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In this thesis we study several topics within the subject of extra dimensions and com-

posite Higgs models. We first look at a scenario with a warped extra dimension known

as the Randall-Sundrum (RS) model, and put all Standard Model fields in the bulk. We

investigate various aspects of the model and argue that the presence of higher dimensional

operators in the 5D bulk has a non-negligible effect on the electroweak precision observ-

ables, meaning that current electroweak constraints on non-custodial warped models could

be weaker than previously thought.

Then, using holographic techniques, we study correlations between the top partner

masses and the Higgs potential in composite Higgs models. It is known that a light Higgs

(∼ 125 GeV) generally requires light top partners at around 700-800 GeV. However in

these calculations the 5D volume is always fixed such that the 5D cutoff is around ∼MPl.

The effect of lowering this 5D cutoff has been studied previously in bulk RS models as

a way of reducing constraints from some flavour and electroweak precision observables,

these models were dubbed “Little Randall-Sundrum models”. Here we consider a similar

setup in the context of holographic composite Higgs models and show that reducing the

5D cutoff leads to a lighter Higgs without a lowering of the top partner masses or an

increase in fine-tuning. We find that the model is perfectly consistent with a 125 GeV

Higgs and top partners above 1 TeV. This reduced 5D cutoff implies an intermediate scale

between the electroweak scale and the Planck scale.

Lastly we consider a similar warped model with a low 5D cutoff, except this time our

goal is to study diphoton signals from Kaluza-Klein gravitons in a warped extra dimension.

With a KK graviton of mass 750 GeV and spin-1 states at ∼ 2.5 TeV, we show that having

a low 5D cutoff increases the diphoton signal and the decay to gluons. With this model we

show that we can explain the recently observed diphoton excess in terms of a Kaluza-Klein

graviton from a holographic composite Higgs model, while keeping other decay channels

within the relevant experimental bounds.
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Chapter 1

Introduction

1.1 Overview

In 2015 the Large Hadron Collider (LHC) began its second run, colliding protons with

centre of mass energies of 13 TeV, the highest energy collisions performed in a particle

collider to date. On it’s first run in 2010 the LHC was colliding protons with centre of

mass energies of 7 TeV, and after a short shut down, began again in 2012 reaching centre

of mass energies of 8 TeV. The first run culminated in 2012 with the discovery of the long

sought after Higgs boson [1, 2] at a mass of 125 GeV, the smoking gun signature for a

mechanism of electroweak symmetry breaking (EWSB) called the Higgs mechanism. For

the theoretical work done in developing the Higgs mechanism the 2013 Nobel prize was

awarded to François Englert and Peter Higgs.

This discovery opens up many questions as to the origin of the Higgs mechanism.

In the Standard Model (SM) of particle physics, the Higgs mechanism is responsible for

electroweak gauge bosons acquiring mass without violating gauge invariance. However it

is possible that there is other new physics present which also plays a role in EWSB. If

this is true, then it would lead to deviations in some of the measured properties of the

Higgs and other particles of the SM. The discovery of other new physics may shed light

on the origin of the Higgs mechanism and a more fundamental theory of nature. Thus far

no significant deviations in these properties have been measured, however the presence of

new physics is far from excluded. In fact, new physics at the energy scales probed by the

LHC is very well motivated.

The SM is an immensely successful model, explaining the plethora of data collected at

particle colliders over the last century. However the validity of the SM only extends over

three of the four known fundamental forces, as it fails to provide a quantum description
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of gravity. Effects of this quantum description of gravity could lay at scales far above

the Higgs mass at ∼ 1018 GeV. This fact implies that the SM, our most advanced un-

derstanding of nature, is incomplete. Another issue is the so-called hierarchy problem.

According to our current understanding, the natural mass scale of the discovered Higgs

boson should be orders of magnitude larger than what was measured. This is due to the

sensitivity of its mass to higher scales in the model, which must exist to explain how

gravity is incorporated into our understanding of nature. Other issues include the origin

of neutrino masses, the baryon asymmetry in the universe, the fact that the SM contains

no dark matter candidates, and many more.

Many extensions to the SM have been proposed, and most only solve a few of the

outstanding issues. However some Beyond the Standard Model (BSM) extensions provide

a framework from which one can address many of the issues in the SM. Two of these BSM

scenarios that we will focus on in this thesis are warped extra dimensional models and

composite Higgs models. Neither of these models by themselves provide an explanation as

to how gravity is incorporated into the SM, however they both provide explanations for

why the Higgs mass is not be sensitive to higher scales. Thus they both provide solutions

to the hierarchy problem, however this is only part of the story. Once we have a model

which solves this problem, we must then check if it agrees with the stringent experimental

tests that have been performed at particle colliders in the past, most notably at the Large

Electron-Positron (LEP) collider and at the LHC. In general any model which adequately

solves the hierarchy problem requires new physics laying at the TeV scale, and this new

physics generally induces corrections to observables measured at LEP and at the LHC,

causing tension with experimental results.

There are two ways in which this new physics may show up. One is by direct detection,

by which the collisions at the LHC produce a new physics particle on-shell and its decay

products are detected. And another is indirectly, in this way the new physics particle may

either mix with the SM particles causing deviations in their couplings, or corrections to

observables may arise from higher order radiative effects involving the new physics particle.

Thus far the LHC has made no observations which are consistent with new physics beyond

the SM. These experimental bounds narrow down the spectrum of BSM scenarios that are

likely to exist beyond the electroweak scale.

This thesis is divided into five chapters, the first being the introduction, the last being

the conclusions, and the others each corresponding to a self-contained sub-project:

2. Non-custodial warped extra dimensions at the LHC [3]
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3. Exploring holographic composite Higgs models [4]

4. A Little KK graviton at 750 GeV [5].

In the first few sections of chapter 2 we present the background material required for that

chapter. Chapters 3 and 4 also make use of this however these chapters will also require

additional background material which is presented later. We then move on to discuss the

idea of warped extra dimensions as a solution to the hierarchy problem. New physics in

these models comes in the form of towers of resonances called Kaluza-Klein (KK) modes

which are expected to have masses of the order ∼ TeV. We study indirect effects of these

KK modes on the Electroweak Precision Observables (EWPOs). These observables were

accurately measured at LEP and are still some of the most stringent constraints we have

on BSM models. We end the chapter by studying corrections to the top quark Yukawa

coupling of the SM induced indirectly via mixings between the Higgs boson, top quark,

and KK top quarks.

We start chapter 3 by giving an overview of strongly coupled models in particle physics,

starting with QCD and technicolor and moving on to composite Higgs models. In com-

posite Higgs models the Higgs boson is not a fundamental particle, but is rather a bound

state of some strongly coupled new physics. This new physics is expected to become visi-

ble in our particle colliders at energies around the TeV scale. The smoking gun signature

for these composite Higgs models would be the detection of a so-called top-partner. In

order to adequately solve the hierarchy problem these new particles are required to be

somewhat lighter than other new physics particles in the model, expected to lay . TeV.

The 5D techniques introduced in the previous chapter can also be used to study compos-

ite Higgs models, where the methods used go under the name of holographic techniques.

After developing some of these techniques further we move on to the main part of the

chapter, which is a study of the Higgs potential and the top-partner masses when we have

intermediate scales in the model. Thus far we have mentioned three scales, the Higgs mass

(125 GeV), the scale of new physics required to adequately solve the hierarchy problem (∼

TeV), and the scale of gravity (∼ 1018 GeV). In chapter 3 we introduce an intermediate

scale by lowering the UV scale of the holographic composite Higgs model to lay somewhere

between the TeV scale and 1018 GeV. After presenting the results of this analysis we then

study corrections to the top quark Yukawa coupling in the holographic composite Higgs

model.

In the last sub-project we study the possibility that a spin-2 KK mode of a warped

extra dimension with an intermediate scale can describe a once significant deviation at a
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mass of 750 GeV in experimental data analysed by the ATLAS and CMS collaborations

in December 2015 [6,7]. With the collection of more data this deviation has revealed itself

to only be a statistical fluctuation [8], however the results of this chapter demonstrate

how intermediate scales in warped extra dimensions open up interesting possibilities for

new physics at low masses. We begin by reviewing the background material for spin-2

KK modes (KK gravitons) and relevant phenomenological quantities in terms of the 5D

parameters. We then present a study of the phenomenology of these KK gravitons and

show that with intermediate scales of the order 103 TeV we can adequately describe the

deviation in the experimental data.

In the second part of this introduction we will provide an overview of the SM, focusing

on parts relevant to this thesis such as the Higgs mechanism and the hierarchy problem.

We will then move on the three sub-projects mentioned above, and will conclude the thesis

in chapter 5.

1.2 The Standard Model of particle physics

All data collected from high energy particle physics experiments thus far can be de-

scribed very well by a Lorentz invariant, renormalizable quantum field theory known

as the Standard Model (SM). This field theory has a local gauge symmetry, GSM =

SU(3)c × SU(2)L × U(1)Y , under which the matter content of the model is charged. The

physics of the SU(3)c gauge symmetry is known as Quantum Chromodynamics (QCD)

and the eight spin-1 generators of this non-abelian group are responsible for the media-

tion of the strong force between fermion fields that we call quarks. Fermions not charged

under this strong force are called leptons, and we call the generators of the local gauge

symmetries gauge fields. A peculiar property of the SU(2)L symmetry in the SM is that

the gauge fields of this symmetry, of which there are three, only interact with left-handed

quarks and leptons. The force mediated by these gauge bosons is called the weak force.

Lastly, the U(1)Y local symmetry, which has only one gauge boson, interacts with all

quarks and leptons in the SM. This symmetry is known as hypercharge, and together we

call the product SU(2)L × U(1)Y (and the fields charged under it) the electroweak (EW)

sector.

The gauge symmetry of the EW sector is spontaneously broken by the vacuum to the

subgroup U(1)Q. This gauge group is responsible for electromagnetism (EM), the force

whose gauge boson is the photon. What we mean by spontaneously broken is that although

the action is invariant under the full EW group, the vacuum is not.
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Field SU(3)c SU(2)L U(1)Y U(1)Q Generation notation

LiL =

νi
li

 1 2 −1
2

0

−1

νe
eL

 ,

νµ
µL

 ,

ντ
τL


eiR 1 1 −1 −1 eR, µR, , τR

QiL =

ui
di

 3 2 1
6

+2/3

−1/3

u
d

 ,

c
s

 ,

t
b


uiR 3 1 2

3 +2
3 uR, cR, , tR

diR 3 1 −1
3 −1

3 dR, sR, , bR

Table 1.1: In this table we present the charge assignments of the SM quarks and leptons

and the notation used to denote the three generations.

1.2.1 The quarks and leptons

Quarks and leptons are fermion fields, i.e. they transform in the spin-1/2 representation of

the Lorentz group. An interesting and yet unexplained feature of the SM is that it consists

of three generations each of quarks and leptons. The charges of these fields under the SM

gauge symmetries are given in table 1.1. The EM charge is related to those of the weak and

hypercharge via Q = T 3
L+Y , where Y is the hypercharge generator and T 3

L is the diagonal

generator of SU(2)L. The 2 tells us that the left-handed quarks transform as doublets of

SU(2)L, which is the fundamental representation. The upper and lower fields have either

T 3
L = ±1/2, respectively, hence the difference in EM charges. The quarks transform as

colour triplets of the strong force, which again is the fundamental representation. This is

in contrast to the gauge bosons of the SM which transform in the adjoint representations

of the local symmetries. Note that the adjoint representation of an SU(N) group has

N2 − 1 degrees of freedom.

The Lagrangian of the SM quarks, leptons and gauge fields can be compactly written

in the form

L =− 1

4
Tr(Gµν,aGaµν)− 1

4
Tr(Wµν,iW i

µν)− 1

4
BµνBµν +

∑
generations

(
L̄Liγ

µDlL
µ LL

ēRiγ
µDlR

µ eR + Q̄Liγ
µDqL

µ QL + ūRiγ
µDuR

µ uR + d̄Riγ
µDdR

µ dR

)
(1.2.1)
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where the covariant derivatives are

DlL
µ =∂µ +

i

2
gT bLW

b
µ + igY

(
−1

2

)
Bµ

DeR
µ =∂µ + igY (−1)Bµ

DqL
µ =∂µ +

i

2
gsλ

aGaµ +
i

2
gT bLW

b
µ + igY

(
+

1

6

)
Bµ

DuR
µ =∂µ +

i

2
gsλ

aGaµ + igY

(
+

2

3

)
Bµ

DdR
µ =∂µ +

i

2
gsλ

aGaµ + igY

(
−1

3

)
Bµ (1.2.2)

where a = 1, .., 8 and b = 1, 2, 3. These expressions can be derived from the charge

associations laid out in table 1.1.

1.2.2 Masses for the SM fields?

Adding mass terms for the SM fields cannot be done without explicitly breaking some

of the gauge symmetries. First of all, any mass term for a gauge field violates the local

symmetry generated by that field. And the charges associated with the fermion fields

mean that one cannot write down Lorentz invariant mass terms without violating a gauge

symmetry. For example if we add a Lorentz invariant mass term ∼ ūLuR, this will break

the EW symmetries because the fields have different hypercharge and only uL interacts

with the weak force. We know very well that most of the SM fields do in fact have mass,

therefore there must be a mechanism to describe these masses. This is the famous Higgs

mechanism mentioned in the overview, and it is responsible for the spontaneous breaking

of the EW gauge group to U(1)Q, as well as giving the SM particles masses. Therefore the

vacuum only respects the SU(3)C × U(1)Q symmetry. From table 1.1 we can see that we

can indeed build fermion masses which respect these gauge symmetries. When the vacuum

spontaneously breaks local gauge symmetries one also finds that masses for certain gauge

fields of the gauge symmetry are introduced in a gauge invariant way.

1.2.3 The Higgs mechanism

To spontaneously break the EW symmetry in the SM one introduces an additional set of

complex scalar fields transforming in the fundamental representation of the SU(2)L group

with hypercharge +1/2. This set of scalars is known as the Higgs doublet field. The

Lagrangian (up to dimension 4) for such a field can be written

L =
1

2
(DµΦ)2 − µ2

2
Φ2 − λ

4
Φ4 (1.2.3)
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where

Dµ = ∂µ +
i

2
T bLW

b
µ + igY

(
+

1

2

)
Bµ. (1.2.4)

When we minimise the potential for the Higgs field we find two cases,

• µ2 > 0 and λ > 0: The minimum of the potential is at 〈Φ〉2 = 0.

• µ2 < 0 and λ > 0: The minimum of the potential is at 〈Φ〉2 = −µ2/λ.

The second case implies that when µ2 < 0 the Higgs field acquires a vacuum expectation

value (vev). In this case we can write the Higgs field as

Φ(x) = exp

(
i

2v
ξ(x)bT bL

) 0

v+h(x)√
2

 (1.2.5)

where v2 = −µ2/λ. From this we can rotate via a gauge transformation to

Φ(x) =

 0

v+h(x)√
2

 . (1.2.6)

Expanding the kinetic term of this Higgs field, including its vev, we find mass terms for

certain linear combinations of the W b
L and U(1)Y fields, where one linear combination is

left massless. The massive linear combinations are the W-bosons W± = (W 1
µ ∓ iW 2

µ) with

mass m2
W = g2v2/4 and the Z-boson Zµ = (gW 3

µ−gYBµ)/
√
g2 + g2

Y with mass m2
Z = (g2+

g2
Y )v2/4. The massless linear combination is the photon Aµ = (gYW

3
µ + gBµ)/

√
g2 + g2

Y

which generates the residual EM gauge symmetry in the vacuum. This mixing can be

compactly described in terms of the Weinberg mixing angle sin2 θW = g2
Y /(g

2 + g2
Y ).

Re-writing the potential in the presence of the vev results in a Higgs mass of m2
h = −2µ2.

Yukawa couplings and fermion masses

With the Higgs field in the spectrum we can write down some additional dimension 4, gauge

invariant interaction terms. For one generation of leptons we can write YlL̄LΦeR + h.c.,

since both Φ and LL carry weak charge and the total hypercharge of the fields in the

interaction is zero this term is invariant under the local symmetries of the SM. When the

Higgs has a vev this term is expanded to

Yl√
2
vl̄eR +

Yl√
2
hl̄eR + h.c.. (1.2.7)

The first term in this expression is a mass term for the leptons (Ylv/
√

2) and the second

is a coupling to the Higgs. Note that the neutrino fields (ν) do not get a mass here. This
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can be understood by noting that without another fermion with zero EM charge, a mass

term invariant under U(1)Q cannot be written.

Following the same logic we have the quark-Higgs interaction for one generation of

quarks

YdQ̄LΦdR + YuεabQ̄LaΦ
†
buR + h.c.. (1.2.8)

In the same manner as before, when the Higgs has a vev mass terms for the up and down

quarks are generated where mu,d = Yu,dv/
√

2.

However, the SM has three generations and there is no reason why we cannot write

down Yukawa interactions which mix different generations. Thus we promote Yl,u,d →

Y ij
l,u,d. If the Higgs has a vev one would then diagonalise these interactions and express

them in the mass basis. The physics associated with the mixings between these different

generations is a rich subject and goes by the name flavour physics. Note that due to

the SM not containing a right-handed partner for the neutrino, the mixings between the

lepton generations vanish.

1.2.4 The naturalness problem

In standard quantum field theories the one-loop corrections to the masses of scalar fields

are quadratically sensitive to the cut-off scale of the model. One exception to this is

supersymmetry in which the quadratic one-loop corrections are cancelled by contributions

from loops of super-partners. However in the SM there is no supersymmetry and one would

naively expect the Higgs mass to be close to the cut-off scale in the model. The problem

is that estimates of this cut-off scale place it at ΛPl ∼ 1018 GeV (the Planck scale), and

the Higgs mass is measured to be 125 GeV implying µ ' 88 GeV. These estimates rely on

the assumption that above the electroweak scale there is no new physics until the Planck

scale, at which point one would expect a UV completion to unify the forces of the SM

with gravity. This naturalness (or fine-tuning, or hierarchy) problem has been a strong

motivation to search for new physics at scales ∼ TeV , and has led to a conclusion accepted

by most physicists that the SM is merely an effective theory of nature valid at scales well

below that of the Planck scale. Current collider experiments are now probing scales at

and above the TeV scale and have yet to make any concrete discoveries of new physics.

Thus even if there is new physics at several TeV, we would have no natural explanation

for why the Higgs mass is . 10% of the new physics scale. This additional problem is

known as the little-hierarchy problem. Exploring and testing solutions to these hierarchy

problems will be one of the main goals of this thesis.
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Chapter 2

Non-custodial warped extra

dimensions at the LHC

Due to their attractive model building features and rich phenomenology, warped extra

dimensional models have been studied extensively for over fifteen years. The first pro-

posal of such a model was by Randall and Sundrum (RS) in 1999 [9], and consisted of an

AdS space mapped onto an S1/Z2 orbifold bounded by two 3-branes. The AdS geometry

imposes an exponential hierarchy in energy scales between the two branes, thus, with all

SM fields residing on the low energy (IR) brane and with a suitable choice of parameters,

this model offers a simple and natural solution to the hierarchy problem. Studying per-

turbations to this metric reveals that the graviton zero mode is localised towards the high

energy (UV) brane and hence the interaction of gravity with SM fields is naturally weak.

In addition to this, it was shown that the size of the extra dimension can be stabilised

without fine-tuning using a bulk scalar field [10].

Extending this model to have the SM fields propagating in the bulk provides a more

interesting phenomenology, but also more stringent constraints on model parameters. The

most striking feature of these models is the presence of KK modes in the 4D effective

theory, of which the zero modes are identified with the SM particles. These arise due

to the compactification of the bulk fields. The masses of scalar, gauge and fermion KK

modes represent a scale of new physics in the effective model which is expected to be in

the TeV range.

In addition to solving the hierarchy problem, these models are motivated by explaining

the fermion mass hierarchy [11,12], new mechanisms for supersymmetry breaking [13–15],

and by composite Higgs models where the AdS background is dual to a strongly coupled

4D theory through the AdS/CFT correspondence [16,17] (see ref. [18] for a recent review).
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In this chapter we begin by providing an overview of field theory in 5D warped spaces in

which the fifth dimension is compactified, we cover spin-0, 1 and 1/2 fields. We also discuss

the Kaluza-Klein decomposition method which allows us to decompose compactified 5D

fields into towers of 4D mass eigenstates. We then revisit the case of a bulk Higgs field.

We first look at how the presence of the Higgs KK modes induces corrections to the masses

of SM particles. For other analyses on bulk fields see [13,19,20], and specifically for a bulk

Higgs see [21,22]. It was first thought that models with a bulk Higgs field required a large

fine-tuning (of the order of that required in the SM) to obtain an EW scale zero mode

with TeV scale KK modes [23]. However, it was realised that if the bulk Higgs is localised

towards the IR then one can naturally accommodate a light Higgs in the spectrum.

In sections 2.4.1 and 2.4.2 we look at the Higgs potential in 5D and study the effects of

bulk and brane quartic terms. We find that with a bulk quartic term the KK Higgs modes

are more decoupled from the zero mode than with a brane quartic term. The higher modes

in the Higgs potential acquire vev’s and give additional mass to the SM fields, we find the

effect this has on the Higgs couplings and particle masses to be too small for detection until

we have a sub percent experimental accuracy on the Higgs quartic coupling or couplings

to gauge bosons and fermions. An interesting observation which we discuss is that these

effective theories may be viewed as multiple Higgs doublet models.

Constraints on the EW sector of these models are studied via the Peskin-Takeuchi

parameters S, T , and U [24]. In section 2.4.3 we calculate these parameters for our model.

The largest experimental bound comes from the T parameter. We confirm that with a

Higgs localised to the IR brane the lower bound on KK gauge boson masses is about 15

TeV, and with a Higgs localised in the 5D bulk this is reduced to around 8 TeV. We refer to

these cases as brane and bulk Higgs cases, respectively. One way of reducing these stringent

constraints is to extend the bulk gauge symmetry such that the KK gauge bosons in the

effective theory preserve the SM custodial symmetry after EWSB [25–27]. Another way is

to introduce a scalar field which back-reacts on the metric causing a departure from AdS in

the IR [28–32]. These mechanisms typically result in a lower bound of about 3 TeV. Similar

results can be obtained by introducing large brane kinetic terms for the gauge bosons [33]

or by extending the space-time to include more than 5 dimensions [34, 35]. Having more

than 5 dimensions may allow for a reduction in constraints via volume suppression in the

IR of the extra dimension. We do not consider these extensions here, but do include the

extended bulk gauge symmetry in later chapters. In the SM there is a set of dimension-6

operators contributing to the EW parameters. In section 2.4.4 we promote these to 5D
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operators and study their effects. The only one with a sizeable contribution is the 5D

dimension-8 operator contributing to the T parameter. Assuming a mild cancellation, we

find that this effect could provide considerable reductions in the MKK bound, allowing

KK resonances around 5 TeV, i.e. within the range of LHC.

An exciting aspect of future collider experiments is the increased precision on top

quark measurements. Being the heaviest particle in the standard model, corrections to

its properties from KK modes will generally be large. The top quark mass is already well

measured with the error being sub-percent. However, measurements of the top Yukawa

coupling still leave a lot of room for new physics, and the proposed future colliders could

dramatically close this gap. The precision forecasts from ILC [36–38], CLIC [39, 40] and

TLEP [41] state that they could achieve a precision < 5% on the bottom and tau Yukawa

couplings, and precision forecasts for the high luminosity LHC [42, 43] indicate that they

could achieve the same precision for the top quark. In light of this, section 2.5 focuses on

the misalignment of the fermion Yukawa couplings due to mixing with KK fermions. The

largest of these effects is by far with the top quark, for which we find deviations from the

SM could be as large as ∼ 10% for a bulk Higgs. Similar calculations were done in [44]

for a brane Higgs. We find some differences between the bulk and brane Higgs cases here.

One important difference is the reduced bound on the KK fermion scale, and another is

the introduction of a new coupling not present in brane Higgs scenarios. Together, we

find that these result in a larger Yukawa corrections for a bulk Higgs. While these are

sizeable deviations from the SM, they currently do not lead to additional bounds beyond

that from electroweak observables. KK resonances may therefore be observable at LHC

in the bulk Higgs setup.

2.1 Physics in a warped extra dimension

Throughout this thesis we focus on models with one extra dimension compactified on an

S1/Z2 orbifold, which we describe as an interval with the line element,

ds2 = e−2A(y)ηµνdx
µdxν − dy2, (2.1.1)

where A(y) describes the curvature of the extra dimension. Thus the metric is written as

gMN = diag
(
e−2A(y),−e−2A(y),−e−2A(y),−e−2A(y),−1

)
. (2.1.2)

The end points of the element are denoted by 0 and L, i.e. y lies in [0, L], and at these

points we have 3-branes onto which we can add localised interactions for the 5D fields.
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The S1/Z2 geometry implies that any action must be invariant under transformations of

the form y → −y and y → y + L. This is the most general line element we can write

down assuming that we have 4D Lorentz invariance. Flat extra dimensions are described

by A(y) = 0, whereas the Randall-Sundrum model is given by A(y) = ky. The curvature

scale k in the RS model has mass dimension 1 and is naturally assumed to be of the

order of the fundamental 5D mass scale. This is typically taken to be of the order 1018

GeV, in order to reproduce 4D Einstein gravity from the 5D picture. However later in our

work, in chapters 3 and 4, we will consider smaller values of this scale (i.e. intermediate

scales) and discuss how one can still obtain Einstein gravity in the 4D picture. This

specific background geometry can be derived from 5D Einstein equations with a suitable

5D action.

In some cases we will use the so-called ‘conformal frame’ where we make a co-ordinate

transformation such that r = 1
ke
ky. This results in a more compact expression for the line

element,

ds2 =

(
R

r

)2

ηMNdx
MdxN (2.1.3)

where M,N = 0, 1, 2, 3, 4 and dx4 = dr. The UV and IR branes are located at r = R = 1/k

and r = R′, respectively.

2.1.1 Scalar fields in 5D

Let us consider the following 5D action for a real scalar field,

S =

∫
d4x

∫ L

0

√
|g|
(

1

2
gMN∂MΦ∂NΦ− V (Φ)

)
, (2.1.4)

where g = det (gMN ) = e−4A(y). Note that in 5D the scalar field has mass dimension

3/2. Varying with respect to the scalar field we find that the volume and surface terms,

respectively, are,

δSV = −
∫
d4x

∫ L

0

√
|g|

(
1√
|g|
∂M

(√
|g|gMN∂NΦ

)
+
∂V

∂Φ

)
δΦ

δSS =

∫
d4x
√
|g|g5N∂NΦδΦ|y=L

y=0 +

∫
dy
√
|g|gµN∂NΦδΦ|x=+∞

x=−∞

=

∫
d4x
√
|g|g55∂yΦδΦ|y=L

y=0 +

∫
dy
√
|g|gµν∂νΦδΦ|x=+∞

x=−∞. (2.1.5)

The variational principle, δS = 0, allows us to derive equations of motion for Φ, for

example the volume term gives rise to the following bulk equation of motion,

1√
|g|
∂M

(√
|g|gMN∂NΦ

)
+
∂V

∂Φ
= e2A∂µ∂µΦ− e4A∂y

(
e−4A∂yΦ

)
+
∂V

∂Φ
= 0. (2.1.6)
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But we need to specify boundary conditions; for the 4D co-ordinates we simply assume

Φ→ 0 as xµ → ±∞, however for the 5D boundary conditions there are two options which

ensure δS = 0 on either brane,

∂yΦ = 0→ Neumann, (+)

Φ = 0→ Dirichlet, (−). (2.1.7)

Throughout this thesis we will make use of the following notation for boundary conditions,

(±,±) or (±,∓),

where the ordering is assumed to be (UV, IR). However, these are not the only type of

boundary conditions we can obtain. Adding mass terms or interaction terms on the branes

can alter the outcome. Take, for example,

S ⊃ −
∫
d4x

∫ L

0
dy δ(y − L)

√
|g|1

2

m2

M5
Φ2, (2.1.8)

where M5 is a mass term put in place due to the scalar field having mass dimension 3/2,

while the mass dimension of the integral on the boundary is −4. In order for the surface

term to vanish in this case, we require that,

∂yΦ|y=L =
m2

M5
Φ|y=L. (2.1.9)

This is what we will refer to as a ‘mixed’ boundary condition.

2.1.2 Gauge fields in 5D

In 5D we can write a general action for an abelian gauge field, which will have mass

dimension 3/2, as

S =

∫
d4x

∫ L

0
dy
√
|g|
(
−1

4
gMNgKLFMKFNL

)
+ SGF (2.1.10)

where SGF contains some gauge fixing terms. Expanding this action in the background,

neglecting gauge fixing for now, we find

S =

∫
d4x

∫ L

0
dy

(
−1

4
FµνFµν +

1

2
e−2A∂µA5∂µA5 − e−2A∂µA5∂yA

µ +
1

2
e−2A∂yAµ∂yA

µ

)
.

(2.1.11)

We will use the gauge-fixing term to get rid of the derivative coupling between the A5 and

Aµ mode. First, we will perform a partial integration on the term with respect to both µ

and y,

e−2A∂µA5∂yA
µ = −∂y

(
e−2AA5

)
∂µA

µ + e−2AA5∂µA
µ|y=L
y=0 . (2.1.12)

13



Then it is clear that the gauge-fixing term needed is∫
d4x

∫ L

0
dy

1

2ξ

(
∂µA

µ − ξ∂y
(
e−2AA5

))2
(2.1.13)

where ξ is the gauge-fixing parameter. As in the 4D Rξ gauges, this term alone does not

completely fix the gauge. A residual gauge freedom allows for unphysical forward and

backward polarisations of massless gauge fields to contribute to amplitudes, however these

can be removed by applying Ward identities. In studying non-abelian gauge symmetries

one must include the interactions of the Faddeev-Popov ghosts in the action. We study

non-abelian gauge symmetries in section 3.2.2, where we follow a gauge-fixing procedure

laid out in [45] in which the ghosts do not contribute to the one-loop Higgs potential. In

abelian gauge theories which are spontaneously broken, the Faddeev-Popov ghosts still

do not couple to the gauge fields, however they will couple to the Higgs-like degrees of

freedom that triggered the spontaneous breaking.

Choosing different values of ξ here corresponds to different gauge choices, the most

popular being the Landau gauge (ξ → 0) and the Feynman-’t Hooft gauge (ξ = 1). With

this term, the action is now

S =

∫
d4x

∫ L

0
dy
(
− 1

4
FµνFµν +

1

2
e−2A∂µA5∂µA5 +

1

2
e−2A∂yAµ∂yA

µ

+
1

2ξ
(∂µAµ)2 +

1

2
ξ
(
∂y
(
e−2AA5

))2 )
(2.1.14)

+

∫
d4x e−2AA5∂µA

µ|y=L
y=0 .

Varying this action with respect to the Aµ field gives rise to the following volume and

surface terms,

δSV =

∫
d4x

∫ L

0
dy δAµ

((
ηµνηαβ∂α∂β −

(
1− 1

ξ

)
∂µ∂ν

)
− ηµν∂ye−2A∂y

)
Aν

δSS =

∫
d4x−2AδAµ (∂yA

µ − ∂µA5) |y=L
y=0 , (2.1.15)

and varying with respect to A5 results in,

δSV =

∫
d4x

∫ L

0
dy e−2AδA5

(
−ηµν∂µ∂ν + ξ∂2

ye
−2A

)
A5

δSS =

∫
d4x e−2AδA5

(
ξ∂y

(
e−2AA5

)
+ ∂µAµ

)
, (2.1.16)

implying the following bulk equations of motion,((
ηµνηαβ∂α∂β −

(
1− 1

ξ

)
∂µ∂ν

)
− ηµν∂ye−2A∂y

)
Aν = 0(

ηµν∂µ∂ν − ξ∂2
ye
−2A

)
A5 = 0. (2.1.17)
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When studying spontaneous symmetry breaking in 4D models with an Rξ gauge-fixing

procedure, one finds that Goldstone bosons of the spontaneous symmetry breaking have

ξ-dependent masses. This means that the fields mass is gauge dependent and implies that

the field is unphysical. In these 5D models, the 4D masses of the KK modes are related to

5D momentum, and from the above equation we see that these terms are ξ-dependent for

the A5 field. This leads to the A5 KK modes having ξ-dependent masses, also implying

that they are unphysical. In analogy with the 4D spontaneous symmetry breaking models,

we can say that the A5 modes are eaten to form the longitudinal components of the massive

Aµ KK modes. We will return to this discussion briefly in section 2.2.2 when we discuss

the KK decomposition for the 5D gauge fields.

For the boundary conditions there are two clear options;

A5 = 0 ⇒ ∂yAµ = 0

Aµ = 0 ⇒ ∂y
(
e−2AA5

)
= 0, (2.1.18)

where we will use the following short hand notation,

A5 = 0 → ′+′

Aµ = 0 → ′ −′ . (2.1.19)

Just as in the scalar field case we will present the boundary conditions in the form (±,±)

or (±,∓), where the ordering is assumed to be (UV,IR).

A mixed boundary condition is defined as the boundary condition which arises when

we have a mass term for a field on a brane. If one adds a mass term to the UV brane

in the 5D gauge field action, the UV mixed boundary condition for Aµ is modified to

∂yAµ = mAµ. One can think of a Dirichlet boundary condition as a mixed boundary

condition, with the brane mass taken to infinity. Note that if we have some bulk gauge

symmetry, we cannot have mixed boundary conditions without breaking (explicitly or

spontaneously) the gauge symmetry on the brane. However one can add kinetic terms to

the branes without breaking the bulk gauge symmetry.

2.1.3 Fermion fields in 5D

The spinorial representation of the Lorentz algebra in 5D consists of five anti-commuting

Dirac matrices. We can take these to be

ΓA =
(
γµ,−iγ5

)
, (2.1.20)
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which can be written in the Weyl representation as

γµ =

 0 σµ

σ̄µ 0


γ5 =

−12×2 0

0 12×2

 . (2.1.21)

The σµ tensors above are defined by

σµ =
(
12×2, σ

i
)

σ̄µ =
(
12×2,−σi

)
, (2.1.22)

where the σ matrices here are simply the Pauli matrices. From these definitions it is clear

that {ΓA,ΓB} = 2ηAB, as is required.

One important consequence of having fermions in 5D, is that the 4D chirality operator

is now part of the spinorial representation of the Lorentz group. Thus Dirac spinors in 5D

are not reducible, and since 5D Lorentz transformations will mix left and right handed

Weyl spinors, we do not have a chiral theory. This issue can be resolved by suitable choices

of boundary conditions, which we will see soon.

Since the 5D background is, in general, not flat, we need a few additional tools to

describe fermions. The first is the fünfbein eAM , which is defined by

gMN = eAMe
B
NηAB

eMA e
B
M = δBA . (2.1.23)

In the background of eq. (2.1.2), we have

eµα = eAδµα

ey5 = 1. (2.1.24)

And secondly we need to define the covariant derivative so that it accounts for both general

co-ordinate invariance and local Lorentz invariance. The spin connection, ωABM , is defined

such that

DM = ∂M + ωMAB

[
ΓA,ΓB

]
. (2.1.25)

This requires that

ωABM = eAN
(
∂Me

NB + eSBΓNSM
)
, (2.1.26)

where ΓNSM are the Christoffel symbols. The only non-zero components are,

ων5
µ = −ω5ν

µ = ∂y
(
e−A

)
δνµ, (2.1.27)

16



meaning that we can write the covariant derivative as

Dµ = ∂µ −
i

2
e−AA′γµγ5

D5 = ∂y. (2.1.28)

Now that we have made these definitions we can proceed to look at the 5D fermion action,

in which the fermion has mass dimension 2, and derive the bulk equations of motion. We

can write the 5D action for a fermion field as

S =

∫
d4x

∫ L

0
dy
√
|g|
(
i

2
Ψ̄eMA ΓADMΨ− i

2
(DMΨ)† Γ0eMA ΓAΨ−mΨΨ̄Ψ

)
=

∫
d4x

∫ L

0
dy e−3A

(
iΨ̄γµ∂µΨ +

1

2
e−A

(
Ψ̄γ5∂yΨ−

(
∂yΨ̄

)
γ5Ψ

)
− e−AmΨΨ̄Ψ

)
(2.1.29)

where we assumed that the field vanishes at xµ → ±∞. Varying with respect to Ψ̄ we find

the following volume and surface terms,

δSV =

∫
d4x

∫ L

0
dy e−3AδΨ̄

(
iγµ∂µΨ + e−Aγ5∂yΨ− 2A′e−Aγ5Ψ− e−AmΨΨ

)
δSS = −

∫
d4x e−4AδΨ̄γ5Ψ|y=L

y=0 . (2.1.30)

Assuming that the boundary terms vanish, we arrive at the following bulk equation of

motion, (
ieAγµ∂µ +

(
∂y − 2A′

)
γ5 −mΨ

)
Ψ = 0. (2.1.31)

Decomposing into left and right components, the requirement that the surface term van-

ishes can be written as

δΨ̄LΨR − δΨ̄RΨL|y=L
y=0 = 0, (2.1.32)

hence if we have a Dirichlet (−) boundary condition for either field on each brane, the

surface term vanishes. Note that fixing the boundary condition for one chirality automati-

cally fixes the boundary condition for the other. To see this, we re-write the bulk equation

of motion, eq. (2.1.31), in terms of left and right-handed fields,

ieAγµ∂µΨL +
((
∂y − 2A′

)
−mΨ

)
ΨR = 0

ieAγµ∂µΨR +
(
−
(
∂y − 2A′

)
−mΨ

)
ΨL = 0. (2.1.33)

Now it is clear that there are two possibilities for boundary conditions at each brane,

ΨL = 0 ⇒ ∂yΨR =
(
2A′ +mΨ

)
ΨR

ΨR = 0 ⇒ ∂yΨL =
(
2A′ −mΨ

)
ΨL. (2.1.34)
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We will use the following short hand notation for the boundary conditions,

ΨR = 0 → ′+′

ΨL = 0 → ′−′ (2.1.35)

where again we write them in the form (±,±) or (±,∓) in the order (UV,IR). One could

also add localised mass terms on the branes to obtain mixed boundary conditions, just as

in the scalar case.

2.2 Kaluza-Klein expansions

When considering fields in a compact extra dimension it can be useful to perform a Fourier

decomposition on the 5D field in order to express the action in terms of 4D mass eigenstates

with 5D ‘wave functions’. This similar to what is done when studying the ‘particle in a box’

solution in 1D quantum mechanics. The procedure is very similar regardless of the field.

The masses of these KK particles are related to the 5D momentum along the direction of

the extra dimension, thus in relation to the previous section we will see that they are a

direct consequence of the ∂y terms.

2.2.1 Scalar KK decomposition

The first step is to re-write the field as

Φ(xµ, y) =
1√
L

n=∞∑
n=0

fn(y)φn(xµ) (2.2.1)

such that we isolate the y-dependence of the field in the ‘wave-function’ fn(y) which we

are free to choose. As a matter of convenience, we will choose these functions such that

the effective theory describes, at the quadratic level, towers of non-interacting states. The

factor of 1√
L

is inserted to make the wave-function dimensionless, since [Φ] = 3/2 and

[φn] = 1.

Inserting this expansion into the bulk equation of motion eq. (2.1.6), with V (Φ) =

1
2M

2Φ2, we find

e2Afn∂
µ∂µφn −

(
e4A∂y

(
e−4A∂yfn

)
−M2fn

)
φn = 0. (2.2.2)

We want this equation of motion to have the following form,

∂µ∂µφn +m2
nφn = 0, (2.2.3)
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where mn is referred to as the Kaluza-Klein mass of the nth mode. Thus, the wave-

functions must be chosen to satisfy,

f ′′n − 4A′f ′n −M2fn + e2Am2
n = 0. (2.2.4)

We can see that the 4D KK masses arise from momentum along the direction of the extra

dimension, and even when the 5D mass M is zero, the 4D KK modes still have masses.

This feature is obviously independent of the spin of the particle under consideration, but

we will see it explicitly for spin-1 and spin-1/2 particles later in this section, and for spin-2

particles later in the thesis. The equation of motion for the scalar field is self-adjoint and

thus it is guaranteed that the wave-functions will form a complete set of solutions and

that they will be orthogonal to each other, i.e.,

(
m2
n −m2

m

) ∫ L

0
dy e−2Afnfm = 0. (2.2.5)

With the bulk equation of motion and the boundary conditions, one can solve to find the

KK masses (m2
n) and the wave-functions (fn(y)). Once this is done we insert them back

into the action, integrate over the y co-ordinate and treat the resulting 4D action as we

usually would. Without specifying what A(y) is we cannot write down analytic expressions

for the KK masses and wave-functions, however in the coming sections this will be done

for the case when the bulk geometry is AdS. The normalisation constant is usually chosen

such that upon substituting this expansion into the action the kinetic term for the field is

canonical,
1

L

∫ L

0
dy e−2Afnfm = δmn. (2.2.6)

Note that the KK procedure does not solve for fn(y) via some variational procedure, it

is simply a re-definition of the fields done in such a way that once we integrate over y

the quadratic part of the action describes towers of non-interacting fields. Also, when we

apply boundary conditions, we simply use the boundary conditions for the entire 5D field

eq. (2.1.7) or eq. (2.1.9), but apply them on a mode by mode basis, i.e. to each wave

function.

In the RS case, where A(y) = ky, we find that the 5D wave functions for scalar fields

are given by

fn =
e2ky

Nn

(
Jα

(mn

k
eky
)

+ β(mn)Yα

(mn

k
eky
))

, (2.2.7)

where mn is the mass of the nth mode, α is a constant related to the bulk and brane

masses, and Nn is determined by the normalisation condition [13]. The constants β(mn)

and the KK masses mn are determined by the boundary conditions. The Jα and Yα
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functions in this expression are Bessel functions. In the limit kL� 1 the KK masses can

be approximated as

mn '
(
n+

α

2
− 3

4

)
πke−kL (2.2.8)

when we have Neumann boundary conditions on the UV and IR branes. There is also a

massless mode solution, however we will leave this discussion for section 2.3.

2.2.2 Gauge KK decomposition

We expand the Aµ and A5 fields in their 4D and 5D components,

Aµ(xµ, y) =
1√
L

n=∞∑
n=0

fAn (y)A(n)
µ

A5(xµ, y) =
1√
L

n=∞∑
n=0

f5
n(y)A

(n)
5 (xµ). (2.2.9)

Plugging these expansions into the bulk equations of motion for these fields, eq. (2.1.17),

we find that in order to obtain mass eigenstates it is required that,

∂y
(
e−2A∂yf

A
n

)
+m2

nf
A
n = 0

∂2
y

(
e−2Af5

n

)
+m2

nf
5
n = 0. (2.2.10)

From eq. (2.2.10) one can see that,

mn 6= 0 ⇒ f5
n =

1

mn
∂yf

A
n , (2.2.11)

where the 1/mn factor arises from normalisation of the A5 kinetic term. This can be

verified by plugging eq. (2.2.11) into eq. (2.2.10) and integrating once with respect to y.

For the same reasons as in the scalar case, the wave-functions of the gauge modes are also

orthogonal and form a complete solution to the eigenvalue problem. Once we insert these

expansions into the action we require the following normalisations to ensure the kinetic

terms are canonical,
1

L

∫ L

0
dyfA,5m fA,5n = δnm. (2.2.12)

Gauge invariance requires that there are no mass terms for the gauge field on the branes

or in the bulk, assuming we do not want to break the gauge symmetry. Note also that the

boundary conditions for the whole 5D field, eq. (2.1.18), are simply applied to each of the

5D wave functions separately. Regardless of the background geometry, there are several

features we can discuss at this point:

• If the Aµ components have (+,+) boundary conditions, i.e. no mass terms on the

branes, there will be a massless zero mode present in the spectrum with a flat wave

function, fA0 = 1. And there will be no zero mode for the A5 field.
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• If the Aµ field has (−,−) boundary conditions on the branes, there will be no massless

mode for the vector field. However the A5 field will have a massless mode, with a

profile exponentially localised in the IR, f5
0 ∼ e2A(y).

• If the fields have mixed boundary conditions, (±,∓), there will be no massless modes

from either the vector or the scalar components.

• Lastly, we know that 4D gauge fields require an extra longitudinal degree of freedom

when they become massive. From the KK picture it is clear that these degrees of

freedom are provided by the tower of A5 KK modes, which are eaten by the Aµ tower.

In this case the A5 modes can be removed by a gauge transformation. However when

the Aµ field has (−,−) boundary conditions, the A5 zero mode remains uneaten.

This information can be summarised in figure 2.1.

Figure 2.1: A diagrammatic representation of the 5D gauge fields in the effective theory

The gauge fixing procedure derived in section 2.1.2 along with eq. (2.2.10) shows that

the A5 modes eaten by the massive Aµ modes have a ξ-dependent mass, implying that

they are unphysical particles. In unitary gauge, where ξ → ∞, we decouple these A5

modes from the other particles in the model by taking their masses to infinity. However

if we have a massless A5 mode in the spectrum, as is the case in the diagram on the right

hand side of fig. 2.1, that mode is physical and is not eaten by a vector field. This can be

seen by noting that even in unitary gauge the particle does not decouple as its mass has

no gauge dependence.

In addition to the discussion above, it is useful to point out that if a gauge field has

anything other than a Neumann boundary condition on both branes, the gauge symmetry

is broken. The gauge symmetry in the 4D effective theory will only consist of the generators

of the bulk gauge symmetry which have the Neumann boundary conditions. Whereas KK

modes will exist for all generators thus the KK spectrum will respect the global bulk

symmetry.
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In this thesis we will mostly work with the Randall-Sundrum background, A(y) = ky,

in which the solutions for the 5D wave functions of the KK gauge modes are found to be,

fAn =
eky

Nn

(
J1

(mn

k
eky
)

+ β(mn)Y1

(mn

k
eky
))

(2.2.13)

where Jk and Yk] are Bessel functions and the normalisation constant Nn is fixed using

the normalisation condition. The integration constants β(mn) and the KK masses mn are

fixed by the boundary conditions for the field on the two branes. In fact, in the kL � 1

limit the KK gauge masses are approximately found to be,

mn '
(
n− 1

4

)
πke−kL. (2.2.14)

The mass scale of the KK resonances is fixed by ke−kL ∼ TeV. Through the relation in

2.2.11 these expressions also give us the 5D wave functions of the A5 scalars.

Since the zero mode gauge field is flat, one can simply calculate the relation between

the 5D gauge coupling and the effective 4D coupling. By inspecting the interactions among

the zero mode gauge fields one can see that we must have g5 = g4

√
L, which makes sense

considering that the 5D gauge coupling has mass dimension −1/2. This relation can be

modified by the inclusion of brane kinetic terms for the gauge field, however we will not

consider these here. Due to the localisation of their profiles, the interactions of the KK

gauge fields are a lot different than those of the zero modes, and since g5 is fixed in terms

of g4 and L, the strength of the interactions can be controlled by L. If we wanted to keep

the mass of the KK modes constant and vary L, this would require a variation in k such

that ke−kL is kept constant.

2.2.3 Fermion KK decomposition

For the last demonstration of the KK method we turn our attention to fermions. We write

the field expansion as before,

ΨL,R(xµ, y) =
1√
L

n=∞∑
n=0

fL,Rn (y)ψL,Rn (xµ). (2.2.15)

Again, in order to obtain a tower of non-interacting fermion states at quadratic level in

the effective theory we require that

(
∂y −mΨ − 2A′

)
fRn = −mne

AfLn(
∂y +mΨ − 2A′

)
fLn = mne

AfRn , (2.2.16)

where mn is the mass of the left and right-handed vector-like modes. Just as in the

scalar and gauge cases, these wave functions form a complete basis for the solution to the
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eigenvalue equation, and are orthonormal. We fix the overall normalisation constant by

requiring that the kinetic term be canonical,

1

L

∫ L

0
dy e−3AfL,Rm fL,Rn = δm,n, (2.2.17)

where the e−3A term comes from the
√
|g| eA terms from the metric component and the

fünfbein.

From the equations of motion we can clearly see a zero mode solution, mn = 0,

fL,R0 ∼ e(2A∓mΨy). (2.2.18)

Applying the boundary conditions, eq. (2.1.34), to this mode reveals an important feature

of this scenario,

′+′ → ΨR = 0 ⇒ No RH zero mode

′−′ → ΨL = 0 ⇒ No LH zero mode, (2.2.19)

thus despite having a vector-like theory in 5D, in the 4D theory the zero modes are chiral

and only the KK modes are vector-like. These boundary conditions ensure that the surface

terms vanish, and fixing the boundary condition of one chirality automatically fixes the

boundary condition for the other,

′+′ →
(
∂y +mΨ − 2A′

)
fLn = 0

′−′ →
(
∂y −mΨ − 2A′

)
fRn = 0. (2.2.20)

In the case that we have a bulk Higgs acquiring a vev, the bulk fermions will get a

y-dependent mass. In our work we will have a bulk Higgs, but will assume that the Higgs

vev term is small enough to be treated as a perturbation, so that mΨ is always treated as

a constant.

In the Randall-Sundrum case (A(y) = ky), we can solve for the fermion KK modes

exactly. In some works the authors like to re-scale the fermion profiles to modify the

normalisation condition, so here we will first find general solutions where the profiles have

been rescaled such that fL,Rm,n → erkyfL,Rm,n . In this case the normalisation condition is

1

L

∫ L

0
dy e(2r−3)kyfL,Rm fL,Rn = δmn (2.2.21)

where some people refer to r = 3/2 as a physical normalisation. With this rescaling we

can write the zero and excited mode wave functions as

fL,R0 (m0 = 0) =
1√
N0

e(2−r±c)ky

fL,Rn (mn 6= 0) =
1√
Nn

e(
5
2
−r)ky (J|c±1/2| + β(mn)Y|c±1/2|

)
(2.2.22)
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where we write mΨ = ck, and the normalisation constant Nn is fixed by the normalisation

condition. Again, the integration constants β(mn) and the KK masses mn are fixed by

the boundary conditions of the field on the two branes.

2.3 Natural hierarchies for bulk scalars

It is well known that the Randall-Sundrum model can naturally give rise to mass hierar-

chies for scalar fields when they are localised on the IR brane, or when they are allowed

to leak slightly into the bulk. In this section we investigate this idea thoroughly and look

at the fine-tuning involved if one wishes to obtain a scalar mode with a mass well below

the KK scale.

We write the action for the 5D scalar field as

SΦ =

∫
d4x

∫ L

0
dy

1

2

√
|g|
(
(∂MΦ)2 −m2

ΦΦ2
)
, (2.3.1)

where M = µ, y and
√
|g| = e−4ky. The 5D mass term consists of both bulk and brane

terms such that

m2
Φ = (b2 + δb2)k2 − δ(y)a2k + δ(y − L)(a2 + δa2)k. (2.3.2)

We could also have a mass perturbation on the UV brane but that parameter is negligible

due to the requirement that scalars with light modes be IR localised. Note that these bulk

and brane masses are of the order MPl, it is the warping of the bulk geometry that gives

the exponentially suppressed KK masses. Next we perform a Kaluza-Klein expansion on

the scalar field,

Φ(x, y) =
1√
L

∑
n

Φn(x)fn(y). (2.3.3)

When δb2 and δa2 are zero and the remaining bulk and brane mass terms are related

by [46,47]

b2 = a2(a2 + 4), (2.3.4)

the 4D spectrum contains a massless mode. In figure 2.2 we see that the minimum value

of the bulk mass (b2) which permits a massless solution is −4, this is known as the

Breitenlohner-Freedman bound [48]. By normalising the kinetic term and imposing the

boundary conditions,

f ′n(L) = −a2kfn(L)

f ′n(0) = −a2kfn(0),
(2.3.5)
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Figure 2.2: The solid line shows the relationship between the bulk and brane mass terms

required to have a massless scalar mode of eq. (2.3.4). The shaded region shows the pa-

rameter space for which the Higgs profile is sufficiently IR localised such that the hierarchy

problem is resolved.

we find the zero mode profile to be,

f0(y) =

√
2(1 + a2)kL

1− e−2(1+a2)kL
e−a

2ky. (2.3.6)

The parameter a2 defines the localisation of the field in 5D and a2 < 0 implies IR localisa-

tion. Along with this zero mode one obtains a tower of KK scalar fields with the following

5D profiles

fn =
e2ky

Nn

(
Jα

(mn

k
eky
)

+ β(mn)Yα

(mn

k
eky
))

, (2.3.7)

where mn is the mass of the nth mode, α =
√

4 + b2, and Nn is determined by the

normalisation condition [13]. The constants β(mn) and the KK masses mn are determined

by the boundary conditions and in the limit kL� 1 the KK masses can be approximated

as

mn '
(
n+

α

2
− 3

4

)
πke−kL. (2.3.8)

Note that to obtain TeV-scale resonances we require that kL ∼ 35.

Switching on the mass perturbations δb2 and δa2 introduces a mixing between the KK

modes of eq. (2.3.3). The effective action for the scalar can be written as

S =

∫
d4x

∑
mn

1

2

(
(∂µΦn)2 −m2

nΦ2
n − δm2

mnΦmΦn

)
, (2.3.9)

where Φn are the 4D fields with wave functions fn(y) respecting the boundary conditions

of eq. (2.3.5). The resulting contributions to the mass matrix are given by

δm2
mn =

δb2k2

L

∫ L

0
dy e−4kyfmfn +

δa2k

L
e−4kLfm(L)fn(L). (2.3.10)
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Once we turn on the mass perturbations δb2 and δa2 we turn on the mass mixings in the

4D effective theory. This requires us to diagonalize the mass matrix and in turn the zero

mode becomes massive. The effect on the masses of the higher modes is negligible. With a

slight tuning we can obtain a zero mode much lighter than the KK scale if the Higgs field

is localised in the IR [21, 22]. Going to the mass eigenbasis we find that the zero mode

mass is

m2
0 ' δm2

00 −
∞∑
n=1

(δm2
0n)2

m2
n

. (2.3.11)

To adequately suppress the mass perturbations from δb2 and δa2 we will see that we need

a2 ≤ −2. The mass scale for the zero mode is set by δm2
00. Setting a2 = −2 − x we find

that

δm2
00 =

2(1 + x)k2

e2(1+x)kL − 1

(
δb2

2x

(
e2xkL − 1

)
+ δa2e2xkL

)
. (2.3.12)

Taking the limit a2 → −2, this is found to be

δm2
00 ' 2(δb2kL+ δa2)k2e−2kL, (2.3.13)

and for e2xkL � 1, i.e. x & 1/(kL)

δm2
00 ' 2(1 + x)

(
δb2

2x
+ δa2

)
k2e−2kL. (2.3.14)

We see that, for a2 = −2, the bulk mass correction needs to be more tuned due to the

kL factor. However, as the field becomes localised further towards the IR brane this

enhancement of the bulk term quickly diminishes. In all, we find that in order to have a

zero mode at the electroweak scale we only require a percent level fine-tuning. If a2 > −2,

the mass corrections do not get the required suppression and thus there cannot be a light

mode in the spectrum without a tuning of the bulk and brane mass parameters.

This is the solution to the hierarchy problem that we require. If the Higgs boson is

localised on or near (a2 ≤ −2) the IR brane then the Higgs mass is not sensitive to large

scales in the model. In other words, radiative corrections to its mass will be cut-off at the

scale associated with the IR brane. In [9] they show that the graviton in this scenario is

localised near the UV brane, which means that the mass scale associated with gravity is

that of the UV brane, i.e. the fundamental mass scale M5
1. If we have M5 ∼ k 'MPl =

1018 GeV and ke−kL = 1 TeV, then we require kL = 34.5. Therefore with an O(10)

hierarchy in the model parameters, we can naturally generate the exponential hierarchy

between the Planck and electroweak scales.

1We also discuss this in section 3.2.4.
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2.4 EWSB in non-custodial RS models

The non-custodial model simply has the SM in the bulk, with no additional symmetries.

Additional particle content only arises from KK modes of the 5D SM fields. We will start

here by looking at the Higgs potential, thus we have an SU(2) Higgs doublet Φ consisting

of complex scalars,

S =

∫
d4x

∫ L

0
dy e−4ky

(
(DMΦ)†(DMΦ)−m2

ΦΦ†Φ− λ5(Φ†Φ)2
)

(2.4.1)

and

Φ(xµ, y) =

 φ+(xµ, y)

φ0(xµ, y)

 , (2.4.2)

where φ+ and φ0 are complex scalar fields. The mass term, defined in eq. (2.3.2), and

quartic coupling in this model can have localised brane contributions and in principle

can be y-dependent in the bulk (however we assume them to be constant). The quartic

coupling then is of the form

λ5 = λB +
1

k
λIRδ(y − L) +

1

k
λUV δ(y). (2.4.3)

The λUV term is irrelevant for an IR scalar, here thus we will only consider the IR contri-

bution. In this section we will study models in which we have a quartic term on the brane

and/or in the bulk. In both cases we go to the 4D theory before we treat the breaking of

SU(2).

2.4.1 Brane EWSB

To reach the 4D effective theory we follow a method exactly like that in section 2.3.3 and

find the same scalar profiles. The only difference is an extra term in the effective action

corresponding to the brane quartic coupling

S =

∫
d4x

1

2

∑
n

|∂µΦn|2 −m2
nΦ†nΦn −

∑
m,n

δm2
mnΦ†mΦn − λlmnp

∑
lmnp

Φ†lΦmΦ†nΦp

 ,

(2.4.4)

where

λlmnp =
λ5

L
e−4kLfl(L)fm(L)fn(L)fp(L) (2.4.5)

and δm2
mn is defined in eq. (2.3.10). The standard model Higgs will be identified with the

lightest mass eigenstate, being predominately composed of Φ0. Taking the approximation

with just the zero mode plus first N KK states, we have (N + 1) Higgs doublets in the

effective theory. From here we can minimise the potential and find expressions for the
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vacuum expectation values of these fields, 〈Φm〉 = vm. The largest correction to the

standard model Higgs potential will be of the form λ1000Φ3
0Φ1, making λ1000 the most

important BSM coupling in this sector.

2.4.2 Bulk EWSB

We write the scalar doublet so that we can see clearly the excitations around its minimum,

Φ(xµ, y) =
1√
2

 φ+(xµ, y)

v(y) + φ0(xµ, y)

 . (2.4.6)

With a quartic term in the bulk we can write the total energy functional of the 5D system

in the ground state as

E[v(y)] =

∫
dx3

∫ L

0
dy

1

2

√
|g|
(
(∂yv)2 +m2

Φv
2 + λ5v

4
)
. (2.4.7)

Minimising this, we find that in the ground state the field must obey the following EOM

− 1√
|g|
∂y(
√
|g|∂yv) + b2k2v + λBv

3 = 0. (2.4.8)

Boundary terms in the scalar mass will induce non-trivial boundary condition, similar to

the discussion in section 2.3.3. We choose a gauge in which we can write the doublet as

Φ(xµ, y) =
1√
2

 0

v(y) + η(xµ, y)

 , (2.4.9)

where η = Re(φ0). We can now write the action for the physical field η as

S =

∫
d4x

∫ L

0
dy

1

2

√
|g|

(
e2A 1

2
∂µη∂µη −

1

2

(
− 1√
|g|
∂y(
√
|g|∂yη) + b2k2η + λBv

2η

)
η

−λB
4
η4 − λBvη3 + λBv

4

)
,

(2.4.10)

where A(y) = k|y| denotes the warp factor. Expanding η into KK modes to diagonalize

the fields in the mass eigenbasis, the equation of motion for the 5D profiles reads

− 1√
|g|
∂y(
√
|g|∂yfn) + b2k2fn + λBv

2fn =
√
|g|e2Am2

nfn. (2.4.11)

Again nontrivial boundary conditions are induced by the brane masses. Here m2
n is the

mass of the nth KK mode. Thus m2
0 and f0 refer to the physical Higgs mode. This shows

us that the Higgs fluctuation and the vacuum expectation value have different 5D profiles,

thus their interaction with the fermion and gauge fields will differ from the standard model.

This difference is determined by the Higgs mass and the KK scale [49].
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λ0000 λ1000 λ1100 λ1110 λ1111

Brane Quartic 1.00 -1.00 1.00 -1.00 1.00

Bulk Quartic 1.00 -0.54 0.66 -0.34 0.70

Table 2.1: This shows the values of the quartic couplings for brane and bulk EWSB with

a2 = −2 and λB = 1 or λIR = 1/4, chosen such that λ0000 = 1 in both cases.

Ideally we would like to solve these non-linear differential equations and have the

correct 5D profiles for the mass eigenbasis at our disposal. However, it is difficult to

obtain reliable numerical solutions. Instead we will not diagonalize the fields in the mass

eigenbasis, but will expand them in the basis (2.3.9) we used in section 2.3.3. Hence we use

the same 5D profile for the zero mode and the vacuum expectation value. This will result

in an effective theory similar to that in the brane EWSB case, except now the effective

quartic term is given by

λlmnp =
λ5

L2

∫ L

0
dy
√
|g|flfmfnfp. (2.4.12)

The only difference we have is that the relationship between the different quartic couplings

changes. In table 2.1 we show the values of these bulk and brane quartics for a2 = −2 and

take the two cases λB = 1 and λIR = 1/4. The effects of KK modes in the Higgs sector

are usually proportional to the quartic couplings, the largest effect is ∼ λ1000v1 and hence

the most relevant coupling is λ1000. From table 2.1 we see that having bulk EWSB terms

reduces the higher mode quartic terms with respect to λ0000 and will therefore reduce the

KK effects in general.

The SM particles receive small mass corrections from the vev of KK Higgs fields, which

induces a misalignment of Higgs couplings and particle masses. We find that KK vev’s

are approximately

vn ' −
λn000

λ0000

m2
H

m2
n

v0. (2.4.13)

From table 2.1 we see that the ratio for a brane quartic coupling is λ1000/λ0000 = −1, and

for a bulk quartic ' −0.5. If we were to fully account for the mixing effects arising from

the λ1000 terms in calculating the Higgs vev we would expect O(m2
H/M

2
KK) corrections to

the Higgs vev and mass. However the only way of seeing these effects would be through

a precise sub-percent level measurement of the Higgs quartic coupling, which will not be

possible with current particle colliders.

In the next section we will see that electroweak constraints force KK resonances into

the multi-TeV range, thus leading to vn/v0 in the sub per-mille range. The resulting
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impact on couplings between the Higgs and gauge bosons is then also in the sub per-mille

range, and too small to make an impact even at TLEP [21]. (A different and potentially

observable source of modifications of the gauge Higgs coulings we will discuss in the the

next section.) Also modifications of the Higgs cubic self coupling are at similar level and

thus too small to be observed. The other important factor is the coupling of SM particles

to the Higgs KK modes. Gauge zero modes have flat profiles, hence the normalisation of

the Higgs field ensures that they couple equally to all Higgs KK modes. For the fermion

fields we also find that the fermion zero modes couple to Higgs zero and KK modes almost

identically, as the Higgs is IR localised.

Multiple Higgs doublet models

Since the tower of Higgs doublets in the effective theory all couple to the up and down

type quarks, this could be viewed as a theory of multiple Higgs doublets with vev’s given

by eq. (2.4.13) and couplings given by eq. (2.4.12). If we include one additional mode

for simplicity, we have a type III 2HDM which is well studied phenomenologically. The

experimental constraints for these models are summarised in [50]. They express the con-

straints in terms of tan(β) = v1/v0 and cos(β − α), the ratio of the Higgs KK mode and

zero mode couplings to the SM gauge bosons. In this model both these observables are

∼ v2

M2
KK

, i.e. per-mille, and well within the experimental constraints. For these bounds to

be relevant we would need MKK . 1 TeV.

2.4.3 Electroweak precision observables

We have a non-custodial SU(2)L × U(1)Y bulk gauge sector with bulk fermions and a

bulk Higgs. Calculating the Peskin-Takeuchi parameters [24] is straightforward assuming

universal UV fermion localisations for the light fermions. Corrections to the SM can arise

from the zero mode fields mixing with KK modes, and from the exchange of KK particles

in a physical process. For our purposes the latter is only a small effect and will be ignored.

For a detailed analysis of the case of a brane Higgs, see e.g. [51]. The low energy 4D

effective theory can be written in the form [52]

L = −1

4
FµνFµν −

1

2
WµνWµν −

1

4
ZµνZµν −

1

2
(1 + δz)m2

ZZ
µZµ − (1 + δw)m2

WW
µWµ

−e(1 + δaψ)
∑
i

ψ̄iγ
µQiψiAµ −

e

sW
√

2
(1 + δwψ)

∑
ij

(Vijψ̄iγ
µPLψjW

+
µ + c.c.)

− e

sW cW
(1 + δzψ)

∑
i

ψ̄iγ
µ
(
T3iPL −Qis2

W +QisW cWλZA
)
ψiZµ,

(2.4.14)
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where Vij is the CKM matrix and δz, δw, δaψ, δwψ and δzψ are flavour independent new

physics contributions to the Lagrangian. Note that the above action only parameterises the

oblique electroweak corrections, i.e. those in which the vertex corrections are independent

of the fermion species. This is a good approximation in our case, since the processes

contributing to the EWPOs only involve light fermions which can all be approximated to

have the same 5D wave function localised near the UV brane. Differences in the 5D profiles

for light fermions would lead to non-oblique corrections to the above action, however these

are expected to be small and we neglect their effects here. From this Lagrangian we can

identify the S, T and U parameters with

αS = 4s2
W c

2
W (−2δaψ + 2δzψ)

αT = (δw − δz)− 2(δwψ − δzψ)

αU = 8s2
W (−δaψs2

W + δwψ − c2
W δz

ψ).

(2.4.15)

We decompose the 5D SU(2)L and U(1)Y gauge fields as

WM3 =
1√
L

∑
n

f3
n(y)Wµ3

n (xµ),

WM± =
1√
L

∑
n

f±n (y)Wµ±
n (xµ),

BM =
1√
L

∑
n

fBn (y)Bµ
n(xµ). (2.4.16)

Note that since we are treating EWSB as a perturbation, we have f3
n = f±n = fBn = fAn

where fAn are the wave functions defined in eq. (2.2.13). In unitary gauge the Higgs can

be written in the following form

Φ(xµ, y) =
1√
2L
f0(y)

 0

v0 + h(xµ)

 , (2.4.17)

where f0 is given from eq. (2.3.6) and we ignore KK Higgs modes. When we go to the 4D

effective theory, we can write the mass matrices for the gauge fields as

M2
W =

g2

4


M2

00 M2
01 . . .

M2
01

4
g2m

2
1 +M2

11 . . .
...

...
. . .

 (2.4.18)

M2
Z =

g2 + g′2

4


M2

00 M2
01 . . .

M2
01

4
g2+g′2m

2
1 +M2

11 . . .
...

...
. . .

 (2.4.19)

31



M2
γ =


0 0 . . .

0 m2
1 . . .

...
...

. . .

 , (2.4.20)

where

M2
mn =

v2
0

L

∫ L

0
dy e−2kyfAmf

A
n f

2
0 (2.4.21)

and m2
n are the gauge KK masses. The normalisation of the Higgs field means that M2

00 =

v2
0. We can approximately diagonalize these mass matrices assuming that M2

00,M
2
0n � m2

n,

and find lowest mass eigenvalues to be

(
M2
W

)
0
' g2v2

0

4

(
1− g2v2

0

4

∑
n

R2
n

m2
n

)
(
M2
Z

)
0
' (g2 + g′2)v2

0

4

(
1− (g2 + g′2)v2

0

4

∑
n

R2
n

m2
n

)
,

(2.4.22)

where Rn = M2
0n/v

2
0 and parametrizes the coupling between the Higgs and gauge excita-

tions. The photon remains massless. In moving to the mass eigenbasis the fermion and

Higgs couplings to the W and Z bosons get shifted. We are only interested in the shift

in the fermion-gauge coupling since, at tree-level, the gauge-Higgs couplings do not alter

the electroweak precision analysis. We write the unshifted vertex term between a fermion

and the W boson as ∑
n

g0n√
2sW

∑
i

(Vi0ψ̄i0γ
µPLψj0W

+
µn + c.c.), (2.4.23)

where gmn is the effective coupling,

gmn =
g5

L
3
2

∫ L

0
dy e−3ky(fLm)2fAn (2.4.24)

with r = 0 and fLm defined in eq. (2.2.22). When we go to the mass eigenbasis, the

interaction of the fermion with the zero mode gauge field is of the form

g00√
2sW

(
1− g2

4

∑
n

M2
0n

m2
n

g0n

g00

)∑
i

(Vijψ̄i0γ
µPLψj0W

+
µ0 + c.c.). (2.4.25)

For the Z coupling we have an analogous expression proportional to g2 + g′2. Since the

photon remains massless the photon vertices do not get extra contributions. With this

information we can express the electroweak parameters as

S '

(
−9π

2

∑
n

Rn

(n− 1
4)2

g0n

g00

)
v2

0

M2
KK

T '

(
9π

16c2
W

∑
n

Rn

(n− 1
4)2

(
Rn + 2

g0n

g00

))
v2

0

M2
KK

(2.4.26)
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R1 R2 R3 R4

Brane Higgs 8.4 -8.3 8.1 -8.2

Bulk Higgs (a2 = −2) 5.6 -0.9 0.5 -0.3

Table 2.2: Here we show how the couplings between the zero mode Higgs and the gauge

KK tower differ for a brane and bulk Higgs.

whereas U ∼
(
g2 − (g2 + g′2)c2

W

)
= 0. In the above calculation we used the expressions

for the gauge KK masses in section 2.2.2 and have taken MKK = m1 ' (3π/4)ke−kL,

i.e. the mass of the first gauge boson excitation2. From the expressions in eq. (2.4.26),

neglecting contributions from higher KK modes, we find a correlation between the S and

T parameters which can be expressed as

T ' 1

8c2
W

(
2− g00

g01
R1

)
S. (2.4.27)

Depending on T/S, the model can live in more or less experimentally favoured regions of

the parameter space, possibly resulting in reductions to the MKK constraint.

To a good approximation Rn and g0n/g00 do not vary with L, meaning that the only

L dependence in S and T comes from MKK . Rn varies with the Higgs localisation, and

becomes smaller as the Higgs leaks to the bulk. Table 2.2 shows that the bulk Higgs

couples less to gauge KK modes than the brane Higgs. As a result, not only will the T

parameter be smaller for a bulk Higgs, but we find that a two mode approximation is

accurate for a bulk Higgs, but not sufficient for a brane Higgs.

Light fermions must be localised in the UV so that their overlap with the Higgs is

small, this corresponds to cL > 0.5 [46,53,54]. From figure 2.3 we can see that this implies

a small coupling with the KK gauge modes and therefore small vertex contributions to the

electroweak parameters. For all fermion localisations we find that the coupling decreases

for heavier KK modes.

Current bounds on S and T with U = 0 are given in [55] (see figure 2.5). Taking the

95% CL bound, we find the following bounds for a brane and bulk Higgs:

• Brane Higgs: Due to the large values of Rn the KK gauge modes have large contri-

butions to the T parameter. If we approximate R2
n ' 8.42 for all n, we can sum the

full tower contributions by taking the sum
∑∞

n=1(n − 1/4)−2 ' 2.54. We then find

2In the first part of this thesis we define MKK as the lightest KK gauge mass in the model, however in

the second and third parts we define it as MKK = ke−kL.
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Figure 2.3: This plot shows g0n/g00 over a range of fermion localisations for n = 1 (solid)

and n = 2 (dotted). The shaded region shows the parameter space for which the fermions

are UV localised.

that the electroweak constraints require MKK & 15 TeV.

• Bulk Higgs (a2 = −2): Since the Rn values are small for n > 1 we find that the

first mode makes the only sizeable contribution to the electroweak parameters. With

just the first excited mode we find the bounds to be MKK & 8 TeV. Including the

first 10 modes only corrects the 8 TeV bound by 0.3%, and the second excited mode

contributes 0.26% of this correction. We find similar effects for the S parameter.

These results are in agreement with the bounds found elsewhere in the literature [30,56,57].

Another thing one should consider is the misalignment in the gauge boson masses and

their coupling to the Higgs zero mode. The couplings between the Higgs zero mode and

the gauge modes can be written as a matrix similar to eq. (2.4.18) but without the large

contributions from the KK masses. The absence of the KK masses here is what causes the

misalignment when we go to the mass eigenbasis. We find that the HHZ and the HHZZ

interactions receive identical corrections ∼ R2
1 m

2
Z/M

2
KK , and similarly for the W boson.

With the lightest gauge boson mass at 8 TeV we find a 0.4% misalignment for the Z boson

and a 0.3% misalignment for the W boson. This would be visible at the ILC [36, 37] or

TLEP [41]. The only way to reduce this misalignment is to either increase MKK or to

reduce the coupling of the Higgs zero mode to the gauge KK modes, which can be achieved

by modifying the background geometry in the bulk [28–32].
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2.4.4 Higher dimensional operator contributions to S, T and U

In the previous section we demonstrated how to estimate the size of the calculable con-

tributions to the electroweak parameters in the 4D effective theory. There will also be

incalculable contributions from the UV theory which we will parameterise using higher

dimensional operators in the 5D theory. The three leading operators contributing to the

oblique parameters are

S :
ρ

M3
5

(Φ†T aΦ)W a
MNBMN

T :
λ

M3
5

|Φ†DMΦ|2

U :
θ

M6
5

|Φ†WMNΦ|2, (2.4.28)

where ρ, λ and θ are unknown O(1) dimensionless parameters. By taking these to be O(1)

we are implying that the relevant mass scale for these operators in 5D is ∼M5. However

we will see that, due to the warping of the extra dimension and the IR localisation of

the KK gauge mode wave functions, this mass scale gets warped down to O(MKK) after

integrating over the extra dimension. This is implies that the effective cut-off for the

effective theory obtained after integrating over the extra dimension is also of this scale.

These higher dimensional operators could be present both on the branes or in the bulk,

i.e. ρ = ρB+ρIRM
−1
5 δ(y−πR). In the brane case there is an extra mass scale suppression.

There is also a possible contribution from the UV brane, which is negligible for an IR

localised Higgs. The S and T operators both have effective coefficients ∼ v2
0/M

2
KK , but

due to the higher dimension of the U operator it is of the order ∼
(
v2

0/M
2
KK

)2
. Thus only S

and T will receive sizeable corrections from these operators, while S also has an additional

suppression ∼ 1
kL with the respect to the T coefficient. Once we do the integrations over

the extra dimension, taking M5 ∼ O(k), we see that all three operators show similar

dependence on the Higgs localisation. The effective coefficients grow exponentially as a2

decreases until, at a2 = −1, the exponential growth stops, which is due to the normalisation

of the Higgs field. At a2 < −1, operators on the IR brane increase linearly with a2 while

operators in the bulk remain mostly constant. At a2 = −2 the operator coefficients from

the IR brane contributions are

ρIR → αδS = ρIR(kL)−1κ4
( v0

ke−kL

)2

λIR → αδT = −4λIRκ
4
( v0

ke−kL

)2

θIR → αδU = −4θIR(kL)−1κ7
( v0

ke−kL

)4
(2.4.29)
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Figure 2.4: Here we show how δ6 varies with κ for λB = λIR = 1 (dashed) and λB =

λIR = 10 (solid).

and in the bulk are

ρB → αδS = ρB(2kL)−1κ3
( v0

ke−kL

)2

λB → αδT = −2

3
λBκ

3
( v0

ke−kL

)2

θB → αδU = −θB(2kL)−1κ6
( v0

ke−kL

)4
, (2.4.30)

where the B and IR subscripts refer to the bulk and brane parameters, respectively, and

κ = k/M5. With O(1) values for the operator coefficients we would only expect a sizeable

contribution from the operator contributing to the T parameter. With respect to this

operator, the operator contributing to the U parameter is suppressed by two additional

powers of mass, and the operator contributing to the S parameter has an additional

volume suppression. This behaviour in the U parameter has been noted in [58] also. We

see that from an EFT perspective the relevant scale of these operators depends on the

5D localisation of the Higgs wave function. If the wave function is localised towards the

UV, the relevant scale will be of the order MPl, whereas if it is localised near the IR the

relevant scale will be of the order MKK .

If we ignore the vertex corrections, and include the effects of these operators in the T

parameter expression from eq. (2.4.26), we find total T parameter

T6 '
(

3π

4

)2
(

1

πc2
W

∑
n

R2
n

(n− 0.25)2
+

2

3

κ3

α
λB + 4

κ4

α
λIR

)
v2

0

M2
KK

= T (1 + δ6) , (2.4.31)

where we again took MKK = m1 ' (3π/4)ke−kL. Here δ6 parameterises the contribution

from higher dimensional operators,

δ6 =

(
1

πc2
W

∑
n

R2
n

(n− 0.25)2

)−1(
2

3

κ3

α
λB + 4

κ4

α
λIR

)
. (2.4.32)
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Figure 2.5: Here we have overlaid the bounds from [55] with the S and T correlations for

δ6 = 0 (solid), δ6 = −0.4 (dots) and δ6 = −0.8 (dashed).

From figure 2.4 we see it may be reasonable to argue that these contributions could be

large enough to provide a reduction in the T parameter calculated in eq. (2.4.26). This

also modifies eq. (2.4.27) such that the correlation is expressed as

T6 '
1

8c2
W

(
2− g00

g01
R1

)
(1 + δ6)S. (2.4.33)

From figure 2.5 we see that as well as directly reducing the T parameter, δ6 6= 0 can take

us to a more favourable region of the parameter space, depending on the relative sign,

thus allowing for a further reduction on the MKK bound. If we take the 95% CL bound

from figure 4, we find that the lower bound on MKK is approximately 6 TeV and 2.7

TeV for δ6 = −0.4 and −0.8, respectively. So it is plausible to assume that incalculable

contributions to the T parameter lead to a partial cancellation and so relax the bound on

the KK scale. It therefore seems premature to exclude discovery of such a scenario at the

forthcoming LHC run.

2.4.5 Custodial models, Little-Randall Sundrum models, and EWPOs

The standard model electroweak sector has an accidental global symmetry in the limit

of zero hypercharge coupling, g′ → 0. This global symmetry is SU(2)L × SU(2)R, and

when the Higgs gets a vev it is broken to a subgroup denoted SU(2)V . In the limit of

zero hypercharge, this SU(2)V symmetry is called the custodial symmetry, and it ensures

MW = MZ . When hypercharge is turned on, we find that MW = cos(θW )MZ holds

at tree-level and, due to the approximate custodial symmetry, only receives corrections

at loop level. These corrections, as we have seen, are represented by the T parameter
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observable. The problem in this warped extra dimension scenario is that these corrections

are induced at tree-level, and thus have the potential to be much larger. This essentially

happens because the gauge KK modes have mass before EWSB. The tree-level T parameter

corrections coming from mixing with KK gauge modes are proportional to g′2, which comes

from αT ⊃ δw − δz, where δw ∼ m2
W and δz ∼ m2

Z . Thus in the zero hypercharge limit

these tree-level corrections would vanish and the warped extra dimensional scenario would

also enjoy an accidental custodial symmetry.

An elegant way to suppress these tree-level corrections is to introduce a local SU(2)L×

SU(2)R × U(1)X gauge symmetry in the bulk, where hypercharge is embedded as Y =

T 3
R + X [25]. This leads to additional contributions to the T parameter which exactly

cancel the g′ terms we found in the previous section. However, it also leads to additional

massless gauge fields. These can be eliminated by giving these fields Dirichlet boundary

conditions on the UV brane. This is an explicit breaking of the custodial symmetry,

however since all the KK modes are IR localised, it is only important that we keep the

custodial symmetry on the IR brane. Thus ensuring that the interactions between SM

fields and the KK modes respect this global symmetry.

With the additional bulk gauge fields the 5D covariant derivative is now of the form,

Dµ = ∂µ − ig5L
a
µT

a
L − ig5R

a
µT

a
R − ig5XAµX

⊃ −i
(
g5R

3
µT

3
R + g5XAµX

)
. (2.4.34)

We assume that there exists some dynamics on the UV brane which mixes these R3
µ and

Aµ fields such that, in the mass eigenbasis, we are left with a massless mode corresponding

to the hypercharge generator, and a massive mode. Note that this mixing essentially gives

a Dirichlet boundary condition to one linear combination of R3
µ and Aµ, and a Neumann

boundary condition to the other. This requires a rotation of the form, R3
µ

Aµ

 =

 cos(θC) sin(θC)

− sin(θC) cos(θC)

 Z ′µ

Bµ

 (2.4.35)

where,

sin(θC) =
g5X√
g2

5 + g2
5X

cos(θC) =
g5√

g2
5 + g2

5X

. (2.4.36)

After this rotation the Bµ and Z ′µ enter the covariant derivative as

Dµ ⊃ −i
(
g̃5(T 3

R +X)Bµ + g̃5Z(T 3
R − s2

θC
(T 3
R +X))Z ′µ

)
, (2.4.37)
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where sθC = sin(θC), and the couplings are,

g̃5 =
g5g5X√
g2

5 + g2
5X

, g̃5Z =
√
g2

5 + g2
5X (2.4.38)

and g̃5 is to be interpreted as the hypercharge coupling. With this mechanism in place

it can been shown that the contributions of the Raµ fields to the T parameter cancel the

tree-level contributions from Laµ. In this case one should take into account the one loop

contributions of the KK top and bottom fields; since the KK masses of tL and bL will not

be equal, sizeable corrections to the T parameter occur in much the same way as the SM

quark contribution. One can also consider a scenario where the bulk custodial symmetry

is broken. In this case the KK modes of Laµ and Raµ do no have the same mass thus the

exact cancellation of the tree-level corrections does not occur.

Another way to reduce contributions to the T parameter (and some flavour observ-

ables) is to reduce the 5D volume, kL. In the work in this chapter we have always kept the

fundamental 5D mass scale (∼ k) near MPl, such that the model connects the electroweak

scale and the scale at which quantum corrections to gravity are expected to become im-

portant. However, as mentioned in the introduction, it is entirely plausible that there may

be an intermediate scale laying between the electroweak scale and MPl, in which case the

RS models we consider need not address the hierarchy between mW and MPl. In such a

scenario we can replace the 5D mass scale by a lower scale, which has an important effect

on some observables calculated from the model. These models were first studied in [59]

and dubbed ‘Little Randall-Sundrum’ (LRS) models. These authors show that the T pa-

rameter and some flavour observables depend strongly on the 5D mass scale, and that the

corrections to the SM values for these observables are decreased when this scale is lowered.

Thus with an intermediate scale corrections to the T parameter are naturally smaller, and

helps to avoid the stringent bounds set by measurements at LEP. These LRS models will

play an important role later in this thesis, hence why we have briefly mentioned them

here.

2.5 Yukawa coupling corrections with a bulk Higgs

The aim of this section is to investigate possible bounds on the bulk Higgs scenario from

corrections to SM Yukawa couplings. Consider an SU(2) singlet fermion t and doublet

Q = (T,B) in the 5D theory. The action for such a system, omitting terms in B, can be
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written as [46,53]

S =

∫
d4x

∫ L

0
dy
√
|g|
(

1

2

(
t̄γMDM t−DM t̄γ

M t
)
−mtt̄t

+
1

2

(
T̄ γMDMT −DM T̄ γ

MT
)
−mT T̄ T + λ

(5)
t

√
Lφ0T̄ t+ h.c.

)
,

(2.5.1)

including a Yukawa interaction term with dimensionless coupling λ
(5)
t . The index “t”

represents the fermion species considered. The most interesting case will be the one of

the top quark. We choose boundary conditions such that t and T have only right and left

handed zero modes, respectively. After electroweak symmetry breaking, as well as giving

the zero modes mass, the Yukawa interaction induces a mixing between the different

modes. The resulting mass matrix for one flavour is of the form

(
T̄ 0
L T̄ 1

L t̄1L T̄ 2
L t̄2L . . .

)



mT,0
t,0 0 mT,0

t,1 0 mT,0
t,2 . . .

mT,1
t,0 MT,1 mT,1

t,1 0 mT,1
t,2 . . .

0 mt,1
T,1 Mt,1 mt,1

T,2 0 . . .

mT,2
t,0 0 mT,2

t,1 MT,2 mT,2
t,2

0 mt,2
T,1 0 mt,2

T,2 Mt,2 . . .
...

...
...

...
. . .





t0R

T 1
R

t1R

T 2
R

t2R
...


,

(2.5.2)

where MT,1 and Mt,1 are the KK masses of the doublet and singlet fields and the mixing

terms are of the form

mψ,m
φ,n =

1√
2
λψ,mφ,n v0 =

λ
(5)
t v0√
2L

∫ L

0
dy
√
|g|fψLm fφRn f0. (2.5.3)

In the case of a brane Higgs, the boundary conditions imply that mt,m
T,n = 0 (m,n > 0)

since odd fields are zero at the IR brane.3 With a bulk Higgs however these terms are

non-zero and additional corrections arise upon diagonalization. The mass entries mt,m
T,n

vary significantly in magnitude depending on whether or not zero modes are involved,

i.e. whether m,n = 0, and on the localisations of these zero modes. The smallest entry is

mt,0
T,0, which includes potential suppressions from both left and right handed zero modes.

A suppression by either a left or right handed zero mode occurs for mt,m
T,0 and mt,0

T,n,

respectively. All other entries mt,m
T,n do not suffer a suppression and therefore are of similar

magnitude.

3In ref. [49] the presence of such a term was argued for even in the case of a brane Higgs, once the

IR brane was smeared out by regularising the delta function defining the brane and then performing an

appropriate brane limit.
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Neglecting CP violation, the mass matrix (2.5.2) can be partially diagonalized using

orthogonal transformations of the left and right handed KK modes,

OTLMOR =
1− θ2

L2
2 θL1 θL2

−θL1 1 0

−θL2 0 1− θ2
L2
2




mT,0
t,0 0 mT,0

t,1

mT,1
t,0 MT,1 mT,1

t,1

0 mt,1
T,1 Mt,1




1− θ2
R1
2 −θR1 −θR2

θR1 1− θ2
R1
2 0

θR2 0 1

 ,

(2.5.4)

where we assume a small angle approximation and consider contributions from the first

KK modes only. This transformation will isolate the “zero mode” from the KK excitations.

Below we will find that θL1 and θR2 are higher order in powers of v0/MKK , which explains

the form of the orthogonal matrices used. To find the Yukawa coupling of the physical zero

mode fermion, we need to know the mixing angles in the OL and OR matrices. Expanding

to second order in powers of v0/MKK , we find

θL1 ' −
mT,0
t,0 m

T,1
t,0

M2
T,1

+
mT,0
t,1 m

t,1
T,1

MT,1Mt,1
; θL2 ' −

mT,0
t,1

Mt,1

θR2 ' −
mT,0
t,0 m

T,0
t,1

M2
t,1

+
mT,1
t,0 m

t,1
T,1

MT,1Mt,1
; θR1 ' −

mT,1
t,0

MT,1
.

(2.5.5)

We can see that the second terms in θL1 and θR2 vanish in the brane Higgs limit. For the

mass of the lowest lying mode (“zero mode”) we then find

m
(4)
t = mT,0

t,0

(
1−

(mT,0
t,1 )2

2M2
t,1

−
(mT,1

t,0 )2

2M2
T,1

+

(
mt,1
T,1

mT,0
t,0

)
mT,0
t,1 m

T,1
t,0

MT,1Mt,1
+O

(
m3

M3
KK

))
. (2.5.6)

A matrix analogous to eq. (2.5.2) encodes the Yukawa interactions of the fermion KK

modes with the Higgs. In this matrix, diagonal terms corresponding to MT,n and Mt,n

are missing. This results in a relative shift between the Yukawa coupling and mass of

the “zero mode” compared to the standard model. With the transformation defined in

eq. (2.5.4), we find that the ”zero mode” Yukawa coupling can be written as

λ
(4)
t = λT,0t,0

(
1− 3

2

(λT,1t,0 v0)2

M2
T,1

− 3

2

(λT,0t,1 v0)2

M2
t,1

+ 3

(
λt,1T,1

λT,0t,0

)
λT,0t,1 λ

T,1
t,0 v

2
0

MT,1Mt,1
+O

(
λ3v3

0

M3
KK

))
.

(2.5.7)

We can now quantify the misalignment in the fermion “zero mode” mass and Yukawa

coupling as

r
(4)
t =

√
2m

(4)
t

λ
(4)
t v

− 1 =
(λT,1t,0 v0)2

M2
T,1

+
(λT,0t,1 v0)2

M2
t,1

− 2

(
λt,1T,1

λT,0t,0

)
λT,0t,1 λ

T,1
t,0 v

2
0

MT,1Mt,1
+
δw

2
+O

(
λ3v3

0

M3
KK

)
.

(2.5.8)
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Note that because λT,0t,1 is negative there is no cancellation in the contributions to r
(4)
t . The

δw term is related to the gauge boson mass correction from section 2.4.3, eqs. (2.4.14),

(2.4.22). We use it here because the measured vev, v, includes the mass correction to

the W boson. We only include this factor for completeness since from the electroweak

precision tests we know that it does only result in a negative per-mille correction.

Before we look at numerical evaluations of r
(4)
t , a few general statements can be made.

Irrespectively of the fermion locations, r
(4)
t scales with the 5D Yukawa couplings as (λ

(5)
t )2

and with the KK scale as 1/M2
KK . The third term in eq. (2.5.8) is never weak in comparison

to the first two terms, except for the case of a brane Higgs, where we take this term to

be absent. Further statements on r
(4)
t depend on the fermion locations. In the left-right

symmetric case cL = −cR, the first and second terms in r
(4)
t scale as m

(4)
t v/M2

KK , while

the third term scales as v2/M2
KK . So for small fermion masses the third term completely

dominates. For other fermion locations these simple relations will be modified.

Our numerical evaluations of r
(4)
t are summarised in table 2.3. For the case of a bulk

Higgs we use a KK scale of MKK = 5.9 TeV. As discussed in the previous section, a

small contribution from higher dimensional operators is required in this case to reduce

electroweak constraints to meet experimental bounds. For a KK scale of 8 TeV, the

Yukawa deviations from the table will be reduced by a factor of (5.9/8)2 = 0.54, while

for a KK scale of 5 TeV they will increase by a factor of 1.4. We give separate results

for the three individual contributions and the total result from eq. (2.5.8), r
(4)
t , denoted

by (a), (b), (c) and Total, respectively. As anticipated, the third term (c) is always very

important, and completely dominates for smaller fermion masses. Note that the scaling in

5D Yukawa couplings is somewhat distorted by changes in the fermion locations needed

to keep the fermion mass constant. For the top quark these modifications can easily be

larger than the anticipated 4% accuracy from HL-LHC [42,43]. Also for the bottom quark

the correction in the Yukawa coupling could be larger than the 2.4% or 0.4% accuracies

aimed for at ILC and TLEP, respectively [41]. For the tau Yukawa coupling it seems

questionable whether a deviation could be seen at ILC (predicted accuracy 2.9%), while

a detection at TLEP (predicted accuracy 0.5%) seems promising [41].

The comparison to the case of a brane Higgs is not unique, as one has to decide which

parameters should be kept constant in this procedure. In our opinion the most meaningful

comparison is done by keeping the crucial off-diagonal elements mT,0
t,1 and mT,1

t,0 constant,

in addition the to resulting 4D fermion mass. This can always be achieved by choosing a

suitable brane Yukawa coupling and values for the fermion location parameters cL and cR.
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m
(4)
t λ

(5)
t cL cR MT1 Mt1 (a) (b) (c) Total

[GeV] [TeV] [TeV] [%] [%] [%] [%]

173.48 4 0.550 -0.26 6.52 7.12 12.97 0.05 19.72 32.7

173.73 2 0.530 -0.07 6.05 7.64 5.93 0.01 3.35 9.29

173.07 1 0.488 -0.20 5.98 7.12 1.29 0.03 1.31 2.62

4.17 4 0.526 -0.6320 6.04 6.46 ∼ 10−3 0.02 6.76 6.78

4.17 2 0.510 -0.6190 5.97 6.41 ∼ 10−3 0.02 2.48 2.50

4.17 1 0.500 -0.6004 5.93 6.33 ∼ 10−3 0.02 0.98 1.00

1.79 4 0.542 -0.650 6.10 6.53 ∼ 10−3 ∼ 10−3 3.86 3.87

1.79 2 0.508 0.650 5.97 6.53 ∼ 10−4 ∼ 10−3 1.07 1.08

1.79 1 0.516 -0.621 6.00 6.41 ∼ 10−4 ∼ 10−3 0.58 0.58

Table 2.3: Relative shifts in the 4D Yukawa coupling, r
(4)
t , from eq. (2.5.8). The columns

denoted by (a), (b), (c) and Total give the first, second, third contribution and the total

result in percent. MKK is taken to be 5.9 TeV.

The resulting value for r
(4)
t can be derived from table 2.3 by setting the contribution from

column (c) to zero. The contributions from (a) and (b) will receive small changes due to

the modified fermion locations. A large effect will be that for a brane Higgs we have to

use a larger value of MKK =15 TeV. So the brane Higgs cases related to the parameter

sets in table 2.3 will have values for r
(4)
t roughly given by the sum of contributions (a)

and (b) divided by a factor of four. E.g. the brane Higgs case related to the top quark

with bulk Higgs of the first row (r
(4)
t = 32.7%) will have r

(4)
t ≈ (12.97% + 0.05%)/4 ≈

3.3%. So only if the 5D Yukawa couplings is somewhat large a detection at HL-LHC

seems plausible. For lighter fermions these modifications of the Yukawa couplings will be

completely undetectable in the foreseeable future.

We have numerically verified that the expressions (2.5.5) to (2.5.8), which are derived

from considering a single KK level, receive only small corrections of . 10% when we

include more fermion KK modes.

Finally we would like to remark that in variants of the warped geometry, where the

KK scale is lowered to a few TeV [25–27, 29–35], the modifications of Yukawa couplings

presented in table 2.3 have to be upscaled accordingly. In the case of a KK scalar of
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3 TeV, the corrections from in table 2.3 will increase by a factor of 3.9. Then 5D top

Yukawa couplings λ
(5)
t & 1.5 will then already be disfavoured by present observations of

Higgs production via gluon fusion at the LHC.

Yukawa coupling misalignment also has impact on flavour violation mediated by Higgs

exchange, as e.g. discussed in [49, 60, 61]. Also Higgs corrections to the muon anomalous

magnetic moment were found to depend on the Higgs localisation [62]. Analysing the

resulting constraints for the scenario investigated here, however, is beyond the scope of

the present work. For generic O(1) 5D Yukawa couplings Higgs induced flavour violation

will be large, certainly pushing the bound on the KK scale beyond the bounds we derived

from electroweak precision constraints in section 2.4.3. However, flavour violation can be

significantly reduced if fermion localizations are generation independent (at least for the

first and second generation). In such a case the dominant bounds on the KK scale are

those we derived in section 2.4.3. Here we conclude that unavoidable Yukawa misalignment

does not lead to additional bounds on the KK scale.
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Chapter 3

Exploring holographic composite

Higgs models

In composite Higgs models the Higgs field is composed of some new particles interacting

via a strongly interacting gauge theory which confines at the TeV scale. In this scenario the

hierarchy between the TeV scale and the Planck scale is solved by the confinement of the

strongly coupled gauge theory. Because the Higgs is now a bound state, the effective cut-

off for this state is of the order of the confinement scale, i.e. ∼ TeV. A “little hierarchy”

between the electroweak scale and the TeV scale can then arise naturally if the Higgs

bound state is a pseudo-Goldstone boson of this new strongly interacting sector.

Despite difficulties in extracting predictions from strongly coupled gauge theories, sev-

eral methods have been developed. The most basic of these makes use of large N approxi-

mations in SU(N) gauge theories, and of the global symmetry structure in the low energy

effective theory [63–70]. These methods, although useful, can be rather limited. It is pos-

sible to make progress beyond this using computational tools such as lattice simulations,

and while determining baryon states is still challenging, some studies in non-minimal com-

posite Higgs models have been done regarding the structure of the meson states [71–73]. In

this paper we adopt another popular method, namely holography, which has been proven

useful to describe another strongly coupled theory, QCD at low energies [74–78] as well

as a way to develop new, non-QCD like, models of Technicolor [79–82]. In the context of

composite Higgses, the pioneer papers of Contino et al. [16,18], followed an intense explo-

ration of the Higgs as a holographic pseudo-Goldstone boson in warped extra-dimensions,

see e.g. [83].

Holography is a method based on the conjectured duality between strongly interacting

gauge theories in 4D and weakly coupled gravitational theories on a 5D AdS space like
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those studied in the previous chapter. Since the dual theory is weakly coupled, we are

able to extract precise predictions for the form factors and all masses and couplings in

the model. Here the word precision comes from the determination of 4D observables in

terms of the 5D model parameters after dimensional reduction, yet the relation with the

target strongly coupled 4D theory is still a conjecture and hence bound to an inherent

uncertainty.

The physics of 5D AdS spaces [9, 11, 12, 20] was studied independently of its applica-

tion to composite Higgs models, and many of the results and constraints are the same in

both cases. As mentioned in the previous chapter, the most important of these are the

constraints imposed by the EWPOs. In the absence of additional symmetries, large correc-

tions to the T parameter imply a lower bound on the spin-1 resonances of ∼ 8 TeV [3,30].

In most realistic composite Higgs models the global symmetry structure of the strong

sector is enlarged such that tree-level corrections to the T-parameter are avoided. As

discussed in section 2.4.5, in the 5D realisations this corresponds to an enlargement of the

bulk gauge symmetry.

The space of composite Higgs models is parametrised by the global symmetry structure

of the low energy effective theory, and the embedding of the quarks and leptons into this

global symmetry. A large literature exists on the simplest composite Higgs models. We

will focus on what is known as the Minimal Composite Higgs Model (MCHM) [16,18] with

the quarks and leptons embedded in fundamental representations of the global symmetry

(MCHM5) [84,85]. This model has a global SO(5) symmetry broken to SO(4) at the TeV

scale, thus employing the custodial protection of the T parameter. A detailed discussion

of this model is reserved for section 3.1.3. For further details on the model-building

approaches in composite Higgs models see [86–96].

Using the holographic approach it has been shown that it is possible to reproduce the

correct top mass, Higgs vev and Higgs mass quite naturally. However it is found that

this usually requires light top partners [84, 85]. Typically top partners below about 700

GeV are required, and this is already in tension with bounds on vector-like quarks at the

LHC [97, 98] which, for single channel final states, already reach 900 GeV. For specific

information on top partner phenomenology we refer the reader to [99–111] and for general

LHC phenomenology of the MCHM to [112–123].

There have been some attempts to alleviate the need for the light top partners in

holographic models. It has been shown that by embedding the leptons in larger repre-

sentations, their contributions to the Higgs potential can help alleviate the need for light
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top partners [124]. Also using the holographic realisations (although with a flat non-AdS

background), authors in [125] use larger representations for the third generation to reduce

the fine-tuning in the Higgs potential and allow for heavier top-partners. More recently,

models of composite Higgs with more than one breaking scale have been studied in a 4D

realisation, and it was found that this also allows for heavier top partners [126].

In general, tension from light top partners is not as much of a problem in the 4D explicit

realisations as it is in the holographic models. In [64, 127] it has been demonstrated that

one can achieve heavy top partners while having a light Higgs and keeping the fine-tuning

at acceptable values. The correspondence between the 4D and 5D models can be described

in terms of a dictionary from which one can relate the 4D and 5D parameters. One entry

in this relates the number of “colours” in the strongly coupled 4D gauge theory to the

UV scale in the 5D AdS theory, more details of this will be discussed in section 3.2.4. In

this work we investigate how the top partner spectrum changes as we vary this parameter.

The effects of lowering this UV cutoff has been studied previously in 5D AdS scenarios in

which the Higgs is not a pseudo-Goldstone boson, these models are referred to as “Little

Randall-Sundrum” (LRS) models [59, 128]. It has been shown that these models reduce

bounds on some flavour and electroweak observables. In these LRS models we have a

UV scale which lies below the Planck scale (1018 GeV), and this is what we refer to as

the intermediate scale. However this intermediate scale introduces a problem. When

implementing it we find that the graviton now couples too strongly to matter such that

we no longer correctly reproduce 4D gravity. The natural solution here is to introduce

brane kinetic terms (BKTs) for gravity on the UV brane in order to suppress the coupling

of the graviton to matter [129].

In models of gauge-Higgs unification, lowering the UV scale allows for smaller correc-

tions to the Higgs couplings while keeping the KK scale constant. In doing this we find

in section 3.5.1 that, while keeping the KK scale and the Higgs and top quark masses at

the observed values, we can increase the mass of the lightest top resonance. This is easily

understood in the KK picture, where lowering the UV scale modifies the couplings of the

KK modes. Quantifying the fine-tuning in the Higgs potential using the Barbieri-Guidici

parameterisation, we also show that some areas of parameter space with larger top partner

masses are actually less fine-tuned than those with smaller top partner masses, which is a

direct consequence of lowering this UV scale.

Having constructed an MCHM without light top partners, in section 3.5.2 we investi-

gate deviations in the top Yukawa coupling, motivated by the ongoing experimental effort
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at LHC to put bounds on deviations from the SM prediction. In composite Higgs models

the top Yukawa is generally suppressed compared to the SM. If this effect is too large, it

could lead to a potential conflict with current or future data. We study the top Yukawa

coupling in the 5D realisation and find that in some regions of parameter space the devia-

tions to the SM can be suppressed relative to what is expected from pure (4D) symmetry

arguments. This will be very relevant once the experimental precision on the top Yukawa

increases.

Overall, we find that our 5D holographic realisation of the MCHM5 with a smaller UV

cutoff is not in tension with current experimental data (both on the top partner spectrum

and the top Yukawa coupling). In fact, we find that having a lower 5D cut-off allows for

a better comparison between the holographic and 4D explicit realisations, and we find

good agreement between the results. The mechanisms we study that allow for heavier

top partners and suppressed Yukawa deviations are very general, and in particular do not

rely on any specific coset or fermion embedding. Therefore, we expect that these results

will generalise to non-minimal versions of composite Higgs, and it will be interesting and

fruitful to study this in detail in the future.

Before presenting these results we will take a few sections to cover the relevant back-

ground material. In the next section we will begin with an overview of some strongly

coupled models in particle physics, that is low energy QCD, technicolor, and then com-

posite Higgs. We will also present an overview of the MCHM5 which we use in this work.

Then in section 3.2 we will extend our discussion of particle physics in 5D to cover holo-

graphic techniques for scalar fields and gauge fields. We will describe how gauge-Higgs

unification works and show how the mass spectrums and holographic profiles for fields can

be calculated. We will then give an overview of the relationship between the UV scale of

these 5D models and the number of colours in the dual strongly coupled 4D gauge theory.

In section 3.3 we then describe the relevant holographic calculations we need to study the

fermionic sectors of these models.

3.1 Strongly coupled models

Strongly coupled extensions to the Standard Model provide a natural explanation for many

of the phenomena we see in experiments probing the electroweak scale today. In particular

they provide a solution to the hierarchy problem via a mechanism which is very similar to

the physics we see in low energy QCD. In this section we will introduce strongly coupled

models with a very brief overview of a simplified QCD-like model and a discussion of
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technicolor. We will then define what we mean by a composite Higgs model and introduce

the minimal model that we focus on in the following chapters.

3.1.1 QCD and technicolour

The model of chiral symmetry breaking described here in the QCD case was originally

proposed in [130–132], for a review see [133]. Consider a QCD-like model with only two

massless Dirac fermions, u and d, with the same quantum numbers as the SM u and d

quarks. Ignoring electroweak interactions for now, we can write the action as

L = q̄Li��DqL + q̄Ri��DqR, qL,R =

uL,R
dL,R

 . (3.1.1)

This action has a global U(2)L×U(2)R symmetry which can be decomposed into SU(2)L×

SU(2)R and two U(1) symmetries associated with Baryon number and isospin transforma-

tions. At large energies far above 200 MeV (= ΛQCD), the QCD coupling is perturbative

and the quarks behave almost like free particles. At lower energies however, p2 . Λ2
QCD,

the QCD coupling becomes strong and the quarks form into quark-anti-quark bound states

such that,

〈0|q̄q|0〉 = 〈0|q̄LqR + q̄RqL|0〉 6= 0. (3.1.2)

The above vacuum state is no longer invariant under the full SU(2)L×SU(2)R symmetry,

but only under a subgroup of this in which the rotation parameters of the left and right

handed transformations are equal, αL = αR. This subgroup is known as the diagonal, or

vectorial, subgroup, SU(2)V . Thus the vacuum state below ΛQCD is in a spontaneously

broken phase, where we expect to have three Goldstone bosons in the spectrum. The

dynamics of this system at p2 � Λ2
QCD are described by the chiral Lagrangian,

L =
f2
π

4
Tr
(
∂µΣ†∂µΣ

)
+ α1

[
Tr
(
∂µΣ†∂µΣ

)]2

+ α2Tr
(
∂µΣ†∂νΣ

)
Tr
(
∂µΣ†∂νΣ

)
(3.1.3)

where the Σ field encodes the Goldstone modes from the spontaneous symmetry breaking,

Σ = e
i ~π·~σ√

2fπ . (3.1.4)

In QCD these fields are known as pions, and although this is a simplified example, it

still provides a good qualitative description of pions in QCD. If we were to compute the

amplitude for pion-pion scattering from this action we would see that it grows with energy

∼ E2, indicating a break down of theory at some scale which we will call mρ. At this
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scale some new interactions must appear to unitarize the scattering amplitude. This new

physics comes in the form of additional bound states of the u and d quarks, known as

mesons. In fact, in any strongly coupled model we expect to see towers of heavier states

which interact with the low energy degrees of freedom. The mρ is simply the mass scale

of these meson resonances and is expected to be ∼ ΛQCD.

At this point we will look at what happens to the electroweak symmetry (in the

absence of a Higgs sector) when we are in the QCD vacuum. The electroweak symmetry,

SU(2)L×U(1)Y , is actually a subgroup of the U(2)L×U(2)R symmetry where the SU(2)L

fields are obtained by gauging the global SU(2)L and the hypercharge field is obtained by

gauging a linear combination of the global symmetry generators, Y = T 3
R + B/2, where

B is the generator associated with the U(1) baryon symmetry. It is obvious that when

we break the global symmetry from SU(2)L × SU(2)R, we also break the electroweak

symmetry. What is nice is that the surviving subgroup is precisely electromagnetism,

Q = T 3
L + T 3

R + B/2 = T 3
L + Y . The spontaneous symmetry breaking gives masses to

the W and Z bosons ∼ fπ, and the three Goldstone bosons (pions) are eaten to form the

longitudinal components of the gauge fields.

This model does not suffer from a hierarchy problem, since it only depends on the

scale ΛQCD, which is defined by the scale at which the gauge symmetry becomes strongly

coupled. It is natural to ask whether or not the Standard Model could be a low energy

description of a strongly coupled model, in which the scale ΛQCD is replaced by ΛTeV ∼

TeV. The first such proposal was that of Technicolor [134], for a review see [135–137].

Technicolor is directly based on a scaled up version of the model described above. The

gauge structure of the theory is

SU(NTC)× SU(3)× SU(2)L × U(1)Y (3.1.5)

where the new gauge group becomes strongly coupled at ΛTC . In addition to this there

will be new techni-fermions transforming in the fundamental of SU(NTC) and charged

under the electroweak group.

Going into the details of the different Technicolor models is beyond the scope of this

thesis, however there are some tensions between these models and recent experimental

data which are worth noting. The first stringent constraints on these models came from S

parameter measurements at LEP. Results from large-N field theory [138,139] calculations

indicate that Technicolor models invoke corrections to this electroweak observable which

can be estimated by,

S ' 0.25ND
NTC

3
, (3.1.6)
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where ND is the number of techni-doublets, i.e. SU(2)L doublets of techni-fermions.

Assuming optimal T parameter contributions, the upper bound on S is ∼ 0.3,⇒ NTC ≤ 3

if we want to have ND 6= 0. A lot of work has been done on S-parameter bounds in

these Technicolor models, see [140–143]. Additional mechanisms need to be introduced to

generate fermion masses (extended Technicolor [144, 145], walking Technicolor [146–151],

...) and these generally result in large 4-fermion operators which give rise to flavour

changing processes not observed by current experiments. Lastly, an obvious issue is that

we do not appear to have a Higgs boson in the model. It has been proposed that the

Higgs boson observed at the LHC could in fact be a dilaton state which one would expect

due to the spontaneous breaking of a scale symmetry. However, measurements from the

LHC disfavour this scenario and indicate that the Higgs couplings are closer to what is

expected from the Standard Model.

Thankfully, there are other strongly coupled extensions of the Standard Model, i.e.

composite Higgs, which do not suffer such large disagreements with experiment. The cru-

cial difference between Technicolor models and these composite Higgs models is that the

bound states which break the global symmetry actually preserve the electroweak symme-

try, and the Goldstones of this global breaking give rise to a Higgs doublet. We will learn

more about these models in the next chapter.

3.1.2 Composite Higgs

Just as in QCD and Technicolor, we suppose that at high energies (above the TeV scale)

there is an additional gauge symmetry with a small coupling which grows strong at p2 ∼

Λ2
TeV causing bound states to form. Unlike in Technicolor models here we do not assume

anything about the UV theory. Nor do we assume that the global symmetry at high

energies is the same as the left-right symmetry we seen in the previous chapter. We

only assume that there is some global symmetry G at high energies that is spontaneously

broken by the condensation of a strong force to a subgroup H at p2 ∼ Λ2
TeV . We are free to

choose G and H so long as the SM electroweak group is a subgroup of H and the number

of Goldstones, #G−#H, is ≥ 4 and give rise to at least one Higgs doublet, i.e. we require

four Goldstones transforming as a complex doublet of SU(2)L with hypercharge ±1/2. A

minimal model is defined as a model in which the only Goldstones are those which form

the Higgs doublet, whereas non-minimal models have more Goldstone modes.

Since the SM gauge group (GSM ) is a subgroup of G, the SM fields only partially

fill representations of G. The embedding of the gauge fields in the global symmetry is
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trivial, however with fermions there is more choice, and one can choose among different

ways to couple the SM fermions to the bound states. The important feature here is that

having massless SM fields that only partially fill representations of G constitutes an explicit

breaking of G, which induces a potential for the Higgs from loops of SM fields. This is of

course welcome, since without it the Higgs degrees of freedom would be exact Goldstone

bosons and have no potential at any order in perturbation theory.

3.1.3 The minimal composite Higgs model

In this thesis we focus on the custodial minimal composite Higgs model with the fermions

in fundamentals of G, this is known as the MCHM5 [16, 84]. For reviews covering the

material described in this section see [18,87]. In relation to the previous section we have,

G = SO(5)× U(1)X , and H = SO(4)× U(1)X (3.1.7)

where SO(4) ∼ SU(2)L×SU(2)R contains the SM SU(2)L gauge group as a subgroup. The

hypercharge generator is related to those of the SO(4)×U(1)X generators via Y = T 3
R+X.

One can see that we have exactly four Goldstone bosons as a result of this breaking, and

once we look at the group algebra we shall see that these do indeed have the correct

quantum numbers to play the role of the SM Higgs.

We can express the SO(5) generators as

(
T aL,R

)
i,j

= − i
2

(
1

2
εabc

(
δbi δ

c
j − δbjδci

)
+
(
δai δ

4
j ∓ δaj δ4

i

))
(
T â
)
i,j

= − i√
2

(
δâi δ

5
j − δâj δ5

i

)
(3.1.8)

where a = 1, 2, 3, â = 1, 2, 3, 4 and Tr
(
TATB

)
= δAB. Clearly, â represents the generators

broken at low energy, and a represents those which remain unbroken. With these one can

work out the commutation relations,

[T aL, T
b
L] = iεabcT cL, [T aR, T

b
R] = iεabcT cR, [T aL, T

b
R] = 0

[T â, T b̂] = iεâb̂c (T cL + T cR) , [T â, T 4] =
i

2

(
T âL − T âR

)
,

[T aL,R, T
b̂] =

i

2

(
εabĉT ĉ ± δab̂T 4

)
, [T aL,R, T

4] = ∓ i
2
T â. (3.1.9)

Just as for the chiral Lagrangian, we will choose to describe the effective action for our

Goldstones using a non-linear sigma model, where the Goldstones are parameterised by,

Σ = Σ0U = Σ0exp

(
− i√

2
T âhâ

)
(3.1.10)
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where Σ0 = (0, 0, 0, 0, 1) is the SO(4) preserving vacuum state. This can be derived by

assuming we have some vector of SO(5), say Φ, with an SO(5) invariant potential. Now

let us suppose Φ has a vev along its fifth component, spontaneously breaking the SO(5)

global symmetry to SO(4). Exponentiating the degrees of freedom transforming under

the broken generators we can write this field as

Φ = exp

(
− i√

2
T âhâ

) ~0

vΦ + φ(x)

 (3.1.11)

where ~0 is an SO(4) vector filled with zeros. At energies � vΦ we can integrate out the

φ(x) field leaving only the Goldstone degrees of freedom in the action, which we can write

in the form of eq. (3.1.10). We can manipulate eq. (3.1.10) into the form

Σ =
sin (h/fπ)

h
(h1, h2, h3, h4, h cot (h/fπ)) (3.1.12)

where h =
√
hâhâ. In the model we will have massive vector resonances transforming in

the adjoint of SO(5)×U(1)X , and massless gauge fields gauging only the SU(2)L×U(1)Y

subgroup. To derive the interactions of the Goldstone bosons with the massless gauge fields

and the vector resonances we will first gauge the whole SO(5)× U(1)X global symmetry.

We do this by writing a covariant derivative for Φ under which all generators of the global

symmetry are promoted to local gauge symmetries. Since we have integrated out the φ(x)

field the effective action can be written as

L =
f2
π

2
(DµΣ)†DµΣ− 1

4
XµνXµν −

1

4
Tr
(
Fµν,AFAµν

)
+ . . . (3.1.13)

where Xµν and Fµν are the field strength tensors for the U(1)X and SO(5) symmetries,

respectively, and the covariant derivative is given by

Dµ = ∂µ − i
g

2
TAAAµ − i

gX
2
Xµ. (3.1.14)

The coupling g is that of the SM SU(2)L gauge group and in order to get the correct SM

hypercharges we require

g2
X =

g′2g2

g′2 + g2
(3.1.15)

where g′ is the SM hypercharge. The next step is to expand eq. (3.1.13) and go to

momentum space. However we introduce form factors, Π(p2), that parameterise the effects

of the strongly coupled sector in the low energy regime. These effects come in the form of

resonances, or poles, in the form factors as seen in eq. (3.1.18). They are introduced by

promoting the kinetic terms in momentum space to general functions of p2. The action

for the vector bosons in momentum space is then written as

L ⊃ 1

2
(PT )µν

(
ΠX

0

(
p2
)
XµXν + Π0

(
p2
)

Tr (AµAν) + Π1

(
p2
)

ΣAµAνΣT
)
, (3.1.16)
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where (PT )µν = ηµν − pµpν

p2 , Xµ are the U(1)X generators and Aµ = AAµT
A (with A =

1, . . . , 10 = (a, â)), are the SO(5) generators. To look at just the vector fields, we expand

around Σ0 and separate the broken and unbroken generators. It can easily be seen that

the only terms surviving in the Goldstone-Aµ interaction are the terms Σ0A
â
µT

âAb̂νT
b̂Σ†0 =

1
2A

â
µA

â
ν . So, after expanding around Σ0 we can write the action as

L =
1

2
(PT )µν

(
ΠX

0 (p2)XµXν + Πa(p
2)AaµA

a
ν + Πâ(p

2)AâµA
â
ν

)
(3.1.17)

where Πa = Π0 and Πâ = Π0+ 1
2Π1. We expect the unbroken generators to have a massless

mode in the spectrum, whereas the broken generators should not. In the study of large

N gauge theories with strong coupling in the IR leading to the spontaneous breaking of

some global symmetry, the form factors can be calculated explicitly. These results imply

that the form factors should be of the form

Πa(p
2) =

∑
n

p2F 2
ρ,n

p2 −m2
ρ,n

Πâ(p
2) =

f2
π

2
+
∑
n

p2F 2
a,n

p2 −m2
a,n

(3.1.18)

where mρ,n and ma,n are the masses of spin-1 resonances associated with the unbroken

and broken generators, respectively. The Fρ,n and Fa,n terms are the decay constants for

these resonances and fπ is the decay constant for the Goldstone modes. Comparing with

the Π0,1 relations we see that this implies,

Π1(0) = f2
π , Π0(0) = ΠX

0 (0) = 0. (3.1.19)

So far we have gauged the whole global symmetry and introduced massive vector reso-

nances transforming under each generator of the global symmetry. To obtain the physical

picture in which the only gauged symmetry is that of the SM EW model, we simply remove

the massless degrees of freedom for the generators not comprising the SU(2)L × U(1)Y

subgroup. This method of deriving the couplings of the Goldstone bosons to the gauge

bosons and massive vector resonances is called the method of sources. To maintain the

SO(5) × U(1)X global symmetry of the strong sector, the masses of each of the vector

fields in each multiplet must be the same.

The next step is to derive the couplings of the Higgs boson to the SM gauge fields. To

do so we expand the momentum space action for the gauge fields only keeping the fields

transforming with the SU(2)L × U(1)Y generators,

L = (PT )µν
((

ΠX
0 + Π0 +

s2
h

4
Π1

)
BµBν +

(
Π0 +

s2
h

4
Π1

)
LaµL

a
ν + 2s2

hΠ1Ĥ
†T aLY ĤL

a
µBν

)
,

(3.1.20)
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where

Ĥ =
1

h
H =

1

h

h1 − ih2

h3 − ih4

 (3.1.21)

and Bµ is the U(1)Y hypercharge generator. We have not yet looked at the Higgs potential,

but let us assume that it does get a vacuum expectation value, denoted by Ĥ = (0, 0, 1, 0)

and s〈h〉 = sin (〈h〉/fπ). Expanding around this vacuum expectation value, and expanding

the form factors around p2 ' 0, we find

L = (PT )µν
(
f2
πs

2
〈h〉

4

)(
1

2

(
BµBν + L3

µL
3
ν − 2L3

µBν
)

+ L+
µL
−
ν

)
+

(PT )µν p2

(
Π′0(0)LaµL

a
ν +

(
Π′0(0) + ΠX′

0 (0)
)
BµBν −

s2
〈h〉

2
Π′0(0)L3

µBν

)
. (3.1.22)

First, let us normalise the kinetic terms. We recognise that,

Π′0(0) = − 1

g2
, ΠX′

0 (0) = − 1

g2
X

= −g
′2 + g2

g′2g2
, (3.1.23)

such that Π′0(0) + ΠX′
0 (0) = −1/g′2 where g and g′ are the SU(2)L and hypercharge

couplings, respectively. So when we absorb these into the fields we see that,

m2
W =

g2f2
π sin (〈h〉/fπ)2

4
, ⇒ sin (〈h〉/fπ)2 =

v2

f2
π

. (3.1.24)

To derive the couplings to the Higgs boson we expand around this vev, sin (h/fπ) →

sin ((〈h〉+ h)/fπ), implying that,

f2
πs

2
h ' v2 + v

√
1− s2

〈h〉h+
(

1− 2s2
〈h〉

)
h2 + . . . , (3.1.25)

which, by substituting into the action, gives the corrections to the SM couplings for the

W and Z bosons,

gV V h = gSMV V h

√
1− s2

h, gV V hh = gSMV V hh
(
1− 2s2

h

)
, (3.1.26)

where we simply use sh to denote v/fπ, and will do so from now on in this thesis.

3.2 Holography for scalars and gauge fields

Now that we have covered what a composite Higgs model is and why it is an interesting

avenue to explore as a BSM sector, we will now outline what the holographic method is

and how it can be applied to different fields. We will also show how one can use this

to build models which have effective theories exactly like those expected from composite

Higgs models, where the symmetry breaking structure of the 4D model determines the

particle content and boundary conditions of the fields in the 5D model.
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3.2.1 A simple scalar example

As an introductory example we will study a real scalar field in a flat extra dimension

(k = 0). Following the same steps outlined in section 2.1.1, we obtain the following 5D

action,

S = −1

2

∫ L

0
dyΦ

(
�− ∂2

y

)
Φ + Φ

(
∂y −

m2
UV,IR

M5

)
Φ
∣∣∣L
0

(3.2.1)

where we have assumed that Φ → 0 as xµ → ±∞. If we were to use the Kaluza-Klein

method we would do a mode expansion and find an eigenvalue equation linking the 5D

derivatives on Φ with the 4D Kaluza-Klein masses. Solving this we would find the 5D

profiles of the KK modes and then apply boundary conditions to determine the mass

spectrum. In the holographic procedure we do not do a mode expansion. Instead we solve

the full bulk equation of motion,

(
p2 − ∂2

y

)
Φ = 0 (3.2.2)

for which we find the solution,

Φ(xµ, y) = A(p) cos(py) +B(p) sin(py). (3.2.3)

How we apply the boundary conditions is also different than in the Kaluza-Klein case. In

that case we had two integration constants and the mass eigenvalue to be fixed by two

boundary conditions, leaving one integration constant to be fixed by the normalisation.

In the holographic case we have no mass eigenvalue, hence we can only use the integration

constants to fix one of the boundary conditions and the normalisation. It is convention

here to fix the IR boundary condition and define a ‘holographic’ field on the UV brane,

however the results will be independent of this choice. So we have,

Φ(xµ, 0) = Φ̂(xµ),

(
∂y −

m2
IR

M5

)
Φ(xµ, L) = 0 (3.2.4)

where mIR →∞ and mIR → 0 correspond to Dirichlet and Neumann boundary conditions

respectively. The solution for the bulk holographic wave-function is

Φ(xµ, y) =
fΦ(p, y)

fΦ(p, 0)
Φ̂(xµ) (3.2.5)

where,

fΦ(p, y) = A(p) cos(pL)
[(mIR

p
+ tan(pL)

)
sin(py) +

(
1− tan(pL)

mIR

p

)
cos(py)

]
.

(3.2.6)
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In the Neumann and Dirichlet limits, respectively, we have,

fNΦ (y, p) = A(p)
[

tan(pL) sin(py) + cos(py)
]

fDΦ (y, p) = A(p)
[

cot(pL) sin(py) + cos(py)
]
. (3.2.7)

Plugging these wave functions into the action the IR and bulk terms vanish, leaving us

with the projection of these fields onto the UV brane,

S = −1

2
Φ̂ ΠN,D(p)Φ̂ (3.2.8)

where,

ΠN =

(
∂y −

m2
UV

M5

)
fNΦ (y, p)

fNΦ (0, p)

∣∣∣
y=0

=

(
p tan(pL)−

m2
UV

M5

)
ΠD =

(
∂y −

m2
UV

M5

)
fDΦ (y, p)

fDΦ (0, p)

∣∣∣
y=0

=

(
p cot(pL)−

m2
UV

M5

)
. (3.2.9)

These form factors encode information on a whole tower of states, where the masses of

these states correspond to the zeros of the form factors. Also, the propagators for the

fields can easily be obtained by inverting the form factors.

One can easily see from eq. (3.2.9) that the UV boundary conditions are dynamically

imposed by the 4D equations of motion on the UV brane. In the mUV = 0 case, the zeros

of p tan(pL) and p cot(pL) correspond to the mass spectrum obtained by the KK method

with Neumann UV boundary conditions, it is also obvious that there is a zero at p → 0

for the Neumann case.

When mUV 6= 0 one can see that neither of the form factors contain a massless mode,

and the masses of the KK modes shift. In the Dirichlet limit where mUV →∞, these KK

masses shift to the poles, rather than the zeros, of ΠN,D. Thus the mass spectrum for

Neumann and Dirichlet UV boundary conditions, respectively, are given by,

mΦ = zeros
(
ΠN,D(p)

)
mΦ = poles

(
ΠN,D(p)

)
. (3.2.10)

We have seen now that this holographic method results in the quadratic parts of the action

being described entirely by the field values at the UV brane. This, however, is not the

case for interaction terms. Taking as an example a quartic scalar interaction in the bulk,

we find

S ⊃
∫ L

0
dy
λ5D

4
Φ4(xµ, y) =

λeff
4

Φ̂4(xµ) (3.2.11)

where,

λeff =

∫ L

0
dy

(
fNΦ (y, p)

fNΦ (0, p)

)4

. (3.2.12)
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This simple example demonstrates some nice features of the holographic method, that it

allows us to describe the effects of a whole tower of states with just one form factor, and

that the mass spectrum and interactions of these states can be extracted quite easily from

the model. There are other advantages of this approach which will become apparent when

we study 5D gauge theories and symmetry breaking.

3.2.2 Gauge fields and symmetry breaking

In this section we will move on from the simple case presented before, and look at the

holographic set-up for a gauge field in a warped extra dimension. From now on we will

use the conformal frame for a warped extra dimension, that is

ds2 =

(
R

r

)2

ηMNdx
MdxN (3.2.13)

where M,N = 0..4 and dx4 = dr. The UV and IR branes are located at r = R = 1/k and

r = R′, respectively. The previous work on gauge and fermion fields still applies, however

the formulae will be written slightly differently. The 5D action for an non-abelian gauge

field can be written as

S =
1

2g2
5

∫
d5x

(
R

r

)(
−1

2
FµνAFAµν − Fµ5AFAµ5

)
=

1

2g2
5

∫
d5x

(
R

r

)(
AAµPµνAAν +

r

R
AAµ ∂y

(
R

r
∂yA

µA

))
−
∫
d4x

(
R

r
AAµ ∂yA

µA
∣∣∣R′
R

)
(3.2.14)

where we have taken out a factor of 1/g2
5, ‘A’ superscripts label the generator, Pµν =

ηµν�− ∂µ∂ν , and we have only kept the terms quadratic terms in Aµ. We have dropped

the A5 terms for now, however these are crucial to our work and will be discussed in the

next subsection. As in the previous section we will choose the boundary conditions in the

IR such that the boundary term vanishes, and in the UV we will define a source field,

AAµ (xµ, R) = ÂAµ (xµ) and Aâµ(xµ, R′) = 0, ∂yA
a
µ(xµ, R′) = 0. (3.2.15)

where A=â, a. The Dirichlet boundary condition in the IR breaks the gauge symmetry

explicitly on the brane, whereas the Neumann boundary condition preserves the gauge

symmetry. Here we have stuck to the convention that â labels broken generators and a

labels unbroken generators. One should recall from section 2.1.2 that the IR boundary

conditions on the A5 modes will be opposite to the Aµ modes. To find the bulk equations

of motion we again want to go to a mixed position-momentum basis, and it is useful to

write the gauge fields in terms of their longitudinal and transverse components,

AµA =

(
ηµν − pµpν

p2

)
AtAν +

pµpν

p2
AlAν . (3.2.16)
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The boundary conditions on the longitudinal and transverse components of each generator

must be the same. Writing the action in terms of these components results in,

S =
1

2g2
5

∫
d5x

(
R

r
AtAµ PµνAtAν +AtAµ ∂y

(
R

r
∂yA

µtA

)
+AlAµ ∂y

(
R

r
∂yA

µlA

))
− 1

2g2
5

∫
d5x

(
AtAµ ∂yA

µtA +AlAµ ∂yA
µlA
) ∣∣∣

R
. (3.2.17)

Going to unitary gauge via some gauge fixing terms, as demonstrated in section 2.1.2, we

find the equations of motion for the fields to be,(
p2 +

r

R
∂y

( r
R
∂y

))
AtAµ = 0 (3.2.18)

∂y

(
R

r
∂y

)
AlAµ = 0.

We write the solutions as a product of a 5D component and the holographic field,

AtAµ = GtA± (p, r)ÂtAµ

AlAµ = GlA± (p, r)ÂlAµ (3.2.19)

where the ± indicate the choice of IR boundary condition. The 5D components, which

are normalised to satisfy the UV boundary condition, can be expressed as

GtA+ (p, r) =
r

R

Y1(pR′)J1(pr)− J1(pR′)Y1(pr)

Y1(pR′)J1(pR)− J1(pR′)Y1(pR)

GtA− (p, r) =
r

R

Y0(pR′)J1(pr)− J0(pR′)Y1(pr)

Y0(pR′)J1(pR)− J0(pR′)Y1(pR)

GlA+ (p, r) =1

GlA− (p, r) =

((
r
R′

)2 − 1
)

((
R
R′

)2 − 1
) ' (1−

( r
R′

)2
)
. (3.2.20)

By plugging these solutions back into the action we arrive at the holographic action for

the gauge fields, where only the terms on the UV brane survive,

Shol = − 1

2g2
5

∫
d5x

(
AtAµ ∂yA

µtA
) ∣∣∣
R

= − 1

2g2
5

∫
d4x

(
Ataµ Π+(p2)Aµta +Atâµ Π−(p2)Aµtâ

)
(3.2.21)

and,

Π+ = GtA+ ∂yG
tA
+

∣∣∣
R

Π− = GtA− ∂yG
tA
−

∣∣∣
R
. (3.2.22)

If we want a Dirichlet boundary condition on the UV brane we do the same thing that we

did in the scalar case, that is, introduce a large mass for the appropriate generators thus
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effectively making them non-dynamical at the brane. In the limit where the Goldstone

modes do not get a vacuum expectation value, the masses of the KK resonances associ-

ated with the unbroken and broken generators are associated with the zeros and poles,

respectively, of the above form factors. Upon inspection one can see that the unbroken

generators will have a massless mode whereas the broken generators will not. However, as

discussed in section 2.2.2, broken generators give rise to massless A5 zero modes.

Goldstone A5 modes

We know from section 2.1.2 that the â generators will have massless A5 modes in the

spectrum, whereas the a generators will not. And we have discussed how massive A5

modes can be gauged away, or are ‘eaten’ by the massive Aµ modes. In this way they gain

the extra degree of freedom they require to have mass. Massless A5 modes are different,

they are not eaten by any of the Aµ modes and thus remain in the spectrum. In using the

holographic procedure we do not use the concept of KK modes, so we must re-express this

idea in another way. In describing this gauge fixing procedure we follow the work of [45].

Again, the boundary conditions for the unbroken and broken generators are,

Aaµ(xµ, R) = Âaµ(xµ) and ∂yA
a
µ(xµ, R′) = 0

Aâµ(xµ, R) = Ââµ(xµ) and Aâµ(xµ, R′) = 0. (3.2.23)

One might suppose that the following field redefinition, along with an appropriate gauge

transformation, might fix the A5 modes to zero,

AM (xµ, r)→ Ω
(
ÃM − i∂M

)
Ω†, ΩA = ei

∫R′
R dr′AA5 T

A
(3.2.24)

where TA are the generators of the non-abelian group. If we were to perform this field

transformation and then use the gauge freedom to absorb the A5 fields into the Aµ fields

such that they ‘eat’ the A5 modes, we would have fixed to unitary gauge. The problem

however, is that the full symmetry is not gauged on the IR brane, the â generators are

broken. Therefore we can not use the gauge freedom to absorb all the A5 modes into

the Aµ modes on the IR brane. The solution proposed in [45] involves adding Goldstone

degrees of freedom on the IR brane, to restore the full non-abelian symmetry, thus allowing

us to fully gauge away all the A5 modes. These Goldstone degrees of freedom should arise

from the spontaneous breaking of the gauge symmetry on the IR brane. The inclusion of

60



these fields modifies the IR boundary conditions to,

UF aµ5U
†
∣∣∣
R′

= 0

U
(
Aâµ − i∂µ

)
U †
∣∣∣
R′

= 0, (3.2.25)

where

U = e
iπâ(xµ)
fπ

T â
. (3.2.26)

With these boundary conditions one can now go to unitary gauge consistently, setting

A5 = 0 everywhere in the action. Note that we have not added any additional degrees of

freedom here. The massive A5 degrees of freedom become the longitudinal components

of the massive Aµ modes, and the massless A5 degrees of freedom have been traded for

the Goldstone degrees of freedom on the IR brane. By making another transformation,

CAµ = U
(
AAµ − i∂µ

)
U †, the IR boundary conditions revert back to Neumann or Dirichlet,

and the interactions with the Goldstone fields shift to the UV boundary,

AAµ (xµ, R) = ÂAµ (xµ) = U †
(
CAµ − i∂µ

)
U. (3.2.27)

Thus we can see that this manipulation has projected the interactions between the Gold-

stones and the gauge fields (up to quadratic order) to the UV brane.

If one was to follow the KK method, and keep the A5 zero mode in the bulk, the results

would be the same. This method has been used by several authors [152]. One way to see

the connection between the Σ and the A5 modes is to perform the field redefinition in eq.

(3.2.24) without the additional Goldstone fields on the IR brane. In the bulk and on the

UV brane one is able to absorb this redefinition via a gauge transformation, i.e.,

AAµ ≡ ΩA

(
AAµ − i∂µ

)
Ω†A. (3.2.28)

But on the IR brane one can only absorb the unbroken generators, i.e.

Aaµ ≡ Ωa (Aµ − i∂µ) Ω†a, (3.2.29)

leaving the IR boundary conditions as

ΩâF
a
µ5Ω†â

∣∣∣
R′

= 0

Ωâ

(
Aâµ − i∂µ

)
Ω†â

∣∣∣
R′

= 0. (3.2.30)

From this one can explicitly see the connection between the Goldstone and A5 degrees

of freedom, i.e. U = Ωâ. From this point forward we will use the U field to represent

the A5 Goldstone degrees of freedom. This U matrix is the same as we used in the
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4D description of the global symmetry breaking in the composite Higgs model, however

there we had expanded around a vev, i.e. we used the Goldstone matrix Σ = Σ0U , where

Σ0 = (0, 0, 0, 0, 1) was the vev. In our case this vev simply corresponds to the IR boundary

conditions, where the 1 indicates the direction along which the IR boundary conditions

break the bulk gauge symmetry.

3.2.3 The holographic MCHM

Using the material of this section and the previous section, we will show now how to

construct the MCHM in the holographic set-up. First of all, we require a bulk SO(5) ×

U(1)X gauge symmetry, which is broken in the IR to SO(4) × U(1)X . Then on the UV

there should be mass terms breaking SU(2)R × U(1)X to U(1)Y such that Y = T 3
R + X.

The first step is to assign Dirichlet boundary conditions on the IR brane to the generators

in the SO(5)/SO(4) coset. This is equivalent to the step in section 3.1.3 where we expand

around the vacuum Σ0. In the 5D model we will get 4 massless A5 modes which must be

gauged away using the procedure discussed in the previous section. These correspond to

the Goldstone-Higgs degrees of freedom in the composite Higgs model.

The next thing we need to do is to match the 5D model to the 4D model. The simplest

way to do this is to match the models in the limit that the Higgs fluctuations go to zero.

In the 4D model this corresponds to Σ = Σ0, eq. (3.1.17). In the 5D model it corresponds

to the holographic action for the gauge fields with U = 1,

S = −1

2

∫
d4x

(
PµνT

)( 1

g2
5,X

XµΠ+(p2)Xν +
1

g2
5

AaµΠ+(p2)Aaν +
1

g2
5

AâµΠ−(p2)Aâν

)
.

(3.2.31)

Matching to eq. (3.1.17) (after taking out a factor of the gauge coupling), we find

ΠX = Π+, Πa = Π+, Πâ = Π− (3.2.32)

leading to,

Π0 = Π+, Π1 = 2 (Π− −Π+) . (3.2.33)

When we apply the gauge fixing procedure outlined in section 3.2.2 the Higgs couplings

arise via the UV boundary conditions and we obtain the same action as in section 3.1.3,

thus we can simply take the work from that section and use the holographic form factors

we have obtained here. Doing so gives us an explicit way to calculate observables in 4D

in terms of 5D inputs. For example, we can write the 4D SU(2)L gauge coupling in terms

of the 5D gauge coupling using,

Π′+(p2 = 0)

g2
5

=
1

g2
, ⇒ g2

5 = g2R ln (Ω) (3.2.34)
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where Ω = R′/R. We can also calculate the decay constant of the Goldstones using,

Πâ(p
2 = 0) = Π−(p2 = 0) =

f2
π

2
, ⇒ f2

π =
4M2

KK

g2 ln (Ω)
(3.2.35)

where MKK = 1/R′. We refer to ln (Ω) as the 5D volume, and it will play an important

role in the calculations we do later. The crucial feature of our observations is that one can

control the size of fπ by altering the 5D volume without the need to increase MKK . Thus

we can increase the decay constant without pushing up the masses of the KK modes.

When looking at contributions to the Higgs potential the hypercharge contributions

will be small compared to the SU(2)L contributions, thus we will ignore it. The relevant

effective action is then,

L = (PT )µν
1

g2
5

(
Π0 +

s2
h

4
Π1

)
LaµL

a
ν , (3.2.36)

where the form factors are given in eq. (3.2.33) and eq. (3.2.22).

3.2.4 Intermediate scales and their holographic interpretation

At several points so far in this work we have mentioned the phrase ‘intermediate scale’ and

given a short description of what we meant by that. In this section we will go into more

detail on what we mean by an intermediate scale, and discuss how to overcome a particular

theoretical issue encountered when they are present. In this section it is more intuitive to

use notation familiar with that of the previous chapter than the current chapter, i.e. we

work in the y basis, however the results can be translated easily.

In the warped extra dimensional models the UV scale is denoted by M5, where the

curvature constant k, having mass dimension 1, is assumed to be of this order. The length

of the extra dimension having mass dimension −1 is assumed to be of the order 1/M5.

The IR scale in the model is defined by the red-shifted mass scale at the IR brane1,

MKK = ke−kL. (3.2.37)

Let’s suppose that the UV and IR scales are fixed and that we vary the length of the

extra dimension (L = k−1 ln(k/MKK)) to accommodate them. Regardless of what these

scales are we expect that new physics related to a quantum theory of gravity will become

apparent at ∼ 1018 GeV. Thus if we lower the UV scale in this model we refer to it as an

intermediate scale. A key question is, what role does this UV scale play?

1Note that in the previous chapter we used a slightly different definition of MKK , which was equal to

the mass of the first KK vector boson.
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An important role it plays is in defining the interaction strength of the massless gravi-

ton, which must come out to be that observed in our universe. Let us take the 5D gravity

action 2

S =

∫
d4x

∫ L

0
dy
√
|g|M3

5

(
−R5

2
+ 6k2

)
+
√
|g|M3

5k0,L

∣∣L
0

(3.2.38)

where R5 is the 5D Ricci scalar and the bulk and brane terms proportional to k and k0,L

are the bulk cosmological constant and brane tensions responsible for the AdS warping

in the bulk. These terms are chosen such that they give the metric of eq. (2.1.1) with

A(y) = ky. Studying fluctuations around the metric in the above action gives equations

of motion for the spin-2 degrees of freedom. These equations of motion permit a massless

mode solution, and the interaction strength of this massless mode in the effective theory

can be found by integrating over the extra dimension. This interaction strength is defined

by an effective Planck mass, found to be

M2
Pl =

M3
5

k

(
1− e−2kL

)
. (3.2.39)

Now assuming that M5 ∼ k and kL � 1, we have that MPl ∼ k. We require that

MPl ∼ 1018 GeV to correctly reproduce 4D gravity, thus lowering M5 and k leads to a

problem.

Another role played by the UV scale is in the relation between 4D and 5D gauge

couplings. Take a 5D abelian gauge field in the Randall-Sundrum geometry,

S = −1

4

∫
d4x

∫ L

0
dy
√
|g|
(

1

g2
5

+ τ0Lδ(y) + τLδ(y − L)L

)
FMNFMN (3.2.40)

where the τ0,L are brane localised kinetic terms (BKTs) for the gauge bosons. Performing

a simple analysis along the lines of section 2.2.2 we can easily show that the spectrum of Aµ

KK modes derived from this action in the presence of Neumann boundary conditions for

the Aµ modes permit a massless mode with a flat wave function along the extra dimension.

Integrating over the extra dimension we can express the effective 4D gauge coupling as

1

g2
4

= τ0 + τL +
L

g2
5

= τ0 + τL +
ln(Ω)

kg2
5

(3.2.41)

where Ω = k/MKK is the ratio of energy scales. The AdS/CFT correspondence [153] pos-

tulates that these weakly coupled 5D AdS models are dual to strongly coupled 4D CFTs,

and the expression in eq. (3.2.41) bears a striking resemblance to a gauge coupling in 4D

that has been run from some UV scale (k) to an IR scale (MKK) with a renormalisation

group equation

µ
d

dµ

1

g2
4(µ)

= −b, b =
1

kg2
5

. (3.2.42)

2This is covered in slightly more detail in chapter 4 so we will not repeat all the details here.
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This line of argument is followed in more detail in [154, 155], and for more general com-

ments on holography and these 5D models we refer the reader to [156]. The logarithmic

dependence on the scales in eq. (3.2.42) is a very interesting feature of the AdS models

in particular, for example we do not see this behaviour in flat extra dimensions. In this

analogy the BKT at the UV brane (τ0) would be the bare coupling and the BKT at the

IR brane (τIR) would be a threshold correction. On the CFT side with a large number

of colours, denoted by N, this beta function coefficient is calculated to be N/16π2. This

simply arises as a colour factor in loop diagrams involving the CFT ‘quarks’. Therefore

equating both sides of the duality we find

N =
16π2

kg2
5

= (1− τ2
0 g

2
4 − τLg2

4)
16π2

g2
4 ln(Ω)

. (3.2.43)

Therefore when we introduce an intermediate scale in the 5D models, i.e. lower the UV

scale, we are effectively varying the number of colours in the dual 4D CFT. In this sense

it seems natural to treat kL as a free parameter in these models, rather than fixing it to

ensure that k ∼MPl and MKK ∼ TeV.

To solve the problem of reproducing the correct effective Planck mass for the graviton

zero mode we introduce a BKT for gravity on the UV brane, which is simply a UV localised

contribution to the Ricci scalar [129]. Adding a −r0M
3
5R5δ(y)/k term to eq. (3.2.38) we

find that the effective Planck mass is modified to

M2
Pl =

M3
5

k

(
r0 + 1− e−2kL

)
. (3.2.44)

If we suppose that the dimensionless quantity r0 can be extremely large in order to give

the correct effective Planck mass, i.e. r0 ∼ ((1018 GeV)/M5)3, then we are able to have

an intermediate scale while also reproducing the correct interaction strength for the zero

mode graviton.

3.3 Holographic fermions and partial compositeness

In order to have a coupling between the fermions and the Goldstone of the broken global

symmetry, we need to have fermion interactions which break the global symmetry. A

popular way to do this is known as partial compositeness [157], and not only does it

generate the Yukawa couplings, but it can also provide a natural framework in which the

Yukawa couplings are hierarchical. The couplings that break the global symmetry are of

the form,

L = Y5D (q̄O + h.c.) (3.3.1)
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where q is a light SM fermion and O is an operator of the strong sector, i.e. it transforms

in a full rep of the global symmetry. Since the SM fields will not transform in full reps

of the global symmetry, this coupling is not invariant under the full global symmetry and

thus generates the Yukawa couplings between the fermions and the Goldstones. Results

calculated in the large-N limit of SU(N) gauge theories show that quark masses are

exponentially sensitive to the anomalous dimension of the quark, thus one can naturally

get large suppressions or enhancements in the masses. An in depth discussion of this is

beyond the scope of this thesis, as we will focus on the holographic calculations of the

effective action.

The operator O in eq. (3.3.2) can be thought of as a tower of fermionic states, such

that the above coupling can be written as a mass mixing term,

L =
∑
n

δmn (q̄Ψn + h.c.) (3.3.2)

where Ψn are heavy fermionic states. This picture of partial compositeness can easily be

understood from the work we have done in previous sections. That is, the holographic

dual of partial compositeness is simply a mass mixing between a KK tower with a zero

mode, and a KK tower without a zero mode. The 5D fields will transform in complete

reps of the global symmetry, and since this global symmetry is exact in the bulk, the

mass mixings which violate this must only be present on the IR brane. These interactions

not only induce a mass mixing, but they can project out some of the zero modes in the

5D multiplet, meaning that at the massless level the zero modes may not transform in

compete reps of the global symmetry.

3.3.1 Holography for fermions

Let us take two Dirac fermions in the 5D Randall-Sundrum model with a mass mixing on

the IR brane,

S =

∫
d5x
√
|g|
∑
a=1,2

(
i

2
ψ̄aγ

M∂Mψa −
i

2

(
∂M ψ̄a

)
γMψa −maψ̄aψa

)
−
∫
d4x
√
|g|m̃

(
ψ̄1Lψ2R + ψ̄2Rψ1L + h.c.

) ∣∣∣
R′
. (3.3.3)

As we discussed in section 2.1.3, since the bulk equations for the fermions are first order,

and we require two boundary conditions for each chirality, once we fix the boundary

conditions for one chirality, the others are automatically determined. However, in the

holographic procedure we define our degrees of freedom via the boundary conditions on

the UV brane, so this is a little more complicated in the fermion case than for bosons. We
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need to choose which chirality we want as the holographic source field on the UV brane,

and then fix it such that the variation of this field on the brane is zero and the other

chirality is allowed to vary freely. For our case here we will choose a left-handed source

for ψ1 and a right handed source for ψ2,

ψ1L(p,R) = ψ̃1L(p)

ψ2R(p,R) = ψ̃2R(p) (3.3.4)

such that, δψ1L = δψ2R = 0 and δψ1R = δψ2L 6= 0. When we vary the action to find the

equations of motion in the bulk we find the following terms arising on the branes,

δSbranes =
1

2

∫
d4x
√
|g|
∑
a=1,2

(
ψ̄aLδψaR − ψ̄aRδψaL + h.c.

) ∣∣∣R′
R

−
∫
d4x
√
|g|m̃

(
ψ̄1Lδψ2R + δψ̄1Lψ2R + h.c.

) ∣∣∣
R′
. (3.3.5)

Due to the holographic UV boundary condition and the mixing terms on the IR brane,

these do not vanish automatically. Note that if we had no IR mixing terms, we would

simply have Neumann and Dirichlet boundary conditions in the IR and the IR terms would

indeed vanish. To make this variation vanish we need to add the following terms to the

UV and IR branes,

SUV =
1

2

∫
d4x
√
|g|
(
ψ̄1Lψ1R − ψ̄2Lψ2R + h.c.

) ∣∣∣
R

SIR = ∓1

2

∫
d4x
√
|g|
(
ψ̄1Lψ1R − ψ̄2Lψ2R + h.c.

) ∣∣∣
R′
. (3.3.6)

Note the difference in the sign of the required additional terms for ψ1 and ψ2, this is due

to the fact that we have chosen different chiralities for their holographic source fields. For

the IR boundary condition we have two cases;

(i) SIR = −
∫
d4x(. . .)

(ii) SIR = +
∫
d4x(. . .) .

In case (i) the IR variation vanishes for,

ψ1R(R′) = −m̃ψ2R(R′)

ψ2L(R′) = m̃ψ1L(R′), (3.3.7)

and in case (ii) it vanishes for,

ψ1R(R′) = − 1

m̃
ψ2R(R′)

ψ2L(R′) =
1

m̃
ψ1L(R′). (3.3.8)
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For now we will stick with case (i), but we can see that cases (i) and (ii) are simply related

by m̃→ 1/m̃. We will see later why having these two cases is useful. The bulk equations

of motion derived from the above action using the same methods as used in 2.1.3 are,(
∂y ±

cf
R

)
ψfL,fR = ±�pψfR,fL (3.3.9)

where we have rescaled ψ → r2

R2ψ and set mf = cf/R. The solutions obeying the above

boundary conditions can be constructed from the following functions,

G+
p (r, c) =

√
r
(
Yc−1/2(pR′)Jc+1/2(pr)− Jc−1/2(pR′)Yc+1/2(pr)

)
G−p (r, c) =

√
r
(
Yc−1/2(pR′)Jc−1/2(pr)− Jc−1/2(pR′)Yc−1/2(pr)

)
(3.3.10)

where G−p (R′) = 0,
(
∂y ± c

r

)
G±p (r, c) = ±G∓p (r, c), and G+

p (R′, a) = G+
p (R′, b) for any 5D

masses a and b. The most general solutions to the equations of motion are,

ψ1L(p, r) =
(
A1G

+
p (r, c1) +B1G

−
p (r,−c1)

)
ψ̃1L

ψ1R(p, r) =
(
A1G

−
p (r, c1)−B1G

+
p (r,−c1)

)
�p

p
ψ̃1L

ψ2R(p, r) =
(
A2G

+
p (r,−c2) +B2G

−
p (r, c2)

)
ψ̃2R

ψ2L(p, r) =
(
−A2G

−
p (r,−c2) +B2G

+
p (r, c2)

)
�p

p
ψ̃2R, (3.3.11)

where the Af and Bf coefficients need to be fixed by the boundary conditions. The

required algebra is basic, although lengthy. Making use of the fact that G−(R′, c) = 0 and

G+(R′, a) = G+(R′, b) for any 5D masses a and b, we find that,

ψ1L(p, r) =
1

N

(
G+(r, c1)G+(−c2)− m̃2G−(r,−c1)G−(c2)

)
ψ̃1L

− m

N
�p

p

(
G+(r, c1)G−(−c1)−G−(r,−c1)G+(c1)

)
ψ̃2R

ψ1R(p, r) =
1

N
�p

p

(
G+(−c2)G−(r, c1) + m̃2G−(c2)G+(r,−c1)

)
ψ̃1L

− m

N

(
G+(c1)G+(r,−c1) +G−(−c1)G−(r, c1)

)
ψ̃2R

ψ2R(p, r) =
m

N
�p

p

(
G+(−c2)G−(r, c2)−G−(c2)G+(r,−c2)

)
ψ̃1L

+
1

N

(
G+(c1)G+(r,−c2)− m̃2G−(−c1)G−(r, c2)

)
ψ̃2R

ψ2L(p, r) =
m

N

(
G+(−c2)G+(r, c2) +G−(c2)G−(r,−c2)

)
ψ̃1L

− 1

N
�p

p

(
G+(c1)G−(r,−c2) + m̃2G−(−c1)G+(r, c2)

)
ψ̃2R (3.3.12)

where G(c) ≡ G(R, c) and N = G+(c1)G+(−c2) − m̃2G−(−c1)G−(c2). Note that there

are no terms dependent on R′ here as they have all cancelled out. Taking the brane mass

to zero decouples the two Dirac fermions, and if we used the case (ii) boundary conditions
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this would correspond to taking the brane mass to be very large. Plugging back into the

action we find that only those terms that we added to the UV brane survive,

L =
1

2

(
ψ̄1Lψ1R − ψ̄2Rψ2L + h.c.

)
=

¯̃
ψ1LΠf

1(p)�pψ̃1L +
¯̃
ψ2RΠf

2(p)�pψ̃2R − ¯̃
ψ1LM

f (p)ψ̃2R + h.c. (3.3.13)

where,

Πf
1 =

1

p

G+
p (−c2)G−p (c1) + m̃2G−p (c2)G+

p (−c1)

G+
p (c1)G+

p (−c2)− m̃2G−p (−c1)G−p (c2)
,

Πf
2 =

1

p

G−p (−c2)G+
p (c1) + m̃2G+

p (c2)G−p (−c1)

G+
p (c1)G+

p (−c2)− m̃2G−p (−c1)G−p (c2)
,

Mf =
m

2

G+(−c2)G+(c2) +G−(−c2)G−(c2) +G+(−c1)G+(c1) +G−(−c1)G−(c1)

G+
p (c1)G+

p (−c2)− m̃2G−p (−c1)G−p (c2)
.

(3.3.14)

Using the boundary conditions for case (ii) we find a similar action,

L =
1

2

(
ψ̄1Lψ1R − ψ̄2Rψ2L + h.c.

)
=

¯̃
ψ1LΠ̂f

1(p)�pψ̃1L +
¯̃
ψ2RΠ̂f

2(p)�pψ̃2R − ¯̃
ψ1LM̂

f (p)ψ̃2R − ¯̃
ψ2RM̂

f (p)ψ̃1L (3.3.15)

where,

Π̂f
1 = Πf

1 (m̃→ 1/m̃)

Π̂f
2 = Πf

2 (m̃→ 1/m̃)

M̂f = Mf (m̃→ 1/m̃) . (3.3.16)

In the limit where the mass terms are zero the KK masses are simply given by,

m1,n = zeros
(

Πf
1

)
m2,n = zeros

(
Πf

2

)
. (3.3.17)

However when the mass terms are non-zero we can see from the equations of motion that

the KK masses are given by,

mn = zeros

(
p2Πf

1Πf
2 −

(
Mf
)2
)
. (3.3.18)

It may be the case that we want to give a Dirichlet boundary condition to a holographic

source field. In previous sections we did something similar with gauge fields and scalar

fields, where we dynamically imposed the Dirichlet boundary condition by adding a large

UV brane mass. In the fermion case we do something different, because the boundary
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conditions of one chirality are linked to the other chirality. Say we have a left-handed

holographic source field ψ and we wish to give it a Dirichlet boundary condition on the

UV, i.e. switch the source field to the right-handed chirality. We can add an additional

term on the UV brane, a coupling to some right-handed field λ,

L = ψ̄ �p

p
Πψ + λ̄ψ + ψ̄λ. (3.3.19)

Now solving for λ gives the equation of motion, ψ = 0, thus generating the Dirichlet

boundary condition. We then allow λ to play the role of the right-handed degrees of

freedom. We do this by solving for ψ, giving, ψ = −λ
(

Π�p
p

)−1
, and plugging back into

the action to find

L = −λ̄
(

Π�p

p

)−1

λ. (3.3.20)

So the mass spectrum of this field is given by the poles rather than the zeros of the form

factor, just as in the bosonic case.

3.3.2 Fermions in the MCHM5

There are many ways one could embed the SM fermions in the global SO(5) symmetry,

however for our analysis we choose to focus on the case in which the SM fermions are

embedded in fundamentals of the global SO(5) symmetry. One can embed the up and

down type quarks into four SO(5) multiplets, here will use the third generation as an

example,

ξq1 =
1√
2



bL

−ibL

tL

itL

0


2
3

, ξu =



0

0

0

0

tR


2
3

,

ξq2 =
1√
2



ibL

bL

−itL

tL

0


− 1

3

, ξd =



0

0

0

0

bR


− 1

3

. (3.3.21)

where the subscripts refer to the U(1)X charges, and Y = T 3
R + X. In ξq1,q2 the top and

bottom quarks transform as SU(2)L doublets and the right-handed quarks are singlets

under the custodial symmetry. These multiplets are incomplete, however by including
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the full multiplets we find that there are exotic states with hypercharge Y = 7/6 and

Y = −5/6 which will correspond to heavy top partners in the model. Notice that we

have two SU(2)L doublets, say q1L and q2L, these are required to give both the top and

bottom quarks mass. We can make one linear combination of the doublets massive by

introducing a mass mixing between that linear combination and a heavy fermion. The

massless doublet is then identified with the orthogonal combination, say qL = q1L + q2L.

We expect that the top quark is much more composite than the bottom quark, following

the arguments in [84] this leads to qL ' q1L being a valid approximation. Also, ξq1 and

ξu will contribute much more to the Higgs potential than any other field in the SM, thus

from now on we will only deal with these fields.

As we did for the gauge sector, we write down the most general SO(5) invariant action.

This turns out to be,

L = ξ̄iq1�p
(
δijΠq1

0 + ΣiΣjΠq1
1

)
ξjq1 + ξ̄iu�p

(
δijΠu

0 + ΣiΣjΠu
1

)
ξju + ξ̄iq1

(
δijM q1

0 + ΣiΣjM q1
1

)
ξju + h.c.

= q̄L�p

(
Πq1

0 +
s2
h

2
ĤĤ†Πq1

1

)
qL + ūR�p

(
Πu

0 +
s2
h

2
Πu

1

)
uR +

shch√
2
Mu

1 q̄LĤuR + h.c..

(3.3.22)

where Σ = sh
h (h1, h2, h3, h4, h cot(h/fπ)). In the limit where the Higgs fluctuations go to

zero, this reduces to,

L = q̄L�pΠ
q1
0 qL + ūR�pΠ

u
0uR. (3.3.23)

Now we turn to the 5D implementation where we are forced to add complete Dirac

multiplets into the bulk in order to preserve 5D Lorentz invariance. Thus when we embed

the SM fields into these 5D multiplets, we must use boundary conditions to ‘project out’

non-SM zero modes. Because of this, the 5D realisation automatically completes the 5D

multiplets of eq. (3.3.21) with vector-like quarks. Just looking at ξq1 and ξu we have,

ξq1 =


ψ′q1(−+)

ψq1(++)

ηq1(−−)


2
3

, ξu =


ψ′u(+−)

ψu(+−)

ηu(−+)


2
3

, (3.3.24)

where ψq,u are bi-doublets of the SU(2)×SU(2)R global symmetry, and the (±,±) indicate

the boundary conditions on the UV and IR branes of the left-handed chiral components,

respectively, in the limit of no IR brane mixings. It follows that fermion fields with

(++) will have a massless left-handed component, while those with (−−) have a massless

right-handed component, and fields with (+−) or (−+) have no massless components. In

addition to this, the linear combination (ψq1,L−ψq2,L) should be given a mass on the UV
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brane so that only (ψq1,L + ψq2,L) has a massless component. We then identify the SM

left-handed doublet as ψq = (ψq1,L + ψq2,L). As mentioned previously, we can make the

approximation ψq ' ψq1,L. The 5D masses of the above multiplets are denoted as cq/R

and cu/R, respectively, where cq and cu are dimensionless.

For the q1 fields we will use the left-handed chiralities as the source fields and for the

u fields we will use the right handed chirality,

ξq1,L(r = R) = χL, ξu,R(r = R) = χR. (3.3.25)

We also have some mass mixings on the IR brane such that the SO(4) symmetry is

preserved,

LIR =
√
|g|
(
muq̄

(2,2)
1L u

(2,2)
R +Muq̄

(1,1)
1R u

(1,1)
L + h.c.

) ∣∣∣
R′
, (3.3.26)

where the (2, 2) and (1, 1) superscripts indicate the bi-doublet and singlet components

of the fermion multiplets. We would like the boundary conditions in eq. (3.3.24) to be

obtained in the limit where mu,Mu → 0, thus we will use case (i) and case (ii) for the (2, 2)

and (1, 1) components, respectively. This leads to the following boundary conditions,

q
(2,2)
1L =

1

mu
u

(2,2)
L

∣∣∣
R′

u
(2,2)
R = − 1

mu
q

(2,2)
1R

∣∣∣
R′

q
(1,1)
1L = Muu

(1,1)
L

∣∣∣
R′

u
(1,1)
R = −Muq

(1,1)
1R

∣∣∣
R′
. (3.3.27)

We can see from these expressions that we do indeed arrive at the boundary conditions

in eq. (3.3.24) for vanishing brane masses, and also that for very large brane masses we

effectively flip the IR boundary conditions in eq. (3.3.24). Writing the source fields in

the SO(5) notation after turning off fields with Dirichlet boundary conditions on the UV

brane, we have,

χL =
1√
2



bL

−ibL

tL

itL

0


, χR =



0

0

0

0

tR


, (3.3.28)

which is equivalent to eq. (3.3.21) once we take ψq ' ψq1,L and drop the right-handed

bottom quark. These quark multiplets are charged under the SO(5) symmetry, thus

after we implement the gauge fixing procedure to remove the A5 degrees of freedom these

multiplets will couple to the Higgs via the UV boundary conditions. In the limit where

the Higgs fluctuation is zero the holographic action for the top quark is

Lhol = χ̄L�pΠ
q
bχL + χ̄R�pΠ

u
sχR (3.3.29)
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where,

Πq
b = Πf

1 (c1 = cq, c2 = cu, m̃ = mu)

Πu
s = Π̂f

2 (c1 = cq, c2 = cu, m̃ = 1/Mu) , (3.3.30)

where cq and cu are the 5D masses for the ξq1 and ξu multiplets, respectively. Matching

the 5D theory to the 4D theory is more complicated in this case than it is in the gauge

case, so we will address it separately in the next section.

3.3.3 Matching 5D to 4D for quarks in the MCHM5

Just as in the gauge case, to match the 5D and 4D theories one must look at the interactions

of the the full SO(5) multiplets. Let us start with the most general action for two SO(5)

multiplets in 4D,

ψ1L =

ψb1
ψs1

 , ψ2R =

ψb2
ψs2

 (3.3.31)

where the b and s superscripts correspond to bi-doublet and singlet components, respec-

tively. The most general action we can write down is again,

L =ψ̄i1L�p
(
δijΠ1L

0 + ΣiΣjΠ1L
1

)
ψj1L + ψ̄i2R�p

(
δijΠ2R

0 + ΣiΣjΠ2R
1

)
ψj2R

+ ψ̄i1L
(
δijM0 + ΣiΣjM1

)
ψj2R + h.c.. (3.3.32)

Expanding this we find

ψ̄iΣiΣjψj =
s2
h

h2
hihjψ̄

biψbj + ψ̄bi
shch
h

hiψs + ψ̄s
shch
h

hiψ
bi + c2

hψ̄
sψs

ψ̄i1LΣiΣjψj2R =
s2
h

h2
hihjψ̄

bi
1Lψ

bj
2R + ψ̄bi2L

shch
h

hbiψs2R + ψ̄s1L
shch
h

hiψ
bi
2R + c2

hψ̄
s
1Lψ

s
2R. (3.3.33)

where hi = (h1, h2, h3, h4). Now going to the zero fluctuation limit we have,

L =ψ̄b1LΠ1L
0 ψb1L + ψ̄s1L

(
Π1L

0 + Π1L
1

)
ψs1L + ψ̄b2RΠ2R

0 ψ2R + ψ̄s2R
(
Π2R

0 + Π2R
1

)
ψs2R

+ ψ̄b1LM0ψ
b
2R + ψ̄s1L (M0 +M1)ψs2R. (3.3.34)

Keeping the full SO(5) multiplets means that all the form factors survive in the zero fluc-

tuation limit, making the matching possible. In the 5D model, keeping the full multiplets

and going to the zero fluctuation limit (i.e. U = 1 in the UV boundary conditions), we

arrive at,

L =ψ̄b1LΠq
bψ

b
1L + ψ̄s1LΠq

sψ
s
1L + ψ̄b2RΠu

bψ
b
2R + ψ̄s2RΠu

sψ
s
2R

+ ψ̄b1LMbψ
b
2R + ψ̄s1LMsψ

s
2R, (3.3.35)
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where the expressions for the form factors are calculated using methods outlined in previ-

ous sections,

Πq
b = Πf

1(c1 = cq, c2 = cu, m̃ = mu),

Πq
s = Π̂f

1(c1 = cq, c2 = cu, m̃ = Mu),

Πu
b = Πf

2(c1 = cq, c2 = cu, m̃ = mu),

Πu
s = Π̂f

2(c1 = cq, c2 = cu, m̃ = Mu),

Mb = Mf (c1 = cq, c2 = cu, m̃ = mu),

Ms = M̂f (c1 = cq, c2 = cu, m̃ = Mu). (3.3.36)

Then matching to the 4D action we have,

Π1L
0 = Πq

b , Π1L
1 =Πq

s −Πq
b , Π2R

0 = Πu
b

Π2R
1 = Πu

s −Πu
b , M0 =−Mb, M1 = Mb −Ms. (3.3.37)

Expanding some of the terms in the 4D action, we find

hiψ
bi =

1√
2

h1 − ih2

h3 + ih4

bL
tL

 =
1√
2
HqL

hψ̄bψbh =
1

2
q̄LH

†HqL (3.3.38)

where we use the definitions in eq. (3.3.28). After a little manipulation, and applying the

UV boundary conditions, we then arrive at eq. (3.3.22),

L = q̄L�p

(
Πq1

0 +
s2
h

2
ĤĤ†Πq1

1

)
qL + ūR�p

(
Πu

0 +
s2
h

2
Πu

1

)
uR +

shch√
2
Mu

1 q̄LĤuR + h.c.,

(3.3.39)

and can identify,

Πq1
0 = Πq

b ,

Πq1
1 = Πq

s −Πq
b ,

Πu
0 = Πu

s ,

Πu
1 = 2(Πu

b −Πu
s ),

Mu
1 = Mb −Ms. (3.3.40)

We can read off the mass spectrum for the Y = 2/3 and Y = 1/6 top partners in the limit

of Mu
1 = 0 as

m2/3 = zeros(�pΠ
q1
0 ),

m1/6 = zeros(�pΠ
u
0), (3.3.41)
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We can obtain the mass spectrum of the 7/6 fermion by looking at the mass spectrum of

the ψ′uR fields appearing in eq. (3.3.24). These have right handed source fields with the

right handed components having Dirichlet boundary conditions in the UV. The relevant

form factor is Π2R
0 = Πu

b = Πu
0 + 1

2Πu
1 . Following the steps in section 3.3.1, we find

m7/6 = poles

(
�p

(
Πu

0 +
1

2
Πu

1

))
. (3.3.42)

After EWSB the 2/3 and 1/6 states mix giving a mass spectrum of the form,

zeros

(
p2

(
Πq

0 +
s2
h

2
Πq

1

)(
Πu

0 +
s2
h

2
Πu

1

)
− shch√

2h
Mu

1

)
, (3.3.43)

which will contain the top partner mass as its first zero. We have discussed previously

that the SO(5) symmetry is restored in the mu → 1/Mu limit. This is seen from the fact

that the form factors multiplying sh or ch terms in the fermion action go to zero in this

limit. But there is also another special limit, one can easily check that in the limit where

mu → −1/Mu the Π1 form factors vanish, whereas the Mu
1 form factor survives.

3.4 Higgs potential and EWSB in the MCHM5

In the previous sections we have demonstrated how to construct an explicit formulation of

form factors in a low energy Minimal Composite Higgs Model using holographic techniques

in a warped extra dimension. This low energy effective theory contains, at tree level, all the

SM fields coupled to a Higgs doublet, which, due to its Goldstone nature has no potential

at tree-level. We now need examine the one-loop contributions to the Higgs potential

from the SM fields. In doing so we will neglect contributions from hypercharge and light

fermions, thus the effective action we work with can be written as

L = (PT )µν
1

g2
5

(
Π0 +

s2
h

4
Π1

)
LaµL

a
ν + q̄L�p

(
Πq1

0 +
s2
h

2
ĤĤ†Πq1

1

)
qL

+ ūR�p

(
Πu

0 +
s2
h

2
Πu

1

)
uR +

shch√
2
Mu

1 q̄LĤuR + h.c., (3.4.1)

where the form factors have been calculated holographically in previous sections. We

intend to study the features of EWSB in this model, i.e. how the Higgs mass and top

partner masses are correlated with each other and with parameters in the 5D model. It

is generally found that when one or both of the multiplets has a large composite mixing,

there will be relatively light fermionic states in the model. This large compositeness also

generally implies a large gap in the masses of the lightest (1/6), (2/3) and (7/6) top

partners. By varying the 5D parameters of the model we want to investigate how we can
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alter the spectrum of top partners we expect to observe. And just to summarise, from the

5D description of the model we have six parameters,

MKK ln Ω cq cu mu Mu. (3.4.2)

We can use three observables to fit to v, mh and mt, leaving us with three free parameters.

Here we will demonstrate the freedom that these parameters give in the top sector. In

particular, there are three aspects we wish to study,

• How the 5D parameters are related to the top partner masses;

• How the top partner masses are related to sh, and;

• How much 5D contributions alter the top Yukawa deviation expected from 4D com-

posite Higgs models.

3.4.1 The Higgs potential

From the effective action for the gauge fields and the top quark it is a simple exercise to

write down the Coleman-Weinberg expression for the one-loop Higgs potential. After a

Wick rotation we arrive at the following field-dependent potential,

V (h) =

∫
d4pE
(2π)4

(
3

2
ln

[
1 +

3

2

Π1

Π0

]
− 6 ln

[(
1 +

s2
h

2

Πq
1

Πq
0

)(
1 +

s2
h

2

Πu
1

Πu
0

)
+
s2
hc

2
h

2

(Mu
1 )2

p2
EΠq

0Πu
0

])
.

(3.4.3)

Expanding these logs, it is found that the potential has the following form,

V (h) ' (αG + αF )s2
h − βF s2

hc
2
h (3.4.4)

where the F and G subscripts refer to gauge and fermion contributions. Notice that

without the fermion contribution one cannot achieve EWSB at all. Minimising this we find

that the Higgs potential has a non-trivial ground state when βF > 0 and βF > |αF +αG|,

situated at

s2
h =

1

2
− αG + αF

2βF
. (3.4.5)

Taking the second derivative of V (h) we find

m2
H =

8βF
f2
π

s2
hc

2
h. (3.4.6)

After EWSB it is found that the mass of the top is given by,

m2
t '

s2
hc

2
h

2

(Mu
1 )2

(Πq
0 +

s2h
2 Πq

1)(Πu
0 +

s2h
2 Πu

1)

∣∣∣∣∣
p2=(174GeV)2

. (3.4.7)
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Since the top quark gives by far the most dominant contribution to the potential, we

should expect a lot of correlation between the top partner spectrum and the Higgs mass.

Approximating the form factors by their limiting expressions for vanishing momentum,

we can write this in terms of the 5D parameters as

m2
t '

Muv
√

(c̃q − 2)c̃q(c̃u − 2)c̃u

√
1− v2

f2
π

(1−muMu)

fπL1

√
−(c̃q − 2)M2

u + c̃uv2(m2
uM

2
u−1)

f2
π

+ c̃u

√
M2
u

(
c̃qm2

u

(
2− v2

f2
π

)
− 2c̃u + 4

)
+

c̃qv2

f2
π

,

(3.4.8)

where we have defined

cu =
c̃u − 1

2
and cq =

1− c̃q
2

, (3.4.9)

such that 0 ≤ c̃q, and c̃u ≤ 2, and the profiles are flat (cq,u = ±1/2) for c̃q,u = 0.

3.4.2 Yukawa couplings in the holographic MCHM5

From the discussion above it is seen that the Yukawa coupling of the top quark in MCHM5

deviates from its Standard Model value. Following the definition of the effective Yukawa

coupling by [112],

y
(0)
ψ '

dm
(0)
ψ

dv
, (3.4.10)

we will be interested in the quantity

κt =
y

(0)
t

y
(0)
t,SM

=
y

(0)
t v

m
(0)
t

. (3.4.11)

The current LHC ATLAS bounds are κt = 0.94±0.21 at 2σ [158]. This bound is expected

to be strengthened to the ten percent level after the current run.

From (3.4.7) we may calculate κt in terms of the 5D form factors. To quartic order in

sh = v/fπ, we have

κt = 1−
s2
h

c2
h

− s2
h

(
Πq

1

2Πq
0

+
Πu

1

2Πu
0

)
+ s4

h

(
(Πq

1)2

4(Πq
0)2

+
(Πu

1)2

4(Πu
0)2

)
+O

(
s5
h

)
. (3.4.12)

As by definition, the Standard Model result (κt = 1) is recovered in the limit sh → 0.

Also, as we have noted above, if the IR brane masses are related as Mu = −1/mu, the

fermion form factors vanish (Πq
1 = Πu

1 = 0). In this case the BSM Yukawa corrections are

universal and equal to −s2
h/c

2
h (to all orders in sh). From (3.4.8), in terms of the fermion

profiles we have,

y
(0)
ψ v

m
(0)
ψ

= 1−
s2
h

c2
h

− s2
h

((
m2
uM

2
u − 1

) (
M2
u

(
c̃q
(
(2− c̃q)− 2c̃um

2
u

)
− 2(2− c̃u)c̃u

)
+ c̃q c̃u

)
2M2

u (−c̃qm2
u − (2− c̃u)) ((2− c̃q)M2

u + c̃u)

)
+O

(
s4
h

)
.

(3.4.13)
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In section 3.5.2 we will study how these additional contributions proportional to
(
m2
uM

2
u − 1

)
can play a role in alleviating tensions with bounds from the LHC.

3.5 Top sector in the holographic MCHM5

In the previous sections we described the set-up of the holographic MCHM5 in some detail,

now we make use of this work and look at two different aspects of the top sector physics

in the model. First, we look at the top partners spectrums predicted by the model once

we require that it gives the correct Higgs mass, top mass, and Higgs vev. We then move

on to look at corrections to the top Yukawa coupling in this model and specifically look

at the effects the IR mixing parameters have on this quantity.

3.5.1 Top partners and a low UV scale

Taking the values of sh and ch at the minimum of V (h), we can re-write the Higgs mass

term from eq. (3.4.6) as

m2
H =

2

f2
π

β2 − α2

β
. (3.5.1)

The α and β terms are of dimension four and we can expect them to be ∼ M4
KK . Thus

to obtain a light Higgs we require a degree of cancellation among the terms in the Higgs

potential. A similar cancellation is also required to obtain a light vacuum expectation

value. Due to the required cancellation among these terms, the precise value of sh alone

is only a crude estimate of the fine-tuning of the model.

It has been shown that if MKK ∼ 1 TeV, and fπ ∼ 500 GeV, one requires the ξu

multiplet to have a large composite mixing in order to get the correct degree of cancellation

in α and β, and thus obtain the correct values of mH , mt,pole and v [84]. This implies

that light top partners are expected in models with a large mass gap among the different

charged states. Similar results have been observed in the 4D realisations, however in these

cases there is more freedom with the model and light top partners can be avoided more

easily. Currently, the prediction of light top partners from holographic models is in tension

with observations at the LHC.

The obvious way to avoid these constraints is to push up MKK , but in doing one

severely increases the fine-tuning of the model and it becomes “un-natural”. There have

been several attempts at alleviating the need for light top partners without increasing

the fine-tuning, in both the purely 4D and the holographic picture. An example of the

former is [66, 127], in which the authors show that by embedding the third generation in
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different representations of SO(5), the structure of the Higgs mass term can be altered.

For particular cases a light Higgs could be obtained with top partners ∼ 1 TeV in this

way. The authors point out that to achieve a light Higgs with moderate fine-tuning, it

is preferred to have mT /fπ ∼ 1, where mT is the scale of the top partner masses. To

highlight an example of a holographic approach, in [124] the realisation of the model

includes leptonic contributions to the Higgs potential, which allow the authors to show

that a light Higgs can be achieved while having top partners ∼ 1 TeV, with only moderate

fine-tuning.

In this work we wish to investigate an alternative method of reducing the need for light

top partners in the holographic realisation of the model. Moving the top zero mode wave

functions away from the IR brane increases the mass of the top partners, but simultane-

ously results in an increase in the Higgs mass. However, by lowering the UV scale (i.e.

lowering ln (Ω)) we increase fπ and suppress the Higgs mass. Using this mechanism we can

push the top zero mode wave functions further from the IR, pushing up the top partner

masses, while keeping the Higgs mass at the observed value. As discussed in section 3.2.4,

in the 4D dual lowering the UV scale corresponds to an increase in the number of colours

“N” of the strongly coupled gauge theory [59,84].

To illustrate this idea we perform a scan in which we fix MKK = 1.1 TeV and vary the

other parameters in the ranges 0.2 < cq < 0.4, −0.4 < cu < 0.4, −2 < muMu < −0.5 and

20 < ln(Ω) < 50. For cq = 0.5 (cu = −0.5) the 5D profile of the left-handed (right-handed)

zero mode will be flat. So the choices of fermion localisations ensure that the composite

mixing for qL is small, whereas the mixing of the tR state is allowed to be large or small.

We find two distinct cases in the results, |mu| < 1.4 and |mu| > 1.4. In figures 3.1 and 3.2

below we show how cu and ln(Ω) are correlated after we fix mt,pole, mH , and v to their

observed values.

Figure 3.1: Correlation between cu and

ln(Ω) when |mu| < 1.4.

Figure 3.2: Correlation between cu and

ln(Ω) when |mu| > 1.4.
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From these plots it is clear that for a large value of ln(Ω) (& 35), a light Higgs requires

the spurious multiplet to have large positive values of cu. However by allowing for smaller

values of ln(Ω) we can have significantly different values for this cu parameter. The effects

of this on the top partner spectrum are shown below in figures 3.3 and 3.4.

Figure 3.3: Correlation between cu and

the top partner masses when |mu| < 1.4.

Here the green points correspond to the top

partner with hypercharge (2/3), the orange

with (1/6), and the blue with (7/6).

Figure 3.4: Correlation between cu and the

top partner masses when |mu| > 1.4. As in

the left panel, the different coloured points

correspond to top partners with different

hypercharge.

If we were to fix ln(Ω) to be > 35, we would be forced to have cu & 0.3. This results

in a distinct top partner spectrum in which the left-handed top partner and exotic top

partners are . 1 TeV while the right-handed top partner is ∼ 2 TeV. However, by lowering

the value of ln(Ω) we can move cu to regions with less composite mixing in which the top

partner spectrum is remarkably different. We can easily have scenarios where all the top

partners have masses & 1 TeV, and where the mass gap among the different charged states

is very small. Note that, in the 4D picture, having ln(Ω) ∼ 37 means having the number

of colours at ∼ 10. Lowering ln(Ω) to ∼ 25 means that N ∼ 15. In the case of figure 3.3,

we can say that the mass gap between the top partners is strongly related to their degree

of compositeness.

Since we fix MKK = 1.1 TeV and fix the vev, varying ln(Ω) is analogous to varying sh.

In figures 3.5 and 3.6 we see the correlation between top partner masses and sh explicitly.
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Figure 3.5: Correlation between sh and the

top partner masses when |mu| < 1.4. As

above, the different coloured points corre-

spond to top partners with different hyper-

charge.

Figure 3.6: Correlation between sh and the

top partner masses when |mu| > 1.4.

From figure 3.5 it appears that reducing the mass gap between the top partners is

strongly correlated with a reduction in sh. However we do not see this behaviour in

figure 3.6. Thus from the above figures we can conclude that, when |mu| . 1.4 we can

have less composite mixing and a smaller sh is correlated with a smaller mass gap among

the top partners, and an increase in the mass of the lightest top partner. Whereas for

|mu| & 1.4, we are forced to have a larger composite mixing, and lowering sh does not

alter the top partner spectrum very much.

Taking the case where |mu| < 1.4, it is useful to plot the masses of the 7/6 partners

against the masses of the 2/3 partners and to look at how sh varies here. From figure 3.7

we see that lower values of sh are not necessarily correlated with a smaller mass gap, but

with heavier 7/6 partners.

81



Figure 3.7: Here we plot the masses of the hypercharge 7/6 multiplet

against the hypercharge 2/3 singlet and show how the value of sh

depends on these masses.

In figures 3.8 and 3.9 we perform similar scans, except we allow MKK to vary. In one

case, we have a very light top partner with a large mass gap, and in the other we have no

light top partners and a small mass gap.

Figure 3.8: cq = 0.4, 0 ≤ −cu ≤ 0.4,

1 ≤ MKK(TeV) ≤ 2 TeV, 20 . ln(Ω) . 30

and mu = −1/Mu. As above, the different

coloured points correspond to top partners

with different hypercharge.

Figure 3.9: cq = 0.2, 0 ≤ cu ≤ 0.4, 1 ≤

MKK(TeV) ≤ 2 TeV, 20 . ln(Ω) . 30 and

mu = −1/Mu.

One would naturally expect that by reducing sh, the mass of the top partners increase.

What we show here is that this is only true in the case that 0 ≤ −cu ≤ 0.4, i.e. when

there is less composite mixing for ξu. When 0 ≤ cu ≤ 0.4, i.e. large composite mixing,

we clearly show that lowering sh does not result in an increase in the mass of the lightest
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state. This is hinted at in figure 3.6, and re-enforced by the data in figure 3.9.

In studying composite Higgs models in 4D it is found that one expects the following

approximate relation to hold,

m2
H ∼

3

16π2

(
v

fπ

)2

m2
T (3.5.2)

where mT is the mass of the top partners. Since we fix v to its SM value, this implies

a linear relation between the Higgs mass and both the top partner masses and the ratio

v/f . In the figures 3.10 and 3.11 test we test the latter relation, finding that this relation

receives O(1) corrections in the dual model.

Figure 3.10: cq = 0.4, 0 ≤ cu ≤ 0.4, 1 ≤MKK(TeV) ≤

2 TeV, 20 . ln(Ω) . 30 and mu = −1/Mu. As above,

the different coloured points correspond to top part-

ners with different hypercharge.

Figure 3.11: cq = 0.2, 0 ≤

−cu ≤ 0.4, 1 ≤ MKK(TeV) ≤ 2

TeV, 20 . ln(Ω) . 30 and mu =

−1/Mu.

It is useful at this point to compare our results to those obtained in explicit 4D realisa-

tions. Although varying ln(Ω) produces results which differ from what is usually expected

in the holographic models, it appears that doing this allows for a better comparison to

the 4D models. In fact, the results we have obtained here, with the mass gap among the

top partners varying, agree quite well with the explicit 4D realisations in [64,69]. In these

works they show that m2
H ∼ ln(m7/6/m2/3), implying that a smaller mass gap results in

a lighter Higgs, which is exactly what we find here.

In [85] it was shown that increasing the scale MKK in this 5D realisation leads to

heavier top partners and lower values of sh, but also a larger fine-tuning. It is now

interesting to ask what effect lowering ln(Ω) has on the fine-tuning in this model, since it

also leads to heavier top partners and lower values of sh, one might expect an increase in
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the fine-tuning. To quantify the fine-tuning in our model, in accordance with what was

done in [85], we use the Barbieri-Giudice parameterisation [159],

∆BG =

√√√√∑
i

(
∂ log s2

h

∂ log ki

)
(3.5.3)

where ki are the input parameters MKK , cu, cq, mu, Mu, and ln(Ω). The ∆BG parameter

measures the sensitivity of s2
h to changes in the input parameters. In figure 3.12 we plot

the values of this parameter for the data we have with |mu| < 1.4 as a function of the 5D

localisation cu and ln(Ω). On the same plots we include the values of 1/s2
h for each point

to show how sh and ∆BG are correlated. Other observables for these data points have

been shown in figures 3.1, 3.3, 3.5, and 3.7.

Figure 3.12: The blue points are the values of ∆BG calculated from eq. (3.5.3), while the

orange points are the values of 1/s2
h for each point.

These plots show us something very interesting, that is, lowering ln(Ω) allows for a

reduced fine-tuning in the Higgs potential and heavier top partners. This result should not

be too surprising since varying ln(Ω) in the 5D models results in changes to the effective

couplings between KK states and the Higgs in the effective theory, and it has been shown

using an explicit 4D realisation in [127] that the fine-tuning in composite Higgs models

depends strongly on these couplings. We can see from the plots that the fine-tuning is

minimised for cu ∼ 0.2 and 25 < ln(Ω) < 30, which is slightly IR localised, and corresponds

to the lightest top partner being just above 1 TeV (7/6 partner), with the next top partner

laying just above 2 TeV (2/3 partner).

3.5.2 The top Yukawa coupling

In this section we study deviations to the top Yukawa coupling and possible future mea-

surements of the Higgs in association with a hard object (vector boson, jet) as a probe for
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the Higgs-top-antitop form factor. First of all, we look at the top Yukawa coupling. We

expect an inverse scaling between Mu and (the negative of) mu. We will take a mildly

more general relation

Mu = − a1

mu
(3.5.4)

with a1 a real constant. In this case the expression simplifies to

y
(0)
ψ v

m
(0)
ψ

= 1−
s2
h

c2
h

− s2
h

(
a2

1 − 1
)( c̃q

2a2
1c̃q + 2(2− c̃u)M2

u

− c̃u
(2− c̃q)M2

u + c̃u

)
+O

(
s4
h

)
(3.5.5)

It is now obvious that the additional Yukawa correction due to 5D effects vanishes for

either a1 = ±1, and for flat profiles. It is also seen that the contribution switches sign for

a2
1 = 1 and for

a2
1 =

1

2
+
M2
u ((2− c̃q)c̃q − 2(2− c̃u)c̃u)

2c̃q c̃u

In other words, in the region

1

2
+
M2
u ((2− c̃q)c̃q − 2(2− c̃u)c̃u)

2c̃q c̃u
< a2

1 < 1

there can be an effective cancelation between the universal contribution and the Yukawa

contribution. We can see this explicitly for two benchmark scenarios, a1 = 0.8 and a1 =

(a) cq = 0.4 (c̃q = 0.2) and a1 = 1.2 (b) cq = 0.4 (c̃q = 0.2) and a1 = 0.8

Figure 3.13: Profile contribution to the Yukawa coupling: It is seen that the contribution

is larger for IR localised fermions, and that the sign is dependent on the sign of (a1 − 1).

The values of Mu are chosen such that the scan results will map between the curves.

1.2. Writing

y
(0)
ψ v

m
(0)
ψ

= 1− s2
h

(
1

c2
h

− x
)

+O
(
s4
h

)
(3.5.6)
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where x is the Yukawa correction (modulo s−2
h ),

x =
(
1− a2

1

)( c̃q
2a2

1c̃q + 2(2− c̃u)M2
u

− c̃u
(2− c̃q)M2

u + c̃u

)
.

We plot this isolated mode contribution for the benchmarks in figure 3.13. Here we see

indeed that the sign of the correction is dependent on the sign of a1 − 1, that is, on

the relation between the brane masses Mu and mu. It is also seen that the correction is

expected to be out of experimental reach for a small departure of a1 = 1. However, the

contribution can be made more sizeable values of a1. For instance, in the case in which

a1 = 1.5, one finds a maximum of x = 0.6 for c̃u ≈ 1.7. We use this large case to plot the

range of imaginable contributions in the κV − κt plane in figure 3.14.

Figure 3.14: Profile contribution to the Yukawa coupling: in terms of the experimental

variables κt and κV . In light and dark green the ATLAS 1σ and 2σ limits from [160].
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Chapter 4

A little KK graviton at 750 GeV?

In December 2015 at the beginning of Run 2 at the LHC there were some exciting hints of

new physics beyond the Standard Model as an excess in the diphoton channel at mγγ ∼ 750

GeV was observed with a cross-section of a few fb above the background [6,7]. The analysis

of further data has revealed that this excess was nothing but a statistical fluctuation, thus

the excess has gone away [8]. Despite this, the work done in attempting to identify the

source of the resonance prompted many interesting investigations into the kinds of new

physics that could give rise to this relatively low mass excess while evading constraints in

other channels. This excess was interpreted as a resonance with σprod(pp→ X)×Br(X →

γγ) ' 5 fb [161–166]. In this chapter we will discuss a model which can reproduce this

signal while remaining within all other stringent constraints set by the data analysed

during the first run of the LHC.

We suppose that this resonance was produced by a composite spin-2 state of a strongly

coupled gauge theory confining at the TeV scale, just like those described in previous chap-

ters. Again, one can try to describe this scenario using five-dimensional (5D) holographic

models, which are proposed to be dual to classes of strongly coupled gauge theories in 4D.

These models naturally give rise to two candidate particles which could have described

the observed diphoton excess, one is the radion (spin-0), and the other is a KK graviton

(spin-2). The radion is related to fluctuations in the size of the extra dimension, i.e. the

distance between the UV and IR branes, while the KK gravitons are heavier excitations

of the fluctuations of the Minkowski components of the metric.

Irrespective of the spin, in RS the resonance is linked to the origin of electroweak

symmetry breaking, and hence the Higgs sector. There has been a fair amount of work

exploring this relation, and the scenario which stands out as most natural is the holographic

composite Higgs. This has been presented in detail in the previous chapter.
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In the current chapter, the final sub-project comprising this thesis, we wish to explore

whether the composite Higgs idea would have been compatible with a spin-2 resonance

with the characteristics of the excess observed diphoton signal. Despite the revelation

that the excess was no more than a statistical fluctuation, the ideas explored here are

interesting in their own right as the question of a light KK graviton in a holographic

composite Higgs scenario has not yet been thoroughly explored in other works. We find

that successful models point to a scenario with a low UV scale in the 5D model, several

orders of magnitude below the Planck scale. In the previous chapter we discussed these

intermediate scales and showed that they also allow for heavier top-partners and reduced

fine-tuning in the Higgs potentials of these holographic composite Higgs scenarios. Note

that while performing this analysis we assume that the radion is heavy enough such that

it does not significantly affect the phenomenology of the KK graviton.

In the section 4.1 we will review some of the work on KK gravitons and how the first

graviton KK mode can be made lighter than the KK spin-1 states. In the section 4.2 we will

discuss the specifics of the model, giving explicit expressions for the couplings of the KK

graviton, the branching fractions to SM particles, and the experimental bounds that our

model must remain within. And finally in section 4.3 we will discuss the phenomenology

of the KK graviton, detailing the parameters in the model and how we can fix a subset of

them to reproduce the diphoton cross-section and the KK graviton mass at 750 GeV. We

show how the branching fractions of the KK graviton to the SM fields change as we lower

the UV scale of the model.

4.1 Warped KK gravitons

Let us start by describing the general properties of warped gravitons in RS. In deriving the

couplings and 5D properties of the KK gravitons we closely follow the work in [167–170].

To begin, let us consider the following 5D action,

S5 =

∫
d4x

∫ L

0
dy
√
|g|M3

5

(
−R5

2
+ 6k2

)
+

(√
|g|M3

5 (kB ±
1

2k
r0,LR4)

) ∣∣∣L
0

(4.1.1)

where the RS metric and its fluctuations can be described by,

ds2 = e−2ky (ηµν + hµν(x, y)) dxµdxν − dy2. (4.1.2)

The co-ordinate y labels the position along the extra dimension, which is bounded by two

3-branes at y = 0 (UV) and y = L (IR). The above action is simply the 5D Einstein-Hilbert

action with a 5D cosmological constant, and on the branes we have additional Ricci-scalar
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terms with localised cosmological constants which we refer to as brane tensions. The

bulk cosmological constant and the brane tensions must be precisely chosen so that the

background metric is that of the RS model.

The quantity k is known as the curvature constant and parametrises the warping in

the bulk of the extra dimension, and M5 is the UV mass scale in the 5D theory. The

hµν(x, y) fluctuation would correspond to the bulk graviton field. Note that we have

neglected fluctuations along the y direction, which would represent the radion dynamics.

The radion is a scalar field which arises as fluctuations along the fifth component of the

extra dimension. In an exact AdS space this radion is exactly massless, a feature related

to the freedom in choosing a length for the extra dimension. If one makes the choice of

size for this extra dimension dynamical, in that it is determined by the minima of some

potential which perturbs the AdS background, then the radion acquires a mass which

is proportional to this perturbation from AdS. The most popular example of this is the

Goldberger-Wise mechanism [10].

One can perform a KK decomposition on the field hµν(x, y) =
∑

n f
g
n(y)hnµν(x), where

each Kaluza-Klein mode hnµν(x) represents a 4D massive graviton of mass mn with a 5D

profile fgn obeying the following eigenvalue equation in the bulk,

∂2
yf

g
n − 4k∂yf

g
n +m2

ne
2kyfgn = 0, (4.1.3)

where the mass mn of the nth KK mode is of the order MKK ≡ ke−kL.

Turning to the boundary terms in eq. (4.1.1), kB is a brane tension, whose effect is

to compensate the negative bulk cosmological constant k. The Ricci scalar terms on the

branes proportional to r0,L imply brane kinetic terms (BKTs) for the graviton modes (and

the radion’s). These BKTs result in modifications to the boundary conditions of the 5D

profiles of on-shell 4D graviton modes,(
k∂yf

g
n + r0m

2
nf

g
n

) ∣∣∣
0

= 0 (4.1.4)(
e−2kLk∂yf

g
n − rLm2

nf
g
n

) ∣∣∣
L

= 0. (4.1.5)

The boundary conditions along with the eigenvalue equation permit a flat massless

graviton zero mode. However, when we lower the UV scale of the model to below the

Planck scale the interaction strength of this graviton will become larger than is observed

in our universe. Thus 4D gravity will not be correctly reproduced by the model. If

one imposes a Dirichlet boundary condition
(
fgn(y)

∣∣∣
brane

= 0
)

for the profiles on either

brane, the graviton zero mode would not be present, leading to an effective theory with

no dynamical 4D gravity. Another option, as discussed in section 3.2.4, is to allow the UV
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BKT for the gravitons to be very large [129]. This will suppress the interaction strength

of the zero mode graviton such that it correctly reproduces 4D gravity, while acting like

a boundary mass term for the KK gravitons. The phenomenology of the KK gravitons

discussed in this chapter is independent of whether we use a Dirichlet UV boundary

condition or have a large UV BKT.

The general solution to eq. (4.1.3) is

fgn =
e2ky

N
1/2
n

(
J2

(
zne

k(y−L)
)

+ αnY2

(
zne

k(y−L)
))

(4.1.6)

where zn = mn
MKK

. The value of αn and mn is fixed by the boundary conditions and Nn

by the normalisation condition. In this work we will consider two cases,

(i) Mixed boundary conditions on the UV and IR branes (Eqs. 4.1.4). Applying the UV

boundary conditions we find

α(i)
n = −J1 (z′n) + r0z

′
nJ2 (z′n)

Y1 (z′n) + r0z′nY2 (z′n)
(4.1.7)

where z′n = mn/k = e−kLzn.

(ii) Dirichlet boundary condition on the UV brane, and a mixed boundary condition on

the IR brane. The UV boundary conditions lead to

α(ii)
n = −J2 (z′n)

Y2 (z′n)
(4.1.8)

Case (i) exhibits a massless graviton, whereas case (ii) does not. Also note that when

mn 6= 0, one can map solutions of case (i) and (ii) by taking the limit of r0 → ∞

as a Dirichlet boundary condition is just a limiting case of mixed boundary conditions.

Therefore, when the 4D modes are on-shell, a large BKT has a similar effect as a localised

mass term for the KK modes.

The values of the masses, mn, are fixed by applying the IR boundary condition. Since

we consider the same IR boundary conditions for both cases, the masses of the lowest

lying modes are approximately the same in both cases. The condition imposed on the IR

boundary is as follows,

J1 (zn)− rLznJ2 (zn) = −α(i)
n (Y1 (zn)− rLznY2 (zn)) , (4.1.9)

where in case (ii) we would set r0 = 0, and there would be additional terms suppressed by

mn/k which one can neglect.

The Ya(x) function diverges at x → 0 hence the terms ∼ Y1 (z′n) dominate. With no

IR BKT, the masses of the lowest lying modes are then approximately given by the zeroes
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of J1 (zn), namely 3.8, 7, 10.2, 13.3 in units of MKK . In contrast, the KK masses of bulk

spin-1 fields are given by the zeroes of J0 (zn), i.e. 2.4, 5.5, 8.7 and so on. This pattern

can be altered with non-zero BKTs for either the graviton or the spin-1 fields, but here

for simplicity we only consider the BKT for the graviton.

For large values of rL, one can expand the Bessel functions in the IR boundary condition

and obtain the following approximate solution for the lightest massive mode,

mg '
2MKK√

rL
. (4.1.10)

Thus for increasing values of rL, one can suppress the lightest spin-2 mode and make it

lighter than the spin-1 modes.

To completely fix the integration constants in the 5D profile we impose the normali-

sation of the graviton kinetic terms,

M3
5

k

∫ L

0
dy e−2kyfgnf

g
m (k + r0δ(y) + rLδ(y − L)) = 4δmn. (4.1.11)

We find that in case (i) the normalised zero mode solution is f0 = 2/MP where,

M2
Pl =

M3
5

k

(
1− e−2kL + r0 + e−2kLrL

)
(4.1.12)

is the effective 4D Planck mass and determines the scale of the 4D gravity. Remember

that in case (ii), there is no graviton zero mode, hence no meaning of a scale of gravity in

the effective theory.

Before continuing, it is worth discussing a possible issue which arises in this scenario.

Having such a large BKT on the IR brane for the graviton induces a negative kinetic term

for the radion, revealing an instability in the model. This has also been discussed in [170].

However, as recently pointed out in [171], this feature can be avoided if one allows for a

particular form of gravity BKT which breaks 5D Lorentz invariance while preserving the

4D symmetry. In our work we will assume such a mechanism is in place to prevent the

appearance of the ghost-like radion state.

In the following sections we will study the phenomenology of a light KK graviton in

the Little Randall-Sundrum model, with the focus of incorporating this resonance within

the composite Higgs scenario without violating experimental constraints arising from LHC

searches or electroweak precision measurements. In the holographic interpretation of such

a scenario one would expect a 4D strongly interacting gauge theory which confines at the

TeV scale, producing the Higgs and a 750 GeV spin-2 state as composites.
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4.2 Production and decay of the little graviton

In the following, we consider an extra-dimensional set-up with all the SM fields propagating

in the bulk, along with an enlarged bulk custodial gauge symmetry SU(2)L × SU(2)R ×

U(1)X . The SM gauge fields exhibit flat zero mode profiles, whereas any non-SM gauge

fields are given Dirichlet boundary conditions on the UV brane and thus do not have

zero modes. On the other hand, massless (before electroweak symmetry breaking) SM

fermions and Higgs can be localised anywhere in the 5D bulk using 5D mass parameters.

The profiles of these fields can be written as

fa =

√
2ak

1− e−2akL
e−aky (4.2.1)

where the kinetic terms of these fields are normalised to 1, i.e.
∫ L

0 dy f2
a = 1, and a = (ah,

aq, atr, abr) are the 5D mass/localisation parameters for the Higgs and the third generation

quarks. We assume that the lighter fermions are localised in the UV and for the bulk gauge

fields we simply take a = 0.

A special case is given by ah = −1, i.e. the couplings describe those of a holographic

composite Higgs model. In this class of models, one requires an IR localised right-handed

top quark in order to trigger EWSB, corresponding to atr < 0. Note that when the

Higgs and the top are localised in the IR, there are bounds from EWPOs and the direct

detection of spin-1 KK modes that we must take into account [3,25,86,172,173]. To avoid

these constraints we assume that MKK ≥ 1 TeV, implying that the lightest spin-1 states

will be & 2.5 TeV. Then, fixing the lightest KK graviton mass to 750 GeV, implies that

rL ≥ 64/9 ' 7.1.

The graviton interactions to SM particles are given by dimension-five operators which

we will normalize to the electroweak scale v for convenience. The specific expressions

of these operators can be found elsewhere in the literature, e.g. [174]. One can then

compute the partial decay widths of the graviton, which we will denote by Xµν , to the
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SM fields [170,174],

Γ(X → gg) =
c2
gm

3
X

10πv2
, Γ(X → γγ) =

c2
γγm

3
X

80πv2

Γ(X → hh) =
c2
hm

3
X

960πv2
(1− 4rh)5/2

Γ(X → ff̄) =
Nc(c

2
fl + c2

fr)m
3
X

320πv2
(1− 4rf )3/2(1 + 8rf/3)

Γ(X → ZZ) =
m3
X

80πv2

√
1− 4rZ

(
c2
ZZ +

c2
h

12
+
rZ
3

(
3c2
h − 20chcZZ − 9c2

ZZ

)
+2

r2
Z

3

(
7c2
h + 10chcZZ + 9c2

ZZ

))
Γ(X →WW ) =

m3
X

40πv2

√
1− 4rW

(
c2
W +

c2
h

12
+
rW
3

(
3c2
h − 20chcW − 9c2

W

)
+2

r2
W

3

(
7c2
h + 10chcW + 9c2

W

))
Γ(X → Zγ) =

c2
Zγm

3
X

40πv2
(1− rZ)3

(
1 +

rZ
2

+
r2
Z

6

)
(4.2.2)

where cγγ = s2
θcW + c2

θcB, cZZ = c2
θcW + s2

θcB, cZγ = sθcθ(cW − cB), ri = (mi/mX)2,

and mX = 750 GeV is the lightest KK graviton mass. The precise values of the Wilson

coefficients, ci, depend on the particular model, i.e. they depend on k, M5, MKK , the

localisation of the bulk field, and on the graviton BKTs. To be precise, they are given by

the overlap integral of the KK graviton profile and the profile of the particular SM field,

ca =
v

2

∫ L

0
f2
af

g
1 dy. (4.2.3)

The value of these constants are approximately independent of whether one imposes a

Neumann or Dirichlet boundary condition on the UV brane for the graviton. The value of

ca for massless gauge fields is a special case, for flat 5D profiles the integral in eq. (4.2.3)

approaches a limit where ca ∼ 1
kL . Therefore, varying kL could significantly alter the

production of the KK graviton via gluon fusion and its decay in the diphoton channel.

Assuming that gluon fusion is the dominant production mechanism, we can approxi-

mate the production cross-section of the KK graviton with the expression [170,175–178],

σprod(gg → X) ' (1.2× 104)c2
g pb. (4.2.4)

In order to get a cross-section of x̃ fb for the X → γγ final state, one would require,

c2
gc

2
γγ

mX

Γtot
' (2.25× 10−7)x̃, (4.2.5)

where Γtot is the total width of the KK graviton. In this scenario one only needs to look

at Γ(X → ff)/Γ(X → γγ) (with ff some final state) to determine whether or not these
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predictions are in contradiction with existing bounds from Run 1 and 2 LHC data. The

current upper bounds on these ratios are [179–184],

ZZ WW Zγ hh tt̄

Rff = Γ(X→ff)
Γ(X→γγ) 10 40 6 40 400

.

Table 4.1

Since the transverse components of the gauge fields are flat, one automatically obtains

that, cg = cγγ = cW = cB. This can only be altered if we include BKTs for the gauge

fields [170], however one must be careful as these can alter the tree-level corrections to the

electroweak precision observables.

4.3 A little graviton and a composite Higgs

We are primarily interested in the scenarios in which the Higgs arises as the fifth compo-

nent of a 5D gauge field. In the holographic interpretation of this the Higgs would be a

composite pseudo Goldstone boson of a strongly interacting gauge sector, the same sector

which gives rise to a spin-2 composite state with a mass of 750 GeV. In this case the Higgs

localisation is fixed to ah = −1, and an IR localised right-handed top is required in order

to achieve electroweak symmetry breaking 1. In [170] it was shown that with k ∼ 1016

GeV, this scenario could not be realized with only the graviton field experiencing BKTs.

Here we investigate lowering the UV scale, without introducing any additional brane terms

which could lead to issues with EWPOs.

To ensure we have the lightest KK graviton at 750 GeV, we trade the IR BKT for the

resonance mass and the scale MKK

rL =

(
2MKK

mX

)2

. (4.3.1)

We can then approximate expression for ca for the flat 5D profiles as

cflat '
(
k

M5

)3/2 mXv

M2
KK

1

8kL
, (4.3.2)

which shows how lowering the KK scale or the ratio k/M5 leads to a global increase in the

couplings, whereas lowering kL only significantly affects couplings to flat profiles such as

the photon and the gluon.

1Although one could consider non-minimal composite Higgs scenarios where electroweak symmetry

breaking does not rely primarily on the top, e.g. see-saw composite Higgs [126,185].
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The model parameters are therefore the 5D localisations, MKK , rL, Ω = ekL, and

k/M5, such that M5Ω−1 ∼ kΩ−1 ∼ O (TeV). We fix MKK = 1.2 TeV which leads to a

safe value for the spin-1 resonance mass (mW ′,Z′

KK ∼ 2.9 TeV). As mentioned before, we use

rL to set the lightest KK graviton mass. The value of k/M5 modulates the signal strength

σ(pp→ X → γγ), as the diphoton cross-section is ∼ 1/Γtot ∼ (M5/k)3.

At the end of the day, we only have Ω and the 5D localisations to fit to the data. In

each scenario we will fix the 5D localisations, vary Ω incrementally, and correct k/M5 each

time in order to keep the diphoton cross-section constant, which we will set to a value of

5 fb as a ballpark figure. We describe some of the different scenarios below.

• Composite Higgs scenario with IR top (ah = −1, aql = 0, atr = −0.3)

With a large UV scale the model is ruled out in the tt̄, hh, WW and ZZ channels.

However at k ∼ 108 TeV the tt̄ channel is within current constraints, whereas the hh

cross-section is still too large until ∼ 108 TeV. The most problematic are the WW

and ZZ channels, which are not within current constraints until k ∼M5 ∼ 104 and

103 TeV, respectively. Thus the composite Higgs models are consistent with this

scenario when the UV scale is at ∼ 1000 TeV.

• Flat Higgs and top (ah = 0, aql = 0, atr = 0)

This scenario is within constraints at k ∼ MPl, and the branching ratios do not

change substantially as one lowers the UV scale, while keeping the diphoton rate

fixed. Thus this scenario is a consistent model able to incorporate 4D gravity, how-

ever it is not a composite Higgs scenario since the Higgs profile is flat.

• Composite Higgs scenario with very IR top (ah = −1, aql = 0, atr = −3)

This time the tt̄ channel is only within constraints when k ∼ 104 TeV, however the

WW and ZZ channels are still the most constraining. This scenario is still within

the experimental constraints at k ∼ M5 ∼ 1000 TeV. The very IR localised top is

not excluded by direct searches due to the large tt̄ background in this mass region.

One consequence of a top further in the IR is that one can obtain a larger total

width than in the previous cases.

The results for the first scenario are presented in figure 4.1, and the numerical results

from the composite Higgs scenarios can be seen explicitly in tables 4.2 and 4.3. Note that

RWW , RZZ and Rhh do not change between the two tables, since their 5D localisations

are kept constant. It is also important to note that the limiting factor, or the reason

for requiring k ∼ 1000 TeV, is solely due to the Higgs localisation. Not only does an
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IR Higgs increase the coupling to the Higgs, but it also increases the couplings to the

longitudinal gauge bosons, and these channels are tightly constrained by experimental

data. When one lowers the UV scale, the couplings of the KK graviton to the transverse

components increases, reducing the size of the WW and ZZ branching ratios relative to

the γγ branching ratio. Although we have kept MKK fixed in these tables, we checked

that varying this parameter does not change the ratios Rff , as all the decay widths are

equally suppressed by 1/M2
KK . Once we fix k/M5 to reproduce the diphoton cross-section,

a shift in MKK has no effect on the total width or the production cross-section either.

From the data, we can also see that when the UV scale is low the model not only produces

acceptable decay rates in all channels, but it also has an acceptable value for the ratio

k/M5. This ratio is constrained by the assumption that higher derivative gravity terms in

the bulk can be neglected, and an acceptable bound is taken to be k/M5 . 2 [168]. In [170]

where a BKT for the hypercharge field was used instead of a low UV scale, much larger

values of k/M5 were required. The reason for this is that as we lower the UV scale, we

increase the coupling to photons and gluons, thus we also increase the production cross-

section. With a hypercharge BKT one can increase the photon coupling but additional

gluon BKTs would be required to increase the production cross-section, and in the absence

of these additional gluon BKTs one requires a large value of k/M5.

Figure 4.1: In this plot we show the ratio of different decay rates of the 750 GeV KK

graviton vs the bound on this rate from table 4.1. The 5D parameters are those from the

‘Composite Higgs scenario with IR top’, thus corresponding to the data in table 4.2. The

shaded region indicates areas of the parameter space in which decays into an individual

channel are within the bounds.
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Table 4.2: Composite Higgs scenario with IR top, (ah = −1, aql = 0, atr = −0.3). The

k/M5 ratio is altered at each iteration to keep σ(pp→ X → γγ) = 5 fb.

log(Ω) k/M5 σprod(pp→ X) [pb] RWW RZZ Rtt̄ Rhh Γtot

2 1.19 0.25 9.8 5.1 23 2.3 0.03

3 1.94 0.47 19 9.9 51 5.2 0.1

4 2.78 0.78 32 16 90 9.3 0.28

5 3.70 1.18 48 25 140 15 0.65

6 4.69 1.67 68 35 201 21 1.3

7 5.74 2.25 91 47 274 29 2.3

8 6.83 2.91 118 61 357 37 3.9

9 7.98 3.66 148 76 452 47 6.2

10 9.17 4.50 182 94 558 58 9.4

11 10.40 5.43 219 113 675 70 14

12 11.67 6.45 259 134 803 84 19

13 12.98 7.55 304 156 942 98 26

14 14.32 8.74 351 181 1092 114 35

15 15.69 10.02 403 207 1254 131 46
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Table 4.3: Composite Higgs scenario with very IR top, (ah = −1, aql = 0, atr = −3). The

k/M5 ratio is altered at each iteration to keep σ(pp→ X → γγ) = 5 fb.

log(Ω) k/M5 σprod(pp→ X) [pb] RWW RZZ Rtt̄ Rhh Γtot

2 1.50 0.50 9.8 5.1 72 2.3 0.11

3 2.51 1.03 19 9.9 162 5.2 0.49

4 3.65 1.77 32 16 288 9.3 1.5

5 4.90 2.73 48 25 449 15 3.4

6 6.22 3.90 68 35 647 21 7.0

7 7.62 5.28 91 47 880 29 13

8 9.10 6.87 118 61 1149 37 22

9 10.64 8.68 148 76 1454 47 35

10 12.24 10.69 182 94 1795 58 53

11 13.89 12.92 219 113 2172 70 77

12 15.56 15.36 259 134 2585 84 109

13 17.34 18.01 304 156 3034 98 150

14 19.14 20.87 351 181 3519 114 201

15 20.98 23.95 403 207 4039 131 265
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Chapter 5

Conclusions

In the first part of this thesis we have revisited the scenario of a bulk Higgs in warped

extra dimensions, without assuming deviations from AdS space or imposing a custodial

symmetry. Our aim was to investigate the robustness of bounds on the KK scale from

electroweak observables and modifications of SM Yukawa couplings. We then discuss

prospects for observing new physics at future collider experiments.

Performing a standard electroweak precision analysis, we confirm that a bulk Higgs

rather than a brane Higgs brings down the limit on the KK scale, which in this chapter

we take to be mass of the lightest vector resonance, from about 15 TeV to about 8 TeV. A

bulk Higgs reduces mixing between KK gauge boson excitations and the SM particles after

electroweak symmetry breaking. The Higgs, being a bulk field, also has KK excitiations

which contribute to gauge boson masses etc., but their impact is unobservable for the fore-

seeable future. However, deviations from the SM values of the HZZ and HWW couplings

at the sub-percent level will be induced by KK gauge boson mixing. These effects will be

very difficult to see at ILC, but TLEP with a predicted sensitivity of better than 0.2%

could detect them.

We then include into the analysis higher dimensional operators which parametrize

unknown contributions from a UV completion of our setup. We find that a dimension-8

operator in 5D can have an non-negligible impact on the T parameter. The bound on the

KK scale of 8 TeV, derived previously is therefore not robust. We therefore argue that

this unknown contribution could bring the KK scale down to at least about 5 TeV. The

LHC run at 13 TeV could then discover KK resonances in the simple scenario presented

here.

Finally, we investigate whether additional bounds on the KK scale can be derived

from deviations in fermion Yukawa couplings, in particular for the top quark. We find
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that even with a KK scale of only 5 TeV, the enhancements in the top Yukawa coupling can

be larger than 10%. However there are areas of parameter space where this enhancement

can be much smaller and hence this will not generally lead to tension with observed

Higgs production at current experiments. Such a tension would require large values of the

associated 5D Yukawa coupling. In the future it will be interesting to look for Yukawa

deviations for the top quark at the high-luminosity LHC. The enhancements in the bottom

and tau Yukawa couplings can also be as large as a few percent, making this detectable

at ILC and TLEP. Furthermore, top Yukawa coupling misalignment should be taken into

account in models where top loops induce electroweak symmetry breaking, e.g. warped

geometry realisations of composite Higgs models [16–18].

As is well known, models of the type presented here often generate large flavour and

CP-violation from KK exchange. These may induce bounds on the KK scale which are

much more stringent than the ones we have considered. However, one should bare in mind

that these flavour bounds depend on how the fermion mass pattern is generated, and can

be reduced or almost avoided by flavour symmetries.

So we conclude that, even without an enlarged gauge symmetry, a bulk Higgs in pure

AdS space opens the possibility to discover KK resonances during run 2 of the LHC.

In the second part of the thesis we addressed the question of whether or not a light

Higgs implies light top partners in the Minimal Composite Higgs Model (MCHM5). The

experimental constraints on the detection of top partners can be avoided by increasing

the scale MKK , but this is at the cost of a severe fine-tuning. Attempts at realising

the MCHM5 model without light top partners and large fine-tuning have been primarily

focussed on the fermion sector: 4D approaches include a different embedding of the third

generation of quarks in representations of SO(5); holographic realisations include leptonic

contributions to the Higgs potential. Here we propose an alternative method to alleviate

the tension: we show that if the degree of composite mixing in the multiplets is reduced,

the mass of the lightest top parters can be increased, without increasing the compositeness

scale MKK . To maintain a light Higgs, the cutoff in the 5D model (measured by ln Ω)

is reduced. Interestingly, we find that the Higgs mass is proportional to the mass gap

between the 7/6 and 2/3 charged top partners, in agreement with what is found in 4D

explicit models [64,69].

Since heavier top partners might naively lead one to expect more fine-tuning, we

calculated this and found that as we lower ln(Ω) the minimum value of the Barbieri-

Giudici parameter tends to decrease. This is particularly nice, since we now know that
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increasing MKK and lowering ln(Ω) both allow for heavier top partners and lower values of

sh, however only lowering ln(Ω) does not lead to an increased fine-tuning. This result also

correlates well with the 4D explicit realisations, where the Higgs mass and the fine-tuning

are proportional to the coupling between the top partners and the Higgs, a quantity which

is controlled by ln(Ω) in the holographic models. We find that, with spin-1 states at ∼ 2.5

TeV and the left-handed top localised away from the IR, the fine-tuning is minimised when

the lightest top partner is above 1 TeV.

With an eye to the next LHC run we discuss the phenomenology of this version of

the MCHM5. In anticipation of improved LHC constraints on the lightest top Yukawa

coupling, we show that a deviation from the relation between IR brane masses mu =

−1/Mu can reduce or enhance the composite Higgs prediction for yt as derived from

symmetry arguments alone. The deviation from the Standard Model is captured in the

parameters κV and κT , which allow for a comparison with the ATLAS data. In particular,

it is seen that relaxing the brane mass relation may relieve the tension slightly by increasing

the predicted coupling.

We further discussed the expected phenomenology of the top partner states in future

searches. Testing the relation between the Higgs and top partner masses as a function

of sh, we find that the masses scale approximately linearly, as expected, with a slight

deviation for the (2/3) exotic state.

In the last part of this thesis we studied a possible explanation of the infamous 750

GeV diphoton resonance (now shown to be a statistical fluctuation) within the framework

of composite Higgs models. We studied the possibility that this excess could have been

produced by a composite spin-2 resonance, where the bound state arises from the same

strong dynamics that produces the composite Higgs. To study this scenario we used

the same 5D techniques developed in the previous chapters. We found that the most

economical way to successfully explain this excess, i.e. keeping effects of vector resonances

and their localized kinetic terms under control, is to lower the UV scale of the 5D theory.

In this framework (Little RS, intermediate scales), we focused on the scenario in which

the 5D model describes a composite Higgs setup in 4D, and showed that the UV scale

is required to be ∼ O(1000 TeV) to explain why the resonance would show up in the

diphoton channel before it did in the WW and ZZ channels. Ultimately, the reason

for requiring such a low UV scale is the Higgs profile localisation near the IR, which

increases the KK graviton couplings to the Higgs and to the longitudinal components of

the gauge bosons. Lowering the UV scale leads to an increase in the graviton coupling to
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the transverse components of the gauge fields. We would like to note that although we

have only considered the KK graviton phenomenology in this work, similar effects should

be present in the phenomenology of the radion in these set-ups [186]. In the end we

have shown that the once significant diphoton excess is compatible with a model in which

strong dynamics at the TeV scale gives rise to the Higgs and a 750 GeV spin-2 state as

composites of the underlying gauge theory.

Lastly we would like to comment on the predictions made by this model. By counting

free parameters we see that, at least in the composite Higgs scenario, we can only vary Ω,

MKK , and the top localisation. Ω is strongly constrained by the Run1 and 2 limits from

searches of heavy resonances to WW and ZZ. The top localisation does not affect RWW ,

RZZ or Rhh, and shifting MKK does not affect any of the Rff ratios. Thus these Rff

values are definite predictions of the model. Some ways that these predictions might be

affected are if the bulk SM gauge fields have non-zero BKTs, or if there are deformations to

the AdS background geometry such as in [78]. Despite the diminished significance of this

excess after the analysis of more data, the model building work done here demonstrates

that these 5D models can still produce light new physics which may have yet evaded

searches at the LHC, while remaining within other constraints set by LEP.

Through the work in this thesis we have attempted to illuminate some interesting

scenarios for models with warped extra dimensions and composite Higgs BSM sectors.

The focus of these studies has been on electroweak precision observables in non-custodial

warped models, corrections to the top Yukawa coupling in warped models and holographic

composite Higgs models, and the effect of intermediate scales on holographic composite

Higgs models, and KK graviton phenomenology. We believe that the most important

results from this work are that holographic composite Higgs models with a lower UV

cutoff can significantly alleviate tension with top partner bounds from the LHC, while at

the same time reduce the couplings of light new physics to SM particles.

102



.1 SO(5) generators

The basis of SO(5) generators we use is shown below,

T 1
L = − i

2



0 0 0 1 0

0 0 1 0 0

0 −1 0 0 0

−1 0 0 0 0

0 0 0 0 0


, T 2

L = − i
2



0 0 −1 0 0

0 0 0 1 0

1 0 0 0 0

0 −1 0 0 0

0 0 0 0 0


,

T 3
L = − i

2



0 1 0 0 0

−1 0 0 0 0

0 0 0 1 0

0 0 −1 0 0

0 0 0 0 0


, T 1

R = − i
2



0 0 0 −1 0

0 0 1 0 0

0 −1 0 0 0

1 0 0 0 0

0 0 0 0 0


,

T 2
R = − i

2



0 0 −1 0 0

0 0 0 −1 0

1 0 0 0 0

0 1 0 0 0

0 0 0 0 0


, T 3

R = − i
2



0 1 0 0 0

−1 0 0 0 0

0 0 0 −1 0

0 0 1 0 0

0 0 0 0 0



T 1̂ = − i√
2



0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

−1 0 0 0 0


, T 2̂ = − i√

2



0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 −1 0 0 0


,

T 3̂ = − i√
2



0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 −1 0 0


, T 4̂ = − i√

2



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 −1 0


. (.1.1)
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