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Summary 
 

Heat shock protein 90 (HSP90) is an ATP-dependent molecular chaperone that 

plays critical roles in regulating the folding, stabilization, post-translational 

modification, activation and maturation of its various client proteins, of which many are 

oncoproteins. Impairing the function of HSP90 by the inhibition of its ATPase cycle 

with inhibitors such as AUY922 promotes the ubiquitylation and proteasomal 

degradation of its client proteins. However, we currently do not fully understand the 

mechanism for ATPase-inhibited triggered degradation of client proteins, and which E3 

ligase systems are involved.  

Although previous studies revealed a number of E3 ligases including CHIP and 

CUL5 as potentially E3 ligases involved in the degradation of HSP90-dependent client 

protein, these have often used cancer cells that may have dysregulated systems. 

Additionally, other components of such E3 ligase systems have not been well 

characterised.  

Using a Reverse Transfection Format (RTF) siRNA screen system we identified 



	
  

two E3 ligases that are involved in two independent pathways for mediating 

proteasomal degradation of the HSP90-dependent protein kinase CRAF in HEK293 

cells. The elongin BC-CUL5-SOCS-box protein (ECS) complex operates one pathway 

for the degradation of CRAF, while a novel but poorly described HECTD3 from the 

HECT-family was identified as the main E3 ligase for degrading CRAF following the 

pharmaceutical inhibition of HSP90. We revealed a potential complexes consisting of 

CRAF, HSP90 and HECTD3, which may contribute towards identifying the pathway 

for the degrading of such HSP90-dependent client protein kinases. We were also able to 

show that depriving access of CRAF to CDC37 and therefore HSP90 resulted in an 

HECTD3 and CUL5 independent degradation pathway. These studies form the basis of 

establishing the complex network of pathways that help to regulate CRAF protein levels. 
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1.1: Heat shock protein 90  

1.1.1: A brief overview 

Proteins that protect against thermal stress, or other such proteotoxic stresses, are called 

heat shock proteins (HSPs) and various human HSP families have been classified 

including HSP100, HSP90, HSP70, HSP60, HSP40, and HSP10. HSP90 is a 90-kDa 

chaperone protein that has the ability to assist folding, stabilization, post-translational 

modification, maturation and activation of vast array of proteins, otherwise known as 

client proteins. HSP90 is found in many multiprotein complexes, and works together 

with co-chaperones, but its role in the activation and maturation of client proteins is 

very poorly understood (Wiech et al., 1992; Dey et al., 1996; Chang et al., 1997; 

Prodromou et al., 1997b; Panaretou et al., 1998; Prodromou et al., 1999; Lee et al., 2002; 

Mayer, Nikolay and Bukau, 2002; Pearl and Prodromou, 2001; Siligardi et al., 2002; 

Meyer et al., 2004; Ali et al., 2006;). HSP90 is an ATP-dependent chaperone 

(Prodromou et al., 1997a), and the binding and hydrolysis of ATP drives a chaperone 

cycle that involves the dimerization of the N-terminal domains of HSP90 (Prodromou et 

al., 1997b; Panaretou et al., 1998). The ATPase activity of HSP90 has shown to be an 

essential property of this chaperone (Obermann et al., 1998; Panaretou et al., 1998; 

Young and Hartl, 2000).  

Many of the HSP90 client-proteins are involved in cell signaling for growth, 

proliferation and migration; thus these signal transduction pathways rely on this 

remarkable chaperone. It is thus not surprising that HSP90 is found in the cytosol, 

nucleus and various organelles, as well as on the cell surface, suggesting that it also has 

possible extracellular roles (Trepel et al, 2010; Sidera et al, 2008; Eustace et al, 2004). 
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Client proteins include kinases; steroid hormone receptors, transcription factors and a 

list of clients can be found at https://www.picard.ch/downloads/HSP90interactors.pdf. 

In order to understand the diverse mechanistic roles that HSP90 plays, it is becoming 

apparent that a detailed structural knowledge of various HSP90 complexes is required. 

Because of HSP90’s involvement in the activation of key signaling proteins, HSP90 has 

become a major anti-cancer target (Trepel et al., 2010). Inhibition, by targeting the N-

terminal ATP binding site results in the ubiquitylation of client protein and their 

subsequent proteasomal degradation (Whitesell et al., 1997). However, the components 

involved in such pathways are very poorly described and it is the aim of this study to 

identify such potential components that lead to the proteasomal degradation of the 

protein kinases CRAF. 

1.1.2: Structure of HSP90 

1.1.2.1: Introduction 

The structure of full-length yeast Hsp90 was determined by x-ray crystallization in 

complex with its co-chaperone Sba1p (Ali et al, 2006) (Figure 1.1). The yeast form 

Hsp90 consists of three domains, an N-terminal domain, responsible for the binding of 

ATP and a variety of inhibitors (Prodromou et al., 1997a&b and 2000; Stebbins et al., 

1997; Pearl and Prodromou, 2000), which is followed by a charged linker that leads to a 

middle domain that is thought to form a major client protein interaction site (Meyer et 

al., 2003). The C-terminal domain provides the basis of the inherent dimerization of the 

chaperone (Harris et al., 2004; Minami et al., 1994). Various other conformational 

structures of HSP90, either with or without nucleotides, have been characterized by 

biophysical techniques such as electron microscopy, small angle X-ray scattering 
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(SAXS) analysis and X-ray crystallography (Ali et al., 2006; Vaughan et al., 2006; 

Shiau et al., 2006; Southworth et al., 2008; McLaughlin et al., 2004; Meyer et al., 2004). 

These structures suggest a highly flexible and dynamic HSP90 structure.  

1.1.2.2: The N-terminal domain 

The first structural insight of HSP90 was through the determination of the X-ray 

crystallographic study of the N-terminal domain for human (Stebbins et al., 1997) and 

yeast (Prodromou et al., 1997b) (Figure 1.2 A). The 25kDa N-terminal domain consists 

of a two-layer sandwich alpha/beta structure that possesses a cleft into which ATP and 

inhibitors, such as geldanamycin.  

Binding of ATP leads to a conformational change involving a loop structure, known as 

the lid, that binds over the bound ATP and through a series of conformational and co-

operative structural changes leads to N-terminal dimerization and the formation of a 

catalytically active state (Prodromou et al., 1997a and 2000; Panaretou et al., 1998; 

Keramisanou et al., 2016). Subsequent hydrolysis of ATP induces the dissociation of 

the ATPase domains, and completes the chaperone cycle of HSP90, which is also 

subject to regulatory control by a variety of co-chaperones.  
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(Pear, Prodromou and Workman, 2008) 

Figure 1.1 Crystal structure of HSP90 in complex with p23/Sba1p. (A) The two 

HSP90 molecules (orange and blue) interact respectively at C-terminus via a 

constitutive dimer interface and the N-terminus through a transient ATP-dependent 

interface. The HSP90 molecules twist around each other in the closed conformation. 

The co-chaperone p23/Sba1p binds at the junction of the two HSP90 N terminal 

domains in ATP-bound HSP90. (B) The domain structure of a singe monomeric HSP90 

molecule. 

 

1.1#

A 

B 
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1.1.2.3: The HSP90 middle domain 

The structure of the middle segment of HSP90 was determined some time after the N-

terminal domain structures (Meyer et al, 2003). The middle segment has a molecular 

mass of 35 kDa and is composed of three sub-domains. The N-terminal region consists 

of a large alpha-beta-alpha fold. At the C-terminal end there is a second alpha-beta-

alpha fold but this sub-domain is much smaller than the N-terminal one. Theses sub-

domains are linked together by a tight coil of 3 short alpha helices (Figure 1.2 B). 

Mutagenesis studies suggest the middle domain appears to be a client protein interaction 

site (Meyer et al., 2003). This is supported by the observation that the binding site for 

protein kinase PKB/Akt appears to map to the middle domain of HSP90 (Sato et al., 

2000), and by electron microscopy studies (EM) that revealed CDK4 bound to this 

domain (Vaughan et al., 2006; Cara et al., 2006). However, other reports suggest that 

client proteins also interact with several other regions of HSP90. The precise details by 

which HSP90 recognizes client protein are still poorly understood. Recently it has been 

suggested that HSP90 recognizes proteins, such as kinases, that have an inherently 

unstable fold (Keramisanou et al., 2016). 

1.1.2.4: The HSP90 C-terminal domain 

The C-terminal domain of HSP90 (Figure 1.2 C&D) has the molecular mass of 12-kDa 

and is essential for the inherent dimerization of the chaperone (Toft et al., 1998; Chiosis 

et al., 2004; Harris et al., 2004). At the extreme C-terminus is a teratricopeptide repeat 

(TPR) motif responsible for recruiting TPR domain containing co-chaperones, such as 

HOP (also known as Stip1 in yeast), FKBP proteins, PP5 and AIP/Xap2/ARA9. HOP 

scaffolds the association between HSP90 and HSP70 through its TPR domains 

(Scheufler et al., 2000). 
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(Pearl and Prodromou, 2006) 

Figure 1.2 Domain crystal structures of HSP90. (A) The N-terminal domain of yeast 

Hsp90 with AMPPNP bound to the ATP/ADP binding site.  (B) The three sub-domain 

crystal structure of the middle segment of yeast Hsp90. (C) Crystal structure of the 

E.coli Hsp90 (Hptg) homologue C-terminal domain, responsible for the inherent 

dimerization of HtpG (left). (D) HtpG C-terminal domains viewed down the local 

pseudotwofold symmetry axis of panel (C). All structures are coloured from the N to the 

C terminus in rainbow (blue to red, respectively). 

	
  
	
  
	
  
	
  

A 

B 

C 

D 
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1.1.3: ATPase chaperone cycle of HSP90 

HSP90 is an ATP-dependent chaperone protein, and its ATPase activity has been shown 

to be essential for the activation and folding of client proteins (Panaretou et al., 1998 

and 2002) (Figure 1.3 A&B). Previous studies revealed that the ATP-binding pocket is 

located in the N-terminal domain (NTD) of HSP90 (Prodromou et al., 1997a), and 

multiple conformational changes are required to form a catalytically active unit that is 

able to hydrolysis ATP. A critical structural element in the NTD of HSP90, called the 

‘lid’, controls the dimerization of NTD and its association with the middle domain (MD) 

of HSP90 upon ATP binding. The ‘lid’ traps bound ATP by closing over the ATP-

binding pocket, while simultaneously exposing a hydrophobic surface required for 

dimerization (Panaretou et al., 1998). The docking of the NTDs with the middle 

domains of HSP90 allows the middle domain catalytic loop to interact with bound ATP, 

which is essential ATPase activity (Prodromou et al., 2000; Meyer et al., 2003 and 2004; 

Pearl and Prodromou, 2006). Recently, these motions were directly observed using one-

nanometer fluorescence probes based on photo-induced electron transfer, and found to 

act cooperatively (Schulze et al., 2016) (Figure 1.4). A two-step mechanism for lid 

closure over the bound nucleotide was apparent and the co-chaperone AHA1 could 

mobilize the lid of apo HSP90, suggesting an early role in the catalytic cycle (Schulze et 

al., 2016). The ATPase competent state of HSP90 is stabilized by casein kinase 2 (CK2), 

which phosphorylates threonine 22 of HSP90 in the α–helix 1 of the NTD of yeast 

HSP90 (Mollapour et al., 2011). 

 

 

 



9	
  

	
  

 

(Prodromou, 2012;Panaretou et al., 1998) 

Figure 1.3 ATPase chaperone cycle of HSP90. (A) The ATPase kinetic cycle of 

S.cerevisiae Hsp90 and E.coli HtpG. The blue and black arrows indicate the ATPase 

cycle in yeast. During this cycle of conformation change, two intermediate 

conformations, I1 and I2, are involved that lead to the catalytically state (closed-ATP 

Active) (T). The I1 sate is bypassed by co-chaperone AHA1 to accelerate the cycle. In 

contrast, the formation of the closed-ATP active state of the E.coli (red and black 

A 

B 
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arrows) involves by a two-phase transition through an intermediate conformation (I). 

‘Slow’ indicates the rate-limiting step in both cycles. (B) Binding and hydrolysis of 

ATP is necessary for the activation of HSP90-dependent kinases. The amino acid 

residues, Asp79 and Glus33 (shown in red) of the NTD of HSP90 are essential for 

nucleotide binding and hydrolysis of ATP.  
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1.1.4: Co-chaperones of HSP90  

1.1.4.1: Introduction 

There are numerous co-chaperones that operate with HSP90 that associate with specific 

types of client proteins and thus form defined chaperone complexes (Riggs et al., 2004; 

Taipale et al., 2012). These include those that deliver client proteins to HSP90, such as 

HOP (yeast Sti1p) and CDC37, those that regulate the chaperone cycle, such as AHA1, 

and p23 (yeast Sba1p), those that play a structural role (i.e. Pih1) or those that display a 

specific enzymatic activity, such as PP5 and immunophilins. However, even though a 

given co-chaperone may be involved in specific process such as client protein delivery, 

it may also be able to regulate the cycle to achieve client protein activation for example. 

The next section will cover the roles of such co-chaperones in more detail. 

1.1.4.2: The co-chaperone CDC37 

A wide range of its client proteins has been identified and the number is continually 

increasing (http://www.picard.ch/downloads/HSP90interactors.pdf). These clients can 

be approximately divided into three classes including protein kinases, transcription 

factors (ie, the nuclear receptors for steroid hormones) and structurally unrelated clients 

(Pratt et al., 2004 and 2006).	
  

CDC37, also known as p50, is a co-chaperone that specifically recognizes client protein 

kinases and recruits them to HSP90 (Shao et al., 2003a&b; Caplan et al., 2007; Karnitz 

and Felts, 2007; Taipale et al., 2012). CDC37 was previously shown to interact with 

CDK4 and form a complex with HSP90 (Dai et al., 1996; Vaughan et al., 2006) (Figure 

1.5 A). The structure of the HSP90-CDC37-CDK4 complex has also been determined to 

3.9 angstrom by cryo-electron microscopy (Verba et al., 2016). Surprisingly, C- and N-
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terminal lobes of CDK4 are separated with the unfolding of the β4-β5 sheet. The 

open kinase is stabilized by CDC37, which mimics part of the kinase N lobe, by 

wedging itself between the two kinases lobe. Finally, HSP90 was seen to be clamped 

around the unfolded kinase β5 strand and interacting with both the exposed N- and C-

lobe interfaces, thus protecting the kinase in a trapped unfolded state (Verba et al., 2016) 

(Figure 1.5 B). CDC37 has also been shown to bind CRAF (Stancato et al., 1993; 

Grammatikakis et al., 1999), LKB1 (Boudeau et al., 2003; Nony et al., 2003), MLK3 

(Zhang et al., 2004), EGFRvIII (Lavictoire et al., 2003), SAPK, Spc1 (Tatebe and 

Shiozaki, 2003) and CDK11 (Mikolajczyk et al., 2004) amongst others.  

The reorganization of CRAF by CDC37 has been controversial. The binding site was 

previously reported to be the C-terminal domain of CDC37 between residues 1 to 163 

(Grammatikakis et al., 1999).  However, another study revealed that CDC37 residues 

181 to 200 were able to recognize client proteins kinases such as CRAF, Akt1, Aurora 

B and CDK4. In particularly, residues 191 to 195 of CDC37 were particularly required 

for CRAF interaction (Terasawa and Minami, 2005) and that N-terminal lobe of the 

kinase proteins was critical for this interaction (Mort-Bontemps-Soret et al., 2002; 

Scroggins et al., 2003; Zhao et al., 2004; Prince et al., 2004).  
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(Schulze et al., 2016) 

Figure 1.4 Tracking the conformational change of HSP90 ATPase cycle by PET 

fluorescence quenching. (Left) The nucleotide free state of HSP90. The ATP binding 

site is indicated (Orange arrow). (Right) The binding of ATP induces the closed-clamp 

conformation. Magenta and green indicates the N-terminal β-strand and the lid, 

respectively. The red spheres and blue sticks represent the PET reporters. 
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The crystal structure of the Middle and C-terminal domain (MC) of CDC37 in complex 

with the N-terminal domain of HSP90 has been determined (Vaughan et al., 2006; Pearl 

and Prodromou, 2006) (Figure 1.6 A & B). This showed a 1:1 stoichiometric complex 

(Roe et al., 2004), with CDC37 bound to the lid segment of the NTD of HSP90 (Figure 

1.6 C). Consequently, the NTD is prevented from conformational movement and the 

ATPase activity of the chaperone is inhibited. Furthermore, Arg 167 of CDC37 also 

interacts with the catalytic Glu 33 of the ATPase domain of HSP90, thus preventing 

hydrolysis of any bound ATP (Figure 1.6 C) (Prodromou et al., 1997a; Panaretou et al., 

1998; Obermann et al., 1998). Following delivery of the client protein and inhibition of 

the chaperone cycle, it is thought that the chaperone and kinase are now in specific 

conformational states that allow molecular recognition between them. It appears that 

CRAF binds to HSP90 through the C-terminal catalytic domain of the kinase (Stancato 

et al., 1993). Furthermore, the stabilization of CRAF was reported to depend on the 

activity of HSP90 (Eccles et al., 2008). The chaperone cycle is thought to progress 

following the binding of ATP and the ATPase stimulating co-chaperone AHA1 (Figure 

1.5 B). The details of the mechanism leading to disengagement of CDC37 and Kinase 

form the chaperone complex are not understood. 
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(Vaughan et al., 2006; Verba et al., 2016) 

Figure 1.5 Kinase client activation. (A) The EM reconstruction of HSP90 in complex 

with CDK4/6 and CDC37. In this 20 A ̊ resolution atomic models, CDK6 is used to 

illustrate how its larger C-terminal lobe is associated with one of the meddle-domains of 

a HSP90 monomer. The N-terminal domain of CDK6 associates with the N-terminal 

domain of HSP90 and/or CDC37. The middle domain of CDC37 interacts with one of 

the N-terminal domains of HSP90. (B) The closed conformation HSP90 (Yellow) in 
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complex with CDK4 (Teal) and CDC37 (Blue). This HSP90-CDC37-CDK4 complex 

was revealed by a 3.9-angstrom cryo-electron microscopy and represented in ribbon 

(left) and surface structure (right). (C) A schematic of a proposed mechanism of kinase 

client activation and the co-chaperones involved. (a) A stable HSP90-CDC37-inactive 

kinase (H-C-K) is formed after CDC37-inactive kinase (C-K) complex binds to a 

dimeric HSP90 with loss of one CDC37 monomer. (b) CDC37 is dephosphorylated 

upon binding of PP5/Ppt1. (c) The binding of ATP and other co-chaperones such as 

AHA1 may occur either prior to or concomitantly with the process of the 

dephosphorylation of CDC37. (d) Following the hydrolysis of ATP active kinase 

dissociates from the complex. CK2 rephosphorylates CDC37 at Ser 13 for the next 

HSP90 cycle. 
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The mechanism by which CDC37 recognizes a client protein kinase was recently 

reported (Keramisanou et al., 2016). The authors suggest that CDC37 acts as a scanning 

factor and is able to selectively bind kinases that are inherently unstable. Binding of the 

kinase further destabilizes its structure leading to a stable CDC37-kinase complex, in 

which the kinase can then interact with HSP90 following CDC37 binding (Figure 1.7 A, 

B & C).  

Thus, induced conformational stability of the kinase acts as the determinant for 

selection by CDC37 and binding to HSP90. Stable formation of an HSP90-CDC37-

kinase ternary complex is promoted by Ser 13 phosphorylation of CDC37 (Miyata and 

Nishida, 2004; Polier et al., 2013; Shao et al., 2003b; Vaughan et al., 2008). The 

phosphorylation of CDC37 at Ser13 is dependent on the Ser/Thr kinase, CK2 (Figure 

1.5 C) (Bandhakavi et al., 2003; Shao et al., 2003b: Miyata and Nishida, 2004), while 

the protein phosphatase PP5/Ppt1 dephosphorylates p-Ser 13 (Vaughan et al., 2008) 

(Figure 1.5 C). It has also been reported that the phosphorylation of various Tyr 

residues on CDC37 abolishes the association with different client protein kinases (Xu et 

al., 2012). 	
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(Pearl, 2005; Pearl and Prodromou, 2006) 

Figure 1.6 Schematic domain structure of CDC37 and the crystal structure of the 

MC-CDC37 – NTD-HSP90 complex. (A) The NTD (blue) of CDC37 is essential for 

kinase binding, while the central and C-terminal region (red) is the HSP90 and kinase 

binding domain. The assembly and stability of HSP90-CDC37-kinase complex is 

regulated by a CKII phosphorylation located in N-terminal region. (B) Crystal structure 

of CDC37 C-terminal region (blue) in complex with the NTD (orange) of HSP90. (C) 

The “lid” segment in the NTD of HSP90 provides the binding surface for CDC37. 

CDC37 inserts the guanidinium side chain of Arg 167 into the HSP90 nucleotide-

binding pocket and interacts with catalytic residue Glu 33.  
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(Keramisanou et al., 2016) 

Figure 1.7 Recognition and sorting schema of protein kinase by CDC37. (A) Non-

clients (blue filled) obtain a native conformation without HSP90 (dark green and blue) 

assistance. Such kinases (cyan) display a high level of thermodynamic stability. (B) 

Clients (green) with a low thermodynamic stability fail to interact fully with CDC37 

and are therefore not recruited to HSP90. They simply interact with the NTD of CDC37 

(N-CDC37) (black outline) with helix a1 (N32) tail (red) recognizes. The 

conformational properties of non-clients are therefore not affected by binding with N-

CDC37. (C) Client protein kinases stably associated with both the N-terminal and C-

terminal of CDC37 are recruited to HSP90. The conformational properties of kinase 

clients are destabilized upon the association with N-CDC37.  
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1.1.4.3: The co-chaperone AHA1 

 AHA1 is the most potent protein activator of the ATPase activity of HSP90 (Panaretou 

et al., 2002; Meyer et al., 2003&2004; Retzlaff et al., 2010). Structural studies using the 

NTD of AHA1 revealed the mechanism by which this domain could activate the 

ATPase activity of HSP90 (Figure 1.8). The NTD of AHA1 is able to modulate the 

conformation of a catalytic loop, found in the MD of the chaperone, and thus facilitates 

engagement of Arg 380 with the γ-phosphate of ATP bound in the NTD  (Meyer et al., 

2003; Prodromou, 2012). However, for full activation the C-terminal domain of AHA1 

is also required (Panaretou et al., 2002). The C-terminal domain of AHA1 was shown to 

bind between the NTDs of HSP90, at a site overlapping that for Sba1p binding, This 

might provide stabilization of the N-terminally dimerised state (Retzlaff et al., 2010). 

AHA1, Unlike STIP1/HOP and CDC37, is not involved in client protein delivery and 

most likely partakes in a role downstream of client protein binding. AHA1 has been 

implicated in the activation and maturation of protein kinases, steroid-hormone 

receptors, CFTR, MC4R and ANT1 (Panaretou et al., 2002; Lotz et al., 2003; Harst et 

al., 2005; Koulov et al., 2010; Wang et al., 2006; Meimaridou et al., 2011; Holmes et al., 

2008; Swick and Kapatos, 2006; Ran, Gadura and Michels, 2010; Sun et al., 2008; 

Zhong et al., 2009). AHA1 appears to be a regulatory co-chaperone of HSP90 activation 

of client proteins in general or alternatively is specifically required for the regulation 

and assembly of oligomeric HSP90 complexes (Sun et al., 2012). 

In addition to AHA1, budding yeast possesses a small AHA1 paralogue, Hch1 (Nathan 

et al., 1999) resembling the N-terminal domain of AHA1. Hch1 can activate HSP90 

ATPase activity (Panaretou et al., 2002), but its biological function is very different to  
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Fig 1.8 Structure of AHA1-HSP90 complex showing activation of the catalytic loop.	
  

The monomeric structure of HSP90 with N-terminal (yellow), Middle (light blue) and 

C-terminal (brown) domains are shown. Bound AMP-PNP bound to the N-terminal 

domain is in stick representation (green). The catalytic loop of HSP90 is shown in 

magenta. The N-terminal domain of AHA1 (green) interacts with the middle domain of 

HSP90 and promotes an open state of the catalytic loop of HSP90 and thus allows Arg 

380 to interact with γ -phosphate of ATP (AMP-PNP in this case). Hydrogen bonds 

are presented as a broken blue line.  
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that of AHA1 (Armstrong et al., 2012). Deletion of Hch1, but not AHA1, mitigates the 

temperature sensitive phenotype of two HSP90 mutations, G313S and A587T, while 

overexpression increases sensitivity to the HSP90 inhibitor AUY922 (Armstrong et al., 

2012).  

1.1.4.4: The co-chaperone PP5 

The human serine/threonine protein phosphatase type 5 (PP5) has a three-domain 

structure (Swingle et al., 2004) and appears to be required for the activation and 

maturation of HSP90 kinase client proteins. The dephosphorylation of CDC37 by PP5 

at Ser 13 causes the dissociation of kinase from the HSP90 complexes. (Vaughan et al., 

2006 & 2008; Mayer, Prodromou and Frydman, 2009) (Figure 1.5 C)  

The N-terminal domain of PP5 consists of three tetratricopeptide repeat (TPR) motifs, 

while the C-terminus is an auto-inhibitory domain, and the middle domain is the 

phosphatase catalytic domain (Figure 1.9 A). The N-terminal TPR domain is 

responsible for binding the conserved MEEVD motif at the C-terminal end of HSP90 

and three specific residues (Lys32, Lys97 and Arg101) within the TPR cleft of PP5 

have been identified as important for the binding HSP90 (Das et al., 1998; Blatch and 

Lassle, 1999; Russell et al., 1999; Scheufler et al., 2000; Ramsey et al., 2000) (Figure 

1.9 B).  
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(Chinkers, 2001) 

Figure 1.9 Domain structure and the activation of phosphatase type 5 (PP5). (A) 

The N-terminus of PP5 contains three TPRs (blue). The phosphatase catalytic domain 

(green) is upstream of the C-terminal auto-inhibitory domain (red). (B) Lys32 (green), 

Lys97 (purple) and Arg101 (cyan) are the three basic residues in the TPR domain 

(white fill) of PP5 for associating with HSP90. 
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1.1.5: Inhibition of HSP90 

1.1.5.1: Overview 

The chaperone cycle of HSP90 is dependent on the binding and hydrolysis of ATP by 

its N-terminal domains (Prodromou et al., 1997a). Many of HSP90’s client proteins not 

only contribute to normal cell maintenance but also when mutated, help to drive 

oncogenesis. HSP90 itself can be highly expressed (Pick et al., 2007), which helps and 

supports oncoprotein function. Furthermore, nutrient stress, proteotoxicity, hypoxia or 

genetic instability in cancer cells could further drive up the levels of HSP90. HSP90 is 

itself involved in processes that lead to tissue invasion, abnormal angiogenesis, 

avoidance of cellular apoptosis and immune destruction (Workman et al., 2007; Trepel 

et al., 2010; Neckers and Workman, 2012) (Figure 1.10). Because of HSP90’s central 

role is not only maintaining oncoprotein function, but also promoting oncogenic 

processes, it is no wonder that HSP90 is a major anticancer target (Powers and 

Workman, 2006; Neckers and Workman, 2012). Initial worries about cytotoxicity in 

targeting HSP90 due to its housekeeping role in cells (Kim et al., 2009) have subsided 

and it has been demonstrated that targeting HSP90 leads to inhibition of cell 

proliferation, degradation of client proteins and apoptosis using inhibitors such as 17-

AAG (Hostein et al., 2001). .  

1.1.5.2: Development of HSP90 inhibitors 

In 1994, HSP90 was discovered as the molecular target of geldanamycin. This inhibitor 

prevented association of the client protein SRC with HSP90, which consequently 

destabilized the kinase by ubiquitylation and proteasomal degradation (Whitesell et al., 

1994).  



25	
  

	
  

The molecular details of the interaction between geldanamycin and HSP90 were finally 

observed when the structure of the NTD of HSP90 was crystallized in complex with this 

inhibitor (Stebbins et al., 1997; Roe et al., 1999). Although geldanamycin can arrest the 

function of HSP90 by inhibiting its ATPase activity (Roe et al., 1999), geldanamycin 

has many limitations due to its hepatotoxicity and poor solubility. Therefore, 

geldanamycin has not progressed far in clinical trials. But, it has provided a basic 

chemical structure that can be further developed.  
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(Neckers and Workman, 2012) 

Figure 1.10 Schema for HSP90 responding to stress conditions in cancer cells. In 

responds to the various environmental stresses, HSP90 in cancer cells acts as a buffer 

for mediating the expression of numerous client proteins, regulating biological signaling 

and pathways (list on the right) that then promotes the cell survival.  
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17-allylamino-17-demethoxy-geldanamycin (17-AAG) and 17- (dimethylamino -

ethylamino)-17-demethoxygeldanamycin (17-DMAG) are the two next generation 

inhibitors (Taldone et al, 2009; Neckers and Workman, 2012). In contrast to 

geldanamycin, 17-AAG and 17-DMAG possess less toxicity and are more soluble than 

geldanamycin (Ge et al., 2006; Sausville et al, 2003). Additionally, both have 

progressed in phase I and II clinical trials, and the results showed they both suppressed 

and stabilized tumors (Banerji et al, 2005; Pacey et al, 2006; Modi et al, 2007). 

However, this class of inhibitor still retains limitations, including hepatotoxicity, poor 

pharmacokinetics, and polymorphic metabolism via CYP3A4 (Cytochrome P450 3A4). 

Additionally, the formulation of these drugs is difficult (Egorin et al, 1998).  

1.1.5.3: Potent activity of AUY922: A novel HSP90 inhibitor  

Among the HSP90 inhibitors, AUY922, 5-(2,4-Dihydroxy-5-isopropylphenyl)-4-(4-

morpholin-4-yl- methylphenyl) isoxazole-3-carboxylic acid ethylamide (also named as 

Luminespib), is a novel isoxazole amide inhibitor that is the most potent synthetic small 

molecule inhibitor so far developed against the NTD of HSP90 (Brough et al., 2008; 

Eccles et al., 2008; Gao et al., 2010) (Figure 1.11). Previous studies showed AUY922 

exhibited the ability to regulate the activity of glioblastoma (GB) and that continual 

drug exposure does not result in resistance to AUY922 (Gaspar et al., 2009 and 2010). 

AUY922 was also found to be potent against breast cell lines (Jensen et al., 2008), 

xenograft tumor (Eccles et al., 2008), early antiangiogenic tumor (Nagengast et al., 

2010), glioblastoma (Gaspar et al., 2010) and non-small cell lung cancers (Ueno et al., 

2012; Garon et al., 2013; Park et al., 2016).   

The structure of AUY922 in complex with the N-terminal domain of human HSP90 in 

has been determined (Brough et al., 2008) and the IC50 against HSP90α is 7.8 ± 1.8 
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nmol/L and 21 ± 16 nmol/L for HSP90β (Brough et al., 2008). The Ki values are 9.0 ± 

5.0 nmol/L (HSP90α) and 8.2 ± 0.7 nmol/L (HSP90β). The Kd value determined by 

isothermal titration calorimetry (ITC) for HSP90β is 1.7 ± 0.5 nmol/L (Sharp et al., 

2007b) and this data shows that the binding is mainly enthalpically driven (Eccles et al., 

2008). In contrast to binding cytoplasmic HSP90, binding to the endoplasmic HSP90, 

GRP94 and the mitochondrial Trap1 appears to be weaker (Grp94, IC50 535 ± 51 

nmol/L and Ki = 108 nmol/L) and TRAP-1 (IC50 85 ± 8 nmol/L and Ki = 53 nmol/L) 

(Eccles et al., 2008). Inhibition of HSP90 by AUY922 shows typical client protein 

degradation of kinases such as ErbB2, CRAF, LKB1 and CDK4 within 24 hours after 

the treatment of HEK293 and HCT116 human cancer cells  (Eccles et al., 2008). The 

cell cycle of HCT116 cells was arrested by AUY922 in G1 and G2-M phase (Eccles et 

al., 2008). Research on the effects of HSP90 inhibitors has helped us to understand the 

molecular mechanism of HSP90 to some degree. Pre-treatment with AUY922 has 

helped identify HSP90 client-proteins and has been shown to induce their degradation. 

Such proteins include ErbB2, MASTL, LKB1, CDK1, CDK4, Akt, pAkt, CRAF and 

BRAFV600E, which are critical components for cell proliferation, growth and survival. 

Loss of important client proteins such as these impacts greatly on cellular processes 

leading to increased DNA damage and impairment of the cell cycle (Stingl et al., 2010). 	
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(Neckers and Workman, 2012) 

Figure 1.11 X-ray crystal structure of AUY922 bound in the NTD of HSP90. (A) 

Space filled model of the NTD of human HSP90α (blue) with bound AUY922 inhibitor 

(yellow) in the ATP pocket. (B) Detail of AUY922 (yellow) binding to the NTD of 

HSP90 (green), including hydrogen bonding (dotted yellow) and water molecules (red 

spheres). (C) A close up of the space filled view of AUY922 in the ATP pocket of 

HSP90 (blue) with hydrogen-bonding interaction removed. (D) A space filled model of 

AUY922 within the solvent-accessible surface of HSP90 (blue). 
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1.2: The protein kinase CRAF  

1.2.1: The RAF-MEK-ERK pathway  

The activation of RAF kinase by the HSP90 chaperone cycle is detailed in Section 

1.1.4.2. The Mitogen-activated protein kinase (MAPK) cascade is a cellular signaling 

pathway involved in cell proliferation, differentiation and survival (Figure 1.12 A). The 

MAPK signaling pathway is a highly conserved intracellular pathway, which consists of 

a series of protein kinases including a MAPK kinase kinase (MAPKKK), a MAPK 

kinase (MAPKK) and a MAPK (Johnson and Lapadat., 2002). There are four MAPK 

pathways in mammalian cells (Figure 1.12 B). In particularly, the pathway that includes 

the RAF family kinase is described as the RAF-MEK-ERK MAPK cascade (Wellbrock 

et al., 2004; Schreck and Rapp, 2006) and is usually activated by growth factors. The 

other three are commonly known as the JNK, p38 and ERK5 pathways and normally 

activated by stress stimulators (Roberts and Der, 2007). Thus, these pathways are 

activated by extracellular signals detected by a receptor tyrosine kinase (RTK) 

(Wellbrock et al., 2004). 

The RAF-MEK-ERK cascade is activated by the G-protein RAS (Wilhelm et al., 2004). 

HRAS, KRAS and NRAS are the three classes of RAS that share 85% similarity in their 

amino acid sequence (Lowy and Willumsen, 1993). The activation of RAS depends on 

the turnover of GDP and GTP, which is controlled by GTPase activating proteins 

(GAPs) and guanine nucleotide exchange factors (GEFs) (Campbell et al., 1998). There 

are three members from the RAF serine/threonine protein kinase family; ARAF, BRAF 

and CRAF (also known as RAF-1) (Rapp et al., 1983; Jansen et al., 1984; Sutrave et al., 

1984). Activated G-protein RAS signals recruit RAF kinase to the plasma membrane, 
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where it in turn becomes activated (Leevers et al., 1994; Stokoe et al., 1994). A 

phosphorylation cascade then follows that results in active ERK1/2, which finally enters 

the nucleus via translocation to activate, by phosphorylation, transcription factors that 

are responsible for the expression of specific genes (Wellbrock, 2004).  
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 (Burbelo and Hall, 1995; Roberts and Der, 2007) 

Figure 1.12 The RAS-RAF-MEK-ERK signaling pathway. (A) Binding growth 

factors (ligands) to receptor tyrosine kinase (RTK) induce a dimerization change, 

leading to intrinsic tyrosine-kinase activity. The intracellular portion of the receptor gets 

autophosphorylated on specific tyrosine residues, which initiates binding to adaptor 

proteins such as GRB2 via the sequence homology 2 (SH2) domains. This complex then 

recruits the son of sevenless (SOS) closely to RAS kinase. Interaction RAS with SOS 

B 

A 
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induces a conformational change on RAS, which promotes the dissociation of GDP 

from RAS and replaces it with GTP for activation. Activated RAS recruits and 

phosphorylates CRAF. CRAF then binds ATP and phosphorylates MEK MKKs (MEK1 

and MEK2), which finally in turn phosphorylates the ERK MAPKs (ERK1 and ERK2). 

Activated ERKs phosphorylates specific substrates in nucleus for regulating various 

cellular responses. The CRAF becomes inactivated by dephosphorylation and associates 

with 14-3-3 protein, which a conformational change of CRAF is induced. The inactive 

state CRAF is then translocated to the cytoplasm. 14-3-3 disassociates from CRAF after 

the configuration of CRAF is changed by phosphorylation/ dephosphorylation events. 

(B) The MAPK cascades in Mammalian cells consist of four major MAPKKK-

MAPKK-MAPK protein kinase pathways. The growth factors commonly activate the 

ERK1/2 pathways, whereas environmental stress activates the signaling pathway for 

JNK, p38 and ERK5. 
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1.2.2: The scaffold protein 14-3-3 regulates CRAF protein kinase 

activity  

The highly conserved, acidic 30 kDa adaptor scaffold protein, 14-3-3, has been shown 

to modulate the maturation of CRAF (Fantl et al., 1994; Freed et al., 1994; Fu et al., 

1994; Irie et al., 1994; Yamamori et al., 1995) (Figure 1.12 A). A recent study has 

shown CRAF is not the only kinase to be regulated by 14-3-3 and a large number of 

client proteins have been identified that interact with 14-3-3 (Aitken et al., 1995; Muslin 

et al., 2000). This scaffold protein has some specific short peptide motifs, which are 

responsible for binding client proteins. Phosphorylation may be required for some 

interactions but it is not essential (Muslin et al., 1996; Petosa et al., 1998; Yaffe et al., 

1997). 14-3-3 can suppress the activity of its kinase protein by forming an inactive 

subcellular complex (Muslin et al., 2000). As well as the maturation of CRAF, 14-3-3 

can also regulate the activity of CRAF  (Fantl et al., 1994; Freed et al., 1994; Irie et al., 

1994; Li et al., 1995; McPherson et al., 1999; Roy et al., 1998; Thorson et al., 1998; 

Yip-Schneider et al., 2000), but this remains controversial (Fu et al., 1994; Michaud et 

al., 1995; Suen et al., 1995). CRAF possesses two binding sites (CR2 and CR3) for 14-

3-3 interactions and the activity of CRAF depends on which site is occupied by 14-3-3 

(Thorson et al., 1998). Binding to the CR2 site requires phosphorylation of Ser 259, 

which leads to suppression of CRAF activity. In contrast, activity is promoted by 

binding to the CR3 site, which is dependent on the phosphorylation of Ser 621 (Muslin 

et al., 1996; Petosa et al., 1998; Yaffe et al., 1997). The dimeric nature of 14-3-3 does, 

however, allow it to bind both the CR2 and CR3 sites of CRAF (Petosa et al., 1998; 

Yaffe et al., 1997). This conformation locks CRAF into an inactive state (Rommel et al., 

1996; Tzivion et al., 1998). It has been shown that Ser 259 can be phosphorylated by 

Protein kinase B, and dephosphorylated by protein phosphatase 1 (PP1) and protein 
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phosphatase 2 (PP2A) (Jaumot et al., 2001). In contrast to the activation of CRAF and 

ARAF, the activation of BRAF is quite different (Wellbrock, 2004). BRAF lacks the 

complex set of regulatory events for activation. The activation of ERK1/2 is mainly due 

to the participation of BRAF, and the basal activity that it possesses, which is 

significantly higher than the other two isoforms of this kinase (Jaiswal et al., 1994; 

Catling et al., 1994; Moodie et al., 1994; Pritchard et al., 1995; Wojnowski et al., 2000; 

Mason et al., 1999).  

1.2.3: The inhibition of RAF protein kinase 

The classical route to inhibiting RAF serine/threonine kinase is by small molecule 

inhibitors.  Bayer and Onyx developed a very effective RAF kinase inhibitor in 1995 

called Sorafenib (Smith et al., 2001). Sorafenib, is a bi-aryl urea compound (3-

trifluoromethyl-4-chlorophenyl)-N′- (4-(2-methylcarbamoyl pyridin-4-yl) (BAY 43-

9006, Nexavar) (Smith 2006) (Figure 1.13 A & B). Sorafenib can target the activity of 

protein kinase CRAF (Wilhelm et al., 2006; Lyons et al., 2001), wild type BRAF and 

BRAFV600E mutant (Wilhelm et al., 2004). Crystallographic analysis, confirms that 

Sorafenib targets the ATP-binding pocket of the kinase domain (Wan et al., 2004). 

Sorafenib can also inhibit the activity of other kinases including c-Kit, Flt-3, platelet-

derived growth factor receptor (PDGFR) β, vascular endothelial growth factor (VEGFR) 

1, VEGFR-2, VEGFR-3, RET and fibroblast growth factor receptor 1 (FGFR-1), of 

which some play a critical role in angiogenesis (Wilhelm et al., 2004; Carlomagno et al., 

2006). While Sorafenib inhibits the phosphorylation of ERK in various human tumor 

cell lines, including human colon tumor cell lines HCT116 and HT29 and the human 

pancreatic tumor cell line Mia PaCa2, it does not inhibit non-small lung cancer cell lines 

such as NCI-H460 and A549 (Wilhelm et al., 2004). 
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Recently a study revealed that such ATP-competitive kinase inhibitors disrupt the 

interaction between CDC37 and BRAFV600E, which in turn blocks access of the kinase 

to HSP90. Consequently, without HSP90’s chaperoning activity this leads to the 

ubiquitylated degradation of the kinase (Polier et al., 2013).  
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(Wilhelm et al., 2006) 

Figure 1.13 Structure and cellular function of BAY43-9006 (Sorafenib). (A) The 

chemical structure of BAY 43-9006 (Sorafenib). (B) Sorafenib is a multi-kinase 

inhibitor. It binds and inhibits the activation of RAF kinases (see Wan et al., 2004 for 

more details of the interaction between inhibitor and RAF kinase), and also blocks the 

autophosphorylation of the receptor tyrosine kinases such as VEGFR, PDGFR, c-Kit 

and RET. The inhibition by Sorafenib modulates downstream signaling for cell 

surviving, neovascularization, tumour cell proliferation, invasion and metastasis.  
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1.3: Protein degradation 

1.3.1: Brief overview 

Protein synthesis and degradation are major mechanisms in protein homeostasis. The 

lysosomal and ubiquitin-proteasome pathways are the two major pathways for 

mediating the degradation of proteins or cellular molecules in eukaryotic cells. The 

proteolysis pathway degrades proteins or cellular molecules in lysosomes that contain 

digestive enzymes. The target substrate is taken up into autophagosome vesicles and 

these fuse with lysosomes that then digest the contents (Adams, 2004) (Figure 1.14). 

The ubiquitin-proteasome degradation pathway is a selective mechanism that 

ubiquitylates targets proteins targeting them to the proteasome for degradation (Lu and 

Hunter, 2009). The degradation of CRAF by the ubiquitin-proteasome pathway is the 

main focus of the project.   

1.3.2: A brief outline of the ubiquitin system 

The Ubiquitin Proteasome System (UPS) is critical for many cellular processes (Mani et 

al., 2005), for degrading target protein substrates, it ensures cellular processes function 

correctly. The UPS is an ATP-dependent process (Hershko et al., 1971&1980; Simpson 

et al., 1953; Ciechanover et al., 1980; Schlesinger et al., 1975; Wilkinson et al., 1980), 

and consists of many protein components, including ubiquitin, three different 

ubiquitylation enzymes (E1, E2 and E3) and the 26S proteasome, that co-operate to 

bring about the degradation of the targeted protein (Figure 1.15 B). Machinery involved 

in such protein degradation is present in both the nucleus and the cytosol. Ubiquitin, the 

9-kDa protein is central to the UPS system as it acts as the primary signal leading to 
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(Tai and Schuman, 2008) 

Figure 1.14 The lysosomal proteolysis pathways. Lysosomes are cellular organelles 

that break down biopolymers and biomolecules by acid hydrolases. Endocytosed 

membrane proteins associate with early endosomes for delivery back to cell membrane 

through exocytosis, or by fusing into multivesicular bodies, which are then transported 

to late endosomes or lysosomes. Intracellular materials are digested via either micro- 

(through lysosomal invagination) or macro- (through autophagosome) autophagic 

mechanisms. The lysosome-associated membrane protein 2 (LAMP2) translocates 

unfolded proteins delivered by chaperons to the lysosome for digestion.  
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(Schulman and Harper, 2009) 

Figure 1.15 Ubiquitin-Proteasome pathway. (A) Free ubiquitin is produced either by 

ribosomal protein (RP), or hydrolyses of the isopeptide bond between polyubiquitin 

molecules with deubiquitylating enzymes (DUBs). Activation of ubiquitin through E1 is 

an ATP-dependent reaction. ATP hydrolysis produces a non-covalently associated 

ubiquitin at the adenylation active site of the E1 enzyme. Then, a high-energy thiolester 

bond between the ubiquitin carboxy-terminal Gly residue and a conserved E1 cysteine 

side-chain in the catalytic domain is formed. A second ubiquitin can then enter the first 

step, binding to the E1 adenylation domain to become an adenylated ubiquitin. (B) The 

fully loaded E1 then transfers the cysteine-linked ubiquitin to the E2 enzyme. The E2 

continuously passes on the activated ubiquitin to E3, where it is finally attached to 

substrate. The target protein that is polyubiquited (usually via a Lysine 48 link) is then 

degraded by the 26S proteasome.  
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proteasomal association and degradation. Uubiquitin is covalently attached to a primary 

amino group (usually a lysine side-chain) of the target protein through an isopeptide 

bond. It has been noted that defective translational modification by ubiquitin can induce 

disease (Ciechanover, 2005; Goldberg, 2007), which illustrates the importance of this 

system in protein homeostasis. 

Lys 48 and Lys 63 are the most common sites for ubiquitin-linked chains (Tenno et al., 

2004). However, Lys48 linked chains are usually degraded by the proteasome, whereas 

polyubiquitin or monoubiquitin at Lys 63 appear to be involved in different cellular 

processes (Hicke and Dunn, 2003; Feng and Chen, 2012; Nelson, Randle and Laman, 

2013) (Figure 1.16). 

There are 9 UBL conjugation pathways conjugates with 8 structuraly and functionaly 

related E1 and approximately 40 E2 enzymes (Schulman and Harper, 2009). The first 

step in the cascade (Figure 1.15 A) of ubiquitin transfer involves hydrolyses of ATP by 

the E1 enzyme, and the adenylation of the C-terminal glycine residue of ubiquitin, 

which then links to the active site cysteine of the E1 enzyme to form the activated E1 

thioester bonded complex. However, full activity of the E1 enzyme is dependent on the 

non-covalent binding to and adenylation of a second ubiquitin molecule. The E1 

enzyme then transfers the thioester-linked ubiquitin to the conserved cysteine residue of 

an E2 conjugating enzyme, which eventually binds to an E3 ligase with substrate for 

downstream processing (Hershko et al., 1983). Three main classes of E3 ubiquitin ligase 

enzymes have been classified to date and can be distinguished on the basis of their E2-

recruiting domains (Figure 1.17). The cullins, which combine with a RING finger-

containing protein, form the cullin-ring ubiquitin ligases (CRLs) (Lorick et al., 1999; 

Freemont, 2000; Joazeiro and Weissman, 2000) (Figure 1.17 C). The U box family 

(Aravind and Koonin, 2000; Hatakeyama et al., 2001; Cyr et al., 2002)  
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(Nelson, Randle and Laman, 2013) 

Figure 1.16 The common linkages of the ubiquitin chain. (A) Degrading target 

protein via the 26S proteasome usually requires the formation of the polyubiquitin 

chains via lysine 48 (K48) linkages. (B) Lysine 63 (K63) is another common linkage for 

polyubiquitin chain. The ubiquitylated proteins (UBPs) use this chain as a scaffold for 

recruiting proteins or complexes, mediating cell signaling, regulating the endosomal 

pathway and autophagic/lysosomal pathway. (C) The cellular function, localization or 

binding property of the target substrate can be changed by monoubiquitylation or multi-

monoubiquitylation.  
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and single RING finger form the second family of enzyme (Figure 1.17 B), while the 

U-box and RING E3 ligases act as scaffolding molecules that recruit both the Ub-

charged E2 and the target substrate (Aravind and Koonin, 2000; Hatakeyama et al., 

2001). Substrate recruitment involves protein interaction modules such as a WD-40 

repeat, TPR, and armadillo repeat domains. The U-box and RING domains are similar 

in that they posses a common domain organization (Ohi et al., 2005; Ballinger et al., 

1999; Mudgil et al., 2004). The RING-domains structure is built around two zinc-

binding sites, whereas U-boxes have a network of hydrogen bonds and salt bridges in 

the corresponding location (Ohi et al., 2003). In contrast, homologous to E6-associated 

protein (E6-AP) C-terminus (HECT) E3 ligases contain a HECT-domain for accepting 

ubiquitin from the E2 ubiquitin-conjugate by forming a thioester bond with the 

ubiquitin (an intermediate step) before transferring it to the target protein (Figure 1.17 

A). The conserved cysteine is located within the last 32-36 aa of the HECT-domain 

(Huibregtse et al., 1995), while E2 binding occurs at the amino-terminal part of the 

HECT-domain (Hatakeyama et al., 1997). The RING between RING (RBR) fingers 

protein is another E3 ligase has been identified recently, which this class of E3 could 

occupy the activity from both RING and HECT E3s (Aguilera et al., 2000). 
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(Bedford et al., 2011) 

Figure 1.17 Structural differences between major classes of E3 ubiquitin ligases. (A) 

The HECT domain E3 ligases are single unit ligases that do not transfer ubiquitin from 

E2 to the substrate directly, but involve an intermediate step. The ubiquitin is firstly 

delivered to a conserved cysteine residue on the E3 through the process of trans-

thiolation, and then transferred to the amino group of the target substrate. (B) The U-

box or monomeric RING finger E3s are also a single unit E3 ligase. They are 

structurally similar to each other, except that the RING finger relays on a Zn2+ binding 

domain for its structure, and both bind an E2 and substrate. However, there is a Zn2+ 

binding domain on RING finger motif for E2s binding, whereas U-box is metal ion 

indepndent. (C) The multimeric RING finger complexes include anaphase promoting 

complex/cyclosome and cullin-RING ligases (CRLs). SCFs complexes have a RING 

box protein (RBX) for E2 binding and an adaptor protein for substrate recognition. 

Ubiquitin is directly transferred to substrate once in close proximity.    
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1.3.3: Cullin-Ring ubiquitin E3 complexes 

Cullins are a family of scaffold protein that most commonly includes CUL1, CUL2, 

CUL3, CUL4A/B, CUL5, CUL7, CUL9 and each of them are assembled into cullin-

RING ligase (CRL) family complexes with different adaptor and substrate-recognized 

proteins  (Skaar, Pagan and Pagano, 2013) (Figure 1.18).  Generally, they consist of 

four components; the cullin core, the RINGs, adaptor proteins and substrate recognition 

proteins. There are two human RING components known as RBX1 and RBX2, which 

are required by the E3 ligase for activity. In addition, each cullin contains a key 

conserved lysine residue at its C-terminal end that is neddylated and is essential for E3 

ligase activity (Pan et al., 2004). Neddylation involves the transfer of the NEDD8 

protein, which is an ubiquitin like protein, to the cullin target. Neddylation of cullins 

disrupts the inhibitory binding of CAND1, and is brought about by an analogous 

reaction to that of ubiquitylation involving an E1 NEDD8-activating enzyme that 

activates NEDD8, an E2 NEDD8-conjugating enzyme, which carries the NEDD8 

protein and finally an E3 NEDD8 ligase that transfers NEDD8 to the cullin (Rabut and 

Peter, 2008; Soucy et al., 2010) 

1.3.3.1: Cullin 1 assembled complex 

One of the best-described CRL complexes is the S phase kinase associated protein 1 

(SKP1)-Cullin1 (CUL1)-F-box protein complex (CRL1) (Petroski et al., 2005) (Figure 

1.18). The scaffold protein CUL1 holds all these components in complex. Substrate 

recognized by this complex undergoes post-translational modification and degradation 

(Lipkowitz and Weissman, 2011). The C-terminal end of CUL1 binds RBX1 (or RBX2), 

which is responsible for the recruitment of an E2 enzyme, while its N-terminal domain 

binds SKP1, which in turn recognizes the F-box domain found in a variety of proteins, 
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such as the S phase kinase associated protein 2 (SKP2). Such proteins contain in turn a 

WD40 or leucine rich repeat domain that is responsible for the recognition of protein 

substrate (Figure 1.18) (Petroski et al., 2005). The human genome contains at least 69 

identified F-box proteins (Jin et al., 2004), which carry the distinct 40 amino acid F-box 

domain (Frescas and Pagano, 2008; Welcker and Clurman, 2008) 

Recently it was suggested that SGT1, which also binds SKP1, acts as an adaptor protein 

that might link HSP90 to the CRL1 complex. The CS-domain of SGT1 was previously 

shown to interact with the N-terminal domains of HSP90 (Zhang et al., 2010)  
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(Skaar, Pagan and Pagano, 2013) 

Figure 1.18 Overview of the Cullin-RING ligases. Components of Culin-RING 

ligases include RBX1, RBX2 and E2 enzyme, an adaptor protein (SKP1, DDB1, BTB 

and elongin BC complex) amongst others and a substrate recognition module (F-box 

protein, and SOCS box proteins) amongst others. 
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1.3.3.2: Cullin 2, Cullin 5 and other cullin systems 

The elongin BC and a variety of SOCS box proteins operate with the CRL2 and CRL5 

E3 ligase systems, and are responsible for recruiting substrate (Kile et al., 2002) 

(Figure 1.18). The elongin BC complex binds to the N-terminal domain of the E3 ligase, 

which in turn acts as the adaptor for a specific SOCS box containing proteins, which 

include the cytokine-inducible Src homology 2 domain-containing protein (CIS), 

SOCS1-7, WSB1, SPSB1, ASB1, Rab40, elongin A and MUF1 amongst others 

(Okumura et al., 2016). The elongin BC complex of CUL5 can interact with SOCS 

protein through the specific box-binding domain (Piessevaux et al., 2008). These 

contain a variety of other domains thought to be involved in substrate recruitment, 

which include the SH2 domains of SOCS 1-7, WD40 domains of WSB1, ankaryn 

domains of ASB1 as well as leucine rich repeats of MUF1. However, although these 

SOCS proteins may selectively assemble with CUL5 for post-translational modification 

of the specific substrate, the affinities for each SOCS protein is differently, such as 

SOCS1 and SOCS3 are weaker than others, and the precise role of these interactions 

remains questionable (Babon et al., 2009).  

In general, the other cullins include CRL4A and B use DNA damage-binding protein 1 

(DDB1) and DDB1-and CUL4-associated factor (DCAF) as the substrates adaptors 

(Figure 1.18). In contrast, CRL3 only has bric-a-brac-tramtrack-broad complex (BTB) 

as the adaptor for its substrates. CRL7 and CRL9 are atypical cullin-based ligases 

complexes. SKP1 and WD40 domain 8 (FBXW8) F-box protein was identified as the 

substrate adaptor for CRL7 (Figure 1.18). No substrate adaptors have been identified 

for CRL9. Cell-division cycle protein 20 (CDC20) or CDC20 homologue 1 (CDH1) are 

the substrates adaptors that have been revealed for APC/C so far, but still unclear for the 

entire complex (Skaar, Pagan and Pagano, 2013).  
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Recent work has implicated CUL5 in the proteasome directed degradation of HSP90 

client proteins. Efficient silencing of CUL5 in the human cancer cell line HT29, using 

custom designed siRNA significantly stabilized the degradation of the HSP90 client 

kinases, ERBB2, BRAFV600E, AKT and CDK4, in response to the HSP90 inhibitor. 

Interestingly, CUL5 silencing also increased resistance to HSP90 inhibitors in a variety 

of cancer cell lines (Samant, Clarke and Workman, 2014). 

1.3.3.3: U-box containing E3 ubiquitin ligases 

The homodimeric protein CHIP is a U-box E3 ligase (Murata et al., 2001) that 

possesses an N-terminal tetrotricopeptide (TPR) domain that binds directly to the 

conserved MEEVD and IEEVD motifs at the extreme C-terminus of HSP90 and HSP70, 

respectively. CHIP directs Lys 63-linked polyubiquitylation with Ubc13-Uev1a (Zhang 

et al., 2005; Komander and Rape, 2012). CHIP also direct Lys 48-linked 

polyubiquitylation for facilitating the quality control of chaperone client proteins (Cyr, 

Höhfeld and Patterson, 2003). As such it is a prime candidate for the ubiquitylation of 

HSP90 client proteins. CHIP has been implicated in the ubiquitylation of ErbB2 (Xu et 

al 2002; Zhou et al, 2003), cystic fibrosis transmembrane regulator (Meacham et al, 

2001, Younger et al 2004), Nitric Oxide synthase (Jiang et al, 2003; Peng et al, 2004; 

Pertrucelli et al., 2004; Shimura et al, 2004), and E2A transcription factors (Huang et al, 

2004) and SMAD proteins (li et al, 2004). Many of these are now known to be HSP90 

client proteins. The structure of CHIP in complex with an MEEVD peptide of HSP90 

(Figure 1.19 A) and the Ubc13-Uve1 (Figure 1.19 B) has been determined (Zhang et 

al., 2005). CHIP displays an inherent asymmetry that ensures one U-box E3 ligase is 

involved in the polyubiquitylation of substrate (Zhang et al., 2005).  
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(Zhang et al., 2005) 

Figure 1.19 Crystal structure of CHIP in various complexes. (A) CHIP TPR domain 

associated with the decapeptide of the C-terminal domain of HSP90. The MEEVD 

sequence of the C-terminal domain lies along the TPR channel with an extended 

conformation. The binding of Met727 from the side-chain into a hydrophobic pocket, 

which projects the upstream sequence out of the TPR domain. (B) The dimer U box 

domains (orange and blue) of CHIP independently interact with Ubc13 (yellow), which 

in turn is bound to Uev1 (magenta).  
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1.3.4: HECT ubiquitin E3 ligases  

The third major family of E3 ubiquitin ligase is homologous with E6-associated protein 

C-terminus (HECT) domain E3 ligase. Unlike, RING finger E3 ligases, HECT E3 ligase 

do not directly transfer the ubiquitin from the E2 conjugating enzyme to substrate but 

form a covalent thioester intermediate directly via a conserved cysteine residue (Spratt 

et al., 2014). HECT domain E3 ligases have been classified into three families (Rotin 

and Kumar, 2009) (Figure 1.20). These are the HERC family (HERC1 to 6), which 

contain a regulator of chromosome condensation 1 (RCC1)-like domain (RLD), the 

NEDD4 family (NEDD4, NEDD4L, SMURF1/2, ITCH, WWP1, WWP2, NEDL1 and 

NEDL), which contain two to four WW domains and finally the remaining HECT 

proteins (E6AP, HECTD2, KIAA0614, TRIP12, G2E3, EDD, HACE1, HECTD1, 

UBE3B, UBE3C, KIAA0317, HUWE1 and HECTD3) that contain a myriad of domains, 

including Ankaryn, zinc-finger, RING and DOC domains amongst others (Rotin and 

Kumar, 2009) (Figure 1.20).  

In common, the HECT proteins all contain a C-terminal HECT domain, which regulates 

a variety of processes. For example, the ITCH E3 ligase from the NEDD4 family was 

reported to regulate the immune system through the adjustment of JUNB levels in cells, 

which in turn affects the expression level of interleukin 4 (IL4) (Gao et al., 2004). ITCH 

can also down-regulate the level of NOTCH1, which is thought to bind the WW domain 

of ITCH, leading to its ubiquitylation (Spana et al., 1996; McGill et al., 2003). In 

contrast, HERC1 plays a role in membrane trafficking (Garcia-Gonzalo and Rosa, 2005). 

HERC2 appears to affect human eye color variation via the regulation of Oca2 locus 

(Sturm et al., 2008; Eiberg et al., 2008). HUWE1 appears to regulate the degradation of 

p53 (Chen et al., 2005) and myeloid cell leukemia sequence 1 (MCL-1) (Zhong et al., 

2005).  
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(Rotin and Kumar, 2009) 

Figure 1.20 Family of human HECT domain E3 ligases. So far 28 human HECT E3 

ligases have been identified and are divided into three classes: HERC, NEDD4 and 

other HECTs families. The HERC family has six members and is further divide into 

small and large HERCs. The small HERCs contain single regulator of chromosome 

condensation 1 (RCC1) –like domains (RLD), while the large HERCs have more RLDs 

and additional domains, including SPRY and WD40.  NEDD4 family has nine members 

and they all contain an amino-terminal C2 domain and several WW domains (usually 

two to four). The rest of the HECTs could be distinguished by unique and myriad 

domain architecture. The C-terminus HECT region is a common domain for all these 28 

HECTs.  
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1.3.4.1:  HECTD3 

HECTD3 is characterized as having an unknown N-terminal domain, a middle DOC 

domain and a C-terminal HECT domain (Rotin and Kumar, 2009). Very little is known 

about the biological role of HECTD3. Early studies implicate HECTD3 in the ubiquitin 

directed degradation of Tara (Yu et al., 2008), and later then it was revealed that 

HECTD3 could interact and promote the ubiquitylation of Syntaxin 8 (Zhang et al., 

2009). More recent studies suggest that HECTD3 might interact and promote the 

polyubiquitylation of caspase-8 (Li et al., 2013a). It was also suggested that HECTD3 

interacts with mucosa-associated lymphoid tissue 1 (MALT1) and is required for its 

stabilization (Li et al., 2013b). The HECT E3 ligase is also important for regulating 

certain types of cancer cells. For example, the E6AP ligase forms a complex with the 

onco-protein E6 in human papilloma virus (HPV) infected cells and promotes the 

proteasomal degradation of HSP90-dependent client protein tumour suppressor protein 

p53. In turn this promotes oncogenesis and cervical cancer is enhanced (Scheffner et al., 

1993). The HUWE1 HECT ligase was also found to regulate the degradation of p53 

(Chen et al., 2005) and promotes the survival and transformation of cells.   

Some structural information on the HECT domain has been published for E6AP, 

WWP1 and SMURF2. The N lobe of HECT domain is recognized to be responsible for 

E2 binding, while the conserved Cys residue in the C lobe accepts ubiquitin from the E2 

and forms thioester complexes with ubiquitin (an intermediate step), which is then 

transferred to the substrates (Huang et a., 1999; Verdecia et al., 2003; Ogunjimi et al., 

2005).  
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1.4: RNA interference 

1.4.1: Introduction 

RNA interference (RNAi) is a technique that efficiently and reliably knocks down or 

knocks out target gene expression (Matzke et al., 2005; Huppi et al., 2005). In general, 

post-transcriptional gene silencing or RNAi describes the complementary interaction 

between siRNA and messenger RNA (mRNA) (Resnier et al., 2013). RNA silencing 

was discovered in a Caenorhabditis elegans, which is a type of the nematode worm, by 

exogenously introducing double stranded RNA (dsRNA) into the worm and depressing 

par-1 mRNA (Guo et al., 1995; Fire et al., 1998). Selective silencing of target gene 

interrupts the normal expression of the encoded protein and may reveal the biological 

function of the protein. Short interfering RNAs (siRNAs), micro RNAs (miRNAs) and 

piwi interacting RNAs (piRNAs) are the three main categories of small RNAs that have 

been identified so far in eukaryote cells. piRNAs are characterized by its single stranded 

nature and are mainly found in animals. In contrast, siRNAs and miRNAs are 

characterized by their double stranded nature (Malone and Hannon, 2009), but whereas 

miRNAs are expressed from the cell’s own genome, siRNAs are derived exogenously 

from viruses or transposons for example. While siRNAs is excised from long dsRNAs 

with perfect complementary, miRNAs is produced from incomplete double stranded 

stem-loop precursors (Tomari and Zamore, 2005) (Figure 1.21), but both ultimately 

silence expression by acting through a common mechanism.  

1.4.2: Pathway for maturing RNA precursors 

The primary miRNA transcript is initially processed in the nucleus (Lee et al., 2002* 

and 2003) by Drosha, which specifically excises the miRNA precursor from the primary 
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miRNA transcript, and subsequently exports a miRNA molecule, as a stem loop 

structure with a cohesive 5’ phosphate and a 2-nucleotide 3’ overhang, through the 

exportin-5 receptor to cytoplasm (Lee et al., 2003; Basyuk et al., 2003; Bohnsack et al., 

2004; Lund et al., 2004; Yi et al., 2003; Lee et al., 2002* and 2003) (Figure 1.22). The 

RNase-III like enzyme Dicer is then responsible for the maturation of miRNA precursor 

in a similar way to dsRNA and siRNA in the cytoplasm (Hutvágner et al., 2001; 

Grishok et al., 2001; Lee et al., 2004; Xie et al., 2004; Bernstein et al., 2001) (Figure 

1.22). The number of Dicer genes in organisms is variable. For example, there are two 

paralogues of Dicer (Dice-1 and Dice-2) in Drosophila melanogaster, while S. pombe C. 

elegans and mammalas only contain one. In Drosophila melanogaster, Dicer-1 is 

responsible for processing miRNA precursor, while long dsRNA is processed by Dice-2 

(Lee et al., 2004; Liu et al., 2003; Pham et al., 2004).  
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(Tomari and Zamore, 2005) 

Figure 1.21 Biogenesis of small RNA in animals. (Left) RNase-III-like enzyme 

Drosha cleaves the primary miRNA (pri-miRNA) in nucleus to generate the pre-miRNA 

(miRNA with precursors), which it is exported to the cytoplasm after the binding with 

Exportin 5. Dicer binds and cleavages the pre-miRNA to release a miRNA duplex. 

(Right) Drosha is not required for long double-stranded RNAs (dsRNAs). Successfully 

cleaving the long dsRNA by a pairs of Dicer generates a siRNA duplex. The cleavage is 

preferentially initiated at the ends of dsRNA. Both miRNA and siRNA is then 

selectively assembled into RISC by specific machinery.  
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(Meister and Tuschl, 2004) 

Figure 1.22 Maturation pathway of small-RNA in Drosophila melanogaster. RNase-

III-like enzyme Drosha cleavages the primary miRNA in the nucleus. The miRNA 

precursor (pre-miRNA) is produced after the cleavage and subsequently exported into 

cytoplasm via exportin-5 receptor. The miRNA precursor is further cleaved by Dicer to 

generate siRNA-duplex-like intermediates. The siRNA duplex assembles into 

miRNP/RISC after unwinding the double strand. Ago proteins bind to the mature 

1.23%
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miRNAs for regulating the translational repression or guiding the cleavage of the target 

mRNAs. For the other sources long dsRNA in cytoplasm (usually includes:  artificially 

introduced dsRNA, viral RNAs, RDRPs generated dsRNA, and genomic sense and 

antisense transcripts), the RNase III enzyme Dicer processes the long dsRNA into 21 to 

23 nucleotide long dsRNA intermediates. This dsRNA is then unwound and assembled 

into RISC with help from RNA helicase Armitage and R2D2. The exonuclease ERI-1 

and the adenosine deaminase acting on RNA (ADARs) are the two negative regulators 

of this pathway. 
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The RISC assembly consists of duplex RNAs loaded onto the Ago protein and 

unwinding of the duplex (Kawamata and Tomari, 2010). RISC assembly in Drosophila 

using Ago2-RISC is the best-studied system. In this, the RNA duplex is initially 

captured by the RISC-loading complex (RLC), consisting of Dicer-2 and the R2D2 

protein in a polarity determined by the higher affinity for the RNA duplex by R2D2. 

Thus, Ago2 binds the RNA duplex with a prefixed orientation (Tomari et al., 2004; 

Matranga et al., 2005) (Figure 1.22). The chaperone protein, HSP90 assists Ago 

loading in an ATP-dependent manner (Iwasaki et al., 2010) (Figure 1.23). It is thought 

that the initial loading of the RNA duplex involves a chaperone mediated 

conformational change in Ago (stretching) (Kawamata and Tomari, 2010; Meister, 

2013). Subsequently, as Ago releases the tension by returning to its closed conformation, 

which is ATP independent, the duplex RNA is unwound and the passenger strand is 

discarded. In the mammalian genome there are four different Ago proteins that are 

similar to fly Ago1 rather than to fly Ago2. Although there is some debate concerning 

the precise details, the processing of the RNA also appears to be different and involves 

a RISC loading complex (RLC), comprised of Ago, Dicer, and TRBP (Maniataki and 

Mourelatos, 2005). The Dicer-Ago components bind and cleave the pre-miRNA and the 

product is then oriented by the Dicer-TRBP heterodimer while handling off to Ago 

(Figure 1.23).  

1.4.3: Gene silencing via siRNA 

Exogenous dsRNA that is introduced into a cell can be processed by Dicer into a 21 

nucleotide fragment with a 2 nucleotide base overhang at the 3′ ends of the dsRNA 

molecule (Bernstein et al., 2001; Elbashir et al., 2001). Synthetic siRNA bearing this 

structure can be introduced into cells and is then assembled into siRISC complexes for 
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gene silencing of complementary mRNA, by cleaving the central section of the 

complementary mRNA (Martinez et al., 2002 and 2004). Cleavage is achieved by the 

Ago PIWI-domain, which acts as a non-ATP dependent reaction (Nykänen et al., 2001; 

Hutvágner et al., 2002). The endonucleolytic cleavage of the mRNA can be suppressed 

if siRNA is mismatched to its target mRNA (Tomari and Zamore, 2005).  
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(Meister, 2003) 

Figure 1.23 Model for assembly of small RNAs into Ago clade proteins. (A) Dicers 

two RNase III domains engage with dsRNA or pre-miRNA to generate a 21 to 23 

nucleotides dsRNA. Such short dsRNA repositions its location on Dicer by reloading 

itself. During this step, the dsRNA-binding protein makes sure the loading and the 

strand selection is correct. The heat shock protein 90 (HSP90) is thought to keep 

Argonaute in an open conformation for dsRNA transfer. (B) Ago binds HSP90 and is 

converted to its open conformation. This process is assisted by co-chaperones. Upon the 

binding of small RNA to Ago, the double strand is unwound and the passenger strand is 

cleaved and removed, while ATP is hydrolyzed by HSP90. Ago protein then shifts to its 

closed conformation with only the guide single strand RNA. Finally, HSP90 and co-

chaperones dissociate from the complex.	
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1.5: Hypothesis and Aims 

HSP90 functions a chaperone protein that regulates the stability of its client proteins for 

downstream signaling, and inhibition of HSP90 disrupts its biological function and 

induces the degradation of client proteins through the proteasome system. E3 ligases are 

a large and structurally diverse class of molecules that collectively co-operate with 

hundreds of protein components required for the degradation or regulation of a vast 

array of substrates.  Many of these substrates are known HSP90 clients, but how they 

are delivered to E3 ligases complexes is still unknown. Identifying specific E3 ligases 

involved in the degradation of HSP90 client proteins is the initial step towards 

understanding such complex degradation pathways. Finally, determining the 

mechanisms that operate may help us understand their role in carcinogenesis.  
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CHAPTER TWO 

Materials and Methods 
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2.1: Reagent and Buffer 

Full growth DMEM medium: 

DMEM (life technologies, 21969-035) medium supplemented with 10% FCS and 1% 

v/v L-glutamine (Life Technologies, 25200-056) 

Full growth DMEM plus medium: 

DMEM media supplemented with 10% v/v Foetal Calf Serum (FCS), 1% v/v non-

essential amino acid (life technologies, 11140-035) and 1 % v/v L-glutamine  

FCS free DMEM: 

DMEM medium supplemented with 0% FCS and 0% v/v L-glutamine 

GFP-trap pull down lyses buffer: 

0.5 mM EDTA, 25 mM HEPES pH 7.8, 150 mM NaCl, 10% v/v Glycerol, 1/100 

protease inhibitor, 1mM DTT, and 0.5% v/v Triton X-100   

GFP-trap pull down washing buffer: 

0.5 mM EDTA, 25 mM HEPES pH 7.8, 150 mM NaCl, 10% v/v Glycerol, 1/100 

protease inhibitor and 1mM DTT 

Western blot transfer buffer: 

10% 10x Tris-Glycine, 20% methanol and 70% SQ water  

AHA-labeling GFP pull down lyses buffer: 

0.5 mM EDTA, 25 mM HEPES pH 7.8, 150 mM NaCl, 10% Glycerol 1/100 protease 

inhibitor and 0.5% Triton X-100 

AHA labeling G25 column equilibrium/washing buffer: 

0.5 mM EDTA, 25 mM HEPES pH 7.8, 150 mM NaCl, 10% Glycerol and 1/100 

protease inhibitor  
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Iodoacetamide solution: 

Dilute 50mM iodoacetamide in 25mM NH4HCO3  

Trypsin buffer: 

Dilute trypsin with acidic buffer to give 1 µg/ µl concentration  

2.2: DNA cloning and amplification 

2.2.1: DNA restriction digests and gene synthesis 

All restriction enzymes and buffers were purchased from New England Biolabs (NEB, 

Hitchin, UK). Double restriction digest were conducted as recommended by the 

restriction enzyme manufacturer. Typically for each double digest reaction, 1 µl of 

DNA was mixed with 4 µl of restriction buffer (contain 100x BSA) in 33 µl of ultra-

pure water. Restriction enzymes (1 µl for each enzyme) were added to the solution just 

prior to incubation at 37° C for 1 hr. Digestion with XhoI and BamHI were found to be 

the most suitable restriction enzymes for cloning CRAF into the pEYFP-C1 vector. The 

gene for the full-length human CRAF was designed with XhoI-BamHI cloning sites 

(Appendix 1). The construct was synthesized and inserted into pEYFP-C1 by Genscript 

(Piscataway, NJ 08854 USA).  

2.2.2: Transformation of E. coli  

Competent cells were deforested on ice and gently mixed with 1 μl of pEYFP-C1-

CRAF plasmid DNA. The cells were then incubated on ice for 25 min, heat shocked for 

30 sec at 45°C and immediumtely replaced on ice for 2 min. 1 ml of Super Optimal 

Broth medium (Invitrogen, 15544-034) without antibiotics was then added with gently 
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mixing and the cells incubated for 45 min at 37°C with shaking at 250rpm. The 

transformed cells were then evenly spread on LB (Lauria broth) agar plates containing 

kanamycin (Fisher Scientific, 25389-94-0) at 50 μg/ml. The plate was subsequently 

incubated over night at 37°C to allow transformed cells to form colonies.  

2.2.3: Amplification of plasmid DNA 

Single colonies were picked and cultured in 5 ml LB medium containing 100 μg 

ampicillin at 37°C with shaking at 220 rpm. This starter culture was then diluted 1/40 

into a sterile flask containing 50 ml LB medium with 100 µg kanamycin and grown at 

37°C over night with shaking at 220 rpm. Cells were then harvested by centrifugation at 

5000 rpm for 20 min at 4°C. Plasmid was prepared with the Midi Plasmid Kit 

(QIAGEN, 12943), as described by the manufacturer. Once the DNA pellet was dry, it 

was dissolved in a suitable volume of TE pH 8.0 buffer. 

2.3: Maintenance and growth of human Cell lines  

The HCT116 human colorectal carcinoma and HT29 human colorectal adenocarcinoma 

cell lines were a kind gift from Paul Workman (The Institute of Cancer Research). Both 

HCT116 and HT29 cells were grown in full culture DMEM plus medium. NHE1, 

HEK293, COS7 and A549 cell lines were obtained from the Genome Damage and 

Stability Centre, University of Sussex. These cell lines were cultured in full culture 

DMEM medium. All cells were grown in either a 75 cm2 (with 25 ml medium in total) 

or a 175 cm2 (with 50 ml medium in total) flask (Corning, T75, T175), at 37° C with a 5% 

CO2 humidified atmosphere in a NuAire Microbiological CO2 incubator as described by 

the manufacturer (NuAire Company, Caerphilly, UK).  
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Cell lines were maintained by washing once in 37°C PBS and then incubating for 5 min 

with 0.25% trypsin-EDTA (Life Technologies, 25200-056), at 37°C and a 5% CO2 

humidified atmosphere. Cells were then transferred into a 50 ml Falcon tube (Thermo 

Fisher Scientific) and pelleted at 1500 rpm for 5min. The cell pellet was washed with 37°

C PBS and re-suspended in 10 ml full culture DMEM medium. Subsequently, 10 μl of 

cell suspension was loaded onto a Marienfeld counting chamber (haemocytometer) and 

dispersed with an ultra thin glass coverslip. Cell numbers were determined by counting 

individual cells in each 4x4 square at each corner and averaged by 4. Next, 1.5x106 cells 

were then inoculated into fresh medium as appropriate and grown at 37oC in a 5% CO2 

humidified atmosphere. The procedure was then repeated every three days. 

To prepare cell line stocks for long-term storage, a confluent monolayer of cells was 

grown in a 175 ml flask (Corning, T175). The cells were then made de-adherent with 

0.25% trypsin-EDTA for 5 min and then pelleted at 1500 rpm. The cell pellet was 

subsequently suspended in FCS medium containing 10% v/v DMSO and 1x106 cells 

aliquoted per tube and stored frozen in a container (NALGENE, 5100-0001) at -80 °C 

for 24 hr before moving into liquid N2 for longer term storage. 

2.4: Generation of a HEK293 cell line stably 

expressing pEYFP-CRAF  

HEK293 cells were grown in full culture DMEM medium. 1x105 cells in a total volume 

of 3 ml were seeded into a 6 well plate. After 24 hr incubation at 37°C and a 5% CO2 

humidified atmosphere, various concentrations of G418 (50, 100, 200, 400, 800 and 

1600 μg/ml) were added to the cells. The culture medium containing G418 was 

replaced every 3 days. The growth of the cells was observed for two weeks and the 
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highest concentration of G418 was chosen for the selection of a stable cell line. 

For each transfection reaction, 2 μg of plasmid DNA (pEYFP-C1-CRAF or pEYFP-C1) 

was mixed with sterile nuclease free water to give a final volume of 10 μl. The DNA 

was then added to an eppendorf containing 100 μl of FCS free DMEM medium, and 4 

μl of transfection reagent TurboFect (Thermo Fisher, R0531), and gently mixed before 

incubating for 20 min at room temperature. Finally, the DNA mixture was gently added 

drop by drop to 7.5x104 HEK293 cells which were previously seeded into 6 well plates 

and incubated for 24 hr to allow cells to reach 50% confluence. After 24 hr growth at 37° 

C with a 5% CO2 humidified atmosphere, expression of pEYFP-CRAF was checked by 

western bot analyses (Section 2.6.2) and 800 nM of G418 was then added to maintain 

selection for 2-3 days growth. Cells were then harvested and transferred into a 10 cm 

plastic plate for further selection with 800 nM G418. Once cells had reached 80% 

confluence they were split into 2-3 10 cm plates and the full culture DMEM medium 

containing G418 refreshed at least twice a week. Further selection was did in 96 well 

plate with single colony picked up from 10 cm plates. After a month of selection, the 

expression level of eYFP-CRAF and the eYFP control protein was analysed from each 

colony of wells. All cell samples showing expression of eYFP-CRAF and eYFP were 

selected and further stored at -80° C (Section 2.3).  
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2.5: Development of an in vivo plate fluorescence-

based assay 

2.5.1 Determination of the GI50 for HEK293 cells with the HSP90 

inhibitor, AUY922 

1.5x104 of either wild type or stably eYFP-CRAF over expressing HEK293 cells in total 

volume of 160µl of full culture DMEM medium was seeded in to a flat-bottomed 96 

well plate that allowed adherence of cells to the well bottom (Ibidi, 250210). The wells 

on the outermost edge of the plate were not seeded but filled with PBS in order to buffer 

the innermost cells against temperature changes otherwise known as the side effect. The 

plates were then incubated at 37° C with a 5% CO2 humidified atmosphere and grown 

for 24 hr. Subsequently, 40 µl of FCS and L-glutamine free DMEM medium containing 

0, 2.5, 5, 10, 20, 40, 80, 160 and 320 nM of AUY922 was added to test wells. One well 

in each column contained DMEM medium and inhibitor but was void of cells and 

represented the control. Plates were then incubated for 24 hr at 37° C in a 5% CO2 

humidified atmosphere. Subsequently, 10x AlamarBlue (Thermo Fisher, DAL1100), 

cell viability reagent was added to each well to all development of the fluorescence 

signal from living cells. The absorption from AlamarBlue from both control and test 

wells was measured immediately at 450 nm in a POLARstar Omega micro-plate reader 

(BMG Labtech, Germany). The GI50 was determined by plotting cell survival against 

drug concentration and then applying a logarithmic regression to allow estimation of the 

concentration of the AUY922 required to inhibit 50% growth of cells. 
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2.5.2: Determination of the AUY922 concentration required for 

promoting eYFP-CRAF proteasome dependent degradation  

Having determined the GI50 for AUY922 for HEK293 cells we next investigated the 

amount of AUY922 required for stimulation of eYFP-CRAF proteasomal degradation. 

HEK293 cells were grown in full culture DMEM medium and 6x105 cells in a total 

volume of 3 ml were seeded in to 2x6 well plates and grown up to 50% confluence at 37° 

C with a 5% CO2 humidified atmosphere. AUY922 was then added at 1x, 2x, 3x, 4x 

and 5xGI50 concentration (Section 2.5.1) and the cells incubated for growth. At 24 hr 

cells were harvested from one plate to check for the expression of eYFP-CRAF by 

western blot analysis (Section 2.6.2). The second duplicate plate was allowed to grow 

for 72 hr incubation and cell numbers reflecting viability were counted as the described 

in Section 2.3. 

2.5.3: Fluorescence assay for performing the proteasome 

degradation of eYFP-CRAF induced by AUY922 

1.5x104 of stably expressing eYFP-CRAF HEK293 cells in a total volume of 160 µl 

DMEM medium were grown in a flat-bottomed 96 well plate. The wells on the 

outermost edge of the plate were not seeded but filled with PBS in order to buffer the 

innermost cells against temperature changes otherwise known as the side effect. The last 

well of each column was devoid of cells and acted as the control. At 50% confluence of 

cell density, 3xGI50 (determined from section 2.5.2) of AUY922 diluted with FCS free 

DMEM medium in a total volume of 40 µl was added to all experimental wells. At each 

indicated time point following AUY922 treatment (0, 3, 6, 9 and 12 hr), medium from 

the well was aspirated, the cells washed twice with 200 µl PBS, and then 100 µl of PBS 

was added. The total eYFP fluorescence intensity from the well was immediately 
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analysed using the POLARstar Omega (BMG Labtech, Germany) micro-plate reader at 

485 nm excitation and 520 nm emission. Cell viability was also analysed with 10x 

AlamarBlue (Section 2.5.1).  

2.6: In vivo cell biology techniques 

2.6.1: EYFP-CRAF Pull down assay 

Stably transfected HEK293 cells expressing full-length eYFP tagged human CRAF or 

eYFP itself were grown in a 10cm plastic plate in full culture DMEM medium to 60-80% 

confluence. 2 μM of MG132 was then added to each plate, incubated for 3 hr in a 5% 

CO2 humidified atmosphere at 37oC, followed by the addition of a 3xGI50 concentration 

of AUY922. Cells were then re-incubated at 37° C with a 5% CO2 humidified 

atmosphere and cells from individually plates harvested at specific time points (0, 2, 4, 

8, 16 and 24 hr) by washing twice with warm PBS and then finally by scrapping cells to 

detach them from the plates, without trypsinization. The cell number was then 

determined by a haemocytometer count and a total of 5x106/ml cells transferred to a 

15ml Falcon tube (Thermo Fisher Scientific). Cells were then pelleted at 1500 rpm for 5 

min at room temperature, washed with 5 ml room temperature PBS, and finally re-

suspended in 1ml ice cold PBS before transferring to a 1.5 ml eppendorf tube. The cells 

were then pelleted at 8000 rpm for 3 min at 4°C, the supernatant was discarded and the 

cell pellet re-spin at 10000 rpm for 1min at 4°C to remove traces of PBS. The cell pellet 

was then frozen in liquid N2 and stored in -80°C freezer.  

For pull down assays cells were defrosted on ice for 30 min in lysis buffer (400 

µl/7.5x106 cells) and then allowed to lyse on a rotating wheel for 1 hr at 4°C. Cell debris 
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and insoluble material were then removed by centrifugation at 13400 rpm for 20 min at 

4°C. 500 µl of the supernatant was then transferred into eppendorfs with 30 µl pre-

equilibrated GFP-trap agarose beads (Chromotek, gta-20), and incubated on the rotating 

wheel at 4°C for 45 min. The GFP-trap agarose beads were then pelleted at 3200 rpm 

for 2 min at 4°C and then washed three times with 120 µl of washing buffer, re-pelleted 

at 3200 rpm for 2 min at 4°C. After the final wash, 60 µl of 2x NuPAGE LDS sample 

buffer (Life technologies, NP0007) was added to the resin and the sample and control 

samples (30 µl of the supernatant and all flow through fractions) boiled for 5 min at 

100°C. Finally, 20 µl of each sample was analysed by SDS-PAGE gel electrophoresis 

(Invetrogen, NuPAGE) and visualized by staining with instant blue (expedeon, ISB1L).  

2.6.2: Western blots  

In each well from 6 well plate, cells were lysed with 500 µl of 2X NuPAGE LDS 

sample Buffer, and then the lysate transferred to an eppendorf. Cell lysates were boiled 

at 100º for 10-15 min, cooled on ice briefly and then pipetted up and down to reduce 

viscosity before boiling for another 2 min. 10-20 µl of sample was analysed by SDS-

polyacrylamide gel electrophoresis (Life technologies NuPAGE 4-12%Bis-Tris Gel 

NP0321BOX) at 160 V and 400 mA for 60-90 min.  Subsequently, proteins were 

transferred to Amersham Hyperfilm ECL membrane (GE Healthcare, 10600034) using 

the Xcell II Blot Module (Invitrogen, EI9051) at 210 V and 120 mA for 60-90 min or 

follow the manufacturer instructions.  

For detection, the membrane was pre-incubated in 5% milk-PBS with 0.1% v/v Tween 

20 (T20) for 30 min and then transferred to a 50ml falcon tube containing 10 ml 3% 

milk-PBS-T20. The primary antibody was then added and membranes incubated on 

rotating wheel over night at 4°C. The incubation for ErbB2 was performed for 2 days 
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with 1% milk since the expression level for endogenous ErbB2 is quite low in the 

HEK293 cell line. After incubation with primary antibody, membranes were washed for 

3 x 15 min with PBS-T20, and then incubated with the appropriate secondary antibody 

in 3% milk-PBS-T20 for 1-2 hr at room temperature. The membrane was finally washed 

3 x 15 min with PBS-T20, and soaked in ECL western blot reagent (Thermo Fisher, 

32106) to develop a specific chemiluminescent signal, which was detected on 

amersham hyperfilm ECL (GE Healthcare, 28906836). The dilutions for primary and 

secondary antibodies used are summarized (Appendix 2). 

2.6.3: Azide and alkyne pulse-labelling reaction for newly 

synthesized eYFP-CRAF 

HEK293 cells stably expressing eYFP-CRAF were grown in full culture DMEM 

medium and 5x105 cells were then seeded into 10 cm plastic plates and grown to 50% 

confluence. Subsequently, cells were transfected with HECTD3 siRNA for 48 hr with 

the method described in Section 2.6.5. All cell samples were then washed twice with 

warm PBS and cultured in L-methionine free DMEM medium (Invitrogen, 21013-024) 

for 1 hr to remove traces of methionine. Cells were then washed twice with warm PBS 

and labelled with 30 µM Click-iT AHA L-azidohomoalanine (Invitrogen, C10102) for 3 

hr, before washing with warm PBS. Cells were then re-grown in full culture DMEM 

medium for 24 hr. Samples were harvested at 8, 16 and 24 hr as described previously 

(Section 2.6.1). Finally, cell pellets were frozen in liquid nitrogen and stored at -80ºC. 

 As required cell pellets were defrosted and lysed for 90 min at 4 oC in AHA-labelling 

GFP pull down lyses buffer. Cell lysate was then clarified by centrifugation at 13,000 

rpm for 25 min at 4oC and 50 µL of the supernatant (up to 200 µg of AHA labeled 

protein) was used for the AHA-azide and biotin-alkyne (Thermo Fisher, B10185) 
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conjugation in the absence of DTT, which is a potent inhibitor of the reaction by using 

the Click-iT protein reaction buffer kit (Invitrogen, C10276). Conjugation reactions 

between AHA-azide and biotin-alkyne were performed by rolling the sample in the dark 

for 20 min at room temperature. Subsequently, the sample was desalted on a PD 

SpinTrap G-25 column (GE, 28-9180-04), which was pre-equilibrated with AHA-

labelling equilibrium washing buffer. The AHA-Biotin labelled protein was then 

subjected to pull down assays using GFP-Trap to sequester AHA-Biotin labeled eYFP-

CRAF from the entire protein mixture. Samples of AHA-Biotin labeled eYFP-CRAF 

were then analysed by western blot (Section 2.6.2). 

2.6.4: siRNA experiment 

2.6.4.1: Control siRNA oligos against eYFP-CRAF in HEK293 cells 

80 µl of 1.2x104 of stably expressing eYFP-CRAF HEK293 cells in full culture DMEM 

medium were seeded in to a 96 well plate and incubated for 24 hr at 37° C with a 5% 

CO2 humidified atmosphere. On-target plus GFP siRNA (Dharmacon), which target 

YFP and On-target plus Non-targeting siRNA (Dharmacon) (Appendix 3.2), used as 

the negative control were transfected into the stably expressing eYFP-CRAF HEK293 

cells. Briefly, stock siRNA was gently spin down and diluted with 1x siRNA buffer 

(Dharmacon, B-00200-UB-100) and prepared in Nuclease free water (Fisher scientific, 

7732-18-5) to give a final concentration of 5 µM siRNA, which could be stored at -20° 

C. For each siRNA transfection, which was triplicated, 0.5 µl of 5µM siRNA was added 

to 9.5 µl of FCS free DMEM medium and incubated for 5 min at room temperature. The 

contents were then gently mixed with 0.2 µl of DharmaFECT reagent 1 (Dharmacon, T-

2001-01) diluted in 9.8 µl of FCS free DMEM and incubated for 25-30 min at room 
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temperature. Finally, the transfection mixture was added to a well containing the 80 µl 

of 1.2x104 of HEK293 cells and the plate incubated for 72 hr at 37°C with a 5% CO2 

humidified atmosphere. Cells were then washed and fixed for 10 min using 4% 

paraformaldehyde in PBS, then permeabilised using 0.3% Triton X-100 in PBS and 

stained with 0.5µg/ml DAPI in PBS for 15 min. DAPI was replaced by PBS after the 

staining. The effectiveness of the siRNA knockdown was confirmed by imaging using 

the Olympus ScanR microscope at 10x magnification and images were analysed using 

ScanR Analysis proprietary software. A minimum of 10,000 cells was imaged per 

individual sample. For analysis, the images were subjected to a standardized 

background correction with a 50-pixel window and image segmentation analysis 

anchored to nuclei as main objects in order to obtain the total eYFP-CRAF intensity per 

nucleus and the nucleus-associated cytoplasmic region. To eliminate potential image 

segmentation artifacts, we only included the analysis for cells associating with a cell 

segment smaller than 9,000 pixels - roughly equivalent to the observed cell size on the 

raw image. We also excluded high DNA content artifacts (>4N) as they predominantly 

represented unresolved multi-nucleated cell aggregates. The filtered data was then 

exported and analysed using Microsoft Excel. All other immunofluorescence 

experiments imaged and analysed on the Olympus ScanR were subjected to the same 

image analysis protocol. 

2.6.4.2: High throughput screening with a ubiquitin ligase siRNA 

library 

High throughput siRNA screening was conducted using E1-E2-E3 (Cullin and HECT 

domain E3) ubiquitin ligase library subset1 from Dharmacon, consisting of 6 siRNA-

coated plates (Dharmacon) (Appendix 3.1). Plates were used to reverse-transfect format 
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at 50 nM final siRNA concentration into optical imaging plates. For each siRNA plate 

screen, 7.9 ml of DharmaFECT cell culture reagent (Thermo scientific, B-004500-100) 

was mixed with 80 µl of Dharmacon transfection reagent 1 and stored at room 

temperature under sterile conditions for no longer to 2 hr prior to use. 25 µl of the 

mixture was then added to each experimental well containing smart-pool siRNA and 

incubated 30 min at room temperature. 100 µl of full culture DMEM medium 

containing 2.4x104 HEK293 cells stably expressing eYFP-CRAF were gently added 

into wells and incubated for 72 hr at 37° C with a 5% CO2 humidified atmosphere. 

Following transfection, eYFP-CRAF degradation was initiated by addition of 3xGI50 of 

AUY922 for 8 hr at 37° C with a 5% CO2 humidified atmosphere. Subsequently, cells 

were washed, fixed and stained with DAPI as described (Section 2.6.4.1). The eYFP 

intensity from each experimental well was analyses as previously described (Section 

2.6.4.1)  

2.6.4.3: Validation of high-throughput siRNA screen hits  

HEK293 cells stably expressing eYPF-CRAF were grown in full culture DMEM 

medium. 1.2x104 cells in a total volume of 80 µl were seeded into 96 well plates and 

incubated for 24 hr at 37°C with a 5% CO2 humidified atmosphere. The wells on the 

outermost edge of the plate were not seeded but filled with PBS in order to buffer the 

innermost cells against temperature changes otherwise known as the side effect. A 250 

nM siRNA for each potential positive hit from the high through put screen (Section 

2.6.4.2) were prepared as previously described and 20 µl of each siRNA was added to a 

each well to a final concentration of 50 nM in total 100 µl. Cells were then incubated 

for 72 hr at 37°C with a 5% CO2 humidified atmosphere. Each siRNA knockdown was 

repeated six times in a single plate. Subsequently a 3xGI50 of AUY922 was added to 
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each well and incubated for an additional 8 hr. The cells were then washed, fixed and 

stained with DAPI (Section 2.6.4.1). The eYFP intensity from cells were analysed by 

microscopy as previously described (Section 2.6.4.1). All quantitative data 

measurements were at least in triplicated and error bars represent standard deviation 

from the mean. Individual cell data were averaged where appropriate and averages were 

used in subsequent analyses. Significance was tested using a Paired Student T-test and 

stars denote the levels of significance. All such analyses were done using Microsoft 

Excel.  

2.6.4.4: Western blot analysis of that endogenous CRAF levels 

following siRNA knockdown of Cullin 5 and HECTD3  

3x105 HEK293 cells grown in full culture DMEM medium in a total volume of 3 ml 

were seeded into 6-well plates and grown to a 40% confluence. The siRNA for CUL 5 

and HECTD3 (Appendix 3) were prepared at 50 nM, respectively, and added to cells as 

described in Section 2.6.4.1. The plate was then incubated for 48 hr (HECTD3) or 72 hr 

(CUL5) at 37°C with a 5% CO2 humidified atmosphere. A double siRNA treatment for 

HECTD3 was suggested after 24 hr transfection. Degradation of endogenous CRAF 

was subsequently induced by the addition of 3xGI50 of AUY922. Cells were then 

harvested at 0, 8, 16 and 24 hr drug treatment. Both the level of endogenous CRAF 

depletion, and the knock down level Cuillin5 and HECTD3 were analysed by western 

blot analysis (Section 2.6.2).  
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2.6.5: Proximity Ligation Assay for detection of co-localization 

between HSP90, CRAF, and HECTD3 

HEK293 cells stably expressing eYFP-CRAF and eYFP were grown in full culture 

DMEM medium. 4.5x105 cells in a total volume of 3 ml were seeded on cover slips 

(Thermo scientific, A67761333) in 6-well plates and grown to 40-60% confluence and 

followed by 3xGI50 of AUY922 for another 18hr incubation. The cells were then fixed 

with 4% paraformaldehyde in PBS for 10 min and subsequently washed for 3x5 min 

with warm PBS buffer (2ml). Cells were then permeabilized with 0.3 % Triton X-100 in 

PBS (200µl) for 10 min, washed for 3x5 min wash with warm PBS buffer and then 

blocked with 200µl BlockAid blocking solution for 20 min. The primary antibodies 

were prepared with BlockAid blocking solution (Life Technologies, B10710) (100 µl 

per coverslip). Cells were then incubated for 1 hr with primary antibodies (Appendix 2) 

as appropriate. Slides were then washed with 1x PLA Buffer A for 2x5 min while 

shaking. The proximity ligation experiment between HSP90/eYFP, HSP90/CRAF, 

HSP90/HECTD3 and CRAF/HECTD3 was performed by using the Duolink® In Situ 

Red Starter Kit (Sigma-Aldrich, DUO92101). The PLA probes (secondary antibodies), 

MIUS and PLUS, was diluted 1:5 with BlockAid blocking solution. For each reaction, 

24 µl of the PLA probes were mixed with 72 µl BlockAid blocking solution and 

subsequently added onto the cells. Slides were incubated 1 hr at 37°C in a pre-heated 

humidity chamber. The cells were then gently washed for 2x5 min with 1x PLA Buffer 

A in preparation for the ligation and PCR steps of the PLA assay.  

The Ligation buffer from the kit was then diluted 1:5 in RNAse free water and used to 

dilute the ligase by 1:40. The ligation-ligase mix (120 μl) was then added to the cells 

and the sample incubated at 37oC in a humidified chamber for 30 min. Meanwhile, 

amplification buffer was then diluted 1:5 in with RNAse free water and used to dilute 
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the DNA polymerase by 1:80. The cells were then washed with 1x PLA buffer A for 

2x5 min, the amplification-DNA polymerase mix (120 μl) was added to the cells, and 

the sample incubated at 37oC for 100 min. The cells were then wash with 1x PLA 

Buffer B for 2x10 min, with 0.01x PLA Buffer B for 1 min and the slides allowed to dry 

at room temperature in the dark.  

The slides were eventually stained with DAPI and VECTASHIELD. 10 µl of DAPI 

containing mounting medium (Sigma, DUO82040) was placed onto a glass slide, and 

the coverslip containing the treated cells was then applied to the mounting solution cell 

side down. The edges of the coverslip were sealed with colourless nail varnish. The 

Leica TCS SP8 Confocal Microscope was used to capture all images from the cell 

sample using a 63x magnification oil objective, or stored at -20° C for short periods of 

time. Using a confocal microscope (Leica TCS SP8) the nuclei of cells were imaged 

using a UV light setting and the PLA signal using a 555 nm laser source. A series of 

stacked images were taken in both channels. The images from each stack were 

processed by IMAGE J using the Z project plug and analysed with Macros for PLA foci 

counting (Appendix 4).  

2.7: In vitro cell biology techniques 

2.7.1: Mass spectrometry 

Protein samples from pull down assays were analysed by SDS-PAGE gel and stained 

with Instant Blue (Section 2.6.1). Protein bands were cut from the gel using a clean 

scalpel, fragmented to increase the surface area to volume ratio and then transfer into an 

eppendorf tube. The gel fragments were then de-stained with 25 mM NH4HCO3 diluted 

with 50% MeCN for 5 min with shaking. These washes were repeated three times and 
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the gel fragments then further dehydrated in a spin vacuum for 5 min without heating. 

Subsequently, the gel pieces were incubated for 45 min at 50°C with sufficient 10mM 

DTT that just covered the gel until the gel was rehydrated. After the gel cool back to 

room temperature, aspirating all the liquid and replaced with iodoacetamide solution. 

The eppendorf tube was then incubated for 45 min in dark room at room temperature. 

Liquid was aspirated from the eppendorf tube and repeated the step of dehydrated. After 

that, the pieces of gel were rehydrated in trypsin solution with the volume just enough 

to fully rehydrate the gel back to full size, and leave on ice for 10 min. 25mM 

NH4HCO3 was then added to the eppendorf tube to cover the gel and incubated 

overnight at 37°C. TFA (just enough to cover the gel) was added to eppendorf tube with 

vortex. Peptides were eluted by spin down the pieces of gel and remove the supernatant 

(peptides) to a clean tube. Finally, the volume of peptide was concentrated to 10 µl 

using speed vacuum with heat on or off.  
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CHAPTER THREE 

Degradation of HSP90-
dependent client kinases in 

HEK293 cells following 
HSP90 inhibition 
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3.1: Introduction 

Most biological components involved in the ubiquitylation of HSP90 client-proteins 

remain unknown. The automated siRNA screening provides a reliable route by which 

such components, including the E3 ligase, could be identified following the inhibition 

of HSP90, which is known to induce ubiquitylation of protein substrates. The HSP90 

inhibitor AUY922 competitively binds with a high affinity to the ATP pocket of the N-

terminal domain of HSP90 (Brough et al., 2008; Eccles et al., 2008; Gao et al., 2010). 

Previous studies revealed that treatment of the tumor cells lines HT29 and HCT116 with 

17-AAG and AUY922 promoted ubiquitylation of the proto-oncogene kinases BRAF 

and CRAF (Sharp et al., 2007). The survival of such cancer cell lines is highly 

dependent on RAF kinase stimulated MAP kinase signaling.  

Selection of the cell line for this study was carefully considered. We firstly tried to over 

express eYFP-BRAFV600E kinase domain in Hela cells, but the expression is unstable 

and the protein tended to degrade (Appendix 5). HCT116 and HT29 cell lines were also 

investigated, but none of them showed stable transfection of the kinase domain of 

BRAFV600E or the full length of CRAF. However, ultimately we wanted to avoid cell 

lines that are driven by RAF kinases. We reasoned that such cell lines might have 

altered E3-ubiquitylation systems that aid their survival and that cells might be sensitive 

to apoptosis following HSP90 inhibition. We also considered very carefully the choice 

of HSP90 client protein; its sensitivity and most importantly that it displayed a 

significant depletion in response to HSP90 inhibition. CRAF in HEK293 cells fulfilled 

these requirements and was therefore selected for this study. Consequently, we 

developed an eYFP-CRAF stably over-expressing HEK293 cell line that was suitable 

for use in siRNA screens.   
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3.2: Methodology  

3.2.1: Live cell imaging with the DeltaVision microscopy 

imaging system 

The Olympus inverted microscope was used for live cell imaging of over-expressed 

eYFP-CRAF in HEK293 cells. Cells were grown for 24 hr in a sterile chamber (Thermo 

Fisher, 155379), washed with warm PBS and then incubated in cell imaging solution 

pre-heated to 37oC (Thermo Fisher, A14291DJ). The Köhler illumination was adjusted 

for high quality imaging and the filter for FITC and transmitted light channel were 

selected. The exposure time was minimized to reduce bleaching of the eYFP protein. 

The focus was auto-adjusted based on the channel of transmitted light. A 10x objective 

was used and imaging was conducted over a 24 hr period. Cells were selected at 10 

different locations in the chamber and images captured every 5 min. 288 images were 

captured at each location, which were processed by OMERO and FIJI (Image J) 

software as required. 

3.2.2: Plate reader assay modifications 

Plate readers are often used to quantify signals from assays or directly from cells (see 

Material and Method 2.5). Using HEK293 cells in a 96-well plate we encountered two 

problems. The first issue came from the culture environment. Cells that were seeded in 

wells at the edge of the plate gave a relative low reading compared with cells cultured in 

wells situated in the middle region of the plate. This is probably due to changes in 

temperature and CO2 tension during the incubation, which tends to be more extreme at 

the plate edges. Thus the temperature at the edge wells can cool faster during 

manipulations. Furthermore, changes in airflow can affect the CO2 tension, which may 
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in turn alter the pH of the medium. Another issue encountered was that of weak 

attachment of HEK293 cells to the bottom of the plate. Replacement of the medium or 

washing with PBS removed substantial numbers of cells. This seriously influenced the 

measurement of the signal from the eYFP-CRAF protein in the fluorescence-based 

assay. To address these issues an enhanced cell attachment plate was used. Furthermore, 

when replacing medium or PBS buffer a specific amount was left in wells to limit any 

environmental changes and reducing the pressure from incoming solution, while the 

outermost wells of each plate contained medium or PBS and were not seeded with cells. 

This acted as a buffer to environmental changes during manipulations of the plate. 

3.3: Results 

3.3.1: Over-expression of eYFP-CRAF in HEK293 cells 

Human full-length CRAF was cloned into the Kan/Neo resistance pEYFP-C1 vector as 

an XhoI-BamHI fragment (Figure 3.1). A stable cell line expressing eYFP-CRAF was 

selected on medium containing 800 μg/ml G418 antibiotic (see Materials and Methods 

2.4). The expression of eYFP-CRAF in HEK293 cells was checked by immunobloting 

with α-GFP antibody, which identified a band corresponding to the expected relative 

molecular mass of the eYFP-CRAF fusion protein.  No considerable level of free eYFP 

expression was detected (Figure 3.2). Live cell imaging over a 24 hr period (see Section 

3.2.1), revealed a high level of eYFP-CRAF expression and a cytosolic distribution 

(Figure 3.3). 
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Figure 3.1 Restriction enzyme digests for the cloning of CRAF. Restriction enzymes 

used to digest vector and insert. (A) Both the pEYFP-C1 and N1 vector was tested with 

single NheI, HindIII, EcoRI, SaII, KpnI, Agel and XmaI restriction enzymes of their 

ability to cleave the DNA. (B) The pEYFP-C1 vector was further tested with double 

restriction enzyme digests. 
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Figure 3.2 Exogenous eYFP-CRAF stably expressed in HEK293 cells. Expression 

levels of eYFP-CRAF, native CRAF and eYFP were detected by immunoblotting of 

stably transfected and none-transfected HEK293 cells with α-GFP antibody. GAPDH 

was used as the loading control. The same amount of eYFP-CRAF was detected by both 

anti-CRAF and Anti-GFP botibodies. 	
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Figure 3.3. Live cell imaging of stably expressing eYFP-CRAF transfected 

HEK293 cells. Stably eYFP-CRAF expressed HEK293 cells were cultured in a 

chamber suitable for live cell imaging. The microscope was set up to captured the cell 

for every 5 min up to 24 hr. Images were processed by FIJI (Image J). A 100x time 

image from 0hr was provided to present a view of cytoplasm and nucleus. Scale bar = 

50 µm. 
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3.3.2: Determining the AUY922 GI50 for WT and eYFP-CRAF 

overexpressing HEK293 cells 

The GI50 concentration of AUY922 was determined for both wild type and stably 

transfected HEK293 cell lines (see Materials and Methods 2.5.1). The initial range of 

the inhibitor concentration tested was between 2.5 and 1600 nM. Cells exposed to 

concentrations above 360 nM were stressed and did not survive. Consequently, an upper 

limit of 320 nM of AUY922 was used in subsequent experiments. No substantial drop 

in cell viability was observed at 2.5, 5.0, 10.0 and 20 nM of inhibitor (Figure 3.4 A & 

B). However, the cell viability decreased to 44% when cells were exposed to 40 nM 

inhibitor concentrations. Viability continued to decrease with concentrations of 

AUY922 increasing to 320 nM. All measurements were conducted in triplicate and 

repeated at least 5 times. AUY922 is now in Phase II clinical trial and the given 

concentration to patient per week is 70mg/m2. More information is available on 

clinicaltrials.gov. 

To determine the GI50, a logarithmic trend line was applied to the graph between the 

AUY922 concentrations of 2.5 to 320 nM. The equation, y=-12.23In(x)+98.315 was 

derived from the logarithmic trend line. The GI50 for wild type HEK293 cells was found 

to be 28±5 nM (Figure 3.4 A). The GI50 for cells containing overexpressed eYFP-

CRAF was 27±5 nM (Figure 3.4 B). The GI50 reading for both the cell lines are quite 

similar, suggesting that the over-expression of eYFP-CRAF in HEK293 cells does not 

affect its response to AUY922. 
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Figure 3.4 GI50 determinations. The AUY922 GI50 for (A) wild type and (B) eYFP-

CRAF over-expressing HEK293 cells were respectively determined by cell viability 

assay. Logarithmic equation was applied for the cure for calculating the GI50 for wild 
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type HEK293 cells and eYFP-CRAF over-expressing HEK293 cells. Each measurement 

was repeated at least 5 times and the standard deviation was applied and showed in error 

bar. A table for presenting the drug concentration and cell survivability was followed at 

the bottom of each graph.  
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3.3.3: Degradation of eYFP-CRAF in response to AUY922 

treatment 

The concentration (GI50 = 28 ±5 nM) of AUY922 that inhibited 50% growth of 

HEK293 cells in 24 hr might not be sufficient at promoting the degradation of eYFP-

CRAF. To determine the concentration required for inducing the degradation of eYFP-

CRAF, HEK293 cells stably expressing eYFP-CRAF were incubated with 1, 2, 3, 4 and 

5 x the GI50 of AUY922, and the level of eYFP-CRAF depletion was evaluated using α

-GFP antibody (see materials and methods 2.6.2). Cells incubated with 1 and 2 x GI50 

did not show substantial depletion of eYFP-CRAF, whereas those treated with 3, 4 and 

5 x GI50 showed a dramatic degradation of the fusion protein (Figure 3.5 A).   

Cell survival was also tested with the same concentrations of AUY922 (Figure 3.5 B). 

1 x GI50 did not affect the viability of the cells after a 72 hr incubation. Cell numbers 

dropped approximately 40% when incubated with 2 x GI50 and cell proliferation was 

almost totally inhibited at 3 x GI50. Cell numbers dropped below the initial seeded levels 

when cells were treated with 4 and 5 x GI50, as observed microscopically. At 4 and 5 x 

GI50 cells were visibly stressed or dead. Consequently, we decided to use a 

concentration of 3 x GI50 in future experiments as this gave a substantial depletion of 

eYFP-CRAF without causing significant visible stress or death to cells.  
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Figure 3.5 Protein stability and cell survival following AUY922 treatment. (A) 

Cells were exposed to 1-5 x GI50 of AUY922 for 72 hr and the expression of eYFP-

CRAF was quantified by a western blot analysis. Most of the eYFP-CRAF was depleted 

at 3 x GI50 of NVP-AUY92 after 24hr. (B) Cell survival was determined by counting 

the total cell numbers from each experimental well. The growth of 293 cells was mostly 

inhibited at 3 x GI50 of NVP-AUY92 after 72 hr treatment. Cells died at 4 and 5 x GI50 

of AUY922.  
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3.3.4: AUY922 promotes the degradation of multiple kinase 

proteins 

Previous experiments revealed that a 3 x GI50 concentration of AUY922 would 

efficiently promote the degradation of the eYFP-CRAF fusion protein in HEK293 cells. 

We next tested the same concentration of AUY922 on HEK293 cells and noted the 

depletion of several other HSP90-dependent protein kinases. These included ErbB2, 

MASTL, BRAF, CRAF, RIP, PDK1, LKB1 and CDK4 (Figure 3.6). Low levels of 

ErbB2 expression where seen in HEK293 cells, which turned out to be the most 

sensitive kinase to AUY922 treatment. Depletion of ErbB2 almost reached 100% after 4 

hr incubation with the HSP90 inhibitor, and no recovery was detected within 24 hr. In 

contrast, MASTL, which was also expressed at low levels, was not particularly sensitive 

to HSP90 inhibition, only showing substantial depletion after 24 hr treatment. For wild 

type BRAF, a high endogenous level was detected, but it is was not much more HSP90-

dependent in HEK293 cells, and it appears that only the mutant type BRAFV600E in 

tumour cells relay on HSP90 In contrast, CRAF, which belongs to the same RAF family, 

was found to be very sensitive. The degradation of CRAF was constant over the first 16 

hr of inhibitor treatment, but showed signs of recovery after 18 hr. Although BRAF and 

CRAF are both upstream regulators of the RAF-MEK-ERK cascades (Lowy and 

Willumsen, 1993), they clearly respond differently to HSP90 inhibition in HEK293 

cells as has been seen in previous studies (Wellbrock, Karasarides and Marais, 2004). 

For RIP, detected as a double band with a 5 to 10-kDa difference, only the upper band 

was found to be sensitive to HSP90 inhibition, while an increase in the levels of the 

lower band were simultaneously observed following HSP90 inhibition (Figure 3.6). 

Strangely, for PDK1 an increased expression level was observed following inhibitor 

treatment. The significance of this remains unknown. 
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Figure 3.6 Sensitivity of kinases to HSP90 inhibition. Immunoblotting of cellular 

kinase levels for ErbB2, MASTL, BRAF, CRAF, RIP, PDK1, LKB1 and CDK4 in 

HEK293 cells with kinase specific antibodies during a 24 hr AUY922 treatment. ErbB2, 

CDK4, MASTL and LKB1 levels declined during AUY922 treatment. GAPDH was 

used as a loading control.  
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The stabilization of the tumor suppressor LKB1 was previously found to depend on the 

activity of HSP90 (Boudeau et al., 2003). An apparent constant rate of LKB1 

degradation was observed following AUY922 treatment (Figure 3.6). Two LKB1 bands 

were detected by immunoblotting, and both bands showed a substantial time dependent 

degradation with no observable recovery within 24 hr treatment. The endogenous 

expression level of CDK4 in HEK293 cells was identified as the highest among the 

kinase tested. Recovery of CDK4 levels was observed after 20 hr treatment.  

3.3.5: A Fluorescence-based assay for eYFP-CRAF degradation 

in HEK293 cells 

Prior to the development of the assay it was necessary to confirm whether HEK293 

cells in the presence or absence of AUY922 produced any measurable signal that would 

interfere with eYFP detection (Figure 3.7 A). The readout signals from wild type cells 

with or without AUY922 were similar to that of PBS alone. This suggested non-

transfected HEK293 cells and AUY922 did not generate any considerable interference 

signal.  

It was also necessary to determine the linear range over which the eYFP signal could be 

detected using a POLARstar Omega micro-plate reader. Cell densities of 25, 50, 75 and 

100% confluence were used. As expected, these results showed that as the cell densities 

used in the experiment increased the eYFP signal increased in a linear fashion (Figure 

3.7 B).  
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Figure 3.7 Control experiments for the fluorescence based assay in the HEK293 

cell line. Background fluorescent signal from, (A) Wild type HEK293 cells 

with/without AUY922 treatment was examined. Either the WT cells or AUY922 did not 

contribute any significant readout signal. (B) The fluorescence intensity of eYFP-CRAF 

over-expressing HEK293 cells with increasing cell density. 
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Next the effect of AUY922 on the fluorescence intensity of eYFP-CRAF was tested 

(see Materials and Methods 2.5.2). The total fluorescence signal from cells expressing 

eYFP-CRAF was measured from each experimental well and plotted against time 

(Figure 3.8 A). Measurements from non-transfected HEK293 cells were used as control 

readout, and wells containing PBS represented the blank (background) readout. There 

was no considerable readout signals detected from the non-transfected cells either with 

or without inhibitor at each selected time point. In contrast, transfected cells produced a 

consistent and significant loss of the eYFP-CRAF signal within 12 hr post AUY922 

treatment and no subsequent recovery was observed. As expected, non-drug treated 

cells showed an increase in the total signal (Figure 3.8 A). No significant cell death was 

observed during the course of the experiment (Figure 3.8 B).   

The decrease in fluorescence for AUY922 treated cells suggests depletion of eYFP-

CRAF. This was also confirmed by a western blot analysis (Figure 3.8 C). The 

endogenous expression of CRAF and HSP90 was also analysed (Figure 3.8 C). The 

results showed efficient depletion of both eYFP-CRAF and endogenous CRAF with 

drug treatment.	
  

3.3.6: Inhibition of HSP90 leads to the proteasomal degradation 

of eYFP-CRAF. 

Previous experiments demonstrated considerable cellular degradation of eYFP-CRAF 

by quantifying the eYFP fluorescence intensity in transfected HEK293 cells following 

treatment with AUY922 (see section 3.3.3). This suggests that following HSP90 

inhibition eYFP-CRAF might be subject to ubiquitylation and degradation by the 

ubiquitin system.  
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Consequently, stably expressing eYFP-CRAF HEK293 cells were treated with MG132 

or DMSO control prior to AUY922 treatment. Subsequently, eYFP-CRAF was 

immunoprecipitaed with GFP-trap beads (see Material and Methods 2.6.1) and the 

degree of eYFP-CRAF ubiquitylation was analysed. Cells not treated with 1µM MG132 

(treated with DMSO) showed some ubiquitylation of eYFP-CRAF, but those treated 

with the proteasome inhibitor displayed a substantially higher level of ubiquitylation 

(Figure 3.9). This indicated that the fusion protein was ubiquitylated in response to 

HSP90 inhibitor treatment and was subject to proteasome degradation. 
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Figure 3.8 Fluorescence-based assay quantifying the degradation of eYFP-CRAF 

following AUY922 treatment. (A) Both the stably eYFP-CRAF over-expressing and 

wild type (WT) HEK293 cells were treated with 3 x GI50 of AUY922 for 12 hr. The 

remaining (non-degraded) eYFP-CRAF signal was quantified for each 3 hr time period. 

A significant decrease of the eYFP signal was observed with the treatment of inhibitor. 

The WT HEK293 cells did not contribute any considerable readout. (B) The viability of 

cells was quantified for each 3 hr time period during the inhibitor treatment. 3 x GI50 of 

AUY922 did not effect the cell viability within this period of time. (C) Corresponding 

antibodies confirmed the cellular expression level of eYFP-CRAF, endogenous CRAF 

and HSP90 after 8, 24 and 48 hr AUY922 treatment. Both the endogenous and 

exogenous CRAF went down by responding to the inhibition of HSP90 and started to 

recover after 24 hr treatment. Tubulin was used as the loading control.   
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Figure 3.9 Ubiquitylation of eYFP-CRAF. EYFP-CRAF over-expressing HEK293 

cells were pre-treated with MG132 and then AUY922. EYFP-CRAF was subsequently 

immunoprecipitated with GFP-trap beads and evaluated for the degree of eYFP-CRAF 

ubiquitylation using an α-ubiquitin antibody. The eYFP-CRAF fusion was showed by 

α-GFP antibody. The GAPDH from flow through was used as the loading control. 
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3.4: Discussion  

Previous studies revealed the ubiquitylation and degradation of CRAF through the 

proteasome system in cells treated with geldanamycin, a natural-product inhibitor of 

HSP90 (Schulte et al., 1995; Chavany et al., 1996). When these inhibitors were initially 

discovered, they were not known to competitively bind to the ATP pocket of HSP90. 

However, once their target was identified (Prodromou et al., 1997a; Roe et al., 1999) 

many different HSP90 inhibitor chemotypes were developed that could promote the 

proteasomal degradation of HSP90-dependent protein kinases (Sharp et al., 2006 and 

2007; Chiosis et al., 2001; Banerji et al., 2005). Similarly, the ATP-competitive protein 

kinase inhibitors such as Vemurafenib could also promote the ubiquitiylation dependent 

degradation of HSP90 client protein kinases. Such inhibitors are now known to prevent 

kinase association with the co-chaperone CDC37 and therefore recruitment to HSP90 

(Polier et al., 2013). However, whether kinase degradation following kinase inhibitor 

treatement proceeds through the same pathway, as the HSP90 inhibitor-triggered 

degradation remains uncertain. 

Previous work by Paul Workman’s group indicates the stabilization of HSP90 client 

proteins, including ErbB2, CRAF, CDK4, CDK6 and p-AKT in human colon cancer 

cells, depends on the expression of CDC37. Furthermore, knockdown of CDC37 

promotes the proteasome-mediated degradation of these protein kinases, which 

indicates that the involvement of HSP90 is not a prerequisite for degradation and that 

separate pathways might exist. The loss of CDC37 in cells also increases the sensitivity 

of such kinases to the HSP90 inhibitor 17-AAG (Smith et al., 2009). Clearly, CDC37 is 

a critical scaffold protein in HSP90 complexes, and an essential component for HSP90 

dependent kinase stability. 
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BRAFV600E is one of the most common mutations able to drive cancer and consequently 

it has been heavily studied (Davies et al., 2002). Mutated BRAFV600E was previously 

shown to form an HSP90-CDC7 complex (Polier et al., 2013). The HSP90 inhibitor 17-

AAG has been shown to promote the degradation of the mutated BRAFV600E, but not the 

BRAFWT in melanoma and other human cancer cells, leading to the inhibition of cell 

proliferation and an increase cell apoptosis and antitumor activity (da Rocha Dias et al., 

2005; Grbovic et al., 2006). Two other HSP90 inhibitors, PF-4470296 and PF-3823863, 

were also shown to promote the degradation of BRAFV600E, as well as cMET, ErbB2, 

CRAF and AKT, in several human tumor cell lines (Mehta et al., 2011). 

In summary, our data show that in HEK293 cells, eYFP-CRAF and endogenous CRAF, 

and a number of other HSP90 dependent protein kinase, are sensitive to the anticancer 

HSP90 inhibitor AUY922. We see a consistent loss of eYFP-CRAF, CRAF, ErbB2, 

MASTL, LKB1 and CDK4 following treatment of cells with AUY922.  
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4.1: Introduction 

In chapter three, a fluorescence-based assay using stably eYFP-CRAF over-expressed 

HEK293 cells was described. We found that the eYFP-CRAF fusion product could 

undergo degradation in response to AUY922 treatment, by observing the fluorescence 

change as a detectable output. In this chapter, the first subset of the human ubiquitin 

library is used to identify potential components that may regulate the proteasomal 

degradation of eYFP-CRAF in HEK293 cells.  

The human siRNA library used in this study is known as Subset 1. It contains the 

human E1, E2, cullins and HECT domain E3 ligases and was used in an automated 

screening procedure, using a reverse transfection format (RTF) system. A specifically 

adjusted cell Vivo Olympus microscope from Dr Velibor Savic ‘s laboratory (Genome 

Damage and Stability Center, University of Sussex) was used for processing the siRNA 

screen and analyzing the data (Figure 4.1).  

The loss-of-function (LOF) screen technique is the most direct application that is used 

to identify the function of a gene of interest, based on the phenotype observed. 

Typically, a large number of expressing genes can be targeted with a large-scale siRNA 

library, which potentially identifies the role of such genes upon a specific biochemical 

process. The knockdown of gene products in such a screen has been shown to be 

effective against the expression of structural components, enzymes, transcriptional 

factors and cell membrane receptors (Echeverri and Perrimon, 2006). However, it is 

critical to distinguish the difference between knockdown (transient) and knockout 

(stable) (Echeverri and Perrimon, 2006).  

The modifier and synthetic lethal screen approach offers an additional step for 

modifying the LOF phenotype screen. Following silencing, a specific drug treatment 
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can be introduced and the phenotypic effect observed using a florescent readout. The 

screen of the human ubiquitin library in this project was developed based on this 

application using eYFP-tagged CRAF. One recent study based on this approach, 

identified a novel tumor suppressor (Kolfschoten et al., 2005; Westbrook et al., 2005). 

More details for high throughput RNAi screening in cultured cells can be found in the 

user’s guide written by Echeverri and Perrimon in 2006. 
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Figure 4.1 The imaging strategy for quantifying the eYFP intensity from 

individual cells. Stably eYFP-CRAF over expressing HEK293 cells were transfected 

and incubated for 72hr in a 96 well plate with pre-coated siRNA. Cells were then treated 

for an additional 8hr with the HSP90 inhibitor, AUY922. The cells were then fixed and 

the eYFP intensity from individual cells in each well was captured and analysed by 

Olympus cell Vivo microscope (see Material and methods 2.6.4 for details). 
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4.2: Results 

4.2.1: Normalizing control siRNA  

Control siRNA experiments were conducted ahead of the automated screen so that the 

cellular effect from both the positive and negative control siRNA treatment could be 

normalized. The on-target plus non-targeting smart-pool (siCTRL) and GFP duplex I 

siRNA (siGFP) were selected as the negative and positive control, respectively. Stably 

expressing eYFP-CRAF HEK293 cells were transfected with either negative or positive 

control siRNA (see Material and Methods 2.6.4), and the average GFP intensity from 

each individual cell was quantified and plotted as a histogram against the normalized 

frequency of cells using the Scan R software (Figure 4.2 A). Non-siRNA transfected 

cells had a total distribution of average GFP intensity between 180 and 1200, with a 

peak frequency at 450. Non-targeting siRNA treated cells showed similar range of GFP 

intensity, with a peak frequency of cells close to 440 (Figure 4.2 A). As expected, the 

GFP siRNA treated cells showed a peak frequency at around 260, which was 

substantially lower than for the control cells (Figure 4.2 A).  

 The level of eYFP-CRAF expression following negative or positive control siRNA 

transfection was also determined by immunobloting with GFP antibody and compared 

to that of non-siRNA transfected cells The results showed that transfecting with non-

targeting siRNA did not influence the expression of eYFP-CRAF, whereas the GFP 

siRNA substantially reduced the expression of eYFP-CRAF (Figure 4.2 B).  

Next the effect of AUY922 triggered degradation of eYFP-CRAF on siRNA treated 

cells was also investigated. Stably expressing eYFP-CRAF HEK293 cells were treated 

with negative control or positive siRNA followed by the addition of  
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Figure 4.2 Determination of normalized GFP frequency of cells treated with 

negative or positive siRNA. (A) Stably eYFP-CRAF over expressing HEK293 cells 

were respectively transfected with GFP siRNA (positive control) and non-targeting 

siRNA (negative control) for 72 hr. The total eYFP intensity from each cell was 

arranged in a distribution graph. Cells treated with GFP siRNA dramatically decreased 

the intensity of eYFP in comparison with non-targeting siRNA and non-transfected cells. 

(B) The expression of eYFP-CRAF from positive, negative and non-transfected cells 

was clarified by immunoblotting. GAPDH was used as the loading control for all 

samples. 
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AUY922 (see Material and Methods 2.6.4). The effects were analysed by counting cell 

numbers with high, intermediate and low GFP intensity levels (Figure 4.3). The non-

siRNA transfected cells (CTRL) gave a relative even distribution of cells between high 

and intermediate eYFP-CRAF intensity, and less than 1% cells were found in the range 

of low GFP intensity prior to AUY922 treatment. Cells transfected with non-targeting 

siRNA (siCTRL) showed a similar distribution to that of the CTRL. However, the GFP 

siRNA (siGFP) transfected cells showed a substantial decrease of cells displaying high 

eYFP-CRAF intensity (10%) with a corresponding increase on the number of cells with 

low intensity (30%).  

With AUY922 treatment a substantial decrease in eYFP-CRAF signal with high 

intensity and a corresponding increase in the number of cells displaying low levels was 

observed (Figure 4.3). As expected cells treated with GFP siRNA and AUY922 showed 

the largest number of cells with low eYFP-CRAF levels. These results suggest that 

siRNA GFP reduces eYFP-CRAF levels in cells and that treating with AUY922 can 

further decreases these levels.  

4.2.2: Automated siRNA screening for mediators of CRAF 

degradation 

Stably expressing eYFP-CRAF HEK293 cells were screened against the human 

conjugation ubiquitin library subset 1 (see Materials and Methods 2.6.4.1). The 

treatment of AUY922 in each experimental well initiated the degradation of eYFP-

CRAF, and the change in the total eYFP intensity of non-drug and AUY922 treated 

cells evaluated after 8 hr (see Materials and Methods 2.6.4.1).  
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Figure 4.3 Quantifying the degradation of eYFP-CRAF with control siRNAs. GFP 

and non-targeting control siRNA were respectively transfected into eYFP-CRAF over 

expressing HEK293 cells followed by additional treatment of 3 x GI50 of AUY922. The 

eYFP intensity per cell is shown as high (Red), intermediate (Green) and low (Blue) 

level intensity. The shift of the cell population between red and blue bar indicates there 

were a dramatically drop of eYFP-CRAF level in non-transfected and non-targeting 

siRNA transfect cells after the drug treatment.  
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Genes were ranked according to the relative fluorescence stabilization following 

AUY922 treatment and knock down of the encoded protein, compared to levels 

following AUY922 treatment of cells transfected with non-targeting control siRNA  

(Figure 4.4) (Appendix 3.1 for the list of the gene). From the 87 genes screened, 10 

potential hits were identified that stabilized the degradation of eYFP-CRAF by at least 

15 % compared to control cells. The top hits stabilizing eYFP-CRAF levels included 

HECTD3, UBA1, UBE1DC, UBE2G1, UBE2D3, CUL5, NEDD4, TSG101, UBE1L2 

and UBE2E1. As expected, the E1 ubiquitin activating enzymes UBE1 (also known as 

UBA1) and UBE1L2 (also known as UBA6), and the ubiquitin-like-protein E1 enzyme 

UBE1DC1 (also known as UBA5) were amongst the top hits. The identification of E1 

components in the top list provides a critical positive validation of the automated siRNA 

screen, since E1 enzymes are the essential for initializing all ubiquitylation processes. 

Furthermore, three E2 ubiquitin-conjugating enzymes featured in the top hits. These 

included the an E2 enzyme UBE2D3 (also known as UbcH5C) that can act as the 

initiator of ubiquitin chains as well as in K11 and K48 site specific chain elongation 

(UniProt P61077), UBE2G1 (also known as Ubc7), which catalyzes the elongation of 

K48 or K63 chains (UniProt P622520), and UBE2E1 (also known as UbcH6), which is 

specific for K48 chain elongation (UniProt P51965). Four E3 ligases also featured 

amongst the highest ranked genes. The best described was the CUL5 protein, which is 

the core scaffold protein involved in a large group of Cullin-Ring E3 ligases (CLRs) 

(Kile et al., 2002; Lydeard et al., 2013). Others included TSG101 an ubiquitin-binding 

component of the endosomal-sorting complex required for transport-I (ESCRT-I) 

system (Zhang et al., 2014), and HECTD3 and NEDD4, which belong to the HECT-

domain E3 ligase family. NEDD4 has been implicated in the regulation of a variety of 

membrane-associated signaling proteins and ion-channels (Zou et al., 2015), whereas 
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the role of HECTD3 remains poorly defined. However, previous research has revealed a 

role for HECTD3 in mediating the degradation of several non-HSP90 dependent client 

proteins, including Tara, Syntaxin 8, caspase-8 and MALT1 (Yu et al., 2008; Zhang et 

al., 2009; Li et al., 2013a and 2013b) 
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Figure 4.4 Automated siRNA screen of the Human ubiquitin library subset 1. The 

Human ubiquitin library subset 1 contains E1, E2, Cullins and HECT domain E3 ligases 

(Appendix 3.1) and was used to identify the components involved in AUY922 induced 

degradation of eYFP-CRAF. HEK293 cells were transfected with 50nM pre-coated 

smart-pool siRNA (4 unique siRNA oligonucleotides targeting to its complementary 

sequence for the same gene) to respectively knockdown a specific gene for 72 hr and 

subsequently incubated with 3 x GI50 AUY922. The level of eYFP-CRAF protein 

remaining was determined using the previously discussed imaging system (Figure 4.1). 

Following subtraction of the mean background value from each cell, the total eYFP 

signal for each experimental siRNA transfection was normalized as a percentage and 

compared to the value of the non-targeting negative control siRNA transfected cells. 

Values on y-axis above or below the negative control indicate the effect of stabilization 

and destabilization, respectively. Genes were ranked from left to right according to the 

efficiency of stabilization of eYFP-CRAF, and the top 10 components that gave the 

most stabilization were highlighted by colour from RED to GREEN and PINK.  
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Figure 4.5 Validation of the top positive hits and associated proteins. For each 

positive hit from the top ten, a single siRNA was used to target the gene (Appendix 3.2), 

followed by 3 x GI50 AUY922 treatment. The eYFP intensity from each cell was 

quantified and analysed as described in Figure 4.4. Each siRNA transfection experiment 

was repeated at least 5 times. The significant difference for each gene was statistically 

analysed (*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001) using the Paired student’s t-

test. The stabilization effect from HECTD3, CUL5 and UBA1 was reproducible. The 

individual knockdown of TCEB1 and TCEB2 also prevent the degradation of eYFP-
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CRAF. None of the SOCS protein contributed a competitive effect then HECTD3 or 

CUL5. The additional associated protein: STUB1 and STIP1 did not stabilize the 

degradation of eYFP-CRAF.  
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4.2.3: Validation of the positive hits  

To verify the involvement of these genes identified in the siRNA screen, which may 

mediate the degradation of eYFP-CRAF, we used individually designed ON-TARGET 

plus single siRNAs (GE Dharmacon) distinct from the pools used in the screens. Robust 

repeatable and highly statistically significant (with P value < 0.0001 in paired t-test) 

stabilization of eYFP-CRAF fluorescence was obtained for CUL5 and HECTD3. The 

level of stabilization was compared to that obtained with repeat siRNA knockdown of 

UBA1 (Figure 4.5).  

The validation experiments showed that UBE2E1 and UBE2G1 (with P value >0.05), 

UBE2D3 (P value < 0.005), NEDD4 (P value > 0.05), UBA5 (with P value < 0.05) and 

UBA6 (with P value < 0.001) from the top ranked genes did not significantly stabilize 

the degradation of eYFP-CRAF, showing only 10% stabilization (Figure 4.5). Not 

surprisingly, the knockdown of UBA1 consistently prevented the loss of eYFP-CRAF 

(with P value < 0.0001) (Figure 4.5).  

Previous studies revealed that siRNA silencing of the HSP90/HSP70 associated U-Box 

E3 ligase, STUB1/CHIP, mediated the degradation of ErbB2 following HSP90 

inhibition (Xu et al., 2002; Zhou et al., 2003). However, these experiments were not 

reproducible in the current study involving the degradation of eYFP-CRAF (with P 

value > 0.05). The knockdown of STIP1, a co-chaperone that mediates the association 

between HSP90 and HSP70, was shown not to significantly stabilize eYFP-CRAF 

following HSP90 inhibition (with P value <0.0001) (Figure 4.5).   

CUL5 is the scaffold protein for the elongin BC-CUL5-SOCS-Box (ECS) complexes, 

and operates with the catalytic RING finger proteins (RBX1/2) and NEDD8. The 

elongin BC complex (also known as TCEB2&1 complex) mediates the assembling of 
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the SOCS-box substrate recognized adaptor proteins, SOCS1-7 (Lydeard et al., 2013). 

Single knockdown of CUL5, TCEB1 or TCEB2 was found to have a consistent 

stabilization affect on eYFP-CRAF levels (Figure 4.5), which contradicts a previous 

study in the HT29 tumor cell line. This study revealed that the degradation of the 

HSP90 client proteins ErbB2 and BRAFV600E by CUL5 was independent of TCEB1&2 

(Ehrlich et al., 2009; Samant et al., 2014). The significance of this apparent 

contradiction remains unknown, but could be cell line specific. We also found that the 

knockdown of individual SOCS-Box proteins such as SOCS 1 and 4 could stabilize the 

degradation of eYFP-CRAF by more than 20% over control siRNA, but this effect was 

not as strong as that seen from HECTD3 and CUL5 knockdown (Figure 4.5).  

Taken together, the results so far suggest that the degradation of eYFP-CRAF in the 

HEK293 cell line was mediated by the elongin BC-CUL5 core and HECTD3 E3 ligase. 

A clear single SOCS-box protein specific for selecting eYFP-CRAF was not identified 

suggesting either, a large degree of redundancy between SOCS proteins in this role, or 

that some unidentified non-SOCS adaptor protein might be responsible.  

4.2.4: Validation of endogenous CRAF degradation by CUL5 and 

HECTD3  

The results so far suggest that the knockdown of CUL5 and HECTD3 leads to the 

stabilization of eYFP-CRAF following by AUY922 treatment. However, it was possible 

that this observation is due to some idiosyncratic feature of the eYFP-CRAF fusion 

protein. In order to address this, the effect on endogenous CRAF protein kinase was 

investigated following the knockdown of CUL5 and HECTD3. The CUL5 siRNA 

transfected HEK293 cells showed a delayed degradation of endogenous CRAF at 8 hr 

post AUY922 treatment and then leveled off towards 24 hr, while the non-targeting 
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siRNA treated cells showed a consistent degradation of CRAF (Figure 4.6). The 

knockdown of HECTD3 dramatically stabilized the degradation of CRAF (Figure 4.7), 

thus implicating HECTD3 in the degradation of endogenous CRAF.  

Since the degradation of ErbB2 was previously reported to be dependent on CUL5, but 

not TCEB2 (Ehrlich et al., 2009). We also tested the effect of CUL5 and TCEB2 

knockdown on ErbB2 levels. The data revealed that the cells transfected with control 

siRNA or targeting the knockdown of TCEB2 or CUL5 gave similar levels of ErbB2 

degradation in wild type HEK293 cells (Figure 4.8). Suggesting that ErbB2 is not 

subject to proteasomal degradation by the CUL5 pathway. Taken as a whole these 

experiments suggest that the degradation of CRAF in HEK293 cells is dependent on 

both the CUL5 and HECTD3 systems, although HECTD3 appears to be the main route 

for the degradation of CRAF.  
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Figure 4.6 Silencing CUL5 delays AUY922 induced degradation of CRAF. Wild 

type HEK293 cells were transfected with non-targeting negative control or CUL5 

siRNA for 72 hr and subsequently treatment with 3xGI50 AUY922 for between 0 to 24 

hr. The protein level of CRAF was immunoblotted and analysed. GAPDH was used as a 

loading control. A more accumulation of CRAF was observed at 0 hr and the HSP90 

inhibitor induced degradation of CRAF was delayed and stabilized to compare with 

negative control siRNA transfected cells. The CRAF remaining level was corrected 

with GAPDH level at 0hr and displayed in percentage.  
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Figure 4.7 The effect of HECTD3 knockdown on multiple protein kinases. 

Immunoblotting analysis of HSP90-dependent client proteins in both negative control 

and HECTD3 siRNA transfected HEK293 cells after 48 hr transfection and subsequent 

treatment with 3 x GI50 AUY922 for between 0 to 24 hr. GAPDH was used as the 

loading control for all samples. The degradation of CRAF, MASTL and LKB1 were 

implicated after 12 and 24 hr treatment. No significant affect was observed for the 

degradation of ErbB2 and CDK4.  
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Figure 4.8 Silencing TCEB2 and CUL5 did not delay the loss of ErbB2. 

Immunoblotting analysis of ErbB2 in negative control, TCEB2 and CUL5 siRNA 

targeted HEK293 cells after 72 hr transfection and subsequent treatment with 3 x GI50 

AUY922 for between 0 to 24 hr. GAPDH was used as the loading control for all 

samples. The degradation of ErbB2 was not effected by the siRNA knockdown of 

CUL5 or TCEB2.  
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4.2.5: HECTD3 dependency in the degradation of multiple 

HSP90 dependent protein kinases  

Although HECTD3 was shown to be involved in the degradation of CRAF, its effects 

on other client kinases remains unknown. Consequently, we tested a series of such 

kinases, and the level of stabilization in response to HECTD3 knockdown. The 

expression of ErbB2, MASTL, LKB1, and CDK4 was detected at reasonable levels by 

immunoblotting in wild type HEK293 cells (Figure 4.7). The degradation of MASTL, 

LKB1 was diminished with the knockdown of HECTD3, while ErbB2 and CDK4 was 

not affected (Figure 4.7).  We did not include BRAF, PDK1 and RIP because none of 

them responded to AUY922 in previous experiments (see section 3.2.5, Figure 3.6). 

These observations suggest that HECTD3 may represent a common degradation 

pathway for AUY922 triggered degradation in HEK293 cells for CRAF, MASTL and 

LKB1, which are all serine/threonine protein kinases. 	
  

4.2.6: HECTD3 and CUL5 are not involved in kinase inhibitor 

dependent degradation of eYFP-CRAF  

Previous studies revealed that ATP-competitive kinase inhibitors could block the 

association between various HSP90 client kinases and the kinase-specific recruitment 

co-chaperone, CDC37, which ultimately deprives access of the kinase to HSP90 (Polier 

et al., 2013). Consequently, the inhibited kinases undergo ubiquitin directed 

proteasomal degradation. However, it is still not fully understood how this HSP90-

independent degradation pathway differs to the HSP90-dependent pathway, which 

involves HSP90 inhibition.  

Results previously indicated that incubating HEK293 cells with Sorafenib could 
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promote degradation of eYFP-CRAF over 24 hours (Figure 4.9), as observed for 

Vemurafenib and BRAFV600E, lapatinib and ErbB2 and erlotinib and EGFRG719S 

(Polier et al., 2013).  Moreover Sorafenib treatment substantially inhibited the MAP-

kinase pathway and depleted phospho-p44/42 (ERK) levels. However, knockdown of 

HECTD3 in HEK293 cells did not affect the degradation of eYFP-CRAF and phospho-

ERK levels, relative to that seen with control siRNA (Figure 4.9 A), and the 

knockdown of CUL5 also did not show any dependently affect on Sorafenib induced 

degradation (Figure 4.9 B). Consequently, it appears that HECTD3 and CUL5 do not 

play a major role in kinase degradation triggered by chaperone deprivation in response 

to kinase inhibitor blockade of CDC37 binding.  
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Figure 4.9 Silencing HECTD3 and CUL5 does not influence kinase inhibitor 

induced loss of eYFP-CRAF. Immunoblotting analysis of eYFP-CRAF and P-p44/42 

in negative control, CUL5 and HECTD3 siRNA targeted HEK293 cells after 48 hr 

transfection and subsequent treatment with 32 µM of Sorafenib for between 0 to 24 hr. 

GAPDH was used as the loading control for all samples. (A) The kinase inhibitor 

triggered degradation of eYFP-CRAF and downstream signaling of P-p44/42 in 293 

cells was observed and it was not influenced by the knockdown of HECTD3 and (B) 

CUL5.   
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4.3: Discussion 

In this chapter, the human ubiquitin conjugation subset 1 library was automatically 

screened for effects on eYFP-CRAF stability when over-expressed in HEK293 cells. 

The results revealed several E1s, E2s and E3s might participate in the HSP90 inhibitor 

AUY922 triggered degradation of eYFP-CRAF. Further validation experiments 

confirmed the stabilization effect on eYFP-CRAF and endogenous CRAF were 

specifically related to the E3 ligases HECTD3 and CUL5, but that HECTD3 appears to 

be the main E3 ligase involved.  

Previously the role of CUL5 in HSP90 inhibitor induced degradation of client kinase in 

HT29 and HCT116 cancer cell lines was shown, but this appeared to be independent of 

a TCEB2&1 (elongin BC) requirement (Ehrlich et al., 2009; Samant et al., 2014). 

However, in the current study we observed that knockdown of either TCEB2 or TCEB1 

could stabilize the degradation of eYFP-CRAF. We hypothesized that the elongin BC 

complex is critical for linking substrate recognition to CUL5. This is consistent with a 

recent study suggesting that siRNA knockdown of CUL5, RBX1, CUL3, RNF7 (also 

termed RBX2) and SOCS5 could significantly reduce the HSP90 inhibitor, 17-AAG, 

triggered degradation of ErbB2 in HT29 tumor cells. Furthermore, the degradation of 

BRAFV600E, AKT and CDK4 was also reduced by knockdown of CUL5 or RBX2 

(Samant, Clarke and Workman, 2014). Although degradation of the over-expressed 

ErbB2 in HEK293T (Ehrlich et al., 2009), and endogenous ErbB2 in HT29 cells was 

previously reported to be dependent on CUL5 (Samant, Clarke and Workman, 2014), 

we did not observe any stabilization effect on ErbB2 in HEK293 cells following CUL5 

or TCEB 2 knockdown (Figure 4.8). The reasons for this discrepancy remain unknown 

and further work is now required in order to address this. 
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Our analysis suggests both SOCS 4 and SOCS 1 might influence the degradation of 

eYFP-CRAF, but the effect was far less than the adaptor protein complex TCEB1/2 

(elongin BC) or the newly identified HECTD3. Failure to observe strong stabilization 

effects following SOCS protein knockdown might be due to degeneracy in the 

recognition system. A variety of different CRL5 complexes specifically for recognizing 

various substrates, such as CRL5ASB, CRL5Cis/SOCS, CRL5WSB1, CRL5Elongin A, CRL5SSB 

and CRL5RAB-40C complexes have been identified (Okumura et al., 2012). 

HECTD3 is a poorly characterized E3 ligase. This 97-kDa protein contains a middle 

domain, which is homologous to the DOC domain of APC10, and a C-terminal HECT 

domain. The domain structure and function of the N-terminal domain has not yet been 

defined. To date, although HECTD3 was reported to mediate the ubiquitylation of 

multiple proteins, none of these appear to be HSP90 dependent protein kinase (Li et al., 

2013a and 2013b; Zhang et al., 2009; Yu et al., 2008). Moreover, most previous studies 

were based around over-expressed HECTD3, which may result in non-specific activity 

against protein substrates. In contrast, the present study used endogenous levels of 

HECTD3 and CRAF to show CRAF dependency on HECTD3. In fact, this study 

suggests that HECTD3 dependency only present in response to HSP90 inhibition and 

not kinase inhibitor treatment.  

The knockdown of E2s alone did not show any considerable influence on the 

degradation eYFP-CRAF when triggered by AUY922. However, amongst these E2s, 

UBE2D3 appears to show some moderate effect. The UBE2D3 (also termed as 

UBCH5C) is a well-known E2 conjugating enzyme that cooperates with various E2 or 

E3 components for substrate proteasomal degradation. Further work would have to be 

carried out to confirm whether UBE2D3 is an E2 conjugating enzyme that can co-

operate with HECTD3. In conclusion, HECTD3 knockdown contributes to a robust 
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stabilization effect on CRAF above that seen for CUL5 knockdown in HEK293 cells, 

following HSP90 inhibition. UBE2D3 is tentatively identified as a potential E2 that 

might co-operate with HECTD3. An E2 screen with HECTD3 could confirm this 

hypothesis.  

The lack of the specificity or off-target activity from the rapid use of siRNA technology 

could effect and complicate the gene silencing phenotype. There are three main 

categories of off-target effects, which include immune stimulation effects (Karikó et al., 

2004; Judge et al., 2005), endogenous RNAi machinery saturation effects (Grimm et al., 

2006; Khan et al., 2007) and microRNA-like off-target effects (Jackson et al., 2003 and 

2006; Birmingham et al., 2006). Sequences causing pro-inflammation can be removed 

to help avoiding immune stimulation effects (Judge et al., 2005). No known strategy 

had been identified to mitigate the effect caused from the saturation of the RNAi 

machinery. The most appropriate strategies to address microRNA-like off-target effects 

include to reduce siRNA redundancy, process rescue experiments (Hüttenhofer, 2003; 

Cullen, 2006; Echeverri et al., 2006), use pool siRNA (Kittler et al., 2007) and modify 

the seed region. Alternatively, the off-target activity effects could be significantly 

mitigated by both CRISPR and TALEN gene editing methods to knockout target genes. 

One of the best approaches to improve the specificity of HECTD3 is to rescue the 

observed phenotype by expressing a functional vector in a HECTD3 knockout cell line.  
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5.1: Introduction 

In the last chapter we presented our results validating the role of HECTD3 in the 

ubiquitin-dependent proteasomal degradation of CRAF, following inhibition of HSP90. 

Consequently a number of predictions can be made from this observation. There should 

be a shift of CRAF from HSP90 to HECTD3 complexes following HSP90 inhibition; a 

decrease in the association of CRAF with HSP90; and finally there may be an increase 

in HSP90-HECTD3 association. This chapter investigates changes in the association of 

HSP90, HECTD3 and CRAF in response to HSP90 inhibitor using the proximity 

ligation assay (PLA) and confocal microscopy.  This technique allows us to identify the 

physical proximity between two components at specific times after HSP90 inhibitor 

treatment and reports on distances between molecules of 0 to 40 nm separation (Figure 

5.1 A). Briefly, the PLA assay or in particularly the Duolink In Situ from Sigma is a 

new technique that can be applied to adherent cells prepared on a slide, tissue or other 

cytospin samples. This is a proximity ligation technique, which allow us to not only 

detect, but also visualize and quantify the potential interaction or relation between 

individual proteins. The availability of this technique is limited by the need for primary 

antibodies from different species and a wavelength for efficiently detecting the PLA 

signal. So far, λabs554/λem579 and λabs594/λem624 are the only two wavelength options 

from the Sigma-Aldrich. Our PLA assay was performed based on λabs594/λem624 

(Figure 5.1 B) due to the availability of the microscopy facility. More details about 

Duolink In Situ PLA are available from 

 https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma-

Aldrich/Instructions/1/duolink-fluorescence-user-manual.pdf.  
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Figure 5.1 The imaging strategy of the Proximity Ligation Assay (PLA). (A) Two 

proteins of interest are labeled with specific primary antibodies. Cells are then treated 

with the two PLA PLUS and MINUS probes. During the ligation step, the two probes 

hybridize and together form a circle piece of DNA, but only if they are physically close 

enough to each together (within 30-40nm). Finally, the closed circle between the two 

PLA probes is amplified by a rolling circle amplification reaction to generate a 

concatemeric repeated sequence product, which the fluorescently labeled 
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oligonucleotides will hybridize to it. (B) Excitation (blue) and emission (red) signal 

with a peak wavelength at 594nm and 624nm (Image adapted from Sigma-Aldrich). 
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5.2: Methodology 

5.2.1: Confocal microscope for PLA assay 

The Leica TCS SP8 confocal microscope was used for co-localization analysis between 

CRAF, HSP90 and HECTD3 in HEK293 cells. The cells were prepared and labeled 

with Sigma Doulink PLA probes (see Material and Methods 2.6.5) and Köhler 

illumination was adopted. The Sigma Duolink® In Situ Red Starter Kit Mouse/Rabbit 

PLA kit was selected for the PLA assay and ligation signal is dependent on an 

absorption and emission wavelength of 594 and 624 nm, respectively (Figure 5.1 B). A 

561 nm laser was the closest available wavelength used for excitation. Although the 561 

nm laser did not produce maximum excitation, substantial emission signal could be 

detected. The 561nm laser power was optimized and decreased to about 3.5% to help 

minimize the bleaching especially since image stacks were required for co-localization 

analysis. The use of a low powered laser helped reduce the background signal, which 

was important because the PLA assay is extremely sensitive, and any non-specific 

background signal could reduce the effectiveness of the analysis. The sequence imaging 

method was used to collect signal independently after excitation at 405nm (UV), 561 

nm, and for collection of signal with differential interference contrast (DIC) channel. 

The UV power was minimized to the lowest level since it was noticed that the ligation 

signal could be slightly excited by UV light. In addition, the imaging speed was set to 

200 Hz (imaging time < 5 min) to minimize background signal and improve resolution. 

Although high scan speeds can further improve resolution and produce high quality 

images, it requires extended time for analysis (imaging time > 20 min). This could 

result in PLA signal being bleached before the imaging is completed. Finally, the size of 

the pin-hole diameter was kept at 1 Airy size to prevent interference from “out-of-focus 
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light”. All images were saved as a TIFF format and processed by FIJI software (see 

Section 5.2.2).	
  

5.2.2: Image segmentation and foci counting  

Segmentation (cell identification) and foci counting (PLA signal) is a critical process in 

the proximity ligation assay. The identification of proximity ligation foci within each 

cell was processed and analysed by running a programed macro, which was written by 

Dr Alex Herbert (Genome Damage and Stability, University of Sussex).  

All stack images collected were processed with FIJI software to generate a single layer 

image that was then saved in TIFF format (see Material and Methods 2.6.5). The PLA 

and DAPI channel was split and saved individually. The DAPI channel was analysed to 

identify the numbers of DAPI stained nuclei (one nucleus = one cell). Initially, the 

threshold level for DAPI intensity was adjusted automatically. However, manual 

adjustment was always required to increase or decrease the level of the threshold so that 

single nuclei were identified rather than being counted as two or more separate entities. 

Any merged nuclei was segmented by applying the watershed plugin. The manual 

adjustment was required to divide any overlaid nuclei. The total number of nuclei was 

finally counted using the Particle analyses plugin. The mask plugin was used to exclude 

background noise.  

For PLA imaging the threshold for detecting the signal above background was 

automated. Any background noise was removed by applying Remove outliers and 

signals less than 1.0 pixels were set as noise and excluded. The mask that was created 

from the complimentary DAPI channel was then overlaid with the PLA image. Finally, 

the PLA signal was assigned to the nearest nucleus by applying the Assign Foci To 
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Object (Wrote by Dr Alex Herbert) plugin (Appendix 4). 

5.3: Results 

5.3.1: The proximity between CRAF, HSP90 and HECTD3  

We used the PLA assay to investigate the distribution and association of HECTD3, 

HSP90 and CRAF following the treatment of HEK293 cells with AUY922 (see 

Material and Methods 2.6.5). Two control experiments were conducted in advance to 

evaluate the background noise from proximity ligation signals. Co-localization between 

endogenous HSP90 and stably over-expressed eYFP in HEK293 cells was used as a 

negative control experiment to determine the specificity of the PLA probes for specific 

proteins (Figure 5.2 A). As we expected, less than 1 foci could be detected in cells 

treated with or without AUY922 when proximity ligation foci within non-cell culture 

space was excluded.  

We next tested the co-localization of protein kinase CRAF and HSP90 (Figure 5.2 B). 

The results showed a strong proximity ligation signal with approximately 9 fluorescent 

foci on average per cell. As expected, foci numbers dropped almost by half after an18 hr 

incubation with AUY922 (Figure 5.2 E). This result suggests that inhibition of HSP90 

results in a decrease in the association of HSP90 and CRAF, due at least in part to 

CRAF degradation. 

Next we investigated the proximity ligation signal for the localization of CRAF and 

HECTD3 in non-inhibitor treated and AUY922 treated cells (Figure 5.2 C). The 

fluorescent foci were found to more than double after 18 hr incubation with AUY922 

(Figure 5.2 E). This suggests that inhibition of HSP90 substantially promoted co-
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localization between CRAF and HECTD3. An increase in the co-localization between 

CRAF and HECTD3 in response to AUY922 is supportive of the role of HECTD3 in 

the ubiquitylation of CRAF and its subsequent degradation by the proteasome.  

A significant number of proximity ligation signals, about 4 foci per cell, were also 

detected between HSP90 and HECTD3 in non-inhibitor treated cells (Figure 5.2 D), 

and the number of foci more than doubled in AUY922 treated cells (Figure 5.4). This 

observation suggests a potential connection between HSP90 and HECTD3, and might 

represent a delivery route for the CRAF to HECTD3 for ubiquitylation. Further work 

would need to be carried out to confirm this hypothesis. 
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Figure 5.2 Proximity ligation assay (PLA). (A) The ligation reaction between HSP90 

and eYFP was used as the negative control, (B) while the positive control was set up 

between HSP90 and CRAF. The experimental proximity ligation assays were taken 

place between (C) CRAF and HECTD3, (D) HSP90 and HECTD3. A 10 times zoom in 

image is provided to have better view of the PLA signal. (E) The ligation foci per cell 

was plotted for each experiment, and the error bar given is for each analysed image. The 

proximity ligation reaction between HSP90 and eYFP gave no considerable signal with 

or without 3 x GI50 of AUY922 treatment for 18 hr. A large PLA signal was detected for 

HSP90 and CRAF following AUY922 treatment for 18 hr. An enhanced PLA signal 

between CRAF and HECTD3 was detected following AUY922 treatment for 18 hr. A 

potential linkage between HSP90 and HECTD3 was observed. Scale Bar=50 µm. 
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5.3.2: Co-localization by Immunoprecipitation of eYFP-CRAF  

Having shown co-localization of CRAF, HECTD3 and HSP90 we next confirmed these 

results by immunoprecipitation studies. EYFP-CRAF was immunoprecipitated in cells 

with or without AUY922 treatment using GFP-trap beads (see Material and Methods 

2.6.1). Bands visible on a coomassie stained SDS-gel were characterized by mass 

spectrometry (Figure 5.3 A). The main components that were identified were eYFP-

CRAF, HSP90, HSP70, CDC37 and 14-3-3.  Although HECTD3 was not observed on 

SDS–PAGE gels, HECTD3 could be detected by western blot analysis of the 

precipitated proteins, which appears to be substantially less after 8 hr AUY922 

treatment (Figure 5.3 B). In contrast, the levels of HSP90 immunoprecipitated did not 

change, whereas those of HSP70 increased from 0 to 24 hours post AUY922 treatment. 

Collectively, the data show that HECTD3 is brought into close physical proximity with 

both HSP90 and CRAF, following HSP90 inhibitor-induced ubiquitylation and 

degradation of CRAF. The results suggest that HSP90 and HECTD3 are most likely 

involved in a physical complex with CRAF. 
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Figure 5.3 Immunoprecipitation of eYFP-CRAF from HEK293 cells reveals 

potential components in the complex with eYFP-CRAF following AUY922 

treatment. (A) HSP90, HSP70, CDC37 and 14-3-3 were identified from the 

immunoprecipitated eYFP-CRAF by GFP-trap beads. 3 x GI50 AUY922 treatment 

reduced the expression level of eYFP-CRAF, HSP90, CDC37 and 14-3-3, but 

dramatically increased the level of HSP70. Cells are over-expressing eYFP act as the 

negative control. (B) HECTD3 was immunoprecitated with eYFP-CRAF and identified 

by immunoblotting with α-HECTD3 antibody.  
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5.4: Discussion  

The PLA assay is a powerful technique that can show the co-localization of proteins 

within a cell. The results presented herein reveled that treatment of HEK293 cells with 

the HSP90 inhibitor, AUY922, caused a decrease in HSP90-CRAF co-localization, and 

an increase in HSP90-HECTD3 and CRAF-HECTD3 co-localization. Co-localization 

between HSP90 and HECTD3 confirms a previous study suggesting that these proteins 

associate within cells (Taipale et al., 2012). The same study, however, did not identify 

CUL5 as an interactor of HSP90, but did identify a strong interaction between CRAF 

and HSP90, which we have confirmed here. The shift of CRAF from HSP90 to 

HECTD3 complex suggests a biochemical pathway that leads to the proteasomal 

degradation of CRAF that is HECTD3 dependent. The significance between these 

proteins could be improved if the PLA oligonucleotides are designed to directly target 

the protein without the intermediate step. The appearance of HSP70 in complex with 

eYFP-CRAF is due to the requirement of HSP70 as an activator of CRAF  (Nollen and 

Morimoto, 2002; Wang et al., 2006), and 14-3-3 is responsible for regulating the 

activity of CRAF as usual (Li, et al., 1995).  

Although the results suggest an interaction between HECTD3 and CRAF, the nature of 

that interaction and whether other components are required to scaffold that interaction 

remains to be determined. One route of delivery may involve scaffold components that 

are responsible for delivering HSP90, and therefore CRAF, to HECTD3. Another 

possibility is that the DOC domain of HECTD3 directly recognizes the HSP90-CRAF 

complex by interacting with CRAF. Conformation of this would require further 

investigation. 
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6.1: Introduction 

In the previous two chapters a poorly described E3 ligase HECTD3 was identified as an 

important player in the HSP90 inhibitor triggered degradation of CRAF, and co-

localization of CRAF and HECTD3 was observed. However, whether CRAF is 

ubiquitylated by HECTD3 in cells that are not subjected to HSP90 inhibition is still 

unknown. In this chapter, general turnover of newly synthesized eYFP-CRAF was 

evaluated by comparing its stability in both control and HECTD3 siRNA treated cells. 

The variability of the HECTD3 levels in different cancer cell lines is also investigated.  

6.1.1: Overview of autophagy 

Protein synthesis and autophagic degradation is an ongoing process that responds to 

various biological processes, such as proliferation, differentiation and metabolism. 

Protein synthesis is a tightly controlled process at the level of both transcription and 

translation. Many environmental conditions, such as starvation and external stress alter 

both protein synthesis and the stability of proteins. Autophagy plays keys roles in cell 

survival, and tumor suppression (Mizushima et al., 2011; Levine et al., 2008; Mehrpour 

et al., 2010). Basal levels of autophagy normally operate for the regulation of long-lived 

proteins during normal growth. Proteins are normally engulfed into phagophores, which 

are double-membrane structured vesicles that enclose proteins for destruction. These 

phagophores undergo a process of maturation into autophagosomes that finally fuse 

with lysosomes, which degrade target protein and turn them into newly available 

nutrients (Mizushima et al., 2007; Nakatogawa et al., 2009). However, stress can upset 

this equilibrium and the catabolic process that might in turn help maintain internal 

nutrient levels.  
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Figure 6.1 Model for copper catalyzed Azide-Alkyne bioconjugation through 

“Click” reaction. The Azide modified molecules (Blue filled circle) and biomolecule 

Alkyne (Red filled fuzzy circle) are indicated. The CuI complex is required for copper 

catalyzed azide-alkyne cycloaddition (CuAAC). The molecule can be labeled by various 

biomolecule Alkyne such as Alexa Fluor	
  ® probes (488, 555, 594 or 647), biotin or 

tetramethylrhodamine depending on applications.  
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6.1.2: Quantifying autophagic protein 

Radioisotope labeling can be used to measure the autophagic flux of a protein. The 

radioactive amino acid L-(U-14C) valine or L-(U-14C) leucine is used to pulse label 

cellular proteins, and their degradation rate then quantified (Ogier-Denis et al., 1996; 

Roberts et al., 2008; Bauvy et al., 2009). However, apart from being radioactive and 

requiring careful handling, this method may not in fact be sensitive enough for all 

targets.  

Fluorescent non-canonical amino acid tagging (FUNCAT) and bio-orthogonal non-

canonical amino acid tagging (BONCAT) are two protein-labeling technologies that 

have been developed as an alternative means for looking at protein turnover (Best et al., 

2009; Dieterich et al., 2006). BONCAT labeling has been recently applied in 

mammalian cells for detecting newly synthesized proteins. The technique is simply 

described as a ‘CLICK’ reaction that is a Cu (I)-catalyzed cyclo-addition reaction 

between an azide-modified protein and an alkyne affinity tag (Dieterich et al., 2006 and 

2007) (Figure 6.1). The best azide compound reported to date for the ‘Click’ reaction is 

an amino acid analog of methionine, termed L-azidohomoalanine (AHA), which 

metabolically labels newly synthesized protein and is subsequently linked by a 

fluorescent or biotin tagged alkyne via chemo-selective ligation (Dieterich et al., 2007). 

Among other azide compounds, AHA has less cytotoxicity and does not effect or induce 

autophagy. Furthermore, it has a smaller size that is capable of targeting small 

biomolecules. The AHA modified protein can be detected in many different ways; 

including western blots analysis, flow cytometry, mass spectrometry, 2D gel 

electrophoresis and fluorescence microscopy (Dieterich et al., 2006 and 2007; 

Schiapparelli et al., 2014). There are numbers of fluorescent alkyne tags that have been 

developed that allow detection at a variety of wavelengths including 488, 555, 594 and 
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647 nm. Biotin-tagged alkyne can be detected by western blot analysis.  

6.2: Results 

6.2.1: The role of HECTD3 in general turnover of CRAF in 

HEK293 cells 

The results so far suggest that HECTD3 plays a role in CRAF degradation following 

inhibition of HSP90. However, it is equally important to understand the role of 

HECTD3 in CRAF degradation where access to a functional CDC37/HSP90 chaperone 

system is uncompromised. Consequently, the half-life of CRAF was analysed.  

We pulse-labeled HEK293 cells that stably over-express eYFP-CRAF with the 

methionine mimetic, azidohomoalanine. Labeled protein, from cells lysed at different 

times following labeling (see Material and Methods 2.6.3) were tagged, using the “Click” 

reaction with biotin. EYFP-CRAF was then immunoprecipitated and visualized in an α-

biotin western blot (Figure 6.2). The levels of AHA-biotin labeled eYFP-CRAF were 

observed at 6, 12, 18 and 24 hr, for both control siRNA and HECTD3 siRNA treated 

cells. Both sets of cells showed a constant level of eYFP-CRAF at each time point. This 

suggests that the knockdown of HECTD3 did not substantially affect the general 

turnover of eYFP-CRAF when access to an active HSP90-CDC37 complex was 

uncompromised.  
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Figure 6.2 Immunoblot analysis of L-Azidohomoalanine (AHA)-Biotin labeled 

eYFP-CRAF in both wild type and HECTD3 siRNA treated HEK293 cells. 

HEK293 cells were treated with non-targeting control or HECTD3 siRNA for 48 hr and 

subsequently newly synthesized proteins were “Click” labeled with AHA-Biotin. 

EYFP-CRAF was then immunoprecipitated with GFP-trap beads and followed by 

western blot analysis with α-HECTD3, α-biotin and α-CRAF antibody. Biotinylated 

eYFP-CRAF was visualized from both wild type and HECTD3 siRNA treated cells that 

have been individually “Click” labeled for 0, 6, 12, 18 and 24 hr with AHA treatment. 

No HSP90 or protein synthesis inhibitor was added. The knockdown of HECTD3 gives 

no significant effect on the turn over of newly synthesized biotinylated eYFP-CRAF. 

The level of eYFP-CRAF at each time point remained unchanged. GAPDH was used as 

the loading control. 
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6.2.2: Cell line isoforms and diversity of HECTD3  

Previous studies revealed that HSP90 inhibition in HCT116 and HT29 tumor cell lines 

triggered the degradation of the HSP90-dependent client protein kinase CRAF. The 

survival and proliferation of these cell lines critically depends on the MAP-kinase 

cascade, of which CRAF is part of this signaling pathway (Ehrlich et al., 2009; Samant, 

Clarke and Workman 2014). It is conceivable that tumor cells may have altered to down 

regulate processes that limit the activity of CRAF and other kinases of the MAP-kinase 

cascade. One such route would be the down regulation of the HECTD3 degradation 

pathway for CRAF and potentially other MAP-kinases. We thus investigated the 

expression of HECTD3 in a variety of cancer cell lines. We used a C-terminal specific 

antibody for HECTD3 in immunoblots against HEK293, COS7, U2OS, HT29, HCT116 

and A529 cell lines that were not treated with HSP90 inhibitor (Figure 6.3). Two 

specific HECTD3 bands, representing specific isoforms were visible with relative 

molecular masses of 65 and 97-kDa. However the abundance of each isoform varied 

depending on the exact cell line (Figure 6.3). Full-length HECTD3 was present in both 

the HEK293 and COS7 non-tumor cell lines. However, this isoform was less abundant 

in tumor cell lines, and surprisingly no expression was identified in HT29 and HCT116 

cells, which only expressed the smaller isoform. These results suggest that the smaller 

isoform lacks the N-terminal section of full-length HECTD3. Online resources 

confirmed that the shorter isoform corresponded to a translational product (65,687 Da) 

of the HECTD3 splice-variant mRNA (NCBI RefSeq XM_011542140.1). This isoform 

lacks N-terminal exons 1 and 4 and translation begins at Methionine 285. The predicted 

protein product appears to start midway through a recognizable DOC domain, similar to 

that of APC10/DOC1-like domain. The DOC1 domain of APC appears to be a subunit 

in APC complex that can recognize the substrate destruction box of its target proteins 
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and mutation of this domain reducs the degradation of such substrates in vivo (Carroll and 

Morgan, 2002; Passmore et al., 2003; Carroll, Enquist-Newman and Morgan, 2005). 

Consequently, the missing DOC domain in this short isoform of HECTD3 would 

potentially inactivate it, and reducing its capacity to degrade CRAF or other such 

kinases in cells under stress.  

To further confirm this hypothesis, the HCT116 cells were treated with HECTD3 

siRNA to knockdown the 65-kDa short isoform (see Material and Methods 2.6.4). 

AUY922 triggered degradation of CRAF that was similar in both control siRNA and 

HECTD3 (short isoform) knock down cells and control cells. Failure to show 

stabilization of CRAF suggests that the minor isoform of HECTD3 is not involved in 

the ubiquitylation dependent degradation of CRAF (Figure 6.4). The result suggests 

that the loss of the DOC domain of HECTD3 results in a defective ubiquitylation 

pathway that might promote tumorgenesis by stabilizing and increasing the half-life of 

specific kinases. It also suggests that an alternative pathway exists for CRAF 

degradation following HSP90 inhibition, which may rely on CUL5-dependent 

degradation in cancer cells. For example, the knockdown of CUL5 in HT29 cells, which 

these cells only expresses the short isoform of HECTD3, stabilizes the degradation of 

BRAFV600E and ErbB2 (Samant, Clarke and Workman, 2014). 

The HSP90 and HECTD3 mRNA level was analysed in breast, lung, ovarian and gastric 

cancer patient data by Kaplan-meier plotter (Figure 6.5). Each data analysis is divided 

into two groups with low and high expression of the specified mRNA and all 

restrictions regarding subtypes were included in the final analysis. For high HSP90 

mRNA level, survivability was significantly reduced for breast, lung and ovarian cancer 

(Figure 6.5A). However for gastric cancer survival range was improved with higher 

mRNA levels of HSP90 (Figure 6.5 A). Similarly for high HECTD3 mRNA levels 
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(Figure 6.5 B), patients who had lung, ovarian and gastric types of cancer had a low 

survivability, while breast cancer patients had lower survival range with reduced mRNA 

levels of HECTD3.  The exact details as to why different levels of HSP90 and HECTD3 

mRNA in specific cancer cell types differs remains unknown, but it is clear that both 

proteins can play substantial roles in the survivability of cancer patients. This is 

particularly apparent in gastric cancers (Figure 6.5).  
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Figure 6.3 HECTD3 in various cell lines. HECTD3 was identified and immunoblotted 

with α-HECTD3 antiserum against a C-terminal epitope of HECTD3. Lysates were 

from two non-cancer cell lines, HEK293 and COS7 and four cancer cell lines, U2OS, 

HT29, HCT116 and A549. HEK293 cells have the both expression of the two isoforms 

of HECTD3, whereas most the cancer cell lines only mainly express the low molecular 

weight 65-kDa HECTD3. The COS7 cells only express the 97-kDa HECTD3. 
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Figure 6.4 The downregulation of HECTD3 in HECT116 cancer cells. HCT116 

cells were treated with siRNA to knock down the 65-kDa isoform of HECTD3, and 

subsequently incubated with 80nM AUY922. Cell samples were harvested after 12 and 

24 hr inhibitor treatment. HECTD3 was detected by C-terminal antibody. GAPDH was 

used as the loading control. Unlike the full-length HECTD3 in HEK293 cells, the 

truncated splice isoform of HECTD3 does not stabilize the degradation of CRAF in 

HCT116 cells, which indicates this short isoform is an inactive participant in the 

ubiquitylation dependent degradation of CRAF. 
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Figure 6.5 The Kaplan-meier plot analysis of HSP90 and HECTD3 mRNA level in 

various cancers. The expression of HSP90 (A) and HECTD3 (B) mRNA level was 

respectively analysed with patients had breast, lung, ovarian and gastric types cancer by 

Kaplan-meier plotter. The horizontal axis indicates the time in month, while the vertical 

axis presents the survivability of patients during this period of time. The HR and 

logrank P values are labeled in each graph. All restrictions regarding subtypes were 

included in each analysis of type cancer. 
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6.3: Discussion 

HECTD3 is s highly conserved E3 ligase whose biological function is largely unknown, 

and its structure appears to be unique relative to other HECT-domain E3 ubiquitin 

ligases (Rotin and Kumar, 2009; Marin, 2010). A handful of proteins have been 

implicated in a HECTD3 dependent degradation, but none of them are protein kinases 

or known HSP90 clients (Li et al., 2013a; Li et al., 2013b; Zhang et al., 2009; Yu et al., 

2008). However, such studies often utilized overexpressed protein where specificity 

could be impaired, and/or have monitored cellular phenomena that could be downstream 

of HECTD3 primary E3 ligase activity. In contrast, we show direct HECTD3 

involvement in the degradation of CRAF and other kinases, confirmed by knockdown 

rather than overexpression following treatment with HSP90 inhibitor. 

 The knockdown of the both the 97 and 65-kDa isoform HECTD3 did not significantly 

influence the general turnover of the eYFP-CRAF fusion protein in non-drug treated 

HEK293 cells. This suggests that HECTD3 might not have access to the HSP90/CDC37 

complex in its uninhibited state.  

The short isoform HECTD3 was shown to have no function on the degradation of 

CRAF in HCT116 cells and confirmed the functional importance of the missing N-

terminus. Although the role of HECTD3 has not been fully resolved yet, the DOC 

domain of HECTD3 was shown to be structurally related to the APC10 subunit that 

regulates substrate recognition in the APC/C E3 ligase complex (da Fonseca et al., 

2011), and CUL7 and CUL9 (Kominami, Seth-Smith, and Toda, 1998; Dias et al., 

2002).   
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7.1: Overall perspective 

The overall aim of this study was to identify specific ubiquitylation systems that are 

responsible for the degradation of HSP90-dependent client proteins, and particularly for 

CRAF, following inhibition of HSP90 with AUY922. AUY922 has been recognized as 

one of the most potent inhibitors of HSP90 (Brough et al., 2007; Eccles et al., 2008; 

Gao et al., 2010), and it is currently in phase II clinical trials. Furthermore, a non-

cancerous cell line was chosen that lacked genetic changes associated with cancerous 

cell lines that might possess altered ubiquitylation systems.  

The HSP90 inhibitor AUY922 has been see to bring about client protein degradation of 

specific kinases, such as ErbB2, EGFR, IGF1R, PDGFRα, PDGFRβ, CRAF, C-MET, 

P-ERK, tyrosine kinase 2 (TYK2), FOP2-FGFR1 fusion onco-protein and phospho-

AKT in cancer cell lines (Gaspar et al., 2010; Akahane et al., 2016; Wendel et al., 2016). 

Our study analysed the cellular behaviour of ErbB2, MASTL, BRAF, CRAF, PDK1, 

RIP, LKB1 and CDK4 following the inhibition of HSP90 in HEK293 cells. ErbB2, 

CRAF, LKB1 and CDK4 in HEK293 cells were sensitive to pharmacological inhibition 

of HSP90 by AUY922. In contrast, wild type BRAF, RIP and PDK1, which were 

previously described as HSP90 clients (Kim et al., 2012; da Rocha Dias et al., 2005; 

Palacios et al., 2010), were not degraded in response to AUY922 in HEK293 cells. This 

suggests that the stability of kinases may vary between cancerous and non-cancerous 

cell lines and even between different cell types and cancerous cells. However, the 

mechanisms involved in the degradation of many of these kinase clients remain 

essentially unknown.  

Screening a human ubiquitin library identified HECTD3 and CUL5 as potential 

components in the degradation of the HSP90-dependent protein kinase client CRAF. 
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HECTD3 appears to be the major E3 ligase involved in the degradation of CRAF 

following HSP90 inhibition. Although the kinase inhibitor Sorafenib also promoted 

CRAF degradation, presumably through a ‘chaperone deprivation’ mechanism (Polier et 

al., 2013), this was not prevented by HECTD3 or CUL5 knockdown. This suggests that 

the pathway for CRAF degradation might be dependent on the point of inhibition and 

ultimately whether this results in a lack of access to CDC37 or HSP90 for the kinase. 

Previous work has suggested that CUL5 plays a role in the degradation of BRAFV600E, 

ErbB2 and phospho-AKT in HT29 cancer cells (Samant, Clarke and Workman, 2014). 

The BRAFV600E mutation is not present in HEK293 cells and the wild type BRAF in 

these cells appeared not to be sensitive to the HSP90 inhibitor. However, out data 

suggests that CUL5 does play a role in the proteolytic degradation of at least some 

kinases in HEK293 cells. To establish the extent at which CUL5 plays a role in the 

degradation of HSP90-dependent kinases would require further investigations. This 

would involve studies that firstly could identify those kinase clients that are sensitive to 

HSP90 inhibition and then testing the effect of CUL5 knockdown in stabilizing such 

kinases in response to HSP90 inhibition. Although the structure and biological function 

of CUL5 has been studied for many years, the delivery pathway for transferring HSP90-

dependent client proteins to CUL5 complex is not fully understood, and there is no 

evidence that suggests a direct interaction between CUL5 and HSP90. Thus the 

identification of adaptor proteins becomes a critical task. A siRNA screen of SOCS box 

proteins could identify such adaptors that may be involved. Similarly, tagged CRAF 

could be used in pull down experiments of cell lysates and the co-precipitating 

components analysed in order to identify which proteins may act as recruitment factors 

for CUL5.   
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A previous high-throughput proximity screen also suggested a possible link between 

HSP90 and HECTD3 (Taipale et al., 2012). This is clearly supported by our findings. 

The DOC domain remains the most likely domain of HECTD3 for the recruitment of 

CRAF. The DOC domain was initially identified in budding yeast Apc10/Doc1 (Hwang 

and Murray, 1997), and later in the CUL7 (KIAA0076) and CUL9 (KIAA0708) cullin 

proteins (Kominami, Seth-Smith, and Toda, 1998; Dias et al., 2002). Previous studies 

revealed that the Doc1 domain is required for the recognition and binding of substrates 

with the cooperation of Cdh1 and Cdc20 (Carroll and Morgan, 2002; Passmore et al., 

2003) in anaphase promoting complex.  

CUL7 contains a DOC domain (Dias et al., 2002), and it were previously reported to be 

the core subunit of the cullin-RING-based SCF E3 complex that interacts with ROC1 

(also termed as Rbx1), RING finger protein and SKP1- or FBX29-F-box protein (Patton 

et al., 1998; Wu et al., 2000, Tsunematsu et al., 2006). Recently, it was reported Cul7 

could regulate the ubiquitylation and degradation of target proteins, such as insulin 

receptor substrate 1 (IRS-1) (Xu et al., 2008), and hematopoietic progenitor kinase 1 

(HPK1) (Wang et al., 2014). 

The CUL9 also contains a DOC domain (Dias et al., 2002). Althoug the biological 

function is not fully understood, it has been suggested that CUL9 might act as tumour 

suppressor because tumour development was promoted in CUL9 deleted mice (Pei et al., 

2011). Recently, the HSP90-dependent protein, survivin (Fortugno et al., 2003), was 

identified as a substrate of the CUL9 complex and deletion of CUL9 reduced the 

ubiquitylation of survivin in U2OS cells (Li et al., 2014). It is conceivable that the DOC 

domain of HECTD3, CUL7, CUL9 and Apc10 is responsible for client protein ligand 

binding. These previous observations may suggest some similar function of DOC 

domain for regulating the activity of HSP90-dependent protein.  
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7.2: Further work 

Taken collectively, it appears that HECTD3 may recognize its substrate through its 

DOC domain, and the loss or mutation of this domain would in turn compromise 

HECTD3 function. Although time didn’t allow us to fully investigate the role of the 

HECTD3 DOC domain, future work could address this. For example, a GST-DOC 

fusion could be used in cell lysates of HEK293 cells and pull down experiments 

conducted to test whether CRAF and HSP90 can be pulled down by the GST-DOC 

fusion. Although such an experiment does not completely prove that the interaction of 

the DOC domain is direct with CRAF or HSP90, it does at least show that the DOC 

domain is involved in recruitment of such HSP90-kinase complexes. Such experiments 

could also be conducted with or without HSP90 inhibitor. Inversely, pull down 

experiments could be conducted using a tagged CRAF instead of GST-DOC in pull 

down experiments from cell lysates. Pulled down material could also be analysed by 

mass spectroscopy to help identify any components that are pulled down with either 

GST-DOC or tagged-CRAF. Another screen of E2 conjugation enzymes could also 

provide more specific information that might help identify essential components in the 

HECTD3 complex involved in the ubiquitylation of CRAF. 

7.3: Concluding remarks  

The degradation of proteins by the ubiquitin proteasome system is one of the major 

pathways for degrading proteins. Inhibiting the activity of HS90 induces the 

ubiquitylation and degradation of HSP90-dependent client proteins and since many of 

these are oncogenic proteins, there is a need to understand how such HSP90 client 

proteins are degraded. Specific details regarding the degradation mechanism for HSP90-
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dependent proteins could provide crucial knowledge for the development of anticancer 

therapies. Targeting HSP90 in cancer cells with ATP competitive inhibitors induces the 

depletion of various mutated kinase proteins such as BRAFV600E, which dramatically 

displays the importance of HSP90 in cancer. Thus, understanding mechanisms in cancer 

cells that protect such kinases is critical to understanding the effectiveness of cancer 

treatments. However, to date very little is known about the degradation systems of such 

client proteins (Vaughan et al., 2006&2008; Smith et al., 2009&2015; Zhang et al., 

2010; Roe et al., 2004; Polier et al., 2013; Keramisanou et al., 2016). This study has 

now clearly identified two E3 ligases that are involved in client protein degradation. 

Moreover they have suggested that alternate pathways may exist depending on the point 

of inhibition. Thus, inhibition of HSP90 leads to a HECTD3 and CUL5 dependent 

pathway, whereas inhibition of kinase, and thus failure of the kinase to associate with 

CDC37, leads to a HECTD3 and CUL5 independent pathway that now needs to be 

identified.  
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Appendix 1 

Appendix 1.1 The full-length human CRAF 

Item 1: Gene Synthesis 
Gene Name: RAF1, Length: 1991bp, Vector Name: pUC57, Codon Optimization: No 
Start with: GCTAGCCTCGAGCC 
Sequence:  
ATGGAGCACATACAGGGAGCTTGGAAGACGATCAGCAATGGTTTTGGATTCAAAGATGCCGTGTTTG
ATGGCTCCAGCTGCATCTCTCCTACAATAGTTCAGCAGTTTGGCTATCAGCGCCGGGCATCAGATGA
TGGCAAACTCACAGATCCTTCTAAGACAAGCAACACTATCCGTGTTTTCTTGCCGAACAAGCAAAGA
ACAGTGGTCAATGTGCGAAATGGAATGAGCTTGCATGACTGCCTTATGAAAGCACTCAAGGTGAGGG
GCCTGCAACCAGAGTGCTGTGCAGTGTTCAGACTTCTCCACGAACACAAAGGTAAAAAAGCACGCTT
AGATTGGAATACTGATGCTGCGTCTTTGATTGGAGAAGAACTTCAAGTAGATTTCCTGGATCATGTT
CCCCTCACAACACACAACTTTGCTCGGAAGACGTTCCTGAAGCTTGCCTTCTGTGACATCTGTCAGA
AATTCCTGCTCAATGGATTTCGATGTCAGACTTGTGGCTACAAATTTCATGAGCACTGTAGCACCAA
AGTACCTACTATGTGTGTGGACTGGAGTAACATCAGACAACTCTTATTGTTTCCAAATTCCACTATT
GGTGATAGTGGAGTCCCAGCACTACCTTCTTTGACTATGCGTCGTATGCGAGAGTCTGTTTCCAGGA
TGCCTGTTAGTTCTCAGCACAGATATTCTACACCTCACGCCTTCACCTTTAACACCTCCAGTCCCTC
ATCTGAAGGTTCCCTCTCCCAGAGGCAGAGGTCGACATCCACACCTAATGTCCACATGGTCAGCACC
ACGCTGCCTGTGGACAGCAGGATGATTGAGGATGCAATTCGAAGTCACAGCGAATCAGCCTCACCTT
CAGCCCTGTCCAGTAGCCCCAACAATCTGAGCCCAACAGGCTGGTCACAGCCGAAAACCCCCGTGCC
AGCACAAAGAGAGCGGGCACCAGTATCTGGGACCCAGGAGAAAAACAAAATTAGGCCTCGTGGACAG
AGAGATTCAAGCTATTATTGGGAAATAGAAGCCAGTGAAGTGATGCTGTCCACTCGGATTGGGTCAG
GCTCTTTTGGAACTGTTTATAAGGGTAAATGGCACGGAGATGTTGCAGTAAAGATCCTAAAGGTTGT
CGACCCAACCCCAGAGCAATTCCAGGCCTTCAGGAATGAGGTGGCTGTTCTGCGCAAAACACGGCAT
GTGAACATTCTGCTTTTCATGGGGTACATGACAAAGGACAACCTGGCAATTGTGACCCAGTGGTGCG
AGGGCAGCAGCCTCTACAAACACCTGCATGTCCAGGAGACCAAGTTTCAGATGTTCCAGCTAATTGA
CATTGCCCGGCAGACGGCTCAGGGAATGGACTATTTGCATGCAAAGAACATCATCCATAGAGACATG
AAATCCAACAATATATTTCTCCATGAAGGCTTAACAGTGAAAATTGGAGATTTTGGTTTGGCAACAG
TAAAGTCACGCTGGAGTGGTTCTCAGCAGGTTGAACAACCTACTGGCTCTGTCCTCTGGATGGCCCC
AGAGGTGATCCGAATGCAGGATAACAACCCATTCAGTTTCCAGTCGGATGTCTACTCCTATGGCATC
GTATTGTATGAACTGATGACGGGGGAGCTTCCTTATTCTCACATCAACAACCGAGATCAGATCATCT
TCATGGTGGGCCGAGGATAtGCCTCCCCAGATCTTAGTAAGCTATATAAGAACTGCCCCAAAGCAAT
GAAGAGGCTGGTAGCTGACTGTGTGAAGAAAGTAAAGGAAGAGAGGCCTCTTTTTCCCCAGATCCTG
TCTTCCATTGAGCTGCTCCAACACTCTCTACCGAAGATCAACCGGAGCGCTTCCGAGCCATCCTTGC
ATCGGGCAGCCCACACTGAGGATATtAATGCTTGCACGCTGACCACGTCCCCGAGGCTGCCTGTCTT
CTAG 
End with: GGATCCGAATTCTCTAGACTGCAGACCGGT 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



203	
  

	
  

Appendix 2 

Appendix 2.1 The table of primary antibodies 

 
Dilution factor of primary and secondary antibodies used in western blot analyses. 

Name of Antibody Product code Company Dilution 

RAF-1 sc-133 santa cruz 
biotechnology 1:300 

RAF-1 sc-7267 santa cruz 
biotechnology 1:300 

RAF-B sc-5284 santa cruz 
biotechnology 1:300 

PDK1 sc-7140 santa cruz 
biotechnology 1:300 

RIP sc-7881 santa cruz 
biotechnology 1:300 

CDK4 sc-601 santa cruz 
biotechnology 1:2000 

Ub sc-8017 santa cruz 
biotechnology 1:500 

GAPDH MA5-15738 Thermo Fisher 1:10000 
MASTL A302-190A BETHYL 1:1250 
HECTD3 ab173122 Abcam 1:700 
Biotin ab53494 Abcam 1:2000 
LKB1 ab15095 Abcam 1:1000 
HSP90 ab13492 Abcam 1:2000 
Phospho-p44/42 MAPK 9101s Cell Signalling 1:1000 
HER2/erbB2 2242L Cell Signalling 1:300 
GFP 2555s Cell Signalling 1:2000 
Src 2108s Cell Signalling 1:1000 
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Appendix 3 

Appendix 3.1 The Human Ubiquitin conjugation Subset1 

Dharmacon® RTF SMART pool® siRNA Library- Human Ubiquitin Conjugation Subset 
1 
H-105615 Lot 12115 

Plate Well Gene Symbol 
Plate 1 A01 Dharmacon ON-TARGETplus® Non-Targeting Control siRNA 

#1 
Plate 1 A02 UBE2C 
Plate 1 A02 UBE2C 
Plate 1 A02 UBE2C 
Plate 1 A02 UBE2C 
Plate 1 A03 SMURF1 
Plate 1 A03 SMURF1 
Plate 1 A03 SMURF1 
Plate 1 A03 SMURF1 
Plate 1 A04 EDD1 
Plate 1 A04 EDD1 
Plate 1 A04 EDD1 
Plate 1 A04 EDD1 
Plate 1 A05 HIP2 
Plate 1 A05 HIP2 
Plate 1 A05 HIP2 
Plate 1 A05 HIP2 
Plate 1 A06 HECTD1 
Plate 1 A06 HECTD1 
Plate 1 A06 HECTD1 
Plate 1 A06 HECTD1 
Plate 1 A07 UBE2T 
Plate 1 A07 UBE2T 
Plate 1 A07 UBE2T 
Plate 1 A07 UBE2T 
Plate 1 A08 CDC34 
Plate 1 A08 CDC34 
Plate 1 A08 CDC34 
Plate 1 A08 CDC34 
Plate 1 A09 FLJ34154 
Plate 1 A09 FLJ34154 
Plate 1 A09 FLJ34154 
Plate 1 A09 FLJ34154 
Plate 1 A10 DCUN1D1 
Plate 1 A10 DCUN1D1 
Plate 1 A10 DCUN1D1 
Plate 1 A10 DCUN1D1 
Plate 1 A11 CUL2 
Plate 1 A11 CUL2 
Plate 1 A11 CUL2 
Plate 1 A11 CUL2 

Plate 1 B01 Dharmacon ON-TARGETplus® Non-Targeting Control siRNA 
#2 

Plate 1 B02 HERC3 
Plate 1 B02 HERC3 
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Plate 1 B02 HERC3 
Plate 1 B02 HERC3 
Plate 1 B03 UBE2W 
Plate 1 B03 UBE2W 
Plate 1 B03 UBE2W 
Plate 1 B03 UBE2W 
Plate 1 B04 UBE2V2 
Plate 1 B04 UBE2V2 
Plate 1 B04 UBE2V2 
Plate 1 B04 UBE2V2 
Plate 1 B05 DCUN1D5 
Plate 1 B05 DCUN1D5 
Plate 1 B05 DCUN1D5 
Plate 1 B05 DCUN1D5 
Plate 1 B06 HERC2 
Plate 1 B06 HERC2 
Plate 1 B06 HERC2 
Plate 1 B06 HERC2 
Plate 1 B07 UBE2N 
Plate 1 B07 UBE2N 
Plate 1 B07 UBE2N 
Plate 1 B07 UBE2N 
Plate 1 B08 UBE2Z 
Plate 1 B08 UBE2Z 
Plate 1 B08 UBE2Z 
Plate 1 B08 UBE2Z 
Plate 1 B09 UBE2L3 
Plate 1 B09 UBE2L3 
Plate 1 B09 UBE2L3 
Plate 1 B09 UBE2L3 
Plate 1 B10 HERC5 
Plate 1 B10 HERC5 
Plate 1 B10 HERC5 
Plate 1 B10 HERC5 
Plate 1 B11 UBE2NL 
Plate 1 B11 UBE2NL 
Plate 1 B11 UBE2NL 
Plate 1 B11 UBE2NL 
Plate 1 B12 Dharmacon GFP Duplex I 

Plate 1 C01 Dharmacon ON-TARGETplus® Non-Targeting Control siRNA 
#3 

Plate 1 C02 DCUN1D3 
Plate 1 C02 DCUN1D3 
Plate 1 C02 DCUN1D3 
Plate 1 C02 DCUN1D3 
Plate 1 C03 BIRC6 
Plate 1 C03 BIRC6 
Plate 1 C03 BIRC6 
Plate 1 C03 BIRC6 
Plate 1 C04 UBE2J2 
Plate 1 C04 UBE2J2 
Plate 1 C04 UBE2J2 
Plate 1 C04 UBE2J2 
Plate 1 C05 HECW1 
Plate 1 C05 HECW1 
Plate 1 C05 HECW1 



206	
  

	
  

Plate 1 C05 HECW1 
Plate 1 C06 UBE1L 
Plate 1 C06 UBE1L 
Plate 1 C06 UBE1L 
Plate 1 C06 UBE1L 
Plate 1 C07 UBE1 
Plate 1 C07 UBE1 
Plate 1 C07 UBE1 
Plate 1 C07 UBE1 
Plate 1 C08 HERC1 
Plate 1 C08 HERC1 
Plate 1 C08 HERC1 
Plate 1 C08 HERC1 
Plate 1 C09 HACE1 
Plate 1 C09 HACE1 
Plate 1 C09 HACE1 
Plate 1 C09 HACE1 
Plate 1 C10 CUL7 
Plate 1 C10 CUL7 
Plate 1 C10 CUL7 
Plate 1 C10 CUL7 
Plate 1 C11 UBE2S 
Plate 1 C11 UBE2S 
Plate 1 C11 UBE2S 
Plate 1 C11 UBE2S 

Plate 1 D01 Dharmacon ON-TARGETplus® Non-Targeting Control siRNA 
#4 

Plate 1 D02 CUL3 
Plate 1 D02 CUL3 
Plate 1 D02 CUL3 
Plate 1 D02 CUL3 
Plate 1 D03 ITCH 
Plate 1 D03 ITCH 
Plate 1 D03 ITCH 
Plate 1 D03 ITCH 
Plate 1 D04 HUWE1 
Plate 1 D04 HUWE1 
Plate 1 D04 HUWE1 
Plate 1 D04 HUWE1 
Plate 1 D05 CAND2 
Plate 1 D05 CAND2 
Plate 1 D05 CAND2 
Plate 1 D05 CAND2 
Plate 1 D06 UBE2D3 
Plate 1 D06 UBE2D3 
Plate 1 D06 UBE2D3 
Plate 1 D06 UBE2D3 
Plate 1 D07 NEDD4 
Plate 1 D07 NEDD4 
Plate 1 D07 NEDD4 
Plate 1 D07 NEDD4 
Plate 1 D08 UBE1DC1 
Plate 1 D08 UBE1DC1 
Plate 1 D08 UBE1DC1 
Plate 1 D08 UBE1DC1 
Plate 1 D09 UBE2M 
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Plate 1 D09 UBE2M 
Plate 1 D09 UBE2M 
Plate 1 D09 UBE2M 
Plate 1 D10 UEVLD 
Plate 1 D10 UEVLD 
Plate 1 D10 UEVLD 
Plate 1 D10 UEVLD 
Plate 1 D11 UBE2F 
Plate 1 D11 UBE2F 
Plate 1 D11 UBE2F 
Plate 1 D11 UBE2F 

Plate 1 E01 Dharmacon ON-TARGETplus® Non-Targeting Control Pool 
Plate 1 E02 DCUN1D2 
Plate 1 E02 DCUN1D2 
Plate 1 E02 DCUN1D2 
Plate 1 E02 DCUN1D2 
Plate 1 E03 CUL1 
Plate 1 E03 CUL1 
Plate 1 E03 CUL1 
Plate 1 E03 CUL1 
Plate 1 E04 UBE3B 
Plate 1 E04 UBE3B 
Plate 1 E04 UBE3B 
Plate 1 E04 UBE3B 
Plate 1 E05 UBE2A 
Plate 1 E05 UBE2A 
Plate 1 E05 UBE2A 
Plate 1 E05 UBE2A 
Plate 1 E06 UBE2E2 
Plate 1 E06 UBE2E2 
Plate 1 E06 UBE2E2 
Plate 1 E06 UBE2E2 
Plate 1 E07 HECTD3 
Plate 1 E07 HECTD3 
Plate 1 E07 HECTD3 
Plate 1 E07 HECTD3 
Plate 1 E08 UBE2I 
Plate 1 E08 UBE2I 
Plate 1 E08 UBE2I 
Plate 1 E08 UBE2I 
Plate 1 E09 UBE2Q2 
Plate 1 E09 UBE2Q2 
Plate 1 E09 UBE2Q2 
Plate 1 E09 UBE2Q2 
Plate 1 E10 HERC6 
Plate 1 E10 HERC6 
Plate 1 E10 HERC6 
Plate 1 E10 HERC6 
Plate 1 E11 WWP1 
Plate 1 E11 WWP1 
Plate 1 E11 WWP1 
Plate 1 E11 WWP1 

Plate 1 F01 Dharmacon ON-TARGETplus® Cyclophilin B Control Pool 
Plate 1 F02 UBE2O 
Plate 1 F02 UBE2O 
Plate 1 F02 UBE2O 
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Plate 1 F02 UBE2O 
Plate 1 F03 UBE2V1 
Plate 1 F03 UBE2V1 
Plate 1 F03 UBE2V1 
Plate 1 F03 UBE2V1 
Plate 1 F04 UBE2R2 
Plate 1 F04 UBE2R2 
Plate 1 F04 UBE2R2 
Plate 1 F04 UBE2R2 
Plate 1 F05 AKTIP 
Plate 1 F05 AKTIP 
Plate 1 F05 AKTIP 
Plate 1 F05 AKTIP 
Plate 1 F06 UBE2E1 
Plate 1 F06 UBE2E1 
Plate 1 F06 UBE2E1 
Plate 1 F06 UBE2E1 
Plate 1 F07 UBE3C 
Plate 1 F07 UBE3C 
Plate 1 F07 UBE3C 
Plate 1 F07 UBE3C 
Plate 1 F08 TSG101 
Plate 1 F08 TSG101 
Plate 1 F08 TSG101 
Plate 1 F08 TSG101 
Plate 1 F09 UBE2G2 
Plate 1 F09 UBE2G2 
Plate 1 F09 UBE2G2 
Plate 1 F09 UBE2G2 
Plate 1 F10 SMURF2 
Plate 1 F10 SMURF2 
Plate 1 F10 SMURF2 
Plate 1 F10 SMURF2 
Plate 1 F11 NEDD4L 
Plate 1 F11 NEDD4L 
Plate 1 F11 NEDD4L 
Plate 1 F11 NEDD4L 
Plate 1 G02 UBE1C 
Plate 1 G02 UBE1C 
Plate 1 G02 UBE1C 
Plate 1 G02 UBE1C 
Plate 1 G03 UBE2E3 
Plate 1 G03 UBE2E3 
Plate 1 G03 UBE2E3 
Plate 1 G03 UBE2E3 
Plate 1 G04 UBE2D1 
Plate 1 G04 UBE2D1 
Plate 1 G04 UBE2D1 
Plate 1 G04 UBE2D1 
Plate 1 G05 UBE3A 
Plate 1 G05 UBE3A 
Plate 1 G05 UBE3A 
Plate 1 G05 UBE3A 
Plate 1 G06 TRIP12 
Plate 1 G06 TRIP12 
Plate 1 G06 TRIP12 
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Plate 1 G06 TRIP12 
Plate 1 G07 HECTD2 
Plate 1 G07 HECTD2 
Plate 1 G07 HECTD2 
Plate 1 G07 HECTD2 
Plate 1 G08 CUL4A 
Plate 1 G08 CUL4A 
Plate 1 G08 CUL4A 
Plate 1 G08 CUL4A 
Plate 1 G09 HERC4 
Plate 1 G09 HERC4 
Plate 1 G09 HERC4 
Plate 1 G09 HERC4 
Plate 1 G10 HECW2 
Plate 1 G10 HECW2 
Plate 1 G10 HECW2 
Plate 1 G10 HECW2 
Plate 1 G11 UBE2B 
Plate 1 G11 UBE2B 
Plate 1 G11 UBE2B 
Plate 1 G11 UBE2B 
Plate 1 H02 UBE2U 
Plate 1 H02 UBE2U 
Plate 1 H02 UBE2U 
Plate 1 H02 UBE2U 
Plate 1 H03 TIP120A 
Plate 1 H03 TIP120A 
Plate 1 H03 TIP120A 
Plate 1 H03 TIP120A 
Plate 1 H04 KIAA0317 
Plate 1 H04 KIAA0317 
Plate 1 H04 KIAA0317 
Plate 1 H04 KIAA0317 
Plate 1 H05 UBE2D4 
Plate 1 H05 UBE2D4 
Plate 1 H05 UBE2D4 
Plate 1 H05 UBE2D4 
Plate 1 H06 DCUN1D4 
Plate 1 H06 DCUN1D4 
Plate 1 H06 DCUN1D4 
Plate 1 H06 DCUN1D4 
Plate 1 H07 CUL4B 
Plate 1 H07 CUL4B 
Plate 1 H07 CUL4B 
Plate 1 H07 CUL4B 
Plate 1 H08 UBE2L6 
Plate 1 H08 UBE2L6 
Plate 1 H08 UBE2L6 
Plate 1 H08 UBE2L6 
Plate 1 H09 UBE2J1 
Plate 1 H09 UBE2J1 
Plate 1 H09 UBE2J1 
Plate 1 H09 UBE2J1 
Plate 1 H10 FLJ25076 
Plate 1 H10 FLJ25076 
Plate 1 H10 FLJ25076 



210	
  

	
  

Plate 1 H10 FLJ25076 
Plate 1 H11 UBE2Q1 
Plate 1 H11 UBE2Q1 
Plate 1 H11 UBE2Q1 
Plate 1 H11 UBE2Q1 
Plate 2 A01 Dharmacon ON-TARGETplus® Non-Targeting Control siRNA 

#1 
Plate 2 A02 UBE2G1 
Plate 2 A02 UBE2G1 
Plate 2 A02 UBE2G1 
Plate 2 A02 UBE2G1 
Plate 2 A03 UBE2H 
Plate 2 A03 UBE2H 
Plate 2 A03 UBE2H 
Plate 2 A03 UBE2H 
Plate 2 A04 CUL5 
Plate 2 A04 CUL5 
Plate 2 A04 CUL5 
Plate 2 A04 CUL5 
Plate 2 A05 ARIH1 
Plate 2 A05 ARIH1 
Plate 2 A05 ARIH1 
Plate 2 A05 ARIH1 
Plate 2 A06 UBE1L2 
Plate 2 A06 UBE1L2 
Plate 2 A06 UBE1L2 
Plate 2 A06 UBE1L2 
Plate 2 A07 UBE2D2 
Plate 2 A07 UBE2D2 
Plate 2 A07 UBE2D2 
Plate 2 A07 UBE2D2 
Plate 2 A08 WWP2 
Plate 2 A08 WWP2 
Plate 2 A08 WWP2 
Plate 2 A08 WWP2 
Plate 2 A09 C10ORF46 
Plate 2 A09 C10ORF46 
Plate 2 A09 C10ORF46 
Plate 2 A09 C10ORF46 
Plate 2 B01 Dharmacon ON-TARGETplus® Non-Targeting Control siRNA 

#2 
Plate 2 B12 Dharmacon GFP Duplex I 
Plate 2 C01 Dharmacon ON-TARGETplus® Non-Targeting Control siRNA 

#3 
Plate 2 D01 Dharmacon ON-TARGETplus® Non-Targeting Control siRNA 

#4 
Plate 2 E01 Dharmacon ON-TARGETplus® Non-Targeting Control Pool 
Plate 2 F01 Dharmacon ON-TARGETplus® Cyclophilin B Control Pool 
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Appendix 3.2 The list of siRNA 

 

NAME: Catlog: 
ON-TARGETplus Human Ubiquitin Conjugation Subset 1 - 
SMARTpool G-105615-01 

ON-TARGETplus Human SOCS1- Individual J-011511-10-
0002 

ON-TARGETplus Human SOCS2- Individual J-017604-05-
0002 

ON-TARGETplus Human SOCS3- Individual J-004299-09-
0002 

ON-TARGETplus Human SOCS4- Individual J-009037-07-
0002 

ON-TARGETplus Human SOCS5- Individual J-017374-05-
0002 

ON-TARGETplus Human SOCS6- Individual J-017375-05-
0002 

ON-TARGETplus Human SOCS7- Individual J-027197-05-
0002 

ON-TARGETplus Human CUL3- SMARTpool L-010224-00-
0005 

ON-TARGETplus Human CUL5- SMARTpool L-019553-00-
0005 

ON-TARGETplus Human HECTD3- SMARTpool L-027468-00-
0005 

ON-TARGETplus Human HECTD3- Individual J-027468-09-
0002 

ON-TARGETplus Human HECTD3- Individual J-027468-10-
0005 

ON-TARGETplus Human HECTD3- Individual J-027468-11-
0005 

ON-TARGETplus Human HECTD3- Individual J-027468-12-
0005 

ON-TARGETplus Human UBA1- SMARTpool L-004509-00-
0005 

ON-TARGETplus Human HERC3- SMARTpool L-007179-00-
0005 

ON-TARGETplus Human CUL4B- SMARTpool L-017965-00-
0005 

ON-TARGETplus Human TRIP12- SMARTpool L-007182-00-
0005 

ON-TARGETplus Human UBE2E1- SMARTpool L-008850-00-
0005 

ON-TARGETplus Human UBE2E1- Individual J-008850-07-
0005 

ON-TARGETplus Human UBA1- Individual J-004509-05-
0002 

ON-TARGETplus Human TCEB1- Individual J-010541-09-
0002 

ON-TARGETplus Human TCEB2- Individual J-012376-08-
0002 

ON-TARGETplus Human STIP1- Individual J-019802-05-
0020 

ON-TARGETplus Human UBE2G1- Individual J-010154-06-



212	
  

	
  

0005 

ON-TARGETplus Human UBE2D3- Individual J-008478-10-
0005 

ON-TARGETplus Human NEDD4- Individual J-007178-08-
0005 

ON-TARGETplus Human NEDD4- Individual J-007178-06-
0005 

ON-TARGETplus Human STUB1- Individual J-007201-07-
0002 

ON-TARGETplus Human UBA5- Individual J-006405-05-
0002 

ON-TARGETplus Human UBA6- Individual J-006403-09-
0002 

ON-TARGETplus Non-targeting Pool D-001810-10-05 
GFP Duplex I P-002048-01-20 

 
Note: The siRNA sequence is not available due to the policy of the company. 
 
 
 
Appendix 3.2 The customized siRNA sequence for CUL5 and HECTD3 
 
 
 
 

Custom siRNA: Sequence: 
CUL5-01:  CAGCTGGTTATTGGAGTAAGA 
CUL5-02:  CTGGAGGACTTGATACCGGAA 
CUL5-03:  CAGGTTTGAATCAGTCACCTA 
CUL5-04:  CCAGCTGATTCAGTTATTATA 
HECTD3-01:  GCGGGAACUAGGGUUGAAUUU 
HECTD3-02:  GGUAUUUCACCUCUUAAGAUU 
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Appendix 4 

 

Appendix 4.1 Macros for PLA foci counting 

 

Plugins => Macros => Run 

// Macro to perform foci analysis using 2 input image stacks 

 

if (nImages != 2) { 

 exit("Require 2 input images"); 

} 

 

selectImage(1); 

spots = getTitle(); 

getDimensions(w1,h1,c1,s1,f1); 

selectImage(2); 

dapi = getTitle(); 

getDimensions(w2,h2,c2,s2,f2); 

 

print(spots); 

 

if (w1!=w2 || h1!=h2) { 

 exit("Images should be the same width & height"); 

} 

 

// Detect which is the first channel (spots) and second channel (DAPI) 

if (endsWith(spots, '0.tif')) { 

 tmp = dapi; 

 dapi = spots; 



214	
  

	
  

 spots = tmp; 

} else if (!endsWith(spots, '1.tif')) { 

 exit("Images should have [01].tif at the end of the title"); 

} 

 

// SD project the spots 

selectWindow(spots); 

run("Z Project...", "start=1 end="+nSlices+" projection=[Standard Deviation]"); 

rename("Spots"); 

run("Find Maxima...", "noise=5 output=[Point Selection]"); 

 

// MAX project the DAPI 

selectWindow(dapi); 

run("Z Project...", "start=1 end="+nSlices+" projection=[Max Intensity]"); 

rename("DAPI"); 

setAutoThreshold("Default dark"); 

run("Threshold..."); 

 

// Allow manual adjustment of the threshold 

waitForUser("Click to continue when thresholding is complete..."); 

 

setOption("BlackBackground", true); 

run("Convert to Mask"); 

 

// Remove noise 

run("Open"); 

run("Fill Holes"); 

run("Gaussian Blur...", "sigma=2"); 

run("Make Binary"); 
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run("Watershed"); 

 

// Allow manual adjustment of the segregation 

waitForUser("Click to continue when segregation is complete..."); 

 

// Get the spots and put them on the DAPI mask 

selectWindow("Spots"); 

selectWindow("DAPI"); 

run("Restore Selection"); 

 

run("Assign Foci to Objects", "foci=ROI radius=30 min_size=50 max_size=0 

remove_small_objects"); 

 

if (getBoolean("Analysis complete. Close all images?")) { 

 run("Close All"); 

} 
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Appendix 5 

 

Appendix 5.1 The expression BRAFV600E-eYFP 

 
 
 
 
 
 

 
 
The expression of pEYFP-C1 vector, WT and V600E BRAF kinase domain in Hela 

cells. Empty pEYFP-C1, pEYFP-BRAFWT kinase domain, pEYFP-BRAFV600E kinase 

domain were respectively transfected into Hela cells. The expression of the protein was 

detected by α-GFP antibody after 24 hrs transfection. The GAPDH was used as the 

loading control for each sample. Free eYFP protein was detected from both pEYFP-

BRAFWT and pEYFP-BRAFV600E transfected cells.  
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