytosis. Our analysis also revealed that although highly 

variable across the population of responses endocytic retrieval time was consistent over 

multiple stimulation rounds at a given synapse. We therefore suggest that individual 

synapses have a “preferred” mode of endocytosis. This might mean two things: different 

synapses preferentially recycle vesicles via different endocytic mechanisms for example 

CME or ultrafast endocytosis or perhaps a given endocytic mechanism is carried out with 

different level of efficiency at different synapses.  

The timing of vesicle retrieval in our system (τ = 9.4 s following 40 APs, 20 Hz 

stimulation), excludes the possibility that the endocytosis proceeded via kiss-and-run. 

The two most likely endocytic mechanisms to operate in our system are CME and 

ultrafast endocytosis. In ultrafast endocytosis, within milliseconds after a single stimulus, 

a large portion of the plasma membrane is recovered in the form of endosome, from 

which individual vesicles are retrieved within 5-6 s with most of the vesicles recovered 

within 30 s post stimulus (Watanabe et al., 2014, 2013). This recovery of vesicles within 
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the period of 5-30 seconds perfectly corresponds with our findings, and could explain the 

general variability between synapses. Nevertheless, these authors also concluded that 

the endocytosis of a large endosome, equivalent to surface area of 4 vesicles, takes 

place after every single vesicle release event (Watanabe et al., 2013). Assuming that the 

entire endosome is resolved into small synaptic vesicles, the fluorescence of sypHy2x in 

our case should drop below the baseline each time and we only observed a few profiles 

that might have confirmed this mode of endocytosis as a major endocytic mechanism in 

this study. Although we did not specifically test this, the most likely endocytic mechanism 

to occur at our experimental conditions is CME. From our experiment using dynasore we 

established that the endocytosis is dynamin dependent and, in turn, dynamin is critical 

for efficient CME (Meinecke et al., 2013; Rizzoli, 2014). This suggests that individual 

vesicles are recycled directly from the plasma membrane in our system and that the 

similarity of endocytic timing at a given synapse is due to differences in the efficiency 

with which CME proceeds at individual boutons.  

Is it possible that the similarity within synapses, is simply due to the fact that the same 

vesicle is recycled multiple times within our 10 trials? 4 APs stimulation used in this study 

would be expected to mobilize vesicles from the RRP. An investigation carried out in our 

laboratory, showed, that the level of reuse of RRP vesicles in a subsequent round of 

RRP-mobilizing stimulation, exceeded the extent of reuse that would be predicted if the 

same vesicles were mobilized by chance (Rey et al., 2015). In other words, some 

vesicles were preferentially recycled into the RRP. Precisely, 41.2% of vesicles from a 

10 APs loading protocol were recruited during the next RRP-mobilizing stimulus 

(Appendix I, Fig.7.A-C). This indicates that the same vesicles could potentially have been 

recycled multiple times during repeated 4 APs stimulation in this study. However, a 

further experiment in the same study provides an even more definitive test: here, 

repeated 10 APs stimulus was applied in the presence of bafilomycin (baf), which 

prevents vesicle reacidification by blocking v-ATPase (Rey et al., 2015; Appendix I, 
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Fig.7.D). In the consecutive rounds of 10 APs stimulation, recycled vesicles were 

therefore prevented from undergoing a further round of exocytosis-endocytosis and, as 

such, this provides a test of the level of reuse. Although the amplitude of the response 

gradually diminished, this decline was very slow, implying that reuse was low. Moreover, 

a larger 1200 APs 20 Hz stimulus could still elicit a substantial response (Appendix, 

Fig.7.D and E). This suggests that the chances of reuse of the same vesicle in multiple 

4 APs stimulation is very unlikely. In addition to this, based on the literature discussed in 

earlier chapters, the chances that it is exactly the same vesicle, understood as exactly 

the same portion of the membrane being internalized, is very negligible. We therefore 

propose that endocytic retrieval time is dependent on the structural and molecular 

characteristics of individual synapses that dictate their signature timing of retrieval.     

7.2 Presynaptic properties that determine kinetics of single 
vesicle endocytosis  

We identified numerous presynaptic characteristics that can all underlie the signature 

endocytic behaviour of a given synapse such as size, total number of vesicles, vesicle 

density and the level of endophilin I (Fig.7.1). Here we propose a model that consolidates 

our findings and combines the mechanical and chemical interactions that may explain 

the differences between the endocytic kinetics at small and large synapses. In designing 

this model, not only did we considered protein-protein and protein-lipid interactions and 

composition of the plasma membrane, but also the structure-related forces that may 

underlie the biochemical processes leading to endocytosis of synaptic vesicles. 

Plasma membrane tension, in broad terms, describes the amount of force that is needed 

to induce membrane deformation (Diz-Muñoz et al., 2013). In various cellular systems it 

has been shown that the level of exo- and endocytosis is regulated by the membrane 

tension (Diz-Muñoz et al., 2013). Exocytosis, leads to a decrease in plasma membrane 

tension , whereas endocytic retrieval, which is induced by low plasma membrane 

tension,  has the opposite effect - it increases membrane tension (Dai et al., 1997; Diz-
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Muñoz et al., 2013). Considering the fact that addition of the membrane decreases 

plasma membrane tension (Gauthier et al., 2009), we hypothesized that small synapses 

have higher plasma membrane tension than the large ones.  

The interactions between proteins and lipids at the plasma membrane initiate 

spontaneous formation of curved membrane buds, which will later transition into Ω-

shaped invagination that will be pinched off into a new synaptic vesicle. Important steps 

during CME involve coating the membrane with adaptor proteins followed by assembly, 

of the clathrin coat (Fig.1.5). Modelling of the effect of plasma membrane tension on the 

formation and morphology of clathrin-coated pits, revealed that at low membrane 

tension, curvature of the membrane was gradually increased, leading to invagination of 

Ω-shaped vesicles (Hassinger et al., 2016). However, under high membrane tension 

accumulation of a protein coat was observed but the membrane remained mostly flat 

(Hassinger et al., 2016). Our smallest synapses, therefore, must have had plasma 

membrane tension under a certain level above which, CME would not progressed at all. 

How could difference in plasma membrane tension between small and large synapses 

affect the endocytic retrieval? In the same model it was suggested that actin 

polymerisation is needed to provide the necessary forces for the transition from open U-

shaped invagination to Ω-shaped structures (Hassinger et al., 2016). Other groups 

proposed that clathrin coat provided sufficient force for the development of the 

membrane bud under low tension, whereas actin polymerisation was needed for this 

process to occur in a membrane under high tension (Boulant et al., 2011). This additional 

step in small synapses could therefore lead to a slower retrieval kinetics. Where does 

endophilin I function fit into this model? BAR-domain proteins (BDPs), such as endophilin 

or amphiphysin, have both curvature sensing and binding, and membrane-deforming 

properties (Liu et al., 2010). In addition to endophilin I recruitment of dynamin to 

endocytosing vesicles (Frost et al., 2009), BDPs were proposed to be involved in phase 

segregation of lipids, which was proposed to be sufficient, together with dynamin, to drive 



286 
 

scission of the invaginated vesicle off the membrane, making actin dispensable in the 

process (Liu et al., 2009). High plasma membrane tension, by having a lower propensity 

for bending as described above, could disrupt BDPs binding to the membrane (Diz-

Muñoz et al., 2013; Zhao et al., 2011).  

Taken together, we propose that smaller synapses, with higher plasma membrane 

tension, may need forces from polymerisation of both clathrin and actin for curvature-

induction, thereby slowing down generation of an appropriate shape for endophilin I 

binding and scission of the invaginated vesicle (Fig.7.2). Moreover, the function of 

amphiphysin was shown to depend on the concentration of that protein on the 

membrane: mainly curvature sensing at low density and mainly membrane-deforming at 

high densities (Sorre et al., 2012). Perhaps endophilin I behaves in a similar way, which, 

considering there is proportionally lower amount of this protein in small synapses, would 

further slow down the endocytosis. On the other hand, in larger synapses, membrane 

curvature might be brought about quicker thanks to lower plasma membrane tension, 

and with proportionally more endophilin would lead to faster recruitment of dynamin and 

thus the new vesicle could be formed in a much shorter time than in small synapses 

(Fig.7.2). In addition to this, perhaps the space within small synapses is filled to the 

maximum capacity with the necessary number of copies of proteins critical for 

endocytosis, whereas large synapses offer more space for the movement of molecules 

and for the assembly of necessary protein complexes, which might also accelerate 

endocytic retrieval of SVs. All these factors therefore make large synapses more optimal 

for carrying out endocytic retrieval.  

How can this model be affected by amyloid beta in our experiments?  Firstly, assuming 

that Aβ1-42 binds to, or in any other way associates with the proteins or lipids at the 

membrane, it could lead to overcrowding of the plasma membrane which could itself 

disturb the invagination of SVs (Hassinger et al., 2016). Moreover, proteins can influence 

sorting of the lipids in the membrane, those that are directly, but also indirectly associated 



287 
 

with that particular protein (Callan-Jones et al., 2011). Hence the homeostasis at the 

membrane might be disrupted by Aβ1-42. Secondly, the role of lipids should not be 

overlooked as lipid composition plays a crucial role in setting membrane properties such 

as fluidity, tension or shape, and it is the configuration of different lipids that sets the 

membrane curvature or stretching (Callan-Jones et al., 2011). As mentioned before, 

lipids at the membrane associate into nanoscale domains – lipid rafts. The specific 

composition of these rafts and their distribution can affect membrane curvature and in 

return the function of curvature sensing proteins such as endophilin I. Binding of Aβ1-42 

at the membrane, precisely to gangliosides within lipid rafts, and its disrupting-effect on 

membrane integrity (Williams et al., 2010), could lead to the observed endocytic 

deficiency.   

 

 

Figure 7.2 Model summarising the difference in endocytic timing at small and large 

synapses. We propose that due to higher membrane tension in small synapses, they 
employ actin in addition to clathrin to exert enough force for the invagination of the vesicle 
to proceed. Due to this additional step, the binding of BAR domain proteins such as 
endophilin, would also be delayed with a knock-on effect on recruitment of dynamin to 
the scission site. Conversely, binding of endocytic adaptor proteins and formation of 
clathrin coat in large synapses with lower plasma membrane tension would be sufficient 
to drive vesicle curvature, allowing for earlier binding of BDPs and dynamin, and faster 
fission of the vesicles. Graphic components based on figure from Milosevic et al. 2011. 
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7.3 Conclusions and future experiments  

Despite the fact that there is an ongoing debate on the predominant mode of endocytosis 

in hippocampal preparations, we demonstrated that individual synapses operate in a 

synapse-specific manner. Moreover, the timing of endocytosis was shaped by structural 

and molecular properties of the presynaptic terminals. These findings offer a new insight 

into principle rules that govern the behaviour of small central synapses. In addition to 

expanding our knowledge on presynaptic function, data presented here could be utilized 

as another variable to be implemented in studies on network modelling and artificial 

intelligence. Moreover, the synaptic vesicle cycle can be a site for expression of disease 

associated impairment in synaptic function. We showed that Aβ1-42 reduces the number 

of functional synapses and that it decreases the rate of endocytic retrieval, both of which 

could have disastrous consequences.  

The future studies could involve testing whether synapse-specific behaviour is observed 

in hippocampal slices from sypHy expressing mice or in vivo. This however poses 

imaging difficulties associated with the depth of the tissue. Currently, fluorescence 

resulting from stimulation below 40 APs could not be resolved in our confocal system 

(personal communication with Dr Stephanie Rey).  

It has been proposed in the study using an epithelial cell line that under low tension a 

clathrin coat is sufficient to lead to the formation of a membrane bud, whereas under 

high tension actin polymerisation was crucial for providing additional force and therefore 

ensuring the progression of the membrane invagination (Boulant et al., 2011). A 

suggestion was also made that actin polymerisation takes over the membrane 

invagination only if clathrin polymerisation mechanisms halts (Boulant et al., 2011). 

Based on this, the entire mechanochemical model of regulation of endocytic kinetics put 

forward here could be tested in our cell culture system by modulating actin 

polymerisation with pharmacological modulators. If the hypothesis is true, latrunculin, 

which induces actin depolymerisation (Morales et al., 2000), should further decrease, or 
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perhaps even halt the endocytosis at the smallest synapses, whereas large synapses 

would not be affected by this treatment or to a lesser extent. The hypothesis that a higher 

level of vesicle clustering at small synapses, induced by tension-mediated actin 

polymerisation, could also be tested using this drug in an ultrastructural study.     

Despite our expanding knowledge on the function of presynaptic terminals, it is very 

possible that major functional components of presynaptic machinery have not yet been 

identified. This is due to the difficulty associated with carrying out isolation of specific 

presynaptic components with high purity (Boyken et al., 2013). In addition to this, the 

possibility of the existence of a molecular tag, which would discriminate between various 

vesicle pools is a very attractive postulate. The method proposed here could improve the 

confidence of the fractionation, allow to isolate certain presynaptic structures and provide 

highly anticipated answers regarding the nature of vesicles pools. In short, the 

experimental procedure could involve loading synaptic vesicles with antibody-tagged 

nanomagnetic particles in a stimulation dependent manner, followed by the isolation of 

this tagged material with an electromagnet. Loading with the stimulus targeting different 

vesicle pools (RRP, RP or no stimulation for spontaneous pool), would allow to discern 

whether the highly anticipated and sought for molecular tag exists.  

The literature spanning the last two decades, points towards a high level of variability in 

function and structure within hippocampal presynaptic populations. Findings presented 

in this thesis provide a new insight into the rules that underlie this variability, and uncover 

crucial presynaptic properties that determine their behaviour, offering an important 

platform for further exploration of the fundamental workings of central synapses in health 

and disease.  
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Appendix I  

 

 

 

Appendix I, Figure 1. Secondary antibodies used for vGlut1 and vGlut2 labelling 
do not show non-specific binding in sypHy2x expressing neurons. A) 
Representative images of culture labelled with primary antibodies (Rabbit anti-vGlut1 
and Guinea pig anti-vGlut2 antibody) and secondary antibodies (Goat anti-Rabbit Alexa 
Fluor ® 568 and Goat anti-Guinea pig Alexa Fluor ® 568) (left) or with secondary 
antibodies only (right). B) Fluorescence intensity profiles were plotted across sypHy2x-
expressing neurons in samples labelled with both primary and secondary antibodies (left) 
or with secondary antibodies only (right). There was no non-specific labelling of 
secondary antibodies in the presence of sypHy2x.     
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Appendix I, Figure 2. Representation of the abbreviations and measures used in 
section 4.3.5.1. exploring the similarity of endocytic profiles within individual 
synapses. The rows represent individual synapses and the columns on the right trials. 
In the experiment, we analysed 372 synapses from 25 experiments and the generated 
100 randomized synapses for each experimental synapse. WSS - within synapse 
similarity is a point-by point measure of the difference in the shapes of endocytic profiles; 
WSSave - the average of WSS from all experimental synapses; RSS - randomized 
synapse similarity, is an equivalent measure to WSS but for randomized synapses; 
RSStrial - the average of RSS results from all synapses in a particular randomization trial; 
RSSsynapse - is the average of RSS values from 100 trials for a particular synapse; RSSave 
- the average of all RSSsynapse values. Double frame around WSSave signifies that this 
value was used in both ‘by trial’ and ‘by synapse’ analysis. 
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Appendix I, Figure 3. Workflow of analysis of CNQX data.  
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Appendix I, Figure 4. Secondary Goat anti-Rabbit Alexa Fluor® 568 antibody does 
not show any non-specific binding. A) Representative images of sypHy2x and 
endophilin I fluorescence in culture labelled either with primary (Rabbit anti-Endophilin I 
antibody) and secondary (Goat anti-Rabbit Alexa Fluor® 568) antibodies (left) or in 
culture where no primary antibody was used (right). Scale bar 200 μM. B) Line profiles 
were drawn along sypHy2x expressing synapses showing a very good overlay with 
endophilin I fluorescence (left). There was no fluorescence in the red channel in the 
sample where no primary antibody was used (right). The measurements were baseline 
subtracted for each profile. These results show no non-specific binding of secondary 
antibody in the culture expressing sypHy2x.    
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Appendix I, Figure 5. Quantal profile of FM1-43 destaining. Fluorescence of 4 APs 
loaded sample was measured prior to destaining stimulus and after 600 APs, 20 Hz 
stimulation. The images were subtracted and the resulting fluorescence of the punctate 
regions (A) measured and plotted on the histogram (B). There is evidence for quantal 
vesicle release with the fluorescence value corresponding to 1 quanta being 45.5 a.u. 
Due to the quantification method used there is no 0q peak (n = 97 synapses). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Appendix I, Figure 6 (below).  Summary of responses to 40 APs 20 Hz stimulation 
from 24 h 1 μM Aβ1-42 (red) and Buffer treated (green) synapses. Black digits 
indicate the range of response amplitudes included in the average for a given graph. Red 
digits give a number of Aβ1-42 traces and green of buffer treated traces found at a given 
response increment. Data was normalized to the peak and to the end point of each trace, 
n = 1143, 2209 responses from 6 (9 regions) and 7(12 regions) coverslips for Aβ1-42 
and buffer treated control, respectively.     
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Appendix I, Figure 7. Measurement of vesicles reuse at RRP and 10 APs stimulus. 
A) Hippocampal cultures were loaded with FM1-43 during 10 APs, 20 Hz stimulation 
(loading protocol as described in section 2.8). After 20 min, synapses were stimulated 
with 40 APs and subsequently with 600 APs in order to measure the level of reuse 
following the RRP stimulus. B) Destaining curves from 3 sample synapses (grey), fitted 
with exponential curve (red) for each round of stimulation. C) The analysis of vesicle re-
use revealed a significantly greater level of subsequent recruitment of vesicles from small 
loading stimulus, 10 APs, than after 40 APs or 600 APs stimulus (n = 74, 119 and 131 
for 10 APs, 40 APs and 600 APs loading, respectively. One-way ANOVA with 
Bonferroni’s multiple comparisons: 10 APs:40 APs, P=0.02; 40 APs:600 APs, P < 
0.0001; 10 APs:600 APs, P < 0.0001). This suggests that although most vesicles are 
sorted in a random fashion, some vesicles preferentially enter the RRP. D) Example 
profiles from 3 synapses during repeated 10 APs stimulation, 1 min apart, in the 
presence of 1 μM bafilomycin show gradual depletion of vesicles available for release 
under 10 APs stimulation, and simultaneous availability of vesicles in RP (1200 APs 
stimulation). Response amplitudes were normalized to the first round of stimulation in 
the presence of bafilomycin. E) Quantification of response amplitudes to 10 APs 
stimulation in the presence of bafilomycin normalized to the first response amplitude in 
bafilomycin (n = 105 synapses, data showed as mean ± SEM. Asterisks indicate where 
the changes were significantly different from 1 in two-tailed paired Student’s t-test, P < 
0.05). Figure modified from Rey et al., 2015. Results collected and analysed by Milena 
Maria Wagner.  
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