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Abstract

This thesis aims to analyse a finite element method applied to an adjusted Cahn-

Hilliard equation that has been used for digital image inpainting applications. We

consider both the standard model with a smooth double well potential and an altern-

ative where an obstacle potential has been used. Existence and uniqueness results

are derived for both formulations by adapting techniques existing in literature for

other problems.

For each formulation we then propose approximations, by discretising first in space

and then in time, and we derive error bounds between the weak solution of the

original formulation and the solution of the discrete approximations in terms of the

discretisation parameters.

We then propose and implement a practical numerical scheme for both models and

investigate their use in applications, alongside some other models from literature.

We investigate various real digital image examples and compare the resulting in-

paintings for these competing models, considering their suitability for real-world

applications.
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Chapter 1

Introduction

1.1 Introduction

Image inpainting is an important task in digital image processing applications with

techniques originally derived from related concepts in the restoration of traditional

artwork and photographs. There is a wealth of literature available for various models

in this field, each carrying their own merits and considerations for their implementa-

tion. Image inpainting tasks occur naturally in applications such as medical imaging,

painting restoration and data applications. Digital image inpainting is essentially

the process of using the known pixels in a damaged, incomplete image to help re-

store the unknown pixels. These ‘damaged’ pixels either occur naturally due to the

sampling procedure used to obtain the image or perhaps due to a loss of information

during data compression or corruption to the digital file.

Variational approaches to segmentation and digital image denoising applications can

often be adapted to inpainting tasks by making small modifications; this concept

was introduced by Chan and Shen [21] and can be intuitively understood by consid-

ering the purpose of the fidelity term in these models. The fidelity term attempts

to ensure that the resulting inpainting remains close to the original image in some

sense. If an image is incomplete we simply enforce fidelity at the known pixels and

choose the remaining terms in our model in such a way that they will (hopefully!)

replicate features that would be expected of a natural complete image.

Unfortunately, as is true with many challenges in science, it is very difficult to en-

compass every potential application in this field within a single model whilst still

retaining any hope of efficiently analysing and implementing it and even further we

face the challenge of reconciliating the difference between a mathematical solution

and the true digital image. As such, a variational image inpainting model must be

chosen in such a way that the completions it will produce should exhibit similar

features seen in the known pixels. There are many other techniques that make use
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of pattern recognition and use careful consideration of the more global information

stored in an image when attempting to give a value to the damaged pixels but vari-

ational approaches use information in the pixels around the damaged domain to

extend their features to the unknown pixels.

As argued in [10], total variation (TV) based models, well-known in the literature,

will struggle to connect level-lines (features) in a digital image across a wide dam-

aged domain. Despite being efficient and intuitive in denoising and segmentation

tasks, the completions created by a TV-based image inpainting model deteriorate

in quality very quickly as the width of the damaged domains in the digital image

increases.

There are various remedies to this issue and variational models were introduced

that penalise large curvatures in the inpainting domain in an attempt to connect

level-lines of the digital image across wider damaged domains. This approach clearly

limits the practical scope of the model but produces visually good results for toy

problems using digital images of geometric shapes with a large width of damage.

The authors of [10] introduce a Cahn-Hilliard-based model inspired by the Mumford-

Shah-Euler model [65] from this research area.

The Cahn-Hilliard-based model has been shown numerically to naturally extend

image intensity and contours across wide inpainting regions, showing many of the

positive factors of the model in [65] whilst being superior in computational efficiency

to that and other competing PDE models. This all comes at a price however, and

the Cahn-Hilliard-based image inpainting model cannot be expressed as a gradient

flow, lacking any associated lyapunov functional, providing further challenges in the

analysis and preventing the immediate use of many of the existing results for the

Cahn-Hilliard equation itself.

1.2 Diffuse interface approximations in applica-

tions

The Cahn-Hilliard equation [20] is an equation of mathematical physics which mod-

els the process of spontaneous phase separation in a binary (two-component) fluid

where the final steady-state admits two domains which are pure in one component

each; where the two components meet, there is a smooth transition from one com-

ponent to the other, this is where the phrase ‘diffuse interface’ is derived.

In reality, many of the phenomena being modelled by Cahn-Hilliard-type equations

will not actually admit a diffuse area between the two phases, there will simply be

a sharp change from one component to the other. These so-called ‘sharp interfaces’

can sometimes be modelled directly by explicit evolution equations [28] but these

2



techniques are often restricted by an intolerance to topological changes that may

occur in the evolution of the interface and can also often be quite challenging to

analyse or to solve numerically. There are ways to remedy these issues but diffuse

interface approximations can be used to model curvature-driven motion where such

topological changes are either likely (or even necessary) to occur, and the diffuse

nature of such models provides some stability in aid of numerical approximation.

Instead of modelling an interface between two bulk phases directly, we allow the

whole phase field to vary from one phase to the other across a small region separ-

ating them; in practice we choose values to represent the two phases in the order

parameter u (commonly u = ±1) and then u will admit a smooth interpolation

of these values across the small region across the interface. A small parameter ε

represents the desired order of the width of the transition between the bulk phases.

A careful study can sometimes then be taken of many of these models to show that

they represent some sharp interface dynamics we wish to model when considering

the limit ε→ 0 [35, 77].

In the literature there are many such models for various phenomena in mathematical

physics and chemistry. Coupling to additional equations or adding additional terms

and constraints to Cahn-Hilliard (or Allen-Cahn) equations can be useful in applica-

tions for fluid dynamics [55, 70], electrical fields [69], strain modelling [5, 12, 53] and

even biological processes [25, 58]. Digital image processing is also a natural setting

to use phase field approximations since (non-trivial) digital images naturally admit

interfaces between pixel values. It is reasonable to say that many tasks in image

processing are the study of edges or contours in the digital image.

1.3 The potential function Φ

In phase field equations the potential function Φ is a predominant feature. There

are many choices that can be used for this term and it is often a very considered

choice of which potential a model for a particular application should have. This term

assigns the values the phase field parameter will take to show presence or absence

of each particular phase in the material it represents. This is done by placing such

values as the global minima of the chosen function Φ.

The common choice of smooth (polynomial) free energy is

Φ(u) :=
1

4
(1− u2)2, (1.1)

3



where (as mentioned before) the values u ≡ ±1 represent the pure phases. Of course

we could also take the alternative

Φ(u) := u2(u− 1)2 (1.2)

for a model scaled now between 0 and 1. Note that although we are introducing

this term to classify the dominant phases as represented by these minimal values of

Φ it is entirely feasible that minimisers of the energy functionals or for solutions of

phase field equations will have that u varies outside of this interval as can be seen

in numerical simulations.

An alternative here then if you wish to prevent this phenomena is to take the (non-

smooth) double obstacle potential

Φ(u) :=

{
1
2
(1− u2) −1 ≤ u ≤ 1,

∞ otherwise.
(1.3)

Here we have ‘infinite walls’ outside of the range u ∈ [−1, 1] and this is done to

make it energetically unfavourable (impossible) for u to vary outside of these values.

For this choice, careful consideration has to be made in the derivation of both the

model and the resulting numerical scheme for its implementation since we lack true

derivatives for this Φ. This is covered in more detail later on.

1.4 Existing results for the Cahn-Hilliard equa-

tion

There is a broad and deep study of the Cahn-Hilliard equation in the literature.

There are long-established existence and uniqueness proofs for both the smooth po-

tential case [44] and for the non-smooth case [13, 14]. A vector-valued Cahn-Hilliard

equation has also been established that extends the usual two-phase model to mul-

tiple components [41] and we also have existence and uniqueness proofs in this case.

As far as numerics are concerned, the Cahn-Hilliard equation has been well studied

from both a numerical analysis and a practical implementation perspective. Initial

numerical considerations were discussed in [39] and in [40] the authors propose to

split the fourth-order PDE into a system of two second-order PDEs which can then

be solved numerically with C1 finite elements, a widely-adopted technique that we

will also use in this thesis. In [15] a numerical analysis including error bounds for

the obstacle problem is presented. In [47] the authors provide quasi-optimal er-

ror bounds for semi and fully discrete schemes associated with the Cahn-Hilliard

equation, requiring a stretched time grid (non-uniform) and a spectrum estimate
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result for the linearised Cahn-Hilliard operator [3, 22]. What is especially interest-

ing about this particular result was the care taken to form the bounds in terms of

only polynomial orders of 1
ε

where a standard Grönwall argument increases this to

an exponential factor.

We also have finite element methods proposed especially for the case of degenerate

mobility for a multi-component alloy [6], establishing well-posedness and an iter-

ative discrete scheme; later, the authors in [56] propose an alternative nonlinear

multi-grid method to solve the discrete formulation for this problem.

Many other numerical methods have also been discussed and analysed including Dis-

continuous Galerkin methods [54] and a Primal-Dual Active Set (PDAS) approach

that can be used for various Cahn-Hilliard problems in applications [11]. More re-

cently, the Cahn-Hilliard equation also forms part of the study of evolving surface

problems where the domain of the PDE admits its own motion and transformation

within the higher-dimensional space it is embedded [32, 33, 43].

1.5 A preface about the image function I

In this chapter we discuss various models in image processing applications and the

bulk of this thesis is spent providing some analysis for one specific model in image

inpainting. The model is an adjusted Cahn-Hilliard equation; this particular choice

gives implicit assumptions about the scope of true applications.

As discussed in the previous sections, phase field equations generally model the

kinetics of an interface between two states of a material (or mixture) and the use of

an adjusted phase-field equation in image processing is only appropriate for images

I admitting certain features. Analytically we assume the damaged image I to be an

L2 function over its domain of definition Ω \ D (where D ⊂ Ω is the region where

the image data is unknown) but by applying this model we are making some further

implicit assumptions.

The main model under discussion in this thesis will only be effective in practice at

restoring damaged regions of images I that are predominantly binary; that is, that

I(x) = ±1 for a large majority of the x ∈ Ω \ D. Although some intermediary

grayscale values can be preserved and even reproduced in the damaged region D, by

the very nature of the model in practice we expect a predominantly binary solution.

Intuitively we are actually attempting to locate and restore the contours in the

image (regions where ∇I is large) and then simply fill in the regions in between

these contours with the appropriate bulk value ±1.
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1.6 Deriving the Cahn-Hilliard model

This work will focus on the adjusted Cahn-Hilliard Model for binary image inpainting

[10], an intuitive model introduced to simplify a diffuse interface approximation

[66] of one of the curvature-penalisation models derived from the Mumford-Shah

functional [59] in image segmentation.

The Mumford-Shah segmentation model attempts to recreate a cartoon of a given

image I (which we will be consider to be a function inL2(Ω) with some other specific

properties, more details to follow) as a minimiser of an energy functional with 3 main

features; the segmentation (u, κ) (a ‘cartoon’ of pixel values u and lines κ) should be

a union of sub-domains admitting boundaries κ that are as short as possible, with u

carrying as small a gradient within the sub-domains as possible and to achieve this

with u remaining as close in value to the original image I as possible. Formally, for

an Image I(x) over a domain Ω with a damaged domain D we seek a solution of the

minimisation problem

inf[u(x)∈L2(Ω), κ⊂Ω]

{ˆ
Ω\κ
|∇u|2 dx+ α

ˆ
Ω\D

(I − u)2 dx+ ζLength(κ)

}
(1.4)

where ζ and α are chosen constants.

The segmentation problem itself is interesting and has many applications, some of

which are mostly focused around denoising and edge detection; there are even some

more modern models that will decompose an image into its ‘cartoon’ and ‘texture’

components [37] for some post processing procedure to be implemented seperately.

Here we are mostly concerned with the adaptation of this energy for inpainting ap-

plications.

As emphasised in most of the literature, energies like (1.4) are difficult to work

with in practice because of the minimisation happening over collections of (a pri-

ori unknown) curves in the plane; this motivated various approaches to simplify

or approximate the problem. A diffuse interface approximation of Ambrosio and

Tortorelli [4] attempts to minimise (1.4) in the sense of gamma convergence [27];

that is, proposing a new functional that admits an accumulation point of minim-

isers that will necessarily be a minimiser for (1.4). Another model developed by

Esedoglu and Shen [45] adjusted (1.4) to include curvature of edge contours into the

functional and then a diffuse interface approximation of the resulting energy leads

to (roughly) the following coupled system of equations

∂u

∂t
= ∇ · (z2∇u) + λ(I − u), (1.5)

∂z

∂t
=

(
α +

β

2ε2
Φ
′′
(z)− 4β∆

)(
2ε∆z − 1

4ε
Φ
′
(z)

)
− |∇u|2z, (1.6)
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where β is a new chosen constant coefficient for the curvature term in the functional

and the function z is introduced to keep track of the edge set. The system (1.5) -

(1.6) carries many similar terms to the split Cahn-Hilliard equation [40]. As you can

see, (1.5) is a diffusion equation with diffusion coefficient z2 and the added fidelity

term, and (1.6) is the chemical potential/curvature component of the system. It is

from this system that the authors of [10] proposed their simpler alternative (below).

1.6.1 The Adjusted Cahn-Hilliard Equation for Binary Im-

age Inpainting

For a given binary image I(x) over the rectangular domain Ω with inpainting domain

D ⊂ Ω and small parameter ε � 1; choose an initial state u(x, 0) and allow u to

evolve via

∂u

∂t
= −∆

(
ε∆u− 1

ε
Φ
′
(u)

)
+ λ(x)(I − u) in Ω, (1.7)

∂u

∂ν
=

∂∆u

∂ν
= 0 on ∂Ω, (1.8)

where

λ(x) :=

{
α if x ∈ Ω \D,
0 if x ∈ D,

(1.9)

for a chosen (large) constant α > 0.

Existing results in literature

In [9, 10] the above model is discussed and various analytical and numerical results

are presented. It is immediately noted that this adjusted Cahn-Hilliard equation

cannot be derived as a single gradient descent of an energy functional (unlike the

standard Cahn-Hilliard equation; α = 0) because of the L2 fidelity term. It can,

however, be considered as the sum of two separate gradient descents roughly as:

∂u

∂t
= −∇H−1 (E1)−∇L2 (E2)

where

E1 :=

ˆ
Ω

ε

2
|∇u|2 +

1

ε
Φ(u) dx, E2 := α

´
Ω\D(I − u)2 dx, (1.10)

noting that this form invalidates the transference of any existing results for the

standard Cahn-Hilliard equation that rely on the energy form.
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The authors then consider the question of well-posedness by proving existence of a

weak solution in C([0, T ];L2(Ω)) ∩ L2([0, T ];V ) where the space

V :=
{
v ∈ H2(Ω) | ∂v

∂ν
= 0 on ∂Ω

}
by proving the bound

1

2

d

dt

ˆ
Ω

u2 dx ≤ C1 − C2

ˆ
Ω

u2 dx

and recalling the existence proof given for the standard Cahn-Hilliard equation (α =

0) in [72].

Remark 1.6.1. Some details are deliberately overlooked here due to the analysis we

provide later in this work.

The stationary problem is also given a preliminary investigation and it is proven

that if we have a u ∈ H2(Ω) for the PDE

−∆
(

∆u− Φ
′
(u)
)

+ λ(x)(I − u) = 0 (1.11)

then further we have u ∈ C2,µ(Ω) for all 0 ≤ µ < 1. This result is used to provide

a pointwise bound on isophotes (∇⊥u) on the boundary of D. It is then proven

that in any region where |∇I| ≥ δ0 (for δ0 � 1) the stationary solution u∗ of (1.11)

admits the bound ∣∣∣∣ ∇⊥u∗|∇⊥u∗|
− ∇

⊥I

|∇⊥I|

∣∣∣∣ ≤ 2|∇(u∗ − I)|
δ0

and then further that |∇(u∗ − I)| → 0 as α → ∞. Note that these results depend

on the assumption I(x) ∈ C2(Ω) and so in applications it would be necessary to

regularise the binary image to fully depend on this result (this should ideally be done

to the same scale as the diffuse interface thickness ε). Note that we are then only

given proof of existence of a weak solution to the stationary problem u ∈ H1(Ω).

As far as numerics are concerned, the authors proposed to use convexity splitting

[75] to derive the numerical scheme and then solve by Fast-Fourier-Transform. Spe-

cifically, we rewrite the energies E1, E2 given above such that they are the sum of a

convex and concave part whose Euler-Lagrange equations are then solved implicitly

and explicitly respectively. They verified using numerical tests that their resulting

time-discretisation scheme was unconditionally stable.

The authors also provided practical examples for a bifurcation analysis showing the

different solutions that can be achieved by varying the size of D and ε; for varying

sizes of inpainting domain and/or choice of the parameter ε you can receive very

different steady state solutions for the same problem (with everything else fixed).

Essentially the understanding is that ε must be chosen appropriately depending

on the width of the damaged domain through contours that need to be connected.
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Reducing the thickness of the damaged domain through a stripe can cause the con-

nection of the contours across it to fail for a fixed value of ε that would otherwise

provide a connection for a wider D.

In [16] the authors propose another numerical technique for Cahn-Hilliard inpaint-

ing. The authors claim that qualitatively better results can be obtained by using an

obstacle potential like (1.3) where only smooth potentials such as (1.1) have been

seen before.

1.6.2 Other models and results in literature

Total Variation Inpainting

As briefly touched upon in the opening paragraphs, Chan, Shen (and Kang) intro-

duced a total variation based inpainting framework [67]. The model can be derived

as steepest descent of the energy functional:

ETV (u) :=

ˆ
Ω

|∇u|2 +
λ

2
(I − u)2 dx, (1.12)

resulting in the PDE

∂u

∂t
= ∇ ·

(
∇u
|∇u|

)
+ λ(I − u). (1.13)

It is proven by the authors that at least one admissible minimiser to the total

variation problem

inf[u∈BV (Ω), |u|≤1]

{ˆ
Ω

|Du| dx
}

(where Du is the standard weak derivative of u) exists in the space of functions of

bounded variation (BV (Ω) [1]). Here we have the additional intuitive constraints of

bounding u to admissible grayscale values (naturally u ∈ [0, 255] but usually scaled

to u ∈ [0, 1]) along with an initial guess outside of the damaged domain as part of

the proof.

It is also noted that we lack uniqueness but this can be hailed as a potential merit to

a model rather than a drawback since having many different candidates for optimal

inpaintings can be useful in practice.

The authors in [60] provided an iterative method for implementing a Total Variation

based inpainting model for denoising and deblurring images. This is one of many

decomposition methods that attempt to decompose the noisy, textured image I into

two parts, a cartoon u and a texture component v (which will also carry the noise).

Writing I = u+v and considering the decomposed parts seperately in the procedure.
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The authors proved that their technique produces a minimising sequence (u)k when

exact data is given and also has weak-* convergence in BV (Ω) for the case of a noisy

image when given the stopping criterion related to the order of the size of the noise

in the image.

The Adjusted Allen-Cahn Equation

One of the closest related models in the literature to the adjusted Cahn-Hilliard

equation is the adjusted Allen-Cahn model. The Allen-Cahn equation has been

used in image processing applications before, particularly for image segmentation

[8]. As previously discussed, as for most variational segmentation models, this can

then be adjusted for image inpainting applications [57] with good results.

In [57] they propose the following system

∂u

∂t
=

{
∆u− 1

ε2
Φ
′
(u) in D

0 in Ω \D.

Their resulting numerical scheme is derived by operator splitting and solved by a

combination of gauss-seidel and separation of variables techniques. A proof is offered

that their resulting hybrid splitting method is unconditionally stable for any time

step size.

Numerical tests for sensitivity to initial conditions and variance of the ε parameter

are undertaken, showing that the same final steady state solution can be obtained for

some toy problems regardless of the choice of initial state in the damaged domain.

Wavelet-Based Inpainting

In [29, 30] the authors introduce the so-called ”wavelet Ginzburg-Landau” energy.

Moving from the standard Fourier basis to wavelet basis, there are many redefinitions

but the main point here is to define the wavelet Laplacian. The wavelet Laplacian

has the wavelet basis functions as eigenfunctions; for an orthonormal wavelet ψ the

wavelet Laplacian ∆w of a function u ∈ L2(R) is

∆wu := −
∞∑
j=0

ˆ
R
(u, ψj,k)ψj,k dk (1.14)

where (·, ·) denotes the standard L2 inner product and where the wavelet mode (j, k)

is defined as

Ψj,k(x) = 2
j
2ψ(2jx− k), j = 0, 1, ..., k ∈ R. (1.15)
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In the cited works, a Γ-convergence analysis is performed on the wavelet analogue

of the Ginzburg-Landau functional showing analogues of the properties and beha-

viour known for the traditional Ginzburg-Landau energy. In their later work [31]

they tackle the more applicable gradient descent equations with a view to practical

implementation. Modifying the wavelet Ginzburg-Landau energy (with a double

well potential) by adding an L2(Ω) fidelity term then gives us the Euler-Lagrange

equation

ε∆wu− (
1

ε
u3 + u)− λ(u− I) = 0. (1.16)

Many analytical properties are verified by the authors including the existence of a

solution to (1.16). An additional edge-preserving fidelity term is also added and

allows much flexibility in the model, in the form of a fidelity term on the wavelet

domain. The aim is to provide a reliable inpainting technique that can both con-

nect contours across inpainting domains as well as replicate and preserve small-scale

features in an image, down to a chosen threshold.

Without including too much of the details here (since we will not revisit this model)

a comprehensive analysis is offered showing that the resulting energy admits a min-

imiser that is unique under certain assumptions about the parameters. Restrictions

are placed on the balance between the sizes of the fidelity parameter for the spatial

and wavelet domains under which it is shown that we can achieve an L∞ minimiser

u that also further has the property that |u| ≤ 1 and is smooth. This model can be

tuned to make it more suited to denoising applications, super-resolution of images

or image inpainting.

Adjusted Cahn-Hilliard System for Colour Image Inpainting

A recent development to the Cahn-Hilliard model that we are focusing on in this

thesis was offered in [23]. Here the authors make use of a multi-component phase

field [18, 41] to attempt to inpaint an image of multiple colours. A vector valued

phase field parameter u admits a fixed number n ∈ N components with each entry

representing the concentration of its particular component. Specifically, modelling

a three-component mixture we will have a u := (u)i for i = 1, 2, 3 with uj(x) ∈ [0, 1]

representing the concentration of component j at x. The constraint here is that∑n
i=1 ui(x) = 1 everywhere. What this means is that regions pure in one particular

component will admit one uj = 1 and the others should be 0. Regions within the

diffuse interface between components will then vary in value but still satisfy the sum

constraint above. These models can be derived for various applications but here we

are interested in the relationship to digital image inpainting.

The authors make use of a multi-component Cahn-Hilliard equation (with the sum
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constraint) with the added fidelity term

λ(x)(Ii − ui), i = 1, ..., n, (1.17)

where the image I has been given in an n-component form with each component

representing a particular colour in the image.

Remark 1.6.2. Note here that this model is not discussing a ‘true’ colour or gray-

scale digital image since each and every colour in the image that is desired for the

resulting inpainting must be given its own component in u, yet the authors only

discuss 3-colour and 9-colour images.

The authors are then able to prove existence of a solution to their system in (roughly)

the space L∞([0, T ];L2(Ω)n) ∩ L2([0, T ];H2(Ω)n) ∩ L4([0, T ];L4(Ω)n) where each of

the spatial function spaces carry the additional appropriate sum constraint (and

for H2, boundary conditions). They then continue to use this result to further

prove that their associated semi-group admits a connected global attractor, and

then further, an exponential attractor.

As noted by the authors, what is currently missing in the analysis of this model is

a general proof of algebraic consistency in their system for general n-components.

What is offered is that the 3-phase system reduces naturally to a 2-phase system in

the absence of a third colour in the chosen image I. By algebraic consistency we

mean two things; firstly that when a certain number k phases are not present that

the n-phase free energy is equal to the (n− k)-phase free energy and secondly that

none of these k absent phases appear artificially during the evolution of the system.

The handful of numerical results shown do suggest that this may not be an issue

but the proof remains open.

1.7 Outline of the thesis

In this thesis we rewrite (1.7) using a second order splitting [40] and we replace

the homogeneous Neumann boundary (1.8) with Dirichlet boundary conditions; in

particular we consider the following problem.

For a given binary image I(x) over the rectangular domain Ω with inpainting domain

D ⊂ Ω and small parameter ε � 1, choose an initial state u(x, 0) and allow u to
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evolve via

∂u

∂t
= ∆w + λ(x)(I − u) in Ω× (0, T ), (1.18a)

w =
1

ε
Φ
′
(u)− ε∆u in Ω× (0, T ), (1.18b)

u(x, 0) = u0(x) in Ω (1.18c)

u = −1, w = 0 on ∂Ω× (0, T ), (1.18d)

where T ∈ R+
0 and λ(x) is defined in (1.9) with a chosen (large) constant α. Through-

out the following chapters we set D to be a union of open bounded domains with

Lipschitz boundaries.

We have replaced the homogenous Neumann boundary conditions with Dirichlet

boundary conditions as the absence of mass conservation of u for this model caused

us technical difficulties when we tried to obtain the analytical results in Chapters 2

and 3 for the model with Neumann boundary conditions. With Neumann boundary

conditions we could not achieve the regularity desired for the error analysis we wished

to provide. It can be seen by a simple inspection that there will be regularity issues

with the discontinuous function λ but we further found we were unable to achieve

reasonable regularity (u ∈ H2(Ω), ∂tu ∈ L2(Ω) or H−1(Ω)); there are perhaps

other approaches to resolve these issues, such as an alternative choice of Φ, however

we chose to alter the boundary conditions. The idea to replace the homogenous

Neumann boundary conditions with Dirichlet boundary conditions came from [48].

In the context of binary image image inpainting the Dirchlet boundary condition

u = −1 on ∂Ω imposes that the image be either all black or all white on the

boundary, while the homogenous Neumann boundary condition imposes that any

boundaries between black and white regions of the image that meet the boundary

of the domain must do so orthogonally.

In Chapter 2 we consider (1.18) with Φ(·) taken to be the smooth double well

potential defined in (1.1). We establish the existence of a unique weak solution

(u,w) to (1.18) and provide stability bounds on this solution that are essential in

the numerical analysis that follows later in the chapter. We present a semi-discrete

(in space) finite element formulation of the model for which we prove the existence

of a unique solution (uh, wh) and we prove an estimate on the difference between the

solution (uh, wh) of the semi-discrete model and the weak solution (u,w) of (1.18).

We conclude the chapter by presenting a fully discrete (in time and space) finite

element approximation to the model. As for the semi-discrete model, a stability

analysis and proof of existence and uniqueness for this fully discrete model is given

and we prove an estimate on the difference between the solution (unh, w
n
h) of the

fully-discrete model and the weak solution (u,w) of (1.18).
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In Chapter 3 we tackle a challenging alternative choice for the potential term Φ(·)
in the model. The results in the previous chapter use the traditional double-well

potential term in the model, a polynomial exhibiting global minima at the values

representing the distinct states of the phase field parameter u (in our binary image

applications, the values representing black and white pixels). It is well established

in the literature that the choice of the double obstacle potential (1.3) often has both

computational and modelling advantages but provides additional challenges in the

analysis and implementation [14]. The infinite walls in (1.3) provide an immediate

challenge in the calculus due to the lack of traditional derivatives of Φ(·) so we

make use of the notion of weak derivatives to write a variational formulation of the

resulting problem.

By first regularising Φ(·) and then considering a limiting argument we establish the

existence of a unique weak solution (u,w) to (1.18) and provide stability bounds

on this solution that, as in the case of the double well potential in Chapter 2, are

essential in the numerical analysis that follows later in the chapter. We present a

semi-discrete (in space) finite element form of the model for which we prove the

existence of a unique solution (uh, wh) and we prove an estimate on the difference

between the solution (uh, wh) of the semi-discrete model and the weak solution (u,w)

of (1.18). Again we conclude the chapter by presenting a fully discrete (in time and

space) finite element approximation to the model. As for the semi-discrete model, a

stability analysis and proof of existence and uniqueness for this fully discrete model

is given and we prove an estimate on the difference between the solution (unh, w
n
h) of

the fully-discrete model and the weak solution (u,w) of (1.18).

In Chapter 4 we discuss some practical numerical results of the models from Chapters

2 and 3. A fully practical finite element implementation is given and the claimed

advantages of the model itself in terms of the quality of the result and computational

efficiency are exhibited for this implementation. Some related models are discussed

and the various strengths and weaknesses are displayed to show a potential use for

the Cahn-Hilliard model in establishing human tissue boundaries in medical imaging,

offering an accurate and natural reconstruction for relatively low computational

demand.

In this chapter we will also discuss an alternative 4th order curvature-based model

that can be implemented for full grayscale images. A consideration for the use of

these models in magnetic resonance imaging is briefly discussed and a practical finite

element formulation is offered as for the other models.

14



Chapter 2

Double Well

2.1 Introduction and motivation

In this chapter we consider (1.18) with Φ(·) taken to be the smooth double well

potential defined in (1.1), such that

∂u

∂t
= ∆w + λ(x)(I − u) in Ω× (0, T ),

w =
1

ε
Φ
′
(u)− ε∆u in Ω× (0, T ),

u(x, 0) = u0(x) in Ω

u = −1, w = 0 on ∂Ω× (0, T ),

where for a chosen (large) constant α

λ(x) :=

{
α if x ∈ Ω \D,
0 if x ∈ D.

We establish the existence of a unique weak solution (u,w) (defined fully later) to

the above model and provide stability bounds on this solution that are essential

in the numerical analysis that follows later in the chapter. We present a semi-

discrete (in space) finite element of the model for which we prove the existence

of a unique solution (uh, wh) and we prove an estimate on the difference between

the solution (uh, wh) of the semi-discrete model and the weak solution (u,w). We

conclude the chapter by presenting a fully discrete (in time and space) finite element

approximation to the above model. As for the semi-discrete model, a stability

analysis and proof of existence and uniqueness for this fully discrete model is given

and we conclude the chapter by proving an estimate on the difference between the

solution (unh, w
n
h) of the fully-discrete model and the weak solution (u,w) of (1.18).
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2.2 Notation and useful preliminaries

Notation

For convenience, throughout this thesis we often use the notation Lp(S) and W k,p(S)

for any p ∈ [1,∞], k > 0 to denote the standard Lebesgue spaces and Sobolev spaces

equipped with the norms ‖ · ‖Lp(S) and ‖ · ‖Wk,p(S) where S is the domain over which

we are taking the norm; often we will simply have the case S = Ω and if the “(S)”

is omitted, the reader should always consider it as such. For some cases we will

consider S = (X;W k,p(Ω)) for a set X ⊂ R where we define for all functions f and

q ∈ [1,∞] the following notation:

‖f‖Lq(X;Wk,p(Ω)) :=

(ˆ
X

‖f‖q
Wk,p(Ω)

)1/q

,

‖f‖H1(X;Wk,p(Ω)) :=

(ˆ
X

‖∂tf‖2
Wk,p(Ω)

)1/2

.

In the case p = 2, for simplicity of notation, we replace ‖ · ‖L2(Ω) with ‖ · ‖ and we

use Hk(Ω) := W k,2(Ω) with the norm ‖ · ‖Hk(Ω). We denote the L2(Ω) inner product

by
´

Ω
uv dx = (u, v) and we denote the duality pairing between H1

0 (Ω) and its dual

H−1(Ω) by 〈·, ·〉. For these cases we define the following notation for all functions f

and q ∈ [1,∞]:

‖f‖Lq(X;H−1(Ω)) :=

(ˆ
X

‖f‖qH−1(Ω)

)1/q

,

‖f‖H1(X;H−1(Ω)) :=

(ˆ
X

‖∂tf‖2
H−1(Ω)

)1/2

.

Note that throughout this thesis we will use C to represent a constant value that will

change between results and even between lines in the same calculation. This notation

is adopted to aid readability of constants we are not concerned with calculating

precisely for our desired results; any constants directly relevant to the analysis (for

example, those that must be chosen under certain restrictions) will be handled

appropriately and explicitly for each case as needed.

Finally, please note that throughout the thesis we will often apply both time and

spatial derivative operators to the same function and these should be interpreted in

the natural way, for example, for any function f : Ω→ R we define

∇∂tf(x, y, t) :=

(
∂

∂x
,
∂

∂y

)
∂f(x, y, t)

∂t
∀(x, y) ∈ Ω, t ∈ R
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and then naturally it follows from the definition of the Laplace operator ∆ that

∆∂tf(x, y, t) = ∇ · ∇∂tf(x, y, t) ∀(x, y) ∈ Ω, t ∈ R.

General Assumptions

Unless otherwise stated throughout this chapter we set T > 0, Ω ⊂ R2 to be

bounded domain with a Lipschitz boundary ∂Ω, and D to be a union of open

bounded domains with Lipschitz boundaries. In addition we often make use of the

fact that ‖λ‖L∞(Ω) ≤ C and we make the following assumptions on the initial data

and the image data

‖u0‖H1
0 (Ω) + ‖I‖2 ≤ C, (2.2)

where here (and in the sequel) we interpret the function I as naturally extended

somehow into D so that it is consistent to take the L2(Ω) norm.

Useful Inequalities, Identities and Definitions

We make regular use of Young’s inequality; for a chosen δ > 0 we have that

ab ≤ a2

2δ
+
δb2

2
, ∀a, b ∈ R ∪ {∞} (2.3)

and we make use of the well known identity

a(a− b) =
1

2
(a− b)2 +

1

2
a2 − 1

2
b2. (2.4)

From, [46], we have the following useful results. Let p ∈ [1, 6], then Sobolev embed-

ding yields

‖f‖Lp(Ω) ≤ C‖f‖H1
0 (Ω), ∀ f ∈ H1

0 (Ω), (2.5)

let p ∈ [1,∞), then the Poincaré inequality is given by

‖f‖Lp(Ω) ≤ C‖∇f‖Lp(Ω), ∀ f ∈ W 1,p
0 (Ω) (2.6)

and Agmon’s inequality is given by

‖u‖L∞(Ω) ≤ C‖u‖1/2

H1
0 (Ω)
‖u‖1/2

H2
0 (Ω)

. (2.7)

We also introduce the inverse Dirichlet-Laplacian operator [39] G : H−1(Ω) →
H1

0 (Ω) such that

(∇Gη,∇χ) = 〈η, χ〉 ∀χ ∈ H1
0 (Ω), (2.8)
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and we note that for all χ ∈ H1
0 (Ω) and γ ∈ R we have

‖χ‖2 = (∇χ,∇G(χ)) ≤ ‖∇G(χ)‖‖∇χ‖ ≤ 1

2γ
‖∇G(χ)‖2 +

γ

2
‖∇χ‖2. (2.9)

2.3 Weak formulation

In this section we present a weak formulation of (1.18). We prove the existence of a

unique solution (u,w) to this weak formulation and we then derive stability bounds

on u and w.

The proofs of Lemma 2.3.1, Theorem 2.3.2 and Lemma 2.3.3 are closely adapted

from the proofs of similar results in [48, 49].

2.3.1 Existence and uniqueness

We consider the weak formulation associated to (1.18) which reads as follows. We

call a pair of functions (u,w) a weak solution to (1.18) if

u ∈ −1 + L∞(0, T ;H1
0 (Ω)), ∂tu ∈ L2(0, T ;H−1(Ω)), w ∈ L2(0, T ;H1

0 (Ω)),

such that for a.e. t ∈ (0, T )

〈∂tu, ζ〉 =

ˆ
Ω

−∇w · ∇ζ dx +

ˆ
Ω

λ(I − u)ζ dx , ∀ζ ∈ H1
0 (Ω) (2.10a)

ˆ
Ω

wφ dx =

ˆ
Ω

(
1

ε
Φ′(u)φ+ ε∇u · ∇φ

)
dx , ∀φ ∈ H1

0 (Ω) (2.10b)

with initial data u(x, 0) = u0(x) ∈ −1 +H1
0 (Ω).

We obtain global weak solutions via a suitable Galerkin procedure. Consider the

set of eigenfunctions for the Dirichlet Laplacian, {zi}i∈N, which are chosen such that

they form an orthonormal basis of L2(Ω) and an orthogonal basis of H1
0 (Ω). Let

Wk := span{z1, . . . , zk} ⊂ H1
0 (Ω)

denote the finite dimensional space spanned by the first k basis functions. We now

consider

uk(t, x) = −1 +
k∑
i=1

αki (t)zi(x), wk(t, x) =
k∑
i=1

ηki (t)zi(x), (2.11)
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and the following Galerkin approximation,

ˆ
Ω

∂tukzj dx =

ˆ
Ω

−∇uk · ∇zj dx +

ˆ
Ω

λ(I − uk)zj dx , (2.12a)

ˆ
Ω

wkzj dx =

ˆ
Ω

(
1

ε
Φ′(uk)zj + ε∇uk · ∇zj

)
dx , (2.12b)

for 1 ≤ j ≤ k. Let δij =
´

Ω
zizj dx denote the normalised Kronecker delta and

Sij :=

ˆ
Ω

∇zi · ∇zj dx ,F k(uk) := (F k
1 , . . . , F

k
k )>,ψk(uk) := (ψk1 , . . . , ψ

k
k)>,

with F k
j :=

´
Ω
λ(I − uk)zj and ψkj :=

´
Ω

Φ′(uk)zj dx , for 1 ≤ i, j ≤ k.

Thus we obtain the following initial value problem for a system of ordinary differ-

ential equations for αk := (αk1, . . . , α
k
k)
> and ηk := (ηk1 , . . . , η

k
k)>,

d

dt
αk = −Sηk + F k(uk), (2.13a)

ηk =
1

ε
ψk(uk) + εSαk (2.13b)

with the initial conditions

αk(0) := (αk1(0), . . . , αkk(0))> with αkj (0) =

ˆ
Ω

u0zj dx . (2.14)

Substituting (2.13b) into (2.13a), we obtain

d

dt
αk = −S

(
1

ε
ψk(uk) + εSαk

)
+ F k(uk). (2.15)

We remark that (2.15) is a nonlinear ODE system whose right-hand side depends

continuously on αk. Thus, we can appeal to the theory of ODEs (via the Cauchy–

Peano theorem) to infer that the initial value problem (2.15) has at least one local

solution αk defined on [0, tk] for each k ∈ N. From (2.13b) we conclude at least one

local solution ηk defined on [0, tk] for each k ∈ N.

Lemma 2.3.1. Let (uk, wk) be functions satisfying (2.12) with uk(0) satisfying

(2.14) and uk ∈ −1 + C1([0, T ];H1
0 (Ω)), wk ∈ C0([0, T ];H1

0 (Ω)). Then, there exists

a positive constant C depending on T , Ω and the initial data, ‖u0‖H1(Ω), such that

for all s ∈ (0, T ],

‖Φ(uk(s))‖L1(Ω) + ‖uk(s)‖2
H1(Ω) + ‖wk‖2

L2(0,s;H1
0 (Ω)) ≤ C, (2.16)

‖uk‖2
L2(0,s;H−1(Ω)) ≤ C. (2.17)

Proof. Multiply (2.12a) by ηkj , and summing the resulting product from j = 1 to k
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gives

ˆ
Ω

(∂tukwk + |∇wk|2) dx =

ˆ
Ω

λ(I − uk)wk dx . (2.18)

Similarly, multiplying (2.12b) by d
dt
αkj , and summing the resulting product from

j = 1 to k gives

0 = (−wk +
1

ε
Φ′(uk)), ∂tuk) + ε(∇uk,∇∂tuk). (2.19)

Adding (2.18) and (2.19) yields

d

dt

ˆ
Ω

[
1

ε
Φ(uk) +

ε

2
|∇uk|2

]
dx +

ˆ
Ω

|∇wk|2 dx =

ˆ
Ω

λ(I − uk)wk dx (2.20)

and noting (2.3) and (2.6) we have∣∣∣∣ˆ
Ω

λ(I − uk)wk dx

∣∣∣∣ ≤ α(‖I‖+ ‖uk‖)‖wk‖

≤ C‖I‖2 + C‖∇uk‖2 +
1

2
‖∇wk‖2. (2.21)

Combining (2.20) and (2.21), integrating the resulting inequality with respect to t

from 0 to s ∈ (0, T ] and then using Grönwall’s inequality gives

sup
s∈(0,T ]

ˆ
Ω

[
1

ε
Φ(uk(x, s)) +

ε

2
|∇uk(x, s)|2

]
dx + ‖∇wk‖2

L2(0,T ;L2(Ω)) ≤ C(s) (2.22)

where C(s) is independent of k. Using (2.6) we have that

sup
s∈(0,T ]

(‖Φ(uk(s))‖L1(Ω) + ‖uk(s)‖2
H1(Ω)) + ‖wk‖2

L2(0,T ;H1
0 (Ω)) ≤ C(T ),

where C(T ) is independent of k. From this a priori estimate it follows that the

solution {uk, wk} to (2.15) can be extended to the interval [0, T ], and thus tk = T

for each k ∈ N.

Let Πk denote the orthogonal projection onto Wk = span{z1, . . . , zk}. Then, for any

ζ ∈ L2(0, T ;H1
0 (Ω)), we see that

ˆ
Ω

∂tukζ dx =

ˆ
Ω

∂tukΠkζ dx =
k∑
j=1

ˆ
Ω

∂tukζkjzj dx ,

where {ζkj}1≤j≤k ⊂ Rk are the coefficients such that Πkζ =
∑k

j=1 ζkjzj. Using
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(2.12a), and (2.16) we have∣∣∣∣ˆ T

0

ˆ
Ω

∂tukζ dx

∣∣∣∣ ≤ ‖∇wk‖L2(Ω×(0,T ))‖∇Πkζ‖L2(Ω×(0,T ))

+ ‖λ(I − uk)‖L2(Ω×(0,T ))‖Πkζ‖L2(Ω×(0,T ))

≤ C‖ζ‖L2(0,T ;H1
0 (Ω))

(2.23)

and this completes the proof.

Theorem 2.3.2. There exists a unique weak solution (u,w) to (2.10) that satisfies

‖Φ(u(s))‖L1(Ω) + ‖u(s)‖2
H1(Ω) + ‖w‖2

L2(0,s;H1
0 (Ω)) + ‖u‖H1(0,s;H−1(Ω)) ≤ C, (2.24)

for all s ∈ (0, T ]

Proof. The proof follows the results in Section 3.1.2 in [48] but we include it here

for completeness.

From (2.16) and (2.17) we have that

{uk}k∈N bounded in (−1 + L∞(0, T ;H1
0 (Ω))) ∩H1(0, T ;H−1(Ω)),

{wk}k∈N bounded in L2(0, T ;H1
0 (Ω)).

By standard compactness results and [68], we obtain, for a relabelled subsequence,

uk → u weakly-∗ in − 1 + L∞(0, T ;H1
0 (Ω)),

uk → u strongly in C([0, T ];Hr(Ω)) ∩ L2(0, T ;Lp(Ω))

and a.e. in Ω× (0, T ),

∂tuk → ∂tu weakly in L2(0, T ;H−1(Ω)),

wk → w weakly in L2(0, T ;H1
0 (Ω)),


(2.25)

for 0 ≤ r < 1 and 1 ≤ p < 6. The Sobolev embedding H3/4 ⊂ L4 then yields that

C([0, T ];H3/4(Ω)) ⊂ L4(0, T ;L4(Ω)) and hence we have that

uk → u strongly in L4(0, T ;L4(Ω)).

We fix j and consider δ(t) ∈ C∞0 (0, T ), then δ(t)zj ∈ L2(0, T ;H1
0 (Ω)). By (2.5) we

have the following,

ˆ T

0

ˆ
Ω

∣∣|uk − u|3 (δzj)
∣∣ dx dt ≤

ˆ T

0

|δ(t)|‖uk − u‖L4(Ω)‖δzj‖L4(Ω) dt

≤ C‖uk − u‖L4(0,T ;L4(Ω))‖zj‖H1(Ω)‖δ‖L 4
3 (0,T )

→ 0 as k →∞.
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In particular, we have

|uk − u|3δzj → 0 strongly in L1(0, T ;L1(Ω)) as k →∞

⇒ (|u|3 + |uk − u|3)|δzj| → |u|3|δzj| a.e. in Ω× (0, T ), as k →∞

and hence we have that

ˆ T

0

ˆ
Ω

(|u|3 + |uk − u|3)|δzj| dx dt →
ˆ T

0

ˆ
Ω

|u|3|δzj| dx dt as k →∞.

Since |uk|3|δzj| ≤ C(|uk|3 + |uk−u|3)|δzj| ∈ L1(0, T ;L1(Ω)) for all k, the generalised

Lebesgue dominated convergence theorem yields that

ˆ T

0

ˆ
Ω

|uk|3δzj dx dt →
ˆ T

0

ˆ
Ω

|u|3δzj dx dt as k →∞,

and hence, from (2.25), we conclude that

ˆ T

0

ˆ
Ω

Φ′(uk)δzj dx dt →
ˆ T

0

ˆ
Ω

Φ′(u)δzj dx dt as k →∞.

Multiplying (2.12) with δ ∈ C∞0 (0, T ), integrating in time from 0 to T , passing to

the limit k →∞ and noting (2.25), we obtain

ˆ T

0

δ(t)〈∂tu, zj〉 dt = −
ˆ T

0

ˆ
Ω

δ(t)∇w · ∇zj dx dt +

ˆ
Ω

λ(I − u)zj dx dt ,

ˆ T

0

ˆ
Ω

δ(t)wzj dx dt =

ˆ T

0

ˆ
Ω

δ(t)

(
1

ε
Φ′(u)zj + ε∇u · ∇zj

)
dx dt .

Since the above equations hold for all δ ∈ C∞0 (0, T ) and as {zj}j∈N is a basis for

H1
0 (Ω), it follows that (u,w) satisfies (2.10) for all ζ, φ ∈ H1

0 (Ω). The boundary data

u(0) = u0 follows as a result of the strong convergence of uk to u in C([0, T ];L2(Ω)),

such that uk(0)→ u0. Thus we conclude that (u,w) is a weak solution of (2.10).

Now suppose we have two solutions {ui, wi}i=1,2 to (2.10). Let us denote the differ-

ences by θu := u1 − u2 and θw := w1 − w2.

Then, we see that θu ∈ L∞(0, T ;H1
0 (Ω))∩H1(0, T ;L2(Ω)) and θw ∈ L2(0, T ;H1

0 (Ω))

satisfy

(∂tθ
u, ζ) = −

ˆ
Ω

∇θw · ∇ζ dx −
ˆ

Ω

λθuζ dx , (2.26a)

ˆ
Ω

θwφ dx =

ˆ
Ω

(
1

ε
(Φ′(u1)− Φ′(u2))φ+ ε∇θu · ∇φ

)
dx , (2.26b)

for all ζ, φ ∈ H1
0 (Ω) and for a.e. t ∈ (0, T ).
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Setting ζ = G(θu), where G is the inverse Dirichlet - Laplacian operator defined in

(2.8), gives

(∂tθ
u, G(θu)) = −

ˆ
Ω

∇θw · ∇G(θu) dx −
ˆ

Ω

λθuG(θu) dx ,

noting (2.8), (2.9) and (2.6) we have

1

2

d

dt
‖∇G(θu)‖2 ≤ −

ˆ
Ω

θwθu dx + C‖θu‖‖∇G(θu)‖

≤ −
ˆ

Ω

θwθu dx +
ε

4
‖∇θu‖2 + C‖∇G(θu)‖2. (2.27)

Setting φ = θu in (2.26), recalling that Φ′(u) = u3−u and noting that (u3
1−u3

2)θu ≥ 0

yields

ˆ
Ω

θwθu dx =
1

ε

ˆ
Ω

(u3
1−u3

2)θu dx−1

ε
‖θu‖2+ε‖∇θu‖2 ≥ −1

ε
‖θu‖2+ε‖∇θu‖2. (2.28)

Upon adding (2.27) and (2.28) we obtain

1

2

d

dt
‖∇G(θu)‖2 +

3ε

4
‖∇θu‖2 ≤ 1

ε
‖θu‖2 + C‖∇G(θu)‖2

and from (2.9) we conclude

1

2

d

dt
‖∇G(θu)‖2 +

ε

2
‖∇θu‖2 ≤ C‖∇G(θu)‖2.

Now we integrate w.r.t. t over [0, T ] and use a Grönwall inequality to conclude that

‖∇G(θu(·, T ))‖2 +

ˆ T

0

‖∇θu(·, s)‖2 ds ≤ C‖∇G(θu(·, 0))‖2 = 0

from which the uniqueness of u follows. The uniqueness of w then follows from

(2.26b).

In Lemmas 2.3.3 and 2.3.4 we obtain further regularity on (u,w) at the cost of

assuming that ∂Ω is a C3 boundary.

Lemma 2.3.3. If ∂Ω is a C3 boundary then we have

ˆ T

0

‖u‖2
H3(Ω) dt ≤ C (2.29)

and ˆ T

0

‖∇u‖4
L∞(Ω) dt ≤ C. (2.30)

23



Proof. We have that (2.10b) can be seen as the weak formulation of

ε∆u =
1

ε
Φ′(u)− w, in Ω (2.31)

with u = −1 on ∂Ω. Hence we have

ε‖∆u‖ ≤ C

(
1

ε
‖Φ′(u)‖+ ‖w‖

)
. (2.32)

Noting that

ˆ
Ω

|Φ′(u)|2 dx ≤ C

ˆ
Ω

(|u|6 + |u|2) dx ≤ C(‖u‖6
L6(Ω) + ‖u‖2) ≤ C(‖u‖6

H1(Ω) + ‖u‖2)

from (2.24) we conclude that Φ′(u) ∈ L∞(0, T ;L2(Ω)) and since w ∈ L2(0, T ;H1(Ω))

from (2.32), by elliptic regularity theory (since ∂Ω is a C3 boundary), we have

u ∈ L2(0, T ;H2(Ω)). Thus from (2.7) we have

ˆ T

0

‖u‖4
L∞(Ω) dt ≤ C

ˆ T

0

‖u‖2
H1(Ω)‖u‖2

H2(Ω) ≤ C. (2.33)

From (2.24) and (2.33) we have

ˆ T

0

(ˆ
Ω

|∇Φ′(u)|2 dx

)
dt =

ˆ T

0

(ˆ
Ω

(3u2 − 1)2|∇u|2 dx

)
dt

≤ C

ˆ T

0

(
(1 + ‖u‖4

L∞(Ω))

ˆ
Ω

|∇u|2 dx

)
dt ≤ C.

Hence we conclude that Φ′(u) ∈ L2(0, T ;H1(Ω)) and since w ∈ L2(0, T ;H1(Ω))

from (2.32), by elliptic regularity theory (since ∂Ω is a C3 boundary), we have

u ∈ L2(0, T ;H3(Ω)). and the proof is concluded by replacing u with ∇u in (2.33)

and noting that u ∈ L∞(0, T ;H2(Ω)) ∩ L2(0, T ;H3(Ω)).

Lemma 2.3.4. If ∂Ω is a C3 boundary and ‖u0‖H2(Ω) ≤ C, then we have

‖∆u(·, T )‖2 +

ˆ T

0

(‖∂tu‖2 + ‖w‖2
H2(Ω)) dt ≤ C. (2.34)

Proof. We test (2.10a) with ξ = ∂tu to obtain that

‖∂tu‖2 + (∇w,∇∂tu) = (λ(I − u), ∂tu),

and (2.10b) with φ = ∆∂tu, where we note from (2.31) that ∆u = 0 on ∂Ω, to get

ε

2

d

dt
‖∆u‖2 =

1

ε
(Φ
′
(u),∆∂tu) + (∇w,∇∂tu).
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Combining the above two equations we have

‖∂tu‖2 +
ε

2

d

dt
‖∆u‖2 =

1

ε
(Φ
′
(u),∆∂tu) + (λ(I − u), ∂tu)

≤ 1

ε
(∇ · (Φ′′(u)∇u), ∂tu) + C‖I‖2 + C‖u‖2 +

1

4
‖∂tu‖2. (2.35)

using (2.3) we have that

(∇ · (Φ′′(u)∇u), ∂tu) = (Φ
′′′

(u)|∇u|2, ∂tu) + (Φ
′′
(u)∆u, ∂tu) (2.36)

= (6u|∇u|2, ∂tu) + ((3u2 − 1)∆u, ∂tu) (2.37)

≤ C‖u‖2‖∇u‖4
L∞(Ω) +

1

4
‖∂tu‖2

+C(‖u‖4
L∞(Ω) + 1)‖∆u‖2. (2.38)

From (2.35), (2.38) and (2.6) we have that

1

2
‖∂tu‖2 +

ε

2

d

dt
‖∆u‖2 ≤ C‖∇u‖2‖∇u‖4

L∞(Ω) + C(‖u‖4
L∞(Ω) + 1)‖∆u‖2

+C(‖I‖2 + ‖∇u‖2).

Recalling (2.24) and (2.30) we integrate the above inequality w.r.t. t over [0, T ] and

applying Grönwall’s inequality yields the first two bounds in (2.34). To prove the

third bound we first note that (2.10a) can be seen as the weak formulation of

∂tu = ∆w + λ(I − u), in Ω (2.39)

with w = 0 on ∂Ω. Hence we have

ˆ T

0

‖∆w‖2 dt ≤ C

ˆ T

0

(
‖∂tu‖2 + ‖I‖2 + ‖u‖2

)
dt ≤ C

and the third bound follows by elliptic regularity theory, since ∂Ω is a C3 boundary.

2.4 Semi-discrete approximation

In this section we present a continuous in time and discrete in space finite element

approximation of (2.10). We prove the existence of a unique solution (uh, wh) of this

approximation and we then derive stability bounds on the approximate solutions uh

and wh. We conclude by proving an estimate on the difference between (uh, wh) and

the solution (u,w) of (2.10).
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2.4.1 Notation and useful preliminaries

In the results in this section we require that (u,w) satisfy the regularity results in

Lemmas 2.3.3 and 2.3.4 and hence we require that Ω is convex and that it has a

C3 boundary. To this end we use the techniques in Chapter 1, Section 3 in [17]

and assume that Ω is decomposed into elements so that every element, σ, has three

vertices, at least one of which is an interior point of Ω. If two vertices of σ lie

on ∂Ω, then the boundary piece of ∂Ω with endpoints at these vertices is an edge

element. We suppose all other edges of the elements are straight lines. We obtain

a polygonal approximation Ωh of Ω by replacing the boundary curves between two

neighbouring vertices by a straight line segment. Thus the partition, {Th}h>0, of Ω

includes a triangulation of Ωh and we assume that this induced triangulation of Ωh

is quasi-uniform.

Furthermore we assume that D is made up of a union of a subset, ThD, of triangles

of Th such that

D = ∪σ∈ThDσ.

We set

Sh := {v ∈ C(Ω) : v|σ is linear ∀σ ∈ Th},

and we enforce the zero boundary conditions only at the nodes of ∂Ω:

Sh0 := {v ∈ Sh : v(z) = 0 for each node z ∈ ∂Ω}.

We introduce the discrete Laplacian operator ∆h : Sh → Sh0 such that

(∆hzh, χ) = −(∇zh,∇χ) ∀χ ∈ Sh0 . (2.40)

Further to the definition of (2.40), since Ω is convex and Th is quasi-uniform, we

have from [7] that for s ∈ [2, 6],

‖∇χ‖Ls(Ω) ≤ C‖∆hχ‖ ∀χ ∈ Sh0 (2.41)

and further that

‖χ‖L∞(Ω) ≤ C‖χ‖1/2

H1(Ω)‖∆
hχ‖1/2 ∀χ ∈ Sh0 . (2.42)

We define the discrete inverse Dirichlet-Laplacian operator [39] Gh : H−1(Ω) → Sh0

by

(∇Ghη,∇χ) = 〈η, χ〉 ∀χ ∈ Sh0 (2.43)
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and similar to (2.9) we have the following for all χ ∈ Sh0 and γ ∈ R

‖χ‖2 = (∇χ,∇Gh(χ)) ≤ ‖∇Gh(χ)‖‖∇χ‖ ≤ 1

2γ
‖∇Gh(χ)‖2 +

γ

2
‖∇χ‖2. (2.44)

Furthermore we define the projection Ph on Sh0 , with respect to the inner product

(∇v,∇w) such that for η ∈ H1
0 (Ω)

(∇Phη,∇χ) = (∇η,∇χ) ∀χ ∈ Sh0 (2.45)

and further note that for all η ∈ H2(Ω) we have

‖Phη − η‖+ h‖∇(Phη − η)‖ ≤ Ch2‖η‖H2(Ω). (2.46)

Now we are ready to define a semi-discrete finite element approximation to (2.10):

Find (uh, wh) ∈ (−1 + Sh0 )× Sh0 such that uh(x, 0) = Ph(u0(x)) and

(∂tuh, χ) + (∇wh,∇χ) = (λ(I − uh), χ) ∀χ ∈ Sh0 , (2.47a)

ε(∇uh,∇χ) +

(
1

ε
Φ
′
(uh)− wh, χ

)
= 0 ∀χ ∈ Sh0 . (2.47b)

Lemma 2.4.1. The semi-discrete problem (2.47) has a solution (uh, wh) which exists

globally in time and satisfies

‖Φ(uh(T ))‖L1(Ω) + ‖uh(T )‖2
H1(Ω) + ‖wh‖2

L2(0,T ;H1
0 (Ω)) + ‖∇Gh(∂tuh)‖2

L2(0,T ;L2(Ω)) ≤ C.

(2.48)

Proof. We denote by ai, i = 1, . . . , N the nodes of the triangulation Th and by χi

the corresponding nodal basis functions. We assume that a1, . . . , aN1 are the interior

nodes, while aN1+1, . . . , aN lie on ∂Ω. We expand

uh(·, t) = −1 +

N1∑
i=1

uiχi and wh(·, t) =

N1∑
i=1

wiχi.

Following the ideas used in (2.12) - (2.15) we have that (2.47) amounts to a nonlinear

system of ODEs for u = (u1, . . . , uN1). Existence of a local solution follows from

standard ODE theory. Analogous bounds to those in (2.16) and (2.17) can be proved

using the techniques in the proof of Lemma 2.3.1 to obtain (2.48). Uniform bounds

on (uh, wh) and therefore on (u,w), since Sh is finite dimensional, are implied by

(2.48) and so the solution can be continued for all times.

Lemma 2.4.2. The solution (uh, wh) to (2.47) is unique.

Proof. The result follows by using the techniques in the proof of Theorem 2.3.2 with
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G replaced by Gh.

Lemma 2.4.3. A solution (uh, wh) to the problem (2.47) satisfies the stability

bounds

ˆ T

0

‖∆huh‖2 dt ≤ C, (2.49)

ˆ T

0

‖uh‖4
L∞(Ω) dt ≤ C. (2.50)

Proof. We first test (2.47b) with χ = ∆huh and use (2.3) and (2.40) to obtain that

ε(∇uh,∇∆huh) =

(
wh −

1

ε
Φ
′
(uh),∆

huh

)
= −

(
∇wh −

1

ε
∇Φ

′
(uh),∇uh

)
=⇒ ε‖∆huh‖2 ≤ −1

ε
(Φ
′′
(uh)∇uh,∇uh) + C‖∇wh‖2 + C‖∇uh‖2. (2.51)

Noting that Φ
′′
(uh) = 3u2

h − 1 we have

ε‖∆huh‖2 ≤ 1

ε
‖∇uh‖2 + C‖∇wh‖2 + C‖∇uh‖2.

Integrating w.r.t. t in [0, T ] and noting (2.48) gives (2.49). From (2.42), (2.48) and

(2.49) we have

ˆ T

0

‖uh‖4
L∞(Ω) dt ≤ C

ˆ T

0

‖uh‖2
H1(Ω)‖∆huh‖2 dt ≤ C (2.52)

and this completes the proof of the lemma.

2.4.2 Error analysis

In what follows we provide an error analysis for the semi-discrete system. The

immediate task is to provide a bound on the error that discretising in space cre-

ates, in terms of the discretisation parameter, h. In what follows we closely follow

the analysis in [55]. Throughout, we make use of the following notation for error

decomposition

Eu := uh − u := Eh
u + EA

u := (uh − Phu) + (Phu− u),

Ew := wh − u := Eh
w + EA

w := (wh − Phw) + (Phw − w).
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From Lemmas 2.3.2 and 2.3.4 and (2.46) we have

‖EA
u ‖2

H1(Ω) +

ˆ T

0

(‖∇Gh(∂tE
A
u )‖2 + ‖∇EA

u ‖+ ‖∇EA
w‖2) dt ≤ Ch2. (2.53)

The following lemma will be used in proving bounds on Eh
u and Eh

w.

Lemma 2.4.4. We have that

(Φ
′
(u)− Φ

′
(uh), ∂tE

h
u) ≤ C‖∇Eh

w‖2 + C̃h2 + C̃‖∇Eh
u‖2 + C‖∇Gh(∂tE

A
u )‖2

where C̃ = C(1 + ‖uh‖4
L∞(Ω)) + C‖∇u‖2

L∞(Ω)(1 + ‖u‖2
L∞(Ω) + ‖uh‖2

L∞(Ω)) and C ∈ R
is used in the proof of the following lemma.

Proof. Subtracting (2.10a) from (2.47a) and noting (2.45) we have ∀χ ∈ Sh0

(∂tE
h
u , χ) + (∇Eh

w,∇χ) = −(λEu, χ)− (λ(I − uh), χ)− (∂tE
A
u , χ). (2.54)

We now use (2.43) to rewrite (2.54) as follows, for all χ ∈ Sh0 ,

(∇Gh(∂tE
h
u),∇χ) = −(∇Eh

w,∇χ)− (λ(Eh
u + EA

u ), χ)− (∇Gh(∂tE
A
u ),∇χ).

Using (2.3) we have the following for all χ ∈ Sh0

(∇Gh(∂tE
h
u),∇χ) ≤ C‖∇Eh

w‖2 +
1

4
‖∇χ‖2 +

1

4Cp
‖χ‖2 + C‖Eh

u‖2

+C‖EA
u ‖2 + C‖∇Gh(∂tE

A
u )‖2.

Using (2.53), (2.5), (2.48) and (2.6), with C = Cp, we have the following

(∇Gh(∂tE
h
u),∇χ) ≤ Ch2 + C‖∇Eh

w‖2 +
1

2
‖∇χ‖2

+C‖∇Eh
u‖2 + C‖∇Gh(∂tE

A
u )‖2 ∀χ ∈ Sh0 .

Choosing χ = Gh(∂tE
h
u) we conclude that

‖∇Gh(∂tE
h
u)‖2 ≤ C‖∇Eh

w‖2 + C(h2 + ‖∇Eh
u‖2 + ‖∇Gh(∂tE

A
u )‖2). (2.55)

Noting (2.43) and (2.3) we have

(Φ
′
(u)− Φ

′
(uh), ∂tE

h
u) ≤ C‖∇(Φ

′
(u)− Φ

′
(uh))‖2 +

1

4C
‖∇Gh∂tE

h
u‖. (2.56)
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We now bound ‖∇(Φ
′
(u)− Φ

′
(uh))‖2. Using (2.53) we note that

‖∇(Φ
′
(u)− Φ

′
(uh))‖2 = ‖Φ′′(u)∇u− Φ

′′
(uh)∇uh‖2

≤ C‖Φ′′(uh)∇(u− uh)‖2 + C‖(Φ′′(u)− Φ
′′
(uh))∇u‖2

≤ C‖Φ′′(uh)‖2
L∞(Ω)(‖∇EA

u ‖2 + ‖∇Eh
u‖2) + C‖(Φ′′(u)− Φ

′′
(uh))∇u‖2

≤ C(1 + ‖uh‖4
L∞(Ω))(h

2 + ‖∇Eh
u‖2) + C‖(Φ′′(u)− Φ

′′
(uh))∇u‖2.

Since

Φ
′′
(u)− Φ

′′
(uh) = (uh − u)(1− 3(u+ uh)) = (Eh

u + EA
u )(1− 3(u+ uh))

we have

‖(Φ′′(u)−Φ
′′
(uh))∇u‖2 ≤ C‖∇u‖2

L∞(Ω)(‖EA
u ‖2 + ‖Eh

u‖2)(1 + ‖u‖2
L∞(Ω) + ‖uh‖2

L∞(Ω))

and noting (2.6) and (2.53) it follows that

‖∇(Φ
′
(u)− Φ

′
(uh))‖2 ≤ C(1 + ‖uh‖4

L∞(Ω))(h
2 + ‖∇Eh

u‖2)

+ C‖∇u‖2
L∞(Ω)(h

2 + ‖∇Eh
u‖2)(1 + ‖u‖2

L∞(Ω) + ‖uh‖2
L∞(Ω)).

(2.57)

We are now in a position to conclude by combining (2.55)-(2.57) to give

(Φ
′
(u)− Φ

′
(uh), ∂tE

h
u) ≤ C‖∇Eh

w‖2 + C̃h2 + C‖λ− λ‖2

+C̃‖∇Eh
u‖2 + C‖∇Gh(∂tE

A
u )‖2

where C̃ = C(1 + ‖uh‖4
L∞(Ω)) + C‖∇u‖2

L∞(Ω)(1 + ‖u‖2
L∞(Ω) + ‖uh‖2

L∞(Ω)).

We now prove the following bounds for the errors Eu and Ew.

Lemma 2.4.5. If u(0) satisfies

‖uh(0)− u(0)‖H1(Ω) = ‖Eu(0)‖H1(Ω) ≤ Ch, (2.58)

then for all t ∈ [0, T ] we have

‖Eu(t)‖2
H1(Ω) +

ˆ t

0

‖Ew‖2
H1(Ω) dt ≤ Ch2. (2.59)

Proof. Subtracting (2.10a) from (2.47a) and noting (2.45) gives

(∂tE
h
u , χ) + (∇Eh

w,∇χ) = −(λ(Eh
u + EA

u ), χ)− (∂tE
A
u , χ). (2.60)
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Subtracting (2.10b) from (2.47b) and noting (2.45) gives

(∇Eh
u ,∇χ) + (Φ

′
(uh)− Φ

′
(u), χ) = (Eh

w, χ) + (EA
w , χ) (2.61)

Setting χ = Eh
w in (2.60) and χ = ∂tE

h
u in (2.61) and adding the resulting equations

yields

1

2

d

dt
‖∇Eh

u‖2 + ‖∇Eh
w‖2 = −(EA

w , ∂tE
h
u)− (∂tE

A
u , E

h
w)

− (λ(I − uh), Eh
w)− (λ(Eh

u + EA
u ), Eh

w)− (Φ
′
(uh)− Φ

′
(u), ∂tE

h
u).

Using (2.3), (2.5), (2.6) and (2.48) we have

1

2

d

dt
‖∇Eh

u‖2 + ‖∇Eh
w‖2 ≤ Ch2 +

1

8Cp
‖Eh

w‖2 + C‖∇EA
w‖2 +

1

4C
‖∇Gh(∂tE

h
u)‖2

+ C‖∇Gh(∂tE
A
u )‖2 +

1

4
‖∇Eh

w‖2 + C‖Eh
u‖2

+
1

8Cp
‖Eh

w‖2
L4(Ω) − (Φ

′
(uh)− Φ

′
(u), ∂tE

h
u)

≤ Ch2 +
1

2
‖∇Eh

w‖2 + C‖∇EA
w‖2 +

1

4C
‖∇Gh(∂tE

h
u)‖2

+ C‖∇Gh(∂tE
A
u )‖2 + C‖∇Eh

u‖2 + C‖λ− λ‖2

− (Φ
′
(uh)− Φ

′
(u), ∂tE

h
u). (2.62)

Using Lemma 2.4.4 and (2.55) we can rewrite (2.62) as

1

2

d

dt
‖∇Eh

u‖2 +
1

4
‖∇Eh

w‖2 ≤ C̃h2 + C‖∇EA
w‖2

+ C‖∇Gh(∂tE
A
u )‖2 + C̃‖∇Eh

u‖2

where C̃ = C(1 + ‖uh‖4
L∞(Ω)) +C‖∇u‖2

L∞(Ω)(1 + ‖u‖2
L∞(Ω) + ‖uh‖2

L∞(Ω)). Integrating

with respect to t, using Grönwall’s inequality and noting (2.30), (2.34), (2.50), (2.53)

and (2.58) together with the fact that Eu = Eh
u +EA

u and similarly for Ew, gives the

required result.

2.5 Fully discrete approximation

We now state a fully discrete equivalent of problem (2.47) by discretising in time

using the Backward Euler Method. We prove the existence of a unique solution

(unh, w
n
h) of this approximation and we then derive stability bounds on the approxim-

ate solutions uh and wh. We conclude by proving an error estimate on the difference

between (unh, w
n
h) and the solution (u,w) of (2.10).
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2.5.1 Notation and useful preliminaries

Choose a fixed number, N , time points, tn, to partition the interval [0, T ] such that

0 = t0 < t1 < t2 < ... < tN−1 < tN = T and where ti − ti−1 = ∆t,∀i. Further we

define gnh as the approximation to gh(·, tn) and the difference operator δt as

δtg
n
h :=

gnh − gn−1
h

∆t
for t ∈ (tn−1, tn].

The fully discrete problem then reads as follows:

Given un−1
h ∈ −1 + Sh0 , we seek {unh, wnh} ∈ Sh0 × Sh0 such that

(δtu
n
h, χ) + (∇wnh ,∇χ) = (λ(I − un−1

h ), χ) ∀χ ∈ Sh0 , (2.63a)

ε(∇unh,∇χ) +
1

ε

(
(unh)3 − un−1

h , χ
)
− (wnh , χ) = 0 ∀χ ∈ Sh0 , (2.63b)

with the initial condition u0
h(x) = uh(x, 0) = πh(u0(x)), where, as in the semi-

discrete approximation, we take λ = πh(λ) and I = πh(I).

2.5.2 Existence and stability bounds

Lemma 2.5.1. There exists a unique solution (unh, w
n
h) ∈ (−1 +Sh0 )×Sh0 to (2.63).

Proof. In order to prove existence of a unique solution (unh, w
n
h) to (2.63) we first set

χ = Gh(χ) in (2.63a) to obtain

(wnh , χ) = −(δtu
n
h, G

h(χ)) + (λ(I − un−1
h ), Gh(χ)). (2.64)

Combining the above equation with (2.63b) and noting (2.43) we have

ε(∇unh,∇χ) +
1

ε

(
(unh)3 − un−1

h , χ
)

+ (Gh(δtu
n
h), χ) = (Gh(λ(I − un−1

h )), χ). (2.65)

There exists unh ∈ −1 + Sh0 solving (2.65) since this is the Euler-Lagrange equation

[50] of the convex minimisation problem [34]

min
zh∈−1+Sh0

{
ε‖∇znh‖2 +

1

4ε
((znh)4, 1) +

1

2∆t
‖Gh(zh − un−1

h )‖2

−(Gh(λ(I − un−1
h )), zh) +

1

ε
(un−1

h , zh)

}
.

Therefore on noting (2.64), we have existence of a unique solution (unh, w
n
h) to (2.63).

Analogous to the section for the semi-discrete problem we provide the following
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stability estimates for the scheme (2.63).

Lemma 2.5.2. Let (unh, w
n
h) be functions satisfying (2.63), then, there exists a pos-

itive constant C such that for all s ∈ (0, T ],

‖Φ(uNh )‖L1(Ω) + ‖uNh ‖2
H1(Ω) +

N∑
n=1

(∆t‖wnh‖2
H1

0 (Ω) + ‖∇(unh − un−1
h )‖2) ≤ C. (2.66)

Proof. We set χ = wnh in (2.63a) and χ = δtu
n
h in (2.63b) to obtain

(δtu
n
h, w

n
h) + ‖∇wnh‖2 = (λ(I − un−1

h ), wnh) (2.67)

ε(∇unh,∇δtunh) + 1
ε

(
(unh)3 − un−1

h , δtu
n
h

)
− (wnh , δtu

n
h) = 0 ∀χ ∈ Sh0 . (2.68)

Upon adding (2.67), and (2.68) and noting (2.4) we obtain

ε

2∆t
‖∇unh‖2 +

ε

2∆t
‖∇(unh − un−1

h )‖2 + ‖∇wnh‖2 +
1

ε

(
(unh)3 − un−1

h , δtu
n
h

)
=

ε

2∆t
‖∇un−1

h ‖2 + (λ(I − un−1
h ), wnh). (2.69)

Employing the Poincaré inequality and using Hölder’s inequality and Young’s in-

equality, we have∣∣∣∣ˆ
Ω

λ(I − un−1
h )wnh dx

∣∣∣∣ ≤ C(‖I‖+ ‖un−1
h ‖)‖wnh‖

≤ C‖I‖2 + C‖∇un−1
h ‖2 +

1

2
‖∇wnh‖2. (2.70)

Combining (2.69) and (2.70), multiplying the resulting inequality by ∆t and noting,

from [38], that

(r3 − s)(r − s) ≥ Φ(r)− Φ(s)

we have

ε

2
‖∇unh‖2 +

ε

2
‖∇(unh − un−1

h )‖2 +
∆t

2
‖∇wnh‖2 +

1

ε
(Φ(unh), 1) =

ε

2
‖∇un−1

h ‖2

+
1

ε
(Φ(un−1

h ), 1) + C∆t‖I‖2 + C∆t‖∇unh‖2

+ C∆t‖∇(unh − un−1
h )‖2 +

∆t

2
‖∇wnh‖2. (2.71)

Summing (2.71) from n = 1 to N and using a discrete Grönwall’s inequality gives

(Φ(uNh ), 1) + ‖∇uNh ‖2 +
N∑
n=1

(
∆t‖∇wnh‖2 + ‖∇(unh − un−1

h )‖2
)
≤ C. (2.72)

The result follows using the Poincaré inequality.

33



Lemma 2.5.3. The solution (unh, w
n
h) of problem (2.63) satisfies the following sta-

bility bounds

N∑
n=1

∆t‖∆hunh‖2 ≤ C, (2.73)

N∑
n=1

∆t‖unh‖4
L∞(Ω) ≤ C. (2.74)

Proof. We first test (2.63b) with χ = ∆hunh and use (2.40) and (2.3) to obtain that

ε(∇unh,∇∆hunh) =
(
wh,∆

hunh
)
− 1

ε

(
(unh)3 − un−1

h ,∆hunh
)

=⇒ ε‖∆hunh‖2 ≤ −1

ε
(3(unh)2∇unh,∇unh) +

1

ε
(∇un−1

h ,∇unh) + C‖∇wnh‖2 + C‖∇unh‖2

≤ ‖∇un−1
h ‖2 + C‖∇wnh‖2 + C‖∇unh‖2.

Multiplying by ∆t, summing from n = 1, ..., N and noting (2.66) gives us (2.73).

From (2.42), (2.66) and (2.73) we have

N∑
n=1

∆t‖unh‖4
L∞(Ω) ≤ C

N∑
n=1

∆t‖unh‖2
H1(Ω)‖∆hunh‖2

and this completes the proof of the lemma.

2.5.3 Error analysis

In what follows we provide an error analysis for the fully discrete (in space and time)

adjusted Cahn-Hilliard equation for binary image inpainting.

We define

EU := (uh,∆t − u) = (uh,∆t − πhu) + (πhu− u) := Eh,∆t
u − EA

u

where

uh,∆t(·, t) := unh(·) ∀t ∈ (tn−1, tn], with uh,∆t(·, 0) := u0
h(·)

and we assume similar notation for EW and wh,∆t(·, t).

Lemma 2.5.4. If u(0) satisfies

‖uh,∆t(0)− u(0)‖ = ‖EU(0)‖ ≤ Ch, (2.75)
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then there exists a constant C > 0 such that for all t ∈ [0, T ]

‖EU(t)‖2 +

ˆ t

0

‖EW‖2 dt ≤ C

(
h2 +

h3

(∆t)1/2
+ ∆t

)
. (2.76)

Proof. Setting ξ = EU in (2.10a) and χ = Eh,∆t
u = EU − EA

u in (2.63a), subtracting

the resulting equations and noting (2.45), (2.66) and (2.6) gives

(δtu
n
h − ∂tu,EU) + (∇EW ,∇EU) = −(λEU , EU) + (λ(unh − un−1

h ), EU)

− (λ(I − un−1
h ), EU) + (δtu

n
h − λ(I − un−1

h ), EA
u )

≤ C‖EU‖2 + C‖unh − un−1
h ‖2 + ‖δtunh‖‖EA

u ‖+ C(‖I‖+ ‖un−1
h ‖)‖EA

u ‖

≤ Ch2 + C‖EU‖2 + C‖∇(unh − un−1
h )‖2 + ‖δtunh‖‖EA

u ‖. (2.77)

Setting φ = EW in (2.10b) and χ = Eh,∆t
w = EW − EA

w in (2.63b), subtracting the

resulting equations and noting (2.45) gives

ε(∇EU ,∇EW ) +
1

ε
(Φ′(unh)− Φ′(u), EW ) = ‖EW‖2 − 1

ε
(unh − un−1

h , EW )

+

(
1

ε
(unh)3 − un−1

h − wnh , EA
w

)
. (2.78)

Combining (2.77) and (2.78) and noting (2.53) and yields

(δtu
n
h − ∂tu,EU) + ‖EW‖2 ≤ Ch2 + C‖EU‖2

+ C‖∇(unh − un−1
h )‖2 +

1

ε
(Φ
′
(unh)− Φ

′
(u), EW )

+ C(‖(uh)3‖+ ‖un−1
h ‖+ ‖wnh‖)‖EA

w‖

+ C‖unh − un−1
h ‖2 +

1

4
‖EW‖2 + ‖δtunh‖‖EA

u ‖

≤ Ch2 + C‖EU‖2 +
1

ε
(Φ
′
(unh)− Φ

′
(u), Ew) +

1

4
‖EW‖2

+ C‖∇(unh − un−1
h )‖2 + C(1 + ‖wnh‖)‖EA

w‖+ ‖δtunh‖‖EA
u ‖.
(2.79)

The following result, (2.80), is obtained using techniques from [15]. Setting un(·) =
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u(·, tn) and ūn := 1
∆t

´ tn
tn−1

u(s)ds with ū0 = u0 and noting (2.3), with γ = 1, gives

ˆ tn

tn−1

(δtu
n
h − ∂tu,EU) dt =

ˆ tn

tn−1

(δtu
n
h, u

n
h) dt +

ˆ tn

tn−1

(∂tu, u) dt

− (un − un−1, unh)− (unh − un−1
h , ūn)

=
1

2

(
‖unh‖2 − ‖un−1

h ‖2 + ‖unh − un−1
h ‖2

)
+

1

2

(
‖un‖2 − ‖un−1‖2

)
− (unh − un−1

h , ūn − un−1)

+ (un−1
h , un−1)− (un, unh)

=
1

2

(
‖unh − un‖2 − ‖un−1

h − un−1‖2
)

+
1

2
‖unh − un−1

h ‖2 − (unh − un−1
h , ūn − un−1)

≥ 1

2
‖En

U‖2 − 1

2
‖En−1

U ‖2 − 1

2
‖ūn − un−1‖2

where En
U = unh − un.

Since

‖ūn − un−1‖ =
1

(∆t)
1
2

∣∣∣∣∣∣∣∣ˆ tn

tn−1

(u(s)− u(tn−1))ds

∣∣∣∣∣∣∣∣ =
1

(∆t)
1
2

∣∣∣∣∣∣∣∣ˆ tn

tn−1

ˆ s

tn−1

∂tu(r)drds

∣∣∣∣∣∣∣∣
≤ (∆t)

1
2‖∂tu‖L2(tn−1,tn;L2(Ω))

we have that

ˆ tn

tn−1

(δtu
n
h − ∂tu,EU) dt ≥ 1

2
‖En

U‖2 − 1

2
‖En−1

U ‖2 − C∆t‖∂tu‖2
L2(tn−1,tn;L2(Ω)). (2.80)

Noting that

Φ
′
(unh)− Φ

′
(u) = (unh)3 − unh − u3 + u = EU [unh(unh + u) + u2 − 1]

with repeated use of (2.3) we obtain

(Φ
′
(unh)− Φ

′
(u), EW ) ≤ C(1 + ‖unh‖4

L∞(Ω) + ‖u‖4
L∞(Ω))‖EU‖2 +

1

4
‖EW‖2. (2.81)

The following result, (2.82), is obtained using techniques from [15]. From (2.6),
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(2.66) and (2.53) we have

k∑
n=0

ˆ tn

tn−1

‖δtunh‖‖EA
u ‖ dt ≤ 1

∆t

k∑
n=0

(ˆ tn

tn−1

‖unh − un−1
h ‖2 dt

)1/2(ˆ tn

tn−1

‖EA
u ‖2 dt

)1/2

≤ 1

(∆t)1/2

k∑
n=0

‖∇(unh − un−1
h )‖

(ˆ tn

tn−1

‖EA
u ‖2 dt

)1/2

≤ 1

(∆t)1/2

(
k∑

n=0

‖∇(unh − un−1
h )‖2

)1/2(ˆ tk

0

‖EA
u ‖2 dt

)1/2

≤ Ch3

(∆t)1/2
. (2.82)

Integrating (2.79) from t = tn−1 to tn, summing from n = 1, . . . , k, with 1 ≤ k ≤ N

and using (2.80)-(2.82) yields

1

2
‖Ek

U‖2 +
1

2

ˆ tk

0

‖EW‖2 dt ≤ Ch2 +
Ch3

(∆t)1/2
+

ˆ tk

0

(
C̃‖EU‖2 + Ĉ‖EA

w‖
)

dt

+ C∆t‖∂tu‖2
L2(0,tk;L2(Ω)) (2.83)

where C̃ = C(1 + ‖unh‖4
L∞(Ω) + ‖u‖4

L∞(Ω)) and Ĉ = C(1 + ‖wnh‖).
We next note from [15] that for t ∈ (tn−1, tn)

‖En
U − EU‖2 = ‖u(tn)− u(t)‖2 ≤

∣∣∣∣∣∣∣∣ˆ tn

t

∂tuds

∣∣∣∣∣∣∣∣2 ≤ ∆t‖∂tu‖2
L2(tn−1,tn;L2(Ω)).

and hence we can rewrite (2.84) as

1

2
‖En

U‖2 +
∆t

2

k∑
n=0

‖En
W‖2 ≤ Ch2 +

Ch3

(∆t)1/2
+ ∆t

k∑
n=0

(
C̃‖En

U‖2 + Ĉ‖EA
w‖
)

dt

+ C∆t‖∂tu‖2
L2(0,tk;L2(Ω)) (2.84)

where C̃ = C(1 + ‖unh‖4
L∞(Ω) + ‖u‖4

L∞(Ω)) and Ĉ = C(1 + ‖wnh‖).
The desired result follows by noting (2.33), (2.53), (2.66) and (2.74), applying the

discrete Grönwall inequality and using (2.75).
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Chapter 3

Double Obstacle

3.1 Introduction and motivation

In the previous chapter we have discussed the adjusted Cahn-Hilliard problem where

the choice of the potential function Φ is taken to be the double well function Φ(u) =
1
4
(u2 − 1)2.

Phase field models are chosen for applications when an interaction between bulk

phases of an alloy/material, represented by the global minima of Φ are of interest.

In practice there is no reason why the numerical solution of the problem (2.63a)-

(2.63b) should satisfy |u| ≤ 1; indeed, almost any numerical solution of this problem

for reasonable initial condition and image, I(x), will have bulk phases deviating away

from ±1 in a short time.

It is also clear that the computational effort involved in the numerical solution of any

phase field model should be focused on properly resolving the smooth interface; once

we know the location of the bulk phases, any further calculations are unnecessary

since we know for these regions that u = ±1. There are techniques in literature for

existing phase field models that describe alternative approaches and fast solution

methods that result from these considerations.

As such, in this chapter we set

Φ(u) :=

{
1
2
(1− u2) if |u| ≤ 1

∞ if |u| > 1
(3.1)

as proposed in [14]. Here we see that ‘infinite walls’ are placed outside of [−1, 1]

to make it completely energetically unfavourable for u to deviate as it does for the

double well, at the expense of differentiability of Φ.

In this chapter we derive and state the weak problem associated with the choice

(3.1) in (1.18), then, analogous to Chapter 2, we present semi-discrete and fully

discrete finite element approximations to this weak form and we prove estimates

38



on the difference between the solutions of the two approximations and the weak

solution of the problem.

The proofs of Theorem 3.2.3 and Lemma 3.4.3 are closely adapted from the proofs

of similar results in [14, 15].

Unless otherwise stated throughout this chapter we set T > 0, Ω ⊂ R2 to be

bounded domain with a Lipschitz boundary ∂Ω, and D to be a union of open

bounded domains with Lipschitz boundaries. In addition we often make use of the

fact that ‖λ‖L∞(Ω) ≤ C and we make the following assumptions on the initial data

and the image data

‖u0‖H1
0 (Ω) + ‖I‖2 ≤ C. (3.2)

3.2 Weak formulation

In this section we define the weak problem associated with the choice of (3.1) in

the adjusted Cahn-Hilliard equation for inpainting. We then prove stability bounds

on the weak solution and we use these bounds to prove an existence and unique-

ness result. The bounds are also used later in the chapter in the sections on error

estimates.

From (3.1) it is clear that Φ(u) is not differentiable and so it is not possible to

formulate Φ′(u) as seen in the second equation in (1.18). Instead this equation can

be formally written, see [14], as

w + ε∆u+
1

ε
u ∈ ∂I(u), (3.3)

where I(·) is the indicator function of the set [−1, 1], such that

I[−1,1](r) :=

{
0 if r ∈ [−1, 1]

∞ otherwise

and ∂I(·) is the sub-differential of I such that

∂I[−1,1](r) :=


(−∞, 0] if r = −1

{0} if r ∈ (−1, 1)

[0,∞) if r = 1.

We call a pair of functions (u,w) a weak solution to (1.18) with (1.18b) replaced by

(3.3) if

u ∈ −1 + L∞(0, T ;H1
0 (Ω)), ∂tu ∈ L2(0, T ;H−1(Ω)), w ∈ L2(0, T ;H1

0 (Ω)),
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u ∈ K for a.e. t ∈ (0, T ) and

〈∂tu, ζ〉+ (∇w,∇ζ) = (λ(I − u), ζ) ∀ζ ∈ H1
0 (Ω), a.e. t ∈ (0, T ), (3.4a)

ε(∇u,∇φ−∇u)− 1

ε
(u, φ− u) ≥ (w, φ− u) ∀φ ∈ K, a.e. t ∈ (0, T ) (3.4b)

with initial data u(x, 0) = u0(x) ∈ −1 +H1
0 (Ω) such that |u0(x)| ≤ 1 and where

K :=
{
v ∈ H1

0 (Ω) s.t |v| ≤ 1
}
.

We note that (3.4b) can be formally obtained by multiplying (3.3) by φ − u for

φ ∈ K and noting that, for r ∈ K, we have ∂I[−1,1](r)(φ− r) ≥ 0.

3.2.1 Existence and uniqueness

In order to prove the existence of a solution to (3.4) we consider the following

regularised problem:

For t ∈ [0, T ] we seek a solution {uγ, wγ} ∈ (−1+L∞(0, T ;H1
0 (Ω)))∩H1(0, T ;H−1(Ω))×

L2(0, T ;H1
0 (Ω)) such that

〈∂tuγ, ζ〉+ (∇wγ,∇ζ) = (λ(I − uγ), ζ) ∀ζ ∈ H1
0 (Ω), (3.5a)

ε(∇uγ,∇φ) +
1

γε
(βγ(uγ), φ) = (wγ, φ) +

1

ε
(uγ, φ) ∀φ ∈ H1

0 (Ω), (3.5b)

and uγ(x, 0) = u0(x). Here given 0 < γ < 1, the function Φγ is defined as follows

Φγ(r) :=



1
2γ

(r − (1 + γ
2
))2 + 1

2
(1− r2) + γ

24
for r ≥ 1 + γ,

1
6γ2

(r − 1)3 + 1
2
(1− r2) for 1 < r < 1 + γ,

1
2
(1− r2) for |r| ≤ 1,

− 1
6γ2

(r + 1)3 + 1
2
(1− r2) for − 1− γ < r < −1

1
2γ

(r + (1 + γ
2
))2 + 1

2
(1− r2) + γ

24
for r ≤ −1− γ.
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We further define

βγ(r) := γ(r + Φ
′

γ(r)) =



r − (1 + γ
2
) for r ≥ 1 + γ,

1
2γ

(r − 1)2 for 1 < r < 1 + γ,

0 for |r| ≤ 1,

− 1
2γ

(r + 1)2 for − 1− γ < r < −1,

r + (1 + γ
2
) for r ≤ −1− γ

and we note that βγ is a Lipschitz function such that

0 ≤ β
′

γ ≤ 1. (3.6)

In addition we define

β(r) = lim
γ→0

βγ(r) =



(r − 1) for r > 1,

0 for |r| ≤ 1,

(r + 1) for r < −1,

and we note that β is a Lipschitz continuous function and that

|β(r)− βγ(r)| ≤
γ

2
, ∀ r ∈ R, and |β(r)− β(s)| ≤ |r − s| ∀ r, s ∈ R. (3.7)

The existence of a solution to (3.5) follows from the same techniques used in Section

2.3.1. We give an outline of it below.

Let zi be the orthogonal basis defined in Section 2.3.1. We now consider

uγ,k(t, x) = −1 +
k∑
i=1

αki (t)zi(x), wγ,k(t, x) =
k∑
i=1

ηki (t)zi(x), (3.8)

and the following Galerkin approximation to (3.5)

ˆ
Ω

∂tuγ,kzj dx =

ˆ
Ω

−∇wγ,k · ∇zj dx +

ˆ
Ω

λ(I − uγ,k)zj dx , (3.9a)

ˆ
Ω

wγ,kzj dx =

ˆ
Ω

(
1

γε
(βγ(uγ,k)zj −

1

ε
uγ,kzj + ε∇uγ,k · ∇zj

)
dx , (3.9b)

for 1 ≤ j ≤ k.
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We let δij =
´

Ω
zizj dx denote the normalised Kronecker delta and we define

Sij :=

ˆ
Ω

∇zi · ∇zj dx ,F k(uγ,k) := (F k
1 , . . . , F

k
k )>,βk(uγ,k) := (βk1 , . . . , β

k
k )>,

with F k
j :=

´
Ω
λ(I − uγ,k)zj and βkj :=

´
Ω
β(uγ,k)zj dx , for 1 ≤ i, j ≤ k.

Thus we obtain the following initial value problem for a system of ordinary differ-

ential equations for αk

d

dt
αk = −S

(
1

γε
βk(uγ,k)−

1

ε
αk + εSαk

)
+ F k(uγ,k) (3.10)

with

ηk =
1

γε
βk(uγ,k)−

1

ε
αk + εSαk (3.11)

with the initial conditions

αk(0) := (αk1(0), . . . , αkk(0))> with αkj (0) =

ˆ
Ω

u0zj dx . (3.12)

Since (3.10) is a nonlinear ODE system whose right-hand side depends continuously

on αk as in Section 2.3.1, we can appeal to the theory of ODEs (via the Cauchy–

Peano theorem [61]) to infer that the initial value problem (3.10) has at least one

local solution αk defined on [0, tk] for each k ∈ N and from (3.11) we conclude at

least one local solution ηk defined on [0, tk] for each k ∈ N.

We now seek to provide some stability bounds on the problem (3.5) which must be

independent of the regularisation parameter γ.

Theorem 3.2.1. For a smooth enough initial condition satisfying |uγ(·, 0)| ≤ 1, the

problem (3.5) admits a unique solution

uγ ∈ (−1 + L∞([0, T ];H1
0 (Ω))) ∩H1([0, T ];H−1(Ω)) and wγ ∈ L2([0, T ];H1

0 (Ω)).

Proof. The proof follows by applying the techniques used in the proof of Theorem

2.3.1, but we include them here for completeness. First we show that the solution

(uγ,k, wγ,k) to (3.9) satisfies

‖uγ,k(·, T )‖2
H1(Ω) +

ˆ T

0

(
‖∂tuγ,k‖2

H−1(Ω) + ‖wγ,k‖2
H1(Ω)

)
dt ≤ C. (3.13)

We multiply (3.9a) with ηkj and (3.9b) with d
dt
αkj , then we add the resulting equations

and sum from j = 1 to k to obtain

d

dt

ˆ
Ω

[
1

ε
Φγ(uγ,k) +

ε

2
|∇uγ,k|2

]
dx +

ˆ
Ω

|∇wγ,k|2 =

ˆ
Ω

λ(I − uγ,k)wγ,k dx . (3.14)
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Using (2.6) and (2.3) we have∣∣∣∣ˆ
Ω

λ(I − uγ,k)wγ,k dx

∣∣∣∣ ≤ α(‖I‖+ ‖uγ,k‖)‖wγ,k‖

≤ C‖I‖2 + C‖∇uγ,k‖2 +
1

2
‖∇wγ,k‖2. (3.15)

Combining (3.14) and (3.15), noting (3.2) and integrating the resulting inequality

with respect to t from 0 to s ∈ (0, T ] and using Grönwall’s inequality gives

ˆ
Ω

[
Φγ(uγ,k(x, s)) + |∇uγ,k(x, s)|2

]
dx + ‖∇wγ,k‖2

L2(0,s;L2(Ω)) ≤ C(s). (3.16)

Thus, using the Poincaré inequality (2.6) we find that there exists a positive constant

C such that

‖Φγ(uγ,k(s))‖L1(Ω) +‖uγ,k(s)‖2
H1(Ω) +‖wγ,k‖2

L2(0,s;H1
0 (Ω)) ≤ C(s), ∀ s ∈ (0, T ]. (3.17)

Similarly following the techniques the techniques used to prove (2.17) in Lemma

2.3.2 we have∣∣∣∣ˆ T

0

ˆ
Ω

∂tuγ,kζ dx

∣∣∣∣ ≤ ‖∇wγ,k‖L2(Ω×(0,T ))‖∇Πkζ‖L2(Ω× (0, T ))

+ ‖λ(I − uγ,k)‖L2(Ω×(0,T ))‖Πkζ‖L2(Ω×(0,T ))

≤ C‖ζ‖L2(0,T ;H1
0 (Ω)),

(3.18)

thus proving the second bound on the left hand side of (3.13).

From (3.17) and (3.18) we have that

{uγ,k}k∈N bounded in (−1 + L∞(0, T ;H1
0 )(Ω)) ∩H1(0, T ;H−1(Ω)),

{wγ,k}k∈N bounded in L2(0, T ;H1
0 (Ω)),

and we obtain, as in the proof of Lemma 2.3.2, that for a relabelled subsequence,

uγ,k → uγ weakly-∗ in − 1 + L∞(0, T ;H1
0 (Ω)),

uγ,k → uγ strongly in C([0, T ];Hr(Ω)) ∩ L2(0, T ;Ls(Ω)) and a.e. in Ω× (0, T ),

∂tuγ,k → ∂tuγ weakly in L2(0, T ;H−1(Ω)),

wγ,k → wγ weakly in L2(0, T ;H1
0 (Ω)),

uγ,k → uγ strongly in Lq(0, T ;Lq) ∼= Lq(Ω× (0, T )) for q < 6.

43



Thus we conclude that (uγ, wγ) satisfy

〈∂tuγ, zj〉 =

ˆ
Ω

−∇wγ · ∇zj dx +

ˆ
Ω

λ(I − uγ)zj dx , (3.19a)

ˆ
Ω

wγzj dx =

ˆ
Ω

(
1

γε
β(uγ)zj − εuγzj + ε∇u · ∇zj

)
dx , (3.19b)

for a.e. t ∈ (0, T ) and for all j ≥ 1. As {zj}j∈N is a basis for H1
0 (Ω), we see that

(uγ, wγ) satisfies (3.5) for all ζ, φ ∈ H1
0 (Ω). Moreover, the strong convergence of

uγ,k to uγ in C([0, T ];L2(Ω)) and the fact that uγk(0) → uγ,0 in L2(Ω) imply that

uγ(0) = uγ,0 = u0. This shows that (uγ, wγ) is a weak solution of (3.5).

Now, if we let {uγ,1, wγ,1} and {uγ,2, wγ,2} be two solutions to (3.5) and define

θuγ := uγ,1 − uγ,2 and θwγ := wγ,1 − wγ,2.

Subtracting (3.5a) with uγ = uγ,2 from (3.5a) with uγ = uγ,1 we have that

〈∂tθuγ , ζ〉+ (∇θwγ ,∇ζ) + (λθuγ , ζ) = 0. (3.20)

Subtracting (3.5b) with uγ = uγ,1 from (3.5b) with uγ = uγ,2 gives

ε(∇θuγ ,∇φ) +
1

γε
(βγ(uγ,1)− βγ(uγ,2), φ) = (θwγ , φ) +

1

ε
(θuγ , φ). (3.21)

Next we take φ = θuγ in (3.21) and noting the monotonicity of βγ we then have that

ε‖∇θuγ‖2 ≤ (θwγ , θuγ ) +
1

ε
‖θuγ‖2. (3.22)

Next, set ζ = G(θuγ ) in (3.20) and note (2.8) and (2.6) to obtain

1

2

d

dt
‖∇G(θuγ )‖2 + (θwγ , θuγ ) = −(λθuγ , G(θuγ ))

≤ C‖θuγ‖‖G(θuγ )‖

≤ ε

4
‖∇θuγ‖2 + C‖∇G(θuγ )‖2 (3.23)

and therefore by using (3.22) and (3.23) we have that

1

2

d

dt
‖∇G(θuγ )‖2 +

3ε

4
‖∇θuγ‖2 ≤ 1

ε
‖θuγ‖2 + C‖∇G(θuγ )‖2.

Recalling (2.9) we conclude that

1

2

d

dt
‖∇G(θuγ )‖2 +

ε

2
‖∇θuγ‖2 ≤ C‖∇G(θuγ )‖2.
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Now we integrate w.r.t. t over [0, T ] and use a Grönwall inequality to conclude that

‖∇G(θuγ (·, T ))‖2 +

ˆ T

0

‖∇θuγ (·, s)‖2 ds ≤ C‖∇G(θuγ (·, 0))‖2 = 0

from which the uniqueness of uγ follows. The uniqueness of wγ then follows from

(3.21).

Lemma 3.2.2. If ∂Ω is a C2 boundary then we have

ˆ T

0

‖uγ‖2
H2(Ω) dt ≤ C. (3.24)

Proof. We have that (3.5b) can be seen as the weak formulation of

−ε∆uγ +
1

γε
βγ(uγ) = wγ +

1

ε
uγ (3.25)

with uγ = −1 on ∂Ω. Since βγ(−1) = 0 and β′γ ≥ 0 we have

−
ˆ

Ω

∆uγβγ(uγ) =

ˆ
Ω

β′γ(uγ)|∇uγ|2 ≥ 0.

Multiplying (3.25) by βγ(uγ), integrating over Ω and noting (3.13) yields

ε

ˆ
Ω

β′γ(uγ)|∇uγ|2 dx +
1

γε

ˆ
Ω

|βγ(uγ)|2 dx =

ˆ
Ω

(
wγ +

1

ε
uγ

)
βγ(uγ) dx

⇒ 1

γε

ˆ
Ω

|βγ(uγ)|2 dx ≤ C(‖wγ‖2 + ‖uγ‖2) +
1

2γε
‖βγ(uγ)‖2

⇒ 1

γε

ˆ T

0

‖βγ(uγ)‖2 dt ≤ C

ˆ T

0

(‖wγ‖2 + ‖uγ‖2) dt ≤ C. (3.26)

Combining (3.25), (3.26) and (3.13) we have that

ε

ˆ T

0

‖∆uγ‖2 dt ≤ 1

γε

ˆ T

0

‖βγ(uγ)‖2 dt +

ˆ T

0

(‖wγ|2 +
1

ε
‖uγ‖2) dt ≤ C

and the result follows by elliptic regularity theory, since ∂Ω is a C2 boundary.

Theorem 3.2.3. There exists a unique solution (u,w) to (3.4) with

u ∈ (−1 + L∞([0, T ];H1
0 (Ω))) ∩ H1([0, T ];H−1(Ω)) ∩ L2([0, T ];H2(Ω)) and w ∈

L2([0, T ];H1
0 (Ω)) such that

‖u(·, T )‖2
H1(Ω) +

ˆ T

0

(
‖∂tu‖2

H−1(Ω) + ‖w‖2
H1(Ω) + ‖u‖2

H2(Ω)

)
dt ≤ C. (3.27)
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Proof. Since the bounds in (3.13) and (3.24) are independent of γ we conclude

uγ → u weakly in (−1 + L2([0, T ];H1
0 (Ω))) ∩ (−1 + L2([0, T ];H2

0 (Ω)))

∂tuγ → ∂tu weakly in L2([0, T ];H−1(Ω)))

uγ → u weakly-* in L∞([0, T ], H1
0 (Ω))

wγ → w weakly in L2([0, T ];H1
0 (Ω))

uγ → u strongly in L2([0, T ];L2(Ω)).


(3.28)

Using (3.28) we can pass to the limit γ → 0 in (3.5a) to obtain (3.4a). We now show

that (u,w) satisfy (3.4b). To this end we note that from (3.26) we have

‖βγ(uγ)‖2
L2(0,T ;L2(Ω)) ≤ Cγ (3.29)

and hence if we let γ → 0 we conclude that for a.e. t ∈ (0, T ) we have

lim
γ→0
‖βγ(uγ)‖L2(0,T ;L2(Ω)) = 0.

From (3.7) and (3.29) we have that

ˆ T

0

|(β(u), η)|dt ≤
ˆ T

0

(‖β(u)− β(uγ)‖+ ‖β(uγ)− βγ(uγ)‖+ ‖βγ(uγ)‖)‖η‖ dt

≤ C

ˆ T

0

(‖uγ − u‖+ γ)‖η‖dt

and noting the strong convergence of uγ to u in L2(0, T ;L2(Ω)) we conclude that

β(u) = 0 a.e. and hence u ∈ K.

Let φ ∈ K then since βγ(φ) = 0 we have

ε(∇uγ,∇(φ− uγ))−
1

ε
(uγ, φ− uγ) ≥ (wγ, φ− uγ) +

1

γ
(βγ(φ)− βγ(uγ), φ− uγ)

≥ (wγ, φ− uγ).

Using (3.28) we can pass to the limit γ → 0 in the above inequality to conclude

that (u,w) satisfy (3.4b) and hence we conclude the existence of a solution (u,w)

to (3.4). The stability bounds (3.27) follow by passing to the limit in (3.13) and

(3.24).

Now we let {u1, w1} and {u2, w2} be two solutions to (3.4) and define θu := u1 − u2

and θw := w1 − w2. Then as in the proof of Theorem 3.2.1 we subtract (3.4a) with

u = u2 from (3.4a) with u = u1 to write that

〈∂tθu, ζ〉+ (∇θw,∇ζ) + (λθu, ζ) = 0. (3.30)
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Subtracting (3.4b) with u = u1 and φ = u2 from (3.4b) with u = u2 and φ = u1

gives

ε‖∇θu‖2 ≤ (θw, θu) +
1

ε
‖θu‖2. (3.31)

Next, set ζ = G(θu) in (3.30) and note (2.6) to obtain

1

2

d

dt
‖∇G(θu)‖2 + (θw, θuγ ) = −(λθu, G(θu))

≤ C‖θu‖‖G(θu)‖

≤ ε

2
‖∇θu‖2 + C‖∇Gθu‖2 (3.32)

and therefore by using (3.31) and (3.32) we have that

1

2

d

dt
‖∇G(θu)‖2 +

ε

2
‖∇θu‖2 ≤ 1

ε
‖θu‖2 + C‖∇Gθu‖2.

Recalling (2.9) we conclude that

1

2

d

dt
‖∇G(θu)‖2 +

ε

2
‖∇θu‖2 ≤ C‖∇G(θu)‖2.

Integrate w.r.t. t and using a Grönwall inequality we can conclude the uniqueness

of u.

Setting ζ = θw in (3.30) gives

‖∇θw‖2 = −〈∂tθu, θw〉 − (λθu, θw) = 0

and the uniqueness of w follows from (2.6).

3.3 Semi-discrete approximation

In this section we present a continuous in time and discrete in space finite element

approximation of (3.4). We prove the existence of a unique solution (uh, wh) of this

approximation and then we derive stability bounds on the approximate solutions uh

and wh. We conclude by proving an error estimate on the difference between uh and

the solution u of (3.4).

3.3.1 Notation and useful preliminaries

We recall the following notation from Section 2.4.

We assume that Ω is decomposed into elements so that every element, σ, has three

vertices, at least one of which is an interior point of Ω. If two vertices of σ lie
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on ∂Ω, then the boundary piece of ∂Ω with endpoints at these vertices is an edge

element. We suppose all other edges of the elements are straight lines. We obtain

a polygonal approximation Ωh of Ω by replacing the boundary curves between two

neighbouring vertices by a straight line segment. Thus the partition, {Th}h>0, of Ω

includes a triangulation of Ωh and we assume that this induced triangulation of Ωh

is quasi-uniform.

Furthermore we assume that D is made up of a union of a subset, ThD, of triangles

of Th such that

D = ∪σ∈ThDσ.

We set

Sh := {v ∈ C(Ω) : v|σ is linear ∀σ ∈ Th},

and we enforce the zero boundary conditions only at the nodes of ∂Ω:

Sh0 := {v ∈ Sh : v(z) = 0 for each node z ∈ ∂Ω}.

We define Gh : H−1(Ω)→ Sh0 by

(∇Ghη,∇χ) = 〈η, χ〉 ∀χ ∈ Sh0 (3.33)

and from [15] we have

‖(Gh −G)η‖ ≤ Ch2‖η‖. (3.34)

We define πh : C(Ω)→ Sh to be the standard piecewise linear interpolation operator

and from [24] we have that

‖πhη − η‖+ h‖∇(πhη − η)‖ ≤ Ch2‖η‖H2(Ω) ∀η ∈ H2(Ω). (3.35)

Furthermore we define Qh : L2(Ω) → Sh0 to be the L2 projection operator onto Sh0

satisfying

(Qhη, χ) = (η, χ) ∀χ ∈ Sh0 . (3.36)

Combining (3.33) and (3.36) we have

‖∇Gh(Qhη − η)‖ = 0 ∀η ∈ L2(Ω) (3.37)

and from [15] we have that

‖∇G(Qhη − η)‖ ≤ Ch‖η‖ ∀η ∈ L2(Ω). (3.38)

In addition we set

Kh := {χ ∈ Sh0 : |χ| ≤ 1}.

48



Now we are ready to define our semi-discrete approximation. We discretise (3.4) in

space using finite elements to receive the following problem.

For all t ∈ [0, T ] find {uh, wh} ∈ Kh × Sh0 such that

(∂tuh, χ) + (∇wh,∇χ) = (λ(I − uh), χ) ∀χ ∈ Sh0 , (3.39a)

ε(∇uh,∇(χ− uh))−
1

ε
(uh, χ− uh) ≥ (wh, χ− uh) ∀χ ∈ Kh, (3.39b)

with initial data uh(x, 0) = Qh(u0(x)).

3.3.2 Existence and stability bounds

Lemma 3.3.1. There exists a unique solution (uh, wh) to (3.39) such that

‖uh(·, T )‖2
H1(Ω) +

ˆ T

0

(
‖∂tuh‖2

H−1(Ω) + ‖wh‖2
H1(Ω)

)
dt ≤ C. (3.40)

Proof. We first introduce a regularised version of (3.39) analgous to (3.5)

〈∂tuh,γ, ζ〉+ (∇wh,γ,∇ζ) = (λ(I − uh,γ), ζ) ∀ζ ∈ Sh0 (Ω), (3.41a)

ε(∇uh,γ,∇φ) +
1

γε
(βγ(uh,γ), φ) = (wh,γ, φ) +

1

ε
(uh,γ, φ) ∀φ ∈ Sh0 (Ω), (3.41b)

The existence of a unique local solution (uh,γ, wh,γ) to (3.41) follows by expanding

uh(·, t) = −1 +

N1∑
i=1

uiχi and wh(·, t) =

N1∑
i=1

wiχi,

where χi are the nodal basis functions associated with Th and rewriting (3.41) as a

nonlinear system of ODEs for u = (u1, . . . , uN1).

Following the techniques in the proofs of Lemmas 3.2.1 - 3.2.3 we can conclude the

existence of a unique solution (uh, wh) to (3.39).

3.3.3 Error analysis

We define

Eu := uh − u := Eh
u + EA

u := (uh − πhu) + (πhu− u)

and from (3.27) and (3.35) we have that

‖EA
u ‖2 +

ˆ T

0

(‖∇EA
u ‖2 + ‖EA

u ‖) dt ≤ Ch2. (3.42)
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Lemma 3.3.2. There exists a constant C > 0 such that for all t ∈ [0, T ]

‖∇Gh(Eu(t))‖2 +

ˆ t

0

‖Eu‖2
H1(Ω) dt ≤ Ch2. (3.43)

Proof. Setting ζ = Gh(Eu) in (3.4a) and χ = Gh(Eu) in (3.39a), subtracting the

resulting equations and using (2.5), (2.6), (3.33) and (3.27) gives

1

2

d

dt
‖∇Gh(Eu)‖2 + (Ew, Eu) = −(λEu, G

h(Eu))

≤ C‖Gh(Eu)‖2 +
ε

4Cp
‖Eu‖2

≤ Ch2 +
ε

4
‖∇Eu‖2 + C‖∇Gh(Eu)‖2. (3.44)

Setting φ = uh in (3.4b) and χ = πhu in (3.39b), noting that Eh
u = Eu − EA

u and

then subtracting the resulting equations gives

ε‖∇Eu‖2 − 1

ε
‖Eu‖2 ≤ (Ew, Eu) + ε(∇uh,∇EA

u ) +

(
1

ε
uh − wh, EA

u

)
≤ (Ew, Eu) + ε(∇u,∇EA

u ) + ε(∇Eu,∇EA
u ) +

(
1

ε
uh − wh, EA

u

)
≤ (Ew, Eu)− ε(∆u,EA

u ) + ε(∇Eu,∇EA
u ) +

(
1

ε
uh − wh, EA

u

)
≤ (Ew, Eu) +

ε

4
‖∇Eu‖2 + C‖∇EA

u ‖2 +

(
1

ε
uh − wh − ε∆u,EA

u

)
.

(3.45)

Noting (2.44) we have

1

ε
‖Eu‖2 ≤ C

ε3
‖∇Gh(Eu)‖2 +

ε

4
‖∇Eu‖2

and hence (3.45) can be rewritten as

−(Ew, Eu) ≤ C‖∇Gh(Eu)‖2 − ε

2
‖∇Eu‖2 + C‖∇EA

u ‖2

+ C (‖uh‖+ ‖wh‖+ ‖∆u‖) ‖EA
u ‖. (3.46)

Thus combining (3.44) and (3.46) and noting (3.42) we have

1

2

d

dt
‖∇Gh(Eu)‖2 +

ε

4
‖∇Eu‖2 ≤ Ch2 + C‖∇Gh(Eu)‖2

+ C‖∇EA
u ‖2 + C (‖uh‖+ ‖wh‖+ ‖∆u‖) ‖EA

u ‖. (3.47)

Integrating (3.47) with respect to t over [0, T ], using a Grönwall inequality, noting
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from (3.37) that ‖∇Gh(Eu(·, 0))‖ = 0 and recalling (3.27) and (3.42) we conclude

that

‖∇Gh(Eu(·, T ))‖2 +

ˆ T

0

‖∇Eu(·, s)‖2 ds ≤ Ch2 (3.48)

and (3.43) follows from (3.48), by noting (2.6).

3.4 Fully discrete approximation

In this section we present a discrete in time and space finite element approximation

of (3.4). We prove the existence of a unique solution (unh, w
n
h) of this approximation

and we then derive stability bounds on the approximate solutions unh and wnh . We

conclude by proving an error estimate on the difference between unh and the solution

u of (3.4).

3.4.1 Notation and useful preliminaries

As in Section 2.5 we choose a fixed number, N , time points, tn, to partition the

interval [0, T ] such that 0 = t0 < t1 < t2 < ... < tN−1 < tN = T and where

ti − ti−1 = ∆t,∀i. We define gnh := gh(·, tn) and we define the difference operator δt

as

δtg
n
h :=

gnh − gn−1
h

∆t
for t ∈ (tn−1, tn]

We discretise (3.4) in space using finite elements to receive the following problem.

For all t ∈ [0, T ] we seek a solution {unh, wnh} ∈ Kh × Sh0 to

(δtu
n
h, χ) + (∇wnh ,∇χ) = (λ(I − un−1

h ), χ) ∀χ ∈ Sh0 , (3.49a)

ε(∇unh,∇(χ− unh))− 1

ε

(
un−1
h , χ− unh

)
≥ (wnh , χ− unh) ∀χ ∈ Kh, (3.49b)

where u0
h(x) = Qh(u0(x)).

Lemma 3.4.1. There exists a unique solution (unh, w
n
h) ∈ (−1 +Sh0 )×Sh0 to (3.49).

Proof. In order to prove existence of a unique solution (unh, w
n
h) to (3.49) we first set

χ = Gh(φ− unh), where φ ∈ Kh, in (3.49a) to obtain

(wnh , φ− unh) = (λ(I − un−1
h )− δtunh, Gh(φ− unh)) ∀ φ ∈ Kh

Combining the above equation with (3.49b) and noting (2.43) we have the following

51



for all φ ∈ Kh

ε(∇unh,∇(φ− unh)) + (Gh(δtu
n
h), φ− unh) ≥

(
un−1
h

ε
+Gh(λ(I − un−1

h )), φ− unh
)
.

(3.50)

There exists a unique unh ∈ −1 + Sh0 solving (3.50) since this is the Euler-Lagrange

equation [50] of the convex minimisation problem [34]

min
zh∈−1+Sh0

{
ε‖∇znh‖2 +

1

2∆t
‖Gh(zh − un−1

h )‖2

−(Gh(λ(I − un−1
h )), zh) +

1

ε
(un−1

h , zh)

}
.

Setting χ = Gh(φ), for φ ∈ H−1(Ω), in (3.49a) we obtain

(wnh , φ) = (Gh(λ(I − un−1
h )− δtunh), φ) ∀φ ∈ H−1(Ω)

and the uniqueness of wnh follows by noting the uniqueness of unh and un−1
h and that

wnh = 0 on ∂Ωh.

Lemma 3.4.2. If ‖∇u0
h‖2 ≤ C, then there exists a constant C > 0 such that

‖∇uNh ‖2 +
N∑
n=1

(
∆t‖∇Gh(δt(u

n
h))‖2 + ε‖∇(unh − un−1

h )‖2
)
≤ C, (3.51)

N∑
n=1

∆t‖∇wnh‖2 ≤ C. (3.52)

Proof. Setting χ = Gh(δt(u
n
h)) in (3.49a) and χ = un−1

h in (3.49b), noting (3.33) and

adding the resulting equations gives

(δtu
n
h, G

h(δtu
n
h)) ≤ (λ(I − un−1

h ), Gh(δtu
n
h))− ε

∆t
(∇unh,∇(unh − un−1

h ))

+
1

∆tε
(un−1

h , unh − un−1
h ).

Multiplying by ∆t, noting (3.33) and using (2.4) we have

∆t‖∇Gh(δt(u
n
h))‖2 +

ε

2
‖∇unh‖2 +

ε

2
‖∇(unh − un−1

h )‖2 − 1

2ε
‖unh‖2

≤ C∆t(‖I‖+ ‖un−1
h ‖)‖Gh(δtu

n
h)‖ − 1

2ε
‖unh − un−1

h ‖2

+
ε

2
‖∇un−1

h ‖2 − 1

2ε
‖un−1

h ‖2.
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Using (2.3) and (2.6) we have

∆t‖∇Gh(δtu
n
h)‖2 +

ε

2
‖∇unh‖2 − 1

2ε
‖unh‖2 +

ε

2
‖∇(unh − un−1

h )‖2

≤ C∆t(‖I‖2 + ‖∇un−1
h ‖2) +

∆t

4
‖∇Gh(δtu

n
h)‖2

+
ε

2
‖∇un−1

h ‖2 − 1

2ε
‖un−1

h ‖2.

Summing the above inequality from n = 1 to N , using a discrete Grönwall inequality

and noting that unh ∈ Kh gives (3.51).

Setting χ = wnh in (3.49a) and using (2.6) gives

‖∇wnh‖ = (λ(I − un−1
h ), wnh)− (δtu

n
h, w

n
h)

≤ C
(
‖I‖2 + ‖∇un−1

h ‖2
)

+
1

2
‖∇wnh‖2 + C‖∇Gh(δtu

n
h)‖2

and (3.52) follows by multiplying by ∆t, summing from n = 1 to N and noting

(3.51).

3.4.2 Error analysis

In this subsection we prove a bound on the difference between the solution u of (3.4)

and the solution unh of the fully discrete approximation to (3.4).

Lemma 3.4.3. There exists a constant C > 0 such that for all t ∈ [0, T ]

‖∇G(EU(t))‖2 +

ˆ t

0

‖EU‖2
H1(Ω) dt ≤ C

(
h2 + ∆t+

h4

∆t

)
, (3.53)

where EU(x, t) := uh,∆t(x) − u(x, t) with uh,∆t(·, t) = unh(·) for all t ∈ (tn−1, tn] and

uh,∆t(·, 0) = u0
h(·).

Proof. Setting χ = Gh(EU) in (3.49a) and ξ = G(EU) in (3.4a), subtracting the
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resulting equations and noting (2.5), (2.6) and (3.34) gives

(δtu
n
h − ∂tu,G(EU)) + (EW , EU) = (λ(u− un−1

h ), G(EU))

+ (λ(I − unh)− δtun−1
h , (Gh −G)(EU))

= −(λEU , G(EU)) + ‖λ(I − un−1
h )‖‖(Gh −G)(EU)‖

+ ‖δtunh‖‖(Gh −G)(EU)‖+ (λ(unh − un−1
h ), G(EU))

≤ C‖G(EU)‖2 +
ε

4Cp
(‖EU‖2 + ‖EU‖2

L4(Ω))

+ Ch2‖δtunh‖ ‖EU‖+ C‖unh − un−1
h ‖2

≤ Ch2 +
ε

4
‖∇EU‖2 + C‖∇G(EU)‖2

+ Ch2‖δtunh‖ ‖EU‖+ C‖unh − un−1
h ‖2. (3.54)

Setting χ = πhu in (3.49b) and φ = unh in (3.4b) and then subtracting the resulting

equations gives

−(EW , EU) ≤ −ε‖∇EU‖2 +
1

ε
‖EU‖2 + (wnh −

1

ε
un−1
h , EA

u )

+
1

ε
(un−1

h − unh, EU)− ε(∇unh,∇EA
u )

≤ −ε‖∇EU‖2 +
1

ε
‖EU‖2 + C(‖wnh‖+ ‖un−1

h ‖)‖EA
u ‖

+ C‖un−1
h − unh‖2 − ε(∇unh,∇EA

u ) (3.55)

where EA
u = πhu− u. From (3.42) we have

ε(∇unh,∇EA
u ) = ε(∇EU ,∇EA

u ) + ε(∇u,∇EA
u )

≤ ε

8
‖∇EU‖2 + C‖∇EA

u ‖2 − ε(∆u,EA
u )

≤ ε

8
‖∇EU‖2 + C‖∇EA

u ‖2 + C‖u‖H2(Ω)‖EA
u ‖

≤ Ch2 +
ε

8
‖∇EU‖2 + C‖u‖H2(Ω)‖EA

u ‖. (3.56)

Noting (2.9) we have

1

ε
‖EU‖2 ≤ C

ε3
‖∇G(EU)‖2 +

ε

8
‖∇EU‖2 (3.57)

and hence combining (3.54)-(3.57), noting (2.6) and integrating from t = tn−1 to
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t = tn we have

ˆ tn

tn−1

(δtu
n
h − ∂tu,G(EU)) dt +

ε

2

ˆ tn

tn−1

‖∇EU‖2 dt ≤ C∆th2 + C

ˆ tn

tn−1

‖∇G(EU)‖2 dt

+ C

ˆ tn

tn−1

(‖wnh‖+ ‖∇un−1
h + ‖u‖H2(Ω)‖)‖EA

u ‖ dt

+ C∆t‖∇(un−1
h − unh)‖2 + Ch2

ˆ tn

tn−1

‖δtunh‖‖EU‖ dt . (3.58)

Setting un(·) = u(·, tn) and ūn := 1
∆t

´ tn
tn−1

u(s)ds with ū0 = u0 and noting (2.3),

with γ = 1, gives

ˆ tn

tn−1

(δtu
n
h − ∂tu,G(EU)) dt =

ˆ tn

tn−1

(δtu
n
h, G(unh)) dt +

ˆ tn

tn−1

(∂tu,G(u)) dt

− (un − un−1, G(unh))− (unh − un−1
h , G(ūn))

=
1

2

(
‖∇G(unh)‖2 − ‖∇G(un−1

h )‖2 + ‖∇G(unh − un−1
h )‖2

)
+

1

2

(
‖∇G(un)‖2 − ‖∇G(un−1)‖2

)
− (unh − un−1

h , G(ūn − un−1)) + (un−1
h , G(un−1))− (un, G(unh))

=
1

2

(
‖∇G(unh − un)‖2 − ‖∇G(un−1

h − un−1)‖2
)

+
1

2
‖∇G(unh − un−1

h )‖2 − (unh − un−1
h , G(ūn − un−1))

≥ 1

2
‖∇G(En

U)‖2 − 1

2
‖∇G(En−1

U )‖2 − 1

2
‖∇G(ūn − un−1)‖2

where En
U = unh − un.

From [15] we have

‖∇G(ūn − un−1)‖2 =
1

(∆t)
1
2

∣∣∣∣∣∣∣∣ˆ tn

tn−1

∇G(u(s)− u(tn−1))ds

∣∣∣∣∣∣∣∣
=

1

(∆t)
1
2

∣∣∣∣∣∣∣∣ˆ tn

tn−1

ˆ s

tn−1

∇G(∂tu(r))drds

∣∣∣∣∣∣∣∣
≤ (∆t)

1
2‖∇G(∂tu)‖L2(tn−1,tn;L2(Ω))
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and hence it follows that (3.58) can be rewritten as

1

2
‖∇G(En

U)‖2 − 1

2
‖∇G(En−1

U )‖2 +
ε

2

ˆ tn

tn−1

‖∇EU‖2 dt ≤ C∆th2

+ C

ˆ tn

tn−1

(‖wnh‖+ ‖∇un−1
h ‖+ ‖u‖H2(Ω))‖EA

u ‖ dt

+ ∆t‖∇G(∂tu)‖2
L2(tn−1,tn;L2(Ω)) + C∆t‖∇(un−1

h − unh)‖2

+ Ch2

ˆ tn

tn−1

‖δtunh‖‖EU‖ dt + C

ˆ tn

tn−1

‖∇G(EU)‖2 dt .

On summing the above inequality from n = 1, . . . , k, with 1 ≤ k ≤ N , we obtain

1

2
‖∇G(Ek

U)‖2 +
ε

2

ˆ tk

0

‖∇EU‖2 dt ≤ Ck∆th2 + C

k∑
n=0

ˆ tn

tn−1

‖∇G(EU)‖2 dt

+ C

ˆ tk

0

(‖wnh‖+ ‖∇un−1
h ‖+ ‖u‖H2(Ω))‖EA

u ‖ dt

+ C
k∑

n=1

∆t‖∇(un−1
h − unh)‖2 + Ch2

k∑
n=0

ˆ tn

tn−1

‖δtunh‖‖EU‖ dt

+ C∆t‖∇G(∂tu)‖2
L2(0,tk;L2(Ω))

≤ Ch2 + C
k∑

n=0

ˆ tn

tn−1

‖∇G(EU)‖2 dt + C
k∑

n=1

∆t‖∇(un−1
h − unh)‖2

+ C

ˆ tk

0

(‖wnh‖+ ‖∇un−1
h ‖+ ‖u‖H2(Ω))‖EA

u ‖ dt

+ Ch2

k∑
n=0

ˆ tn

tn−1

‖δtunh‖‖EU‖ dt + C∆t‖∇G(∂tu)‖2
L2(0,tk;L2(Ω)).

(3.59)

Noting (3.51) and (2.6) with C = Cp, we have

h2

k∑
n=0

ˆ tn

tn−1

‖δtunh‖‖EU‖ dt ≤ Ch4

(∆t)2

k∑
n=0

ˆ tn

tn−1

‖unh − un−1
h ‖2 +

ε

8Cp

k∑
n=0

ˆ tn

tn−1

‖EU‖2

≤ Ch4

∆t

k∑
n=0

‖∇(unh − un−1
h )‖2 +

ε

8Cp

ˆ tk

0

‖EU‖2

≤ Ch4

∆t
+
ε

8

ˆ tk

0

‖∇EU‖2 dt (3.60)
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and in addition we note that for t ∈ (tn−1, tn)

‖∇(G(En
U)−G(EU))‖2 = ‖∇G(u(tn)− u(t))‖2 ≤

∣∣∣∣∣∣∣∣ˆ tn

t

∇G(∂tu)ds

∣∣∣∣∣∣∣∣2
≤ ∆t‖∇G(∂tu)‖2

L2(tn−1,tn;L2(Ω)). (3.61)

Combining (3.59), (3.60) and (3.61) and noting (3.27), (3.42) and (3.51) we have

that

1

2
‖∇G(Ek

U)‖2 +
3ε

8
∆t

k∑
n=0

‖∇En
U‖2 dt ≤ C

(
h2 +

h4

∆t

)
+ C∆t

k∑
n=0

‖∇G(En
U)‖2

+ C

ˆ tk

0

(‖wnh‖+ ‖∇un−1
h ‖+ ‖u‖H2(Ω))‖EA

u ‖ dt

+ C
k∑

n=1

∆t‖un−1
h − unh‖2 + C∆t‖∇G(∂tu)‖2

L2(0,tk;L2(Ω))

≤ C

(
h2 +

h4

∆t

)
+ C∆t

k∑
n=0

‖∇G(En
U)‖2 dt

and using a discrete Grönwall inequality and noting from (3.38) that ‖∇G(E0
U)‖2 ≤

Ch2 it follows that

‖∇G(Ek
U)‖2 +

∆tε

2

k∑
n=0

‖∇En
U‖2 dt ≤ C

(
h2 +

h4

∆t

)
∀ 1 ≤ k ≤ N

and (3.53) follows by noting (3.61) and (2.6).
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Chapter 4

Numerical Results and Practical

Applications

4.1 Introduction

In this chapter we will discuss the numerical implementation and some practical

results of the Adjusted Cahn-Hilliard Equation for Binary Image Inpainting and

some other related models in the literature. As mentioned in Chapter 1, the Ad-

justed Cahn-Hilliard model carries many merits for applications, not least is the

(conditional) continuous extension of isophotes ∂⊥u at the boundary of the dam-

aged domain ∂D. We later show how this is not only immediately reproducible for

example problems but further how this is extremely beneficial, especially in tomo-

graphic imaging applications where reconstruction of a smooth surface is challenging

due to the nature of the damaged domain D.

We will also briefly discuss a model for full grayscale images; in order to improve the

scope of applications for inpainting models it is important that they can be imple-

mented on varied classes of images. True grayscale images are those that have pixel

values scaled over a full interval of integer values representing an entire spectrum

(traditionally [0, 255]) which can then be projected as desired for calculations.

4.1.1 A note on ‘Humans as Master Inpainters’

For many digital image inpainting applications, particularly in tomographic ima-

ging (explained later) we experience a curious feature of human visualisation skills.

The human brain is masterful in recognising patterns and referencing previous ex-

periences when attempting to tame or understand the unknown. As such, most

people can provide suggestions as to what a ‘natural’ completion of a damaged im-

age should be in almost any example, trivial examples being Figures 4.1 and 4.12.

Anyone without a severe visualisation impairment (and that can read English text)

58



will be able to provide suggestions as to what the correct, natural inpainting should

be for these damaged images. As such there will be inpainting challenges that may

seem trivial to the eye but provide a challenge mathematically and computation-

ally. As such, the true task an inpainting technique is required to complete is to

provide good inpaintings automatically with as little manual input from the user

as possible, with the magnitude of input required preferably non-scaling with the

geometric complexity of the contours in the damaged image or more importantly

the proportion of damage to the digital image (the ratio |D||Ω| ).

As such, although the reader may very well be able to suggest natural inpaintings

for the figures included here it is important to remember that this will not always be

possible, particularly as the proportion of the damage to a digital image increases.

4.1.2 Software and hardware used

All of the numerical examples and resulting figures included in this thesis have been

produced with the aid of the well-known mathematical computing software MAT-

LAB (2012a edition) [52], visualisation software package Paraview (2013 edition) [2]

and the free numerical finite element toolbox ALBERTA 2.0 [63, 64].

MATLAB has been invaluable in the pre-processing of digital images because of

the imaging toolbox it offers. Digital images of various standard file formats can

be imported and manipulated as desired. For this thesis the toolbox was used to

import the digital images and extract the pixel information to then export in “.txt”

file format, ready to be easily imported into ALBERTA. This procedure has been

used to avoid the need for additional C-language packages or complicated file ma-

nipulation functions that would necessarily be unique to each image file format.

New functions have then been written and used in ALBERTA to import and project

this pixel information onto the finite element mesh to produce a discrete analogue

of the digital image. Note that when interpolating the digital image onto the finite

element mesh, only pixel values actually contained in the image are used to en-

sure we do not create artificial features or gradients that were not originally present

(values are assigned by ‘nearest neighbour’). The linear system is then assembled

and solved in ALBERTA which includes all the necessary meshing, quadrature and

matrix assembly routines needed; the numerical solvers used were not originally

included in the ALBERTA package but are very straight-forward to include. The

numerical results are then exported in “.vtk” format for visualisation in Paraview.

This software is invaluable for inspecting results and then preparing the figures for

presentation.

All computations were completed using the University of Sussex HPC resource

‘Apollo’. Computations are completed on an individual node containing a 2.67GHz
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intel processor and approximately 2GB of RAM (shared RAM between users). This

specification is particularly low and would emulate an implementation on even an

older notebook computer; most modern desktop computers will boast a specifica-

tion far-improved from this and yet all computations were still relatively efficient to

complete.

4.2 Notation and statement of numerical schemes

In this section we will use finite elements to discretise in space (with a uniform mesh)

and semi-implicit schemes in time to write the numerical systems associated to the

models we will discuss. We will denote the standard (lumped) mass matrix by M

and stiffness matrix by A. We also need a discrete form of the fidelity function λ(x)

to ensure that fidelity is only calculated outside of the damaged domain. For each

node x̃ in the triangulation T we define the vector Λ as

Λ(x̃) :=

{
α if x̃ ∈ Ω \D,

0 if x̃ ∈ D,

Where α is the user-chosen fidelity parameter. In the practical numerical schemes

for inpainting techniques with this type of fidelity term, a choice needs to be made

whether the fidelity will be considered explicitly or implicitly. This term will gener-

ally take the form

∆tΛM(I − U∗)

where I is the discrete digital image that has been projected onto the finite element

mesh and where ∗ ∈ {n, n − 1}. If we make the choice ∗ = n then the fidelity will

need to be updated in each iteration of the solver, meaning that the image matrix

I will need to be passed to the solver in the algorithm. Throughout this chapter we

will use semi-implicit schemes where the fidelity is calculated with ∗ = n− 1.

4.2.1 Adjusted Cahn-Hilliard Model (ACH Model)

Double well potential

We consider the following slightly modified version of the fully discrete finite element

approximation (2.63) in Chapter 2, in which we have replaced the L2(Ω) inner

product with the discrete L2(Ω) inner product, making for a more practical scheme.
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Given un−1
h ∈ −1 + Sh0 , we seek {unh, wnh} ∈ Sh0 × Sh0 such that

(δtu
n
h, χ)h + (∇wnh ,∇χ) = (λh(Ih − un−1

h ), χ)h ∀χ ∈ Sh0 ,

ε(∇unh,∇χ) +
1

ε

(
(unh)3 − un−1

h , χ
)
h

= (wnh , χ)h ∀χ ∈ Sh0 ,

with u0
h(x) = πh(u0(x)), λ = πh(λ) and Ih = πh(I). Here (·, ·)h denotes the discrete

L2(Ω) inner product such that (u, v)h :=
´

Ω
πh(uv) dx .

The algorithm we use to solve the resulting system of algebraic equations for {Un,W n}
arising at each time level from the above approximation is adapted from the iterative

method used in [36] to solve a related linear system. Adopting the obvious notation,

the above system can be rewritten as follows.

Find {Un,W n} ∈ RJ ×RJ , where J is the number of nodes in the triangulation

Th, such that

M Un + ∆t AW n = M Λ(I − Un−1)

εAUn +
1

ε
M
(
(Un)3 − Un−1

)
= MW n−1

where M and A are symmetric J × J matrices with entries

Mij := (χi, χj)
h, Aij := (∇χi,∇χj).

Let An−1 ≡ AD−AL−ATL, with AL and AD being the lower triangular and diagonal

parts of the matrix An−1. We use this formulation in constructing our “Gauss-Seidel

type” iterative method.

Given {Un,0,W n,0} ∈ (−1 +Sh0 )×Sh0 , for k ≥ 1, find {Un,k,W n,k} ∈ (−1 +Sh0 )×Sh

such that

M Un,k + ∆t (AD − AL)W n,k = M Λ(I − Un−1) + ∆t ATLW
n,k−1

ε (AD − AL)Un,k −MW n,k +
1

ε
M Un−1(Un−1)TUn,k =

1

ε
M Un−1 + εATL U

n,k−1

Double obstacle potential

As above we consider a slightly modified version of the fully discrete finite element

approximation (3.49) in Chapter 3.

For all t ∈ [0, T ] we seek a solution {unh, wnh} ∈ Kh × Sh0 to

(δtu
n
h, χ)h + (∇wnh ,∇χ) = (λh(Ih − un−1

h ), χ)h ∀χ ∈ Sh0 , (4.1)

ε(∇unh,∇(χ− unh))− 1

ε

(
un−1
h , χ− unh

)
h
≥ (wnh , χ− unh)h ∀χ ∈ Kh, (4.2)
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where unh(x) = πh(u0(x)), Ih = πh(I), λh = πh(λ).

The resulting system of algebraic equations for {Un,W n} takes the following form.

Find {Un,W n} ∈ Kh,J ×RJ , where J is the number of nodes in the triangulation

Th, such that

M Un + ∆t AW n = M Λ(I − Un−1)

ε (V − Un)T S Un − (V − Un)T MW n ≥ 1

ε
(V − Un

ε )T M Un−1 ∀ V ∈ KJ ,

and the “Gauss-Seidel type” iterative method we solve is further as follows.

Given {Un,0,W n,0} ∈ (−1 +Sh0 )×Sh0 , for k ≥ 1, find {Un,k,W n,k} ∈ (−1 +Sh0 )×Sh0
such that

M Un,k + ∆t (AD − AL)W n,k = M λ(I − Un−1) + ∆t ATLW
n,k−1

(V − Un,k)T (ε (AD − AL)Un,k −MW n,k) ≥ (V − Un,k)T (
1

ε
M Un−1 + εATL U

n,k−1)

∀ V ∈ KJ .

Here we project component-wise onto the interval [−1, 1] in the GS solver.

4.2.2 The Adjusted Allen-Cahn Equation for Binary Image

Inpainting (AAC Model)

As discussed in Chapter 1, the adjusted Allen-Cahn equation for binary image in-

painting can be derived in the typical variational inpainting framework by taking the

L2 gradient-descent of the Ginzburg-Landau energy with the added fidelity term.

The adjusted Allen-Cahn Equation for Binary Image Inpainting can be written as

follows. Given an initial condition u(·, 0) = u0 we evolve u via

∂tu = ∆u− 1

ε2
Φ
′
(u) + λ(I − u) in Ω, (4.3)

∂u

∂ν
= 0 on ∂Ω.

A practical fully discrete finite element approximation to the above model, taking

Φ to be the double well potential (1.1) is given by

(δtu
n
h, χ)h + (∇unh,∇χ) +

1

ε2

(
(unh)3 − un−1

h , χ
)
h

= (λh(Ih − un−1
h ), χ)h ∀χ ∈ Sh,

with u0
h(x) = πh(u0(x)), λ = πh(λ) and Ih = πh(I).

The resulting system of algebraic equations for {Un,W n} takes the following form.
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Find {Un,W n} ∈ RJ ×RJ , such that

M Un + ∆t AUn +
1

ε2
M
(
(Un)3 − Un−1

)
= M Λ(I − Un−1)

and the “Gauss-Seidel type” iterative method we solve is as follows.

Given {Un,0,W n,0} ∈ (−1 +Sh)×Sh, for k ≥ 1, find {Un,k,W n,k} ∈ (−1 +Sh)×Sh

such that

M Un,k + ∆t (AD − AL)Un,k +
1

ε2
M (Un−1)TUn−1Un,k

= M Λ(I − Un−1) + ∆t ATL U
n,k−1 +

1

ε2
M Un−1.

4.2.3 The initial condition U 0

There are many options when it comes to choosing the initial condition for an in-

painting method. Of course, in the known region Ω \D it makes sense to predomin-

antly or entirely make use the pixel information I(x) for your initial condition u(·, 0),

since we are enforcing fidelity in this region and a qualitatively good inpainting will

match the known data where possible. Inside and near to the damaged domain

there is a choice to be made; since the regions near to ∂D are (intuitively speaking)

a ‘source of particles’ for the inpainting method, they will play an important role

in the inpainting result you will receive. Some very stable techniques (both from a

numerical and modelling perspective) are able to produce good quality inpainting

results with an initial condition chosen at random in D but if some regularity is

required then information can be taken from the rest of the image to make an ad-

missible initial condition.

Depending on the geometry of the damaged domain D it may be straight-forward to

make use of some interpolation methods to provide a good initial state in D [26, 76].

For example, in the very structured setting of tomographic reconstruction (discussed

in more detail later in the chapter) D takes the form of planar slices at regular in-

tervals throughout the digital image, lending very naturally to the application of

a well-considered interpolation technique [51, 73]. If D is the union of very small

sub-domains of Ω, such as for some denoising application where the user directly

highlights the noise they wish to remove, then simply using some local averaging

technique with nodes near to D could potentially suffice.

For our model comparisons in this section where our discrete binary images take the

values I(x̃) ∈ {−1, 1} it seems that in practice we can often simply take u(x̃, 0) = 0

for x̃ ∈ D and achieve good inpainting results. In the examples included in this

chapter, if the initial condition is not explicitly mentioned for a particular example

then the reader should consider that this is the choice that was made.
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Strictly speaking if the user wishes to formally satisfy certain regularity require-

ments, such as those prescribed by the authors in [10] for the continuation of con-

tours, then a mollifying technique can be used. A typical example would be to use

the the approach mentioned above by filling in D with either a fixed value or random

data and then apply the heat equation to this configuration for an appropriate fixed

positive discrete time interval and then take this numerical solution as the initial

condition for the actual inpainting scheme.

4.3 Model comparisons

In this section we will introduce a few example binary images and compare the res-

ults of the models discussed in the previous section, comparing the various choices

that can be made with the boundary conditions and potential function Φ. In [57]

it is argued that the adjusted Allen-Cahn equation can be used to quickly and ac-

curately reconstruct medical images in three dimensions for specific target tissues

in the human body, be that a particular bone or organ boundary tissue; it would

seem that the previously mentioned contour considerations would place the Adjusted

Cahn-Hilliard equation above this model for such a use. In [16] it is argued (amongst

other things) that the choice of double obstacle potential produces qualitatively bet-

ter results (and reduces the need for post-processing, such as thresholding) in the

inpainting result over the double well potential. We will make preliminary investig-

ations of these claims.

We also have the issue of boundary conditions. In our analysis in previous chapters

it was necessary to make use of Dirichlet boundary data to achieve our results but

practical numerical results show that a Neumann boundary produces qualitatively

good inpaintings for the same example problems and has a broader scope for applic-

ation. In the following sections we will compare all of these competing choices for

parameters deliberately chosen to stretch their practical limits for applications.

The first example will be a simple black circle against a white background with

a damaged domain somewhere across the perimiter of the circle. This is a very

standard and simple problem that will challenge the computational efficiency of

the chosen models as well as test their ability to connect a simple curved contour

through the damaged domain. The second example will be some occluded text in

a standard font. Geometric shapes requiring direct contour connections across a

damaged domain will provide a challenge for models which naturally prefer curved

contours in their results, such as those based on the Cahn-Hilliard equation. In the

final example we attempt to emulate an object with unusual curved contours akin to

what might be expected in a medical image; I will refer to this image as the ‘Dalma-

tian spots’ image. Tissues in the body will natural admit smooth or non-geometric
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contours on their boundaries to other tissues (and the background). Note that we

will cover the medical application in more detail later in this chapter but this toy

problem should expose further the various differences between our chosen models.

Notation

In what follows we will refer to the Adjusted Allen-Cahn Equation for Binary Image

Inpainting as the AAC model and the Adjusted Cahn-Hilliard Equation for Binary

Image Inpainting (with double well potential) as the ACHN or ACHD models for

Neumann and Dirichlet boundary data respectively. Note that the change from

Dirichlet to Neumann boundary data changes the numerical formulations given in

section 4.2 in the natural way. We will also append an (Obs) specification if the

choice of obstacle potential is made for Φ in the Adjusted Cahn-Hilliard model.

Remark 4.3.1. A note on colour and scaling. Throughout this section we have

included various figures relating to the examples we are discussing. For ease of

viewing, binary images (in black and white) will actually make use of a grey ‘off-

white’ colour to represent white in order to distinguish these regions for the eye in

the printed version. Unless otherwise stated, consider all figures to be scaled such

that black regions represent the value U = +1 and the off-white grey (in place of

‘true’ white) represents the value U = −1. As expected, for inpaintings where we

have used a double well potential, there is a likelihood that the numerical solutions

will, in fact, be scaled between a slightly different interval (e.g U ∈ [−1.02, 1.04]).

For such results we will use a thresholding procedure where we project such that

maxx̃ U = 1 and minx̃ U = −1.
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4.3.1 The chosen experiments

Occluded circle problem

For this problem we will make use of the 64 x 64 pixel binary digital image in Figure

4.1. For the triangulation we will use a uniform 512 x 512 finite element mesh with

all diagonals having the same orientation. We will run 3 distinct sets of parameters

as follows.

Parameter Set Name α ε ∆τ
CA 1,000 1/16π 9.85x10−5

CB 5,000 1/32π 9.85x10−5

CC 10,000 1/64π 9.85x10−6

Table 4.1: Occluded circle parameters

Figures 4.3 - 4.11 (shown later) are the associated resulting inpaintings for the

models as described in their captions. The damaged image and associated damage

mask can be found below; the damage mask figure 4.2 is a plot of the indicator

function of D ⊂ Ω.

Figure 4.1: Damaged Circle Figure 4.2: Damage Mask

The results can be seen on the following page.
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Figure 4.3: AAC Model;
CA param.

Figure 4.4: AAC Model;
CB param.

Figure 4.5: AAC Model;
CC param.

Figure 4.6: ACHD
Model; CA param.

Figure 4.7: ACHD
Model; CB param.

Figure 4.8: ACHD Mod-
elt; CC param.

Figure 4.9: ACHN
Model, CA param.

Figure 4.10: ACHN
Model, CB param.

Figure 4.11: ACHN
Model, CC param.
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These results were achieved at the following timesteps:

Model AAC ACHN ACHD
Parameters CA CB CC CA CB CC CA CB CC
Timestep 99 247 1990 96 91 485 191 192 450

Table 4.2: Total timesteps for damaged circle experiments

In Figures 4.3, 4.4, 4.5 we see the results for the AAC model. It is clear that this

model struggles to reproduce a smooth completion of the circular perimeter. On the

other hand, it very accurately reproduces the pixelated nature of the initial data,

providing a near-perfect replication of the jagged circle edge in the region Ω \ D.

Blurred artifacts can be seen in Figure 4.3 around some portions of the perimeter,

most likely as a result of the poor parameters. Figure 4.5 appears to offer a good

representation of this model’s best efforts for this experiment.

The Adjusted Cahn-Hilliard models produces a smooth contour in the results, al-

most replicating the correct boundary of the natural circle from the original digital

image. As expected, a reduction in ε (and thus also ∆t) reduces the thickness of

the interface and figures 4.8 and 4.11 have very little blur. Computationally, the

ACHN and ACHD models cope very well with respect to improving parameters for

this example although the computation time for each time step improves slightly.

Using Dirichlet boundary conditions appears to increase the number of timesteps

needed for convergence for the lower parameter sets CA and CB and is comparable

for the final set CC.
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Occluded text problem

For this problem we have chosen the sample image below, Figure 4.12 where 4 strips

of damaged have been placed through the text phrase “Text Here” with damage

mask as figure 4.13, removing about 12% of the known pixels. Again, for this ex-

ample the original image is 64 x 64 pixels and we will use a uniform 512 x 512 finite

element mesh as before.

Figure 4.12: Damaged Text Figure 4.13: Text Damage Mask

We find that we receive very different results if we use the same parameters as Table

4.1. As you can see below in Figure 4.14, the Cahn-Hilliard models cannot repro-

duce any discernible text for these parameters yet the Allen-Cahn model appears

to make a reasonable attempt. Note that neither of these experiments were run

to convergence but this result has been cherry picked as an example of what the

inpaintings for the Adjusted Cahn-Hilliard models were becoming, likely due to the

low values of α taken, since the results do not emulate the text even in Ω \D.

Figure 4.14: ACHD inpaint-
ing in progress; CC param.
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It is proven in [10] that a weak solution of the stationary equation exists under the

condition α > O(1/ε3) which may play some role in these issues although it appears

from experiments that it may not completely necessary to satisfy it in practice for

every example. The Allen-Cahn solution seems to have also struggled to reproduce

the text without blurring (although not to the same extent as the Cahn-Hilliard

models) and so we will therefore try two new different sets of parameters more

tailored to the needs of the specific models. Here we will use a 2-stage process (as in

[10]) where we will take ε = 1/8π for the first 100 timesteps before adjusting to the

values listed in table 4.3.1 to further assist in connecting the text contours across

D.

Name α ε ∆τ
TD 1,000,000 1/64π 9.85x10−8

TE 25,000 1/32π 9.85x10−6

Table 4.3: Occluded text parameters

The results are included below.

Figure 4.15: AAC Model; TE para-
meters

Figure 4.16: ACHN Model; TD
param.

In figure 4.15 we can see that the AAC model has mostly filled the damaged domain

with the background pixel value (white) and has failed to connect the text across

the widths. Despite this, the rest of the text remains sharp in Ω \ D; it turns out

that this is very characteristic of the AAC model, even for larger values of ε. On

the other hand, the ACHN model has correctly connected the text contours across

all of the damaged strips at the expense of a blurring effect on the majority of the

text outside D.

For highly geometric inpaintings with Adjusted Cahn-Hilliard models it may be

necessary to develop a procedure where the 2-stage ε is used as it is here in order to

70



connect regions across D, then in post-processing it could perhaps be recommended

that the original known data or the AAC solution is used outside of D for the final

result.

Occluded dalmatian spots problem

For this third example where we use the digital image figure 4.17 below with the

associated damage mask, figure 4.18 by removing about 20% of the known pixels,

using the parameter sets in the table below.

Figure 4.17: Damaged Dalmatian
Spots

Figure 4.18: Dalmatian Spots Dam-
age Mask

Name α ε ∆τ
DA 250,000 1/32π 9.85x10−7

DB 1,000,000 1/64π 9.85x10−8

DC 10,000 1/64π 9.85x10−7

Table 4.4: Dalmatian spots parameters

The exception here again is that we will apply a 2-stage procedure to help the AAC

model as before to connect the natural curvature of the image across the damaged

domain, since it struggled in the earlier examples. To do this, we start with a more

diffuse interface by taking ε = 1/8π then after 1,000 timesteps we refine the image

by then taking ε = 1/64π. Below is the table containing the number of timesteps

required to achieve all of the inpainting results.
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Model AAC ACHN ACHD
Parameters DC – – DA DB DC DA DB DC
Timestep 12377 – – 37002 525306 54851 31299 1374575 52794

Table 4.5: Total timesteps for damaged dalmatian spots experiments

The results are included on the following page. We can see in figure 4.20 that the

AAC model again struggles to replicated curved contours and further it seems that

the interfacial regions in D are not properly resolved. This could perhaps be al-

leviated by decreasing the mesh width (it is known in general that 8 elements are

needed within an interfacial region to properly resolve it) but this greatly increases

the computational demand whence it would perhaps be better to simply choose a

more appropriate model. As expected, the ACHD model struggles to correctly re-

tain the features near to the boundary of the image as in figure 4.21.

In figures 4.24 and 4.26 we see the best completions of the contours from the original

image, especially since D covers a large portion of the main contour of the central

spot.
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Figure 4.19: Dalmatian
Spots Image

Figure 4.20: AAC
Model; DC param.

Figure 4.21: ACHD
Model; DC param.

Figure 4.22: ACHD
Model; DA param.

Figure 4.23: ACHD
Model; DB param.

Figure 4.24: ACHN
Model, DC param.

Figure 4.25: ACHN
Model, DA param.

Figure 4.26: ACHN
Model, DB param.
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4.3.2 Double obstacle and double well potential comparison

In this section we will provide some practical tests of the claim from [23] that the

ACHN(Obs) model is qualitatively better than the ACHN model. Using an obstacle

potential results in a variational inequality that will produce numerical solutions

such that |u| ≤ 1 everywhere whereas the ACHN model will often return inpaintings

that range outside of [−1, 1]. As explained earlier, to match a numerical solution

back to an original image scaled between −1 and 1 we will of course have to somehow

project the numerical solution to obtain the final appropriate inpainting; for the

ACHN(Obs) this will not be necessary. In addition to this there are alternative fast

numerical solvers for obstacle problems permitted by the fact that we only need

to resolve the interface in detail, the bulk regions will be entirely either 1 or −1.

This further means you can potentially make use of an active-set approach where

you are only required to solve the full linear system to resolve the interface where

the bulk-phase indicators are inactive [11]; however we will not make use of such

heavy machinery and produce numerical solutions for the ACHN(Obs) model by

projected SOR [42, 28]. In what follows we will test the relative locations of a

resolved contour across a damaged domain by the ACHN and ACHN(Obs) models

to see if this provides a practical reason to select one model over the other.

Figure 4.27: Semi-Circle Image Figure 4.28: Damaged Semi-Circle

For these tests we will take the 128 x 128 pixel image figure 4.27 of a semicircle

with a vertical strip of varying thickness of missing pixels through the middle of the

image as in figure 4.28.
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We will run the ACHN and ACHN(Obs) models to steady state and compare the

final locations of the completed contour they produce across the damaged domain to

see which model replicates the contour from the original image as close as possible.

We will complete this test by extracting the y-coordinate of the U = 0 contour in

the image at the horizontal central point closest to x = 0.5 and compare the results

for varying parameters for both models. In other words we will find the vertical

height on the red line in figure 4.29 where U = 0 lies.

Figure 4.29: Value of Interest

For the first test we will take the strip to be 20 pixels in width, the results are

included in the table below.

Model 1
ε

Final
Timestep

Mesh Size Contour Height
Total CPU
Time (s)

ACHN(Obs) 16π 454 2562 0.5804 - 0.5843 44.81
ACHN(Obs) 32π 878 2562 0.5804 - 0.5843 74.68
ACHN(Obs) 64π 2918 2562 0.5804 - 0.5843 183.79

ACHN 16π 85 2562 0.5804 - 0.5843 95.61
ACHN 32π 254 2562 0.5804 - 0.5843 130.33
ACHN 64π 444 2562 0.5804 - 0.5843 288.54

Table 4.6: Results for 20 pixel width D

From these results (rounded to 4 d.p) we can see that every set of parameters

assigned the 0-contour at the same coordinates in the finite element mesh for both

models. We repeated this test at a finer resolution, a 512 x 512 finite element

mesh, to see whether this causes the models to reproduce the contour at a different

location; the results are included in the table below. From this test we see no

discernible difference in the final location of a contour for this particular test but it
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is noted that the ACHN(Obs) model required a lot less computation time overall in

comparison to the ACHN model for the same parameters.

Model 1
ε

Final
Timestep

Mesh Size Contour Height
Total CPU
Time (s)

ACHN(Obs) 16π 688 5122 0.5566 -0.5585 64.88
ACHN(Obs) 32π 1021 5122 0.5566 - 0.5585 94.58
ACHN(Obs) 64π 3550 5122 0.5566 - 0.5585 197.77

ACHN 16π 102 5122 0.5566 - 0.5585 110.29
ACHN 32π 328 5122 0.5566 - 0.5585 151.00
ACHN 64π 603 5122 0.5566 - 0.5585 334.92

Table 4.7: Results for 40 pixel width D
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4.4 Tomographic inpainting

As mentioned earlier, we will be also be considering suitability for tomographic

applications in the following sections. Imaging applications that use tomographic

sampling provide an incomplete digital image with ‘slices’ of known data (strips

for 2D and whole planar slices for 3D applications) and the challenge is to provide

a useful reconstruction of the missing pixels in between the known data. We will

refer to the known data samples as ‘real’ slices and the unknown data as ‘virtual’

slices. The figure below shows an object against a background with the dark grey

strips representing the virtual slices where pixel data is unknown. Note that we will

generally use the convention of slices being a vertical strip of pixels (1 element wide)

unless otherwise noted.

Figure 4.30: Example Tomo-
graphic Damaged Image

Figure 4.31: Zoom of the
Contour

At the core of the challenge for real-world tomographic inpainting applications is the

fact that it is often beneficial to reduce the computational load and sampling time by

producing a technique that can create good quality inpaintings from as little initial

data as possible. For example, in Medical Resonance Imaging a reconstruction of

the human body or relevant tissues for a medical diagnosis are reconstructed from

planar snapshots of the patient. It is highly beneficial to have the MRI machines

running for as little time as possible; many medical institutes will only have a couple

of these expensive machines in operation so getting the patient in and out as quickly

as possible with good quality inpaintings for diagnosis is essential.

To this end, one of the main values of concern will be the proportion of known data

in the damaged digital images.

Remark 4.4.1. Note that due to the nature of the damaged domain in these tomo-

graphic applications, we must carefully consider our boundary conditions. Regardless

of the convention of horizontal of vertical slices, the damaged domain D will inter-

sect the boundary ∂Ω at multiple locations. From this point forward we will make

use of Neumann boundary data to allow the inpainting technique to calculate the

solution at the boundary.
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4.4.1 Constructing the initial condition

It is essential that we choose a well-considered initial condition for any of the PDE

models in tomographic inpainting applications. We will make use of interpolation

methods well-known in computer imaging literature in order to reduce the size of

the damaged domain and hence increase the likelihood that our solutions’ contours

will complete naturally across the domain and match what would be considered as a

‘natural’ inpainting. It is possible to use an initial condition where you take a single

virtual slice between each real slice and simply use an average value for the unknown

pixels and you can sometimes achieve a quick and dirty inpainting of questionable

quality. However, as our unknown data will often consist of greater than 50% of the

image, this approach will generally provide very poor quality results.

It is intuitive that if neighbouring real slices exhibit the same grayscale value at a

vertical co-ordinate ŷ then we can assume that all pixels lying on the horizontal line

between them are likely to exhibit the same value too. For example, recall figure

4.30. It is very clear even to the untrained eye that many of the unknown pixels

can immediately be chosen to be white or black based on their neighbouring real

slice pixels. We will adjust an algorithm given in the literature which relies on this

intuition which will be implemented as follows.

Tomographic Matching Process

For each node x̃ in the triangulation of the domain Ω we need to establish whether

that node in is in D or Ω \D. For nodes in D we need to choose a reasonable guess

of that node’s possible correct value could to use for the initial condition. We will

use a matching process for this.

Given n virtual slices between each real slice in Ω \D and a chosen tolerance ‘tol’,

for each node [x1+mn, yj] for varied m and j in a real slice in T, firstly set all

uo([x1+mn, yj]) = I([x1+mn, yj]) (4.4)

and then check if

|I([x1+(m+1)n, yj])− I([x1+mn, yj])| ≤ tol, (4.5)

if so, then set all nodes

u0([x1+k, yj]) =
I([x1+mn, yj]) + I([x1+(m+1)n, yj])

2
(4.6)

for k ∈ {nm+1, ..., (m+1)n−1}. Note that for binary image inpainting you should

choose tol = 0. We are then only left to choose an initial value for nodes in the mesh
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where this matching process is unsuccessful. For binary images scaled such that the

black and white states are represented by the values −1 and 1, we can simply set

the remaining nodes to 0 and rely on the properties of the PDE to correct this in

the inpainting result. These nodes should be handled more delicately for grayscale

images, which will be discussed later in this chapter.

4.4.2 Tomographic inpainting examples

Tompographic occluded text

In this example we have occluded our sample black text with a damaged domain

passing through the letters. The challenge here is to connect the geometric shapes

across the regular unknown intervals. Here we have used the tomographic slicing

procedure to create a damaged domain where 50% of the original image is missing.

Figure 4.32: 50% Damaged Text
Problem

The AAC and ACHN models behaved very differently in this test. The AAC model

produced strange results with unwanted artifacts in the solution when attempting

to use parameters that were successful for the CH solution, yet the CH system could

only reproduce legible text when the parameters were improved greatly.

The parameters we changed from previous experiments for this example were as fol-

lows. For both tests we took the 512 x 512 mesh as before (mesh width h = 1/511)

and then for the AAC model, ε = 1/32π and α = 5, 000, for the ACHN model,

ε = 1/64π and α = 100, 000, 000.

Model α ε h ∆t
AAC 5,000 1/32π 1/511 9.84x10−6

ACHN 100,000,000 1/64π 1/511 9.84x10−6

Table 4.8: Tomographic text parameters
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The AAC solution, figure 4.33 was achieved after 86 timesteps and the ACHN solu-

tion, figure 4.34 was achieved after 23. It actually takes very few timesteps to

produce a decent inpainting in this example and the text is of good quality after

only 5 or 6 timesteps for the ACHN model in particular. This suggests that a looser

convergence tolerance condition could be used to reduce total computation time.

Figure 4.33: Tomographic Text AAC
Sol.

Figure 4.34: Tomographic Text
ACHN Sol.
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Dalmation spots

In this example we will use the dalmatian’s spots image, figure 4.35. Here for the

first example we have used the tomographic framework with 3 virtual slices for each

real slice, reducing the image to 25% known data and for the second example, 7

virtual slices for each real slice reducing the image to 12.5% known data.

Figure 4.35: The True Image Figure 4.36: 75% Damage

Note that not only does the AAC model take many more timesteps to produce a

result, but reproduces the contours at a lower quality. Adjusting the parameters

accordingly can alleviate this to some extent but the AAC solution will suffer from

a ‘stepping phenomenon’ [71] if 1
ε

and α are increased too much; this results in a

tighter recreation of the shape in regions around known pixels but jagged corners

around appearing instead of contours, particularly near to ∂D; this is worsened

further as we increase the damage %.

Figure 4.37: Mild “Stepping”

The results can be found on the following page.
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Figure 4.38: 75% AAC Solution at
Timestep 100

Figure 4.39: 75% ACHN Solution at
Timestep 27

Figure 4.40: 87.5% AAC Solution at
Timestep 271

Figure 4.41: 87.5% ACHN at
Timestep 97

The ACHN inpaintings, figures 4.39 and 4.41 are clearly very accuracte reconstruc-

tions of the original image. On the other hand, while the AAC inpaintings do manage

to reconstruct the overall shape of the objects they exhibit a jagged contour which is

common for low-order PDE-based inpainting models (and interpolation techniques)

and is heralded as undesirable for applications in existing literature [73].
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4.5 Extension to grayscale images

With a view to tackling broader applications (particularly in medical imaging) it

is clear that binary image inpainting techniques will be fairly limited in scope. Al-

though the results in this chapter show that we can produce high quality recon-

structions of the surface of a single tissue (contour), ideally we would like to be

able consider a technique that could be applied to multiple different tissues simul-

taneously. For this we will need a technique for full grayscale spectrum inpainting,

where we expect the sampled data I to vary in the whole interval [−1, 1] as opposed

to simply {−1, 1}.
In [19] a so-called TV −H−1 inpainting scheme is proposed. The authors allow the

inpainted image u to evolve via

∂tu = ∆p+ λ(I − u), p ∈ ∂TV (u), (4.7)

with

TV (u) :=

{
|Du|(Ω) if |u(x)| ≤ 1 a.e in Ω

∞ otherwise.

As explained in [74] we have that p ∈ ∂|Du|(Ω) implies that{
p = −∇ · ( ∇u|∇u|) in Ω,
∇u
|∇u| · ν = 0 on ∂Ω.

(4.8)

but unfortunately this does not fully characterise our p ∈ ∂|Du|(Ω); there are ad-

ditional conditions that are noted that we cannot implement numerically. This is

unfortunate in terms of a rigorous derivation of the scheme, but as we will see later,

the numerical results will validate the approach in practice. Instead, we consider a

regularised version of |Du|(Ω) and so the subdifferential (4.8) becomes a gradient

as follows. For a paramater δ � 1 we have p = −∇ · ( ∇u√
|∇u|2+δ

) in Ω,

∇u√
|∇u|2+δ

· ν = 0 on ∂Ω.
(4.9)

So, despite not having a rigorous derivation for including (4.9) into our scheme (4.7)

there is at least some argumentation to support it. Intuitively the main difference

between this scheme and Cahn-Hilliard-based schemes for binary images is that

instead of solving a kind of Allen-Cahn-type second equation in the system, we

essentially have the mean curvature of all level sets of u. This explains partly why

this new scheme now applies to grayscale images since we now incorporate curvature
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flow of all level sets; the Adjusted Cahn-Hilliard schemes only considers evolution

of the single level set dividing two bulk phases.

4.5.1 Statement of the numerical scheme

The model can then be written as follows. For a given digital image (function) I

such that I : Ω → [−1, 1], we choose an initial condition u0(x) = u(x, 0) using the

matching algorithm (4.4) - (4.6) and we evolve u via

∂tu = ∆w + λ(I − u) in Ω, (4.10a)

w = −∇ ·

(
∇u√
|∇u|2 + δ

)
in Ω, (4.10b)

∂u

∂ν
=
∂w

∂ν
= 0 on ∂Ω. (4.10c)

Omitting further details for sake of brevity, this results in a practical fully discrete

finite element scheme as follows. Given un−1
h ∈ Sh, we seek {unh, wnh} ∈ Sh×Sh such

that

(δtu
n
h, χ)h + (∇wnh ,∇χ) = (λh(Ih − un−1

h ), χ)h ∀χ ∈ Sh,(
∇unh
σ

,∇χ
)

= (wnh , χ)h ∀χ ∈ Sh,

where σ :=
√
|∇un−1

h |+ δ. The resulting system of algebraic equations for {Un,W n}
takes the following form:

Find {Un,W n} ∈ RJ ×RJ , such that

M Un + ∆t AW n = M Λ(I − Un−1)

SUn = MW n,

and the “Gauss-Seidel type” iterative method we solve is then as follows:

Given {Un,0,W n,0} ∈ (−1 +Sh)×Sh, for k ≥ 1, find {Un,k,W n,k} ∈ (−1 +Sh)×Sh

such that

MUn,k + ∆t(AD − AL)W n,k = MΛ(I − Un−1) + ∆tATLW
n,k−1,

MW n,k + (SD − SL)Un,k = STLU
n,k−1,

where S := Sij :=

(
1√

|∇un−1
h |+δ

∇χi,∇χj
)

.
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4.5.2 Numerical results

For this example we will use the following grayscale 128 x 128 pixel image, Figure

4.42. This image is adapted from our previous dalmatian spots examples by adding

additional spots of an intermediate pixel value (dark grey) making the image no

longer suitable for binary imaging models. We will use the tomographic framework

Figure 4.42: Grayscale Spots Im-
age

and reduce the image to 25% known data. Making use of the same matching process

as before to produce U0 and taking α = 10, 000, h = 1/511 and ∆t = 9.84x10−8.

Below in figure 4.43 we see the image with 75% damaged pixels.

Figure 4.43: Damaged Image Figure 4.44: Damage Mask
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The inpainting result can be found below. This inpainting was achieved at timestep

80. The location and curvature of the bulk sub-regions appears to have been re-

covered extremely well and in particular we compare below the intersection points

of all 3 pixels values as highlighted in figure 4.46.

Figure 4.45: Grayscale Inpainting
Result

Figure 4.46: Regions of Interest in
Original Image

Figure 4.47: Region
1; Original

Figure 4.48: Region
2; Original

Figure 4.49: Region
3; Original

Figure 4.50: Region
1; Inpainting

Figure 4.51: Region
2; Inpainting

Figure 4.52: Region
3; Inpainting
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4.5.3 Considerations for applications

As we can see from the results in the previous section, the overall structure of the

regions is correctly recovered, albeit with some blurring of the detail, which is to be

expected. The model (4.10) possesses only the fidelity term as a competing factor

against the curvature evolution smearing the finer scale details in an image. Using

the curvature equation w = −∇ ·
(
∇u
|∇u|

)
directly means we have made no specific

considerations about the significance of the contours in the image for the applica-

tion. It is fairly intuitive that bulk areas of a medical image within a distinctive

closed contour are likely to carry the same or similar grayscale values throughout

[73] and direct curvature evolution in these regions (away from the contour itself)

is likely to correctly fill in missing data at damaged pixels [62].

In areas of high gradient it can be argued that we should perhaps adjust the evol-

ution slightly to help preserve small-scale details. Despite this, the model we are

using shows good promise as the core of an inpainting method. In [21] the authors

propose to adjust their curvature evolution by limiting the motion in areas of large

∇I and increasing the motion where it is low. The numerical results shown in [62]

suggest this anisotropic diffusion could be well-suited for medical imaging applica-

tions. There are many other approaches and adjustments that could be made that

are beyond the scope of this thesis.

With a view to applications, we shall also finally implement our algorithm here for

a few medical images. The following medical images; an xray scan of a human pa-

tient thoracic region, a veterinarian xray of a dog’s broken leg and a portion of a

human patient’s brain MRI are all kindly provided free for re-use and modification

by www.pixabay.com. Although our combined method of matched interpolation

and evolution via (4.10) is short of industry standard for real medical imaging, I

believe the results show that the approach has some merit and could potentially be

implemented for real-world applications with further work and adaptations.

Image Thoracic Xray Dog Leg Xray Brain MRI
Final Timestep 69 122 105

Table 4.9: Total timesteps for medical inpaintings
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Figure 4.53: Human
Thoracic Xray Image

Figure 4.54: 50% Dam-
aged Image

Figure 4.55: Thoracic In-
painting Result

Figure 4.56: Broken Dog
Leg Xray

Figure 4.57: 75% Dam-
aged Image

Figure 4.58: Dog Leg In-
painting Result

Figure 4.59: Brain MRI
Portion

Figure 4.60: 87.5% Dam-
aged Image

Figure 4.61: Brain In-
painting Result
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Chapter 5

Conclusions

In this thesis we investigated the Adjusted Cahn-Hilliard Equation for Binary Di-

gital Image Inpainting. We provided an analysis and a numerical framework for the

model. The analysis of this model is challenging for many reasons. Prior to the ma-

terial presented in this thesis, preliminary investigations revealed various challenges

with respect to the regularity of the problem and we presented here an analysis that

can only be completed due to our specific choice of boundary conditions. Further

work could perhaps provide an alternative to this approach but we were unable to

achieve that here.

We also investigated the alternative choice of an obstacle potential function to the

double well originally proposed for the model and further adapted the analysis to

this alternative formulation. Obstacle potentials are popular in applications and

there is a broad field of research dedicated to the analysis and numerical approach

to these problems. We provided a fully implementable numerical formulation using

an approach for similar problems in literature and displayed the redeeming features

of the model that make it useful for applications.

Potential further work and investigations fall into three categories. Firstly, it would

be desirable to provide an equivalent analysis of the model without the need for

Dirichlet boundary conditions. These conditions can sometimes prove restrictive

in applications and affect the inpaintings you receive and it is preferable that an

inpainting technique can be applied to a broad range of examples with as little re-

strictions as possible. Despite the lack of an equivalent analysis for the alternative

choice of Neumann boundary conditions, it appears that in practice we are not re-

stricted; for the sake of completeness it would be beneficial to have some analytical

support for this fact.

Secondly, the implementation could benefit from an investigation into alternative

solvers and perhaps some associated preconditioning strategies to reduce the com-

putational demand. Although this model boasts an inherently low computational

demand, particularly compared to other high order partial differential equation mod-

89



els in literature, it would be wise to adapt some of the wealth of research into fast

numerical solution of other Cahn-Hilliard-based models. It was unnecessary to em-

ploy a complicated numerical solver to achieve the results displayed in this thesis but

for future broader applications, particularly those in three space dimensions and at

higher resolutions, it may become necessary to reduce the computational demand as

much as possible. The use of an obstacle potential potentially paves the way for the

use of so-called ’active set’ type solvers that mostly concentrates the computational

efforts on resolving the diffuse interface, greatly reducing the total computational

demand of an iteration once the location of the interface is established [11]. I believe

this to be an immediate area of improvement that could be investigated.

Finally, there are improvements to be made from a modelling perspective. Although

mathematically interesting in its own right, the model is restricted in its real-world

application to binary images. Some recent work has provided a vector-valued Cahn-

Hilliard model for the inpainting of colour images [23] but it requires a component

in the phase parameter for each distinct colour in the image. I believe the binary

model could be adapted as part of a more advanced inpainting model that can be

applied to full colour images.

The binary model achieves very good results for connecting contours in a binary

image and I believe that this feature should be incorporated as part of a larger

inpainting scheme. A full-colour inpainting model could then perhaps be proposed

wherein the Cahn-Hilliard model is used exclusively to locate and repair contours

within the damaged digital image; coupling the equation cleverly into a larger sys-

tem where other equations are responsible for assigning the actual colour to the

inpainting could result in a computationally efficient and practically effective model

for a very broad range of applications.
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