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Consciousness is everything we have,

and everything we are.

Giulio Tononi [233]

Abstract

Why does it feel like something to be awake? l.e. how is consciousness generated by the
body, the brain in particular? Seeking to map phenomenological properties of any first
person experience to neural activity patterns, theories of consciousness suggest a correla-
tion between a specific type of neural dynamical complexity and the level of consciousness:
When awake and aware, all brain regions are to a certain extent connected and there is
diversity in the interactions. In support of this, Casali et al. (2013) have used EEG and
transcranial magnetic stimulation to show extensively that brain response activity to direct
perturbation is the more diverse across regions and time, the higher the level of conscious-
ness. The spatio-temporal diversity of the response signal is quantified by a single index,
the perturbational complexity index (PCI), using a Lempel-Ziv compression algorithm.
Motivated by this result, and given that spontaneous neural signals are easier to obtain
than response signals to perturbation, this thesis proposes measures - based on Lempel-Ziv
compression and entropy - to quantify spontaneous neural signal diversity across channels
and observations. Our measures’ sensitivity and specificity to conscious level is demon-
strated by re-analysing resting state scalp EEG during propofol-induced anaesthesia and
depth electrode recordings during sleep stages, resulting in consistently higher scores for
subjects that are awake than being in propofol-induced anaesthesia or non-rapid eye move-
ment sleep. In addition we demonstrate that our measures score higher for states induced
by psychedelic substances by re-analysing resting state magnetoencephalography (MEG)
data. We further explore in computer simulation how our measures and PCI behave as
a function of connectivity of coupled oscillators, informing models of brain mechanisms
associated with the loss of consciousness. While our measures may be weaker than PCI in
terms of specificity and sensitivity to conscious level, they are quick and easy to compute
and applicable to readily available resting state data. This thesis provides strong evidence
that cortical signal diversity is a hallmark of consciousness, as predicted by integrated

information and complexity theories of consciousness.
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Chapter 1

Introduction

1.1 Motivation

The question how mind arises from matter has occupied thinkers of all times and is of-
ten called the mind-body problem [69]. Investigating the problem with modern scientific
methods has only recently become an established research domain [155, 131, 33|. This
science of consciousness aims to explain in terms of neural activity why we experience
at all and what we experience. For a system like a human to have an experience differs
starkly from other system properties, such as temperature or weight. Unlike temperature,
which is externally measurable, experience is only directly accessible by being the system.
However, an external observer can search for neural mechanisms that generate experience
by testing proposed mappings between phenomenological properties (i.e. aspects of what it
feels like to be the system) and neural activity patterns. The current attempts to solve this
non-trivial mind-body problem are scientific models of the physical basis of consciousness.
Even though these theories of mind are still in a phase of conception, they can now be
tested using modern technology. For the first time in human history real progress on the
mind-body problem can be made.

This progress is of great importance for a more complete description of reality, given
that the conscious observer is the starting point for all scenarios in physics and a world
without a conscious observer resembles a show without audience, being arguably without
meaning for anyone. A better understanding of why and how we experience, i.e. con-
sciousness', promises also to be of great practical use, including medical improvements,
such as more reliable techniques to monitor anaesthetic depth, treating comatose patients
effectively or investigating psychedelic substances as a cure for depression. For the more
distant future, implications for ethics are conceivable. E.g. a clear understanding of the

extent that a being can experience at all will help to know when it can feel pain or dis-

'The term consciousness has nuanced meanings, from having any experience at all, also known as
phenomenal consciousness [31, 32|, to requiring to memorise the experience at least for an instant to act
on it e.g. by report, known as access consciousness [32]. Another distinction is between basic experience
and higher order experience, as for example proposed by Edelman who distinguishes primary consciousness
that other mammals may have (most basic experiences but requiring memory to act on them) from higher
order consciousness that only comes together with human level language [87]. Throughout this thesis the
word consciousness refers to phenomenal consciousness, i.e. any experience that an organism may have, in
the sense that it feels like something to be this organism at that moment [162].



tress, in particular when the being is non-communicative such as animals, young children
or maybe man-made systems.

Science progresses by a mutually informing interplay of experiment and theory. The
experiments in consciousness science aim to establish external signs of consciousness, indi-
cating if a human has any experience at all and if so what is the content of the experience.
I.e. on the one side one can investigate signs for average properties of experiences during
some extended period of time and call this a state with a particular level of consciousness
[36]. For example wakeful rest can be seen as a state with a higher level of consciousness
than the state of slow-wave sleep. Such levels of consciousness are closely related to global
states of consciousness, characterising an organism’s overall conscious condition and being
distinguished from each other not only due to a different range of average properties of
experiences, but also on behavioural and physiological grounds [26]. On the other side,
one can look more closely at aspects of each single experience, known as conscious content
[117], in the sense of what a particular experience is like. For example seeing a red colour
is a different conscious content than feeling pain.

For each of these two foci, conscious level and conscious content, various behavioural
and neural signatures were proposed [131]. These are motivated by taking our own con-
sciousness as a starting point - the only fact we can be absolutely certain of, as already
stated by Descartes - and arguing that other people that have a similar anatomy and be-
have similarly should also experience similarly. Behavioural markers of consciousness are
for example the extent that simple commands can be obeyed to identify different levels of
consciousness, in particular in the clinic, and verbal reports to identify conscious content,
for example describing what one is seeing. An example of a neural marker of consciousness
is oxygen consumption of the brain as measured by functional magnetic resonance imaging
(fMRI), measured globally, across the whole brain, to indicate conscious level and locally
to identify differences for different types of conscious content.

Theories of consciousness differ in ambition, from the global neuronal workspace model
that states that a percept becomes conscious when its representation in neuronal activity
is broadcast to many cortical regions - as introduced by Baars [11, 12] and developed by
Dehaene |78, 79| - to Giulio Tononi’s integrated information theory that bravely proposes
rules how level and content of any experience can be exactly mapped to state transitions in
networks of causally connected nodes. The latter is built on proposed mappings between
phenomenal properties that every experience has and neural mechanisms, aiming to to
map the first to the third person perspective on experience. Il.e. seeking how features of
internal subjective experience are caused by externally observable changes in the system.
This idea started with Giulio Tononi and Gerald Edelman proposing a balance of func-
tional segregation and integration of brain activity as a hallmark of conscious cognition
[228]. They defined functional segregation within a neural system in terms of the relative
statistical independence of small subsets of the system and functional integration in terms
of significant deviations from independence of large subsets. Starting from this proposed
hallmark of consciousness, Tononi and Edelman went further and suggested that every

experience we have is firstly integrated, in the sense that all the features of the experience



such as colour and sound are experienced together as a whole, and secondly differentiated,
meaning that each experience is different and a vast repertoire of experiences exists [229].
They then suggest neural activity patterns to reflect these phenomenological properties of
integration and differentiation, inspiring the creation of various measures of brain activity
to capture neural analogues of conjoined integration and differentiation, in the sense of
interconnected, yet inhomogeneous, and containing a diverse set of states.

A recent empirical breakthrough provided striking evidence for conjoined differentiation
and integration to be connected to consciousness. It was shown that the EEG response
to transcranial magnetic stimulation (TMS) is more spatially widespread ("integration")
and spatio-temporally diverse ("differentiation") when awake than when unconscious. A
single index, called the perturbational complexity index (PCI), was devised to quantify the
extent of both, the diversity and spatial range of the EEG response (PCI will be introduced
in Section 1.4.9, defined and illustrated in Section 2.2). This measure’s specificity and
sensitivity across a wide range of clinically defined states of consciousness is unprecedented,
including anaesthesia induced by various drugs, rapid-eye-movement sleep (REM), deep
sleep and disorders of consciousness such as the minimally conscious state in which patients
show only the faintest signs of consciousness [131]. This clear empirical finding confirms
the theoretical prediction that conjoined differentiation and integration are hallmarks of
consciousness, encouraging to continue the pursuit of finding maps between phenomenology

and neural activity patterns to advance the understanding of consciousness.

1.2 Thesis overview

Inspired by the impact of the perturbational complexity? index for the science of conscious-
ness, this thesis investigates the diversity of spontaneous electrophysiological thalamo-
cortical signals during different global states of consciousness and their potential to re-
flect phenomenological differentiation. We do so by introducing and applying three new
measures, designed to capture different flavours of signal diversity across channels and
observations.

Briefly, these three measures are defined for multidimensional continuous time series,
consisting of several channels and many more observations. Amplitude coalition entropy
(ACE) quantifies the diversity over time of binary activity patterns, where such an activity
pattern is defined by channels with amplitude beyond a threshold for the same observation.
Synchrony coalition entropy (SCE) measures the diversity over time of binary synchrony
patterns and Lempel-Ziv complexity (LZc) estimates the diversity of activity patterns by
a Lempel-Ziv compression algorithm.

We define these measures in detail in Chapter 2 and illustrate their sensitivity to signal

2The word complexity here should be understood in the sense of Kolmogorov’s algorithmic complexity
[132], defined for a string of symbols to be the length of the shortest computer program that produces
the string as output. Algorithmic complexity is also known as algorithmic randomness, since the closer
the string to being a random permutation of all available symbols, the larger the algorithmic complexity,
as approximations show [257]. Algorithmic complexity is not to be confused with dynamical complexity,
the latter indicating some balance between randomness and order. Entropy and Lempel-Ziv complexity
are both ways to capture signal diversity and are asymptotically identical for certain processes as will be
shown in Section 1.4.7.



diversity across channels and observations using surrogate data, a simple autoregressive
model and a Kuramoto model. We also present the perturbational complexity index (PCI)
here in detail and illustrate the key result while its empirical results are summarised in
Section 1.4.9.

Chapter 3 describes our analysis of resting state EEG of healthy subjects that are in
wakeful rest, mild propofol sedation and propofol-induced general anaesthesia. All three
spontaneous signal diversity measures score for all 7 subjects substantially lower for general
anaesthesia as opposed to wakeful rest and for most subjects scores for mild sedation lie
in between.

Chapter 4 covers the behaviour of ACE, SCE and LZc across sleep stages such as
rapid-eye-movement sleep (REM), non-rapid-eye movement sleep (NREM) and wakeful
rest, when computed for intracranial depth electrode signals from epilepsy patients. The
robust decrease of all three measures for all 10 subjects for NREM sleep, in comparison
to wakeful rest or REM sleep, further supports the measures’ sensitivity and specificity to
conscious states in line with clinical classification. We further show that changes in signal
diversity with conscious level as captured by all three measures are a global effect without
strong local variation across brain regions. We find evidence however that independent of
conscious state, signal diversity is largest in the frontal lobe when compared to other brain
regions, suggesting a connection of structural diversity and signal diversity.

In Chapter 5 the increase of spontaneous signal diversity for psychedelic states is re-
ported, inferred from the application of our spontaneous signal diversity measures to resting
state magnetoecephalography (MEG) data. Conscious states induced by the psychoactive
substances LSD, ketamine or psilocybin are compared to placebo, reanalysing datasets
from three independent experiments, one for each drug. Our results provide first direct
evidence that measures of spontaneous cortical signal diversity that are sensitive to other
levels of consciousness, such as sleep stages or propofol anaesthesia, score higher for the
psychedelic state than wakeful rest. Implications for a multidimensional characterisation of
conscious states are discussed, in particular as we directly compared brain signal diversity
scores to subjective ratings of the psychedelic experience.

Finally, Chapter 6 is about the behaviour of the perturbational complexity index (PCI)
and our spontaneous signal diversity measures (ACE, SCE and LZc) for computer simu-
lations of coupled Stuart-Landau oscillators. After investigating the signal diversity mea-
sures’ dependence on mean coupling and topology of the oscillators, brain-mechanism-
inspired adjacencies are presented for which all 3 spontaneous signal diversity measures
decrease, as empirically observed for unconscious states, with increasing coupling of the
oscillators. Limitations and strengths of the model are discussed with particular focus
on activity time series similarity between oscillators and local field potential as well as a
separation of signal diversity across time alone and signal diversity across channels and
time.

Conclusions about all empirical findings and simulation are presented in Chapter 7.
Supplementary results for the analysis of EEG during propofol anaesthesia, depth electrode
recordings during sleep and MEG during psychedelic states are presented in Appendices A



to C, respectively.

1.3 Thesis contribution

New measures of multidimensional signal diversity were introduced and demonstrated to
robustly index the level of consciousness during REM sleep, wake, propofol-induced anaes-
thesia and psychedelic states. We provided first evidence for the psychedelic state to lie
above conscious states such as wakeful rest and REM sleep on a one-dimensional scale de-
fined by neural signal diversity. By describing and interpreting spontaneous signal diversity
measures in comparison to the perturbational complexity index (PCI), a clearer distinction
of spontaneous and perturbational signal diversity signatures of consciousness is provided.
The application of these spontaneous signal diversity measures and PCI to systems of cou-
pled oscillators is further novel, advancing the understanding of signal diversity signatures
of consciousness and the coupling mechanisms of macroscopic brain regions that lead to
such signal features. A key further contribution is the discussion of our results in the con-
text of theories of consciousness, arguing that signal diversity reflects phenomenological
differentiation. Overall this thesis encourages the pursuit of the search for representa-
tions of general phenomenological features of brain activity patters in order to advance
complexity theories of consciousness.

Michael Schartner did all analyses and simulations in collaboration with Adam Barrett
and Anil Seth. All empirical data sets were obtained from external research groups, and
pre-processing was discussed with each group. The EEG data for the propofol-anaesthesia
analysis were provided by Quentin Noirhomme, Melanie Boly, Marie-Aurelie Bruno and
Steven Laureys at the Université de Liége. The intra-cranial depth electrode data for
the analyses of sleep stages were provided by Andrea Pigorini, Steve A. Gibbs, Gabriele
Arnulfo, Simone Sarasso, Lino Nobili and Marcello Massimini at the University of Milan
and Niguarda Hospital Milan. MEG data for the analyses of altered states of consciousness
induced by psychoactive substances were provided by Robin Carhart-Harris and Suresh

Muthukumaraswamy, obtained at Cardiff Univesity.

1.4 The wider context: Literature review

"You", your joys and your sorrows,
your memories and your ambitions,
your sense of personal identity and
free will, are in fact no more than the
behaviour of a vast assembly of nerve

cells and their associated molecules.

Francis Crick [71]



1.4.1 Studying consciousness: From philosophy to neuroscience

Falling each night into dreamless sleep changes the quality of experience abruptly for most
of us. A rich inner mental life during waking hours may include the sound of a bird or
the image of the sky while during phases of dreamless sleep at night, all experience seems
absent. We can share our impressions with others by describing what we experienced
during waking hours, be it by language or forms of art, while this seems impossible after
certain epochs of sleep, suggesting that we all noticed this change of awareness between
dreamless sleep and wakefulness each day. The absence of experience during phases of
sleep arguably made us notice that we experience at all [80].

Humans have ever since wondered what this internal perspective is and how it relates
to the body, the so called mind-body problem. Ancient Western philosophers such as
Democritus and Epicurus proposed that mind arises from matter, stating "there is only
atoms and the void" [147], a philosophy broadly called physicalism, while others such as
Descartes in the 17th century argued that mental substance is distinct from matter, an
idea known as substance dualism, with a wide opinion spectrum about the extent that
mind depends on matter [69]. Also in Eastern philosophy there are ancient accounts for
both positions, e.g. the Yogi school proposing substance dualism [138] while the ancient
Hindu Charvaka school advocating physicalism [60].

Eastern spiritual traditions brought about a rich culture of introspection and meditation
as tools to study the mind [172]. In the West experimental psychology started to develop
in the 19th century, notably influenced by William James in 1890 [123|, and provided
further tools to study consciousness. This direct study of consciousness by psychologists
stopped after James due to a conviction called behaviourism, stating that human and
animal behaviour can be explained and should be studied in terms of conditioning alone,
without appeal to thoughts or feelings, as argued for by Watson and Skinner [246, 215]. I.e.
a key tool to study consciousness, subjective reports as raw data, became only accepted
again by psychologists towards the end of the 20th century |28, 80].

Interest in the neuro-scientific study of the mind-body problem substantially increased
from around 1990 onward, fuelled by technological advances such as magnetic resonance
imaging and faster data processing due to better computers. Publication of studies on
neural correlates of consciousness appeared, in particular by Francis Crick and Christof
Koch [70]. They proposed that looking for neural correlates alone allows the science to
progress independently from philosophical disputes [72]. Neural correlates of consciousness
have been defined as "the minimal neural mechanisms that are jointly sufficient for any
one conscious percept, thought or memory, under constant background conditions" [184,
128, 131]. A distinction is made between neural correlates of states with a particular level
of consciousness, this level being higher for example in wake than dreamless sleep, and
content specific neural correlates, with content in the sense of what each experience is like,
for example seeing a red apple is a different conscious content than hearing an ambulance
siren and each triggers different neural correlates when perceived.

Consciousness science has since become a multidisciplinary research focus with its own

journals such as "Neuroscience of Consciousness" and conferences such as "The Associa-

10



tion for the Scientific Study of Consciousness" (ASSC). The academic background of active
participants ranges from philosophy over neuroscience and biology to physics and math-
ematics. In addition to the ones sketched above, many more philosophical and scientific
opinions on consciousness influence the current debate. A compact presentation of the
work of influential and currently active philosophers and scientists of consciousness can be
found in recent books by Cavanna and Nani [55] as well as Miller [155]. Comprehensive
introductions to the science of consciousness aimed at the general reader were for example
published by Koch [130], Bor [38] and Dehaene [80].

1.4.2 Measuring consciousness: The clinic as a starting point

In contrast to the philosophical debate on what is consciousness and whether can we study
it, clinicians need to define and measure levels of consciousness in order to treat patients
effectively. E.g. assessing whether a patient experiences pain is crucial in order to know
if more of an anaesthetic substance should be administered before a painless surgery can
commence. Consciousness as measured and defined by clinicians is a practical starting
point in the discussion about measures and theories of consciousness.

A spectrum of conscious states was proposed by clinicians to be situated in a two-
dimensional space, where on one axis the extent of awake behaviour is measures (arous-
ability), meaning signs of vigilance such as opening eyes or command following, while the
other axis is labelled level of consciousness, i.e. the intensity or diversity of experiences
averaged over an extended period of time, as sketched in Fig. 1.1 (see [139, 36| for a
more detailed version). States range from lowest conscious level and lowest arousability
for coma and general anaesthesia to highest level of consciousness and arousability for
conscious wakefulness. Certain states such as the vegetative state (also known as unre-
sponsive wakefulness syndrome [140]) have high arousability, as e.g. wake-sleep cycles are
observed, yet lowest awareness, since patients in such a state do not experience anything

by definition.

Figure 1.1: Examples of global states of

A CO”SCQOUS consciousness Global states of conscious-
wake . . . .
REM ness can be classified using two dimensions,
ﬁ sleep one being the level of consciousness, i.e. in-
5 tensity or diversity of experiences, and the
& other being the extent of awake behaviour,
n . . .
§ NREM su.ch as opening of eyes or rea(.:tlon .to stim-
s sleep uli. More refined such classifications are
T general used in the clinic. Adapted from [139)].
@ | anaesthesia .
vegetative
coma state

>

extent of awake behavior

The tools for clinicians to classify the state of consciousness of patients can be mainly

divided into analysing either behaviour or brain signals, with a combination of both being

11



most promising [201]. behavioural measures include refined versions of the Glasgow coma
scale [224], where the patients’ motor, verbal and eye responses to stimuli are classified (see
[180] for a comprehensive descriptions of the diagnosis of stupor and coma). behavioural
measures cannot be used to detect consciousness for states such as locked-in syndrome,
where - in the most severe cases - patients cannot move any muscle voluntarily to give
signs but are still conscious.

The direct analysis of patients’ brain activity as a way to classify their level of con-
sciousness has been realised using various technologies. For example the BOLD signal of
magnetic resonance imaging machines (fMRI) was used to show that a richer repertoire
of functional configurations is present in wakeful rest as opposed to anaesthesia [25] or
non-rapid-eye movement sleep [221|. As another example, the activity patterns seen via
fMRI while subjects watch a movie clip differ consistently across populations of conscious
and unconscious subjects, which allowed for instance the identification of a patient as be-
ing conscious who has been entirely behaviourally non-responsive for 16 years by showing
him the movie clip and classifying the fMRI activity pattern as similar to that of healthy
conscious subjects [161]. Also differences in brain metabolism could be used to assess pa-
tients’ level of consciousness [216, 139], in particular for distinguishing minimally conscious
patients (some faint level of consciousness is sometimes present) from patients with unre-
sponsive wakefulness syndrome (vegetative state, without any inner mental life), deemed
a particularly challenging and clinically urgent distinction between two global states of
consciousness [34].

Electrophysiological means provide another popular modality to obtain brain signals for
the assessment of the level of consciousness. In particular electroencephalography (EEG),
where electrodes capture local field potential at the scalp, is often analysed for signatures
of consciousness [214]|. Automatic feature detection in EEG signals, such as performed in a
method known as bispectral index [212], is a tool for anaesthetic monitoring found in many
clinics, which does indicate levels of consciousness up to a point, yet the signal features
remain unknown and thus do not inform theories of consciousness. The analyses of spectral
changes provides well defined EEG signatures of conscious states, for example showing that
slow wave power (e.g. delta brain waves, that comprise frequencies from 0.5 to 4Hz) is
elevated in unconscious states such as anaesthesia or deep sleep when compared to wakeful
rest [163, 76, 245, 48, 152, 83]. These correlates have proven to be of practical use for
anaesthetic monitoring and sleep-staging, yet fail to indicate conscious level in other cases,
such as distinguishing minimally conscious patients (that have brief periods with conscious
experiences) from vegetative state patients (a state without any experiences) [175].

Informed by theory, a new approach is to analyse the response EEG activity to tran-
scranial magnetic stimulation and quantifying how diverse this EEG response is across
EEG channels and observations. The response signal diversity is quantified by an index
called the perturbational complexity index (PCI). It did not only outperform all other be-
haviourally independent measures of conscious level in terms of telling minimally conscious
state patients apart from vegetative state patients [53], it further captures interpretable

signatures that are important to further advance theories of consciousness. We’ll present
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PCI in full detail in Sections 1.4.9 and 2.2.

There is further the search for anatomical structures that facilitate and mediate the
level of consciousness (see [131] for a recent review, and [98| for a broader evolutionary
perspective). For example certain brain regions, such as the reticular activating system
in the brainstem, are indispensable for healthy consciousness in humans while activity in
other brain parts such as the cerebellum has little effect on consciousness and its contents
[131]. In fact, two patients were described that each lacked the cerebellum altogether yet
had a fairly normal level of consciousness [144, 252|. As another example, the claustrum
may play a crucial role for consciousness [73], supported by a case study of a patient whose
consciousness disappeared when electric current was sent into the claustrum via a depth
electrode [134].

Each neural correlate of consciousness helps to extend the description of consciousness
and restricts proposed theories thereof [201], while conversely, most robust correlates of
consciousness used in the clinic are increasingly the outcome of applied science of con-
sciousness, as the success of the theory-based PCI demonstrates. After this introductory
illustration of practical notions and measures of consciousness used in the clinic, the re-

mainder of this chapter provides an overview of trends towards a theory of consciousness.

1.4.3 Conscious level and conscious content

Clinically defined levels of consciousness delineate the overall "richness" of awareness, from
complete absence of any experience as in coma to a rich inner mental life as in wakeful rest
[227]. Such levels of consciousness form one dimension of global states of consciousness, the
latter characterising an organism’s overall conscious condition and being distinguished from
each other not only due to a different range of average properties of experiences (conscious
level), but also on behavioural and physiological grounds [26]. When considering a single
experience one can more finely analyse its phenomenological properties, such as being
aware of a particular scene, a particular feeling or a combination thereof. Such properties
are collectively called conscious content [117] and vary from instance to instance during
global states of consciousness, such as REM sleep or wakeful rest.

Subjective report is seen by many as the gold standard of what is consciously perceived,
and often used to find conscious-content specific neural correlates of consciousness. Ex-
perimental designs range from studies about binocular rivalry, where perception alternates
between two different images and the corresponding neural activity for each is sought [30],
to various visual masking techniques, e.g. forward and backward masking, helping to sep-
arate a hierarchy of mechanisms that lead to a conscious percept [41] (see [131] for more
examples of conscious-content specific neural correlates of consciousness). There are cases
though where subjective reports are not reliably indicating if something was experienced
or not, as most of us know from reporting dreams, where experiences are easily forgotten.
A wide range of other experiments further illustrate how subjective reports can fail in in-
dicating experience, from change blindness (the change of two radically different percepts
is not notice) to inattentional blindness (the perception of objects cannot be reported if

they were unexpectedly presented outside of the focus of attention) and many more, as

13



summarised here [137]. The great variety of experimental designs to study conscious con-
tent reflects the vast diversity of possible experiences. Cognitive studies of consciousness
are seamlessly mingled with the wider literature on psychophysics and the psychology of
perception.

A theoretical challenge lies in the connection of conscious level and conscious content.
Overgaard suggested for example tying levels of consciousness to the average clearness or
vividness of contents [170]. Bayne et al. developed this connection further by suggest-
ing the characterisation of global states of consciousness along several dimensions, where
arousability may be one, brain signal diversity may be another and yet another may corre-
spond to properties of average conscious content. An example of such average content was
suggested to be the average level of abstraction about perceived objects, in the sense that
perceiving only the colour of a cup is less abstract than consciously perceiving its purpose
as a container [26, 97|. Giulio Tononi’s integrated information theory of consciousness tries
to explain both, conscious content and conscious level, directly and fundamentally as inde-

pendent properties of state transitions as will be discussed in more detail in Section 1.4.5.

1.4.4 Complexity theories of consciousness

Forms of physicalism are widely accepted amidst consciousness scientists, e.g. in the sense
that "we are food rearranged" and consciousness is a particularly interesting property of
matter, as phrased by Tegmark [225]. L.e. it feels like something to be matter (paraphrasing
Thomas Nagel [162]), to the extent that the building blocks are arranged in a particular
dynamical structure that enables rich inner life. Barrett [23| and Pockett [177, 178] refined
this formulation of physicalism by suggesting that consciousness is a property of particular
electromagnetic field dynamics, brought about for example by the movement of charged
particles in the brains of conscious humans. This suggestion followed by arguing that
if consciousness is a fundamental attribute of matter and given that physics posits force
fields or quantum particles as most fundamental building blocks of matter, consciousness
must be described in terms of quantum particles or force fields. Since we know that
signalling between neurons is mainly electrical and that quantum effects such as quantum
coherence are most unlikely in systems with "high" temperature such as the brain [129],
force fields seem more plausible than quantum particles. In comparison to the other force
fields, the electromagnetic force field appears as the best candidate for the fundamental
substrate of consciousness in human brains, as is argued by comparison of the four forces
of nature: strong, weak, electromagnetic and gravitational. The strong and weak forces
don’t propagate over distances much larger than the width of the nucleus of an atom, and
gravity alone cannot generate complex structures by virtue of being solely attractive; in
contrast, the electromagnetic field can propagate over macroscopic scales, is both repulsive
and attractive, and is fundamentally what enables non-trivial chemistry and biology [23].

The theoretical challenge lies in the description of dynamical properties related to
consciousness, following from the conviction that consciousness is a process, as William
James famously proposed already in 1890 [123]. Tononi, Sporns and Edelman suggested a

fine balance of functional segregation and integration of brain activity as a characterisation
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of overall brain dynamical complexity, where full integration means that all brain regions
are active in the same way at the same time while full segregation means that each brain
region’s activity is independent from that of other regions [228].

Driven by the assertion that qualities of experience must somehow be mapped to neu-
ral activity, these thoughts on neural complexity were directly connected to consciousness
by Tononi and Edelman [229, 88|. In particular they stated that each experience is inte-
grated in the sense that it is composed of a complete scene instead of independent aspects,
and each experience is differentiated in the sense that whatever is perceived rules out an
enormous number of other possible experiences one could have in that moment. Hence
"integration" and "differentiation" in neural activity patterns were said to reflect corre-

sponding phenomenological properties.

1.4.5 Integrated information theory of consciousness

Tononi and collaborators extended and specified in detail the proposed map from phe-
nomenological properties of any conscious experience on one side to neural processes on the
other in what is called integrated information theory of consciousness. The theory has been
evolving since 2004 with the latest summary published in 2016 [231, 232, 15, 166, 234, 235].
In addition to differentiation and integration, the list of phenomenological properties to
be mapped to neural activity was extended, including "internal existence" (meaning that
each experience exists independent of external observers), "composition" (each experience
consists of phenomenological structure) and "exclusion" (each experience only exists at
its particular spatio-temporal scale). Analogies of these particular properties, that any
experience proposedly has and which are thus called axioms in the theory, are sought in
state transitions of idealised networks, i.e. a graph of binary nodes where each node can
either be on or off and edges are causal functions. Knowing all possible state transitions
of the network, the theory allows a particular transition to be mapped to a particular
conscious content and in addition to its intensity, i.e. interpreted as conscious level, using
various mathematical expressions, many of which are based on mutual information. The
most recent formulation of the theory is centred around the postulate that a system is
conscious to the extent that it influences itself (has cause-effect power upon itself). Le.
the theory is boldly stating that an experience is identical to a particular network state
transition [235]. The theory further postulates that the spatio-temporal grain with maxi-
mum intrinsic cause-effect power is the only one relevant for the system’s experience and
the potential consciousness creation of all other intrinsic cause-effect mechanisms are sup-
pressed, implying in a sense that there cannot be independent minds in a connected system
[235].

Integrated information theory (IIT) does not require the network to be biological, the
causal architecture alone determines if the system experiences. Consequently the theory
asserts experience - and be it nearly zero for all practical purposes - to any system that has
state changes and thus IIT can be seen as a version of panpsychism (the idea that everything
experiences [198]). Yet this is not to say that II'T would propose consciousness to be equally

distributed across matter, quite the opposite. IIT describes consciousness as a strongly
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graded property across systems, depending on the system’s intrinsic cause-effect power, i.e.
how much the system has an effect on itself [235]. This implies that complicatedness alone
does not correlate with the level of consciousness of the system, as for instance complicated
feed-forward implementations of computer simulations are proposed as systems with very
low integrated information [234].

Overall, integrated information theory of consciousness is arguably the most discussed
and advanced theory in the context of the body mind problem in recent years, with nu-
merous advocating publications [235, 53, 226, 167, heralding it for example as the only
theory that starts from experience itself instead of the brain and that tries to attack the
hard-problem of consciousness® head-on [235]. It is criticised by others, to overstate the
usefulness of existing measures of integrated information given that they require inelegant
searches for the maximum intrinsic cause-effect power across all temporal and spatial scales
of the system [24]. Further, Cerullo belittles IIT’s strength in explaining consciousness by
arguing that his own, absurd, ad-hoc theory has the same explanatory power [57], and
Aaronson challenges the theory’s measures of integrated information by applying one to a
simple network for which the measure’s score grows with network size, while the network

seems too simple to be conscious [1, 2.

1.4.6 Global workspace theory, recurrent processing and predictive cod-
ing

Besides integrated information theory, other theories of consciousness are popular in the
community of consciousness scientists. Global workspace theory, introduced by Baars
[11, 12| and further developed by others [78, 206, 79|, postulates that neural activity re-
lated to conscious percepts is broadcast to many brain areas (called the global workspace),
possibly inspiring the "integration" notion found later in complexity theories of conscious-
ness. L.e. unconscious processing, termed subliminal, is represented by a number of distinct
distributed local processes that compete for conscious access. Experience takes shape when
widespread activity in these nodes is broadcast into a global workspace [155]. The theory
inspired computer simulations |77, 207| and informed recent experiments focusing on sub-
liminal processing [81, 86]. Global workspace theory was also discussed in the context of
conscious level, interpreting findings of more long range information flow across the cortex
in conscious as opposed to unconscious states [127].

Other theories stress the importance of feed-back information projection in the brain
for conscious perception. For example the recurrent processing theory, developed mainly
by Lamme [136], initially motivated from experiments about the separation of experiencing
and having access to the experience (being able to report or act on it). It has developed

into a general theory of conscious visual perception [155] with recent experimental support

3The hard problem of consciousness science, a term coined by Chalmers [58], is to explain why and how
any physical processes - such as those occurring within brains - give rise to conscious experiences at all.
Chalmers contrasts this with the ’easy problem’ of explaining how the complex biophysical operations of
the brain enable all brain functions that don’t require consciousness, for example image recognition. In
a strict sense, IIT does only attempt to answer the question "how" is consciousness created by physical
processes, not "why", i.e. leaving out half of the answer to the hard-problem. Claiming that consciousness
is a property of a particular electromagnetic field configuration may offer more towards the "why" [24].
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[85]. Unlike global workspace theory, recurrent processing theory states that consciousness
does not necessarily need the involvement of the complete fronto-parietal network, but
posterior cortical areas are sufficient as long as sufficient recurrent interactions occur [136].

Feedback information projection is also a central idea when applying predictive coding
to explain the content of experience. First proposed by Helmholtz, predictive coding is
the view that the human brain constantly generates hypothesis about the world which
are corrected using sensory information. Hohwy suggested to apply this viewpoint to
explain conscious content [118], for example for binocular rivalry experiments as follows:
alternation between the conscious perception of two competing stimuli occurs when firstly,
there is no single hypothesis to explain a stimulus with high probability and, secondly, when
one stimulus dominates, the bottom-up signal for that stimulus is explained away while
the bottom-up signal for the suppressed stimulus is not [116]. Others used the framework
to explain particular conscious content such as interoceptive awareness [203].

All here described theories of consciousness converge on certain points, such that con-
sciousness requires neural activity in distributed thalamocortical networks and that feed-
back projections among them are important. While direct experimental support for IIT
seems weaker than for the other theories mentioned above, IIT differs strongly in ambi-
tion and scope. However, complexity theories of consciousness [229] which subscribe more
weakly to the concepts of IIT - a particular overlap is that both "integration" and "dif-
ferentiation" are hallmarks of consciousness - have strong experimental support by the
results of the perturbational complexity index (PCI). Global workspace, recurrent process-
ing and predictive coding all provide important correlates of consciousness yet only II'T
offers a fundamental explanation for such correlates by its bold claim that experience of
a system equals the maximal amount of cause-effect power that the system has on itself.
This identity can be used to explain for example that feedback connections are essential
for consciousness since no purely feedforward system has intrinsic cause-effect power. IIT
is further distinct from the other theories as it takes phenomenological properties as a

starting point and not the brain [235].

1.4.7 Differentiation measures

One approach to advance the science of consciousness is to more or less blindly "fish"
for correlates of consciousness and then use the results to restrict theories of conscious-
ness, as may have been the case for many currently known correlates [131]. Each such
serendipitously found correlate is by definition related to consciousness but not necessarily
informative for theories of consciousness, which would be the case for example if the corre-
late can be clearly mapped to proposed phenomenological properties of experience. As an
alternative approach towards better theories of consciousness, one can start from existing
theories to inform the design of potential measures of consciousness and apply these to
brain signals for different states of consciousness.

Complexity theories of consciousness and IIT stressed that phenomenological "differen-
tiation" must be reflected in the dynamics of the system [229, 88]. Le. that each experience

is nearly unique, ruling out a vast number of possible other experiences one could have,
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suggests that a great variety of different brain states are traversed as experiences are con-
stantly changing. This differentiation property can be linked to various signal diversity
measures, designed to analyse time series of neural activity.

Measures using various forms of entropy to assess temporal signal diversity are widespread
in medical signal analysis, either based on the time domain or frequency domain of the
signal. The entropy of a system that can be in N different states, the i*" state appearing

with probability p;, is defined as

N
H(system) = — Zp,- log(p;). (1.1)
i=1

There are many ways to define states of the brain from neural time series. Liang et al.
[149] recently compared 12 popular entropy measures for EEG during different anaesthetics
(sevoflurane and isoflurane), all evaluating the entropy of single EEG channels, concluding
that all of them could track conscious state changes when applied to EEG, scoring lower
during anaesthesia than wake, with forms of permutation entropy (Tsallis permutation
entropy [256] and Renyi permutation entropy) tracking changes best [149]. Permutation
entropy defines states in single EEG time series by first dividing the time series into non-
overlapping segments of fixed length m and then ordering the observations of each segment
by amplitude. Each order of a subsequence is thus a particular permutation of the first
m integers. The frequency of that permutation within all occurring permutations is then
p; in Equ. (1.1) (see [149] for the mathematical definition). Even though the authors aim
for high sensitivity and specificity for the sake of practical applications in the clinic, their
results can be interpreted in light of reflecting phenomenological differentiation.

Other attempts to quantify temporal signal diversity in neural signals, compared across
conscious states, include versions of Lempel-Ziv complexity, using an algorithm developed
for file compression [4]. The more diverse the signal, the less compressible it is (see detailed
definition in Section 2.1). In order to compute Lempel-Ziv complexity for continuous time
series, the signal must be discretised, since the Lempel-Ziv algorithm searches for repeated
subsequences and won’t find any in a continuous signal. There are many ways to discre-
tise continuous time series, for example by binarising them using their mean amplitude
over time or using any discretisations proposed in the context of entropy measures [149].
Entropy and Lempel-Ziv complexity for a binned neuronal spike train are asymptotically

identical, if the neuronal source is ergodic?.

4As described in [6], a binned spike train can be represented as a binary string s, = r122...%n, Z; €
{0,1}, where z; ;41 indicates concatenation. The entropy (rather entropy rate) of this string can be defined
as a function of substring length [ (1 <1 < n), as H(l) = —1/1>_ pilog,(pi), where p; is the probability
that the i*" substring of length 1 appears. The true entropy of the neuronal process that generates the spike
train is defined as H (process) = lim,, ;.o H(l) which is in practice impossible to compute, as it would
require infinitely extensive sampling. Let C'(s,) be the Lempel-Ziv complexity of the binary sequence sy,
obtained by applying LZ-76, i.e. the Lempel-Ziv algorithm from 1976 [146] (see also Chapter 2), then

lim sup C(sn)logy n = lim —1/l2pi log, (p:) = H(process) (1.2)

n— oo n n,l— oo

provided that the source of the spike train is ergodic. Ergodic means stationary (i.e. statistical properties
of substrings of the same length coincide almost surely) and in addition ensemble averages and time
averages coincide almost surely, that is, one can calculate expected values over the substring ensemble
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A Lempel-Ziv based measure applied to single EEG time series, binarised by mean ac-
tivity for 30sec segments (6000 observations at 200H z), scored robustly higher for wakeful
rest than general anaesthesia (for any of sevoflurane, isoflurane, propofol or desflurane)
[253]. Computing Lempel-Ziv complexity for time series discretised using the method of
permutation entropy (see previous paragraph), was shown to increase discriminative power
between wake and anaesthesia [14]. A decrease in Lempel-Ziv complexity during aneast-
hesia was further found for pentobarbital-anaesthetised rats [210], and rats in deep sleep
[3], showing that Lempel-Ziv complexity indexes these states also in rats besides humans.

Single channel entropy and Lempel-Ziv complexity measures did clearly index several
conscious states at the group level, yet there were considerable variations across subjects
[149]. These signal diversity measures on spontaneous brain recordings indicate the extent
of randomness alone, irrespective of whether the diversity ensues from a semi-dependent
interplay of connected or independent processes (see Section 2.6.1 for examples).

A different indicator of differentiation in spontaneous brain activity is the statistical
properties of neuronal avalanches. A neuronal avalanche can be understood as neural ac-
tivity that originates at one cortical position and subsequently spreads across other cortical
regions. Statistical properties of such avalanches, such as size or length distribution, were
found to vary consistently for different states of consciousness. For example avalanche anal-
ysis performed on signals from intracranial depth electrodes, where needle-like electrodes
are inserted into cortical and subcortical brain regions of epilepsy patients for pre-surgical
evaluation, resulted in more large avalanches in NREM sleep as opposed to wakeful rest
[182]. This study and others [182, 197, 223| aim to infer dynamical "distance" of states
of consciousness from criticality, in the sense that activity in sub-critical states dies out
while in supercritical states all brain regions fire in synchrony, as observed during epileptic
seizures [63)].

The hypothesis of the brain operating close to criticality is still debated [27, 165] with
particular criticism of using a power-law distribution of avalanche sizes to infer scale-
invariance of the dynamics and that this scale-invariance implies criticality [236, 181].
However, the study by Scott et al. [197] is not using the contentious proximity to a power
law of the avalanche size distribution to infer the distance to criticality. Instead it is
shown that the distribution of avalanche sizes varies with the pixel size of the activity-
videos (displaying voltage changes in a portion of the rat cortex) only during anaesthesia.
This adds new evidence that neural activity during wake is more complex than during
anaesthesia in the sense that it is scale invariant - given that the distribution of avalanche
sizes was the same at different scales of the dynamics (different pixel size for activity videos)

for wake but not for anaesthesia.

1.4.8 Integration measures

Experiencing something feels integrated [229, 88|, in the sense that each conscious percept

is an integrated whole, made up of information from many different sources such as vision,

using the relative frequencies of subsubstrings of one sufficiently long substring. Interestingly, %C (sn)logyn
sometimes converges for reasonably small n and can thus be used as an approximation of H (process), see
[6] for simulations.
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the auditory system, tactile, olfactory, vestibular system, interoception and taste or ab-
stract thoughts. Finding neural correlates of integration that in addition are sensitive to
consciousness is thus of theoretical interest.

Integration may be measured by synchrony of activity, especially temporal correlation,
as has been already proposed by Crick and Koch in 1990 |70] as a correlate of consciousness,
in particular in the high frequency components. Engel and Singer [91]| review studies in
humans and animals that support the connection of synchrony of neuronal signals of fast
oscillations (gamma activity, 40 — 7T0H z) and consciousness. The reviewed studies describe
how gamma synchrony between regions at the cellular level correlates with aspects of the
binding-problem, i.e. how brain circuits that each process a different feature of a percept
- e.g. sound and vision - contribute to a percept that is perceived as a whole, e.g. an
audiovisual experience. In particular experiments on binocular rivalry make it very likely
that only strongly synchronised neuronal signals contribute to awareness. However, gamma
activity can be equally present during sleep phases with and without dreams [45] and the
amplitude of gamma activity during anaesthesia is variable but is often greater than it is
in the normal waking state [243]. This renders the relationship of gamma synchrony and
consciousness ambivalent [201].

Overall mutual information between signals from different brain regions was further
interpreted to indicate integration. The mutual information 1(X,Y") between two multidi-
mensional time series of brain activity, X and Y, is the average information, or reduction

in uncertainty (entropy), about X, knowing the outcome of Y [21]:
I(X,Y)=H(X)+ HY) - HX,Y) (1.3)

where H(X) is defined as in Equ. 1.1 with X being the system and a particular observation
of X, e.g. discretised voltage at all EEG channels at a particular time, being a state of
the system. I(X,Y) =0if X and Y are statistically independent, else I(X,Y) > 0. The
average mutual information across pairs of fMRI resting state recordings from different
brain regions was shown to be lower for propofol-induced anaesthesia than wakeful rest
[196]. Similarly, overall mutual information for pairs of brain regions was found to be lower
for vegetative state patients as opposed to control subjects, when calculated from resting
state EEG recordings and using a particular "symbolic" discretisation of the time series
before computing mutual information (denoted as symbolic mutual information) [127].
Although these studies affirm that the mutual influence across many brain regions is
necessary for consciousness and may reflect the phenomenological property of each expe-
rience being an integrated whole, the mentioned studies show clear changes at the group

level only and score less consistent for single subjects [53].

1.4.9 Measures of conjoined differentiation and integration

Several theory-derived consciousness measures aim to capture a form of conjoined dif-
ferentiation and integration in brain activity. This started with Tononi and Edelman’s

suggestion that a fine balance of integration and segregation of the neural network dy-
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namics is a hallmark of conscious processing and a measure called neural complexity was
designed to peak at this balance. Functional segregation within a neural system was de-
fined in terms of the relative statistical independence of small subsets of the system and
functional integration in terms of significant deviations from independence of large sub-
sets. Their measure, neural complexity, was defined for n-dimensional time series X, each
series assumed to be a stationary stochastic process. Neural complexity of the system X is
defined as the average mutual information I (defined as in Equ. 1.3) between bipartitions

of X summed over all bipartition sizes k [228]:

n/2

CN(X) :Z<I(X]"€7X_XJI‘C)>aHJ (1'4)
k=1

where X jk is the j*" possible subset of X when choosing k from n system components
and X — X jk its compliment. I.e. X f represents some k-dimensional time series. (X J’?, X -
X Jk) is a measure of statistical dependence of the two parts making up the whole system,
being zero if they are statistically independent, else positive. Given that Cn(X) is the
sum over all bipartitions, its score is low for systems whose components are characterised
either by total independence or total dependence and high for systems whose components
show simultaneous evidence of independence in small subsets and increasing dependence
in subsets of increasing size [228].

The neural complexity measure was applied to various model systems and behaved
as intended [228, 18]. Yet, its application to EEG signals showed rather the opposite as
theory predicted, namely an increase for states of reduced consciousness such as propofol
anaesthesia [240] and patients with Alzheimer’s disease [242]. This may be as stationarity
is assumed for the definition of Cy(X) and neural time series are not stationary enough.
However a recent application to fMRI data showed higher neural complexity values when
a movie as opposed to a scrambled movie is seen [37], which is interpreted to reflect that
different meaningful stimuli are informative in different ways for different brain regions,
while the scrambled movie is only one stimulus.

Tononi and Edelman’s neural complexity measure inspired the creation of many alter-
native measures of conjoineddifferentiation and integration in one form or another, most
based on notions of mutual information between time series from different system (brain)
parts. These measures aimed to be "explanatory correlates" of consciousness [202], by
defining mappings from proposed universal properties of any experience to neural activity,
in particular using Tononi and Edelman’s suggestion of conjoinedintegration and differen-
tiation [228§].

Tononi et al. proposed several measures of integrated information, most denoted by
the Greek letter phi, [231, 232, 15| that aim to capture the extent of information that
is generated by the system as a whole over and above that generated by its parts inde-
pendently. The exact definitions of these measures have changed substantially over the
years (see [226] for a compact presentation) with the most recent version being reviewed
here [235]. Several of these measures were shown to behave in desired ways for certain

model systems, for example they increased with fitness in the evolution of animats when
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computed for a 12-node network that constitutes each animat’s "brain" [89]. These "pure"
phi-measures, that each claim not only to capture correlates of experience but to directly
describe content and level of each experience, are only applicable to networks of a few
nodes with exact knowledge about the system’s states and transitions. I.e. their enormous
computational cost and the requirement to know all states and transitions of the system
exactly render a direct application of these phi-measures to neural time series impossible.

More practical measures of integrated information were designed to be applicable to
time series, under Gaussian assumptions [142, 21, 204, 226|. Several of these practical
phi-measures were explored for different networks of autoregressive processes and shown
to score high for networks in between all-to-all connectivity or total independence [21, 204]
and are still theoretically refined today [226].

Applications of such practical phi-like measures to empirical data are sparse [167], yet
examples exist such as reduced information integration found in EEG signals for propofol
anaesthesia [142] and a measure called phi* [167], found to be higher for a meaningful
stimulus (Charlie Chaplin movie) as opposed to a scrambled movie when computed for
fMRI data, concluding higher neural signal diversity to reflect higher diversity across expe-
riences [37]. The extent of support that these empirical results provide for the integrated
information theory is not clear, given the absence of rigorous controls for trivial signatures
that may influence these measures’ scores such as the overall level of correlation or changes
in the spectral profile.

Another measure introduced as potentially capturing a form of integration and dif-
ferentiation in system activity that may be related to consciousness, is causal density
[199, 200, 204]. It is defined as the average of all pairwise Granger-causalities between
system elements, conditioning on all remaining elements.

Granger causality [109, 106, 107] quantifies information transfer from a (possibly mul-
tivariate) stationary stochastic process (time series) x1(t) to a jointly stationary process
x2(t), optionally conditioned on a third jointly stationary process z3(t). It is convention-
ally operationalised in terms of linear autoregressive (predictive) modelling: to calculate
the Granger causality F, |z, from z;1 to zo conditional on x3, w9 is regressed firstly on
its own past together with the pasts of x; and z3 (the "full model"), and then on its own
past and the past of x3 only (the "reduced model"). If the residual prediction errors for
the full and reduced models are &(t), &'(t) respectively, then Fy . ;. |,, is defined as the
logarithm of the ratio of the "generalised variances" (determinant of the covariance matrix;

see [20]) of the residual errors:

_ pp lov€)]
Fevmvaalos =000 e

Intuitively, Fj, . .;,[2, quantifies the gain in predictive power attained by inclusion of

(1.5)

the variable z7 in the predictor set for xo. [17, 19] show that Granger causality has
a clear information-theoretic interpretation, and for Gaussian processes in particular is
equivalent to transfer entropy [195, 171]. In practice, Granger causality estimation and

statistical inference is limited to neural time series which may be reasonably well-modelled
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as stationary, linear autoregressive systems®.

Causal density for a system described by the n-dimensional time series X, is defined as

CD(X) = ——— S Fyn v (1.6)
n(n —1) & [8.]
i#]
where ; is the i'" time series of the system and X [i,j] is the (n —2)-dimensional time series
formed by omitting the i*" and j*" series.

Causal density has been shown to peak for a balance of integration and segregation
in the connectivity of autoregressive model systems, being low for all-to-all connectivity
and also low for independent clusters. While it has been applied to several scenarios in
neuroscience, no conclusive connection between causal density and conscious level was
reported [205].

The strongest supporting evidence for the connection of consciousness to a notion of
conjoinedintegration and differentiation of brain activity - and thus potentially reflecting
these two properties shared by all experiences - was provided by the perturbational com-
plexity index, which we’ll define in detail in Section 2.2. This measure quantifies the signal
diversity in the response activity to a pulse of transcranial magnetic stimulation (TMS)
to the thalamocortical system as measured by electroencephalography (EEG). Its scores
are higher, the more brain regions show a temporally diverse response activity to the TMS
pulse. Le. the temporal signal diversity is captured across channels and across time (being
the potential neural analogue of the differentiation across experiences) and increases the
more channels show a complicated response to magnetic perturbation (the potential neural
analogue of integration of the experience, implying that many brain regions need to inter-
act to form the experience). The measure’s specificity and sensitivity across a wide range
of clinically defined states of consciousness is unprecedented [131]. Comparing perturba-
tional complexity for different conscious states was first introduced in 2005 and over the
last 10 years actively applied to different conscious states [153, 101, 187, 189, 53, 190], with
perturbational complexity being consistently higher for conscious states such as wakeful
rest, REM, ketamine-induced REM [190], wakeful rest in locked-in syndrome patients, as
opposed to unconscious states such as NREM sleep, propofol-, xenon-, midazolam-induced
anaesthesia and unresponsive wakefulness syndrome (vegetative state) [53|. Its behaviour
further matched clinical classification of conscious states for intermediate levels of con-
sciousness, such as mild propofol sedation, light sleep (phase N1), minimally conscious
state patients and emerging minimally conscious state patients [53], states for which PCI
scores lay in between those for wakeful rest and general propofol anaesthesia. l.e. the
measure’s scores reliably indicate clinically defined states of consciousness at the single
subject level while providing at the same time strong support for the theoretical claim
that conjoinedintegration and differentiation are hallmarks of consciousness.

Motivated by the landmark study of PCI, yet seeing its need to perturb the brain re-
peatedly as a limitation, this thesis investigates spontaneous signal diversity measures and

contrasts them with PCI in terms of phenomenological mapping and correlation with con-

5Note that Gaussian assumptions are not required; however, for non-Gaussian systems, the information-
theoretic interpretation may be more tenuous.
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scious level. In the next chapter we’ll define our spontaneous signal diversity measures and
PCI, illustrate the behaviour of spontaneous signal diversity measures via model systems

and present PCI’s proposed sensitivity to "integration" and "differentiation" in detail.
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Chapter 2

Definition of signal diversity

measures

In this chapter the signal diversity measures are introduced that form the basis of this
thesis. We define versions of Lempel-Ziv complexity and measures of coalition entropy to
assess spontaneous signal diversity across channels and observations. We also describe the
perturbational complexity index (PCI) here in detail and contrast it with our Lempel-Ziv
complexity measure for spontaneous signals. Subsequently the behaviour of our sponta-
neous signal diversity measures is illustrated using computer-generated time series, em-
ploying surrogate data created by increasingly ordered random sequences, an autoregres-
sive model and a Kuramoto model. Importantly, these signal diversity measures are all
model-free and only minimal assumptions about the data are needed.

Python implementation of all three spontaneous signal diversity measures can be found

online in the Supplementary Information of [191].

2.1 Lempel-Ziv complexity (LZc, LZsum, LZs)

Lempel-Ziv complexity quantifies the number of distinct substrings of a binary! string.
The greater the degree of randomness, the greater the number of different sub-strings that
will be present, and thus the higher the Lempel-Ziv complexity.

There are several different versions of the Lempel-Ziv complexity ¢ of a binary string,
in particular the algorithms introduced by Lempel and Ziv in 1976 [146], often abbreviated
LZ76 and 1978 [255|, LZ78, which is the algorithm we used for computing the measure
LZc. LZ78 is defined in the following way. Let S be a binary string S = s185...5,. Then
c is the number of distinct 'words’ in the string, obtained as follows. The dictionary is
taken to contain the words ’0’ and ’1’ already at the outset. The next word to go in the
dictionary is the first two digits of S. Then the algorithm proceeds iteratively: suppose

we have already obtained the first r words wq, ..., w, from s1s5...s;. Then w,11 is the

'The procedure can be readily generalised for a discrete string composed of any number of different
symbols. In the context of consciousness science, see for example Sitt et al. [214] that use a discretisation
of the continuous time series into 32 equal bins before computing a classical open source compression
algorithm (gzip) to implement Lempel-Zic complexity. Their results were not affected by the number of
symbols, testing a range from 8 to 128 for the number of bins (symbols).

25



shortest string O‘Z = SkSk+1 .- Sk+p—1 such that O'z & {w,...,w.}; that is, the next word
is the shortest sub-string of S that starts from the final digit of the previous word and is not
already in the dictionary. An example string is S = 01011010001101110010, which gives
the list of words {0,1,01,10,011,101,100,00,0110,0111,1001}. For a string consisting
only of zeros, a relatively small dictionary is obtained: if S = 00000000000000000000 then
the dictionary is {0, 1,00, 000,0000,00000,000000}. For LZ76, the new word is searched
throughout syss ... s; instead of just within the list of already found words as for LZ78.

Computing the Lempel-Ziv complexity of continuous time series, for example EEG
channels, requires a binarisation. Casali et al. computed this measure for event-related,
as opposed to resting EEG data, and so used a threshold relative to pre-stimulus activity
(baseline) to define the binarisation, as we’ll introduce in detail in Section 2.2. For the
computation of Lempel-Ziv complexity for spontaneous signals we based the binarisation
threshold on the absolute value of the analytic signal of a channel’s time series. The
threshold 7} for the i*" channel was chosen as the mean of the absolute value of the
analytic signal of the #*" channel. Applying this binarisation to several EEG channels
results in a binary matrix, with rows corresponding to channels (time series) and columns
corresponding to time (observations).

When analysing the Lempel-Ziv complexity of multidimensional time series, there are
several ways to transform the binarised data matrix into one binary string that is then
divided into blocks of words by the LZ78 algorithm (we adapted open source code for the
implementation [258]) and the number of words is the measure’s score. The following two
variants are used in this thesis. Firstly, concatenating the data observation by observation,
resulting in the measure that we denote by LZc as shown in Fig. 2.1, which thus quantifies
signal diversity across channels and across observations. Secondly, computing Lempel-Ziv
complexity for each time series separately, resulting in single channel Lempel-Ziv complex-
ity - measuring temporal signal diversity only - denoted by LZs. The average LZs across

channels is denoted by LZsum.

a) b) c) d) e)
b, |...1011...| |»
b
ai ...|zi(t)],)zi(t+1)]... —> b;: ...0010... —> [...0010...| |§ %k: by(1),by(1),....0,(1),b1(2),...=
if a;,(t) < mean(a;) S = 01000100111...
then by(t)=0 else b(t)=1 by [1001...| = |Lempel-Ziv] |
—_— LZc = |{0,1,00,01,001,11,...}|
LZC observations

Figure 2.1: Schematic of the computation of LZc. a) z; is the activity of the it?
channel and a; is the (Hilbert) amplitude of ;. b) b; is binarised a;, using the mean activity
of a; as binarisation threshold. c¢) After binarisation of all n signals, d) the multidimensional
time series is concatenated observation-by-observation to one binary string & and then e)
repeated patterns are searched and listed into a dictionary of binary words via a Lempel-Ziv
algorithm. Lempel-Ziv complexity LZc is proportional to the size of this dictionary.

26



We normalise LZc (LZs) by dividing the raw value by the value obtained for the same
binary input string randomly shuffled?. LZc’s raw score for a binary string of fixed length
is maximal if the string is entirely random. Thus the normalised LZc values indicate the

level of complexity on a scale of 0 to 1.

2.2 Perturbational complexity index PCI

Lempel-Ziv complexity is also key for the perturbational complexity index (PCI), a measure
that quantifies the diversity of the brain response activity to magnetic perturbation. PCI
is colloquially known as "zap and zip", since first the brain is magnetically "zapped" then
the response activity’s diversity assessed by Lempel-Ziv compressibility, i.e. "zipped".
PCI’s most robust indication of levels of consciousness (Section 1.4.9 listed global states
of consciousness successfully indexed by PCI) while at the same time being interpreted to
capture brain activity patterns that reflect phenomenological features of "differentiation"
and "integration" made us investigate multidimensional spontaneous signal diversity. The
comparison of spontaneous and perturbational signal diversity as "explanatory"? correlates
of consciousness is a central question of this thesis. The following technical details about
PCI further apply for our computation of PCI for a Stuart-Landau oscillator model in
Chapter 6.

2.2.1 Definition and methods

In order to quantify the diversity of the response activity to perturbation, first a perturba-
tion must be applied and the response activity in the EEG across cortical regions defined.
The transcanial magnetic perturbation was a short magnetic pulse, applied to a cortical
region, say the visual cortex?, and the EEG activity across the whole scalp (60 sensors)
up to 300ms after the pulse was considered to reflect the response to this perturbation
sufficiently. The signals were transformed from sensor space into source space, using the
3-spheres BERG method and the inverse problem was solved by the Weighted Minimum
Norm constraint applied to an "empirical" Bayesian approach. This procedure turned the
60 EEG sensor channels into 3000 source channels (see supplement of [53] for more details).

Perturbing the brain about 100 times per subject (see [53| for varying trial numbers
across different experiments) allowed an average response waveform across these trials to
be found for each source. This average waveform was then binarised by a threshold T
obtained from the pre-perturbation activity (from —500 to —1ms) across all trials. T
was chosen as the 99th percentile of the distribution of the maximum absolute values

of pre-perturbation activity sampled from all trials (perturbations), using the bootstrap-

2The variation in LZc for 50 different shufflings of the same input string of 25000 binary digits was
under 0.002% of the mean result across those 50, showing that the data matrices we analysed - typically
10 channels times 2500 observations - were sufficiently large such that there was negligible variance arising
from basing the normalisation on just a single random shuffling.

3Explanatory correlates of consciousness are brain activity patterns that can be directly mapped to
phenomenological properties, characterizing all conscious experiences [202].

4The results did not vary qualitatively when other cortical target locations for the TMS stimulation
were used [53].
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based statistical procedure described here [151]. With this threshold, a binary response
matrix SS(x,t) ("significant sources") with 3000 rows (one for each source z) and 109
columns (one for each observation ¢, being 300ms sampled at 362.5H z) was filled, setting
SS(x,t) = 1if the activity of source x at time ¢t was above the threshold T"and SS(x,t) =0
otherwise. Thus for one subject in one state and a chosen target region for the magnetic
perturbation, one binary response matrix 5SS was obtained from approximately 100 trials
(TMS stimulations), representing the brain response to the magnetic perturbation.

A Lempel-Ziv algorithm is now used to determine the number of new binary words
in each column of the SS matrix, while keeping track of binary words found already in
previous columns as described in Fig. 2.2. The resulting Lempel-Ziv complexity score, i.e.
the length of the dictionary of binary words, denoted as ¢(SS), depends on the size L of
the S5 matrix, L being the product of S.S’s number of rows and number of columns. The
values of ¢(SS) are large in practice and it strongly depends on the source entropy H (L)
of SS, defined as

H(L) = —plogy(p) — (1 — p)logy(1 —p) (2.1)

where p the fraction of ones across all entries of the S.S matrix. Thus ¢(SS) is normalised
by its asymptotic value for a random binary string of length L [126], i.e. as L ~— oo,
c(SS)— LH(L)/logy(L). Thus the perturbational complexity index is defined as

_ <(58) logy (L)

POl ===p (2.2)

2.2.2 Differentiation and integration

Fig. 2.3 shows Casali et al.’s illustration of the difference of the SS between wakeful rest and
deep sleep (NREM). The large black frames contain the S'S matrices for the same subject,
one for each state of consciousness, rows being source channels and columns observations
(dimensions of the SS matrices are 3000 sources times approx. 100 observations, repre-
senting 300ms). The corresponding PCI values are 0.51 for wake and 0.23 for deep sleep,
indicating higher algorithmic complexity for spatio-temporal response to TMS during wake
than deep sleep, for this representative subject. These PCI differences are clearly in line
with visual inspection of continuous response waveforms between the two states. For wake,
the continuous waveforms show greater diversity across channels but also, for each chan-
nel, across observations. This diversity in the response to perturbation is a clear marker
of differentiation, one of the theoretically proposed neural hallmarks of consciousness.

In order to argue for integration, note that the strength of the TMS stimulation in
both states, WR and NREM, was the same, causing an electric field strength at the tar-
get of 90V /m, but for deep sleep, far fewer sources showed an above-threshold response
(Fig. 2.3A,B). This is seen as a sign that the effective connectivity between macroscopic
brain regions is lower in deep sleep than wake. Effective connectivity in this sense can be
seen as a measure of integration, the other of the theoretically proposed neural hallmarks

of consciousness, proposedly reflecting the phenomenological property of "wholeness" of
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Figure 2.2: Lempel-Ziv algorithm applied to S5 matrix Flow-diagram of the Lempel-
Ziv algorithm (based on LZ-76) applied by Casali et al. to estimate the algorithmic com-
plexity of the binary response matrix S5 to transcanial magnetic perturbation. x and ¢
are discrete indices of the spatial and temporal dimensions (x = 1,...,L; and t = 1, ..., La),
[(t) is the number of spatiotemporal samples of SS(z,t) up to time ¢. r,q,a are indices
to keep track of location and length of found binary patterns. The input ("Data") is the
binary S.S matrix, having L1 rows (row i for the i** source, i = 0, .., L1) and L2 columns
(column 7 for the j** observation, j = 0, .., L2). Patterns of length k are strings of k bits,
Data(i: k,j) = SS(i+1,7)SS(i+2,7)...S5(+k,j), with 0 < i+ k < L1. The algorithm
outputs the non-normalised Lempel-Ziv complexity ¢ of the S.S matrix, say ¢(SS). Copied
from Fig.S3 of [53], reprinted with permission from AAAS.

every experience, binding together features of each experience into a consciously perceived
integrated whole.
Yet a high fraction of channels with significant response is not sufficient to indicate

elevated effective connectivity and thus integration. In addition, diversity in the response

29



A Wakefulness - 90 V/m

xlU'jwﬂ.frvwrv'\1

X107 pA/mm?

100ms A

TMS

PCl=023

10% sources

Pl

Figure 2.3: PCI simul-
taneously measures
integration and dif-
ferentiation. The
binary matrix of signif-
icant sources SS(z,t)
for a subject stimulated
with TMS during (A)
alert wakefulness and
(B) NREM sleep (stim-
ulus at an intensity
of 90 V/m) and (C)
NREM sleep (stimulus
at an intensity of 160
V/m. In each matrix,
sources sorted
from bottom to top
according to their total
amount of significant
activation during the
post-stimulus  period.
The time series on the
left of each SS matrix
show the TMS-response
activity for some rep-
resentative
averaged over approxi-
mately 100 trials. The
grey area indicates the
binarisation  threshold
for each source activity.
The topo-
graphical maps below
each SS matrix show
the spatial extent of
significant cortical acti-
vations at selected time
points. Green star, site
of TMS stimulation.
Adapted from Fig.2
in [53|, reprinted with
permission from AAAS.

are

sources,

cortical

activity is needed. This can be seen in Fig. 2.3C, showing the binary response matrix

(SS) for NREM sleep again but this time with the amplitude of the magnetic perturbation

nearly doubled (inducing an electric field of 160V/m at target) and thus forcing significant

response activity upon most channels. Yet PCI scores are still comparably low as for NREM

with stimulation strength at 90V/m, in line with its interpretation to measure integration
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(effective connectivity) as the fraction of channels that show significant and diverse response
activity. That PCI captures exactly this was further confirmed with computer simulations
where PCI increases monotonically with the fraction of non-zero random channels in SS.

In summary, PCI captures integration by the fraction of channels with strong enough
and diverse response (i.e. how "far" the response signal to TMS perturbation spreads
across sources) and differentiation in terms of response signal diversity across sources and

observations.

2.3 Differences between LZc and PCI

The LZc measure used here differs from Casali et al.’s PCI in several ways. PCI captures
compressibility of the EEG response to TMS whereas our LZc is applied to spontaneous
EEG. Reflecting this, there is a difference in obtaining the binarisation threshold. We
used for LZc the mean of the absolute value of the analytic signal whereas Casali et al.
used the 99th percentile of the amplitudes during prestimulus activity. PCI is computed
across a 0.3sec data segment that starts directly after magnetic stimulation; our results for
the EEG /propofol analysis were most robust for segment lengths of between 0.2sec and
20sec, although segment lengths shorter than 1sec substantially affected the results for one
subject only (Appendix A.2). Before computing PCI, the channels of the binary response
matrix S5 are ordered by activity, for LZc the activity of each channel was the same by
construction. For LZc the binarised multidimensional activity is concatenated observation-
by-observation and the LZ78 algorithm applied, whereas the LZ76 algorithm used for PCI
Fig. 2.2 integrates the concatenation in the algorithm, not counting words that are split
across two multidimensional observations (columns of S§S). The LZ78 score is normalised
in the case of LZc by the LZ78 score for the same input shuffled in time. Casali et al.
normalise by the asymptotic upper bound: LH(L)/loga(L), where L is the total number
of binary matrix entries and H (L) the source entropy of this matrix (supp. mat. [53]).
We also applied PCI's LZ76 algorithm and its normalisation to binary multidimensional
spontaneous activity for our EEG /propofol data set and found similar results as for the

computationally faster LZc.

2.4 Coalition entropy measures (ACE, SCE)

Besides LZc we explored alternative measures that capture spontaneous signal diversity
across channels and across observations. Several measures of entropy for single channels
have been previously applied to quantify temporal signal diversity and index global states
of consciousness (Section 1.4.7), discretising continuous signals in various ways, for example
by binning the activity into several equally sized bins. Here we introduce coalition entropy
measures based on the entropy over time of activity or synchrony patters across multiple
channels.

The idea of coalition entropy was introduced by Shanahan [209, 249|. In its original form
it measures the entropy (over time) of the constitution of the set (coalition) of channels

that are active, given a binarisation scheme for classifying channels as either active or
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inactive. It was shown to peak for intermediate overall system synchronisation of coupled
Kuramoto oscillators - i.e. where signal diversity over "channels" and observations was
maximal - when applied to coalitions of synchronies of oscillator communities®. We call
our version of this measure amplitude coalition entropy (ACE). Here we compute it using
the same binarisation as described for LZc, i.e. taking for each channel the mean of the
absolute value of the analytic signal as the threshold. As for LZc we normalise ACE
by dividing the raw value by the value obtained for the same binary input shuffled (the
upper bound), where shuffling means that the position of each digit was randomly changed.
Note Shanahan’s original version differs slightly from the version used here by utilising a
fixed absolute binarisation threshold (which is not applicable to real EEG data, as activity
varies widely across electrodes), and taking the asymptotic analytical upper bound as the
normalisation (which is again not reached for the shape of data matrix analysed here,
since the time-series are not long enough for all possible coalitions to be sampled). The
entropy (over time) of the constitution of the set of channels that are active (assuming
n channels in total) was implemented by mapping each of the possible n x 1 dimensional
binary observations to a distinct integer and then computing the entropy of the resulting
sequence of integers.

We also introduce a new variant of coalition entropy, synchrony coalition entropy,
denoted SCE. This measures the uncertainty, and hence diversity, over time of the con-
stitution of the set of channels that are in synchrony - rather than active - schematically
described in Fig. 2.4 and formally defined as follows:

For data X, consisting of channels X;;, 7 = 1,...,n, we consider two channels to be
in synchrony at time ¢ if the absolute value of the difference between their instantaneous
Hilbert phases is less than 0.8 radians (approximately 45 degrees). Then we define coalition
time-series \I’,gi) by \Ilgzz taking the value 1 if channels ¢ and j are synchronised at time ¢
and taking the value 0 otherwise. The coalition entropy of X; with respect to channel ¢ is
the entropy of \Ilgi) (
N:

over time), normalised as a proportion of its maximum possible value
SCE® Zp logp(\I'( 2 =1). (2.4)

The overall SCE is then the mean value of the SCE® across channels. The upper bound

SCE would arise from completely random coalition time-series in which each entry is 1

5Kuramoto oscillators are represented as unit length complex numbers whose phase changes with time
(see Section 2.6.3 for details), e.g. the state of the k" oscillator at time ¢ is equal to e*). The synchrony
¢ of a community (group) c of n oscillators at time ¢ was defined as the modulus of the sum of all complex
numbers divided by n:

NORED ! (2.3)
k=1

For low global synchrony, defined as the the mean of ¢.(t) across all times and communities, there
is also low synchrony within each community, thus their respective synchronies are mostly zero across
communities and observations ¢, given the fixed binarisation threshold of 0.8. When global synchrony
is high, most communities are synchronised thus ¢.(t) = 1 for most communities and observations. In
these both extreme cases, very low and very high global synchrony, the diversity of synchronies across
communities and time is low, thus coalition entropy is low. Coalition entropy peaks for intermediate global

synchrony, as here diversity across communities and observations is highest. See [209] for full details.
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with probability 0.5. Such time-series are generated (with the same dimensions as those
arising from the data) to obtain the normalisation factor N. Note that SCE does not
score exactly 1 for shuffled input data - unlike ACE and LZc - as the probability at a give

time-point of two shuffled channels being in synchrony is less than 0.5.

a) b) c)
Sia
X! analytic ...Zi(t),Zi(t+1)... . 0101
signal THE —-——
X;: .zZi(t),z(t+1)... .
it 2 o Z(t),7 it <08 o |
Zl(t)z(t) then Sij(t)=1,
SCE @ else s;(t)=0

Figure 2.4: Schematic of the computation of SCE a) Two time series. b) The analytic
signals of these two, which are complex signals with the real part being the original signal
and the imaginary part being the Hilbert transform of the original signal. c¢) A binary
synchrony time series is created for this pair of signals; a 1 indicates that the phases of the
complex values of the analytic signals are similar (difference of less than 0.8 modulo 27).
d) Such time series are obtained to represent each channel’s synchrony with seed channel
i. €) SCE® is the entropy over observations in the resulting data matrix ¥;. The overall
SCE is then the mean value of SCE® across choices of seed channel i.

2.5 ’Phase shuffling’ normalisation

As an alternative binarisation for the spontaneous signal diversity measures, a spectral-
profile-preserving phase shuffling was applied to control for signal diversity changes due to
spectral profile changes only. L.e. instead of normalising each signal diversity measure (LZc,
LZs, ACE, SCE) for a single segment, using a score obtained from the same data segment
but shuffled in time, an alternative normalisation was applied, using the measure’s average
score across "phase-shuffled" data segments, randomly picked from all available segments,
each data segment individually randomised in a spectral-power-profile preserving way.

L.e. this 'phase shuffling’ normalisation is obtained from phase-randomised surrogate
data as follows. From the complete data from a given subject in a given state, a segment
is randomly chosen. Each time series of that segment is expressed as a superposition of
sinusoids using fast-Fourier transform. Then the phase of each sinusoid is independently
randomly changed, before applying inverse Fourier transform. The signal diversity measure
is computed for 100 such phase-randomised data segments. The mean of these 100 scores is
then used to normalise the measure’s score for the original data segments. Averaging over
100 such surrogate data segments suffices to obtain negligible variance in the normalisation
factor.

We indicate that the 'phase shuffling’ normalisation was used by attaching an N to the
measure’s name, i.e. LZc N, LZs N, ACE N and SCE_N.
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2.6 Basic models to illustrate ACE, SCE and LZc’s behaviour

As a demonstration of how ACE, SCE and LZc indicate signal diversity across space
(channels) and time (observations), and how their behaviour can differ, we apply them to
computer generated time series before computing them on real data. First, we increasingly
order random strings and show the measures decrease with increasing order. Secondly,
we investigate the three measures’ scores as a function of coupling strength and level of
noise correlation in an autoregressive model, as an illustrative example dynamical process.
Finally, we use a particular setting of a system of coupled Kuramoto oscillators to demon-
strate that SCE can behave completely different to ACE and LZc. As another model, we

analyse signal diversity extensively with coupled Stuart-Landau oscillators in Chapter 6.

2.6.1 Ordering random signals

Here we consider binary matrices, which represent the coalitions of either active (for LZc
and ACE) or synchronous (for SCE) channels at each observation. We plotted the de-
pendence of the measures against increasing order in this input matrix as follows. First a
random binary matrix of 25 channels x 2500 observations was created (an entry being 1
with probability 0.5) and one by one each channel was replaced by a copy of the first chan-
nel. Thus at first the input matrix was fully random, then after one iteration there were
two identical channels, at second iteration three identical channels (with random channel
indices), until at the final iteration a matrix was obtained consisting of 25 identical chan-
nels. Coalition entropy and LZc all score 1 for the initial random matrix and decrease
as the number of duplicate channels increases, approaching zero when all channels of the
matrix are identical, see Fig. 2.5 (repeated 100 times with identical results). Thus, as
expected, LZc and ACE increase monotonically as the level of diversity of the matrix of

activations increases, and so does SCE with the matrix of synchronies®.

1.0f *******ﬂ:***** | Figure 2.5: signal diversity mea-
g ***x | sures for increasingly regular activa-
' ¥* tion/synchrony matrices. Given a ran-
0.6l * | dom binary matrix of activations (for ACE
¥** and LZc) or synchronies (for SCE), with
0.4} * ACE (SCE) * ** x| increasing number of duplicated channels,
{ * the signal diversity measures monotoni-
0.2 * Lzc #%X 1 cally decrease with the number of equal
* channels.
0.0t |
0 5 10 15 20 25

Number of equal channels

In the method just described, each channel remains fully random while the cross-channel

variability is reduced. An alternative manipulation of diversity is to alter the regularity of

6See [126] for further basic bahavior of Lempel-Ziv complexity for coupled logistic maps and cellular
automata.
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each channel independently. We sorted increasingly long subsequences of each binary time
series. That is, for each time series a subsequence of fixed length was chosen, starting at a
different randomly chosen time in each time series. Then this subsequence of a given series
is replaced by the same subsequence but ordered, placing all zeros to the left and all ones to
the right within this subsequence. Now the length of the subsequence is increased stepwise,
resulting in increasingly ordered binary matrices for which we computed the measures. We
found the same trend as seen in Figure 2.5, with both LZc and coalition entropy (ACE
and SCE) increasing as the level of diversity increases.

In sum, ACE, LZc and SCE are computed from binary matrices of activations (LZc,
ACE) or synchronies (SCE). Each of the measures quantifies the level of diversity in such a
matrix. We verified explicitly that if the matrix is a random matrix with some time-series
identical, then all the measures decrease monotonically with the number of identical time-
series (see Figure 2.5). LZc counts the number of distinct patterns in the concatenated
observations, or equivalently computes how incompressible the matrix is, while ACE and
SCE are based on the average surprise (entropy) of a single n x 1 observation drawn
at random from the matrix (n being the number of time series). Thus, the measures
quantify the degree of diversity of a matrix in slightly different ways, diverging slightly for
intermediate levels of diversity, but under normalisation, all tend to zero in the limit of an
infinite matrix with every time-series the same, and all score one in the limit of an infinite

matrix in which each entry is independent and has equal chance of being one and zero.

2.6.2 Autoregressive model

The previous analysis of increasingly equal channels allowed the conclusion that ACE, SCE
and LZc increase with increasing diversity across channels, i.e. system differentiation. It
was not possible though to interpret an independent property of the system as integration,
which is why we investigate next how the spontaneous signal diversity measures LZc, ACE
and SCE behave for an autoregressive (AR) system as a function of independently varied
levels of coupling ("integration") and noise correlation ("differentiation").

We used the following autoregressive model:

Xt = CLAXt_l + E(C)t (25)

The resulting multidimensional time series consists of N channels and M observations,
and can be seen to describe the activity of a system of N nodes that influence each other
according to a connectivity matrix A, whose entries are all multiplied by the coupling factor
a. The multidimensional observation of the system at time ¢ is an N-dimensional vector Xz,
initiated for ¢ = 0 as standard normal random values. Any consecutive multidimensional
observation of the system, X, is equal to AX;_1 + €(c). Le. each node’s activity at time
t is a linear combination of the activity of all nodes at the previous time-step, as specified
by the matrix multiplication aAX; 1. In addition, noise is added to each node at each
time step, chosen from an /N-dimensional standard normal distribution that has a uniform
covariance matrix, all entries equal to ¢, except main diagonal entries that are always

1. This set-up allows the coupling strength between nodes to be regulated uniformly by
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coupling factor a and, independently, the covariance of the added noise to be regulated by
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Figure 2.6: SCE behaves differently to ACE and LZc for an AR system. Equ. 2.5
was used to generate 10 x 2500 time series with varying noise correlation ¢ and coupling
strength a. a) The scores of ACE, SCE and LZc are displayed for combinations of ¢ and a,
showing that ACE and LZc decrease monotonically with increasing coupling and correlation
while SCE has a weak local maximum in ¢ and a. b) SCE peaks for a = 0.44 while ACE
and LZc stay constant and then decrease, showing that SCE indicates an intermediate level
of "integration". ¢) SCE peaks for a = 0.44, an intermediate value of noise correlation
while LZc and ACE decrease monotonically with increasing noise. Line-width indicates
standard error across trials.

We created system activity for N = 10 channels and 2500 observations (3000 were
created of which the first 500 were discarded), with adjacency matrix A = (a;;) chosen
such that a;; =1if j =i —1or j =i+ 1, else a;; = 0, with circular boundary conditions,
ie. 1—-1=Nand N+1=1,475 =1,..,N. A topological interpretation for A is
that the nodes sit homogeneously distributed on a circle and only nearest neighbours are
bidirectionally connected, i.e. a ring lattice. We varied the noise correlation c¢ in 50 steps
from 0 to 1. When ¢ = 0 the noise is completely uncorrelated, whereas ¢ = 1 results in
fully correlated noise across channels. The coupling factor a was varied in 50 steps from 0
to 0.5. For a = 0 the system’s activity at time ¢ equals €(c), i.e. temporally un-correlated
but spatially (across nodes) correlated noise. For a > 0.5 the system becomes unstable

and activity of each channel grows to infinity”.

“For a = 0.5 the time series becomes a unit root process, i.e. a random walk which has still finite mean
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The measures ACE, LZc and SCE were computed repeatedly (10 trials) for system
activity of 10 channels and 2500 observations and each combination of a and ¢. Their
scores as a function of a and ¢ are shown colour-coded in Fig. 2.6a. While LZc and ACE
quite similarly and monotonically decrease for increasing noise correlation ¢ and increasing
coupling a, SCE shows a weak local maximum for both, a and ¢. This behaviour is further
illustrated in Fig. 2.6b, where the noise is completely uncorrelated (¢ = 0) and SCE
increases with increasing coupling a before it decreases rapidly, while ACE and LZc nearly
identically stay maximal before decreasing rapidly for very high coupling. Fig. 2.6¢ further
shows, setting a = 0, that SCE peaks for an intermediate value of noise correlation ¢ while
ACE and LZc monotonically decrease with increasing noise correlation. This difference in
the behaviour of SCE and ACE/LZc was also seen for other fixed values of coupling and
correlation, respectively, as can be seen in Fig. 2.6a. Similar yet even more pronounced
behaviour was found for a system of only N = 4 channels (not shown).

In conclusion, LZc and ACE both similarly and monotonically decreased with increasing
noise correlation and coupling for this autoregressive model, yet not completely identically.
ACE and LZc thus clearly measure signal diversity only, which may be called differentiation
of the dynamical system. SCE by contrast showed local maxima for both, noise correlation
and coupling, indicating that it does capture a balance of integration and differentiation

for this model system, however weakly.

2.6.3 Kuramoto model

We computed the three measures for simulated continuous data created with a Kuramoto
model, a model known to display rich dynamics [39, 209]. We used the same parameters as
Shanahan [209] (with a small exception, see below). That is, we simulated 8 communities
of 32 oscillators, with the activity of each oscillator being a unit complex number with

phase 6. For the " oscillator the evolution of its phase in time is given by:

do; 1 &
E =1+ Ni—i—l ;Ki,j sin (Oj —0; — Oéi,j). (26)

The matrix K of coupling strengths was such that each oscillator is fully connected to
its own community and has 32 random connections to oscillators in other communities. N
denotes the number of connections per oscillator. Inter-community coupling strengths were
set to 0.4, and intra-community coupling strengths to 0.6. As shown in the equation, all
natural frequencies are 1. An Euler method step size of 0.05 was used and 1500 time steps
were generated, starting from random initial phases. The first 500 time steps were dis-
carded. The phase lag parameter 3; ; = § — «; ; was varied uniformly for inter-community
connections, and held constant at 0.15 for intra-community connections. (Keeping the
intra phase lag fixed is the only difference from the parameters in [209]). A small value
of B corresponds to a large phase lag and leads to little synchrony whereas larger values
of B correspond to smaller phase lags and leads to greater inter-community synchrony. A

single time-series was generated for each community by taking the real part of the aver-

but possibly infinite variance.
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age instantaneous activity over all of its oscillators. Thus the activity X.(t) of the ct*

community C. is given by

1 .
Xe(t) =Re | > ettt (2.7)
jeCe

Figure 2.7 shows the results for the Kuramoto simulations, plotting LZc, ACE and
SCE against the phase-lag parameter foy;. In addition a measure of phase synchrony
is plotted (PhaseSync), being the mean of \I/,Ei) over all observations ¢ and channels ¢,
as described in the definition of SCE. This plot illustrates (i) the similarity of LZc and
ACE, which are both based on the diversity of the dynamics of amplitude fluctuations,
and (ii) that SCE is a distinct measure of signal diversity to LZc and ACE, by virtue
of being based on diversity in synchrony patterns. For all values of Bext, fluctuations in
the amplitude of each community propagate to different communities, and this leads to
diversity in relative amplitude reflected in the high values of LZc and ACE. In contrast,
SCE is (i) low for small values of fext (large phase lag) since there is little synchrony
between communities, (ii) low for large values of [ext (small phase lag) since there is
almost total synchrony between communities, (iii) high for intermediate values of fext in
which synchrony between communities is able to fluctuate. Also note that LZc and ACE

have a minimum at Sext = 0.15 whereas SCE has a maximum there.
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Figure 2.7: LZc, ACE and SCE for Kuramoto model. The data were obtained by
varying phase-lags for inter-community interactions. A small value of B¢yt corresponds to
a large phase lag and leads to little inter-community synchrony (as measured by phase
synchrony, PhaseSync - indicated as green discs, see text for its computation) whereas
larger values of Bext correspond to smaller phase lags and lead to greater inter-community
synchrony. LZc and ACE show similar dependence on Bext whereas SCE peaks where the
former two have a minimum.

In order to assess perturbational signal diversity in the Kuramoto model, one would

have to perturb the system. Each oscillator in the Kuramoto model has fixed unit ampli-
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tude and is entirely characterised by phase alone. It is thus not possible to perturb the
system stronger than setting all phases equal, which did not result in interesting response
activity when averaging over many perturbations. To overcome this we explored a system
of coupled Stuart-Landau oscillators, a generalisation of the Kuramoto model, charaterising
each oscillator by time-varying phase and in addition time-varying amplitude. This allows
a much stronger perturbation of the system by increasing the amplitude of each oscillator
substantially. It further has the advantage that a complex (in the sense of having real
and imaginary part) time series of an oscillator can be directly interpreted as the analytic
signal of an EEG channel. We therefore extended our explorations of signal diversity in
coupled oscillator systems to the Stuart-Landau system as will be presented in Chapter 6.
Before that, Chapters 3 to 5 cover the behaviour of spontaneous signal diversity measures

for empirical data of different global states of consciousness.
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Chapter 3

Signal diversity of multi-dimensional
spontaneous EEG decreases during

propofol induced general anaesthesia

3.1 Abstract

Emerging neural theories of consciousness suggest a correlation between a specific type of
neural dynamical complexity and the level of consciousness: When awake and aware, causal
interactions between brain regions are both integrated (all regions are to a certain extent
connected) and differentiated (there is inhomogeneity and variety in the interactions). In
support of this, recent work by Casali et al. (2013) has shown that Lempel-Ziv complexity
correlates strongly with conscious level, when computed on the EEG response to transcra-
nial magnetic stimulation. Here we investigated complexity of spontaneous high-density
EEG data during propofol-induced general anaesthesia. We consider three distinct mea-
sures: (i) Lempel-Ziv complexity, which is derived from how compressible the data are; (ii)
amplitude coalition entropy, which measures the variability in the constitution of the set
of active channels; and (iii) the novel synchrony coalition entropy (SCE), which measures
the variability in the constitution of the set of synchronous channels. We show that these
three distinct 'flavours’ of signal diversity robustly decrease in spontaneous EEG during

general anaesthesia.

3.2 Introduction

The first set of global states of consciousness we explore with the spontaneous signal
diversity measures in this thesis are propofol-induced anaesthesia, propofol-induced mild
sedation and wakeful rest. Further global states analysed in later chapters are sleep stages
(Chapter 4) and psychedelic states (Chapter 5).

As introduced in detail in Chapter 1, the idea that the level and range of consciousness
relates in some way to dynamical complexity of brain activity is becoming increasingly

prominent [11, 228, 229, 231, 88, 139, 102]. A common way to conceptualise dynamical
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complexity in this setting is as simultaneous differentiation (subsets of the system being
dynamically distinct) and integration (the system as a whole exhibiting coherence), and
this idea draws from what is taken to be a fundamental property of conscious experience,
namely that each conscious scene is composed of many different parts and is different
from every other conscious scene (differentiation), yet each conscious scene is experienced
as a coherent whole (integration) [228, 229, 231, 88]. A number of different measures
of neural dynamical complexity have been proposed based on information sharing and
transfer [228, 231, 230, 199, 200, 15, 20, 204, 166|. Properties of these measures have
been explored on simple models, for instance neural network activity of artificial agents
[199, 89]. However, these measures, based on information sharing and transfer, rely on
restrictive assumptions, such as stationarity and linearity, that limit the conclusions that
can be drawn when applied to real brain data [22, 59].

A series of recent studies, investigating perturbational signal diversity, take a more
pragmatic approach to investigating the relationship between consciousness and complex-
ity, as we presented in Sections 1.4.9 and 2.2. PCI values obtained for conscious subjects
were consistently higher than for unconscious subjects, to the extent that a single classifier
threshold could be applied: when the PCI value was above the threshold the subject was
always conscious and when the PCI value was below the threshold the subject was always
unconscious [53].

On spontaneous steady-state EEG data, several measures of signal diversity have been
computed on single time-series, reflecting local signal diversity over time rather than dif-
ferentiation and/or integration across a network, see Section 1.4.7. Briefly, these measures
include various forms of spectral entropy [100, 244, 125] and again Lempel-Ziv complex-
ity |42, 43, 188, 253, 16, 46, 108, 124, 250| and all of them have a tendency to decrease
during general anaesthesia . Recently these measures have also been applied to auditory
evoked potentials in disorders of consciousness patients [214], and values were found to
correlate with behaviourally-diagnosed level of consciousness, although there was no single
cross-subject threshold for classifying subjects as conscious or unconscious.

Given that previous spontaneous signal diversity measures captured temporal signal
diversity only, we contributed for the first time multi-dimensional spontaneous signal diver-
sity measures (LZc, SCE and ACE), capturing spontaneous signal diversity across channels
and across observations. Here we investigated LZc, SCE and ACE as defined in Chapter 2
on multi-dimensional spontaneous EEG data from subjects undergoing propofol-induced
general anaesthesia. For spontaneous EEG signals, LZc strictly only reflects differentia-
tion (and not integration); it computes diversity in patterns of activity in both space and
time. ACE is similar to Lempel-Ziv complexity, in the sense that it quantifies variability
in space and time of the activity. By contrast, SCE is conceptually different because it
quantifies variability in the relationships between pairs of channels, as was illustrated with
SCE’s non-monotonic behaviour for increasing diversity in time series of an autoregressive
process, see Section 2.6.2.

We computed Lempel-Ziv complexity and the coalition entropy measures for sets of

equally spaced channels across the whole scalp and also for sets of channels restricted
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respectively to the frontal, parietal, temporal and occipital lobes, on full broadband signals
and on frequency-restricted signals, in each case comparing results for data from wakeful
rest, mild sedation and general anaesthesia. We contrasted these measures’ ability to
indicate conscious level on these data, with that of control measures not based on signal

signal diversity, including normalised delta power [158, 217, 214].

3.3 Methods

3.3.1 Ethics statement

The data analysed in this study were obtained from a previous study [158] with procedures

approved by the Ethics Committee of the Faculty of Medicine of the University of Liége.

3.3.2 EEG data acquisition and preprocessing

Spontaneous high-density EEG recordings (256 electrodes, EGI [90]) were re-analysed from
7 healthy subjects, sampled at 1000H z, before, during and after propofol-induced general
anaesthesia. Propofol is an intravenous anaesthetic that is widely used in surgical settings
and which reversibly induces a state of diminished responsiveness behaviourally similar to
non-rapid eye movement sleep [148]. States of consciousness were defined behaviourally
using the Ramsay scale [183|. The 4 different states labelled here are: wakeful rest (WR),
mild sedation (MS; slower response to command, Ramsay scale score 3), loss of conscious-
ness (LOC) with clinical unconsciousness (no response to command, Ramsay scale score
5), and recovery of consciousness (wakeful rest after propofol, WRa) [158]. Propofol was
administered as described in [158]: "A simple constant rate infusion of propofol was used
together with the computerised Marsh model to predict when to manually adjust infusion
rate to maintain predicted steady-state propofol levels, although the main goal was to
achieve the range of clinical states (Ramsey scores).” Average arterial blood concentrations
of propofol were 1.91 £ 0.52mcg/mL for MS and 3.87 £+ 1.39mcg/mL for LOC [158]. 20
minutes of recording during each of these 4 states were obtained for each subject.

The data were pre-processed as follows. First epochs of recording and complete channels
that showed obvious artefacts were rejected by visual inspection. Artefacted channels were
identified by their extreme amplitudes and irregular behaviour throughout the complete
recording and entirely removed. Artefacted epochs, displaying abnormally high amplitudes
for several seconds across all channels (typical for muscle movement), were manually excised
and the remaining data concatenated. Then 50H z and 100H z frequency noise (artefacts
from electricity mains) were removed by Butterworth notch filtering. Next the data were
down-sampled from 1000Hz to 250H z and spatially filtered by computing the surface
Laplacian.

Surface Laplacian is a method for spatial filtering of EEG data, performed in order
to increase topographical specificity (i.e. to make each channel’s activity more directly
indicative of brain activity under the channel’s electrode). It reduces the effect of volume-
conduction (electrical fields tangentially conducted along the skull) so the filtered signal

reflects more closely the local brain activity - radial dipoles in gyral crowns [65]. For
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each electrode, the surface Laplacian can be implemented as a subtraction of a weighted
sum of its nearest neighbours’ electrical activity. This filtering method was applied using
MATLAB with BCIlab and EEGlab [82].

Finally linear de-trending and baseline subtraction was performed for each channel of
each segment. After preprocessing the length of the time series varied per subject and per
condition between 9-14min, i.e. approximately half the length of the raw data. Figure
3.1 illustrates example 10sec segments of EEG data for WR and for LOC. Analyses were
performed using such non-overlapping 10sec segments for a total number of on average 60

segments of EEG recording per subject and per condition.

Wakeful rest (WR)

i ] Figure 3.1: Two 2sec EEG
WNN\/\N\M/WW segments from 3 exam-
i 1 ple channels. The seg-

L i ment in the top panel is
during wakeful rest (WR)
and the segment in the bot-
. tom panel is during propofol-
induced loss of conscious-
210 ness (LOC); both segments
are shown after pre-processing
and in addition normalised by
standard deviation to high-
light spectral changes (for
more data details, see [22,
i 1 158]). The recordings for LOC
display visibly stronger slow
waves (low-frequency compo-
B 1 nents) as compared to those
for WR.
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3.3.3 EEG channel selection

Analyses were performed on automatically selected electrodes, first 25 taken from across the
whole cortex, see Figure 3.2a, and secondly 25 taken exclusively from either frontal, pari-
etal, temporal or occipital cortex, Figure 3.2b. A k-medoids clustering algorithm [120] was
implemented in Python to automatically select electrodes spatially uniformly distributed
over a particular region (either the whole cortex or a specific lobe).

The k-medoids cluster algorithm takes two arguments as input, first a set of 3D coor-
dinates of points in space (i.e., the EEG electrode coordinates) and second the number of
desired clusters. It outputs labels for each point, indicating to which cluster it belongs and
also if it is this cluster’s representative. The cluster representative is the point in a cluster
which has the least mean Euclidean distance to all other points of that cluster. The algo-

rithm finds these labels by initialising cluster representatives as randomly chosen points of
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Figure 3.2: Channel selection from the high density (256 electrodes) EEG. The
electrode layout is from manufacturer EGI [90]. The homogeneously distributed channel
selection is shown for: a) analyses across the whole scalp; b) analyses restricted to a certain
lobe. Chosen channels are indicated as black stars. See text for details.

the set, as many as there are desired clusters. Then it iteratively adjusts labels until all
points are divided into approximately equally large regional clusters. The representatives
of the clusters are then approximately homogeneously distributed across the cloud of all

points in space, irrespective of the cloud’s shape.

3.3.4 Statistics

For within subject comparison of states, we considered differences in the scores of a measure
to be substantial if the effect size as measured by Cohen’s d was greater than 0.8 (a
threshold indicating large effect size [220]). For a given subject, measure and state pair,
we computed Cohen’s d as the difference of the mean scores across segments for each state
respectively, divided by the pooled standard deviation.

In addition we compared for each measure and state pair the mean scores across sub-
jects. Given the independence of different subjects, we applied a Wilcoxon rank sum
test for each measure and state pair, corrected for false discovery rate (FDR), using the

Benjamini-Hochberg procedure [29].

3.4 Results

3.4.1 Broadband signal for whole cortex

Figure 3.3 shows the mean values across 10sec segments of ACE, SCE and LZc during wake-
ful rest before sedation (WR), mild sedation (MS), LOC and shuffled data (in time domain
shuffled WR) for each subject, computed for 25 EEG channels automatically selected to be
spread evenly via k-medoids clustering across the whole cortex. For all subjects, the three
measures ACE, SCE and LZc score higher for WR than for LOC, nearly all with high effect
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size (Cohen’s d > 0.8 for all measures and subjects except subject 1 for all measures and
subject 3 for measure SCE, compare with Table 3.1.) Values for MS typically lie between
those for WR or LOC, but the differences between MS vs. WR or LOC are less consistent
than those between WR vs. LOC. For all three measures a single threshold can be drawn

that separates WR from LOC across all subjects, as indicated by the cyan lines.
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Figure 3.3: LZc, SCE and ACE computed as averages over multiple 10sec seg-
ments of EEG of the 7 subjects before and during anaesthesia. States shown
are wakeful rest (WR) before propofol, mild sedation (MS), LOC and wakeful rest emerg-
ing from propofol sedation (WRa, not shown for single subject results). Measures are
computed across 25 channels spread evenly across the whole cortex. The measures score
highest for shuffled WR data, and consistently across subjects higher for WR as opposed
to LOC. Error bars indicate standard error across segments, cyan horizontal lines are ex-
ample thresholds for each of the measures, separating WR. from LOC for all 7 subjects.
For each single subject plot, the mean and standard error across its 7 values per state
is displayed in the narrow plot to its right, with the title ‘'mean’. For these mean values
across subjects, significant differences between state pairs are shown by a double asterisk
if p < 0.01 and a single asterisk if p < 0.05 (Wilcoxon rank sum test, FDR corrected for
multiple comparison). See Table 3.1 for effect size comparison.

Figure 3.3 further displays the mean scores of each measure - LZc, SCE and ACE -
across the 7 subjects. By these mean scores, all three measures score higher for waking and
mild sedation states (WR, WRa, Ms), than for LOC (p < 0.01, Wilcoxon rank sum test
corrected for false-discovery rate using the Benjamini-Hochberg method). Also all three
measures score higher for WR and WRa than for MS, though only significantly so for LZc
(p < 0.05, see Figure 3.3).

The scores for all three states of consciousness and all three measures lie within 25% of
the scores obtained for random input, see Figure 3.3. This proximity of the measures’ scores
to 1 for WR (as well as LOC) contrasts with the pattern of the overall lower PCI scores
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"y ‘B ‘a ‘9 ‘5 ‘sumCov‘LZc ‘SCE‘ACE‘
WR/WRa | 142|016 |430[610[241[070 |061[160[061 |
WR/MS |421[007[610[700[223|034 [430[160|250 |
WR/LOC |601[214[304[511[016|016 [610[520|610 |
WRa/MS [520[025[331[520|133|052 [250[160][250 |
WRa/LOC | 601 [412[115[412|016|025 [610[610[610 |
MS/LOC |[601[601|115[403|016[070 [340[|520/[520 |

Table 3.1: Effect size comparison per measure and state pair.For each measure and
state pair, the three numbers correspond to how many subjects out of 7 had higher score for
the left state with Cohen’s d > 0.8 (left digit), no substantial difference, d < 0.8, (middle)
and higher score for the right state with Cohen’s d > 0.8 (right). The results were obtained
from applying the measures to the broadband signal from 25 k-medoids chosen electrodes
from the whole cortex. Here WRa is wakeful rest emerging from propofol sedation.

presented by Casali et al. for EEG input from propofol anaesthetised subjects (Figure 4a in
[53]). There are however several differences between PCI and our measures, see Section 2.3.
Notably, PCI is computed after ordering the channels according to their overall level of
activation following the TMS stimulation. This ordering reduces signal diversity. There is
no analogous step in the computation of LZc, ACE and SCE. By design, all channels are
equally ‘active’ according to the thresholding procedure we use on the spontaneous data.

We compared the ability of the signal diversity measures to discriminate the different
states of consciousness with that of normalised spectral power bands and a simple cor-
relation measure, sumCov, which equals the mean of the absolute values of correlation
coefficients between all channels'. Normalised spectral power bands were obtained by fast
Fourier transform of each channel’s 10sec time series, then averaged over the 25 channels
and grouped into frequency intervals, normalised such that the summed power across all
bands equals one. Frequency bands are defined, following convention, as § =1-4Hz, 6=4-
8Hz, a =8-13Hz, § =13-30Hz, v =30-70Hz. All results are summarised in Table 3.1. The
compared states were WR, MS, WRa (wakeful rest after propofol) and LOC.

We also assessed, via ROC curve analysis, the extent to which classification thresholds
can be applied to each measure across subjects to discriminate between state pairs (e.g.
WR versus LOC). Given the set of mean scores for each subject for a pair of states,
one computes the ROC curve for discriminating between the states by plotting for each
possible classification threshold the hit rate (y-axis) versus the false alarm rate (z-axis)
when classifying a mean score as indicating the more conscious state when it exceeds
the threshold. For example, in a comparison of LZc between WR and LOC, for a given
threshold C, the hit rate is the proportion of subjects for which the mean LZc is greater
than C' during WR, and the false alarm rate is the proportion of subjects for which the

"We further compare LZsum and LZc, which showed similar behaviour, however, mild sedation and
wakeful rest was more clearly discriminated by LZc as opposed to LZsum (compare Fig. A.4 with Fig. 3.3).
This showed that temporal signal diversity alone was similarly indicative of conscious state a signal diversity
across channels and observations, which is a novel contribution.
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mean LZc is greater than C' during LOC. An area under the ROC curve (AROC) of 1
indicates that there exists a classification threshold for which for all 7 subjects the mean
score exceeds the threshold for the more conscious state and is sub-threshold for the less
conscious state. An AROC of 0 also indicates perfect discriminability between the states,
but with the measure scoring higher for the less conscious state, i.e. there exists a threshold
for which for all 7 subjects the mean score exceeds the threshold for the less conscious
state and is sub-threshold for the more conscious state. An AROC of 0.5 indicates that
the measure has no ability to discriminate between the states; for each threshold, the hit
rate equals the false alarm rate. For an interactive applet that illustrates ROC analysis
see [119].
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Figure 3.4: Discriminative power across subjects of nine measures, as measured
by area under the ROC curve (AROC). Each symbol represents a state pair as
indicated. The AROC is computed from the mean scores for the 7 subjects, obtained from
the broadband signal from 25 electrodes from the whole cortex. The closer the AROC
is to 0 or 1, the better the measure is at discriminating the given state-pair, close to 1
signifying that the measure tends to be greater for the more conscious state and close
to 0 signifying that the measure tends to be greater for the less conscious state. When
the AROC is 0.5 there is no discriminative power; hit rate equals false alarm rate for all
classification thresholds. LZc, ACE and SCE have nearly maximal discriminative power for
state pairs LOC/MS and LOC/WR. The measure sumCov fails to discriminate LOC/MS
yet has strong (inverse) discriminative power for LOC/WR and MS/WR. Normalised delta
band power discriminates LOC/WR and LOC/MS strongly yet MS/WR poorly.

As shown in Figure 3.4, LZc, SCE and ACE give nearly perfect cross-subject discrim-
ination between LOC/WR and between LOC/MS, scoring lower for LOC than any other
state. Discrimination was weaker for MS/WR. In addition, normalised delta power and
sumCov give near perfect cross-subject discrimination between LOC/WR (delta also for
LOC/MS, and sumCov also for MS/WR), scoring low for WR and highest for LOC. Delta
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band power strongly discriminating LOC/WR, (see also Appendix A.4 and Table 3.1) is
in line with previous studies [158, 217, 214], reflecting the presence of slow-waves during
LOC [217].

3.4.2 Controlling for changes in power spectrum, effects of number of
electrodes and segment length

Importantly, to check whether changes in ACE, LZc and SCE reflected more than mere
changes to the power spectrum, we computed the measures normalised by their values for
phase-randomised surrogate data. Phase shuffling was performed by Fourier transforming,
and then applying inverse Fourier transform with the addition of an independent random
phase to each channel. When repeating the analysis displayed in Figure 3.3 no major
changes in the measures’ behaviour were found. (See Appendix A.3.)

Next, we tested dependence of the results on the number of electrodes across which the
measures were computed. Different numbers of electrodes were chosen equally distributed
across the whole cortex via k-medoids. We tested 5, 10, 50, and 100 electrodes in addition
to the 25 considered above, for the measures LZc, SCE and ACE, all computed from 10sec
segments. The results are all broadly the same as for 25 electrodes (see Appendix A.1).

As a final control, the role of segment length was explored. Analysed across segments
of length other than 10sec, we found for LZc, SCE and ACE broadly identical results
in almost all cases for all tested segment lengths (0.2, 0.4, 0.8, 1.2, 2, 4, 6, 10 and 20
seconds). There was just one subject, subject 1, for whom LZc, SCE and ACE were only
significantly greater in WR than LOC for segments of length 2sec or more. We conclude
that the discriminative power of the measures is robust across a range of segment lengths
(see Appendix A.2).

3.4.3 Correlation between changes in different measures

We computed correlations between all pairs of measures. The ratio of the score for WR
and LOC was obtained for each subject and measure and then used to compute the Pear-
son correlation coefficient across subjects, as well as a 2-tailed p-value for that correla-
tion. In other words, for each pair of measures we considered the correlation of mea-
surel(LOC)/measurel(WR) and measure2(LOC) /measure2(WR) across subjects. For the
state pair WR/LOC all correlations with p > 0.05 were ignored and the remainder are
plotted in Figure 3.5, ordered by magnitude of the correlation. All pairs chosen from the
measures ACE, LZc, SCE correlated significantly, with Pearson correlation coefficient (r)
greater than 0.75 and p < 0.05. Beta power changes correlated strongly with changes to
ACE, even though beta sometimes increases and sometimes decreases during LOC (see
Table 3.1). All significant correlations were positive except between alpha and gamma
power, which is flipped for convenience in Figure 3.5 but indicated in red. Interestingly,
change in delta power does not correlate significantly with changes in any of the other 8
measures, confirming again that changes in signal diversity do not simply reflect changes

to the overall power spectrum.
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Figure 3.5: Pearson correlations
between measures. FEach black
triangle indicates the positive cor-
relation for the given measure pair
listed in increasing order along the

< 0.95¢ {1 x-axis. The correlation was com-
-%0_907 A | puted across subjects for the ra-
o A A tio of WR/LOC. Each correlation
50'85’ A | of all possible pairs of 9 measures
c 0.80 A 1 was tested for significance and only
£0_757 A | those with 2-tailed p-value smaller
Qo 070 than 0.05 are plotted. The red tri-

angle indicates negative correlation.

O All 3 pairs out of ACE, LZc, SCE
’DSQ o2 Q;S) o4 o @6\ .. .
) NS W v NZ 2 correlate significantly. There is no
e & significant correlation of delta power
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with any other of the 9 measures for
the state pair WR/LOC.

3.4.4 Grouping EEG into lobes

To assess whether changes in signal diversity during LOC occurred across the whole cortex,
or whether more local changes could be identified, we analysed the measures on each of the
four lobes separately. The electrodes were divided into four groups, each corresponding
to one of the four main anatomical lobes: temporal, occipital, frontal and parietal, see
Figure 3.2. Within each lobe, 25 channels were automatically chosen via k-medoids and
from them the measures LZc, SCE and ACE computed in the same way as for the whole
cortex.

LZc and ACE scored consistently higher for WR than for LOC for all four lobes for all
subjects. This was with Cohen’s d > 0.8 for all lobes for all subjects, except subject 1, see
Figure 3.6. SCE scored higher for WR than for LOC for 6 out of the 7 subjects for each
lobe, with Cohen’s d > 0.8 for all subjects and lobes, except subject 1 for all lobes and
except subject 3 for all lobes other than the occipital lobe (see red subject labels in Figure
3.6). Thus the discriminative power of the measures was similar when computed across a

single lobe to when computed across the whole cortex.

3.4.5 Frequency filtered whole cortex recordings

We also analysed the LZc, SCE and ACE measures on the whole cortex data restricted
to different frequency bands, using the same bands as before and also a high-pass filter,
excluding all frequencies below 1H z. Butterworth filters were applied to restrict the signal
to the respective frequency bands prior to computing the signal diversity measures. The
results for the 25 electrodes - automatically chosen via k-medoids across the whole cortex
- are summarized in Table 3.2.

The findings suggest that the elevated signal diversity in the WR state arises more from
activity in low and high frequency bands (delta, beta, gamma) than from intermediate

frequency bands (theta, alpha), and that signal diversity is not just a property of the low
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Figure 3.6: Analysis of 25 k-medoids chosen electrodes for each of four lobes.
Blue star is WR, red diamond is LOC. The red error bars indicate standard error. LZc and
ACE score for all subjects higher for WR as opposed to LOC, SCE does so for 6/7 subjects.
The measures behave similarly for different brain regions. If the effect size Cohen’s d < 0.8
for the scores of a given subject, the subject’s label is printed in red.

‘delta ‘theta ‘ alpha ‘ beta ‘gamma ‘ >1Hz
LZc [ 520 [142[520 |520 |610 [520
SCE [610 |331[421 700|601 [610
ACE|[700[142[430[610 |[700 [520

Table 3.2: Effect size comparison per measure and frequency band for
WR/LOC.For each measure and frequency-band-filtered input, the three numbers dis-
play how many subjects out of 7 had higher score for WR than LOC with Cohen’s d > 0.8
(left digit), no substantial difference, d < 0.8, between WR and LOC (middle), and lower
values in WR when compared to LOC with Cohen’s d > 0.8 (right). High-pass-filtered
input data are labelled by > 1Hz.

frequency components of the spectrum.

3.5 Discussion

We have analysed three different signal diversity measures on spontaneous EEG data from
subjects undergoing propofol-induced general anaesthesia: Lempel-Ziv complexity (LZc),
synchrony coalition entropy (SCE) and amplitude coalition entropy (ACE). All three of
these measures robustly distinguished loss-of-consciousness (LOC) from wakeful resting
(WR) on the broadband signal, giving higher mean values for WR as compared to LOC

across subjects, a range of segment lengths, and number and location of electrodes (in-
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dividual lobes versus whole cortex). On analyses restricted to specific frequency bands,
the discriminative power of the signal diversity measures was highest for low and high
frequency bands (delta, beta, gamma), and lower for intermediate bands (theta, alpha).
The measures ACE and LZc also had some ability to discriminate mild sedation (MS) from
WR.

We combined several approaches to verify that LZc, SCE and ACE capture more than
just spectral changes between the states. First, we found that re-normalising the mea-
sures by values obtained after phase randomisation did not affect the results (see section
Appendix A.3). In addition, when comparing the discriminative power (as measured by
AROQC) of the three signal diversity measures with that of normalised spectral power (on
the non-randomised data) we found that normalised delta power discriminated between
the states WR and LOC as well as the three signal diversity measures did, but it could
not discriminate between MS and WR (see Figures 3.4, 3.3, S3 and Table 3.1), unlike LZc.
Further, all three signal diversity measures tend to behave monotonically with respect to
depth of sedation (see Figure 3.3), unlike delta or gamma power (see Figure S3). Nor-
malised spectral power in other bands all had weaker discriminative power for WR/LOC.
Finally, we did not see significant correlations between the change in delta power and
changes to any of the signal diversity measures, amongst the 7 subjects (Figure 3.5).

The consistency of our findings across the four cortical lobes, over different numbers
of channels, segment lengths, or normalisation (spectral-profile preserving or not) shows
that the decrease in spontaneous EEG signal diversity during general anaesthesia is very
robustly measurable. In ongoing work we are exploring the behaviour of these measures
on a finer spatial scale to see at what level, if any, regional differences can be detected.

Our simulation with the Kuramoto model (Section 2.6.3) demonstrated that SCE, with
its analysis of phase (as opposed to amplitude) synchrony, can exhibit different behaviour
from LZc and ACE (see Figure 2.7). We varied a parameter that controls the overall
level of synchrony, and found that SCE peaked strongly at an intermediate level of overall
synchrony (as one would expect), while LZc and ACE actually exhibited a small dip where
SCE peaked. This simulation, together with the slightly different results for the three
measures when applied to EEG (see Figure 3.3), demonstrate that at least two distinct
"flavours’ of signal diversity were decreasing in the spontaneous EEG during anaesthesia.
Chapter 6 presents additional simulations with Stuart-Landau oscillators to examine more
closely situations in which these three measures converge and diverge.

Our results complement those of Casali et al. [53] who measured Lempel-Ziv complexity
of the EEG response to transcranial magnetic stimulation (TMS). In their paradigm, high
levels of Lempel-Ziv complexity corresponded to conjoined differentiation and integration
by virtue that a high score could only be obtained when the neuronal activity in response
to the magnetic perturbation spreads far (integration) and evolves in a non-stereotypical
way (differentiation). Their variant measure, called the Perturbational Complexity Index
(PCI), also scored consistently higher for WR than for propofol anaesthetised subjects
(LOC) [53], in addition to also scoring relatively low values for other unconscious states,

namely, non-rapid eye movement sleep and vegetative state.
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In summary, we have demonstrated a correlation between level of sedation and three
distinct signal diversity measures during propofol-induced general anaesthesia. There are
now a number of candidate 'neural correlates of consciousness’ [70]. We have added to
the list multi-dimensional signal diversity of spontaneous EEG. Our measures derive from
theory and thus are ’explanatory correlates’ [202|, are quick and easy to compute, and do
not involve the need to stimulate or perturb the brain.

Testing the measures on data from other manipulations of conscious level adds to a
more complete indication of the specificity and sensitivity of these measures to the level
of consciousness associated with diverse states. Analyses of signal diversity during sleep

states are presented next in Chapter 4 and during psychedelic states in Chapter 5.
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Chapter 4

Spontaneous depth electrode signal

diversity decreases globally and
locally during NREM sleep

4.1 Abstract

Key to obtaining a scientific understanding of how the brain generates consciousness is
the characterisation of the neural signatures of changes in level of consciousness during
sleep. Here we analysed three measures of signal diversity on spontaneous depth electrode
recordings from 10 epilepsy patients during wakeful rest and different stages of sleep: (i)
Lempel-Ziv complexity, which is derived from how compressible the data are; (ii) amplitude
coalition entropy, which measures the variability in the constitution of the set of channels
active above a threshold; (iii) synchrony coalition entropy, which measures the variability
in the constitution of the set of synchronous channels. When computed across sets of
channels that are broadly distributed across multiple brain regions, all 3 measures decreased
substantially in all subjects during early-night non-rapid eye movement (NREM) sleep.
This decrease was partially reversed during late-night NREM sleep, while the measures
scored similar to wakeful rest during rapid eye movement (REM) sleep. This global pattern
was in almost all cases mirrored at the local level by groups of channels located in a single
region. In testing for differences between regions, we found elevated signal diversity in the
frontal lobe. Our results provide further evidence that the level of consciousness correlates

with neural dynamical complexity.

4.2 Introduction

As shown in Chapter 3, we found evidence for a robust and spatially uniform decrease
in three distinct flavours of spontaneous multi-dimensional EEG signal diversity during
propofol induced general anaesthesia. These three distinct flavours of signal diversity were
captured by LZc, ACE and SCE as introduced and defined in Chapter 2.

Here we apply the these spontaneous signal diversity measures to depth electrode
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recordings taken during non-rapid eye movement (NREM) sleep, REM sleep, and wakeful
rest (WR) from ten epilepsy patients undergoing pre-surgical evaluation. Complementing
our analysis of spontaneous signal diversity of EEG under propofol, our main focus with
this data set from depth electrodes is to firstly investigate signal diversity changes during
sleep phases and secondly use the high spatial resolution of depth electrodes to compare
regional with global signal diversity changes. Electrode locations varied across subjects and
spanned cortical and sub-cortical regions. We tested the extent to which changes in the
signal diversity measures were consistent and detectable irrespective of which regions were
covered. This regional analysis of signal diversity is relevant for comparison with other
signatures of the different sleep stages, some of which have been reported to differ strongly
across cortical regions (e.g. slow wave and sleep spindle propagation |7, 163]) while other
signatures are exhibited more evenly across the cortex (e.g. average power spectra [56]).

A recent study of avalanche events during wake and sleep states found more large
avalanches in NREM than REM or WR, indicating increased correlations between cortical
areas in NREM sleep and more fragmented cortical dynamics in WR and REM [182]. Given
the similarity of our dataset with the one studied in [182], we additionally replicated results
from that study, and discuss the implications in conjunction with the observed behaviour
of the signal diversity measures.

We found that all three signal diversity measures scored substantially lower in all sub-
jects during NREM than during WR, when computed across sets of channels broadly
distributed across multiple cortical and sub-cortical regions. This global pattern was in
almost all cases mirrored at the local level when analysing the measures across groups of
channels located in just a single region. We also found evidence for higher signal diversity

in the frontal lobe than the other cortical lobes.

4.3 Methods

4.3.1 Ethics statement and data protection

In agreement with the HORIZON 2020 requirement, the protocol used to collect the data
analysed here has been drawn up in accordance with the EU standards of good clinical
practice and with the Declaration of Helsinki (current revision) and is approved by the
Ethics Committee of the Niguarda Hospital of Milan (protocol number: ID 939, Niguarda
Hospital, Milan, Italy). All data related to the study participation are treated confidentially
in compliance with good clinical practice as well as in compliance with Italian specific
national laws on the protection of individuals. Patients are informed that personal data are
collected and stored electronically, that can be used for purposes of scientific research and
that dissemination of the results can take place only in an anonymous and / or aggregate
form. Patients are informed that they have the right to access the stored data, and to

update or modify erroneous data.
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4.3.2 Patients and data acquisition

The data were derived from a dataset collected during the pre-surgical evaluation of ten
neurosurgical patients with a history of drug-resistant, focal epilepsy. All subjects were
candidates for surgical removal of the epileptogenic zone. The recordings were obtained
from stereotactically implanted depth multi-lead electrodes (Stereo-EEG, SEEG), inserted
for the precise localisation of the epileptogenic zone and connected areas [67]. The inves-
tigated hemisphere, the duration of implantation, the location and number of recording

sites were determined based on non-invasive clinical assessment.
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Figure 4.1: Depth electrode dimensions, location and channel definition. a) Out-
line of a multi-lead intracerebral electrode. b) Horizontal section of CT scan of subject 1,
showing a multi-lead intracerebral electrode (red rectangle) [9]. ¢) In MNI space in mm,
the location of initial contacts (blue dots) are partially overlaid by red crosses, marking
the contacts chosen for bipolar-montage. Numbers index the resulting channels as used for
analysis. Channels were obtained by applying bipolar-referencing to neighbouring contact
pairs that were not discarded (see text for details).

SEEG activity was recorded from platinum-iridium semiflexible multi-contact intrac-
erebral electrodes, with a diameter of 0.8mm, a contact length of 1.5mm, an inter-contact
distance of 2mm and a maximum of 18 contacts per electrode (Dixi Medical, Besancon
France), see Fig. 4.1. The individual placement of the electrodes was ascertained by post-
implantation tomographic imaging (CT) scans (post-CT), and Montreal Neurological Insti-
tute (MNI) coordinates obtained for each contact. Full details on the contact localisation
procedure can be found here [9]. Briefly, post-CT was coregistered to pre-implant MRI
by an algorithm based on rigid affine transformation and mutual information. Next the
post-CT scan was thresholded and skull-stripped in order to find and remove radiological
artefacts. Given the planned entry points on the skull and electrode pin dimensions, the
axis direction was estimated and each recording position iteratively computed. A region-
of-interest around each contact was defined and a most probable anatomical label assigned,
using the Destrieux atlas. Single subject channel positions were projected to MNI space
by internal transformation files defined in the matlab toolbox Freesurfer.

In addition scalp EEG activity was recorded from two platinum needle electrodes placed
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during surgery on the scalp at standard 10-20 positions Fz and Cz. Electro-ocular activity
was recorded from the outer canthi of both eyes, and submental electromyographic activity
was also recorded. Both EEG and SEEG signals were recorded using a 192-channel record-
ing system (NJHON-KOHDEN NEUROFAX-110) with a sampling rate of 1000 Hz. Data
were recorded and exported in EEG Nihon-Kohden format. Recordings were referenced to

a contact located entirely in the white matter.

4.3.3 Selection of recording contacts and data preprocessing
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Figure 4.2: Channel locations for the 10 subjects. For each subject, coloured dots
indicate the positions of channels that were used for analysis. The locations are plotted
using MNI coordinates on a standard glass brain (python nilearn [5]); see text for de-
tails. Numbers in black blocks indicate subject number, coloured digits count channels per
subject and region.

In each subject recordings were made from up to 194 contacts (blue dots in Fig. 4.1c¢).
For the present analysis, selection of recording sites was based on the following criteria: we
excluded from the analysis those contacts that (i) were located in the epileptogenic zone
(as confirmed by post-surgical assessment), (ii) were located over regions of documented
alterations of the cortical tissue (e.g. Taylor Dysplasia) as measured by the radiographic

assessment, or (iii) exhibited spontaneous or evoked [239] epileptiform SEEG activity dur-
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ing wakefulness or NREM. Contacts located in white matter, assessed by MRI, were also
excluded from analysis. Data samples were taken from each subject from four different
states: wakeful rest (WR), non-rapid eye movement sleep early at night (NREMe), non-
rapid eye movement sleep late at night (NREMI) and rapid eye movement sleep (REM).
Sleep scoring was obtained according to [213] using one scalp EEG derivation, together with
one bipolar electrooculographic (EOG) and one electromyographic (EMG) derivation. All
NREM epochs were collected during stage N3 according to [213]. NREMe corresponds to
the first stable NREM (stage N3) episode and NREMI to the last stable NREM (stage
N3) episode of the night [174]. By using only NREM in stage N3, possible fluctuation of
the level of consciousness due to subliminal processing in NREM stage N1 and N2 (8] are
avoided. The data samples were imported from EEG Nihon Kohden format into Matlab

and converted using a customised Matlab script.
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Figure 4.3: Sample segments from 5 channels for each state. Segments are shown
after pre-processing prior to normalisation by standard deviation. The recordings for non-
rapid eye movement sleep early at night (NREMe) display visibly stronger slow waves
(low-frequency components) as compared to those for rapid-eye movement sleep (REM) or

wakeful rest (WR).

Bipolar montages were calculated by subtracting the signals from adjacent contacts
of the same depth-electrode (see Fig. 4.1a) to minimise common electrical noise and to
maximise spatial resolution [54, 104|. To further minimise volume conduction artefacts,
at most every third (bipolar) channel from each electrode was retained for analysis. The
number of retained channels per patient varied between 18 and 31 (red crosses in Fig. 4.1c
show an example choice of contact pairs; this is subject 1 in Fig. 4.2). For most analyses
we used 18 channels per subject, selected as follows. A first electrode was chosen at
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random and the m channels on that electrode were all selected, ordered from the innermost
outward. The process was repeated until 18 channels had been selected. (See Fig. 4.1c for
an illustration of this ordering). Fig. 4.2 depicts the channels’ anatomical locations.

The data from the selected channels was further preprocessed as follows. No epochs
were removed, as visual inspection did not result in the detection of severely artefacted
epochs. The data samples were downsampled to 250Hz and divided into 10s segments.
Linear de-trending, baseline subtraction and normalisation by standard deviation was per-
formed for each channel of each segment. After preprocessing the length of the retained
data sample for each subject and state varied between 7-16min. Fig. 4.3 illustrates repre-

sentative channel activity for the different states.

4.3.4 Statistics

Analyses were performed using non-overlapping segments of length 10s for a total length
between 7min and 16min of SEEG recording per subject and per state. The mean and
standard error of the signal diversity measures’ scores were computed over these segments.
At the single subject level, the effect size of differences between states was measured using
Cohen’s d [64]. We call an effect size high if d > 0.8 [220]. For group level comparisons, a t-
test was applied, with correction for false discovery rate (FDR) via the Benjamini-Hochberg

procedure.

4.4 Results

4.4.1 Global analyses

We first computed the signal diversity measures across broadly-distributed sets of channels.
Specifically, for each subject we used the first 18 channels (out of the 18 to 31 available; see
Methods for channel ordering), whose precise sets of locations varied across subjects, but
which spanned at least two cortical regions (see Fig. 4.2). Fig. 4.4a shows the mean values
across 10s segments of LZc, ACE and SCE for each subject during wakeful rest (WR),
non-rapid eye movement sleep early at night (NREMe), non-rapid eye movement sleep late
at night (NREMI) and rapid eye movement sleep (REM). Further, Fig. 4.4b shows mean
results across subjects. Classification of effect sizes for differences between states at the
single subject level are shown in Tab. 4.1. For all subjects, the three measures ACE, SCE
and LZc score higher for WR than NREMe with high effect size (Cohen’s d > 0.8). For
all but one measure and subject, scores are also higher for REM than NREMe with high
effect size. Values for NREMI typically lie in between those for WR or NREMe, with high
effect sizes for most subjects (see state pair NREMI/NREMe in Tab. 4.1). The exception
is LZc for NREMI versus NREMe, for which the effect size is small for most subjects. The
difference in values between WR and REM is small for most cases (d < 0.8). Overall, signal
diversity across all available brain regions is higher for REM and WR - states associated
with consciousness - as opposed to NREMe or NREMI.

In Appendix B, the behaviour of the signal diversity measures is compared to that of

normalised spectral power in the various frequency bands (4, 6, «, 3, ), that of a simple
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Figure 4.4: ACE, SCE and LZc computed across broadly-distributed sets of 18
channels. (a) Individual subject plots. Plotted points show mean over 10s segments.
Scores are normalised by the score for WR (in addition to each measures’ normalisation
as specified in their definition). The measures score higher for WR as opposed to NREMe
or NREMI, consistently across subjects. The measures score similar values for REM and
WR. Error bars indicate standard error across segments. See Tab. 4.1 for effect sizes at the
single subject level. (b) Mean scores across the 10 subjects. For each measure, the mean
and standard error across subjects are displayed, here not normalised relative to scores for
WR. Significant differences between state pairs are shown by a solid line if p < 0.01 and a
dotted line if p < 0.05 (t-test, FDR corrected for multiple comparison).

correlation measure, sumCov, which equals the mean of the absolute values of correlation
coefficients between all channels, and that of LZsum, the mean Lempel-Ziv complexity
of single channels (see Tab. B.1). As expected, normalised delta power is consistently
substantially higher in NREMe than WR, while beta and gamma power are in almost
all cases substantially lower. The high delta band power during NREM sleep reflects the
presence of slow-waves [163, 76, 245, 48, 152, 83].

For each state we investigated the extent to which the signal diversity measures corre-
lated with each other, as well as with normalised spectral power in the various frequency

bands. Fig. 4.5 indicates the pairs of measures and states that showed the strongest correla-
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ACE/LZc
SCE/delta
ACE/SCE
ACE/delta
SCE/gamma

| ACE | SCE | LZc

WR/NREMe | 10,0,0 | 10,0,0 | 10,0,0
WR/NREMI  |8,2,0 |8,2,0 [8,20
WR/REM | 4,5,1 2,80 |1,90

REM/NREMe | 10,0,0 | 10,0,0 | 9, 1,0
REM/NREMI | 9,1,0 [8,2,0 |8,20
NREMI/NREMe | 7,2,1 |8,2,0 [28,0

Table 4.1: Effect size comparison per measure and state pair.For each measure
and state pair, the three numbers correspond to how many subjects out of 10 had higher
score for the left state with Cohen’s d > 0.8 (left digit), no substantial difference, d < 0.8,
(middle) and higher score for the right state with Cohen’s d > 0.8 (right), computed
across trials. The results were obtained from applying the measures to 10s segments from
18 channels as in Fig. 4.4.

tions (Pearson coefficient 7 of absolute value greater than 0.7). Strong positive correlations
(r > 0.7) were found for ACE/SCE for all states, and ACE/LZc for all states except REM.
Weaker, yet still significant correlations were observed between SCE and LZc (see Tab. B.2
and for scatter plots of scores for each segment Fig. B.2). The signal diversity measures
SCE and ACE also showed strong negative correlations (r < —0.7) with delta power dur-
ing NREM sleep states but only weaker correlations during WR and REM, and r > 0.7
was observed for SCE versus gamma power during NREMI. Weaker, yet still significant
correlations were observed for LZc versus delta power, ACE versus gamma power and LZc
versus gamma power (see Tab. B.2). The imperfect correlation between all the signal di-
versity measures indicates that they are capturing not entirely equivalent properties of the

dynamics.

Figure 4.5: Thresholded correlations be-
tween signal diversity measures and fre-
quency bands for each state. For a given
state and subject the Pearson correlation be-

Pearson |r| > 0.7
1

— ------------ ---------- ‘- tween pairs of measures was computed across
_ ............ AAAAAAAAAA ‘_ 10s segments. For each state and measure pair
_ __________ ‘ __________ __________ ‘_ (ACE, SCE, LZc and spectral power in the 5

: : ; canonical frequency bands, correlation of two
T — spectral power bands not shown) a disc coloured
‘I‘ """""" " by state is displayed if the absolute value of the
WR REM NREMI NREMe Pearson correlation r averaged across subjects is

greater than 0.7. (These correlations are all sig-
nificant at p < 0.05, corrected for false discovery
rate.)

We further showed that the observed differences in ACE, LZc and SCE scores be-

tween states remain intact in most cases when renormalising the measures based on phase-
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randomised surrogate data, thus demonstrating that the measures are reflecting more than
just changes in spectral power, in spite of the strong (negative) correlation of two of the

signal diversity measures with delta power for NREM states (see Appendix B.5).

4.4.2 Local analyses
4.4.2.1 Differences between states

Fig. 4.4 shows that, when computed across widely distributed sets of channels, ACE, SCE
and LZc take lower values during NREM than WR. In order to test if or to what extent
there are regional differences in the decrease of signal diversity with NREM sleep, we used
the following three approaches.

Firstly, we applied ACE, SCE and LZc to individual regions, following the classification
in Fig. 4.2. For each subject, each region with four or more channels was analysed; where
there were more than four channels, a quartet was picked at random. Depending on the
subject-specific distribution of electrodes, there were two, three or four regions analysed
per subject. The results (just for WR and NREMe) are shown in Fig. 4.6, and in general
mirror the global result. The scores for LZc and ACE were in almost all cases greater
for WR than for NREMe with large effect size. The consistency of SCE was weaker than
for the other two measures (see Tab. B.3 for score counts). Importantly however, despite
several instances of SCE showing increased values during NREMe, there was no region for
which this was observed for more than one subject.

Secondly, in order to perform an analysis on the maximum possible number of regions
for each subject, we computed the Lempel-Ziv complexity of each single channel (LZs,
same computation as LZc with trivial concatenation, i.e. a measure of temporal signal
diversity only). Averaged across all channels per region and subject, LZs scored for 48 out
of 50 region/subject pairs lower during NREMe than WR (see Tab. B.3 and Fig. B.4).
Considering individual channels further, we noted also that normalised delta power is
higher for NREMe than WR for 49 out of 50 region/subject pairs (compare Fig. B.4 with
Fig. B.5).

Thirdly, we investigated the signal diversity of the interaction of a channel in one region
with a group of channels in another region. To this end we utilised the local synchrony
coalition entropy SCE® of a group of target channels in one region with respect to a
seed channel 7 in another region (see Chapter 2 and Appendix B.4). When taking 3 target
channels we observed lower values during NREMe than WR for 107 out of 129 choices
of seed and target regions for all subjects. Despite this inconsistent decrease of SCE®)
with NREM sleep, there were no exceptional choices of seed and target region that went
against the trend for more than one subject (Fig. B.6). Similar results were obtained when
taking 2 target channels (Fig. B.7) with 109 out of 143 choices of seed and target regions
for all subjects showing lower values during NREMe than WR, also without discernible
pattern for the 34 cases with LZs higher in WR than NREMe. We conclude that there is no
consistent local deviation from the global behaviour of SCE. Finally, we tested complexity
of synchrony (CS) between pairs of channels, defined as the Lempel-Ziv complexity of
their synchrony time series (see Appendix B and Fig. B.8). CS scored higher for WR than
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Figure 4.6: ACE, SCE and LZc scores computed for channel quartets restricted
to single regions. The results for WR (white) and NREMe (red) were obtained from
applying the measures repeatedly to quartets of channels within regions as specified by
first 3 letters of region names (as listed in Fig. 4.2). LZc and ACE score for all regions and
subjects higher for WR than NREMe (with just a single exception for ACE); SCE scores
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NREMe for 122/139 pairs of regions.
In summary, all locally applied signal diversity measures behave predominantly ac-
cording to the main trend with just a few anomalies. There was no consistent pattern to

anomalies across regions or subjects.

4.4.2.2 Differences between regions for a given state

Differences in signal diversity scores between regions were overall less pronounced and
less consistent than differences in signal diversity between states (see Fig. 4.6). Here we
investigate whether there are trends of regional signal diversity differences at the group
level.

Mean scores for LZc, ACE and SCE were computed from channel quartets restricted to
each of the four cortical lobes. All measures scored higher in the frontal lobe compared to
other lobes for REM and WR, although an ANOVA test for a significant variation across
the lobes gave a significant p value (< 0.05; p-values uncorrected in this section) only for
LZc when pooling across states (F' = 4.1; p = 0.01). Given the available data, this analysis
had n = 4,5,9, 3 respectively for frontal, parietal, temporal and occipital cortex.

We repeated the analysis with LZs (single-channel Lempel-Ziv complexity), computable
whenever the subject has just one or more channels located in the given lobe. This led
to the slightly larger sample sizes of n = 7,9,9,7 respectively for frontal, parietal, tem-
poral and occipital cortex. For each state, LZs scored highest for the frontal lobe, see
Fig. 4.7. A 1-way ANOVA test for significant variation between lobes yielded (F,p) =
(2.3,0.10), (1.9,0.15), (0.8,0.49), (1.6,0.20) for state WR, REM, NREMI, NREMe respec-
tively (F is the statistic, p the associated p-value from the F-distribution). A t-test as a
post-hoc analysis indicated a significant difference at p < 0.05 (uncorrected) between the
frontal and temporal lobe in states WR and REM. When pooling values from all states for
a given lobe, the ANOVA test did indicate a significant variation of LZs across lobes, with
(F,p) = (4.5,0.005). By contrast, an ANOVA across lobes for the difference LZs(WR)-
LZs(NREMe) yielded (F,p) = (1.6,0.2), confirming that the drop in signal diversity with
NREMe does not differ substantially across lobes. For comparison, an ANOVA between
lobes for delta power yielded (F,p) = (1.8,0.16),(2.2,0.11),(0.4,0.74), (0.85,0.47), with
a significant (t-test, p < 0.05, uncorrected) difference between the frontal and tempo-
ral lobe (delta higher in temporal) in states WR and REM; pooled across states gave
(F,p) = (2.7,0.05).

In summary, we found evidence for greater signal diversity in the frontal lobe compared
to the other cortical lobes and confirmed that signal diversity changes across states are more

pronounced than across regions.

4.4.3 Signal diversity in different frequency bands

To test whether the relationship between signal diversity and conscious level is restricted to
specific frequency bands, we re-analysed the ACE, SCE and LZc signal diversity measures
on the data after frequency filtering (using Butterworth filters). The results for 18 channels

per subject (chosen as above) are shown as average scores across subjects in Fig. 4.8 for
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Figure 4.7: Mean LZs scores for the four cortical lobes in each state. For each
subject, LZs scores were averaged across all channels from the given lobe. The mean
of these scores across subjects is displayed with standard error across subjects for each
state. The labels on the x-axis give the first 3 letters of the lobe name (frontal, parietal,
temporal, occipital) from 7, 9, 9 and 7 subjects respectively. LZs scores higher for the
frontal lobe than for the other lobes (ANOVA pooled across states for difference between
regions gives F' = 4.5 and p = 0.005; t-tests for differences between pairs of lobes came
out non-significant (p > 0.05) except for between Fro and Tem for states WR and REM
(uncorrected for multiple comparison).

6 different frequency bands and for 6 different high-pass cutoffs. Fig. 4.8a shows that the
elevated signal diversity of ACE, SCE and LZc in the WR state is most pronounced in the
delta (1-4Hz) and alpha (8-13Hz) ranges, and the general trend is at least weakly present
in all bands. Also in Fig. 4.8b higher signal diversity in WR than NREMe is visible for all
high-pass cutoffs, yet this difference becomes smaller with increasing high-pass cutoff.

In summary, higher signal diversity in WR than NREMe is present for almost all tested
frequency bands and high-pass cutoffs, and it is strongest when frequencies smaller than
4Hz are left in the signal. This shows that the decrease of signal diversity with NREMe is
amplified by an increase of low-frequency waves, yet still exists after most of the applied

frequency filters.

4.4.4 Avalanche statistics

Recent studies of avalanche events have shown that avalanche size distributions follow a
power law to good approximation over a wide range of scales, during both wake and sleep
states [182, 185]. However, large avalanches were found to be more frequent in NREM
sleep than WR or REM, indicating increased correlations between cortical areas in NREM
sleep and more fragmented cortical dynamics in WR and REM, in line with our findings
with the signal diversity measures. Since the present dataset is similar in structure to the
one analysed in [182], we replicated from that study some analyses of the distribution of

avalanche events during wake and sleep states.
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Figure 4.8: ACE, SCE and LZc for frequency filtered data. (a) Bandpass filtering
(frequency ranges indicated in each column). (b) High-pass filtering (frequency cutoffs in-
dicated in each column). Scores were obtained from applying the measures to 10s segments
of frequency filtered data from 18 channels and then averaging across all segments from all
subjects. WR is in white and NREMe in red. Significant differences between state pairs
are shown by a solid line if p < 0.01 and a dotted line if p < 0.05 (uncorrected t-test across
subjects). Error bars show standard error computed from the mean scores for each of the
10 subjects.

We defined events and avalanches of events in the same way as in [182], in brief as
follows. For each positive deflection between two zero crossings of a channel time-series,
the area under the deflection was calculated. An event was said to have occurred whenever
this area exceeded a threshold. The threshold was set for each channel such that there
was the same event rate of 13 events per second for all channels. The time-series is then
binned (we took the bin size to be half the mean inter-event interval as in [182]), assigning
a 1 to a bin if an event occurs in it, and a 0 otherwise. An avalanche is defined as a cluster
of events: in each time bin during an avalanche, there is an event occurring in at least
one channel. Avalanches are preceded and followed by time bins in which there are no
events. Three quantities that characterise avalanches are analysed: (i) avalanche size s,

which is the total number of binary events that occur during the avalanche; (ii) avalanche
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duration d, which is the number of time bins spanned by the avalanche; (iii) the branching
parameter o which is the average number of events in one time bin divided by the number
of events in the preceding time bin, given that there was at least one event in the preceding
time bin.

For the avalanche analyses we used 18-31 channels per subject, selected and pre-
processed as described in the Methods section. We successfully replicated the findings
of Priesemann et al.’s study [182], that mean size 5 and duration d of avalanches, and the
mean branching parameter & for avalanche events were all greater during NREM sleep (we
used NREMe only) than during WR or REM, see Fig. 4.9a. Further, for all states the
avalanche distribution was approximately following a power law, however large avalanches
were more frequent in NREMe than WR or REM (Fig. 4.9b). We discuss these findings in

conjunction with our findings for the signal diversity measures in the Discussion.

a) avalanche statistics Figure 4.9: Avalanche analysis

' ' ' as introduced by Priesemann et

1.2 al., Figs. 7 and 4 in [182],
for the present dataset. (a)

6 1. 1] 1 States shown are NREMe, REM and
~S ’{_‘ WR. Scores of each measure (mean
o 107 i lanche size 5 lanche du-
[P m avalanche size 5, mean avalanche du

0.0l | I T ration d, mean branching parame-
ter ¢ across 10 subjects) are shown

0.8 for each state, normalised by mean
score across all three states. Error

REM WR bars indicate standard error across
10 subjects. All three measures

b) 10° have substantially higher scores for
0w NREMe than WR or REM (p <
% 10 0.01, FDR corrected t-test across
> > subjects). (b) The avalanche size
$107 WR 1 distribution for each state (not nor-
> malised) approximates a power law.
® 10%||— REM { Lar lanch f ¢
2 ge avalanches are more frequen
— NREMe in NREMe than in WR or REM.
10° 10"

avalanche size s in #events

4.4.5 Controls

It is important to verify that changes in signal diversity with conscious level, as measured
by ACE, LZc and SCE, are not merely reflecting well known changes in spectral proper-
ties of the data (e.g. increase in delta power during NREM sleep). To address this we

performed a surrogate data analysis, following our previous study [191]. Specifically, we

66



computed the measures normalised by their values for phase-randomised surrogate data.
Phase shuffling was performed by Fourier transforming each channel, and then applying
inverse Fourier transform with the addition of an independent random phase. When re-
peating the analysis displayed in Fig. 4.4 with the phase surrogate normalisation, the
consistency of the measures’ behaviour across subjects was slightly reduced (see Fig. B.9)
yet the same general behaviour was observed. Thus we have confirmed that the observed
changes in signal diversity measures are indeed not merely reflecting spectral changes.

As an alternative analysis of the extent that the measures’ sensitivity to conscious
level depends on spectral changes, surrogate data were created with the spectral profile
of wakeful rest (WR) and non-rapid eye movement sleep (NREMe), then the high-pass
frequency filters of Fig. 4.8b were applied prior to computing the measures ACE, LZc and
SCE. All three measures score higher for the spectrum corresponding to wakeful rest, also
after applying a 4Hz high-pass cutoff - showing that the measures are sensitive to low-
frequency component of the signal - however for cutoffs of 10Hz, all three measures score
higher for NREMe than WR (Fig. B.1). Crucially, the measures did still score higher for
high-pass filtered depth-electrode recordings at 10Hz (Fig. 4.8b), confirming that spectral
changes alone are not enough to explain these measures’ sensitivity to conscious level.

When omitting bi-polar referencing as a pre-processing step, results are barely affected
(Fig. B.10). This shows that bi-polar referencing as a pre-processing step of the data is
not crucial for the detection of signal diversity changes in WR/NREMe.

We varied the time-series’ sampling rate, computing ACE, SCE and LZc for data
sampled at 10, 50, 150, 350, 500, 750 and 1000Hz. The segment length and channel number
was fixed at 2500 observations and 18 channels, respectively. (Note that we analysed the
measures’ behaviour for different segment lengths as well as different numbers of channels
in our previous study [191], finding similar results for a range of different segment lengths
(0.2-20s at 250Hz) and channel numbers (5-100). (See next paragraph for even shorter
segment lengths.) All three measures scored for all subjects higher for WR than NREMe,
for a sampling rate at least 150Hz. Consistency was considerably weaker for the low
sampling rate of 50Hz and the results were totally inconsistent across subjects for 10Hz,
see Fig. B.11.

When searching for the lower bound of segment length, for which the measure’s be-
haviour was still consistent (for 18 channels at 250Hz), we found that for 500 observations
(2s) per analysed segment still all measures scored for all subjects higher in WR than
NREMe, as was found for 2500 observations (10s) for the main analysis. For 100, 50 and
30 observations per segment (0.4s, 0.2s and 0.12s respectively) there were at most two
subjects showing higher scores for NREMe than WR for each measure. At segments that
were 15 observations long (0.06s), inter-subject consistency was lost for all three measures,
see Fig. B.12. Note that for fewer observations the influence of spatial signal diversity - as
opposed to temporal signal diversity - on the score increases.

In summary, our findings linking low signal diversity to loss of consciousness depend
on sampling data at biophysically plausible timescales and ensuring segment lengths are

long enough for statistical analysis.
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4.5 Discussion

We have analysed the behaviour of three measures of signal diversity on spontaneous depth
electrode data recorded during wakeful resting (WR) and diverse sleep states: Lempel-Ziv
complexity (LZc), amplitude coalition entropy (ACE) and synchrony coalition entropy
(SCE). All three of these measures scored substantially lower (high effect size, d > 0.8)
during early night NREM (NREMe) sleep than during WR in all 10 subjects. This is
in spite of the recordings being taken from different sets of regions in each subject (as
prescribed by clinical requirements for epileptic focus detection). For the majority of
subjects, LZc, ACE and SCE scores during late-night NREM (NREMI) sleep were in
between those for NREMe and WR. By contrast, there was no overall significant difference
in the scores of any of the measures between WR and REM sleep.

Scores for the three signal diversity measures tended to be imperfectly positively corre-
lated across subjects, indicating that they are capturing similar yet not entirely equivalent
signal changes. This can be seen in model simulations in [191], which show SCE behav-
ing in some cases differently from ACE and LZc. Further, both ACE and SCE strongly
correlated inversely with delta power. The signal diversity measures do however capture
more than just spectral changes between states. This was explored in detail in [191], and
we confirmed this again on the present dataset, via re-computation of the measures on
surrogate phase-randomised data (Fig. B.9). When analysing the measures on frequency
restricted data, we found that the changes in signal diversity were most pronounced in the
delta and alpha frequency bands.

The pattern of results obtained was in almost all cases preserved when the measures
were computed across groups of channels restricted to a single cortical lobe (or specified
sub-cortical region, see Fig. 4.6). Scores for NREMe were almost always lower than for
WR, and exceptions to this followed no discernible anatomical pattern.

We also tested whether there were observable differences in local signal diversity be-
tween different cortical lobes. We found that on average the measures score higher for
channels located in frontal cortex compared to parietal, temporal or occipital cortex, irre-
spective of the state. Given that there are substantial differences in anatomical structure
between brain regions - e.g. notably structural connectivity tends to be much more dense
within more anterior cortical regions [156, 114] - our results are suggestive of the denser
connectivity of frontal cortex supporting increased signal diversity.

Significant differences in NREM sleep electrophysiology between cortical lobes have
been observed previously [7, 163], namely inhomogeneities in the direction of propagation
and frequencies of synchronous sleep spindles and slow waves. However, when comparing
different regions in terms of the magnitude of the difference in signal diversity between
WR and NREMe, we found no evidence for differences between regions. Thus any inho-
mogeneities in sleep spindle and slow wave events are unlikely to have significantly affected
signal diversity scores in our data. This is likely due to the signal diversity measures’
scores being averages across channels and segments, and thus being sensitive to steady
state properties and not to transient events like spindles. Other studies on slow waves

did also find regional differences in slow wave propagation, for example waves originating
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more frequently in frontal regions, [211], but brain areas consistently recruited by the slow
oscillation have not been identified [75]. This is in line with our observations on the ho-
mogeneity of delta power for single channels (Appendix B and Fig. B.5) and a study by
Cavelli et al. [56], showing that sleep-stage dependent spectral coherence varied equally
across the cortex.

Recent studies of avalanche events have shown that avalanche size distributions follow
a power law to good approximation over a wide range of scales, during both wake and sleep
states [182, 185] while large avalanches are more frequent in NREM than WR. We replicated
the summary statistics from the study in [182] which utilised a dataset similar to the present
one. Specifically, we also found that for all states the avalanche size distribution followed
approximately a power law. Similar proximity to a power law does not imply that avalanche
distributions during each sleep stage are similarly scale-free, since power-law scaling is not
necessarily indicating scale-free relations as was shown in general for thresholded stochastic
processes by Touboul and Destexhe [236] and discussed by [181, 182]. Unequivocally, we
found mean avalanche size, duration and branching parameter all to be greater during
NREMe sleep than WR or REM, indicating increased correlations between cortical areas in
NREMe sleep and more fragmented cortical dynamics in WR and REM. This is in line with
our finding of higher signal diversity as captured by ACE, LZc and SCE for WR, and REM
than NREMe. More large avalanches in NREM than WR contrast with the finding that
the EEG response to transcranial magnetic stimulation (TMS) is less widespread during
NREM sleep than WR [53]. However, this holds for low intensity perturbations only, as for
high enough perturbational intensity the response signal spreads as far as during WR but
less diversely. A possible explanation is that widespread sub-cortical drive is responsible for
the increase in large avalanches, while a simultaneous decrease in cortico-cortical effective
connectivity is responsible for the drop in responsiveness to TMS stimulation, in line with
relay models of thalamo-cortical interaction [154, 68|. Further, if the subcortical drive
results in more stereotypical cortical activity then that could explain the decrease in signal
diversity as measured by ACE, SCE and LZc. We explored such potential mechanisms
with the Stuart-Landau model of coupled oscillators as will be presented in Chapter 6.

In summary, we have found that three measures of signal diversity, capturing distinct
aspects of signal diversity in space and time, all robustly decrease during NREM sleep,
across local and global brain networks. Our application of these signal diversity measures
represent new contributions to the statistical characterisation of cortical signals for different
sleep stages, providing well defined signatures. Importantly, complementing decreased
signal diversity of cortical response activity to TMS stimulation [53], our measures provide
direct evidence for a breakdown of differentiation between regions and diversity of brain
states explored, during states of unconsciousness, as predicted by integrated information

and complexity theories of consciousness [229, 200].
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Chapter 5

Diversity of spontaneous MEG
signals increases for psychoactive

doses of ketamine, LSD and

psilocybin

5.1 Abstract

What is the level of consciousness of the psychedelic state? It has been proposed that
certain measurements of brain dynamics, such as the repertoire of connectivity motifs that
form and fragment across time, separate different states of consciousness, including the
psychedelic state. Empirically, measures of signal diversity such as entropy and Lempel-
Ziv complexity score higher for REM sleep and wakeful rest than for states with lower
conscious level like non-rapid eye movement sleep or propofol-induced anaesthesia, when
applied to spontaneous neural signals. Here we use these measures to examine whether the
diversity of spontaneous magnetoencephalographic (MEG) signals changes during altered
states of consciousness induced by three psychedelic substances: psilocybin, ketamine and
lysergic acid diethylamide (LSD). We find reliably higher spontaneous signal diversity
across all three manipulations, even when controlling for accompanying spectral changes.
These changes are brain-wide though with a focus in occipital-parietal regions. We also
uncover selective correlations between changes in signal diversity and phenomenological
reports of the intensity of psychedelic experience. This is the first time that these measures
have been applied to the psychedelic state and, crucially, the first time they have yielded
scores exceeding those for normal waking consciousness. Our findings have implications
for relating quantitative measures of neural diversity to phenomenological properties of
consciousness, and they refine our understanding of how changes in conscious level relate

to changes in conscious content.
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5.2 Introduction

Recently, following early suggestions that increased conscious level may be related to an
increased range of conscious contents [201, 36|, there has been growing interest in char-
acterising how conscious level and conscious content may relate [26, 170]. One empirical
approach to this question is to apply emerging measures of conscious level to experimental
manipulations that primarily affect conscious content. Here, we capitalise on the profound
effects on conscious phenomenology elicited by psychedelic compounds, specifically LSD,
psilocybin, and ketamine. These drugs normally have profound and widespread effects
on conscious experiences of self and world. More specifically, they appear to "broaden"
the scope of conscious contents, vivifying imagination [50] and positively modulating the
flexibility of cognition [51]. At the same time, they are not accompanied by global losses
of consciousness or the marked changes in physiological arousal as seen in sleep or anaes-
thesia. These observations raise the question of whether theoretically-grounded measures
of conscious level would be changed in the psychedelic state.

One disadvantage of the PCI approach is that it requires brain stimulation, which lim-
its its applicability. A complementary approach is therefore to measure signal diversity of
spontaneous neural activity recorded under various manipulations of conscious level. Fol-
lowing early studies of anaesthetics [253, 99, 100] and natural sleep states [150, 46|, we have
found reliable reductions in neural signal diversity with diminished conscious level across
a range of measures and experimental manipulations, focusing on spontaneous electro-
physiological recordings. These measures include versions of Lempel-Ziv complexity (LZc,
LZs), which derive from the (lack of) compressibility of binarised matrices of observations;
amplitude coalition entropy (ACE), which reflects the entropy over time of most active
channels, and synchrony coalition entropy (SCE), which reflects the entropy over time of
synchronous channels. These measures of signal diversity robustly index levels of propofol
sedation [191] and sleep stages [8, 192]| when applied to spontaneous electrophysiological
recordings. As with the PCI studies, these measures were reliably higher for conscious
than for unconscious conditions.

Measures of entropy and Lempel-Ziv complexity both capture the diversity of a sig-
nal. The concepts are closely related, as can be illustrated with a binned neuronal spike
train, for which entropy and Lempel-Ziv complexity are asymptotically identical [6]. A
binned spike train is a binary string and the entropy of the process generating this string
is defined using the probability distribution of the appearance of each possible substring
of each possible length (which is in practice impossible to compute as it would require
infinitely extensive sampling). In the limit of an infinitely long binary string, the string’s
Lempel-Ziv complexity [146] is almost surely identical to the entropy of the process gen-
erating the string, provided the process is ergodic. Interestingly, Lempel-Ziv complexity
for certain processes converges for reasonably small sample lengths and can thus be used
as an approximation of the entropy of the process that generated the string, as was shown
in simulations [6]. This suggests that Lempel-Ziv complexity may more accurately esti-
mate the true entropy of a process than direct approximate entropy measures. The latter

approximate the true probability distribution of any substring of any length by only esti-
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mating the frequency of some particular substrings, often called symbols [150]. Such an
approximate entropy measure depends only on the histogram of the different symbols and
is thus invariant under reordering of the symbols. By contrast, ordering the string of sym-
bols such that they are grouped by type would substantially reduce the string’s Lempel-Ziv
complexity, further suggesting that Lempel-Ziv complexity estimates the true entropy of a
signal more accurately than direct approximate entropy measures.

Functional MRI-based measures of entropy have previously been found to be greater
in the psychedelic state than in normal waking consciousness [49, 222, 141] and this effect
has been related both theoretically [49] and empirically [141], to the phenomenal qualities
of the psychedelic state. Given that Lempel-Ziv complexity can quantify the true entropy
of certain stochastic processes more accurately than direct approximate entropy measures
[6], it is arguably more sensitive for signal diversity than entropy measures that have
been applied previously with psychedelics. However, and crucially, no such measures have
ever been applied to data derived from EEG or MEG recordings of the psychedelic state.
EEG/MEG data have far higher temporal resolution than fMRI and therefore are much
better suited for signal diversity analyses.

Here, we sought to test the hypothesis that three different psychedelic drugs (psilo-
cybin, LSD and sub-anaesthetic ketamine), known to produce unusual altered states of
consciousness, characterised by rich phenomenal content, would yield scores of signal di-
versity exceeding those for normal waking consciousness.

We did this by re-analysing multidimensional spontaneous MEG recordings using our
measures of spontaneous signal diversity. We compared signal diversity for two conditions:
post-placebo and post-psychedelic drug. The data come from three different experiments,
in each a different drug was administered to different participants: lysergic acid diethy-
lamide (LSD) [52], ketamine (KET) [160] and psilocybin (PSIL) [159]. We further examined
whether changes in measured signal diversity could be related to subjective phenomeno-
logical descriptions obtained following drug administration, to shed additional light on the

complex relations linking conscious level and conscious content.

5.3 Methods

5.3.1 Data and preprocessing
5.3.1.1 Overview

We re-analysed MEG recordings from healthy subjects with open eyes, after taking a
placebo and after taking a psychedelic drug. The data come from three different exper-
iments, in each a different drug was administered intravenously to different participants:
lysergic acid diethylamide (LSD) [52], ketamine (KET) [160] and psilocybin (PSIL) [159].
After artefact removal and source modelling (see following sections for details), we anal-
ysed 2s segments of 90 source channels at 600Hz: 5-7min data for 15 participants for LSD,
6-10min data for 19 participants for KET and 2-5bmin data for 14 participants for PSIL,
each time comparing resting state MEG for the drug condition with a placebo condition.

Prior to computing signal diversity measures, the data was further low-pass filtered with
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lowcut at 30Hz.

5.3.1.2 Ethics statement

All studies were approved by a UK National Health Service research ethics committee and

participants gave informed consent to participate.

5.3.1.3 Participants and Drug dose

For all three studies (PSIL [159], KET [160], LSD [52]) participant exclusion criteria have
been described in detail. Briefly: younger than 21 years, pregnancy, personal or immediate
family history of psychiatric disorder, substance dependence, cardiovascular disease, claus-
trophobia, blood or needle phobia, a significant adverse response to a hallucinogenic drug
or a medically significant condition rendering the volunteer unsuitable for the study. All
participants had previous experience with a hallucinogenic drug but not within 6 weeks of
the study (for LSD and PSIL only). For KET the additional exclusion criteria were to be
smoker, being female or having a body mass index outside the range of 18-30 kg/m?.
LSD and PSIL were each administered intra-venously at a fixed single dose of 75ug
and 2mg, respectively, within one minute. By contrast KET was administered with an
initial bolus of 0.25mg/kg delivered over one minute followed by maintenance infusion at a
rate of 0.375mg/kg/h for forty minutes. PSIL and KET data were obtained immediately
after drug administration whereas for LSD the data were obtained four hours after drug

administration due to LSD’s slow pharmacodynamics.

5.3.1.4 Data acquisition and preprocessing

Participants lay in supine position for KET and LSD but were seated for PSIL. Partici-
pants’ pulse rate and blood oxygenation level were continually monitored throughout the
experiment via a probe over their left hand index finger. Whole-head MEG recordings were
made using a CTF 275-channel radial gradiometer system sampled at 1200 Hz (0 — 300H z
band-pass). An additional 29 reference channels were recorded for noise cancellation pur-
poses and the primary sensors were analysed as synthetic third-order gradiometers. For
LSD and KET, in addition to the MEG channels, we recorded participants’ ECG: hori-
zontal and vertical electro-oculograms as well as electromyograms from bilateral frontalis
and temporalis muscles and participant compliance was in addition monitored via an eye-
tracking camera.

All MEG recordings were band-pass filtered (1 — 150H z), downsampled to 600H z and
segmented into epochs of 2s length. Each epoch was then visually inspected, and those
with gross artifacts (e.g. head movements, jaw clenches) were removed from the analysis.
An automated algorithm was used to remove further epochs contaminated with muscle
artefacts. In this algorithm, a set of 30 gradiometer sensors were predefined at the edge of
the MEG dewar (vacuum flask), as these are most likely to be contaminated by muscle arte-
facts. Using Hanning windowed fourier transformations, the mean spectral power for these

sensors in the 105 — 145H 2z frequency band for each epoch was calculated. If the resulting
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power averaged across these sensors exceeded 1072 then that epoch was eliminated from
subsequent analysis. On the remaining epochs independent component analysis (ICA) was
performed, as implemented in Fieldtrip/EEGLAB, to identify and remove ocular, muscle
and cardiac artifacts from the data. For LSD and KET, any components that showed a
correlation (r > 0.1) in the time domain with the EOG/EMG electrodes were automat-
ically removed, whereas these were identified manually for the PSIL data. Likewise, any
components that showed correlations (r > 0.1) with similarly filtered EOG/EMG channels
after being bandpass filtered in the range 105 — 145H z were removed. Visual inspection
was also used to remove artifact components.

Source modelling of the data was performed using the fieldtrip toolbox [168]. For
each participant individual forward models were generated from their individual structural
MRI scan [164]. In order to reduce the data, an atlas-based beamformer approach was
used [115]. Broadband virtual sensor time-series were constructed using a linearly con-
strained minimum variance beamformer [241] at 90 cortical and subcortical seed locations

as specified in the automated anatomical labelling atlas [238].

5.3.2 Spontaneous signal diversity measures

We compute the spontaneous signal diversity measures LZc, LZs, ACE and SCE and their
"phase-shufie" normalised versions LZc_ N, LZs N, ACE N and SCE_N as defined in
Chapter 2. Single channel Lempel-Ziv complexity, LZs, averaged across all channels is

denoted as LZsum or LZs when clear from context.

5.3.3 Normalised spectral power and phase coherence (PC)

The behaviour of the signal diversity measures is compared to that of normalised spectral
power and phase coherence. We defined power bands as: § = 1 — 4Hz, § = 4 — 8Hz,
a=8-15Hz, f =15—30Hz, v = 30—70H z. The power of a spectral band was computed
using Welch’s method [247] for each 2s segment of each of the 90 sources, normalised by the
sum of the power of all 5 bands, then averaged across sources and trials per participant.
As a measure of synchrony we use the mean phase coherence (PC) across all pairs of
channels. Let zj(t) = rx(t)e®*® and z;(t) = 7;(t)e? ") describe the analytic signals of

two channels at time ¢ then

Zei(ek(t)_ej(t)) s PC(System) = % Z PCk] (51)

PCy = |
! t=1 (2) 0<k<j<N

el

with T" being the length of the segment (1200 observations= 2s) and N = 90 the number
of sources. Reported PC scores are averages across trials. Scores of PC lie between 0 and

1, with 1 indicating perfect synchrony and 0 indicating no synchrony at all.
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5.3.4 Questionnaire scores

Across the three experiments different questionnaires were employed for participants to
retrospectively evaluate their psychedelic experience. Here, we analyse a subset of the
questionnaire items that were common across all three experiments, i.e. for PSIL, KET
and LSD:

strange Things looked strange.

geom [ saw geometric patterns.

vivid My imagination was extremely vivid.

time My perception of time was distorted.

space My sense of size and space was distorted.

ego I experienced a disintegration of my ’self’ or ’ego’.
muddle My thinking was muddled.

merge | experienced a sense or merging with my surroundings.
control I feared losing control of my mind.

spirit The experience had a spiritual or mystical quality.
peace I felt a profound inner peace.

float I felt like I was floating.

past I saw events from my past.

sounds Sounds influenced things I saw.

For all three experiments subjective questionnaires were completed retrospectively on
the day of the experiments after most drug effects had subsided. For KET and PSIL this
was typically an hour after drug delivery had ceased but was approximately ten hours after
LSD due to its relatively prolonged pharmacodynamic profile. Participants answered each
question using a visual analogue scale format with a bottom anchor of "no, not more than
usually" and a top anchor of "yes, much more than usually". In addition, we consider the
mean score over all these questions as an index of overall intensity of the psychedelic state.
We call this index "total".

5.3.5 Statistics

Analyses were performed using non-overlapping segments of length 2s for a total length
between 2min and 10min of MEG recording per participant and state. For each segment,
the signal diversity measures ACE, SCE and LZc were computed for 30 random picks of
10 channels, and the mean across these 30 scores was considered the score for the segment.
For LZs the mean across all 90 channels was set as score for a segment. The mean and
standard error of the diversity measures’ scores were computed over these segments. At
the single participant level, the effect size of differences between states was measured using
Cohen’s d [64]. We call an effect size high if d > 0.7. For group level comparisons, a two-
sided t-test was applied, with Bonferroni correction (by the number of measures) where

indicated.
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5.4 Results

5.4.1 Increased spontaneous signal diversity for all three drugs

a) PSIL b) PSIL
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Figure 5.1: Increased spontaneous signal diversity for PSIL, KET and LSD.
a) Mean scores across participants for the signal diversity measures LZs N, LZc N and
ACE_ N are higher for each of the three drug conditions (white discs) than for the corre-
sponding placebo conditions (black discs). A solid line across conditions indicates p < 0.001
and a dotted line 0.001 < p < 0.05, uncorrected, obtained from a two-sided t-test. b) Each
panel displays the increase in single channel Lempel- Ziv complexity with PSIL, KET and
LSD, respectively, compared to placebo (ALZs N). The error bars indicate standard error
across trials. Except from two participants for PSIL (indicated in red), the average LZs N
score across trials was higher for the drug than for placebo, for all participants and drugs.
A t-test across participants gave (uncorrected) p = 0.1891, 0.00085, 0.00004 for PSIL,
KET, LSD respectively (compare with Tab. 5.1).

Our main question was whether spatio-temporal signal diversity of MEG recordings
increases in the psychedelic state, so we computed LZs, LZc, ACE and SCE for all three
drug and placebo conditions and compared their scores on the participant and group level.
To exclude the possibility that any observed changes could be attributed to changes in
overall spectral profile, we also computed these diversity measures normalised by their
scores for phase-shuffled data, denoted by " N" in the measure’s name: ACE N, LZc_ N,
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PSIL (14) | KET (19) | LSD (15)

ACE 12, [1,7,6] | 18, [0,6,13] | 14, [0,2,13]
ACE_N | 10, [0,14,0] | 17, [0,19,0] | 10, [0,15,0]
LZc 12, [0,12,2] | 19, [0,11,8] | 14, [0,9,6]
LZc N | 11,[0,14,0] | 19, [0,19,0] | 12, [0,15,0]
LZs 12, [1,5,8] | 17, ]0,5,14] | 15, [0,1,14]
LZs N | 12,[0,14,0] | 19, [0,19,0] | 15, [0,15,0]
SCE 8,[2,10,2] | 17,[2,9.8] |8, [3.7.5]
SCE_N | 4,[0,14,0] | 10, [1,18,0] | 4, [0,15,0]
PC 9,[0,10,4] | 5,[9,9,1] |10, [3,5,7]
5 10, [1,11,2] | 5, [9,10,0] | 4, [6,8,1]
0 9,[2,84] | 13,[2,7,10] | 3, [11,4,0]
a 2,094,1] | 1,[153,1] |1,][12,3,0]
B8 2,15,8,1] | 4,8,10,1] |5, 8,52

Table 5.1: Effect size comparison per measure and state pair. For each measure and
drug, the first digit equals the number of participants for which the measure was higher
in the drug condition than placebo. The number triplet lists for how many participants
the measure scored lower with high effect size (left), higher with high effect size (right) or
with low effect size (middle). Effect size is said to be high if Cohen’s d was greater than
0.7. The cell-colour of a table entry is green, if the uncorrected p-value of a t-test across
participant, for conditions placebo and drug, was below 0.05. If the Bonferroni corrected
p-value was below 0.05, the cell-colour is yellow.

LZs N and SCE_N.

Across all drugs and all measures, we found increased signal diversity in the psychedelic
state as compared to the placebo condition, with most comparisons reaching statistical
significance. The largest increase for all three drugs when compared to placebo was found
for LZs N, with higher average scores for 12/14, 19/19 and 15/15 participants for PSIL,
KET and LSD respectively (Fig. 5.1b), resulting in higher LZs N at the group level
with p values at 0.19, 0.0009 and 0.00004, respectively, (Fig. 5.1a). Notably, the two
participants who did not have higher scores (in PSIL) also had the lowest average score
across all subjective ratings of the intensity of the psychedelic experience ("total") among
all participants (see also Sections 5.3.4 and 5.4.3). Considering other measures, LZc N
and ACE_N also scored higher for the majority of participants for all three drugs with
p<0.05 for KET and LSD (LZc_N only, see (Fig. 5.1a). The weaker consistency in the
behaviour of LZc N and ACE N suggests that changes in spatial signal diversity across
channels is weaker than changes in temporal signal diversity as captured by LZs N, when
comparing the psychedelic state against placebo.

For comparison with the signal diversity measures, we computed phase coherence and
normalized spectral power for various frequency bands, for all three drugs and their placebo
condition. All 90 sources were used to compute these measures (Section 5.3.3). For each
participant, drug, and measure, Cohen’s d was used to estimate effect sizes. Tab. 5.1 lists
for each measure and drug the number of participants with higher score of the measure in
the drug condition and further how many of those had different scores with high effect size,

i.e. d > 0.7. Tab. 5.1 further indicates the number of participants for which each mea-
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sures’ score was higher for the drug condition than placebo and indicates p values for the
measure’s change at the group level. For all measures, effect sizes at the single participant
level are lower for the normalisation using phase-shuffled as opposed to time-shuffled data,
showing that the diversity measures depend to some extent on average spectral changes.
Strongest changes in the average power spectrum were seen for the alpha band (8 —15H z),
which was decreasing for all drugs with high effect sizes for the majority of participants.
As an indicator of the global level of signal synchrony we computed phase coherence (PC)
and found inconsistent behaviour. Neither SCE nor SCE N showed a consistent change
across drugs and scores of SCE and SCE_ N also differed substantially.

To examine whether changes in signal diversity showed any anatomical localisation,
we compared local signal diversity changes across drugs, using spectral-profile controlled
single-channel Lempel-Ziv complexity LZ N. For a given drug, participant and source
channel, ALZ N=LZ N(drug)-LZ N(placebo) was obtained as an average across all 2s
data segments. The t-statistic obtained for the ALZ N scores across participants was
corrected for false discovery rate (FDR) and then mapped in colour onto a standard MNI
brain, shown in Fig. 5.2. For all three drugs, substantial increases in LZ N can be seen
in occipital-parietal areas, despite differences in pharmacological target region and psy-
chological effects for each drug. The regions with significant changes for PSIL also had
significant changes for KET and LSD, and are thus the regions with significant changes
across all drugs. These spatial distributions, with maximal locations in occipital and pari-
etal areas are consistent with the localisation of alpha-band changes that were previously
reported [52, 160, 159|, although here we used significantly reduced spatial resolution in

order to make the data more amenable to complexity analysis.

Figure 5.2: t-statistics across participants of A LZs N per source channel. Group
level changes in single channel Lempel-Ziv complexity, ALZs N, are indicated as t-statistic
for each of the 90 source channels and 3 drugs. L.e. for a given drug and source channel,
the FDR-corrected t-statistic of ALZs N across participants is setting the colour of this
channel’s location on the standard MNI brain, using BrainNet viewer [251]. For all three
drugs, an increase in LZs N can be seen in occipital-parietal areas.

In summary, we found an robust increase in signal diversity for all three drugs at the
group level, independent of average spectral changes, as measured by LZs N, LZc N and
ACE N, with effects being strongest for KET. We further confirm a consistent decrease

in normalised alpha power for all three drugs, in line with previous analyses of this data
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52, 160, 159).

5.4.2 Correlations between neurophysiological measures

To test whether the various measures (both signal diversity measures and others) were
reflecting distinct features in the data, we computed correlations between the changes
in these measures, across participants, for each comparison between drug and placebo.
Specifically, we computed the Pearson correlation across participants for the score dif-
ferences of 14 measures (measure(drug)-measure(placebo)): the diversity measures ACE,
LZs, LZc and SCE, their " N" versions (normalised by their score for phase-randomised
data), phase coherence and normalised spectral power in the delta, theta, alpha, beta and
gamma band. For a given participant, trial and measure, we subtracted this measure’s
score for the placebo condition from that of the drug condition to obtain a score difference
for one trial. The average across trials gave then this measure’s difference in score for this
participant. The Pearson correlation r is then computed for such scores for two measures
across all participants for a given drug and indicated in colour in Fig. 5.3 if » > 0.5 in or-
der to highlight moderate and stronger correlations only. For clarity, the upper triangular
portion of the symmetric correlation matrices is hidden in Fig. 5.3a .

We found strong correlations across most diversity measures for all three drugs. Slight
inconsistencies of these correlations across drugs show that the measures capture not iden-
tical signal features, in line with their varying behaviour as listed in Tab. 3.1. Most
diversity measures show stronger correlations with normalised spectral power bands when
compared to their versions normalised by their scores for phase-randomised data (indicated
by " N"), verifying that the phase-shuffling normalisation indeed reduced the measures’
sensitivity to spectral changes, as intended. For all drugs there is a clear negative cor-
relation of phase coherence and SCE, resulting from PC measuring synchrony while SCE
measures asynchrony across channels. For KET and PSIL, ACE anti-correlates moderately
with PC. (See Fig. C.2 for full correlation matrix.)

5.4.3 Neurophenomenological correlations

Having established that signal diversity measures increase in the psychedelic state, we
next asked whether these increases were related to subjective phenomenological descrip-
tions about the state. We therefore computed the Pearson correlation for all combinations
of the measures LZs N, LZc N and ACE N with the scores of 14 subjective ratings of the
participants’ psychedelic experience, as defined in Section 5.3.4. The results are shown in
Fig. 5.3. Supporting a relation between phenomenology and signal diversity, the measure
LZs N - which showed the strongest overall response to the psychedelic state across drugs
- correlates significantly with the total score of all questions ("total") for PSIL; also recall
that the two participants with the lowest total score across all questions for PSIL were
the two outlying participants for ALZs N as shown in Fig. 5.1b (i.e. these participants
did not show an increase in LZs N under PSIL). These observations support the notion
that LZs N correlates with the intensity of the psychedelic experience. In addition, strong

correlations were found between all 3 signal diversity measures and the total score across
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Figure 5.3: Correlations across measures and questionnaire answers. a) For each
drug, a matrix indicates in colour the Pearson correlation, r, of the score difference between
drug and placebo condition (averaged across trials) of any measure pair across participants.
The upper triangular entries and entries with |r| < 0.5 are set white to highlight strong
correlations only. These correlations indicate broad patterns only as they are not controlled
for multiple comparisons as each experiment had a limited sample size. Across drugs, signal
diversity measures show high correlation with each other, yet inconsistently, as they capture
different flavours of signal diversity. Most signal diversity measures show more correlations
with normalised spectral power bands when compared to their " N" versions, supporting
that normalisation by phase-shuffling reduced the measures’ sensitivity to spectral changes.
b) The measures ACE_N, LZc¢ Nand LZs N correlate strongly with certain questionnaire
scores most clearly for KET. No consistent correlation across drugs was found for any
combination of the measure’s scores and scores for a particular question. See Section 5.3.4
for definition of the questions. See Fig. C.2 for full correlation matrix.

questions for KET. For this drug all three diversity measures also showed further strong
correlations with specific phenomenological dimensions, in particular ego dissolution and
vivid imagination. However, substantially fewer strong correlations were found between
measures and specific phenomenological dimensions for PSIL and especially LSD. Indeed,
for LSD no strong correlation was seen, while for PSIL only LZs N correlated strongly
with three questions. As we discuss later, the surprising absence of specific neurophe-
nomenological correlations for LSD (given its strong effect on signal diversity measures)
could be accounted for by the timing of acquisition of the subjective reports - which was
much later for LSD. For certain phenomenological dimensions, such as "space", and "ego",
the subjective ratings were weakest for LSD in comparison to the other drugs, whereas this
was not the case for all dimensions and also, importantly, for the scores of "total" differ-
ence in phenomenology, LSD lay above KET and below PSIL, suggesting that the overall

intensity of the psychedelic experience induced by LSD was comparable to the other drugs,
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see Fig. C.1.

In sum, subjective ratings of the psychedelic experience correlate most strongly with
spontaneous signal diversity for KET, and while some strong correlations exist also for
PSIL, no neuroneurophenomenological correlations were observed for LSD. The total score
across all questions, being an index of the overall intensity of the psychedelic experience,
correlates strongly with LZs N for PSIL and KET. Given the constraints on the acquisition
of subjective reports these findings tentatively support a relationship between psychedelic

phenomenology and neural signal diversity as discussed below.

5.5 Discussion

We have demonstrated, for the first time, that measures of neural signal diversity that
are known to be sensitive to conscious level, are also robust indicators of the psychedelic
state. We found that the psychedelic state induces increased brain-wide signal diversity as
compared to a baseline placebo, across a range of measures and three different psychedelic
compounds. The measures LZc N, LZs Nand ACE N all scored higher at the group level
for the drugs PSIL, KET and LSD, with strongest increases seen for single channel Lempel-
Ziv complexity LZs N for KET and LSD. Importantly, by utilising phase-shuffled surrogate
data we excluded that the observed increases in signal diversity could be explained by
changes in the spectral profile induced by the drugs. Together, these findings constitute a
new neural correlate for the psychedelic state.

Despite the differing pharmacological mechanism of action of KET, LSD and PSIL,
we observed a clear similarity in the cortical localisation of changes in signal diversity
measures - with relatively overlapping distributions centered over occipital and parietal
cortices. These areas are strikingly similar to the locations of alpha power decreases that
we have previously reported [52, 160, 159], yet spectral changes alone do not account for
changes in signal diversity as our "phase-randomisation" control showed. The primary
psychedelic effects of LSD and PSIL are thought to be mediated via 5BHT2A receptors
[113], which although distributed throughout the neocortex, have somewhat higher levels
in occipital-parietal areas [94]. Conversely, KET’s primary mechanism of action is as
an NMDA antagonist whose receptors are located quite ubiquitously across the cerebral
cortex [66, 122]. One could speculate that some of the shared phenomenological and
electrophysiological effects of these drugs may be mediated by the known interactions
between 5HT2A receptors and NMDA receptors [96, 10]. This could account for the
localised and overlapping areas of both signal diversity and decreased alpha power that
we have observed with all three drugs. However, the non-NMDA receptor effects of KET
cannot be discounted, in particular its interactions with opioid receptors and HCN channels
[61, 254]. Alternatively, it may simply be that MEG/EEG is well tuned to measure changes
in these cortical areas due to local synchronisation properties of the underlying circuits in
these areas.

Neural correlates of consciousness are particularly valuable when they account for phe-
nomenological properties [229, 202|. For KET, strong correlations across participants were

found between scores of LZc N, LZs N and ACE N and specific subjective ratings of
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the psychedelic experience, in particular for ego-dissolution, vividness of the experience as
well as the total score across all questions - reflecting overall intensity of the psychedelic
experience. For PSIL, LZs N showed strong correlation with three questions, including
the total "intensity" score, while for LSD no strong correlations between any signal diver-
sity measures and subjective ratings were found. The stronger correlations found for KET
but not for PSIL or LSD may be connected to the different time delay between the peak
effect of the drug and obtaining the subjective rating. For PSIL and LSD the subjective
ratings were given many hours after the experiment, when the psychedelic effects were
either much weaker or no longer present, while for KET the ratings were given while the
effects of the drug were still weakly present. However, for the scores of "total" difference in
phenomenology, LSD lay above KET and below PSIL, suggesting that the overall intensity
of the psychedelic experience induced by LSD was not lower than for the other drugs.

While we [159, 160, 52] and others [133] have used the methodological approach of cor-
relating across participants’ subjective states with electrophysiological measures it should
be noted that this is an imperfect approach. In particular, the ratings of any individual are
heavily influenced by their individual biases and histories - each participant has their own
yardstick for evaluating the strength of an experience. Further the retrospective nature
relies on recall of the experience as a single entity and does not capture the dynamics of the
psychedelic experience. Future experiments which seek to capture temporal variation in
experience through use of multiple probe items or perhaps even by spontaneous self-report
and retrospective coding may help to more tightly tie neurophysiological measures such as
those we have used here to subjective experiences.

Correlations of perturbational and spontaneous signal diversity with conscious states
support integrated information and complexity theories of consciousness that emphasise
diversity of phenomenology as a key property of consciousness that must be reflected in
its neural correlates [228, 229, 200, 232, 234]. Perturbational [53, 190] and - with weaker
specificity and sensitivity - spontaneous signal diversity measures capture types of neural
signal diversity - across broadly distributed brain regions - that correlate with changes in
conscious level across a broad range of states involving diminution of overall level of con-
sciousness from a baseline of conscious wakeful rest [191, 192|. Pragmatically, these results
suggest an operationally useful one-dimensional scale for level of consciousness, with wake-
ful rest and REM sleep at the top and coma and propofol-induced general aneasthesia at the
bottom. Our findings of increased spontaneous signal diversity for KET, PSIL and LSD
presented here, represent the first observations of an increase in theoretically-motivated
measures of conscious level with respect to the baseline of wakeful rest. These results
broaden the scope of application of signal diversity measures relevant to conscious level,
showing that the one-dimensional scale extends in both directions from the baseline state.
While it may be tempting to describe the psychedelic state as a "higher" state or level
of consciousness on the basis of our findings, any such description needs to be cautiously
interpreted. The measures applied in this paper focus on signal diversity, rather than
the simultaneous existence of integration and differentiation (or integrated information)

that are emphasised within complexity and integrated information theories of conscious-
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ness. Further research should examine how measures that more directly reflect co-existing
integration and differentiation, such as the PCI index, behave in the psychedelic state.

Our results may also be interpreted as supporting the notion that neural signal diversity
indicates the variation of inner mental life over time. On this view the average duration of a
conscious percept is decreased and /or the qualitative differences across conscious percepts
is increased in the psychedelic state, in line with the entropic brain hypothesis [50].

More generally, our results provide an example of how quantitative measures of neural
dynamics can bridge the gap between studies of conscious content and studies of conscious
level. In terms of phenomenology, the primary features of the psychedelic state have to do
with changes in conscious content, rather than global alterations of level of consciousness
as seen in sleep and anaesthesia. Our findings are in line with intuitive suggestions that
increases in conscious level correspond to increases in the range of possible conscious con-
tents [26, 36]. Recently, efforts to finesse the relationship between level and content have
been made in the context of integrated information theory [105] and in multidimensional
descriptions of conscious level [26]. Interestingly, Bayne et al. suggest a multidimensional
classification of conscious levels, with one dimension being for example the depth of con-
text an observer grasps on average, for example whether only the colour of an object is
perceived, or whether the purpose of the object is also perceived. Distinctions like this
may be useful in characterising the phenomenology of the psychedelic state. Further re-
search into the relation between phenomenology and the detailed expression of measures
of complexity and diversity at local and global levels will help refine and constrain these
emerging ideas.

In sum, we found increased global signal diversity for the psychedelic state induced
by KET, PSIL or LSD, suggesting the psychedelic state to lie above conscious states
such as wakeful rest and REM sleep on a one-dimensional scale defined by neural signal
diversity. Our findings are relevant for the definition of conscious level as an average
property of instantaneous experience, given that participants in the psychedelic state are

fully conscious yet their experience differs substantially from normal wakefulness.
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Chapter 6

Signal diversity measures of
consclousness compared across
networks of coupled Stuart-Landau

oscillators

6.1 Abstract

Measures of spontaneous and perturbational signal diversity were found to score higher for
conscious than unconscious states, when applied to distributed electrophysiological signals
from the human cortex. Here we apply our spontaneous signal diversity measures ACE,
SCE and LZc and Casali et al.’s perturbational complexity index PCI to time series of
coupled Stuart-Landau oscillators. The measures’ behaviour was investigated as a function
of mean coupling and topological changes in the connectivity of the oscillators. We found
networks for which an increase in the coupling strength of some oscillators only induced
a decrease of all three spontaneous signal diversity measures, which was not observed for
homogeneously increased coupling strength or topological changes at fixed mean coupling.
Using a direct comparison between oscillator dynamics and EEG for wakeful rest and deep
sleep we describe strengths and limitations of the Stuart-Landau model to produce signal

diversity changes as observed empirically for different levels of consciousness.

6.2 Introduction

As introduced in detail in Chapter 1, various measures that quantify signal diversity across
space and time have been shown to index clinical levels of consciousness when computed
for distributed electrophysiological signals from the cortex. These measures include, most
prominently, the perturbational complexity index (PCI) that was shown to index a wide
range of clinically defined states of consciousness with unprecedented precision (see Sec-
tion 1.4.9 and [131]), including intermediate levels of sedation and subtle cases of disor-

ders of consciousness. Also our measures of spontaneous signal diversity, ACE, SCE and
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LZc, robustly index several conscious states: propofol sedation (Chapter 3), non-rapid eye
movement sleep, REM sleep, wakeful rest (Chapter 4) and states induced by psychoactive
substances (Chapter 5). Here we consider our spontaneous signal diversity measures and
PCI together for a simulation of electrophysiological signals from the cortex. Our aim is
twofold: Firstly we want to deepen the understanding of differences and commonalities
of the signal diversity that each of these measures captures. Secondly, we want to ex-
plore mechanisms to alter these signal features all at the same time and draw analogies to
macroscopic coupling changes in the brain that may accompany the loss of consciousness.

Here we reach towards these goals by exploring a computer simulation of coupled Stuart-
Landau oscillators and assessing the signal diversity of the oscillators’ activity time series.
The Stuart-Landau model can be seen as a generalisation of the famous Kuramoto model,
that we used already in Section 2.6.3. The latter was introduced more than 40 years
ago by Yoshiki Kuramoto [135] and has since been widely studied as a non-linear system
to investigate synchronisation [219] and used as the canonical oscillator model for brain
activity [193, 40, 74]. Oscillators in the Kuramoto model are complex numbers that rotate
around the origin at a fixed distance but with varying speed, influenced by other oscillators.
Interactions depend sinusoidally on the phase difference between each pair of oscillators.

The Kuramoto model is of limited use as we want to perturb the system (in order to
compute PCI) and model each oscillator’s complex time series as the analytic signal of
an electrophysiological signal, requiring that each oscillator’s amplitude varies with time.
These requirements are met by the Stuart-Landau model, a generalisation of the Kuramoto
model, with each oscillator being characterised by time-varying amplitude in addition to
phase. The Stuart-Landau model is a canonical model for interacting components that
individually display limit-cycle oscillatory behaviour [157] and like the Kuramoto model,
it has been used to investigate synchronisation in general [194, 143| and to model neural
dynamics more specifically. For example Popovych et al. [179] showed how time delayed
feedback controls synchronisation and may be a treatment for epilepsy and by Moon et al.
[157] who demonstrated that the number of connections of an oscillator to other oscillators
(degree) determines if an oscillator leads or lags in activity. They further suggest a degree-
dependent coupling reduction to model the loss of consciousness as will be disussed further
in Section 6.4.2.

We want to assess PCI (Section 2.2), we perturb the oscillator model - in analogy to
trans-cranial stimulation (TMS) of the brain - and assess the signal diversity of the average
response signal. We use the pre-perturbation network activity to asses spontaneous signal
diversity - via ACE, SCE and LZc - and post-perturbation activity to assess perturbational
signal diversity. We model for the first time global effects of TMS across the cortex with
coupled oscillators. However, local effects of TMS on cortical activity have been modelled
before with a detailed 33000 spiking neuron model [95].

Our exploration of signal diversity in the Stuart-Landau model focuses on variations
of the network structure, i.e. how oscillators are coupled together. We firstly explore
in general the behaviour of spontaneous and perturbational complexity as a function of

homogeneously increased coupling strength for several network structures with topological
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properties ranging from dense and regular to sparse and random. Next we analyse signal
diversity changes under fixed mean coupling strength for various topological changes of the
network, investigating our measures for systematic variations of the density of connections
in random networks, the small-world index in community-structured networks and a degree-
dependent weight reduction as used by [157], finding that topology influences only some
of our measures whereas mean coupling clearly affects all of them.

Given that the homogeneous changes in coupling did not result in a decrease in all signal
diversity measures together, which would be necessary to model a change in conscious state,
we increased the complicatedness of the network changes by fixing the coupling between
some oscillators while changing that of others. We designed two networks inspired by
proposed coupling mechanisms at play between macro brain regions when consciousness is
lost. The first network models the loss of consciousness by increasing coupling of one region
only, modelling "thalamic drive", an increase of which has been suggested to correlate
with the loss of consciousness [154, 103]. For the second network, a community-structured
network, we investigated if a decrease in long range coupling could model the loss of
consciousness, as suggested by [237, 186]. We found a decrease of the three spontaneous
signal diversity measures ACE, LZc and SCE, for an increase of "thalamic drive" in the
first network - supporting the "thalamic drive" hypothesis - and a drop of long range
coupling in the second network - but only while strongly increasing short range coupling at
the same time. PCI was not found to decrease together with spontaneous signal diversity
measures here, but rather increase with mean coupling strength.

We discuss our model in direct comparison to depth electrode EEG for wakeful rest and
anaesthesia, comparing activity time series and power spectra in addition to the behaviour
of spontaneous and perturbational signal diversity measures. We use this comparison
further to exemplify the difference of spatio-temporal signal diversity and temporal signal
diversity only.

Collectively, our results demonstrate the extent to which coupled Stuart Landau oscil-
lators can be used to model global neural signatures of consciousness, deepen the under-
standing of signal diversity measures of conscious level and contribute to the discussion

about possible coupling-mechanisms at play in the brain when losing consciousness.

6.3 Methods

6.3.1 Set-up of Stuart-Landau oscillators

As a generalisation of the Kuramoto model that we introduced in Section 2.6.3, the Stuart-
Landau model consists of N coupled oscillators, each a complex number, z = |z|e?? with
amplitude |z(¢)| and phase 6() changing with time (Fig. 6.1). They are oscillators as they
oscillate around the origin of the complex plane with natural frequency w;, influenced by
themselves, the other oscillators of the system and noise 7.

The dynamics of the oscillator model that we use here can be expressed via coupled
stochastic differential equations. Either by two coupled equations of real numbers, one for

the evolution of the j* oscillator’s amplitude, rj, and one for its phase, 6;:
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Figure 6.1: Coupled Stuart Landau oscillators. a) Each oscillator is a complex number,
circling around the origin with natural frequency w;. As a generalisation of the Kuramoto
model, each oscillator is characterised by phase, angle(z;), and amplitude, |2;|. b) The 5%
oscillator influences the i** oscillator with coupling strength k;; and fixed phase lag and is
subject to noise. ¢) Example activity of a coupled oscillator. We use the oscillator time
series of complex numbers to model the analytic signal of an EEG signal.

N
e (rg — rj(®)H)r; (;fz kT (t) cos(0 — 0; — a ) + V() +na(t)?

do; (t 1 n ) . t
(t) =  w + (N;Kjkrj((k:)) sin(6p, — 6; — a)) + arctan(Z;Eti) (6.2)

or, alternatively, more compactly with complex numbers in one equation for the j* oscil-

lator:

B~ i~ OPR0 +

Z jkak(t) + f(m(t) + i772@)> (6.3)

where N = 64 is the total number of oscillators in the system and (rg +iw; — |2;(¢)|*)2;(t)
governs the dynamics of an uncoupled single oscillator with natural frequency w; and
baseline amplitude ry (baseline follows from factor ry when considering the uncoupled
steady state solution). 7y needs to be greater than zero for the oscillator to reach a
stable limit cycle, we chose 79 = v/2. This part of the equation with general parameters
is also known as the normal form of the Hopf bifurcation, being the simplest model to

capture essential behaviour near the Hopf bifurcation point [157|!. { e~ SN K ik 2k (t)

'In the mathematical theory of bifurcations, a Hopf bifurcation is a critical point where a dynamical
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constitutes the influence of other oscillators on z;’s evolution, where 4 is the imaginary unit
and K an adjacency matrix. We set a = 27/10 as a phase lag for the interaction between
any oscillator pair to approximate time delay.

The Stuart-Landau model reduces to the simpler Kuramoto model by setting the am-
plitudes of all oscillators constant to 1 in Equ. 6.2. The Stuart-Landau model itself can
be derived from the more complicated Wilson-Cowan neural mass model, in which two
coupled differential equations with sigmoid activation functions model the behaviour of
excitatory and inhibitory neuronal populations (see derivation in Supplement of [157]).

Complex noise is added to the evolution equation of each oscillator via 7; and 72, both
iid. ~ N(0,1). If not otherwise stated, the noise level was chosen via factor f = 1/2,
multiplying the complex noise, such that the standard deviation of an uncoupled oscillator’s
amplitude |z| was equal to 10% of its baseline rg = v/2. The noise-induced fluctuation of
an uncoupled oscillator’s amplitude increases with the square root of the noise factor f,
see Fig. 6.2.

Figure 6.2: Amplitude fluctuations as
a function of noise factor f The stan-
dard deviation of the steady-state ampli-
tude |z| of an uncoupled oscillator grows
with +/f, f being the noise factor multi-
plying the complex noise in Equ. 6.3. Val-
ues shown are averages over 10 trials and
u | | | all 64 uncoupled oscillators for noise fac-
0 1 2 3 tors between 0 and 3 in 40 equal steps.

o
IN

std(z)/sqrt(2)
o
N

o
o

Noise factor f

The natural frequencies of the oscillators w are fixed at one particular sample of inde-
pendently drawn A/ (207, 15) variables. The natural frequency of 10 * 27 sets an uncoupled
oscillator to have 10 full rotations in a time step of 1, which we call one second. This
choice allows to interpret the natural frequency of an oscillator to be on average 10Hz,
with standard deviation of approximately 2H z simulating the alpha bandwidth (8-13Hz)
of human EEG [39].

We solve the stochastic system described with Equ. 6.3 with 64 oscillators for 4.5s,
initiating the oscillators’ phases randomly and setting all amplitudes equal to v/2. This
results in 64 complex time series of 4500 observations at 1000H z each. The first 1500
observations are discarded to avoid initial transients. All non-perturbational measures
were computed from segments of 2500 observations, i.e. of length 2.5s. The last 500
observations were used to asses perturbational signal diversity, applying a perturbation
to the system at time point 4s, in analogy to a transcranial magnetic stimulation (TMS)
of the brain. At the moment of perturbation, amplitudes of 16 oscillators (with index 32

to 48) were set to 35 times uncoupled baseline, and then the system continued to evolve

system’s stability switches and a periodic solution arises. Under reasonably generic assumptions about the
dynamical system, a small-amplitude limit cycle in phase space branches from the fixed point.
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according to Eqn. 6.3. These central oscillators were chosen for perturbation as they did
not cause any bias for the used adjacency matrices. The strength of the perturbation was
chosen such that approximately half of the oscillators showed a response to perturbation
for intermediate coupling of a homogeneous coupling matrix. The 500 observations after
perturbation contained most of the diversity in the response activity to perturbation.
Computations were performed in parallel on a high-performance cluster with basic
scripts in the python programming language. The complex version of the system of coupled
stochastic differential equations, Equ. (6.3), was solved with the Euler-Maruyama method,
using integration step size 0.1 and sampling rate 1000Hz (defining a time step of 1 as
being one second). The perturbation was implemented by adding 50 to the real parts of

perturbed oscillators for one numerical time step only.

6.3.2 Measures and statistics
6.3.3 Phase coherence

As in [157], the level of synchrony of the system is measured by the mean phase coherence
(PC) across all pairs of oscillators. Let zx(t) = 7 (£)e*® and z;(t) = r;(t)e?%®) describe

two oscillators at time ¢ then

T
PGy, _ }%Zei(ek(t)—aj(t))‘, PC(system) = (i,) Z PCy; (6.4)
=1 2) 0<k<j<N

with T being the length of their time series and N the number of oscillators. There are
2016 channel pairs when choosing from 64. Reported PC scores are averages and standard
error across 15 trials, with initial phases and noise varying across trials. PC is close to zero

for uncoupled oscillators and close to one for highly coupled oscillators.

6.3.4 Spontaneous signal diversity

ACE, LZc, SCE and LZsum were computed as described in Chapter 2, using the complex
oscillator time series instead of the complex analytic signal of an EEG signal. For all
numerical experiments the measures were computed for 10 oscillators and 2500 observations
(2.5s) and averaged across trials as follows. If the adjacency matrix did not contain random
connections, 15 trials were computed. For each such trial, 10 oscillators were randomly
picked from 64 oscillators, 10 times. The reported score of each of the 4 spontaneous signal
diversity measures is thus the average and standard error of 150 values (15 times new initial
phases and noise and for each such trial 10 different channel samples). If the adjacency
matrix under consideration did contain random connections, this procedure was repeated

10 times and grand average scores reported.
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6.3.5 Perturbational signal diversity

We assessed perturbational signal diversity from the response activity |z| of oscillators for
segments of 500 observations (0.5s) post perturbation. In analogy to Casali et al.’s empir-
ical procedure (see Section 2.2), the superposition across many trials is used to separate
spontaneous activity from response activity. This can be seen in Fig. 6.3a where the time
series are nearly flat prior to the perturbation, showing that spontaneous activity averages
to a nearly constant time series. We found that averaging across 150 trials for the same
adjacency - but different initial phases and noise - sufficiently averaged out spontaneous

fluctuations.
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Figure 6.3: Illustration of perturbational response. a) Averages of three example
oscillator amplitude time series |z(t)], the red line indicating the time of perturbation.
The bottom oscillator is directly perturbed - visible by it’s high amplitude at the time of
perturbation - unlike the other two. The upper edge of a grey horizontal bar indicates the
binarisation threshold. b) Binarised response activity of the whole system of 64 oscillators,
ordered by response activity, with PCI and mSS scores for this example. Adjacency matrix
parameters are as denoted by point p3 in Fig. 6.7e.

The continuous wave forms visible as response to perturbation, illustrated in Fig. 6.3a,
were then binarised using pre-perturbation activity. I.e. the binarised response activity
of the i*" oscillator was obtained by computing mean + 2 x std of the i*" oscillator’s
averaged pre-perturbation activity of length 2500 observations and using this number as a
threshold for averaged post-perturbation activity. That is, for each observation the binary
response activity is 1 if |z;| was greater than the threshold, else zero. After performing this
binarisation for all 64 oscillators, a binary response matrix was obtained, consisting of 64
oscillators and 500 binary observations, as exemplified in Fig. 6.3b. This is our analogy to
the matrix of significant sources SS, described by Casali et al. [53] as the average response
EEG activity to TMS perturbation.

From this binary response matrix SS we computed two measures to quantify the sys-
tem’s response to perturbation. Firstly, we denote the mean of all entries of this matrix
as mSS and use it to assess the intensity of the response to perturbation. Secondly, we

compute the perturbational complexity index, PCI, as defined in Section 2.2.
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Each binary response matrix S.S was obtained from the average system activity of 150
trials. Reported PCI scores per adjacency are average scores across 15 different binary
response matrices. For adjacencies with random entries, this total procedure was repeated

10 times and grand average scores of PCI reported.

6.4 Topology versus mean coupling

We first explored the signal diversity measures’ behaviour for simple parameter variations
in the oscillator system, testing if simple system changes can cause spontaneous and per-
turbational signal diversity measures to change in the same direction, which would demon-
strate signal diversity changes similar to those empirically observed during wakeful rest
and NREM sleep. To this end we explored the dependence of the signal diversity measures
on coupling strength and topology for several canonical networks. The topology of the
network is defined by a binary adjacency matrix, defining directed connections between
oscillators. In this section, the coupling strength between oscillators is homogeneously
changed by multiplying the adjacency matrix by a factor. The sum of all entries of the
adjacency matrix (i.e. all existing connections between oscillators) divided by the total
number of oscillators squared (i.e. the number of connections in an all-to-all adjacency)
is what we call "mean coupling". We will focus on the behaviour of the signal diver-
sity measures for detailed variations of mean coupling for several fixed topologies before

investigating topological changes at fixed mean coupling.

6.4.1 Noise and spontaneous signal diversity

In order to illustrate basic system dynamics as a function of noise and coupling strength,
we first consider homogeneous all-to-all coupling of 64 oscillators. We justify our choice of
noise level and show that if noise is present, we don’t find all three spontaneous measures
to change together with increasing coupling strength.

Oscillator time series, |z(t)|, were compared for three different values of mean coupling
(0, 10, 20) and three different noise levels (0, 0.1 and 0.3, denoting the ratio of the stan-
dard deviation of an uncoupled oscillator’s amplitude to its baseline). If noise is absent
and the mean coupling is set to zero, all oscillators’ amplitudes settle at /2, as seen in
Fig. 6.4a. Increasing mean coupling diversifies the dynamics, caused by interactions with
other oscillators, until the system becomes increasingly synchronised (e.g. mean coupling
at 20) and for even higher mean coupling, all oscillators’ amplitudes become constant (not
shown). By contrast, adding noise causes diverse system dynamics for the uncoupled as
well as the strongly coupled case, since noise influences each oscillator’s amplitude directly
in addition to other oscillators, see Fig. 6.4a. The more noise is added, the less interactions
between oscillators contribute to the diversity of the system’s dynamics.

Let us next consider how phase coherence PC and spontaneous signal diversity (ACE,
LZc, SCE) are influenced by mean coupling and noise level. For each noise level (0,
0.1 and 0.3), mean coupling was increased from 0 to 20 in 20 steps. PC monotonically

increases with increasing mean coupling for all three noise levels, while the behaviour of
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Figure 6.4: Exemplifying system dynamics under different noise levels. 64 oscil-
lators were coupled all-to-all for different levels of mean coupling and noise. a) Each panel
exemplifies spontaneous activity |z(¢)| for 4 oscillators. b) For noise at level 0, 0.1 and 0.3
and three levels of mean coupling, the measures PC, SCE, ACE and LZc were computed.
Independent of noise level, PC increases monotonically with mean coupling, as the system
becomes increasingly synchronised. The behaviour of LZc and ACE depends strongly on
noise level. Both increase with greater coupling in the presence of noise, as noise is the
main source of diversity in activity in the strongly synchronised system.

LZc and ACE differs across noise levels, as shown in Fig. 6.4b. For the case without noise,
LZc and ACE show a local maximum for intermediate coupling and then decrease with
increasing coupling, as the time series become increasingly synchronised. If noise is present
at the 0.1 level, LZc and ACE show a local minimum for intermediate coupling and then
increase with greater coupling. The increase with high coupling is also seen for noise at
0.3. This behaviour follows from noise being the main source of diversity in activity in
the strongly synchronised system, resulting in more random binary sequences under ACE
and LZc’s binarisation by mean activity. By contrast, SCE’s behaviour is barely affected
by the amount of noise, which follows from its binarisation being based on the difference
of phases of two oscillators being below a threshold. In contrast to the constant influence
of noise on amplitude variation, noise’s influence on phase variation decreases the more
synchronised the system becomes as all oscillators stabilise each other in oscillating with
the mean natural frequency. Importantly, in the presence of noise, the scores of the three

measures do not all change in the same direction as coupling is increased, SCE behaving
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differently to ACE and LZc.

In our simulations shown in Section 2.6, SCE increased with ACE and LZc for increas-
ing signal diversity for the increasingly identical random channels and also for a broad
range of parameter space for the autoregressive model. We did see though for our Ku-
ramoto experiment that SCE can behave completely different to LZc and ACE. Hence the
insight from the previous models, that SCE can behave differently to LZc and ACE, while
ACE and LZc behave similarly, is again confirmed here. However, we did see all three mea-
sures behave similarly for most empirical analysis, which is thus an important criterion for
modelling empirically observed spontaneous signal diversity changes for different levels of

consciousness, justifying the application of all three measures.

6.4.2 Increase of mean coupling for fixed topologies

With the noise level fixed at 0.1, we investigated the dependence of the signal diversity
measures on mean coupling for three more networks, with a focus on a detailed change
of mean coupling. The choice of the three additional adjacencies presented in Fig. 6.5 is
motivated by choosing examples that differ clearly in small-worldness (indicating a balance
between network segregation and integration, ranging from maximal order, as in all-to-all
connectivity, to maximal disorder, as in a graph with random connections [44]) as well
as the density of connections (from maximal density in all-to-all connectivity to sparse
connectivity at the limit of the graph being disconnected?).

The three adjacencies shown in Fig. 6.5 are defined as follows. As an example for a
sparse and disordered network we chose a symmetric Erdos-Rényi random network (ER),
with connection probability p = 0.07, chosen as small as possible such that the network is
still connected. Symmetric Erdés-Rényi random graphs are constructed by setting each of
the n(n — 1) possible edges with probability p [93, 111].

As network samples for intermediate randomness and sparse connections we chose a
community-structured adjacency with maximal small-world index before becoming discon-
nected (see also Section 6.4.4). As an example of a dense, intermediately random network,
we chose a spatially embedded network, suggested by (92, 121] to reflect mammalian cor-
tical connectivity of axonal pathways as obtained via retrograde tract tracing. Using the
procedure and parameters suggested by [92], this network is constructed by starting from
placing all nodes randomly in a cube of 50mm side-length. Then nodes are randomly
connected all-to-all with probability given by an exponentially decaying function of Eu-
clidean distance between the nodes in the cube (exponent chosen as —0.188mm~1). Of
all these edges (connections) a fraction of 0.66 is randomly selected. Connection weights
are set proportional to the connection probabilities, i.e. the greater the Euclidean distance
between two nodes in the cube, the smaller the weight of that connection. This network is
called spatially embedded as there is this clear map from the adjacency matrix to the 3D
graph.

Fig. 6.5 displays the behaviour of PC and signal diversity measures as a function of

2An adjacency matrix represents a graph. A Graph is said to be disconnected if there exists at least
one node from which there is no path through the graph to at least one other node.
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mean coupling for the sparse ER network, the community structured network as well as the
spatially embedded network. PC and spontaneous signal diversity measures were computed
for 20 equally spaced values of mean coupling, ranging from 0 to 20. For all three networks
PC increases and SCE decreases with increasing mean coupling, LZc and ACE show a
local minimum - least pronounced for the ER network - similarly to the behaviour seen for
all-to-all coupling, displayed in Fig. 6.4b, illustrating how topology only weakly influences
signal diversity. Important for our later discussion on empirical modelling, for none of
these four networks - all-to-all, ER, community-structured or spatially embedded - SCE
was decreasing together with LZc and ACE for increasing mean coupling. Measures of
perturbational complexity, mSS and PCI, only computed for 4 values of mean coupling,

show both a slight increase with mean coupling for all three networks.
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Figure 6.5: System dynamics as a function of mean coupling. With noise fixed
at 0.1, the measures’ dependence on mean coupling is shown for three networks. Their
behaviour is similar to what was found for all-to-all coupling, illustrating how topology
only weakly influences signal diversity. Importantly, SCE does not decrease with LZc and
ACE for any of the shown networks. mSS and PCI increase with increasing mean coupling.
Linewidth (or error bars) indicates standard error across trials.

The results summarised in Fig. 6.5 are focussed on the change in signal diversity with
coupling increasing in small steps. Next we’ll focus on further changes in topology at only
three different values of fixed mean coupling. All adjacencies in this chapter were tested

to correspond to connected graphs.
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6.4.3 Random graph density

Aiming to investigate the influence of network density on system dynamics, we computed
ACE, LZc, SCE, mSS, PCI and PC for symmetric Erdés-Rényi random graphs with con-
nection probabilities 0.07, 0.3, 0.5, 0.75 and 1, each for three mean coupling strengths,
5, 10 and 15, chosen to correspond to low, intermediate and high phase coherence - as
informed by Fig. 6.4. Erdos-Rényi random graphs are constructed by setting each of the
n(n — 1) possible edges with probability p [93, 111].

Fig. 6.6a shows the measures’s scores and adjacencies. Considering changes across mean
coupling, all measures are affected (in line with Fig. 6.4b for noise being 0.1), in particular
PC clearly and PCI weakly increase with increasing coupling. For fixed mean coupling
at 5 or 10, no clear dependence on network density is visible for any of the measures,
except an increase of mSS from sparsest to higher density, indicating a limited spread of
the perturbation in the sparsest network (p = 0.07). However for mean coupling at 15,
Fig. 6.6a, PC and ACE are increasing with network density while SCE decreases. The
behaviour of LZc and PCI is barely affected by density also for fixed mean coupling at 15.

In sum we see that network density influences the dynamics more strongly at high than
at low mean coupling. The spontaneous signal diversity measures ACE, SCE and LZc do

not decrease together with the density of random graphs.

6.4.4 Small-world index

Dynamical complexity as measured by causal density has been found to depend on small-
world index [208]| in networks of spiking neurons, causing us to investigate the influence
of small world index on our signal diversity measures for coupled oscillators. The small-
world index for an adjacency K was computed as described in [208]|. Briefly, the ratio of
clustering coefficient and average shortest path length of K was divided by the ratio of
clustering coefficient and average shortest path length of a random graph with the same
degree distribution than K (the average of 100 trials was used; implemented with the
networkx library in python [111]). Small-worldness is further a widely discussed property
of brain connectivity networks. E.g. based on diffusion magnetic resonance imaging,
Hagmann suggested a method to obtain an adjacency matrix to reflect average network
properties of neuronal connections throughout the human cortex. The resulting adjacency
matrix was sparse with high small world index [112].

We defined an adjacency where every 8 consecutive oscillators belong to the same
community. Each oscillator is connected to an oscillator of the same community with
probability p and to one from a different community with 1 — p (adapted from [209]).
The small world index for this adjacency was found to increase with increasing p, until at
p = 0.96 the graph became disconnected. At this limit, the maximal small world index for
our network of 64 oscillators was found to be 2.4. p = 0.84 resulted in a small-world index
of 1.0, which we used for comparison.

Fig. 6.6b displays the scores of ACE, LZc, SCE, mSS, PCI and PC for these two
community-structured adjacencies with small-world index 1.0 and 2.4, respectively, for

three different levels of mean coupling: 5, 10, 15. The adjacency matrix with higher
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Figure 6.6: Changing topology at fixed mean coupling The behaviour of LZc, ACE,
SCE, mSS, PC and PCI is shown for systematically changed adjacencies for 3 levels of
mean coupling: 5, 10, 15. a) Symmetric Erdos-Rényi random networks with connection
probability being 0.07, 0.3, 0.5, 0.75 and 1 differ in network density. PC, SCE and ACE
depend on network density for mean coupling at 15, as the only consistent changes. b)
Two community-structured adjacencies are compared, having small-world index 1.0 and
2.4 respectively. For all three levels of mean coupling, only mSS is consistently affected,
scoring lower for the higher small-world index, indicating wider spread of the perturbation
for more inter-community connections. c¢) Degree-dependent weight reduction (method
from Moon et al. [157]) has no influence on any of the measures tested here. For clarity,
adjacencies are shown for first 10 oscillators only. Linewidth indicates standard error across
trials.

small-world index has visibly more intra- than inter-community connections. For all three
coupling levels, mSS is lower for the higher small-world index, indicating a wider spread of
the perturbation in the more densely connected network (as also seen for Fig. 6.6a). The
three spontaneous measures, PC and PCI are not consistently affected by the change in
small-world index, yet vary with the level of mean coupling, again in line with Fig. 6.4b.
In sum, only mSS’s behaviour was consistently affected, scoring lower for the higher
small-world index for all tested levels of mean coupling. This indicates that the response

to the perturbation spreads further if there are more inter-community connections.

6.4.5 Degree-dependent coupling weight

Moon et al [157] claim for the Stuart-Landau model that the node degree (the number of
connections of a single oscillator to other oscillators) indicates if a node (oscillator) leads
(low node degree) or lags (high node degree) in phase, as measured by directed phase-
lag-index. Directed phase-lag between two oscillators, say zj,(t) = ri(t)e’®) and z;(t) =

rj(t)eiej (®) is defined as the mean signum of the phase difference across observations,
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dPLIy; = (sgn(6y — 6;)),

and interpreted to indicate which oscillator leads the other one. IL.e. if dPLI}; > 0 then
oscillator k leads oscillator j in activity.

Moon et al. further modelled propofol anaesthesia with Stuart-Landau oscillators by
decreasing the coupling weights in a degree-dependent way and argue that the observed
homogenisation in directed phase-lag-index across oscillators is similar to what one observes
across EEG channels for propofol-sedated subjects [157]. Note that the degree-dependent
coupling decrease that Moon et al. propose as a model for loss of consciousness clearly
reduces mean coupling, the latter strongly influencing our signal diversity measures as we
showed earlier in Fig. 6.4. Given that this structural change to the topology is different
to the networks we considered so far and has been connected to modelling the loss of
consciousness, we investigated if the degree-dependent weight reduction introduced by
Moon et al. has effects on our signal diversity measures’ behaviour when fixing the level
of mean coupling.

The weights of symmetric Erd6s-Rényi random adjacencies (connection probability 0.5)
were decreased in the following three degree-depending ways (compare with Fig. 6.6¢).
Firstly, dividing each entry of the adjacency matrix by the number of non-zero entries of
its row reduces weights by in-degree, given that the i row specifies weights with which the

ith oscillator is influenced by each of the N oscillators. We denote the adjacency matrix

"in". Secondly, dividing each entry by the number of non-zero entries

after this process as
of its column reduces weights by out-degree, given that the i*" column specifies weights
with which the i*" oscillator influences each of the N oscillators. We denote the adjacency
matrix after this process as "out". Thirdly, dividing each entry by the number of non-zero
entries of its column and row summed together reduces weights by in and out degree. We
denote the adjacency matrix after this process as "all".

Fig. 6.4c shows that none of the measures was affected by any of the degree-dependent
weight reductions. The adjacency changes associated with loss of consciousness by Moon
et al. [157] did not influence spontaneous nor perturbational complexity as measured here,
with fixed mean coupling.

Similarly as for the adjacency changes described in Fig. 6.6a,b the measures did change
with increasing mean coupling level in line with their behaviour for increasing coupling of
all-to-all connectivity, Fig. 6.4b. In particular, an increase in PCI and mSS with increasing
coupling can be seen for all three experiments.

In summary for all three topology experiments shown in Fig. 6.6, the overall level of
coupling has a visible effect on all tested measures (in line with the measures’ behaviour
seen for all-to-all coupling) whereas changes in topology alone influence only some measures
under certain levels of coupling. SCE decreases while ACE and LZc increase for increasing
density of connections for high mean coupling, as was seen for random adjacencies (compare
p = 0.3 with p = 1 at mean coupling 15 in Fig. 6.6a) and also for the community-structured
adjacency (Fig. 6.6b at mean coupling 15). This suggests that increasing the density of
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connections while keeping the mean coupling fixed has a similar effect on the measures’
behaviour to increasing coupling for fixed all-to-all connectivity. The difference of SCE and
ACE/LZc’s behaviour is again due to SCE being nearly insensitive to noise, unlike ACE
and LZc, which are both maximal for noise dominated dynamical regimes, as we explained
in Section 6.4.1. None of the explored changes in topology caused the scores of ACE, LZc
and SCE to change together in the same direction, as would be required to model changes
in spontaneous signal diversity as observed across state of consciousness. We found such

changes for more complicated adjacency changes, as will be explained in the next section.

6.5 Modelling change of conscious level

Here we aim directly to model empirically observed signal diversity changes across wakeful
rest and NREM sleep, as captured by spontaneous and perturbational signal diversity
measures. We first introduce non-homogeneous coupling changes that cause the scores of
ACE, SCE and LZc to decrease together - albeit not together with PCI - and then compare
the signals of this model more closely with depth electrode signals obtained during WR
and NREM sleep to evaluate the model’s merit.

6.5.1 Modelling thalamic drive and long range coupling

The experiments with varying topology and mean coupling of Section 6.4 did not result
in all spontaneous signal diversity measures’ scores to change together, when noise was
present. The presence of noise is important to model EEG, so we no longer focus on the case
without noise for our model. Coupling changes in Section 6.4 were applied homogeneously
to all oscillators for various topologies. We next explored ways to change the coupling
heterogeneously, i.e. changing the coupling strength only between some oscillators while
keeping the remaining connection strengths fixed.

We found a drop of all three spontaneous signal diversity measures for two adjacency
matrices that both were inspired by different hypotheses about coupling mechanisms be-
tween macro brain regions causing consciousness to fade. Firstly, an increase in thalamic
influence on cortical activity was suggested as a cause of the loss of consciousness [154, 103].
Secondly, several studies argue for a decrease of long range coupling when consciousness is
lost [237, 186]. In addition to a drop of all three spontaneous signal diversity measures, we
searched for conditions such that the oscillator time series still visually resembled healthy
EEG time series. l.e. the diversity in the time series should not be entirely due to noise -
which would resemble iso-electric activity of a brain-dead patient - nor too periodic as seen
in epilepsy. Restricting phase coherence to lie between 0.5 and 0.7 excluded such either
fully decoherent or fully coherent system dynamics for these adjacencies.

Fig. 6.7a shows our "thalamic" adjacency, chosen such that the first 12 oscillators
were said to represent thalamic activity whereas the remaining 52 oscillators represent
cortical activity. The adjacency matrix was divided into 3 blocks, each having homogeneous
coupling strength, representing connections between macro-brain regions: sl (thalamus

driving cortex), s2 (inter-cortical coupling) and s3 (cortex driving thalamus) respectively.
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Figure 6.7: Modelling thalamic drive and long range coupling. Two adjacency ma-
trices for which point pairs in parameter space were found such that all three spontanenous
signal diversity measures decrease together, as observed empirically for EEG (Chapters 3
and 4). a) A block adjacency with the first 12 oscillators representing the thalamus and
the remaining 52 the cortex, allowing to increase "thalamic drive" only. b) Phase coher-
ence (PC) as a function of "thalamic drive" and "inter-cortical" coupling for a range of
coupling parameters with regions greyed out where it is possible that dynamics are either
fully coherent or fully decoherent, including a point pair c) for which all three measures
drop. d) Modelling long range coupling with a modular network. e) Phase coherence (PC)
as a function of intra-community coupling s1 and "cortical feed-forward" coupling s2 with
an example point pair, for which LZc, ACE and SCE drop together f) by decreasing long
range coupling and increasing intra-community coupling. The mean of the binarised per-
tubation response matrix (mSS) shows a decrease with ACE, SCE and ACE for the two
example point pairs while PCI does not change consistently. g) A path of points where
PC is constant while mSS, PCI, ACE and LZc change.

An example section of the explored parameter space is shown in Fig. 6.7b, displaying the
dependence of PC on sl and s2 while s3 = 100 (points are greyed out if PC < 0.5 or
PC > 0.7, excluding regions where fully coherent or fully decoherent dynamics occur).

s3 = 100 was chosen after several lower or higher values for s3 were explored and found
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to induce a weaker effect of all three spontaneous measures to decrease together. An
example point pair is highlighted, for which all three spontaneous measures decreased,
Fig. 6.7c, while only the coupling parameter "thalamic drive" sl increases, in line with the
thalamic drive hypothesis. This hypothesis states that consciousness fades when effective
connectivity between cortical regions is distorted by strong, synchronising influence from
slow-wave activity in the thalamus [154, 103].

Fig. 6.7d shows a modular adjacency that divides the 64 oscillators into communities of
8, each oscillator being fully connected to all other oscillators of the same community, then
there are exponentially (powers of 2) fewer connections with increasing distance between
oscillator indices. The matrix was constructed to resemble a sparse small-world network
with 8 communities®. The adjacency matrix is divided into 3 parts, each part being multi-
plied by a different coupling parameter: The 8 communities on the diagonal (multiplied by
s1, representing intra-community coupling), all lower diagonal entries except the communi-
ties (multiplied by s2, representing cortical feed-forward coupling) and all upper diagonal
entries except the communities (multiplied by s3, representing cortical feedback coupling).
L.e. inter-community coupling represents long-range coupling.

The example section of parameter space shown in Fig. 6.7e illustrates a point pair (p3,
p4, connected by straight line) for which LZc, ACE and SCE decrease with decreasing
feed-back long-range coupling and strongly increasing intra-community coupling, as shown
in Fig. 6.7f. Although the decrease of all three spontaneous signal diversity measures
with decreasing feed-back long range coupling is in line with some studies [237, 186],
a simultaneous increase of intra-community coupling is not mentioned in the literature,
hence this is an intriguing possibility raised by the model.

The example parameter space further shows a path (dotted line) along which PC is
constant but LZc, ACE, mSS increase, showing that these measures can vary independently
to phase coherence and thus capture different signal features. SCE by contrast is fairly
constant along this path of constant PC, in line with the observation from Fig. 6.4 that
SCE tends to behave inversely like PC, Fig. 6.7g. This is as expected, given that SCE is
designed to capture diversity of phases across channels while PC captures the opposite,
coherence of phases.

ACE, LZc and SCE drop together for both models of loss of consciousness. In contrast
to empirical observation, PCI’s behaviour stayed equal for the first and even increased for
the second model of losing consciousness. The thalamic drive model is attractive as it is
possibly the simplest realisation of non-homogeneous change of coupling that causes ACE,
SCE and LZc to decrease while PC increases, further only a 40% increase in coupling

strength resulted in the desired signal diversity changes and mSS was increasing with

3The construction of this matrix was performed as follows. The adjacency matrix contains an entry
for every ordered pair {i,j} of oscillator indices for 4,5 = 0,1,...,63. When dividing the matrix into a
regular grid of 64 tiles, each having size 8 entries times 8 entries, the 8 diagonal tiles represent the fully
connected communities. The distance between the k' and the I'" tile is measured as Ay, = |k — I| with
k,l=0,1,...,7, only considering horizontal or vertical paths. Now starting from a tile on the main diagonal
(representing a community), say with index k, tiles with distance Ay; being 0,1, ...,7 will be filled with
64,32,16,8,4,2,1,0 entries, respectively. The filling of a tile works such that its 64 entries are sequentially
indexed column by column and then only every (64/z)" entry is filled, for 2 = 64,32,16,8,4,2,1,0,
respectively, as a function of distance.
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increasing spontaneous signal diversity, in line with empirical observation (Section 2.2). It
further is clearly in line with the thalamic drive hypothesis. The community-structured
model has the shortcoming that strong increase in short-range coupling contrasts with
empirical observations and possibly simply displays the same effect as for the "thalamic"
setting where a strong increase in some of the connections causes all three measures to
decrease. We further explored a hybrid-model, imposing the community-structure of the
modular network onto the region in the thalamic adjacency that represents the cortex,

without gaining further insights.

6.5.2 Spatial versus temporal diversity: Comparing models with depth
electrode recordings

Here we compare power spectra and time series between depth electrode recordings and
oscillators, using sleep and wakeful rest as empirical conditions and the point pair p3, p4
from the previous section as two points for which ACE, SCE and LZc changed in the same
direction. We further use this comparison to highlight the difference between temporal
and spatial signal diversity by the additional computation of single channel Lempel-Ziv
complexity (LZs), capturing temporal signal diversity only whereas ACE, SCE and LZc
capture signal diversity across channels and observations.

The spontaneous signal diversity measures ACE, SCE and LZc applied to depth elec-
trode recordings were found to be lower in NREM sleep than WR, see Fig. 6.8c for a
recapitulation (full details in Chapter 4, NREMe indicates non-rapid eye movement sleep
early at night). By definition, all three measures capture both, temporal and spatial sig-
nal diversity. Computing the Lempel-Ziv complexity of single channels and subsequently
averaging scores across all channels results in a measure that only captures temporal sig-
nal diversity. As defined in Chapter 2, we call this measure LZsum. Applied to depth,
the score of LZsum is substantially higher for WR than NREMe for all tested subjects
(average across subjects shown in Fig. 6.8¢c), indicating that changes in temporal signal
diversity alone differ substantially for depth electrode recordings across the conditions WR
and NREM sleep.

Visual inspection of example depth electrode recordings (Fig. 6.8b) indicates less low-
frequency components of the signal in WR than NREMe, both for the local-field-potential
(LFP) as well as the absolute value of the analytic signal (amplitude). Comparing LFP
with its amplitude, we see that signal sections with negative LFP are flipped smoothly
to the positive side. The average spectral profile (Fig. 6.8a) further confirms that there
are less slow-frequency components for WR than NREMe. PC increased for NREM sleep
yet is close to the low score of 0.2 for both conditions (Fig. 6.8¢c), indicating that signal
diversity across channels is high.

By contrast, consider the point pair p3 and p4 as described in Fig. 6.7e for which ACE,
SCE and LZc decreased together with increasing mean coupling (short range coupling
strongly increased while long range coupling weakly decreased). Importantly, LZsum does
not differ across conditions p3 and p4 (Fig. 6.8f), indicating that temporal signal diversity

does not differ on average across channels. This is further evident in the nearly identical
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Figure 6.8: Depth electrode recordings compared to oscillator signals. a) The
spectral power of depth electrode recordings for wakeful rest (WR) and non-rapid eye
movement sleep (NREMe) is shown, averaged across channels and trials per subject (thin
lines) and across subjects (thick lines). The signal for NREM displays more low-frequency
components, also visible in b) when comparing example time-series (normalised by standard
deviation). ¢) Shows a decrease in ACE, LZc and ACE in NREM, as well as a decrease in
LZsum which measures single channel (temporal) signal diversity only. Signal diversity
across channels is higher for WR than NREM as indicated by a lower PC value. e)
Spectral power of oscillator activity, averaged across oscillators and trials, is nearly identical
for conditions p3 and p4 of the modular adjacency setting described in Fig. 6.7e, also
visible in d), showing a similar distribution of temporal diversity in the activity time
series of oscillators for both conditions. f) The scores of LZc, ACE and SCE decrease
with increasing coupling and PC, the latter being considerably higher than for WR and
NREM. Importantly, LZsum does not differ across conditions p3 and p4, indicating that
only spatial but not temporal signal diversity changes.

power spectra for conditions p3 and p4 (Fig. 6.8d) and visual inspection of example time
series of oscillator activity (Fig. 6.8e). This constitutes thus a clear demonstration that
LZc does capture signal diversity across channels and observations.

Unlike LFP and the absolute value of the analytic signal of LFP, the time series of the
real part of oscillators’ activity differs strongly to time series of their amplitudes. Visual

inspection of the oscillator time series further suggests that temporal changes in oscillator
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amplitude are more similar to LFP than temporal changes in the real part of oscillators, the
latter being highly sinusoidal. Oscillator amplitude fluctuations look reasonably similar to
depth electrode recordings, while appearing smoother, which may be adjusted by increasing
the noise level.

In summary, our example point pair showed changes in signal diversity across oscillators
but not time whereas empirically, signal diversity decreases across channels and time when
consciousness is lost. A more extensive exploration of heterogeneous coupling changes may
induce temporal signal diversity in the amplitudes oscillators in addition. This oscillator
network example demonstrates that changes in ACE, LZc and SCE may result from changes
in spatial diversity only, and clearly shows that LZc captures signal diversity across channels
in addition to signal diversity across observations. Amplitude time series drawn from the
model more closely resembled amplitude time series from the empirical data, than the

highly sinusoidal real part of the oscillators.

6.6 Discussion

Our aim was to manipulate the dynamics of coupled Stuart-Landau oscillators such that the
system’s signal diversity changes as observed for electrophysiological brain signals across
different levels of consciousness. l.e. a decrease of all spontaneous signal diversity measures
as well as the perturbational complexity index as observed for distributed electrophysio-
logical signals from the human cortex when the level of consciousness decreases.

Empirically, response activity to TMS "travels" further across the cortex in WR than
NREM sleep, indicating reduced effective connectivity between cortical regions in NREM
(Section 2.2). This suggested as a first hypothesis that a decrease in coupling in the oscil-
lator model should reduce signal diversity. By contrast, phase coherence for spontaneous
depth electrode signals was lower in WR than NREM and, in the model, found to in-
crease monotonically with increasing mean coupling of the oscillators. Irrespective of the
hypothesis, neither decrease nor increase of mean coupling, equally applied to all connec-
tions between oscillators, did result in a change of all signal diversity measures in the same
direction, in particular as SCE behaved differently to LZc and ACE. This was also the case
when exploring the measures’ behaviour for topological changes of the oscillator network
at fixed levels of mean coupling.

We thus explored more complicated changes in the oscillator network. When we in-
creased the coupling strength for some connections only, we did find a drop of all three
spontaneous signal diversity measures (ACE, SCE, LZc). This was achieved in particular
by the "thalamic" drive adjacency where coupling strength was increased only for a section
of connections - being arguably the simplest heterogeneous coupling change. This finding
is in line with the hypothesis that consciousness is lost when thalamic activity synchronises
activity throughout the cortex via strong coupling [154, 103| and therefore prevents diverse
cortico-cortical interaction.

We further showed that for our "modular" adjacency, a weak decrease in certain inter-
community connections and a simultaneous strong increase in intra-community coupling
also lead to the decrease of ACE, SCE and LZc. While the three spontaneous signal di-
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versity measures decreased together for this "modular" adjacency change, signal diversity
across time remained the same, as measured by single channel Lempel-Ziv complexity (LZ-
sum). This is a further restriction of our model, since temporal signal diversity (quantified
by LZsum), changes in depth electrode recordings across conscious states.

Another limitation of our model is that we did not find a setting where PCI changed
in the same direction as all three spontaneous signal diversity measures. By contrast, PCI
weakly increased with increasing mean coupling for our different oscillator models. Empiri-
cally observed response wave-forms are clearly more complicated than response wave-forms
of our model and PCI scores substantially higher: PCI scores for the brain range from 0.15
in unconscious states up to 0.7 in wakeful rest [53] while for our oscillator model the high-
est observed PCI score was 0.13. More complex response activity to perturbation may be
obtained by considering time-delayed interactions of Stuart-Landau oscillators, as applied
by Moon [157] and/or increasing the number of oscillators and grouping their activity.

Despite the model’s shortcomings, an important observation is that our spontaneous
signal diversity measures did only decrease together for heterogeneous and not for homo-
geneous coupling changes, when noise is present. This suggests that the coupling changes
between brain regions involved in the loss of consciousness require unbalanced interaction
of dynamically independent brain regions, such as the thalamus and the whole cortex, in
line with a proposed relay model of unbalanced cortico-thalamic interaction suggested to
explain the transition from wake into deep sleep [154|. The role of the thalamic influence
in the mechanism of losing consciousness is not clear, however, as e.g. the delta rhythm
survives complete thalamectomy, suggesting a cortical origin of strong dynamical changes
[218].

The direct comparison of depth electrode signal changes across wakeful rest and deep
sleep and those observed in oscillator dynamics for our "modular" and "thalamic" model
showed further for both, depth electrode recordings and oscillator models, an increase in
phase coherence. This suggests that signal diversity across depth electrode channels is
lower in deep sleep as opposed to wake, in line with our oscillator models where phase
coherence also increases while the three spontaneous signal diversity measures decrease.
We further saw that oscillator amplitude fluctuations (|z|) have good visual resemblance
to depth electrode recordings, in sharp contrast to their real parts, which are much more
regular oscillations, yet have previously been used to model EEG [179].

It is a drawback of ACE, SCE and LZc not to peak for intermediate values of phase
coherence in the presence of noise, given that the dynamical regime in between full inde-
pendence and full synchrony of the oscillators is most similar to healthy brain dynamics.
As expected, SCE (measuring diversity of phases) increases fairly monotonically with de-
creasing PC (measuring coherence of phases). ACE and LZc mainly detect how much
influence the added noise has to the signal diversity (high for fully independent and fully
synchronised oscillators, low in between as fluctuations due to other oscillators dominate)
instead of capturing the richer repertoire of coalitions between oscillators for intermediate
phase coherence. This was the case in the initial formulation of coalition entropy as intro-

duced by Shanahan [209], which peaked for intermediate phase coherence in a Kuramoto
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model, however without noise and defined for synchronies of oscillator communities unlike
for single oscillator amplitudes as in our case.

In conclusion, in this first exploratory study on signal diversity measures sensitive to
conscious state applied to time-series of coupled Stuart-Landau oscillators, we showed
that heterogeneous coupling changes between oscillators are required for the scores of all
three spontaneous signal diversity measures to change in the same direction. This was
realised by increasing the coupling of only a fraction of all connections, supporting the
hypothesis that strong coupling between the cortex and the thalamus prevents effective
connectivity between cortical regions and thus stops the sustenance of consciousness. A
shortcoming of our model is that PCI scores do not change together with scores of ACE,
SCE and LZc and the response activity to perturbation is very simple in comparison to
that of EEG/TMS for any global state of consciousness. More complicated responses may
be obtained by exploring time-delayed coupling between oscillators, which may further be
used to induce changes in temporal signal diversity (LZsum) in addition to changes in signal
diversity across channels (ACE, SCE, LZc), as observed empirically but not found here. It
should be further investigated how the distribution of natural frequencies determines the
average spectral profile of the oscillator amplitude fluctuations, aiming to model spectral
changes in addition to spontaneous and perturbational signal diversity changes in line
with empirical observations (e.g. stronger slow wave component in the depth electrode
recordings during NREM than WR). The presented results already illustrate the model’s
potential to clarify differences of signal diversity that correlate with consciousness and

mechanisms that generate such signal features.
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Chapter 7

Conclusions

This thesis argues that brain signal diversity is a hallmark of consciousness, reflecting phe-
nomenological differentiation. Measures that capture spontaneous cortical signal diversity
across regions and time were introduced and shown to robustly index several global states
of consciousness. In comparison to wakeful rest, signal diversity was shown here to be lower
for propofol-induced anaesthesia (Chapter 3), comparable for REM sleep, lower for NREM
sleep (Chapter 4) and higher for psychedelic states (Chapter 5). The relation of signal
diversity and other notions of signal complexity was clarified using these empirical results
in conjunction with computer simulations and, most importantly, connected to complexity
theories of consciousness.

The basic behaviour of our novel measures of multidimensional spontaneous signal di-
versity, ACE, SCE and LZc was illustrated with simple simulations of time series, such
as increasingly ordering initially random strings or manipulating coupling and noise cor-
relation in an auto-regressive model. Both models showed that all three measures clearly
capture signal diversity (Section 2.6) in the sense of algorithmic complexity, i.e. randomness
and irregularity!. There are subtle differences, though. While LZc and ACE monotonically
increased with increasing signal diversity, SCE showed a peak for intermediate diversity
in the auto-regressive model, induced by either coupling strength or noise correlation, or
both. This shows that SCE captures not only signal diversity as LZc and ACE, but also
dynamical complexity in the sense of peaking somewhere in between complete order and
complete randomness of the signal for this system. SCE was further shown to behave
completely different than LZc and ACE for a particular setting of the Kuramoto model
and several settings in our Stuart-Landau model, where SCE was nearly unaffected by
noise unlike ACE and LZc. Thus SCE’s behaviour only matches that of ACE and LZc for
certain dynamical regimes.

Also for the empirical analyses we found differences between the behaviour of SCE and

LZc/ACE. SCE’s scores changed less consistently across sleep states than those of LZc and

IThere is rich mathematical literature that aims to formalise notions of randomness, with the concept
of Kolmogorov complexity frequently occurring. The latter is defined for a string of symbols to be the
number of lines of computer code needed to generate the string. The more lines of code are needed, the
higher the Kolmogorov (or algorithmic) complexity of the string. This idea of quantifying randomness (or
diversity), although proven to be impossible to compute exactly, has inspired many alternative definitions
of randomness, aiming to define notions of disorder precisely [84].
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ACE for the local depth electrode analysis conducted on only 4 channels and the analysis
of MEG during psychedelic states, using 10 channels. However, when comparing wake
with propofol anaesthesia and wake with different sleep stages, SCE’s behaviour was very
similar to that of ACE and LZc when analysing more then 10 channels broadly distributed
across the cortex. This is a strong indication that all three "flavours" of signal diversity
index these states.

This fact further guided us in the search for Stuart-Landau oscillator system dynam-
ics that are such that all three measures change in the same direction, hence the subtle
differences of the measures allowed a more precise characterisation of the average signal
complexity changes between these global states of consciousness. It allowed us to show that
heterogeneous coupling changes between oscillators are required for the scores of all three
spontaneous signal diversity measures to change in the same direction. This was realised by
increasing the coupling only of a fraction of all connections between oscillators, supporting
the hypothesis that strong coupling between the cortex and the thalamus prevents effective
connectivity between cortical regions and thus makes it impossible for consciousness to oc-
cur. A shortcoming of our model is that PCI scores do not change together with scores of
ACE, SCE and LZc and the response activity to perturbation is very simple in comparison
to that of EEG/TMS for any global state of consciousness. Yet the results presented in
Chapter 6 illustrate the promising potential of the Stuart-Landau model to clarify signal
features that correlate with consciousness and mechanisms that generate these. Future
work should aim to seek parameter changes in the model that induce changes in additional
neural signatures of consciousness faithful to empirical observation, such as PCI, delta
power and avalanche size distribution, to propose mechanisms that affect these different
measures ideally all at once as observed empirically.

Besides the subtle differences in the three multidimensional signal signal diversity mea-
sures (SCE, LZc, ACE) for empirical data, importantly, also single channel Lempel-Ziv
complexity (LZs) - capturing temporal diversity of spontaneous EEG/MEG signals only?
- indicated conscious states for all experiments presented here with equal or even higher
consistency than the multidimensional signal diversity measures. LZs may thus be the
simplest spontaneous signal diversity measure of consciousness for the global states we
investigated here, nearly independent of channel location in the cortex (as can be seen
in Fig. B.4) and fairly unaffected across a wide range of sampling rates or data segment
lengths. It is an important contribution of this thesis to introduce different measures of
spontaneous signal diversity across channels and observations and compare their behaviour
with measures of temporal signal diversity only, providing measures of different types of
signal diversity that all correlate with conscious level.

Clearly, the fact that LZs is maximal for a random signal - and nearly maximal for any of
the empirical signals analysed here - cannot imply that neural processes are highly random

themselves. At the spatial scale of EEG or MEG signals - both being superpositions of the

2ACE, SCE and LZc are capturing signal diversity across channels and observations: SCE and ACE
would score very low and LZc intermediate for, say, 10 maximally random but identical signals whereas
LZsum would have maximal score. Given the large values of SCE, ACE and LZc for all here-tested global
states of consciousness, temporal signal diversity (across observations for a single channel) comes together
with spatial signal diversity (across channels), else SCE and ACE would score substantially lower.
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electromagnetic field of countless neural circuits® - much of the information about the fine
structure of underlying dynamics is averaged away, yet the large scale signal diversity can
only be induced by a richer repertoire of states at a smaller scale .

Edelman and Tononi suggested that a large repertoire of different neural activity pat-
terns directly reflects the large repertoire of different experiences, i.e. mapping neuronal to
phenomenological diversity, called "differentiation" [229]|. The rapid succession of different
experiences in wakeful rest must accordingly be reflected by higher signal diversity than
during the absence of experiences, e.g. in NREM sleep. Irrespective of the link to phe-
nomenology, the observed changes in signal diversity trivially imply that neural processes
during wakeful rest are on average more diverse than processes during NREM sleep?.

We found lower spontaneous signal diversity for NREM /propofol anaesthesia than WR
at all tested cortical regions, as supported in particular by the LZs analyses of all depth
electrode channels for WR and NREMe (Chapter 4), showing higher signal diversity for
WR than NREM for 48 out of 50 channels. This implies that processes in all these dis-
tributed cortical areas are affected by the state of consciousness, clearly in line with the
broader empirical consensus that activity of many distinct regions, particularly across the
thalamocortical system, is essential for generating the rich contents of any experience [131].
It is obvious that for example an audio-visual experience should correlate with activity in
the auditory and visual cortex, so many different brain regions must be active to account
for many different properties of the given experience.

This "differentiation" is also key for the entropic brain hypothesis of Carhart-Harris et
al. 49|, which states that there is correlation between the degree of overall randomness
(entropy, differentiation) in brain dynamics and "vividness of cognition", locating brain
states such as coma, anaesthesia and deep sleep at relatively low entropy, wakeful rest at
intermediate entropy and REM sleep and psychedelic states at relatively high entropy [49].
In support of this, other signal diversity measures applicable to a single time series, such
as approximate entropy [176] and permutation entropy [16], have been found to decrease
during anaesthesia and sleep [42, 43, 46, 124]. Our results are consistent with these findings
and, importantly, we provided first evidence that psychedelic states lie above wakeful
rest and REM on a one-dimensional scale defined by spontaneous neural signal diversity
(Chapter 5).

Tononi and Edelman [229] suggested further that each conscious experience is perceived
as an integrated whole and this should be reflected in neural activity by brain regions be-
ing effectively connected to bring together all aspects of the given experience, for example

sound and colour. This property of "wholeness" of each experience on the phenomeno-

3Neuronal circuits are regarded as the main unit for information processing in the human brain and their
activity gives rise to electrical currents. Such currents from all active cellular processes within a volume of
brain tissue superimpose at a given location in the extra-cellular medium and generate an electric potential
that can be compared to another one found at another location. The difference in potential constitutes
an electric field that can be measured with electrodes, e.g. directly with scalp EEG or intracranial depth
electrodes with very high temporal resolution [47]. Currents further induce magnetic fields that can be
detected with MEG, also at high temporal resolution and allowing even better spatial resolution than scalp
EEG.

4Also highly complex brain processes occur during slow wave sleep - such as memory consolidation -
yet unconsciously.
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logical side and the effective connectivity on the neuronal side was called "integration".
Effective connectivity between brain regions is realised via the ongoing, recursive, highly
parallel signaling within and among brain areas, also known as reentry [229].

To what extent can we say that ACE, SCE and LZc reflect complexity, in the sense
of co-existing differentiation and integration amongst the EEG signals [229|7 Regarding
integration, variations over time to the set of active or synchronous channels could arise in
the absence of causal interactions; for instance, each channel could be exhibiting its own in-
dividual chaotic dynamics, and be evolving in isolation. Thus the measures ACE, SCE and
LZc would clearly not in general for any system capture integration. However, structural
constraints mitigate against fully random activity in the context of the thalamocortical
system. Given that most cortical regions tend in general to receive strong driving input
from sub-cortical regions [110], it would seem that diverse activity across EEG channels
is likely to require a certain amount of functional integration [53, 153, 214]. Thus ACE,
SCE and LZc, when applied to multi-dimensional EEG recordings of brain activity, may
cautiously be considered to also correlate with integration in EEG dynamics, and there-
fore to track complexity in the sense of simultaneous differentiation and integration. Only
SCE has been shown to peak at intermediate levels of signal diversity for an autoregressive
model, showing that for certain systems it captures complexity in the sense of co-existing
differentiation and integration directly, however this was not the case for the empirical data
where SCE behaved predominantly like ACE and LZc. Thus, for the dynamical regimes
of the empirical data analysed here, our measures of spontaneous signal diversity do not
directly quantify "integration" in the sense of effective connectivity.

By contrast it was argued that PCI indicates effective connectivity directly, by the
fraction of source channels with significant response signals to the magnetic perturbation.
E.g. substantially more source channels show significant response activity during WR in
comparison to NREM sleep is interpreted to indicate higher effective connectivity between
brain regions in WR than in NREM sleep®.

The behaviour of spontaneous and perturbational signal diversity measures for different
global states of consciousness both clearly support the proposed map from phenomeno-
logical differentiation to neural signal differentiation. The map from phenomenological
wholeness, i.e. integration, to effective connectivity between brain regions as indicated
by how far the response signal to magnetic perturbation spreads can also convincingly be
argued for. However, in addition to "integration" and "differentiation", Tononi suggested
further phenomenological features of any experience, e.g. the exclusion principle states
that each experience happens at its own spatio-temporal grain, requiring that only one
experience can be generated by the brain at any given time [235], which seem impossible
to be connected to the coarse average brain signal features as measured by spontaneous or
perturbational signal diversity measures for global states of consciousness.

However, the arguments for neural signal diversity to reflect phenomenological diver-
sity are convincing and should be investigated for finer levels of consciousness and ideally

more directly connected to conscious content. Our finding of increased spontaneous sig-

5This difference is only visible as long as the strength of the magnetic perturbation is not too high as
to activate all sources in both states of consciousness (discussed in Section 2.2).
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nal diversity for psychedelic states of consciousness is an important step in this direction
(Chapter 5). We provided a concrete suggestion for a multidimensional characterisation of
global states of consciousness, as asked for by Bayne et al. [26], for the psychedelic state
with spontaneous MEG signal diversity as one dimension and subjectively rated difference
of overall experience as another.

Perturbational signal diversity has not yet been analysed for the psychedelic state, yet
it would be interesting to see if PCI is consistently higher here, in particular since PCI’s
behaviour was in line with the behaviour of spontaneous signal diversity measures for the
comparison of WR to NREM and propofol anaesthesia. It would be surprising and against
theoretical considerations to find two global states of consciousness for which spontaneous
and perturbational signal diversity anticorrelated consistently.

Perturbational and spontaneous signal diversity are complimentary aspects to char-
acterise the diversity of neural activity, both with practical strengths and weaknesses.
Perturbational signal diversity is deduced from the average response signal across many
repeated perturbations, resulting in a response signal that is largely free of noise. This is
most likely the main reason for PCI’s higher specificity and sensitivity to conscious states
in comparison to spontaneous signal diversity measures, as can be seen for example when
comparing our results and those presented in [53] for intermediate states of propofol seda-
tion or, as another example, comparing single channel Lempel-Ziv complexity with PCI for
subtle differences of conscious level in patients with disorders of consciousness (see [214],
where single channel Lempel-Ziv complexity is called K-complexity).

Despite the weaker sensitivity and specificity to conscious states, our measures of spon-
taneous signal diversity do not require a large number of trials as is needed for PCI, and
are thus an attractive additional analysis choice for studies involving different global states
of consciousness, e.g for sleep stages, as has been already demonstrated by Andrillon el al
that used our LZc definition [8] to index light and deep sleep. Spontaneous signal diversity
can further be estimated from short 2sec segments of activity, thus allowing continuous
tracking of signal diversity.

We expect ACE, SCE and LZc to act synergistically with other measures besides PCI,
for example a coarse analysis of the power spectrum. This would be in line with recent
work by Sitt et al. [214] analysing auditory evoked potentials in EEG from traumatic brain
injury patients. They combined spectral measures with measures of the signal diversity
of a single time-series to achieve greater discriminative power (as measured by area under
the ROC curve in classifying the states of traumatic brain injury patients).

Other theory-based measures that could be explored in conjunction with the signal
diversity measures described here include ’causal density’ [204] and various versions of
integrated information (as measured by the quantity 'phi’ [166]), integration measures
based on long-range functional connectivity such as weighted symbolic mutual information
[127] and global graph-theoretic measures such as ’efficiency’ of connectivity graphs [62].
Moreover, the computation of the LZc and ACE measures based on a simplification of the
continuous EEG to a binary signal necessarily discards some information content from the

signals analysed. It is possible that utilising a transformation of the continuous signal into
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a repertoire of 'symbols’, as in [127], could increase discriminative power.

Collectively this thesis argues that brain signal diversity, spontaneous and perturba-
tional, is a robust explanatory correlate of consciousness, constituting a general and well
defined feature of neural activity that can be clearly interpreted to reflect the phenomeno-
logical diversity across different conscious experiences. Our findings encourage to continue
the theoretical efforts to connect general phenomenological properties to general neural
activity patterns, that may one day clarify what complex dynamics are required such that

it feels like something to be a system.
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Appendix A

Supplementary material for
propofol /EEG study

A.1 Dependence on channel number

In order to test whether the number of channels of the input data affected the behaviour
of the measures for the state pair WR/LOC, we tried 5, 10, 50, and 100 k-medoids selected
electrodes in addition to the 25 (see Fig. A.1). We found all three measures’ scores to be
higher for WR than LOC for all tested channel numbers. For all subjects and measures,
the differences between WR and LOC had high effect sizes (Cohen’s d > 0.8) except for one
subject for all three measures and channel numbers and two more subjects for measure
SCE and certain channels (see subject label colour in Fig. A.1). Despite varying effect
sizes, this control suggests that the measures’ scores are across subjects higher for WR

than LOC for a broad range of channel numbers.

A.2 Dependence on segment length

As a second control we tested whether segment length influences the behaviour of our
measures. Analysed across segments of length other than 10sec, we found for ACE, SCE
and LZc very similar results in almost all cases for all tested segment lengths (0.2, 0.4,
0.8, 1.2, 2, 4, 6, 10 and 20 seconds); except for one subject the behaviour of the measures
did not vary with segment length (Fig. A.2). That is, the measures scored higher for WR
than LOC with high effect size (Cohen’s d > 0.8) across all tried segment lengths for 6 of
the 7 subjects. Subject 1 was an exception, with LZc, SCE and ACE showing the same
behaviour as for the other subjects only for segment lengths greater than 4 seconds. In
sum, this control shows that the behaviour of the measures is robust across a large range

of segment lengths.

A.3 Control for changes in power spectrum

To test directly whether changes in the signal diversity measures arose from more than

just changes in the spectral profile of the input signal, we compared two different types
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Figure A.1: WR (asterisks) and LOC (diamonds) scores of LZc, SCE and ACE for
different numbers of electrodes. {5,10,25,50,100} electrodes were chosen via k-medoids from
the whole cortex. For all subjects and channel numbers, the score of any of the three measures is
higher for WR than for LOC. Red subject labels indicate small effect size, i.e. Cohen’s d < 0.8.
For LZc and ACE only subject 1 shows small effect size for any channel number. For SCE up to
three subjects show small effect size for certain channels.

of normalisation of the measures. First, as used for the results in the main text, ‘time
shuffling’, obtained from surrogate data for which the measure reaches its upper bound,
but that has a flattened spectral profile (see Chapter 2). Second, ‘phase shuffling’, obtained
from surrogate data with a conserved spectral profile. We find qualitatively similar results
for both types of normalisation, and thus confirm that changes in the signal diversity
measures reflect more than just spectral changes.

The ’phase shuffling’ normalisation is obtained from phase-randomised surrogate data
as follows. From the complete data from a given subject in a given state, a segment is
randomly chosen. Each time series of that segment is expressed as a superposition of
sinusoids using fast-Fourier transform. Then the phase of each sinusoid is independently
randomly changed, before applying inverse Fourier transform. The signal diversity measure
is computed for 100 such phase-randomised data segments. The mean of these 100 scores
is then used to normalise the measure’s score for the original data segments. Averaging
over 100 such surrogate data segments suffices to obtain negligible randomness in the
normalisation factor.

Fig. A.3 is a comparison of the three signal diversity measures’ scores per subject for the
two normalisation methods. As can be seen when comparing the measures’ results subject
by subject, the qualitative behaviour of all three measures is very similar under both
normalisations, implying that the signal diversity we measure is not trivially connected to

spectral properties.
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Figure A.2: Sensitivity of the measures to segment length. Segment lengths are indicated
in seconds, coloured red if the difference between WR and LOC has effect size d < 0.8. There is
one out of 7 subjects, subject 1, for which the segment length changed the measures LZc, SCE
and ACE from being greater for WR, than for LOC to the opposite, i.e. smaller for WR than for
LOC. This change happened at a segment length close to 1 second. This can be seen in the left
two panels, which indicate respectively the score of LZc and ACE, each for the two states WR and
LOC for subject 1. For the remaining 6 of the 7 subjects, the segment length of the input had no
influence on the order of the LZc¢ (SCE, ACE) scores for WR and LOC, as is exemplified in the
right two panels with subject 2. (Similar results hold for SCE, not shown).

132



0.94

0.92

0.90

0.88

0.86}

0.84

0.82

[I WR @ MS @& Loc] [I WR @& MS @& Loc]
LZc, phase sh‘uf‘fle LZ‘c,‘ timg shqff!e ACE, phase shuffle ACE, time shuffle
* |o.94f ] * *
* T =3 *
1092l E2 |o9st— @ [ 0.95} Iizz °
I EE%E |60l FH E | %E— o F
L3 1+ L 3 3¢ F 3
- Py 10.88} o Y 1 0.90f E 10.90r ¢ —
?g oo 27— ¢ ¢
° Ez (223 *s s
10.84} E E 1 0.85} 10.85- & 1
¢ *
{0.82} 4 ] 4
1234567 1234567 1234567 1234567
subjects subjects subjects subjects
| wr @ ms @ Loc]
SCE, phase shuffle SCE, time shuffle
0.95F — ~ ~ T 0.95F — " ]
— *
O __ ¥ X
iy
0.90} g 62 Jo.90} T * -
L L kx5 ©
T IZ * e
0.85 0.85 L4
. I~ 1 . I~ . O h
k3 ii%_
0.80} 0.80$§ L
IZ
*

1234567
subjects

1234567
subjects

Figure A.3: Invariance of the measures’ qualitative behaviour under spectral-profile-
preserving normalisation. LZc, SCE and ACE computed as averages over multiple 10sec seg-
ments of EEG of the 7 subjects before and during anaesthesia, as described in caption for Fig. 3.3,
yet here for two different normalisations. The titles indicate which measure and which normalisa-
tion is displayed (see main text for details). The measures’ qualitative behaviour is very similar
for the two normalisations.
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Figure A.4: Mean LZsum, sumCov, normalised delta power and normalised gamma
power, computed for broadband signal of 25 channels from the whole cortex, 10sec segments,
i.e. the same input as for Fig. 3.3 and Tab. 3.1. States shown are WR, MS, LOC and shuffled
data. sumCov and delta power discriminate WR/LOC consistently across subjects, whereas neither
scores for MS in between WR and LOC consistently across subjects. LZsum separates WR/LOC
for 6/7 subjects and has poor discrimination for MS/LOC, unlike LZc. Error bars indicate standard
error across segments.

A.4 Results for alternative measures

Besides LZc, SCE and ACE, the following alternative measures scored for certain state
pairs consistently different across subjects (compare with Fig. 3.3 and Tab. 3.1). Fig. A4
displays that normalised delta power and sumCov (average correlation of the signals) are
both consistently higher for LOC than for WR, across subjects. Note that neither of them
scores for MS consistently in between WR and LOC, whereas LZc, SCE and ACE do so
for all except subject 2 for SCE. The Lempel-Ziv variant LZsum and gamma power also
discriminate WR/LOC well, except for the first subject, see Fig. A.4. Interestingly, LZsum
performs less well in discriminating MS/WR, showing that the way in which the binary
Le.

concatenation used for LZc results in capturing randomness across channels as opposed to

matrix was concatenated influenced the outcome. the observation-by-observation

capturing average randomness per channel, as used in the computation of LZsum.

134



Q

104

103

102

101

100

power spectral density

Appendix B

Supplementary material for
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B.1 Surrogate data with empirical power spectra
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Figure B.1: Surrogate data with average spectral profile for wake or NREM
sleep. a) The depth electrode data set of sleeping subjects (Chapter 4) was used to obtain
the average spectral power density of wakeful rest (WR) and non-rapid eye movement sleep
(NREMe), respectively. The thin lines show power spectra per subject (averaged across
channels per subject) and the thick line is the average across subjects. Delta power density
is clearly higher for NREMe than WR. b) Surrogate data with each spectrum was created
(see text for details) and ACE, SCE and LZc computed for both spectra after high-pass
filtering at the indicated cutoffs (linewidth indicating standard error across 100 trials).
All three measures score higher for the spectrum corresponding to wakeful rest for a 4Hz
high-pass cutoff, however for cutoffs of 10Hz, all three score higher for NREMe than WR.
Importantly, the measures did still score higher for a high-pass filtered depth-electrode
recording at 10Hz, see Fig. 4.8, showing that spectral changes alone are not enough to
explain that they index conscious level.

In order to test to what extent the sensitivity of the measures to conscious level depends
on spectral changes, surrogate data were created with the spectral profile of wakeful rest
(WR) and non-rapid eye movement sleep (NREMe), then different high-pass frequency fil-
ters applied prior to computing the measures ACE, LZc and SCE. Fig. B.1a show spectral

power density averaged across channels and trials (thin lines) and across subjects (thick
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lines) of the depth-electrode data set of subjects in different sleep stages (Chapter 4). The
spectra differ visibly, with NREM-sleep having more spectral power in the delta range
(1-4Hz) compared to wakeful rest. Surrogate time series with these power spectral den-
sities were obtained as follows. The discrete fast Fourier transform of a uniform random
signal was computed, the amplitudes normalised to one and then multiplied by the desired
spectrum before computing the inverse Fourier transform. ACE, SCE and LZc were each
computed for 100 data segments of 10 channels and 2500 observations (corresponding to
10s at 250Hz), for each state (WR, NREMe) and high-pass filter cutoff (4Hz, 6Hz, 10Hz,
30Hz).

All three measures score higher for the spectrum corresponding to wakeful rest for a 4Hz
high-pass cutoff, however for cutoffs of 10Hz, all three score higher for NREMe than WR.
Importantly, the measures did still score higher for a high-pass filtered depth-electrode
recording at 10Hz, see Fig. 4.8, showing that spectral changes alone are not enough to

explain their power of indexing conscious level.

B.2 Supplementary measures for global analysis

In addition to ACE, SCE and LZc, we computed other measures for the global analysis of
18 channels per subject. These were normalised spectral power bands, LZsum (the mean
Lempel-Ziv complexity of single channels) and sumCov (the mean of the absolute values of
correlation coefficients between all channels). Tab. B.1 summarises the results. Normalised
spectral power bands were obtained by fast Fourier transform of the segment, averaged over
the channels and grouped into frequency bands, normalised such that all bands’ scores
together sum to one. Frequency bands are defined - following convention - as § =1-4Hz,
0=4-8Hz, o =8-13Hz, § =13-30Hz, v =30-70Hz. As expected, normalized delta power is
consistently substantially higher in NREMe than WR, while beta and gamma power are
in almost all cases substantially lower. LZsum behaved very similarly to LZc for state
pairs WR/NREMe and REM/NREMe, yet was slightly less consistent at discriminating
between WR or REM and NREMI. sumCov’s behaviour slightly resembled that of delta

power, yet was overall less consistent and with weaker effect sizes across subjects.

B.3 Correlation between measures

Correlations between ACE, SCE, LZc and spectral power in the 5 canonical frequency
bands were analysed for each state separately and the complete results summarised in
Tab. B.2. Correlations between all three signal diversity measures exist, showing that
ACE, SCE and LZc are similarly sensitive to certain signal features, yet variations across
states are also apparent. Scatter plots for each subject and selected measure pairs are
shown in Fig. B.2, illustrating variation across subjects, with subject 7 as a visible outlier.
These imperfections in correlations indicate that the three measures capture not entirely
identical types of spatio-temporal signal diversity. Strong correlations were also found
between signal diversity measures and spectral power in certain bands - especially delta

- showing that the measures are affected by the spectral profile of the signal, yet the
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‘ ACE ‘ SCE ‘ LZc ‘ LZsum ‘ sumCov ‘ ) ‘ 0 ‘ @ ‘ I} ‘ ¥

WR/NREMe | 1000|1000 |1000[1000|046 |0010|514 721|910 |901
WR/NREMI | 820 [820 |820 |640 |055 [109 [442[730|721 |541
WR/REM 451 280 [190 |442 |073 |028 [433|730|352 |235

REM/NREMe [1000|1000[910 [910 |[127 |019 [424[523|1000[820

REM/NREMI [910 [820 |[820 |721 [118 [136 [271|334|721 |532

NREMI/NREMe | 721 [820 [280 [820 |181 [028 [253[613|820 |730

Table B.1: Comparisons of broader set of measures per state pair, using 18
channels per subject. For each measure and state pair, the three numbers correspond
to how many subjects out of 10 had higher score for the left state with Cohen’s d > 0.8
(left digit), no substantial difference, d < 0.8, (middle) and higher score for the right state
with Cohen’s d > 0.8 (right). The results were obtained from applying the measures to
the broadband signal of 18 channels.

decrease in measured signal diversity for WR/NREMe is not only due to spectral changes
(see Fig. B.9). Tab. B.2 further shows an overall tendency for correlations to be strongest
in state NREMI.

B.4 Local analysis

As described in Chapter 2, Lempel-Ziv complexity of single channels (LZs, same compu-
tation as LZc with trivial concatenation) scored predominantly lower during NREMe than
WR, with some outliers. For each subject, a panel in Fig. B.4 displays LZs’ scores for all
4 states (WR, REM, NREMI, NREMe), the region label of each channel as x-tick labels
and gives in the panel title the number of channels for which LZs was higher for WR, than
NREMe with Cohen’s d > 0.8 (see also figure caption). Across all subjects, 247 channels
were analysed here. For 206 of those LZs scored higher for WR than NREMe with Cohen’s
d > 0.8, for 35 d < 0.8 and for 6 LZs scored lower for WR than NREMe with Cohen’s
d > 0.8. Le. there were 6 channels for which LZs did not display the trend found globally.
These 5 outliers are in subject 8 (Hi, In)!, subject 9 (Hi, Oc) and subject 10 (Fr, In), i.e.
different regions and different subjects, thus they do not indicate a local difference from
the global trend. When considering LZs scores per subject and region, averaged across
channels in the same region, LZs scored lower during NREMe than WR for 48 out of 50
subject region pairs (see Tab. B.3).

Fig. B.5 shows the scores for normalised delta power for the same data as Fig. B.4
(also applied to 10s segments), displaying delta(WR)<delta(NREMe) for most subjects.
As can be seen by addition of the scores in the panel titles, there are in total 247 channels.
For 210 of them, delta(WR)<delta(NREMe) with Cohen’s d > 0.8, for 26 d < 0.8 and for
11 delta(WR)>delta(NREMe) with Cohen’s d > 0.8. All these 11 channels - with delta

behaving against the main trend - were in the same subject, in Hi, Oc and Te. Unlike

!Macro-region label abbreviations: Fr (frontal), Pa (parietal), Te (temporal), Oc (occipital), Ci (cingu-
late), In (insula), Hi (Hippocampus).
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Figure B.2: Scatter plots illustrating correlation of pairs of measures. Each panel
shows a scatter plot for a pair of measures (chosen from ACE, LZc, SCE and normalised
delta power) and one of the ten subjects. Each dot - coloured by state as in main text
figures - has as x value the score for a 10s segment of the first measure of the pair indicated
for each row and as y value the score of the second measure. The best linear fit is indicated
with a dotted line. The frame of each panel is coloured according to the absolute value
of the Pearson correlation coefficient; white signifying 0, black signifying 1 and linearly
scaled grey tones showing values in between. Measure pairs ACE/SCE, ACE/LZc and
SCE/delta show high correlation across subjects. Subject 7 shows low correlation for
all displayed measure pairs, demonstrating that the signal diversity measures are not all
sensitive to the same dynamics. (compare with Tab. B.2)

Figure B.3: Schematic of the
computation of SCE13. This
measure quantifies the diversity of
the interaction between a seed chan-
nel in one region with three target
channels in another region using the
entropy SCE(® of the constitution
of the set of target channels in syn-
chrony with the seed channel.

delta power, LZs did score according to the main trend also for these channels in subject

7 (compare Fig. B.4 with Fig. B.5), further adding evidence for signal diversity varying
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Measure pair | WR | REM | NREMI | NREMe

ACE/LZc | 071 | 0.6 |086 |0.72
ACE/SCE | 0.72 [0.73 |0.84 | 0.71
ACE/delta | -0.56 | -0.6 | -0.76 | -0.66
ACE/theta -0.27 ‘ n.s. ‘ n.s. ‘ 1.s.
ACE/alpha ‘ 1.S. ‘ n.s. ‘ n.s. ‘ 0.29
ACE/beta |05 [043 |0.62 |05
ACE/gamma | 0.57 | 0.66 | 0.65 | 0.54
LZc/SCE | 051 |0.39 |0.62 |0.37
LZc/delta | -0.32 | -0.29 |-0.56 | -0.31
LZc/theta ‘ 1.S. ‘ n.s. ‘ n.s. ‘ n.Ss.
LZc/alpha ‘ n.S. ‘ n.s. ‘ n.s. ‘ n.s.
LZc/beta | 023 |0.18 | 0.4 | ns.
LZc/gamma | 028 | 0.26 | 0.45 | 0.26
SCE/delta | -0.46 | -0.62 | -0.82 | -0.75
SCE/theta ‘ 1.S. ‘ n.s. ‘ n.s. ‘ n.s.
SCE/alpha ‘ 1.S. ‘ n.s. ‘ n.s. ‘ 0.33
SCE/beta | 0.44 | 0.48 |0.69 | 0.65
SCE/gamma | 0.36 | 0.5 | 0.7 | 0.62

Table B.2: Pearson correlation for all measure pairs, pooled across subjects.For
a given state and subject the Pearson correlation of two different measures’ scores across
10s segments was computed. For any state and pair of measures (chosen from ACE, SCE,
LZc and spectral power of the 5 canonical frequency bands, excluding pairs of spectral
power alone) the value of the Pearson correlation averaged across subjects, r, is displayed
if p < 0.05 (obtained by a FDR corrected t-test across the values for the 10 subjects,
setting 0 correlation as null hypothesis). If the p-value was above 0.05, the table entry was
set to not significant (n.s.).

globally and locally robustly across subjects when changing state from WR to NREMe.
Considering delta power per subject averaged across all channels of the same region, delta
power is higher for NREMe than WR for 49 out of 50 region/subject pairs. The outlying
region/subject pair is Oc in subject 7.

As described in Section 4.4.2.1 and illustrated in Appendix B.4, we explored the signal
diversity, as measured by SCE® of the interaction of a seed channel in one region with
a group of target channels in another. We call this measure SCE1IN for the case of N
target channels and computed it for N = 2 and N = 3 for all possible region pairs (seed
channel in one region, N target channels in another region) for each subject. If there were
multiple channel choices for a given region pair (e.g. the first subject had 7 parietal and
5 occipital channels, so when computing SCE13 for a 10s segment there were multiple

choices for one channel in the parietal lobe and 3 channels in the occipital lobe) up to 10
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different random combinations were chosen per 10s segment and results averaged across
them. We also computed complexity of synchrony (CS) as being Lempel Ziv compression of
the synchrony time series of two channels, thus capturing temporal signal diversity thereof.
The scores of SCE13, SCE12 and CS can be compared between pairs of regions for single
subjects with results shown in Figs. B.6 to B.8, respectively.

For each of these three measures of the diversity of the interaction of a channel in
one region with channels in another region, we observed lower values during NREMe than
WR for almost all choices of seed and target regions for all subjects. When using Cohen’s
d > 0.8 as a criterion for strong effect size, SCE13, computed for 129 pairs of regions across
all subjects, scored higher for WR with d > 0.8 for 24, for 103 d < 0.8 and for 2 lower
for NREMe than WR with d > 0.8. This overall result across subjects for SCE13 can be
expressed as a triplet: {24,103,2}. The analogous triplet for SCE12 is {11,130,2} and
that for CS is {98, 33, 8} (for CS we included also reflexive region pairs). The high fraction
of cases with small effect size for SCE12 (130/142, as opposed to 24/129 for SCE13, and
33/139 for CS) indicates that the small number of possible synchrony coalitions for the
case of 2 target regions leads to SCE12 being less effective as a measure of signal diversity.

There were no exceptional choices of seed and target region that went against the
trend for more than one subject. Hence this SCEIN analysis did not yield evidence for
a change in score against the main trend involving some region consistently in more than
one subject, further supporting that signal signal diversity changes with sleep globally.

Tab. B.3 summarises the consistency across regions of all the measures considered.

State pair ‘ ACE ‘ SCE ‘ LZc ‘ LZs ‘ SCE13 ‘ SCE12 ‘ CS ‘ delta ‘ gamma
WR/NREMe | 261 |207 |270 |482 |10722 | 10934 | 12217 | 149 | 4238
WR/NREMI | 261 |1611 270 |[419 |9336 |9647 |10336|644 |3317

WR/REM 1413198 | 1710|3614 | 7059 | 7766 | 10138 | 14 36 | 18 32

REM/NREMe [ 252 | 1710|270 |464 |10227 | 11429 | 10534 [ 248 | 4238

|
REM/NREMI [ 261 | 1611|243 |3614 9039 | 9845 | 8653 | 1139|3515
NREMI/NREMe | 189 [ 198 [252 [428 [9435 |9053 |12217 | 644 |473

Table B.3: Summary of local results (without applying statistics).Considering
all subject and region combinations, the left-hand number in each cell gives the total
occurrences of the state on the left scoring higher, and the right-hand number gives the total
occurrences of the state on the right scoring higher. ACE, LZc and SCE were computed
across 4 channels (thus for these measures there were 27 subject and region combinations in
total, see Fig. 7). For SCE12 and SCE13 there were respectively 129 and 143 combinations
of subject, target region and seed region, and for CS there were 139 combinations. LZs,
delta power and gamma power were computed for each single channel in each subject (247
channels in total, resulting in 50 region-subject combinations when averaging per subject
across channels in the same region).
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Figure B.4: Lempel Ziv signal diversity of single channels (LZs) for each subject
and state. States shown are WR, REM, NREMI and NREMe. LZs was computed across
all 18-31 channels per subject, the channel’s region is indicated as an x-tick label (first 2
letters of the anatomical regions as listed in Fig. 4.2). Error bars indicate standard error
across 10s segments. All 10 panels share the same y-axis. The numbers in the triplet
in the title of each panel indicate respectively how many channels scored higher (with
Cohen’s d > 0.8) for WR than NREMe (left digit), non-substantially different (Cohen’s
d < 0.8, middle digit) or lower (with Cohen’s d > 0.8, right digit). For the clear majority
of channels, LZs scored substantially higher for WR as compared to NREMe. The few
outliers are not consistently in one region, showing that there is no local effect against the
global trend (unlike for delta power, compare with Fig. B.5).
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Figure B.5: Normalised delta power of single channels for each subject and state.
States shown are WR, REM, NREMI and NREMe. Delta power was computed across all
18-31 channels per subject, the channel’s region is indicated as an x-tick label (first 2 letters

of the anatomical regions as listed in Fig. 4.2).

Error bars indicate standard error across

10s segments. All 10 panels share the same y-axis. The numbers in the triplet in the
title of each panel indicate respectively how many channels scored higher (with Cohen’s
d > 0.8) for WR than NREMe (left digit), non-substantially different (Cohen’s d < 0.8,
middle digit) or lower (with Cohen’s d > 0.8, right digit). For all regions in all subjects
(except occipital lobe in subject 7 - 10 channels, panel in red frame), delta power is lower

for WR as compared to NREMe.
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Figure B.6: SCE13 computed for each possible combination of seed and target

The labels along the x-axis give the pairs of anatomical

t.

jec

for each sub
regions, abbreviated as in the previous figures, with e.g. Oc>Fr denoting that the seed is

located in the occipital lobe and the targets are located in frontal lobe.

regions

B.5 Spectral profile preserving shuffling

To confirm that changes in ACE, SCE and LZc scores between states were due to sig-

nal changes beyond changes in power spectrum, we applied a spectral-profile preserving
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The labels along the x-axis give the pairs of anatomical
144

ject.

for each sub
regions, abbreviated as in Fig. B.6.

regions
of the same signal diversity measures ACE, SCE and LZc applied to EEG recordings of

Figure B.7: SCE12 computed for each possible combination of seed and target
shuffling to the data and used the measures’ scores for them as a normalisation for the
propofol-sedated subjects contains a detailed description of this phase-shuffling control
[191]. Fig. B.9 compares the behaviour of ACE, SCE and LZc for normalisation by phase-

non-normalised scores of the measures obtained from the un-shuffled data.
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Figure B.8: CS computed for each non-ordered pair of regions (including reflex-

jec

t. The labels along the x-axis give the pairs of anatomical

) for each sub
regions, abbreviated as in previous figures.

1ve pairs

shuffled data (indicated by underscore N in the measures’ names) and for our standard

It can be seen that the decrease in the measures

normalisation by time-shuffled data.

during NREM sleep are only partially attenuated by applying the phase-shuffling normali-

sation, and thus that this can be attributed to changes in signal properties that go beyond

changes to the power spectrum.
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Figure B.9: Control for changes in spectral power profile. (Top) ACE, SCE and
LZc computed across 18 channels, normalized using their scores for time-shuffled data, as
in Fig. 4.4. (Bottom) ACE_N, SCE N and LZc N, which are the same measures but
normalized using their scores for phase-shuffled data. The decrease in the measures during
NREM sleep are only partially attenuated by applying the phase-shuffling normalisation,
and thus can be attributed to changes in signal properties that go beyond changes to the
power spectrum.

B.6 Influence of bi-polar referencing

When omitting bi-polar referencing as a pre-processing step (i.e. maintaining a common
reference, thus obtaining mono-polar data, see Methods) and applying the three measures
otherwise identically, the measures behave very similar. Fig. B.10 compares the measures’
scores computed on data where bipolar-referencing was applied (identical to Fig. 4.4) with
scores obtained when omitting the bi-polar re-referencing step. This shows that bi-polar
referencing as a pre-processing step of the data is not crucial for the detection of signal
diversity changes between WR and NREM sleep.

B.7 Different sampling rates under fixed input dimensions

Prior to computing ACE, SCE and LZc for the same data set as in the global analysis

(Fig. 4.4), we varied the time-series’ sampling rate while segment length and channel
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Figure B.10: Comparison of bipolar and monopolar montage. ACE, SCE and LZc
computed across 18 channels using (top) the bipolar montage used for the main analyses;
(bottom) monopolar referencing (same data omitting the bipolar re-referencing). Plotted
points show mean across 10s segments, and error bars show standard error.

number were fixed at 2500 observations and 18 channels, respectively. (Note that we
analysed the measures’ behaviour for different segment lengths as well as different numbers
of channels in our previous study [191], finding similar results for a range of different
segment lengths (0.2-20s at 250H z) and channel numbers (5-100). See next subsection
for even shorter segment lengths.) We computed ACE, SCE and LZc for data sampled at
10, 50, 150, 350, 500, 750 and 1000H z, as indicated in the title of each panel column in
Fig. B.11. All three measures scored for all subjects higher for WR than NREMe, for a
sampling rate at least 150H z. Consistency was clearly weaker for 50H z and the results
seemed completely random at 10Hz. Average scores across subjects for either state and
each measure decreased consistently with increasing sampling rate (not visible in Fig. B.11
due to normalisation by WR score), indicating that in total across the segment length
there is less temporally diverse activity in a 2.5s segment (2500 observations at 1000H z)

as opposed to a 17s segment (2500 observations at 150H z).
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Figure B.11: ACE, SCE and LZc for 18 channels and 2500 observations
for different sampling rates. FEach column of panels displays the three measures’
scores for all subjects and the sampling rate indicated in the column’s title (SR =
10H z,50H z,150H z,250H z, 350 H z, 500 H z, 750 H 2, 1000 H z).  Each measure’s score is
higher for WR than NREMe for every subject and sampling rate of at least 150H z. For
sampling rate smaller or equal to 50H z consistency of the scores decreases strongly for all
3 measures. Scores are normalized by the result for WR.

B.8 Different number of observations under fixed sampling

rate

When searching for the lower bound of segment length, for which the measure’s behaviour
was still consistent (for 18 channels at 250H z), we found that for 500 observations (corre-
sponding to 2s at 250H z) per analysed segment still all measures scored for all subjects
higher in WR than NREMe, as was found for 2500 observations (10s) for the main analysis.
For 100, 50 and 30 observations per segment there were at most two subjects showing higher
scores for NREMe than WR. for each measure. At segments that were 15 observations long,

results were completely inconsistent for all three measures.
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Figure B.12: ACE, SCE and LZc for 18 channels for different numbers of observa-
tions at 250H z. Fach column of panels displays the three measures’ scores for all subjects
and the number of observations indicated in the column’s title. For segment lengths below
2s (corresponding to 500 observations at sampling rate 250H z), the measures’ scores are
no longer consistently higher for WR (white) than NREMe (red). Scores are normalized
by the result for WR.
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Appendix C

Supplementary figures for

MEG /psychedelics analysis

80 I KET @EE PSIL  mm LSD]

60

40

20

0
strange geom vivid time space ego muddle merge control spirit past peace float sounds total

Figure C.1: Subjective ratings The changes in subjective ratings under each drug con-
dition are shown as averages with standard error bars across subjects. The "total" of all
changes across these 14 questions is shown normalised by factor 20 in order to fit the scale.
No consistent differences are apparent across drugs.
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PSIL, 14 subj. KET, 19 subj.
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Figure C.2: Full correlations across measures and questionnaire answers Here
are the correlation results of Fig. 5.3 in full. For each drug, a matrix indicates in colour
the Pearson correlation, r, of the score difference between drug and placebo condition
(averaged across trials) of any measure (subjective rating) pair across subjects. See main
text for details.
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