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Abstract

Complex networks are ubiquitous in nature. Numerous neurological diseases, such as

Alzheimer′s, Parkinson′s, epilepsy are caused by the abnormal collective behaviour of

neurons in the brain. In particular, there is a strong evidence that Parkinson′s disease is

caused by the synchronisation of neurons, and understanding how and why such synchron-

isation occurs will bring scientists closer to the design and implementation of appropriate

control to support desynchronisation required for the normal functioning of the brain. In

order to study the emergence of (de)synchronisation, it is necessary first to understand

how the dynamical behaviour of the system under consideration depends on the changes

in system′s parameters. This can be done using a powerful mathematical method, called

bifurcation analysis, which allows one to identify and classify different dynamical regimes,

such as, for example, stable/unstable steady states, Hopf and fold bifurcations, and find

periodic solutions by varying parameters of the nonlinear system.

In real-world systems, interactions between elements do not happen instantaneously

due to a finite time of signal propagation, reaction times of individual elements, etc.

Moreover, time delays are normally non-constant and may vary with time. This means

that it is vital to introduce time delays in any realistic model of neural networks. In

this thesis, I consider four different models. First, in order to analyse the fundamental

properties of neural networks with time-delayed connections, I consider a system of four

coupled nonlinear delay differential equations. This model represents a neural network,

where one subsystem receives a delayed input from another subsystem. The exciting

feature of this model is the combination of both discrete and distributed time delays, where

distributed time delays represent the neural feedback between the two sub-systems, and the

discrete delays describe neural interactions within each of the two subsystems. Stability

properties are investigated for different commonly used distribution kernels, and the results

are compared to the corresponding stability results for networks with no distributed delays.

It is shown how approximations to the boundary of stability region of an equilibrium point

can be obtained analytically for the cases of delta, uniform, and gamma delay distributions.
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Numerical techniques are used to investigate stability properties of the fully nonlinear

system and confirm our analytical findings.

In the second part of this thesis, I consider a globally coupled network composed of

active (oscillatory) and inactive (non-oscillatory) oscillators with distributed time delayed

coupling. Analytical conditions for the amplitude death, where the oscillations are quenched,

are obtained in terms of the coupling strength, the ratio of inactive oscillators, the width

of the uniformly distributed delay and the mean time delay for gamma distribution. The

results show that for uniform distribution, by increasing both the width of the delay dis-

tribution and the ratio of inactive oscillators, the amplitude death region increases in the

mean time delay and the coupling strength parameter space. In the case of the gamma

distribution kernel, we find the amplitude death region in the space of the ratio of inactive

oscillators, the mean time delay for gamma distribution, and the coupling strength for

both weak and strong gamma distribution kernels.

Furthermore, I analyse a model of the subthalamic nucleus (STN)-globus palidus (GP)

network with three different transmission delays. A time-shift transformation reduces the

model to a system with two time delays, for which the existence of a unique steady

state is established. Conditions for stability of the steady state are derived in terms of

system parameters and the time delays. Numerical stability analysis is performed using

traceDDE and DDE-BIFTOOL in Matlab to investigate different dynamical regimes in

the STN-GP model, and to obtain critical stability boundaries separating stable (healthy)

and oscillatory (Parkinsonian-like) neural firing. Direct numerical simulations of the fully

nonlinear system are performed to confirm analytical findings, and to illustrate different

dynamical behaviours of the system.

Finally, I consider a ring of n neurons coupled through the discrete and distributed

time delays. I show that the amplitude death occurs in the symmetric (asymmetric) region

depending on the even (odd) number of neurons in the ring neural system. Analytical

conditions for linear stability of the trivial steady state are represented in a parameter space

of the synaptic weight of the self-feedback and the coupling strength between the connected

neurons, as well as in the space of the delayed self-feedback and the coupling strength

between the neurons. It is shown that both Hopf and steady-state bifurcations may occur

when the steady state loses its stability. Stability properties are also investigated for

different commonly used distribution kernels, such as delta function and weak gamma

distributions. Moreover, the obtained analytical results are confirmed by the numerical

simulations of the fully nonlinear system.
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Chapter 1

Introduction

Contemporary developments in the field of neuroscience reveal an area of research, where

scholars have become increasingly keen to use quantitative methods in order to explore

new topics of interest. This development has led to the emergence of computational

neuroscience, an interdisciplinary field that has brought together the domain of nonlinear

dynamics and a variety of other areas, including biology, cognitive science and artificial

intelligence. Since it was first introduced in 1980′s, the study of neural networks has greatly

benefited from the steady growth of computing and, from a mathematical perspective,

cultivated the development of appropriate mathematical tools with which neural dynamics

can be investigated. As such, computational neuroscience has not only expanded itself but

also offered significant contributions in numerical analysis, biological modelling and other

emerging fields of neural networks [159].

Modern scholars of neural networks have continued to develop some of the earlier re-

search, such as the work done by Hopfield in 1984, where he proposed a simple method

of constructing a neural network model. The model was capable of simulating the devel-

opment of human memory in which the linear circuit of each individual neuron consisted

of a capacitor and a resistor. He went further to show that through these electrical com-

ponents, the connection between these neurons can be described by a nonlinear sigmoidal

activation function. This profound realisation subsequently aspired the development of

a field in which electric circuits can be utilized to perform different tasks such as linear

programming, signal processing, optimisation, associative memory and pattern recogni-

tion [1, 4, 40, 118, 168]. In the past few decades, one of the fascinating topics of research

in neural models is that of coupled networks [147]. The appeal comes from the fact that,

although by themselves, uncoupled elements may exhibit very simple and well-understood

behaviour, when coupled together, they produce a wealth of new dynamical regimes, such
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as full and/or partial synchronisation, amplitude death, and chimera states. One such

example is the case of coupled nonlinear oscillators which demonstrate exceptionally rich

dynamical behaviour in a system, where the nodes are connected through the distributed-

delay coupling [80]. A common theme of coupled oscillators is that every unit is active,

however, it is important to consider the potential consequences arising from the external

perturbations, which may turn some of the units into inactive [30]. Coupled networks

and coupled oscillators are common in various scientific disciplines ranging from power

grids [123] to cardiac pacemaker cells [49, 97], circadian clocks [10, 16, 42], and arrays of

Josephson junctions [156].

Another important aspect of neural networks is that the transmission of information

among neurons is not generally assumed to occur instantaneously due to inherit biological

limitations. Hence, time delays become an important feature in modelling of the neural

networks, and their inclusion has shown to cause instabilities in the model, not present in

a non delayed analogue [34, 53, 94, 145]. Researchers have obtained many results for the

dynamics of neural network with discrete time delays, as these can be used to represent the

typical time lag that occurs in the communication between neurons [14, 22, 26, 66, 96, 109].

However, in reality the time delays are not constant; they may vary over time and/or

depend on system parameters, and may, therefore, be better represented by distributed

delays [37, 47, 52].

Though the analysis of neural networks with or without time delays, is a very challen-

ging work, they process a vast number of features and an immense variety of dynamical

behaviour that makes their study even more desirable.

The main objective in this thesis is to study the influence of time delay in Hopfield-

type neural (coupled sub-networks and ring network) model with combination of both

discrete and distributed delay, STN-GP model with three discrete delays, and Stuart-

Landau oscillators with distributed delay coupling. A crucial issue to be explained is how

discrete and/or distributed time delays change the stability of the steady states. In order

to study the emergence of synchronised oscillations, it is first necessary to understand

how the dynamical behaviour of the system under consideration depends on the changes

of system parameters. This can be done using a powerful mathematical method, called

bifurcation analysis, which allows one to identify and classify different dynamical regimes,

for instance, stable/unstable steady states, steady-state and Hopf bifurcations, and find

periodic solutions by varying the parameters of the fully nonlinear system.

In this introductory chapter, we review the basic structure of a single biological neuron,
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Figure 1.1: Prototypical nerve cell or neuron [www.sciencebeta.com/neuron].

as well as the artificial neural networks. In the following section, we give a literature

review on time delays (discrete and/or distributed) in neural networks in general, and

their effects on the dynamics of the Hopfield-type model, Stuart-Landau oscillators, and

STN-GP model. The section is concluded by the outline of the thesis.

1.1 Basic neuroanatomy

The human central nervous system is responsible for controlling all movements and biolo-

gical processes that occur in the human body, and consists of highly specialized cells called

nerves or neurons, which have the cell body at the centre and its nucleus. From the cell

body emanates a dendrite which conducts the impulses received from other neural cells to

the cell body. Another cell, called axon also emanates from the cell body that conducts

nerve impulses away from the cell body to other neurons and muscles. The axons’ ends

form a synaptic terminal which connects the neuron with other neurons or a muscle, over

which nerve impulses pass [159]. There are approximately 100 billion neurons and an

estimated 100 trillion synapses among them [5]. They come in a variety of shapes, sizes

and properties, but their typical anatomical features are as shown in Figure 1.1.

1.2 Artificial neural system

Artificial neural networks, usually called neural networks are designed following the prin-

ciples of a biological nervous system, and are used to perform tasks similar to those the
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Figure 1.2: A sketch of the artificial neural network with a sigmoid transfer/activation

function.

human brain can perform. Such networks are made up of a large number of nodes (neur-

ons) highly interconnected together using unidirectional signal channels called connections

(synapses). They are built to work jointly to perform specific tasks. The architecture of

these networks is such that each single neuron is connected to a large number of other

neurons, they have the ability to arrange into ensembles to perform specific tasks, and they

involve plasticity, i.e. the adjustment of synaptic connection required for the adaptation

to the environment and the ability to learn [135, 148, 159].

In order to describe the neural network consisting of n neurons mathematically, we

consider a set of n nodes, where each node, denoted as xi, i = 1, · · · , n, can transmit

signals to an output neuron y through a transfer/activation function f(·). Usually, the

input neurons have synaptic weights, denoted as wi, which can be negative or positive. A

negative sign for the synaptic weight indicates an inhibitory connection, while a positive

sign shows an excitatory connection. A neuron receives one or more inputs, and then sums
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them up to create a corresponding output. This sum is then put through an activation or

transfer function f : R→ R. The transmitted information or output can be evaluated as

follows

y = f

(
n∑
i=1

wixi

)
. (1.1)

There are three main activation functions used in the literature, namely, threshold,

piecewise-linear, and sigmoid functions. Among them, the sigmoid-shaped function is the

most commonly used in the neural network literature, and is usually taken to be strictly

increasing and differentiable [13, 94]. The logistic function f(v) =
1

1 + e−av
and hyperbolic

tangent function f(v) = tanh(av) are the two examples of a sigmoid function, plotted in

in Figure 1.2, where a is the slope of the function.

A Hopfield neural network [60] is an extension of (1.1), which can be written in the

form

Ck
duk(t)

dt
= − 1

Rk
uk(t) +

n∑
i=1

wkifi(ui(t)) + Ik, k = 1, · · · ,m, (1.2)

where Ck is the capacitance of neuron k, Rk is the resistance of neuron k, wki is the

connection synaptic weight between the kth neuron and the ith neuron, uk(t) describes the

voltage of the kth neuron at time t, Ik is the constant external input to the kth neuron,

and fk is the transfer function.

1.3 Time delays in neural networks

The inclusion of time delays into the mathematical models of various biological, physical

and engineering problems has long been proved vital in order to correctly represent the

processes under consideration. For example, in population biology, they account for age

structure or maturation time period, while in epidemiological setting they represent, for

example, latency or immunity. In neural network modelling, time delays are used to take

into account the fact that in the majority of both biological and artificial neural networks,

some processes do not happen instantaneously due to a finite propagation velocity of

neural signals, times required for information processing, and so forth. Undoubtedly,

their inclusion is a non-negligible component of the process and leads to qualitatively new

behaviour in the dynamical system not observed in the same system without time delays

[8, 38, 39, 67, 81, 131, 144, 167].

A simple delayed self-excitation neuron with discrete time delay can be modelled as

follows:

u̇(t) = −κu(t) + αf(u(t− τ)), (1.3)



6

where κ > 0, u(t) is the voltage input of the neuron, the constant delay τ refers to the

transmission time between the input and the output, α is a synaptic weight, and f : R→ R

is nonlinear transfer function. Since in the majority of systems the precise value of the

time delay is rarely known, it is more reasonable to use distributed time delays. The

corresponding distributed delay version of model (1.3) can be made by replacing the last

term of model (1.3) as follows

u̇(t) = −κu(t) + α

∫ ∞
0

g(s)f(u(t− s))ds, (1.4)

where the term ∫ ∞
0

g(s)f(u(t− s))ds, (1.5)

represents the distributed delay with the kernel g(s), which generally has the following

properties:

g(s) ≥ 0 and

∫ ∞
0

g(s)ds = 1.

In the next subsection, we will review the most commonly used distribution kernels,

and discuss several results from the literature on the comparison between the systems with

discrete and distributed time delays.

1.3.1 Distribution kernels

In most applications, including neural networks, the time delays are non-constant, and

this naturally leads to the idea of representing the delays in the connections using the

distribution [9, 47, 48, 52, 64, 111, 171]. The majority of models in the literature use

specific kernels for delay distribution, such as

(i) Dirac delta function, i.e. the distribution kernel is taken in a form g(s) = δ(s), which

is characterised by the following two properties

δ(s) =

 0 for s 6= 0,

∞ for s = 0,
and

∫ ∞
−∞

f(s)δ(s)ds = f(0).

Substituting this kernel into the equation (1.4) gives its non-delayed equation equivalent

u̇(t) = −κu(t) + α

∫ ∞
0

δ(s)f(u(t− s))ds = −κu(t) + αf(u(t)).

If g(s) = δ(s− τ), the Dirac distribution is shifted by τ to the right, and has the following

properties

δ(s− τ) =

 0 for s 6= τ,

∞ for s = τ,
and

∫ ∞
−∞

f(s)δ(s− τ)ds = f(τ).
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Figure 1.3: (a) The uniform distribution for the mean delay τ = 2. (b) The gamma

distribution for the mean delay τm = 2.

Inserting this kernel into the equation (1.4) reduces it to a model with a single discrete

time delay as follows

u̇(t) = −κu(t) + α

∫ ∞
0

δ(s− τ)f(u(t− s))ds = −κu(t) + αf(u(t− τ)).

(ii) The second most-commonly used distribution kernel is the uniform distribution, which

can be written in the form

g(s) =


1

2σ
for τ − σ ≤ u ≤ τ + σ,

0 otherwise,

(1.6)

which has the mean time delay τ , and the parameter σ controls the width and height of

the distribution. Figure 1.3 (a) shows examples of the uniformly-distributed kernel for

mean time delay τ = 2 and different values of σ. As σ gets smaller, the width of the

distribution become narrower and the height become higher. Hence, as σ approaches zero,

the uniform distribution becomes the Dirac distribution, δ(s− τ):

lim
σ→0

∫ ∞
0

g(s)f(u(t− s))ds =

∫ ∞
0

δ(s− τ)f(u(t− s))ds = f(u(t− τ)).

This type of distribution has been extensively used to study the dynamics of ecological

models [107], traffic dynamics with delayed driver response [136], and genetic regulation

[12].

(iii) Gamma distribution is the third most commonly used distribution kernel, which can

be written as follows

g(s) = grγ(s) =
sr−1γre−γs

(r − 1)!
. (1.7)
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It is a distribution with an integer shape (order) parameter r ∈ N0, (r ≥ 0) and scale

parameter γ ∈ R, (γ > 0). Weak kernel refers to the case of gamma distribution of order

r = 1. One can see in Figure 1.3 (b) for r = 1, g(s) decreases with increasing s, and in

terms of neural network modelling can be interpreted as the maximum weighted response

depends on the current voltage while the past voltage has a decreasing influence [125].

The weak delay kernel g1γ(s) in this case becomes exponential distribution g1γ(s) = γe−γs.

When r = 2, it is known as the strong delay kernel and shown in Figure 1.3 (b). In this

case, in the context of neural networks, the contribution from the past voltages is more

present compared to the weak kernel [56]. The weak distribution (1.7) has the mean delay

τm =

∫ ∞
0

sgrγ(s)ds =
r

γ
, (1.8)

and the variance

σ2 =

∫ ∞
0

(s− τm)2grγ(s)ds =
r

γ2
. (1.9)

The gamma distribution for a fixed value of the mean delay τm = 2, and order r =

1, 2, 3, and 4 is illustrated in Figure 1.3 (b). As r increases, the peak becomes smaller,

and for a very large integer number r, the gamma distribution (1.7) approaches the Dirac

distribution, δ(s − τ). Gamma delay distribution has been extensively used in models of

population dynamics [17, 26], intracellular dynamics of HIV infection [100], and machine

tool vibrations [146].

It is possible to convert a scalar delay differential equation with a distributed delay into

a non-delayed system of equations by using the so-called linear chain trick described in

[91, 137]. The linear chain trick allows one to replace the system with distributed delays

by a system of ordinary differential equations of order r+ 1. Suppose that g(s) in (1.4) is

a general gamma distribution grγ(s), and let

vk(t) =

∫ ∞
0

gkγ(s)f(u(t− s))ds, k = 1, · · · , r.

Differentiate vk(t) with respect to t

v̇1(t) = γu(t)− γv1(t),

v̇k(t) = γvk−1(t)− γvk(t), k = 2, · · · , r.

The model (1.4) with gamma distributed kernel now becomes

u̇(t) = −κu(t) + αvk(t),

v̇1(t) = γu(t)− γv1(t),

v̇k(t) = γvk−1(t)− γvk(t), k = 2, · · · , r.
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Such an approach may seem attractive as the model can then be analysed using the

theoretical and numerical methods for ordinary differential equations.

There is a number of studies of mathematical models with distributed delay, using one

of the above-mentioned distributions (Dirac, uniform, and gamma), which are analysed

and then compared to their versions with discrete time delays.

Cooke and Grossman [26] have compared the behaviour of a differential equation with

single constant time delay and the corresponding equation with a gamma-distributed ker-

nel. They showed that for a differential equation with constant time delay, there exists a

value of the delay such that a zero steady state loses its stability, and never re-stabilises

again. For the distributed delay, increasing the mean time delay can also destabilise the

zero equilibrium, however, it will always be re-stabilised for a large enough mean time

delay. Bernard et al. [14] analysed the linear stability of a scalar system with one and

two delays characterised by the distribution kernel properties, such as mean, variance and

skewness. For uniform and continuous distributions, they postulated that distributed delay

increases the stability region of an equilibrium compared to the discrete delay. Thiel et

al. [154] used uniformly-distributed delay for three different models with distributed delay

and observed that as the width of the distribution gets wider, the region of oscillations

gets smaller.

Atay [7] has investigated a system consisting of two simple oscillators with a gap

junctional coupling. He has shown that it is easier to quench oscillations in a system

with distributed delays than in a system with a discrete time delay in a sense that there

is a larger region of coupling strengths for which the steady state can be stabilised. In

particular, it was deduced that as the variance of the distribution increases, the size of

the stability region increases. Jirsa et al. [66] have analysed an n× n linear system with

linear decay and arbitrary connections with a common delay. They have shown that under

some mild assumptions, the stability region of the trivial solution for any distribution of

time delays is larger and contains the stability region for a discrete delay. Meyer et al.

[96] have found that distributed delays enhance the stability of the system, so that with

the increased width of the distribution of delays, the system converges faster to a fixed

point and converges slower toward a limit cycle. Moreover, the introduction of distributed

delays leads to an increased range of the average values of time delays for which the

equilibrium is stable. The dynamics of the system is then determined almost exclusively

by the mean and the variance of the delay distribution and shows very little dependence

on the particular type of the distribution. Bernard and Crauste [15] have shown that given
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the mean time delay, the linear equation with distributed delay is stable if the associated

differential equation with a discrete delay is stable.

Campbell and Jessop [22] developed a method for approximating the stability region

of an equilibrium for nonlinear distributed delay equations, knowing only the first few mo-

ments of the delay distributions, using the analysis of the characteristic equation. They

also demonstrated a way of approximating the delay-independent stability region using

Rouche′s Theorem. Yuan and Belair [165] developed a method of assessing the stability

region for a number of differential equations with distributed delay using local stability

analysis. They compared the results for the three most commonly used delay distribu-

tions: Dirac delta, uniform, and general gamma distribution. They observed that for the

equations considered, the stability region with the distributed delay is larger than that

corresponding to the discrete delay. They also discussed Hopf bifurcation that takes place

on the boundary of the stability and determined the stability and the direction of bifurc-

ating periodic solutions. The authors established that while for their system with discrete

delay stability of the steady state once lost cannot be regained, in the system with the

gamma distribution, as the mean delay grows, the stability of the steady state can be

regained.

1.3.2 Hopfield-type neural models

A time-delayed version of the Hopfield-type neural network was first considered by Marcus

and Westervelt [94]. By assuming that the neurons are identical, and no exterior input

is applied, they found sufficient conditions, which ensure the local stability of the zero

steady state, and have analysed the dependence of the stability region on the time delay.

Under these assumptions, after scaling their parameters, the system (1.2) can be modified

into a system of delay differential equation as

duk(t)

dt
= −uk(t) +

n∑
i=1

wkifi(ui(t− τ)), k = 1, · · · ,m, (1.10)

where τ ≥ 0 represents the time needed for the electric signal to propagate among the

neurons.

Gopalsamy and He [50] generalised the system (1.10) by assuming that the neurons are

non-identical and applying external input. Their investigation gives sufficient conditions

for global asymptotic stability of the steady state, and investigates the delay-independent

stability region for the Hopfield network with discrete delay. Furthermore, they have

briefly discussed the distributed case of the system (1.10).
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Liao et al. [88] considered a two neuron network with distributed delay. They have

shown that a Hopf bifurcation occurs when the average delay passes through a critical

value. Furthermore, they have investigated the direction of the Hopf bifurcation and the

stability of the bifurcating periodic orbits by applying the normal form approach and the

centre manifold reduction theory. Gupta et al. [55] investigated the dynamics of a three

neuron network with distributed delay and self-connection. Using the weak delay kernel,

they have obtained the conditions for which a Hopf bifurcation occurs. The direction

and stability of the bifurcating periodic solutions are discussed by applying the normal

form theory and centre manifold theorem. Han and Song [58] have analysed the effect of

distributed delay in a unidirectional ring with three neurons. Taking the average delay as

a bifurcation parameter, they have shown that the system undergoes Hopf bifurcation via

two critical values. They have determined the stability region in a product of coupling

strength and the average time delay parameter space; they have observed that the absolute

stable region occupied larger space compared to the case of the system with a discrete time

delay. Song et al. [140] generalised their result in [58] to n unidirectional neurons on a

ring connected with a distributed delay. They have illustrated how the stability region

of the steady state depends on the size of the network, coupling strength, and the time

delay. In particular, they have noticed that as the network size gets larger, the stability

region of the trivial solution shrinks.

According to Cowan [28], the firing of a neuron depends on both external input and

internal interaction within the model, while Sokolove [139] considered neural adaptation in

his modified model. The modification made by Ogûztöreli [108] on the other hand included

the neural interaction history and the adaptation to the model in order to describe a

discrete system containing a finitely many neurons. This formulation indicates that the

neuron′s reaction is influenced by the input signal, the individual neuron′s history, and

its coupling to other neurons. These findings suggest that the neural model is naturally

better represented by inclusion of both discrete and distributed delays together [126].

Ruan and Filfil [126] have investigated the stability of steady state in a two neuron

model with both discrete and distributed delays simultaneously in a model with single

feedback for each neuron. Zhu and Huang [172] went further to study Ruan′s model in

[126] for tri-neuron with single feedback for each neuron. Their result shows that a Hopf

bifurcation can occur when the steady state loses its stability. Feng [37] has analysed

a mathematical network for gene transcription model with both discrete and distributed

delay simultaneously. His result shown that the distributed delay is dominated by the
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discrete delay. Feng [36] has discussed the oscillatory behaviour of the solutions for a

three node model with discrete and distributed delays, by using strong delay as a kernel

distribution. He has formulated and proved two theorems, which ensure the existence of

oscillating solutions for the model.

Despite a large number of previous research that investigated the dynamics of the

individual neural networks with time delays, much less attention has been paid to the

analysis of the situations when they are coupled among themselves. A decade ago, Camp-

bell et al. [21] have started the investigation of two coupled sub-networks, each with three

unidirectional neurons. Further, Hsu and Yang [61] considered a similar structure but

with n unidirectional neurons within each sub-networks. In both studies, the authors con-

sidered only the presence of a unidirectional delayed-coupling between a single neuron of

each sub-system. Peng and Song [117] have extended the research from [21] by assuming

unidirectional delayed-coupling of every neuron between sub-networks. Song et al. [143]

has considered two unidirectional sub-systems of two neurons, for which two-way coupling

was included using discrete time delay. The majority of the research has concentrated

on the cases, where there are no internal delays in the interactions within each of the

sub-networks. Song et al. [141] have studied a neural network model with a discrete time

delay appearing not only in the coupling between the sub-networks but also in the con-

nection within each individual sub-network. Ge and Xu [44] have analysed the system of

two coupled sub-networks, each with two neurons and four time delays. A neural model

that has been studied by Mao and Wang [92, 93] consists of two and four bidirectional

sub-networks, each has three neurons and bidirectional couplings between all neurons of

the individual sub-network. In their models, different time delays are considered in the

connection within the individual sub-network, as well as in the couplings between the

sub-networks.

As noticed above, in the analysis which has been done on Hopfield-type neural network

whether coupled or not, the size of the networks are always simplified to a low dimensional

network. However, the actual biological network is made up of an extremely large number

of interconnected neurons. The more in the dimension of the networks increases, the more

complex theoretical analysis becomes. Another possibility to simplify the complexity of

the network is to consider a Hopfield-type neural model with a simple architecture such

as ring network. Even though the biological relevance of ring neural network is restricted,

they may be regarded as building blocks for more realistic structures [11].

Baldi and Atiya [11] have investigated the dynamics of the unidirectional ring neural
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model with time-delayed coupling, and derived conditions for the onset of oscillations, as

well as bifurcation boundaries, and the periods of the bifurcating limit cycles. Campbell

et al. [23] modified the model in [11] by adding self-connected delay to the system. Yuan

and Campbell [166] developed the ring model further by considering bidirectional delayed

coupling between neurons. In the two latter papers, the stability regions have been shown

in the space of the sum of time delay coupling and the product of coupling strength

parameter, and they illustrate the presence of both steady-state and Hopf bifurcation when

steady state loses its stability. Xu [161] has explored the dynamics of a ring neural model

with two-way delayed coupling and a delayed self-connection. By using the Lyapunov

functional, the global asymptotic stability of the steady state has been shown under delay-

independent and delay-dependent criteria. The steady state can also lose its stability

through Hopf bifurcation, which is leading to periodic oscillation. Mitra et al. [99] have

analysed the model based on the system with delayed unidirectional ring topology with

self-feedback in the specific case of Mackey-Glass model. The authors have shown the

occurrence of the phenomena such as amplitude death and synchronisation in their model.

Lai et al. [82] have investigated multistability and bifurcation in a ring-like neural network

with four units, including the cases of one-way delayed coupling and delayed self-coupling.

Using Lyapunov theory, the authors have showed that the system supports a co-existence

of 16 stable states with their own domains of attraction.

1.3.3 Aging transition

In large complex networks, an important practical consideration is the robustness of the

network structure and function to the external perturbations and disturbances. Of a par-

ticular interest is the ability of large systems of coupled units to continue maintaining their

dynamical activity when some part of the system becomes inactive due to deterioration or

inactivation. In this context, an interesting phenomenon, called aging transition can occur

in systems of coupled active (oscillatory) and inactive (non-oscillatory) elements, whereby

as the fraction of inactive oscillators increases, at some point the system may completely

lose its oscillatory dynamics, effectively exhibiting an amplitude death. Aging transition

was originally discovered in globally coupled Stuart-Landau oscillators [30], and has been

subsequently analysed in a variety of networks with different types of coupling, including

examples from physical and biological systems. For instance, a macroscopic synchronisa-

tion is found among the pacemaker cells. When a disease or aging damages a ratio of cells,

the lack of synchronised region indicated the need for the implantation of an electronic
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pacemaker. A new alternative electronic technique aiming to create genetically engineered

pacemakers has been developed in [97]. Another important example of coupled oscillators

having this kind of architecture are mixed active and inactive clock cells in mammalian

circadian clocks [10]. Phase transitions in a mixed population composed of active and

inactive oscillators on complex network have also been theoretically analysed to derive the

critical ratio using system reduction for both random and scale-free networks [150]. Apart

from mixed populations of active and inactive oscillators, there are other forms of mixed

populations such as excitable and oscillatory units of globally coupled oscillators [116]. A

mixture of oscillatory, passive, and excitable cells have been analysed in [76]. Phase trans-

itions in mixed populations of interacting limit cycle units and period-doubled ones with

different periods have been investigated in [152]. The robustness and mismatches with

respect to the effectiveness and the connection of interlayer couplings and their influence

on the multilayer networks with mixed populations of oscillators have also been studied

in [102]. Dynamical analysis of both weighted and unweighted, as well as homogeneous

and heterogeneous networks have been analysed in [59]. The dynamical robustness pro-

cedure has been explored to argue an efficient recovery of oscillation in damaged oscillator

networks [103]. The effect of the time delay on the dynamical behaviour of oscillator

networks that have a mix of active and inactive oscillators has been investigated in [153].

Furthermore, the area of target inactivation and recovery in two-layer networks have been

studied in [160].

Amplitude death (AD), which refers to coupling-induced suppression of oscillations, has

been extensively studied in systems of coupled oscillators with both instantaneous [6, 98],

and time-delayed coupling [7, 20, 120, 121, 122, 130]. While in the case of instantaneous

coupling AD can only occur provided the frequencies of oscillators are sufficiently different,

when there is a delay in the coupling, AD can happen even for identical oscillators. Fur-

thermore, we mentioned earlier in the previous section that when the constant time delay

is replaced by some delay distribution, it can also have a profound effect on the amplitude

death and the emergence of different kinds of phase-locked solutions [78, 79, 80]. Whilst

AD represents quenching of oscillations through stabilisation of a previously unstable fixed

point, another possibility to suppress oscillations is through oscillation death, which means

the emergence of a stable coupling-induced inhomogeneous steady state that did not exist

in the original system [74, 75, 167]. In the specific context of aging transition, Thakur et

al. [153] have investigated the dynamics of N globally coupled active and inactive oscil-

lators with discrete time delay in the coupling, and they found that the time delay can be
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used to decrease the coupling and the proportion of inactive oscillators above which the

system exhibits aging transition.

1.3.4 Subthalamic nucleus (STN)-globus palidus (GP) model

All activities, such as movement, perception and conscious experience manifest themselves

in rhythmic brain oscillations, and disruption or increased activity of neural networks

can lead to various brain pathologies. Neurodegenerative diseases, including Alzheimer’s

disease, epilepsy, Parkinson’s disease, selectively disrupt these networks, affecting various

neuronal functions [51]. For instance, in Alzheimer’s disease, the most prevalent form of

dementia, a number of studies have shown a significantly reduced clustering coefficient

associated with a lower local network connectivity [128, 149].

Parkinson’s disease (PD), first identified as shaking palsy nearly 200 years ago by James

Parkinson [112], is the second most common form of dementia. Symptoms include resting

tremor, rigidity, slowness/absence of voluntary movement, and postural instability [31].

This is linked to the principal loss of dopaminergic neurons of the substantia nigra and

leads to the reduction in the level of dopamine, which plays an important role in motor

control. This affects motor functions that are regulated through the network formed

by the substantia nigra and other brain structures, such as striatum, globus palidus (GP)

and Subthalamic nucleus (STN), which collectively form the basal ganglia (BG). The basal

ganglia regulates movement, such that, without its help, the cortex is unable to coordinate

a well-executed voluntary movement. Animal and human recordings have revealed the

presence of neuronal beta oscillations (10-35 Hz) in the BG network that could relate to

its role in motor regulation [43]. In PD, this network becomes aberrant [138, 163, 170],

and shows a persistent pattern of beta oscillations, especially in the STN and GP [89].

The pioneering work of Wilson and Cowan [158], which described the time evolution

of the mean level of activity of a population of neurons, has been successfully used to

understand several problems in computational neuroscience, such as visual hallucinations,

and the existence of beta oscillations in the basal ganglia [33, 68]. This model and its

various extensions, including modifications incorporating time delays, have played a very

important role in the analysis of neural populations. In the absence of time delays, Er-

mentrout and Cowan used bifurcation analysis and group theory to show the existence of

doubly-periodic patterns in a visual hallucinations model [33]. The olfactory bulb, which

helps mammals to distinguish odours, was modelled by Li and Hopfield [87]. They showed

that the odour input determines the appearance of output oscillations of the bulb. Gillies
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et al. [45] have used a computational model describing STN-GP interactions, and ob-

served that, depending on the external input, there exist three types of behaviour, such

as high and low activity states, as well as repeated oscillatory bursts of high-frequency

activity. Monteiro et al. [101] considered the Wilson-Cowan model with a non-traditional

(traditionally, either hyperbolic tangent or logistic curves are chosen as transfer functions)

sigmoidal function and analytically proved the existence of an stable limit cycle. Ledoux

and Brunel [85] investigated the dynamics of a two-population excitatory and inhibitory

neural network in the presence of time-dependent inputs with instantaneous connections,

as well as in the presence of the time delays corresponding to the latencies, grow and decay

times of synaptic currents between the sub-populations. In particular, they systematically

analysed the dynamic behaviour of the transfer function as a function of connectivity, and

showed that, depending on the connection strength and synaptic time constants, it can be

low pass, or with double or single resonance. Merrison-Hort et al. [95] studied oscillations

in a number of channels mean-field model, where each channel consists of a connected

pair of STN and GP sub-populations. Using two-dimensional bifurcation analysis for each

individual channel, they calculated the critical boundaries separating different dynamical

regimes, such as steady state, bi-stable, and oscillatory behaviour.

The classical Wilson-Cowan model can be modified in order to account for inevitable

time delays in the connections between neural populations. Whilst the stability properties

and oscillations appearing in the classical model are well understood, in the presence of

time delays, the stability analysis become more complicated, with stability oscillatory

regions strongly dependent on the time delay [27, 83, 105, 106, 113, 114, 126, 127]. The

oscillatory regime in dynamical systems is often the result of Hopf bifurcation, when a

stable steady state loses its stability, resulting in the appearance of a stable limit cycle.

In time-delayed dynamical systems, the existence of Hopf bifurcation is closely connected

to time delays, which can destabilise a stable motion or stabilise unstable behaviour [34].

Nevado-Helgado et al. [106] have introduced a mathematical model that explains the

generation of beta oscillations in the STN-GP circuit under the assumption of the strong

connection between STN and GP. Their model also takes into account a short synaptic

delay between these structures in the case when the excitatory input from the cortex to

STN is stronger than the inhibitory input from striatum to GP, and the synaptic time

delay between the STN and GP is negligibly small. Experimental data from an animal

study suggest that the delay between STN and GP is about 6 ms [41, 73]. Pavlides et al.

[114] modified the model first introduced in [106] in order to incorporate physiologically
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relevant time delay in the STN-GP interactions, and obtained more analytical conditions

on stability for realistic values of the time delay between STN and GP neural populations.

Pasillas-Lépine [113] has used a modified Wilson-Cowan model with four time delays,

and derived a necessary and sufficient condition for the existence and local stability of

multiple steady states, as well as found a sufficient condition for the global stability of

these equilibria.

1.4 Thesis outline

The thesis focusses on the mathematical analysis of the coupled systems with time-delayed

connections, and each chapter is based on the following research papers:

• B. Rahman, K.B. Blyuss & Y.N. Kyrychko. Dynamics of neural systems with discrete

and distributed time delays, SIAM J. Applied Dynamical Systems, Vol. 14, No. 4, pp.

2069-2095, 2015.

• B. Rahman, K.B. Blyuss, Y.N Kyrychko. Aging transition in system of oscillators with

global distributed-delay coupling, submitted, 2016.

• B. Rahman, Y.N Kyrychko, K.B. Blyuss, & S.J. Hogan. Dynamics of a subthalamic

nucleus-globus palidus network with three delays, in preparation, 2016.

• B. Rahman, K.B. Blyuss, Y.N Kyrychko. Dynamics of a ring neural network system

with discrete and distributed delays, in preparation, 2016.

In Chapter 2, we study the dynamical behaviour of coupled two sub-networks with a

combination of discrete and distributed time delay. In Section 2.1 we start by modifying

the model for the coupled sub-networks from a single sub-network model. In Section 2.2

we derive general conditions for stability of the trivial steady state of coupled network for

any distribution kernel. Section 2.3 is devoted to the analysis of the model with Dirac

delta distributed kernel, and we show how one can obtain explicit conditions on the system

parameters that ensure the stability of the trivial steady state. In Sections 2.4 and 2.5

we consider the cases of uniform distribution kernel, weak and strong gamma distribution

kernels, find conditions on the stability of the trivial steady state, and numerically identify

stability regions in the parameter space. Numerical simulations of the full nonlinear system

are presented in Section 2.6, and the discussion of results is in Section 2.7.

Chapter 3 is concerned with aging transition in a system of oscillators with global

distributed-delay coupling. First in Section 3.1 we derive and describe the method to

reduce N -dimensional oscillators network to a two-dimensional system. In Section 3.2

aging transition in system of N globally coupled Stuart-Landau oscillators is analysed for
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the case of the uniform distribution kernel. This includes finding analytical expressions for

stability regions of the zero steady state, as well as numerical analysis of the eigenvalues

of the corresponding characteristic equations. Section 3.3 is devoted to the analysis of

aging transition for the case of gamma distribution kernel for both weak and strong cases.

We illustrate how regions of amplitude death are affected by the properties of the delay

distribution and the coupling parameters. In Section 3.4, direct numerical methods of the

fully nonlinear system are presented, and results are summarised in Section 3.5.

In Chapter 4, we consider a model of the subthalamic nucleus (STN)-globus palidus

(GP) network with three independent transmission delays. In Section 4.1, we introduce

the model describing STN and GP neural populations. In Section 4.2, a time-shift trans-

formation is used to reduce the number of time delays, prove positivity of solutions for

all times, and implicitly calculate a steady state of the model. In Sections 4.3, we derive

analytical conditions for local stability of the steady state in the case of a non-zero delay

in the self-interaction of the GP population, and an instant cross-interaction between GP

and STN neural populations. We also give main analytical conditions for local stability

of the steady state in the case when there is a delay in the cross-interaction between GP

and STN populations, and an instant self-interaction in the GP population. In Section

4.4, with the presence of delayed self-interaction in the GP population and delayed cross-

interaction between STN and GP populations simultaneously. Numerical simulations of

the fully nonlinear system are performed to confirm analytical conditions, and illustrate

different dynamical behaviours of the system. The chapter concludes with a discussion in

Section 4.5.

Chapter 5 is devoted to the analysis of the amplitude death regions for a ring neural

network with both discrete and distributed delays. In Section 5.1 we perform the stability

analysis of the trivial steady state of the system by looking at the characteristic equation

without choosing a particular distribution, and we show how one can derive explicit con-

ditions on the system parameters that shows a part of stability region when the actual

distribution is not known. Sections 5.2 and 5.3 are complementary of Section 5.1 by con-

sidering two familiar distributions such as Dirac and weak gamma distribution kernels,

where we find conditions on the stability of the trivial steady state, and identify full sta-

bility regions analytically. In Section 5.4 we give two particular examples, which confirm

our analytical findings. Finally, we give the discussion of the results in Section 5.5.

Overall summary and conclusions are presented in Chapter 6, which also contains

future potential extensions of this research.
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Chapter 2

Dynamics of neural systems with

discrete and distributed time

delays

In this chapter, we study the stability and bifurcation of distributed delay-coupled of

two sub-networks, each has two neurons with unidirectional discrete delay. First, without

choosing any particular distribution kernel, we show some analytical results and determine

the characteristic equation of the trivial steady state analytically for a general distribution

kernel. Next, in order to make further analytical progress, we specify the most commonly

used distribution kernels in the literature, namely, delta distribution, uniform distribution,

and gamma distribution for both weak and strong kernels. Finally, we use numerical

techniques to investigate stability properties of the fully nonlinear system. The results in

this chapter have been already published [119].

2.1 Model derivation

The simplest time-delayed model, which describes neural interaction, can be written in

the form

u̇1(t) = −u1(t) + a12f(u2(t− τ)),

u̇2(t) = −u2(t) + a21f(u1(t− τ)),

(2.1)

where ui, i = 1, 2, describe the voltage input of the neuron i, a12 and a21 are synaptic

weights or connection strengths, τ is the synaptic time delay and f : R→ R is a nonlinear

activation/transfer function. This model can be used to describe a Hopfield network,
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where individual neurons are connected to each other through an activation (or transfer)

function with certain weights [60]. The time delay τ is assumed to be positive, and the

connection strengths a12 and a21 can be positive or negative, describing excitatory or

inhibitory connections, respectively. The dynamical properties of the system (2.1), such

as stability of the steady states and existence of the Hopf bifurcation have been extensively

studied by several authors (for example, [35, 94, 155], and references therein).

Despite a large number of results related to neural network models of the type shown

in (2.1), systems of coupled sub-networks have received less attention. In particular, in the

majority of the models considered in the literature, the connection time delay is assumed

to be constant, see, for example, [21, 143]. In this analysis, we focus on the role of the

distribution of delay times between the two sub-networks, rather than the influence of

discrete time delays inside a single sub-network. Furthermore, we analyse the dynamics

of a system where both discrete and distributed time delays are simultaneously present.

We expand the Hopfield-type model (2.1) and its modification considered in [143] by

introducing a distribution of time delays in the feedback connection between the two sub-

networks, and within each sub-network, the neurons are coupled with a constant time

delay. Explicitly incorporating the above assumptions leads to the following model

u̇1(t) = −u1(t) + a12f(u2(t− τ)) + α

∫ ∞
0

g(s)f(u4(t− s))ds,

u̇2(t) = −u2(t) + a21f(u1(t− τ)),

u̇3(t) = −u3(t) + a12f(u4(t− τ)) + α

∫ ∞
0

g(s)f(u2(t− s))ds,

u̇4(t) = −u4(t) + a21f(u3(t− τ)),

(2.2)

where ui, are voltages of neurons i, i = 1, ..., 4, a12 and a21 denote the strength of con-

nections between neurons within each sub-network, they can be positive or negative, and

α measures the strength of the long-range coupling between the two sub-networks. We

assume that locally, a time delay τ arising due to a finite speed of signal propagation

between individual neurons inside each sub-network is a non-negative constant, while the

long-range transmission delays between the sub-networks are characterised by a distribu-

tion with the kernel g(·). In the most general formulation, all neural interactions (both

within and between the sub-networks) could be represented by distributed time delays.

However, due to a close proximity of neurons inside each sub-network, it is reasonable

to assume that the variation of the time delays in the connection between them is neg-
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Figure 2.1: Diagrammatic sketch of the Hopfield-type neural network described by the

system (2.2). The delays τ inside each of the sub-networks are assumed to be constant

and discrete, and long-range interactions between the two sub-networks are represented

by the distributed delay kernel g(s).

ligibly small compared to the variation of the time delays in the long-range connections

between sub-networks [141]. This justifies the choice of a discrete time delay within the

sub-networks and distributed time delays in the interactions between them, and makes

analytical investigations more tractable.

The synaptic transfer function f : R → R is assumed to be C1 and sigmoidal with a

maximum slope at zero [13, 94]. For the linear stability analysis, we only require f(0) = 0,

f ′(0) 6= 0, and use a particular choice of f(·) = tanh(·) in the numerical simulations.

Without loss of generality, the distribution kernel g(·) is assumed to be positive-definite

and normalised to unity, i.e.

g(s) ≥ 0,

∫ ∞
0

g(s)ds = 1.

The schematic sketch of the system (2.2) is shown in Figure 2.1. If the distribution

kernel is taken in the form of the Dirac delta function, that is g(s) = δ(s), one recovers

the instantaneous coupling between the two sub-networks, where the two sub-networks

interact without time delays. If g(s) = δ(s− τ), the coupling takes the form of a discrete

time delay αf(ui(t−τ)), i = 2, 4. Song et al. [143] have considered the case of discrete time

delays in system (2.2) and derived conditions for stability, Hopf bifurcation and emergence

of spatio-temporal patterns from bifurcating periodic solutions.

2.2 Stability Analysis

Equilibria of the system (2.2) satisfy u̇i = 0, i = 1, 2, 3, 4. Since f(0) = 0, the sys-

tem has is a trivial steady state (u1, u2, u3, u4) = (0, 0, 0, 0) and all other steady states

(u1, u2, u3, u4) = (u∗1, u
∗
2, u
∗
3, u
∗
4) satisfy
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u∗1 = a12f(u∗2) + α

∫ ∞
0

g(s)f(u∗4)ds,

u∗2 = a21f(u∗1),

u∗3 = a12f(u∗4) + α

∫ ∞
0

g(s)f(u∗2)ds,

u∗4 = a21f(u∗3).

(2.3)

Depending on the signs of the coupling weights aij , i, j = 1, 2, coupling strength α and

the specific form of the transfer function f , there may exist a number of non-trivial steady

states (u1, u2, u3, u4) = (u∗1, u
∗
2, u
∗
3, u
∗
4), but their existence is not guaranteed in general

[13, 141]. As mentioned above, by the assumption f(0) = 0, the system (2.2) always has

a trivial, or rest steady state (u1, u2, u3, u4) = (0, 0, 0, 0). The importance of this trivial

steady state lies in the fact that it represents a state of background activity, which is

fundamental for many neural processes [158, 169]. Therefore, we concentrate our analysis

on the stability of the trivial steady state, and similar considerations can be made for all

other steady states when they are permitted by the model. A linearisation of the system

(2.2) near the trivial steady state has the form

u̇(t) = L0u(t) + L1u(t− τ) +M

∫ ∞
0

g(s)u(t− s)ds, (2.4)

with u = (u1, u2, u3, u4), L0 = −I, where I is the 4× 4 identity matrix, and L1 and M

are given by

L1 =


0 a12β 0 0

a21β 0 0 0

0 0 0 a12β

0 0 a21β 0

 , M =


0 0 0 αβ

0 0 0 0

0 αβ 0 0

0 0 0 0

 ,

where β = f ′(0) 6= 0. To analyse the stability of the linearised system, we assume that

there are solutions of (2.4) of the form u(t) = Ceλt where λ is a complex number and

C = (c1, c2, c3, c4)
T 6= 0. Substituting this into (2.4) we obtain

[(λ+ 1)I − L1e
−λτ −MĜ(λ)]C = 0,

and since C 6= 0 we obtain

det[∆(τ, λ)] = det[(λ+ 1)I − L1e
−λτ −MĜ(λ)] = 0,
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where

Ĝ(λ) =

∫ ∞
0

e−λsg(s)ds,

is the Laplace transform of the function g(·). The corresponding characteristic equation

factorises as follows,

det[∆(τ, λ)] = ∆−(τ, λ) ·∆+(τ, λ) = 0, (2.5)

where ∆−(τ, λ) and ∆+(τ, λ) are given by

∆−(τ, λ) = (λ+ 1)2 − a12a21β2e−2λτ − Ĝ(λ)a21αβ
2e−λτ , (2.6)

∆+(τ, λ) = (λ+ 1)2 − a12a21β2e−2λτ + Ĝ(λ)a21αβ
2e−λτ . (2.7)

It is easy to see that λ is a root of the characteristic equation (2.5) if and only if it is

a root of either ∆+ or ∆−.

Lemma 2.2.1. λ = 0 is a solution of (2.5) if and only if |a21αβ2| = |1− a12a21β2|.

Proof. From the factorisation of the characteristic equation det[∆(τ, λ)] = ∆+(τ, λ) ·

∆−(τ, λ) = 0 it follows that either ∆+(τ, λ) = 0 or ∆−(τ, λ) = 0. Computing Ĝ(λ)

at λ = 0, yields

Ĝ(0) =

∫ ∞
0

g(s)ds = 1.

Substituting this into ∆+(τ, 0) = 0 and ∆−(τ, 0) = 0 given in (2.6) and (2.7), one finds

that either

∆+(τ, 0) = 1− a12a21β2 + a21αβ
2 = 0,

or

∆−(τ, 0) = 1− a12a21β2 − a21αβ2 = 0.

The last two expressions imply

|a21αβ2| = |1− a12a21β2|,

which completes the proof.

Next, we can determine a condition in the parameter space where the trivial steady

state is unstable for any distribution g(s).

Theorem 2.2.1. If either |a21αβ2| > |1− a12a21β2| or |a21αβ2| < a12a21β
2 − 1, then the

characteristic equation (2.5) has a root with positive real part for any τ ≥ 0.
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Proof. Substituting λ = 0 into equations (2.6) and (2.7) gives

det[∆(τ, 0)] = ∆+(τ, 0) ·∆−(τ, 0) = (1− a12a21β2 + a21αβ
2) · (1− a12a21β2 − a21αβ2).

Under the assumption |a21αβ2| > |1− a12a21β2|, we have either

∆+(τ, 0) > 0 and ∆−(τ, 0) < 0,

or

∆+(τ, 0) < 0 and ∆−(τ, 0) > 0,

which both imply that det[∆(τ, 0)] < 0. On the other hand,

lim
λ→∞

det[∆(τ, λ) = lim
λ→∞

[∆+(τ, λ) ·∆−(τ, λ)] =∞.

Since det[∆(τ, λ)] is a continuous function of λ, there exists λ∗ > 0 such that det[∆(τ, λ∗)] =

0 for any τ ≥ 0 and |a21αβ2| > |1− a12a21β2|. Thus, the characteristic equation (2.5) has

a real positive root.

In the case when |a21αβ2| < a12a21β
2 − 1, we have

∆+(τ, 0) < 0 and ∆−(τ, 0) < 0.

Since

lim
λ→∞

∆+(τ, λ) = lim
λ→∞

∆−(τ, λ) =∞,

this implies that both ∆+(τ, λ) and ∆−(τ, λ) will cross zero at some positive λ∗, which

completes the proof.

The analytical results illustrate that for some parameters, the characteristic equation

has a zero root if |a21αβ2| = |1−a12a21β2|, for any general distribution kernels. Moreover,

Theorem 2.2.1 shows that the trivial steady state is unstable for any distribution kernel if

either |a21αβ2| > |1− a12a21β2| or |a21αβ2| < a12a21β
2 − 1.

2.3 Dirac delta function

In the case of the delay distribution being given by the Dirac delta function, we have

to consider two different cases. In the case g(s) = δ(s − τ), the system (2.2) reduces

to the case of a system with discrete time delay. Song et al. [143] have shown that if

|a21αβ2| > 1− a12a21β2, the trivial steady state of the system (2.2) with g(s) = δ(s− τ)

is unstable for all τ ≥ 0; if a12a21β
2−1 < |a21αβ2| ≤ a12a21β2 + 1, the trivial steady state
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is stable for all τ ≥ 0, and if 1 + a12a21β
2 < |a21αβ2| < 1 − a12a21β2, there exists τ0 > 0

such that the trivial steady state is stable for all τ ∈ [0, τ0) and unstable for τ > τ0.

Considering the distribution kernel of the form g(s) = δ(s), i.e.∫ ∞
0

δ(s)f(u(t− s))ds = f(u(t)), (2.8)

the system (2.4) reduces to a system with discrete time delay of the form

u̇(t) = L0u(t) + L1u(t− τ), (2.9)

where u = (u1, u2, u3, u4), L0 and L1 are given by

L0 =


−1 0 0 αβ

0 −1 0 0

0 αβ −1 0

0 0 0 −1

 , L1 =


0 a12β 0 0

a21β 0 0 0

0 0 0 a12β

0 0 a21β 0

 .

The characteristic equation of the system (2.9) can be factorized in a manner similar to

(2.5):

det[∆(τ, λ)] = ∆−(τ, λ) ·∆+(τ, λ) = 0, (2.10)

where

∆−(τ, λ) = (λ+ 1)2 − a12a21β2e−2λτ − a21αβ2e−λτ , (2.11)

and

∆+(τ, λ) = (λ+ 1)2 − a12a21β2e−2λτ + a21αβ
2e−λτ . (2.12)

In the following, we study the distribution of roots of the characteristic equation (2.10).

Lemma 2.3.1. Let |1− a12a21β2| = |a21αβ2|. If

1 + a12a21β
2 > 0 and a12a21β

2 6= 1, (2.13)

or

1 + a12a21β
2 < 0 and τ 6= τd = − 2

1 + a12a21β2
, (2.14)

then λ = 0 is a simple root of the characteristic equation (2.10). If

a12a21β
2 = 1, (2.15)

or

1 + a12a21β
2 < 0 and τ = τd, (2.16)

then λ = 0 is a double root of the characteristic equation (2.10).
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Proof. It follows from Lemma 2.2.1 that whenever the condition |1−a12a21β2| = |a21αβ2|

holds, λ = 0 is a root of the characteristic equation (2.10). In order to determine the

multiplicity of this root, we compute

d∆

dλ

∣∣∣
λ=0

= 2(1− a12a21β2)[2 + τ(1 + a12a21β
2)]. (2.17)

If the condition (2.13) holds, then d∆(τ, 0)/dλ 6= 0 for any τ , implying that λ = 0 is a

simple root of the characteristic equation (2.10). Likewise, if the condition (2.14) holds,

it follows from (2.17) that

d∆

dλ

∣∣∣
λ=0

> 0 for τ < τd,

d∆

dλ

∣∣∣
λ=0

< 0 for τ > τd.

Hence, λ = 0 is a simple root. When the condition (2.15) is satisfied, we have

d∆

dλ

∣∣∣
λ=0

= 0,
d2∆

dλ2

∣∣∣
λ=0

= 8(τ + 1)2 > 0,

and, therefore, λ = 0 is a double root. Finally, if the condition (2.16) holds, one has

d∆

dλ

∣∣∣
λ=0,τ=τd

= 0,
d2∆

dλ2

∣∣∣
λ=0,τ=τd

=
4(1− a12a21)(a212a221 − 4a12a21 − 1)

(1 + a12a21)2
> 0,

which means that λ = 0 is a double root of the equation (2.10). This completes the

proof.

Below we concentrate on the analysis of the equation

∆−(τ, λ) = (λ+ 1)2 − a12a21β2e−2λτ − a21αβ2e−λτ = 0, (2.18)

and the same analysis applies to the case of ∆+(τ, λ) = 0. In order to identify further

stability changes, we look for solutions in the form λ = iω, ω 6= 0. When τ = 0, ∆−(τ, λ) =

0 turns into

∆−(0, λ) = (λ+ 1)2 − a21αβ2 − a12a21β2 = 0. (2.19)

The following lemma can be easily obtained using the Routh-Hurwitz criterion.

Lemma 2.3.2. Assume a21αβ
2 < 1−a12a21β2. Then all roots of the equation (2.19) with

τ = 0 always have negative real parts.

When τ 6= 0, an iterative procedure can be employed to find a new function F (ω),

whose roots ω give the Hopf frequency associated with purely imaginary roots of the
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characteristic equation (2.18). The procedure to find the function F (ω) works as follows.

Consider a general transcendental characteristic equation [53, 77, 86]

∆(τ, λ) =

n∑
k=0

pk(λ)e−kλτ , (2.20)

where τ ≥ 0, pk(λ), k = 0, 1, 2, ... are polynomials in λ, and |pk(λ)/p0(λ)| < 1, k =

1, 2, ..., n, for |λ| → ∞ and Re(λ) ≥ 0. Substituting λ = iω into the equation (2.20) and

conjugating ∆(τ, iω) gives

∆(τ, iω) =
n∑
k=0

pk(iω)e−kiωτ , ∆(τ, iω) =
n∑
k=0

pk(iω)ekiωτ .

Clearly, ∆(τ, iω) = 0 if and only if ∆(τ, iω) = 0. Define ∆(j)(τ, iω) recursively as

∆(1)(τ, iω) = p0(iω)∆(τ, iω)− pn(iω)e−niωτ∆(τ, iω) =
n−1∑
k=0

p
(1)
k (iω)e−kiωτ ,

...

∆(j)(τ, iω) = p
(j−1)
0 (iω)∆(j−1)(τ, iω)− p(j−1)n−j+1(iω)e−(n−j+1)iωτ∆(j−1)(τ, iω)

=
n−j∑
k=0

p
(j)
k (iω)e−kiωτ ,

...

∆(n−1)(τ, iω) = p
(n−1)
0 (iω) + p

(n−1)
1 (iω)e−iωτ .

From p
(j+1)
0 (iω) we obtain

p
(j+1)
0 (iω) = |p(j)0 (iω)|2 − |p(j)n−j(iω)|2, j = 0, 1, 2, · · · , n− 2.

Moreover, from ∆n−1(τ, iω), let

F (ω) = |p(n−1)0 (iω)|2 − |p(n−1)1 (iω)|2.

If ∆(τ, iω) = 0, then ω is a root of F (ω) = 0 .

Returning to the equation (2.18), we can use the same argument as above with n = 2

to find the function F (ω):

F (ω) = |p(1)0 (iω)|2 − |p(1)1 (iω)|2. (2.21)

where

p
(1)
0 (iω) = (ω2 + 1)2 − a212a221β4,

p
(1)
1 (iω) = a21αβ

2[(ω2 − 1)− a12a21β2 + 2iω].

(2.22)

The function F (ω) is explicitly given by

F (ω) = ω8 + 4ω6 + a1ω
4 + a2ω

2 + a3, (2.23)
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where the coefficients ai, i = 1, 2, 3, are expressed through the parameters of the system

(2.2) in the following way

a1 = 6− 2a212a
2
21β

4 − a221α2β4, a2 = 2(2− 2a212a
2
21β

4 − a221α2β4 + a321α
2a12β

6),

a3 = 1− 2a212a
2
21β

4 + a412a
4
21β

8 − a221α2β4 − 2a321α
2a12β

6 − a421α2a212β
8.

Lemma 2.3.3. If a3 < 0 in (2.23), then the function F (ω) given by (2.23) has at least

one positive root ω, i.e. F (ω) = 0.

Proof. Assumption a3 < 0 implies that F (0) = a3 < 0. Since F (ω) as defined by (2.23)

is a continuous function of ω, and also limω→∞ F (ω) =∞, this means that there exists a

positive root ω > 0 of the equation F (ω) = 0.

Let us now consider the case when the assumption a3 < 0 does not hold. Introducing

the notation s = ω2, the equation F (ω) = 0 can be rewritten as

h(s) = s4 + 4s3 + a1s
2 + a2s+ a3 = 0. (2.24)

From (2.24), we have

h′(s) = 4s3 + 12s2 + 2a1s+ a2. (2.25)

Existence and the number of positive roots of the equation (2.24) depend on the coefficients

a1, a2, a3, which themselves depend on system parameters.

Without loss of generality, suppose that the equation (2.24) has four positive roots

denoted by s1, s2, s3, s4. Then the equation F (ω) = 0 will have four positive real roots

ω1 =
√
s1, ω2 =

√
s2, ω3 =

√
s3, ω4 =

√
s4.

On the other hand, substituting λ = iω into (2.18) gives

(iω + 1)2 − a21αβ2e−iωτ − a12a21β2e−2iωτ = 0. (2.26)

Separating this equation into real and imaginary parts yields

−ω2
k + 1 = a21αβ

2 cos(ωkτk) + a12a21β
2 cos(2ωkτk),

−2ωk = a21αβ
2 sin(ωkτk) + a12a21β

2 sin(2ωkτk),

(2.27)

where k = 1, 2, 3, 4. Using trigonometric formulas, the system (2.27) can be rewritten in

the form

cos(ωkτk) =
−a21αβ2 ±

√
a221α

2β4 + 8a212a
2
21β

4 + 8a12a21 − 8a12a21ω2
k

a12a21β
,

sin(ωkτk) =
4ωk

β(−a21αβ2 ±
√
a221α

2β4 + 8a212a
2
21β

4 + 8a12a21 − 8a12a21ω2
k)
.

(2.28)
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Dividing the equations (2.28), we obtain

τ jk =
1

ωk

[
arctan

(
−2ωk

1− ω2
k + a12a21β2

)
+ jπ

]
, (2.29)

where k = 1, 2, 3, 4, j = 0, 1, 2, .... Therefore, the solutions of the equation (2.26) are pairs

(τ jk , ωk), where λ = ±iωk are pairs of purely imaginary roots of (2.18) with τ = τ jk . Define

τ0 = τ0k0 = min
1≤k≤4

{τ0k}, ω0 = ωk0 , k0 ∈ {1, 2, 3, 4}.

Then τ0 is the first value of the time delay τ for which the roots of the characteristic

equation (2.18) cross the imaginary axis. Let λ(τ) = α(τ)± iω(τ) be the root of equation

(2.11) near τ = τ0k satisfying α(τ0k ) = 0, ω(τ0k ) = ω0. It can be easily shown that the

following transversality condition holds.

Lemma 2.3.4. Suppose h′(s0) 6= 0 and p
(1)
0 (ω0) 6= 0, where h(s) and p

(1)
0 (ω0) are defined

in (2.22) and (2.24), respectively, and s0 = ω2
0. Then the following transversality condition

holds

sgn

{
dRe[λ(τ)]

dτ

∣∣∣∣∣
τ=τ0k

}
= sgn

[
p
(1)
0 (ω0)h

′(s0)
]
.

Proof. Substituting λ(τ) into the characteristic equation (2.18) and taking derivative with

respect to τ gives{
dλ(τ)

dτ

}−1
= − 2λ+ 2

2a12a21β2λe−2λτ + a21αβ2λe−λτ
− τ

λ
.

From this equation, one can find{
dRe{λ(τ)}

dτ

}−1
τ=τ0k

= Re

{
− 2λ+ 2

2a12a21β2λe−2λτ + a21αβ2λe−λτ

}
τ=τ0k

− Re
{τ
λ

}
τ=τ0k

=
2ω0[2ω0a12a21β2 cos(2ω0τ0k )+2a12a21β2 sin(2ω0τ0k )+ω0a21αβ2 cos(ω0τ0k )+a21αβ

2 sin(ω0τ0k )]
[2ω0a12a21β2 sin(2ω0τ0k )+ω0a21αβ2 sin(ω0τ0k )]

2
+[2ω0a12a21β2 cos(2ω0τ0k )+ω0a21αβ2 cos(ω0τ0k )]

2 .

Using (2.27) and (2.28), this expression can simplified into{
dRe{λ(τ)}

dτ

}−1
τ=τ0k

=
ω2
0

[
4ω6

0 + 12ω4
0 + 2(6− 2a212a

2
21β

4 − a221α2β4)ω2
0

]
Λ(ω4

0 + 2ω2
0 + 1− a212a221β4)

+
ω2
0

[
2(2− 2a212a

2
21β

4 − a221α2β4 − a321α2a12β
6)
]

Λ(ω4
0 + 2ω2

0 + 1− a212a221β4)
=
s0
[
4s30 + 12s20 + 2a1s0 + a2

]
Λp

(1)
0 (ω0)

,

where

Λ =
[
2ω0a12a21β

2 sin(2ω0τ
0
k ) + ω0a21αβ

2 sin(ω0τ
0
k )
]2

+
[
2ω0a12a21β

2 cos(2ω0τ
0
k ) + ω0a21αβ

2 cos(ω0τ
0
k )
]2
,

and p
(1)
0 (ω0) = (ω2

0 + 1)2 − a212a221β4. Since s0 = ω2
0 > 0 and Λ > 0, this implies
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Figure 2.2: Stability regions of the trivial steady state of the system (2.2) with delta

distribution g(s) = δ(s) and a12 = 2, β = 1. (a) a21 = −0.55. (b) a21 = −0.45. (c)

a21 = 0.45. Colour code denotes [−max{Re(λ)}] for max{Re(λ)} ≤ 0.

sgn

{
dRe[λ(τ)]

dτ

∣∣∣∣∣
τ=τ0k

}
= sgn

{
dRe[λ(τ)]

dτ

∣∣∣∣∣
τ=τ0k

}−1
= sgn

{
1

Λp
(1)
0 (ω0)

h′(s0)

}
= sgn[p

(1)
0 (ω0)h

′(s0)],

which completes the proof.

By Lemmas 2.3.2 and 2.3.4, we have the following result regarding the stability of the

trivial steady state of the system (2.2) and the existence of the Hopf bifurcation.

Theorem 2.3.1. Suppose |a21αβ2| < |1 − a12a21β2|. If the equation (2.24) has at least

one positive root, p
(1)
0 (ω0) 6= 0 and h′(s0) 6= 0, then the trivial steady state of the system

(2.2) is stable for 0 ≤ τ < τ0, and undergoes a Hopf bifurcation at a critical value of the

time delay τ = τ0.

In order to illustrate the effects of varying the coupling strength α and the time delay τ

on the stability of the trivial steady state, we numerically compute stability boundaries of

this steady state in the α− τ plane using a pseudospectral algorithm developed by Breda

et al. in [19].

Figure 2.2 (a) shows a closed stability region in the α − τ plane for the case when

a12 = 2, a21 = −0.55 and β = 1. We can observe that the steady state is stable inside the

coloured region, where colour corresponds to [−max{Re(λ)}] for max{Re(λ)} ≤ 0. For

small values of the time delay τ , there is a large interval of the coupling strength values,

where the steady state is stable. As τ gets larger, the stability region become narrower, and

eventually, for large enough values of the time delay τ , the trivial steady state becomes

unstable independently of the value of the coupling strength α. The situation for any

values of the parameters a12, a21 and β satisfying a12a21β
2 < −1 is qualitatively the same

as the one shown in Figure 2.2 (a).
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In the case when the parameters of the system (2.2) satisfy the condition −1 ≤

a12a21β
2 < 0, the stability region is illustrated in Figure 2.2 (b). One can see that

compared to the case a12a21β
2 < −1, the stability region is larger, and for all values of the

time delay τ , there is always a range of values of the coupling strength α, for which the

trivial steady state of the system (2.2) is stable. It is noteworthy that whenever a12 and a21

have opposite signs, the boundary of the stability region consists of two parts. The trivial

steady state can lose its stability via a Hopf bifurcation in accordance with Theorem 2.3.1

or undergo a steady-state bifurcation, as described in Lemma 2.3.1. In Figures 2.2 (a) and

(b), the horizontal part of the stability boundary corresponds to |1−a12a21β2| = |a21αβ2|.

If 0 ≤ a12a21β2 ≤ 1, the trivial steady state can only lose its stability via a steady-state

bifurcation as shown in Figure 2.2 (c). Once again, the horizontal boundaries are defined

by |1 − a12a21β2| = |a21αβ2|. Finally, for a12a21β
2 > 1, the trivial steady state is always

unstable independently of the time delay τ , following the results of Theorem 2.2.1.

2.4 Uniform distribution kernel

In this section we consider the system (2.2) in the case of the uniformly distributed kernel

(1.6). Taking the Laplace transform of the uniform distribution g(s) given in (1.6), we

obtain

Ĝ(λ) =
1

2σλ
e−λτ (eλσ − e−λσ) = e−λτ

sinh(λσ)

λσ
. (2.30)

Lemma 2.4.1. Let |1−a12a21β2| = |a21αβ2|. If a12a21β
2 6= 1, then λ = 0 is a simple root

of the characteristic equation (2.5) with the delay kernel (1.6), otherwise, it is a double

root.

The proof of Lemma 2.4.1 is analogous to the proof of Lemma 2.3.1.

Substituting the Laplace transform (2.30) into the characteristic equation (2.6) and

looking for solutions in the form λ = iω yields

(iω + 1)2 − [a12a21β
2 + a21αβ

2γ(ω, σ)]e−2iωτ = 0, (2.31)

where

γ(ω, σ) =
sin(ωσ)

ωσ
.

Separating equation (2.31) into real and imaginary parts gives

−ω2 + 1 = [a12a21β
2 + a21αβ

2γ(ω, σ)] cos(2ωτ),

−2ω = [a12a21β
2 + a21αβ

2γ(ω, σ)] sin(2ωτ).

(2.32)
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Squaring and adding the last two equations gives a transcendental equation for the

Hopf frequency ω

ω2 + 1 = ±[a12a21β
2 + a21αβ

2γ(ω, σ)]. (2.33)

In a similar way, dividing the two equations in (2.32), we obtain

tan(2ωτ) =
2ω

ω2 − 1
. (2.34)

Figure 2.3: Stability region of the trivial steady state of the system (2.2) with the uni-

form distribution (1.6) for a12 = 2, a21 = −0.55, and β = 1. Colour code denotes

[−max{Re(λ)}] for max{Re(λ)} ≤ 0. (a) σ = 0, (b) σ = 0.5, (c) σ = 1 and (d) σ = 1.5.

To illustrate the effects of changing the coupling between the two sub-networks α and

the time delay τ on stability of the trivial steady state, we numerically find the stability

boundary in the α − τ plane parametrised by the Hopf frequency ω. We rewrite the

linearised system with the uniformly distributed kernel as follows

u̇(t) = L0u(t) + L1u(t− τ) +
α

2σ

∫ −(τ−σ)
−(τ+σ)

Mu(t+ s)ds, (2.35)

where u = (u1, u2, u3, u4), L0 = −I, I is the 4 × 4 identity matrix, and L1 and M are
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given by

L1 =


0 a12β 0 0

a21β 0 0 0

0 0 0 a12β

0 0 a21β 0

 , M =


0 0 0 β

0 0 0 0

0 β 0 0

0 0 0 0

 .

The system (2.35) is now in the form suitable for computing the maximum real part of

the characteristic eigenvalues using the algorithm described in [19] and implemented in

traceDDE suite in MATLAB.

Figure 2.4: Stability region of the trivial steady state of the system (2.2) with the uni-

form distribution (1.6) for a12 = 2, a21 = −0.45 and β = 1. Colour code denotes

[−max{Re(λ)}] for max{Re(λ)} ≤ 0. (a) σ = 0, (b) σ = 0.5, (c) σ = 1 and (d) σ = 1.5.

If σ = 0, the last term in the equation (2.35) becomes αMu(t − τ), and the system

(2.2) reduces to the system with a single discrete time delay τ , which was analysed in [143].

When σ 6= 0, we have to consider separately different values of a12a21β
2, and compute the

stability of the trivial steady state of the system (2.2) as the distribution width σ is varied.

Figure 2.3 shows the stability boundary when the condition a12a21β
2 < −1 is satisfied. In

this case, when σ = 0, the stability region is the same as in the case of a single discrete
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time delay and coincides with the Figure 2.2 (a), where for τ = 0, there is an interval of α

values, for which the trivial steady state of the system (2.2) is stable. As σ is increased,

the stability region detaches from the α-axis, and for τ = 0 it is not possible to stabilise

the trivial steady state, as shown in Figure 2.3 (b). In Figures 2.3 (c) and (d), increasing

σ further still leads to shrinking of the stability region in the α − τ plane, thus reducing

the range of α values for which the trivial steady state of the system (2.2) is stable.

Figure 2.5: Stability region of the trivial steady state of the system (2.2) with the uniform

distribution (1.6) for a12 = 2, a21 = 0.45 and β = 1. Colour code denotes [−max{Re(λ)}]

for max{Re(λ)} ≤ 0. (a) σ = 0, (b) σ = 0.5, (c) σ = 1 and (d) σ = 1.5.

In the case when parameter values of the system (2.2) satisfy the condition −1 ≤

a12a21β
2 < 0 with σ = 0, we again recover the case of a single discrete time delay, and the

stability region shown in Figure 2.4 (a) is the same as in Figure 2.2 (b). As the distribution

width is increased, as shown in Figures 2.4 (b)-(d), it is no longer possible to stabilise the

trivial steady state with τ = 0 for any values of the coupling strength α. Moreover, the

larger the distribution width, the smaller is the interval of α values where the stability is

observed. However, unlike the situation when a12a21β
2 < −1, in this case, the stability
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region does not become an isolated island but rather becomes a narrow stretch in the α−τ

plane.

For the case when the parameter values a12a21β
2 ∈ [0, 1], the stability region does not

depend on the time delay τ and the trivial steady state loses its stability only through

steady-state bifurcation in horizontal lines |1−a12a21β2| = |a21αβ| as shown in Figure 2.5.

Figure 2.5 (a) once again coincides with Figure 2.2 (c) for single discrete delay case when

σ = 0. Further, when σ increases, similar to the previous cases −1 ≤ a12a21β
2 < 0 and

a12a21β
2 < −1, the stability region detaches from α-axis, and for τ = 0 it is no longer

possible to stabilise the trivial steady state with τ = 0 as shown in Figure 2.5 (b)-(d). For

a12a21β
2 > 1, the trivial steady state is unstable for any τ ≥ 0 and any σ.

2.5 Gamma distribution kernel

In this section we consider the gamma distribution kernel (1.7) to analyse the stability

of the trivial steady state of the system (2.2). One can use the same strategy as in the

previous Section by taking the Laplace transform of the distribution kernel, which gives

Ĝ(λ) =

(
γ

λ+ γ

)r
. (2.36)

Recalling the characteristic equation (2.5) and substituting the Laplace transform (2.36)

into (2.6) and (2.7), we get

∆−(τ, λ) = (λ+ γ)r(λ+ 1)2 − (λ+ γ)ra12a21β
2e−2λτ − λra21αβ2e−λτ = 0, (2.37)

∆+(τ, λ) = (λ+ γ)r(λ+ 1)2 − (λ+ γ)ra12a21β
2e−2λτ + λra21αβ

2e−λτ = 0. (2.38)

For r = 1, the gamma distribution becomes an exponential distribution, also called a weak

delay kernel. For r = 2, the gamma distribution (1.7) is called a strong delay kernel. We

analyse both cases in the following two subsections.

2.5.1 Weak gamma distributed delayed kernel

In this subsection we consider the system (2.2) with a weak distribution kernel (1.7), i.e.

r = 1. The analysis of the characteristic equation can be performed either by using the

Laplace transform (2.36), or employing the linear chain trick described in [91]. The linear

chain trick allows one to replace the original system with discrete and distributed delays

by the system of delay differential equations with discrete time delay only. Introducing
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the new variables

u5(t) =

∫ ∞
0

γe−γsu2(t− s)ds,

u6(t) =

∫ ∞
0

γe−γsu4(t− s)ds,

allows one to rewrite the system (2.2) as follows

u̇1(t) = −u1(t) + a12βu2(t− τ) + αβu6(t),

u̇2(t) = −u2(t) + a21βu1(t− τ),

u̇3(t) = −u3(t) + a12βu4(t− τ) + αβu5(t),

u̇4(t) = −u4(t) + a21βu3(t− τ),

u̇5(t) = γu2(t)− γu5(t),

u̇6(t) = γu4(t)− γu6(t).

(2.39)

The characteristic equation (2.5) for the system (2.39) with weak distribution kernel has

the form

det[∆(τ, λ)] = ∆−(τ, λ) ·∆+(τ, λ) = 0, (2.40)

where

∆−(τ, λ) = (λ+ γ)(λ+ 1)2 − (λ+ γ)a12a21β
2e−2λτ − γa21αβ2e−λτ , (2.41)

and

∆+(τ, λ) = (λ+ γ)(λ+ 1)2 − (λ+ γ)a12a21β
2e−2λτ + γa21αβ

2e−λτ . (2.42)

Lemma 2.5.1. Let |1− a12a21β2| = |a21αβ2|. If

−1 ≤ a12a21β2 ≤ 1 + 2γ and a12a21β
2 6= 1,

or

a12a21β
2 > 1 + 2γ or a12a21β

2 < −1 and τ 6= τγ =
a12a21β

2 − 2γ − 1

γ(1 + a12a21β2)
,

then λ = 0 is a simple root of the characteristic equation (2.40). If

a12a21β
2 = 1,
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or

a12a21β
2 > 1 + 2γ or a12a21β

2 < −1 and τ = τγ ,

then λ = 0 is a double root of the characteristic equation (2.40).

The proof of Lemma 2.5.1 is similar to the proof of Lemma 2.3.1.

We will analyse the case of ∆−(τ, λ) given by (2.41), and the analysis is the same for

∆+(τ, λ) in (2.42). The transcendental equation for eigenvalues λ for ∆−(τ, λ) has the

form:

∆−(τ, λ) = (λ+ γ)(λ+ 1)2 − (λ+ γ)a12a21β
2e−2λτ − γa21αβ2e−λτ = 0. (2.43)

Note that when τ = 0, this equation reduces to

λ3 + (γ + 2)λ2 +
(
2 γ + 1− a12a21β2

)
λ+ γ(1− a12a21β2 − a21αβ

2) = 0. (2.44)

In view of the Routh-Hurwitz criterion, we have the following result.

Lemma 2.5.2. Assume that condition

a21a12β
2 < min{2γ + 1, 1− a21αβ2} (2.45)

holds. Then all roots of the equation (2.44) have negative real part.

When τ > 0, we can use the same technique as in the case of the delta distributed

kernel in order to calculate F (ω) as follows:

p
(1)
0 (iω) =

[
γ − (γ + 2)ω2

]2
+
[
ω3 − (2 γ + 1)ω

]2 − (γ2 + ω2
)
a21

2β4a12
2,

p
(1)
1 ((iω) = −a21αβ2γ2 + a21αβ

2γ2ω2 + 2 a21αβ
2γ ω2 − a212αβ4a12γ2

+
(
−a21αβ2γ ω3 + 2 a21αβ

2γ2ω + a21αβ
2γ ω − a212αβ4a12γ ω

)
i,

(2.46)

and, hence,

F (ω) = ω12 + b1ω
10 + b2ω

8 + b3ω
6 + b4ω

4 + b5ω
2 + b6, (2.47)
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where

b1 = 2γ2 + 4, b2 = −2 a12
2a21

2β4 + 8 γ2 + γ4 + 6,

b3 = −4 a12
2a21

2β4 + 4 + 12 γ2 + 4 γ4 − a212α2β4γ2 − 4 a12
2a21

2β4γ2,

b4 = 1 + 6 γ4 − 8 a12
2a21

2β4γ2 − 2 γ4a12
2a21

2β4 − 2 a12
2a21

2β4 + a12
4a21

4β8

−2 a21
2α2β4γ2 + 8 γ2 − a212α2β4γ4 − 2 a21

3α2β6γ2a12,

b5 = 4 γ4 + 2 γ2 − 4 γ4a12
2a21

2β4 + 8 a21
3α2β6γ3a12 + 2 a12

4a21
4β8γ2 − a212α2β4γ2

+2 a21
3α2β6γ4a12 − a214α2β8a12

2γ22 a21
2α2β4γ4 − 4 a12

2a21
2β4γ2 + 2 a21

3α2β6γ2a12,

b6 = −a212α2β4γ4 − 2 a21
3α2β6γ4a12 − 2 γ4a12

2a21
2β4 − a214α2β8a12

2γ4 + a12
4a21

4β8γ4 + γ4.

Lemma 2.5.3. Assume that b6 < 0. Then the equation F (ω) = 0 has at least one positive

root.

Proof. Assumption b6 < 0 implies that F (0) = b6 < 0. Since F (ω) as defined by (2.47)

is a continuous function of ω, and also limω→∞ F (ω) =∞, this means that there exists a

positive root ω > 0 of the equation F (ω) = 0.

Let s = ω2, then the equation F (ω) = 0 becomes

h(s) = s6 + b1s
5 + b2s

4 + b3s
3 + b4s

2 + b5s+ b6 = 0. (2.48)

Without loss of generality, suppose that the equation (2.48) has six positive roots,

denoted by s1, s2, s3, s4, s5, s6, respectively. This implies that the equation F (ω) = 0 also

has six positive real roots given by

ω1 =
√
s1, ω2 =

√
s2, ω3 =

√
s3, ω4 =

√
s4, ω5 =

√
s5, ω6 =

√
s6.

At the same time, substituting λ = iω, ω > 0 into the equation (2.43) we obtain

(iω + γ)(iω + 1)2eiωτ − γa21αβ2 − (iω + γ)a12a21β
2e−iωτ = 0. (2.49)

Separating this equation into the real and imaginary parts gives

γ(−ω2 + 1)− 2ω2 − γa21αβ2 cos(ωτ) = γa12a21β
2 cos(2ωτ) + ωa12a21β

2 sin(2ωτ),

ω(−ω2 + 1) + 2γω + γa21αβ
2 sin(ωτ) = ωa12a21β

2 cos(2ωτ)− γa12a21β2 sin(2ωτ).

(2.50)
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Using trigonometric formulas, the system (2.50) can be simplified as follows

(1− ω2 + a12a21β
2)γ − 2ω2

=
[
γa21αβ

2 + 2γa12a21β
2 cos(ωτ) + 2ωa12a21β

2 sin(ωτ)
]

cos(ωτ),

ω(1− ω2 + 2γ − a12a21β2)

= −
[
γa21αβ

2 + 2γa12a21β
2 cos(ωτ) + 2ωa12a21β

2 sin(ωτ)
]

sin(ωτ).

Dividing the above two equations gives

tan(ωτ) = − ω(1− ω2 + 2γ − a12a21β2)
(1− ω2 + a12a21β2)γ − 2ω2

. (2.51)

We can now define

τ jk =
1

ωk

[
arctan

(
−
ωk(1− ω2

k − a12a21β2 + 2γ)

(1− ω2
k + a12a21β2)γ − 2ω2

k

)
+ jπ

]
, (2.52)

where k = 1, . . . , 6, j = 0, 1, 2, .... The pairs (τ jk , ωk) are the solutions of the characteristic

equation (2.49), and λ = ±iωk are pairs of purely imaginary roots of the characteristic

equation (2.43) for τ = τ jk . Let

τ0 = τ0k0 = min
1≤k≤6

{τ0k}, ω0 = ωk0 , (2.53)

where k0 ∈ {1, . . . , 6}. Then τ = τ0 is the first value of the time delay such that (2.43)

has purely imaginary roots. Using the time delay τ as the bifurcation parameter, let

λ(τ) = α(τ) ± iω(τ) be the root of the equation (2.43) near τ = τ0 such that α(τ0) =

0, ω(τ0) = ω0. In order to show that we have a Hopf bifurcation at τ = τ0, we have to

show that dRe[λ(τ0)]/dτ > 0.

Theorem 2.5.1. Suppose the conditions of Lemma 2.5.2 hold, and h′(s0)p
(1)
0 (iω0) > 0,

where p
(1)
0 (iω) and h(s) are defined in (2.46) and (2.48), respectively, and s0 = ω2

0. Then

the trivial steady state of the system (2.39) is stable for τ ∈ [0, τ0) and undergoes a Hopf

bifurcation at τ = τ0.

Proof. Lemma 2.5.2 ensures that at τ = 0, all eigenvalues of the characteristic equation

have negative real part. From the definition of τ0 in (2.53) it follows that τ0 is the first

positive value of τ , for which the characteristic equation (2.43) has a pair of complex

conjugate eigenvalues λ = ±iω0. In this case, however, it does not prove possible to use

the direct computation as in the proof of Lemma 3.4 to show that λ = iω0 is a simple root
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of the characteristic equation (2.43). Following the methodology of Li et al. [86] instead,

we introduce a function

S1(ω) = sgn[ωF ′(ω)p
(1)
0 (iω)],

which determines possible changes in the number of roots with positive real part of the

equation (2.43). From the definition of the function h(s), we have

F (ω) = h(ω2) =⇒ F ′(ω) = 2ωh′(ω2) = 2ωh′(s),

which under the assumptions of the theorem implies

S1(ω0) = sgn[ω0F
′(ω0)p

(1)
0 (iω0)] = sgn[2ω2

0h
′(s0)p

(1)
0 (ω0)] = sgn[h′(s0)p

(1)
0 (iω0)] > 0.

From Theorem 2 in Li et al. [86] it then follows that

sgn

{
dRe[λ(τ)]

dτ

∣∣∣∣∣
τ=τ0

}
> 0,

which suggests that the trivial steady state of the system (2.39) undergoes a Hopf bifurc-

ation at τ = τ0.

In order to illustrate how the stability of the trivial steady state of the system (2.39)

changes in the case of the weak gamma distribution kernel, we illustrate in Figure 2.6

the stability boundary for different values of a12a21β
2. In the case when a12a21β

2 <

−1, the trivial steady state is stable inside the region bounded by the surface shown in

Figure 2.6 (a) and unstable outside this region. For −1 ≤ a12a21β
2 ≤ 1 , there are two

non-overlapping surfaces, and the trivial steady state is stable for any parameter values

lying inside the region bounded by these surfaces as shown in Figures 2.6 (b) and (c). For

a12a21β
2 > 1, the trivial steady state is unstable for any τ ≥ 0, γ and α.

Figure 2.6: Stability boundary of the trivial steady state the system (2.2) with weak delay

distribution kernel (1.7) (r = 1) and a12 = 2, β = 1. (a) a12a21β
2 < −1 with a21 = −0.55.

(b) −1 ≤ a12a21β
2 < 0 with a21 = −0.45. (c) 0 ≤ a12a21β

2 ≤ 1 with a21 = 0.45. The

trivial steady state is stable inside the region restricted by the boundaries and unstable

outside this region.
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Figure 2.7: Stability region of the trivial steady state of the system (2.2) with weak delay

distribution kernel (1.7) (r = 1) with γ = 1, a12 = 2, β = 1. (a) a12a21β
2 < −1 with

a21 = −0.55. (b) −1 ≤ a12a21β
2 < 0 with a21 = −0.45. (c) 0 ≤ a12a21β

2 ≤ 1 with

a21 = 0.45. Colour code denotes [−max{Re(λ)}] for max{Re(λ)} ≤ 0.

Figure 2.8: Boundary of stability in the τ -γ plane for the weak delay distribution kernel

(1.7) (r = 1), for different values of α, a12 = 2, a21 = −0.5. The trivial steady state is

stable to the left of the boundary and unstable to the right of it.

To get a better understanding of how eigenvalues are changing inside the stability re-

gion, we show in Figure 2.7 numerically computed eigenvalues of the characteristic equation

for the cases shown in Figure 2.6 and one particular value of γ = 1. Figure 2.7 (a) shows

that in the case when a12a21β
2 < −1, as the value of the discrete time delay increases, the

stability region shrinks, and for sufficiently large values of the discrete time delay τ , the

trivial steady state of the system (2.39) is unstable for any value of the coupling strength

α. In the parameter region where −1 ≤ a12a21β2 < 0, as the discrete time delay increases,

the stability region of the trivial steady state of the system (2.39) becomes smaller, but

there is always a range of coupling strength values α, where the steady state is stable, as
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shown in Figure 2.7 (b). In the case 0 ≤ a12a21β2 ≤ 1, the stability region is bounded by

|1− a12a21β2| = |a21αβ2| and is independent of τ and γ.

Figure 2.8 shows that as the coupling strength α between the two sub-networks is

increased, in the case of the weak distribution kernel, the stability region of the trivial

steady state becomes smaller in the γ − τ plane.

2.5.2 Strong gamma distributed delayed kernel

In this subsection, we consider the system (2.2) with a strong delay kernel, using the same

procedure as we have done for weak delay kernel case. Introducing the new variables

u5(t) =
∫∞
0 γe−γsu2(t− s)ds,

u6(t) =
∫∞
0 γ2se−γsu2(t− s)ds,

u7(t) =
∫∞
0 γe−γsu4(t− s)ds,

u8(t) =
∫∞
0 γ2se−γsu4(t− s)ds.

allows us to rewrite the system (2.1) as follows

u̇1(t) = −u1(t) + a12βu2(t− τ) + αβu8(t),

u̇2(t) = −u2(t) + a21βu1(t− τ),

u̇3(t) = −u3(t) + a12βu4(t− τ) + αβu6(t),

u̇4(t) = −u4(t) + a21βu3(t− τ),

u̇5(t) = γu2(t)− γu5(t),

u̇6(t) = γu5(t)− γu6(t),

u̇7(t) = γu4(t)− γu7(t),

u̇8(t) = γu7(t)− γu8(t).

(2.54)

Substituting the Laplace transform (2.36) into the characteristic equation (2.6), or
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using the system (2.54), we obtain a characteristic equation for the eigenvalues λ as follows

det[∆(τ, λ)] = ∆−(τ, λ) ·∆+(τ, λ) = 0, (2.55)

where

∆−(τ, λ) = (λ+ γ)2(λ+ 1)2 − (λ+ γ)2a12a21β
2e−2λτ − γ2a21αβ2e−λτ , (2.56)

∆+(τ, λ) = (λ+ γ)2(λ+ 1)2 − (λ+ γ)2a12a21β
2e−2λτ + γ2a21αβ

2e−λτ . (2.57)

Lemma 2.5.4. Let |1− a12a21β2| = |a21αβ2|. If

−1 ≤ a12a21β2 ≤ 1 + γ and a12a21β
2 6= 1,

or

a12a21β
2 > 1 + γ or a12a21β

2 < −1 and τ 6= τγ =
2(a12a21β

2 − γ − 1)

γ(1 + a12a21β2)
,

then λ = 0 is a simple root of the characteristic equation (2.55). If

a12a21β
2 = 1,

or

a12a21β
2 > 1 + γ or a12a21β

2 < −1 and τ = τγ ,

then λ = 0 is a double root of the characteristic equation (2.55).

The proof of Lemma 2.5.4 is similar to the proof of Lemma 2.5.1.

Considering the case of the strong distribution kernel with r = 2 in ∆− given by (2.56)

(the analysis is similar for ∆+ in (2.57)), we get a transcendental equation for eigenvalues

λ:

(λ+ γ)2(λ+ 1)2 − (λ+ γ)2a12a21β
2e−2λτ − γ2a21αβ2e−λτ = 0. (2.58)

When τ = 0, the equation (2.58) becomes

λ4 + (2 + 2 γ)λ3 +
(
−a12a21β2 + 1 + 4 γ + γ2

)
λ2 +

(
2 γ − 2 γ a12a21β

2 + 2 γ2
)
λ

+γ2 − a12a21β2γ2 − γ2a21αβ2 = 0.

(2.59)

In view of the Routh-Hurwitz criterion, a set of the necessary and sufficient conditions for

all roots of the equation (2.59) to have negative real part is

(H1)



a12a21β
2 < γ + 1,

a21αβ
2 < 1− a12a21β2,

2(γ + 1)2a12a21β
2 < (γ + 1)4 + γ(γ + 1)2a21αβ

2 + a212a
2
21β

4.

(2.60)
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Lemma 2.5.5. Assume that (H1) holds. Then all the roots of equation (2.59) with τ = 0

always have negative real part.

Once again, when τ > 0, we can use the same procedure as in the case of the delta

distributed kernel in order to calculate F (ω) as follows:

p
(1)
0 ((ω) =

(
ω4 −

(
1 + 4 γ + γ2

)
ω2 + γ2

)2
+
(
2 (1 + γ)ω3 − 2

(
γ + γ2

)
ω
)2

−
(
γ2 + ω2

)2
a12

2a21
2β4,

p
(1)
1 ((iω) = −γ2a21αβ2ω4 + γ2a21αβ

2ω2 + 4 γ3a21αβ
2ω2 + γ4a21αβ

2ω2

−γ4a21αβ2 − a12a212β4αγ4 + a12a21
2β4αγ2ω2 + i(−2 γ3a21αβ

2ω3

−2 γ2a21αβ
2ω3 + 2 γ3a21αβ

2ω + 2 γ4a21αβ
2ω − 2 a12a21

2β4αγ3ω).

(2.61)

F (ω) = ω16 + c1ω
14 + c2ω

12 + c3ω
10 + c4ω

8 + c5ω
6 + c6ω

4 + c7ω
2 + c8 (2.62)

where

c1 = 4γ2 + 4, c2 = 16 γ2 − 2 a12
2a21

2β4 + 6 γ4 + 6,

c3 = 24 γ2 − 8 γ2a12
2a21

2β4 + 24 γ4 − 4 a12
2a21

2β4 + 4 γ6 + 4,

c4 = a12
4a21

4β8 + γ8 − γ4a212α2β4 + 36 γ4 + 16 γ2 − 2 a12
2a21

2β4

+1− 12 a12
2a21

2β4γ4 − 16 γ2a12
2a21

2β4 + 16 γ6,

c5 = 4 γ8 − 24 a12
2a21

2β4γ4 + 24 γ4 − 2 γ6a21
2α2β4 − 8 γ6a12

2a21
2β4

+2 γ4a21
3α2β6a12 + 4 a12

4a21
4β8γ2 − 8 γ2a12

2a21
2β4 + 24 γ6

−2 γ4a21
2α2β4 + 4 γ2,
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c6 = 6 a12
4a21

4β8γ4 − 16 γ6a12
2a21

2β4 − 2 γ4a21
3α2β6a12

−γ4a214α2β8a12
2 + 6 γ4 − γ4a212α2β4 − 12 a12

2a21
2β4γ4

−4 γ6a21
2α2β4 + 16 γ6 − γ8a212α2β4 − 2 γ8a12

2a21
2β4

+6 γ8 − 12 γ6a21
3α2β6a12 − 16 γ5a21

3α2β6a12,

c7 = 4 γ6 + 12 γ6a21
3α2β6a12 + 4 γ8 − 2 γ6a21

2α2β4 − 4 γ8a12
2a21

2β4

+2 γ8a21
3α2β6a12 − 2 γ6a21

4α2β8a12
2 − 2 γ8a21

2α2β4

−8 γ6a12
2a21

2β4 + 4 a12
4a21

4β8γ6 + 16 γ7a21
3α2β6a12,

c8 = γ8 − 2 γ8a21
3α2β6a12 − γ8a212α2β4 − γ8a214α2β8a12

2

−2 γ8a12
2a21

2β4 + a12
4a21

4β8γ8.

Lemma 2.5.6. Assume that c8 < 0. Then the equation F (ω) = 0 has at least one positive

root.

Proof. Assumption c8 < 0 implies that F (0) = c8 < 0. Since F (ω) as defined by (2.62)

is a continuous function of ω, and also limω→∞ F (ω) =∞, this means that there exists a

positive root ω > 0 of the equation F (ω) = 0.

Let z = ω2, then (2.62) becomes

h(z) = z8 + c1z
7 + c2z

6 + c3z
5 + c4z

4 + c5z
3 + c6z

2 + c7z + c8 (2.63)

Without loss of generality, suppose that the equation (2.63) has eight positive roots,

denoted by zi, i = 1, . . . , 8. Then (2.62) should also have eight positive real roots

ω1 =
√
z1, ω2 =

√
z2, ω3 =

√
z3, ω4 =

√
z4, ω5 =

√
z5, ω6 =

√
z6, ω7 =

√
z7, ω8 =

√
z8.

On the other hand, substituting λ = iω for ω > 0 into equation (2.20)

(iω + γ)2(iω + 1)2 − γ2a21αβ2e−iωτ − (iω + γ)2a12a21β
2e−2iωτ = 0 (2.64)
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and separating into the real and imaginary part yields(
γ2 − ω2

) (
1− ω2

)
− 4ω2γ − γ2a21αβ2 cos (ω τ)

=
(
γ2 − ω2

)
a12a21β

2 cos (2ω τ) + 2 γ ω a12a21β
2 sin (2ω τ) ,

2 γ ω
(
1− ω2

)
+ 2

(
γ2 − ω2

)
ω + γ2a21αβ

2 sin (ω τ)

= 2 γ ω a12a21β
2 cos (2ω τ)−

(
γ2 − ω2

)
a12a21β

2 sin (2ω τ) .

(2.65)

Using the trigonometric formulas cos(2ωτ) = 2 cos2(ωτ)−1, cos(2ωτ) = 1−2 sin2(ωτ)

and sin(2ωτ) = 2 sin(ωτ) cos(ωτ), the equation (2.65) can be rewritten as follows

(
γ2 − ω2

) (
1− ω2 + a12a21β

2
)
− 4ω2γ

= {γ2a21αβ2 + 2(γ2 − ω2)a12a21β
2 cos(ωτ) + 2γωa12a21β

2 sin(ωτ)} cos(ωτ),

2 γ ω
(
1− ω2 − a12a21β2

)
+ 2

(
γ2 − ω2

)
ω

= −{γ2a21αβ2 + 2(γ2 − ω2)a12a21β
2 cos(ωτ) + 2γωa12a21β

2 sin(ωτ)} sin(ωτ).

(2.66)

Dividing the equations (2.66), one obtains

tan(ωτ) = −
2 γ ω

(
1− ω2 − a12a21β2

)
+ 2

(
γ2 − ω2

)
ω

(γ2 − ω2) (1− ω2 + a12a21β2)− 4ω2γ
. (2.67)

Let us define

τ jk =
1

ωk

[
arctan

(
−

2 γ ωk
(
1− ωk2 − a12a21β2

)
+ 2

(
γ2 − ωk2

)
ωk

(γ2 − ωk2) (1− ωk2 + a12a21β2)− 4ωk2γ

)
+ jπ

]
, (2.68)

where k = 1, . . . , 8, j = 0, 1, 2, . . .. Thus, (τ jk , ωk) are solutions of the equation (2.64) and

λ = ±iωk are a pair of purely imaginary roots of (2.58) with τ = τ jk . If

τ0 = τ0k0 = min
1≤k≤8

{τ0k}, ω0 = ωk0 ,

where k0 ∈ {1, . . . , 8}, then τ0 is the first value of τ such that the equation (2.58) has

purely imaginary roots. Using the time delay τ as the bifurcation parameter, let λ(τ) =

α(τ)±iω(τ) be the root of the equation (2.58) near τ = τ0 such that α(τ0) = 0, ω(τ0) = ω0.

Similar to the cases considered in the previous subsections, in order to show that we have

a Hopf bifurcation at τ = τ0, we have to establish that dRe[λ(τ0)]/dτ > 0.
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Theorem 2.5.2. Suppose the conditions of Lemma 2.5.5 hold, and h′(s0)p
(1)
0 (iω0) > 0,

where p
(1)
0 (iω) and h(s) are defined in (2.61) and (2.63), respectively, and s0 = ω2

0. Then

the trivial steady state of the system (2.54) is stable for τ ∈ [0, τ0) and undergoes a Hopf

bifurcation at τ = τ0.

The proof of Theorem 2.5.2 is similar to the proof of Theorem 2.5.1.

Similar to the case of the weak gamma distribution kernel, we numerically compute the

stability boundaries of the trivial steady state of the system (2.54) for the case of strong

delay kernel. The boundary of the surface in Figure 2.9 shows the stable and unstable

regions for different values of a12a21β
2. In the case when a12a21β

2 < −1, the trivial

steady state is stable inside the region bounded by the surface shown in Figure 2.9 (a)

and unstable outside this region. For −1 ≤ a12a21β
2 ≤ 1 , there are two non-overlapping

surfaces, and the trivial steady state is stable for any parameter values lying inside the

region bounded by these surfaces as shown in Figures 2.9 (b) and (c). For a12a21β
2 > 1,

the trivial steady state is always unstable for any τ ≥ 0, γ and α.

Figure 2.10 shows the stability region of the trivial steady state of the system (2.54)

in the case of the strong delay kernel. Notably, the stability region for strong delay kernel

looks qualitatively similar to the case for the weak delay kernel presented in Figure 2.7.

Figure 2.10 (a) shows that in the case when a12a21β
2 < −1, as τ increases, the stability

region becomes smaller and smaller, and for sufficiently large values of τ , the trivial steady

state of the system (2.54) is unstable for any value of α.

Figure 2.9: Stability boundary of the trivial steady state of the system (2.2) with strong

delay distribution kernel (1.7) (r = 2) and a12 = 2, β = 1. (a) a12a21β
2 < −1 with

a21 = −0.55. (b) −1 ≤ a12a21β
2 < 0 with a21 = −0.45. (c) 0 ≤ a12a21β

2 ≤ 1 with

a21 = 0.45. The trivial steady state is stable inside the region restricted by the boundaries

and unstable outside this region.
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Figure 2.10: Stability region of the trivial steady state of the system (2.2) with strong

delay distribution kernel (1.7) (r = 2) with γ = 1, a12 = 2, β = 1. (a) a12a21β
2 < −1

with a21 = −0.55. (b) −1 ≤ a12a21β
2 < 0 with a21 = −0.45. (c) 0 ≤ a12a21β

2 ≤ 1 with

a21 = 0.45. Colour code denotes [−max{Re(λ)}] for max{Re(λ)} ≤ 0.

Figure 2.11: Boundary of stability in the τ -γ plane for the strong delay distribution kernel

(1.7) (r = 2), for different values of α, a12 = 2, a21 = −0.5. The trivial steady state is

stable to the left of the boundary and unstable to the right of it.

If parameter satisfy the condition −1 ≤ a12a21β2 < 0, the stability region of the trivial

steady state of the system (2.54) shrinks with increasing τ , but there is always a range of

coupling strength values α, where the steady state is stable, as shown in Figure 2.10 (b).

In the case 0 ≤ a12a21β
2 ≤ 1, the stable region is bounded by |1 − a12a21β2| = |a21αβ2|

and is independent of τ and γ.

Figure 2.11 shows the stability region in τ and γ parameter space, and one can observe

that as α gets larger, the stability region becomes smaller for strong delay kernel, and

compared to the weak gamma kernel occupies a smaller region for the same parameter

values.
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2.6 Numerical simulations

This section presents the results of the numerical simulations of the system (2.2) using

dde23 suite in MATLAB. These simulations support theoretical results of the previous

sections and also illustrate the stability of the trivial steady state of the system (2.2) in

different parameter regimes. We consider four different cases, and for each of them we have

three different intervals to consider. Firstly, we numerically find solutions of the system

(2.2) with delta distribution kernel. Secondly, we use trapezoidal rule to treat the integral

in system (2.2) for the uniform distribution case, and then show when solutions tend to

the stable steady state, as well as the appearance of the periodic oscillations. In the last

two subsections, we numerically solve the system (2.39) after using the linear chain trick

to confirm the findings on the stability properties of the trivial steady state in cases of the

weak and strong gamma distribution kernels.

2.6.1 Numerical simulations for the delta distribution kernel

In this subsection, we perform direct numerical simulations of the system (2.9) in the

case of the delta distribution kernel g(s) = δ(s). Let f(·) = tanh(·), which implies that

β = f ′(0) = 1. Then the system (2.2) takes the form

u̇1(t) = −u1(t) + a12 tanh(u2(t− τ)) + α tanh(u4(t)),

u̇2(t) = −u2(t) + a21 tanh(u1(t− τ)),

u̇3(t) = −u3(t) + a12 tanh(u4(t− τ)) + α tanh(u2(t)),

u̇4(t) = −u4(t) + a21 tanh(u3(t− τ)).

(2.69)

First, we consider the case when a12a21β
2 < −1 holds. For example, if a12 = 2, a21 =

−0.55, and α = ±2, then the expression (2.24) has the form

h(s) = s4 + 4 s3 + 2.3700 s2 − 5.922 s+ 0.032.

In this case, h(s) = 0 has only one positive real root s0 = 0.882, and ω0 = 0.939, τ0 = 1.159,

h′(s0) = 10.331 > 0, p
(1)
0 (iω0) = 2.331 > 0. Therefore, from Theorem 2.3.1, it follows that

the trivial solution of the system (2.69) is stable when 0 ≤ τ < τ0, and undergoes a Hopf

bifurcation when τ crosses through the critical value of the time delay τ0 = 1.159, giving

rise to a stable periodic solution, as illustrated in Figure 2.12 (a)-(f). In a similar manner,
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when the parameter values of the system (2.2) satisfy −1 ≤ a12a21β2 < 0, i.e. for example,

a12 = 2, a21 = −0.45 and α = ±2, the expression (2.24) becomes

h(s) = s4 + 4 s3 + 3.57 s2 − 2.318 s+ 0.028.

Hence, h(s) = 0 has one positive real root s0 = 0.416, and ω0 = 0.645, τ0 = 2.062, h′(s0) =

3.02 > 0, p
(1)
0 (iω0) = 1.196 > 0. Theorem 2.3.1 implies that the trivial solution of the

system (2.69) is stable when 0 < τ < τ0 and undergoes a Hopf bifurcation at τ0 = 2.062,

once again resulting in a stable periodic solution, as shown in Figure 2.13 (a)-(f).

In the case 0 ≤ a12a21β
2 ≤ 1, the system (2.69) approaches the stable trivial steady

state provided |a21αβ2| < |1 − a12a21β2| as illustrated in Figure 2.14 (a). If |α| > |αc|,

where αc satisfies |a21αcβ
2| = |1 − a12a21β

2|, the trivial steady state is unstable via a

steady-state bifurcation, and the system (2.69) tends to one of its stable non-trivial steady

states, as shown in Figure 2.14 (b). One should note that it is possible for this system to

simultaneously have multiple stable steady states for the same parameter values, and the

solutions will approach one of them depending on the initial conditions. For a12a21β
2 > 1,

the behaviour of the system (2.69) is similar to the case shown in Figure 2.14 (b).

Figure 2.12: (a)-(f) Solution of the system (2.69) in the case when a12a21β
2 < −1. Para-

meter values are a12 = 2, a21 = −0.55, α = ±2 and τ0 = 1.159. (a), (c)-(d) 0 < τ = 1 < τ0.

(b), (e)-(f) τ = 1.2 > τ0.
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Figure 2.13: (a)-(f) Solution of the system (2.69) in the case when the condition −1 ≤

a12a21β
2 < 0 holds. Parameter values are a12 = 2, a21 = −0.45, α = ±2 and τ0 = 2.062.

(a), (c)-(d) 0 < τ = 1.8 < τ0. (b), (e)-(f) τ = 2.4 > τ0.

Figure 2.14: (a)-(b) Solution of the system (2.69) in the case when the condition 0 ≤

a12a21β
2 ≤ 1 holds. Parameter values are a12 = 2, a21 = 0.45, τ = 0.5. (a) α = 0.15. (b)

α = 0.25.

2.6.2 Numerical simulations for the uniform distribution kernel

In this subsection, we numerically solve the nonlinear system (2.2) in the case of the

uniformly distributed kernel by using a trapezoidal rule [29] to treat the integral as follows,∫ b

a
f(x)dx ≈ (b− a)

2
[f(a) + f(b)], (2.70)

which yields

u̇1(t) = −u1(t) + a12 tanh(u2(t− τ)) +
α

2
tanh(u4(t− (τ + σ)) + u4(t− (τ − σ))),

u̇2(t) = −u2(t) + a21 tanh(u1(t− τ)),

u̇3(t) = −u3(t) + a12 tanh(u4(t− τ)) +
α

2
tanh(u2(t− (τ + σ)) + u2(t− (τ − σ))),

u̇4(t) = −u4(t) + a21 tanh(u3(t− τ)).

(2.71)
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We consider separately different values of a12a21β
2, and show the behaviour of the system

(2.71) for σ = 0.5 and and different values of τ . First, we consider the case when a12a21β
2 <

−1 is satisfied. For example, if a12 = 2, a21 = −0.55, and α = ±2, the trivial steady state

of the system (2.71) is stable when 0.5 ≤ τ < τ0, where τ0 satisfies the equation (2.34),

and undergoes a Hopf bifurcation when τ crosses through the critical value τ0 = 0.752,

giving rise to a stable periodic solution, as illustrated in Figure 2.15 (a)-(f). Similarly,

when the parameter values of the system (2.71) satisfy −1 ≤ a12a21β
2 < 0, i.e. for

example, a12 = 2, a21 = −0.45 and α = ±2, the trivial steady state of the system (2.71)

is stable when 0.5 ≤ τ < τ0, where τ0 satisfies the equation (2.34), and undergoes a Hopf

bifurcation when τ crosses through the critical value τ0 = 0.93, giving rise to a stable

periodic solution, as illustrated in Figure 2.16 (a)-(f).

In the case 0 ≤ a12a21β
2 ≤ 1, the system (2.69) approaches the stable trivial steady

state provided |a21αβ2| < |1 − a12a21β2| as illustrated in Figure 2.17 (a). If |α| > |αc|,

where αc satisfies |a21αcβ
2| = |1 − a12a21β2|, the trivial steady state becomes unstable

via a steady-state bifurcation, and the system (2.71) tends to one of its stable non-trivial

steady states, as shown in Figure 2.17 (b). Similar to the previous case, it is possible for

this system to simultaneously have multiple stable steady states for the same parameter

values, and the solutions will approach one of them depending on the initial conditions.

For a12a21β
2 > 1, the behaviour of the system (2.69) is similar to the case shown in

Figure 2.17 (b).

Figure 2.15: (a)-(f) Solution of the system (2.71) in the case when a12a21β
2 < −1. Para-

meter values are a12 = 2, a21 = −0.55, α = ±2 and σ = 0.5. (a), (c)-(d) 0 < τ = 0.7 < τ0.

(b), (e)-(f) τ = 1 > τ0.
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Figure 2.16: (a)-(f) Solution of the system (2.71) in the case when the condition −1 ≤

a12a21β
2 < 0 holds. Parameter values are a12 = 2, a21 = −0.45, α = ±2 and σ = 0.5. (a),

(c)-(d) 0 < τ = 0.8 < τ0. (b), (e)-(f) τ = 1.2 > τ0.

Figure 2.17: (a)-(b) Solution of the system (2.71) in the case when the condition 0 ≤

a12a21β
2 ≤ 1 holds. Parameter values are a12 = 2, a21 = 0.45, σ = 0.5, τ = 0.8. (a)

α = 0.15. (b) α = 0.25.

2.6.3 Numerical simulations for the weak gamma distribution kernel

In order to illustrate the dynamics in the case of the weak gamma distribution kernel, we

again take f(·) = tanh(·), β = f ′(0) = 1, and rewrite the system (2.2) as

u̇1(t) = −u1(t) + a12 tanh(u2(t− τ)) + α tanh(u6(t)),

u̇2(t) = −u2(t) + a21 tanh(u1(t− τ)),

u̇3(t) = −u3(t) + a12 tanh(u4(t− τ)) + α tanh(u5(t)),

u̇4(t) = −u4(t) + a21 tanh(u3(t− τ)),

u̇5(t) = γu2(t)− γu5(t),

u̇6(t) = γu4(t)− γu6(t).

(2.72)
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Figure 2.18: (a)-(f) Solution of the system (2.72) in the case when a12a21β
2 < −1.

Parameter values are a12 = 2, a21 = −0.55, α = ±2 and τ0 = 0.873. (a), (c)-(d)

0 < τ = 0.8 < τ0. (b), (e)-(f) τ = 1 > τ0.

Figure 2.19: (a)-(f) Solution of the system (2.72) in the case when the condition −1 ≤

a12a21β
2 < 0 holds. Parameter values are a12 = 2, a21 = −0.45, α = ±2 and τ0 = 1.286.

(a), (c)-(d) 0 < τ = 1.2 < τ0. (b), (e)-(f) τ = 2 > τ0.

Figure 2.20: (a)-(b) Solution of the system (2.72) in the case when the condition 0 ≤

a12a21β
2 ≤ 1 holds. Parameter values are a12 = 2, a21 = 0.45, τ = 0.5. (a) α = 0.15. (b)

α = 0.25.

In the case when a12a21β
2 < −1 (for example, a12 = 2, a21 = −0.55 and α = ±2)

we find ω0 = 0.947, τ0 = 0.873, h′(s0)p
(1)
0 (iω0) = 277.94 > 0. Using Theorem 2.5.1,
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one can conclude that the trivial steady state is stable when 0 < τ < τ0, illustrated in

Figure 2.18 (a), (c)-(d), and at τ = τ0 is loses stability via a Hopf bifurcation, which

results in a stable periodic solution, as shown in Figure 2.18 (b), (e)-(f). In the same way,

when parameters of the system (2.72) satisfy −1 ≤ a12a21β
2 < 0, for example, a12 = 2,

a21 = −0.45 and α = ±2, we have ω0 = 0.769, τ0 = 1.286, h′(s0)p
(1)
0 (iω0) = 9.337 > 0. It

is possible to use Theorem 2.5.1 to conclude a Hopf bifurcation of the trivial steady state

and a transition to a stable periodic solution at τ = τ0, as illustrated in Figure 2.19 (a)-(f).

Figures 2.20 (a)-(b) illustrate the case when 0 ≤ a12a21β2 ≤ 1, and we observe the loss of

stability of the trivial steady state through a steady-state bifurcation, which results in a

stable non-trivial equilibrium.

2.6.4 Numerical simulations for the strong gamma distribution kernel

In order to illustrate the dynamics in the case of the strong gamma distribution kernel,

we again take f(·) = tanh(·), β = f ′(0) = 1, and rewrite the system (2.2) as

u̇1(t) = −u1(t) + a12 tanh(u2(t− τ)) + α tanh(u8(t)),

u̇2(t) = −u2(t) + a21 tanh(u1(t− τ)),

u̇3(t) = −u3(t) + a12 tanh(u4(t− τ)) + α tanh(u6(t)),

u̇4(t) = −u4(t) + a21 tanh(u3(t− τ)),

u̇5(t) = γu2(t)− γu5(t),

u̇6(t) = γu5(t)− γu6(t),

u̇7(t) = γu4(t)− γu7(t),

u̇8(t) = γu7(t)− γu8(t).

(2.73)

In the case when a12a21β
2 < −1 (for example, a12 = 2, a21 = −0.55 and α = ±2)

we find ω0 = 0.733, τ0 = 1.20, h′(s0)p
(1)
0 (iω0) = 351.87 > 0. Using Theorem 2.5.2,

one can conclude that the trivial steady state is stable when 0 < τ < τ0, illustrated in

Figure 2.21 (a), (c)-(d), and at τ = τ0 is loses stability via a Hopf bifurcation, which

results in a stable periodic solution, as shown in Figure 2.21 (b), (e)-(f).



56

Figure 2.21: (a)-(f) Solution of the system (2.73) in the case when a12a21β
2 < −1.

Parameter values are a12 = 2, a21 = −0.55, α = ±2 and τ0 = 1.20. (a), (c)-(d)

0 < τ = 0.9 < τ0. (b), (e)-(f) τ = 1.3 > τ0.

Figure 2.22: (a)-(f) Solution of the system (2.73) in the case when the condition −1 ≤

a12a21β
2 < 0 holds. Parameter values are a12 = 2, a21 = −0.45, α = ±2 and τ0 = 1.66.

(a), (c)-(d) 0 < τ = 1.2 < τ0. (b), (e)-(f) τ = 1.8 > τ0.

Figure 2.23: (a)-(b) Solution of the system (2.73) in the case when the condition 0 ≤

a12a21β
2 ≤ 1 holds. Parameter values are a12 = 2, a21 = 0.45, τ = 0.5. (a) α = 0.15. (b)

α = 0.25.

In the same way, when parameters of the system (2.73) satisfy −1 ≤ a12a21β
2 < 0,
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for example, a12 = 2, a21 = −0.45 and α = ±2, we have ω0 = 0.606, τ0 = 1.667,

h′(s0)p
(1)
0 (iω0) = 115.93 > 0. As shown in Figure 2.22 (a)-(f) the solutions of the system

(2.2) tend to the stable trivial steady state and transition to a stable periodic solution at

τ = τ0. Figures 2.23 (a)-(b) show the case when 0 ≤ a12a21β
2 ≤ 1, and one can see the

loss of stability of the trivial steady state through a steady-state bifurcation, which results

in a stable non-trivial equilibrium.

2.7 Discussion

In this chapter, we have analysed a generalised model of coupled neural networks with

discrete and distributed time delays for a general distribution kernel. We have analytically

obtained a characteristic equation determining the stability of the trivial steady state

for any general distribution kernel. In order to further understand the dynamics of the

system, we have studied in detail the cases of the three commonly used distribution kernels,

i.e. delta, uniform and weak gamma distribution. For each of these distributions, we

have obtained analytical conditions for stability of the null solution in terms of system

parameters and the time delays. The results suggest that stability of the zero steady state

depends on the synaptic weights, strength of the connection between the two sub-networks

and time delays in the connection. In the case of the Dirac delta distribution kernel, the

stability region of the trivial steady state becomes larger with increasing the product of

the synaptic weights.

In the case of the uniformly distributed kernel, the stability properties of the trivial

steady state strongly depend on the width of the distribution. In particular, as the width

of the distribution becomes larger, the stability region shrinks and becomes an isolated

bubble in the τ − α plane. As one of the synaptic weights is increased, enlarging the

distribution width leads to a smaller region of stability, but it never becomes an isolated

island.

In the case of the weak gamma distribution kernel, we have obtained analytical and nu-

merical results on the stability properties of the system, and have shown that the strength

of the connection between the two sub-networks plays an important role. Increasing the

coupling reduces the size of the stability region, where the trivial steady state is stable,

and no oscillations are possible. We have also performed direct numerical simulations

that confirm our analytical findings and illustrate the dynamics of the system inside and

outside the stability regions for all distribution kernels presented in this chapter. Notably,

for some parameter values, when the trivial steady state becomes unstable, the system



58

can support stable non-trivial steady states.

It is worth noting that while the cases of delta and weak gamma distribution exhibit

a similar type of stability, in the case of the uniform distribution, it is not sufficient to

consider only the mean time delay, as the width of the distribution also plays a profound

role in defining the region of stability. Combination of discrete and distributed time delays

considered in this chapter shows that stability regions for wider uniform distributions are

characterised by smaller ranges of coupling strengths, which is in contrast to the results

obtained in [7, 78, 79], where the authors observed an increase in the stability region for

wider uniform distributions.

Neural networks are often used to model associative memories or pattern recognition,

where information is represented by stable equilibria of the system. In order to retrieve

a memory, the system should start with an initial condition lying within the basin of

attraction of a stable steady state. If the steady state is unstable, this renders the retrieval

of the memory impossible [60]. In the light of this observation, the results obtained in

this chapter provide important insights into the circumstances where neural networks with

discrete and distributed time delays can support a successful memory retrieval.

There are several directions in which work in this chapter can be extended to yield

a better understanding of neural systems. One possibility would be to consider a large

system of coupled neurons consisting of several sub-groups with different types of delayed

connections within and between sub-groups. Such systems are known to be able to support

rich dynamics including chimera states, where some nodes of the network have coherent

dynamics, while others remain chaotic. The question of how such dynamics can be af-

fected by the combination of discrete and distributed delays remains an open problem.

Another practically important issue is that of dynamic synchronisation in systems with

time-delayed connections. Kyrychko et al. have recently developed a formalism for ana-

lysis of synchronisation in systems with distributed delay coupling [80], and it would be

insightful to generalise this approach to systems that include both discrete and distributed

time delays between nodes.

An efficient pattern recognition relies on the presence of multistability in the system

[25], and hence, requires a careful analysis of the basins of attraction of different steady

states. Understanding the structure of these co-existing attractors in systems with discrete

and distributed delays would explain how such neural networks perform the complex task

of pattern recognition.
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Chapter 3

Aging transition in system of

oscillators with global

distributed-delay coupling

In this chapter, an aging transition is analysed for high-dimensional globally coupled

Stuart-Landau oscillators with distributed-delay coupling such that a random fraction

of them become non-oscillators, as mentioned in subsection 1.3.3. We specify the most

familiar distribution kernels such as uniform and gamma distribution kernels to find ana-

lytical expressions for stability regions. We also use a direct numerical method to confirm

stability regions.

3.1 Model derivation

A system of N globally coupled Stuart-Landau oscillators with distributed-delay coupling

can be written as follows

Żj(t) = (αj + iω)Zj(t)− |Zj(t)|2Zj(t) +
k

N

N∑
i=1

[∫ ∞
0

g(t′)Zi(t− t′)dt′ − Zj(t)
]

− k

N

[∫ ∞
0

g(t′)Zj(t− t′)dt′ − Zj(t)
]
, j = 1, ..., N,

(3.1)

where Zj ∈ C, ω is the natural frequency of oscillations, αj are bifurcation parameters

that control whether in the absence of coupling the oscillator j exhibits a stable periodic

solution (αj > 0) or converges to a stable trivial equilibrium (αj < 0), k is the coupling

strength, and the last term in the right-hand side of (3.1) removes the self-coupling from



60

the system. The kernel g is taken to be positive-definite and normalised to unity, i.e.

g(u) ≥ 0,

∫ ∞
0

g(u)du = 1.

If the distribution kernel is taken in the form of the Dirac delta function g(u) = δ(u), one

obtains a system of globally instantaneously coupled oscillators that has been extensively

studied [3, 32, 98, 134, 162], while for g(u) = δ(u−τ), the model (3.1) reduces to a system

with a single discrete time delay studied in [153, 173]. By focusing on the dynamics

of system (3.1), we extend the work of Thakur et al. [153] in the following directions.

The first major difference is that we consider a more general and more realistic case

of distributed delay. In order to gain a better understanding of the system behaviour

inside the stability regions, we will numerically compute characteristic eigenvalues. By

considering the important case of a gamma-distributed delay kernel we will show that it is

not only the width of the distribution and the mean delay, but also the actual shape of the

distribution that affects the stability region in systems with distributed delay coupling.

Following Daido and Nakanishi [30], let p denote the fraction of inactive oscillators with

the bifurcation parameter αj = −b (b > 0), and q = 1 − p be the fraction of active

oscillators with the bifurcation parameter αj = a (a > 0). To analyse the aging transition

in the system (3.1) we use a mean-field approximation [30, 153] which assumes that all

active and inactive oscillators achieve synchronization in their respective subpopulations

(see [63] for further numerical evidence in support of this), i.e. we write Zj(t) = A(t) for

all active elements and Zj(t) = I(t) for all inactive oscillators. This reduces the original

high-dimensional system (3.1) to the following

Ȧ(t) =

[
a− k

(
1− 1

N

)
+ iω − |A(t)|2

]
A(t)

+k

(
q − 1

N

)∫ ∞
0

g(t′)A(t− t′)dt′ + kp

∫ ∞
0

g(t′)I(t− t′)dt′,

İ(t) =

[
−b− k

(
1− 1

N

)
+ iω − |I(t)|2

]
I(t)

+k

(
p− 1

N

)∫ ∞
0

g(t′)I(t− t′)dt′ + kq

∫ ∞
0

g(t′)A(t− t′)dt′.

(3.2)
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Linearisation of this system near the zero steady state (A, I) = (0, 0) yields the following

characteristic equation for eigenvalues λ[
a− k

(
1− 1

N

)
+ iω + k

(
q − 1

N

)
Ĝ(λ)− λ

]

×
[
−b− k

(
1− 1

N

)
+ iω + k

(
p− 1

N

)
Ĝ(λ)− λ

]
− k2pqĜ2(λ) = 0,

(3.3)

where

Ĝ(λ) =

∫ ∞
0

e−λug(u)du,

is the Laplace transform of the function g(u).

3.2 Uniform distribution kernel

To make analytical progress with analysis of the equation (3.3), we begin by considering

the uniformly-distributed delay kernel (1.6). Laplace transform of the uniform distribution

(1.6) can be readily found as

Ĝ(λ) =
1

2σλ
e−λτ (eλσ − e−λσ) = e−λτ

sinh(λσ)

λσ
. (3.4)

Substituting this expression into the characteristic equation (3.3) and looking for charac-

teristic roots in the form λ = iξ, separating real and imaginary parts gives[
a− k

(
1− 1

N

)
+ k

(
q − 1

N

)
cos(ξτ)γ(ξ, σ)

] [
−b− k

(
1− 1

N

)
+ k

(
p− 1

N

)
cos(ξτ)γ(ξ, σ)

]

−
[
ω − ξ + k

(
q − 1

N

)
sin(ξτ)γ(ξ, σ)

]
×
[
ω − ξ + k

(
p− 1

N

)
sin(ξτ)γ(ξ, σ)

]

= k2pq cos(2ξτ)γ2(ξ, σ),

[
−b− k

(
1− 1

N

)
+ k

(
p− 1

N

)
cos(ξτ)γ(ξ, σ)

] [
ω − ξ + k

(
q − 1

N

)
sin(ξτ)γ(ξ, σ)

]

+

[
a− k

(
1− 1

N

)
+ k

(
q − 1

N

)
cos(ξτ)γ(ξ, σ)

]
×
[
ω − ξ + k

(
p− 1

N

)
sin(ξτ)γ(ξ, σ)

]

= −k2pq sin(2ξτ)γ2(ξ, σ),

(3.5)

where

γ(ξ, σ) =
sin(ξσ)

ξσ
.
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A solution of the system of equations (3.5) gives an implicit expression for the boundary

of the amplitude death, i.e. the suppression of oscillations, in terms of system paramet-

ers. In order to better understand what is actually happening inside the corresponding

stability regions, we use a pseudospectral method described in [19] and implemented in

the traceDDE toolbox for MATLAB to numerically compute the characteristic eigenvalues

of equation (3.3). To this end, we introduce auxiliary real variables A = Ar + iAi and

I = Ir + iIi, and rewrite the linearised system with uniformly-distributed delay kernel

(1.6) as follows

ż(t) = L0z(t) +
1

2σ

∫ −(τ−σ)
−(τ+σ)

Mz(t+ s)ds, (3.6)

where z = (Ar, Ai, Ir, Ii)
T ,

L0 =


a− k

(
1− 1

N

)
−ω 0 0

ω a− k
(
1− 1

N

)
0 0

0 0 −b− k
(
1− 1

N

)
−ω

0 0 ω −b− k
(
1− 1

N

)

 ,

and

M =


k
(
q − 1

N

)
0 kp 0

0 k
(
q − 1

N

)
0 kp

kq 0 k
(
p− 1

N

)
0

0 kq 0 k
(
1− 1

N

)

 .

When σ = 0, the last term in the equation (3.6) turns into Mz(t− τ), and the system

(3.2) reduces to the system with a single discrete time delay τ analysed in [153]. Figure 3.1

shows the regions of amplitude death together with the magnitude of the real part of the

leading eigenvalue of the characteristic equation (3.5) in the (τ, k) parameter space for

the case of a single discrete delay, i.e. σ = 0. One observes that increasing the natural

frequency of oscillations ω or increasing the fraction of inactive oscillators leads to the

increase in the number of stability islands and their size. Whilst Thakur et al. [153] have

also noticed the increasing size of stability islands associated with increasing p, we also

note the appearance of additional stability islands for higher values of time delays τ or for

higher natural frequency ω.

To investigate the role of the width of uniform delay distribution σ, we now compare

the results for the discrete and the uniformly-distributed delays with the same mean time

delay τ . Figure 3.2 shows that as σ grows, this leads to an increase in the size of AD

parameter regions, and the stability islands grow dramatically until they merge into a

single continuous region along τ axis for higher proportions of the inactive oscillators p.
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Figure 3.1: Regions of AD (aging transition) for the system (3.2) with uniform distribution

kernel for a = 2, b = 1, σ = 0, N = 500, and ω = 10 (a)-(c), or ω = 20 (d)-(f). Colour code

denotes [−max{Re(λ)}] for max{Re(λ)} ≤ 0. (a), (d) p = 0.3, (b), (e) p = 0.4, (c), (f)

p = 0.5.

Figure 3.2: Regions of AD (aging transition) for the system (3.2) with uniform distribution

kernel for a = 2, b = 1, ω = 10. Colour code denotes [−max{Re(λ)}] for max{Re(λ)} ≤ 0.

(a)-(c) σ = 0.06, N = 500; (d)-(f) σ = 0, p = 0.1. (a) p = 0.3, (b) p = 0.4, (c) p = 0.5, (d)

N = 2, (e) N = 4, (f) N = 20.
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Figure 3.3: Regions of AD (aging transition) for the system (3.2) with uniform distribution

kernel for a = 2, b = 1, ω = 10, τ = 0.5, N = 500. AD occurs inside of the surface in (a),

above the curves in (b), and to the right of the boundary curves in (c).

One should note that while the difference between the delta- and uniformly-distributed

delays is small for sufficiently small p, it becomes much more pronounced as p increases.

Already in the case when exactly half of all oscillators are inactive (p = 0.5), whereas in

Figure 3.1 (c) for σ = 0, ω = 10, p = 0.5 there were still just three isolated death islands,

for σ = 0.06 there is the whole range of coupling strengths where amplitude death can be

achieved for an arbitrary value of the mean time delay τ , provided that it is greater than

some minimum value. Figure 3.2 also illustrates that the stability regions shrink with

the increasing number of oscillators N , until they reach some steady configuration beyond

which they appear to be unaffected by further increases in N .

Figure 3.3 shows how the stability boundary of the trivial steady state depends on the

parameters σ, p, and k. It is noteworthy that as the coupling strength increases, the size

of AD regions in the σ-p plane decreases, and, in fact, AD happens for a smaller range of

distribution widths for the same fraction of inactive oscillators p. Figure 3.3 (c) suggests
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that as σ increases, AD occurs for smaller values of p for the same coupling strength k,

thus implying that increasing the width of distribution for the same mean time delay can

make the aging transition take place sooner that it would happen in the case of a discrete

time delay.

3.3 Gamma distribution kernel

The second commonly used distribution in the literature is the gamma distribution (1.7).

In this case, one can either use the Laplace transform of the distribution kernel

Ĝ(λ) =

(
γ

λ+ γ

)r
, (3.7)

or apply the linear chain trick [91] that allows one to replace the original system with

distributed delays by a system of (r + 1) ordinary differential equations. Considering the

gamma distributed kernel in (3.2) with r = 1 and introducing new variables

XA(t) =

∫ ∞
0

γe−γsA(t− s)ds,

XI(t) =

∫ ∞
0

γe−γsI(t− s)ds,

one can rewrite the system (3.2) as follows

Ȧ(t) =

[
a− k

(
1− 1

N

)
+ iω

]
A(t) + k

(
q − 1

N

)
XA(t) + kpXI(t),

İ(t) =

[
−b− k

(
1− 1

N

)
+ iω

]
I(t) + k

(
p− 1

N

)
XI(t) + kqXA,

ẊA(t) = γA(t)− γXA(t),

ẊI(t) = γI(t)− γXI(t).

(3.8)

Substituting the Laplace transform (3.7) with r = 1 into the characteristic equation (3.3),

or linearising the system (3.8) near the trivial steady state (0, 0, 0, 0), gives the following

characteristic equation for eigenvalues λ[
(λ+ γ)

(
a− k

(
1− 1

N

)
+ iω − λ

)
+ γk

(
q − 1

N

)]

×
[
(λ+ γ)

(
−b− k

(
1− 1

N

)
+ iω − λ

)
+ γk

(
p− 1

N

)]

−γ2k2pq = 0.

(3.9)
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This equation can be solved numerically to understand the role of different parameters in

the aging transition for the case of the gamma distribution kernel.

Figure 3.4 illustrates the boundary of the amplitude death in terms of p, γ, k and

ω for the weak delay distribution (1.7) with r = 1. For a fixed coupling strength k and

sufficiently large natural frequency ω, the amplitude death can occur for an arbitrary

fraction of inactive oscillators p, as long as γ is sufficiently small (which, in light of the

relation (1.8), implies that the mean time delay τm should be sufficiently large). In this

case, for larger values of γ there is a certain minimum p required for amplitude death, and

the value of this critical p increases with γ.

Figure 3.4: AD boundary of the system (3.8) with the weak delay distribution kernel for

a = 2, b = 1, N = 500. (a)-(b) k = 10, (c)-(d) ω = 10. AD occurs below and to the right

of the surface in (a),(c), and to the right of the boundary curves in (b),(d).

For smaller values of ω, the amplitude death can only occur if p exceeds a certain

threshold that again increases with γ until it reaches some value that is independent of γ

if γ is sufficiently high. This means that if the mean time delay is reasonably small, the
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threshold value of p becomes independent of τm. Similarly, for a fixed natural frequency ω

and smaller values of γ, there is a range of coupling strengths k, for which the amplitude

death can occur for an arbitrary proportion p of inactive oscillators. For higher γ (and,

correspondingly, smaller mean time delay τm), the amplitude death can only take place

for a sufficiently large value of p. Interestingly, this critical p initially decreases and then

monotonically increases with k.

Considering the case of the strong delay kernel with r = 2, we use the same strategy

as for the weak kernel and introduce new variables as follows

XA(t) =

∫ ∞
0

γe−γsA(t− s)ds, YA(t) =

∫ ∞
0

γ2se−γsA(t− s)ds,

XI(t) =

∫ ∞
0

γe−γsI(t− s)ds, YI(t) =

∫ ∞
0

γ2se−γsI(t− s)ds.

This allows one to rewrite the system (3.2) in the equivalent form



Ȧ(t) =

[
a− k

(
1− 1

N

)
+ iω

]
A(t) + k

(
q − 1

N

)
YA(t) + kpYI(t),

İ(t) =

[
−b− k

(
1− 1

N

)
+ iω

]
I(t) + k

(
p− 1

N

)
YI(t) + kqYA,

ẊA(t) = γA(t)− γXA(t),

ẎA(t) = γXA(t)− γYA(t),

ẊI(t) = γI(t)− γXI(t),

ẎI(t) = γXI(t)− γYI(t).

(3.10)

Linearising this system near the trivial steady state yields the following equation for

characteristic eigenvalues λ[
(λ+ γ)2

(
a− k

(
1− 1

N

)
+ iω − λ

)
+ γ2k

(
q − 1

N

)]

×
[
(λ+ γ)2

(
−b− k

(
1− 1

N

)
+ iω − λ

)
+ γ2k

(
p− 1

N

)]

−γ4k2pq = 0.

(3.11)
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Figure 3.5: AD boundary of the system (3.10) with the strong delay distribution kernel

for a = 2, b = 1, N = 500. (a)-(b) k = 10, (c)-(d) ω = 10. AD occurs below and to the

right of the surface in (a),(c), and to the right of the boundary curves in (b),(d).

Figure 3.5 illustrates AD regions for the strong delay distribution kernel (1.7) with

r = 2. Boundaries of AD exhibit the behaviour qualitatively similar to that for the weak

kernel, i.e. for the fixed coupling strength k increasing the natural frequency ω increases

the range of γ, for which AD can occur with an arbitrary fraction of inactive oscillators

p. However, one should note that for the same values of ω, aging transition in the case of

the strong delay kernel takes place for much lower values of γ, i.e. for significantly higher

values of the mean time delay τm than for the weak delay kernel. Furthermore, for a

sufficiently small γ, whereas for the weak delay kernel it could be possible to achieve aging

transition for an arbitrary value of p, in the case of the strong delay, there is a bound on

the minimum value of p, and more generally for the same coupling strength and the same

mean time delay, a higher p is required for AD.
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3.4 Numerical simulations

In this section we perform the numerical simulations of the fully nonlinear system (3.2)

to illustrate the stability of the trivial steady state in different parameter regimes. The

results are shown for uniformly-distributed kernel in Figures 3.6 (a)-(b), for a weak delay

kernel in Figures 3.6 (b)-(c), and for a strong delay kernel in Figures 3.6 (e)-(f). In all

three cases, there is a stability switch, which gives rise to periodic oscillations, where the

steady state loses its stability. The results of the numerical simulations fully agree with

the stability analysis conducted in the previous section.

3.5 Discussion

In this chapter, we have studied aging transition in a system of globally coupled active and

inactive oscillators with distributed-delay coupling. Using specific examples of uniform and

gamma distributions, we have been able to analytically find boundaries of the amplitude

death depending on the coupling parameters and the proportion of inactive oscillators,

and we have also numerically computed characteristic eigenvalues in each scenario. For

the case of uniform delay distribution, our results suggest that increasing the width of the

distribution for the same mean time delay allows the system to achieve aging transition

for a smaller coupling strength and a smaller proportion of inactive oscillators, and the

largest proportion of inactive oscillators required for AD occurs for the discrete time delay.

This highlights the fact that not only time delays can have a significant effect on aging

transition, but also that the details of the delay distribution play an important role, since

even for the same mean time delay, AD can occur or not depending on the width of the

distribution.

In the case of the gamma distribution, provided the mean time delay is sufficiently

large, there exists a range of coupling strengths, for which it is possible to achieve aging

transition for any proportion of inactive oscillators, and the range of this coupling strength

reduces with decreasing mean time delay. When one compares the behaviour of the system

with a weak and strong distribution kernels, it becomes apparent that although AD regions

exhibit qualitatively similar features for these two distributions, in the case of a strong

distribution kernel aging transition occurs for higher values of the mean time delays and

a higher proportion of inactive oscillators. This again reiterates the important role played

by the delay distribution in quenching oscillations in coupled oscillator networks.

There are several possible ways how the work done in this chapter could be furthered.
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Figure 3.6: (a)-(b) Solutions of the system (3.2) with uniformly-distribution kernel for

σ = 0.01. (c)-(d) Solutions of the system (3.8) with weak delay kernel for γ = 40. (e)-(f)

Solutions of the system (3.10) with strong delay kernel for γ = 40. Other parameters,

a = 2, b = 1, ω = 10, τ = 0.5, N = 500, k = 100. (a),(c),(e) p = 0.8. (b),(d),(f) p = 0.2.
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One interesting and practically important problem concerns the analysis of aging transition

in complex networks [59, 63, 129, 151], where the coupling is not global but is rather

determined by a specific network topology, while distributed delays are to be expected

due to the intricate nature of connections between nodes. In this respect, understanding

the dynamics of interactions between network topology and distributed-delay coupling

could provide significant insights into network behaviour and robustness. Quite often

it may not be practically possible to fix a specific delay distribution for the coupling

[12, 46, 47], systems may have combinations of discrete and distributed delays [119, 173],

or delays can depend on the actual state of nodes [2, 65]. Hence, another important

research direction would be to analyse aging transition in systems with mixed, stochastic,

and state-dependent delays.
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Chapter 4

Dynamics of subthalamic

nucleus-globus palidus network

with three delays

In this chapter, we analyse the stability of the system based on the original STN-GP

model introduced by Nevado-Holgado et al. [106]. The stability analysis performed in

[106] and its later modifications have made the following simplifications: it is assumed

that the membrane time constants are exactly the same; the transmission delays in the

neural populations are taken to be equal; nonlinear activation functions are replaced by

linear functions. In this chapter, we concentrate on considering a general nonlinear class

of activation functions. The activation functions are not necessarily just logistic curves,

since the neural population might have more than a single inflexion point [158]. Moreover,

the three time delays in the connections between the excitatory and inhibitory populations

of neurons are taken to be different. Finally, the membrane time constants are taken to

be different. In the next section, we introduce the model describing STN and GP neural

populations. A time-shift transformation is used to reduce the number of time delays,

prove positivity of solutions for all times, and implicitly calculate a steady state of the

model. In Section 4.3 we derive analytical conditions for local stability of the steady

state in the case of a non-zero delay in the self-interaction of the GP population, and an

instant cross-interaction between GP and STN neural populations, and analyse the case

when there is a delay in the cross-interaction between GP and STN populations, and an

instant self-interaction in the GP population. In Section 4.4, we consider a general case

and perform stability analysis of the system in the presence of a delayed self-interaction

in the GP population and a delayed cross-interaction between STN and GP populations.
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The chapter concludes with the summary of the results.

4.1 The model

Following Nevado-Holgado et al. [106], the mean firing rate model describing the temporal

evolution of the firing rates of the excitatory population of neurons, STN, denoted by S(t),

and the inhibitory population of neurons, GP, denoted by G(t), has the form

τSS
′(t) = FS(−wGSG(t− TGS) + wCSCtx)− S(t),

τGG
′(t) = FG(wSGS(t− TSG)− wGGG(t− TGG)− wXGStr)−G(t),

(4.1)

where TGS ≥ 0, TSG ≥ 0 and TGG ≥ 0 are the transmission time delays. In particular,

TGS is the transmission delay from GP to STN population, TSG is the transmission delay

from STN to GP population, and TGG is an internal self-inhibition delay in the GP pop-

ulation. The constants τS and τG are the time membrane constants of neurons in STN

and GP populations, while Ctx and Str represent a constant level of cortical and striatal

excitation of the STN and GP populations, respectively. This system of equations rep-

resents a pair of reciprocally connected STN-GP sub-populations corresponding to one of

many hypothesised basal ganglia information channels [95]. The synaptic weights wGS ,

wCS , wSG, wGG, and wXG are all non-negative constants, and represent the strength of

synaptic connectivity within and between the populations, where wxy is the strength of

the connection from population x to population y (e.g., wSG is the synaptic connectivity

from STN to GP). The functions FS and FG are the activation functions of the STN and

GP neural populations, which describe their firing rate as a function of synaptic input,

and are given by

FS(·) = MS

1+
(
MS−BS
BS

)
e
−4(.)
MS

,

FG(·) = MG

1+
(
MG−BG
BG

)
e
−4(.)
MG ,

(4.2)

where MS and MG are the maximum firing rates of STN and GP populations, and BS

and BG are the STN and GP firing rates in the absence of input. A schematic diagram of

the model (4.1) representing the dynamics of STN-GP interactions is shown in Figure 4.1.
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Str
wXG

wCS

(wGS , TGS) (wSG, TSG)

(wGG, TGG)

Ctx STN

GP

Figure 4.1: Diagrammatic sketch of the STN-GP model represented by the system (4.1).

Table 4.1: The parameters and their values used in the model together with their sources

Parameter Value Source

TSG 6 ms Kita et al. [73]

TGS 6 ms Fujimoto & Kita [41]

TGG 4 ms Nevado Holgado et al. [106]

τS 6 ms Kita et al. [70], Nakanishi et al. [104], Paz et al. [115]

τG 14 ms Kita & Kitai [71]

Ctx 27 spk/s Lebedev & Wise [84]

Str 2 spk/s Schultz & Romo [132]

MS 300 spk/s Hallworth el al. [57]

BS 17 spk/s Hallworth el al. [57]

MG 400 spk/s Kita et al. [73], Kita [69]

BG 75 spk/s Kita et al. [72], Kita [69]

The parameter values are summarised in Table 4.1, and are available in the literature

(for details, see Nevado-Holgado et al. [106]). However, the synaptic weights wxy were

not available in the literature, but Nevado-Holgado et al. [106] found the values for which

the model reproduced a wide range of experimental findings.

Before starting the stability analysis of the model (4.1), we can reduce the number of

transmission delays by using a time-shift transformation in the firing rate S(t) of the STN

population [110, 111]. In order to do this, let us introduce a new variable S̃(t) as follows

S̃(t) = S(t+ TGS) =⇒ S(t) = S̃(t− TGS). (4.3)

Substituting the transformation (4.3) into the system (4.1) results in the following equi-
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valent system

τSS̃
′(t) = FS(−wGSG(t) + wCSCtx)− S̃(t),

τGG
′(t) = FG(wSGS̃(t− T1)− wGGG(t− T2)− wXGStr)−G(t),

(4.4)

where T1 = TGS + TSG, T2 = TGG, and the new state variable S̃(t) is time-shifted relative

to the original state variable S(t). It is clear that both systems (4.1) and (4.4) possess

the same steady states and characteristic equations. From now on, all our analysis will be

based on the model (4.4).

4.2 Positivity of firing rates

Since the model (4.4) describes the firing rates of the STN and GP populations, it is

important to show that the solutions of this system are non-negative for all times t > 0.

First, we shall start by proving that S̃(t) ≥ 0 for all t > 0.

Lemma 4.2.1. Let the function φS be the initial condition for S̃(t), so that S̃(s) = φS(s)

for s ∈ (−T1; 0). Let φS(s) be continuous and satisfy 0 ≤ φS(s) ≤ MS for s ∈ (−T1; 0),

where φS(0) > 0, and MS is a positive constant. Then the solution S̃(t) of the model (4.4)

is always non-negative and satisfies 0 ≤ S̃(t) ≤MS for all t ≥ 0.

Proof. Suppose by contradiction that S̃(t) can be negative. Assume that there exists a

time instance t1 such that S̃(t1) = 0. It follows from the first equation of the system (4.4)

that

τS︸︷︷︸
>0

S̃′(t1) = FS(−wGSG(t1) + wCSCtx)︸ ︷︷ ︸
0<FS<MS

− S̃(t1)︸ ︷︷ ︸
=0

> 0.
(4.5)

However, since S̃(0) > 0, for S̃(t) to become negative after t = t1 requires S̃′(t1) ≤ 0, which

contradicts the expression (4.5). Furthermore, from (4.5), one can see that S̃′(t1) > 0,

which implies that S̃(t) increases just for t = t1. Since S̃(0) = φS(0) and by hypothesis

0 ≤ φS(t) ≤ MS , it follows that S̃(t) is bounded and 0 ≤ S̃(t) ≤ MS for t ≥ 0. Similar

arguments can be used to show that G(t) is non-negative and bounded by 0 ≤ G(t) ≤MG

for t ≥ 0, where MG is a positive constant.

The system (4.4) possesses a non-trivial steady state E∗ = (S̃∗, G∗), where S̃∗, G∗ are
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given implicitly by the solutions of

S̃∗ = FS(−wGSG∗ + wCSCtx),

G∗ = FG(wSGS̃
∗ − wGGG∗ − wXGStr).

(4.6)

Note that S̃∗ > 0, G∗ > 0 by Lemma 4.2.1. In order to linearise the system (4.4) near the

steady state E∗ = (S̃∗, G∗), let

S̃ = S̃∗ +XS and G = G∗ +XG.

The linearised system for X = (XS,XG)T can now be written in the form

X′(t) = L0X(t) + L1X(t− T1) + L2X(t− T2), (4.7)

where L0, L1 and L2 are given by

L0 =


− 1
τS
− r1wGS

τS

0 − 1
τG

 , L1 =


0 0

r2wSG
τG

0

 and L2 =


0 0

0 − r2wGG
τG

 ,

where r1 = 4S̃∗(MS − S̃∗)/M2
S and r2 = 4G∗(MG −G∗)/M2

G.

The associated characteristic matrix is

Ψ(λ, T1, T2) = λI − L0 − L1e
−λT1 − L2e

−λT2 ,

where I is the 2×2 identity matrix, and the corresponding characteristic equation becomes

det[Ψ(λ, T1, T2)] ≡ λ2 + p1λ+ p2 + re−λT1 + (q1λ+ q2)e
−λT2 = 0, (4.8)

where

p1 =
τS + τG
τSτG

, p2 =
1

τSτG
, r =

r1r2wGSwSG
τSτG

, q1 =
r2wGG
τG

, and q2 =
r2wGG
τSτG

.

(4.9)

The transcendental equation (4.8) determines the stability of the steady state E∗, and

in order to analyse the characteristic equation (4.8) with two transmission delays, we

consider three different cases. First, we assume that T1 = 0 and T2 > 0, and find stability

conditions for E∗. Second, we take T2 = 0 and T1 > 0, and determine stability boundaries

for E∗ depending on the value of T1. Finally, we analyse the stability properties of E∗ in

the general case when both time delays are present, i.e. T1 > 0 and T2 > 0.
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4.3 Stability analysis: single time delay

In this section we consider the case when there is a delayed self-interaction in the GP

population (i.e. T2 > 0) and an instant cross-interaction between STN and GP populations

(i.e. T1 = 0). The characteristic equation (4.8) reduces to

λ2 + p1λ+ p2 + r + (q1λ+ q2)e
−λT2 = 0, (4.10)

where pi, qi, i = 1, 2, and r are given by (4.9). Clearly, λ = 0 is not a root of the equation

(4.10), so we look for solutions of (4.10) in the form λ = iξ (ξ > 0). This gives

− ξ2 + p1ξi+ p2 + r + (q1ξi+ q2)(cos ξT2 − i sin ξT2) = 0, (4.11)

and separating the real and imaginary parts of (4.11) yields ξ2 − p2 − r = q2 cos(ξT2) + q1ξ sin(ξT2),

p1ξ = q2 sin(ξT2)− q1ξ cos(ξT2).
(4.12)

Upon squaring and adding the equations (4.12), one obtains a quartic equation in the form

ξ4 − (q21 + 2p2 + 2r − p21)ξ2 + (p2 + r)2 − q22 = 0. (4.13)

The four roots of the equation (4.13) can be expressed as follows

ξ2± =
(q21 + 2p2 + 2r − p21)±

√
∆1

2
, (4.14)

where ∆1 = (q21+2p2+2r−p21)2−4((p2+r)2−q22). Depending on the values of pi, qi, i = 1, 2,

and r, the equation (4.13) can have no, one or two positive roots. If (p2 + r)2 − q22 > 0

and q21 + 2p2 + 2r − p21 < 0 or ∆1 < 0, then the equation (4.13) has no positive roots.

If (p2 + r)2 − q22 > 0, q21 + 2p2 + 2r − p21 > 0 and ∆1 > 0, then the equation (4.13)

has two positive roots ξ± =
√
2
2 [q21 + 2p2 + 2r − p21 ±

√
∆1]

1
2 . If (p2 + r)2 − q22 < 0 or

q21 + 2p2 + 2r − p21 > 0 and ∆1 = 0, then the equation (4.13) has one positive root ξ+.

In either of the latter cases, the characteristic equation (4.10) has purely imaginary

roots for some values of the time delay T2. From equation (4.12) we have

sin(ξT2) =
ξ(q1ξ

2 + p1q2 − p2q1 − q1r)
q21ξ

2 + q22
,

cos(ξT2) = −p1q1ξ
2 − q2ξ2 + p2q2 + q2r

q21ξ
2 + q22

,

(4.15)

and dividing these two equations, the critical time delays can be found as

T j
2± =

1

ξ±

{
tan−1

(
−
ξ±(q1ξ

2
± + p1q2 − p2q1 − q1r)

p1q1ξ2± − q2ξ2± + p2q2 + q2r

)
+ jπ

}
, j = 0, 1, 2, · · · . (4.16)
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It is worth noting that when T1 = T2 = 0, the system (4.4) becomes a system of ODEs

with a characteristic equation

λ2 + (p1 + q1)λ+ p2 + q2 + r = 0. (4.17)

which yields that whenever p1 + q1 > 0 and p2 + q2 + r > 0, all roots of the equation (4.17)

with T1 = T2 = 0 always have negative real parts, and the steady state E∗ is stable.

Summarising the above analysis and the results in [124, 142], we have the following

lemma.

Lemma 4.3.1. Suppose that p1 + q1 > 0 and p2 + q2 + r > 0, and that ξ2± and T j
2± are

defined by (4.14) and (4.16) respectively.

(i) If (p2 + r)2 − q22 > 0 and q21 + 2p2 + 2r − p21 < 0 or ∆1 < 0, then the number of roots

in equations (4.10) and (4.17) is the same.

(ii) If (p2 + r)2 − q22 < 0 or q21 + 2p2 + 2r − p21 > 0 and ∆1 = 0, then the number of roots

in equations (4.10) and (4.17) is the same for T2 ∈ [0, T 0
2+), and equation (4.10) has

a pair of simple purely imaginary roots ±iξ+ at T2 = T j
2+

.

(iii) If (p2 + r)2− q22 > 0, q21 + 2p2 + 2r− p21 > 0 and ∆1 > 0, then the number of roots in

equations (4.10) and (4.17) is the same for T2 ∈ [0, T 0
2 ), where T 0

2 = min{T 0
2+ , T

0
2−},

and equation (4.10) has two pairs of simple purely imaginary roots ±iξ± at T2 = T j
2±.

Under the assumption that (p2 + r)2 − q22 > 0, q21 + 2p2 + 2r − p21 > 0 and ∆1 > 0,

the characteristic equation (4.10) has two purely imaginary solutions iξ± with ξ+ and

ξ− defined in (4.14). In order to determine the stability of the steady state (4.6) as T2

varies, we calculate the sign of the derivative of Re(λ) at the points where λ(T2) is purely

imaginary. Let λ(T2) = η(T2) + iξ(T2) be the root of the equation (4.10) satisfying

η(T j
2±) = 0, ξ(T j

2±) = ξ±, j = 0, 1, 2, · · · .

Substituting λ(T2) into the equation (4.10) and taking the derivative with respect to T2

gives [
dλ
dT2

]−1
= 2λ+p1+q1e−λT2−(q1λ+q2)T1e−λT2

(q1λ+q2)λe−λT2
= (2λ+p1)eλT2+q1−(q1λ+q2)T2

(q1λ+q2)λ

= (2λ+p1)eλT2

(q1λ+q2)λ
+ q1

(q1λ+q2)λ
− T2

λ .
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Therefore,[
dRe{λ(T2)}

dT2

]−1
T2=T

j

2±
= Re

{
(2λ+p1)eλT2

(q1λ+q2)λ

}
T2=T

j

2±
+ Re

{
q1

(q1λ+q2)λ

}
T2=T

j

2±
− Re

{
T2
λ

}
T2=T

j

2±

=

{
(2q2−p1q1)ξ cos(ξ±T j

2±
)+(p1q2+2q1ξ2) sin(ξ±T

j

2±
)−q21ξ±

(q22+q
2
1ξ

2
±)ξ

}

= 1
q22+q

2
1ξ

2

{
2ξ2± + (p21 − 2p2 − 2r − q21)

}
= ±
√

∆1
1

q22+q
2
1ξ

2 .

Hence, if ∆1 6= 0, we have[
dRe{λ(T2)}

dT2

]
T2=T

j

2+

=

[
dRe{λ(T2)}

dT2

]−1
T2=T

j

2+

=
1

q22 + q21ξ
2

√
∆1 > 0, (4.18)

and [
dRe{λ(T2)}

dT2

]
T2=T

j

2−

=

[
dRe{λ(T2)}

dT2

]−1
T2=T

j

2−

= − 1

q22 + q21ξ
2

√
∆1 < 0. (4.19)

Combining the results of the Lemma 4.3.1 and the transversality conditions (4.18),

(4.19) we have the following theorem regarding the stability of the steady state E∗.

Theorem 4.3.1. For the system (4.4) with T1 = 0 and T2 > 0, suppose p1 + q1 > 0,

p2 + q2 + r > 0 and T j
2± are defined by the equation (4.16). Then the following statements

hold.

(i) If (p2 + r)2 − q22 > 0 and q21 + 2p2 + 2r − p21 < 0 or ∆1 < 0, then the steady state E∗

of the system (4.4) is stable for all T2 ≥ 0.

(ii) If (p2 + r)2− q22 < 0 or q21 + 2p2 + 2r− p21 > 0 and ∆1 = 0, then the steady state (4.6)

of the system (4.4) is stable when T2 ∈ [0, T 0
2+), undergoes a Hopf bifurcation when

T2 = T 0
2+, and is unstable when T2 > T 0

2+.

(iii) If (p2 + r)2 − q22 > 0, q21 + 2p2 + 2r − p21 > 0 and ∆1 > 0, then there is a positive

integer k such that there are k switches from stability to instability. Furthermore,

for the time delays defined as T2 ∈
⋃k
j=0(T

j−1
2− , T j

2+
), where T−1

2− = 0, the steady state

E∗ of the system (4.4) is stable, and for the time delays T2 ∈
⋃k−1
j=0(T j

2+
, T j

2−) and

T2 > T k2+ , the steady state E∗ of the system (4.4) is unstable.

In order to gain a better understanding of the stability properties of the non-trivial

steady state E∗ = (S̃∗, G∗) given by (4.6) for the system (4.7), we use a traceDDE suite



80

Figure 4.2: (a) Stability of the non-trivial steady state E∗ of the system (4.4) in the

parameter space of the time delay T2 and the synaptic weight wGG for different values

of the synaptic weight wGS . The non-trivial steady state E∗ is stable below the stability

boundaries. (b) Amplitude and (c) period of the periodic solutions for different values of

wGS and T2 = 0.02.

in MATLAB [19, 90] to numerically calculate the stability boundaries for different values

of the synaptic weights wGG, wGS and the time delay T2.

Figure 4.2 (a) shows the stability boundary of the non-trivial steady state E∗ for dif-

ferent values of the synaptic weight wGS . The steady state is stable below the curves and

unstable above them. As the value of the time delay T2, which corresponds to the delayed

self-interactions within the GP population, is increased, the steady state E∗ undergoes a

series of stability switches (as proved in Theorem 4.3.1), and for large values of the time

delay T2, the stability boundary becomes almost a constant independent of T2. Increasing

the synaptic weight wGS does not change the shape of the stability boundary, however, for

higher values of wGS , the region where the steady state E∗ is stable becomes larger. This

suggests that the region of non-oscillatory behaviour, which corresponds to the healthy

functioning of the STN-GP neural populations is larger for higher values of the synaptic

connection between GP and STN populations. When the steady state E∗ becomes un-

stable, it undergoes a Hopf bifurcation, which gives rise to stable periodic oscillations.

In Figures 4.2 (b) and (c), we have plotted the amplitude and period of these periodic

solutions for a fixed value of the time delay T2 and several values of the synaptic weight

wGS . One can see that as the values of the synaptic weight wGS are increased, this results

in periodic oscillations with lower amplitude and a significantly lower period.

In the case of a delayed cross-interaction between GP and STN neural populations,

i.e. T1 > 0, and an instantaneous self-interaction, i.e. T2 = 0, the characteristic equation

(4.8) becomes

λ2 + (p1 + q1)λ+ (p2 + q2) + re−λT1 = 0. (4.20)
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Figure 4.3: Stability of the non-trivial steady state E∗ of the system (4.4) in the parameter

space of time delay T1 and the synaptic weight wSG for different values of the synaptic

weight wGS . The non-trivial steady state E∗ is stable below the stability boundaries. (b)

Amplitude and (c) period of the periodic solutions for different values of wGS and T1 = 0.5.

The analysis of the characteristic equation (4.20) is similar to the analysis of characteristic

equation (4.10), hence, the details are omitted here. Figure 4.3 (a) shows that the stability

region of the steady state E∗ in the (T1, wSG) plane, which is stable below the stability

curves. The stability region increases for decreasing strength of the synaptic connection

wGS between GP and STN populations, but, unlike the case of T2 6= 0, there is just one

stability switch from stable to unstable region with increasing T1. Moreover, whilst the

stability boundary for very small values of the time delay T1 strongly depends on wSG,

it becomes a constant for larger values of T1. Biologically, the region, where the steady

state E∗ is stable, corresponds to the healthy functioning of the GP-STN populations,

and Figure 4.3 suggests that a stronger connection between GP and STN networks leads

to a larger region of oscillations. In Figures 4.3 (b) and (c) we fix the value of the time

delay T1, and calculate amplitude and period of the periodic solutions, which arise after

the steady state becomes unstable via a Hopf bifurcation. Figure 4.3 (b) shows that the

amplitude of the oscillating solutions is increasing for small values of the synaptic weight

wSG between STN and GP populations and starts to drop slightly for very large wSG,

whereas higher values of the synaptic weight wGS lead to a much higher amplitude of

oscillations. The period of oscillations is shorter for small values of the synaptic weight

wSG and higher values of the synaptic weight wGS , as illustrated in Figure 4.3 (c).

4.4 Stability analysis: two time delays

When T1 > 0 and T2 > 0, the characteristic equation (4.8) contains two transmission

delays simultaneously present, which significantly complicates analytical calculations of

the stability boundaries. We will follow the idea and method proposed in [18, 54]. One
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Figure 4.4: Real part of the leading eigenvalue of the characteristic equation (4.8) with

T1 = 0.09, wSG = 19, and (a) wGS = 0.1, (b) wGS = 0.2, (c) wGS = 0.3 and (d) wGS = 0.4.

Colour code denotes [max{Re(λ)}]. (c) Amplitude of the periodic solutions for different

values of wGS and T2 = 0.2. (f) Period of the periodic solutions for different values of wGS

and T2 = 0.2.

can rewrite characteristic equation (4.8) in an equivalent form as follows

1 + ρ1(λ)e−λT1 + ρ2(λ)e−λT2 = 0, (4.21)

where

ρ1(λ) =
r

λ2 + p1λ+ p2
and ρ2(λ) =

q1λ+ q2
λ2 + p1λ+ p2

.

Figures 4.4 (a), (b), (d) and (e) show numerically computed maximum real part of

the eigenvalues of the characteristic equation (4.21) in the (T2, wGG) plane for a fixed

value of the synaptic weight wSG and different values of the synaptic weight wGS . From

these figures, one can see that there is a finite number of stability switches between stable

and unstable regimes for the same values of wGG, but increasing the strength of the syn-

aptic connection wGS between GP and STN populations significantly shrinks the stability

region. Figures 4.4 (c) and (f) illustrate the amplitude and the period of the periodic

solutions after the stability is lost for a fixed value of the time delay T2. The amplitude
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Figure 4.5: (a)-(d) Real part part of the leading eigenvalue of the characteristic equation

(4.7) in the (T1, T2) plane for wGS = 1, wSG = 3, and (a) wGG = 1.6, (b) wGG = 1.8, (c)

wGG = 2 and (d) wGG = 2.4. Colour code denotes [max{Re(λ)}].

of oscillations grows for larger values of the synaptic weights wGG and wGS , whilst the

period of oscillations becomes smaller for larger values of wGS and grows with wGG.

The stability boundary can now be parametrised using the Hopf frequency ξ ∈ Ξ,

with Ξ =
⋃k
i=1 Ξk being composed of a finite number of intervals of finite length, and the

critical time delays at the stability boundary in the (T1, T2) plane are given by

T1 = T u±1 (ξ) = Arg ρ1(iξ)+(2u−1)π±φ1
ξ ≥ 0, u = u±0 , u

±
0 + 1, u±0 + 2, · · ·

T2 = T v±2 (ξ) = Arg ρ2(iξ)+(2v−1)π∓φ2
ξ ≥ 0, v = v±0 , v

±
0 + 1, v±0 + 2, · · ·

(4.22)

where φ1, φ2 ∈ [0, π] are found as follows

φ1 = cos−1
(
1+|ρ1(iξ)|2−|ρ2(iξ)|2

2|ρ1(iξ)

)
,

φ2 = cos−1
(
1+|ρ2(iξ)|2−|ρ1(iξ)|2

2|ρ2(iξ)

)
.

(4.23)
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and u+0 , u
−
0 , v

+
0 , v

−
0 are the smallest positive integers for which the corresponding T

u+0
1 , T

u−0
1 ,

T
v+0
2 , T

v−0
2 are all non-negative.

To better understand the stability changes in the presence of two time delays, we fixed

wGS , wSG, varied the strength wGG of the self-inhibitory connection of the GP population

wGG and numerically computed the maximum of the real part of the leading eigenvalue

of the characteristic equation (4.21), as shown in Figure 4.5 (a)-(d). As the value of the

self-inhibitory synaptic connection wGG is increased, the number of open-ended curves

(stable region) decreases. This means that in the presence of two time delays and high

enough values of the synaptic weight wGG, the model shows oscillatory behaviour for a

wide range of T1 and T2 values.

We have performed numerical simulations of the full nonlinear system (4.4), and Fig-

ure 4.6 shows numerical solutions of the system (4.4) for different values of the synaptic

weights and the time delays. In Figures 4.6 (a) and (b), the cross-interaction time delay

T1 between GP and STN populations is equal to zero, and the self-interaction time delay

T2 within the GP population is present; in Figures 4.6 (c) and (d), the cross-interaction

time delay T1 between GP and STN populations is present, and the self-interaction time

delay T2 within the GP population is equal to zero; and in Figures 4.6 (e) and (f), both

time delays are present. In all three cases, there is a transition between the healthy firing

of neurons, when after some short transient period, the solutions settle on the non-zero

steady state E∗, and a Parkinsonian-type behaviour, where the steady state loses its sta-

bility, and this results in sustained periodic firing of both populations. The results of the

numerical simulations fully agree with the stability analysis performed in the previous

section, and show the predicted onset of oscillations as the steady state loses its stability.

4.5 Discussion

In this chapter, we have studied a general subthalamic nucleus (STN) and globus pallidus

(GP) network with three distinct synaptic transmission delays. Using the time-shift trans-

formation, we reduced the original system to an equivalent system with two time delays

and showed the existence of a unique non-trivial steady state. The analysis in chapter 4

has concentrated on the stability properties of this steady state, since it has a profound

effect on the dynamics of the neural populations. Biologically, the stable steady state cor-

responds to the healthy firing of the STN and GP populations, and if it is unstable, this

results in periodic firing, which implies a Parkinsonian-type regime. To better understand

the effects of different time delays on the overall stability of the system, we have divided
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Figure 4.6: Numerical simulations of the full nonlinear system (4.4). Top panel: wGS =

3, wSG = 19, T2 = 0.5, T1 = 0 (a) wGG = 5, (b) wGG = 15. Middle panel: wGS =

1, wGG = 6.6, T1 = 0.5, T2 = 0, (c) wSG = 40, (d) wSG = 60. Bottom panel: wGS =

0.2, wSG = 19, T1 = 0.09, T2 = 0.5, (e) wGG = 0.3, (f) wGG = 2.
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the analysis into three different cases: delayed self-interaction in the GP population only;

delayed cross-interaction between GP and STN populations only; both interactions with

time delays.

For the first two cases, we have analytically found the stability regions and have shown

that the non-trivial steady state is stable below some critical value of the time delay,

unstable when the time delay exceeds this critical value, and undergoes a Hopf bifurcation

when the time delay is equal to the critical value. Furthermore, we have numerically

computed eigenvalues of the corresponding characteristic equations for the three cases,

showing that the strength of the synaptic connection from GP to STN population wGS

plays an important role in determining the stability of the steady state. In fact, when the

time delay is only present in the self-interaction of the GP population, the stability region

(healthy firing of neurons) increases with increasing wGS , however, in the case when the

time delay is only considered between STN and GP populations, the stability region gets

larger for decreasing values of the synaptic weight wGS . Moreover, the highest amplitude

of oscillations in the case of the time delay being included in the self-interaction of the

GP population corresponds to the lowest value of the synaptic strength wGS , whilst if

the time delay is only included into the interactions between STN and GP populations,

the same effect on the amplitude of oscillations is observed for highest values of wGS . In

the case when both time delays are taken into account, the stability region shrinks if the

synaptic weight wGS is increased, leading to the smaller range of parameter values, where

the healthy firing rate of neurons is possible, and the amplitude of oscillating solutions

outside the stability region also grows for larger values synaptic weight wGS . Numerical

simulations performed for the fully nonlinear system agree with the stability analysis, and

show the onset of sustained periodic calculations in all three cases.

Comparing the analysis done in this chapter to the previous work in [106], it is worth

noting that we have considered the case when the activation functions are nonlinear, which

gives a continuous derivative for the activation function, and rather than using the Taylor

expansion under the assumption of small time delays, we have analysed stability of the

system for arbitrary values of the three time delays.
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Chapter 5

Dynamics of

unidirectionally-coupled ring

neural network with discrete and

distributed delays

In this chapter, we consider a ring neural network with one-way distributed-delay coupling

between the neurons and a discrete delayed self-feedback. In the general case of the

distribution kernels, we are able to find a subset of the amplitude death regions depending

on even (odd) number of neurons in the network. Furthermore, in order to show the

full region of the amplitude death, we use particular delay distributions, including Dirac

delta function and gamma distribution. Stability conditions for the trivial steady state

are found in parameter spaces consisting of the synaptic weight of the self-feedback and

the coupling strength between the neurons, as well as the delayed self-feedback and the

coupling strength between the neurons. It is shown that both Hopf and steady-state

bifurcations may occur when the steady state loses stability. We also perform numerical

simulations of the fully nonlinear system to confirm theoretical findings.

We consider a Hopfield-type network of unidirectionally coupled neurons with a discrete

delay self-feedback, and each ith neuron receives a distributed delay signal from (i− 1)th

neuron as shown in Figure 5.1. The model can be written in the form

u̇i(t) = −κui(t) + af(ui(t− τ)) + b

∫ ∞
0

g(s)f(uj(t− s))ds, (5.1)
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Figure 5.1: Schematic sketch of the unidirectionally coupled ring neural model with self-

coupling described by the system (5.1).

where i = 1, 2, · · · , n and

j =

 n for i = n,

i− 1 for i = 2, 3, · · · , n,

κ > 0, ui denotes the voltage of the ith neuron, a is the synaptic weight of the self-feedback

and b denotes the coupling strength of the neuron’s connection, which can be positive or

negative. We assume that a neuron has a delayed self-feedback input represented by a

discrete time delay, and the transmission delays between neurons are characterised by a

distribution kernel g(·).

The transfer function f : R → R is assumed to be sigmoid and in C1. For the local

stability analysis, we only require f(0) = 0, f ′(0) 6= 0, and use a particular choice of

f(·) = tanh(·) in the numerical simulations.

Without loss of generality, the distribution kernel g(·) is assumed to be normalised to

unity and positive-definite, that is∫ ∞
0

g(s)ds = 1, g(s) ≥ 0.
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In the case of the distribution kernel being a Dirac delta function, g(s) = δ(s−σ), the last

term of the system (5.1) reduces to bf(u(t − σ)), which converts it to a unidirectionally-

coupled ring neural system with discrete time delays in both self-feedback and in the

connection between the neurons.

5.1 Stability Analysis

Under the assumption that f(0) = 0, the system (5.1) always possesses a trivial steady

state (u1, u2, · · · , un) = (0, 0, · · · , 0). Linearising the system (5.1) near the trivial steady

state gives

u̇(t) = −κIu(t) + αIu(t− τ) + βM

∫ ∞
0

g(s)u(t− s)ds, (5.2)

where u = (u1, u2, · · · , un), I is an n× n identity matrix and M is given by

M =



0 0 0 · · · 0 1

1 0 0 · · · 0 0

0 1 0 · · · 0 0

: : : · · · : :

0 0 0 · · · 1 0


n×n

,

where α = af ′(0) 6= 0 and β = bf ′(0) 6= 0. The characteristic matrix can now be calculated

as

det[(λ+ κ− αe−λτ )I − βMĜ(λ)] = 0,

where

Ĝ(λ) =

∫ ∞
0

e−λsg(s)ds,

is the Laplace transform of the function g(·). The characteristic equation has the form

(λ+ κ− αe−λτ )n = (βĜ(λ))n, (5.3)

with

∆(τ, λ) =

 ∆E(τ, λ) if n is even,

∆O(τ, λ) if n is odd,
(5.4)

where ∆E(τ, λ) and ∆O(τ, λ) are

∆E(τ, λ) = λ+ κ− αe−λτ ± βĜ(λ) = 0 (5.5)

and

∆O(τ, λ) = λ+ κ− αe−λτ − βĜ(λ) = 0 (5.6)

for even and odd n, respectively.
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Lemma 5.1.1. λ = 0 is a solution of characteristic equation (5.3) if and only if |β| = κ−α

when n is even and β = κ− α when n odd.

Proof. From the characteristic equations (5.5) and (5.6), computing Ĝ(λ) at λ = 0 yields

Ĝ(0) =

∫ ∞
0

g(s)ds = 1.

Substituting this into ∆(τ, 0) = 0 given in (5.5), one has

κ− α± β = 0,

and (5.6), yields

κ− α− β = 0,

which completes the proof.

Lemma 5.1.2. Let |β| = κ − α when n is even and β = κ − α when n is odd. If the

condition E 6= ατ+1
α−κ holds, then λ = 0 is a simple root of the characteristic equation (5.5)

and (5.6) where E =
∫∞
0 sg(s)ds > 0.

Proof. Recall from Lemma 5.1.1 that if the condition |β| = κ − α when n is even or the

condition β = κ − α when n is odd hold, λ = 0 is a root of the characteristic equation

(5.4). In order to determine the multiplicity of λ = 0, we compute the implicit derivative

of the characteristic equations (5.5) and (5.6) with respect to λ. When n is even, this

yields
d∆E

dλ
= 1 + ατe−λτ ∓ β

∫ ∞
0

seλsg(s)ds,

and when n is odd, yields

d∆O

dλ
= 1 + ατe−λτ + β

∫ ∞
0

seλsg(s)ds.

Recalling that |β| = κ− α when n is even and β = κ− α when n is odd, and calculating

the derivative at λ = 0, gives

d∆

dλ

∣∣∣
λ=0

= 1 + ατ + (κ− α)E.

From the last expression, it is clear that if the condition E 6= ατ+1
α−κ is satisfied, then

∆(τ, 0) 6= 0, implying that λ = 0 is a simple root of the characteristic equation (5.4).

It is well known that the trivial steady state (u1, u2, · · · , un) = (0, 0, · · · , 0) is stable

if and only if all roots of the characteristic equations (5.5) and (5.6) have negative real

parts. We have the following result in a general case of the distribution kernel when all

roots of the characteristic equations (5.5) and (5.6) have negative real parts.
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Theorem 5.1.1. If the parameters of system (5.2) satisfy |β| < κ − |α| and E =∫∞
0 sg(s)ds > 0 then the trivial solution of (5.1) is stable for any distribution kernel

and τ ≥ 0.

Proof. Let λ = µ + iω. Substituting this into the characteristic equation (5.5), then

separating into real and imaginary part, yields

Re(µ, ω) = µ+ κ− αe−µτ cos(ωτ)± β
∫∞
0 e−µs cos(ωs)g(s)ds,

=(µ, ω) = ω + αe−µτ sin(ωτ)∓ β
∫∞
0 e−µs sin(ωs)g(s)ds.

(5.7)

The real part in (5.7) satisfies

Re(µ, ω) ≥ Re(µ) = µ+ κ− |α|e−µτ − |β|
∫ ∞
0

e−µsg(s)ds, (5.8)

since |β| < κ− |α|. Furthermore,

dRe(µ)

dµ
= 1 + |α|τe−µτ + |β|

∫ ∞
0

se−µsg(s)ds,

where since µ ≥ 0, then 0 < e−µτ ≤ 1. Therefore,∫ ∞
0

se−µsg(s)ds ≤ |
∫ ∞
0

se−µsg(s)ds| ≤
∫ ∞
0

s|e−µs|g(s)ds ≤
∫ ∞
0

sg(s)ds = E > 0.

It follows that dRe(µ)
dµ > 0. Hence Re(µ) > 0 for all µ ≥ 0 , it follows from (5.8) that

Re(µ, ω) > 0 for all µ ≥ 0. Suppose that λ = µ + iω is a root of the characteristic

equation (5.5). Then µ and ω must hold Re(µ, ω) = 0 and =(µ, ω) = 0. From the above

analysis, yields µ < 0. Which implies that, all roots of the characteristic equation (5.5)

have negative real part.

Next, we are going to determine a region, where the trivial steady state is unstable for

any distribution kernel g(s) and τ ≥ 0.

Theorem 5.1.2. The characteristic equation (5.4) has a root with positive real part for any

distribution kernel and τ ≥ 0 if one of the following conditions is satisfied: (i) |β| > κ−α

when n is even or β > κ− α when n is odd; or (ii) α > κ.

Proof. Substituting λ = 0 into the equations (5.5) and (5.6), gives

∆E(τ, 0) = κ− α± β,

and

∆O(τ, 0) = κ− α− β.

The assumptions (i) |β| > κ − α (n is even) or β > κ − α (n is odd) imply that

∆E(τ, 0) < 0 and ∆O(τ, 0) < 0, respectively. If the condition (ii) holds, then ∆E−(τ, 0) =
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Figure 5.2: Stability region in the (α, β) parameter space of the trivial steady state of the

system (5.1) for general distribution kernel. The regions (E1) and (O1) are unstable. The

regions (E2) and (O2) are stable. (a) The case when n is even. (b) The case n is odd.

κ−α−β < 0 for β ≥ 0, ∆E+(τ, 0) = κ−α+β < 0 for β ≤ 0 and ∆O(τ, 0) = κ−α−β < 0.

On the other hand,

lim
λ→∞

∆E(τ, λ) =∞, lim
λ→∞

∆O(τ, λ) =∞.

Since ∆E(τ, λ) and ∆O(τ, λ) are continuous functions of λ, there exists λ∗ > 0 such that

∆E(τ, λ∗) = 0 and ∆O(τ, λ∗) = 0 for any τ ≥ 0, |β| > κ − α and β > κ − α. Thus,

the characteristic equations (5.5) and (5.6) have a root with positive real part, which

completes the proof.

So far, we have been able to obtain stability results for a general delay-distributed

kernel. Figure 5.2 shows the subset of the stability region in the (α, β) plane, the shaded

diamond-shaped domain is where the trivial steady state is stable whenever |β| < κ− |α|

holds, and the size of the diamond depends on the parameter κ for both even and odd n as

shown in Theorem 5.1.1. From Theorem 5.1.2, it follows that it is impossible to stabilise

the unstable trivial steady state in E1 in Figure 5.2 (a) and O1 in Figure 5.2 (b) regions,

if the parameters satisfy |β| > κ− α for even number of neurons or β > κ− α and α > κ

for odd number of neurons.

Theorem 5.1.3. On the lines |β| = κ−α when n is even, if τ < (α−κ)E−1
α , then the trivial

steady state becomes stable as β crosses both lines β = κ−α decreasingly and β = −(κ−α)
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Figure 5.3: Stability boundary in the (τ, β) parameter space of the trivial steady state of

the system (5.1) for general distribution kernel when n is even. The region E1 is unstable.

The region E2 is stable when α < 0 for τ < (α−κ)E−1
α and when α ≥ 0 for any τ . (a)

α < −κ. (b) −κ ≤ α < 0. (c) 0 ≤ α ≤ κ.

increasingly, where E =
∫∞
0 sg(s)ds > 0 is the mean time delay.

Proof. Recall that the λ = 0 lines are defined by the zero roots of ∆E(τ, λ) = 0. Differen-

tiating ∆E(τ, λ) = 0 with respect to β, we obtain

dRe(λ)

dβ
= Re

(
±
∫∞
0 g(s)e−λsds

1 + ατe−λτ ∓ β
∫∞
0 se−λsg(s)ds

)
= Re

(
±Ĝ(λ)

1 + ατe−λτ ∓ β
∫∞
0 se−λsg(s)ds

)
.

Therefore, at |β| = κ− α and λ = 0, one has

dRe(λ)

dβ
=

±1

1 + ατ + (κ− α)E
. (5.9)

Hence, dRe(λ)
dβ ≶ 0, provided τ < (α−κ)E−1

α , and the trivial steady state becomes stable

as β decreases through the line β = κ − α and increases through the line β = −(κ − α),

which completes the proof.

Theorem 5.1.4. On the line β = κ − α, β > 0 when n is odd, if τ < (α−κ)E−1
α , then

the trivial steady state becomes stable as β crosses the line β = κ− α decreasingly, where

E =
∫∞
0 sg(s)ds > 0 is the mean time delay.

Proof. Recall that the λ = 0 line is defined by the zero roots of ∆O(τ, λ) = 0.

Differentiating ∆O(τ, λ) = 0 with respect to β, yields

dRe(λ)

dβ
= Re

( ∫∞
0 g(s)e−λsds

1 + ατe−λτ + β
∫∞
0 se−λsg(s)ds

)
= Re

(
Ĝ(λ)

1 + ατe−λτ + β
∫∞
0 se−λsg(s)ds

)
.

Then, when β = κ− α and λ = 0, we have

dRe(λ)

dβ
=

1

1 + ατ + (κ− α)E
. (5.10)

If τ < (α−κ)E−1
α , this implies that dRe(λ)

dβ < 0, and, hence, the trivial steady state becomes

stable as β decreases through the line β = κ− α. This completes the proof.
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Figure 5.4: Stability boundary in the (τ, β) parameter space of the trivial steady state of

the system (5.1) for general distribution kernel when n is odd. The region O1 is unstable.

The region O2 is stable when α < 0 for τ < (α−κ)E−1
α and when α ≥ 0 for any τ . (a)

α < −κ. (b) −κ ≤ α < 0. (c) 0 ≤ α ≤ κ.

Remark 5.1.1. From Theorem 5.1.3, if 0 ≤ α ≤ κ, then dRe(λ)
dβ ≷ 0 in (5.9), regardless

of the distribution kernel and the time delay τ ≥ 0. Thus, the trivial steady state loses

stability via a steady-state bifurcation by increasing β through the line β = κ − α and

decreasing β through the line β = −(κ− α).

Remark 5.1.2. From Theorem 5.1.4, if 0 ≤ α ≤ κ, then dRe(λ)
dβ > 0 in (5.10) regardless

of the distribution kernel and the time delay τ ≥ 0. Thus, the trivial steady state loses

stability via a steady-state bifurcation by increasing β through the line β = κ− α.

Remark 5.1.3. For a fixed value of α and for any kernel distribution, if |α| < κ, then

β 6= 0 for any τ ≥ 0. Furthermore, if |α| > κ, then there exists τ0 such that β = 0 for

τ = τ0.

Proof. In order to find τ when β = 0 in Remark 5.1.3, let us assume that β = 0 in both

characteristic equations (5.5) and (5.6), which yields

λ+ κ− αe−λτ = 0. (5.11)

Substituting λ = iω, (ω > 0) into (5.11) and separating into real and imaginary parts, we

get

κ = α cos(ωτ), −ω = α sin(ωτ). (5.12)

It can be easily seen that the equations (5.12) can only be satisfied, if |α| > κ. Under this

assumption, squaring and adding (5.12) gives an expression for the Hopf frequency ω in

the form ω =
√
α2 − κ2. Moreover, from the system (5.12), substituting ω, we can find

the expressions for the time delay τ as follows

τ w τj =
1√

α2 − κ2


(2j + 1)π − cos−1(

κ

α
) for 0 < κ < α,

2jπ + cos−1(
κ

α
) for α < −κ < 0,

(5.13)
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where j = 0, 1, . . .. Since the trivial steady state is unstable for α > κ, we are only

interested in the case when α < −κ. This simplifies the equation (5.13) as

τ0 =
cos−1( κα)
√
α2 − κ2

for α < −κ < 0,

where cos−1(·) is the principal branch of the inverse cos(·) function, which has the range

[0, π].

Figure 5.3 illustrates a part of a stability region in (τ, β) plane for even n and a general

distribution kernel g(s). The shaded area E2 in Figures 5.3 (a) and (b) indicate that the

trivial steady state is stable if both conditions τ < (α−κ)E−1
α and α < 0 are satisfied.

This is in the full agreement with Theorem 5.1.3, which states that if β increases through

the line β = κ − α and decreases through the line β = −(κ − α), then the characteristic

equation (5.4) has a positive real root. The closure in Figure 5.3 (a) reveals that for

large enough values of the time delay τ and α < −κ, the trivial steady state becomes

unstable independently of the parameter β as stated in Remark 5.1.3. In Figure 5.3 (c), if

0 ≤ α ≤ κ, the trivial steady state can only lose its stability through the lines |β| = κ−α.

Finally, for α > κ, the zero steady state is always unstable for τ ≥ 0, following the results

of Theorem 5.1.2 (ii).

Figure 5.4 shows the stability regions for an odd number of neurons and different values

of α. For all the three cases, form Theorem 5.1.4 it follows that the trivial steady state

becomes stable as β passes through the line β = κ− α decreasingly. The shaded area O2

in Figures 5.4 (a) and (b) indicate the region where that the trivial steady state is stable,

provided τ < (α−κ)E−1
α and α < 0 hold. The shaded area O2 in Figure 5.4 (c) is a stability

region for α > 0 as stated in Remark 5.1.2. For both even and odd number of neurons

Theorem 5.1.2 (ii) shows that if α > κ, then the trivial steady state is always unstable

independently of the time delay τ . It is noteworthy to mention that the trivial steady

state undergoes a steady-state bifurcation through the horizontal lines |β| = κ − α when

n is even and β = κ−α when n is odd as illustrated in Figures 5.3 and 5.4, and stated in

Lemma 5.1.2.

Due to the complexity of the system, it is not possible to find the full stability region

for a general distribution kernel. Therefore, we choose specific delay kernel distributions to

obtain further analytical results and find the complete stability region for a trivial steady

state.
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5.2 Dirac delta function

When the delay distribution kernel is chosen as a Dirac delta function, as we discussed in

subsection 1.3.1, then there are two possibilities. First, if g(s) = δ(s−σ), then the system

(5.1) reduces to the system with two distinct discrete time delays. This case has been

considered in a system of two neurons in [133], tri-neural network in [164], four neurons

system in [157], and a ring of n neurons network in [23, 99].

Let us consider the distribution kernel of the form g(s) = δ(s), i.e∫ ∞
0

f(u(t− s))δ(s)ds = f(u(t)). (5.14)

In this case, the linearised model (5.2) becomes a system with a discrete time delay only,

and has the form

u̇(t) = (−κI + βM)u(t) + αIu(t− τ), (5.15)

where u = (u1, u2, · · · , un), I is an n × n identity matrix and M is defined in (5.2). The

corresponding characteristic equations for even and odd n, respectively, are

∆E(τ, λ) = λ+ κ± β − αe−λτ = 0 (5.16)

and

∆O(τ, λ) = λ+ κ− β − αe−λτ = 0. (5.17)

In Section 5.1, we have analysed the characteristic equation for any general distribution

kernel and we have obtained a subset of stability boundary in both (α, β) and (τ, β)

parameter spaces. In the following we consider the same parameter spaces to determine

the complete stability region in the case g(s) = δ(s).

Theorem 5.2.1. For the system (5.1) with delta distributed kernel g(s) = δ(s) and even

n, the following holds.

(i) The trivial steady state is unstable if |β| > κ− α.

(ii) The trivial steady state is stable if |β| < κ− |α|.

(iii) The trivial steady state is stable if κ + α < |β| < κ − α and τ ∈ [0, τeven), Hopf

bifurcation occurs at τ = τeven, and the steady state is unstable if τ > τeven, where

τeven is the first critical time delay given by τeven = min{τ−0 , τ
+
0 } and

τ±0 =
cos−1(κ±βα )√
α2 − (κ± β)2

.
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Figure 5.5: Stability boundary in (α, β) parameter space of the trivial steady state of the

system (5.1) with delta distribution kernel. (a) When n is even, the region E1 corresponds

to the unstable trivial steady state, the region E2 indicates the area where the trivial

steady state is stable, and the region E3 shows a stability region when τ ∈ [0, τeven). (b)

When n is odd, the region O1 illustrates the unstable trivial steady state, the region O2

shows where the trivial steady state is stable, and the region O3 a stability region when

τ ∈ [0, τodd).

Proof. Results (i) and (ii) immediately follow from Theorem 5.1.1 and 5.1.2. In (iii),

assume the condition κ+ α < |β| < κ− α is satisfied. First, for τ = 0, the characteristic

equation (5.16) becomes ∆E(0, λ) = λ + κ ± β − α, with the eigenvalues given as λ∗ =

−(κ ± β − α). Since |β| < κ − α, λ∗ < 0, and, therefore, the trivial steady state is

stable. Now, we consider the case when τ > 0 and look for the eigenvalues in the form

λ = iω, ω > 0. Substituting λ = iω into (5.16), and separating into real and imaginary

parts, we get

κ± β − α cos(ωτ) = 0,

ω + α sin(ωτ) = 0.
(5.18)

Upon squaring and adding the two equations (5.18), one obtains

ω2 = α2 − (κ± β)2, (5.19)

and from the first equation of the system (5.18) it follows that

τ±j =
1√

α2 − (κ± β)2


(2j + 1)π − cos−1

(
κ± β
α

)
for 0 < κ± β < α,

2jπ + cos−1
(
κ± β
α

)
for α < −(κ± β) < 0.

(5.20)
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Since |β| < κ− α , the latter expression for τ±j becomes

τ±j =
cos−1(κ±βα ) + 2jπ√

α2 − (κ± β)2
, (5.21)

where j = 0, 1, 2, .... Now we have to show that a Hopf bifurcation occurs when τ = τeven.

The solutions of the equation (5.19) are pairs (τ±j , ω), where λ = ±iω are pairs of purely

imaginary roots of (5.16) with τ = τ±j . Define

τeven = min{τ−0 , τ
+
0 },

where τeven is the first critical value of the time delay τ , for which the roots of equation

(5.16) cross the imaginary axis. In order to determine the direction of the root crossing,

we differentiate the characteristic equation (5.16) with respect to α:

dλ

dα
=

e−λτ

1 + ατe−λτ
=

1

eλτ + ατ
. (5.22)

From (5.22) it follows that

dRe(λ)

dα
=

ατ + cos(ωτ)

(ατ + cos(ωτ))2 + (sin(ωτ))2
. (5.23)

Using the first equation of (5.18), we obtain

ατ + cos(ωτ) = ατ +
κ± β
α

> ατ +
α

α
= ατ + 1,

which implies that ατ + 1 < 0 if α < − 1
τ . This completes the proof.

Theorem 5.2.2. For the system (5.1) with delta distributed kernel g(s) = δ(s) and odd

n, the following holds.

(i) The trivial steady state is unstable if β > κ− α and α > κ.

(ii) The trivial steady state is stable if |β| < κ− |α|.

(iii) The trivial steady state is stable if β < κ − α, α < κ and τ ∈ [0, τodd), a Hopf

bifurcation occurs at τ = τodd, and the steady state is unstable for all τ > τodd, where

τodd is the first critical time delay given by

τodd =
cos−1(κ−βα )√
α2 − (κ− β)2

.

Proof. The proof of this theorem is similar to the proof of Theorem 5.2.1. In order to find

τodd, we look for eigenvalues of the characteristic equation in the form λ = iω, substitute

this into (5.16), and separating into real and imaginary parts, we get

κ− β − α cos(ωτ) = 0,

ω + α sin(ωτ) = 0.
(5.24)



99

Figure 5.6: Stability boundary in (τ, β) parameter space of the trivial steady state of the

system (5.1) for delta distributed kernel when n is even. The region E1 corresponds to

the unstable trivial steady state. The region E2 is where the trivial steady state is stable

when α < 0 for τ < − 1
α and when α ≥ 0 for any τ . The region E3 shows the stable region

for − 1
α ≤ τ < τeven. (a) α < −κ. (b) −κ ≤ α < 0. (c) 0 ≤ α ≤ κ.

Squaring and adding the equations (5.24), yields

ω2 = α2 − (κ− β)2, (5.25)

and from the first equation of the system (5.24), one obtains

τ−j =
1√

α2 − (κ− β)2


(2j + 1)π − cos−1

(
κ− β
α

)
for 0 < κ− β < α,

2jπ + cos−1
(
κ− β
α

)
for α < −(κ− β) < 0,

(5.26)

where τodd = τ−0 is the first critical time delay, when the trivial steady state loses its

stability. This completes the proof.

Theorems 5.2.1 and 5.2.2 give the stability properties of the trivial steady state in

(α, β) parameter space when the delay distribution kernel g(s) = δ(s). When n is even,

in Figure 5.5 (a), the stability region bounded by the lines |β| = κ − α to the left of the

shaded diamond, and remains symmetric with respect to α-axis. Figure 5.5 (b) shows the

stability boundary when n is odd. In this case, the stability region is enlarged towards

down-left of the shaded diamond. It is worth noting, that unlike the case when n is even,

for an odd n, the stability region becomes asymmetric.

Next, we analyse the stability properties of the trivial steady state of the system (5.2)

in (τ, β) plane with delta distributed kernel.

Theorem 5.2.3. For the system (5.1) with delta distributed kernel g(s) = δ(s) and even

n, the following statements hold.

(i) For α < 0, the trivial steady state is stable if |β| < κ− α and τ < − 1
α . By increasing

(decreasing) β through the line |β| = κ− α, the trivial steady state loses its stability
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via a steady-state bifurcation occurs. The trivial steady state is stable if |β| < κ− α

and τ ∈ [− 1
α , τeven), a Hopf bifurcation occurs at τ = τeven. The trivial steady state

unstable if τ > τeven. For α < −κ, the trivial steady state is unstable independent of

β for τ > τ0 =
cos−1( κ

α
)√

α2−κ2 .

(ii) For 0 ≤ α ≤ κ, the trivial steady state is stable if |β| < κ− α increasing(decreasing)

β through the line |β| = κ − α steady-state bifurcation occurs, independent of time

delay τ . The trivial steady state is unstable if |β| > κ− α.

Proof. Following the stability results in the case of the general distribution kernel stated

in Theorem 5.1.3 and Remark 5.1.1, we have proved the results in (i) and (ii) that are

related to the appearance of the steady-state bifurcation. We have also shown the trivial

steady state is unstable independent of β in Remark 5.1.3 for α < −κ. In order to show the

occurrence of a Hopf bifurcation in (i) and (ii), when τ = τeven, differentiating implicitly

(5.16) with respect to τ we find that

dλ

dτ
=

1

1 + ατe−λτ
. (5.27)

Substituting λ = iω into (5.27), and taking real part, one has

dRe(λ)

dτ
=

1 + ατ cos(ωτ)

(1 + ατ cos(ωτ))2 + (ατ sin(ωτ))2
. (5.28)

Using the first equation of (5.18) yields,

1 + ατ cos(ωτ) = 1 + τ(κ± β) > 1 + τα,

which implies that 1 + τα > 0 if τ > − 1
α , and we conclude that for τ = τeven there is a

root λ = λ(τ) = α(τ)± iω(τ) satisfying α(τeven) = 0, ω(τeven) = ω and dRe(λ)
dτ |τ=τeven > 0.

This root crosses the imaginary axis at τ = τeven from left to right if τ > − 1
α , which

completes proof.

Theorem 5.2.4. For the system (5.1) with delta function g(s) = δ(s) when n is odd, the

following statements hold.

(i) For α < 0 and β > 0, the trivial steady state is stable if β < κ − α and τ < − 1
α ,

increasing β through the line β = κ−α a steady-state bifurcation occurs. The trivial

steady state is stable if β < κ − α and τ ∈ [− 1
α , τodd), Hopf bifurcation occurs at

τ = τodd. The trivial steady state is unstable if τ > τodd. For α < 0 and β < 0,

the trivial steady state is stable if τ ∈ [0, τodd), Hopf bifurcation occurs at τ = τodd.

The trivial steady state unstable if τ > τodd. For α < −κ, the trivial steady state is

unstable independent of β for τ > τ0 =
cos−1( κ

α
)√

α2−κ2 .
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Figure 5.7: Stability boundary in the (τ, β) plane of the trivial steady state of the system

(5.1) for general distribution kernel when n is odd. The region O1 is unstable. The region

O2 is stable when α < 0 for τ < − 1
α and when α ≥ 0 for any τ . The region O3 is stable

for τ < τodd. (a) α < −κ. (b) −κ ≤ α < 0. (c) 0 ≤ α ≤ κ.

(ii) For 0 ≤ α ≤ κ and β > 0, the trivial steady state is stable if β < κ − α. With

increasing β through the line β = κ − α, the steady state undergoes a steady-state

bifurcation, independent of the time delay τ . The trivial steady state is unstable if

β > κ−α. For 0 < α ≤ κ and β < 0, the trivial steady state is stable if τ ∈ [0, τodd),

Hopf bifurcation occurs at τ = τodd. The trivial steady state unstable if τ > τodd.

Proof. Similar to the proof of Theorem 5.2.3, following the stability results for a general

distribution kernel stated in Theorem 5.1.4 and Remarks 5.1.2 and 5.1.3, we have shown

the existence of the steady-state bifurcation. In order to show the occurrence of a Hopf

bifurcation in (i) and (ii), when τ = τeven, differentiating implicitly (5.17) with respect to

τ we find that

dλ

dτ
=

1

1 + ατe−λτ
. (5.29)

It follows from (5.29) that

dRe(λ)

dτ
=

1 + ατ cos(ωτ)

(1 + ατ cos(ωτ))2 + (ατ sin(ωτ))2
. (5.30)

For 0 < β < κ−α, using the first equation of (5.24) we obtain, 1+ατ cos(ωτ) = 1+ τ(κ−

β) > 1+τα > 0 if τ > − 1
α . For β < 0, this implies that 1+ατ cos(ωτ) = 1+τ(κ−β) > 0,

which completes the proof.

Theorem 5.2.3 and 5.2.4, illustrate the full stability region in (τ, β) parameter space.

After specify the distributed delay by delta function g(s) = δ(s) the condition for a

general distributed kernel τ < (κ−α)E−1
α reduces to τ < − 1

α . The stability region splits

into three different shapes depends on the conditions on the parameter space. When n is

even and α < 0 in Figure 5.6 (a) and (b), the trivial steady state is stable if |β| = κ − α

and τ < − 1
α , the trivial steady state is stable for τ ∈ [− 1

α , τeven) and undergoes Hopf
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bifurcation at τ = τeven. As we discussed in previous section and shown in Figure 5.6 (a),

if α < −κ then the trivial steady state unstable independently of β for large enough of

τ . When 0 ≤ α ≤ κ as shown in Figure 5.6 (c), the delta function does not have any

effect compared with a general distribution. When n is odd, again it gives three boundary

regions. The upper shapes are similar to the case when n is even and also the theoretical

analysis remain the same for β > 0. The asymmetry shape arises when β < 0 for all three

different conditions on parameter region as shown in Figure 5.7, which is the trivial steady

state is stable if τ ∈ [0, τodd), Hopf bifurcation occurs at τ = τodd. The trivial steady state

unstable if τ > τodd.

5.3 Weak gamma distributed delayed kernel

In this section we consider the case when the delay distribution kernel is taken as gamma

distribution. Following the same technique as in Section 2.5, substituting the Laplace

transform (2.36) with r = 1 into (5.4), the characteristic equation becomes

λ2 + p1λ+ p2 + (q1λ+ q2)e
−λτ = 0, (5.31)

where

p1 = γ + κ, p2 =

 (κ± β)γ if n is even,

(κ− β)γ if n is odd,
q1 = −α, q2 = −αγ. (5.32)

In order to determine the stability of the trivial steady state of the system (5.1), we

investigate the distribution of roots of characteristic equation (5.31). The boundary of

the stability region consists of points such that (5.31) has roots with zero real part. This

can happen either when λ = 0 or λ = iω (ω > 0). As shown in Lemma 5.1.1 for any

distribution kernel, λ = 0 is a solution of the characteristic equation (5.31) if and only if

|β| = κ− α when n is even and β = κ− α when n is odd. In order to find the boundaries

of the stability region, we look at the case when the characteristic equation has a pair

of purely imaginary roots. Looking eigenvalues of the characteristic equation in the form

λ = iω, substituting this form into (5.31) gives the following equation

− ω2 + p1ωi+ p2 + (q1ωi+ q2)(cos(ωτ)− i sin(ωτ) = 0. (5.33)

Separating the real and imaginary parts of (5.33) yields ω2 − p2 = q2 cos(ωτ) + q1ω sin(ωτ),

p1ω = q2 sin(ωτ)− q1ω cos(ωτ).
(5.34)
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Squaring and adding the two equations in (5.34), one obtains a quartic equation

ω4 − (q21 + 2p2 − p21)ω2 + p22 − q22 = 0, (5.35)

which solutions can be found as

ω2
± =

(q21 + 2p2 − p21)±
√

(q21 + 2p2 − p21)2 − 4(p22 − q22)

2
. (5.36)

Let Φ = (q21 + 2p2 − p21)2 − 4(p22 − q22) < 0. If (H1) p22 − q22 > 0 and q21 + 2p2 − p21 < 0 or

Φ < 0, then the equation (5.35) has no real roots. If (H2) p22− q22 < 0 or q21 + 2p2− p21 > 0

and Φ = 0, then the equation (5.35) has one positive root ω+ given by

ω+ =

√
2

2
[q21 + 2p2 − p21 +

√
Φ]

1
2 .

If (H3) p22− q22 > 0, q21 + 2p2−p21 > 0 and Φ > 0, then the equation (5.35) has two positive

roots ω± =
√
2
2 [q21 + 2p2 − p21 ±

√
Φ]

1
2 .

If either of the hypotheses (H2) or (H3) holds, the equation (5.31) has purely imaginary

roots after τ takes certain values. These values τ = τ±j can be found as follows. We can

find sin(ωτ) and cos(ωτ) from a pair of equation (5.34) as

sin(ωτ) =
ω(q1ω

2 + p1q2 − p2q1)
q21ω

2 + q22
,

cos(ωτ) = −p1q1ω
2 − q2ω2 + p2q2
q21ω

2 + q22
.

(5.37)

Dividing sin(ωτ) by cos(ωτ), the critical time delays can be expressed as

τ±j =
1

ω±

{
tan−1

(
−
ω±(q1ω

2
± + p1q2 − p2q1)

p1q1ω2
± − q2ω2

± + p2q2

)
+ jπ

}
, j = 0, 1, 2, · · · . (5.38)

Here we define

τweak = min{τ−0 , τ
+
0 }

as the first critical time delay. Note that when τ = 0, then the system (5.1) with gamma

distribution (1.7) becomes a system of ODEs with a characteristic equation

λ2 + (p1 + q1)λ+ p2 + q2 = 0. (5.39)

Lemma 5.3.1. Assume that (H4) p1 + q1 > 0 and p2 + q2 > 0, then all roots of the

equation (5.39) with τ = 0 always have negative real parts.

Lemma 5.3.2. Suppose that (H4) holds and ω2
± and τ±j are defined by equations (5.36)

and (5.38) respectively.
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(i) If (H1) is satisfied, then the number of positive real roots in equations (5.31) and (5.39)

is the same.

(ii) If (H2) is satisfied, then the number of positive real roots in equations (5.31) and

(5.39) is the same for τ ∈ [0, τweak) and the equation (5.31) has a simple pair of

purely imaginary roots ±iω+ at τ = τj+.

(iii) If (H3) is satisfied, then the number of positive real roots in equations (5.31) and

(5.39) is the same for τ ∈ [0, τweak), and the equations (5.31) has two pairs of

simple purely imaginary roots ±iω± at τ = τ±j .

Under the hypothesis (H3), the characteristic equation (5.31) has two imaginary solu-

tions iω± with ω+ > ω− > 0 defined by (5.36). In order to determine the stability of

the steady state as τ varies, we calculate the sign of the derivative of Re(λ) at the points

where λ(τ) is purely imaginary.

Lemma 5.3.3. The following transversality conditions are satisfied[
dRe{λ(τ)}

dτ

]
τ=τ+j

> 0,

[
dRe{λ(τ)}

dτ

]
τ=τ−j

< 0.

Following the above analysis, we can investigate the stability of the trivial solution of

the system (5.1) with weak distribution kernel (1.7) (r = 1). When τ = 0, all roots of

(5.39) have negative real parts if and only if (H4) is satisfied. Substituting (5.32) into

p2 + q2 > 0, one obtains
γ(κ− β)− αγ > 0⇒ α < κ− β if n is odd,

γ(κ± β)− αγ > 0⇒ α < κ+ |β| if n is even.

(5.40)

It follows that the trivial steady state of a ring neuron system (5.1) without self-

connection delay is stable if and only if (5.40) is satisfied. Now we consider the effect of

the self-connection delay in the ring neural system (5.1). Lets us check the hypothesise

(H1-H3) by substituting p1, p2, q1, and q2.

First, substituting the parameters (5.32) into (H1) p22 − q22 > 0 and q21 + 2p1 − p21 < 0,

respectively yields,
γ2(κ− β)2 − α2γ2 > 0⇒ α < |κ− β| < κ+ |β| if n is odd,

γ2(κ± β)2 − α2γ2 > 0⇒ α < |κ± β| < κ+ |β| if n is even,

(5.41)
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and 
α2 − κ2 − γ(2β + γ) < 0⇒ |α| < κ andβ > −γ

2 if n is odd,

α2 − κ2 + γ(±2β − γ) < 0⇒ |α| < κ and |β| > −γ
2 if n is even.

(5.42)

Now, substituting (5.32) into (H2) p22 − q22 < 0, yields
γ2(κ− β)2 − α2γ2 < 0⇒ α > |κ− β| if n is odd,

γ2(κ± β)2 − α2γ2 < 0⇒ α > |κ± β| if n is even.

(5.43)

Finally, in (H3) we have condition p22 − q22 > 0, which is the same as in (5.41), and

q21 + 2p1 − p21 > 0, Φ > 0 gives to
α2 − κ2 − γ(2β + γ) > 0⇒ |α| > κ andβ < −γ

2 if n is odd,

α2 − κ2 + γ(±2β − γ) > 0⇒ |α| > κ and |β| < −γ
2 if n is even,

(5.44)

and
(α2 + 2γ(κ− β)− (γ + κ)2)2 − 4(γ2(κ− β)2 − α2γ2) > 0⇒ α > |κ− β| if n is odd,

(α2 + 2γ(κ± β)− (γ + κ)2)2 − 4(γ2(κ± β)2 − α2γ2) > 0⇒ α > |κ± β| if n is even.

(5.45)

From the above analysis and using Lemma 5.3.2 and Lemma 5.3.3, one has the following

theorems on the distribution of the roots of the characteristic equation (5.31).

Theorem 5.3.1. For the system (5.1) with gamma distributed delayed kernel (1.7) when

n is even and τ±j defined in (5.38), the following statements hold.

(i) The trivial steady state is unstable if |β| > κ− α.

(ii) The trivial steady state is stable if α < κ+ |β| and |α| < κ.

(iii) The trivial steady state is stable if α < κ + |β|, α > −κ and τ ∈ [0, τweak), a Hopf

bifurcation occurs at τ = τweak, and the steady state is unstable if τ > τweak.

Theorem 5.3.2. For the system (5.1) with gamma distributed delayed kernel (1.7) with

odd n and τ±j defined in (5.38), the following statements hold.

(i) The trivial steady state is unstable if β > κ− α and α > κ.

(ii) The trivial steady state is stable if α < κ+ |β| and |α| < κ.
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Figure 5.8: Stability boundary of the trivial steady state of the system (5.1) for weak

gamma distributed kernel. The trivial steady state is unstable in the regions E1 and O1.

The trivial steady state is stable in the regions E2 and O2. In the regions E3 and O3, the

trivial steady state is stable for τ ∈ [0, τweak). (a) n is even. (b) n is odd.

(iii) The trivial steady state is stable if β < κ − α and α < κ and τ ∈ [0, τweak), a Hopf

bifurcation occurs at τ = τweak, and the steady state is unstable if τ > τweak.

Figure 5.8 illustrates the stability of the trivial steady state of the system (5.1) in

the case when the distribution kernel is chosen as a weak gamma distribution. Inside the

shaded-triangle regions E2 and O2, the trivial steady state is stable. In this case, the

regions are larger in comparison to the case of the delta distributed kernel. Similar to

the case of the delta distribution kernel, the stability region extends to the left of the

triangle and remains symmetric along α-axis for an even number of neurons, as shown in

Figure 5.8 (a). When n is odd, the shape of stability loses its symmetry property as the

stability region grows from both down and left of the triangle as shown in Figure 5.8 (b).

Theorem 5.3.3. For the system (5.1) with the gamma distribution kernel (1.7) when n

is even and τ±j defined in (5.38), the following statements hold.

(i) For α < 0, the trivial steady state is stable if |β| < κ − α and τ < α−κ−γ
αγ , and by

increasing (decreasing) β through the line |β| = κ−α, it loses its stability through a

steady-state bifurcation. Furthermore, the trivial steady state is stable if |β| < κ−α

and τ ∈ [α−κ−γαγ , τweak), and a Hopf bifurcation occurs at τ = τweak. The trivial

steady state is unstable τ > τweak. For α < −κ, the trivial steady state is unstable

independent of β for τ > τ0 =
cos−1( κ

α
)√

α2−κ2 .
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(ii) For 0 ≤ α ≤ κ, the trivial steady state is stable if |β| < κ − α, and with increasing

(decreasing) β through the line |β| = κ − α, it undergoes a steady-state bifurcation,

independently of the time delay τ . The trivial steady state unstable for |β| > κ− α.

Theorem 5.3.4. For the system (5.1) with the gamma distribution kernel (1.7) when n

is odd and τ±j defined in (5.38), the following statements hold.

(i) For α < −κ and β > 0, the trivial steady state is stable if β < κ− α and τ < α−κ−γ
αγ ,

and by increasing β through the line β = κ−α, it loses its stability via a steady-state

bifurcation. The trivial steady state is stable if β < κ− α and τ ∈ [α−κ−γαγ , τweak), a

Hopf bifurcation occurs at τ = τweak. The trivial steady state is unstable if τ > τweak.

For α < 0 and β < 0, the trivial steady state is stable if τ ∈ [0, τweak), a Hopf

bifurcation occurs at τ = τweak. The trivial steady state unstable if τ > τweak. For

α < −κ, the trivial steady state is unstable independent of β for τ > τ0 =
cos−1( κ

α
)√

α2−κ2 .

(ii) For 0 ≤ α ≤ κ and β > 0, the trivial steady state is stable if β < κ − α, and by

increasing β through the line β = κ − α, it undergoes a steady-state bifurcation,

independent of the time delay τ . The trivial steady state unstable if β > κ− α. For

0 < α ≤ κ and β < 0, the trivial steady state is stable if τ ∈ [0, τweak), a Hopf

bifurcation occurs at τ = τweak. The trivial steady state unstable if τ > τweak.

Similar to the case of the general distribution kernel and delta distributed kernel, the

stability boundary in (τ, β) is similar to Figure 5.6 and 5.7 for even and odd n, respectively.

If we substitute the mean time delay E = 1
γ into the condition τ < (κ−α)E−1

α , it becomes

τ < α−κ−γ
αγ which is now the length of horizontal line, and now it depends not only on α

but also on γ and κ.

In next section, we give two examples to support our analytical results.

5.4 Examples and numerical simulations

In order to confirm our analytical findings, in this section, we consider two examples when

n is even and n is odd in (5.1) for the cases when the delay-distribution kernel is taken

as Dirac delta function and in the form of a weak gamma distribution. We shall use

traceDDE toolbox to compute the characteristic roots and stability regions for the trivial

steady state of the system (5.1). We will also perform direct numerical simulations of the

fully nonlinear system using dde23 suite in Matlab.
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5.4.1 Example: even number of ring-coupled neurons

We consider the system (5.1) with n = 2, which is shown schematically in Figure 5.9.

(a, τ)

1

1 (a, τ)22

(b, g(s))

(b, g(s))

Figure 5.9: A schematic sketch of the unidirectionally coupled two neurons with distributed

delays and a discrete-delayed self-connection.

Figure 5.10: Stability region for the trivial steady state of the system (5.1) with delta

distributed kernel g(s) = δ(s) and n = 2. Colour code denotes [−max{Re(λ)}] for

max{Re(λ)} ≤ 0. (a)-(c) κ = 1. (a) τ = 0.2. (b) τ = 0.4. (c) τ = 0.6. (d)-(f)

κ = 1. (d) α = −1.2 (α < −κ). (e) α = −0.8 (−κ ≤ α < 0). (f) α = 0.2 (0 ≤ α ≤ κ).

Figures 5.10 (a)-(c) show the numerically computed stability regions for the trivial

steady state of the system (5.1) with delta distributed kernel and n = 2 in the (α, β)

plane. The colour represents [−max{Re(λ)}]. It can been seen that the shape of the

stability area is symmetric with respect to the α-axis, which is in direct agreement with

Theorem 5.2.1. As time delay τ is increased, the stability region detaches from the α−axis,

and becomes a small island for larger values of τ . In Figure 5.10 (d)-(f), the stability area

is computed in the (τ, β) plane and several values of α. For negative values of α, the steady
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Figure 5.11: (a)-(b) Solution of the system (5.46) in the case when α < 0. Parameter

values are κ = 1, b = 1, a = −0.8 and τeven = 1.96. (a) 0 < τ = 1.8 < τeven. (b)

τ = 2.2 > τeven. (c)-(d) Solution of the system (5.46) in the case when α ≥ 0. Parameter

values are κ = 1, a = 0.2, τ = 0.5. (c) b = 0.6. (d) b = 1.

state undergoes both Hopf and steady state bifurcations (shown in Figure 5.10 (d)-(e))

when it loses its stability, which is in agreement with Theorem 5.1.3 and Theorem 5.2.3.

Figure 5.10 (f) corresponds to the case of positive values of α ∈ [0, κ], where the steady

state can only undergo a steady-state bifurcation (as shown in Remark 5.1.1).

We also perform direct numerical simulations of the full nonlinear system (5.1) with

n = 2 and a delta distributed kernel. Let f(·) = tanh(·), which implies that f ′(0) = 1.

We can rewrite system (5.1) for n = 2 and g(s) = δ(s) as follows

u̇1(t) = −κu1(t) + a tanh(u1(t− τ)) + b tanh(u2(t)),

u̇2(t) = −κu2(t) + a tanh(u2(t− τ)) + b tanh(u1(t)).

(5.46)

From Theorem 5.2.3 (i) and (ii), it follows that whenever α < 0, the trivial steady

state is stable if |β| < κ− α and τ ∈ [− 1
α , τeven). Here, we take κ = 1, b = ±1, a = −0.8,

which gives the first critical value of the time delay τeven = 1.96, where the trivial steady

state loses its stability. In Figure 5.11 (a) and Figure 5.12 (a), the trivial steady state

is stable for 1.25 ≤ τ < 1.96, and undergoes a Hopf bifurcation at τeven = 1.96, giving

rise to a stable periodic solution, as plotted in Figure 5.11 (b) and Figure 5.12 (b). Note

that when β > 0 and τ > τeven, we observe an isochronal synchronous state, as shown in

Figure 5.11 (b), while β < 0 and τ > τeven, there is an anti-phase synchronous state, as

illustrated in Figure 5.12 (b).

Following Theorem 5.2.3 (iii), when 0 ≤ α ≤ κ, the trivial steady state is stable if

|β| < κ− α, which is satisfied for parameters κ = 1, a = 0.2, b = ±0.6, and the solutions
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Figure 5.12: (a)-(b) Solution of the system (5.46) in the case when α < 0. Parameter

values are κ = 1, b = −1, a = −0.8 and τeven = 1.96. (a) 0 < τ = 1.8 < τeven. (b)

τ = 2.2 > τeven. (c)-(d) Solution of the system (5.46) in the case when α ≥ 0. Parameter

values are κ = 1, a = 0.2, τ = 0.5. (c) b = −0.6. (d) b = −1.

are shown in Figure 5.11 (c) and Figure 5.12 (c). If β > βc, where βc satisfies |βc| = κ−α,

then the trivial steady state is a repeller, and there exists stable non-trivial steady states,

as plotted in Figure 5.11 (d) and Figure 5.12 (d).

Next, we perform numerical simulations for the system (5.1) with weak gamma dis-

tributed kernel and n = 2. Introducing two new variables

u3(t) =

∫ ∞
0

γe−γsu1(t− s)ds,

u4(t) =

∫ ∞
0

γe−γsu2(t− s)ds,

allows one rewrite the system 5.1 with n = 2 as follows

u̇1(t) = −κu1(t) + a tanh(u1(t− τ)) + b tanh(u4(t)),

u̇2(t) = −κu2(t) + a tanh(u2(t− τ)) + b tanh(u3(t)),

u̇3(t) = γu1(t)− γu3(t),

u̇4(t) = γu2(t)− γu4(t).

(5.47)

The stability region in (α, β) plane for weak gamma distributed delay kernel is larger

compare to the case of the delta distributed kernel for larger values of τ , and with increasing

τ , it shrinks and becomes an isolated island, as shown in Figure 5.13 (b)-(c). The stability

region has a symmetry with respect to α-axis as illustrated in Figure 5.13 (a)-(c). Similar
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Figure 5.13: Stability of the trivial steady state of the system (5.1) with weak gamma

distributed kernel and n = 2. Colour code denotes [−max{Re(λ)}] for max{Re(λ)} ≤ 0.

(a)-(c) Stability region in (α, β), for parameters κ = 1, γ = 1. (a) τ = 0.2. (b) τ = 0.4. (c)

τ = 0.6. (d)-(f) Stability region in (τ, β), for parameters κ = 1, γ = 1. (d) α = −1.2 (α <

−κ). (e) α = −0.8 (−κ ≤ α < 0). (f) α = 0.2 (0 ≤ α ≤ κ).

to the case of the delta distributed kernel, in this case, there are three different boundary

regions in (τ, β) parameter space depending on the values of α, and they are all symmetric

with respect to the α-axis as plotted in Figure 5.13 (d)-(f). The trivial steady state can

lose its stability via a steady-state bifurcation as well as Hopf bifurcation for negative

values of α, shown in Figure 5.13 (d)-(e) and it undergoes a steady state bifurcation for

0 ≤ α ≤ κ (Figure 5.13 (f)). Figure 5.14 illustrates the boundary of the stability region of

the trivial steady state in β, τ and γ parameter space for the weak distribution kernel. If

κ = 1 and α = −1, then −κ ≤ α < 0 is satisfied, which means that the trivial steady state

is stable inside the region bounded by the symmetric surfaces shown in Figure 5.14 (a)

and unstable outside this region. It can be observed in Figure 5.14 (b) that as long as the

coupling strength β between the two neurons decreases, the stability region of the trivial

steady becomes larger.

From Theorem 5.3.3, when α < 0, then the trivial steady state is stable if |β| < κ− α

and τ ∈ [α−κ−γαγ , τweak). For parameter values κ = 1, b = ±1, a = −0.8, γ = 1, the first

critical time delay in (5.38) is τweak = 4.14. Thus, for τ ∈ [3.5, 4.14) the trivial steady
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Figure 5.14: Stability boundaries of the trivial steady state of the system (5.1) with weak

gamma distributed kernel and n = 2. Parameter values are κ = 1, α = −1. The trivial

steady state is stable inside the region restricted by the boundaries in (a), and to the left

of the boundary curves in (b).

state is stable, as shown in Figure 5.15 (a) and Figure 5.16 (a), Hopf bifurcation occurs

at τweak = 4.14, and periodic oscillations exist for τweak > 4.14.

Moreover, similar to the delta distribution kernel, Figure 5.15 (b) and Figure 5.16 (b)

show the isochronal and the anti-phase synchrony states, respectively. If κ = 1, a = 0.2,

b = ±0.6, then 0 ≤ α ≤ κ and |β| < κ− α are satisfied as required by Theorem 5.2.3 (iii)

to ensure the stability of the trivial steady state, and this is illustrated in Figure 5.15 (c)

and Figure 5.16 (c). If κ = 1, a = 0.2, b = ±0.6, and β ≥ ±0.8, then the condition

|β| ≥ κ − α is satisfied, and the trivial steady state becomes unstable through a steady-

state bifurcation, and the system (5.47) tends to one of its stable non-trivial steady states,

as shown in Figure 5.15 (d) and Figure 5.16 (d). One should note that it is possible for

this system to simultaneously have multiple stable steady states for the same parameter

values, and the solutions will approach one of them depending on the initial conditions.
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Figure 5.15: (a)-(b) Solution of the system (5.47) in the case when α < 0. Parameter

values are κ = 1, b = 1, a = −0.8, γ = 1 and τweak = 4.14. (a) 0 < τ = 3.8 < τweak. (b)

τ = 4.3 > τweak. (c)-(d) Solution of the system (5.47) in the case when α ≥ 0. Parameter

values are κ = 1, a = 0.2, γ = 1, τ = 0.5. (c) b = 0.6. (d) b = 1.

Figure 5.16: (a)-(b) Solution of the system (5.47) in the case when α < 0. Parameter

values are κ = 1, b = −1, a = −0.8, γ = 1 and τweak = 4.14. (a) 0 < τ = 3.8 < τweak. (b)

τ = 4.3 > τweak. (c)-(d) Solution of the system (5.47) in the case when α ≥ 0. Parameter

values are κ = 1, a = 0.2, γ = 1, τ = 0.5. (c) b = −0.6. (d) b = −1.

5.4.2 Example: odd number of ring-coupled neurons

For the second example, we consider three unidirectionally coupled neurons with self-

connections as shown in the diagrammatic sketch 5.17. If the distribution kernel is chosen

as a delta function, i.e. g(s) = δ(s), then the system (5.1) can be written as follows
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(a, τ)

11

(a, τ)

22

(a, τ)

3
3

(b, g(s)) (b, g(s))

(b, g(s))

Figure 5.17: A diagrammatic sketch of the unidirectionally coupled three neurons with

distributed delays and a discrete-delayed self-connection.

u̇1(t) = −κu1(t) + a tanh(u1(t− τ)) + b tanh(u3(t)),

u̇2(t) = −κu2(t) + a tanh(u2(t− τ)) + b tanh(u2(t)),

u̇3(t) = −κu3(t) + a tanh(u3(t− τ)) + b tanh(u1(t)).

(5.48)

Figures 5.18 (a)-(c) show the stability region of the trivial steady state for delta distributed

kernle g(s) = δ(s) in (α, β) plane when n = 3. Similar to the case of delta function when

n = 2, the stability region becomes smaller with increasing time delay τ , but unlike the

case of the even number of neurons, here the stability region is asymmetric with respect

to α-axis. Figures 5.18 (d)-(f) illustrate three different stability boundaries of the trivial

steady state (τ, β) plane for n = 3 and different values of α.

In Figures 5.18 (d)-(e), when α is negative and β is positive, similar to the case when

n = 2, the boundary of stability region consists to two parts for which trivial steady state

can lose its stability via a steady-state and a Hopf bifurcation. In Figure 5.18 (f), for

positive values α and β, the trivial steady state undergoes a steady-state bifurcation only.

In contrast to the case of the even number of neurons, the steady state can lose its stability

via a Hopf bifurcation only when β < 0, which makes the stability area asymmetric with

respect to α-axis.
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Figure 5.18: Stability boundary of the trivial steady state of the system (5.1) delta

distributed kernel g(s) = δ(s) and n = 3. Colour code denotes [−max{Re(λ)}] for

max{Re(λ)} ≤ 0. (a)-(c) Stability region in (α, β), for parameters κ = 1. (a) τ = 0.2.

(b) τ = 0.4. (c) τ = 0.6. (d)-(f) Stability region in (τ, β), for parameters κ = 1. (d)

α = −1.2 (α < −κ). (e) α = −0.8 (−κ ≤ α < 0). (f) α = 0.2 (0 ≤ α ≤ κ).

From the analysis in Section 5.2 for odd number of neurons, the stability of the trivial

steady state depends on whether the coupling strength β is positive or negative. For

β > 0 the analysis is similar to that in the case of the even number of neurons. If

α = af ′(0) = −0.8 < 0, β = bf ′(0) = 1 > 0, κ = 1, then from equation (5.26), we have

τodd = 1.96, which means that the condition β < κ − α is satisfied. This, in turn, means

that for τ ∈ [0, τodd) the trivial steady state is stable as shown in Figure 5.19 (a), and

display an isochronally synchronised periodic oscillations for τ > τodd, as illustrated in

Figure 5.19 (b).

In the case when κ = 1, a = 0.2, the condition 0 ≤ α ≤ κ holds, and for b = 0.9, the

solutions tend to the trivial steady state, as illustrated in Figure 5.19 (c), while for b = 1,

the solutions converge to a non-trivial steady state, as shown in Figure 5.19 (d). Next, we

consider negative values of β. If κ = 1, b = −1, a = −0.8, then τodd = 1.56, and the trivial

steady state is stable for 0 ≤ τ < τodd, as displayed in Figure 5.20 (a), and τ > τodd, a

splay-phase synchronous periodic state appears, as shown in Figure 5.20 (b).
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Figure 5.19: (a)-(b) Solution of the system (5.48) in the case when α < 0. Parameter

values are κ = 1, b = 1, a = −0.8 and τodd = 1.96. (a) 0 < τ = 1.8 < τodd. (b)

τ = 2.2 > τodd. (c)-(d) Solution of the system (5.48) in the case when α ≥ 0. Parameter

values are κ = 1, τ = 0.5, a = 0.2. (c) b = 0.9. (d) b = 1.3.

Figure 5.20: (a)-(b) Solution of the system (5.48) in the case when α < 0. Parameter

values are κ = 1, b = −1, a = −0.8 and τodd = 1.56. (a) 0 < τ = 1.3 < τodd. (b)

τ = 1.8 > τodd. (c)-(d) Solution of the system (5.48) in the case when α ≥ 0. Parameter

values are κ = 1, τ = 0.5, a = 0.2. (c) b = −1.5. (d) b = −1.8.

For α ≥ 0, κ = 1, a = 0.2, the solutions approach the trivial steady state for b = −1.5,

as in Figure 5.20 (c), with periodic oscillations around the trivial steady state for b = −1.8.

Unlike the case of the delta distributed kernel for n = 2, here the period oscillations are

in the form of a splay-phase synchronous solutions, as illustrated in Figure 5.20 (d).
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Figure 5.21: Stability of the trivial steady state of the system (5.1) with weak gamma

distributed kernel and n = 3. Colour code denotes [−max{Re(λ)}] for max{Re(λ)} ≤ 0.

(a)-(c) Stability region in (α, β), for parameters κ = 1, γ = 1. (a) τ = 0.2. (b) τ = 0.4. (c)

τ = 0.6. (d)-(f) Stability region in (τ, β), for parameters κ = 1, γ = 1. (d) α = −1.2 (α <

−κ). (e) α = −0.8 (−κ ≤ α < 0). (f) α = 0.2 (0 ≤ α ≤ κ).

By using the same process as for n = 2 in the case of the weak gamma distributed

kernel, we can introduce the new variables

u4(t) =

∫ ∞
0

γe−γsu1(t− s)ds,

u5(t) =

∫ ∞
0

γe−γsu2(t− s)ds,

u6(t) =

∫ ∞
0

γe−γsu3(t− s)ds,

and replace the system (5.1) with n = 3 by an equivalent 6-dimensional system with

discrete time delays only as follows,



118

u̇1(t) = −κu1(t) + a tanh(u1(t− τ)) + b tanh(u6(t)),

u̇2(t) = −κu2(t) + a tanh(u2(t− τ)) + b tanh(u5(t)),

u̇3(t) = −κu3(t) + a tanh(u3(t− τ)) + b tanh(u4(t)),

u̇4(t) = γu1(t)− γu4(t),

u̇5(t) = γu2(t)− γu5(t),

u̇6(t) = γu3(t)− γu6(t).

(5.49)

Figures 5.21 (a)-(c) show the stability region of the trivial steady state for weak gamma

distributed delay kernel in (α, β) plane. Similar to the case of n = 2, increasing the time

delay τ makes the stability region smaller, but it loses its symmetry property with respect

to the α-axis for an odd number of neurons. Figures 5.21 (d)-(f) demonstrate the stability

regions of the trivial steady state with gamma distributed kernel with n = 3 in the (τ, β)

plane for different values of α. By changing α form negative to positive, it is possible

for a trivial steady state to undergo both steady-state and Hopf bifurcation, as shown in

Figures 5.21 (d)-(e), and a steady-state bifurcation only, as shown in Figure 5.21 (f).

Figure 5.22 illustrates the stability region in the β, τ , and γ parameter space for

the weak gamma distributed kernel for odd number of neurons. The steady state is stable

between the two surfaces in Figure 5.22 (a), and unstable everywhere else. Figures 5.22 (b)-

(c) illustrate the stability region in (τ, γ) plane, the stability area grows as the coupling

strength β > 0 is decreased, or β < 0 is increased.

As can be seen in Figure 5.23 (a) and Figure 5.24 (a), the trivial steady is stable, and

solutions tend to this steady state. For τ > τweak, Figure 5.23 (b) and Figure 5.24 (b)

display an isochronal synchronous and splay-phase oscillatory states, respectively. It is

worth noting that if α ≥ 0, the solutions of the system (5.49) approach a trivial steady

states for β = 0.6, as in Figure 5.23 (c), and they settle on a stable non-trivial steady

state for β = 1, while in Figure 5.23 (d), the trivial steady state is stable for β = −0.9, as

in Figure 5.24 (c), and for β = −1.2, there are periodic oscillations around the zero steady

state, as shown in Figure 5.24 (d).
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Figure 5.22: Stability boundary for the trivial steady state of the system (5.1) with weak

gamma distributed kernel and n = 3. Parameter values are κ = 1, α = −1. The trivial

steady state is stable inside the region restricted by the boundaries in (a), and to the left

of the boundary curves in (b), (c).

5.5 Discussion

In this chapter, we have considered a unidirectionally-coupled ring neural network with

discrete and distributed time delays in the connections between neurons. In particular,

we have focussed on the analysis of the characteristic equation of the linearised model

with a general delay-distributed kernel. For a general delay-distributed kernel, we have

analytically found a subset of stability regions for the trivial steady state for both odd and

even numbers of neurons. We have shown that for negative values of the synaptic weight α,

the time delay τ has a significant effect on the stability of the zero steady state. Whenever

the condition τ < (κ−α)E−1
α is satisfied, the area between the horizontal lines |β| = κ− α
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in the case of an even number of neurons, and the area below the line β = κ − α in the

case of odd number of neurons, is where the trivial steady state is stable. In contrast, the

time delay does not affect the stability of the trivial steady state when α ≥ 0 for even n,

and α ≥ 0 and β > 0 for odd n.

Figure 5.23: (a)-(b) Solution of the system (5.49) in the case when α < 0. Parameter

values are κ = 1, b = 1.5, a = −0.8, γ = 1 and τweak = 1.87. (a) 0 < τ = 1.5 < τweak. (b)

τ = 4 > τweak. (c)-(d) Solution of the system (5.49) in the case when α ≥ 0. Parameter

values are κ = 1, γ = 1, τ = 0.5, a = 0.2. (c) b = 0.6. (d) b = 1.

Figure 5.24: (a)-(b) Solution of the system (5.49) in the case when α < 0. Parameter

values are κ = 1, b = −1, a = −0.8, γ = 1 and τweak = 2.13. (a) 0 < τ = 1.8 < τweak. (b)

τ = 2.2 > τweak. (c)-(d) Solution of the system (5.49) in the case when α ≥ 0. Parameter

values are κ = 1, γ = 1, τ = 0.5, a = 0.2. (c) b = −0.9. (d) b = −1.2.

In order to get deeper insights into the dynamics of the system (5.1), we have used

two particular types of the distribution kernel, namely, delta function and weak gamma

distribution. For both of these distributions, we have analytically found the conditions for
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the stability of the zero steady state, which depend on κ, α, β, and τ . In the case of the

delta distributed kernel, the stability region E3 and O3 (Figure 5.5) in the (α, β) parameter

space extends to the left of the diamond-shaped stability boundary symmetrically for even

n, and to the down-left of the diamond-shaped stability boundary for n is odd. In both

cases, these regions become smaller with increasing time delay τ .

In the case of the weak gamma distributed kernel, the stability region is larger (shaded

triangle-shaped areas in E2 and O2 shown in Figure 5.8) compared to the case of the

delta distributed kernel. Increasing the time delay τ reduces the stability region, and it

is symmetric with respect to the α axis for even number of neurons, and is asymmetric if

the number of neurons is odd. As shown in Figures 5.14-5.21, the trivial steady state can

lose its stability via a steady-state and Hopf bifurcations, or via a steady state bifurcation

only, depending on the sign of α.

We have also performed direct numerical simulations of the full nonlinear system to

illustrate the dynamics for both delta and weak gamma distributions. The numerical

simulations support our analytical findings and show convergence of solutions to a trivial

steady state (when it is stable), as well as the regime of sustained periodic oscillations,

when the trivial steady state undergoes a Hopf bifurcation. For some parameter values,

when the trivial steady state becomes unstable, the system (5.1) possesses non-trivial

steady states, which are stable.

There are several directions in which an n unidirectionally-coupled neurons model can

be extended. For example, by considering the same architecture with bidirectional delay-

distributed coupling between neurons, would generalise the work of systems considered in

[24, 62, 161, 166]. Another possibility is to extend systems in [92, 93] by coupling two or

more unidirectionally-coupled ring neural systems of the form (5.1) between themselves.
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Chapter 6

Conclusions

In this thesis, we have considered four neural networks models, including a system of

coupled two sub-networks with both discrete and distributed delay in the connections, a

model of N globally coupled Stuart-Landau oscillators with distributed delay, an STN-GP

neural network with three independent time delays, and a unidirectionally-coupled ring

of n neurons networks with a combination of both discrete and distributed delays. In the

first chapter, we have presented an overview of the existing literature on the subject, and

have discussed the significance of including time delays when modelling various physical

and biological phenomena.

In Chapter 2, we have analysed a generalised model of coupled neural networks with

discrete and distributed time delays for a general distribution kernel. We have analytically

obtained a characteristic equation determining the stability of the trivial steady state for

any general distribution kernel. In order to further understand the dynamics of the system,

we have studied in detail the cases of the three commonly used distribution kernels, i.e.

delta, uniform, strong and weak gamma distribution. For each of these distributions, we

have obtained analytical conditions for stability of the null solution in terms of system

parameters and the time delays. The results suggest that stability of the zero steady state

depends on the synaptic weights, strength of the connection between the two sub-networks

and time delays in the connection.

In the case of the Dirac delta distribution kernel, the stability region of the trivial

steady state becomes larger with increasing the product of the synaptic weights. In the

case of the uniformly distributed kernel, the stability properties of the trivial steady state

strongly depend on the width of the distribution. In particular, as the width of the

distribution becomes larger, the stability region shrinks and becomes an isolated bubble

in the τ − α plane. As one of the synaptic weights is increased, enlarging the distribution
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width leads to a smaller region of stability, but it never becomes an isolated island. In

the case of the weak and strong gamma distribution kernel, we have obtained analytical

and numerical results on the stability properties of the system, and have shown that

the strength of the connection between the two sub-networks plays an important role.

Increasing the coupling reduces the size of the stability region, where the trivial steady

state is stable, and no oscillations are possible. We have also performed direct numerical

simulations that confirm our analytical findings.

In Chapter 3, we have studied aging transition in a system of globally coupled act-

ive and inactive oscillators with distributed-delay coupling. Using specific examples of

uniform and gamma distributions, we have been able to analytically find boundaries of

the amplitude death depending on the coupling parameters and the proportion of inactive

oscillators, and we have also numerically computed characteristic eigenvalues in each scen-

ario. For the case of uniform delay distribution, our results suggest that increasing the

width of the distribution for the same mean time delay allows the system to achieve aging

transition for a smaller coupling strength and a smaller proportion of inactive oscillators,

and the largest proportion of inactive oscillators required for AD occurs for the discrete

time delay. This highlights the fact that not only time delays can have a significant effect

on aging transition, but also that the details of the delay distribution play an important

role, since even for the same mean time delay, AD can occur or not depending on the

width of the distribution.

In the case of the gamma distribution, provided the mean time delay is sufficiently

large, there exists a range of coupling strengths, for which it is possible to achieve aging

transition for any proportion of inactive oscillators, and the range of this coupling strength

reduces with decreasing mean time delay. When one compares the behaviour of the system

with weak and strong distribution kernels, it becomes apparent that although AD regions

exhibit qualitatively similar features for these two distributions, in the case of a strong

distribution kernel aging transition occurs for higher values of the mean time delays and

a higher proportion of inactive oscillators. This again reiterates the important role played

by the delay distribution in quenching oscillations in coupled oscillator networks.

Chapter 4 was devoted to the analysis of a general subthalamic nucleus (STN) and

globus pallidus (GP) network with three distinct synaptic transmission delays. Using the

time-shift transformation, we reduced the original system to an equivalent system with two

time delays and showed the existence of a unique non-trivial steady state. The analysis

in this chapter has concentrated on the stability properties of this steady state, since it
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has a profound effect on the dynamics of the neural populations. Biologically, the stable

steady state corresponds to the healthy firing of the STN and GP populations, and if it

is unstable, this results in periodic firing, which imply a Parkinsonian-type regime. To

better understand the effects of different time delays on the overall stability of the system,

we have divided the analysis into three different cases: the delayed self-interaction in the

GP population only; the delayed cross-interaction between GP and STN populations only;

both interactions happen with time delays.

For the first two cases, we have analytically found the stability regions and have shown

that the non-trivial steady state is stable below some critical value of the time delay,

unstable when the time delay exceeds this critical value, and undergoes a Hopf bifurcation

when the time delay is equal to the critical value. Furthermore, we have numerically

computed eigenvalues of the corresponding characteristic equations for the three cases,

showing that the strength of the synaptic connection from GP to STN population wGS

plays an important role in determining the stability of the steady state. In fact, when the

time delay is only present in the self-interaction of the GP population, the stability region

(healthy firing of neurons) increases with increasing wGS , however, in the case when the

time delay is only considered between STN and GP populations, the stability region gets

larger for decreasing values of the synaptic weight wGS . Moreover, the highest amplitude

of oscillations in the case of the time delay being included in the self-interaction of the

GP population corresponds to the lowest value of the synaptic strength wGS , whilst if

the time delay is only included into the interactions between STN and GP populations,

the same effect on the amplitude of oscillations is observed for highest values of wGS . In

the case when both time delays are taken into account, the stability region shrinks if the

synaptic weight wGS is increased, leading to the smaller range of parameter values, where

the healthy firing rate of neurons is possible, and the amplitude of oscillating solutions

outside the stability region also grows for larger values synaptic weight wGS .

In Chapter 5, we analysed a unidirectionally-coupled ring neural network with n

neurons with delay-distributed connections between neurons and a discrete-delayed self-

feedback. We have analytically analysed the stability properties of the trivial steady state

of the system in the case of a general distribution kernel, considering separately the cases

of odd and even number of neurons in the system. We have been able to identify subsets

of the stability regions, and in order make further analytical progress and understand the

dynamical behaviour of the system, we have studied in detail the cases of delta and weak

gamma distributed kernels.
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In the case of the Dirac delta distribution kernel, we have obtained analytical condi-

tions on the stability of the trivial steady state in terms of κ, α, β, and τ . For an even

(odd) number of neurons, the stability region of the trivial solution reduces symmetrically

(asymmetrically) along α-axis with increasing time delay τ in the α−β plane. In the case

of the weak gamma distribution kernel, the stability region occupies a larger area in the

α− β parameter plane compared to the case of the delta distributed kernel. In the τ − β

parameter space, changing the sign of the synaptic weight α can cause the trivial steady

state to lose its stability via steady-state bifurcation giving rise to stable non-trivial steady

state and/or via a Hopf bifurcation giving rise to a stable periodic solution.
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