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Abstract

RNA interference (RNAi), or Post-Transcriptional Gene Silencing (PTGS), is

a biological process which uses small RNAs to regulate gene expression on a

cellular level, typically by causing the destruction of specific mRNA molecules.

This biological pathway is found in both plants and animals, and can be used

as an effective strategy in defending cells against parasitic nucleotide sequences,

viruses and transposons. In the case of plants, it also constitutes a major

component of the adaptive immune system. RNAi is characterised by the ability

to induce sequence-specific degradation of target messenger RNA (mRNAs) and

methylation of target gene sequences. The small interfering RNA produced

within the initiated cell is not only used locally but can also be transported

into neighbouring cells, thus acting as a mobile warning signal.

In the first part of the thesis I develop and analyse a new mathematical model

of the plant immune response to a viral infection, with particular emphasis

on the role of RNA interference. The model explicitly includes two different

time delays, one to represent the maturation period of undifferentiated cells,

and another to account for the time required for the RNAi propagating signal

to reach other parts of the plant, resulting in either recovery or warning of

susceptible cells. Analytical and numerical bifurcation theory is used to identify

v



parameter regions associated with recovery and resistant plant phenotypes, as

well as possible chronic infections. The analysis shows that the maturation time

plays an important role in determining the dynamics, and that long-term host

recovery does not depend on the speed of the warning signal but rather on the

strength of local recovery. At best, the warning signal can amplify and hasten

recovery, but by itself it is not competent at eradicating the infection.

In the second part of the thesis I derive and analyse a new mathematical

model of plant viral co-infection with particular account for RNA-mediated

cross-protection in a single plant host. The model exhibits four non-trivial

steady states, i.e. a disease-free steady state, two one-virus endemic equilib-

ria, and a co-infected steady state. I obtained the basic reproduction number

for each of the two viral strains and performed extensive numerical bifurcation

analysis to investigate the stability of all steady states and identified param-

eter regions where the system exhibits synergistic or antagonistic interactions

between viral strains, as well as different types of host recovery. The results

indicate that the propagating component of RNA interference plays a signifi-

cant role in determining whether both viruses can persist simultaneously, and

as such, it controls whether the plant is able to support some constant level of

both infections. If the two viruses are sufficiently immunologically related, the

least harmful of the two viruses becomes dominant, and the plant experiences

cross-protection.

In the third part of the thesis I investigate the properties of intracellular

dynamics of RNA interference and its capacity as a gene regulator by extending

a well known model of RNA interference with time delays. For each of the two

amplification pathways of the model, I consider the cumulative effects of delay
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in dsRNA-primed synthesis associated with the non-instantaneous nature of

chemical signals and component transportation delay. An extensive bifurcation

analysis is performed to demonstrate the significance of different parameters,

and to investigate how time delays can affect the bi-stable regime in the model.
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Chapter 1

Introduction

An RNA interference (RNAi) type phenomenon was first reported by Napoli and

Jorgensen in 1990 [Nap90]. By introducing a chimeric transgene in petunias,

they hoped that the intentional over-expression of the enzyme responsible for the

violet pigmentation, would generate flowers of a violet colour. However, to their

surprise, this resulted in producing flowers with white pigmentation instead. To

account for this, it was hypothesized that the introduced transgene was instead

“cossupressin” the corresponding endogenous gene. A similar phenomenon was

later observed by Romano and Macino in 1992 when studying a type of bread

mold [Rom92], and it was first documented in animals by Guo and Kempheus

who worked with the nematode (roundworm) C.elegans [Guo95].

Elucidation of the RNAi mechanism did not occur until in 1998 [Fir98],

when it was hailed as one of the greatest scientific breakthroughs since the

discovery of the double-helix structure of DNA in the 1950s. As an incredibly

powerful molecular tool, the discovery was awarded with a Nobel prize and

consequently inspired a new area of research that had a profound effect on
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our ability to develop treatments and control strategies against a variety of

diseases for both animals and plants. This is, of course, a matter of the utmost

importance for a number of reasons.

With a projected number of 9.7 billion people by the year 2050, the world

population is rapidly growing to a size that cannot be easily sustained by exist-

ing agricultural methods. Human societies are heavily dependent on a steady

agricultural output in order to provide a sustainable food source, as well as

various forms of renewable fuel such as ethanol and biodiesel. In light of the

agricultural stagnation experienced in the last decade, further fuelled by the

public opposition to controversial newer practices [Kun14], securing an ade-

quate and reliable food source has never been more relevant.

Despite the technological advances of the last century, it is estimated that up

to 40% of the global crop production is still lost due to pathogens, animals and

weeds [Sav12]. The necessity to minimize these losses, while also maximizing

production, has long been an important task. As such, the fight for efficiency

has been shaping the way we view and practise farming most likely since our

species first successfully domesticated a variety of crops, an event known as the

Neolithic revolution which paved the way for creating the first human settle-

ments and thus defined world history. This inevitably led to the development

of different agricultural practices throughout the centuries and gave birth to

more contemporary methods including the use of various pesticides, and ulti-

mately genetic engineering. It would, therefore, seem logical that successfully

eliminating the problem of food supply could be one of the requirements for

the next step of human advancement and development. Although significant

efforts are constantly made to secure and increase crop production, usually with

2



a good degree of success, perhaps, a more effective or environmentally safe way

to address this problem lies in better investigating and understanding some of

the current methods. In this respect, mathematical modelling can provide in-

valuable insights into the dynamics of plant infections and, to some extent, be

either a viable alternative, or contribute to the original laboratory work, as the

latter might sometimes suffer from prohibitive costs and other limitations. As

such, a mathematical approach is useful in establishing practical and theoreti-

cal frameworks in which both existing and experimental strategies can be safely

and efficiently evaluated.

Unlike the mammalian immune system, a plant does not possess any type of

specialized mobile cells with the ability to protect against infectious diseases or

foreign invaders. Therefore, in the absence of a leukocytic defence, it has to rely

solely on the cellular innate immunity to deal with possible infections. More-

over, the plant immune system also exhibits many plant-specific characteristics

[Jon06], which arguably makes any attempts to derive complete mathematical

models, able to account for the perceived variety of immune response among

different species, a seemingly unrealistic task.

However, one can generally separate how plants respond to disease into three

distinct phenotypes. The distinction is simply based on the plant’s disease resis-

tance which is usually pathogen-specific and describes the reduction of pathogen

growth once the host has been infected, namely susceptible, resistant and a type

of recovery phenotype. Susceptible plants, as the name suggests, offer little to

no resistance to a particular disease and are often completely overwhelmed to

the point where severe host damage is observed, which sometimes can even lead

to death. On the other hand, resistant plants, are able to prevent the systemic
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spread of a disease by successfully isolating the infection to the initiating sites

at an early stage. Since this strategy dramatically reduces the growth of the

pathogen, resistant plants are usually able to make a rapid recovery and expe-

rience minimal to no damage. The plants showing a recovery phenotype, for

example, to a specific viral infection, initially become affected but later expe-

rience new growth that is progressively more resistant to the virus until they

finally produce new virus-free leaves with complete immunity. In addition to

these three categories, plants can be further separated into disease-tolerant or

disease-intolerant types of host. For the former of these two, despite experienc-

ing substantial pathogen levels, the plant will only exhibit minuscule damage

compared to the latter type with no tolerance. An example of the resistant phe-

notype starts with the plant going into hypersensitive resistance, triggering the

self-destruction of infected cells, with necrotic tissue forming at and around the

infection site. The cells surrounding these necrotic lesions are usually found in

an antiviral (resistant) state. Although some of them may contain traces of the

virus, the virus is unable to replicate [Ger06, Fri07]. This can be explained by

a phenomenon previously known as post-transcriptional gene silencing (PTGS),

or using a more contemporary and widely used term, RNA interference.

Another reason for the significance of RNA interference, as a complex biolog-

ical mechanism that occurs naturally in many eukaryotes, lies in its regulatory

role within each individual cell [Wat99, Esc00, Vau01, Wat01]. This process

follows a number of different steps while at the same time enabling some level of

cooperation between affected cells. As such, it allows control over gene expres-

sion while also providing an effective immune response against viruses (virus-

induced gene silencing) and tranposons through its ability to induce sequence-
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specific degradation of target messenger RNAs (mRNAs) and methylation of

target gene sequences perceived to be harmful or undesired by the immune sys-

tem. Therefore, taking advantage of this mechanism, one can, therefore, induce

an artificial response by introducing specific therapeutic molecules into targeted

cells to trigger the process. Consequently, RNAi can be used for gene therapy

whereby undesired or harmful genes can, with astonishing accuracy, be targeted

and essentially deactivated through the same natural mechanism.

It has been demonstrated that RNAi is mediated by long, perfect or imper-

fect double-stranded RNAs (dsRNA) produced from either an inverted-repeat

transgene or a replicating virus. The core pathway can be described as follows,

When the viral or transgenic dsRNA is injected into the cell, it is targeted by

up to four different dicer-like enzymes (DLC), which divide it into short 21-26

nucleotide (nt) long molecules. These molecules, known as small or short inter-

fering RNAs (siRNA), are used as the building blocks for assembling a special

protein complex called RNA-induced-silencing complex (RISC). This special-

ized compound can recognise and degrade RNAs containing complementary

sequences to the short RNAs forming its structure. The degraded RNA pieces,

labelled as garbage RNA, can no longer be translated into functioning proteins,

which leads to the translational arrest of the viral or transgenic RNA. [Esc00,

Elb01]. In the case of viruses, the process can prohibit viral replication within

the host cell and thus prevent the infection from spreading to other cells [Cos13,

Ham00, Ber01b], whereas in the case of transgenic dsRNA, it can be used to

silence the expression of corresponding genes. While the core pathway might

be sufficient to describe RNA interference in mammals, for other organisms it

is possible that the process is not strictly limited to the siRNA at the initiating
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site but can spread systemically [Pal97, Mel11, Zha12b].

In a study of RNA interference in the nematode Caenorhabditis elegans, it

was observed that a notable proportion of the produced siRNA was not derived

directly from the initializing dsRNA, suggesting the presence of a mechanism

in which some additional dsRNA can be generated [Sij01]. To account for this

discovery, a primed and an unprimed amplification pathway were proposed in

which an RNA-dependent RNA polymerase (RdRp) or RNA replicase could

synthesize the additional dsRNA [Lip01, Mak02]. In the case of primed am-

plification it is postulated that when assisted by RdRp, the siRNA that binds

on mRNA can itself initialize dsRNA synthesis, thus, generating a new round

of dsRNAs ready to be used in the process. On the other hand, unprimed am-

plification describes the situation where dsRNA synthesis occurs without the

assistance of the primer RdRp, but instead relies on the presence of garbage

RNA to facilitate synthesis.

As in most complex biological processes, RNA interference carries risks and

is prone to different errors, as it relies on the host’s ability to correctly dis-

criminate between endogenous and exogenous mRNA [Gio02]. Thus, any in-

vading viral sequences with cross-reactive similarities or the host’s accidental

production of anti-sense transcripts corresponding to self genes can result in a

self-reactive response that can be extremely damaging to the host. To limit

the self-damage caused by the feed-forward amplification in RNA interference,

a protection mechanism has been proposed in [Pak12].

Another important aspect of plant immunology concerns the interactions

that occur between different viruses and their hosts. According to the prin-

ciple of competitive exclusion, two species occupying the same niche cannot
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co-exist indefinitely but may, however, co-exist if they occupy sufficiently dif-

ferent niches. Hence, species whose life cycles take place at different periods of

time and at host locations that are mutually exclusive with each other, or even

require distinct host resources, can lead to sufficient biological and epidemio-

logical differences that result in the species co-existence and have significant

implications for viral evolution [Fit06]. A good example lies in the tomato

yellow leaf curl virus outbreak in 1997, when it was observed that two different

isolates of the virus had successfully spread in the main tomato-growing regions

in Spain and could co-exist. What was even more astonishing was that this dis-

ease could also be transmitted to the common bean, and that one of the viral

isolates was the causal factor of the newly emerged bean leaf crumple disease

[Cas99]. Mixed infections are indeed common and are, in fact, a prerequisite

for viral recombination to occur; the genetic exchange and re-assortment of vi-

ral genomic segments can lead to the creation of new species or strains that

are better adapted to the host and, therefore, represent a natural evolutionary

pathway [Gar06].

One very efficient way of protecting a plant against a disease can be found

in the phenomenon of cross-protection, and describes the process by which prior

infection of the plant with a primary virus can prevent or interfere with the sub-

sequent infection with a secondary virus of the same family [Zho12]. In such a

case, deliberately infecting the plant with a less virulent strain can offer partial

or full protection against a much more virulent isolate of the virus. Although

this natural phenomenon was first demonstrated more than 80 years ago, its

precise mechanisms are still not fully understood, and several hypotheses have

been put forward to explain how cross-protection works [Pen01]. It has been
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suggested that the primary infection can trigger the formation of specific an-

tibodies which prevent the subsequent infection by a similar virus. Another

possibility is the coat-protein mediated resistance that is usually demonstrated

by transgenic plants encoding viral coat-proteins. However, in the case of com-

peting viral strains, the coat protein of the primary strain can also interfere with

the encapsidation process of the secondary strain, thus rendering it ineffective

for a cell-to-cell transmission [Bea99, Ben97]. Additionally, if the two viruses

are closely related, they can very well be competing for the same components

which are essential for viral replication, or that the occupation of replication

sites by the primary strain could cause a spatial exclusion of the secondary

strain [Lee05, Tak04, Gal06].

A very promising explanation of cross-protection can be found in the RNAi

pathway [Rat99]. It is very important to note that in addition to the ampli-

fication pathways discussed earlier, the secondary generation of siRNA derived

during the amplification process, can also be transported into neighbouring cells,

thus acting as a mobile warning signal. This warning signal spreads systemi-

cally in a way that resembles the movement of viral particles, and can poten-

tially fortify and prepare other cells by enabling them to express the antiviral

components even before they become infected [Zha12a, Was00, Zha12b].

The ability to induce a propagating warning signal can most likely be at-

tributed to the evolutionary race between the plant and the viruses that afflict

them, as it has been demonstrated that viruses can suppress different stages

of the RNA-interference pathway [Cos13, Pum13, Raj08]. In some cases

the virus can prevent degradation of its genome by either suppressing cellular

innate immune response or by simply managing to successfully spread before
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being detected. The latter can be achieved by moving into another cell be-

fore a specific threshold of viral dsRNA has accumulated, which is necessary

to initiate a cellular response. In other cases, the virus can only suppress the

propagating warning signal, therefore, depending on which component of the

immune response is targeted by viral suppressors, one can expect a different

phenotype of recovery.

It is important to note that in the studies of plant pathology, single-host

interactions between different viruses are highly important, as they can often

produce distinct types of host immune response. Therefore, while some viral

pairs are able to facilitate each other and engage in a synergistic relationship,

others will compete with each other for dominance [Mal09, Weg07, Pru97].

Contrary to cross-protection, enhanced symptom display occurs when plants co-

infected with two or more viral strains exhibit symptoms that are more severe

when compared to the single-strain infections and this is often accompanied

by an elevated viral load for one or multiple viruses. Therefore, depending on

the level of competition between the viruses and the corresponding immune

response, a different degree of cross-protection or cross-enhancement can be

observed.

It is quite unlikely that any synergistic or antagonistic outcome of a viral co-

infection in a single host, associated with cross-protection or enhanced symptom

display, can be fully explained by one single mechanism. This is due to the wide

variety of plants with an immune system that, as mentioned earlier, is highly

specific to the plant, and the fact that different viruses can often produce unique

patterns of interactions [Gal06, Roo05, Tak05, Ber14]. However, if one takes

different hypotheses into consideration, depending on the sequence homology of
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the two viruses and their specificity, one of them could inadvertently trigger

an immune response or establish a set of host conditions that could either

prevent the secondary infection from taking place or allow it to manifest more

aggressively [Mal09, Red12].

1.1 Literature review

From a mathematical perspective, significant efforts have been made at qual-

itative and quantitative analysis of plant disease dynamics, including the en-

vironmental impact and its effects on the global yield of crops. Jeger et al.

[Jeg04] give an overview of some of the quantitative approaches employed in

plant virus epidemiology throughout the 20th century. Many mathematical

models have focused on the spread of infection by considering populations of

healthy and infected plants, with disease transmission occurring through some

intermediary. Since disease propagation in plants is mainly carried out by in-

sect vectors [Pur05], many of these models incorporate a vector population

either explicitly or through empirically derived relationships between the two

populations, done in a manner that is easily comparable to epidemic models of

mosquito-borne diseases in humans [Pur05]. Other models have investigated

the effects of traditional disease controls, such as roguing and replanting, where

any plants carrying a disease are simply removed and replaced with healthy

new plants [Cha94, Van96, Zha12a]. Due to the significant role played by

vectors in plant disease transmission, some work has been done on the analysis

of various behavioural aspects, vector aggregation, and the existence of helper

viruses that mediate viral transmission [Zha00a, Zha00b].
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In the 1970s, the increase of computing power allowed the development

of models capable of simulating vector population under the consideration of

weather variables [Gut74, Fra77, Kir78, Irw00]. Despite their simple struc-

ture, these models enabled the integration of various disease control options,

thus creating a framework where such methods could be analysed and eval-

uated. Madden et al. [Mad00] have performed a detailed analysis of the

transitional dynamics of plant diseases taking into account the effects of vec-

tor emigration. Depending on the way they are transmitted, plant viruses are

classified as non-persistent, semi-persistent and persistent, and Madden et al.

[Mad00] demonstrated which of these three classes were more susceptible to

changes in vector longevity and inoculation, acquisition rates and vector mo-

bility. Subsequent models have looked into the transmission dynamics of a pair

of “helper” and helper-dependent viruses. Zhang et al. [Zha00b] provided

insights into the commonly observed phenomenon where infecting a host with

only a helper virus would cause minimal or no damage to the host, whereas,

additionally introducing the helper-dependent virus would produce far more

devastating symptoms.

In the last few decades it was discovered that viruses employ a wide antigenic

diversity as an effective strategy to survive within the host population [Fra02,

Lip07]. By employing a variety of antigenically distinct strains, viruses are able

to adapt sufficiently fast to evade the host’s immune system. Antigenic varia-

tion is known to be effective for a large number of pathogens affecting humans,

including malaria [Gup94, Fer04], meningitis [Gup96, Gup99], dengue fever

[Gog02], and influenza [Fer03]. The interactions between multiple strains are

generally classified as either an ecological interference, or an immunological
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interference. The first type of interactions describes a simple case where in-

dividual hosts can only be infected with a single strain, and are subsequently

removed from the population susceptible to other strains [Lev04]. Immunolog-

ical interference corresponds to situations where infection with one strain may

cause partial or full immunity to the remaining strains [Gup99], or sometimes

it can even augment the susceptibility of the host and the transmissibility of

other strains [Rec09].

To better understand the dynamics of multi-strain diseases, a large num-

ber of mathematical models have been developed that can be divided into

individual-based and equation-based models. In individual-based models, all

pathogen strains are treated as individuals interacting according to a fixed set

of rules [Fer03, Buc04, Buc10, Cis04], whereas in equation-based models,

hosts are categorised either according to preceding exposure to individual strains

[And97, Gom02], or based on their immunity to specific strains [Gog02,

Kry07].

A number of mathematical models have considered different aspects of RNAi

in its roles of immune guard against viral infections, as well as an attractive

tool for targeted gene silencing that is important for gene therapies. One of the

earliest models was developed and analysed by Bergstrom et al. [Ber03]. The
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basic model takes the following form

Ḋ(t) = −aD(t) + gC(t),

Ṙ(t) = anD(t)− dRR(t)− bR(t)M(t),

Ċ(t) = bR(t)M(t)− (g + dC)C(t),

Ṁ(t) = h− dMM(t)− bR(t)M(t),

(1.1)

where D(t), R(t), C(t), M(t) denote the concentrations of dsRNA, the RNA-

induced silencing complex (RISC), the RISC-mRNA complex, and mRNA at

time t, respectively. The presence of dsRNA initializes the RNAi mechanism

with the Dicer enzyme cleaving the available dsRNA at the rate a into n short

fragments which form the RISC complex. The RISC modules bind at targeted

mRNA at rate b to form the complex C(t), and naturally degrade at the average

rate dR. The RISC-mRNA complex C(t) is then consumed during dsRNA syn-

thesis at the rate gC to produce 1 dsRNA per complex, and naturally degrades

at the rate dC . There is a constant production of mRNA given by h with some

background loss modelled by the non-specific degradation term dMM .

The authors focused on the issue of avoiding self-directed gene silencing

during RNAi and hypothesised that this can be achieved via unidirectional am-

plification, whereby silencing only persists in the presence of a continuing input

of dsRNA, thus acting as a safeguard against a sustained self-damaging reac-

tion, or, in the case of viral infection, ending the process once the infection is

cleared. This was achieved by introducing some additional assumptions and

modifying the basic model (1.1). Suppose that each targeted dsRNA is cleaved
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into n siRNA pieces labelled 1, 2, ...n, respectively. Then, the secondary gen-

eration of siRNA produced through primed amplification can only occur for

segments upstream of the original siRNA primer, meaning that if dsRNA syn-

thesis is primed by the kth siRNA fragment, the new dsRNA to be produced

will only be carrying the 1, 2, ....k segments. Thus, although the silencing reac-

tion can initially take off and be rapidly amplified, the unidirectional nature of

the amplification process will, given enough time, affect the distribution of the

siRNA population. In the absence of a continuing dsRNA input, the population

of siRNA will eventually be mainly composed of upstream siRNAs unable to

prime further RNA polymerization, and the silencing reaction will subsequently

stop. Based on these new assumptions, the model takes the following form.

Ḋi(t) = −aDi(t) + gCi(t),

Ṙi(t) = a
n∑
j=1

nD(t)− dRRi(t)− bRi(t)M(t),

Ċi(t) = bRi(t)M(t)− (g + dC)Ci(t),

Ṁ(t) = h− dMM(t)− b
n∑
j=1

Rj(t)M(t).

This is a system of 3n+1 differential equations where Dk represents the dsRNA

containing the 1, 2, ...k segments, and Ci(t), Ri(t) carry the ith siRNA primer.

Another RNAi model was developed by Groenenboom et al. [Gro05],

who analysed primed and unprimed amplification pathways to account for the

dsRNA dosage-dependence of RNAi and to correctly describe the nature of
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transient and sustained silencing. Groenenboom and Hogeweg [Gro08b] and

Rodrigo et al. [Rod11] have analysed how viral replication is affected by its

interactions with RNAi for plus-stranded RNA viruses, with particular account

for different viral strategies for evading host immune response. Due to the non-

instantaneous nature of the complex processes involved in RNA interference,

it is biologically feasible to explicitly include time delays associated with the

times required for transport of RNAi components, and assembly of different

complexes. Nikolov and Petrov [Nik07] and Nikolov et al. [Nik09] have con-

sidered the effects of such time delays within a single amplification pathway as

modelled by Bergstrom et al. [Ber03].

In the context of siRNA-based treatment, Bartlett and Davis [Bar06] have

performed a detailed analysis of the process of siRNA delivery and its interac-

tion with the RNAi machinery in mammalian cells, and compared it to exper-

imental results in mural cell cultures. This model and associated experiments

have provided significant insights into optimising the dosage and scheduling

of the therapeutic siRNA-mediated gene silencing. Raab and Stephanopoulos

[Raa04] also considered siRNA dynamics in mammalian cells with an empha-

sis on two-gene systems with different kinetics for the two genes. Arciero et

al. [Arc04] studied a model of siRNA-based tumour treatment which targets

the expression of TGF-β, thus reducing tumour growth and enhancing immune

response against tumour cells.

Since originally RNA interference was discovered in plants [Nap90], which

present a very convenient framework for experimental studies of RNAi, a num-

ber of mathematical models have considered specific aspects of the dynamics

of viral growth and its interactions with RNAi in plants. Groenenboom and
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Hogeweg [Gro08a] have analysed a detailed model for the dynamics of intra-

and inter-cellular RNA silencing and viral growth in plants. This spatial model

has demonstrated different kinds of infection patterns that can occur on plant

leaves during viral infections.

1.1.1 Epidemic models

The earliest example of applying mathematical modelling to describe the dy-

namics of communicable diseases can be traced back to the 18th century and a

member of the famous Bernoulli family [Het00]. As a prominent mathemati-

cian, who had also trained in medicine, Daniel Bernoulli, was able to develop

a mathematical model to describe the transmission dynamics of the smallpox

disease under the practise of inoculation. This historical method relied on the

introduction of smallpox pustules into the skin of healthy people to induce

artificial immunity, and would generally produce less severe symptoms than

naturally-acquired smallpox. By using this model, he was able to show that de-

liberately inoculating a sufficient majority of the population, the universal life

expectancy at the time could be increased by approximately 12%. Thus, de-

spite the lack of a sufficient and accurate knowledge of germ theory, the results

could still offer a very practical manner in which the smallpox disease could be

controlled. According to the predominant theory of disease transmission at the

time, it was believed that diseases were spread through a miasma, a form of

poisonous air. This was only replaced by the modern understanding of germ

theory in the last decade of the 19th century, followed by the discovery of the

vector-transmission nature of the malarial parasite which eventually paved the

way for modern theoretical epidemiology.
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One of the earliest and most significant achievements of mathematical epi-

demiology was the formulation of the SIR model by Kermack and McKendrick

in 1927 [Ker27]. The model, despite its simplicity, could be applied to numer-

ous types of epidemics and could successfully predict the temporal dynamics of

infectious diseases that typically invade the population suddenly, intensify and

finally disappear with a proportion of the population left unaffected by the dis-

ease. As such, the SIR model laid the foundation for a whole family of epidemic

models that include increasingly more complicated interactions and more real-

istic assumptions. The classical model compartmentalizes the population into

three classes labelled S, I and R, where S(t) denotes the number of suscepti-

ble individuals that have never been infected at time t, I(t) is the number of

infected who spread the disease to susceptible targets and R(t) is the removed

class, which represents the people that carry a zero risk of either transmitting

or acquiring the disease (these would normally be recovered or removed/dead

individuals). The SIR model can be written as follows

dS

dt
= −a S

N
I,

dI

dt
= a

S

N
I − αI,

dR

dt
= αI,

(1.2)

where a is the mass-action incidence rate, i.e the average number of individuals

receiving the disease from an infected person per unit time, and S/N is the

probability of an infected person making contact with someone of the susceptible

class. Parameter α is the rate at which infected individuals are naturally cleared
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of the disease. One of the key assumptions of this model, is that the population

is closed and, no disease-associated deaths or new births are considered. With

these assumptions, the total population, N = S(t) + I(t) + R(t), is constant,

however, one should note that this assumption is only justifiable when the

time scale of the disease is sufficiently smaller than the time scales at which

these effects take place. In some cases, this is a rather unrealistic assumption,

as endemic diseases are known to cause millions of deaths around the world,

and longer time-scales are crucial in understanding the long-term effects of an

epidemic. As a first step in addressing this issue, the classical SIR model can

be extended to include both birth and death rates [Bra12]. Suppose that the

average person in the population gives birth to b susceptible individuals per unit

time and that the disease is not transmitted vertically. Assume, for simplicity,

that no disease-associated deaths are possible but all three classes experience

the average death rate µ. By denoting β =
a

N
we have the SIR model with

vital dynamics

dS

dt
= bN − βSI − µS,

dI

dt
= βSI − (α + µ)I,

dR

dt
= αI − µR.

(1.3)

Since dN/dt = (b−µ)N , the population size can again be made constant if the

mortality rate is chosen to be equal to the birth rate, which itself represents a

rather special case. Although this modified model also suffers from some obvi-
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ous limitations, it can, nevertheless, provide an example in which slightly more

complicated dynamics can be observed. Another efficient way of increasing the

accuracy of the model is by including additional categories of individuals for

certain epidemics. For example, in specific types of infections, newborns might

have immunity to certain diseases offered by antibodies directly acquired from

the placenta during pregnancy and the subsequent breast-feeding. However,

this protections usually lasts only for the first few months after birth, hence

the children of parents who have been previously exposed and recovered from

the infection, might not be born into the susceptible compartment but can only

acquire the disease after their immunity has expired. To account for this phe-

nomenon, a maternally-derived immunity class can be added to the original

model to create what is known as the MSIR model [Het00]. Other examples

include infectious diseases where complete recovery is not always possible; al-

though an infected individual might not exhibit any visible symptoms, they

could be still spreading the disease. As such, it sometimes becomes necessary

to complement the model with an additional carrier class C(t), which gives the

SIRC model. Similarly, other diseases might require a significant incubation pe-

riod that is intrinsically large relative to the time-scale of the model. Therefore

it often becomes important to not only consider the infectious population but

also an exposed class containing the individuals who carry the disease but are

not currently infectious [Kee08, Bra12].

Consequently, numerous different extensions of the SIR model, highlight its

flexibility and make this framework a vital approach for deriving mathematical

models of epidemics which is important for the research presented in this thesis.
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1.1.2 Hopf Bifurcation

The term Hopf bifurcation, also known as a Poincaré–Andronov–Hopf bifurca-

tion, is used to describe the local birth or death of a periodic solution from an

equilibrium point as a parameter crosses a critical value. Considering a dynami-

cal system a Hopf bifurcation typically occurs when a complex conjugate pair of

eigenvalues of the linearised flow at a fixed point becomes purely imaginary. As

such, it is obvious that a Hopf bifurcation can only occur in systems of dimen-

sion two or higher. Under reasonably generic assumptions about the dynamical

system, it gives birth to a small-amplitude limit cycle that branches from the

fixed point. If the real parts of the eigenvalues are negative, the fixed point is a

stable focus; when they cross zero and become positive the fixed point becomes

an unstable focus, with the solution orbits spiralling out. However, this change

of stability is only a local change and the geometric representation of the tra-

jectories of the dynamical system in the phase plane that are sufficiently far

from the fixed point will be qualitatively unaffected: if the nonlinearity makes

the far flow contracting then orbits will still be coming in and we expect a peri-

odic orbit to appear where a balance between the near and far flow is achieved.

The two-dimensional version of the Hopf bifurcation theorem was suggested by

Poincaré [Poi92] in the early 1890s and was known to Andronov [And66] and

his associates since the 1930s’ whereas a version for arbitrary dimensions was

later proved by Hopf [Hop42] in 1942.
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Theorem 1.1.1 (Hopf bifurcation). Consider the dynamical system

ẋ = fµ(x, y),

ẏ = gµ(x, y),
(1.4)

where µ is a parameter. Suppose that the system has a fixed point (x, y) =

(x0, y0), which may or not depend on µ and let the eigenvalues of the linearised

system about this point be described by λ1,2 = a(µ)± ib(µ). Further suppose that

given a critical value of µ = µ0, the following conditions are satisfied:

• Non-hyperbolicity condition

a(µ0) = 0, b(µ0) = w 6= 0, where sgn(w) = sgn

[(
∂gµ
∂x

) ∣∣∣∣
µ=µ0

(x0, y0)

]
.

• Transversality condition
da(µ)

dµ

∣∣∣∣
µ=µ0

= d 6= 0.

• Genericity condition

p =
1

16
(fxxx + fxyy + gxxy + gyyy) +

1

16w
[fxy(fxx + fyy)− gxy(gxx + gyy)−

fxxgxx + fyygyy], where for example, fxy = (∂2fµ/∂x∂y)|µ=µ0(x0, y0).

Then, a unique curve of periodic solutions bifurcates from the fixed point (x0, y0)

into the region µ > µ0 and µ < µ0 when pd < 0 and pd > 0 respectively. The

fixed point is stable for µ > µ0 (µ < µ0) and unstable for µ < µ0 (µ > µ0) if

d < 0 (d > 0) whereas the periodic solutions are stable (unstable) if the fixed

point is unstable (stable) on the split side of µ = µ0 where the periodic solutions

exist.

The amplitude of the periodic orbit grows like
√
|µ− µ0| whilst their periods

will approach 2π/|w| for µ→ µ0. If the bifurcating periodic solutions are stable
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(unstable) the bifurcation is called supercritical (subcritical).

1.1.3 Delay differential equations

Similarly to natural or artificial control systems, biological systems, have in-

trinsic delays that arise from delays in the sensory process of response-initiating

variables, the transportation of components that regulate biological interactions,

after-effect phenomena in inner dynamics and metabolic functions including the

times necessary for synthesis, maturation and reproduction [Ric03, Jus10].

These delays can often lead to changes in stability and are fundamental in

modelling control systems which typically involve a feedback loop. On the other

hand, mathematical models without time-delays are based on the assumption

that the transmission of signals and biological processes occur instantaneously.

Although the time-scale of these delays can sometimes be ignored, e.g when the

time-scale of the model is very large compared to the observed delays, there are

clear cases where the present and future state of a system depend on its past

history. These systems can therefore, only be accurately described with Delay

Differential Equations (DDE) rather than the traditional Ordinary Differential

Equations (ODE).

The significance of time delays in dynamical systems is a relatively new

discovery and was first observed in 1942 by Minorsky in his theoretical analysis

of a newly-proposed PID controller used in the automatic steering systems of

U.S Navy ships [Min42]. Although the U.S Navy did not ultimately adopt the

new system, his results had profound implications for the theory of differential

equation and generated a significant interest in this research field.

Unlike ODEs with a finite dimensional state vector, i.e where the system
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state can be specified by listing a finite set of values, delay differential equa-

tions are infinite-dimensional. It is therefore, no surprise that the mathematical

analysis of such models is more challenging. This is further complicated by the

many different types of delay-differential equations like state-dependent delays

or distributed delays, which often require a different type of methodology. How-

ever, for the purposes of this thesis, the focus will be on systems with discrete

delays. Given a set of constant delays τi ≥ 0 for all i = 1, 2, ..., n, one can write

the following DDE

ẋ = f(x(t), x(t− τ1), x(t− τ2), ...., x(t− τn)). (1.5)

For finite-dimensional systems like ODEs, the initial conditions are simply

the initial values of the state variables at a prescribed time. Assuming that

the system begins its dynamics at t = t0, and since delay-differential equations

depend on past history, it is imperative to specify an initial function xt0 con-

taining the system values prior to the initiating time point, i.e the function x(t)

needs to be defined on the interval [t0−τmax, t0], where tmax is the largest delay.

Similarly to ODE systems, linear stability analysis is an essential tool for

understanding the dynamics. As a first step we find the different equilibrium

points of the system and then study their stability by looking at the behaviour

of small perturbations δx(t). For convenience of notation, let us denote xτi =

x(t − τi). Like for ODEs, an equilibrium point of a DDE is a solution which

remains constant for any time. Suppose that equation (1.5) has an equilibrium

x∗. Let use perturb the system from this equilibrium by introducing the small

perturbation δx(t), i.e consider the perturbed point x(t) = x∗ + δx(t). Note

that this perturbation will last from t = t0 − τmax to t0. Thus, equation (1.5)
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becomes

ẋ = ˙δx = f(x∗ + δx, x∗ + δxτ1 , x
∗ + δxτ2 , ..., x

∗ + δxτn).

Using the Taylor series expansion, one can linearise the differential equation

about the equilibrium point to obtain

˙δx ≈ J0δx+ Jτ1δxτ1 + Jτ2δxτ2 + ...+ Jτnδxτn , (1.6)

where J0 is the standard Jacobian with respect to x(t), and Jτi are the Jacobian

matrices with respect to each x(t−τi), respectively, evaluated at the equilibrium

point x∗. Suppose that similarly to ODEs, linear DDEs also have exponential

solutions determined by the eigenvalues of the Jacobian matrix. By substituting

the solution δx(t) = Aeµt into (1.6) and using basic linear algebraic theory, we

obtain the characteristic equation of the equilibrium point

∣∣J0 + e−µτ1Jτ1 + e−µτ2Jτ2 + ...+ e−µτnJτn − µI
∣∣ = 0, (1.7)

where I is the identity matrix. Expanding the determinant, one can see that due

to the transcendental nature of the exponential terms inside the expression, the

characteristic polynomial is not algebraic but in fact a quasi-polynomial. For

example, a system with n delays and a degree k, will have its characteristic

roots determined by the following equation

µk + pk−1(e−µτ1 , ..., e−µτn)µk−1 + ...+ p1(e−µτ1 , ..., e−µτn)µ+

p0(e−µτ1 , ..., e−µτn) = 0,
(1.8)
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where p0, ..., pk−1, are polynomials in e−µτ1 , ..., e−µτn . To give an example with

a single time delay present, we show the characteristic equation (2.25) found in

Chapter 2:

µ3 +
[
a1(τ1)e−µτ1 + a2(τ1)

]
µ2 +

[
b1(τ1)e−µτ1 + b2(τ1)

]
µ+

c1(τ1)e−µτ1 + c2(τ1) = 0,
(1.9)

Hence, if any of the characteristic roots have a positive real part, it follows

that the equilibrium point is unstable, and it is only stable if all the real parts

are negative. If one of these roots is zero, then stability cannot be determined

normally, as it represents the degenerate case, where, depending on the signs

of the remaining roots, the solution may converge to or diverge from a line of

equilibria rather than a unique point. For ODEs, the number of complex roots

is always equal to the degree of the characteristic polynomial and therefore can

be obtained with relative ease. However, for DDEs it becomes apparent that, as

there are infinitely many complex values satisfying the transcendental equation

in (1.8) [Nor73], standard spectral analysis is not feasible. Rather than trying

to find an infinite number of characteristic roots one can look at how these

roots may be distributed over the complex plane. In fact, one can show that

there exists only a finite number of roots that lie to the right of any vertical

line x = c, c ∈ < in the complex plane. It is therefore, important to introduce

the following result given by [Dri77].

Theorem 1.1.2 (The number of roots of the transcendental equation (1.8)

that lie to the right of any vertical line in the complex plane is finite). For any

p ∈ R, the characteristic equation (1.8) has at most a finite number of roots µ

such that Re(µ) ≥ p.
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Proof. Let p be any given real number satisfying Re(µ) ≥ p. Thus, for any

j = 1, .., n we have that

|e−µτj | = e−Re(µ)τj ≤ e−pτj . (1.10)

This implies that for any particular choice of p, and for any m = 0, ..., k − 1,

there is an appropriate constant Am that satisfies

|pm(e−µτ1 , ..., e−µτn)| ≤ Am. (1.11)

Let us now consider a positive number B that is sufficiently large to satisfy

Ak−1

B
+ ...+

A1

Bk−1
+
A0

Bk
< 1. (1.12)

Multiplying both sides with Bk yields

Ak−1B
k−1 + ...+ A1B + A0 < Bk. (1.13)

Let us assume that |µ| > B. Then, the above inequality becomes

Ak−1|µ|k−1 + ...+ A1|µ|+ A0 < |µ|k. (1.14)

Since Re(µ) ≥ p, it follows from equation 1.8 that

|µ|k =| − pk−1(e−µτ1 , ..., e−µτn)µk−1 − ...− p1(e−µτ1 , ..., e−µτn)µ− p0(e−µτ1 , ..., e−µτn)|

≤ Ak−1|µ|k−1 + ...+ A1|µ|+ A0.
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However, this violates equation (1.14), which implies that for all roots with

Re(µ) ≥ p we must have that |µ| < B.

Lemma 1.1.3 (Isolated zeros of an analytic function). If D is a domain and

f(z) is an analytic function on D that is not identically zero, then the zeros of

f(z) are isolated.

Since µ is bounded, the characteristic polynomial is itself an analytic func-

tion with a bounded domain in the complex plane. Using lemma 1.1.3, the zeros

of the characteristic polynomial are isolated and since the domain is bounded,

it also follows that there is a finite number of zeros. Hence, equation (1.8) has

a finite number of roots satisfying Re(µ) > p for any p ∈ R.

Theorem 1.1.4 (Boundedness of solutions of the DDE). Suppose that for every

solution of the characteristic polynomial (1.8) we have that Re(µ) < p. Then,

there exists a positive constant M , such that for each φ ∈ C([t0 − τmax, t0],Rk),

the solution of (1.5) with initial condition xt0 = φ, satisfies

‖x(t; t0, φ)‖ ≤M‖φ‖τmaxe
p(t−t0) for all t ≥ t0. (1.15)

The proof uses functional analysis and can be found in [Hal71, Sto62]

as Theorem 22.1. This implies that the solutions of linear delay equations

have an upper bound that depends on the eigenvalue with the largest real part.

Moreover, if all the roots of (1.8) satisfy Re(µ) < p, it follows that Re(µ) < p−ε

for some appropriate ε > 0, which gives an even smaller upper bound. This

holds true as there can only be a finite number of µ′s which satisfy, for example,

Re(µ) > p− 1 Thus, the above theorem can be written as follows.
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Lemma 1.1.5 (Boundedness of solutions of the DDE). Suppose that for every

solution of the characteristic polynomial (1.8) we have that Re(µ) < p. Then,

there exists positive constants M, ε, such that for each φ ∈ C([t0− τmax, t0],Rk),

the solution of (1.5) with the initial condition xt0 = φ, satisfies

‖x(t; t0, φ)‖ ≤M‖φ‖τmaxe
(p−ε)(t−t0) for all t ≥ t0. (1.16)

This lemma implies that like in the case of ODEs, if all the eigenvalues of

the linear delay differential equation have a negative real part, the solutions will

exponentially decay to 0, thus converging to a steady state. As such, this result

is the foundation of all the stability analyses performed in this thesis.

With the development of appropriate mathematical and computational tools

for analysis of delay equations, in recent years there has been an abundance of

mathematical models that include time delays to correctly describe dynami-

cal systems in general, and in particular, to model various epidemics. As the

task of identifying the stability boundaries and stable regions of such models is

adamantly important, many authors have attempted to address this using var-

ious methods. Hale and Lunel [Hal93], investigated the global geometry of the

stability regions for systems with two delays. The authors gave a complete geo-

metrical description of the stable region including the asymptotic behaviour of

the stability boundaries. Beretta and Kuang [Ber02], obtained general geomet-

ric stability switch criteria for delay differential systems with delay-dependent

parameters, whereas Gu et al. [Gu05], performed a detailed study of the stabil-

ity curves of a general linear time-delay system with two delays and developed

an algorithm to obtain such curves.

Examples where temporary immunity and the effects of vaccination in epi-
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demic models has been considered by a number of authors. Gao et al. [Gao06],

and Wei et al. [Wei08] have both considered a delayed SEIRS epidemic model

with pulse vaccination and found that either a short period of pulse or a suffi-

ciently high pulse vaccination rate is required for a stable infection-free periodic

solution. Arino et al. [Ari04], considered a delayed epidemic model with a

leaky vaccine, whose effectiveness gradually reduces over time determined by a

general distribution function. It was shown that given specific parameter val-

ues, the model exhibited a backward bifurcation which lead to the existence

of sub-threshold endemic equilibria and, therefore, dependence on initial condi-

tions with significant implications for epidemic control. Beretta et al. [Ber95],

investigated the global asymptotic stability of the endemic equilibrium of an

SIR model with a single time delay where the force of infection depended on

past history rather than the number of infectives at present time. More recently

Kyrychko and Blyuss [Kyr05, Bly10], have used time-delays to represent the

temporary immunity in epidemic models and employed a Lyupunov functional

approach to show the global stability of the endemic equilibrium. Huang et

al. [Hua10], have used time delays to represent the latency of infection in

disease vectors and the latent period of infected hosts, whereas Zhang et al.

[Zha10], have used time-delays to represent the incubation time of disease in

SIR epidemics.

Cooke et al. [Coo99] investigated the effect of maturation delay in epi-

demic models with a non-linear birth rate. The authors found that increasing

the maturation delay acts as a stability switch that makes the unique equilib-

rium point change its stability. Similarly, Gourley and Kuang [Gou04], have

shown the importance of maturation delays in models with a stage structure
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and demonstrated that, for a specific range of parameters, the model exhibits

oscillatory behaviour.

1.2 Motivation

Existing mathematical models of RNAi have primarily focused on the intra-

cellular aspects of this biological mechanism [Ber03, Raa04, Gro05, Cuc11].

Most of these models are based on systems of differential equations that de-

scribe the dynamics of different RNA populations over time within a single cell,

sometimes also including certain amplification pathways depending on the type

of cell. Although RNAi has been extensively studied as a gene regulator, its

significance as an integral part of the plant immune system, has so far, not been

studied mathematically.

Additionally, although there exists a plethora of studies that deal with the

dynamics of cross-protection, the majority of this literature involves mathemati-

cal models that mainly describe the transmission dynamics between populations

of healthy plants and plants that are infected with one or multiple viral strains

[Zha00b, Zha01, Jeg11]. By studying the mechanisms of cross-protection on

a cellular level, one might achieve a better understanding of the interactions be-

tween two viral strains within a single host that would allow one to determine

the role played by RNAi in multi-strain infections.

As mentioned earlier, the effects of time delays associated with a single

amplification pathway has already been investigated by Nikolov and Petrov

[Nik07]. These authors were able to show that time delays can induce in-

stability of the model steady state, thus disrupting gene silencing and causing
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oscillations. However, this was done under a restrictive and somewhat unreal-

istic assumption that the natural degradation of RISC-mRNA complex takes

place at exactly the same speed as the formation of new dsRNA while also ig-

noring the possibility of a second amplification pathway. The research in this

thesis will thus include the following themes.

• Development and analysis of a model of plant disease dynamics mediated

by RNAi within a single host.

• Study of the significance of RNAi under the presence of two viral strains

interacting with the same plant host.

• Analysis of the non-instantaneous nature of the two primed amplifica-

tion pathways associated with dsRNA synthesis from mRNA and garbage

RNA, as modelled by time delays.

It will be shown that the respective models can provide an adequate qualita-

tive description of the plant immune response to a viral infection or co-infection

and support the main types of observable plant disease dynamics, including

resistant and recovery phenotypes. The results also provide a framework in

which RNAi can account for both viral synergism and antagonism resulting in

cross-protection. A potential application of the first two models lies in better

understanding the efficacy of treating plants against viral diseases by means of

introducing specific viral strains or genetically modified viruses to trigger an

artificial response for gene therapy.
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1.3 Thesis outline

In addition to the main introduction, this thesis contains the following chapters:

Chapter 2 is based on the following publication:

• Neofytou, G., Kyrychko, Y.N., Blyuss, K.B., 2016. Time-delayed model

of immune response in plants. Journal of Theoretical Biology, Biol. 389,

28-39.

Chapter 3 is based on the publication below

• Neofytou, G., Kyrychko, Y. N., Blyuss, K. B. 2016. Mathematical model

of plant-virus interactions mediated by RNA interference. Journal of The-

oretical Biology, 403, 129–142.

Chapter 4 is based on the following publication

• G. Neofytou, Y.N. Kyrychko, K.B. Blyuss (2016) Time-delayed model of

RNA interference. Ecological Complexity ISSN 1476-945X.

Chapter 2: This chapter revolves around the investigation of the RNA

interference mechanism as an integral part of the plant’s immune system. We

begin with the derivation of a mathematical model of RNA interference as an

immune response against a viral infection. The model includes two time delays

to account for the maturity time of undifferentiated cells and the intrinsic delay

of the propagating RNA silencing signal. In section 2.3 we identify all the steady

states of the model together with conditions for their biological feasibility. The

following two sections are dedicated to the stability analysis of these steady
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states. To better understand the significance of the two time delays, the section

also includes specific cases where either the maturation time or the delay of

the propagating signal might be considered trivial. Results of the numerical

stability calculations and simulations of the model are illustrated in section 2.5.

It is shown that the model is capable of exhibiting distinct types of dynamical

behaviour, ones that are qualitatively consistent with recovery, resistance and

chronic infection phenotypes. The chapter concludes with a detailed summary

and conclusions.

Chapter 3: This chapter is concerned with the interactions that occur

when two plant viruses are simultaneously infecting the same host, and how

RNA interference may lead to either an antagonistic or synergistic relationship

between the two viruses. In section 3.2 we describe in detail the main biological

assumptions and derive a corresponding mathematical model of plant immune

response under co-infection. In Section 3.3 we identify all steady states of

the model together with conditions for their biological feasibility and stability

as well as introduce the basic reproduction number, which indicates whether

the disease-free steady state is stable. Section 3.5 is devoted to an extensive

bifurcation analysis of the steady states, as well as numerical simulations of the

model for two main purposes. One is to illustrate examples of cross-protection

or cross-enhancement between viral strains, and the other is to identify core

parameters that dictate the dynamics. The last section includes a summary

and discussion of results, in addition to some open problems.

Chapter 4: In this chapter we consider a model of RNAi with primed

amplification and focus on the role of two time delays associated with the pro-

duction of dsRNA directly from mRNA and aberrant RNA. The outline of this
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chapter is as follows. In section 4.2 we introduce the model and discuss its

basic properties. In Section 4.3 we identify all steady states of the model to-

gether with conditions for their biological feasibility. Sections 4.4 and 4.5 are

devoted to the stability analysis of these steady states depending on model pa-

rameters, including numerical bifurcation analysis and simulations of the model

that illustrate different types of dynamical behaviour. The chapter concludes

in Section 4.6 with the discussion of results and open problems. An important

result obtained in this chapter is the partial destruction of the hysteresis loop:

while the original model without time delays is bi-stable, under the influence of

time delays, the steady state with either the smallest or the highest concentra-

tion of mRNA can lose its stability via a Hopf bifurcation. This leads to the

co-existence of a stable steady state and a stable periodic orbit, which has a

profound effect on the dynamics of the system.

Chapter 5: The last chapter provides a general summary, conclusions and

discussion of further research.
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Chapter 2

Time-delayed model of immune

response in plants

2.1 Introduction

In this chapter we derive and analyse a new mathematical model of plant im-

mune response with particular account for post-transcriptional gene silencing

(PTGS), or otherwise known as RNA interference. Besides biologically accurate

representation of the RNAi dynamics, the model explicitly includes two time

delays to represent the maturation time of the growing plant tissue and the

non-instantaneous nature of the PTGS signal. Through analytical and numeri-

cal analysis of stability of the steady states of the model we identify parameter

regions associated with recovery and resistant phenotypes, as well as possible

chronic infections. Dynamics of the system in these regimes is illustrated by

numerical simulations of the model.
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2.2 Model Derivation
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Figure 2.1: A diagram of plant immune response within an extended SIR frame-
work. P , S and W denote the populations of proliferating, susceptible and
warned cell whereas I and R stand for infected and recovered cells respectively.
Black and white arrowheads represent the direction of recruitment and con-
tribution rates respectively, from one class of cells to another. Note that the
population of susceptible cells S dies at a rate −εS2, driven by cells competing
for available resources, where ε is the natural death rate of plant cells.

As a first step in the derivation of a mathematical model for interactions between

plant cells and a viral infection, we divide the host population of cells N(t) into

the classes of susceptible cells S(t) consisting of mature cells that are able to

induce RNA interference and are susceptible to infection, infected cells I(t) that

spread the infection, recovered cells R(t) that are no longer infectious, warned

cells W (t) that emerge from susceptible cells upon them receiving the silencing

signal, and proliferating cells P (t) that become susceptible to infection after

reaching maturity. All possible transitions between these cell populations are

illustrated in Fig. 2.1. We note that the total population of cells is not fixed.
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The effective transmission rate between infected cells and the susceptible

cells is given by the parameter λ, which is taken to be a cumulative parameter

accounting for different aspects of the virus life cycle, as well as the actual

process of infection. Infected cells are assumed to recover at a rate σ as a result

of RISC-mediated cleavage or RNA-directed DNA methylation (RdDm) of the

viral genome, depending on whether it is an RNA or a DNA virus [Raj08].

Average mortality rates of non-infected and infected cells are denoted by ε

and z, respectively, where the infected cells are generally expected to exhibit a

reduced lifespan compared to healthy cells, i.e. z > ε.

A crucial aspect of the PTGS mechanism is that it cannot be maintained

indefinitely in all parts of the plant. Laboratory studies have shown that the

silenced state cannot be inherited directly, meaning that a parent cell will most

likely be unable to produce daughter cells with the antiviral components needed

to deal with the viral infection. It is, therefore, believed that undifferentiated

and proliferating cells, e.g meristematic tissue, need to mature or be released

from cellular reproduction before they can acquire an antiviral state [Mit02].

Hence, we introduce P (t) as the population of proliferating cells that are re-

sponsible for promoting new plant growth. The generation of these new cells

depends on the availability of mature cells that are responsible for the collection

of nutrients, and the generation rate of new cells will be denoted by k. Recov-

ered cells, although mature, are excluded from contributing to the development

of new growth since the loss of function experienced during a viral infection can

often cause devastating and irreparable damage to the cell. The proliferating

cells have the average maturity time τ1, after which they are recruited to the

susceptible class. The property of non-inheritance is also true for many viral
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infections, as it is highly unlikely that plant viruses can produce progeny in

proliferating cells, in which the silencing state cannot be maintained [Mat92,

Fos02]. One possible explanation for this is the presumed anti-dsRNA activity

during cellular mitosis which interferes with the production of dsRNA required

for the transmission of the PTGS signal and the replication of a virus and,

the existence of a surveillance system that regulates selective entry of RNA

into the shoot apex of the plant [Fos02]. In fact, tissue culture techniques

using meristematic tissue or apical meristem grafting have been shown to pro-

duce virus-free plants in potatoes [AlT11], garlic [Tas13] and sweet peppers

[Kat04]. Thus, the cell population P (t) will be assumed to have both immunity

to viral infection and the inability to express RNA interference.

Evidence suggest that RISC-mediated cleavage of target transcripts only

requires the presence of 21-nt siRNAs, whereas a 25-nt siRNA may also induce

RNA methylation and the long-distance transmission of the silencing signal

[Mol11]. From a molecular point of view, it has been suggested that after

the initiation of silencing, the primary 2-nt siRNA produced inside the cell can

move into surrounding cells regardless of whether they contain any homologous

transcripts. In the case where a receiving cell contains homologous transcripts,

a second wave of 21-nt siRNA could be synthesized by using these transcripts

as templates. Unlike the first wave, the production of a second wave of siRNA

does not require the use of a dicer enzyme but relies on the recruitment of RNA-

dependent RNA polymerase (RdRp). The importance of this RDR-mediated

phase is that it amplifies the silencing signal and, as a result, these secondary

RNAs could be the agents responsible for the systemic movement of the RNA

silencing signal [Was00, Zha12b]. In light of these observations, we consider
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the class of warned cells W (t) that represent a subgroup of susceptible cells

which have successfully acquired immunity to a viral infection by being the

recipients of siRNA originating from infected cells. These cells are assumed to

express the antiviral components prior to infection, and by doing so, they are

capable of degrading the viral genome without any viral interference [Wat01].

It is widely understood that pathogens are capable of eliciting, suppressing

or delaying the PTGS response of the plant, and that the induction of PTGS

is not instantaneous [Wat99, Son00]. Recent studies have shown that viruses

are capable of producing highly specific viral proteins able to interfere with

the many different stages of the RNA-degradation mechanism [Cos13, Raj08,

Rot04, Can08, Lla00, Burg11]. Taking this into account, in this model we

assume that the propagating signal is initiated by the induction of PTGS in

infected cells, but it will, however, be treated independently of whether the

infected cells can recover or not. This will allow us to investigate specific cases

where a virus can avoid silencing within the occupied cell but cannot prevent

the propagation of the warning signal to other surrounding cells, and vice versa

[Zve12]. Hence, the effective warning rate between infected and other target

cells will be denoted by δ. We introduce time delay τ2 to model the average

time a cell remains infected before the propagating component of PTGS reaches

its target. This is also a cumulative parameter with contributions from viral

interference, specific thresholds in dsRNA accumulation necessary for initiation,

inherent delay of activation, or the transportation delay of involved components.

Other infected cells are also assumed to be the recipients of this signal, and as

such, φ will denote the effective rate at which silencing of infected cells can

be amplified. Hence, for any time t, we assume that δI(t − τ2) is the signal
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that has reached susceptible and infected cells, so multiplying this with S(t)

gives the number of susceptible cells that become warned by the PTGS signal,

whereas multiplying with I(t) and the amplification factor φ gives the total

number of infected cells that are silenced by the propagating PTGS. This is

consistent with the notion of the dsRNA dosage dependence of PTGS: once

the virus infects a cell and starts reproducing, it is believed that enough viral

dsRNA has to accumulate before PTGS can take place [Ten01]. However, if an

infected cell receives additional antiviral components from other neighbouring

cells, it is reasonable to assume that degradation of the viral genome could be

initiated either sooner or more efficiently, therefore a stronger immune response

might be possible.

We assume that in the absence of infection the population of susceptible

cells should be bounded. To account for this in the model, the population of

susceptible cells is taken to decrease at a rate εS2, where ε is the death rate

of non-infected cells, as introduced earlier. Effectively, this corresponds to a

logistic growth for susceptible cells, which has been successfully used in other

models for the spread of viral infections [Cam61, Ber01a, Per02, Gou05].

Different forms of growth of susceptible cells are discussed in De Leenheer and

Smith [Smi03] who also provide arguments for only including susceptible cells

into the competition term of the logistic growth, in a manner similar to the

‘Campbell model’ [Cam61, Ber01a]. From a biological perspective this can

effectively account for an additional defensive strategy employed by the plant.

Studies suggest that plants afflicted with disease are often able to demonstrate a

flexible resource allocation [Sch13, Ber07]. This regulatory function is believed

to be a highly complicated process operating through various channels and is
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currently not fully understood. However, the core idea is that while pathogens

try to absorb as many nutrients as possible, the plant can dynamically transfer

resources from one location to another to either suppress microbial growth or

accommodate a defensive response [Sch13, Roj14, Ehn97]. Hence, it is rea-

sonable to assume that during a viral infection, warned and infected cells will

be given priority over resources in order to mount and sustain a proactive and

reactive defensive response respectively, whereas susceptible cells will have to

compete with each other.

The system describing the dynamics of interactions between plant cells and

a viral infection takes the following form

dP

dt
= k[S(t) +W (t)]− Ps(t)− εP (t),

dS

dt
= Ps(t)− λS(t)I(t)− δS(t)I(t− τ2)− εS(t)2,

dI

dt
= λS(t)I(t)− (z + σ)I(t)− δφI(t)I(t− τ2),

dR

dt
= σI(t) + δφI(t)I(t− τ2)− εR(t),

dW

dt
= δS(t)I(t− τ2)− εW (t),

(2.1)

where P (t), S(t), I(t), R(t) and W (t) denote the populations of proliferating,

susceptible, infected, recovered and warned cells, respectively, and

Ps(t) = ke−ετ1 [S(t− τ1) +W (t− τ1)]
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represents the population of undifferentiated cells that were born at time t− τ1,

have survived for the period of time τ1 in the class of proliferating cells, and

upon maturation move into the class of susceptible cells at time t. For biological

reasons, system (2.1) is augmented with non-negative initial conditions

S(s) = S0(s) > 0, W (s) = W0(s) ≥ 0 for all s ∈ [−τ1, 0], P (0) ≥ 0,

I(s) = I0(s) ≥ 0 for all s ∈ [−τ2, 0), with I(0) > 0, R(0) ≥ 0.

(2.2)

Table 2.1: Baseline parameters for system (2.1)
Symbol Definition Baseline

values
Units

λ Rate of infection 1.5 cells−1time−1

k Growth rate 1 time−1

σ Recovery rate 0.5 time−1

δ Propagation rate of silencing signal 0.5 cells−1time−1

φ Amplification factor of recovery 1 n/a
ε Natural death rate of cells 0.3 time−1

z Death rate of infected cells 0.6 time−1

τ1 Maturation time of proliferating tissue 1 time
τ2 PTGS propagation delay 1 time

The system (2.1) can be reduced to the following closed system of equations
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dS

dt
= k[S(t− τ1) +W (t− τ1)]e−ετ1 − S(t)[λI(t) + δI(t− τ2) + εS(t)],

dI

dt
= I(t)[λS(t)− (z + σ)− δφI(t− τ2)],

dW

dt
= δS(t)I(t− τ2)− εW (t).

(2.3)

The remaining two variables P (t) and R(t) are determined by the solutions of

this reduced system through

P (t) = P (0)e−εt + k

∫ t

t−τ1
[S(x) +W (x)]e−ε(t−x)dx,

R(t) = R(0)e−εt +

∫ t

0

[σI(x) + δφI(x)I(x− τ2)]e−ε(t−x)dx.

(2.4)

The solutions above are simply obtained by integrating the equations Ṗ and Ṙ

over [0, t]. For example, we have that

Ṙ + εR(t) = σI(t) + δφI(t)I(t− τ2)
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Using the integrating factor m = eεt we have that

[
d(Reεt)

dt

]t
0

=

∫ t

0

[σI(x) + δφI(x)I(x− τ2)]eεxdx

R(t)eεt −R(0) =

∫ t

0

[σI(x) + δφI(x)I(x− τ2)]eεxdx

R(t) = R0e
−εt
∫ t

0

[σI(x) + δφI(x)I(x− τ2)]eε(x−t)dx

(2.5)

Since the model (2.1) and its reduced version (2.3) describe the dynamics of

cell populations over time, it is essential from a biological perspective for all

cell populations to remain non-negative and bounded, as given by the following

results.

Theorem 2.2.1 (Positivity of solutions). Solutions P (t), S(t), I(t),W (t), R(t)

of the system (2.1) and S(t), I(t),W (t) of the system (2.3) with initial conditions

(2.2) are non-negative for all t ≥ 0.

This result can be proven using standard techniques, and it also follows from

Theorem 5.2.1 in [Smi95] (see Theorem A.0.2). The next step is to establish

that solutions of system (2.1) remain bounded during time evolution.

Theorem 2.2.2 (Boundedness of solutions). Suppose there exists T > 0, such

that the solution S(t) of the system (2.1) satisfies the condition S(t) ≤ M for

t ≥ T with some M > 0. Then the solutions P (t), I(t),W (t), R(t) of the system

(2.1) with initial conditions (2.2) are bounded for all t ≥ T .

Proof. Starting with an equation for I(t) in (2.1) and using the bound on S(t),
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we have for t ≥ T
dI

dt
≤ I(t)[λM − δφI(t− τ2)].

Introducing rescaled variables

t =
1

λM
t̃, I(t) =

λM

δφ
Ĩ(t̃), τ2 =

1

λM
τ̃2,

the above inequality can be rewritten as

dĨ

dt̃
≤ Ĩ(t̃)[1− Ĩ(t̃− τ̃2)]. (2.6)

Proposition 5.13 in [Smi11] (see Proposition A.0.3) together with a compar-

ison theorem (see Theorem (A.0.1)) implies that the solution of this inequality

satisfies

lim sup
˜t→∞

Ĩ(t̃) ≤ eτ̃2 ,

or, in terms of the original variables,

I(t) ≤ λ

δφ
Meλτ2M ,

which shows that I(t) is bounded for t ≥ T . Alternatively, we have that
dĨ(t̃)

d̃(t̃)
≤

Ĩ(t̃). Integrating this inequality over [t̃− τ̃2] yields Ĩ(t̃) ≥ Ĩ(t̃)e−τ̃2 . Using this in

(2.6), we have that
dĨ(t̃)

dt̃
≤ Ĩ(t̃)[1− Ĩ(t̃)e−τ̃2 ]. which implies that lim sup

t→∞
Ĩ(t̃) ≤

eτ̃2 . Applying the bounds on S(t) and I(t) in equations for P , W and R, and

45



using the comparison theorem gives the following results for t ≥ T

P (t) ≤ kM

ε

(
1 +

λM

φε
eλτ2M

)
+

[
P (0)− kM

ε

(
1 +

λM

φε
eλτ2M

)]
e−εt,

W (t) ≤ λM2

φε
eλτ2M +

[
W (0)− λM2

φε
eλτ2M

]
e−εt,

R(t) ≤ λM

δφε
eλτ2M

(
σ + λMeλτ2M

)
+

[
R(0)− λM

δφε
eλτ2M

(
σ + λMeλτ2M

)]
e−εt.

These inequalities prove that the solutions P (t), W (t) and R(t) also remain

bounded for t ≥ T .

Remark (Boundedness of variables). In all numerical simulations, some of

which will be presented in Section 2.4.3, the solutions of the system (2.1) always

satisfy the condition that S(t) remains bounded, which, in light of Theorem

2.2, implies boundedness of all other variables.

Since the variables P (t) and R(t) are fully determined by solutions of the

system (2.3) through expressions given by (2.4), from now on we will focus on

the dynamics of reduced system (2.3).

2.3 Steady states and feasibility conditions

The system (2.3) has up to three possible steady states. For any parameter

values it admits a trivial steady state E0 = (0, 0, 0) that corresponds to all cell

populations going extinct.
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The second steady state of the system (2.3) that also exists for any parameter

values is a disease-free steady state given by

E1 =
(
ε−1K(τ1), 0, 0

)
, (2.7)

where

K(τ1) = ke−ετ1 .

It is easy to see that K(τ1) ≤ k for all τ1 ≥ 0, thus k is un upper bound for the

number of cells in the disease-free steady state.

The third, endemic steady state E2 = (S∗, I∗,W ∗) is characterised by all

cell populations being non-zero, and it can be found as

S∗ = S(τ1) =
K(τ1)

ε
− [δK(τ1)− ε(λ+ δ)][λK(τ1)− ε(z + σ)]

ε[ελ2 − δλ(K(τ1)− ε) + δφε2]
,

I∗ = I(τ1) =
ε[λK(τ1)− ε(z + σ)]

ελ2 − δλ[K(τ1)− ε] + δφε2
,

W ∗ = W (τ1) =
δ [εδφK(τ1)− (z + σ)(δK(τ1)− ε(λ+ δ))] [λK(τ1)− ε(z + σ)]

[ελ2 − δλ(K(τ1)− ε) + δφε2]2
.

(2.8)

For the endemic steady state E2 to be biologically feasible, all components S∗,

I∗ and W ∗ must be positive. It is easy to show that I∗ > 0 implies S∗,W ∗ > 0,

hence for this steady state to be plausible, it is sufficient to require I∗ > 0.

Let C =

{
ε(z + σ)

λ
,
ε(λ2 + δλ+ δφε)

δλ

}
and choose Cmin = min(C) and

Cmax = max(C). Hence, the feasibility condition of the endemic steady state is
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given by Cmin < K(τ1) < Cmax or equivalently

ln(k)− ln(Cmax)

ε
< τ1 <

ln(k)− ln(Cmin)

ε
. (2.9)

Recalling that K(τ1) = ke−ετ1 , we have K(τ1) ≤ k for all τ1 ≥ 0. Hence, we

have proved the following result.

Theorem 2.3.1 (Feasibility of endemic steady state). Let the endemic steady

state be given by E2 = (S∗, I∗,W ∗). Then the following statements hold.

(i) For k ≤ Cmin, the steady state E2 is not feasible.

(ii) For Cmin < k ≤ Cmax, the endemic steady state exists if and only if

0 < τ1 < [ln(k)− ln(Cmin)]/ε.

(iii) For k > Cmax, E2 is feasible if and only if the condition (2.9) is satisfied.

The conditions of this theorem imply that whilst the trivial and the disease-

free steady states exist for any parameter values, the endemic steady state can

only exist, provided the growth rate of new plant cells is sufficiently large. This

is needed to ensure that a sufficient number of new infections occur before the

infection is cleared by the immune response.
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2.4 Stability analysis of the steady states

2.4.1 Trivial steady state

Linearisation of the system (2.3) near the steady state E0 = (0, 0, 0) yields a

characteristic equation

(µ+ ε)(µ+ σ + z)(ke−ετ1e−µτ1 − µ) = 0. (2.10)

Since all parameters are positive, this equation admits two negative roots µ1 =

−ε and µ2 = −(σ+ z), and all remaining roots are determined by the solutions

of the transcendental equation

µ = ke−ετ1e−µτ1 . (2.11)

This equation has a real root µ > 0 for any values of k > 0 and τ1 ≥ 0, implying

that the trivial steady state E0 is unstable for any values of system parameters,

and hence, it is impossible for all cell populations to become extinct. One

can show that such a real root µ > 0 exists by plotting both the LHS and

RHS of (2.11) together and noting that the line y = µ will inevitably cross the

curve defined by y = ke−ετ1e−µτ1 at least one time. This is illustrated with the

following figure.
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Figure 2.2: Blue and Red denote the LHS and RHS of equation (2.11) respec-
tively. Parameter values are taken from table (2.1).

2.4.2 Disease-free steady state

The characteristic equation of linearisation near the disease-free steady state

E1 is given by

(µ+ ε)

[
µ+ σ + z − λK(τ1)

ε

] [
−2K(τ1)− µ+K(τ1)e−µτ1

]
= 0. (2.12)

One eigenvalue µ1 = −ε is always negative. The second eigenvalue

µ2 =
λK(τ1)

ε
− (z + σ),

is negative for τ1 = 0 if

k < kmin, kmin =
ε(σ + z)

λ
,
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and for τ1 > 0, if

k > kmin, τ1 >
ln(k)− ln(kmin)

ε
.

The last eigenvalue of the characteristic equation (2.12) satisfies the tran-

scendental equation

µ3 = K(τ1)(e−µ3τ1 − 2). (2.13)

For τ1 = 0, we have µ3 = −k < 0. For τ1 > 0, it immediately follows that

µ3 = 0 is not a root of (2.13), so we look for the roots of this equation in the

form µ3 = iw, w > 0. Substituting this into (2.13) yields

K(τ1)[cos(wτ1)− 2]− iK(τ1) sin(wτ1) = 0. (2.14)

Since [cos(wτ1) − 2] < 0 for any τ1 > 0, this implies that the equation (2.12)

does not admit purely imaginary roots. Hence, we have proven the following

result.

Theorem 2.4.1 (Stability of the disease-free steady state). Let the disease-

free steady state be given by E1 =

(
K(τ1)

ε
, 0, 0

)
, and denote kmin =

ε(σ + z)

λ
.

Then, the following statements hold.

(a) Given k < kmin, E1 is linearly asymptotically stable for all τ1 ≥ 0.

(b) Given k ≥ kmin and τmin =
ln(k)− ln(kmin)

ε
, E1 is linearly asymptotically

stable for τ1 > τmin, unstable for τ1 < τmin, and undergoes a steady-state

bifurcation at τ1 = τmin.

This theorem indicates that the disease-free steady is stable, as long as new

infections appear slower than they are cleared by recovery or death of the in-
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fected cells. Additionally, the theorem suggests that stability of the disease-free

steady state depends only on the maturation time of undifferentiated proliferat-

ing cells, natural and infection-induced mortality rates, and the rates at which

infected cells spread the infection and recover. This immediately implies that

the propagation of the warning signal and the acquired immunity of uninfected

cells is not enough for a complete recovery of the host. Moreover, this suggests

that the propagating component of PTGS acts only as an amplifier of immune

response rather than playing an essential role in recovery. Hence, in plants with

a strong localized immune response, suppression of the warning signal would

most likely only delay recovery rather than completely inhibit it. Equivalently,

a localized immune response that is too weak will most likely never lead to a

complete recovery despite a potentially strong propagating warning signal.

2.4.3 Stability analysis of the endemic steady state

Linearisation near the endemic steady state E2 = (S∗, I∗,W ∗) yields the follow-

ing characteristic equation

µ3 + p2(µ, τ1, τ2)µ2 + p1(µ, τ1, τ2)µ+ p0(µ, τ1, τ2) = 0, (2.15)

where

p2 = −K(τ1)e−µτ1 + δφI∗e−µτ2 + I∗(λ+ δ) + ε(1 + 2S∗),

p1 = e−µτ1p11 + e−µτ2p12 + e−µ(τ1+τ2)p13 + p14,

p0 = e−µτ2p01 + e−µ(τ1+τ2)p02 + p03,

52



and

p11 = −K (τ1 ) (ε+ δ I ∗) ,

p12 = δφ (λ+ δ) I ∗2 + [(λ+ 2φ ε) δ S∗ + δ φ ε] I ∗,

p13 = −K(τ1)δφI∗, p14 =
(
λ ε+ δ ε+ λ2S∗

)
I ∗ + 2 ε2S∗,

p01 = δφ (δ ε+ λ ε) I ∗2 + ε (2 εφ+ λ ) δ S∗I ∗,

p02 = −K (τ1 ) δ I ∗ (I ∗ δ φ+ φ ε+ λS∗) , p03 = λ2ε S∗I ∗.

Instantaneous maturity

As a first step in the analysis, we consider the case when the proliferating cells

immediately achieve maturity, i.e. τ1 = 0. In this case, the equation (2.15)

reduces to

µ3 + (a1e
−µτ2 + a2)µ2 + (b1e

−µτ2 + b2)µ+ (c1e
−µτ2 + c2) = 0, (2.16)

where

a1 = δ φI ∗, a2 = (λ+ δ) I ∗ + (2S∗ + 1) ε− k,

b1 = δφ (δ + λ) I ∗2 + [(ε− k + 2 ε S∗)φ+ λS∗] δ I ∗,

b2 =
[
(λ+ δ) ε− δ k + λ2S∗

]
I ∗ − kε+ 2 ε2S∗,

c1 = −δI∗ [[kδ − ε (δ + λ)]φ I ∗ + (kλ− ε(2εφ+ λ))S∗ + kφ ε] ,

c2 = λ2ε S∗I ∗.

When τ2 = 0, the characteristic equation (2.16) reduces to

µ3 + (a1 + a2)µ2 + (b1 + b2)µ+ (c1 + c2) = 0.
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By the Routh-Hurwitz criterion, the roots of this equation have negative real

part if and only if

a1 + a2 > 0, c1 + c2 > 0, (a1 + a2)(b1 + b2) > c1 + c2. (2.17)

To investigate for any potential Hopf bifurcations given τ2 > 0, we follow

the methodology of Ruan and Wei [Rua01] and look for the roots of the char-

acteristic equation (2.16) in the form µ = iω, ω > 0, which gives

(ib1ω + c1 − a1ω
2)(cosωτ2 − i sinωτ2)− iω3 − a2ω

2 + c2 + ib2ω = 0.

Separating this equation into real and imaginary parts yields

b1ω sinωτ2 − (a1ω
2 − c1) cosωτ2 = a2ω

2 − c2,

b1ω cosωτ2 + (a1ω
2 − c1) sinωτ2 = ω3 − b2ω.

(2.18)

Squaring and adding these two equations gives the following equation for the

Hopf frequency ω:

ω6 + (a2
2− a1

2− 2b2)ω4 + (2c1a1− 2c2a2 + b2
2− b1

2)ω2 + c2
2− c1

2 = 0. (2.19)

Introducing an auxiliary variable v = ω2, the last equation can be rewritten as

h(v) = v3 + pv2 + qv + r = 0, (2.20)
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where

p = (a2
2 − a1

2 − 2b2),

q = (2c1a1 − 2c2a2 + b2
2 − b1

2),

r = c2
2 − c1

2.

It is straightforward to see that h(0) = r and lim
v→∞

h(v) = ∞, hence given

r < 0, by the intermediate value theorem h(v) has a zero v0 ∈ (0,∞). To

investigate what happens when r is positive, we look at the critical points of

the function h(v) as given by:

v1,2 =
−p±

√
p2 − 3q

3
. (2.21)

One can see that for ∆ = p2 − 3q < 0, the quadratic h′(v) has no real roots,

and so the function h(v) must be monotonic. With lim
v→∞

h(v) =∞, the function

h(v) must also be an increasing function, and since h(0) = r ≥ 0, we must have

that equation (2.20) has no positive real roots.

Suppose that ∆ ≥ 0. Then, for v1,2 =
−p±

√
∆

3
, we have h′′(v1,2) = ±

√
∆,

and, therefore, v1 is a local minimum, whereas v2 is a local maximum of h(v).

Note that v2 < v1, and hence, v1 < 0 implies v2 < 0. If v1 < 0 is the local

minimum and h(0) = r > 0, h(v) is an increasing function on the domain

[v1,∞), and therefore, there are no positive real roots of h(v) = 0. Equivalently,

if v1 > 0, the function h(v) is increasing in the interval [v1,∞), hence a positive

root can only exist if h(v1) ≤ 0. We have, therefore, proved the following lemma.

Lemma 2.4.2 (Conditions for positive roots of (2.20)). Let v1,2 be given by

(2.21).

(i) If r < 0, the equation (2.20) has at least one positive root.
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(ii) If r ≥ 0 and ∆ < 0, or ∆ > 0 and v1 < 0, or ∆ > 0, v1 > 0 and h(v1) > 0,

the equation (2.20) has no positive roots.

(iii) If r ≥ 0, v1 > 0 and h(v1) ≤ 0, the equation (2.20) has at least one positive

root.

Without loss of generality, let us assume that equation (2.20) has three

distinct positive roots denoted by v1, v2 and v3. This implies that the equation

(2.19) also has at least three positive roots

w1 =
√
v1, w2 =

√
v2, w3 =

√
v3.

Solving the system (2.18) for τ2 yields

τ2
(j)(n) =

1

wn

[
arctan

(
a1wn

5 + (b1a2 − c1 − a1b2)wn
3 + (c1b2 − b1c2)wn

(b1 − a1a2)wn4 + (c1a2 + a1c2 − b1b2)wn2 − c1c2

)
+ (j − 1)π

]
,

n = 1, 2, 3; j ∈ N.
(2.22)

This allows us to define the following:

τ2
∗ = τ2

(j0)(n0) = min
1≤n≤3, j≥1

{τ2
(j)(n)}, w0 = wn0 . (2.23)

In order to establish whether the steady state E2 actually undergoes a Hopf

bifurcation at τ2 = τ2
∗, we compute the sign of

d[Reµ(τ2
∗)]

dτ2

. Differentiating
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both sides of equation (2.16) with respect to τ2 yields

(
dµ

dτ2

)−1

=
(3µ2 + 2 a2µ+ b2) eµ τ2 + 2 a1µ+ b1

µ (a1µ2 + b1µ+ c1)
− τ2

µ
.

Introducing the notation V = w0
2
[(
c1 − w0

2a1

)2
+ w0

2b1
2
]
, it follows that V >

0 for all w0 > 0, and

(
dReµ(τ2

∗)

dτ2

)−1

=
w0

V

A cos(w0τ2) + wB sin(w0τ2)︸ ︷︷ ︸
:=Γ

−b1
2w0 + 2 a1w0

(
c1 − w0

2a1

) ,
where

A =
(
3w0

2 − b2

)
b1w0 − 2w0a2

(
w0

2a1 − c1

)
,

B = 2w0
2a2b1 +

(
3w0

2 − b2

) (
w0

2a1 − c1

)
,

and

Γ = 3w0
5 +

(
2 a2

2 − 4 b2

)
w0

3 +
(
b2

2 − 2 a2c2

)
w0

Consequently, with v0 = w0
2 we have

(
dReµ(τ2

∗)

dτ2

)−1

=
1

V

[
3w0

6 + 2
(
a2

2 − a1
2 − 2b2

)
w0

4 +
(
2a1c1 − 2a2c2 + b2

2 − b1
2
)
w0

2
]

=
1

V

[
3w0

6 + 2pw0
4 + qw0

2
]

=
1

V

[
3v3

0 + 2pv2
0 + qv0

]
=
v0

V
h′(v0),

(2.24)

where h(v) is defined in (2.20). Since v0 = w0
2 > 0, this implies

sign

(
dReµ(τ2

∗)

dτ2

)
= sign

(
dReµ(τ2

∗)

dτ2

)−1

= sign [v0h
′(v0)] = sign [h′(v0)] .
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These calculations can now be summarised in the following theorem.

Theorem 2.4.3 (Stability of the endemic steady state). Let the coefficients of

the characteristic equation (2.16) satisfy a1 + a2 > 0, c1 + c2 > 0 and (a1 +

a2)(b1 + b2) > c1 + c2. Additionally, let w0, τ2
∗ be defined as in (2.23) with

v0 = w0
2, and let h′(v0) > 0. Then, the following holds.

(i) If r ≥ 0 and p2 < 3q, or p2 > 3q and v1 < 0, or p2 > 3q and v1 < 0

and h(v1) > 0, the endemic steady state E2 of the system (2.3) is linearly

asymptotically stable for all τ2 ≥ 0.

(ii) If r < 0, or if r ≥ 0 and h(v1) < 0, the endemic steady state E2 of

system (2.3) is linearly asymptotically stable when τ2 ∈ [0, τ2
∗), unstable

for τ2 > τ ∗2 , and undergoes Hopf bifurcation at τ2 = τ ∗2 .

Fast-spreading PTGS signal

In the case when the PTGS signal is spreading very quickly, the time delay τ2

associated with the spread of this signal is negligibly small compared to other

timescales in the system. In this case, setting τ2 = 0 in the characteristic

equation (2.15) reduces it to

µ3 +
[
a1(τ1)e−µτ1 + a2(τ1)

]
µ2 +

[
b1(τ1)e−µτ1 + b2(τ1)

]
µ+

c1(τ1)e−µτ1 + c2(τ1) = 0,
(2.25)
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where

a1(τ1) = −K(τ1), a2(τ1) = (δ + λ+ δ φ) I ∗ + 2 ε S∗ + ε,

b1(τ1) = − [ε+ δ (φ+ 1) I ∗]K (τ1 ) ,

b2(τ1) = δ φ (λ + δ) I ∗2 +
[
S∗
[
(λ+ 2φ ε) δ + λ2

]
+ (ε+ φ ε) δ + λ ε

]
I ∗ + 2 ε2S∗,

c1(τ1) = −K (τ1 ) (I ∗ δ φ+ φ ε+ λS∗) δ I ∗,

c2(τ1) = δφε (δ + λ ) I ∗2 +
[(

2 ε2φ+ λ ε
)
δ + λ2ε

]
S∗I ∗.

Looking for purely imaginary solutions of equation (2.25) in the form µ = iw

(w > 0), and separating the real and imaginary parts gives

b1(τ1)w sin(wτ1)− [a1(τ1)w2 − c1] cos(wτ1) = [a2(τ1)w2 − c2(τ1)],

b1(τ1)w cos(wτ1) + [a1(τ1)w2 − c1] cos(wτ1) = [w3 − b2(τ1)w].

(2.26)

With the help of auxiliary functions

g1(τ1) = b1(τ1)w, g2(τ1) = a1(τ1)w2 − c1(τ1),

L1(τ1) = a2(τ1)w2 − c2(τ1), L2(τ1) = w3 − b2(τ1)w,

the system of equations (2.26) can be re-written as follows

g1(τ1) sin(wτ1)− g2(τ1) cos(wτ1) = L1(τ1),

g1(τ1) cos(wτ1) + g2(τ1) sin(wτ1) = L2(τ1).

(2.27)
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Solving this system yields

τ1
(j)(n) =

1

wn

[
tan−1U(τ1) + (j − 1)π

]
, n = 1, 2, 3; j ∈ N,

U(τ1) =
g1(τ1)L1(τ1) + L2(τ1)g2(τ1)

L2(τ1)g1(τ1)− L1(τ1)g2(τ1)
,

(2.28)

though, unlike the case of instantaneous maturity, wn is now itself the function

of τ1, and hence, it does not prove possible to find the closed form expression

for the critical time delay τ ∗1 .

Equal PTGS delay and maturity time

Let us consider the third degree transcendental polynomial that is obtained by

setting τ1 = τ2 = τ 6= 0 in (2.15)

µ3 +
[
a1(τ)e−µτ + a2(τ)

]
µ2 +

[
b1(τ)e−µτ + b2(τ)e−2µτ + b3(τ)

]
µ+ c1(τ)e−µτ+

c2(τ)e−2µτ + c3(τ) = 0,
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where

a1(τ) = δ φ I ∗ −K (τ) ,

a2(τ) = (λ+ δ) I ∗ + 2 ε S∗ + ε,

b1(τ) = δφ (δ + λ ) I ∗2 + (φ ε−K (τ) + 2 ε φS∗ + λS∗) δ I ∗ −K (τ) ε,

b2(τ) = −K (τ) δ φ I ∗,

c1(τ) = δφε (δ + λ) I ∗2 + ε (λ + 2 εφ) δ S∗I ∗,

c2(τ) = −K (τ) δ ( δ φI ∗ + φ ε+ λS∗) I ∗.

c3(τ) = λ2 εSI ∗

Substituting µ = iw(w > 0) in the equation above and separating the real and

imaginary parts yields

f(τ) cos(wτ) + wb1(τ) sin(wτ) =

G1(τ)− [b2(τ)w sin(2wτ) + c2(τ) cos(2wτ)],

− f(τ) sin(wτ) + wb1(τ) cos(wτ) =

G2(τ)− b2(τ)w cos(2wτ) + c2(τ) sin(2wτ),

(2.29)

where we have introduced the following notation

f(τ) = c1 (τ)−a1 (τ)w2,

G1(τ) = a2 (τ)w2 − c3 (τ) , G2(τ) = w3 − b3 (τ)w.
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Introducing auxiliary parameters

u = 2wτ,

α(τ) = 2 [wb2(τ)G1(τ)− c2(τ)G1(τ)] ,

β(τ) = 2 [c2(τ)G1(τ) + wb2(τ)G2(τ)] ,

γ(τ) = G1
2(τ) +G2

2(τ) + w2
[
b2

2(τ)− b1
2(τ)

]
+ c2

2(τ)− f 2(τ),

squaring both sides of the two equations in (2.29) and adding them together

yields

α(τ) sin(u) + β(τ) cos(u) = γ. (2.30)

Dividing by
√
α2(τ) + β2(τ) gives

α(τ) sin(u)√
α2(τ) + β2(τ)

+
β(τ) cos(u)√
α2(τ) + β2(τ)

=
γ(τ)√

α(τ)2 + β(τ)2
. (2.31)

Note that

(
α(τ)√

α2(τ) + β2(τ)

)2

+

(
β(τ)√

α2(τ) + β2(τ)

)2

= 1, which implies that

there exists θ such that

sin(θ) =
α(τ)√

α2(τ) + β2(τ)
, cos(θ) =

β(τ)√
α2(τ) + β2(τ)

, (2.32)

and θ = arctan

(
α(τ)

β(τ)

)
. Thus, equation (2.31) can be re-written as

sin(u+ θ) =
γ(τ)√

α2(τ) + β2(τ)
. (2.33)
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Hence we have

τ =
1

w

[
− arctan

(
α(τ)

β(τ)

)
+ arcsin

(
γ(τ)√

α2(τ) + β2(τ)

)
+ jπ

]
, j ∈ N, (2.34)

where

α(τ) = 2
(
w3 − b4w

) (
c2 −

(
a1e−ε τ + a2

)
w2
)
− 2

(
a3w

2 − c4

) (
b1e−ε τ + b2

)
w,

β(τ) = −2
(
a3w

2 − c4

) (
c2 −

(
a1e−ε τ + a2

)
w2
)
− 2

(
w3 − b4w

) (
b1e−ε τ + b2

)
w,

γ(τ) =
(
a3w

2 − c4

)2
+
(
w3 − b4w

)2
+
(
c2 −

(
a1e−ε τ + a2

)
w2
)2

+
(
b1e−ε τ + b2

)2
w2.

(2.35)

It is easy to see that since α, β, and γ depend on τ , one cannot obtain a closed

form expression of the critical time-delay. We conclude with the following re-

mark.

Remark (Case with equal time delays). In the case when maturation delay

and the PTGS propagation delay coincide, i.e. τ1 = τ2 = τ 6= 0, the char-

acteristic equation (2.15) once again becomes an equation with a single time

delay. However, similarly to the case just considered, the critical value of the

time delay can only be found implicitly, as the coefficients of the characteristic

equation themselves depend on the time delay. In the case where both τ1 > 0

and τ2 > 0, application of a methodology discussed in Gu et al. [Gu05] and

Blyuss et al. [Bly08], would provide a parametrisation of critical time delays,

but such parametrisation would also be implicit.
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2.5 Numerical stability analysis and simulations

In order to gain a better insight into how different parameters affect biological

feasibility and stability of different steady states, as well as to understand the

dynamics inside stability regions, especially when τ1,2 > 0, we use a Matlab

suite traceDDE [Bre06] to numerically compute eigenvalues of the character-

istic equation (2.15). Since RNAi is known to be a complex multi-component

process, obtaining accurate values for parameters to be used in the model is very

problematic, especially since there is a significant variation in reported values for

many of the parameters, and some cannot even be currently measured [Mel11,

Lia12, Him15]. In light of this, we complement theoretical analysis from the

previous sections by an extensive numerical bifurcation analysis of the model.

This provides qualitative insights into possible dynamics, which can be further

improved once more advanced measurement techniques are developed, and the

precise mechanisms of PTGS are elucidated.

Fig. 2.3 shows the regions of stability of the disease-free steady state, as well

as feasibility and stability of the endemic steady state. For parameter values

specified in Table 2.1 and k = 1, it follows from Theorems 2.4.1 and 2.4.3 that

the endemic steady state is only feasible for τ1 ∈ [0, 5.05), whereas for τ1 ≥ 5.05,

the endemic steady state disappears, and the disease-free steady state becomes

asymptotically stable, as shown in Figs. 2.3 (a) and (c). When the growth rate

k is increased, a qualitatively similar picture is observed, however, there is some

minimum value of τ1, below which the endemic steady state is not biologically

feasible. Figs. 2.3 (b) and (d) illustrate that in this case, the endemic steady

state is only feasible for τ1 ∈ [1.54, 7.36), and for τ1 ≥ 7.36 the disease-free
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Figure 2.3: Stability of the endemic and disease-free steady states with param-
eter values from Table 2.1. (a) and (c) k = 1. (b) and (d) k = 2. Diagonal
blue indicates the region where the disease-free steady state is asymptotically
stable, and the endemic steady state is not feasible. The black grid shows the
region where the endemic steady state is not feasible, and none of the steady
states is stable. Colour code denotes max[Re(µ)] for the endemic steady state
when it is feasible.

65



steady state is asymptotically stable. This figure suggests that by adequately

increasing the time delay τ2 after which susceptible cells acquire immunity, the

endemic steady state can generally become unstable, whereas there are regions

in which the solution of the system alternates between the stable endemic steady

state and solutions of a periodic or possibly chaotic nature. From a biological

perspective, this is an interesting and rather surprising result since intuitively

one would expect that increasing the time delay associated with the spread of

PTGS signal (i.e. time necessary to acquire immunity) would promote stabi-

lization of the endemic steady state. We also note that the figure shows a region

(black grid) in which there are no stable steady states and the endemic steady

state is also not feasible. This would suggest a type of solution in which the

population of susceptible cells S(t) oscillates about K(τ1)/ε but the remaining

state variables, namely W (t) and I(t) remain zero.

As a next step, we investigate how the relative values of the time delays

and the amplification factor φ, affect stability of the steady states. Fig. 2.4(a)

shows that the endemic steady state, when feasible, is asymptotically stable for

sufficiently high values of the maturation delay τ1, but can lose stability once

τ1 becomes lower than some critical value that is itself increasing with φ. This

implies that both the higher amplification factor and the faster maturation of the

new plant tissue are prone to make the endemic steady state, characterised by

some permanent level of infection, unstable. Fig. 2.4(b) demonstrates the above-

mentioned counter-intuitive result, which suggests that the endemic steady state

is stable only for sufficiently fast-spreading PTGS signal, i.e. sufficiently small

τ2. Due to the functional form of the term representing recovery of infected

cells associated with the spreading PTGS signal, it is natural to expect that the
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Figure 2.4: Stability of the endemic and disease-free steady states with pa-
rameter values from Table 2.1. Diagonal blue indicates the region where the
disease-free steady state is asymptotically stable, and the endemic steady state
is not feasible. Colour code denotes max[Re(µ)] for the endemic steady state
when it is feasible.

critical time delay τ2 would be inversely proportional to φ, and this is indeed

what is observed in Fig. 2.4(b). It is noteworthy that in the parameter region

where the endemic steady state is unstable, the disease-free steady state is

also unstable. This highlights one of our earlier conclusions, namely that the

amplification of recovery by the propagation of the warning signal, which in

this case is transmitted from infected cells to other infected cells, has a limited

impact on the outcome of the infection. Moreover, it is not by itself sufficient

to achieve complete annihilation of the virus from its plant host.

Fig. 2.5 shows that if the infection rate λ is sufficiently small, or if the matu-

ration of the growing tissue is sufficiently slow (i.e. τ1 is large), the disease-free

steady state is asymptotically stable. On the other hand, if the infection rate is

high, the endemic steady state is asymptotically stable, and the PTGS propaga-
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Figure 2.5: Stability of the endemic and disease-free steady states with pa-
rameter values from Table 2.1. Diagonal blue indicates the region where the
disease-free steady state is asymptotically stable, and the endemic steady state
is not feasible. The black grid shows the region where the endemic steady state
is not feasible, and none of the steady states is stable. Colour code denotes
max[Re(µ)] for the endemic steady state when it is feasible.
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Figure 2.6: (a) Colour code denotes max[Re(µ)] for the endemic steady state
when it is feasible. (b) Stability regions of all steady states with parameter
values from Table 2.1. The black grid shows the region where the endemic steady
state is not feasible, and none of the steady states is stable. The area covered
with diagonal lines signifies the region where the disease-free steady state is
asymptotically stable; in the region with green diagonal lines all steady states
are feasible, whereas for blue lines the endemic steady state is not feasible. The
red grid represents the area for which the endemic steady state is asymptotically
stable. The brown grid shows the region where both the endemic and disease
free steady state are feasible but none are stable.

tion delay τ2 becomes irrelevant to the long-term behaviour of the system. One

can observe that for a sufficiently small warning rate δ, the endemic steady state

can be asymptotically stable for any value of τ2, whereas if δ is large enough,

neither endemic, nor disease-free steady states are stable. The same happens in

the case when the new plant tissue is maturing fast, i.e. τ1 is sufficiently small.

In Fig. 2.6 we have used the results from Theorems 2.4.1 and 2.4.3 to identify

regions in which the system transitions from a stable disease-free to the endemic

steady state. When all other parameters remain fixed, this figure suggests

that there is a minimum value of λ for which the endemic steady state E2 is
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asymptotically stable provided that the time delay τ1 is small enough. However,

for any value of λ below that threshold, either the system reverts back to the

stable disease-free steady state, or the time-delay τ1 has to be within a specific

range for the endemic steady state to be feasible and asymptotically stable.

Our results up to this point suggest that τ1 is perhaps the most important

bifurcation parameter in the model. From a biological perspective, this can be

explained by interpreting the time delay τ1 as a temporary immunity inherent to

the nature of proliferating and undifferentiated cells responsible for new growth.

Equivalently, these results imply that whether or not the disease can successfully

take over the plant depends on how fast the virus can gain access to the newly

formed parts of the plant. If the infection rate is not sufficiently high, the

infected parts of the plant will eventually die out before the newer generation

of cells becomes vulnerable to infection.

Fig. 2.7 illustrates the regions of feasibility and stability of the disease-free

and endemic steady states when the time delays are fixed, and other parameters

are allowed to vary. Naturally, the disease-free steady state is stable for lower

values of the disease transmission rate λ, while for higher λ there is a propensity

for the endemic steady state to be stable. Higher speed of propagation of the

PTGS signal δ and higher amplification factor φ lead to a de-stabilisation of the

endemic steady state. It is worth noting the behaviour shown in Figs. 2.7(c)

and (d), where for sufficiently high amplification rate, increase in the disease

transmission rate λ also destabilises the endemic steady state.

To illustrate different types of dynamical behaviour that can be exhibited by

the model (2.3), we solve this system numerically with parameter values given

in Table 2.1 and different values of the time delays τ1 and τ2. Figs 2.8(a), (c)
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Figure 2.7: (a), (c) Colour code denotes max[Re(µ)] for the endemic steady
state when it is feasible. (b), (d) Stability regions of all steady states with
parameter values from Table 2.1. The black grid shows the region where the
endemic steady state is not feasible, and none of the steady states is stable.
The area covered with diagonal lines signifies the region where the disease-free
steady state is asymptotically stable; in the region with green diagonal lines
all steady states are feasible, whereas for blue lines the endemic steady state
is not feasible. The red grid represents the area for which the endemic steady
state is asymptotically stable. The brown grid shows the region where both the
endemic and disease free steady state are feasible but none are stable.
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and (d) demonstrate partial immune response that is not sufficient to eradicate

the virus in the host. This is the type of behaviour one might expect from

susceptible plants with a weak response against a viral disease, and it results in

a chronic condition. Another possibility for a chronic infection is represented by

periodic solutions shown in Fig. 2.8(b) and (e), where the severity of infection

varies over time, with periods of high viral production being interspersed with

periods of quiescence. From a biological perspective, these scenarios could be

interpreted as situations where the evolutionary race between viral pathogen

and the host immune system has not yet concluded and, as a result, neither the

plants immune system, nor the ability of the virus to suppress immune responses

can prevail. Fig. 2.8(f) demonstrates a type of immune response consistent

with a recovery phenotype, where initially the disease appears to overwhelm

the plant by infecting a dominating or significant part of its body. However,

as the warning signal propagates to surrounding cells, newly grown tissue and

uninfected cells are able to acquire immunity and thus prevent the spread of

the disease. This localizes the infection and eventually leads to the eradication

of the invading virus, and consequently the system approaches a disease-free

steady state. Similar type of behaviour is observed in the system with a very

strong immune response that would be consistent with highly resistant plants;

in this case the infection is almost immediately localized due to the high efficacy

of the propagating warning signal and the antiviral activity in the cells that are

already infected.
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Figure 2.8: Numerical solution of the system (2.3) with parameter values from
Table 2.1. (a) τ1 = τ2 = 0. (b) τ1 = 0, τ2 = 3. (c) τ1 = 3, τ2 = 0. (d)
τ1 = τ2 = 3. (e) τ1 = 2, τ2 = 4. (f) τ1 = 4, τ2 = 10, σ = 1, φ = 0.1. Colours
represent scaled populations of susceptible S (blue), infected I (red) and warned
W cells (black).
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2.6 Chapter conclusions

In this chapter we have developed and analysed a new mathematical model of

the plant immune response to a viral infection, with particular emphasis on

the role of RNA interference. To achieve better biological realism, this model

explicitly includes two different time delays, one to represent maturation period

of undifferentiated cells which effectively acts as a form of inherent immunity

against infection, and another to account for the time required for the PTGS

signal to reach other parts of the plant resulting in either recovery or warning

of susceptible cells.

Stability analysis of the model has demonstrated the role played by system

parameters in the dynamics. In the present model, it is impossible for all plant

cells to die due to the constant emergence of new susceptible cells. Even if

a plant were to experience a severe case of stunting due to the infection, it

would be highly unlikely that every healthy cell would become infected and

therefore, lead to the death of the plant. Although our model cannot capture

this scenario, realistically, such events do occur quite rarely in nature depending

also on the environmental and host conditions at the time of infection [Sut99,

Ger06]. Stability of the disease-free steady state appears to depend only on

the maturation period but not on the speed of propagation or the strength of

the PTGS signal, suggesting that a faster PTGS signal can at most help the

plant to recover faster, but by itself it is not sufficient for a recovery. Endemic

steady state, where the plant supports some constant level of infection, is only

biologically feasible when the growth rate of the new tissue is higher than some

minimum value. An interesting and counter-intuitive result is that slower PTGS

signal (i.e. larger value of τ2) can actually lead to a destabilisation of this
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steady state, resulting in sustained periodic oscillations. Another possibility

for the endemic steady state to lose stability is when the amplification factor

φ increases, or the new uninfected tissue is produced faster, i.e. for a lower

maturation time delay τ1.

Numerical simulations have shown that the model can support resistant-

and recovery-type behaviours, whereby the plant immune system is able to

mount sufficient response to eradicate the infection. Both of these situations

are characterised by a strong localised immune response, but if additionally the

warning signal is sufficiently strong, the plant exhibits the resistant phenotype,

where the spread of infection is almost fully prevented, and the amount of the

virus is diminished significantly faster than in the recovery case. On the other

hand, if both the localised immune response and the propagating signal are

sufficiently weak, the plant will be very susceptible to infection, however, the

infection cannot result in the death of the host in our model. Periodic solutions

of the model signify specific cases where the plant immune system cannot mount

a sufficient response to eradicate the virus, and at the same time the virus also

cannot adequately suppress the immune response of the plant. As a result,

the plant undergoes periods of time in which the symptoms of the disease are

manifested more prominently, with other periods where the infection is at a

very low level.

Simulations suggest that the propagating component of the PTGS has a

very limited impact on the long-term recovery of the plant. At the same time,

the duration of the maturation period of undifferentiated cells does play a very

important role in controlling the spread of the infection, as it represents how

fast the newly developed part of the plant becomes accessible to the virus.
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Chapter 3

Model of plant-virus interactions

mediated by RNA interference

3.1 Introduction

In this chapter we derive and analyse a new mathematical model of the in-

teractions between two competing viruses with particular account for RNA

interference. Our results will show that co-infection of the host can either in-

crease or decrease the potency of individual infections depending on the levels

of cross-protection or cross-enhancement between different viruses. Analytical

and numerical bifurcation analyses are employed to investigate the stability of

all steady states of the model in order to identify parameter regions where the

system exhibits synergistic or antagonistic behaviour between viral strains, as

well as different types of host recovery. We show that not only viral attributes

but also the propagating component of RNA-interference in plants can play an

important role in determining the dynamics.

76



3.2 Model derivation

To investigate the dynamics of biological interactions taking place during a co-

infection of a plant with two viruses, we divide the total population of plant

cells into the following compartments: susceptible cells S(t), populations I1(t)

and I2(t) of cells infectious with virus 1 or virus 2 and warned cells W1(t) and

W2(t) that are immune to viruses 1 and 2 respectively. We also include the

cells Hi(t), i = 1, 2 that have recovered from a primary infection from virus

j 6= i, and are currently infectious with the virus i. That is to say, for example,

that H1(t) denotes the cells which have been previously infected by virus 2,

have recovered from virus 2 and are now infected by virus 1. Finally, we have

the population of super-protected cells W12(t) that are immune to both viruses.

Transitions between these different cell populations are illustrated in Fig. 3.1.

For the sake of model simplicity, spatial components associated with host-

specific anatomy will not be considered, and the cell populations are assumed

to be uniformly distributed within the plant. Despite potentially overlooking

some aspects of the dynamics, the assumption of spatial uniformity has been

effective in understanding viral dynamics [Per02, Wod02]. Non-spatial models

can provide significant insights into the dynamics and become the basis upon

which more detailed models can be built. Additionally, in the case of field

plants, it is biologically reasonable to assume that multiple infection sites could

be distributed all over the host. Targeted plants could be exposed multiple

times during vector movement or feeding, as vector-borne pathogens have been

found capable of even altering the phenotypes of their hosts and vectors in

such a way that the frequency and the nature of interactions between them

promotes the transmission of the disease [Mau10, Mor13]. Furthermore, all
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plant cells are connected through plasmodesmata, the phloem and the xylem

vessels responsible for resource translocation [Lal04], and these pathways can

also be used by viruses for systemic infections of their host [Opa98, Wan15].

Plant growth models can generally be divided into two classes: the ones

where cell populations are allowed to exhibit unbounded growth, and the ones

that assume a certain asymptotic final size due to finite resources or ontoge-

netic changes, like flowering of the plant. Asymptotic growth models are more

favourable in the studies which consider the entire lifespan of the plant [Pai12,

Hei99]. Hence, we will describe plant growth by the logistic growth function

with a linear growth factor r and a carrying capacity K, with all cell popu-

lations contributing to the competition term, as has been effectively done in

other models of immune response to infections, such as influenza [Tri10], HIV

[Per99] and HBV [Ciu07].

Once a plant becomes infected, infected cell populations I1(t) and I2(t) pro-

duce new infections by infecting susceptible (healthy) cells at rates λ1 and λ2,

respectively. Due to various metabolic changes and the loss of functions that

occur after a viral takeover, the lifespan of infected cells is normally shorter

than that of healthy cells, as characterised by higher death rates ε1 and ε2. An-

other possible explanation of a premature death of infected cells is given by the

hypersensitive response of the plant, where infected cells would be programmed

to a premature death in order to avoid the spread of the infection and to isolate

the infectious site [Zve12, Hir98, Fri07].

For this study it will be assumed that a viral infection does not always have a

devastating effect on the cell, and hence it is possible for infected cells to recover

before experiencing critical damage. Such recovered cells, denoted by W1(t) and
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W2(t), will be considered immune to the corresponding viruses in a sense that

they are no longer infectious. The recovery rates σ1 and σ2 represent cumulative

effects of the two events mentioned above and represent the rates of transition

from infected to warned compartments for each of the two viruses. As described

in the Introduction, one of the core mechanisms of the plant immune system

is the ability to spread a warning signal that is initiated at infectious sites to

other parts of the plant, and to protect neighbouring cells against the imminent

virus infection. For the sake of simplicity, the cells that have acquired immunity

via this warning signal are also included in W1(t) and W2(t) populations. We

assume that infected cells initiate and spread the warning signal to healthy cells

at the rates δ1 and δ2, respectively. Cells that have been the recipients of the

propagating signal for both viruses or have recovered from both a primary and

a subsequent secondary infection will be represented by the super-protected

population of cells W12(t) taken to be immune to both viruses. Thus, warned

cells W1(t) and W2(t) will be recruited to the super-protected population W12(t)

at modified warning rates γ2δ2 and γ1δ1, respectively. It is important to note

that the resistance to the disease is almost always accompanied by a reduction

of fitness normally represented by a reduced reproduction capability of cells

[Bur03, Tia03]. In this model we assume no fitness cost in the traditional

way, however, immune cells might also experience a shorter lifespan compared

to susceptible cells and, therefore, some fitness cost can be implemented by

choosing the appropriate death rate ε0 for super-protected cells W12(t).

The warned cells that have acquired immunity to a primary infection but

have successfully been infected by a secondary infection will be denoted by

Hi(t), where the index i = 1, 2 signifies the current infectious state of the cell.
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Because of their acquired immunity to one of the viruses, these cells may be less

or more resistant to the other virus. If the degree of homology between the two

viruses is high, i.e the two viruses are closely immunologically related, it would

imply that a cell which is immune or highly resistant to one of the viruses would

express the same amount of resistance to both of viruses. On the other hand,

if the two viruses are not related, it is reasonable to assume that expressing

an antiviral resistance to one of the viruses could induce a susceptibility to a

secondary non-related infection by reducing the efficacy of the immune response.

From a biological perspective there could be a limited number of compo-

nents in the cell that can be used to mount an immune response against a viral

infection. For example, unless a cell is warned by both propagating signals, it

might be the case that all components able to form antiviral complexes within

the cell are being used to prepare only for a single infection, or that there might

not be enough components in general to mount a sufficient immune response to

both infections simultaneously. Moreover, chemical changes within the cell in-

troduced during the primary infection and the corresponding immune response

could potentially provide more favourable conditions in which the secondary

infection is established more easily. In light of these observations, the infectious

cells H1(t) and H2(t) will infect other cells at the modified infection rates a1λ1

and a2λ2 to account for either enhanced (a1,2 > 1) or reduced (a1,2 < 1) viral

transmissibility. Similarly, we introduce the susceptibility modifiers β1 and β2

for the warned cells W2(t) and W1(t), respectively, which will be assumed to be

either susceptible (β1,2 > 1) or resistant (β1,2 < 1) to the virus against which

they have not yet acquired immunity. To account for a prior infection, the

recovery rates of cells Hi are modified by the factors pi, so these cells are re-
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Figure 3.1: A diagram of interactions between two competing viruses and the
corresponding plant immune response. Here S denotes the susceptible cells,
I1,2 and W1,2 are the infected and the warned cells for each virus, respectively.
Warned cells subsequently infected by a primary or secondary virus are denoted
by H1 and H2. Finally, W12 denotes the super-protected cells immune to both
viruses. The arrows indicate the rates of transitions from one category of cells
to another.
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cruited into the super-protected population at rates p1σ1 and p2σ2, respectively.

Therefore, in this model the parameters that define viral cooperation will be

the modifiers ai, βi and pi, which can be interpreted as either functions of the

antigenic distance or other specific relation between two viruses. For simplicity,

we will ignore the possibility of random mutations, so that these modifiers will

remain constant.

Under the above assumptions, the model describing the dynamics of plant

immune response to two viral infections can be written as follows,

dS

dt
= rŜ

(
1− N

K

)
− S [(λ1 + δ1)I1 + (λ2 + δ2)I2 + a2λ2H2 + a1λ1H1] ,

dI1

dt
= I1(λ1S − σ1 − ε1) + a1λ1H1S,

dI2

dt
= I2(λ2S − σ2 − ε2) + a2λ2H2S,

dW1

dt
= I1(σ1 + δ1S)−W1 [ε0 + (β2λ2 + γ2δ2)I2 + β2a2λ2H2] ,

dW2

dt
= I2(σ2 + δ2S)−W2 [ε0 + (β1λ1 + γ1δ1)I1 + β1a1λ1H1] ,

dH1

dt
= W2(β1λ1I1 + β1a1λ1H1)−H1(ε1 + p1σ1),

dH2

dt
= W1(β2λ2I2 + β2a2λ2H2)−H2(ε2 + p2σ2),

(3.1)
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dW12

dt
= p1σ1H1 + p2σ2H2 + γ2δ2I2W1 + γ1δ1I1W2 − ε0W12, (3.2)

where, for convenience of writing, we have used Ŝ(t) = S(t) +W1(t) +W2(t) +

W12(t), and where N(t) = S(t) + I1(t) + I2(t) +W1(t) +W2(t) +H1(t) +H2(t) +

W12(t) is the total population of plant cells. Note that the total population of

cells in not fixed. As a first step of the analysis, we establish well-posedness of

the system (3.1).

Theorem 3.2.1 (Positivity and boundedness of solutions). The model (3.1)

with initial conditions

S(0) > 0, I1(0) ≥ 0, I2(0) ≥ 0, W1(0) ≥ 0, W2(0) ≥ 0,

H1(0) ≥ 0, H2(0) ≥ 0, W12(0) ≥ 0,

and N(0) = N0 < K is well-posed, i.e. its solutions remain non-negative and

bounded for all t ≥ 0.

Proof. Let T2 be a period of time, such that N(t) < K for t ∈ [0, T2], and

suppose T1 ≤ T2 is the first time such that S(T1) = 0. This implies that

Ṡ(T1) = r(W1 +W2 +W12)[1− (W1 +W2 +W12 + I1 + I2 +H1 +H2)/K] ≥ 0,

hence, for any 0 ≤ t ≤ T2, we have that S(t) ≥ 0. For the remaining variables,

considering any positive time t, if for any i = 1, 2 we have that Ii(t) = 0, this

implies that İi(t) = aiλiHi ≥ 0, thus Ii(t) must be non-negative for all times.

Likewise, for both Wi(t) = 0 we obtain Ẇi(t) = Ii(σi + δiS) ≥ 0 which shows

that Wi(t) ≥ 0. If Hi(t) = 0, we have Ḣi(t) = WjβiλiIi ≥ 0 with 1 ≤ i 6= j ≤ 2.
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Finally, for W12(t) = 0, we have that Ẇ12(t) ≥ 0. Thus, all variables remain

non-negative for t ∈ [0, T2].

We now prove, by contradiction, that, in fact, N(t) < K for all t ≥ 0.

Assume, for a contradiction, that there is a first time T2 > 0 at which the

inequality N(t) < K ceases to hold. Since T2 is the first such time, N(T2) = K

and Ṅ(T2) ≥ 0. As has been shown earlier, all state variables are non-negative

at t = T2. Adding up all equations of the system (3.1) yields

dN

dt
= rŜ(1−N/K)− ε1I1− ε2I2− ε0(W1 +W2)− ε1H1− ε2H2− ε0W12, (3.3)

Since at t = T2 we have that N(T2) = K, the last equation gives Ṅ(T2) < 0,

which is a contradiction, unless I1(T2) = I2(T2) = W1(T2) = W2(T2) = H1(T2) =

H2(T2) = W12(T2) = 0. But in this exceptional case, the initial value theorem

for ODEs, applied to the last 7 equations of system (3.1) with S considered as

a prescribed function, yields that I1(t) = I2(t) = W1(t) = W2(t) = H1(t) =

H2(t) = W12(t) = 0 for all t > T2 and the equation for S(t) (the first equation

of the system) reduces to the logistic equation Ṡ = rS(1−S/K). Thus, for any

t ≥ T2, we have 0 < S(t) ≤ K, which completes the proof.

To simplify the model and reduce the number of free parameters, we non-

dimensionalise the system (3.1) by introducing new dimensionless variables

τ = rt, u1 =
S

K
, u2 =

I1

K
, u3 =

I2

K
, u4 =

W1

K
,

u5 =
W2

K
, u6 =

H1

K
, u7 =

H2

K
, u8 =

W12

K
,
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and for i = 1, 2, parameters

Li =
λi
r
, di =

Kδi
r
, ei =

εi
r
, si =

σi
r
, e0 =

ε0
r
.

This gives the following modified system

du1

dτ
= û1(1− N̂)− u1 [(L1 + d1)u2 + (L2 + d2)u3 + a1L1u6 + a2L2u7] ,

du2

dτ
= L1 (a1u6 + u2)u1 − u2 (e1 + s1) ,

du3

dτ
= L2 (a2u7 + u3)u1 − u3 (e2 + s2) ,

du4

dτ
= u2 (d1u1 + s1)− u4 [(β2L2 + γ2d2)u3 + β2a2L2u7 + e0] ,

du5

dτ
= u3 (d2u1 + s2)− u5 [(β1L1 + γ1d1)u2 + β1a1L1u6 + e0] ,

du6

dτ
= β1L1 (a1u6 + u2)u5 − u6 (p1s1 + e1) ,

du7

dτ
= β2L2 (a2u7 + u3)u4 − u7 (p2s2 + e2) ,

du8

dτ
= γ1d1u2u5 + γ2d2u3u4 + p1s1u6 + p2s2u7 − e0u8,

(3.4)

where û1 = u1 + u4 + u5 + u8 and N̂ = û1 + u2 + u3 + u6 + u7.

85



3.3 Steady states

It is straightforward to see that independently of the values of parameters, the

system (3.4) always admits a trivial steady state

E0 = (0, 0, 0, 0, 0, 0, 0, 0), (3.5)

and a disease-free steady state given by

EDF = (1, 0, 0, 0, 0, 0, 0, 0). (3.6)

Looking for steady states of the system (3.4) with u2 = 0 and u1,3 6= 0, gives

u4 = u6 = u7 = u8 = 0. Substituting these values in the remaining equations of

system (3.4) gives a one-virus endemic steady state with virus 2 present

E2 = (u∗1, 0, u
∗
3, 0, u

∗
5, 0, 0), (3.7)

where

u∗1 =
e2 + s2

L2

, u∗3 =
−c1(u∗1)−

√
c2

1(u∗1)− 4c2(u∗1)c0(u∗1)

2c2(u∗1)
, u∗5 = A(u∗1)u∗3,

with

A(u∗1) =
d2u

∗
1 + s2

e0

, B = L2 + d2, c0(u∗1) = u∗1(1− u∗1),

c1(u∗1) = A(u∗1)− u∗1[2A(u∗1) +B + 1], c2(u∗1) = −A(u∗1)[A(u∗1) + 1].

The steady state E2 is biologically feasible, as long as the condition e2 +s2 < L2
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holds.

Proceeding in a similar manner, one can find the second one-virus endemic

steady state E1 corresponding to the presence of virus 1 only. This steady state

is explicitly given by

E1 = (ũ∗1, u
∗
2, 0, u

∗
4, 0, 0, 0), (3.8)

where now

ũ∗1 =
e1 + s1

L1

, u∗2 =
−c̃1(ũ∗1)−

√
c̃2

1(ũ∗1)− 4c̃2(ũ∗1)c̃0(u∗1)

2c̃2(u∗1)
, u∗4 = Ã(ũ∗1)u∗2,

with

Ã(ũ∗1) =
d1ũ

∗
1 + s1

e0

, B̃ = L1 + d1, c̃0(ũ∗1) = ũ∗1(1− ũ∗1),

c̃1(ũ∗1) = Ã(ũ∗1)− ũ∗1[2Ã(ũ∗1) + B̃ + 1], c̃2(ũ∗1) = −Ã(ũ∗1)[Ã(ũ∗1) + 1].

This steady state is biologically feasible whenever the condition e1 + s1 < L1 is

satisfied.

Besides the disease-free and the two one-virus endemic steady states, the

system (3.4) can support one or more syndemic steady states characterised by

the simultaneous presence of both viruses,

S = (u∗1, u
∗
2, u
∗
3, u
∗
4, u
∗
5, u
∗
6, u
∗
7, u
∗
8). (3.9)
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To find this steady state, let us introduce auxiliary variables and functions

u0 = min
i=1,2

(
ei + si
Li

)
, Fi(x) = −(Lix− ei − si)

Liaix
, i = 1, 2,

∆i(x) = βiLi(Fi(x)ai + 1) + diγi, Gi(x) = dix+ si, i = 1, 2,

(3.10)

which allow us to express all steady state variables through u∗1 in the following

way:

u∗4 =
F2 (u∗1) (p2s2 + e2)

β2L2 [a2F2 (u∗1) + 1]
, u∗5 =

F1 (u∗1) (p1s1 + e1)

β1L1 [a1F1 (u∗1) + 1]
,

u∗2 =
e0u
∗
4 [∆2 (u∗1)u∗5 +G2 (u∗1)]

G1 (u∗1)G2 (u∗1)−∆1 (u∗1) ∆2 (u∗1)u∗4u
∗
5

, u∗3 =
e0u
∗
5 [∆1 (u∗1)u∗4 +G1 (u∗1)]

G1 (u∗1)G2 (u∗1)−∆1 (u∗1) ∆2 (u∗1)u∗4u
∗
5

,

u∗6 = u∗2F1(u∗1), u∗7 = u∗3F2(u∗1),

u∗8 =
d1γ1u

∗
2u
∗
5 + d2γ2u

∗
3u
∗
4 + p1s1u

∗
6 + p2s2u

∗
7

e0

.

Substituting these expressions into

û∗1(1− N̂)− u∗1 [(L1 + d1)u∗2 + (L2 + d2)u∗3 + a1L1u
∗
6 + a2L2u

∗
7] = 0,

yields a polynomial equation for u∗1, whose roots give possible candidates for

the syndemic steady state. This steady state is biologically feasible if

0 < u∗1 < u0, G1 (u∗1)G2 (u∗1)−∆1 (u∗1) ∆2 (u∗1)u∗4u
∗
5 > 0.
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3.4 Stability Analysis

3.4.1 Trivial steady state

Linearising system (3.4) near the trivial steady state E0 gives the following

characteristic equation for eigenvalues µ:

(µ− 1) (µ+ e0)3
2∏
i=1

(µ+ ei + si)(µ+ pisi + ei) = 0.

Since one of the roots is µ = 1, this implies that the trivial steady state is always

unstable and, therefore, it is impossible for all cell populations to die out.

3.4.2 Disease-free steady state

Linearisation near the disease-free steady state EDF has a characteristic equa-

tion

(µ+ 1) (µ+ e0)3
2∏
i=1

(pisi + µ+ ei) (µ− Li + ei + si) = 0, (3.11)

implying that the disease-free steady state EDF is linearly asymptotically sta-

ble, provided u0 > 1, with u0 defined in (3.10). In epidemiology, one of the

most common and efficient techniques for establishing criteria for the onset of

epidemic outbreaks is the analysis of the basic reproduction number R0, defined

as the average number of secondary infections produced by a single infected

individual in a totally susceptible population [Die93, Hee96, Het00, Dri08].

This quantity can be derived in a number of ways, e.g. using the next genera-

tion approach [Dri08], we define the basic reproduction number for each of the
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viruses as follows

R01 =
L1

e1 + s1

, R02 =
L2

e2 + s2

, (3.12)

and denote R0 = max {R01, R02} = u0
−1. Then, the disease-free steady state

EDF is linearly asymptotically stable if R0 < 1. This result means that a

complete recovery from both viral infections depends on the efficacy of RNA

interference from local induction, i.e the ability of the host cell to target and

degrade viral RNA in order to inhibit viral multiplication, and also on whether

infected cells reach their limited lifespan faster than they can spread the disease

for each virus, respectively. Furthermore, since the basic reproduction number

R0 does not depend on the transmissibility (a1,2) or susceptibility (β1,2) modi-

fiers, this implies that the interactions between the two viruses during the host

co-infection cannot cause both viruses to become extinct. On the other hand,

the modifiers may determine whether both viruses, or only one of them will

survive.

3.4.3 Endemic steady states

Characteristic equation of linearisation near the (one virus) endemic steady

state E2 can be factorised into

X1(µ)X2(µ)X3(µ) = 0, (3.13)
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where

X1(µ) = (µ+ e0) (p2s2 + µ+ e2) [u∗3 (L2β2 + d2γ2) + µ+ e0] ,

X2(µ) = µ2 + x21µ+ x20, X3(µ) = µ3 + x32µ
2 + x31µ+ x30,

and

x21 = s1(p1 + 1) + 2e1 − L1(a1β1u
∗
5 + u∗1),

x20 = (p1s1 + e1)(e1 + s1 − L1u
∗
1)− L1a1β1(e1 + s1)u∗5,

x32 = 2u∗1 + (L2 + d2 + 1)u∗3 + 2u∗5 + e0 − 1,

x31 = d1(u∗3)2 + [(L2 + d2)[u∗1(L2 + 1) + u5 + e0] + d2(u∗1 + u∗5 − 1) + e0]u∗3

+e0(2u∗1 + 2u∗5 − 1),

x30 = L2u
∗
3 [d2u

∗
1 (2(u∗1 + u∗5) + u∗3 + e0 − 1) + u∗1e0 (L2 + 1) + s2 (2u∗1 + u∗3 − 1)]

+L2u
∗
3 + u∗5 (e0 + 2s2) .

(3.14)

Since all system parameters are strictly positive, the roots of X1(µ) are all real

and negative. By the Routh-Hurwitz criterion we have that all roots of X2(µ)

lie in the left complex half-plane if the coefficients x21 and x20 are positive,
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which translates into the requirements


u∗5 <

(s1p1 + e1) + (s1 + e1 − L1u
∗
1)

L1a1β1

:= uA, and

u∗5 <
(s1p1 + e1)(s1 + e1 − L1u

∗
1)

L1a1β1(e1 + s1)
:= uB.

(3.15)

Since u∗5 must be positive, we require that u∗1 < (s1 +e1)/L1. Additionally, since

s1 + e1 − L1u
∗
1 < s1 + e1, we have

uA =
s1p1 + e1

L1a1β1

+
s1 + e1 − L1u

∗
1

L1a1β1

>
s1p1 + e1

L1a1β1

,

uB =
s1p1 + e1

L1a1β1

s1 + e1 − L1u
∗
1

e1 + s1

<
s1p1 + e1

L1a1β1

,

(3.16)

implying uB < uA. Hence, the roots of X2(µ) have a negative real part, provided

u∗1 <
s1 + e1

L1

= ũ∗1 and u∗5 < uB.

This also implies that a necessary condition for the stability of the endemic

steady state E2 is the intuitively natural result that the two basic reproduction

numbers defined in (3.12) must satisfy R02 > R01.

Applying the Routh-Hurwitz criterion to the cubic polynomial X3(µ) gives

that all roots of this polynomial have negative real parts, as long as x32, x31

and x30 are positive and satisfy the condition x32x31 > x30. It is important

to note that stability of the endemic steady state E2 does not depend on the

susceptibility and transmissibility modifiers a2 and β2. From a biological per-

spective, this suggests that the capability of the second virus to survive as a

single infection is irrelevant from the point of view of its ability to infect cells

that are chemically altered and are immune to the first virus. On the other
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hand, the ability of viruses di to trigger a warning signal appears to control

whether they can exclude each other or co-exist in a stable equilibrium. Hence,

we have proved the following result.

Theorem 3.4.1 (Stability of the endemic steady state). For the endemic steady

state E2 = (u∗1, 0, u
∗
3, 0, u

∗
5, 0, 0) with u∗1 = (e2 +s2)/L2, u∗3 and u∗5 given in (3.7),

let x30, x31, x32 and uB be defined by (3.14) and (3.16), respectively. Then

the steady state E2 is linearly asymptotically stable if and only if the following

conditions hold.

(i) 0 < u∗5 < uB,

(ii) x30 > 0, x31 > 0, x32 > 0,

(iii) x32x31 > x30.

Remark (Stability analysis of steady state E1 ). The result of this Theorem

can be applied to the analysis of stability of the endemic steady state E1 by

swapping parameter indices 1 with 2, and replacing variables u∗3 and u∗5 with

u∗2 and u∗4, respectively, as a consequence of the model symmetry. Unlike some

other models of multi-strain/multi-virus infections [Gup99, All03, Cas96],

the complexity of the model (3.4) prevents one from expressing the conditions

for stability of single-virus or co-existence equilibria in a closed form depending

only on two basic reproduction numbers.

3.4.4 Syndemic steady state

Since the syndemic steady state S cannot be found explicitly, it does not prove

possible to derive analytical conditions for stability of this steady state. Hence,
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Figure 3.2: Stability of steady states of the system (3.4) with parameters from
Table 3.1. Green and blue indicate regions where both endemic steady states E1

and E2 are feasible, but only E1 or E2 is stable, respectively. Magenta shows the
region where all three infected steady states are feasible, but only the syndemic
steady state S is stable. Yellow is the area where only E1 is feasible and stable,
whereas grey is the area where only E2 is feasible and stable. White and orange
is where the syndemic steady state is stable, whereas E1 or E2, respectively, is
also feasible (and unstable).
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Dimensionless
Parameters

Biological meaning Baseline
value

L1,2 Infection rate 1.5
s1,2 Recovery rate 0.5
d1,2 Propagation rate 0.05
a1,2 Transmissibility modifier (after secondary infection) 1
β1,2 Susceptibility modifier (after primary infection) 1
γ1,2 Acquired secondary immunity modifier 0.5
e0 Natural death rate 0.3
e1,2 Infected cell death rate 0.6
p1,2 Recovery modifier 0.2

Table 3.1: Baseline parameter values in system (3.4).

to understand how stability changes with parameters, one has to resort to nu-

merically computing the eigenvalues of the Jacobian of the linearisation of sys-

tem (3.4) near the steady state. This is presented in the next section of the

thesis.

3.5 Numerical stability analysis and simulations

Due to RNAi being a very complicated multi-component process, obtaining

accurate parameters values to be used in a mathematical model is extremely

difficult and often impractical, as some parameters cannot currently be mea-

sured, or even when they are, there is a very wide variability in the reported

values [Mel11, Lia12, Him15]. Parameter values that define viral properties

and modifiers in the context of this study are equally problematic to obtain,

as one would require virus-specific information about both the cell-to-cell and

long-distance transmission of the virus. For example, in the case of the Tobacco
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mosaic virus, the infection can on, average, spread from one cell to another every

3-4 hours depending on the strain of the virus and the temperature [Kaw04],

and although this information provides some intuition about parameter values,

it is not sufficient for estimating the actual infection rate.

To better understand the effects of different parameters on feasibility and

stability of different steady states of the system (3.4), we use Theorem 3.1 and

numerical computation of eigenvalues to identify parameter regions associated

with existence and stability of all steady states. To this end, we start with

baseline parameter values given in Table 3.1 and allow some of the parameters to

vary. Since model (3.4) has quite a large number of different parameters, below

we present the results for only some parameter combinations that illustrate the

diversity of possible scenarios, and qualitatively similar results can be obtained

when other parameters are varied. Plotting the percentages of infected cells for

each steady state in the same parameter space allows us to investigate possible

changes in the magnitude of the infected cell population between different steady

states.

Figs 3.2, 3.3 and 3.4 illustrate earlier analytical conclusions that the two en-

demic steady states E1 and E2 are only feasible and stable if the recovery/death

rates of infected cells are sufficiently low. On the other hand, one expects that

a virus can only survive if its infection rate is adequately high, as observed in

Fig. 3.2(d) and Fig. 3.4(a). If either one of the recovery/infection rates is below

or above a certain threshold, it is easy to see that the syndemic steady state

disappears, and only one of the two viruses survives. However, Figs 3.2(a), (c)

and 3.3(c), together with additional computations not shown here, suggest that

by increasing parameters a1,2, i.e the transmissibility modifiers, or the suscep-
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tibility modifiers b1,2, the system can generally move from one of the endemic

steady states to a stable syndemic equilibrium. This suggests that the most

competitive viral strain, which under different circumstances would be capable

of excluding a secondary infection, might instead facilitate the survival of a sec-

ondary strain. Cells that have been chemically altered by the immune response

to the more aggressive strain can now serve as ideal targets in which the second

strain could proliferate. Since for the fixed values of other parameters, infection

rates L1 and L2 are proportional to the two basic reproduction numbers, R01

and R02, respectively, Fig. 3.4(a) is effectively equivalent to figures demonstrat-

ing the dependence of steady states on basic reproduction numbers in two-strain

models of infectious diseases [Gup96, And97].

Figs 3.2(d) and 3.3(a) show that when one of the recovery modifiers p1,2

is increased, the system can move from the syndemic to one of the endemic

equilibria E1,2, thus behaving in a qualitatively opposite way to an increase of

the corresponding parameter pair {ai, βi}. This occurs when cells with acquired

immunity to one of the viruses are subsequently infected with another virus but

have a faster recovery. As this reduces the overall spread of the secondary

infection, it will inevitably allow the primary virus to dominate and eventually

be the sole survivor in the host. In Fig. 3.2(b) one observes that by increasing

the dimensionless warning rate d2 we can move from a parameter region where

only the endemic steady state E2 is feasible and stable (a grey region) to a region,

where the syndemic equilibrium is also stable (an orange region). This suggests

that the plant immune response to the second virus can establish conditions that

are more favourable to the first virus. Thus, in the case of a double infection, it

is possible for a viral infection to persevere in the presence of the host’s immune
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Figure 3.3: Stability of the steady states of the system (3.4) with parameters
from Table 3.1. Green and blue indicate regions where both endemic steady
states E1 and E2 are feasible, but only E1 or E2 is stable, respectively. Magenta
shows the region where all three infected steady states are feasible, but only the
syndemic steady state S is stable. Yellow is the area where only E1 is feasible
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is where the syndemic steady state is stable, and E2 is feasible but unstable.
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response despite being unable to do so as a single infection. This means that

the propagating component of the immune response plays a significant role in

the interactions between two viruses and can dictate whether both of them can

survive in a single host.

Recall that in the model (3.4), the two viruses are considered to cooperate

with each other when ai, βi > 1, have a neutral relationship when ai, βi = 1,

and “antagonize” each other when ai, βi < 1, i = 1, 2. One should also note

the existence of other more complicated scenarios as each of a1, a2, β1 and β2

can be less than, greater than or equal to one. For example, if a1, β1 > 1 and

0 < a2, β2 < 1, then, the cooperation of the two viruses will be considered

to benefit mostly the first virus, thus being unequal. On the other hand, for

a2, β2 > 1 and a1, β1 = 0, the relationship is completely one-sided in favour of

the second virus. Figs 3.5(a) and (b) suggest that the biological interactions

between different viruses may sometimes disproportionately favour one of the

viruses and decrease the potency of the second infection, that is to say that one

of the viruses experiences less spread during a co-infection when compared to

its single-virus infected steady state. This is clearly evident in Fig. (3.5)(b): for

β2 ≤ 0.87 only the first virus is present, whereas for β2 > 0.87 the system moves

into the syndemic steady state where now both viruses are able to survive, but

the first virus is not as widely spread as before. One should note that this result

comes at the cost of increasing the total number of infected cells, suggesting

that it might not always be the preferable outcome for the plant. Similarly,

Fig. (3.5)(a) shows that for small values of the transmissibility modifier a1

combined with a higher infection rate L2 > L1 (which also implies R02 > R01),

only the second virus is able to survive in the host. As the value of a1 increases,
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Figure 3.4: Stability of steady states of the system (3.4) with parameters from
Table 3.1. Green and blue indicate regions where both endemic steady states E1

and E2 are feasible, but only E1 or E2 is stable, respectively. Magenta shows the
region where all three infected steady states are feasible, but only the syndemic
steady state S is stable. Yellow is the area where only E1 is feasible and stable,
whereas grey is the area where only E2 is feasible and stable. White and orange
is where the syndemic steady state is stable, whereas E1 or E2, respectively,
is also feasible (and unstable). Black is the region where only the disease-free
steady state is feasible and stable.
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the picture changes, and the system moves to a syndemic steady state, where

not only both of the viruses are able to survive, but given sufficiently high value

of a1, the first virus can become dominant. This also suggests that increasing

ai is qualitatively interchangeable with increasing βj for j 6= i. Figs 3.5(c) and

(d) show how depending on the level of cooperation between the two viruses,

i.e for sufficiently high values of a1 and a2, it can be beneficial for the viruses to

co-exist, as they can both infect a bigger biomass of the host compared to their

respective one-virus steady states, possibly resulting in a chronic condition that

is more severe. These results show that sufficient levels of mutual cooperation

between two viruses promote their virulence and ensure that neither of them

becomes eradicated, which eventually leads to a persistent double infection with

parameter values determining the magnitude of each infection.

If the cooperation between the two viruses is unequal or one-sided, it is

possible that the least benefited virus will experience less spread compared

to its single-virus infected steady state. To investigate scenarios where both

viruses “antagonize” each other, we solve the system at ai, βi = 0.5, i = 1, 2.

One result is given in Fig. (3.6)(a), and it shows that increasing β2 decreases the

presence of the first virus, but similarly to our previous results it increases the

overall level of infection. The most interesting case is shown in Fig. (3.6)(b),

where adequately increasing the warning rate d2, not only the percentage of cells

infected with the second virus goes down, but also the total number of infected

cells is reduced. One also observes in this Figure that although the number

of cells infected with the first virus is slowly increasing, it is still at a much

lower level than what it was in the absence of the second virus, i.e, compared
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Figure 3.5: Stability of endemic and syndemic steady states of the system (3.4)
with parameter values from Table 3.1. Stable (unstable) steady states are in-
dicated by solid (dotted) lines for single-virus endemic steady states E1 (blue)
and E2 (red). The percentage of cells at the syndemic steady state is illus-
trated for virus 1 (magenta), virus 2 (green), and the total infected population
(black). (a) L1 < L2 = 2. (b) L2 < L1 = 3. (c) L1 < L2 = 2 and a2 = 2. (d)
L2 < L1 = 3, a2 = 2 and β1 = 1.5.
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Figure 3.6: Stability of endemic and syndemic steady states of the system (3.4)
with L1 < L2 = 1.6 and the other parameter values given in Table 3.1. (a)
a1,2 = β1 = 0.5. (b) a1,2 = β1,2 = 0.5 . Stable (unstable) steady states are
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103



to the steady state E1 which is now unstable. This situation represents an ideal

scenario, where inoculating the target plant with a less harmful virus or viral

strain can offer partial protection against another specific virus or strain, thus

potentially minimizing damage to the host.

To demonstrate different kinds of dynamics that can be exhibited by the

model, we have solved the system (3.4) numerically for different combinations

of parameters, and the results are presented in Fig. 3.7. Fig.e 3.7(a) shows the

solution of the model that approaches the stable syndemic steady state, with all

compartments having positive values. As mentioned earlier, from a biological

perspective this represents the cases where interactions between the two viruses

facilitate the survival of both viral species within the same host. Figs 3.7(b)

and (c) illustrate situations where one of the viruses survives, while the other

one is eradicated by the plant immune system, and Fig. 3.7(d) demonstrates

the case where the plant makes a full recovery.

3.6 Chapter conclusions

In this chapter we have derived and analysed a mathematical model of biological

interactions between two viruses and a single plant host, with particular account

for RNA interference. Our results have shown that RNA interference can pro-

vide a mechanism for cross-protection, and a co-infection can either increase

or decrease the overall potency of individual infections, illustrating how cross-

protection or cross-enhancement can occur between the two viruses. The frame-

work we developed can be directly applicable to analysis of RNAi-mediated

interactions for many combinations of plant viruses, with examples including
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Figure 3.7: Numerical simulations of the model (3.4) with parameter values
from Table 3.1. Colours represent dimensionless populations of susceptible cells
(blue), cells infected with the first (red) and second (green) virus, the total
population of cells with immunity to one or both viruses (black). (a) Stable
co-existence of viruses: a1 = 3. (b) Stable single-virus state E2: L1 = 1 and
L2 = 3. (c) Stable single-virus state E1: L1 = 2 and p2 = 3. (d) Stable
disease-free steady state EDF : s1 = 1 and L2 = 1.
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co-infections with Soybean mosaic virus and Alfalfa mosaic virus [Mal09], as

well as Abutilon mosaic virus and Cucumber mosaic virus [Weg07]. The model

can also be used to offer insight into how one could control viral diseases through

cross-protection and, by extension, through gene and antiviral therapy, where

genetically modified viruses are introduced to the host. Unlike the wild type

strains, these modified viruses can be engineered to deliver specific therapeutic

siRNA, which through the process of RNA interference would trigger an im-

mune response, thus acting as a powerful vaccination strategy [Sil02, Cap04,

Soi07].

To achieve greater biological realism, we have assumed that the new plant

growth depends on the availability of healthy cells which can be impeded once

the plant becomes infected. Stability analysis of the steady states has demon-

strated the significance of different parameters of the model and showed how

they dictate the dynamical behaviour exhibited by the system.

One should note that in the current model it is impossible for all cell popu-

lations to die, as there will always be some new growth taking place to replace

the parts of the plant that are lost either naturally or due to infections. This is

true despite the growth penalty introduced by allocating some of the resources

to infected parts of the plant. Even if a plant were to experience a severe case

of stunting, it would be highly unlikely that every healthy cell would become

infected and therefore, lead to the death of the plant. Although our model

cannot capture this scenario, realistically, such events do occur quite rarely in

nature depending also on the environmental and host conditions at the time of

infection [Sut99, Ger06].

Stability of the disease-free equilibrium and the feasibility of the two single-
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virus endemic steady states depend on the two basic reproduction numbers R01

and R02. In the model these quantities are represented as functions of only

the rates of infection, recovery and death of infected cells for each strain, but

they are not affected by the propagating component of the immune response.

This suggests that a faster mobile signal can at best help the plant to recover

faster (as determined by the above-mentioned factors), but, by itself it is not

sufficient for a recovery. However, this picture changes when the stability of the

syndemic steady state is considered. The results show that the warning signal

plays a significant role in determining whether both viruses can persist simul-

taneously, and as such, it controls situations where the plant is able to support

some constant level of both infections. Due to the nature of the RNA warning

(silencing) signal, the immunological relation of the two viruses is paramount

in determining the outcome of a double infection. That is to say that viruses

of similar genomes are most likely to trigger the same immunological response

by the plant. If the two viruses are sufficiently immunologically related, then

the viral dsRNA produced during their viral replication will contain a number

of identical segments which will be used to initialize the RNA interference pro-

cess. As such, the immune response trigged by a primary infection with a less

virulent strain could induce a sufficient response against a secondary strain. In

such a case our results shown that the least harmful of the two viruses becomes

dominant, and the plant experiences a degree of cross-protection which may

sometimes result in the increased total population of infected cells.

Analysis of the model has demonstrated that the total population of infected

cells during a co-infection can sometimes, but not always, be higher than during

a single infection, for which there are two possible explanations. One possibility
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is that the two different infections simply increase the overall rate of infection.

Another aspect is that the two viruses only have to compete for susceptible cells,

as there is a source of cells that might be exclusively available to each of the

viruses, i.e. cells that have acquired immunity to one virus may be less or more

susceptible to the other virus. Our results have shown that when two viruses

“antagonize” each other, i.e. ai, βi < 1, for sufficiently high warning rates, not

only can one minimize the spread of a specific virus, but the overall infection

can also be reduced. Hence, depending on the virulence of the two strains, one

might choose to either avoid the introduction of a secondary viruses, or instead

use it in order to produce the more favourable outcome.

If the two viruses are immunologically unrelated and co-infecting the same

plant, they can indirectly promote each other by inadvertently making cells

they can no longer infect more susceptible to the other virus. Hence, despite

the fact that both viruses are effectively competing for the same resource, there

is always some exclusive source of potential cells in which the infection could

survive, with the potency of individual infections strongly dependent on the

interaction between the two viruses. Another important result is that the syn-

demic steady state can potentially be stable in parameter regions where only

one of the endemic steady states is feasible, implying that a secondary virus can

only survive when another infection is present.

108



Chapter 4

Intracellular RNA interference

4.1 Introduction

In this chapter we consider a mathematical model of RNAi with particular

emphasis on time delays associated with two aspects of primed amplification:

binding of siRNA to aberrant RNA, and binding of siRNA to mRNA, both

of which result in the expanded production of dsRNA responsible for RNA si-

lencing. Analytical and numerical stability analyses are performed to identify

regions of stability of different steady states and to determine conditions on

parameters that lead to instability. Our results will show that while the origi-

nal model without time delays exhibits a bi-stability due to the presence of a

hysteresis loop, under the influence of time delays, one of the two steady states

with the smallest or highest concentration of mRNA can actually lose its sta-

bility via a Hopf bifurcation. This leads to the co-existence of a stable steady

state and a stable periodic orbit, which has a profound effect on the dynamics

of the system.
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4.2 Model derivation

To analyse the dynamics of RNAi with primed amplification, following Groenen-

boom et al. [Gro05] we consider the populations of mRNA, dsRNA, siRNA

and garbage (aberrant) RNA, to be denoted by M(t), D(t), S(t) and G(t),

respectively. It is assumed that mRNA is constantly transcribed by each trans-

gene at rate h, with n1 being the number of transgenic copies, and is degraded

at the rate dm. For simplicity, it will be assumed that each transgene produces

the same amount of mRNA. Some dsRNA is synthesized directly from mRNA

through the activity of RdRp at a rate p. The available dsRNA is cleaved by a

dicer enzyme into n2 siRNA molecules at a rate a. In this model it is assumed

that siRNA is involved into forming two distinct complexes that use the siRNA

as a guide to identify and associate with different categories of RNA strands

to initiate the dsRNA synthesis. The first is the RISC complex responsible for

degrading mRNA into garbage RNA, which decays naturally at a rate dg > dm.

For simplicity, the RISC population is not explicitly included in the model, but

it is rather assumed that siRNA directly associates with mRNA at a rate b1.

The second complex guided by siRNA binds mRNA and aberrant (garbage)

RNA, and subsequently is primed by RdRp to synthesize additional dsRNA

(primed amplification). To avoid unnecessary complexity, the second complex

will also be represented implicitly by assuming that siRNA directly associates

with mRNA and garbage RNA for the purpose of dsRNA synthesis at the rates

b2 and b3, respectively. At this point, we include two distinct time delays τ1 and

τ2 to represent the delays inherent in the production of dsRNA from mRNA

and garbage RNA, respectively. With these assumptions, the system describing
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the dynamics of different RNA populations takes the form

dM

dt
= n1h− dmM(t)− pM(t)− b1S(t)M(t)− b2S(t)M(t),

dD

dt
= pM(t)− aD(t) + b2S(t− τ1)M(t− τ1) + b3S(t− τ2)G(t− τ2),

dS

dt
= n2aD(t)− dsS(t)− b1S(t)M(t)− b2S(t)M(t)− b3S(t)G(t),

dG

dt
= n3b1S(t)M(t)− dgG(t)− b3S(t)G(t),

(4.1)

with the initial conditions

M(s) = M0(s) ≥ 0, s ∈ [−τ1, 0], G(s) = G0(s) ≥ 0, s ∈ [−τ2, 0],

S(s) = S0(s) ≥ 0, s ∈ [−τ, 0], τ = max{τ1, τ2}, D(0) ≥ 0.

(4.2)

Before proceeding with the analysis of the model (4.1), we have to establish

that this system is well-posed, i.e. its solutions are non-negative and bounded.

Theorem 4.2.1 (Positivity of solutions). Solutions M(t), D(t), S(t), G(t) of

the system (4.1) with the initial conditions (4.2), are non-negative for all t ≥ 0.

This result can be proven using standard techniques, or, alternatively, it follows

from Theorem 5.2.1 in [Smi95] (see Theorem A.0.2). As a next step, we look

at boundedness of solutions.

Theorem 4.2.2 (Boundedness of solutions). Suppose there exists a time T > 0,

such that the solution D(t) of the model (4.1) satisfies the condition D(t) ≤ D̂
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for all t ≥ T with D̂ > 0. Then, the solutions M(t), S(t), G(t) of the model

(4.1) are bounded for all t ≥ T .

Proof. Suppose t ≥ T . Then, the third equation of the system (4.1) can be

recast in the form
dS

dt
≤ n2aD̂ − dsS(t).

By the comparison theorem (see Theorem A.0.1) one then has

S(t) ≤ n2aD̂

ds

(
1− e−dst

)
+ S(0)e−dst ≤ Ŝ =

n2aD̂

ds
+ S(0),

which implies that S(t) is bounded for t ≥ T . Using the non-negativity of

solutions, one can rewrite the first equation of the system (4.1) in the form

dM

dt
≤ n1h− (dm + p)M(t) =⇒ M(t) ≤ M̂ =

n1h

dm + p
+M(0),

which shows that M(t) is also bounded for t ≥ T . Finally, the last equation of

(4.1) can now be rewritten as follows

dG

dt
≤ n3b1ŜM̂ − dgG(t) =⇒ G(t) ≤ Ĝ =

n3b1ŜM̂

dg
+G(0).

Hence, one concludes the existence of upper bounds Ŝ, M̂ and Ĝ, such that

S(t) ≤ Ŝ, M(t) ≤ M̂ and G(t) ≤ Ĝ for all t ≥ T , which concludes the proof.

�
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Parameter Biological meaning Value Units

dm mRNA decay rate 0.14 hr−1 (half life
5h)

ds siRNA decay rate 2 hr−1 (half life 21
min)

dg Garbage RNA decay rate 2.8 hr−1 (half life 15
min)

h mRNA transcription rate 160 hr−1 cell−1

p Rate of dsRNA synthesis from RNA 0.002 hr−1

a Rate of dsRNA cleavage by dicer 2 hr−1

b1 Rate of RISC-mRNA complex formation 8× 10−4 cell mol−1 hr−1

b2 Rate of RdRp-mRNA complex formation 8× 10−5 cell mol−1 hr−1

b3 Rate of RdRp-garbage complex formation 9× 10−4 cell mol−1 hr−1

n1 Transgene copy number 1
n2 Yield of siRNA per cleaved dsRNA 10
n3 Yield of garbage RNA from degraded mRNA 1
τ1 Delay in dsRNA synthesis from mRNA 0
τ2 Delay in dsRNA synthesis from aberrant RNA 0

Table 4.1: Baseline parameter values for the system (4.1).The majority of the
parameter values are taken from [Gro05].

4.3 Steady states and their feasibility

Steady states of the system (4.1) are given by non-negative roots of the following

system of algebraic equations

n1h− dmM − pM − b1SM − b2SM = 0,

pM − aD + b2SM + b3SG = 0,

n2aD − dsS − b1SM − b2SM − b3SG = 0,

n3b1SM − dgG− b3SG = 0.

(4.3)

It is straightforward to see that the system (4.3) does not admit solutions with

M = 0, as this would immediately violate the first equation due to the presence
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of the constant transcription of mRNA. Substituting S = 0 into the third equa-

tion implies D = 0, and due to the second equation this then implies M = 0,

which is impossible. Hence, there can be no steady states with either D or

S being zero. Similarly, if G = 0, the last equation implies SM = 0 which

again is not possible. Thus, the system can only exhibit steady states where all

components are non-zero.

Let us introduce the following auxiliary parameters

b = b1 + b2, ĥ = n1h. (4.4)

Assuming S∗ ≥ 0, one can solve the first equation of (4.3) to obtain

M∗ = M(S∗) =
ĥ

p+ dm + bS∗
> 0. (4.5)

Adding the second and the third equations of the system (4.3) gives

D∗ = D(S∗) =
bdsS

∗2 + (ĥb1 + pds + dmds)S
∗ − ph

a[p+ dm + bS∗](n2 − 1)
. (4.6)

One should note that for S∗ ≥ 0 and n2 ≥ 1, D∗ ≥ 0 if and only if the following

condition holds

bdsS
∗2 + (b1hĥ+ dmds + dsp)zS

∗ − hp > 0, (4.7)

which implies that S∗ must satisfy

S∗ ≥ Smin =
−z +

√
4 bdsph+ z2

2bds
,where z = b1hĥ+ dmds + dsp. (4.8)
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From the last equation of the system (4.3) and using the expression for M from

(4.5), we obtain

G∗ = G(S∗) =
ĥn3b1S

∗

(p+ dm + bS∗)(b3S∗ + dg)
> 0. (4.9)

Substituting these values back into the third equation of the system (4.3), one

obtains the following cubic equation for S∗

Q(S∗) = α3S
∗3 + α2S

∗2 + α1S
∗ + α0 = 0, (4.10)

where

α0 = −ĥpdgn2 < 0, α3 = bb3ds > 0,

α1 = ĥ[dgb− n2(pb3 + dgb2)] + dgds(p+ dm),

α2 = ĥ[b1b3(1 + n3 − n2n3) + b2b3(1− n2)] + b3ds(p+ dm) + bdgds.

Due to the fact that α0 < 0 and α3 > 0, the cubic Q(S∗) has at least one

positive real root for any ni ≥ 1, i = 1, 2, 3. In fact, by using the Descartes’s

rule of signs one can deduce that this cubic has exactly one positive and two

negative roots, with the exception of α2 < 0 and α1 > 0, when it admits three

positive roots. Hence, to identify which of these three roots are real, we need

to determine the extrema of Q(S∗). Differentiating Q(S∗) with respect to S∗

and setting the resulting expression to zero, we find that the local minimum of

Q(S∗) is given by

S̃ =
2|α2|+ [4α2

2 − 12α3α1]
1/2

6α3

> 0. (4.11)
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Let us introduce a set S = {S : Q(S) = 0, S ∈ R+} ∩ {S ≥ Smin} of all positive

real roots ofQ(S∗), which are also greater than Smin. We then have the following

result.

Theorem 4.3.1 (Number of feasible steady states). Let M∗, D∗, G∗, Q(S∗),

Smin, S̃ and S be defined as above. Given any S∗ ∈ S with |S| = k, the system

(4.1) admits the steady states Ej = (M∗, D∗, S∗, G∗), j = 1, ..., k. There is only

a single feasible steady state if either of the following conditions holds:

(i) α2 > 0,

(ii) α2,1 < 0,

(iii) α1 > 0, α2 < 0 and Q(S̃) > 0,

and up to three feasible steady states if Q(S̃) ≤ 0, α2
2 > 3α3α1, α1 > 0 and

α2 < 0.

4.4 Stability analysis

Linearisation of the delayed system (4.1) around the steady state E = (M∗, D∗, S∗, R∗)

yields the following characteristic equation

P (λ) = p4λ
4 + p3λ

3 + p2λ
2 + p1λ+ p0 = 0, (4.12)

where the coefficients pi, which are functions of λ, are defined by

p0 = p03S
3 + p02S

2 + p01S + p10, p1 = p13S
3 + p12S

2 + p11S + p10, p4 = MS,

p2 = p22S
2 + p21S + p20, p3 = b3MS2 + [(a+ dg)M + n1h]S + an2DM,
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with

p20 = an2D[n1h+M(a+ dg)], p22 = n1hb3 +M(ab3 − b2M),

p21 = −ab2n2T1M
2 + [(b3dg − ab3n2T2)G+ ab3n2D + adg]M + (a+ dg)n1h,

and

p10 = an2D[adgM + n1h(a+ dg)], p13 = −M2bb3 (b1n3 + b) ,

p11 = n2a(bp− b2dgT1)M2 + a[n2(ab3D − n1hb2T1) + b3dgG(1− 2n2T2)]M

+n1h[an2b3(D − T2G) + dg(a+ b3G)],

p12 = ahb3n1 +
[
ab2n2T1(b− b3)− b2(a+ dg)

]
M2 − ab3

2n2T2GM,

p00 = n1n2ahdgD, p03 = −bb3M
2[n3b1(1− n2T2) + b− b2n2T1],

p01 = an1n2h[ab3D − dg(2b3T2G+ b2T1M)] + adg(n2pbM
2 + n1hb3G),

p02 = bM2(pn2b3 + n2b2dgT1 − bdg)− n1n2hb3(b2T1M + b3T2G),

and for convenience of notation we note that (M,D, S,R) = (M∗, D∗, S∗, R∗)

and introduced auxiliary parameters Ti = e−λτi , i = 1, 2. In the case of in-

stantaneous primed amplification, i.e. for T1,2 = 1 in (4.12), any steady state

(M∗, S∗, D∗, G∗) defined in Theorem 4.3.1 is linearly asymptotically stable,

if the appropriate Routh-Hurwitz conditions are satisfied, i.e if p0, . . . , p4 > 0,

p3p2 > p1p4, and p3p2p1 > p4p
2
1 + p2

3p0.
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4.4.1 Primed amplification with small delays

First we consider the situation where primed amplification delays are small

τi � 1, which means one can use the approximation Ti = e−λτi ≈ 1− λτi. This

allows us to rewrite the characteristic equation as a simple quartic

R(λ, τ1, τ2) = λ4 + r3λ
3 + r2λ

2 + r1λ+ r0 = 0, (4.13)

where the coefficients are given by

r0 = ab1b3n3[b(n2 − 1)MS − n2ĥ] + r01M
2SG−1 + r02G

−1 + r03GM
−1,

r1 = r11M
2 + r12M + r13S + r14 − ab3dg(n2 − 1)G+ aĥn2(b1n3DG

−1 − b2),

r2 = r21S + r22M + r23G− aĥ(n2τ2b3G+ 1)M−1 + an2D(aM + ĥ)M−1,

r3 = ab3n2τ2G+ τ1ab2n2M + n3b1SMG−1 + an2DS
−1 + aĥM−1,

with

r01 = abb1n3[pn2 + (b2n2 − b)S], r02 = aĥb1n2n3(aD − b2SM),

r03 = aĥb3dg(1− n2),
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and

r11 = −n3b1S
(
Sabb2n2τ1 + Sb2 + ab2n2

)
G−1,

r12 = −bb1b3n3 (an2τ2 + 1)S2 +
[
bb2an2(−ĥb1τ1b2n3G

−1 − b1b3n3 − ab2)
]
S

+an2

(
ab1n3DG

−1 + bp
)
, r13 = aĥb1n3(n2τ2b3 +G−1),

r14 = ĥ(a2n2DM
−1S−1 + b3dgGM

−1)− an2ĥb3(1− dgτ2)GM−1,

r21 = ab1n2n3M
(
τ1b2MG−1+τ2b3

)
+
(
ab1n3G

−1−τ1abb2n2−b2
)
M+b1n3ĥG

−1,

r22 = ab1n2n3DG
−1 − ab2n2, r23 = b3 (adgn2τ2 − an2 + dg)G.

Using the Routh-Hurwitz criteria and the Hopf bifurcation theorem we deduce

that a Hopf bifurcation occurs for τ1 = τ ∗1 , when the following conditions are

satisfied

rn > 0, for all n = 0, ..., 3,

r3r2 > r1,

r3r2r1 = r2
1 + r2

3r0.

(4.14)

Introducing an auxiliary parameter q2 = r1/r3, the third condition in (4.14) can

be rewritten in the form

r0 = r2

(
r1

r3

)
−
(
r1

r3

)2

= q2(r2 − q2),
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and, hence, the characteristic equation (4.13) at the Hopf bifurcation point

turns into

λ4 + r3λ
3 + r2λ

2 + q2r3λ+ q2(r2 − q2) = 0. (4.15)

It is known that any 4th-order polynomial with purely imaginary roots can be

written in the form

(x2 + δ)(x2 + βx+ γ) = x4 + βx3 + (δ + γ)x2 + δβx+ δγ. (4.16)

Comparing this expression with (4.13) and identifying specific coefficients as

δ = q2 > 0, β = r3 > 0 and γ = r2 − q2 > 0, it follows that the roots of R are

given by

λ1,2(τ ∗1 ) = ±i
√
δ = ±iq,

λ3,4(τ ∗1 ) = −r3 ±
[
r2

3 − 4(r2 − q2)
]1/2

.
(4.17)

Differentiating equation (4.15) with respect to τ1 yields

dλ

dτ1

= − r′3λ
3 + r′2λ

2 + r′1λ

4λ3 + 3r3λ2 + 2r2λ+ q2r3

, (4.18)

where

r′1 = −abb1b2n2n3MS
(
MS + ĥb2

)
G−1,

r′2 = ab2n2SM(b1n3MG−1 − 1), r′3 = ab2n2M.

(4.19)
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Evaluating this derivative at τ1 = τ ∗1 , for which λ1,2(τ ∗1 ) = ±iq, gives

dλ1,2(τ ∗1 )

dτ1

=
r′2q

2 ± iq(r′3q2 − r′1)

−2q2r3 ± 2iq(r2 − 2q2)
=
A± iB
C ± iD

=
(AC +BD)± i(BC − AD)

C2 +D2
.

(4.20)

Hence, we obtain

d Re[λ1,2(τ ∗1 )]

dτ1

=
AC +BD

C2 +D2
=

2q3Z(τ2)

C2 +D2
, (4.21)

where

Z(τ2) = (r′3q
2 − r′1)(r2 − 2q2)− qr′2r3, (4.22)

and, therefore,

sign

(
d Re[λ(τ ∗1 )]

dτ1

)
= sign[Z(τ2)].

This gives the following result.

Theorem 4.4.1 (Critical time delay for Hopf Bifurcation when delays are suf-

ficiently small.). Suppose τ1,2 � 1 and Z(τ2) is given by (4.22). Let the coeffi-

cients of the characteristic equation (4.15) satisfy rn > 0, n = 0, ..., 3, r3r2 > r1

and r3r2r1 > r2
1 +r2

3r0. If Z(τ2) > 0, then the steady state E of the system (4.1)

undergoes a Hopf bifurcation at τ1 = τ ∗1 .

Remark (Hopf bifurcation criteria for steady state E). A similar argument can

be used to establish Hopf bifurcation of the steady state E for a fixed value of τ1

and some critical value of the time delay τ2 = τ ∗2 .
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4.4.2 Single primed amplification delay

As a next case, we consider a situation where one of the primed amplification

time delays is negligibly small compared to other timescales of the model, so

that that part of the amplification pathway can be considered to take place

instantaneously. Formally, this can be represented by τn > 0 for some n = 1, 2,

with τm = 0 for m 6= n. In this case, analysis of the distribution of roots of the

characteristic equation follows the methodology of [Rua01]. The first step is

to rewrite the characteristic equation (4.12) in the form

λ4+αλ3+(β1T1+β2T2+β3)λ2+(γ1T1+γ2T2+γ3)λ+(δ1T1+δ2T2+δ3) = 0, (4.23)
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where

α = b1n3MSG−1 + an2DS
−1 + a+ ĥM−1,

β1 = −ab2n2M, β2 = −an2b3G,

β3 =
ab1n3(n2D + S)M

G
+
an2(aM + ĥ)D

MS
+
ĥ(b1n3SM + aG)

MG
−b2SM+b3dgG,

γ1 = ab2n2[(bG− b1n3)SMG−1 − ĥ], γ2 = −an2b3[b1n3SM + (dg + ĥM−1)G],

γ3 = bb1n3MS2(b3 + bMG−1) + an2D[b1n3G
−1(a+ ĥ) + aĥG−1M−1]

+ĥ(ab1n3SG
−1 + b3dgGM

−1) + a[b3dgG+M(b2S + bpn2)],

δ1 = ab1b2n2n3MS(bSM − ĥ)G−1, δ2 = an2b3[b1n3S(bMS − ĥ)− ĥdgGM−1],

δ3 = abb1n3MS[pn2MG−1 − S(b3 + bMG−1)] + aĥ(ab1n2n3G
−1 + b3dgGM

−1).

If one of the delays τm is zero, we have

λ4 + αλ3 + (βnTn + β̂m)λ2 + (γnTn + γ̂m)λ+ (δnTn + δ̂m) = 0, (4.24)

where

β̂m = βm + β3, γ̂m = γm + γ3, δ̂m = δm + δ3.

To investigate whether this equation can have purely imaginary roots, we sub-

stitute λ = iω with some ω > 0 and separate real and imaginary parts, which
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yields the following system of equations

ωγn sin(ωτn) + (δn − ω2βn) cos(ωτn) = ω2(β̂m − ω2)− δ̂m,

ωγn cos(ωτn)− (δn − ω2βn) sin(ωτn) = ω(αω2 − γ̂m).
(4.25)

Squaring and adding these two equations gives the equation for the Hopf fre-

quency ω

h(v) = v4 + c3v
3 + c2v

2 + c1v + c0 = 0, v = ω2, (4.26)

with

c0 = δ̂2
m − δ2

n, c1 = 2(βnδn − β̂mδ̂m) + γ̂2
m − γ2

n,

c2 = 2(δ̂m − αγ̂m) + β̂2
m − β2

n, c3 = α2 − 2β̂m.

Without loss of generality, let us assume that the equation (4.26) has four

distinct positive roots denoted by v1, v2, v3 and v4. This implies that the

equation (4.24) in turn has four purely imaginary roots λ = iωk, k = 1, ..., 4,

where

ω1 =
√
v1, ω2 =

√
v2, ω3 =

√
v3, ω4 =

√
v4. (4.27)

With the help of auxiliary parameters

F1 = wωγn, F2 = δn − w2βn, H1 = w2(β̂m − w2)− δ̂m, H2 = w(aw2 − γ̂m),
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one can rewrite the system (4.25) in the form

F1 sin(wτn) + F2 cos(wτn) = H1,

F1 cos(wτn)− F2 sin(wτn) = H2.
(4.28)

From this system we obtain

tan(wτn) =
F1H1 − F2H2

H1F2 +H2F1

, (4.29)

which gives the values of the critical time τn for each k = 1, ..., 4, and any j ∈ N

as

τ
(j)
n,k =

1

ωk

[
(j − 1)π+

arctan

(
(αβn − γn)ω5

k + (β̂mγn − αδn − γ̂mβn)ω3
k + (γ̂mδn − δ̂mγn)

βnω6
k + (αγn − β̂mβn − δn)ω4

k + (β̂mδn + δ̂mβn − γ̂mγn)ω2
k − δ̂mδn

)]
.

(4.30)

This allows us to define the following:

τ ∗n = τ
(j0)
n,k0

= min
1≤k≤4, j≥1

{τ (j)
n,k}, ω0 = ωk0 . (4.31)

In order to establish whether the steady state Ej, j = 1, 2, 3, actually

undergoes a Hopf bifurcation at τn = τ ∗n, one has to compute the sign of

d[Reλ(τ ∗n)]/dτn. Differentiating the equation (4.24) with respect to τn yields

(
dλ

dτn

)−1

=
(4λ3 + 3αλ2 + 2β̂mλ+ γ̂m)eλτn + 2βnλ+ γn

λ(βnλ2 + γnλ+ δn)
− τn
λ
.
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Introducing the notation U = ω2
0[ω2

0γ
2
n + (δn − βnω2

0)2], it is clear that U > 0

for all ω0 > 0, and

(
dReλ(τ ∗n)

dτn

)−1

=
1

U

A cos(w0τn) +B sin(w0τn)︸ ︷︷ ︸
:=Γ

+2βnw
2
0(δi − βnw2

0)− γ2
nw

2
0

,
(4.32)

where

A = 2ω2
0(β̂m − 2ω2

0)F2 + ω0(3αω2
0 − γ̂m)F1,

B = −ω0(3αω2
0 − γ̂m)F2 + 2ω2

0(β̂m − 2ω2
0)F1,

Γ = 2ω2
0(β̂m − 2ω2

0)H1 + ω0(3αω2
0 − γ̂m)H2.

Consequently, with v0 = w0
2 one can write d[Reλ(τ ∗n)]/dτn as follows

(
dReλ(τ ∗n)

dτn

)−1

=
1

U

[
4w0

8 + 3c3w0
6 + 2c2w0

4 + c1w0
2
]

=
1

U

[
4v0

4 + 3c3v0
3 + 2c2v0

2 + c1v0

]
=
v0

U
h′(v0),

(4.33)

where h(v) is defined in (4.26). Since v0 = w0
2 > 0, this implies

sign

(
dReλ(τn

∗)

dτn

)
= sign

[(
dReλ(τn

∗)

dτn

)−1
]

= sign

[
v0h

′(v0)

U

]
= sign [h′(v0)] .

We can therefore conclude the following result.
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Theorem 4.4.2. Let the coefficients of the characteristic equation at the steady

state Ej, j = 1, 2, 3 with τ1,2 = 0, be given by (4.12). Suppose these coefficients

satisfy the Routh-Hurwitz criteria, namely, p0, . . . , p4 > 0, p3p2 > p1p4, and

p3p2p1 > p4p
2
1 + p2

3p0. Additionally, let ω0 and τ ∗n, n = 1, 2 be defined as in

(4.31) with h′(ω2
0) > 0 where τm = 0 for m 6= n . Then, the steady state Ej

of the system (4.1) is stable for τn < τ ∗n, unstable for τn > τ ∗n and undergoes a

Hopf bifurcation at τn = τ ∗n.

Remark (Required condition for Theorem 4.4.2 ). The theorem above only holds

if the quartic (4.26) has at least one positive real root, e.g this is guaranteed in

the special case for c0 < 0. However, when c0 ≥ 0, it is impractical to talk about

the analytical distribution of roots. Hence, one would have to compute the roots

numerically in order to verify the assumptions needed to apply the theorem.

4.4.3 Garbage- and mRNA-associated amplification de-

lays are non-zero

Let us now consider the most complex situation where both time delays τ1

and τ2 associated with the primed amplification are positive. In this case the

characteristic equation (4.12) can be rearranged into the following equation

σ(λ) = σ0(λ) + σ1(λ)e−λτ1 + σ2(λ)e−λτ2 = 0, (4.34)
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where

σ0 = [σ01(λ+ dg) + σ02](λ+ a) + abpn2SM
2(λ+ dg),

σ1 = ab2n2MS(b3S + λ+ dg)(bMS − λM − ĥ),

σ2 = −ab3n2S
[
−bb1n3M

2S2 + (b3S + λ+ 2 dg) (λM + ĥ)G
]
,

σ01 = −S2M2 +
(
Daλn2 + Sλ2

)
M + ĥλS + aĥn2D,

σ02 = −bb3(b1n3 + b)M2 + b3(an2D + dgG)(λM + ĥ)S + b3λ(λM + ĥS)S2.

To analyse the distribution of roots of the equation (4.34) we follow the method-

ology introduced by Gu et al. [Gu05]. Let T denote the stability crossing curves

which is the set of all the crossing points (τ1, τ2) ∈ R2
+, for which the character-

istic polynomial σ(λ) has at least one purely imaginary root. Introducing the

parametrisation

δj(λ) =
σj(λ)

σ0(λ)
, j = 1, 2, (4.35)

the equation (4.34) transforms into

δ(λ, τ1, τ2) = 1 + δ1(λ)e−λτ1 + δ2(λ)e−λτ2 = 0. (4.36)

It is important to note that this parametrisation is only valid as long as σ0 does

not have any imaginary zeros. Hence, by Proposition 3.1 in [Gu05], for each

ω 6= 0, λ = iω is a solution of σ(λ, τ1, τ2) = 0 for some (τ1, τ2) ∈ R2
+ if and only

if
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(i) Given σ0(iω) 6= 0,

|δ1(iω)|+ |δ2(iω)| ≥ 1,

−1 ≤|δ1(iω)| − |δ2(iω)| ≤ 1.
(4.37)

(ii) Given σ0(iω) = 0,

|σ1(iω)| = |σ2(iω)|. (4.38)

Let Ω denote the crossing set, i.e the set of all ω > 0 which satisfy the conditions

(i),(ii) above. This set consists of N intervals with a finite length. Moreover,

if the intervals are ordered such that the left-end point of Ωk is an increasing

function of k, k = 1, 2, ..., N , then we have that

Ω =
N⋃
k=1

Ωk. (4.39)

Thus, for any given ω ∈ Ω satisfying σj(iω) 6= 0, j = 0, 1, 2, the critical time

delay pairs satisfying σ(λ, τ1, τ2) = 0 with λ = iω are given by

(τ ∗1 , τ
∗
2 ) ∈ T = {Tω|ω ∈ Ω} ,

Tω =

 ⋃
u≥u+0 ,v≥v

+
0

T +
ω,u,v

 ∪
 ⋃
u≥u−0 ,v≥v

−
0

T −ω,u,v

 ,

(4.40)

where

T ±ω,u,v =
{

(τu±1 , τ v±2 )
}
, (4.41)
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with

τ1 = τu±1 (ω) =
Arg[δ1(iω)] + (2u− 1)π ± θ1

ω
≥ 0, u = u±0 , u

±
0 + 1, u±0 + 2, ...

τ2 = τ v±2 (ω) =
Arg[δ2(iω)] + (2v − 1)π ∓ θ2

ω
≥ 0, v = v±0 , v

±
0 + 1, v±0 + 2, ...

(4.42)

and the angles θ1,2 ∈ [0, π] are computed as follows

θ1 = arccos

(
1 + |δ1(iω)|2 − |δ2(iω)|2

2|δ1(iω)|

)
,

θ2 = arccos

(
1 + |δ2(iω)|2 − |δ1(iω)|2

2|δ2(iω)|

)
,

(4.43)

and u±0 and v±0 are the smallest possible integers for which the corresponding de-

lays τ
u±0 ±
1 , τ

v±0 ±
2 are non-negative. These stability crossing curves are illustrated

in Figure 4.7.

4.5 Numerical stability analysis and simulations

In order to understand the effects of different parameters on feasibility and

stability of different steady states, and, investigate the role of the time delays

associated with primed amplification, we have used a pseudospectral method

implemented in a traceDDE suite for MATLAB [Bre06] to numerically compute

the eigenvalues of the characteristic equation (4.34). Since RNA interference

is a very complex multi-component process, many parameter values are case-

specific and hard to obtain experimentally [Mel11, Lia12, Him15], hence

rather than focus on a specific set of parameters, we perform an extensive
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bifurcation analysis to illustrate all the different types of dynamical behavior

that the model (4.1) can exhibit.

Figure 4.1: Stability of the steady states E1, E2 and E3 depending on the rate
b1 and the number of transgenes n1, with other parameter values taken from
Table 4.1.

Fig. 4.1(b) and Figs. 4.4(a)-(b) show that if the rate b1, at which the RISC-

mRNA complex is formed, is sufficiently small, then only a single steady state

E1−3 is feasible, and it is stable for small or high numbers of transgenes, and

unstable for intermediate values of n1. As the value of b1 increases, the sys-

tem acquires an additional feasible steady state E2 with an intermediate level

of mRNA, which is always unstable, thus creating a region of bi-stability, as
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shown in Figs. 4.1(c) and (d). In fact, the range of values of transgenes n1,

for which the bi-stability is observed, itself increases with b1, which means that

if the RISC complexes are more efficient in cleaving mRNA, it is possible to

have the stable states with high and low values of mRNA for higher and lower

numbers of transgenes. A very interesting and counter-intuitive observation

from Figs. 4.1(c) and (d) is that the actual values of the steady state mRNA

concentration are also growing with b1. One possible explanation for this is that

the reduced availability of mRNA means that a smaller amount of it can be di-

rectly used to synthesize dsRNA, as described by the pM(t) term in the second

equation of (4.1), and more mRNA is directly degraded into the garbage RNA,

thus generating a smaller feedback loop in the model for sufficient silencing to

occur.

132



Figure 4.2: Stability of the steady states E1, E2 and E3 depending on the rate b2

and the number of transgenes n1, with other parameter values from Table 4.1.
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Figure 4.3: Stability of the steady states E1, E2 and E3 depending on the rate b3

and the number of transgenes n1, with other parameter values from Table 4.1.

When one considers the effect of varying the rate b2 of forming RdRp-mRNA

complexes, the behaviour is qualitatively different in that increasing b2 leads to

the reduction in the size of the bi-stability region, and for sufficiently high values

of b2, the intermediate steady state E2 completely disappears, and the system

possesses a single feasible steady state E1−3, which is stable for low and high

numbers of transgenes, and unstable for intermediate values of n1, as shown

in Figs. 4.2 and 4.4(c)-(d). Increasing the rate b2 leads to a decrease in the

maximum values that can be attained by the mRNA concentration.
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Figure 4.4: Regions of feasibility and stability of different steady with parameter
values from Table 4.1.
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Similar behaviour is observed in Fig. 4.3, where the rate b3 of forming RdRP-

garbage complexes is varied. Increasing this rate b3 results in a reduced region

of bi-stability and smaller values of the maximum mRNA concentration, but

at the same time, it does not result in the complete disappearance of the bi-

stability region, as was the case when the rate b2 was varied. This behaviour is

better observed in Fig. 4.4(e)-(f).

Comparing the influence of the rate p, at which dsRNA is synthesised di-

rectly from the mRNA to the number of siRNA n2 produced by Dicer per

cleaved dsRNA, one can notice that for sufficiently small n2 and p, only the

steady state E3 is feasible and stable, and therefore, the strength of RNA silenc-

ing is severely limited, with a relatively high concentration of mRNA surviving,

as illustrated in Figs. 4.5(a)-(b). This lies in agreement with experimental ob-

servations in which plants that carry a mutation in RdRp cannot synthesize

trigger-dsRNA directly from mRNA and thus, fail to induce transgene induced

silencing [Dal00], but like mammals who do not carry RdRp, might experience

transient silencing [Cap01]. Increasing p reduces the range of n2 values, for

which bi-stability occurs, and eventually it leads to the complete disappear-

ance of the intermediate steady state E2. For higher value of p, the state E1−3

can exhibit instability in a small range of n2 values, and for even higher rates

of dsRNA production, this steady state is always stable, thus signifying that

gene silencing has been achieved. From a biological perspective, this should be

expected, as by increasing p, more mRNA can be used for dsRNA synthesis,

which is then used for the production of siRNA, which in turn amplifies the

process even further. This is consistent with experimental observations which

show that strains of the fungus Neurospora crassa, which overexpress RdRp, are
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Figure 4.5: Regions of feasibility and stability of different steady with parameter
values from Table 4.1.
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able to progressively carry fewer transgenes without reverting back to their wild

type. As such, even a single transgene is sufficient to induce gene silencing and

therefore preserve the phenotypic stability of the species. [For04]. When one

considers the relative effects of the degradation rates of mRNA dm and garbage

RNA dg, it becomes clear that if the mRNA decays quite slowly, while garbage

RNA decays fast, in a certain range of dg values the system does not converge to

any steady states but rather exhibits a limit cycle, as shown in Figs. 4.5(a)-(b).

As the rate of mRNA degradation is increased, this reduces the range of possible

dg values where periodic behaviour is observed, until it eventually disappears

completely. It is important to note that higher values of dg correspond to E3,

and lower values correspond to E1, which suggests that decreasing the rate dg

of garbage RNA degradation results in more of it being available for additional

dsRNA synthesis, which subsequently results in a more efficient gene silencing.
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Figure 4.6: The top row shows the number of feasible (a) and stable (b) steady
states depending on the time delay τ2 and the number of transgenes n1, with
τ1 = 1, and the rest of the parameter values taken from Table 4.1. The bottom
row shows max[Re(λ)] for the steady states E1 (c) and E3 (d) with a low and
high concentration of mRNA, respectively, while the steady state E2, which has
a medium mRNA concentration, is unstable everywhere.
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Figure 4.7: Colour code denotes max[Re(λ)] for the steady state E1 with a low
concentration of mRNA depending on the two time delays τ1 and τ2 associated
with primed amplification, with the rest of the parameter values taken from
Table 4.1. In the regions where E1 is stable, the system is actually bi-stable, as
the steady state E3 with a high mRNA concentration is also stable.
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Figure 4.8: Stability of the three steady states E1, E2 and E3 with parame-
ter values from Table 4.1. The red and cyan lines denote the transgenic range
where the steady states with a low (E1) and high (E3) levels of mRNA are
stable, respectively. The black line signifies the steady state E2 with a medium
concentration of mRNA which is always unstable. The violet and light-brown
lines denote the regions where the steady states E1 and E3 are unstable, respec-
tively.

Fig. 4.6 shows how the region where the system (4.1) is bi-stable depends

on the number of transgenes and the time delay τ2, associated with a delayed

production of dsRNA from aberrant RNA, when the delay associated with pro-

duction of dsRNA from mRNA is fixed at τ1 = 1. This figure shows that when

τ2 = 0, the system is bi-stable in the approximate range 7.5 ≤ n1 ≤ 8.9, and

for sufficiently small τ2 up until τ2 ≤ 7, the behaviour of the system remains

largely unchanged, whereas for τ2 > 7 and sufficiently small number of trans-

genes, the silenced steady state E1 loses stability. This stability can be regained

for some higher values of τ2, but then it will be lost again. Steady states E1 with

higher values of n1 are not affected by the variations in τ2 and remain stable

throughout the bi-stability region. In a similar way, the steady state E3 can
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also lose its stability, but unlike E1, this happens for high values of transgenes,

and the range of n1 values where instability happens is smaller than for E1.

These results suggest that the time delays associated with primed amplification

can result in a destabilisation of the steady states E1 and E3, thus disrupting

gene silencing. When both time delays are varied, as shown in Figs. 4.7 and

4.8, the steady state E3 without sufficient silencing is always stable, whereas

increasing τ1 and/or τ2 causes the silenced steady state E1 to switch between

being stable or unstable. We note that the boundaries of the stability crossing

curves demonstrated in Figure 4.7 are analytically described by (4.42). Fig. 4.8

illustrates that whilst the time delays do not affect the shape of the hysteresis

curve, they can cause some extra parts of it to become unstable, which happens

for smaller values of the time delay to E1 only, and for higher values of the

time delays to E3 as well. A possible interpretation of this result is that the

feedback loop in the model is highly sensitive to the speed of dsRNA produc-

tion from its constituent parts. When the dsRNA synthesis is hindered by the

time delays, the production cannot maintain the required consistent pace and,

as a result, one of the steady states loses stability, which gives birth to stable

periodic solutions.
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Figure 4.9: Basins of attraction of different steady stated depending on the
initial dosage of dsRNA and garbage RNA within the host cell. The red and
cyan regions are where the system converges to the steady state with a high, E3,
and low, E1, levels of mRNA, respectively. In the dark-blue region the system
exhibits periodic oscillations around the steady state E1.
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Figure 4.10: Basins of attraction of different steady stated depending on the
initial dosage of dsRNA and initial mRNA within the host cell. The red and
cyan regions are where the system converges to the steady state with a high, E3,
and low, E1, levels of mRNA, respectively. In the dark-blue region the system
exhibits periodic oscillations around the steady state E1.
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Figs 4.9 and 4.10 illustrate how the initial dosages of the dsRNA D(0),

garbage RNA G(0) and mRNA M(0) affect the behaviour of the model. Start-

ing with the smaller number of transgenes, for which the system (4.1) is bi-stable

we see that in Figs. 4.9(a),(b) and Figs. 4.10(a),(b), when the delays τ1 and τ2

are both set to zero, the system mostly converges to the steady state E3 with

a relatively high concentration of mRNA for smaller numbers of transgenes n1,

and to the steady state E1 with a lower concentration of mRNA for higher

numbers of transgenes n1. As the time delays associated with the primed am-

plification increase, this increases the basin of attraction of E1 for smaller n1,

and the basin of attraction of E3 for higher n1, as shown in Figs. 4.9,4.10(c) and

Figs. 4.9,4.10(d), respectively. These figures suggest that for sufficiently high

dosage of dsRNA and initial garbage RNA or mRNA being present in the cell,

the system achieves a stable steady state where gene silencing is sustained. For

higher values of the time delays, there is a qualitative difference in behaviour

between lower and higher numbers of transgenes. For lower numbers of trans-

genes, the system exhibits a bi-stability between a stable steady state E3 with

a high concentration of mRNA and a periodic orbit around the now unstable

steady state E1. On the other hand, for higher values of n1, there is still a bi-

stability between E1 and E3. Whilst in this case, the system may appear not to

be as sensitive to the effects of time delays in the primed amplification pathway,

it is still evident that in the presence of time delays one generally requires a

higher initial dosage of dsRNA to achieve sustained silencing. Furthermore, in

the narrow range of n1 values, where the steady state E3 is destabilised by the

time delays, numerical simulations show that the system always moves towards

a stable steady state E1 rather than oscillate around E3, thus suggesting that
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the Hopf bifurcation of this steady state is subcritical.

To illustrate the dynamics of the system (4.1) in different dynamical regimes,

we have solved this system numerically, and the results are presented in Fig. 4.11.

Figures (a) and (b) demonstrate the regime of bi-stability shown in Figs. 4.9,4.10(e),

where under the presence of both time delays and depending on the initial con-

ditions, the system either approaches the default stable steady state E3 under

a low dsRNA dosage, or tends to a periodic orbit around the silenced steady

state E1 despite a high dsRNA dosage Figure. (c) corresponds to a situation

where the number of transgenes is sufficiently high, and the steady state E3 is

destabilised by the time delays, in which case the system approaches a silenced

steady state E1. It is interesting to note that prior to settling on the silenced

state E1, the system exhibits a prolonged period of oscillations around this state

- a phenomenon very similar to the one observed in models of autoimmune dy-

namics [Bly12, Bly15], where the system can also show oscillations and then

settle on some chronic steady state. This behaviour highlights an important

issue that during experiments one has to be able to robustly distinguish be-

tween genuine sustained oscillations and long-term transient oscillations that

eventually settle on a steady state.
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Figure 4.11: Numerical solutions of the model (4.1). (a) Stable steady state E3

for τ1 = τ2 = 5, n1 = 7.5. (b) Periodic oscillations around the steady state E1

for τ1 = τ2 = 5, n1 = 7.5. (c) Transient oscillations settling on a stable steady
state E1 for τ1 = 1, τ2 = 30 and n1 = 8.87. Other parameter values are taken
from Table 4.1.

4.6 Chapter conclusions

In this chapter we have considered a model of RNA interference with two primed

amplification pathways associated with the production of dsRNA from siRNA

and two separate RdRp-carrying complexes formed by targeting mRNA and

garbage RNA. For better biological realism, we have explicitly included distinct

time delays for each of these pathways to account for delays inherent in dsRNA

synthesis. The system is shown to exhibit up to three biologically feasible steady

states, with a relatively low (E1), medium (E2), or high (E3) concentration of

mRNA.

Stability analysis of the model has shed light on the relative importance

of different system parameters. For sufficiently small levels of host mRNA,

the system has a single stable steady state E3, whose mRNA concentration is

growing with the number of transgenes n1. Experimental observations suggest
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that the amount of transcribed mRNA is an important factor in the ability of

transcripts to trigger silencing. Production of mRNA can generally be enhanced

in two ways; either the target transgene is under control of a 35S promoter with

a double enhancer so that the gene is transcribed at a higher rate [Elm96] or,

that there are enough transgenic copies to maintain an adequate production

of mRNA to trigger silencing. In our model, the trangenic number n1 and

the transcription rate of mRNA h are qualitatively interchangeable. As the

number of transgenes increases, there is a range of transgenic copies for which

the system is bi-stable, exhibiting steady states with a high (E3) and low (E1)

mRNA concentrations, where E1 describes a silenced state. For higher values of

n1, only the steady state E1 is feasible and stable, suggesting that a sustained

state of gene silencing is achieved. From a biological perspective, it is very

interesting and important to note that in the bi-stable region, it is not only

the parameters, but also the initial conditions that determine whether RNA

silencing occurs. This implies that the dosage of dsRNA, which initialises the

RNA interference mechanism, as well as the current levels of mRNA and garbage

RNA within the cell, determine the evolution of the system. In the absence of

time delays, a high dosage of dsRNA and an initial concentration of mRNA or

garbage RNA results in a silenced steady state.

In the case when the delays associated with the primed amplification are

non-zero, our analysis shows that for specific range of τ1 and τ2, both steady

states E1 or E3 can lose stability in the bistable region. Once again, not only the

parameters, but also the initial conditions control whether the system will con-

verge to the remaining stable state or will oscillate around the unstable steady

state. Additionally, under the presence of time delays, one generally requires
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an even higher initial dosage of dsRNA to achieve sustained silencing compared

to the non-delayed model. Interestingly, oscillations can only happen around

the silenced steady state E1, and when the steady state E3 loses its stability,

the system just moves towards a stable steady state E1. Oscillations around E1

biologically correspond to switching between higher and lower concentrations of

mRNA, implying that at certain moments during time evolution, the exogenous

mRNA is silenced, and at other times it is not affected by the RNAi. It follows

that this switching behaviour might have case-specific implications for the phe-

notypic stability of a species which most likely depends on the amplitude of the

oscillations around the silenced steady state. The biological significance of this

result lies in the fact that there are cases where even a high dosage of dsRNA

will not always result into a silenced steady state. Thus, the augmented model

exhibits an enriched dynamical behavior compared to its predecessor which oth-

erwise can only be replicated by different extensions to the core pathway, like

the RNase model also developed in [Gro05], which assumes the presence of a

specific siRNA degrading RNase with saturating kinetics.
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Chapter 5

Discussion

5.1 Summary and conclusions

This thesis is concerned with the role of RNA interference as a vital defence

component of the plant immune system and a gene regulator. In the context of

plant immune dynamics, we have used an extended SIR framework to develop

two new single-host mathematical models; a model of plant immune response

against a single virus, and a model of plant-virus interactions between two com-

peting viruses. To better understand the role of RNAi in gene regulation, we

have augmented a well-known model of RNAi[Gro05] with time delays that also

includes two amplification pathways. For all three models we have identified

the equilibrium points for which we performed extensive bifurcation analysis,

both analytically and numerically, to obtain feasibility and stability boundaries

for different sets of parameter space. For the two models with time delays we

derived conditions for a Hopf bifurcation and investigated whether the systems

could exhibit periodic solutions. In addition to the stability analysis, each sys-

150



tem was solved numerically to illustrate different types of dynamical behaviour

and to verify that results are qualitatively consistent with both theoretical and

field observations.

In the first part ot the thesis, we introduced the biological intricacies of RNA

interference and offered a basic mathematical background for the dynamics of

infectious diseases, and a basic model of RNAi (Chapter 1). In Chapter 2, we

derived a time-delayed model of plant immune response in order to investigate

how RNA interference offers protection against a virus. This model includes

two time delays to account for intrinsic delays in the propagating component

of RNAi and a maturation time for undifferentiated/proliferating cells. It was

shown that the system is biologically feasible, and, when it satisfies some basic

assumptions regarding initial conditions, the solutions remain bounded. The

model (2.3) has up to three possible steady states, a trivial, a disease-free and

a single endemic steady state. We obtained feasibility criteria for these steady

states and showed that the endemic steady state only becomes feasible in the

parameter space where the disease-free steady state is unstable, which itself

depends on the maturity delay. We then investigated the stability of the en-

demic steady state for different maturation times and speeds of the propagating

warning signal and, when it was analytically possible, derived the critical time

delays for which this steady state undergoes a Hopf-bifurcation. This was com-

plemented with numerical stability analysis for different regimes of parameter

space and simulations which show that the system is capable of exhibiting the

three main phenotypes of plants, as classified by their immune response, namely

susceptible, resistant and the recovery phenotype.

Our results suggest that the maturation time of undifferentiated cells can
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play a very important role in the spread of the infection as it represents how

fast the newly developed part of the plant becomes accessible to the virus.

Plants which belong to either the resistant or recovery phenotype are most likely

characterized by a successful localized immune response at the infection sites.

On the other hand, the strength of the warning signal, propagating from infected

sites to non-infected parts of the plant, only controls the pace of recovery but is

not by itself sufficient for complete host recovery thus, it can at most determine

whether a slow or fast recovery phenotype will be observed. Similarly, if both the

localized immunity response and the systemic signal are sufficiently strong, the

plant exhibits the resistant phenotype characterized by the successful isolation

of the virus to the initial infected sites and a subsequently rapid recovery. When

both the localized and systemic immune response are sufficiently weak, the plant

will be completely susceptible, resulting in a severe host infection but it will,

however, not be overwhelmed to the point where death becomes possible. As

such, the main result from this chapter is the significance of the maturation time

of undifferentiated cells acting as an intrinsic temporary immunity period that

plays a fundamental role in determining the long-term behaviour of the system.

This lies in contrast to the limited impact of the speed of the propagating

warning signal.

In Chapter 3 we developed a model of plant immune response against two

viruses in order to examine how RNAi mediates the interactions betweens com-

peting viruses and to explore how situations of viral synergism and antagonism

might arise. We proved that the system (3.1) is well-posed and has the following

possible equilibria: a trivial, a disease-free, two single-virus endemic equilibria,

and it can also support one or more syndemic steady states. Since the first
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four equilibria can be found explicitly, we investigated their biological feasibil-

ity and derived the basic reproduction numbers R01, R02 for each of the two

viruses respectively. This allowed us to define the basic reproduction number

R0 = max{R01, R02}, such that for R0 < 1, the disease-free steady state is sta-

ble. By using the Routh-Hurwitz criteria we obtained stability conditions for

the two single-virus endemic steady states and performed extensive numerical

bifurcation analysis to identify stable regimes for all the different steady states.

The Chapter includes numerical simulations that are qualitatively consistent

with examples of cross-protection or cross-enhancement. It was shown that if

the propagating signal rates, triggered by the presence of two immunologically

related viruses, were sufficiently high, one could not only minimize the spread

of one of the viruses, but also reduce the overall infection. Additionally, the

results indicated specific cases in which one virus could only exist under the

presence of a second strain, which has important implications for the pathology

of plants and viral evolutionary dynamics. Generally speaking, analysis of the

second model has demonstrated that the total population of infected cells dur-

ing a co-infection can sometimes, but not always, exceed the levels compared to

individual infections for which we offered two possible explanations: either the

two different infections simply increase the overall rate of infection, or the cells

that have acquired immunity against one of the viruses may be less or more

susceptible to the other virus. Our results have shown that when two viruses

“antagonize” each other, i.e ai, βi < 1, for sufficiently high warning rates, not

only can one minimize the spread of a specific virus, but the overall infection

can also be reduced which enables different control strategies. As such, one

might choose to intentionally infect a healthy plant with the appropriate viral
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strain in order to trigger a pre-emptive immune response that can be used as a

safeguard against a more harmful strain.

Similarly, if two viruses are immunologically unrelated, they can indirectly

promote each other by inadvertently making each other’s exclusive source of

cells more susceptible to the other virus. This effectively bypasses some of

the resource competition and allows for partial spatial exclusion and therefore,

the occupation of a partially different niche, thus enabling the possibility of

co-existence with the potency of individual infections strongly dependent on

the immunological relation between the two viruses. Another important result

is that the syndemic steady state can potentially be stable in the parameter

regions where only one of the endemic steady states is feasible, implying that

a secondary virus can only survive when another infection is present. Unlike

the results obtained from single infections (including Chapter 2), when the

syndemic steady state is considered, our results show that the warning signal

plays a crucial role in determining whether both viruses can co-exist. If the two

viruses are sufficiently related in such a way that the immune response trigged

by one of the viruses negatively affects the other, then one of the two viruses

becomes dominant, and the plant experiences a degree of cross-protection which,

may however, in some cases elevate the total level of infection.

In Chapter 4 we performed a thorough mathematical analysis of a time-

delayed model of RNAi. This allowed us to investigate the significance of the

two intrinsic delays associated with signal amplification in which siRNA primes

dsRNA-synthesis by either directly targeting mRNA or garbage RNA. It was

shown that if the population of dsRNA is bounded by some upper threshold,

given the right initial conditions the remaining solutions of the system will not
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only stay positive but will also remain bounded throughout the time evolution.

The model (4.1) exhibits up to three non-trivial steady states. When all these

steady states are feasible, they can be classified according to the concentration of

mRNA, namely E1 (low), E2 (medium), E3 (high), which also signifies whether

the long-term behaviour of the system has reached a silenced, partially-silenced

state, or that no silencing has occurred, respectively. We then investigated the

stability of different steady states for various choices of parameters and cases

where one or both the amplification delays are small. When the time delays in

the system are small enough to be ignored, we used the Routh-Hurwitz criterion

to obtain stability conditions for the three steady states. In the case where the

time delays are present, we made use of the bifurcation theorem to obtain the

values of the critical time delays, and, used stability crossing curves to identify

the stability boundaries for these steady states. We computed bifurcation dia-

grams which showed that the system is bi-stable in different parameter regimes.

Furthermore, by calculating the basins of attraction of each steady state, we

found that sustained silencing can only occur for particular initial dosages of

trigger dsRNA. We also performed numerical stability analysis to determine how

system parameters affect the long-term behaviour of the system and, included

numerical examples with different outcomes that are qualitatively consistent

with absent or sustained silencing.

As the production of mRNA is increased due to an increasing number of

transgenes, there is a range of transgenic copies n1 for which the system be-

comes bi-stable, exhibiting steady states with a high (E3) and low (E1) mRNA

concentrations. For higher values of n1, only the steady state E1 is feasible and

stable, suggesting that the targeted transgenes can be suppressed indefinitely.

155



Since the system is also bi-stable for different regions of parameter space, it im-

plies that the dosage of trigger dsRNA, as well as the current levels of mRNA

and garbage RNA within the cell, determine the strength of silencing. When

dsRNA synthesis is unaffected by delays, we observe that a high initial dosage

of dsRNA and mRNA or garbage RNA results in a silenced steady state as the

feedback loop feeds the system with sufficient dsRNA to sustain the process.

In the case when the primed amplification is affected by time delays, our

analysis shows that for specific range of τ1 and τ2, both steady states E1 or E3

can lose stability in the bi-stable region. Numerical simulations of the model

have shown that it is possible for the system to either converge to the remain-

ing stable state, or oscillate around the unstable steady state depending on the

initial conditions. It is interesting to note however, that these oscillations can

only happen around the silenced steady state E1, and when the steady state

E3 loses its stability, the system just moves towards a stable steady state E1.

Oscillations around E1 biologically correspond to a continuous switching be-

tween higher and lower concentrations of mRNA, implying periodic intervals in

which the silencing is weak. At the moment there is no clear indication of how

the cells could be affected by this behaviour. Hence, a follow-up question is

whether this could offer partial protection against the self-inflicted response to

an erroneous identification of target mRNA, and whether periodic silencing can,

to some extent, minimise the damage to the host cell and limit morphogenetic

changes.
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5.2 Future work

The work in this thesis has, demonstrated the significance of time delays in mod-

els of RNA interference. We note that in the second chapter we have seen that

the time delay associated with maturation period of undifferentiated/proliferat-

ing cells can play a very important role in controlling the spread of the infection.

It is therefore an interesting and practically important question whether that

model can be further improved by including some more realistic distribution of

maturation periods in the way it was done while modelling different distribu-

tions of temporary immunity [Bly10, Kyr14], latency and incubation [Ber95,

Mcc10], or infectious periods [Rob07, Zha08].

Similarly, the results presented in the third chapter can be extended to

explicitly include the time delays associated with plant maturation time, and

with delayed propagation of the RNAi signal, as it was done for the first model.

Another interesting phenomenon to consider is the possibility of cells being

occupied by two viruses simultaneously, which would allow for a wider spectrum

of interactions between the viruses and their host. This could include super-

infection of individual cells, viral interference or recombination events that can

give rise to additional strains [Fle96, Sil11, Per15].

Another issue is that the time delays considered in the third model are

assumed to be discrete, and hence it would be very insightful and relevant, from

a biological perspective, to investigate how stability results for this model would

change in the case where the time delays obey certain distributions. Recent

results suggest that distributed delays can in some instances increase [Kyr13,

Kyr14], and in others reduce [Rah15] parameter regions where oscillations are

suppressed. Our future research will look into the effects of distributed time
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delays on primed amplification in RNAi.

Additionally, it would be interesting and important to investigate how the

plant immune system responds to viral infections when spatial dynamics are

considered. Within such framework, one could study whether diffusion of virus

particles and the spread of siRNA can result in the formation of spatial pat-

terns arising from travelling waves. This would provide useful insights for the

development of optimal techniques for using RNA interference to control viral

infections.
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of unstable steady states in neutral time-delayed systems. The Euro-

pean Physical Journal B, 65(4), 571–576.

161



[Bly10] Blyuss, K. B., & Kyrychko, Y. N. (2010). Stability and bifurcations in

an epidemic model with varying immunity period. Bulletin of mathe-

matical biology, 72(2), 490–505.

[Bly12] Blyuss, K. B., & Nicholson, L. B. (2012). The role of tunable activa-

tion thresholds in the dynamics of autoimmunity. Journal of theoretical

biology, 308, 45–55.

[Bly15] Blyuss, K. B., & Nicholson, L. B. (2015). Understanding the roles of

activation threshold and infections in the dynamics of autoimmune dis-

ease. Journal of theoretical biology, 375, 13–20.

[Bra12] Brauer, F., & Castillo-Chavez, C. (2012). Mathematical Models for

Communicable Diseases.

[Bre06] Breda, D., Maset, S., & Vermiglio, R. (2006). Pseudospectral approxi-

mation of eigenvalues of derivative operators with non-local boundary

conditions. Applied numerical mathematics, 56(3), 318–331.

[Buc04] Buckee, C. O. F., Koelle, K., Mustard, M. J., & Gupta, S. (2004).

The effects of host contact network structure on pathogen diversity

and strain structure. Proceedings of the National Academy of Sciences

of the USA, 101(29), 10839–10844.

[Buc10] Buckee, C.O., & Gupta, S., (2010). A network approach to understand-

ing pathogen population structure, in Sintchenko, V. (Ed.), Infectious

Disease Informatics. Springer New York, 167–185.

[Bur03] Burdon, J. J., & Thrall, P. H. (2003). The fitness costs to plants of

resistance to pathogens. Genome biology, 4(9), 1.

162



[Burg11] Burgyán, J., & Havelda, Z. (2011). Viral suppressors of RNA silencing.

Trends in plant science, 16(5), 265–272.

[Cam61] Campbell, A. (1961). Conditions for the existence of bacteriophage.

Evolution,15(2), 153–165.
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Appendix A

Auxiliary results

Theorem A.0.1 (Comparison theorem for differential equations).

Suppose

ẏ(t) ≤ a− by(t), y(0) = y0, (A.1)

it follows that

lim sup
t→+∞

y(t) ≤ a

b
,

where a ∈ R, and b is a positive constant.

Proof. Multiply both sides of (A.1) with the integrating factor ebt. Solving this

inequality yields y(t) ≤ a

b
+ (y0 − a/b)e−bt, and

lim
t→+∞

ce−bt → 0,

which concludes the proof.

Theorem A.0.2 (Positivity of solutions for non-autonomous systems, Theorem

5.2.1 in [Smi95]).

186



Define the Banach space C = C([−τmax, 0],Cn) which contains the cone

C+ = {φ ∈ C : φ(θ) ≥ 0,−τmax ≤ θ ≤ 0)}.

Consider the system

y′(t) = f(y, yt)

where f : R × D → R
n is continuous, D ⊂ C is open and f is Lipschitz in its

second argument on each compact subset of R×D so that initial value problems

associated with the system above have unique solutions and that C+ ∩D is non-

empty.

Assume that whenever φ ∈ D satisfies φ ≥ 0, φi = 0 for some i and t ∈ R,

then fi(t, φ) ≥ 0. If φ ∈ D satisfies φ ≥ 0 and t0 ∈ R, then y(t, t0, φ) ≥ 0 for all

t ≥ t0 in its maximal interval of existence.

Proposition A.0.3 (Boundedness of solutions of the delayed logistic equation,

Proposition 5.13 in [Smi11]).

Every orbit of the discrete-delay logistic equation given by

N ′(t) = N(t)[1−N(t− τ)], t ≥ 0,

with initial data φ : [−τ, 0] → R and φ ≥ 0 is bounded. Additionally, for each

such φ, there exists T > 0 such that

0 ≤ N(t, φ) ≤ eτ , t > T.
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