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Abstract

In this thesis, we study the behaviour and forecastability of exchange rates . Most of

the existing literature on the forecasting of exchange rates concentrates on the end of the day

price, commonly known as the ’close’ price. Meese and Rogoff [30] show that this price tends

to follow the naive random walk model, which implies that the best forecast for the next

period is the current observed value. Instead, we study the dynamics and the predictability

of the daily high and low prices using real-world data for the currency pairs GBP/USD,

EUR/USD and AUD/USD. The daily high and low are the maximum and minimum prices

reached for each 24-hour period by the currency pairs. We find strong evidence that the

daily close prices lag these highs and lows. We use this knowledge to build an autoregressive

distributed lag (ARDL) rolling regression model that produces one day ahead out-of-sample

forecasts of these high and low prices. We also build an algorithm that uses already existing

dynamic regression methods to correct for the autocorrelation often observed in time-series

data. The window size used for the estimation of our model parameters is very important due

to the nature of time-series data. We propose an empirical method to find the best suitable

window size for the estimation of these parameters. The out-of-sample predictability of our

regression models is compared to a few benchmark models by using a number of different
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performance measures. We show that our models outperform these benchmark models in

terms of their forecasting ability of high and low prices. Furthermore, a triggering method

is developed for trading exchange rates using a saturation-reset linear feedback controller.

First, we test our triggering method on an idealized market model, for which we propose

a stochastic process. We then apply this triggering method to real-world data in order to

study its performance. Finally, we construct trading strategies that combine these methods

with our out-of-sample forecasts.
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Chapter 1

Introduction

1.1 Introduction to the FX Market & Daily “Highs”

and “Lows”

The foreign exchange market, usually referred to as FX or Forex, is the market where ex-

change rates are determined and traded. These exchange rates are the prices of one currency

quoted in terms of another currency. This market has been studied for many years, as its

price movements could affect economic development and international trade. Therefore, gov-

ernments, central banks, international companies and financial traders closely monitor it, as

it is well known that the FX markets can:

(1.) be manipulated and controlled during times of setting fiscal and monetary policies;

(2.) help companies hedge the risk they face due to movements in currency prices;

(3.) help financial traders develop new trading systems to maximise returns and profits.

According to the latest survey taken by the BIS in April 2013, almost 5.3 trillion dollars

are traded daily in this market, making it one of the most liquid markets in the financial

industry [40]. The enormity of this market, coupled with the fact that it operates 24 hours

a day (with the exception of weekends), motivated us to choose this market as the focal
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point of our research. In this thesis, we look at the FX market in detail and aim to test

the predictability of exchange rates. Traditionally, when speaking of financial asset prices

(stocks, currencies, etc.), the common price considered has been the “close” price of the asset

for that defined time-frame (1 week, 1 day, 1 hour, etc.). However, in this thesis, our interest

lies in the “high” and “low” prices of exchange rates rather than in the “close” price. We

test the predictability power of these price levels using real-world data. These highs and lows

can be interpreted as the highest (maximum) and the lowest (minimum) prices recorded by

that asset during the time frame in question.

Our first reason for choosing highs and lows over the closing price is the Efficient Market Hy-

pothesis (EMH), as it argues against the predictability of spot (close) prices. The extensive

research carried out in this field tends to agree with EMH and with the fact that exchange

rate close prices are hard to predict and fail to beat the random walk model. We will discuss

this in more detail in our literature review.

Our second reason for choosing these prices over the closing price is that they can be very

informative and give greater insight into the market’s behaviour. For example, if consider-

ing daily high and lows, then these prices show the highest and the lowest prices recorded

for that asset during the defined 24 hour window, and their linear difference is known as

each day’s trading range. In [37], the author argues that estimating volatility using range-

based methods rather than more traditional return-based methods is actually more efficient.

Therefore, if these prices are forecasted and known a priori, then they can be used as

(1.) Buy/Sell levels to make profitable trades, and

(2.) a good estimate of future volatility.
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1.2 Literature Review

As already mentioned, our main reason for not using close prices is based on the Efficient

Market Hypothesis (EMH) initially discussed in [17] and [18]. An efficient market is described

as a market in which actual prices at any given time, given the available information, are a

very good estimate of intrinsic values. Therefore, when news or new information becomes

available, it is reflected in the prices straight away, making it impossible for market analysts

to achieve returns greater than those by holding a randomly selected portfolio of assets. [29]

This essentially means that past price movements and patterns are not an indicator of future

price movements, and that these future prices cannot be predicted using technical analysis

or even fundamental analysis techniques. EMH states that these prices follow a random walk

process where subsequent price changes are a random departure from the previous ones and

are unpredictable. There have been many efforts made in the literature to argue against

EMH, and many models have been developed to forecast exchange rate close prices. [30]

discussed in one of their most famous classic papers that the best forecasting model for

exchange rates is the random walk and that their structural exchange rate models could not

beat the out-of-sample forecasting ability of the random walk. The exchange rate models

they used for comparison with the random walk are the so called Frenkel-Bilson, Dornbusch-

Frankel and Hooper-Morton. These structural models are drawn from economic theories and

generally use variables such as inflation, interest rates, trade balances, the unemployment

rate, etc. to model exchange rates and subsequently make out-of-sample forecasts. The study

by [10] used the same approach and concluded that random walk is still the best predictor for

these prices, especially for shorter time horizons. They used the same structural models but

also imposed error correction terms and fit them using both parametric and non-parametric

approaches. The study by [1] also used the same techniques but included time-series AR(1)

and AR(2) models, which seemed to beat the random walk in their study. However, [44]

claims that there had been a mistake in computation by [1], and when they applied the
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same techniques to the same data, they obtained results suggesting the superiority of the

random walk model over these models. Some other studies that use these equilibrium models

include [22] and [42] to name a few.

Other approaches used for forecasting exchange rates in the literature are the so-called Vector

Auto Regression (VAR) models. [24] analysed the predictability of the Full-VAR (FVAR),

Bayesian-VAR (BVAR) and Mixed-VAR (MVAR) models when applied to different exchange

rates. Their study lead to mixed conclusions. For example, they found that whilst BVAR

and MVAR had more forecasting accuracy than their FVAR counterpart, the results were

not consistent for all pairs of currencies tested. [8] used BVAR as well as a Bayesian Vector

Error Correction model to forecast Asian exchange rates. He showed in his study how these

models outperformed the random walk model from a forecasting basis and suggested the use

of such models for the more volatile Asian economies.

Other famous approaches used in the literature for forecasting exchange rates involved the

use of non-linear methods such as Artificial Neural Networks (NN), fuzzy models and so on.

These methods use machine learning and pattern recognition techniques to forecast rates.

Some of the papers that discuss these models include [46], [35], [15], [27] and [28]. Although

these studies show some seemingly interesting results, they are negated by [34], who ex-

amined the accuracy of artificial neural networks predictions compared to linear time-series

models such as ARCH and GARCH. He found the black-box approach to be less accurate

than the GARCH and ARCH models in the context of exchange rate predictability.

So far we have presented the main studies and arguments against the predictability of ex-

change rates. However, all the studies covered to this point are in fact “close” price predictors

and use the spot price at the end of day (or at a certain predetermined set time) to carry

out their research. Our aim is to discuss the predictability of “highs” and “lows” and to test

whether the Efficient Market Hypothesis also holds for these prices. We found very little

effort to have been made in the literature for the modelling of highs and lows, with [6], [41]

4



and [9] being the only studies found of this type at the time of this writing. In [41], the

authors tested the predictability of the high and low prices of Forex data. They fit an error

correction model (ECM) to these prices to capture the co-integration relationship between

them and used this to obtain out-of-sample forecasts. Their results were shown to be ade-

quate, but the mean squared errors obtained seem to be much higher than those discussed

in our work, which we will analyse in more detail in the coming chapters. [41] was the only

study we found to forecast highs and lows of FX data rather than stock market data. In [6],

the researchers extended the ECM approach and modelled the highs and lows of stock prices

using a fractional vector autoregressive model with error correction (FVECM). Their moti-

vation was that the range (the difference between the high and the low) displayed long term

memory and therefore extended the ECM model by capturing this using fractional autore-

gressive techniques. The author in [9] also models the highs and lows of US stock market

indices by an Error Correction Model. However, in this study, the author gave no indication

of the forecasting ability of these models, and the regular accuracy measurements are not

included for model comparison.

Our aim in this thesis is to study the predictability of these highs and lows. For this purpose

we introduce different regression models for daily highs and lows. We test the forecasting

ability of our models and compare them with some benchmark models widely known in the

world of forecasting. We find that our models not only beat the random walk model but

also have much more predictability power when the results are compared to those of [41] .

We should note that our focus is solely on next day predictions. Although predicting further

into the future might be of interest to some long-term investors, this would increase the

forecasting uncertainty, which is not desirable. Next day predictions of highs and lows give

the trader an insight into the following day’s trading range. These predicted prices may be

interpreted as support and resistance levels or upper and lower bands for which the trader

can develop a strategy to make profitable daily trades. Similar studies that are interested in
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next day forecasting have been carried out in the electricity markets and their prices. Papers

such as [26], [19], [33] and [16] all aim to forecast next day prices in the Californian and the

Spanish electricity markets. They use regression, Time-Series ARIMA models, transfer func-

tions and genetic algorithms for this purpose. Of course, the Forex and electricity markets

are completely different in their nature and structure, but the idea of forecasting day-ahead

prices and the time-series techniques needed are somewhat similar.

Furthermore, we extend our research to the field of control theory. We study the new

paradigm described by [3] for the trading of equities. They introduced a saturation-reset

linear feedback controller that determines the amount invested in stock over a given period

of time. The back-testing of their model is first carried out on a set of synthetic prices,

called the idealized market or the idealized price model. This idealized market serves as

their building block and the first test to check the profitability of a strategy before back-

testing on real-world data, which is a lot more expensive and time consuming. However, the

assumptions made for their idealized market model are far from reality, specifically when

one considers the stock market. We believe these assumptions are more reflective of the

Forex market, and therefore such a controller is more suited to this market. For example,

there are no transaction costs involved when trading currencies, unlike stocks. Therefore,

by not taking these costs into account for the trading of equities, the trading performance

of a model could be over-exaggerated. We discuss these assumptions and their implications

in greater detail in Chapter 4.

In order to apply the controller to our FX data, we first build a triggering method. This is

an extension to the work of [21], who introduced a triggering method that serves as a signal

to enter/exit a trade. We use the high and low of FX rates to build our triggering method.

The triggering method in [21] is based on the estimation of the drift of the close prices.

They form a confidence interval for a pre-determined significance level that is used to decide

whether the stock is trending upwards, downwards or neither. We use a similar approach,
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but we incorporate the daily highs and lows of exchange rate prices into our method. We

use the information of both of these daily prices to determine the drift and hence the trend

of the exchange rate. These double estimations serve as a signal for the controller to trig-

ger a ’Buy’, ’Sell’ or ’No trade’. We test our triggering method on an idealized synthetic

price model first before back-testing on real-world data. The price model we introduce is

a two-factor stochastic process for the price of the highs and the range between the highs

and the lows. Our model also includes the price of the lows and the close, which are all

simulated using Monte-Carlo simulation techniques. We complete our back-testing on a set

of real-world data for three different currency pairs. We conclude our work by combining

the out-of-sample forecasts made for the highs and lows and our triggering method to build

dynamic trading strategies.
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Chapter 2

Benchmark Models

2.1 Introduction

In this chapter we will discuss the so-called benchmark models we will use as a reference to

compare with our proposed forecasting models for the rest of this thesis. These benchmark

models are widely used in the world of forecasting. In order to validate a newly built

forecasting model, one has to first check its forecasting ability against these benchmark

models with some given real-world data. The first model we consider is the “Naive Model”,

which in loose terms is no different from purely “guessing” what future prices may be by

assuming a completely random structure. We then define some more complicated yet still

simple processes such as autoregression, moving averages and a mixture of both. In order

to explain these processes and carry out the correct analysis on our data, we need to define

some major time-series concepts such as stationarity and autocorrelation functions that are

also parts of this chapter. We will also define the accuracy measures that we use for the

rest of this thesis. These functions will help us assess the forecastability of different methods

and measure their accuracy for comparison with each other to establish the so-called more

accurate and efficient models. We then conclude the chapter by presenting the results for
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our benchmark models.

2.2 The Naive Model

This is the most simple model in finance, as it’s based on the theory of the random walk in

which the best forecast for the next period’s price is the last period’s actual price, such that:

Pf,t = Pa,t−1 (2.1)

where Pf,t is the price forecasted for time t and Pa,t−1 is the actual realised price at time

t − 1. Although this model may seem very basic, in finance, and specifically in the field of

forecasting, it is regarded as the standard benchmark model. As we have discussed in our

literature review, beating this model has been the hot topic of interest for exchange rates for

many years. Hence for our discussions to be valid, we need to test the predictability of this

model on our data and then show that our models perform better than this naive model.

We follow tradition and take this model as our first benchmark model.

2.3 Auto Regressive (AR) Process

An autoregressive process, commonly known as an AR(p), is defined as a process where its

present value at time t is linearly dependent on its past p values. This process can be defined

by

Xt = c+

p∑
i=1

θiXt−i + εt (2.2)

where c is the model constant, θi, for i = 1..., p are the model parameters and ε is the model

residual with E(ε) = 0 and V ar(ε) = σ2 [5].
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The following AR(1) and AR(2) processes form two of our benchmark models.

AR(1) : rx,t = c+ θ1rx,t−1 + εt (2.3)

AR(2) : rx,t = c+ θ1rx,t−1 + θ2rx,t−2 + εt (2.4)

2.4 Moving Average (MA) Process

A moving average process, commonly known as an MA(q), is defined as a process where its

present value at time t is linearly dependent on its last q random shocks. An MA(q) process

can be defined by

Xt =

q∑
i=1

φiεt−i + εt (2.5)

where φi,∀i = 1..., q are the model parameters and ε are the model residuals with E(ε) = 0

and V ar(ε) = σ2 [5].

2.5 Stationarity

When performing time series and regression analyses on data, we require the past to be

representative of the future so that we can estimate models and produce forecasts. This

is the main concept behind stationarity. Fitting regression and time-series models to non-

stationary data can lead to spurious and meaningless results. A time-series, {Xt : t = 1, 2, ..}

is said to be stationary if its probability distribution does not change over time. That is, if

the joint distribution of (Xt+1, Xt+2, Xt+3, ..., Xt+T ) does not depend on t, regardless of the

value of T . In other words, the sequence {Xt : t = 1, 2, ..} is identically distributed. However,

since stationarity is an aspect of the underlying process rather than a single realisation, it

can be fairly complex to determine whether the data we have collected is stationary or not.

Therefore, a weaker form of stationarity known as covariance stationary suffices. A process is
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said to be second order or covariance stationary if its expectation and variance are constant

and its covariance between Xt and Xt+k is only dependent on k and not on the location of

the initial time period, t.

For a stochastic process Xt, this can be formally shown as [7]:

E[Xt] = µ ∀t

V ar(Xt) = γ0 <∞ ∀t

Cov(Xt, Xt−k) = γk ∀t,∀k

(2.6)

As an example, assume that the process Xt follows the random walk model(Naive) then we

can show this as:

Xt = Xt−1 + εt (2.7)

Since εt in the above equation is white noise(ε ∼ N(0, σ2)), it is assumed to be uncorrelated

with Xt−1, that is E(εt|Xt−1, Xt−2, ...) = 0. Therefore, one can show the V ar(Xt) as:

V ar(Xt) = V ar(Xt−1) + V ar(εt)⇔ V ar(Xt) = V ar(Xt−1) + σ2 (2.8)

In order for Xt to be a stationary process we need V ar(Xt) = V ar(Xt−1), so that the

variance of the process is not dependent on time t. However, as we can see in (2.8), V ar(Xt)

is increasing at each time step with σ2. Therefore, the random walk process Xt is non-

sationary as long as V ar(εt) 6= 0. We can extend this example by assuming Xt follows an

AR(1) process, so that:

Xt = c+ θ1Xt−1 + εt (2.9)

Hence, it is easy to see that for example Xt−1 = c+θ1Xt−2 +εt−1 and Xt−2 = c+θ1Xt−3 +εt−2

which by substitution and some simplification we can show that Xt = c(θ2
1 + θ1) + θ1εt−1 +

θ2
1εt−2 + εt + θ3

1Xt−3. Therefore, by indefinitely continuing to substitute all Xt−k−1 back into
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Xt−k, for k= 0,1,2,..., we can show Xt as [45]:

Xt = c
∞∑
i=0

θi1 +
∞∑
i=0

θi1εt−i (2.10)

When |θ1| < 1, this equation converges to:

Xt =
c

1− θ1

+
∞∑
i=0

θi1εt−i (2.11)

therefore, when |θ1| < 1, we can show the moments of Xt as:

E[Xt] =
c

1− θ1

+
∞∑
i=0

θi1E[εt−i] =
c

1− θ1

V ar(Xt) = V ar(
∞∑
i=0

θi1εt−i) =
σ2

1− θ2
1

Cov(Xt, Xt−k) = E[XtXt−k] =
σ2θk1

1− θ2
1

(2.12)

Therefore, we have established that the process in (2.9) is stationary when |θ1| < 1. However

when |θ1| ≥ 1, then the infinite sum in (2.10) will not converge and therefore we would not

be able to achieve stationarity. When |θ1| ≥ 1 then the process in (2.9) is said to contain

a unit root. We can turn this process into a stationary one by differencing the process in

time. A process which contains a unit root and needs to be differenced d times to become

stationary is said to be of integrated order d, denoted as I(d). For example the random walk

model in (2.7) is of integrated order 1, I(1). Since by differencing this process once we can

achieve a stationary process, ∆Xt = (Xt−Xt−1) = Xt−1 + εt−Xt−1 = εt which is the white

noise process. The simplest way to test for unit root for the time series Xt is to consider the

process in (2.9). Then one can form the following hypothesis test, with the null hypothesis
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being the existence of a unit root in Xt:

H0 : θ = 1

H1 : θ < 1

(2.13)

This is the basis for the Dicky-Fuller test of a unit root, which further extends to the

Augmented Dicky-Fuller test that we use to test for stationarity of our data [14].

2.6 Augmented Dicky-Fuller Test

An extension to (2.9) could be made by subtracting each side of the equation by Xt−1 and

letting ρ = θ − 1, which leads to

(Xt −Xt−1) = ∆Xt = c+ ρXt−1 + εt (2.14)

The hypothesis test remains exactly the same as (2.13). However, in terms of ρ, it can be

shown as

H0 : ρ = 0

H1 : ρ < 0

(2.15)

One can perform a simple t-test with a test statistic of t = ρ̂
ŝ.e(ρ̂)

to decide on the rejection or

the acceptance of H0; ρ̂ is the estimated ρ, and ŝ.e(ρ̂) is the estimated standard error of this

parameter. Usually when performing a one-sided t-test for the hypothesis of type (2.15), we

require t < −tCV,n,α in order to reject the null and accept H1, where tCV,n,α is the critical

value drawn from the t-distribution for sample size n at the significance level α. However,

under the Dicky-Fuller framework, this critical value is not drawn from the t-distribution

and instead is drawn from what is called the Dicky-Fuller distribution [13]. The critical

values in this table are much larger in absolute value than their t-distribution counterparts,
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making the rejection of (H0) much more difficult. This prevents us from wrongly concluding

against the presence of unit root in data. For example, the conventional critical value drawn

from the t-distribution for a sample size of 100 at the 5% significance level is -1.96. Yet

under the Dicky-Fuller distribution for models of type (2.14), this is in the region of -2.89.

The Augmented Dicky Fuller (ADF) test, first discussed by [38], extends (2.14) to the

following equation so that it also includes the lagged values of Xt:

∆Xt = c+ ρXt−1 + βt+
k∑
i=1

δi∆Xt−i + εt (2.16)

where β is the time trend coefficient and k is the lag order chosen. This ensures that ∆Xt

in (2.14) are uncorrelated, and it also captures the possibility that Xt may be characterised

by a higher order autoregressive process than the one used in (2.14).

2.7 Autocovariance (AC) & Autocorrelation Function

(ACF)

In statistics, the general second moment of a stochastic processXt is defined as the covariance

between Xt and Xt+k for different values of t and k. For a stationary process with a finite

constant mean (first moment), such that E[Xt] = µ, this could be defined as:

Cov[Xt, Xt+k] = E[(Xt − µ)(Xt+k − µ)] = γk, for k = 0, 1, 2, ... (2.17)

This is called the autocovariance of the series. It reduces to the variance (σ2) when k =

0. The set of these autocovariance coefficients denoted by γk, ∀k = 0, 1, 2, ... form the

autocovariance function of that series. If these autocovariance coefficients are standardised,
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one can obtain the autocorrelation coefficients of the series such that:

ρk =
γk
γ0

, for k = 0, 1, 2, ... (2.18)

These coefficients measure the correlation between Xt and its past lagged values Xt−k. The

set of these ρk’s constitute what is referred to as the autocorrelation function, or the ACF.

When using time-series data, the sample autocovariance (γ̂k) and the sample autocorrelation

coefficients (ρ̂k) of the realised time series, for example, x1, x2, ..., xn, can be computed by

the following two equations respectively .

γ̂k =

∑n−k
t=1 (xt − x̄)(xt+k − x̄)

n
, for k = 0, 1, 2, ... (2.19)

ρ̂k =
γ̂k
γ̂0

, at each lag k. (2.20)

When the ρ̂ks are plotted against k = 0, 1, ..., they form what is referred to as the sample

autocorrelation function. This plot is a very helpful tool used for analysing and identifying

patterns in data, particularly when identifying the order q of MA(q) models. The reason

for this is that the theoretical ACF of MA(q) processes only shows a significant correlation

up to lag q, and therefore the sample ACF can be plotted for any given data to identify this

order [7]. As an example, see Figure (2.1), where we have simulated 500 observations from

a MA(1) model and plotted the autocorrelation function.
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Figure 2.1: SACF of 500 simulated observations from a MA(1) process

The blue horizontal lines in Figure 2.1 are two standard errors away from zero, which

indicates whether the autocorrelations at each single lag k are significantly different from

zero at the 95% confidence level. These standard errors can be approximated by

s.e(ρ̂k) = σ̂(ρ̂k) =

√
(1 + 2

∑k−1
i=1 ρ

2
i )

n
(2.21)

where n is the number of observations used in fitting. This figure displays the cut-off of

autocorrelation coefficients after lag 1, meaning that the process only has a significant cor-

relation between its present value and its previous lag, which is an agreement with the fact

that q = 1.

2.8 Partial Autocorrelation Function (PACF)

In this section we will introduce another tool that is primarily used for identifying the order

p of AR(p) models. The following regression is used to compute the partial autocorrelation

coefficients, and more importantly, their sample counterparts π̂kk, for different lags k:

Xt = πk1Xt−1 + πk2Xt−2 + ...+ πkkXt−k (2.22)
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As is evident from (2.22), the last regression coefficient is considered as (πkk). This value

shows the correlation between Xt and Xt+k after accounting for the correlation at other

lags. [5] If we plot these sample partial autocorrelation coefficients π̂kk against k = 0, 1, ...,

then the resulting correlogram is called the sample partial autocorrelation function. The

theoretical PACF of an AR(p) process cuts off after lag p. This means that the PACF only

shows a significant correlation up to lag p for this type of model at the desired significance

level. This is why it is such a useful tool for identifying the order of these models. In Figure

2.2, we show the SPACF of 500 simulated observations from an AR(1) model that exhibit

this property very clearly.
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Figure 2.2: SPACF of 500 simulated observations from an AR(1) process

The horizontal lines in Figure 2.2 are two standard errors away from zero, which shows

the significance of each correlation at each lag at the 95% confidence level. This standard

error is very simply approximated as

s.e(π̂kk) = σ̂(π̂kk) =
1√
n

(2.23)

As can be observed from Figure 2.2, the sample partial autocorrelation coefficients are not

significantly different from zero at the 5% level beyond lag 1. This is in agreement with the

fact that p = 1 in our example.
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2.9 ARMA Process: The Box-Jenkins Methodology

A mixture of both an autoregressive process of order p as described by (2.2) and a moving

average process of order q explained by (2.5) is called an ARMA(p, q) process. It is shown

by

Xt = c+

p∑
i=1

θiXt−i +

q∑
j=1

φjεt−j + εt (2.24)

The autoregressive moving average ARMA methodology developed by Box and Jenkins [5],

has enormous popularity in many research areas. This is a recursive algorithm that consists

of three main steps, 1.Identification, 2.Estimation and 3.Verification, that eventually lead to

forecasting. This methodology requires a lot of knowledge and expertise, especially in the

”Identification” step:

Step 1. The forecaster identifies which model fits the data best. In ARMA(p, q) models,

this translates into identifying the order of the model, or in other words, the values of p and

q. The main tools used in this identification stage are the SACF and the SPACF that were

defined in Sections 2.7 and 2.8, respectively.

Step 2. Estimating the parameters of the model identified from Step 1. These are regression-

like parameters that can be estimated using least squares or maximum-likelihood estimation

methods.

Step 3. Following the estimation of the parameters of the model, the residuals of the model

are verified to evaluate whether the fitted model is adequate to describe the dynamics of the

time-series. In this step, the residuals are checked to see whether they are white noise and

are uncorrelated through time. We do so by performing a Ljung-Box Q (LBQ) test on the

residuals, as described in the following section.

We use an ARMA(1, 1) as one of our benchmark models. This can be shown by

ARMA(1, 1) : rx,t = c+ θ1rx,t−1 + φ1εt−1 + εt (2.25)
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2.10 Ljung-Box Q Test

This is the test we use for identifying autocorrelation in the model residuals. This test jointly

assesses the presence of autocorrelations at individual lags.

H0 : ρ1 = · · · = ρk = 0

H1 : ρi 6= 0 for at least one i ∈ {1, · · · , k}.
(2.26)

The test hypothesis is given by (2.26), where the null hypothesis states that errors are not

serially correlated with each other and the observed correlations up to lag k are significantly

no different from zero. The test statistic is given by

Q = n(n+ 2)
k∑

m=1

ρ̂2
m

n−m
(2.27)

where n is the sample size and ρ̂m are the sample autocorrelations at lag m , which we

defined in (2.18). Q under the null follows a χ2
k for which the critical values can be obtained

from the χ2 table [25].

2.11 Forecasting Accuracy Measures

All different forecasting models may and most likely will produce different results. Therefore

in this section we define which measures we use to compare the accuracy of each model. We

have chosen measures commonly used in the field, which are:

Mean Squared Error

This is one of the most commonly used measures in forecasting. This measure squares the

errors and thus gives more weight to large deviations. If we assume Xf to be a vector of
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length n of forecasted values and Xa a vector of its corresponding actual values, then we can

describe the mean square error (MSE) to be

MSE =

∑n
t=1(Xa,t −Xf,t)

2

n
(2.28)

Root Mean Squared Error

This is the square root of MSE, and the only reason we choose this measure is because it is

in the same units as the measured variable and therefore can be interpreted directly.

RMSE =
√
MSE (2.29)

Mean Absolute Error

This measure is different from its MSE counterpart in that its underlying loss function is

linear rather than quadratic. The MAE for a vector of n forecasts, for example Xf and their

actual value counterparts Xa, can be computed by

MAE =

∑n
t=1|Xa,t −Xf,t|

n
(2.30)

In the case of all three of the measures defined above, the values obtained from each measure

for each forecasting value are compared, and the model that corresponds to the smallest value

in these measures is considered to be the more accurate one relative to the other forecasting

models.

Theil’s U
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This statistic measures the forecasting ability of the specified model compared to the random

walk (pure guessing). If the value of Theil’s U statistic is less than 1, then we can conclude

that our forecasting model is statistically better than guessing the future. If the Theil’s U

statistic is equal to 1 then we can conclude there is no difference between the results of the

forecasting method and the random walk. If the Theil’s U statistic is greater than 1, then

we can conclude that our forecasting model performs poorly, and better forecasts can be

obtained by using the naive model (2.1). Theil’s U statistic can be computed by

U =

√√√√∑n−1
t=1 (

xf,t+1−xa,t+1

xa,t
)2∑n−1

t=1 (xa,t+1−xa,t
xa,t

)2
(2.31)

where xf,t represents the forecasted values at t, and xa,t is the actual value at time t. Note

that n is the sample size.

2.12 Data

In this section we describe all the FX data used in this thesis. Our study focuses on three of

the most liquid and major currency pairs: GBP/USD, EUR/USD and AUD/USD. We have

chosen these pairs not only due to their size but also to their time-zone and geographical

differences. Although the FX market operates 24 hours a day, different time zones between

Australia and Europe means that AUD predominantly experiences more trading activity

during Australian trading hours rather than during European trading hours, and vice-versa.

The other reasoning for choosing these pairs was because of their volatility and the daily

range they experience. Whilst GBP/USD and EUR/USD are considered to be highly volatile

pairs with a large average daily range, AUD/USD is somewhat less erratic and on average

covers a smaller range during a given trading day. Therefore we chose to look at these specific

currencies to see whether any differences or similarities could be experienced between the
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structure of their highs and lows, and whether our forecasting models are consistent and

produce plausible results under these different conditions. Also, to keep things comparable

and consistent, we have chosen all of our currency pairs to be quoted in USD.

GBP/USD:

Dates from: 02/01/1990 to: 31/12/2012

Number of observations, N : 5979

AUD/USD:

Dates from: 02/01/1993 to: 31/12/2012

Number of observations, N : 5206

EUR/USD:

Dates from: 04/01/1999 to: 31/12/2012

Number of observations, N : 3649

As noted previously, the Forex market operates 24 hours a day and we therefore have to

specify which time zone our daily data corresponds to. Each day (24 hour cycle) in all of

the exchange rate data used in the rest of this thesis starts from 22:00 UK time (17:00 New

York time), when the market is considered to close and open simultaneously. Note that the

FX market closes on Friday 22:00 UK time and reopens on Sunday 22:00 UK time. The

time in-between can be regarded as the weekend.

2.13 Results

In this section we present the results from the models and tests mentioned in this chapter.

We first carried out an ADF test to check for the stationarity of the variables. The following

table shows the results of this test at the 5 % significance levels for all three currency pairs

used in this thesis.
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ph rh pl rl pc rc
AUD/USD H0 H1 H0 H1 H0 H1

EUR/USD H0 H1 H0 H1 H0 H1

GBP/USD H0 H1 H0 H1 H0 H1

Table 2.1: ADF test results for price series {p}, and return series {r}, of all variables for all
data sets at 5% significant level

As it is evident from Table 2.1, the prices for highs, lows and close (ph,pl,pc) fail to

reject H0 across all these exchange rates. This confirms the existence of a unit root in prices

and therefore proves them to be non-stationary. However, the same table shows that log

returns of these prices reject H0 and are therefore stationary under the framework of the

ADF test. These log returns can be easily computed using

rt = log(pt)− log(pt−1) (2.32)

These log returns also show a much more stable and bell shaped distribution when compared

to their price counterparts. This can be seen in Figure 2.3, where the histogram of prices

and log returns of the highs of GBP/USD are plotted as examples.
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Figure 2.3: Distribution of prices and log returns:GBP/USD Highs, N = 5979

The stability of the distribution of log returns coupled with the ADF test results imply

that we use the log returns instead of prices when estimating the parameters of each model.
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In fact, we multiply the log returns by 100 and use percentage returns when estimating the

models to increase accuracy, as their original values can be very small. It has to be noted

that we can easily transform these returns back to prices once the forecasts have been made

so that the performance measures can be interpreted in units of price.

To carry out the Box-Jenkins model building approach, we first plot the SACF and SPACF

for all our data sets. These are shown in the following figures:
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Figure 2.4: SACF and SPACF of log returns of GBP/USD Highs, N = 5979
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Figure 2.5: SACF and SPACF of log returns of GBP/USD Lows, N = 5979
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Figure 2.6: SACF and SPACF of log returns of AUD/USD Highs, N = 5206
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Figure 2.7: SACF and SPACF of log returns of AUD/USD Lows, N = 5206
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Figure 2.8: SACF and SPACF of log returns of EUR/USD Highs, N = 3649
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Figure 2.9: SACF and SPACF of log returns of EUR/USD Lows, N = 3649

As can be observed from Figures 2.4-2.9, the general pattern across all of them tends to

be a cut-off of autocorrelation and partial autocorrelation coefficients after lag 1 for both the

SACF and SPACF. This means that both the sample autocorrelation and partial correlation

functions show no significance beyond lag 1. Therefore, under the framework of Box-Jenkins,

this could suggest some type of a mixed ARMA model.

As this section is meant to form our benchmark models, we will choose the simplest model

of this kind, an ARMA(1, 1). We also choose to estimate an AR(1) and an AR(2) model

for our high and lows. We do this for two reasons:

1. The SPACF showing possible signs of such models, and

2. The authors in [1] also considers these models when forecasting exchange rates (albeit

for close prices). Therefore, as previously mentioned, the following process, along with the

naive model, form our benchmark models

AR(1) : rx,t = c+ θ1rx,t−1 + εt (2.33)

AR(2) : rx,t = c+ θ1rx,t−1 + θ2rx,t−2 + εt (2.34)

ARMA(1, 1) : rx,t = c+ θ1rx,t−1 + φ1εt−1 + εt (2.35)

where c is the model constant, θi, for i = 1, 2 and φ1 are the model parameters and ε is the
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model residuals with E(ε) = 0 and V ar(ε) = σ2.

We estimate these processes (excluding the naive model, which does not need any estimation)

on a rolling-daily sub-sample of size 500 (we discuss our reasoning for choosing n=500 in

the next Chapter). That is, at the end of each day, we drop the oldest observation in the

sample and add the latest one to keep the sample size at 500 before forecasting the prices

on the next day, and so on. This results in (N − 501) regressions to be calculated, and

consequently the same number of out-of-sample forecasts for each exchange rate data of size

N to be presented. Note the value of N for each of our data sets is given in Section 2.12.

The out-of-sample forecasting performance of these benchmark models for all of our currency

pairs are given in the following tables:

Naive AR(1) AR(2) ARMA(1,1)
MSE 0.00003 0.00002 0.00003 0.00003

RMSE 0.0050 0.0050 0.0050 0.0050
MAE 0.0034 0.0034 0.0034 0.0035

Theil U - 0.9955 0.9979 1.0030

Table 2.2: Benchmark models forecasting results : AUD/USD-Highs

Naive AR(1) AR(2) ARMA(1,1)
MSE 0.00003 0.00003 0.00003 0.00003

RMSE 0.0056 0.0056 0.0056 0.0056
MAE 0.0037 0.0037 0.0037 0.0037

Theil U - 0.9995 1.0040 1.0048

Table 2.3: Benchmark models forecasting results : AUD/USD-Lows

Naive AR(1) AR(2) ARMA(1,1)
MSE 0.00005 0.00005 0.00005 0.00005

RMSE 0.0073 0.0073 0.0073 0.0073
MAE 0.0052 0.0052 0.0052 0.0052

Theil U - 0.9942 0.9958 0.9983

Table 2.4: Benchmark models forecasting results : EUR/USD-Highs
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Naive AR(1) AR(2) ARMA(1,1)
MSE 0.00005 0.00005 0.00005 0.00005

RMSE 0.0072 0.0071 0.0071 0.0071
MAE 0.0052 0.0051 0.0051 0.0051

Theil U - 0.9868 0.9874 0.9878

Table 2.5: Benchmark models forecasting results : EUR/USD-Lows

Naive AR(1) AR(2) ARMA(1,1)
MSE 0.00007 0.00007 0.00007 0.00007

RMSE 0.0086 0.0085 0.0085 0.0085
MAE 0.0060 0.0060 0.0060 0.0060

Theil U - 0.9842 0.9851 0.9862

Table 2.6: Benchmark models forecasting results : GBP/USD-Highs

Naive AR(1) AR(2) ARMA(1,1)
MSE 0.00008 0.00007 0.00007 0.00007

RMSE 0.0087 0.0086 0.0086 0.0086
MAE 0.0061 0.0061 0.0061 0.0061

Theil U - 0.9874 0.9879 0.9894

Table 2.7: Benchmark models forecasting results : GBP/USD-Lows

Table 2.3 clearly shows a U statistic greater than 1 for AR(2) forecasts of AUD/USD

lows. This table, alongside Table 2.2, demonstrates the same property for ARMA(1, 1)

forecasts of both AUD/USD highs and lows. This suggests that the mentioned processes

perform worse than the naive model and therefore cannot beat the random walk. The AR(1)

process forecasts, however, show U statistics of less than 1, which means that this model

performs slightly better than the naive model, but this difference is so small that it is not

even reflected in the MSE, RMSE and MAE results. In fact, this is also spotted in Tables

2.4-2.7, which show the performance results of EUR/USD and GBP/USD high and lows,

respectively. We observe that EUR/USD and GBP/USD out-of-sample forecasts using the

mentioned models all show U statistics of less than 1, with the AR(1) forecasts showing the

best performance amongst all. However, these values are all still very close to 1, so although
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they may perform slightly better than the naive model, they do not significantly improve

the forecasts when compared to the naive model. We also look at the MSE, RMSE and

MAE for the EUR/USD and GBP/USD highs and lows. These results are also in agreement

with Theil’s U results, and at times show an improvement of 1% in out-of-sample forecasting

performance of time-series models (2.33)-(2.35) when compared to the naive process. We

don’t consider this to be a great improvement.

Continuing under the Box-Jenkins framework, we need to verify the credibility of our bench-

mark models (2.33)-(2.35). We do this by performing a Ljung-Box Q test on the fitted model

residuals to check for autocorrelations and to see whether they agree with their assumption

of white noise. As previously mentioned, for the highs and lows of each currency pair, the

fitting process consists of 500 data points. This results in obtaining the same number of

in-sample residuals ε̂. Therefore to check for autocorrelations in the residuals, each time we

estimate the model at time t, we perform a LBQ test on ε̂i for i = t − 499, ..., t. Once we

perform this operation on our whole sample (N) for each currency pair’s high and low, we

obtain N − 501 LBQ test results for each of them. We are only interested in periods where

the LBQ test fails to accept H0 of no autocorrelation in the errors at the 5% significance

level. If the LBQ test rejects H0 in (2.26), then we record this, and once the whole sample

has been tested, we can see how many times during the N − 501 tests this has occurred.

The following table shows this test results for all of our currency pairs in percentage terms.

AR(1) AR(2) ARMA(1,1)
AUD/USD High 13.90 12.48 6.74
AUD/USD Low 13.20 11.33 11.54
EUR/USD High 10.39 8.07 8.39
EUR/USD Low 10.51 7.75 7.91
GBP/USD High 15.55 8.85 9.47
GBP/USD Low 20.39 15.41 16.50

Table 2.8: LBQ test fails to accept H0 of no autocorrelation % of time in (N-501) regressions
at 5% significant level: Benchmark models
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Table 2.8 can be interpreted as the periods, in N−501 estimations, that our benchmark

models (2.33)-(2.35) have failed to fully describe our data, as there exists some autocorrela-

tion in their errors. We can observe in Table 2.8 that all models do suffer from some type of

autocorrelation in their errors during some time-periods. However, as long as this value is

fairly low, it should not completely discredit our benchmark models. The table shows that

the LBQ test failed to accept the null of no autocorrelation mostly for the AR(1) model,

with values showing the existence of autocorrelations between 14% to around 20% of the

time. The AR(2) and ARMA(1, 1) models exhibited much less autocorrelation, with values

mostly under 10%, with the exception of the GBP/USD lows, implying that these models

may be a better fit for our data, although their forecasting results are slightly worse than

those of AR(1).

In this chapter we presented all of our benchmark models and their forecasting ability.

The results show that the time-series models used did not improve the naive model in terms

of their out-of-sample forecasts by a great deal. However, our aim is to show that the naive

model can be beaten when forecasting the high and low of exchange rates with better models.

In the next chapter, we present our own models for this purpose. We compare the results

from our models to the ones obtained in this chapter and show how this naive model can be

improved when considering this type of data .
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Chapter 3

Time-Varying ARDL Model &

Dynamic Regression

3.1 Introduction

In this chapter we introduce two of the models that we have developed to predict the next

day’s highs and lows of the exchange rate data. The first model introduced is an autore-

gressive distributed lag (ARDL) model with time-varying parameters. We illustrate the

assumptions that are necessary for this model to be valid and discuss how to interpret the

model in case these assumptions are violated. This eventually leads to our second model,

an algorithm we have developed to deal with the shortfalls of the first model and to extend

its forecasting ability. This is based on the concept of dynamic regression (DR), which was

introduced by [36]. We also present all the appropriate statistical tests used to validate each

model. Once the models are validated and are statistically sound, we can measure their fore-

casting power using the various measures defined in the previous chapter. However, first we

recall the concept of cross-correlation, as it forms the basis of our motivation for developing

the first model.
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3.2 Cross-Correlation & Sample Cross-Correlation

In this section we describe the sample cross-correlations as they are used to produce correlo-

grams for the analysis of our variables. The sample cross-correlations measure the correlation

between two time-series observations xt and yt at different lags k. This could be used to

determine if one variable is leading the other and whether there is a significant relationship

between the variables at other lags. If we assume the time-series observations are both sta-

tionary, with a sample mean of (x̄, ȳ), then we can calculate their sample cross-covariance

function as

Cxy(k) =


∑n−k

t=1 (xt − x̄)(yt+k − ȳ)

n
for k = 0, 1, · · · , n− 1∑n

t=1−k(xt − x̄)(yt+k − ȳ)

n
for k = −1, · · · ,−n+ 1

(3.1)

The sample cross correlations at each lag are computed by dividing the cross covariances by

the product of the standard deviations of the two series, so that

ρxy(k) =
Cxy(k)√

Cxx(0)Cyy(0)
(3.2)

where Cxx(0) and Cyy(0)are the sample variances of x and y respectively.

3.3 Time-Varying ARDL Model

We introduce the following Time-Varying ARDL model for the highs and lows of exchange

rates:

rh,t = β0,t + βh,trh,t−1 + βl,trl,t−1 + βc,trc,t−1 + εt (3.3)

rl,t = α0,t + αh,trh,t−1 + αl,trl,t−1 + αc,trc,t−1 + εt (3.4)
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where rh,t, rl,t and rc,t denote the log returns of the ”Highs”, ”Lows” and ”Close” at time t,

respectively. εt are the model residuals at time t. One can observe from the proposed models

in (3.3) and (3.4) that although they describe different dependent variables, they share the

same regressors. These independent variables in each model consist of the log returns of the

close, high and low, all at lag 1. In Model (3.3), the autoregressive component is the rh,t−1,

whilst the distributed lag variables are rl,t−1 and rc,t−1. This changes for Model (3.4), as rl,t−1

becomes the autoregressive variable and rh,t−1 becomes a distributed lag component. The

first motivation for choosing these variables was to build a model that was purely described

by its own price action and price information. The daily high, low and close prices can

be very informative and describe a lot of the daily trading activities surrounding the asset.

The high and the low supply information regarding the maximum and minimum prices

reached for the day could have occurred at any time during that day, whilst the close price

is considered a spot price that is recorded at the same time every day. Therefore it can be

directly compared to its previous values and can indicate how the market has moved relative

to its direct previous values. We have to note that due to the 24 hour operation of the FX

market, almost always the closing price at t equals the opening price at time t+1. Therefore

we only consider the close prices here. To form a more solid reasoning for choosing these

variables, we look at the cross-correlations between each of them, which are shown in the

following figures:
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Figure 3.1: SCC between log returns of GBP/USD Highs and Lows, N = 5979
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Figure 3.2: SCC between log returns of GBP/USD Highs and Close, N = 5979
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Figure 3.3: SCC between log returns of GBP/USD Lows and Close, N = 5979
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Figure 3.4: SCC between log returns of AUD/USD Highs and Lows, N = 5206
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Figure 3.5: SCC between log returns of AUD/USD Highs and Close, N = 5206
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Figure 3.6: SCC between log returns of AUD/USD Lows and Close, N = 5206
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Figure 3.7: SCC between log returns of EUR/USD Highs and Lows, N = 3649
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Figure 3.8: SCC between log returns of EUR/USD Highs and Close, N = 3649
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Figure 3.9: SCC between log returns of EUR/USD Lows and Close, N = 3649
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The blue horizontal lines in Figures 3.1-3.9 are two standard deviations away from

zero, which indicates whether the cross-correlations at each lag are significantly different

from zero at the 95% confidence level. These figures demonstrate that across all currency

pairs, the results are consistent. We can observe from these figures that the close returns

have a significantly large correlation with both the highs and the lows at lag −1. This can

be interpreted as the close returns leading both their high and low counterparts. A different

structure is spotted in the cross-correlations between the highs and the lows. We can see

these cross-correlations in Figures 3.1, 3.4 and 3.7 for GBP/USD, AUD/USD and EUR/USD

respectively. The figures mentioned show there is a significantly high correlation between rl

and rh at both lags 1 and −1, which could mean that both series lead and lag each other.

These results are in agreement with our earlier logic and therefore lead to the proposed

models in (3.3) and (3.4). The other property of this model is that it is time-varying, and

therefore the models parameters βj,t and αj,t are considered to change over time (hence the

t subscript) and are estimated on a rolling time window basis. This means that once new

observations become available at the end of the day, the models re-estimate their parameters

by dropping the oldest observation in the sample and adding the latest observation in the

sample from the other end of the time-series, keeping the sample size fixed. This ensures

that the model parameters are up to date and the sample is only representative of the latest

n observations.

3.4 Parameter Estimation:Ordinary Least Squares

We use the method of OLS to estimate the coefficients β0,t, βh,t, βl,t, βc,t in (3.3) and α0,t, αh,t, αl,t, αc,t

in (3.4). The OLS estimator minimizes the sum of squared prediction errors, for example
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this can be shown for (3.3) to be:

n+1∑
i=2

(rh,i − β̂0 + β̂hrh,i−1 + β̂lrl,i−1 + β̂crc,i−1)2 (3.5)

where β̂j are the OLS estimators of βj for j = 0, h, l, c. Therefore, we minimize (3.5) by

taking it’s derivative with respect to the jth regression coefficient βj and setting it equal to

zero, such that:

∂

∂βj

n+1∑
i=2

(rh,i − β̂0 + β̂hrh,i−1 + β̂lrl,i−1 + β̂crc,i−1)2 =

−2
n+1∑
i=2

rj,i−1(rh,i − β̂0 + β̂hrh,i−1 + β̂lrl,i−1 + β̂crc,i−1) = 0

(3.6)

for j = 0, h, l, c. Where, for j = 0, r0,i−1 = 1, ∀i.

We can simplify the above equation in matrix form, but first to avoid confusion in notation

we let Y = rh,i,∀i = 2, ..., n + 1 to be the vector of the dependent variables of size n, and

X = [1, rh,i−1, rl,i−1, rc,i−1],∀i = 2, ..., n+1 to be the n×4 matrix containing the independent

variables. Therefore, from (3.6) it follows that:

− 2X ′(Y −Xβ̂) = 04×1

⇔ X ′Y = X ′Xβ̂

⇔ β̂ = (X ′X)−1X ′Y

(3.7)

where β̂ is a 4 dimensional vector containing the OLS estimates β̂0, β̂h, β̂l, β̂c. Similarly we

obtain the coefficients estimates α̂ for (3.4):

α̂ = (Z′Z)−1Z′L (3.8)
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where L = rl,i, ∀i = 2, ..., n+ 1 is the vector of the dependent variable and

Z = [1, rl,i−1, rh,i−1, rc,i−1],∀i = 2, ..., n + 1 is the n × 4 matrix containing the independent

variables.

3.5 Main Assumptions

In this section, we state the necessary assumptions for the proposed ARDL model. These

are general time-series regression assumptions that should not be violated for this type of

model. [45]

Assumption 1. Linearity and weak dependence

Firstly, we have to assume that the time series rh,t, rl,t are both stationary and weakly

dependent and follow the linear models in (3.3) and (3.4), respectively.

Assumption 2. Zero conditional mean

This assumption states that the errors are uncorrelated with the explanatory variables at

all times t. We assume that these explanatory variables are contemporaneously exogenous,

which can be expressed by E(εt|rh,t, rl,t, rc,t) = 0

Assumption 3. No perfect collinearity

Collinearity exists in the sample when the independent variables rh,t−1, rl,t−1, rc,t−1 are con-

stant or are a perfect linear combination of each other. If perfect collinearity is spotted

between the independent variables, then this could lead to spurious and meaningless results.

In the coming sections we will present the techniques we use to test for multicollinearity in

our data.
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Assumption 4. Homoskedasticity of errors

Time-series samples are said to be homoskedastic if they have a finite constant variance

σ2 across the whole sample, whilst if this is not the case, they are called heteroskedas-

tic. In this assumption we require the error terms to be homoskedastic and therefore

V ar(εt|rh,t, rl,t, rc,t) = σ2. However, time-series data usually show signs of heteroskedas-

ticity, which results in the residuals from the regression exhibiting this property. In the

coming sections, we will discuss the appropriate tests that can be carried out to test for

homoskedasticity of errors and how to rectify the model if heteroskedasticity is apparent.

Assumption 5. No autocorrelation

This is the assumption of white noise that the errors from the model have to represent.

This ensures that the errors are not correlated with each other through time, and therefore

E(εtεk|rh,trl,trc,t, rh,krl,krc,k) = 0,∀t 6= k. If the model residuals were in fact auto-correlated,

then it would suggest that the error terms are not completely random, and some variations

and the dynamics of the dependent variables are not fully captured by the model and are

therefore present in the errors. However, it is highly likely for time series-regression models,

especially models of type (3.3) and (3.4) that contain autoregressive and distributed lag

components, to demonstrate autocorrelation in the errors even if the underlying model has

no mis-specification. Therefore, in the coming sections we show how to perform the Ljung

Box Q test to correctly test for the existence of autocorrelation in these types of models. We

will also discuss the remedies used for these types of violations a bit later.

In [45], the author shows that for ordinary least square estimates to be consistent, we only

need Assumptions 1-3 to be satisfied. Assumptions 4 and 5, however, have to be met to

make sure the usual t-test and F-tests used in the regression analysis can be carried out.

In the next section we will introduce the Heteroskedastic and Autocorrelation Consistent

(HAC) estimators needed in case Assumptions 4 and 5 are violated.
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3.6 Statistical Tests & Model Validation

In this section we present all the statistical tests used for the validation of our models. We

first present the basic and widely known t and F-statistics. We then go on to describe some

of the problems faced in choosing the correct sub-sample sizes when dealing with this type

of data and show a method to overcome possible difficulties. The VIF, White and LBQ

tests are then defined for checking the model violation of Assumptions 3 to 5, respectively.

Finally, HAC estimators are introduced as a remedy for these violations.

3.6.1 t-test & F-test

A two-sided t-test on each of the regression coefficients of model (3.3) can be carried out

with the following null and alternative hypothesis. The same tests are also carried out for

the coefficients of (3.4), where β is replaced by α.

H0 : β0 = 0

H1 : β0 6= 0.

(3.9)

H0 : βh = 0

H1 : βh 6= 0.

(3.10)

H0 : βl = 0

H1 : βl 6= 0.

(3.11)

H0 : βc = 0

H1 : βc 6= 0.

(3.12)

Under the null hypothesis, coefficients βi,(i = 0, h, l, c) and αi,(i = 0, h, l, c) are statistically

no different from zero at the required significance level. This means that variable i can be
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dropped from the model, as it has no significant beneficial effect on the model. As suggested

by its name, the test statistic under the null follows the t-distribution with n− 4 degrees of

freedom.

If we want to test the significance of the overall model in (3.3), then we can form the following

hypothesis where the significance of the model parameters are tested collectively rather than

individually.

H0 : β0 = βh = βl = βc = 0

H1 : βi 6= 0 for at least one i ∈ {0, h, l, c}.
(3.13)

This is known as an F-test, and as the name suggests, the test statistic under the null follows

a F (3, n− 4). The same test is carried out for the parameters in (3.4)

3.6.2 Choosing the Correct Sample Size

In our study, we are solely focusing on the out-of-sample predictability of these models, and

therefore have to split our data samples described in Section 2.12 into smaller sub-samples.

This ensures we have enough data to evaluate the forecasting ability of our models. Also, as

previously mentioned, our models use a constant sample size whilst rolling daily to update

their parameters. Therefore, the choice of this sub-sample size is very important, as the

number of observations used in the estimation procedure could have a great effect on the

obtained results. This is especially the case for financial time-series data, as they usually

suffer from heavy tails in their distribution, implying that for any appropriate statistical test

to be valid when applied to this type of data, the sample size has to be large enough to capture

these characteristics. For example, if we consider some disjoint sub-samples of size n, then

when n is too small, the moments of each sub-sample can be different and not representative

of the full data set. This can lead to meaningless test results and conclusions. Therefore, if

we assume that our data sets represent the full population for each time-series, then it would

make sense that smaller sub-samples drawn from each population should statistically be in
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agreement with them. For example, if our models are estimated using the whole population

N and they demonstrate that all parameters are significant at the 95% confidence level, then

this result should also be reflected in their sub-samples. Hence to ensure the correct n is

chosen as the size of the sub-samples, we performed a comparative assessment on our data.

We carried out a t-and F-test on regression models (3.3) and (3.4) estimated by different

values of n = 20, 60, 120, 250 and 500 and compared the results to determine n. The test

results are presented and explained in the results section.

3.6.3 White Test

ε̂2 = β0 + β1rh,t−1 + β2rl,t−1 + β3rc,t−1

+β4r
2
h,t−1 + β4r

2
l,t−1 + β6r

2
c,t−1

+β7rh,t−1rl,t−1 + β8rl,t−1rc,t−1 + β9rc,t−1rh,t−1

(3.14)

This is a test of homoskedasticity, which is based on the auxiliary regression shown in (3.14),

with squared residuals as dependent variables and regressors given by the regressors of the

initial model, their squares and their cross-products [43]. The White test has the advantage

over other homoskedasticity tests of not assuming a specific form of heteroskedasticity.

H0 : β0 = ... = βi = 0

H1 : βi 6= 0 for at least one i ∈ {0, 1, 2, · · · , 9}.
(3.15)

The hypothesis of this test is given by (3.15), where the null states that the errors are

homoskedastic, with the alternative hypothesis being the heteroskedasticity of the residu-

als. The test statistic is given by n.R2, where n represents the sample size and R2 is the

regression’s coefficient of determination. The test statistic follows a χ2
10.
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3.6.4 Variance Inflation Factor (VIF)

The variance inflation factor (VIF) is used to detect perfect collinearity between independent

variables [31]. This test is based on a rule of thumb, where test result values of less than 2

are considered adequate to conclude against the presence of collinearity [31]. On the other

hand, VIF values greater than 10 confirm severe multicollinearity between the variables. To

compute the VIF, we first have to regress each independent variable against the others. For

our model in (3.3) this can be shown by

rh = β0 + β2rl + β3rc + zh (3.16)

rl = β0 + β1rh + β3rc + zl (3.17)

rc = β0 + β1rh + β2rl + zc (3.18)

where zh, zl and zc are the regression errors. Once the regressions (3.16)-(3.18) have been

estimated using ordinary least squares, their R2 can be used to compute the VIF of each

corresponding variable, such that

V IFi =
1

1−R2
i

(3.19)

where i corresponds to each variable, i = h, l, c. This test is also carried out for the model

in (3.4).

3.6.5 HAC Estimators

When heteroskedasticity and autocorrelation are present in the errors, the standard errors

obtained under OLS are no longer consistent, and therefore the t- and F-tests are invalid.

However, this can be treated using heteroskedastic and autocorrelation consistent estimators,

as defined in [45], which provide new estimates of the standard errors of model coefficients

βi and αi,(i = 0, h, l, c). As an example we show the calculations for HAC estimators of βi.
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This starts by estimating the model (3.3) by ordinary least squares. We denote the standard

errors for each coefficient as s.eOLS(β̂i), which can be computed by the following equation

for each rh, rl and rc as

s.eOLS(β̂i) =

√
1

n−4

∑n
t=1 ε̂

2
t∑n

t=1(ri,t − r̄i)2
(3.20)

where for i = h, l, c, r̄i represents the sample mean. We then estimate the standard error σ̂

of the models by

σ̂ =

√∑n
t=1 ε̂

2
t

n− 4
(3.21)

Lastly, we estimate the residuals zt from regressing each independent variable ri against each

other as shown in (3.16)-(3.18). Once these values are obtained, we can use

v̂ =
n∑
t=1

â2
t + 2

g∑
h=1

[1− h

g + 1
](

n∑
t=h+1

âtât−h) (3.22)

where

ât = ẑtε̂t, t = 1, · · · , n. (3.23)

This leads to the serial-correlation robust standard errors of each βi, which can be computed

by

s.e(β̂i) = [
s.eOLS(β̂i)

σ̂
]2
√
v̂ (3.24)

In (3.22), g is called the truncation/bandwidth parameter. It takes an integer value that can

be pre-specified or automatically estimated as discussed in [2]. This parameter controls how

many terms are included to correct for autocorrelation. We use the Newey-West method, as

discussed in their paper [32], such that g = 4 × (n/100)2/9. Note that g has to be rounded

to the nearest integer.
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3.6.6 Bayesian Information Criterion (BIC)

The Bayesian Information Criterion (BIC) was first introduced by [39]. The BIC is a type

of model-selection criterion used to search over a select number of candidate models in order

to find the best model for a given set of data. The computation of BIC is based on the

empirical log-likelihood function. This model-selection criterion can be shown as

BIC = −2lnL+ pln(n) (3.25)

where

L is the maximized likelihood function of each of the candidate models Mi,

n is the sample size used for fitting the models, and

p is the number of independent parameters estimated in the model.

The model Mi that produces the lowest value of BIC is considered to be the best-suited

model based on this criterion. The main advantage of this criterion is that it avoids over-

parameterisation of the model by adding the penalty term pln(n). We use the BIC to help

us choose the best-fitted model when we introduce our dynamic regression algorithm later

on in the chapter.

3.7 Dynamic Regression

So far, we have discussed the necessary assumptions that need to hold for our ARDL models

to be valid and meaningful. However, due to the nature of time-series data, Assumption

4 and Assumption 5 in Section 3.5 can often be violated for these types of time-series re-

gression. To overcome this violation, we introduced the HAC estimators which provide new

estimates for the standard errors of the estimated parameters, under the violation of these

assumptions. This was done so we can obtain new values of t- and F- statistics. In this
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section we discuss a different approach that can be used to deal with auto correlation in the

errors. We introduce an algorithm that uses dynamic regression from [36], in cases where

our tests show the existence of autocorrelation in our model errors.

We have to note that we still carry out the appropriate tests introduced earlier on in the

chapter to validate that Assumption 1-4 from Section 3.5 still hold.

If serial correlation is present in the residuals of the original regression, then by modelling

these residuals using an ARMA(p, q), we can extend our model to one with no serial corre-

lations. As an example, let’s assume the errors in our regression in (3.3) for the forecasting

of highs are autocorrelated. First we recall this regression model:

rh,t = β0,t + βh,trh,t−1 + βl,trl,t−1 + βc,trc,t−1 + εt (3.26)

If the errors (εt) in this regression are auto-correlated, such that:

E(εtεk|rh,trl,trc,t, rh,krl,krc,k) 6= 0 ,for at least one k 6= t (3.27)

Then we can model these errors themselves as an ARMA(p, q) process, described in Equation

(2.24) and extend the original ARDL model in (3.3). For example, if these autocorrelated

errors εt follow an ARMA(1, 1) process, then we can show this as:

εt = θ1εt−1 + φ1ut−1 + ut (3.28)

Where,ut is a random shock (white noise).

Now that we have modelled the errors of the model themselves we can replace this back
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into(3.3), to have:

rh,t = β0,t + β1,trh,t−1 + β2,trl,t−1 + β3,trc,t−1 + εt =

β0,t + β1,trh,t−1 + β2,trl,t−1 + β3,trc,t−1 + θ1εt−1 + φ1ut−1 + ut

(3.29)

where we use OLS to estimate the model parameters as explained in Section 3.4.

Using this idea, we developed the following algorithm for our work:

Step 1. Estimate the models in (3.3) and (3.4) using a sub-sample of size 500.

Step 2. Perform a LBQ test on the model residuals to check for autocorrelations as described

in Section 2.10. If the LBQ test results show no autocorrelation in the model residuals, then

go to Step 5; otherwise, go to Step 3.

Step 3. In the presence of autocorrelations, estimate an ARMA(p, q) model for (εt) for all

combinations of p = 0, 1, · · · , 5 and q = 0, 1, · · · , 5, totalling 35 models (as we exclude the

(0,0) case). In this step we are modelling the residuals themselves as an ARMA process to

deal with the existence of autocorrelation. This is based on the theory of dynamic regression

as discussed by [36]

Step 4. Compute the BIC using (3.25) for all 35 fitted models, and choose the p and q values

that correspond to the lowest BIC result. This step will make sure we choose the correct

fitted model for our auto-correlated residuals.

Step 5. Forecast the day ahead dependent variables (tomorrow’s highs and lows).

Step 6. Drop the oldest observation in the sub-sample in exchange for the latest observation

and go back to Step 1.

When we perform this algorithm on our historical data, it will result in performing N−n−1

regressions. Please note that N is the size of our data-sets, which was defined in Section

2.12.
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3.8 Results

In this section we present the results and the analysis of all the models mentioned in the

previous sections.

As we discussed in Section 3.5, one of the main assumptions of our ARDL model is that

there is no multicollinearity between our variables. To test for this, we computed the VIF

values for all variables across all of our currency pairs. These values can be found in the

following table:

Highs Lows Close
EUR/USD 1.6884 1.6592 1.6307
GBP/USD 1.7760 1.7667 1.7841
AUD/USD 1.6379 1.7293 1.7392

Table 3.1: VIF values

It can be observed in Table 3.1 that the VIF values do not exceed the suggested rule

of thumb value of 2 cited by [31]. This means that our variable do not exhibit any perfect

multicollinearity. [31] also suggests that a correlation matrix between the regression variables

can be used to check for multicollinearity. He claims that values greater than 0.75 can be

considered a sign of severe multicollinearity. We show the correlations matrix for variables

of each currency pair in the following tables:

Highs Lows Close
Highs 1.0000 0.5664 0.5558
Lows 0.5664 1.0000 0.5447
Close 0.5558 0.5447 1.0000

Table 3.2: Correlation between variables EUR/USD

Highs Lows Close
Highs 1.0000 0.5546 0.5582
Lows 0.5546 1.0000 0.5899
Close 0.5582 0.5899 1.0000

Table 3.3: Correlation between variables AUD/USD
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Highs Lows Close
Highs 1.0000 0.5864 0.5919
Lows 0.5864 1.0000 0.5890
Close 0.5919 0.5890 1.0000

Table 3.4: Correlation between variables GBP/USD

Tables 3.2-3.4 demonstrate that the correlations between all of our variables are around

0.5, supporting the assumption of no multicollinearity in our data.

In Section 3.6.2 we discussed the importance of choosing the right sample size when perform-

ing a regression on time-series data. The following 6 tables show some regression diagnostic

results for a variety of sample sizes, with n ranging from n = 20 to n = N , where N rep-

resents the full sample values of N = 5979 for GBP/USD, N = 5206 for AUD/USD and

N = 3649 for EUR/USD.

n=20 n=60 n=120 n=250 n=500 N
t-test (βh) 79.39 46.11 15.21 2.97 0.00 0.00
t-test (βl) 91.98 79.30 60.05 28.42 15.57 0.00
t-test (βc) 39.54 3.55 0.00 0.00 0.00 0.00

t-test-HAC (βh) 69.59 41.64 15.12 2.58 0.00 0.00
t-test-HAC (βl) 85.16 74.96 57.53 33.00 23.86 0.00
t-test-HAC (βc) 31.29 2.38 0.00 0.00 0.00 0.00

F-test 42.41 3.30 0.00 0.00 0.00 0.00
LBQ Test 4.95 6.00 5.39 7.70 20.88 100.00

White Test 0.00 4.17 7.77 17.56 48.87 100.00

Table 3.5: Diagnostic results-ARDL model: GBP/USD Highs
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n=20 n=60 n=120 n=250 n=500 N
t-test (αh) 90.68 77.85 64.71 38.51 14.42 0.00
t-test (αl) 78.13 42.80 12.77 0.00 0.00 0.00
t-test (αc) 34.79 4.11 1.52 0.00 0.00 0.00

t-test-HAC (αh) 84.02 74.35 62.07 47.50 27.05 0.00
t-test-HAC (αl) 67.22 34.20 12.05 0.73 0.00 0.00
t-test-HAC (αc) 28.40 4.70 1.50 0.00 0.00 0.00

F-test 37.46 0.44 0.00 0.00 0.00 0.00
LBQ Test 6.11 6.61 8.72 17.28 39.69 100.00

White Test 0.00 3.67 7.68 21.46 42.92 100.00

Table 3.6: Diagnostic results-ARDL model: GBP/USD Lows

n=20 n=60 n=120 n=250 n=500 N
t-test (βh) 70.70 19.37 3.88 0.00 0.00 0.00
t-test (βl) 87.73 63.29 38.97 16.42 2.60 0.00
t-test (βc) 30.65 1.03 0.00 0.00 0.00 0.00

t-test-HAC (βh) 56.15 19.12 4.65 0.00 0.00 0.00
t-test-HAC (βl) 80.02 57.89 40.39 19.04 6.00 0.00
t-test-HAC (βc) 24.59 0.70 0.00 0.00 0.00 0.00

F-test 33.57 0.47 0.00 0.00 0.00 0.00
LBQ Test 4.96 2.29 2.47 7.09 15.91 100.00

White Test 0.00 3.12 5.07 14.21 36.31 100.00

Table 3.7: Diagnostic results-ARDL model: EUR/USD Highs

n=20 n=60 n=120 n=250 n=500 N
t-test (αh) 93.08 79.24 59.89 27.52 8.10 0.00
t-test (αl) 80.04 38.71 6.83 0.00 0.00 0.00
t-test (αc) 28.06 0.86 0.00 0.00 0.00 0.00

t-test-HAC (αh) 86.27 74.94 57.88 30.14 21.03 0.00
t-test-HAC (αl) 67.64 28.29 6.07 0.00 0.00 0.00
t-test-HAC (αc) 21.89 0.67 0.00 0.00 0.00 0.00

F-test 31.26 0.20 0.00 0.00 0.00 0.00
LBQ Test 6.12 6.55 7.26 12.36 21.79 100.00

White Test 0.00 2.40 5.50 20.69 37.23 100.00

Table 3.8: Diagnostic results-ARDL model: EUR/USD Lows
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n=20 n=60 n=120 n=250 n=500 N
t-test (βh) 75.93 34.01 6.16 0.34 0.26 0.00
t-test (βl) 88.95 71.04 48.46 25.11 13.67 0.00
t-test (βc) 37.86 1.81 0.00 0.00 0.00 0.00

t-test-HAC (βh) 67.71 30.18 7.26 1.72 1.06 0.00
t-test-HAC (βl) 81.56 64.86 46.06 26.50 16.62 0.00
t-test-HAC (βc) 31.51 1.59 0.00 0.00 0.00 0.00

F-test 38.98 0.74 0.00 0.00 0.00 0.00
LBQ Test 4.94 7.23 10.56 17.24 36.60 100.00

White Test 0.00 8.80 20.28 39.35 61.85 100.00

Table 3.9: Diagnostic results-ARDL model: AUD/USD Highs

n=20 n=60 n=120 n=250 n=500 N
t-test (αh) 94.19 85.56 71.62 49.12 22.87 0.00
t-test (αl) 75.89 34.29 9.46 5.53 0.00 0.00
t-test (αc) 33.89 1.40 0.00 0.00 0.00 0.00

t-test-HAC (αh) 87.54 83.50 71.33 59.52 31.71 0.00
t-test-HAC (αl) 65.75 30.09 12.78 9.59 1.32 0.00
t-test-HAC (αc) 26.42 1.90 0.00 0.00 0.00 0.00

F-test 36.78 0.19 0.00 0.00 0.00 0.00
LBQ Test 4.94 5.29 6.96 10.58 29.65 100.00

White Test 0.00 5.81 12.98 37.17 58.47 100.00

Table 3.10: Diagnostic results-ARDL model: AUD/USD Lows

Tables 3.5 - 3.10 each show the amount of times the t-test and the HAC counterparts

have failed to show the significance of a particular variable. The tables mentioned also show

how many times the F-test has failed to reject the null, as displayed in (3.13). As can be ob-

served, we also show the amount of times the LBQ test has failed to show no autocorrelation

in the residuals. Similarly, we demonstrate the number of times the white test has failed

to show homoskedasticity in the residuals. All the values in these tables are in percentage

terms, and all the tests are carried out at the 5% significance level. The values in these tables

are calculated in the following way: we perform N−n−1 regressions on each exchange rate’s

high and low using our proposed model in Section 3.3. We then perform a t-test and an

HAC t-test on each variable as well as a F-test for each regression. If the t-tests, the HAC

52



t-tests and F-tests for each regression fail to reject their corresponding null hypotheses at

the 5% significant level, then we will record that period as, for example, H = H + 1, and

otherwise as H = H + 0. Once we have done this for all the N − n− 1 regressions, we use

( H
N−n−1

)×100 to see how frequently we fail to fully validate our models. We also perform an

LBQ test and a White test on the in-sample errors for each regression for which we record

the number of times that these tests have failed to reject their corresponding null hypothesis

at the 95% confidence level. This is done in the same way, and the results can be interpreted

as the existence of heteroskedasticity and serial correlation in the model residuals.

As can be observed from Tables 3.5 - 3.10, the full sample N shows that our model is statis-

tically sound, as it shows rejection of the null hypothesis of our t- and F-tests. This result

is consistent across all currency pairs and their corresponding high and lows. However, the

full sample also shows that the residuals of the model suffer from both serial correlation

and heteroskedasticy, which is not desirable. This is the reason we have also computed the

HAC standard errors and subsequently performed a t-test using these standard errors. These

HAC t-test also rejects the null of no statistical significance of variables at the 5% level for

the full sample. Therefore any sub-sample we choose should be statistically as close to this

full population as possible to be a correct representation of our data. As we expected, by

increasing the number of data points used in estimation, we achieve statistical results closer

to those of the full population. When n = 20, we fail to show the significance of the model

variables, in some cases up to almost 95% of the time, which is of course an indication that

the sample size is not representative of the full population. As we increase the sample size

to 60, 120, 250 and 500, we show that the statistical significance of our models is improved.

Signs of serial correlation and heteroskedasticity in the errors also increase as the sample

size increases. This is in agreement with the full sample results, which is what we are hoping

to achieve. We also see that when n = 60, 120, 250, 500, the F-test, which tests for the

significance of the model parameters collectively, has rejected the null after each regression.
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This is a very promising result.

The t-test results in the tables show that when the dependent variables in our model are

the highs rh,t, then rl,t−1s fails to show significance for some of our N − n − 1 regressions.

The same behaviour is spotted when rl,ts are the dependent variables being forecasted, as

rh,ts fail to show significance for some of our N − n − 1 regressions. However, as we have

already mentioned, this is not the case for the full sample. Therefore, by choosing n = 500,

we have significantly improved on this effect so that it occurs less frequently than it does

when considering smaller sample sizes. Although increasing the sample size to even greater

than 500 would make these values closer to the full sample, since we are only concentrating

on the day ahead predictions, we also like to keep our sample size as small as possible. We

therefore accept n = 500 to be adequate enough for this purpose, as it does demonstrate in

most cases the same characteristics of the full sample.

The following tables, (3.3) for highs, and (3.4) for the lows, demonstrate the forecasting re-

sults for our models. We also show the forecasting results of the algorithm we have developed

using the concept of dynamic regression (DR) as discussed in Section 3.7.

ARDL DR-Algorithm Naive AR(1) AR(2) ARMA(1,1)
MSE 0.00002 0.00002 0.00003 0.00002 0.00003 0.00003

RMSE 0.0040 0.0040 0.0050 0.0050 0.0050 0.0050
MAE 0.0028 0.0028 0.0034 0.0034 0.0034 0.0035

Theils U 0.8034 0.7909 - 0.9955 0.9979 1.0030

Table 3.11: Forecasting results: AUD/USD Highs

ARDL DR-Algorithm Naive AR(1) AR(2) ARMA(1,1)
MSE 0.00002 0.00002 0.00003 0.00003 0.00003 0.00003

RMSE 0.0046 0.0046 0.0056 0.0056 0.0056 0.0056
MAE 0.0031 0.0030 0.0037 0.0037 0.0037 0.0037

Theils U 0.8273 0.8222 - 0.9995 1.0040 1.0048

Table 3.12: Forecasting results: AUD/USD Lows
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ARDL DR-Algorithm Naive AR(1) AR(2) ARMA(1,1)
MSE 0.00003 0.00003 0.00005 0.00005 0.00005 0.00005

RMSE 0.0057 0.0056 0.0073 0.0073 0.0073 0.0073
MAE 0.0042 0.0042 0.0052 0.0052 0.0052 0.0052

Theils U 0.7722 0.7648 - 0.9942 0.9958 0.9983

Table 3.13: Forecasting results: EUR/USD Highs

ARDL DR-Algorithm Naive AR(1) AR(2) ARMA(1,1)
MSE 0.00003 0.00003 0.00005 0.00005 0.00005 0.00005

RMSE 0.0056 0.0055 0.0072 0.0071 0.0071 0.0071
MAE 0.0041 0.0040 0.0052 0.0051 0.0051 0.0051

Theils U 0.7794 0.7625 - 0.9868 0.9874 0.9878

Table 3.14: Forecasting results: EUR/USD Lows

ARDL DR-Algorithm Naive AR(1) AR(2) ARMA(1,1)
MSE 0.00005 0.00005 0.00008 0.00007 0.00007 0.00007

RMSE 0.0071 0.0069 0.0087 0.0086 0.0086 0.0086
MAE 0.0050 0.0048 0.0061 0.0061 0.0061 0.0061

Theils U 0.8077 0.7907 - 0.9874 0.9879 0.9894

Table 3.15: Forecasting results: GBP/USD Lows

ARDL DR-Algorithm Naive AR(1) AR(2) ARMA(1,1)
MSE 0.00005 0.00004 0.00007 0.00007 0.00007 0.00007

RMSE 0.0068 0.0066 0.0086 0.0085 0.0085 0.0085
MAE 0.0049 0.0048 0.0060 0.0060 0.0060 0.0060

Theils U 0.7855 0.7644 - 0.9842 0.9851 0.9862

Table 3.16: Forecasting results: GBP/USD Highs

As we can see from Tables 3.11-3.16, we have improved the forecasting results of our

benchmark models significantly for all of our exchange rates. Our proposed ARDL regression

shows an increase in the accuracy over the naive model by 18-24% for all exchange rates

and significantly beats all of our benchmark models from the previous chapter. As we have

already discussed in our literature review, one of the only papers that we found to attempt

to forecast the high and lows of exchange rate data was [41]. They show the MSE of their
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forecasting models to be 0.005 for the GBP/USD high and lows. By contrast, we obtained

an MSE of 0.00005 for the same asset, proving the superiority of our models.

The RMSE and the MAE can both be interpreted in the units of the currency in question,

and as we can see, these values are shown to be very small for all of our rates, ranging

between 0.0040 and 0.0071. This again confirms the robustness of our models.

The DR-Algorithm shows improved forecasts of the ARDL model on the basis of their Theil’s

U statistic for all of our data sets. However, in terms of the other accuracy measures , it tends

to have the same accuracy power as the ARDL regression. This model performs the best for

GBP/USD highs, where it increases the accuracy of its ARDL counterpart by around 2-3%

when looking at their Theil’s U and RMSE statistics. However, the DR algorithm shows very

little improvement compared to our ARDL model when applied to AUD/USD, as it seems

to only improve the Theil U value by less than 1%, which is not a great deal but still plausible.

3.9 Extension

We recall the two regression models built for the purpose of forecasting the highs and lows

of exchange rates:

rh,t = β0,t + βh,trh,t−1 + βl,trl,t−1 + βc,trc,t−1 + εt (3.30)

rl,t = α0 + αh,trh,t−1 + αl,trl,t−1 + αc,trc,t−1 + εt (3.31)

In the following tables, we show the forecasting accuracy of the models when rl,t−1 and rc,t−1

are dropped from (3.30). We also show the performance measures for times when rh,t−1 and

rc,t−1 are dropped from (3.31).
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Original Lows Removed Close Removed
MSE 0.00005 0.00005 0.00006

RMSE 0.0068 0.0069 0.0079
MAE 0.0049 0.0050 0.0057

Theils U 0.7855 0.7971 0.9214

Table 3.17: Modified models forecasting results: GBP/USD Highs

Original Highs Removed Close Removed
MSE 0.00005 0.00005 0.00007

RMSE 0.0068 0.0071 0.0082
MAE 0.0049 0.0050 0.0058

Theils U 0.7855 0.8133 0.9444

Table 3.18: Modified models forecasting results: GBP/USD Lows

Original Lows Removed Close Removed
MSE 0.00003 0.00003 0.00005

RMSE 0.0056 0.0058 0.0068
MAE 0.0041 0.0043 0.0050

Theils U 0.7794 0.7914 0.9250

Table 3.19: Modified models forecasting results: EUR/USD Highs

Original Highs Removed Close Removed
MSE 0.00003 0.00003 0.00005

RMSE 0.0056 0.0056 0.0067
MAE 0.0041 0.0041 0.0049

Theils U 0.7794 0.7859 0.9368

Table 3.20: Modified models forecasting results: EUR/USD Lows

Original Lows Removed Close Removed
MSE 0.00002 0.00002 0.00002

RMSE 0.0040 0.0041 0.0047
MAE 0.0028 0.0029 0.0033

Theils U 0.8034 0.8131 0.9292

Table 3.21: Modified models forecasting results: AUD/USD Highs
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Original Highs Removed Close Removed
MSE 0.00002 0.00002 0.00003

RMSE 0.0046 0.0047 0.0053
MAE 0.0031 0.0031 0.0036

Theils U 0.8273 0.8361 0.9529

Table 3.22: Modified models forecasting results: AUD/USD Lows

When analysing the forecasting accuracy of each exchange rate, we see that our original

models are the best performers. This is specifically evident in the Theil’s U statistic, which

shows the lowest value when the original model was used across all of our currency pairs.

These tables demonstrate that when lows are removed for the forecasting of highs, and vice-

versa, the resulting MAE and RMSE are slightly worse than the original model, but not by

a great amount. However, we see the importance of using the close when forecasting highs

and lows, as the removal of this variable has the greatest effect on forecasting accuracy.

We can therefore conclude that the removal of the close log returns from (3.30) and (3.31)

has a significant effect on the forecasting accuracy of the models. The removal of rl,t−1

from (3.30) and of rh,t−1 from (3.31) does affect forecasting accuracy, but not as much as

the removal of the close. However, the original model performs best within the context of

forecasting.

Further on, we analyse the forecasting accuracy of our models during different periods with

different market volatilities. This is done by first computing the daily range for all of our

sample data. This is simply calculated by Ph,t − Pl,t, where Ph,t is the high price for day t

and Pl,t is the corresponding low price of that day. We then subcategorised volatility into 4

different quantiles. We then measured the forecasting accuracy of the models depending on

the quantile the preceding day’s range fell into. So depending on which quantile the range

at t − 1 fell into, we measure the forecasting accuracy at t. The forecasting results are all

shown in the table below, where Q1, Q2, Q3 and Q4 correspond to when the range at t− 1

was in the first quantile, in the second quantile, and so on.
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Q1 Q2 Q3 Q4
GBP/USD Hi 0.0053 0.0060 0.0064 0.0090
GBP/USD Lo 0.0051 0.0062 0.0064 0.0099
EUR/USD Hi 0.0046 0.0050 0.0054 0.0072
EUR/USD Lo 0.0043 0.0047 0.0054 0.0072
AUD/USD Hi 0.0027 0.0028 0.0038 0.0058
AUD/USD Lo 0.0027 0.0034 0.0039 0.0070

Table 3.23: Forecast RMSE: When previous days’ range falls into different quantiles

The above table clearly shows that as the range (volatility) increases, the proceeding

days’ forecasts tend to suffer from larger errors. This shows the model has more forecasting

power when exchange markets are less volatile, where the high and low are relatively close

to each other. This finding could possibly help with the improvement of the model, as one

can measure the day’s volatility and act accordingly to control for larger deviations between

the highs and the lows.

In the figures below, we show the sample probability distribution of log returns of our

exchange rates. These figures show both the actual and forecasted values against each other

for comparison. It is very clear from all tables across all currency pairs that the forecasted

model has a higher peak. The distribution of the forecasted values tend to shift more towards

the right when considering the highs, and the opposite is true when forecasting lows.
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Figure 3.10: Distribution of actual V forecasted log returns: GBP/USD Highs
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Figure 3.11: Distribution of actual V forecasted log returns: GBP/USD Lows
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Figure 3.12: Distribution of actual V forecasted log returns: EUR/USD Highs
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Figure 3.13: Distribution of actual V forecasted log returns: EUR/USD Lows
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Figure 3.14: Distribution of actual V forecasted log returns: AUD/USD Highs
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Figure 3.15: Distribution of actual V forecasted log returns: AUD/USD Lows

In this chapter we presented two models for FX data highs and lows. The first model

presented was a regression model for each of the highs and lows, whilst the second model

was an algorithm to overcome the problem of autocorrelation in our first model. This was

based on the concept of dynamic regression developed by [36]. The forecasting results show

that our models beat the random walk and all the benchmark models from the previous

chapter. This means that we have shown that the highs and lows of exchange rates are in

fact predictable, unlike the close prices, as suggested by EMH and all the research in that

area.
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Chapter 4

Triggering Method for Exchange Rate

Trading Via Feedback Control

4.1 Introduction

In this Chapter we aim to apply the saturation-reset linear feedback controller proposed

by [3] to exchange rates . The authors of [3] used control theory to build a linear feedback

control system for the trading of stocks. This controller determines the amount invested in

stock each time a trade is being made. [21] proposed a triggering method that signals a buy

or sell trade in which the saturation-reset linear feedback controller is then used to obtain

the amount invested before entering the trade. These trading strategies are first tested on an

idealized market. This serves as a filter to see whether a strategy is worthy of being tested

on real-world data. This is due to the fact that back-testing on real-world data can be very

time consuming as well as financially expensive. This idealized market mentioned in [3], has

the following assumptions:

1. Continuous and costless trading : Assume the trader reacts to observed prices

immediately and there are no costs for trading (eg. transaction costs, stamp duty tax, etc.)
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2. Continuously differentiable prices : Assume prices are continuously differentiable in

the time interval of interest; there are no price gaps.

3. Perfect liquidity : Assume there is no gap between the bid and the ask price.

4. Trader as price-taker : The trader has no influence on the price by entering a trade.

The above assumptions set our motivation for applying the saturation-reset linear feedback

controller to the trading of exchange rates rather than to stocks as used by [3] . These

assumptions are far from reality, specifically when discussing the stock market, due to the

facts that:

1. Stock trading incurs transaction fees.

2. Stamp duty tax may have to be paid for holding stocks in certain countries.

3. Big trading volumes could potentially move the stock price, which makes it difficult for

the trader to be the price-taker.

4. The stock market is only open for a certain number of hours during the day. This,

coupled with the size of the market, means prices usually have gaps and are therefore not

continuous.

The transaction and stamp duty tax costs alone make the application of such controllers to

the FX market a lot more appealing. The performance results obtained by trading stocks

have no value unless transaction costs have been taken into account. These fees could

wipe out all potential profits that back-testing may have suggested. However, when foreign

exchange prices are considered, the above assumptions are much more reflective of their

real-world behaviour. That is:

1. There are no transaction fees or stamp duties to be paid when trading currencies.

2. The enormity of the foreign exchange market also means that the trader has a higher

chance of being the price-taker. Therefore, a large transaction made by a trader or a fund

in this market would probably still not have the same immediate effect on the price that it

might have in the stock market.
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3. The FX market is highly liquid and is open 24 hours a day, which means prices have a

higher probability of being continuously differentiable.

It has to be noted that we have neglected the interest and margin assumptions mentioned

by [3] . We assume no money is being borrowed from the broker and no money is to be

invested at the risk-free rate. Therefore, we assume all the money is in the trading account

and cannot be invested elsewhere, even if it is not used for trading. We also assume that

no position is held open overnight. Therefore there is no interest to be earned or paid by

holding one currency relative to the other.

We continue our work in this chapter by defining the controller as proposed by [21]. We then

expand this triggering method and build a new method to incorporate the daily high and

low prices. To test this method, we propose a complete stochastic model for the prices of the

highs, lows, of their range, and of the close price. This stochastic model forms the idealized

market we tested our method on. We then provide the results of our triggering method

for both the idealized market and real-world data. We conclude the chapter by combining

the out-of-sample forecasts obtained by our ARDL model in the previous chapter and our

triggering method to illustrate a real trading strategy.

4.2 Saturation-Reset Linear Feedback Controller

In this section we show the feedback controller as described in [3]. We assume trading is

taking place at time t ∈ [0, T ]. We denote:

1.The account value at time t as Vt, with initial value V0

2.The amount invested in asset at time t as It, with initial value I0

3.The trading gain at time t as gt

4.The exchange rate price at time t as pt

5.The maximum amount the trader is willing to invest, also known as the saturation limit,

64



as Imax.

This controller uses a pure gain K to increase or decrease the amount invested depending

on how the strategy is performing subject to the saturation limit. For example, when the

strategy is doing well and the trading gains are positive, the amount invested in the asset is

increased, and vice-versa when the gains are negative. This can be shown by

dI

dt
= K

dg

dt
(4.1)

The equation above holds for when It < Imax, that is, before we have reached our saturation

limit. However, during saturation, the amount invested becomes It = Imax.

The incremental trading gains are given by:

dg =
dp

p
I (4.2)

The incremental contributions to the account value are:

dV = dg +m(V − I)dt (4.3)

where m can be interpreted as both the risk-free interest rate and the brokerage’s marginal

rate. However, as we assume no margin or investment at the risk-free rate, in our case, we

let m = 0. Therefore, by using (4.2), we can simplify (4.3) to:

dV = dg =
dp

p
I (4.4)

We let ρt denote the daily returns of the exchange rate at time t such that:

ρt =
pt − pt−1

pt−1

(4.5)
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Therefore, from (4.1), (4.2) and (4.3), we can show how the trading gain, account value and

amount invested are updated daily as prices evolve from time t to t+ 1:

gt+1 = gt + ρtIt

Vt+1 = Vt + ρtIt

It+1 = It +K(gt+1 − gt)

(4.6)

where, It, K > 0.

The system in (4.6) is only valid when we are buying at the exchange rate, also known

as going long. However when we are going short (selling the asset), the previous amount

invested, It, and the controller gain, K, both have to be negative. For example, if ρt < 0,

meaning the price had decreased, then for a short trade it has to be that gt+1 − gt > 0,

reflecting a profit. However, as can be observed in (4.6), this can only be ensured by letting

It, K < 0.

Since the system also incorporates a saturation limit Imax, we can show It+1 as:

It+1 = min{It +K(gt+1 − gt), Imax} (4.7)

It+1 = max{−It −K(gt+1 − gt),−Imax} (4.8)

Equation (4.7) is the updated equation for I when we are long, and (4.8) applies to periods

that we sell the asset.

4.3 The Trade Triggering Method

In this section we will introduce our triggering method that determines whether we buy (go

long) or sell (go short) the currency pair. The triggering method is built to be used in the
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feedback controller by [21] that was explained in Section 4.2.

The triggering method we introduce is similar to the one proposed by [21] that uses daily

close prices to trigger a trading signal, determining whether to buy, sell or hold (no trade).

We propose adapting their techniques to the high and low prices. We believe this gives us

an advantage, since by having two separate price series to analyse, we can make a more

informed decision about price movement. This can be regarded as an extra confirmation

to trigger a trade in a certain direction. The method is based on estimating the drift (µ̂)

and volatility (σ̂) of the highs and lows on a daily rolling basis. To be more specific, for an

estimation window of size n, these values are estimated at time t as:

µ̂j,t =
1

ndt

n∑
i=1

ρj,t−i (4.9)

σ̂j,t =

√√√√ 1

n− 1

n∑
i=1

(ρj,t−i − µ̂j,t)2 (4.10)

where j = h represents the highs, j = l represents the lows and ρj,t can be obtained by (4.5).

dt is the incremental time interval and is taken to be 1/252, representing 252 trading days in

a year. This means that the results obtained for the estimates of the drift (µ̂) and volatility

(σ̂) are annualized.

We have provided the estimated values, µ̂j,t and σ̂j,t for all of our data in Appendix B. As

it can be observed from Figures B.1-B.12, the estimated values are not completely constant

through time as they exhibit shocks at some points. Therefore, one could argue against the

stationarity of the underlying process. However, as we have discussed in Section 2.5, we

have carried a unit root test and have proven that our data contains no unit root with 95%

confidence. This suffices for the purpose of our work as a small degree of non-stationarity

will almost remain due to the nature of financial time-series data and the fact that they

exhibit shocks from time to time. Aside, from the few spikes in these figures we can see that
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for the rest of the times, these estimated values look fairly stable and constant.

We form a (1− α)100% confidence interval for the estimate of the drift of high and low µ̂j,t

such that

[µ̂j,t − tα/2(n− 1)
σ̂j,t√
n
, µ̂j,t + tα/2(n− 1)

σ̂j,t√
n

] (4.11)

where tα/2(n − 1) is the 100(1 − α/2) percentile of the t-distribution with n − 1 degrees of

freedom. The interval in (4.11) shows the upper and lower limits of the estimate µ̂j,t. We

denote the lower limit as Ljt and the upper limit as U j
t . We carry out this procedure for

both the high and the low, meaning at each time step t+ k, for k = 0, 1, 2..., we obtain the

upper and lower confidence levels using the past n observations. This results in Lht and Uh
t

as the lower and upper confidence limits of the drift of the highs, and Llt and U l
t form their

low price counterparts.

Once the daily confidence limits have been calculated for that day, we use the following

triggering method to initiate a trade:

1. Buy / Going long: Buy if both the lower confidence limits are above zero, that is,

when Lht , L
l
t > 0. This indicates the high and low are both drifting upwards and therefore

the trend is up.

2. Sell / Going short: Sell if both the upper confidence limits are below zero, that is,

when Uh
t , U l

t < 0. This indicates the high and low are both drifting downwards and therefore

the trend is down.

3. No trade: If the conditions for either of the above cases have not been met, then there

is no signal, and no trading takes place that day.

Our trading method uses these confidence limits as a confirmation of whether the price

is trending upwards or downwards. We first apply this method to our proposed idealized

market, which is shown in the next section.
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4.4 Idealized Market Model: A Stochastic Model for

the Price Evolution of High, Low and Close

In this section we propose a stochastic model to which we apply our triggering method. This

forms our so-called idealized market model. As standard practice, we study the idealized

market’s performance before applying our triggering methods to real-world data. The ideal-

ized market considered by [21] is a geometric brownian motion that they consider using the

close price , that is:

dpc,t = µcpc,tdt+ σcpc,tdW (4.12)

Where pc,t is the close price at time t,

µc is the drift of pc, and

σc is the volatility of pc.

Our objective is to propose a synthetic price model for the highs and lows. However, in order

to correctly simulate high and low prices, we need to make sure that:

ph,t > pl,t ∀t (4.13)

Of course, if we just assume the two processes follow a stochastic process such as the geo-

metric brownian motion in (4.12), such a condition cannot be guaranteed to be satisfied.

We take advantage of the fact that the difference between ph and pl forms the range R at

each time-step, such that:

Rt = ph,t − pl,t (4.14)

However, instead of assuming the range to be the linear difference between the high and low,

we use the log difference of these prices instead as used by [37] for estimating the volatility.
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The log difference also demonstrates a more stable distribution. This is shown by:

Rt = ln(ph,t)− ln(pl,t) (4.15)

Therefore, by assuming that ph,t and Rt are two correlated stochastic processes, we propose

the following model for them:

dph,t =µhph,tdt+ σhph,tdW
1

dRt =κ(θ −Rt)dt+ υ
√
RtdW

2

(4.16)

where ph,t is the price of high of exchange rate at time t and follows a geometric brownian

motion,

µh is the drift of ph,

σh is the volatility of ph,

Rt is the Range as defined in (4.15) at time t and follows the CIR process of [11],

υ is the volatility of R,

κ denotes the speed of the mean reversion for the range process Rt, and

θ is the long run average range also known as the long run level.

dW 1 and dW 2 are correlated wiener processes such that:

E[dW 1dW 2] = ρdt (4.17)

Using (4.15) and (4.16), we can recover the price of low pl,t such that:

pl,t = exp(ln(ph,t)−Rt) (4.18)

This ensures that the condition in (4.13) is satisfied and the simulated high and low prices

are in the correct order.

71



For the purpose of trading, we also need to simulate close prices for each day that will be

used as our point of entry/exit of daily trades. This is the price used to calculate ρt in (4.5),

which is then subsequently used to update the controller in (4.6). The close prices pc,t for

each day have to lie between their high and low counterparts such that pl,t ≤ pc,t ≤ ph,t. We

can ensure this by setting

pc,t = αpl,t + (1− α)ph,t (4.19)

where α is a random number generated from a uniform distribution over [0,1], α ∈ U [0, 1].

We use this proposed model to simulate prices and track the performance of our trigger-

ing method using the controller.

Justification and Estimation of the Process Rt

We have chosen a CIR process of the type in (4.16) to represent the log- daily range. This

continuous process ensures the positivity of daily range as negative values would be mean-

ingless. We have chosen a mean-reverting process to be representative of this daily range. As

one can observe from the figures below, the range certainly has mean reverting properties.

Figures 4.1-4.3 show how the log daily range for our data series fluctuate around their long

term mean.
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Figure 4.1: Rt-AUD/USD
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Figure 4.2: Rt-GBP/USD
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Figure 4.3: Rt-EUR/USD
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We also use the Generalised Hurst Exponent to confirm our visual justification. The

Generalised Hurst Exponent Hq examines if some statistical properties of a time-series scale

with their observation time period. For a time-series Xt during the observation period T ,

the Hurst exponent can be defined by the scaling properties of the time-series structural

function, Kqτ [12] :

Kqτ =
E[|Xt+τ −Xt|q]

E[|Xt|q]
∼ τ qHq (4.20)

Where,τ is the time-lag and q > 0. The general idea here is that H1 = 0.5 demonstrates

a Geometric Brownian Motion process. Where as H1 < 0.5 demonstrates a mean-reverting

series and H1 > 0.5 implies a trending series. We estimated the H1 for the log-daily range

of our series and obtained the following values:

H1

Rt of AUD/USD 0.0637
Rt of GBP/USD 0.0487
Rt of EUR/USD 0.0384

Table 4.1: Generalised Hurst Exponent values of Rt

The Hurst Exponent values in Table 4.1 are much smaller than 0.5 which demonstrate

Rt for our time-series data have mean-reverting properties. This result combined with Fig-

ures 4.1-4.3 justifies our use of the CIR process to represent Rt.

Interested readers may refer to Appendix C where we have included the MLE and OLS

estimation methods of the CIR process for completeness.

4.5 Simulation Study

In this section we use Monte-Carlo simulation to simulate the prices for the processes in

(4.16), (4.18) and (4.19) over the time interval [0, T ].
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4.5.1 Discretization

We first need to simulate ph,t and Rt from the processes in (4.16). To do so, we discretize

the time interval into equally spaced time increments so that 0 = t1 < t2 < ... < tk = T ,

where dt = ti − ti−1. We first consider the GBM process in (4.16) for the evolution of the

highs. This process can also be demonstrated in integral form as:

ph,t+dt = ph,t +

t+dt∫
t

µh(Ph,u, u)du+

t+dt∫
t

σh(ph,u, u)dW 1
u (4.21)

Using Euler discretization we can approximate both these integrals using the left-point rule

which produces:
t+dt∫
t

µh(Ph,u, u)du ≈ µh(Ph,t, t)dt

t+dt∫
t

σh(ph,u, u)dW 1
u ≈ σh(ph,t, t)

√
dtZ1

(4.22)

where Z1 is a random number generated from the standard normal distribution N(0, 1).

Since Wt is the Wiener process, Wt+dt −Wt ∼ N(0, dt). Therefore Wt+dt −Wt are identical

in distribution with
√
dtZ1 and are replaced in the discretized version.

The CIR process for Rt in (4.16) can also have the following form:

Rt+dt = Rt +

t+dt∫
t

κ(θ −Ru)du+

t+dt∫
t

υ
√
RududW

2
u (4.23)
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We approximate these integrals using the left-point rule to obtain:

t+dt∫
t

κ(θ −Ru)du ≈ κ(θ −Rt)dt

t+dt∫
t

υ
√
RududW

2
u ≈ υ

√
RtdtZ2

(4.24)

where Z2 is a random number generated from the standard normal distribution N(0, 1).

However, since we assume:

E[dW 1dW 2] = ρdt (4.25)

Z2 in (4.24) is replaced by (ρZ1 +
√

1− ρ2Z2) to account for this correlation structure.

Therefore, the discretized version of (4.16) using the Euler scheme can be shown as

ph,t+dt =ph,t + µhph,tdt+ σhph,t
√
dtZ1

Rt+dt =Rt + κ(θ −Rt)dt+ υ
√
Rtdt(ρZ1 +

√
1− ρ2Z2)

(4.26)

The CIR process of Rt in (4.16) only yields positive results in continuous time. However, the

discretized version in (4.26) may yield negative values in discrete time which is not desirable.

To ensure that only obtain positive values of Rt we use the reflection scheme which replaces

Rt wirh |Rt|, that is:

ph,t+dt =ph,t + µhph,tdt+ σhph,t
√
dtZ1

Rt+dt =|Rt + κ(θ −Rt)dt+ υ
√
Rtdt(ρZ1 +

√
1− ρ2Z2)|

(4.27)

We investigate the convergence of our methods to ensure that our Euler discretized processes

in (4.27) converge to the continuous processes in (4.16).

Definition 4.1. Given a sequence of discrete time approximations ˆX(0), ˆX(h), ..., we say
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X̂ converges strongly to the SDE X if it converges in L1 [20]:

lim
n→∞

E[| ˆX(nh)−X(T )|] = 0 (4.28)

Therefore, we say that X̂ has a strong order of convergence λ > 0 if

E[| ˆX(nh)−X(T )|] ≤ chλ (4.29)

for some constant c and h sufficiently small.

Similarly we say that X̂ has a weak order of convergence β if for any 2(β + 1) continuously

differentiable function g of polynomial growth, it holds that

|E[g( ˆX(nh))]− E[g(X(T ))]| ≤ chβ (4.30)

In general for any SDE of type:

dXt = a(X, t)dt+ b(X, t)dW

The Euler scheme has a weak order of convergence β = 1 and a strong order of convergence

λ = 0.5 if:

1. Functions a() and b() are four times continously differentiable and their first derivatives

are bounded.

2.They do not grow too fast with parameters.

However, the CIR process for Rt has Non-Lipschitz diffusion coefficients, as this process

has non-negative values and contains square root coefficients. In our discretization of this

process we used the reflection(symmetrised) Euler Scheme to ensure the positivity of this

process in discrete time. The authors in [4] show in Theorem 2.2 on page 3 of their paper,
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how such a scheme for this types of process has a strong convergence rate of O(
√
h) and

therefore λ = 0.5.

Therefore, we can use (4.27) to produce values for ph,t+dt and Rt+dt at time t + dt. We can

then obtain results for pl,t+dt and pc,t+dt by plugging the simulated values into (4.18) and

(4.19).

Our simulation starts at time t = 0, where we simulate the prices for the next 200 days, up

to T = 200. We use the first n = 100 simulated values for estimating the confidence limit

Lht , L
l
t, U

h
t and U l

t using (4.11), setting α = 0.1. Trading starts at time t = 100, for which

we set the initial account value, V0 = 10, 000, and the initial amount invested, I0 = λV0. We

set λ = 0.5, and therefore, I0 = 5000 with the controller gain K = 1. After each trading day

we re-estimate the confidence limits by keeping n = 100. We do so by removing the oldest

value in the data and replacing it with the newly observed value.

We apply this method to 10, 000 simulated paths of 200 days each. Rather than choosing muh

to be a constant, we let muh be a random number generated from the normal distribution

with a mean of (µ = 0) and a standard deviation of (σ = 0.5), i.e. N(0, 0.52).

We set the model parameters to be θ = 0.01, υ = 0.05, κ = 0.5 and ρ = 0.5. The initial

values for the simulation are chosen as ph,0 = 1.1100 and R0 = 0.0050.

4.5.2 Varying The Volatility of Highs σh

To carry out the simulation, we look at 3 different cases for the volatility of the highs, σh,

High, Medium or Low volatility.

Case 1: High Volatility- For this case we let σh be generated from the uniform distribution

over the interval [0, 0.9].

Case 2: Medium Volatility- For this case we let σh be generated from the uniform

distribution over the interval [0, 0.5].

Case 3: Low Volatility- For this case we let σh be generated from the uniform distribution
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over the interval [0, 0.1].

The following figures show the histogram of the final account value, V200, for all 10, 000 paths

for each of the cases in our idealized market.
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Figure 4.4: Histogram of final account value for high volatility case
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Figure 4.5: Histogram of final account value for medium volatility case
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Figure 4.6: Histogram of final account value for low volatility case

As can be observed from Figures 4.4-4.6, the volatility of the highs has a great impact

on the account value when using our triggering method to signal trades. When volatility

is low, we observe significantly high positive returns; as the volatility becomes higher, the

number of positive returns gets lower. This is also evident in the following table, where

we show the maximum and minimum account values achieved for each case along with the

percentage of the positive returns.

High-σh Case Medium-σh Case Low-σh Case
Max Account Value 24188 20942 15634
Min Account Value 5798 6687 9311

Percentage of positive returns 60.99 71.40 92.79

Table 4.2: Idealized market account value analysis : Cases with varying volatility

4.5.3 Varying The ’Level’ θ of Range

In this section we are interested in seeing how the account value changes by varying θ in

(4.27). This is the long run value to which the range Rt reverts. We want to test whether

our trading system performs differently for currencies with higher or lower long ranges. We
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set the volatility of the highs σh to follow the medium case discussed in the previous section.

We set the following 3 cases for θ

Case 1: High θ- For this case, we let θ be generated from the uniform distribution over

the interval [0, 0.025].

Case 2: Medium θ- For this case, we let θ be generated from the uniform distribution over

the interval [0, 0.01].

Case 3: Low θ- For this case, we let θ be generated from the uniform distribution over the

interval [0, 0.005].
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Figure 4.7: Histogram of final account value for medium volatility-high θ case
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Figure 4.8: Histogram of final account value for medium volatility-medium θ case
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Figure 4.9: Histogram of final account value for medium volatility-low θ case

High-θ Case Medium-θ Case Low-θ Case
Max Account Value 19433 18870 21968
Min Account Value 6391 6624 7014

Percentage of positive returns 71.05 71.36 72.06

Table 4.3: Idealized market account value analysis : Cases with varying θ

The histogram of the account values for all the cases can be seen in Figures 4.7-4.9. As
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is evident from these figures, the maximums and minimums obtained still show significant

differences between cases, but only by a small amount. We observe from Table 4.3 that the

different cases for θ do not actually impact the trading performance of the model by a great

deal. The low θ case shows the best performance in terms of the maximum and minimum

account value reached. The greatest number of positive returns were also achieved under

this case, albeit by only 1% more than those achieved under the high θ case. These fairly

close results between cases mean the triggering method should achieve similar results for

currency pairs with different long run ranges.

4.5.4 Varying The ’Volatility’ υ of Range

So far we have observed that the volatility of highs, σh, has a direct impact on the trading

results in our method. However, if we keep the volatility at the medium level case, we test

to see whether the volatility of Rt, υ has any direct effect on the performance of the system.

The 3 cases for varying υ are given as:

Case 1: High υ: For this case, we let υ be generated from the uniform distribution over

the interval [0, 0.1].

Case 2: Medium υ: For this case, we let υ be generated from the uniform distribution

over the interval [0, 0.05].

Case 3: Low υ: For this case, we let υ be generated from the uniform distribution over the

interval [0, 0.01].
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Figure 4.10: Histogram of final account value for medium volatility-high υ case
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Figure 4.11: Histogram of final account value for medium volatility-medium υ case
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Figure 4.12: Histogram of final account value for medium volatility-low υ case

High-υ Case Medium-υ Case Low-υ Case
Max Account Value 21724 20410 17803
Min Account Value 7068 6807 7102

Percentage of positive returns 71.11 70.92 71.01

Table 4.4: Idealized market account value analysis : Cases with varying υ

Figures 4.10-4.12 demonstrate the fact that υ has only a small impact on the perfor-

mance results. All three cases show very close results for the distribution of V200. This

fact is also confirmed in Table 4.4, where the percentage of positive returns achieved under

all three cases is shown to be fairly indifferent (70.92%-71.11%). However, the maximum

account value reached seems to be decreasing as Rt becomes less volatile. The low υ case

shows the lowest maximum account value and the highest minimum account value reached

between cases. As υ gets higher, the account has the potential of achieving higher values,

but it also becomes more risky as the minimum account value gets lower for higher υ cases.
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4.5.5 Varying The ’Speed’κ of Range

We finally study the speed of the mean reversion parameter κ of Rt. The three cases

considered for this parameter are as follows:

Case 1: High κ: For this case, we let κ be generated from the uniform distribution over

the interval [0, 0.9].

Case 2: Medium κ: For this case, we let κ be generated from the uniform distribution

over the interval [0, 0.5].

Case 3: Low κ: For this case, we let κ be generated from the uniform distribution over the

interval [0, 0.1].

These simulations are carried out for when σh follows its medium volatility case.
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Figure 4.13: Histogram of final account value for medium volatility-high κ case
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Figure 4.14: Histogram of final account value for medium volatility-medium κ case
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Figure 4.15: Histogram of final account value for medium volatility-low κ case

High-κ Case Medium-κ Case Low-κ Case
Max Account Value 21315 20093 20515
Min Account Value 6864 6858 6934

Percentage of positive returns 71.56 70.59 71.22

Table 4.5: Idealized market account value analysis : Cases with varying κ

The above Figures, coupled with Table 4.5, show that κ has no major effect on the
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trading performance of the system. The maximum and minimum account value results seem

to be mixed for the 3 different cases, with the high κ case showing the highest maximum

account value. The percentages of the positive returns achieved for each case are also very

close to each other. The high κ case achieved 71.56% positive returns, and the medium κ

case was the worse performer, with 70.59% positive returns.

So far, we have shown that using our idealized market, the triggering method works pretty

well in terms of producing positive returns under all conditions. The parameters of the range

process, Rt, have no significant impact on trading performance. However, the underlying

volatility of the highs ph,t, denoted as σh, can directly effect the performance of the system.

As volatility decreases, the system seems to produce more positive returns, whereas increas-

ing volatility means the possibility of obtaining higher returns but with less probability. The

study of the random cases seems to indicate lower volatility gives better performance math-

ematically. This coincides, interestingly, with news reports that the hedge fund industry, in

general, produces overall higher returns in lower volatility environments.

4.6 Real-World Application

In this section we apply the triggering method introduced in Section 4.3 to our real-world

data for EUR/USD, GBP/USD and AUD/USD. The data used covers rich and diverse

market scenarios, which is ideal for back-testing to ensure reliable results. We recall from

Section 2.12, that our data covers the following dates:

GBP/USD:From 02/01/1990 to 31/12/2012

AUD/USD:From 02/01/1993 to 31/12/2012

EUR/USD:From 04/01/1999 to 31/12/2012

We use the saturation reset controller from Section 4.2 to back-test our trading method.
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We first study the performance using the same parameters we used when trading in our

idealized market. We then build a more dynamic system wherein by optimisation we obtain

the desired parameter values of the system before studying the trading performance.

4.6.1 Maximum Drawdown

Maximum Drawdown is a type of risk metric widely used in the world of finance. It can be

defined as the maximum cumulative loss from a peak to the following trough in any given

period. We use Maximum Drawdown on the account value of each strategy to analyse the

risks associated with it. This can be shown by

MDD = max
i,j

Vi∈(0,T ) − Vj∈(i,T )

Vi
(4.31)

where Vt is the account value at time t ∈ (0, T )

4.6.2 Back-testing With Arbitrary Parameters

In this section, we use the same arbitrary parameter values for our system that we used

previously, so that:

Initial account value, V0 = 10000,

Initial Investment amount, I0 = 5000,

Maximum amount invested, i.e. the saturation limit, Imax = 10000,

Controller gain, K = 1,

Significance level used in(4.11), α = 0.1,

Using daily data, we annualize our estimates, dt = 1/252 and

Estimation window, n = 100.
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Figure 4.16: Account value Vt for GBP/USD : Arbitrary parameters
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Figure 4.17: Account value Vt for AUD/USD : Arbitrary parameters
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Figure 4.18: Account value Vt for EUR/USD : Arbitrary parameters

GBP/USD AUD/USD EUR/USD
Max Account Value 12536 15523 15239
Min Account Value 8599 9061 9428

Maximum Drawdown (%) 25.26 23.58 10.23

Table 4.6: Account value performance for all currency pairs using arbitrary parameter values

We observe from Figure 4.16 that GBP/USD initially performs very poorly under our

framework. During the first half of the data (approximately 3000 days), the controller seems

to be incurring losses and we reach an account value of 8599 from the initial 10,000. However,

the system recovers well considering the initial losses, as it reaches a maximum of 12,536

during the second half of the data. This is shown in Table 4.6, where we also observe that

GBP/USD has recorded a maximum drawdown of 25.26% during this time-period, which we

consider to be fairly high. From the same table, we observe that trading AUD/USD has also

obtained a very high maximum drawdown value of 23.58%. However from Figure 4.17, it

is evident that the system performs much better for this currency pair than for GBP/USD.

We see that initially the model incurs small losses and reaches a minimum of 9061 before

becoming profitable and reaching a maximum of 15,523 during the tested time period. Figure

4.18 demonstrates the fact that EUR/USD is the best performer out of the three currency
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pairs we consider when using our triggering method for trading. We observe a consistent

upwards pattern in the account value for EUR/USD after carrying out the back-testing. The

minimum account value reached was 9428, from which the account value grew to a maximum

of 15,239. The maximum drawdown of 10.23% achieved by EUR/USD is by far the lowest

among the three currency pairs, confirming it as our best performer under this scheme.

4.6.3 Back-Testing Using Optimisation

In this section we use optimisation to obtain the model parameters from the system by

maximising the final account value Vend.

We concentrate on obtaining the optimised values for the parameters K, α and dt, whilst

keeping all other parameters as before, i.e.

Initial account value, V0 = 10, 000,

Initial Investment amount, I0 = 5000,

Maximum amount invested, i.e. the saturation limit, Imax = 10, 000 and

Estimation window in (4.11), n = 100.

We use Matlab’s optimisation toolbox with the following upper and lower bounds constraints

for our parameters:

K ∈ [1, 10]

α ∈ [0.005, 0.3]

dt ∈ [1/252, 1]

We carry out the optimisation on a rolling window size of 240 days (approximately 1 trading

year). Each day, upon the arrival of new information, we re-estimate these parameters whilst

keeping everything else fixed. The figures below show the account value for the trading of

AUD/USD, GBP/USD and EUR/USD using this approach.
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Figure 4.19: Account value Vt for GBP/USD : optimised parameters
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Figure 4.20: Account value Vt for AUD/USD : optimised parameters
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Figure 4.21: Account value Vt for EUR/USD : optimised parameters
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GBP/USD AUD/USD EUR/USD
Max Account Value 10429 12292 15250
Min Account Value 8628 9602 9749

Maximum Drawdown (%) 17.27 17.48 16.05

Table 4.7: Account value performance for all currency pairs using optimised parameter values

We observe from Table 4.7 that the optimisation has reduced the maximum drawdown

for GBP/USD and AUD/USD compared to those of Table 4.6. However, the opposite is true

for EUR/USD, as the maximum drawdown is higher when trading was carried out using

optimisation. We observe from Figure 4.21 that EUR/USD still has the best performance

amongst our currency pairs even after optimisation. The triggering method seems to do well

when trading this asset. However, the opposite is observed for GBP/USD. Figure 4.19 shows

that after optimisation, GBP/USD fails to reach profitability, even though the maximum

drawdown is reduced. The controller fails to recover from its initial losses as it does so

well in Figure 4.16 when arbitrary parameters were used. AUD/USD shows a very average

performance for the initial 4000 days, from which the account value suddenly spikes before

wiping out the profits made.

4.7 Combining Forecasts and Triggering Method

In this section we make use of the out-of-sample forecasts made for the highs ph,t and the lows

pl,t using our ARDL model in Section 3.3. We propose four different trading strategies that

combine our out-of-sample forecasts and the triggering method in Section 4.3. We back-test

each strategy on our three currency pairs with both arbitrary and optimised parameters. It is

worth noting that the data we used still covers the dates mentioned in Section 2.12. However

as the first 500 days of our data sets are used for obtaining our out-of-sample forecasts, we

have 500 fewer days we can back-test on.
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4.7.1 Strategy 1

Our first strategy is a modification of the triggering method from Section 4.3 so that it also

includes the confidence interval for the estimated drift of forecasted highs and lows. The

strategy for each day t can be explained as:

Step 1. Obtain the upper and lower estimates, U j
t and Ljt of µ̂j,t, using (4.11).

Step 2. Repeat Step 1 but for the estimates of ˆµfj,t+1, where fj denotes our out-of-sample

forecasts for highs(j = h) and lows (j = l). This results in the upper and lower estimates

U fj
t+1 and Lfjt+1 for the day ahead, t+ 1.

Step 3. Initiate a trade based on:

Buy/Going long: Signal buy if all four of our lower confidence limits are above zero

Lht , L
l
t, L

fh
t+1, L

fl
t+1 > 0.

Sell/Going Short: Signal sell if all four of our upper confidence limits are below zero

Uh
t , U

l
t , U

fh
t+1, U

fl
t+1 < 0.

No trade: If the conditions for buying or selling have not been met, then there is no signal

and no trading is done that day.

We carry out these steps on a rolling daily basis, using the past n = 100 observations as well

the past n = 100 out-of-sample forecasts.

Arbitrary Parameters

Firstly, we back-test this strategy on our set of arbitrary parameters given in Section 4.6.2.
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Figure 4.22: Account value Vt for GBP/USD : Strategy 1 using arbitrary parameters
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Figure 4.23: Account value Vt for AUD/USD : Strategy 1 using arbitrary parameters

96



Days
0 500 1000 1500 2000 2500 3000 3500

V
(t

)

×104

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6
Account Value for Strategy 1: EUR/USD Using Arbitrary Parameters

Figure 4.24: Account value Vt for EUR/USD : Strategy 1 using arbitrary parameters

GBP/USD AUD/USD EUR/USD
Max Account Value 11005 15251 15902
Min Account Value 8111 9366 9717

Maximum Drawdown (%) 23.46 24.41 9.95

Table 4.8: Account value performance of Strategy 1 for all currency pairs using arbitrary
parameter values

Figures 4.22-4.24 show the account value Vt performance for each of our currency

pairs. GBP/USD is the worst performer under this system, with the account value showing

an initial loss from 10,000 to 8111 before reaching profitability. Table 4.8 confirms this by

demonstrating the high maximum drawdown of 23.46% that GBP/USD suffered under this

strategy. The AUD/USD results, however, show an even higher maximum drawdown on the

account, but with a much higher maximum account value reached by the strategy. The best

results were obtained when trading EUR/USD. The account value reaches a low of 9717 from

its initial 10,000 before reaching a maximum of almost 16,000. The maximum drawdown is

also under 10%, which is significantly lower than those of AUD/USD and GBP/USD.
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Optimised Parameters

The optimisation techniques and objectives used here for the back-testing of strategy 1 are

the same as those stated in Section 4.6.3. We show the account value performance of each

currency in the below figures and table.

0 1000 2000 3000 4000 5000 6000
8400

8600

8800

9000

9200

9400

9600

9800

10000

10200

10400
Account Value for Strategy 1: GBP/USD Using Optimised Parameters

Days

V
(t

)

Figure 4.25: Account value Vt for GBP/USD : Strategy 1 using optimised parameters
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Figure 4.26: Account value Vt for AUD/USD : Strategy 1 using optimised parameters
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Figure 4.27: Account value Vt for EUR/USD : Strategy 1 using optimised parameters

GBP/USD AUD/USD EUR/USD
Max Account Value 10333 16702 15674
Min Account Value 8478 9198 9892

Maximum Drawdown (%) 17.95 20.89 11.63

Table 4.9: Account value performance of Strategy 1 for all currency pairs using optimised
parameter values

Optimisation reduced the maximum drawdown suffered by the GBP/USD and AU-

D/USD accounts by a significant amount when compared to those of the arbitrary param-

eters. However, the opposite is true for EUR/USD, as the maximum drawdown has been

increased by almost 2%. The optimisation has evidently improved the performance of AU-

D/USD for Strategy 1. The account value shows it to have reached a high of 16,702 in

Figure 4.26 for this currency pair. However, Figure 4.25 clearly shows that Strategy 1,

specifically after optimisation, has worsened the performance of our account value when

trading GBP/USD. The currency pair EUR/USD still shows strong trading performance

under this strategy, even though the maximum drawdown and the maximum account value

reached have both worsened when compared to those of the arbitrary parameters. We ob-

serve in Figure 4.27 that the initial losses the account value suffered are less severe when
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optimisation had been carried out for the trading of this pair under this strategy.

4.7.2 Strategy 2

Our second strategy still makes use of the triggering method from Section 4.3. However, we

no longer initiate our trades at the close price. Instead we use the out-of-sample forecasts

as our points of entry into the market. This Strategy for each day t can be described as :

Buy/Going long: If Lht , L
l
t > 0, then we initiate a long trade at our forecasted lows pfl,t+1.

This can only occur if our forecasted lows for time t+ 1 are actually reached by the market

at time t+ 1, pfl,t+1 > pl,t+1.

Sell/Going Short: If Uh
t , U

l
t < 0, then we initiate a short trade at our forecasted highs

pfh,t+1. This can only occur if our forecasted highs pfh,t+1 for time t+ 1 are actually reached

by the market at time t+ 1, pfh,t+1 < ph,t+1.

No trade: If the conditions for buying or selling have not been met, then there is no signal,

and no trading is done that day.
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Arbitrary Parameters
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Figure 4.28: Account value Vt for GBP/USD : Strategy 2 using arbitrary parameters
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Figure 4.29: Account value Vt for AUD/USD : Strategy 2 using arbitrary parameters
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Figure 4.30: Account value Vt for EUR/USD : Strategy 2 using arbitrary parameters

GBP/USD AUD/USD EUR/USD
Max Account Value 10284 10831 10423
Min Account Value 9018 8905 9675

Maximum Drawdown (%) 12.31 17.79 7.18

Table 4.10: Account value performance of Strategy 2 for all currency pairs using arbitrary
parameter values

Figures 4.22-4.24 and Table 4.10 clearly show that Strategy 2 is not a profitable strategy

when using the arbitrary parameters for our system. The maximum drawdown of the strategy

seems to be fairly low when compared to our other strategies. However, the account value

demonstrates a choppy performance with a tendency for higher negative returns.

Optimised Parameters

We apply our optimisation methods from Section 4.6.3 to strategy 2 to see whether it will

improve its poor performance using the arbitrary parameters.
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Figure 4.31: Account value Vt for GBP/USD : Strategy 2 using optimised parameters
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Figure 4.32: Account value Vt for AUD/USD : Strategy 2 using optimised parameters
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Figure 4.33: Account value Vt for EUR/USD : Strategy 2 using optimised parameters

GBP/USD AUD/USD EUR/USD
Max Account Value 10000 10595 10204
Min Account Value 9195 9639 9567

Maximum Drawdown (%) 8.04 8.36 6.24

Table 4.11: Account value performance of Strategy 2 for all currency pairs using optimised
parameter values

As is evident from Table 4.11 and Figures 4.31-4.33, the optimisation carried out has

improved the maximum drawdown suffered by the account value under this strategy. How-

ever, clearly this strategy fails to produce any indication that it is useful when trading these

currency pairs.

4.7.3 Strategy 3

The third strategy we propose is one very similar to Strategy 2. But instead of using fore-

casted highs and lows as the point of trade entry, we use them as the point of exit. This can

be described as:

Buy/Going long: If Lht , L
l
t > 0, then we initiate a long trade at the open of the day. If

our forecasted highs for time t+ 1 are actually reached by the market at time t+ 1, so that
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pfh,t+1 < ph,t+1, we exit our position at pfh,t+1. However, if pfh,t+1 > ph,t+1, then as before,

we close our position at the close of the day.

Sell/Going Short: If Uh
t , U

l
t < 0, then we initiate a short trade at the open of the day.

If our forecasted lows pfl,t+1 are actually reached by the market at time t + 1, so that

pfl,t+1 > pl,t+1, we close our trade at pfl,t+1. However, if pfl,t+1 < pl,t+1, then as before, we

close our position at the close of the day.

No trade: If the conditions for buying or selling have not been met, then there is no signal,

and no trading is done that day.

Arbitrary Parameters
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Figure 4.34: Account value Vt for GBP/USD : Strategy 3 using arbitrary parameters
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Figure 4.35: Account value Vt for AUD/USD : Strategy 3 using arbitrary parameters
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Figure 4.36: Account value Vt for EUR/USD : Strategy 3 using arbitrary parameters

GBP/USD AUD/USD EUR/USD
Max Account Value 10441 13312 13872
Min Account Value 8367 8769 9940

Maximum Drawdown (%) 16.79 19.6 8.89

Table 4.12: Account value performance of Strategy 3 for all currency pairs using arbitrary
parameter values

106



Figures 4.34-4.36 show the back-testing results of our currency pairs for Strategy 3. These

figures demonstrate the account value when arbitrary parameters were used. We observe

that GBP/USD initially accumulates negative returns for approximately the first 2000 days.

However, the account value then seems to recover well; it subsequently reaches a maximum

of 10,441. AUD/USD also replicates the performance of GBP/USD for the first 2000 days,

albeit with smaller losses. After that, the account value surges upwards for the following

2000 days before suffering a high maximum drawdown of 19.6% of the account value. We

observe again that EUR/USD shows a strong back-testing performance, with a low maximum

drawdown of 8.89%.

Optimised Parameters

We apply the daily rolling optimisation routine to Strategy 3 and obtain the following results
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Figure 4.37: Account value Vt for GBP/USD : Strategy 3 using optimised parameters
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Figure 4.38: Account value Vt for AUD/USD : Strategy 3 using optimised parameters
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Figure 4.39: Account value Vt for EUR/USD : Strategy 3 using optimised parameters

GBP/USD AUD/USD EUR/USD
Max Account Value 10000 11558 14973
Min Account Value 8612 9529 9929

Maximum Drawdown (%) 13.87 9.82 12.34

Table 4.13: Account value performance of Strategy 3 for all currency pairs using optimised
parameter values

After the optimisation, the GBP/USD account value fails to go above the initial account

value of V0 = 10, 000 during the whole back-testing period. The optimisation has significantly
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decreased the maximum drawdown suffered on the AUD/USD account value. As we observe

from Table 4.13, the maximum drawdown for this pair is 9.82%, compared to the 19.6% we

showed in Table 4.12. However, this reduction has been costly, as the maximum account

value reached is far less than those of the arbitrary parameters. The opposite is true for the

account value of EUR/USD. Figure 4.39 shows that the optimisation routine has improved

the performance of the EUR/USD account. Even though the maximum drawdown is slightly

higher, the account value only reaches a minimum of 9929 and increases gradually to a

maximum of almost 15,000.

4.7.4 Strategy 4

This strategy is a modification of Strategy 1 in which we formed the confidence intervals

for both the realised observations and the forecasted high and low drift estimates. For this

strategy we only form the confidence intervals for the forecasts rather than the observations.

This can be explained as:

Step 1. Obtain the upper and lower estimates, U fj
t+1 and Lfjt+1 of ˆµfj,t+1 using (4.11).

Step 2. Initiate a trade based on:

Buy/Going long: Buy if both of our lower confidence limits are above zero Lfht+1, L
fl
t+1 > 0.

Sell/Going Short: Sell if both of our upper confidence limits are below zero U fh
t+1, U

fl
t+1 < 0.

No trade: If the conditions for buying or selling have not been met, then there is no signal,

and no trading is done that day.
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Arbitrary Parameters
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Figure 4.40: Account value Vt for GBP/USD : Strategy 4 using arbitrary parameters
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Figure 4.41: Account value Vt for AUD/USD : Strategy 4 using arbitrary parameters
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Figure 4.42: Account value Vt for EUR/USD : Strategy 4 using arbitrary parameters

GBP/USD AUD/USD EUR/USD
Max Account Value 10684 15304 15699
Min Account Value 7790 9308 9621

Maximum Drawdown (%) 27.08 24.1 9.87

Table 4.14: Account value performance of Strategy 4 for all currency pairs using arbitrary
parameter values

It is evident from Table 4.14 that the GBP/USD and AUD/USD accounts under this strategy,

when used with the arbitrary parameters, suffer from high maximum drawdowns. AUD/USD

and EUR/USD both show promising results, whereas the GBP/USD account value shows a

similar pattern to those achieved under the other strategies. Figure 4.40 shows the account

value initially accumulating large losses before slightly recovering. Figure 4.42 demonstrates

that the EUR/USD account value increases steadily over time and reaches a maximum of

15,699 during the back-testing period.

Optimised Parameters

Finally, we carry out the daily optimisation routine to back-test strategy 4 on our data sets.
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Figure 4.43: Account value Vt for GBP/USD : Strategy 4 using optimised parameters
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Figure 4.44: Account value Vt for AUD/USD : Strategy 4 using optimised parameters

112



Days
0 500 1000 1500 2000 2500 3000

V
(t

)

×104

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6
Account Value for Strategy 4: EUR/USD Using Optimised Parameters

Figure 4.45: Account value Vt for EUR/USD : Strategy 4 using optimised parameters

GBP/USD AUD/USD EUR/USD
Max Account Value 10333 14122 15663
Min Account Value 8689 9555 9797

Maximum Drawdown (%) 15.90 15.48 10.26

Table 4.15: Account value performance of Strategy 4 for all currency pairs using optimised
parameter values

The optimisation has clearly decreased the maximum drawdown for GBP/USD and

AUD/USD, as can be seen in Table 4.15 when compared to Table 4.14. EUR/USD still

shows a low maximum drawdown of 10.26% even though it is slightly higher than when

we used the arbitrary parameters to back-test this strategy. Once again, the GBP/USD

account value shows disappointing results. Figure 4.43 clearly shows the account value of

GBP/USD reaches a minimum of 8689 and fails to recover. EUR/USD shows consistent

performance once again, while Figure 4.44 demonstrates that the AUD/USD account value

remains within a tight range before it starts accumulating high positive returns after the

initial 3500 days.
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4.8 Comparing Performances:Risk-free, FTSE100 and

S&P500

In this section we compare the performance of our proposed trigerring method and different

trading strategies, to a standard buy-and-hold account value performance of the benchmark

US risk-free rate: the 3 month T-bills and 2 different benchmark stock market indices: The

FTSE100 and the S&P500. The data used have the following properties:

S&P 500:

Daily data covering from: 04/01/1999 to: 31/12/2012

FTSE100:

Daily data covering from: 03/01/2001 to: 31/12/2012

3 Months T-bill:

Annual data from: 04/01/1999 to: 31/12/2012

We have chosen the mentioned dates as they represent the same dates as our EUR/USD

data making it simpler to compare the performances. This is with the exception of FTSE100

as we did not have access to data before 03/01/2001. We also have to point out that our

3month T-bill data is based on annual returns rather than daily ones that we use elsewhere.

We show the performance of these benchmarks in the figures below, based on a Buy-and-hold

strategy.
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Figure 4.46: Account value Vt for 3 months US T-bills : Buy-and-hold strategy
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Figure 4.47: Account value Vt for FTSE100 : Buy-and-hold strategy
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Figure 4.48: Account value Vt for S&P500 : Buy-and-hold strategy

As it can be observed from the above figures, the benchmark risky assets would have

performed much worse during the same period as our EUR/USD data. Figures 4.47 and 4.48

show that during this period an investment of 10,000 would have merely made any profits as

the account value would have hardly gone above the initial 10,000. The return on the risk

free investment is also interesting, we can see in Figure 4.46 that this risk-free account value

would have grown to around 13,500. As we showed earlier, our EUR/USD would have per-

formed much better during the same period proving that our systems and strategies(apart

from Strategy 2) could potentially yield much greater returns than the risk-free return. AU-

D/USD has also performed better under Strategy 1 than these benchmarks, confirming the
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superiority of our trading performance to an extent. However, the risk-free return performs

better than most of our GBP/USD account values under our strategies. Therefore, this con-

firms our findings up to now that our proposed trading systems and strategies work better

for certain assets than others. The reason behind this could be investigated further in the

future.
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In this chapter we used a saturation-reset linear feedback controller to perform exchange

rate trades. We proposed a triggering method for the controller and we first studied its

performance on a synthetic price model. We then used historical daily data for GBP/USD,

AUD/USD and EUR/USD to study its performance on real-world data. Our data sets

covered between 10 to 20 years of observations, which included the 2008 financial crisis

period. Having such a rich data set that covers diverse market scenarios ensures that our

back-testing results are meaningful. We combined the out-of-sample forecasts obtained for

the highs and lows with the triggering method proposed to build diverse trading strategies.

For comparison, we back-tested each strategy using both arbitrary parameters and optimal

parameters obtained by carrying out a daily optimisation routine on the data. The results

obtained were mixed for each currency pair. Overall, the EUR/USD account showed the

most consistent back-testing results with positive returns. AUD/USD also showed promising

results, in particular with strategies 1 and 4. However, the same strategies, when applied

to GBP/USD, showed a choppy trading account value with high negative returns. We

have shown that our forecasts and triggering method serve as good building blocks for

developing trading strategies. However, these strategies need to be carefully back-tested for

each currency pair in question, as evidently each pair maintains different market dynamics

that cause them to perform differently under each strategy.
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Expósito, and José Lúıs Mart́ınez Ramos. A comparison of two techniques for next-

day electricity price forecasting. In Intelligent Data Engineering and Automated

LearningIDEAL 2002, pages 384–390. Springer, 2002.

[27] Thomas H Lubecke, Kyung Doo Nam, Robert E Markland, and Chuck CY Kwok. Com-

bining foreign exchange rate forecasts using neural networks. Global Finance Journal,

9(1):5–27, 1998.

[28] Babita Majhi, Minakhi Rout, Ritanjali Majhi, Ganapati Panda, and Peter J Fleming.

New robust forecasting models for exchange rates prediction. Expert Systems with

Applications, 39(16):12658–12670, 2012.

[29] Burton G Malkiel. The efficient market hypothesis and its critics. Journal of economic

perspectives, pages 59–82, 2003.

[30] Richard A Meese and Kenneth Rogoff. Empirical exchange rate models of the seventies:

Do they fit out of sample? Journal of international economics, 14(1):3–24, 1983.

[31] Johnathan Mun. Modeling risk: Applying Monte Carlo risk simulation, strategic real

options, stochastic forecasting, and portfolio optimization, volume 580. John Wiley &

Sons, 2010.

[32] Whitney Newey and Kenneth West. A simple, positive semi-definite, heteroskedasticity

and autocorrelation consistent covariance matrix. Econometrica, 55(3):703–08, 1987.

[33] Francisco J Nogales, Javier Contreras, Antonio J Conejo, and Rosario Esṕınola. Fore-
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Appendix A

Data Sources

Our Forex data of EUR/USD, GBP/USD and AUD/USD were obtained from esignal.com

through the paid subscription services.

The 3 month T-bill data used in Chapter 4 was obtained from the US Treasury website

www.treasury.gov.

The S&P500 data was collected from Yahoo Finance.

The FTSE100 data was obtained from Investing.com.
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Appendix B

Drift and Volatility Estimates of

Highs and Lows
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Figure B.1: µ̂h,t of AUD/USD
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Figure B.2: µ̂l,t of AUD/USD
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Figure B.3: ˆσh,t of AUD/USD
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Figure B.4: σ̂l,t of AUD/USD
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Figure B.5: µ̂h,t of GBP/USD
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Figure B.6: µ̂l,t of GBP/USD
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Figure B.7: ˆσh,t of GBP/USD
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Figure B.8: σ̂l,t of GBP/USD
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Figure B.9: µ̂h,t of EUR/USD
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Figure B.10: µ̂l,t of EUR/USD
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Figure B.11: ˆσh,t of EUR/USD
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Figure B.12: σ̂l,t of EUR/USD
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Appendix C

Estimation of the Parameters in the

CIR Process

Here we show two different methods for the estimation of model parameters in the CIR

process. We have shown in (4.16) that we assume Rt to follow the mean-reverting CIR

model. To estimate these model parameters we can use both OLS or MLE.

OLS Approach

To estimate the model parameters (θ, κ, υ) of the CIR process in (4.16) using OLS, we use

the discretized version which is:

Rt+dt −Rt√
Rt

=
κθdt√
Rt

− κ
√
Rtdt+ υεt (C.1)

Therefore, the estimates θ̂ and κ̂ can be obtained by minimising the OLS objective function:

arg min
θκ

N−1∑
i=1

(
Ri+1 −Ri√

Ri

− κθdt√
Ri

+ κ
√
Ridt) (C.2)
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And the diffusion parameter υ is found to be the standard deviation of the residuals:

υ̂ =
√

V ar(εt)
dt

.

MLE Approach

To carry out a Maximum Likelihood Estimation of the parameters Ψ = (θ, κ, υ) for the CIR

process in (4.16), we first need to consider it’s transition density [23]. This transition density

has the form:

p(Rt+dt|Rt; Ψ, dt) = ce−uv(
u

v
)
q
2 Iq(2

√
uv) (C.3)

Where

c = 2κ
υ2(1−eκdt) ,

u = cRte
−κdt,

v = cRt+dt,

q = 2κθ
υ2
− 1

and

Iq is modified Bessel function of the first kind of order q.

Therefore, the log-likelihood function for this time-series with N observations is:

lnL(Ψ) =
N−1∑
i=1

ln p(Ri+1|Ri; Ψ, dt) =

(N − 1) ln c+
N−1∑
i=1

[−ui − vi+1 + 0.5q ln(
vi+1

ui
) + ln(Iq(2

√
uivi+1))]

(C.4)

Where ui = cRie
−κdt and vi+1 = cRi+1. Therefore, by maximising the log-likelihood function

(C.4) we can obtain the maximum likelihood estimates of parameters Ψ̂ = (θ̂, κ̂, υ̂). Such

that:

Ψ̂ = arg max
Ψ

lnL(Ψ) (C.5)
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Appendix D

Matlab Codes

Below is the matlab code used to carry out the regression 3.3 for the forecasting of highs.

The diagnostic tests carried out are also included in the same code. The same code can be

modified to estimate α in 3.4 and carry out the diagnostic tests.

x % Log−r e tu rn s o f high , low and c l o s e−Lagged by 1−day

hp % High in form o f p r i c e

yh % Log−Returns o f highs−Not Lagged

n %Sample s i z e= n+1

Pfo r e ca s t = [ ] ;
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f o r i = 1 : l ength ( x)−n−2

X=[ ones (n+1 ,1) x ( i : n+i , : ) ] ; % Independent Var iab l e s

Y=(yh ( i : n+i , 1 ) ) ; % Dependent Var iab le

[B,BINT,R,RINT,STATS]= r e g r e s s (Y,X) ; %r e g r e s s i o n

N=[1 x (n+i +1 , : ) ] ;% Todays Independent Var i ab l e s

Pyest=hp(n+i ) ; %Yesterdays Dependent Var iab le in form o f Pr i ce

f c a s t= (N∗B)/100 ; %f o r e c a s t e d value in form o f re turn

Pfcas t=(Pyest∗exp ( f c a s t ) ) ; % f o r e c a s t e d value in form o f p r i c e

Actual=hp(n+1+i );% Todays ac tua l p r i c e

Err=(Actual−Pfcas t ) ; % out o f sample Errors

counter =0;

% t e s t whether P−value o f r e g r e s s i o n i s s i g at 5% l e v e l
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i f STATS(1 , 3 ) > 0 .05

counter=counter +1;

end

%LBQ t e s t f o r a u t o c o r r e l a t i o n

counter1 =0;

h=l b q t e s t (R) ;

i f h==1

counter1=counter1 +1;

end
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%White t e s t f o r homoscedas t i c i ty

counter2 =0;

r=R. ˆ 2 ;

[ B2 , BINT2 , R2 , RINT3 ,STATS3]= r e g r e s s ( r , [ X X( : , 2 : 4 ) . ˆ 2 X( : , 2 ) . ∗X( : , 3 ) . . .

X( : , 2 ) . ∗X( : , 4 ) X( : , 3 ) . ∗X( : , 4 ) ] ) ;

T e s t s t a t =(n+1)∗STATS3 ( 1 ) ;

CriVal=ch i2 inv ( 0 . 9 7 5 , 1 0 ) ;

i f Tes t s ta t>CriVal

counter2=counter2 +1;

end
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%Standard e r r o r f o r Beta & t−t e s t f o r Beta

counter3 =0;

counter4 =0;

counter5 =0;

s 2 =(sum( r )/ ( n−3)) ;

va=s 2 ∗ inv (X’∗X) ;

se=s q r t ( diag ( va ) ) ;

Ttest=ze ro s ( 4 , 1 ) ;

f o r j =1:4

Ttest ( j ,1)=B( j , 1 ) / se ( j , 1 ) ;

end

Tval=t inv ( 0 . 9 75 , n−3);
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i f abs ( Ttest ( 2 , 1 ) ) < Tval

counter3=counter3 +1;

end

i f abs ( Ttest ( 3 , 1 ) ) < Tval

counter4=counter4 +1;

end

i f abs ( Ttest ( 4 , 1 ) ) < Tval

counter5=counter5 +1;

end

%HAC est imator f o r se and t−Test

counter6 =0;

counter7 =0;
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counter8 =0;

[ EstCoeffCov , seHAC , c o e f f ] = hac (X( : , 2 : 4 ) ,Y, ’ d i sp lay ’ , ’ o f f ’ ) ;

Ttest1=c o e f f . / seHAC ;

i f abs ( Ttest1 (2 ,1))<Tval

counter6=counter6 +1;

end

i f abs ( Ttest1 (3 ,1))<Tval

counter7=counter7 +1;

end

i f abs ( Ttest1 (4 ,1))<Tval

counter8=counter8 +1;
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end

%Store a l l va lue s in P fo r e ca s t vec to r a f t e r each loop

P fo r e ca s t =[ P fo r e ca s t ; counter counter1 counter2 counter3 counter4 . . .

counter5 counter6 counter7 counter8 counter9 Err Pfcas t Actual ] ;

end
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Below, is our Matlab code for the computation of our triggering method and the

computation of Saturation-Reset Linear Feedback Controller.

f unc t i on [ g ,V, I ] = C o n t r o l l e r S a t u r a t i o n ( alpha ,K, dT, rho ,H, L ,N)

%H i s the vec to r conta in ing the Log−r e turn o f h ighs

%L i s the vec to r conta in ing the Log−r e turn o f lows

%N i s the sample s i z e used f o r the computation o f con f idence i n t e r v a l s

%alpha= s i g n i f i c a n c e l e v e l used f o r computing the con f idence i n t e r v a l s

%K= C o n t r o l l e r ga in

%dT= incrementa l time i n t e r v a l , eg f o r annua l i zed cons id e r 1/252

%rho= d a i l y r e tu rn s

%p r e a l l o c a t e the output v a r i a b l e s

g=ze ro s ( l ength (H)−N, 1 ) ; %Dai ly Trading Gains

V=ze ro s ( l ength (H)−N, 1 ) ; %Dai ly Account Value

I=ze ro s ( l ength (H)−N, 1 ) ; %Dai ly Amount Inves ted
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%I n i t i a l Values

V(1)=10000;

I (1)=0.5∗V( 1 ) ;

g (1)=0;

%Saturat ion Limit

Imax=10000;

f o r i =1: l ength (H)−N−1

%Compute Mean D r i f t o f h ighs

mubar H=mean(H( i :N+i , 1 ) )∗1 /dT;

% Compute v o l a t i l i t y o f h ighs

sigmabar H=s q r t (1/N∗sum ( (H( i :N+i ,1)−mubar H ) . ˆ 2 ) ) ;

%compute upper bound o f con f idence l e v e l f o r mean d r i f t o f h ighs

U H=mubar H+(( t inv (1−alpha /2 ,N)∗ sigmabar H )/ s q r t (N+1)) ;
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%compute Lower bound o f con f idence l e v e l f o r mean d r i f t o f h ighs

L H=mubar H−(( t inv (1−alpha /2 ,N)∗ sigmabar H )/ s q r t (N+1)) ;

%Compute Mean D r i f t o f lows

mubar L=mean(L( i :N+i ))∗1/dT ;

% Compute v o l a t i l i t y o f lows

sigmabar L=s q r t (1/N∗sum ( (L( i :N+i ,1)−mubar L ) . ˆ 2 ) ) ;

%compute upper bound o f con f idence l e v e l f o r mean d r i f t o f lows

U L=mubar L+(( t inv (1−alpha /2 ,N)∗ sigmabar L )/ s q r t (N+1)) ;

%compute Lower bound o f con f idence l e v e l f o r mean d r i f t o f lows

L L=mubar L−(( t inv (1−alpha /2 ,N)∗ sigmabar L )/ s q r t (N+1)) ;

% Go Short : i f both upper bounds are below zero

i f U H<=0 && U L<=0

g ( i +1)=g ( i )+( rho ( i+N+1)∗(−abs ( I ( i ) ) ) ) ;
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V( i +1)=V( i )+( rho ( i+N+1)∗(−abs ( I ( i ) ) ) ) ;

I ( i +1)=max(−abs ( I ( i ))−K∗( g ( i +1)−g ( i )) ,− Imax ) ;

%Going Long : i f both upper bounds are above zero

e l s e i f L H>=0 && L L>=0

g ( i +1)=g ( i )+rho ( i+N+1)∗abs ( I ( i ) ) ;

V( i +1)=V( i )+rho ( i+N+1)∗abs ( I ( i ) ) ;

I ( i +1)=min ( abs ( I ( i ))+K∗( g ( i +1)−g ( i ) ) , Imax ) ;

e l s e

g ( i +1)=g ( i ) ;

V( i +1)=V( i ) ;

I ( i +1)=I ( i ) ;

end
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end

end
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