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ABSTRACT 

 

Novel (N-Heterocyclic carbene)-Palladium(0) Complexes as Catalysts in Element-

Element Bond Additions to Unsaturated Moieties 

Melvyn B. Ansell 

Ph.D Thesis 

 

The focus of this thesis is the synthesis of novel palladium(0) complexes bearing the 

ligand 1,3,4,5-tetramethylimidazol-2-ylidene (ITMe), a small percentage buried volume 

N-heterocyclic carbene. These complexes have been assessed as mediators for the 1,2-

additions of hetero element-element bonds to unsaturated organic moieties. In particular, 

Si-Si, Si-B and B-B bond additions to alkynes and azobenzenes were chosen as reactions 

of interest due to their challenging nature. 

Chapter 1 introduces the concept of transition metal mediated element-element additions 

to alkynes and includes a thorough review on the current literature state.  

Chapter 2 describes the first solution based synthesis of [Pd(ITMe)2] and its in situ 

reactivity with Me3SiSiMe3 under mild conditions to form the novel complex cis-

[Pd(ITMe)2(SiMe3)2], the first NHC-bearing complex resulting from the oxidative 

addition of hexamethyldisilane to a palladium centre. The use of this complex as a pre-

catalyst for the bis(silyl)ation of electronically and sterically challenging internal 

acetylenes using non-activated disilanes is reported. A series of novel 1,2-disilylstilbenes 

were synthesized in high yield and with 100% Z-stereoselectivity. 

Chapter 3 details the use of [Pd(ITMe)2(PhC≡CPh)], the first bis(N-heterocyclic 

carbene)Pd(0)-alkyne complex,  as a highly reactive pre-catalyst in the silaboration of 

terminal and internal alkynes to yield a number of known and novel 1-silyl-2-boryl 



 
 

alkenes. Unprecedented mild reaction temperatures for terminal alkynes, short reaction 

times and low catalytic loadings are reported. During mechanistic studies, cis-

[Pd(ITMe)2(SiMe2Ph)(Bpin)] was directly synthesized by oxidative addition of 

PhMe2SiBpin to [Pd(ITMe)2(PhC≡CPh)]. This represents a very rare example of a 

(silyl)(boryl)palladium complex. A plausible catalyst decomposition route was also 

examined. 

In Chapter 4, [Pd(ITMe)2(PhC≡CPh)] acts as a highly reactive pre-catalyst in the 

unprecedented homogeneous catalyzed diboration of terminal and internal alkynes, 

yielding a number of novel and known syn-1,2-diborylalkenes in a 100% stereoselective 

manner. DFT calculations conducted by our collaborators suggest that a similar reaction 

pathway to that proposed for platinum phosphine analogues is followed, and that 

destabilization of key intermediates by ITMe is vital to the overall success for the 

palladium-catalyzed B-B addition to alkynes. 

Chapter 5 reports the use of [Pd(ITMe)2(PhC≡CPh)] as a highly active pre-catalyst in 

the diboration and silaboration of azobenzenes to synthesize a series of novel 

functionalized hydrazines. The reactions proceed using commercially available diboranes 

and silaboranes under mild reaction conditions. 

Preliminary investigations into further reactivity of [Pd(ITMe)2(PhC≡CPh)], [Pd(ITMe)2] 

and cis-[Pd(ITMe)2(SiR3)2] (SiR3 = SiMe2Ph or SiMe3) are reported in Chapter 6. This 

includes the oxidative cleavage of Me3GeGeMe3 by [Pd(ITMe)2(PhC≡CPh)] to form the 

novel cis-[Pd(ITMe)2(GeMe3)2] and an initial study into the catalytic alkyne 

digermylations. The hydrogenation of diphenylacetylene to form Z-stilbene using an 

amine-borane and catalytic quantities of [Pd(ITMe)2(PhC≡CPh)] was also investigated. 

Finally, the stoichiometric reactions of allyl bromides with cis-[Pd(ITMe)2(SiR3)2] to 

form the novel complexes trans-[Pd(ITMe)2(SiR3)(Br)] are detailed. 
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Chapter 1 

General Introduction 

 

1.1 Alkenes 

Alkenes are defined as either branched or unbranched hydrocarbons that possess at least 

one carbon-carbon double bond (C=C).[1] Each carbon atom in a C=C bond is sp2-

hybridized, forming σ-bonds to three other atoms. An unhybridized 2pz orbital, 

perpendicular to the σ-bonding plane, overlaps with a symmetrically equivalent orbital 

on an adjacent carbon to form a π-bond (Scheme 1). The C=C bond is effectively 

described as a combination of a σ and π-bond between two carbon centres. The geometry 

around each carbon atom is trigonal planar with bond angles of approximately 120 .[2] If 

the alkene has more than one substituent around the C=C bond then two geometric 

configurations are possible, E or Z (often termed trans or cis, although this older 

terminology can sometimes be ambiguous and is frequently interchanged with anti or syn, 

respectively). These labels originate from the German words ‘entgegen’ meaning 

opposite and ‘zusammen’ meaning together (Figure 1.1).  

 

 

 

 

 

Figure 1.1 Alkene orbitals, shape and configurations for simple alkenes (olefins) 

 

The importance of alkene stereochemistry is reflected in biologically relevant molecules 

and is often the difference between an active or inactive compound.[3] Furthermore, highly 
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functionalized and stereodefined multi-substituted alkenes are found in many industrially 

important compounds including pharmaceuticals (Scheme 1.2),[4–8] dipeptide mimetics,[9] 

and polymeric materials.[10] The stereoselective synthesis of, or precursors to these 

alkenes has therefore attracted substantial attention from both academia and industry. 

Stereoselective syntheses include Peterson olefination,[11,12] the Ramberg-Bäcklund 

reaction,[13] the Wittig reaction (as well as the Wittig-Horner variation),[14,15] olefin 

metathesis,[16] Julia-Lythgoe olefination,[17,18] and the McMurry reaction (Figure 

1.2).[19,20]  

 

 

Figure 1.2 Selected examples of multi-substituted alkene synthesis and pharma-relevant 

alkenes 
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Arguably, one of the most atom economical routes (maximum number of  atoms of 

reactants appearing in the product/s)[21] to the stereoselective synthesis of syn/cis-

configured multi-substituted alkenes is alkyne reduction by its π-insertion into hetero 

element-element’ (E-E’) bonds.[22] The following sections will focus on the transition 

metal catalysed additions of E-E’ bonds (where E and E’ ≠ H) to alkynes and the proposed 

mechanistic pathways. 

 

1.2 Transition Metal Mediated E-E’ Additions to Alkynes 

The π-insertion of alkynes into a E-E’ bond results in the regio- and stereoselective 

synthesis of syn/cis-1-element-2-element’-alkenes in a single step (Scheme 1.1). A range 

of E-E’ bonds are accessible including Si-Si, Si-B, B-B, Sn-Sn, Sn-Si, Ge-Ge etc, and are 

mediated either stoichiometrically or catalytically by a variety of low-valent transition 

metal complexes.  

 

 

 

 

Scheme 1.1 General scheme for transition metal mediated E-E’ additions to alkynes 

 

The main mediators in the E-E’ additions to alkynes are low valent platinum group 

transition metal complexes coordinated by either phosphine or isocyanide ligand sets. The 

mechanism is well established, both computationally and experimentally, and consists of 

three major steps: oxidative addition, insertion and reductive elimination.[23,24] The first 

step in this catalytic cycle is the oxidative cleavage of an E-E’ bond by a M(0)L2 (M = 

platinum group metal, L = phosphine/isocyanide) species to form cis-(E)(E’)M(II)L2 
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(MI1). MI1 is often kinetically stable and is isolated experimentally for many of the E-

E’ bonds discussed above (the relevant E-E’ oxidative additions will be discussed in the 

appropriate chapters).[25–29] A ligand exchange then occurs with decoordination of a single 

L ligand and coordination of the alkyne in its place to yield MI2. This is swiftly followed 

by an insertion of the alkyne into a M-E or M-E’ bond (MI3).[30,31] The regioselectivity 

of the E-E’ addition is usually defined by this step and dictating factors include: the 

energetics of the bonds broken vs. the bonds formed, the sterics of the system and 

electronic stabilization effects within the resulting intermediates.[32,33] Experimental 

studies suggest that the insertion is often the rate-limiting step in these reaction 

pathways.[30] An isomerization and re-coordination of the L ligand results in the E and 

(E’) vinyl groups adjacent to one another. This positioning is then ideally suited for 

stereoselective reductive elimination to yield the corresponding Z-1,2-disubstituted 

alkenes and consequent reformation of M(0)L2 (Scheme 1.2). 

 

Scheme 1.2 General mechanism for platinum group transition metal mediated addition 

of E-E’ bonds to alkynes 
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The subsequent sections will overview the history, state-of-the-art and scope of this field, 

arranged by heteroatom bonds activated and metals used. 

 

1.2.1 Silicon-Silicon (Si-Si) 

Palladium 

The π-insertion of unsaturated moieties into Si-Si bonds is often called bis(silyl)ation. 

Palladium mediated bis(silyl)ation of alkynes is one of the most investigated reactions 

within this area of chemistry.[34] The first examples were reported by Kumada and Sakurai 

utilizing activated and strained disilanes, respectively. Kumada and co-workers 

demonstrated that activated disilanes, of the form X3-mMemSiSiMenX3-n (X = H, F, Cl or 

OMe; m = 1-2, n = 1-2), added to various alkynes when catalytic quantities of [Cl2Pd 

(PR3)2] or [Pd(PR’3)4] (R = Et or Ph and R’ = Ph)  were employed (Scheme 1.3).[35,36] The 

extension of this protocol to non-activated disilanes, such as hexamethyldisilane 

(Me3SiSiMe3), was unsuccessful. Elsewhere, Sakurai showed that the extent of alkyne 

bis(silyl)ation using the strained cyclic disilane, 1,1,2,2-tetramethyl-1,2-

disilacyclopentane, was dependent upon the choice of alkyne.[37] Dimethyl 

acetylenedicarboxylate, phenylacetylene and ethylene all underwent bis(silyl)ation 

(Scheme 1.3). However, no reaction was observed with the internal alkynes 

diphenylacetylene and bis(trimethylsilyl)acetylene. 
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Scheme 1.3 Kumada’s activated and Sakurai’s strained disilane bis(silyl)ations 

 

Watanabe performed the bis(silyl)ation of acetylene using chlorinated disilanes, 

MenSi2Cl6n (n = 2-5).[38] The formation of the Z-1,2-disilylated alkenes was favoured, 

although significant quantities of the E-isomers were noted. It was observed that upon 

heating, Z to E isomerization occurred in the presence of the Pd(0) complex. This work 

was extended to other activated disilanes such as methoxymethyldisilanes, 

(MeO)mMe3mSiSiMe3n(OMe)n, as well as the acetylenes 1-hexyne and 

trimethylsilylacetylene.[39] Bis(silyl)ation with Me3SiSiMe3 was extremely sluggish even 

at temperatures of 140 C.  
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Hiyama and co-workers utilized these chlorinated disilanes in the palladium catalysed 

bis(silyl)ation of bis(trimethylsilyl)butadiyne.[40] Subsequent treatment of the reaction 

mixture with MeMgBr resulted in the formation of 1,1,4,4-

tetrakis(trimethylsilyl)butatriene (1.3) and/or 1,1,2,4-tetrakis(trimethylsilyl)-1-buten-3-

yne (1.4) (Scheme 1.4). 

 

Scheme 1.4 Bis(silyl)ation of diynes using chlorinated disilanes 

 

The bis(silyl)ation of a number of internal and terminal alkynes using the activated 

disilane Me3SiSiF2Ph was achieved by Ozawa.[41] The catalyst was generated in situ from 

a mixture of 1 mol% [Pd(η3-allyl)Cl]2 and 2 mol% PMe2Ph. Reactions were completed 

within several hours at room temperature giving the corresponding Z-alkenes. The choice 

of disilane was essential with no reactivity arising from the use of Me3SiSiMe3 or 

PhF2SiSiF2Ph. 

Loy and co-workers employed the activated disilane, 1,2-dimethoxy-1,1,2,2-

tetramethyldisilane in the bis(silyl)ation of 1,4-diethynylbenzene to form 1.5 (Scheme 

1.5). 1.5 then ring closed at each alkenyl unit to form the corresponding 

disiloxacyclopentenes. Subsequent hydrogenation with hydrogen gas using Pd on carbon 

resulted in a saturated monomer that underwent ring-opening polymerization in 

tetrahydrofuran (THF) or in the presence of catalytic quantities of tert-butylammonium 

hydroxide (TBAH) giving rise to a crack free sol-gel in a matter of seconds.[42] 
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Scheme 1.5 Bis(silyl)ation of 1,4-diethynylbenzene towards crack free sol-gels 

 

Seyferth and co-workers demonstrated that the very reactive and strained Si-Si σ-bond in 

octamethyl-1,2-disilacyclobutane was capable of bis(silyl)ating a number of alkynes 

including acetylene, phenylacetylene and dimethyl acetylenedicarboxylate when using 

catalytic quantities of [Cl2Pd(PPh3)2]. However, extension of this protocol to other 

internal alkynes was unsuccessful, even at temperatures of 140 C.[43]  

Manners showed that the ferrocenyldisilane, [Fe(η5-C5H4)2(SiMe2)2] added across 

acetylene or phenylacetylene to form the organometallic rings 1.6a and 1.6b, respectively 

(Scheme 1.6).[44]  The reaction of alkynes such as dimethyl acetylenedicarboxylate 

resulted in a mixture of mono- and di-insertion products with significant quantities of the 

alkyne cyclotrimerization product, a common occurrence with alkynes such as dimethyl 

acetylenedicarboxylate and acetylene.[45] Other palladium mediated bis(silyl)ations of 

alkynes using strained disilanes include Ko’s ‘super-aromatic’ o-carborane disilane 

1.7,[46] and Braunschweig’s [2]silachromoarenophane 1.8,[47] bis(silyl)ated terminal and 

internal alkynes, respectively (Figure 1.3). The cyclic nature of these disilanes pre-

conditioned the formation of the Z-configured 1,2-disilylated alkene products. 
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Scheme 1.6 Palladium catalysed alkyne insertions into ferrocenyldisilane 

 

 

 

 

 

 

Figure 1.3 Ko’s o-carborane disilane 1.7 and Braunschweig’s [2]silachromoarenophanes 

1.8 

 

In 1991, a communication from Ito and co-workers revolutionised the field of alkyne 

bis(silyl)ation by the introduction of the pre-catalytic combination of [Pd(OAc)2] (OAc = 

acetate) and isocyanide ligands.[48] As a result, the bis(silyl)ation of alkynes was no longer 

limited to activated or strained disilanes. A combination of 2 mol% [Pd(OAc)2]/30 mol% 

tert-octyl isocyanide was enough to catalyse the bis(silyl)ation of terminal alkynes such 

as 1-phenylpropyne, 1-phenylhexyne, 1-nonyne and phenylacetylene using the non-

activated disilane, Me3SiSiMe3. Reactions proceeded at 110 C and resulted in 

unprecedented high stereoselectivities. Ito and co-workers extended this protocol to a 

range of bis(silyl)ations including the intramolecular bis(silyl)ation of alkynes in the 
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stereoselective synthesis of 1,2,4-triols,[49] cyclic tetrakis(organosilyl)ethenes as organic 

chromophores,[50] chiral allenylsilanes,[51] and enantioenriched propargyl silanes.[52]  

Many authors since have utilized the [Pd(OAc)2]/isocyanide combination within their 

own work. For example, Strohmann and co-workers used the pre-catalytic combination 

above in a number of alkyne bis(silyl)ations using 1,1,2,2-tetramethyl-1,2-

bis(phenylthiomethyl)disilane as the disilane source.[53] In particular, the bis(silyl)ation 

of ethynyl[2.2]paracyclophanes resulted in the formation of 1.9 (Scheme 1.7), which have 

potential applications in chiral catalysis and optoelectronic materials.[54]  

 

Scheme 1.7 Bis(silyl)ation of ethynl[2.2]paracyclophanes  

 

Platinum 

In contrast, platinum catalysed bis(silyl)ation of alkynes has been investigated to a lesser 

extent. The most common bis(silyl)ation mediator is [(η2-ethylene)Pt(PPh3)2]. Ishikawa 

detailed the bis(silyl)ation of a number of alkynes using 3,4-benzo-1,1,2,2,-

tetra(isopropyl)-1,2-disilacyclobut-3-ene.[55] The reactivity and product selectivity using 

this platinum catalyst differed from the palladium analogues and depended on the alkyne 

used, notably employing extreme temperatures. Reactions with 1-hexyne and 

phenylacetylene resulted in a mixture of 1.10 and 1.11. The bulky mono-substituted 

alkynes mesitylacetylene and (phenyldimethylsilyl)acetylene formed 1.11 as the sole 
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product, whereas diphenylacetylene resulted in only the 1,2-disilylated alkene 1.12 

(Scheme 1.8). 

 

Scheme 1.8 Bis(silyl)ation of alkynes with 3,4-benzo-1,1,2,2,-tetra(isopropyl)-1,2-

disilacyclobut-3-ene 

 

Investigations into the reactivity of 1,2-bis(dimethylsilyl)carborane by Ko and co-

workers were extended to the platinum catalysed bis(silyl)ation of alkynes. Normal 1,2-

bis(silyl)ation was observed in the reaction with phenylacetylene, diphenylacetylene, 3-

hexyne, 2-butyne and dimethyl acetylenedicarboxylate. However, the use of 1-hexyne 

resulted in geminal or 1,1-bis(silyl)ation and the formation of a five-membered disilyl 

ring.[56] A later report by Ishikawa described the bis(silyl)ation of a range of terminal and 

internal alkynes using cis- and trans-1,2-dimethyl-1,2-diphenyl-disilacyclopentane. The 

reactions proceeded with high stereospecificity and translation of the cis or trans nature 

of disilane in all cases.[57] 
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Gold 

The redox chemistry between gold(I)/(III) is similar to that of palladium(0)/(II), given 

that they are isolobal. This has triggered substantial research into the development of gold 

catalysts that are as active as their palladium analogues.[58–60] Despite this effort, gold 

catalysis is very much in its infancy with the only reports of alkyne bis(silyl)ation in the 

literature being mediated by gold nanoparticles supported on titanium oxide 

(Au/TiO2).
[61] Stratakis and co-workers showed the bis(silyl)ation of a range of terminal 

alkynes using hexamethyldisilane and 1,2-diphenyl-1,1,2,2-tetramethyldisilane was 

possible.[62] In all cases, the Z-alkenes were favoured with a small percentage of the E-

isomers formed. The heterogeneous catalyst gave comparable activities upon recycling. 

Stratakis extended the protocol to 1,1,2,2-tetramethydisilane (HMe2SiSiMe2H). 

However, the two isomers 1.13 (major) and 1.14 (minor) were isolated (Scheme 1.9). 

Mechanistically, this observation was explained by an initial bis(silyl)ation followed by 

a dehydrogenative addition to a second alkyne.[63] 

 

 

Scheme 1.9 Gold catalysed bis(silyl)ation-dehydrogenative addition 
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Iron 

Sunada and co-workers reacted 1,2-bis(dimethylsilyl)benzene with [Fe(mesityl)2]2 

(mesityl = 2,4,6-Me3C6H2) in aromatic solvents under a nitrogen (N2) atmosphere to form 

1.15 (Scheme 1.10). Subsequent addition of 2-butyne or phenylacetylene resulted in the 

quantitative formation of the disilacarbocycles 1.16a and 1.16b, respectively (Scheme 

1.10).[64] This process was made catalytic upon addition of 1,2-bis(dimethylsilyl)benzene 

to phenylacetylene and 20 mol% of Fe.[65] Although this is not a bis(silyl)ation in the 

traditional sense (it lacks a Si-Si σ-bond and it proceeds through a dehydrogenative 

double silylation), it is still a very rare example of an iron mediated bis(silyl)ation of 

alkynes. 

 

Scheme 1.10 Formation of a bis(silyl)Fe(II) complex and resulting reactivity with alkynes 
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Nickel 

The first examples of alkyne bis(silyl)ation were accomplished by Kumada and co-

workers using a nickel mediator. It was reported that the bis(silyl)bipyridylnickel(II) 

complex 1.17 reacted with diphenylacetylene to form 1.18. Treatment of the latter with 

MeMgBr, followed by an acidic work up resulted in the isolation of E-1,2-

bis(trimethylsilyl)stilbene (1.19) (Scheme 1.11).[66] Extension to other alkynes yielded 

mixtures of Z and E-alkene products.  

 

Scheme 1.11 Stoichiometric reaction of a bis(silyl)Ni(II) complex with 

diphenylacetylene 

 

At the same time, Liu showed that a tetrafluorodisilacyclobutene underwent oxidative 

addition to [Ni(CO)4]. The corresponding bis(silyl)Ni(II) complex 1.20 was reacted with 

tert-butylacetylene to form the 1,4-disilacyclohexadienes 1.21 and 1.22, where the tBu 

groups are syn and anti, respectively (Scheme 1.12).[67]  

 

 

 

 

Scheme 1.12 Nickel mediated bis(silyl)ation using a strained cyclic disilane 
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The first catalytic bis(silyl)ation of alkynes employing nickel was reported by Naka and 

co-workers. The reaction of 3,4-benzo-1,1,2,2-tetraethyl-1,2-disilacyclobutene with 

diphenylacetylene in the presence of catalytic amounts of [Ni(PEt3)4] formed the Z-alkene 

1.23.[68] As well as bis(silyl)ation, an alkyne insertion into one of the phenylene-Si bonds 

occurred, with 1.24 isolated as a minor product (Scheme 1.13). This type of insertion was 

consistently observed on applying the methodology to other alkynes.[69] 

 

 

Scheme 1.13 Ni(0) catalysed bis(silyl)ation and phenylene-Si insertion 

 

Rhodium 

Examples of rhodium mediated alkyne bis(silyl)ations are rare. Tilley and co-workers 

carried out the stoichiometric reaction of [(Me3P)3RhSi(SiMe3)3] (1.25) with 2-butyne 

resulting in the isolation of the Rh(III) complex 1.26.[70] The authors proposed that 1.25 

undergoes a facile silyl 1,2- and 1,3-migration (1.I1 and 1.I2, respectively) process in the 

presence of alkyne resulting in a [2+2] cycloaddition and the formation of a transient 

metallasilacyclobutene 1.I3. The reductive elimination of a Si-C bond in 1.I3 gives a 

Rh(I)-silyl intermediate 1.I4, which then loses one PMe3 ligand. This induces an 

oxidative addition of a Si-Si bond in the tethered trisilyl group and subsequent formation 

of 1.26 (Scheme 1.14). 
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Scheme 1.14 Stoichiometric bis(silyl)ation of 2-butyne mediated by Rh(I) species 

 

Rhodium(I) catalysed intramolecular bis(silyl)ations of alkynes were reported by 

Matsuda and co-workers. Initial testing and optimization were executed on the disilanyl 

ether of a propargylic alcohol.[71] It was observed that 4-silyl-2,5-dihydro-1,2-oxasilole 

(1.27) was formed as the sole product (Scheme 1.15). This trans-bis(silyl)ation proceeded 

with the complete opposite stereoselectivity to the analogous palladium-catalysed 

reaction. The protocol was then extended to a variety of (2-alkynylphenyl)disilanes 

affording the corresponding 3-silyl-1-benzosiloles (1.28) (Scheme 1.15).  
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Scheme 1.15 Rh(I)-catalysed intramolecular trans-bis(silyl)ation of alkynes 

 

1.2.2 Boron-Boron (B-B) 

Platinum 

Due to their low toxicity, high stability under atmospheric conditions and versatile 

reactivity, the synthesis of organoboron reagents has attracted significant interest. In 

particular, there is substantial focus towards Z-1,2-diborylated alkenes as the products of 

alkyne diboration.[72] The resulting newly formed B-C bonds are able to participate in 

Suzuki-Miyaura cross-coupling reactions,[73] to build more complex and useful tri- and 

tetra-substituted alkenes. The first source of B-B bonds investigated was diboron 

tetrahalides. These contain the most reactive B-B bond available (the lack of π-donating 

substituents increases the Lewis acidity of the boron based p-orbitals and therefore their 

susceptibility towards nucleophilic attack) and often react with unsaturated organic 

substrates without the need for a transition metal mediator or catalyst.[74] However, the 

preparations of diboron tetrahalides are difficult and this therefore limits their synthetic 
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utility.[75,76] Tetraalkoxy- and tetraaryloxydiborons are air stable, easily handled and, 

despite their relatively high B-B bond strengths, are now widely utilized in the 

stoichiometric and catalytic addition of B-B bonds to alkynes. These diboron reagents 

will be the main focus of this section.  

Platinum is by far the most effective and widely studied mediator of alkyne diboration. 

The first examples were reported by Suzuki and Miyaura in 1993.[77] Initial results 

indicated that 1-octyne inserted into the B-B bond of bis(pinacolato)diboron (B2pin2) 

using catalytic quantities of [Pt(PPh3)4] to form 1.29 (Scheme 1.16).  

 

 

 

 

Scheme 1.16 The first diboration of alkynes catalysed by [Pt(PPh3)4] 

 

The protocol was then extended to a range of internal and terminal alkynes with similarly 

high stereoselectivities obtained. The rate of diboration was drastically affected by the 

polarity of the solvent, with the more polar solvents (e.g. DMF) accelerating the rate. 

However, the authors later showed that hexane also accelerated the reaction rate and to a 

greater extent than most polar solvents.[78]   Other transition metal complexes proved 

ineffective within this study e.g. [Pd(PPh3)4] and [Pd(OAc)2]/isocyanide (the best 

catalysts in the bis(silyl)ation of alkynes). Suzuki-Miyaura coupling protocols have since 

been widely employed en route to, for example,  enantiomerically enriched 1,2-diols,[79] 

5-benzylidenylbenzopyridyloxepine analogues as nuclear hormone receptors,[80] 1H-

phosphindoles as chiral helicenes,[81] 10-mesitylborylsubstututed-dibenzoborepin as a 

photoresponsive material,[82] and the pentacyclic alkaloid, tylophorine.[83]   



19 
 

Smith and co-workers carried out a stoichiometric diboration by reaction of commercially 

available bis(catecholato)diboron (B2cat2) with [(η2-4-octyne)Pt(PPh3)2]. This resulted in 

the oxidative addition bis(boryl)Pt(II) complex 1.30, and the Z-1,2-diborylated alkene 

1.31 (Scheme 1.17).[84] 

 

Scheme 1.17 Platinum-mediated stoichiometric diboration of an alkyne 

 

Marder and Norman extended the synthesis of bis(boryl)platinum(II) complexes to the 

use of other diborons including B2pin2 and B2(4-tBucat)2 (4-tBucat = 1,2-O2-
tBuC6H3). 

[(η2-ethylene)Pt(PPh3)2] and  1.32 were then used as catalysts in the diboration of terminal 

and internal alkynes employing B2pin2 and B2cat2 as B-B bond sources (Scheme 1.18). 

 

Scheme 1.18 Pt(0) and Pt(II) catalysed diboration of internal and terminal alkynes 

 

These catalysts were more efficient in the stereoselective formation of Z-1,2-diborylated 

alkenes than [Pt(PPh3)4], with reactions proceeding smoothly using 3 mol% of either 
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catalyst at 80 oC. The rate and conversions were significantly affected by the choice of 

substituents on the alkyne and the diboron reagent. The presence of π-donating moieties 

on the alkyne resulted in faster reactions than π-withdrawing substituents and the fastest 

conversions proceeded in the order of B2cat2 > B2pin2 > B2(4-Butcat)2.
[85]  

Norman and co-workers reported the platinum catalysed diboration of internal and 

terminal alkynes using the diboron 1,2-B2Cl2(NMe2)2, to afford cyclic 1-azonia-2-borata-

5-boroles (1.34) (Scheme 1.19). The key feature within these structures was that the boron 

and nitrogen atoms exhibited both a three and four-coordinated centre. Although the 

mechanism for forming 1.34 was unclear, the authors proposed an initial diboration 

followed by a rearrangement of the B-Cl and B-NMe2 bonds.[86] 

 

 

 

 

 

 

Scheme 1.19 Diboration-rearrangement of alkynes using 1,2-B2Cl2(NMe2)2 

 

In 2000, Baker and co-workers developed a phosphine-free platinum catalysed diboration 

of 1-octyne and di-p-methylphenylacetylene using B2cat2.
[87] The reactions proceeded 

using 5 mol% of the commercially available [Cl2Pt(cod)] (cod = 1,5-cyclooctadiene) at 

55 oC. This protocol was highly dependent on the choice of diboron source, with only 

B2cat2 accessible, as well as the choice of halide and diene on the platinum metal. 

[Br2Pt(cod)] required pre-stirring for 24 h before a homogeneous catalytic mixture was 

obtained and even then, reaction yields were lower. The use of dicyclopentadiene instead 
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of cod as a ligand also resulted in the formation of the 1,2-diborylated alkenes in lower 

yields.  

In a study into new routes for the preparation of 1,1-geminal sp2-organo-bismetallic 

derivatives, Srebnik and co-workers demonstrated the platinum catalysed diboration of 

1-alkynylphosphonates and 1-alkynylboronates furnished the Z-1,2-diborylated 

vinylphosphonates and trisboronated alkene products 1.35 and 1.36, respectively 

(Scheme 1.20).[88] The reaction with alkynylboronates was extremely sensitive to the 

moisture content of the solvent with ‘wet’ solvents resulting in B-C bond cleavage via a 

hydrodeboronation. Elsewhere, Nishihara reported the platinum catalysed diboration of 

phenylethynyl MIDA (MIDA = N-methylimidiacetic acid) boronate with B2pin2 to form 

1,1,2-triboryl-2-phenylethene.[89] 

 

Scheme 1.20 Diboration of 1-alkynylphosphonates and 1-alkynylboronates 

 

Fernandez and co-workers reported the preparation of α,α’-difluorinated carbonyl 

compounds. The reactions proceeded by an initial platinum(0) catalysed diboration of 

internal and terminal alkynes to form Z-1,2-diborylated alkenes. Subsequent work-up 

with the electrophilic fluoro-deboronation agent 1-(chloromethyl)-4-fluoro-1,4-
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diazoniabicyclo[2.2.2]octane ditetrafluoroborate (or Selectfluor) resulted in formation of 

the α,α’-difluorinated carbonyl compounds 1.37 (Scheme 1.21) The stereochemistry of 

the diborylated alkene remained in the fluorinated carbonyls. If trace amounts of water 

were found within the solvent or reaction mixture the difluoromethyl alcohols 1.38 were 

isolated.[90] The authors later optimized this protocol to a one-pot diboration/fluoro-

deboronation microwave procedure. This resulted in the shortening of reaction times to 

several minutes and the lowering of catalyst loadings to as little as 0.05 mol%.[91] 

 

 

Scheme 1.21 Stepwise diboration/fluorodeboronation of alkynes 

 

Fernandez and co-workers extended their investigations into the use of N-heterocyclic 

carbene (NHC) platinum complexes as catalysts. The platinum species 1.39 were formed 

by the transmetallation reaction between the corresponding NHC-silver compound and 

Karstedt’s catalyst (Scheme 1.22). Initial assessment of 1.39 catalytic activity in the 

diboration of alkynes found that 1.39b, with triazoylidene carbene, was the most active 

and suitable mediator for this reaction. A range of internal and terminal alkynes were then 

diborylated using B2cat2 and 5 mol% of 1.39b.[92]  
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Scheme 1.22 Synthesis of NHC-platinum based complexes, catalysts in diboration of 

alkynes 

 

Braunschweig and co-workers demonstrated that alkynes could insert into the B-B bond 

of [2]borametallarenophanes. These B-B bonds were deemed moderately strained, but 

thermally stable. The diboration was achieved stoichiometrically using [Pt(PPh3)4] and 

10 equivalents of 2-butyne to yield the ansa-bis(boryl)alkenes 1.40 (Scheme 1.23).[93] 

The diboration was also completed catalytically under both homogeneous and 

heterogeneous conditions over several days.[94] 

 

 

 

 

 

 

 

Scheme 1.23 Stoichiometric and catalytic diboration of alkynes using 

[2]borametallarenophanes 
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The selective, stepwise reactions of two non-equivalent boryl groups is highly desirable 

in the catalytic diboration of alkynes, as it may enable telescopic (sequential) couplings. 

Suginome and co-workers developed an unsymmetrical diboron, pinB-Bdan (pin = 

pinacolato; dan = naphthalene-1,8-diaminato) (Scheme 1.24).[95] In the presence of 

phosphine-platinum catalysts, the diboration of terminal alkynes resulted in the 

regioselective formation of 1.41 with -Bdan, a boryl protecting group, in the terminal 

position. The palladium-catalysed Suzuki-Miyaura cross-coupling occurred 

chemoselectively on the more reactive internal Bpin. This was in sharp contrast to the 

B2pin2 based diborations, where the coupling selectively proceeds initially at the more 

reactive terminal Bpin group. 

 

 

Scheme 1.24 Diboration of alkynes using the diboron, pinB-Bdan 

 

Escribano and co-workers showed that titania-supported platinum nanoparticles were 

efficient catalysts for the diboration of alkynes under solvent and ligand free conditions 

in air. Terminal and internal alkynes were accessible at 70 oC using 0.2 mol% of Pt/TiO2. 

A range of electron-donating and withdrawing aromatic or alkyl, branched and cycloalkyl 

substituents were accessible. Exclusively Z-1,2-diborylated alkenes were observed in all 



25 
 

cases.[96] In contrast, when the support was magnesia (MgO), higher loadings and the use 

of solvent and elevated temperatures of 130 oC were required.[97] 

 

Palladium 

Palladium-catalysed diboration of alkynes are rare. The only examples use the 

[2]borametalloarenophanes reported in the homogeneous and heterogeneous platinum 

catalysed diboration of alkynes. The source of palladium catalyst was palladium on 

carbon and the reactions required higher temperatures and longer conversion times than 

their platinum analogues.[93,94] The rarity of palladium mediated alkyne diborations can 

be attributed to the energetics of the B-B bond oxidative addition at the Pd(0) centre. 

Theoretical calculations suggest that this is both a kinetically and thermodynamically 

unfavourable process.[98] 

 

Cobalt 

In their investigations into the diboration of alkynes, Marder and co-workers described 

the diboration of 1,2-bis(4-(trifluoromethyl)phenyl)ethyne with B2cat2 (Scheme 1.25) 

using a [Co(PMe3)4] catalyst. Compound 1.42 was isolated as the major product of this 

reaction with small quantities of the E-isomer detected.[99] 

 

 

 

 

 

Scheme 1.25 Cobalt(0) catalysed diboration of an internal alkynes 
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Iron 

The only example of iron catalysed diboration of alkynes was detailed by Nakamura in 

2015. Initial optimizations focused on the diboration of 4-octyne using B2pin2. The 

authors showed that catalytic quantities of FeBr2 and LiOMe with 1.5 equivalents of 

MeOBpin were enough to afford 1.43 in high yields.[100] On extending to other Fe(II) and 

Fe(III) catalysts, yields dramatically decreased. The diboration of a variety of internal 

alkynes was possible; those with alkyl substituents proceeded in high yields, whereas aryl 

or bulky alkyl groups retarded the diboration. The role of the additional borating agent 

was also assessed. In the absence of MeOBpin the reactions still proceeded, but with 

lower conversions. When using MeOBnep (MeOBnep = 2-methoxy-5,5-dimethyl-1,3,2-

dioxaborinane) the unsymmetrical diborylalkene 1.44 was isolated as the major product 

(Scheme 1.26). This suggested that the incorporation of the second boryl unit was 

introduced by an electrophilic substitution reaction with MeOBnep or MeOBpin. 

 

 

 

 

 

 

 

 

 

Scheme 1.26 Iron(II) catalysed diboration of alkynes in a symmetric and unsymmetric 

manner 
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Iridium 

Ozerov and co-workers devised a two-step reaction to convert alkynes into 

trisborylalkenes. The first step transformed terminal alkynes into alkynylboronates using 

pinacolborane (HBpin) and iridium complex 1.45 as a catalyst. Degassing this reaction 

mixture followed by the introduction of a CO atmosphere generated the new catalyst 1.46, 

which mediated the dehydrogenative diboration of the newly formed alkynylboronate  

with HBpin to form 1.47 (Scheme 1.27).[101] This reaction was extended to a range of 

alkyl and aryl terminal alkynes. The authors proposed the reaction to proceed via 

hydroboration intermediates or via B2pin2. 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 1.27 Iridium catalysed dehydrogenative borylation/diboration of terminal 

alkynes 
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Copper 

Examples of group 11 transition metal catalysed diboration of alkynes are rare, with only 

one example of copper and one of gold described in the literature.[102] The first diboration 

of alkynes employing a copper catalyst was performed by Yoshida. The diboration of 

alkyl and aryl internal alkynes using B2pin2 in the presence of [Cu(OAc)2] and PCy3 

resulted in high yields of the corresponding Z-1,2-diborylated alkenes.[103] The authors 

also extended this to the diboration of benzynes to form the resulting 1,2-diborylated 

benzenes (1.48) (Scheme 1.28). Changing the phosphine to P(tBu)3, P(nOc)3 or PPh3 

resulted in either prolonged reaction times or lower yields. A striking feature of this 

copper catalysis was the diboration of propargyl ethers. In all cases the tetraborylated 

product 1.49 was exclusively isolated (Scheme 1.28). 

 

 

Scheme 1.28 Copper-catalysed diboration of benzynes and tetraborylation of propargyl 

ethers 
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Gold 

Jin and co-workers reported that nanopourous gold (AuNPore), prepared by dealloying 

the monolithic Au30Ag70 alloy in a 70% nitric acid electrolyte, was a highly active catalyst 

in the diboration of alkynes. The system was optimized using phenylacetylene and B2pin2 

utilizing 2 mol% of AuNPore at 100 oC.[104] The AuNPore catalyst was recyclable with 

no notable decrease in catalytic activity over multiple cycles. The protocol was extended 

to a variety of terminal and internal alkynes, however, other diborons were ineffective. 

Mechanistically, the authors proposed absorption of the B2pin2 onto the AuNPore surface. 

The B-B bond is then cleaved at the low coordinate Au atoms to give an Au-Bpin species. 

The alkyne then adsorbs and reacts rapidly with two Au-Bpin species either through a 

simultaneous addition path to form the corresponding Z-adduct or in a stepwise manner. 

 

1.2.3 Silicon-Boron (Si-B) 

Palladium 

Silaboranes are attractive precursors in the element-element additions to unsaturated 

substrates such as alkynes. According to the Pauling scale, the electronegativity 

difference between the Si (2.12) and B (1.88) atoms,[105] is such that 1-boryl-2-silyl 

alkenes are synthesised with chemo-, regio- and stereoselective control in a single 

transformation.[106,107] The boron and silicon functionalities in these alkene adducts can 

subsequently undergo chemoselective stepwise reactivity towards the preparation of more 

complex and unsymmetrical tri- and tetra substituted alkenes.[108,109] The most widely 

used catalysts for the silaboration of alkynes are group 10 transition metal complexes, 

specifically palladium-containing complexes.  
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One of the first Pd-mediated examples was reported by Ito and co-workers. The 

palladium/tert-alkyl isocyanide combination, previously detailed in alkyne 

bis(silyl)ations, was effective in the silaboration of both terminal and internal alkynes to 

form syn-1-boryl-2-silyl alkenes (1.50) with high regio- and stereoselectivities (Scheme 

1.29).[110] The silaborane of choice was (dimethylphenylsilyl)boronic acid pinacol ester 

(PhMe2SiBpin); this Si-B compound is thermally stable under inert conditions and the 

Bpin functionality improves the stability of the subsequent organo-compounds towards 

hydrolysis during purification. In the case of terminal alkynes, the silaboration proceeded 

with the addition of the boryl group at the terminal position. Silaboration attempts 

employing other metal complexes resulted in either lower yields and mixtures of 

regioisomers (e.g. [Pt(PPh3)4]) or no activity (e.g. [RhCl(PPh3)3]).  

 

Scheme 1.29 Silaboration of alkynes employing a palladium/isocyanide catalyst 

 

The authors later extended this protocol to other silaboranes (i.e. PhMe2SiB(NEt2)2 and 

PhMe2SiBcat) and to a larger array of terminal and internal alkynes, including 1,7-
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octadiyne to afford the double silaboration product 1.51 (Scheme 1.29). The reactivity of 

the syn-1-boryl-2-silyl alkenes was also assessed. It was observed that Suzuki-Miyaura 

cross-coupling and conjugate additions to methyl vinyl ketones at the alkenyl boryl group 

were possible, leading to 1.52 and 1.53, respectively (Scheme 1.30).[111] Many authors 

have since utilized [Pd(OAc)2]/isocyanide as a mediator in the silaboration of alkynes 

including in the synthesis of syn-homoallylic alcohols,[112] multi-arylated olefins,[113] and 

enamides.[114] 

 

Scheme 1.30 Suzuki-Miyaura cross-coupling and conjugate additions at C-boryl group 

 

Tanaka and co-workers described the silaboration of 1-octyne employing the silaborane, 

1,3-dimethyl-2-dimethylphenysilyl-2-bora-1,3-diazacyclopentane. The corresponding Z-

1-boryl-2-silyl alkene 1.54 was isolated by utilizing the pre-catalytic combination of 

[Pd2(dba)3] and epto (epto = 4-ethyl-2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane, 

P(OCH2)3CEt). Pre-heating of the pre-catalytic combination at 80 oC for 5 minutes was 

necessary in order to generate the active catalytic species, proposed to be [Pd(epto)2]. As 

observed in Ito’s report, the silaboration of terminal alkynes proceeded in a regioselective 
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manner with the boryl group inserting at the terminal position. Low to no yields were 

observed on applying other phosphorus containing ligands such as PMe3 and PPh3. The 

protocol was also expanded to the silaboryl carbocyclization of hepta-1,6-diyne to form 

1.55 (Scheme 1.31).[115] 

 

 

 

 

 

 

 

 

Scheme 1.31 Silaboration and silaboryl carbocyclization of terminal alkynes 

 

Pilot and co-workers synthesized stable organosilylboranes possessing mesityl groups on 

the boryl atom, (diphenylmethylsilyl)dimesitylborane (PhMe2SiBMes2) and (diphenyl-

tert-butylsilyl)dimesitylborane (Ph2
tBuSiBMes2). These silaboranes are not stabilized by 

electronegative groups on the boron atom e.g. oxygen or nitrogen, but instead through the 

steric bulk of the mesityl functionality. They were employed in the silaboration of 

terminal alkynes such as phenylacetylene, using the [Pd2(dba)3]/epto catalytic 

combination. Steric clashing between the substituents of the alkyne and the boryl moiety 

precluded the silaboration of internal alkynes.[116] 

In their investigations into the silaboration of terminal alkynes, Suginome and co-workers 

showed that it was possible to tune the stereoselective preference of the reaction by 

altering the reagent stoichiometry. The reaction parameters were assessed on treating 
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(chlorodimethylsilyl)pinacolborane (ClMe2SiBpin) with 1-octyne in the presence of 1 

mol% [(3-C3H5)Pd(PPh3)Cl], followed by subsequent addition of isopropyl alcohol 

(IPA) and pyridine. When excess 1-octyne was used the Z-isomer 1.56 was isolated as 

the sole product. However, excess ClMe2SiBpin results in the formation of the E-isomer 

1.57 as the major product (Scheme 1.32). This observation was applicable to a range of 

terminal alkynes, although sterically hindered substituents on the alkyne restricted E-

silaboration.[117] 

 

Scheme 1.32 Reagent dependent stereoselective silaboration of terminal alkynes 

 

It was also possible to tune the regioselectivity in the silboration of terminal alkynes. The 

silaboration proceeds with ‘normal’ regioselectivity in the presence of catalytic quantities 

of [(3-C3H5)Pd(PPh3)Cl]. However, using the more sterically hindered phosphine 

P(tBu)2(biphenyl-2-yl) an inverse or ‘abnormal’ regioselectivity was observed, with Z-2-

boryl-1-silyl-1-alkenes 1.58 isolated as the major product (Scheme 1.33).[118]  
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Scheme 1.33 Ligand-controlled stereoselective ‘abnormal’ regioselective silaboration  

 

Scheme 1.34 Silylborate formation and resulting external-base free cross-coupling 
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Suginome and co-workers also hydrolysed the ‘normal’ and ‘abnormal’ silaborated 

alkenes with metal hydroxides MOH (M = Na or K) instead of the IPA/pyridine mixture. 

This resulted in the formation of a five-membered cyclic borate 1.59 via intramolecular 

attack of the resulting silanol oxygen with the tricoordinated boron atom. The potassium 

borates 1.59a and 1.59h were then subjected to external-base free Suzuki-Miyaura cross-

coupling with 4-iodoanisole to form 1.60 and 1.61, respectively (Scheme 1.34).[119]  

The authors achieved a different mode of reactivity by substituting one of the substituents 

of the silicon atom of a silaborane for an amino group. The reaction of (Et2N)Me2SiBpin 

with aliphatic or aryl terminal alkynes resulted in the formation of 2,4- and 3,4-

disubstituted siloles, 1.62 and 1.63 respectively (Scheme 1.35). Isomer 1.62 was favoured 

in most cases and this was attributed to steric clashing within intermediates in the catalytic 

cycle. Deviations in the electronic and steric properties of the alkyne substituents had 

little influence on the regioisomer formed.  However, altering the phosphine ligand to the 

more sterically hindered P(tBu)2(2-biphenyl), resulted in a higher ratio of 1.62 vs. 1.63. 

The synthesis of siloles was also accompanied by the formation of the corresponding 

aminopinacolborane, and was extended to other silaboranes including (Me2N)Me2SiBpin 

and (pyrrolidino)Me2SiBpin.[120]  

 

 

 

 

 

 

Scheme 1.35 Regioselective synthesis of disubstituted siloles 



36 
 

Moberg and co-workers subjected a number of 1,3-enynes to palladium catalysed 

silaboration using PhMe2SiBpin. The reactions required relatively high loadings of 

palladium and phosphine ligand, as well as stoichiometric quantities of 

diisobutylaluminium hydride (DIBALH). 1,2-Silaboration led to dienes 1.64 in all cases. 

Alternatively, changing the transition metal catalyst to a platinum analogue and the 1,3-

enynes substituent to a sterically hindering functionality resulted in 1,4-silaboration and 

isolation of the corresponding allene 1.65 (Scheme 1.36).[121] 

 

Scheme 1.36 Substrate controlled silaborations of 1,3-enynes 

 

Nickel 

Ito reported the double insertion of terminal alkynes into the Si-B bond of PhMe2SiBpin 

to afford Z,Z-1-silyl-4-boryl-1,3-butadiene derivatives in a regio- and stereoselective 

manner. The reactions proceeded using catalytic quantities of [Ni(acac)2] and the 

reductant DIBALH to afford a 3:1 mixture of 1.66 and 1.67 (Scheme 1.37). The major 

product 1.66 was a result of head-to-head dimerization of the alkyne, whereas head-to-

tail dimerization gave 1.67. Dimerization yields were increased by using a large excess 
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of alkyne and were retarded by the introduction of a phosphine. This protocol was also 

extended to internal alkynes with the exception of diphenylacetylene, which was inert 

under the reaction conditions. The application to diynes resulted in intramolecular 

cyclization and the formation of the dimethylenecyclohexane derivatives.[122] 

 

 

 

 

 

Scheme 1.37 Silaborative dimerization of alkynes 

 

Gold 

The only other metal mediated alkyne silaboration in the literature utilized gold 

nanoparticles supported on titania (Au/TiO2). Stratakis and co-workers used 1 mol% 

Au/TiO2 to catalyse the silaboration of terminal alkynes at room temperature to form syn-

2-boryl-1-silyl-1-alkenes 1.68 (Scheme 1.38). These alkenes were formed with opposite 

or ‘abnormal’ regioselectivities with respect to the analogous palladium examples, which 

was attributed to the steric factors imposed by the Au nanoparticles during the 1,2-

addition of the silaborane to the alkynes. Side products in this reaction were the ‘normal’ 

regioselective silaborated alkenes, the bis(silyl)ated alkenes and B2pin2. The presence of 

bis(silyl)ated alkene and B2pin2 was explained by separately stirring PhMe2SiBpin under 

the catalytic conditions in the absence of alkyne. The authors observed the formation of 

PhMe2SiSiMe2Ph and B2pin2 as a result of metal-catalysed silaborane metathesis, a 

competing reaction in this silaboration protocol. Extension to internal alkynes resulted in 

mixtures of regioisomers or no yield at all.[123]  
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Scheme 1.38 Gold catalysed ‘abnormal’ silaboration of terminal alkynes 

 

1.2.4 Tin-Tin (Sn-Sn) 

Palladium 

Organostannanes are often utilized in the chemoselective formation of C-C bonds through 

Migita-Kosugi-Stille reactions.[124] The development of new methodologies in the 

construction of C-Sn bonds is therefore of high interest. A particularly attractive example 

is the insertion of alkynes into Sn-Sn bonds, distannation. The resulting alkenes have two 

new C-Sn bonds and are frequently formed with high stereoselectivities. Low-valent 

palladium complexes are regularly used to catalyse the distannation of alkynes. 

Some of the first investigations into distannation of alkynes were carried out by Mitchell 

and co-workers. Hexamethyldistannane (Me3SnSnMe3) and terminal alkynes were mixed 

in the presence of catalytic quantities of [Pd(PPh3)4] to form Z-1,2-distannyl alkenes 1.69 

(Scheme 1.39). Aryl, alkyl and propargyl ether substituents were tolerated. Distannation 

of acetylene at elevated temperatures initially led to the Z-isomer, which quickly 

isomerized to the thermally stable E-isomer. The Z to E isomerization was also observed 

in the absence of catalyst under photolysing conditions.[125]  
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Scheme 1.39 The first palladium catalysed distannation of terminal alkynes 

 

Mitchell later expanded this protocol to a wider variety of terminal alkynes including 

functionalities such as alcohols, amides, esters and silyl groups. The Sn-Sn bond 

precursor was also extended to other hexaalkyldistannes (hexaethyl and hexabutyl 

ditin),[126] and to 1,2,4,5-tetrastannacyclohexanes.[127] The latter were further employed 

in the distannation of trimethylstannylethyne to synthesise the first 1,1,2-

trisstannylalkene derivatives 1.70 (Scheme 1.40).[128] 

 

Scheme 1.40 Distannation of trimethylstannylethyne 

 

Piers and co-workers reported the distannation of alkyl-2-alkynyloates using 

Me3SnSnMe3 and a [Pd(PPh3)4] catalyst in THF at room temperature (or reflux) to form 

Z-2,3-bis(trimethylstannyl)-2-alkenoates 1.71 (Scheme 1.41). A vast array of 

functionality was tolerated including alkenyls, ethers, silyl ethers and primary halides.[129] 

Alkenoates with an -halogeno-alkyl group were treated with MeLi which resulted in a 
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transmetallation-cyclization reaction to afford 2-trimethylstannylcycloalk-1-enes 1.72 

(Scheme 1.42).[130] The distannation protocol was also extended to N,N-dimethyl-2-

alkynylamides and the formation of Z-N,N-dimethyl-2,3-bis(trimethylstannyl)-2-

alkenamide 1.71q. Compounds 1.71 were thermally labile and transformed upon heating 

or at room temperature to the thermodynamically stable E-isomers.[129]  

 

 

 

 

 

 

 

 

 

Scheme 1.41 Distannation of alkynyloates and alkynylamides 

 

 

 

 

 

Scheme 1.42 Transmetallation-cyclization of distannylated -halogeno-alkenoates 

 

The weakness of the C-Sn bond meant that it was possible to use vinyltins in electrophilic 

substitution reactions. Mitchell and co-workers detailed the reactivity potential of the Z-

1,2-bis(trimethylstannyl)-1-alkenes with the electrophiles p-tolylsulphonylisocyanate 
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(TSI), dichloromethylmethylether (DCME), trimethylsilyl chlorosulphonates and sulphur 

oxides.[131] 

Recently, Foucher and co-workers detailed the insertion of acetylene and phenylacetylene 

into the backbone of poly[di(nbutyl)]stannane. This resulted in the formation of alkene-

tin polymers 1.73 and 1.74, respectively (Scheme 1.43).[132]  

 

 

 

 

 

 

Scheme 1.43 Distannation employing the backbone of poly[di(nbutyl)]stannane 

 

Platinum 

The only examples of distannation of alkynes employing a platinum catalyst were 

reported by Wrackmeyer and co-workers. The distannane, 1,2-distanna-

[2]ferrocenophane reacted sequentially or in one pot with [Pt(PPh3)2(
2-C2H4)] and a 

range of terminal alkynes to form the corresponding 1,4-distanna-[4]ferroceophanes 1.75 

(Scheme 1.44).[133] Both terminal and internal alkynes were accessible. However, 

dimethyl acetylenedicarboxylate gave the distannation product in a side reaction while 

favouring cyclotrimerization to form hexamethylbenzene hexacarboxylate. Extension to 

analogous palladium catalysts such as [Pd(PPh3)4] and [Pd(dba)2] was unsuccessful.[134] 
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Scheme 1.44 1,2-Distanna-[2]ferrocenophane  distannation of terminal alkynes 

 

Copper 

In 2013, Yoshida carried out the first catalytic distannation of alkynes using a copper 

catalyst. [Cu(OAc)(PPh3)3] in the presence of Cs2CO3 was used to optimize the reaction 

between Me3SnSnMe3 and 1-octyne affording 1.76. The authors then managed to 

distannylate 1-hexyne, 1-decyne and branched aliphatic terminal alkynes bearing 

isoamyl, isobutyl and cyclopentyl, as well as chloro, amino and cyano functionalities. 

Alkynes that were sterically congested resulted in sluggish reactions and low yields. It 

was proposed that the reaction proceeded through a Cu-Sn bonded intermediate 1.I5 

derived from a CuOR’ complex and a base-activated distannane. Subsequent addition of 

1.I5 to a C-C triple bond afford -stannylalkenyl copper species 1.I6, which is then 

recaptured with Me3SnOR’ to give the 1,2-distannylated alkene with regeneration of the 

CuOR’ complex (Scheme 1.45).[135] 
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Scheme 1.45 Copper catalysed distannation of 1-octyne and proposed mechanism 

 

1.2.5 Tin-Silicon (Sn-Si) 

Palladium 

Sn-Si bond (silylstannation) addition to alkynes results in the formation of alkenes with 

a new C-Sn and C-Si bond, often in a regio- and stereoselective manner. Palladium 

catalysed silylstannation of alkynes are by far the most reported examples within the 

literature and have found application in the synthesis of natural products,[136,137] and 

pharmaceuticals.[138]  

The first palladium catalysed examples of alkyne silylstannations were shown by Mitchell 

and co-workers. In this report the authors reacted a range of terminal alkynes with 

(trimethylsilyl)trimethylstannane (Me3SiSnMe3) in the presence of [Pd(PPh3)4] under 

solvent-free conditions to yield the corresponding Z-1-silyl-2-stannyl-1-alkenes (1.77) 

(Scheme 1.46). In all cases the silyl moiety added regioselectively at the terminal 

carbon.[139] 
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Scheme 1.46 Palladium(0)-catalysed silylstannation of terminal alkynes 

 

Ito extended the use of [Pd(PPh3)4] as a catalyst in the reaction of the disilanylstannane 

1.78 with alkynes affording the (β-disilanylalkenyl)stannanes 1.79. The reaction 

proceeded with the Z-addition of the Si-Sn bond to the C-C triple bond. 1.79, in the 

presence of phenylacetylene and further quantities of [Pd(PPh3)4], then underwent 

regioselective cyclization to form the silastannacyclohexadiene 1.80 as a single isomer 

(Scheme 1.47).  [140] 

 

 

 

 

 

 

 

 

Scheme 1.47 Palladium(0)-catalysed silylstannation followed by regioselective 

cyclization 
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Ito later accomplished the silylstannation of 1-alkoxyalkynes employing the combination 

of [Pd(OAc)2]/tert-octylisocyanide.  The reactions proceeded at room temperature and 

yielded the syn-addition products 1.81, with the silyl group regioselectively introduced at 

the carbon atom bearing the alkoxy moiety (Scheme 1.48).  

 

 

 

 

Scheme 1.48 Silylstannation of 1-alkoxyalkynes 

 

[Pd(PPh3)4] was inactive in these transformations at both room and elevated 

temperatures.[141] The resulting alkene adducts were then exposed to a range of reactions 

including Stille cross-couplings, iodination at the C-Sn bond and the formation of 

acylsilanes. 

Singer reported the silylstannation of terminal alkynes with Bu3SnSiMe2Ph using 

catalytic quantities of [Pd(PPh3)4] immobilised in the ionic liquid 1-nbutyl-3-

methylimidazolium hexafluorophosphate ([bmim][PF6]). High stereo- and 

regioselectivies were observed and simple ether extraction resulted in isolation of the Z-

1-silyl-2-stannyl-1-alkenes 1.82 (Scheme 1.49).[142] The palladium(0)-ionic liquid 

combination was recyclable with no loss of activity even after 10 cycles.[143] 

Mori and co-workers reported that the bismetallative cyclization of 1,3-enynes, using 

Bu3SnSiMe3, was dependent on the choice of ligand and palladium source. The use of 

[Pd(PPh3)4] results in ‘normal’ silylstannation of the alkyne affording 1.83. However, 

upon removing the phosphine and using [Pd2(dba)3·CHCl3] or [Pd(OH)2/C], cyclized 

compounds 1.84 were isolated as the major products of the reaction (Scheme 1.50). The 
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bismetallative cyclization can also be observed on employing nucleophilic N-heterocyclic 

carbenes with bulky alkyl N-substituents. [144] 

 

 

 

 

 

Scheme 1.49 Alkyne silylstannation using ionic liquid immobilised palladium(0) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 1.50 Silylstannation and bismetallitive cyclization of 1,3-enynes 
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Konno reported that it was possible to tune the regioselectivity of alkyne silylstannation 

by changing the ligand of a palladium(II) catalyst. Treatment of fluorine-containing 

internal alkynes with Bu3SnSiMe3 in the presence of 2.5 mol% [Cl2Pd(PPh3)2] yielded 

the silylstannylated adducts 1.85. However, by switching the palladium catalyst to 

[Cl2Pd(tBuNC)2], the opposite regioselectivities 1.86 were observed (Scheme 1.51).[145]  

 

 

 

 

 

 

 

 

Scheme 1.51 Palladium catalyst-dependent regioselective silylstannation 

 

Copper 

The only example of a copper catalysed alkyne silylstannation was reported by Yoshida 

and co-workers. The authors detailed a three-component coupling reaction employing 

terminal alkynes, a silylborane (PhMe2SiBpin) and a tin alkoxide (nBu3SnOtBu) in the 

presence of a Cu(I) catalyst ([CuCl-PtBu3]). The observed regioselectivities were inverse 

to those of conventional silylstannation under palladium catalysed conditions, with the 

stannyl moiety predominantly adding to the terminal carbon as shown in 1.87. A range of 

alkyl branched and unbranched alkynes bearing cyano, bromo, hydroxyl or amino 

functionalities were accessible (Scheme 1.52). The authors proposed a similar mechanism 

to the distannation of alkynes mediated by a copper(I) catalyst. A silylcopper species, 
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CuSiMe2Ph, is initially formed via a sigma-bond metathesis between a copper alkoxide 

and a silylborane. An alkyne would then insert into the Cu-Si bond to give a β-

silylalkenylcopper intermediate, which is subsequently trapped by a tin alkoxide to 

furnish the silylstannation alkene adduct and the regenerated copper alkoxide.[146]  

 

 

 

 

 

 

Scheme 1.52 Cu(I) catalysed ‘abnormal’ silylstannation of terminal alkynes 

 

1.2.6 Tin-Boron (Sn-B) 

Palladium 

The borylstannation of alkynes results in the formation of alkenes with a new C-Sn and 

C-B bond. The first palladium catalysed example was shown by Tanaka and co-workers 

in 1996. The borylstannane 1,3-dimethyl-2-(trimethylstannyl)-2-bora-1,3-

diazacyclopentane (Me3SnB[NMe{CH2CH2}NMe]) was added to alkynes using catalytic 

quantities of [Pd(PPh3)4] (Scheme 1.53). The reagents were added together in benzene at 

0 oC and then warmed to room temperature. Terminal alkynes yielded syn-1-boryl-2-

stannyl-1-alkenes 1.88 as the sole product. Internal alkynes were also accessible, although 

a higher temperature (80 oC) was necessary.[147] Weber later extended this protocol to the 

more sterically hindered borylstannane, 1,3-di-tert-butyl-2-(trimethylstannyl)-2-bora-

1,3-diazacyclopentane  (Me3SnB[NtBu{CH2CH2}NtBu]).[148]  
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Scheme 1.53 Palladium(0)-catalysed borylstannation of alkynes 

 

RajanBabu developed Tanaka’s methodology and extended it to the borylstannation of 

1,3-enynes. This protocol resulted in the isolation of the syn-1-boryl-2-stannyl-1-alkenes 

(1.89) in chemo-, regio- and stereoselective fashions with no complications arising due 

to the adjacent alkene. However, the boryl group in 1.89 was hydrolytically unstable. In 

situ treatment with pinacol and p-toluenesulfonic acid (PTSA) yielded the hydrolytically 

stable 1.90 (Scheme 1.54)[149] 

 

Scheme 1.54 Borylstannation of 1,3-enyles followed by boryl alcoholysis 

 

Copper 

Yoshida detailed the copper(II)-catalysed borylstannation of alkynes. A three-component 

coupling reaction employed an alkyne, a diboron (B2pin2) and a tin alkoxide (nBuSnOMe) 

with the aid of a copper(II)acetate/tricyclohexylphosphine combination. A range of 
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internal and terminal alkynes were accessible. Internal alkynes with one aryl and one alkyl 

substituent resulted in perfect regioselectivities with the boryl moiety geminal to the alkyl 

group. In the case of terminal alkynes, the boryl group added to the terminal carbon.[150] 

All reactions proceeded at room temperature with catalyst loadings as low as 1 mol%. 

The authors proposed that these reactions proceeded through a similar mechanism to that 

of the silylstannation.[146] 

 

1.2.7 Sulphur-Sulphur and Selenium-Selenium (S-S and Se-Se) 

Palladium 

Organochalcogens are known to exhibit a range of pharmacological activity profiles 

including as potential anticancer,[151] anti-inflammatory,[152] and antibacterial agents.[153] 

The introduction of chalcogens into alkynes to form 1,2-bis(chalcogen)alkenes is 

challenging. The formation of 1,2-bis(chalcogen)alkenes often requires the use of heavy 

metals, high temperatures, and results in a mixture of stereoisomers. Such methods 

include the reaction vinyldichlorides with thiolate anions,[154] and radical reactivity 

between chalcogen species and alkynes.[155] The transition metal catalysed addition of 

dichalcogens to alkynes is a possible alternative to synthesizing 1,2-

bis(chalcogen)alkenes in a stereoselective and atom economical manner.  

Sonoda reported the first palladium mediated addition of diaryl disulphides and 

diselenides to terminal alkynes to yield the corresponding Z-1,2-bis(arylthio) and Z-1,2-

bis(arylseleno)-1-alkenes (1.91), respectively (Scheme 1.55). This protocol tolerated 

functionalities such as hydroxyl, trimethylsilyl and amino groups. The inclusion of a 

carbon monoxide (CO) atmosphere in these reactions lead instead to the isolation of the 

carbonylative addition adducts Z-1,3-bis(arylchalcogen)-2-alken-1-ones (1.92) (Scheme 

1.55). A stepwise attempt at carbonylation of 1.91 with CO to yield 1.92 resulted in 
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isolation of only 1.91, suggesting that CO insertion was part of dichalcogen additions in 

the first instance. [156] 

 

 

 

 

 

 

 

 

 

Scheme 1.55 Dichalcogen and carbonylative dichalcogen additions to alkynes 

 

Gareau and co-workers established a procedure that effectively introduced ‘dialkyl’-

disulphides in the dithiolation of alkynes. Upon protecting the disulphide with a bulky 

silyl group, the dithiolation of terminal alkynes with bis(triisopropylsilyl)disulphide 

resulted in the isolation of the corresponding Z-1,2-bis(thio)alkenes (1.93). Subsequent 

treatment with tetra-nbutylammonium fluoride (TBAF) in the presence of excess methyl 

iodide (MeI) deprotected/alkylated the sulphur atoms affording 1.94 (Scheme 1.56).[157] 

Additionally, Gareau investigated the reactivity of 1.93 towards other electrophiles 

including halides, epoxides and acyl chlorides.[158] Furthermore, treatment of 1.93 with 

HCl in the presence of a Lewis acid ([Zn{OTf}2]) yielded the bicyclic adducts 2,5,7-

trithiabicyclo[2.2.1]heptane (1.95, Scheme 1.57).[159] 

Beletskaya and co-workers reported an alternative methodology in the addition of S-S 

and Se-Se bonds to alkynes. Diphenyl disulphide (Ph2S2) and diphenyl diselenide  
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Scheme 1.56 Synthesis of Z-1,2-bis(methylthio)alkenes via silyl-protected dichalcogens 

 

 

 

 

 

Scheme 1.57 Reactivity of 1.93 with acid/Lewis acid combination forming 2,5,7-

trithiabicyclo[2.2.1]heptane adducts 

 

(Ph2Se2) were reacted with a variety of terminal alkynes in the presence of catalytic 

quantities of [Cl2Pd (PPh3)2], PhEH (E = S or Se) and triethylamine (NEt3) to yield Z-1,2-

bis(arylthio) and Z-1,2-bis(arylseleno)-1-alkenes. Both PhEH and NEt3 were essential for 

the success of the reaction. The yields increased on the addition of excess PPh3, which 

contradicts the general trend observed for other E-E additions to alkynes within the 

literature.[160] It was later shown that excess PPh3 prevented the rapid polymerization to 

[Pd(EAr)2]n and therefore the inhibition of the palladium catalyst.[161] 

Beletskaya also reported the dithiolation of terminal alkynes utilizing a Pd(0) catalyst 

supported by a triphenylphosphine resin under conventional,[162] and microwave heating 

conditions.[163] Simple filtration resulted in the isolation of the Z-1,2-bis(thio)-1-alkenes. 
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This approach was not applicable to diaryl diselenides. Other palladium(0) supported 

mediators for the dithiolation of terminal alkynes include the MCM-41-supported 

bidentate phosphine Pd(0) catalyst reported by Cai. [164] 

 

Iron 

Zeni described the addition of diorganyl diselenides and disulphides to terminal alkynes 

in the presence of an iron(III) chloride (FeCl3) catalyst. The best results were observed 

using diaryl diselenides bearing neutral electron-donating and withdrawing groups. The 

electronic nature of the terminal alkyne substituent did not have an effect on the rate or 

yield of the reaction.[165] Iron catalysed addition to 1,4-butyn-diols, pentyne-1,5-diol and 

4-amino butynol afforded 3,4-bis(organochalcogen)-2,5-dihydrofurans (1.96), 4,5-

bis(organochalcogen)-3,6-dihydro-2H-pyrans (1.97) and 2,5-dihydro 1H-pyrrole 

derivatives (1.98), respectively, under mild aerobic conditions (Scheme 1.58).[166] 1,3-

Diynes in the presence of dibutyl diselenide or dimethyldisulfide and stoichiometric 

quantities of FeCl3 yielded symmetrical and unsymmetrical 3,4-

bis(butylselanyl)chalcogenophanes (1.99). In the synthesis of the selenophanes 1.99, the 

cyclization was stereoselective providing exclusively the desired E-selenoenynes as 

intermediates. The selenophanes then formed via an intramolecular 5-endo-dig 

cyclization.[167]  

 

Copper 

The addition of the catalytic mixture of CuI, zinc dust and glycerol resulted in the 

stereoselective addition of diaryl dichlcogenides to form a variety of E-1,2-bis-chalcogen 

alkenes (1.100) (Scheme 1.59). Zinc and glycerol were essential to the reaction; Zn 
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reduced Cu(I) to Cu(0) while glycerol acted as a solvent, but also as a possible reducing 

agent for the reduction of Zn(II) to Zn(0).[168] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 1.58 Synthesis of bis(organochalcogen)-dihydrofurans, dihydro-2H-pyrans, 

dihydro 1H-pyrroles and selenophanes 
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Scheme 1.59 Copper catalysed E-dithiolation and diselenation of terminal alkynes 

 

 Nickel 

The only examples of nickel-catalysed diaryldisulphide addition to alkynes were 

developed by Beletskaya and co-workers. The use of 3 mol% [Ni(acac)2] and 30 mol% 

PMePh2 at 100 oC under solvent-free conditions resulted in the stereoselective 

dithiolation of both internal and terminal alkynes to form Z-dithiolated alkene products. 

The reaction temperature was important: too low meant incomplete reactivity and too 

high led to a mixture of stereoisomers.[169]  

 

Rhenium 

The stoichiometric reaction between the tetrathiometallate anion [ReS4]
˗ and 

diphenylacetylene, 2-butyne and bis(trimethylsilyl)acetylene in the presence of elemental 

sulphur yielded the dithiolation adducts 1.101 (Scheme 1.60).[170] 

 

 

 

 

Scheme 1.60 Rhenium mediated stoichiometric dithiolation of internal alkynes 
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Rhodium 

Yamaguchi and co-workers showed that it was possible to dithiolate terminal alkynes 

using the dialkyl disulphide, Bu2S2, employing catalytic quantities of a Rh-phosphine 

complex, tris(p-methoxyphenyl)phosphine and trifluoromethane sulfonic acid affording 

the corresponding Z-bis(alkylthio)alkenes (1.102) (Scheme 1.61). A range of 

functionality at the terminal alkyne substituent was accessible including hydroxyl, tert-

butyldimethylsiloxy and nitrile. However, internal alkynes were not accessible with this 

protocol.[171]  

 

 

 

 

 

 

Scheme 1.61 Rhodium(I) catalysed dithiolation of terminal alkynes 

 

Yamaguchi and co-workers extended their studies to the addition of disulphides and 

diselenides to alkynes in cross-over experiments. A 1:1 mixture of diaryl disulphides and 

diaryl diselenides were reacted with terminal alkynes using the same Rh-complex and 

1,1’-bis(diphenylphosphino)ferrocene (dppf). This resulted in the formation of Z-1-

arylseleno-2-(arylthio)-1-alkenes (1.103) as the major product (Scheme 1.62). The 

amounts of minor products Z-2-arylseleno-1-(arylthio)-1-alkene, Z-1,2-

bis(arylthio)alkene and Z-1,2-bis(arylseleno)alkene were insubstantial. However, the 

minor product ratio became significant upon removal of trifluorosulfonic acid or when 

increasing the steric hindrance surrounding the alkynes.[172] 



57 
 

 

 

 

 

 

 

Scheme 1.62 Cross-over addition of diphenyldisulphide/diselenide to terminal alkynes 

 

1.2.8 Sulphur-Silicon (S-Si) 

Gold 

Nakamura and co-workers reported the AuCl-catalysed cyclization of (o-

alkynylphenylthio)silanes (1.104) to form the corresponding 3-silylbenzo[b]thiophenes 

(1.105). The reaction was proposed to proceed initially by coordination of the gold species 

to the alkynyl moiety. The sulphur atom then acts as an intramolecular nucleophile, 

attacking the electron deficient alkyne which results in a silylsulfonium intermediate. 

Subsequently, [1,3]-migration of the silyl group and elimination of AuCl yielded 1.105 

(Scheme 1.63). The yield was highly dependent on the nature of the alkyne substituents 

with electron rich aromatic rings producing higher yields than electron poor or bulky 

groups (which inhibited the reaction).[173]  

 

1.2.9 Sulphur-Boron (S-B) 

Palladium 

Suzuki and Miyuara reported the palladium(0) catalysed thioboration of terminal alkynes 

employing 9-(alkylthio)-9-borabicyclo[3.3.1]nonane to produce 9-[Z-2-(alkylthio)-1-

alkenyl]-9-borabicyclo[3.3.1]nonane derivatives. These reactions were highly regio-  
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Scheme 1.63 Gold(I) catalysed cyclization of (o-alkynylphenylthio)silanes 

 

and stereoselective with the boryl group adding to the terminal carbon in all cases. The 

reactions were sufficiently mild that a variety of functionalities were tolerated.[174] 

 

1.2.10 Germanium-Germanium (Ge-Ge) 

Palladium 

In contrast to Si-Si and Sn-Sn bonds, the insertion of alkynes into Ge-Ge bonds has been 

investigated to a much lesser extent. The resulting compounds are expected to have a 

reactivity profile somewhere in-between their Si-Si and Sn-Sn analogues. The majority 

of alkyne digermylations in the literature are palladium catalysed. The first example was 

reported by Ando and co-workers. In their work, a strained cyclic digermirane was reacted 

with acetylene and dimethyl acetylenedicarboxylate in the presence of 10 mol% 

[Pd(PPh3)4] resulting in the formation of the digermacyclopentene 1.106. When X was  a 
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sulphur atom, it was possible to selectively cleave the Ge-S bond to afford 1.107 (Scheme 

1.64).[175]  

 

Scheme 1.64 Linker-atom dependent addition strained digermane to alkynes 

 

Mochida and co-workers reacted 1,1,2,2,3,3,4,4-octaisopropyltetragermetane ({iPr2Ge}4) 

with various terminal alkynes in the presence of palladium complexes to synthesise 

1,2,3,4-tetrahydro-1,2,3,4-tetragermins (1.108), 4-1,2,3-trigemolene (1.109) and 1H-

germoles (2,4-, 3,4- and 2,3-disubstituted) (1.110) (Scheme 1.65). The yields of 1.109 

and 1.110 increased with time and this was attributed to the thermoylsis of 1.108 in the 

presence of excess alkyne. The formation of 1.109 from 1.108 suggested extrusion of 

diisopropylgermylene (iPr2Ge:), which was readily trapped by two equivalents of alkyne 

to give 1.110.[176] 

In 1991, Tanaka reported the first use of linear non-strained digermanes in digermylation 

of alkynes. 1,2-Dichloro-1,1,2,2-tetramethyldigermane was reacted with phenylacetylene 

in the presence of a palladium(0) catalyst to form 1.111 (Scheme 1.66). The extension of  
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Scheme 1.65 Addition of a tetragermetane to internal alkynes 

 

the protocol to hexamethyldigermane resulted in very low conversions.[177] Following 

studies detailed the conversion of 1.111 to 1,2-digermacyclobut-2-enes (1.112) by 

reductive cyclization in the presence of sodium metal. The treatment of 1.112 with 

alkynes in the presence of palladium catalysts resulted in the digermylation and the 

formation of the corresponding 1,4-digermacyclohex-2,5-dienes 1.113 and 1.114 

(Scheme 1.66).[178] 

 

 

 

 

 

 

 

 

 

 

Scheme 1.66 Digermylation, reductive cyclization and digermylation employing 

dichlorodigermanes and terminal alkynes 
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Platinum 

The digermylation of terminal alkynes with hexamethyldigermane has only been 

accessible employing a platinum catalyst at 120 oC, affording the corresponding Z-1,2-

bis(trimethylgermyl)ethenes (1.115) (Scheme 1.67). Lowering the temperature resulted 

in deterioration of the yields.[179] Internal alkynes were unreactive. 

 

 

 

 

 

Scheme 1.67 Platinum-catalysed digermylation of alkynes with hexamethyldigermane 

 

1.2.11 Germanium-Tin (Ge-Sn) 

Palladium 

Piers and co-workers reported the germylstannation of α,β-acetyleneic esters with 

Bu3SnGeMe3 to afford E-2-(tri-nbutylstannyl)-3-(trimethylgermyl)alk-2-enoates (1.116) 

as the major product. The reactivity of the resulting germyl and stannyl groups were 

separately assessed. 1.116 was treated with nBuLi and an alkyl halide to form 1.117 via 

the transmetallation of Bu3Sn. The germyl moiety was also transformed into a C-I bond 

upon addition of iodine (Scheme 1.68).[180] 

Nakano reported the synthesis of Z-1-aryl-2-germyl-1-stannylethenes (1.118) by the 

addition of tributyl(triethylgermyl)stannane to aryl terminal alkynes in the presence of 

catalytic amounts of [Pd(dba)2] and 4-ethyl-1-phospha-2,6,7-trioxabicyclo[2.2.2]octane 

(Scheme 1.69). This protocol was extended to ethynylthiophene and 2-methyl-3-butyn-

2-ol. The germyl group regioselectively added to the terminal carbon.[181] 
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Scheme 1.68 E-Germylstannation of α,β-acetyleneic esters 

 

 

 

 

 

 

Scheme 1.69 Z-Germylstannation of aryl terminal alkynes 

 

1.2.12 Germanium-Boron (Ge-B) 

Nickel, Palladium and Platinum 

In their investigation into the silaborative dimerization of alkynes catalysed by nickel 

complexes, Ito and co-workers reported the analogous germylborane reaction. The 

products obtained in the germylboration of 1-hexyne were highly dependent on the metal 

catalyst used. In the presence of [Ni(acac)2]/DIBALH the germylborated dimerized 

product 1.119 was obtained. By altering the catalyst to [Pd(OAc)2]/isocyanide a 1:1 
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mixture of 1.119 and the germylboration adduct 1.120 was isolated, whereas catalytic-

quantities of Pt(PPh3)2(C2H4) resulted in exclusively 1.120 (Scheme 1.70).[122] 

 

 

Scheme 1.70 Catalyst-dependent germylboration of 1-hexyne 

 

1.3 Carbenes 

Carbenes are electronically neutral divalent carbon atoms with 6 valence electrons. This 

term is derived from the parent hydride, methylene (H2C:), whose synthesis was first 

attempted by Dumas and Regnault in the dehydration of methanol.[182] Early carbenes 

were generally very reactive species with half-lives less than 1s,[183–185] and their existence 

was often alluded to by the use of low temperature matrix isolation spectroscopy,[186–188] 

or trapping reagents.[189–193] Isolable or persistent carbenes are now prominent in the 

literature.[194,195] The following sections will focus on the properties, synthesis and the 

transition metal complexes of this set of carbenes with particular emphasis on the largest 

subgroup, N-heterocyclic carbenes (NHCs). 
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1.3.1 Stable Carbenes – Electronic and Steric Properties 

The divalent carbon atom of carbenes (R2C:) possesses four bonding and two non-

bonding electrons.[196] The geometry surrounding the central carbon is heavily dependent 

upon the degree of hybridization and ranges from linear to bent. This shape is linked to 

the ground-state multiplicities of the carbene and the reactivity modes it exhibits.  A linear 

geometry suggests sp-hybridization and two degenerate p-orbitals (px and py). As this 

geometry bends to angles <180o sp2-hybridization dominates and the degeneracy of the 

px and py orbitals is lost. In this instance, the py (pπ) remains unchanged and the px (σ) 

orbital is stabilized due to an increase in its s-character. Linear carbenes are extreme cases 

and variations in the bent geometry are often observed.[195] Four electronic configurations 

involving the non-bonding electrons can be envisaged for a bent carbene. These electrons 

can be paired with opposite spins in either the σ or pπ orbitals giving rise to a singlet state. 

The two non-bonding electrons can also singly occupy the σ and pπ orbitals with parallel 

spins otherwise known as a triplet state.[197] The final electronic configuration is deemed 

an excited singlet state with the non-bonding electrons again singly occupying the σ and 

pπ, but with opposite spins (Figure 1.4). 

 

 

 

 

Figure 1.4 carbene electronic configurations – singlet and triplet states 

 

The ground-state multiplicity of the carbene controls its reactivity.[198] Singlet carbenes 

possess a filled and empty set of frontier orbitals. They are therefore described as 

ambiphilic demonstrating both electrophilic and nucleophilic tendencies. Triplet carbenes 
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have two singly occupied molecular orbitals (SOMOs) and are regarded to react in a 

biradical fashion. Hoffmann calculated that a carbene singlet ground state is favoured 

when the σ-pπ separation is at least 2 eV and a triplet ground state is favoured when this 

separation is <1.5 eV.[199] Tuning of the σ-pπ energy gap is possible by altering the 

electronic and steric properties of the substituents attached to the carbene carbon. 

Harrison and co-workers reported that manipulations to the inductive properties of the 

carbene substituents modified the favoured ground state multiplicity.[200] It was 

demonstrated that fluorine substituents with a greater σ-electron withdrawing character 

inductively stabilized the σ-orbital on the carbene carbon atom by the introduction of 

more s-character (leaving pπ unchanged).[201] A singlet ground state was therefore 

favoured, with the singlet to triplet state energy gap approximately 45 kcal mol-1. On 

changing the substituents to two lithium atoms, σ-donating substituents, a lowering of the 

σ-pπ energy gap was observed and a triplet state was favoured by 23 kcal mol-1.[200] 

Mesomeric effects tend to be more significant in influencing the ground state multiplicity. 

When the carbenic carbon has for example, two π-donating substituents (e.g. -NR2 and -

OR) it exhibits a singlet state. The substituents’ lone pairs symmetrically overlap with the 

vacant pπ-orbital increasing its energy and therefore the σ-pπ separation (Figure 1.5). 

 

 

 

 

 

Figure 1.5 Orbital diagram of carbenic carbon with adjacent π-donating substituents 
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If electronics are negligible, then steric effects dictate the ground state multiplicity of the 

carbene. Increasing the steric bulk around the carbenic carbon forces the geometry 

towards 180o (linear) and a triplet state multiplicity.[202,203] Although the triplet state is 

slightly destabilized by the expansion of this angle, the singlet state is destabilized to a 

much greater extent.  

 

1.3.2 N-Heterocyclic Carbenes: Background and Synthesis 

N-Heterocyclic carbenes (NHCs) are defined as heterocyclic species containing a 

carbenic carbon with at least one adjacent nitrogen atom. The 5-membered imidazole 

based carbenes are the most widely studied form, although 4,[204] 6 and 7-membered 

analogues are known (Figure 1.6).[205]  

 

 

 

 

 

 

Figure 1.6 General structure of 4, 5, 6 and 7-membered N-heterocyclic carbenes 

 

Early attempts at synthesizing NHCs were reported by Wanzlick,[206,207] and Ӧfele 

(Scheme 1.74).[208] However, these accounts were limited to coordination complexes of 

transition-metals or carbene dimers in order to stabilize the carbenic carbon.  
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Scheme 1.74 Wanzlick and Ӧfele synthesis of NHC-transition metal complexes 

 

The first isolation of a stable free-NHC was reported by Arduengo in the form of 1,3-di-

1-adamantyl-imidazol-2-ylidene (1.127).[209] The kinetic and thermodynamic stability of 

1.127 was attributed to the steric bulk provided by the adamantyl moieties as well as the 

π-donating and σ-withdrawing abilities of the two nitrogen- atoms. This discovery ignited 

rapid growth of this research area and now a variety of stable NHCs with diverse steric 

and electronic properties are assessable.[210] Synthesis of isolable NHCs include: base 

deprotonation of imidazolium,[211] and dihydroimidazolium salts,[212] vacuum thermolysis 

to liberate methanol from 5-methoxytriazole,[213] and reductive desulfurization of 

imidazole-2-thiones (Scheme 1.75).[214]  
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Scheme 1.75 Synthesis of NHCs 

 

1.3.3 N-Heterocyclic Carbene: Bonding to Transition-Metal Centres 

NHCs are capable of forming a σ-bond with transition-metal centres (TM) via an NHC 

based nucleophilic lone pair. By adjusting the NHCs steric and electronic properties it is 

possible to tune the reactivity profile of the resulting NHC-TM complexes. Electron 

donating substituents (e.g. alkyl) on the N-atoms and/or at the C4 and C5 positions 

increases the strength of the σ-donation to and thus electron density at the TM 
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centre.[215,216] Alternatively, electron-withdrawing groups (e.g. aryl or halogens, 

respectively) decrease this σ-donation. Altering the steric bulk of substituents at the N-

atoms allows for modification of the reactive pocket size and therefore the facile nature 

of reactivity pathways (e.g. oxidative addition and reductive elimination), as well as the 

stability of the TM centre.[217] The steric bulk of NHCs is measured and quantified by the 

percent buried volume model, which is defined as the percent of the total volume of a 

sphere occupied by a ligand at a fixed M-L bond length. This method allows for a 

quantitative comparison between the coordination complexes of NHC ligands with 

varying steric properties and can be extended to tertiary phosphine analogues.[217]   

 

 

 

 

Scheme 1.76 Percent buried volume 

 

Initially, NHCs were considered to bind to metals purely in a σ-donating fashion. It has 

since been shown that NHCs also accept electron density from the metal centre into the 

π*-orbitals and this is calculated to account for 15-30% of the overall bonding 

energy.[218,219]  

 

1.3.4 N-Heterocyclic Carbene-Palladium Complexes in Organic Transformations 

NHC-TM complexes are abundant within the literature and are exploited in an array of 

stoichiometric and catalytic transformations. In particular, palladium examples are the 

largest sub-group. The reactivity of NHC-palladium complexes is vast and includes 

chemo- and stereoselective hydrogenation of alkynes,[220] diboration of styrenes,[221] 
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polymerization and telomerisation reactions,[222,223] cross-coupling (Suzuki-Miyaura,[224] 

Mizoroki-Heck,[225] Buchwald-Hartwig,[226] Sonagashira,[227] to name a few), oxidation 

reactions,[228] and C-H activation (Scheme 1.77).[229] 

 

Scheme 1.77 Representative examples of NHC-Pd complexes used in organic synthesis 
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1.3.5 N-Heterocyclic Carbenes versus Phosphines 

NHCs have replaced phosphines as ancillary ligands in many organometallic/organic 

reactions. NHCs have been shown to be stronger σ-donors than the most common 

phosphines – this enhances the electron density at the TM centre and for example, enables 

more favourable rates of oxidative addition.[230] The strong bonds between NHCs and 

metals means NHC-TM complexes are less prone to ligand dissociation, therefore 

increasing the thermal and hydrolytic durability of the TM complex and reducing the need 

for excess ligand.[231] NHC salts are easy to prepare on large scales and are stable without 

decomposition in air, whereas phosphines degrade at higher temperature and often oxidise 

under aerobic conditions. The structural versatility of NHCs versus phosphines results in 

a greater ability to fine tune and modify the resulting NHC-TM complexes. This 

culminates in more facile introduction of chirality, stability and immobilisation, as well 

as precise altering of reactivity to suit the chemical needs.[232] 

 

1.4 Aim of This Thesis 

The above review demonstrates that a range of element-element additions to alkynes are 

feasible employing transition-metal mediators with complexes of the type PdL2 (L = 

phosphines or isocyanides), the most widely utilized. N-Heterocyclic carbene-palladium 

species are much more effective in a variety of organic transformations than their 

phosphine analogues. Yet, they have not been successfully exploited in the hetero 

element-element addition to alkynes and other unsaturated bonds. 1,3,4,5-

Tetramethylimidazol-2-ylidene (ITMe) is an interesting NHC that demonstrates a low 

percent buried volume and high σ-donating character.  Consequently, the bis-NHC-Pd0 

complex [Pd0(ITMe)2] (1.134, Figure 7) is expected to exhibit a unique reactivity profile.  
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Figure 7 Structure of [Pd(ITMe)2] 

 

However, limitations in synthetic routes to 1.134, such as harsh reaction conditions or 

coordination of ligands that deactivate the metal centre,[233,234] have resulted in an 

unexplored assessment of its reactivity. The following chapters will aim to demonstrate 

a facile synthetic route to 1.134 that overcomes these constraints and subsequently 

1.134’s ability to mediate, stoichiometrically and catalytically, the element-element’ 

additions to alkynes and other unsaturated bonds in an unprecedented manner. 
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Chapter 2 

Synthesis of [(N-Heterocyclic Carbene)2Pd(SiR3)2] Complexes: Catalytic cis-

Bis(silyl)ations of Alkynes with Unactivated Disilanes 

 

2.1 Introduction 

The transition metal catalysed activation of disilanes for the synthesis of high-value 

organosilicon compounds has received a significant amount of attention from industry 

and academia. Applications encompass the formation of silanes,[1] bis(silyl)ation of 

unsaturated compounds,[2–4] aryl/acyl silane synthesis,[5,6] and protection of alcohols.[7] 

Since the oxidative cleavage of the Si-Si bond by a low-valent platinum-group transition-

metal centre is proposed as a vital step for some of these processes,[8,9] the isolation of the 

resulting bis(silyl) transition-metal complexes is of great interest for elucidating reaction 

mechanisms. Unfortunately, the synthesis of such complexes has been largely limited to 

the oxidative addition of strained or activated disilanes.[10–12] 

The cleavage of non-activated hexamethyldisilane (Me3SiSiMe3) is particularly 

challenging.[13,14] Examples of the resulting bis(trimethylsilyl) platinum-group metal 

complexes are rare: only two have been described in the literature, and bear either 

phosphine or isocyanide ligands. Braun and co-workers reported that [Pt(PEt3)3] reacted 

with a large excess of Me3SiSiMe3 to yield cis-[Pt(PEt3)2(SiMe3)2] at ambient 

temperature, but it only went to 50% completion after three weeks.[15] Earlier, Ito and co-

workers synthesized cis-[Pt(CNAd)2(SiMe3)2] (CNAd = 1-adamantyl isocyanide) from 

[Pt3(CNAd)6] using 30 equivalents of Me3SiSiMe3 at 80 oC.[16] Prior to this work there 

were no examples in the literature of palladium complexes capable of this reaction. 

As described in Chapter 1, it is well documented that N-heterocyclic carbenes (NHCs) 

have equivalent or better σ-donor character than the most common phosphines and that 
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NHC/M complexes (M = metal) are less prone to decomposition by cleavage of the 

(NHC)-M bond.[17–21] These properties increase the propensity of the corresponding 

NHC-palladium complexes towards oxidative cleavage of hetero element-element’ 

bonds. Herein the synthesis of a (NHC)2Pd(SiMe3)2 complex and its inclusion in a 

catalytic cycle leading to the cis-bis(silyl)ation of alkynes is reported. 

 

2.2 Synthesis of cis-[Pd(ITMe)2(SiMe3)2] 

2.2.1 Synthesis of ITMe 

While very recent literature on NHC-Pd complexes features the use of large NHCs as a 

common denominator,[22–24] attention was instead turned to one of the smallest NHCs 

available, that is, 1,3,4,5-tetramethylimidazol-2-ylidene (ITMe; 2.1). ITMe exhibits a 

very small percent buried volume and a high σ-donor character.[25] The conventional 

synthetic route to 2.1 was established by Kuhn and co-workers.[26] It involves the 

formation of the corresponding thione by a ring-forming double condensation of N,N’-

dimethyl-thiourea and acetoin, and subsequent reductive desulfurization of the thione 

using potassium metal, with an overall yield of about 76%. A thorough modification of 

the synthetic protocol, including a microwave-mediated cyclization step, allowed 2.1 to 

be obtained in 86% overall yield even on a gram scale (Scheme 2.1).[27] 

 

Scheme 2.1 Modified synthesis of ITMe (2.1) 
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2.2.2 Synthesis of [(ITMe)Pd(methallyl)Cl] 

The second step involved the synthesis of [(ITMe)Pd(methallyl)Cl] (2.2). The synthesis 

of this complex has not been reported, although unsuccessful attempts were detailed by 

Cavell and co-workers.[28] The conventional synthetic route to [(NHC)Pd(R-allyl)Cl] 

species involves the reaction of the corresponding [Pd(R-allyl)Cl}2] dimer with a free 

NHC.[29,30] It was found that reacting [{Pd(methallyl)Cl}2] with a slight excess of 2.1 in 

toluene, initially led to the formation of 2.2 in 95% yield (Scheme 2.2). The reaction was 

solvent and temperature dependent with more polar solvents, such as THF, and higher 

reaction temperatures resulting in the precipitation of elemental palladium.  

 

 

 

 

Scheme 2.2 Synthesis of [(ITMe)Pd(methallyl)Cl] (2.2) 

 

2.2.3 Synthesis of [Pd0(ITMe)2] and in situ Synthesis of cis-[Pd(ITMe)2(SiMe3)2] 

[Pd0(ITMe)2] (2.3) has been proposed as the active catalytic species in a number of 

reactions.[31] The only reported synthesis of 2.3 was achieved through metal vapor 

synthesis (MVS).[32] Recently, Fantasia and Nolan used [(NHC)Pd(allyl)Cl] complexes 

as precursors to easily synthesize a series of [Pd0(NHC)2] complexes,[33] suggesting that 

the solvent employed in these reactions (isopropanol) was also a reagent and essential to 

the mechanism of these transformations. The authors proposed that the isopropoxide 

anion, generated from deprotonation of isopropanol by tBuOK, replaces the chloride in 

[(NHC)Pd(allyl)Cl] to form 2.I1. The coordinated isopropoxide subsequently undergoes 
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a β-elimination to form acetone and 2.I2. 2.I2 then undergoes facile reductive elimination 

to 2.I3. Coordination of an NHC ligand results in [Pd0(NHC)2] (Scheme 2.3).[34]     

 

 

 

 

 

 

 

 

 

Scheme 2.3 Proposed mechanism for formation of [Pd0(NHC)2] from 

[(NHC)Pd(allyl)Cl][33] 

 

Unfortunately, the application of this methodology to the synthesis of 2.3 resulted in the 

precipitation of large quantities of Pd black. Modifying this procedure by using 

isopropanol in stoichiometric quantities resulted in the first solution-based synthesis of 

2.3, which was formed as a yellow crystalline precipitate. Its isolation, however, proved 

difficult because of its limited solubility in toluene, THF and pyridine, and its instability 

in alcohols or halogenated solvents. Consequently, the reaction mixture was directly 

reacted with Me3SiSiMe3 at room temperature for 18 hours. cis-[Pd(ITMe)2(SiMe3)2] 

(2.4) was collected as an off-white solid in 62% yield (Scheme 2.4). Single crystals of 2.4 

were isolated from a saturated solution of toluene at 30 oC, and X-ray analysis revealed 

that 2.4 displays a marginally distorted square-planar geometry with the two NHCs in a 

cis-configuration and orthogonal to the Si-Pd-Si plane (Figure 2.1). The Pd-Si bond 
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lengths are comparable to those found in similar complexes such as cis-

[(dcpe)Pd(SiMe2H)2] (dcpe = 1,2-bis(dicyclohexylphosphino)ethane).[8]  

 

Scheme 2.4 Formation of [Pd0(ITMe)2] and in situ oxidative cleavage of Me3SiSiMe3 

yielding 2.4 

 

 

 

 

 

 

 

 

 

Figure 2.1 Molecular structure of 2.4 with thermal ellipsoids at the 50% probability level. 

Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [o]: Pd-Si1 

2.3557(6), Pd-Si2 2.3468(6), Pd-C7 2.102(2), Pd-C14 2.119(2); Si1-Pd-Si2 88.65(2), 

Si1-Pd-C14 88.44(6), Si2-Pd-C7 88.74(6), C7-Pd-C14 94.74(8). 

 

Attempts at oxidative cleavage of Me3SiSiMe3 utilizing other NHC-Pd complexes were 

unsuccessful. [(ITMe)2Pd0(ma)] (2.5; ma = maleic anhydride), synthesized from the 



92 
 

reaction of two equivalents of 2.1 and [Pd0(cod)(ma)] (cod = 1,5-cyclooctadiene) and 

previously limited to oxidative cleavage of activated aryl halides,[31,35] in the presence of 

Me3SiSiMe3 afforded elemental palladium. The reaction of [(Pd0{IPr}{nq})2] (IPr = 1,3-

bis(2,6-diisopropylphenyl)imidazole-2-ylidene; nq = 1,4-naphthoquinone) and a slight 

excess of Me3SiSiMe3 at elevated temperatures did not result in oxidative addition of the 

disilane, but instead the thermal decomposition product,  [Pd(IPr)2] (2.6; Scheme 2.5). 

Pӧrschke and co-workers noted a similar decomposition route in the synthesis of 

monophosphine-Pd(1,6-diene) complexes.[36] 

 

Scheme 2.5 Thermal decomposition of [(Pd0{IPr}{NQ})2] to 2.6 

 

2.3 Stoichiometric Reactivity of cis-[Pd(ITMe)2(SiMe3)2] 

The reactivity of 2.4 was then investigated. A solution of 2.4 in C6D6 was heated to 85 oC 

and resulted in an intense yellow solution in less than 1.5 hours. 1H NMR analysis showed 

the formation of Me3SiSiMe3 and 2.3. The formation of these reductive elimination 

products was limited to 69% conversion, even upon increasing the temperature and 

heating time, probably because of the recombination of the two products to form 2.4 

(Scheme 2.6). 
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Scheme 2.6 Reversible reductive elimination of 2.4 to 2.3 and Me3SiSiMe3 

 

The bis(silyl)ation of disubstituted alkynes with Me3SiSiMe3 has not been previously 

reported. The stoichiometric reaction of 2.4 with diphenylacetylene at room temperature 

yielded the corresponding cis-bis(silyl)ated product 2.7 within 30 hours in a quantitative 

yield.[37] This reaction also resulted in the quantitative formation of the novel complex 

[(ITMe)2Pd(PhC≡CPh)] (2.8), which could be easily isolated after hexane extraction 

(Scheme 2.7).  

 

Scheme 2.7 Stoichiometric bis(silyl)ation of diphenylacetylene mediated by 2.4 

 

X-ray crystallography established the cis-configuration in 2.7 (Figure 2.2). Compound 

2.8 was fully characterized by NMR spectroscopy and elemental analysis. Single crystals 

of 2.8 were obtained from a saturated toluene solution upon cooling to 30 oC and the 

result of X-ray analysis is depicted in Figure 2.3, featuring a Y-shaped structure. There is 

a clear and expected elongation of the C≡C bond and a shortening of the C≡C- bond when  
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Figure 2.2 Molecular structure of 2.7 with thermal ellipsoids at the 50% probability level. 

Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [o]: C13-

C18 1.353(3); C3-C13-Si1 111.20(13), C18-C13-Si1 130.13(15) C18-C13-C3 

118.60(18), C10-C18-Si2 110.77(14), C13-C18-Si2 130.10(16), C13-C18-C10 

119.12(18).   
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Figure 2.3 Molecular structure of 2.8 with thermal ellipsoids at the 50% probability level. 

Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [o]: Pd-C1 

2.033(3), Pd-C6 2.029(3), C1-C6 1.290(4); C6-C1-C5 147.5(3), C1-C6-C25 146.03(3). 

 

compared to free diphenylacetylene.[38] Although analogous phosphine-group 10 metal 

complexes are known,[39–41] this represents the first example of an NHC-Pd0 complex 

bearing an η2-bound alkyne. This species can react with an excess of Me3SiSiMe3 at 50 

oC for over 5 days, resulting in the formation of 2.4 and 2.7 (Scheme 2.8). 

 

 

 

 

 

Scheme 2.8 Stoichiometric bis(silyl)ation of 2.8 yielding 2.4 and 2.7 
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2.4 Catalytic Bis(silyl)ation of Alkynes 

With all this information in hand, catalytic bis(silyl)ations of alkynes with Me3SiSiMe3 

were carried out. Diphenylacetylene and Me3SiSiMe3 were selected as model substrates 

for the initial optimization of the reaction parameters. A 100% stereoselective conversion 

into 2.7 (yield = 94%) was observed using 1 mol% of 2.4 (100 oC for 24 h in C6D6) (Table 

2.1).[37]  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.1 Catalytic bis(silyl)ation of internal and terminal alkynes employing 2.4 as a 

catalyst 
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This reaction is the first reported catalytic synthesis of 2.7. To test the versatility of 2.4 

towards a range of challenging electronic and steric factors surrounding the C≡C bond, a 

series of internal alkynes and non-activated disilanes were also used as substrates. For 

instance, the reaction of diphenylacetylene and excess of PhMe2SiSiMe2Ph yielded 

compound 2.9. The only synthesis reported for this compound involved the stoichiometric 

reaction of cis-[(PPh2Me)2Pt(SiMe2Ph)2] with diphenylacetylene.[42] The novel 

compounds 2.10, 2.11, 2.12 and 2.13 were all synthesized as Z-isomers from the 

corresponding unsymmetrical internal acetylenes and excess Me3SiSiMe3, as established 

by NOESY NMR experiments or X-ray crystallography (Table 2.1).  

Compound 2.12 was synthesized with greater than 90% conversion into the desired 

product. However, its isolation from the crude reaction mixture proved troublesome, and 

after numerous attempts a maximum of 41% of the desired compound was obtained. 

During spectroscopic analysis of 2.12, broad double resonances for the aromatic protons 

were noted in a 4:1 ratio, as deduced by the integration of these signals. A plausible 

rationale behind this observation is free-rotation around the two alkenes which results in 

two conformational isomers, 2.12a and 2.12b (Figure 2.4).[43]  

 

Figure 2.4 X-ray crystal structure and possible rotational isomers of 2.12 

 

A variable-temperature 1H NMR study was subsequently undertaken to determine the co-

existence of multiple conformers on the NMR time scale (Figure 2.5). At low 
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temperatures, ≤15 oC, all resonances sharpened with the multiplicity of the minor signals 

identical to the corresponding major signals. These data were consistent with the slowing 

down of the rotation rate around the alkenes. Upon elevating the temperature to ≥50 oC 

the minor isomer receded. This implied the rotation was sufficiently fast that energetically 

a single conformer was favoured, likely to be the least sterically hindered structure 

2.12a.[44,45] 

 

Figure 2.5 Variable-temperature 1H NMR spectra for 2.12 ranging from 15-80 oC 

 

The reaction of Me3SiSiMe3 with 1-phenyl-2-trimethylsilylacetylene resulted in the 

formation of 2.14 (49% yield), but it required a considerable increase in catalyst loading 

and reaction time. The only previous reported synthesis of 2.14 required either 

stoichiometric addition of Grignard reagents with acetylenes,[46] or the addition of methyl 

lithium to silyldisilacyclobutene.[47] The protocol was applied to a terminal alkyne, 

phenylacetylene, affording compound 2.15, which was synthesized in a yield comparable 

to that of the best catalytic protocol in the literature.[48] Unfortunately, the reaction of 

Me3SiSiMe3 with 2-heptyne and 3-(phenylethynyl)thiophene under these reaction 

conditions gave very low conversion into the desired products (<5%). On the other hand, 
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the reaction of Me3SiSiMe3 with dimethyl acetylenedicarboxylate resulted in the isolation 

of two products, the bis(silyl)ation alkene adduct 2.16 and the novel 1,4-disilyl diene 2.17 

(Scheme 2.9). To date, attempts to crystallize 2.17 remain unsuccessful and therefore the 

exact stereochemistry is unknown. Examples of palladium catalysed dimerization of 

dimethyl acetylenedicarboxylate are known in the literature, however, these are limited 

to the use of strained cyclic disilanes.[49,50] 

 

 

Scheme 2.9 Bis(silyl)ation of dimethyl acetylenedicarboxylate  

 

2.4.1 Proposed Catalytic Cycle for Bis(silyl)ation  

The results from the catalytic reactions and the isolation of 2.4 and 2.7 prompted the 

proposal of a catalytic cycle, in which 2.3 is the catalytic active species. This 14-electron 

species can oxidatively add Me3SiSiMe3, thus yielding 2.4, followed by a migratory 

insertion of the alkyne into a Pd-silyl bond to give the corresponding vinyl-palladium-

silyl complex.[51–53] This complex would be stabilized by a weak interaction between the 

silicon from the vinylsilyl moiety and the palladium centre,[54] thus allowing a 

stereoselective reductive elimination to yield 2.7. The coordination of diphenylacetylene 

to 2.3 affords 2.8, which could be considered the resting state of 2.3 (Scheme 2.10). This 

mechanism differs from what was known in the literature as it is proposed that the NHCs 

stay coordinated throughout the catalytic cycle. 
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Scheme 2.10 Proposed catalytic cycle with 2.3 as the active catalyst 

 

2.5 Synthesis of [(NHC)2Pd(SiR3)2] Analogues 

It was possible to extend the methodology in the synthesis of 2.4 to other non-activated 

disilanes. Replacing Me3SiSiMe3 with 1,1,2,2-tetramethyl-1,2-diphenyldisilane and 1,2-

bis(2-methoxyphenyl)-1,1,2,2-tetramethyldisilane afforded 2.18 and 2.19, respectively. 

2.18 was synthesized under the same conditions as 2.4 and was isolated with moderate 

yields (50%) (Scheme 2.11).  
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Scheme 2.11 Formation of 2.18 

 

Single crystals of 2.18 were acquired from a saturated toluene/benzene (10:1) solution at 

room temperature. The X-ray crystal structure of 2.18, like 2.4, exhibited a distorted 

square planar geometry with comparable bond angles surrounding the Pd centre. The 

carbenic carbon-Pd bond lengths were identical to 2.4 and the Pd-Si bond lengths were 

marginally shorter (≤0.01 Å) (Figure 2.6).  

 

 

 

 

 

 

 

 

 

Figure 2.6 Molecular structure of 2.18 with thermal ellipsoids at the 50% probability 

level. Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [o]: 

Pd-Si2 2.3445(8), Pd-Si3 2.3346(8), Pd-C8 2.105(3), Pd-C9 2.123(3); Si2-Pd-Si3 

89.81(3), C8-Pd-Si2 89.34(8), C9-Pd-Si3 89.68(8), C8-Pd-C9 92.60(11). 
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The synthesis of 2.19 required an elevated temperature of 60 oC on adding the disilane to 

2.3. An identical work-up procedure was employed to give 2.19 in a 63% yield (Scheme 

2.12). The isolation of single crystals that were suitable for X-ray analysis was 

unsuccessful. The cis-configuration was assumed based on the known structures of 2.4 

and 2.18.  

 

 

 

 

 

Scheme 2.12 Formation of 2.19  

 

The 13C{1H} NMR resonance for the carbeneic carbon in 2.4, 2.18 and 2.19 was 196.7, 

193.4 and 194.4 ppm, respectively. The insignificant differences between the X-ray 

crystallographic data and 13C{1H} NMR shifts did not give any indication as to the 

potential diversity in reactivity between these three complexes. The disilane, 1,2-

bis(dimethylamino)tetramethyldisilane, was not oxidatively cleaved by 2.3, an 

observation that was attributed to the high nucleophilic character of the amino groups.   

 

2.6 Conclusions 

In conclusion, the first NHC-bearing complex resulting from the oxidative addition of 

Me3SiSiMe3 to a palladium centre was synthesized under mild reaction conditions. This 

complex was used as a pre-catalyst for the bis(silyl)ation of electronically and sterically 

challenging internal acetylenes using non-activated disilanes. A series of novel 1,2-

disilylstilbenes were synthesized in high yield and with 100% Z-stereoselectivity. Much 
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of this work is published in Angewandte Chemie International Edition.[55] It was also 

possible to oxidatively cleave the Si-Si bond in other non-activated disilanes utilizing 2.3. 

Future work will include a comparative reactivity study into the ability of these complexes 

to mediate the bis(silyl)ation of alkynes.  

 

2.7 Experimental Details for Chapter 2 

General experimental details are given in appendix A1. 

2.7.1 Improved Synthesis of 1,3,4,5-tetramethylimidazol-2-thione 

A microwave vial was charged with N,N’dimethylthiourea (4.34 g, 41.67 mmol), acetoin 

(3.74 g, 42.43 mmol), 1 spatula of MgSO4 and 1-hexanol (60.0 mL). The resulting 

mixture was heated in the microwave at 185 oC for 20 mins (Dynamic mode – 300 W). 

After removing all volatiles, the resulting off-white solid was washed with cold diethyl 

ether (3 x 20.0 mL). Yield:  5.70 g, 76%. 1H NMR (399.5 MHz, C6D6): δH = 3.13 [s, 6H, 

N(1,3)-CH3], 1.25 [s, 6H, C(4,5)-CH3]. 1H NMR (499.9 MHz, CDCl3): δH = 3.55 [s, 6H, 

N(1,3)-CH3], 2.09 [s, 6H, C(4,5)-CH3]. 13C{1H} NMR (125.7 MHz, CDCl3): δC = 161.8 

[C(2)], 121.1 [C(4,5)], 32.3 [N(1,3)-CH3], 9.6 [C(4,5)-CH3]. 

 

2.7.2 Improved Synthesis of 1,3,4,5-tetramethylimidazol-2-ylidene (ITMe, 2.1) 

In an ampoule, 1,3,4,5-tetramethylimidazol-2-thione (1.50 g, 9.58 mmol) and potassium 

(0.95 g, 24.30 mmol) were suspended in 2-methyl THF (45.0 mL). The resulting reaction 

mixture was heated to 100 oC for 20 h. After cooling the mixture was filtered by an air-

sensitive frit, the volatiles were removed in vacuo and the resulting off-white solid was 

dried under vacuum. Yield: 1.02 g, 86%. 1H NMR (399.5 MHz, C6D6): δH = 3.37 [s, 6H, 

N(1,3)-CH3], 1.60 [s, 6H, C(4,5)-CH3]. 
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2.7.3 Synthesis of [(ITMe)Pd(methallyl)Cl] (2.2) 

[(Pd{methallyl}Cl)2] (0.44 g, 1.12 mmol) in toluene (20.0 mL) was cooled to 25 oC. A 

toluene (15.0 mL) solution of 2.1 (0.28 g, 2.225 mmol) was added dropwise over a 20 

min period. After stirring at 25 oC under an Ar atmosphere for 1 h, the reaction mixture 

was then allowed to warm to room temperature and stirred for a further 1.5 h. The solution 

was then filtered by cannula, volatiles were removed in vacuo and the pale brown-grey 

solid was washed with hexanes (3 x 10.0 mL). Yield: 0.68 g, 95%. 1H NMR (399.5 MHz, 

C6D6): δH = 4.18 [s, 1H, H2CCMeCH2], 3.27 [s, 6H, N(1,3)-CH3], 3.25 [s, 1H, 

H2CCMeCH2], 2.86 [s, 1H, H2CCMeCH2], 2.16 [s, 1H, H2CCMeCH2], 1.73 [s, 3H, 

H2CCMeCH2], 1.33 [s, 6H, C(4,5)-CH3]. 13C{1H} NMR (100.5 MHz, C6D6): δC = 178.7 

[C(2)], 124.6 [C(4,5)], 124.6 [H2CCMeCH2], 70.3 [H2CCMeCH2], 47.1 [H2CCMeCH2], 

35.1 [N(1,3)-CH3], 23.7 [H2CCMeCH2], 8.5 [C(4,5)-CH3]. Elem. Anal.: Calcd for 

C11H19N2ClPd: C, 41.10%; H, 5.96%; N, 8.72%. Found: C, 40.98%; H, 5.92%; N, 8.75%. 

 

2.7.4 Synthesis of cis-[Pd(ITMe)2(SiMe3)2] (2.4) 

In the glove box 2.2 (0.50 g, 1.55 mmol), tBuOK (0.17 g, 1.55 mmol) and 2.1 (0.20 g, 

1.57 mmol) were suspended in toluene (20.0 mL). An isopropanol (0.09 g, 1.55 mmol) 

toluene (5.0 mL) solution was added and the reaction mixture was stirred at room 

temperature for 4.5 h. Me3SiSiMe3 (1.14 g, 7.81 mmol) was then added and the solution 

stirred for a further 18 h. The mixture was then filtered by cannula, volatiles were 

removed in vacuo and the resulting off-white solid was washed with hexane (3 x 5.0 mL). 

Yield: 0.48 g, 62%. 1H NMR (399.5 MHz, C6D6): δH = 3.35 [s, 12H, N(1,3)-CH3], 1.41 

[s, 12H, C(4,5)-CH3], 0.59 [s, 18 H, SiMe3]. 13C{1H} NMR (100.5 MHz, C6D6): δC = 

196.7 [C(2)], 123.6 [C(4,5)], 35.2 [N(1,3)-CH3], 9.5 [C(4,5)-CH3], 8.8 [SiMe3]. 29Si{1H} 
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NMR (79.4 MHz, C6D6): δSi = 0.46. Elem. Anal.: Calcd for C20H42N4Si2Pd: C, 47.93%; 

H, 8.45%; N, 11.18%. Found: C, 47.96%; H, 8.51%; N, 11.04%. 

Crystal data for 2.4: C20H42N4PdSi2, Mr = 501.15 g mol-1, triclinic, space group P-1 (no. 

2), a = 9.7136(4) Å, b = 10.2767(6) Å, c = 20.1800(7) Å, α = 91.163(5)o, β = 100.298(4)o, 

γ = 108.564(4)o, V = 1463.19(13) Å3, Z = 2, T = 173 K, λCu(Kα) = 1.5184, R1 [I > 2σ(I)] 

= 0.0271, wR2 (all data) = 0.0659, GooF = 0.996. 

 

2.7.5 Synthesis of [Pd0(cod)(ma)] 

[Pd2(dba)3] (0.40 g, 0.44 mmol), ma (0.17 g, 1.75 mmol) and 1,5-cyclooctadiene (0.54 

mL, 4.37 mmol) were suspended in dry acetone (10.0 mL). This reaction mixture was 

then left to stir under a N2 atmosphere at room temperature for 50 mins. The reaction 

mixture was then filtered via cannula and the solution was concentrated. Dry diethyl ether 

(10.0 mL) was then added and the mixture was cooled in an ice bath. The resulting yellow 

crystals were collected by filtration and dried in vacuo. Yield: 0.04 g, 15%. 1H NMR 

(499.9 MHz, {CD3}2CO): δH = 5.83 [m, 4H, cod-CH], 4.40 [s, 2H, ma-CH], 2.44 [m, 8H, 

cod-CH2]. 

 

2.7.6 Synthesis of [(ITMe)2Pd0(ma)] (2.5) 

To a stirred solution of [Pd0(cod)(ma)] (0.04 g, 0.11 mmol) in THF (5.0 mL) at 84 oC, a 

solution of 2.1 (0.03 g, 0.22 mmol) in THF (5.0 mL) was added dropwise over a 10-

minute period. The reaction mixture was stirred at ≤ 50 oC for 2 h under a N2 atmosphere. 

The reaction mixture was warmed to room temperature and concentrated. A pink solid 

precipitated upon the addition of dry diethyl ether (10.0 mL), it was collected by filtration 

and washed with dry diethyl ether (2 x 10.0 mL). Yield: 0.03 g, 66%. 1H NMR (499.9 

MHz, C6D6): δH = 3.91 [s, 2H, MAH-CH], 3.26 [s, 12H, N(1,3)-CH3], 1.34 [s, 12H, 
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C(4,5)-CH3]. 1H NMR (399.5 MHz, {CD3}2CO): δH = 3.62 [s, 12H, N(1,3)-CH3], 3.37 

[s, 2H, MAH-CH], 2.09 [s, 12H, C(4,5)-CH3]. 

 

2.7.7 Attempted Reaction of 2.5 with Me3SiSiMe3 

In a J Young tap NMR tube, 2.5 (0.003 g, 7.07 µmol) and Me3SiSiMe3 (0.011 g, 71.73 

µmol) were dissolved in C6D6 (0.7 mL). The reaction mixture was stirred at room 

temperature under an N2 atmosphere for 3 days and heated at 80 oC for 21 h. Visually, 

large quantities of elemental palladium started to form, and the absence of resonances in 

NMR spectrum suggested complete decomposition. 

 

2.7.8 Synthesis of [Pd0(IPr)2] (2.6) 

In a J Young tap NMR tube, [(Pd0{IPr}{nq})2] (0.002 g, 1.15 µmol) and Me3SiSiMe3 

(0.004 g, 28.70 µmol) were dissolved in C6D6 (1.0 mL). The resulting reaction mixture 

was stirred at room temperature for 24 h and heated at 80 oC for 5 days. After cooling, 

the solution was filtered through flame dried Celite, the filtrate volatiles were removed in 

vacuo and an orange solid was isolated. Yield: 0.001, 51%. 1H NMR (399.5 MHz, C6D6): 

δH = 7.29 [t, 3JHH = 7.8 Hz, 4H, p-PhH], 7.09 [d, 3JHH = 7.6 Hz, 8H, m-PhH], 6.22 [s, 4H, 

NHC-CH], 2.89 [sept, 3JHH = 7.0 Hz, 8H, CH(CH3)2], 1.21 [d, 3JHH = 7.0 Hz, 24H, 

CH(CH3)2], 1.12 (d, 3JHH = 7.0 Hz, 24H, CH(CH3)2]. 
13C{1H} NMR (125.7 MHz, C6D6): 

δC = 199.3 [NCN], 1.46.1 [PhC], 139.2 [PhC], 128.6 [p-PhCH], 123.4 [m-PhCH], 121.2 

[NHC-CH], 28.7 [CH(CH3)2], 25.2 [CH(CH3)2], 24.1 [CH(CH3)2]. 

 

2.7.9 Heating of 2.4 

In a J Young tap NMR tube a solution of 2.4 (0.01 g, 19.36 µmol) in C6D6 (0.7 mL) was 

heated in a heating block to 85 oC over 24 h. This resulted in partial reductive elimination 
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to 2.3 and Me3SiSiMe3. The maximum conversion to 2.3 and Me3SiSiMe3 was observed 

as 69% (suggested by integration of the SiMe3 resonances in the 1H NMR spectrum). 

Heating to higher temperatures (95 oC) did not supersede this conversion. A small 

quantity of Me3SiOSiMe3 was observed over times (9% of all SiMe3 present). 

2.3: 1H NMR (399.5 MHz, C6D6): δH = 3.93 [s, 12H, N(1,3)-CH3], 1.55 [s, 12H, C(4,5)-

CH3]. 

2.4: 1H NMR (399.5 MHz, C6D6): δH = 3.35 [s, 12H, N(1,3)-CH3], 1.42 [s, 12H, C(4,5)-

CH3], 0.58 [s, 18H, SiMe3]. 

Me3SiSiMe3: 
1H NMR (399.5 MHz, C6D6): δH = 0.08 [s, 18H, SiMe3]. 

Me3SiOSiMe3: 
1H NMR (399.5 MHz, C6D6): δH = 0.12 [s, 18H, SiMe3]. 

 

2.7.10 Synthesis of (Z)-1,2-diphenyl-1,2-bis(trimethylsilyl)ethene (2.7) and 

[Pd(ITMe)2(PhC≡CPh)] (2.8) 

Isolation of 2.8 

In an ampoule, a solution of 2.4 (0.05 g, 96.4 µmol) and diphenylacetylene (0.03 g, 193.0 

µmol) in C6D6 (5.0 mL) was stirred at ambient temperature for 30 h. The volatiles were 

then removed in vacuo. The resulting yellow solid was washed with hexane (3 x 10.0 

mL). Yield: 0.04 g, 70%. 1H NMR (399.5 MHz, C6D6): δH = 7.99 [dd, 3JHH = 9.1, 4JHH = 

1.3 Hz, 4H, m-C6H5], 7.27 [m, 4H, o-C6H5], 7.05 (tt, 3JHH = 7.3, 4JHH = 1.2 Hz, 2H, p-

C6H5], 3.49 [s, 12H, N(1,3)-CH3], 1.54 [s, 12H, C(4,5)-CH3]. 13C{1H} NMR (100.5 MHz, 

C6D6): δC = 198.7 [C(2)], 138.6 [C≡C], 130.1 [o-C6H5], 128.2 [m-C6H5], 126.3 [i-C6H5], 

124.2 [p-C6H5], 123.1 [C(4,5)], 35.2 [N(1,3)-CH3], 8.0 [C(4,5)-CH3]. Elem. Anal.: Calcd 

for C28H34N4Pd: C, 63.03%; H, 6.43%; N, 10.51%. Found: C, 62.87%; H, 6.56%; N, 

10.46%. 
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Crystal data for 2.8: C28H43N4Pd, Mr = 532.99 g mol-1, triclinic, space group P-1 (no. 2), 

a = 10.3873(6) Å, b = 11.4638(5) Å, c = 11.6798(5) Å, α = 68.640(4)o, β = 87.052(4)o, γ 

= 88.047(4)o, V = 1293.37(11) Å3, Z = 2, T = 173 K, λCu(Kα) = 1.5184, R1 [I > 2σ(I)] = 

0.0281, wR2 (all data) = 0.0702, GooF = 1.019. 

 

Isolation of 2.7 

The hexane washes from the previous reaction were concentrated down and washed with 

water (3 x 1.0 mL). The organic layer was collected and dried with anhydrous MgSO4. 

After filtering and washing the MgSO4 with hexane (3 x 5.0 mL). The filtrate’s volatiles 

were removed in vacuo to reveal a white crystalline solid. Melting point: 87.4 – 88.7 oC. 

Yield: 0.02 g, 59%. 1H NMR (399.5 MHz, C6D6): δH = 6.93 [m, 4H, o-C6H4], 6.76 [m, 

2H, p-C6H4], 6.69 [m, 4H, m-C6H4], 0.21 [s, 18H, SiMe3]. 1H NMR (499.9 MHz, CDCl3): 

δH = 6.97 [m, 4H, C6H5], 6.85 [m, 2H, p-C6H5], 6.63 [m, 4H, C6H5], 0.13 [s, 18H, SiMe3]. 

1H NMR (399.5 MHz, CCl4): δH = 6.73 [m, 10H, C6H5], 0.15 [s, 18H, SiMe3]. 13C{1H} 

NMR (125.7 MHz, C6D6): δC = 158.9 [C=C]. 146.8 [i-C6H5], 128.4 [m-C6H5], 127.6 [o-

C6H5], 124.8 [p-C6H5], 1.8 [SiMe3]. 29Si{1H} NMR (79.4 MHz, C6D6): δSi = 7.75. Elem. 

Anal.: Calcd for C20H28Si2: C, 74.00%, H, 8.69%. Found: C, 73.86%; H, 8.63%. HRMS 

(APCI) m/z: [M + H]+ Calcd for C20H28SiH 325.1802; Found 325.1809. 

Crystal data for 2.7: C20H28Si2, Mr = 324.60 g mol-1, monoclinic, space group I2/a, a = 

14.9857(7) Å, b = 11.5692(5) Å, c = 22.8580(12) Å, α = 90o, β = 91.020(5)o, γ = 90o, V = 

3962.2(3) Å3, Z = 8, T = 173 K, λCu(Kα) = 1.5184, R1 [I > 2σ(I)] = 0.0517, wR2 (all data) 

= 0.1326, GooF = 1.061. 
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2.7.11 Synthesis of 2.4 and 2.7 from 2.8 

Isolation of 2.4 

In an ampoule, 2.7 (0.02 g, 41.28 µmol) and Me3SiSiMe3 (0.03 g, 206.31 µmol) in toluene 

(5.0 mL) under a N2 atmosphere was heated at 50 oC for 5days. On cooling the volatiles 

were removed in vacuo and the off-white solid was washed with hexane (3 x 3.0 mL). 

Yield: 0.015 g, 74%. 1H NMR (399.5 MHz, C6D6): δH = 3.34 [s, 12H, N(1,3)-CH3], 1.41 

[s, 12H, C(4,5)-CH3], 0.59 [s, 18H, SiMe3]. 

 

Isolation of 2.7 

The hexane washes from the previous reaction were concentrated and washed with water 

(3 x 15.0 mL). The organic layer was collected and its volatiles were removed in vacuo 

to reveal 2.7, a white crystalline solid. Yield: 0.01 g, 77%. 1H NMR (399.5 MHz, C6D6): 

δH = 6.93 [m, 4H, o-C6H5], 6.77 [m, 2H, p-C6H5], 6.70 [m, 4H, m-C6H5], 0.21 [s, 18H, 

SiMe3]. 

 

Catalysis using 2.4 (1 mol%) 

2.7.12 Synthesis of 2.7 

In separate ampoules two reacton mixture containing Me3SiSiMe3 (153.0 µL, 0.75 

mmol), diphenylacetylene (0.05 g, 0.25 mmol) and 2.4 (0.001 g, 2.49 µmol) in C6D6 (0.25 

mL) was heated to 100 oC for 24 h under a N2 atmosphere. After cooling the samples 

were combined. The volatiles were removed in vacuo to reveal an off-white solid. This 

was re-dissolved in hexane (30.0 mL), filtered through a plug of silica and washed with 

H2O (3 x 20.0 mL). The hexane solution was collected and its volatiles were removed in 

vacuo. The resulting off-white solid was washed with water (1 x 20.0 mL) and dried under 

vacuum. A white powdered solid resulted. Yield: 0.37 g, 94%. 1H NMR (399.5 MHz, 
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C6D6): δH = 6.92 [m, 4H, C6H5], 6.76 [m, 2H, p-C6H5], 6.70 [m, 4H, C6H5], 0.21 [s, 18H, 

SiMe3]. 

 

2.7.13 Synthesis of (Z)-1,2-bis(dimethyl(phenyl)silyl)-1,2-diphenylethene (2.9) 

In an ampoule, a mixture of PhMe2SiSiMe2Ph (0.10 g, 0.37 mmol), diphenylacetylene 

(0.05 g, 0.25 mmol) and 2.4 (0.001 g, 2.49 µmol) in C6D6 (0.25 mL) was heated to 100 

oC for 24 h under a N2 atomsphere. After cooling the volatiles were removed in vacuo. 

The resulting solid was re-dissolved in hexane (30.0 mL) and subsequently washed with 

H2O (3 x 20.0 mL). The organic fraction was collected and concentrated. The crude 

material was purified on silica gel (hexane) to afford pure white powdered solid. Yield: 

0.18 g, 81%. 1H NMR (399.5 MHz, CDCl3): δH = 7.47 [m, 4H], 7.32 [m, 6H], 6.92 [m, 

4H], 6.83 [m, 2H], 6.67 [m, 2H], 0.09 [s, 12H, SiMe2Ph]. 1H NMR (399.5 MHz, C6D6): 

δH = 7.57 [m, 4H], 7.23 [m, 6H], 6.87 [m, 4H], 6.78-6.70 [m, 6H], 0.21 [s, 12H, SiMe2Ph]. 

13C{1H} NMR (125.7 MHz, C6D6): δC = 158.9 [C=C], 146.4 [i-Ph], 139.9 [SiMe2Ph], 

134.9 [SiMe2Ph], 129.7 [SiMe2Ph], 128.7 [SiMe2Ph], 128.4 [Ph], 127.5 [Ph], 125.0 [p-

Ph], 1.0 [SiMe2Ph]. 

 

2.7.14 Synthesis of (Z)-1-(4-(2-phenyl-1,2-bis(trimethylsilyl)vinyl)phenyl)ethenone 

(2.10) 

In an ampoule, a mixture of 1-(4-(phennylethynl)phenyl)ethenone (0.04 g, 0.19 mmol), 

Me3SiSiMe3 (59.0 µL, 0.29 mmol) and 2.4 (0.001 g, 1.94 µmol) in C6D6 (0.2 mL) was 

heated to 100 oC for 24 h under a N2 atmosphere. After cooling the volatiles were removed 

in vacuo. The purple solid was re-dissolved in chloroform (20.0 mL) and washed with 

H2O (3 x 20.0 mL). The chloroform fraction was collected and filtered through a plug of 

silica. The resulting filtrates solvent was removed in vacuo to reveal a pale yellow 
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crystalline solid. This was washed with H2O (15.0 mL) and dried under vacuum. Melting 

point: 65.1 – 68.3 oC. Yield: 0.05 g, 74%. 1H NMR (399.5 MHz, C6D6): δH = 7.60 [m, 

2H, m-C6H4C(O)CH3], 6.931 [m, 2H, m-C6H5], 6.74 [m, 1H, p-C6H5], 6.67 [m, 2H, o-

C6H4C(O)CH3], 6.64 [m, 2H o-C6H5], 1.92 [s, 3H, C6H4C(O)CH3], 0.19 [s, 9H, SiMe3], 

0.17 [s, 9H, SiMe3]. 1H NMR (399.5 MHz, CDCl3): δH = 7.60 [d, 3JHH = 8.0 Hz, 2H, m-

C6H4C(O)CH3], 6.97 [m, 2H, m-C6H5], 6.85 [m, 1H, p-C6H5], 6.74 [d, 3JHH = 8.0Hz, o-

C6H4C(O)CH3], 6.62 [m, 2H, o-C6H5], 2.46 [s, 3H, C6H4C(O)CH3], 0.14 [s, 9H, SiMe3], 

0.14 [s, 3H, SiMe3]. 13C{1H} NMR (100.5 MHz, C6D6): δC = 195.8 [C6H4C(O)CH3], 

159.5 [PhC=C], 158.1 [PhC=C], 152.0 [i-C6H4C(O)CH3], 146.4 [i-C6H5], 134.3 [p-

C6H4C(O)CH3], 128.4 [o-C6H4C(O)CH3], 128.1 [m-C6H4C(O)CH3], 127.8 [o-C6H5], 

127.7 [m-C6H5], 25.8 [C6H4C(O)CH3], 1.7 [SiMe3], 1.7 [SiMe3]. 13C{1H} NMR (125.7 

MHz, CDCl3): δC = 198.0 [C6H4C(O)CH3], 159.4 [Ph(Me3Si)C=C], 157.7 

[Ph(Me3Si)C=C], 152.6 [i-C6H4C(O)CH3], 146.2 [i-C6H5], 133.6 [p-C6H4C(O)CH3], 

128.1 [o-C6H4C(O)CH3], 127.6 [o-C6H5], 127.6 [m-C6H4C(O)CH3], 127.4 [m-C6H5], 

124.7 [p-C6H5], 26.5 [C6H4C(O)CH3], 1.7 [SiMe3], 1.6 [SiMe3]. 29Si{1H} NMR, 79.4 

MHz, C6D6): δSi = 7.38 [SiMe3], 7.77 [SiMe3], Elem. Anal.: Calcd for C22H30OSi2: C, 

72.07%; H, 8.25%. Found: C, 72.02%; H, 8.37%. HRMS (APCI) m/z [M+H]+ Calcd for 

C22H20Si2OH 367.1908; Found 367.1907 

 

2.7.15 Synthesis of (Z)-(1-phenyl-2-(p-tolyl)ethene-1,2-diyl)bis(trimethylsilane) 

(2.11) 

In an ampoule, a mixture of Me3SiSiMe3 (54.0 μl, 0.26 mmol), 1-methyl-4-

(phenylethynyl)benzene (0.03 g, 0.18 mmol) and 2.4 (0.001 g, 1.80 μmol) in C6D6 (0.25 

mL) was heated to 100 ºC for 24 h under a N2 atmosphere. After cooling the volatiles 

were removed in vacuo. The resulting solid was re-dissolved in CHCl3 (20.0 mL), filtered 
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through a plug of silica and washed with H2O (30.0 mL). The organic fraction was 

collected, the volatiles removed and the resulting off-white powdered solid was washed 

with H2O (20.0 mL). Melting point: 62.2 - 64.6 ºC. Yield: 0.05 g, 90%. 1H NMR (399.5 

MHz, C6D6): δH = 6.94 [m, 2H, m-C6H5], 6.74 [m, 5H, C6H5], 6.64 [m, 2H, o- C6H4CH3], 

1.92 [s, 3H, C6H4CH3], 0.24 [s, 9H, SiMe3], 0.22 [s, 9H, SiMe3]. 1H NMR (399.5 MHz, 

CDCl3): δH = 6.98 [m, 2H, m- C6H5], 6.86 [m, 2H, p-C6H5], 6.77 [d, 3JHH = 7.6 Hz, 2H, 

m-C6H4CH3], 6.63 [m, 2H, o-C6H5], 6.51 [d, 3JHH = 7.6 Hz, 2H, o-C6H4CH3], 2.13 [s, 3H, 

C6H4CH3], 0.12 [s, 9H, SiMe3], 0.12 [s, 9H, SiMe3]. 13C{1H} NMR (100.5 MHz, C6D6): 

δC = 158.9 [C=C], 147.0 [i-C6H5], 143.8 [i- C6H4CH3], 133.9 [p-C6H4CH3], 128.4 [m-

C6H4CH3], 128.1 [o-C6H5], 128.0 [o-C6H4CH3], 124.8 [p-C6H5], 21.0 [C6H4CH3], 1.9 

[SiMe3], 1.9 [SiMe3]. 13C{1H} NMR (125.7 MHz, CDCl3): δC = 158.5 [-

C=C(SiMe3)(C6H4CH3)], 158.4 [(C6H5)(SiMe3)C=C-], 146.8 [i-C6H5], 143.5 [i-

C6H4CH3], 133.5 [p-C6H4CH3], 127.9 [o-C6H5], 127.9 [m-C6H4CH3], 127.7 [o-

C6H4CH3],127.1 [m-C6H5], 124.2 [p-C6H5], 21.4 [C6H4CH3], 1.8 [SiMe3], 1.8 [SiMe3]. 

29Si{1H} (79.4 MHz, C6D6): δSi = −7.84, −7.84. Elem. Anal.: Calcd for C20H30Si2: C, 

74.48 %; H, 8.93 %. Found: C, 74.35 %; H, 9.03 %. HRMS (APCI) m/z: [M + H]+ Calcd 

for C21H30Si2H 339.1959; Found 339.1965. 

 

2.7.16 Synthesis of 1,4-bis((Z)-2-phenyl-1,2-bis(trimethylsilyl)vinyl)benzene (2.12) 

1,4-bis(phenylethynyl)bezene (0.05 g, 0.17 mmol), Me3SiSiMe3 (95.0 μl, 0.46 mmol) and 

2.4 (0.002 g, 3.39 μmol) was dissolved in C6D6 (0.6 mL). The resulting reaction mixture 

was heated to 100 ºC for 24 h under a N2 atmosphere. On cooling the volatiles were 

removed in vacuo. The oily solid was washed with H2O (20.0 mL) and extracted using 

CHCl3 (30.0 mL). The organics were collected and filtered through a plug of silica. 1,4-

bis((Z)-2-phenyl-1,2-bis(trimethylsilyl)vinyl)benzene was obtained by preparative TLC 
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(100 % hexane). Melting point: 203.4 - 204.5 ºC.  Yield: 0.039 g, 41.0 %. 1H NMR (499.9 

MHz, CDCl3): δH = 6.89 [t, 3JHH = 7.7 Hz, 4H, o-Ph], 6.77 [t, 3JHH = 7.2 Hz, 2H, p-Ph], 

6.53 [dd, 3JHH = 7.4, 0.9 Hz, 4H, m-Ph], 6.21 [s, 4H, brid-Ph], 0.08 [s, 18H, SiMe3], −0.06 

[s, 18H, SiMe3]. 13C{1H} NMR (100.5 MHz, CDCl3): δC = 159.1 [C=C], 158.0 [C=C], 

146.7 [i-Ph], 142.5 [i-brid-Ph], 127.9 [o-Ph], 127.1 [m-Ph], 126.6 [brid-Ph], 124.1 [p-Ph], 

1.7 [SiMe3], 1.7 [SiMe3]. 29Si{1H} NMR (79.4 MHz, CDCl3): δSi = −7.95.  Elem. Anal.: 

Calcd for C34H50Si4: C, 71.50 %; H, 8.82 %. Found: C, 71.34 %; H, 8.70 %. HRMS (ESI) 

m/z: [M + Na]+ Calcd for C34H50Si4 593.2882; Found 593.2890. 

Crystal data for 2.12: 0.67(C34H50Si4), Mr = 380.75 g mol-1, monoclinic, space group C2/c, 

a = 15.2223(6) Å, b = 11.1780(4) Å, c = 21.3358(8) Å, α = 90o, β = 95.192(3)o, γ = 90o, 

V = 3615.5(2) Å3, Z = 6, T = 298 K, λMo(Kα) = 0.71073, R1 [I > 2σ(I)] = 0.0517, wR2 (all 

data) = 0.1733, GooF = 0.989. 

 

2.7.17 Synthesis of (Z)-(1-(naphthalen-1-yl)-2-phenylethene-1,2-

diyl)bis(trimethylsilane) (2.13) 

In an ampoule, a mixture of 1-(phenylethynyl)naphthalene (0.08 g, 0.35 mmol), 

Me3SiSiMe3 (106.0 μmL, 0.52 mmol) and 2.4 (0.002 g, 3.39 μmol) in C6D6 (0.35 mL) 

was heated to 100 ºC for 24 h under a N2 atmosphere. After cooling all volatiles were 

removed in vacuo revealing a brown oil. This was re-dissolved in CDCl3 (20.0 mL), 

filtered through a plug of silica and washed with H2O (3 x 20.0 mL). The organic layer 

was collected, the volatiles removed and the resulting off-white powdered solid was 

washed with H2O (20.0 mL). Melting point: 75.2-78.3 ºC. Yield: 0.11 g, 86 %. 1H NMR 

(499.9 MHz, CDCl3): δH = 7.82 [d, 3JHH = 8.0 Hz, 1H, 10-NA], 7.62 [d, 3JHH = 7.9 Hz, 

1H, 7-NA], 7.39 [m, 2H, 4,9-NA], 7.34 [dd, 3JHH = 9.1, 7.0 Hz, 1H, 8-NA], 7.15 [dd, 3JHH 

= 8.5, 6.8 Hz, 1H, 3-NA], 6.90 [br, 1H, m-C6H5], 6.78 [dd, 3JHH = 6.9, 1.4 Hz, 1H, 2-NA], 
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6.69 [br, 1H, o-C6H5], 6.69 [dd, 3JHH = 8.7, 6.9 MHz, 1H, p-C6H5], 6.64 [br, 1H, m-C6H5], 

6.52 [br, 1H, o-C6H5]. 
13C{1H} (125.7 MHz, CDCl3): δC = 160.1 [(Ph)(Me3Si)C=C-], 

156.8 [-C=C(SiMe3)(NA)], 146.4 [i-C6H5], 144.5 [i-NA], 133.3 [5-NA], 131.3 [6-NA], 

128.1 [7-NA], 128.1,  126.8 [10-NA], 126.8, 125.2 [4-NA], 125.2, 125.2, 125.2 [8-NA], 

124.8 [2-NA], 124.8 [9-NA], 124.8, 124.4 [3-NA], 124.4. 29Si{1H} NMR (79.4 MHz, 

CDCl3): δSi = −7.00, −7.51. Elem. Anal.: Calcd for C24H30Si2: C, 76.94 %; H, 8.07 %. 

Found: C, 76.87 %; H, 7.96 %. HRMS (APCI) m/z: [M + H]+ Calcd for C24H30Si2H 

375.1959; Found 375.1957. 

Crystal data for 2.13: 0.8(C24H30Si2), Mr = 299.74 g mol-1, monoclinic, space group P21/C, 

a = 11.5212(3) Å, b = 15.2445(5) Å, c = 12.6733(3) Å, α = 90o, β = 90.765(2)o, γ = 90o, 

V = 2225.68(11) Å3, Z = 5, T = 173 K, λMo(Kα) = 0.71073, R1 [I > 2σ(I)] = 0.0429, wR2 

(all data) = 0.1455, GooF = 0.963. 

 

2.7.18 Synthesis of 1-phenyl-1,2,2-tris(trimethylsilyl)ethylene (2.14) 

In an ampoule, 1-phenyl-2-trimethylsilylacetylene (60.0 μl, 0.30 mmol), Me3SiSiMe3 

(94.0 μl, 0.46 mmol) and 2.4 (0.008 g, 15.16 μmol) were dissolved in C6D6 (0.5 mL). The 

resulting reaction mixture was heated to 100 ºC for 48 h under a N2 atmosphere. On 

cooling the volatiles were removed in vacuo. The white oily solid was re-dissolved in 

DCM and filtered through a plug of silica. The DCM was removed in vacuo and the white 

solid washed with H2O (20.0 mL). Yield: 0.048 g, 49.1 %. 1H NMR (499.9 MHz, CDCl3): 

δH = 7.19 [t, J = 7.1 Hz, 2H, Ph], 7.13 [tt, J = 7.2, 1.0 Hz, 1H, p-Ph], 6.82 [dd, J = 7.4, 

1.0 Hz, 2H, Ph], 0.32 [s, 9H, SiMe3], 0.06 [s, 9H, SiMe3], −0.27 [s, 9H, SiMe3]. 
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2.7.19 Synthesis of (Z)-1,2-bis(trimethylsilyl)-1-phenylethene (2.15) 

In an ampoule, phenylacetylene (40.0 μl, 0.36 mmol), Me3SiSiMe3 (112.0 μl, 0.54 mmol) 

and 2.4 (0.004 g, 7.18 μmol) were dissolved in C6D6 (0.35 mL). The resulting reaction 

mixture was heated to 100 ºC under a N2 atmosphere for 24 h. On cooling the reaction 

mixture hexane (20.0 mL) was added. This solution was washed with H2O (3 x 20.0 mL). 

The organic fractions were collected and filtered through a plug of silica. The low boiling 

point volatiles were then removed in vacuo. Crude product was purified on silica gel 

(hexane) to afford a colourless oil. Yield: 0.070 g, 77.8 %. 1H NMR (399.5 MHz, CDCl3): 

δH = 7.25 [m, 2H, Ph], 7.16 [t, 3JHH = 7.6 Hz, 1H, p-Ph], 7.03 [dd, J = 7.6, 1.2 Hz, 2H, 

Ph], 6.43 [s, 1H, =CH], 0.21 [s, 9H, SiMe3], 0.15 [s, 9H, SiMe3]. 13C{1H} NMR (100.5 

MHz, CDCl3): δC = 164.4, 151.1, 149.0, 127.9, 126.4, 125.7, 1.3, 1.1. 29Si{1H} NMR 

(79.4 MHz, CDCl3): δSi = −7.19, −10.67. 

 

2.7.20 Synthesis of dimethyl 2,3-bis(trimethylsilyl)maleate (2.16) and tetramethyl 

1,4-bis(trimethylsilyl)buta-1,3-diene-1,2,3,4-tetracarboxylate (2.17) 

In an ampoule, dimethyl acetylenedicarboxylate (44.0 µL, 0.36 mmol), Me3SiSiMe3 

(108.0 µL, 0.5 mmol) and 2.4 (0.002 g, 3.59 µmol) were dissolved in C6D6 (0.35 mL). 

The resulting reaction mixture was heated to 100 oC for 24 h under an N2 atmosphere. 

Crude NMR analysis indicated a 39:61 ratio of 2.16:2.17. Upon cooling the volatiles were 

removed in vacuo and the crude material was separated and purified on silica gel 

(hexane/ethyl acetate 4:1). 

Dimethyl 2,3-bis(trimethylsilyl)maleate (2.16): 

Yield: 0.038 g, 95%. 1H NMR (499.9 MHz, CDCl3): δH = 3.70 [s, 6H, CO2Me], 0.27 [s, 

18H, SiMe3]. 13C{1H} NMR (125.7 MHz, CDCl3): δC = 172.4 [C=O], 153.7 [C=C], 51.8 

[OMe], 0.2 [SiMe3]. 
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Tetramethyl 1,4-bis(trimethylsilyl)buta-1,3-diene-1,2,3,4,-tetracarboxylate (2.17): 

Melting point: 72.6 – 73.2 oC. Yield: 0.043 g, 88%. 1H NMR (499.9 MHz, CDCl3): δH = 

3.82 [s, 6H, CO2Me], 3.72 [s, 6H, CO2Me], 0.18 [s, 18H, SiMe3]. 13C{1H} NMR (125.7 

MHz, CDCl3): δC = 171.3 [C=O], 164.7 [C=O], 153.7 [C=C], 136.7 [C=C], 52.7 [OMe], 

52.0 [OMe], 0.8 [SiMe3]. 29Si{1H} NMR (79.4 MHz, CDCl3): δSi = -1.13. Elem. Anal.: 

Calcd for C18H30O8Si2: C, 50.21%; H, 7.02%. Found: C, 50.10%; H, 7.12%. HRMS 

(APCI) m/z: [M + NH4]
+ Calcd for C18H30O8Si2NH4 448.1817; Found 448.1820. 

 

Catalysis with [Pd(ITMe)2(PhC≡CPh)] (2.8) (1 mol%) 

2.7.21 Synthesis of 2.7 

In an ampoule, a mixture of diphenylacetylene (0.03 g, 0.17 mmol), Me3SiSiMe3 (55.0 

μl, 0.27 mmol) and 2.8 (0.001 g, 1.69 μmol) in C6D6 (0.2 mL) was heated to 100 ºC for 

24 h under a N2 atmosphere. After cooling the volatiles were removed in vacuo. The 

resulting off-white solid was re-dissolved in CHCl3 (20.0 mL) and was filtered through a 

plug of silica. The filtrates volatiles were removed in vacuo to reveal white solid. This 

was washed with H2O (20.0 mL). Yield: 0.05 g, 90 %. 1H NMR (499.9 MHz, CDCl3): δH 

= 6.97 [m, 4H, Ph], 6.85 [m, 2H, p-Ph], 6.62 [dd, 3JHH = 8.2, 1.4 Hz, 4H, Ph], 0.13 [s, 

18H, SiMe3]. 

 

2.7.22 Synthesis of cis-[Pd(ITMe)2(SiMe2Ph)2] (2.18) 

2.1 (0.21 g, 0.17 mmol), 2.2 (0.051 g, 0.16 mmol) and tBuOK (0.018 g, 0.16 mmol) were 

suspended in toluene (7.0 mL). Isopropanol (12.0 µL, 0.16 mmol) was added and the 

resulting reaction mixture was stirred at room temperature for 4.5 h under an N2 

atmosphere. At this point, PhMe2SiSiMe2Ph (0.128 g, 0.47 mmol) was added and the 

reaction mixture was stirred for a further 16 h at room temperature. The solution was then 
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filtered through flame dried Celite, the filtrate’s volatiles were removed in vacuo and the 

crude material was washed with hexane (3 x 5.0 mL) to give an off-white solid. Yield: 

0.049 g, 50.0%. 1H NMR (399.5 MHz, C6D6): δH = 7.71 [m, 4H, Ph], 7.23 [m, 4H, Ph], 

7.13 [m, 2H, p-Ph], 3.14 [s, 12H, N(1,3)-CH3], 1.34 [s, 12H, C(4,5)-CH3], 0.77 [s, 12H, 

SiMe2Ph]. 13C{1H} NMR (100.5 MHz, C6D6): δC = 193.4 [NCN], 156.3 [i-Ph], 134.2 

[Ph], 126.6 [Ph], 125.2 [p-Ph], 123.8 [C(4,5)-CH3], 34.9 [N(1,3)-CH3], 9.6 [C(4,5)-CH3], 

6.9 [SiMe2Ph]. 29Si{1H} NMR (79.4 MHz, C6D6): δSi = 0.50. Elem. Anal.: Calcd for 

C30H46N4Si2Pd: C, 57.62%; H, 7.41%; N, 8.96%. Found: C, 57.51%; H, 7.52%; N, 8.85%. 

Crystal data for 2.18: C33H49N4PdSi2, Mr = 664.37 g mol-1, triclinic, space group P-1, a = 

11.8802(6) Å, b = 12.1897(5) Å, c = 13.9679(5) Å, α = 86.341(3)o, β = 73.708(4)o, γ = 

63.295(5)o, V = 1729.87(15) Å3, Z = 2, T = 173 K, λCu(Kα) = 1.54184, R1 [I > 2σ(I)] = 

0.0396, wR2 (all data) = 0.1171, GooF = 0.902. 

 

2.7.23 Synthesis of cis-[Pd(ITMe)2(SiMe2{2-MeOPh})2] (2.19) 

Isopropanol (13.0 µL, 0.17 mmol) was added to stirred mixture of 2.1 (0.023 g, 0.19 

mmol), 2.2 (0.055 g, 0.17 mmol) and tBuOK (0.020 g, 0.17 mmol) in toluene (12.0 mL). 

The resulting reaction mixture was stirred at room temperature for 4 h. At this stage, 1,2-

bis(2-methoxyphenyl)-1,1,2,2-tetramethyldisilane (0.141 g, 0.43 mmol) was added and 

the mixture was stirred for a further 18 h at 60 oC. On cooling the reaction mixture was 

filtered by cannula, the filtrate’s volatiles were removed in vacuo and the off-white solid 

was washed with hexane (3 x 5.0 mL). Yield: 0.075 g, 63%. 1H NMR (399.5 MHz, C6D6): 

δH = 7.66 [d, 3JHH = 7.0 Hz, 2H, 6-Ph], 7.20 [m, 2H, 4-Ph], 6.94 [m, 2H, 5-Ph], 6.62 [d, 

3JHH = 8.0 Hz, 2H, 3-Ph], 3.58 [s, 6H, OMe], 3.29 [s, 12H, N(1,3)-CH3], 1.40 [s, 12H, 

C(4,5)-CH3], 0.73 [s, 12H, SiMe2Ar]. 13C{1H} NMR (100.5 MHz, C6D6): δC = 194.4 

[NCN], 164.0 [2-Ph], 143.5 [1-Ph], 135.6 [6-Ph], 126.9 [4-Ph], 123.5 [C(4,5)-CH3], 
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119.9 [5-Ph], 109.0 [3-Ph], 54.6 [OMe], 34.9 [N(1,3)-CH3], 8.7 [C(4,5)-CH3], 6.6 

[SiMe2Ar]. 29Si{1H} NMR (79.4 MHz, C6D6): δSi = 1.41. Elem. Anal. Calcd for 

C32H50O2Si2Pd: C, 56.08%; H, 7.35%; N, 8.17%. Found: C, 55.98%; H, 7.38%; N, 8.13%. 
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Chapter 3 

(N-Heterocyclic Carbene)2Pd(0)-Catalysed Silaboration of Internal and Terminal 

Alkynes: Scope and Mechanistic Studies 

 

3.1 Introduction 

The regio- and stereoselective synthesis of multi-substituted alkenes is a challenging 

reaction, recurrent in the formation of organic structures. In particular, tri- and tetra-

substituted alkenes are present in many pharmaceuticals,[1–5] dipeptide mimetics,[6] 

polymers,[7] and columnar liquid crystals.[8] There are now many reported methods for 

the synthesis of such alkenes including olefin metathesis,[9–11] and carbonyl olefination,[12] 

among others.[13,14] Notably, the transition metal catalysed π-insertion of an alkyne into a 

bond between two elements of the p-block (e.g., Si-Si, Si-Sn, Sn-Sn, B-B, and Si-B) has 

received a significant amount of attention (Chapter 1).[15] One of the most interesting 

examples is arguably the 1,2-addition of a silicon-boron bond (silaboration).[16–18] The 

resulting 1-silyl-2-boryl alkenes have the potential to independently undergo, for 

example, a cross-coupling reaction at the boryl (Suzuki-Miyaura) fragment,[19] and 

Fleming-Tamao oxidative addition or cross-coupling (Hiyama) at the silyl fragment.[20–

22] Arguably, the most effective alkyne silaboration protocol is the palladium 

diacetate/isocyanide combination reported by Ito and co-workers (Scheme 3.1).[23–25]  

The reactions proceed with high stereoselectivity towards the syn-1,2-addition products 

and in the case of terminal alkynes high regioselectivity, with the boryl fragment attached 

to the terminal position. Recently, Suginome and co-workers reported that the reverse 

regioselectivity was possible by changing the palladium source and using a sterically 

encumbered phosphine ligand, albeit using the more reactive 

(chlorodimethylsilyl)boronic acid pinacol ester.[26–28] “Abnormal” regioselectivity was  
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Scheme 3.1 Silaboration of terminal alkynes 

 

also reported by Stratakis and co-workers using a supported gold nanoparticle catalyst.[29] 

However, alkyne silaboration protocols have been largely limited to high reaction 

temperatures, long reaction times, and moderately high catalyst loadings. The most 

challenging aspect of silaboration chemistry remains the silaboration of unsymmetrical 

internal alkynes and the resulting formation of regioisomeric mixtures; there are limited 

examples that remedy this.[30,31] 

The use of NHCs,[32–34] as ligand sets in the first isolation of a bis(trimethylsilyl)palladium 

complex, cis-[Pd(ITMe)2(SiMe3)2] (ITMe = 1,3,4,5-tetramethylimidazol-2-ylidene) and 

the first example of a bis(NHC)-palladium alkyne complex, [Pd(ITMe)2(PhC≡CPh)] was 

reported in Chapter 2.[35] Both complexes acted as highly active pre-catalysts for the cis-

bis(silyl)ation of sterically and electronically demanding internal and terminal alkynes. 

The high activity exhibited by [Pd(ITMe)2(PhC≡CPh)] prompted an investigation into its 

effectiveness at catalysing the silaboration of alkynes. Herein, the use of 

[Pd(ITMe)2(PhC≡CPh)] in the silaboration of sterically and electronically demanding 

terminal and symmetrical internal alkynes is reported. Unprecedented low catalytic 

loadings, short reaction times, and mild reaction temperatures for terminal alkynes are 
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presented. Initial experimental investigations into the mechanism of the reaction and the 

isolation of important intermediates are also described. 

 

3.2 Improved Synthesis of [Pd(ITMe)2(PhC≡CPh)] (3.1) 

[Pd(ITMe)2(PhC≡CPh)] (3.1) was previously synthesized in what was effectively a three-

step process.[35] An improved synthesis of 3.1 has since been devised: 

[(ITMe)Pd(methallyl)Cl] was reacted with one equivalent of each of potassium tert-

butoxide, isopropanol, and ITMe at room temperature forming [Pd(ITMe)2], which was 

then exposed in situ to a slight excess of diphenylacetylene at room temperature for 18 h 

in toluene. After workup, 3.1 was isolated in an 85% yield (Scheme 3.2). 3.1 is deemed 

as a more soluble analogue of [Pd(ITMe)2]. 

 

 

 

 

 

Scheme 3.2 Improved synthesis of 3.1 

 

3.3 Catalytic Silaboration of Alkynes 

With large quantities of 3.1 in hand, its capacity to catalyse the silaboration of alkynes 

was investigated. Diphenylacetylene and (dimethyphenyl)silyl boronic acid pinacol ester 

(PhMe2SiBpin) were chosen as model substrates for the optimization of the initial 

reaction parameters. The reaction was carried out in C6D6 in order to monitor its 

progression. (E)-(1,2-diphenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)vinyl)dimethyl(phenyl)-silane (3.2) was obtained in 96% yield (100% 
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stereoselectivity) using 0.5 mol% of 3.1 at room temperature and in less than 30 min. A 

comparable isolated yield was obtained in benzene. The only report for a catalytic 

synthesis of this compound required 2 mol% of [Pd(OAc)2]/30 mol% tert-octyl 

isocyanide at 110 oC over 2 h.[24] Single crystals of 3.2 were obtained by slow evaporation 

of a saturated acetone solution and the X-ray analysis is depicted in Figure 3.1.  

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Molecular structure of 3.2 with thermal ellipsoids at the 50% probability level. 

Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [o]: Si1-C8 

1.9015(17), B1-C5 1.577(2), C5-C8 1.355(2); C4-C5-B1 112.83(14), C8-C5-C4 

123.02(15), C8-C5-B1 124.15(15), C5-C8-Si1 124.84(13), C5-C8-C6 121.34(15), C6-

C8-Si1 113.28(11). 

 

To scope the versatility of this protocol, a series of sterically and electronically 

challenging alkynes were reacted with PhMe2SiBpin (Table 3.1). The silaboration of 

terminal aryl, alkyl, silyl, and even diterminal alkynes proceeded at room temperature  

Si1B1

C8C5

C4 C6
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Table 3.1 Silaboration of terminal and internal alkynes 
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using 0.5 mol% of 3.1 in less than 30 min with 100% regio- and stereoselectivity. As for 

compound 3.2, the only previous synthesis of compounds 3.3, 3.4, 3.5 and 3.6 required 2 

mol% of [Pd(OAc)2]/30 mol% tert-octyl isocyanide at 110 oC, in reaction times varying 

from 1 to 4 h, whereas compound 3.7 has not been previously reported (Table 3.1). 

There are only a few examples of catalytic silaborations of symmetrical and 

unsymmetrical alkynes in the literature: namely, Ito and co-workers’ silaboration of 

diphenylacetylene, 1-phenyl-1-propyne and dec-5-yne,[24] Sawamura and co-workers’ 

organocatalytic silaboration of polar coordinating internal alkynes,[30] and Sato and co-

workers’ ynamide silaboration.[31] Mixtures of regioisomers are usually observed in the 

silaboration of unsymmetrical internal alkynes. However, a more thorough investigation 

into the silaboration of symmetrical alkynes that are electronically challenging was not 

reported prior to this investigation. Albeit requiring temperature of 100 oC, the novel 

compounds 3.8, 3.9, 3.10 and 3.11 were all synthesized with 100% cis-stereoselectivity 

as established by NOESY NMR (Table 3.1). Both alkyl-alkyl and aryl-aryl internal 

alkynes bearing functionalities such as carboxylic ester, boronate ester, pyrrole, and ether 

reacted well under these conditions. Silaboration of internal alkynes with extreme steric 

hindrance such as 1,2-di(naphthalen-1-yl)ethyne and 1,2-bis(trimethylsilyl)ethyne, was 

not accessible utilizing this protocol.  

Unsymmetrical alkynes were also subjected to these reaction conditions. The silaboration 

of unsymmetrical alkyne 1-phenyl-2-trimethylsilylacetylene resulted in the isolation of 

the novel compound 3.12a as a major product from an 80:20 mixture of regioisomers. On 

the other hand, the silaboration of 1-phenyl-1-propyne afforded compound 3.13a, isolated 

as the major regioisomer of a mixture containing 7% of the other isomer. This is a similar 

result to that obtained by Ito,[24] albeit in a shorter reaction time and using a lower catalyst 

loading (Table 3.1). The silaboration of 1-(tert-butyl)-4-(phenylethynyl)benzene and 1-
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(phenylethynl)naphthalene afforded near statistical mixture of their corresponding 

regioisomers. It is therefore considered that unsymmetrical bis-aryl internal alkynes are a 

limitation to this protocol. 

 

3.4 Mechanistic Study 

3.4.1 Synthesis of cis-[Pd(ITMe)2(SiMe2Ph)(Bpin)] (3.14) 

Next, the attention was turned to the mechanism of these reactions. The proposed catalytic 

cycle for “normal” silaboration using Pt group catalyst involves an initial oxidative 

addition resulting in a cis-(silyl)(boryl)M(II) complex. The alkyne then undergoes 

migratory insertion into the M-B bond to form the corresponding (silyl)-M(II)-

(borylvinyl) species, followed by a reductive elimination to form the 1-silyl-2-

borylalkene.[36–38] The isolation of the oxidative addition products for Pt group complexes 

is extremely rare due to their low stability: the only previous examples were a series of 

(phosphine)-Pt complexes reported by Ozawa and co-workers,[37] and one Pd complex 

reported by Onozawa and Tanaka.[39] The stoichiometric reactivity of 3.1 was 

investigated in the hope of isolating this important intermediate in the catalytic cycle. On 

reacting two equivalent of PhMe2SiBpin with 3.1 in toluene, cis-

[Pd(ITMe)2(SiMe2Ph)(Bpin)] (3.14) and 3.2 formed at room temperature in under 30 min 

(Scheme 3.3).  

 

Scheme 3.3 Synthesis of compound 3.14 
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Single crystals of 3.14 were isolated from a double recrystallization in acetonitrile at 30 

oC. X-ray analysis indicated a distorted square planar geometry with the NHCs orthogonal 

to the Si-Pd-B plane (Figure 3.2). To gain further insights on the reactivity of 3.14, its 

stoichiometric reaction with diphenylacetylene was carried out, leading to the quantitative 

formation of 3.1 and 3.2 at room temperature in only 10 min. Unfortunately attempts of 

isolating the borylvinyl-Pd-silyl intermediate generated after the migratory insertion were 

unsuccessful. 

 

 

 

 

 

 

 

Figure 3.2 Molecular structure of 3.14 with thermal ellipsoids at the 50% probability 

level. Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [o]: 

Pd1-CA 2.091(3), Pd1-C9 2.120(3), Pd1-BT 2.038(4), Pd1-Si2 2.3352(9); CA-Pd1-C9 

103.26(12), C9-Pd1-Si2 94.71(9), BT-Pd1-Si2 81.49(11), CA-Pd1-BT 80.89(13). 

 

3.4.2 Decomposition of 3.14 

Complex 3.14 seems indefinitely stable to decomposition as a solid under inert 

conditions. It however rapidly decomposes in solution in non-polar aromatic solvents 

such as toluene and benzene and at a slower rate in acetonitrile. By monitoring the mixture 

in C6D6 by 1H NMR, the decomposition products were assigned as [Pd(ITMe)2], B2pin2, 

palladium black and cis-[Pd(ITMe)2(SiMe2Ph)2] (3.15) (Scheme 3.4). The identity of 3.15 
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was already known through its independent synthesis, reacting [Pd(ITMe)2] with 1,1,2,2-

tetramethyl-1,2-diphenyldisilane (PhMe2SiSiMe2Ph), reported in Chapter 2.[35,40] This 

decomposition of 3.14 in solution leading to Pd black could very well explain catalyst 

death with times as the concentration of the alkyne in solution decreases. 

 

Scheme 3.4 Decomposition of 3.14 in solution 

 

3.4.3 Proposed Catalytic Cycle for Silaboration 

With all this information in hand, a mechanism similar to that in Chapter 2 and depicted 

in Scheme 6 is proposed, starting with the activation of complex 3.1 leading to the 

formation of complex 3.14, as shown in the mechanistic studies. An approach of the 

alkyne above the plane of the molecule is suggested because, due to their nature, it is 

unlikely that neither the NHCs, silyl nor boryl groups would detach prior the coordination 

of the alkyne. A subsequent migratory insertion of the alkyne in to the M-boryl results in 

the formation of a borylvinyl-palladium-silyl intermediate. This preferred boryl migration 

over silyl migration has been thoroughly investigated in the literature and is believed to 

be both a kinetically and thermodynamically favourable process.[41,42] A weak 

coordination of the boryl moiety to the Pd centre would stabilize the borylvinyl palladium 

intermediate and allow for a stereoselective reductive elimination,[43] generating the 
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desired silaborated product and 14 e complex [Pd(ITMe)2], the catalytically active 

species in the cycle (Scheme 3.5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 3.5 Proposed catalytic cycle 

 

3.5 Synthesis of [Pd(ITMe)2(RC≡CR’)] Analogues 

The synthesis of 3.1 was extended to other internal aryl alkynes including 1-

(phenylethynl)naphthalene and 1-ethyl-4-((4-methoxyphenyl)ethynl)benzene to yield 

3.16 and 3.17, respectively. Full NMR spectroscopic data and elemental analysis were 

collected for 3.16 and 3.17 (Scheme 3.6). Attempts at the isolation of crystals suitable for 
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X-ray analysis were unsuccessful. However, the 13C{1H} NMR resonances for the 

carbenic carbons of 3.1 (198.7 ppm), 3.16 (198.1 and 197.7 ppm) and 3.17 (199.4 and 

199.4 ppm) suggested that the electron density at the palladium centre was not 

significantly altered by these subtle changes in electronic properties of the alkyne 

substituents. Electron rich and/or bulky internal alkynes such as 1-phenyl-2-

silylacetylene, 1-phenyl-1-propyne, 2-heptyne and 4-octyne did not result in adduct 

formation and only [Pd(ITMe)2] was observed. These observations were consistent with 

the absence of, or sluggish bis(silyl)ation (see Chapter 2) and silaboration with these 

alkynes. 

 

 

 

 

 

 

 

 

 

 

Scheme 3.6 Synthesis of 3.16 and 3.17 

 

3.6 Conclusions 

In conclusion, it was shown that complex 3.1 is a very reactive pre-catalyst in the 

silaboration of sterically and electronically demanding internal and terminal alkynes 

proceeding at much lower catalyst loadings, milder temperatures (in the case of terminal 
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alkynes), and in much faster reaction times than in previous protocols reported in the 

literature. Investigations into the mechanism for this reaction resulted in the synthesis of 

cis-[Pd(ITMe)2(SiMe2Ph)(Bpin)]. This represents a very rare example of a 

(silyl)(boryl)palladium complex isolated from the oxidative addition of a Si-B reagent to 

a Pd(0) centre. This study was reported in the journal ACS Catalysis.[44] Other 

[Pd(ITMe)2(RC≡CR’)] analogues have been synthesized and an initial structural 

comparison suggests there is little difference in their electronic properties. A future 

direction of this work would be to compare their stoichiometric/catalytic activities in E-

E’ additions to alkynes in order to understand how tuning of the electronic and steric 

properties may facilitate or hinder reactivity.  

 

3.7 Experimental Details for Chapter 3 

General experimental details are given in appendix A1. 

3.7.1 Improved Synthesis of [Pd(ITMe)2(PhC≡CPh)] (3.1) 

In a vial, isopropanol (6.8 μl, 0.09 mmol) was added to a mixture of [(ITMe)Pd 

(methalllyl)Cl] (0.028 g, 0.09 mmol), tBuOK (0.011 g, 0.11 mmol) and ITMe (0.013 g, 

0.10 mmol) in toluene (5.0 mL). The resulting reaction mixture was stirred at room 

temperature under a N2 for 4.5 h. At this point, diphenylacetylene (0.020 g, 0.11 mmol) 

was added and the reaction mixture was stirred for a further 18 h. At this stage the reaction 

mixture was filtered through a plug of flame dried Celite. A yellow solid settle on top of 

the Celite and on washing with THF (3 x 4.0 mL) resulted in a yellow filtrate. On removal 

of the volatiles a yellow powdered solid persisted. Yield: 0.040 g, 84.7 %. 1H NMR (399.5 

MHz, C6D6): δH = 7.99 [dd, 3JHH = 8.1, 4JHH = 1.3 Hz, 4H, m-Ph], 7.27 [m, 4H, o-Ph], 

7.05 [tt, 3JHH = 7.3, 4JHH = 1.3 Hz, 2H, p-Ph], 3.49 [s, 12H, N(1,3)-CH3], 1.54 [s, 12H, 

C(4,5)-CH3]. 13C{1H} NMR (100.46 MHz, C6D6): δC = 198.7 [NCN], 138.6 [C≡C], 130.1 
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[o-Ph], 128.2 [m-Ph], 126.3 [i-Ph], 124.2 [p-Ph], 123.1 [C(4,5)-CH3], 35.2 [N(1,3)-CH3], 

9.0 [C(4,5)-CH3]. 

 

Catalysis using 3.1 

3.7.2 Synthesis of (E)-(1,2-diphenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)vinyl)dimethyl(phenyl)silane (3.2) 

In an ampoule equipped with a stirrer bar, (dimethylphenylsilyl)boronic acid pinacol ester 

(44.0 μl, 0.16 mmol) was added to stirred mixture of diphenyl acetylene (0.028 g, 0.16 

mmol) and 3.1 (0.42 mg, 0.79 μmol) in C6D6 (0.35 mL). The resulting reaction mixture 

was stirred at ambient temperature for 19 h. At this stage the volatiles were removed in 

vacuo, the resulting off-white solid was re-dissolved in CH2Cl2 (DCM) (15.0 mL) and 

filtered through a plug of silica. The filtrates were collected and the volatiles removed in 

vacuo to reveal a white solid. Yield: 0.038 g, 96.6 %. 1H NMR (399.5 MHz, CDCl3): δH 

= 7.65 [m, 2H, SiMe2Ph], 7.34 [m, 3H, SiMe2Ph], 6.97 [m, 8H, Ph], 6.71 [m, 2H, p-Ph], 

1.05 [s, 12H, Bpin], 0.34 [s, 6H, SiMe2Ph]. 1H NMR (399.5 MHz, C6D6): δH = 7.84 [m, 

2H], 7.29 [m, 2H], 7.23 [m, 3H], 6.98 [m, 2H], 6.90 [m, 4H], 6.81 [m, 2H], 0.87 [s, 12H, 

Bpin], 0.51 [s, 6H, SiMe2Ph]. 13C{1H} NMR (125.7 MHz, CDCl3): δC = 155.1, 144.6, 

142.9, 139.8, 134.5, 129.1, 128.8, 128.6, 127.8, 127.3, 127.3, 125.5, 124.8, 84.0, 25.0, 

−0.1. 11B{1H} NMR (128.2 MHz, CDCl3): δB = 30.0. 29Si{1H} NMR (79.4 MHz, CDCl3): 

δSi = −9.32. HRMS (ESI) m/z: [M + Na]+ Calcd for C28H33O2BSiNa 463.2235; Found 

463.2239.  

Crystal data for 3.2: C28H33BO2Si, Mr = 440.44 g mol-1, triclinic, space group P-1, a = 

9.8337(10) Å, b = 11.7927(10) Å, c = 12.4336(11) Å, α = 112.475(8)o, β = 96.966(8)o, γ 

=104.180(8)o, V = 1254.0(2) Å3, Z = 2, T = 173 K, λMo(Kα) = 0.71073, R1 [I > 2σ(I)] = 

0.0463, wR2 (all data) = 0.1037, GooF = 1.023. 
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3.7.3 Synthesis of (Z)-dimethyl(phenyl)(1-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-

dioxaborolan-2-yl)vinyl)silane (3.3) 

A stock solution of 3.1 (0.85 mg, 1.59 µmol) in C6D6 (961.6 µL) was added to a mixture 

of phenylacetylene (35.0 µL, 0.32 mmol) and (dimethylphenylsilyl)boronic acid pinacol 

ester (87.0 µL, 0.32 mmol). The resulting reaction mixture was stirred at room 

temperature for 0.5 h. The crude reaction mixture was purified by column 

chromatography (eluent: hexane/ethyl acetate, 19:1) yielding a colorless oil. Yield: 0.103 

g, 89 %. 1H NMR (399.5 MHz, CDCl3): δH = 7.58 [m, 2H, SiMe2Ph], 7.29 [m, 3H, 

SiMe2Ph], 7.22 [m, 2H, Ph], 7.15 [m, 1H, p-Ph], 7.06 [m, 2H, Ph], 6.33 [s, 1H, C=CH], 

1.09 [s, 12H, Bpin], 0.38 [s, 6H, SiMe2Ph]. 13C{1H} NMR (100.46 MHz, CDCl3): δC = 

165.9, 149.2, 140.2, 134.2, 128.6, 127.9, 127.6, 126.6, 126.1, 83.6, 24.9, 0.0. 11B{1H} 

NMR (128.2 MHz, CDCl3): δB = 29.4. 29 Si{1H} NMR (79.4 MHz, CDCl3): δSi = 9.91 

(spectroscopic data in agreement with the literature). 

 

3.7.4 Synthesis of (Z)-(1-(dimethyl(phenyl)silyl)-2-(4,4,5,5-tetramethyl-1,3,2-

dioxaborolan-2-yl)vinyl)trimethylsilane (3.4) 

A stock solution of 3.1 (0.71 mg, 1.33 µmol) in C6D6 (660.0 µL) was added to a mixture 

of trimethylsilyl acetylene (35.0 µL, 0.25 mmol) and (dimethylphenylsilyl)boronic acid 

pinacol ester (70.0 µL, 0.26 mmol). The resulting reaction mixture was stirred at ambient 

temperature for 0.5 h. At this point the crude material was purified by column 

chromatography (eluent: hexane/ethyl acetate, 19:1) resulting in the isolation of a 

colorless oil. Yield: 0.072 g, 81 %. 1H NMR (399.5 MHz, CDCl3): δH = 7.50 [m, 2H 

SiMe2Ph], 7.28 [m, 3H, SiMe2Ph], 7.13 [s, 1H, C=CH], 1.05 [s, 12H, Bpin], 0.45 [s, 6H, 

SiMe2Ph], 0.08 [s, 9H, SiMe3]. 13C{1H} NMR (100.46 MHz, CDCl3): δC = 169.3, 151.0 

[v br], 141.4, 134.4, 128.5, 127.6, 83.6, 24.9, 0.7, 0.0. 11B{1H} NMR (128.2 MHz, 
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CDCl3): δB = 29.1. 29Si{1H} NMR (79.4 MHz, CDCl3): δSi = 0.25, 11.28 (spectroscopic 

data in agreement with the literature). 

 

3.7.5 Synthesis of (Z)-dimethyl(phenyl)(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-

2-yl)oct-1-en-2-yl)silane (3.5) 

A stock solution of 3.1 (0.51 mg, 0.96 µmol) was added to a mixture of 1-octyne (15.0 

µL, 0.19 mmol) and (dimethylphenylsilyl)boronic acid pinacol ester (60.0 µL, 0.22 

mmol). The resulting reaction mixture was stirred at ambient temperature for 0.5 h. At 

this point the crude material was purified by column chromatography (eluent: hexane), 

resulting in the isolation of a colourless oil. Yield: 0.062 g, 88 %. 1H NMR (399.5 MHz, 

CDCl3): δH = 7.53 [m, 2H, SiMe2Ph], 7.29 [m, 3H, SiMe2Ph], 6.18 [pseudo-t, 4JHH = 1.4 

Hz, 1H, C=CH], 2.21 [m, 2H, CH2], 1.24 [m, 8H, (CH2)4], 1.07 [s, 12H, Bpin], 0.85 [t, 

3JHH = 6.9 Hz, 3H, CH3], 0.44 [s, 6H, SiMe2Ph]. 13C{1H} NMR (100.46 MHz, CDCl3): 

δC = 166.8, 140.7, 134.2, 128.5, 127.5, 83.2, 42.8, 31.8, 29.8, 29.3, 24.8, 22.7, 14.2, 0.7. 

11B{1H} NMR (128.2 MHz, CDCl3): δB = 29.3. 29Si{1H} NMR (79.4 MHz, CDCl3): δSi 

= 9.79 (spectroscopic data in agreement with the literature). 

 

3.7.6 Synthesis of ((1Z,7Z)-1,8-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)octa-1,7-diene-2,7-diyl)bis(dimethyl(phenyl)silane) (3.6) 

A stock solution of 3.1 (0.60 mg, 1.13 µmol) in C6D6 (1204.0 µL) was added to a mixture 

of 1,7-octadiyne (15.0 µL, 0.11 mmol) and (dimethyphenylsilyl)boronic acid pinacol 

ester (61.6 µL, 0.22 mmol). The resulting reaction mixture was stirred at ambient 

temperature for 0.5 h. At this point the crude material was purified by column 

chromatography (eluent: 100 % hexane followed by 100 % ethyl acetate), resulting in a 

white solid. Yield: 0.066 g, 93 %. 1H NMR (399.5 MHz, CDCl3): δH = 7.51 [m, 4H, 
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SiMe2Ph], 7.28 [m, 6H, SiMe2Ph], 6.14 [s, C=CH], 2.14 [m, 4H, CH2], 1.28 [m, 4H, 

CH2], 1.06 [s, Bpin], 0.42 [s, SiMe2Ph]. 13C{1H} NMR (100.46 MHz, CDCl3): δC = 166.5, 

140.6, 134.2, 128.5, 127.5, 83.2, 42.6, 29.7, 24.8, 0.7, C=CBpinH not observed due to 

quadrapolar broadening. 11B(1H) NMR (128.2 MHz, CDCl3): δB = 29.0. 29Si{1H} NMR 

(79.4 MHz, CDCl3): δSi = 9.79. 

 

3.7.7 Synthesis of (Z)-(1-mesityl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)vinyl)dimethyl(phenyl)silane (3.7) 

A stock solution of 3.1 (0.60 mg, 1.12 µmol) in C6D6 (596.0 µL) was added to a mixture 

of 2,4,6-trimethylphenylacetylene (35.0 µL, 0.22 mmo1) and (dimethylphenyl)boronic 

acid pinacol ester (62.5 µL, 0.23 mmol). The resulting reaction mixture was stirred at 

ambient temperature for 0.5 h. At this point the crude material was concentrated in vacuo 

then purified by column chromatography (100 % hexane followed by 100 % ethyl 

acetate), resulting in the isolation of a white solid. Yield: 0.073 g, 80 %. 1H NMR (399.5 

MHz, CDCl3): δH = 7.65 [m, 2H, SiMe2Ph], 7.30 [m, 3H, SiMe2Ph], 6.80 [s, 2H, 

MesCH], 6.25 [s, 1H, C=CH], 2.26 [s, 3H, 4-MesCH3], 2.16 [s, 6H, 2,6-MesCH3], 2.16 

[s, 12H, Bpin], 0.35 [s, 6H, SiMe2Ph]. 13C{1H} NMR (100.46 MHz, CDCl3): δC = 167.6 

[(1)C=C], 145.4 [i-Mes], 140.1 [SiMe2i-Ph], 137.0 [s, (2)C=C, vbr], 134.6 [p-Mes], 134.4 

[SiMe2Ph], 133.0 [o-Mes], 128.4 [SiMe2p-Ph], 128.1 [m-Mes], 127.4 [SiMe2Ph], 83.5 

[Bpin], 24.9 [Bpin], 21.4 [2,6-MesCH3], 20.1 [4-MesCH3], 0.2 [SiMe2Ph]. 11B{1H} 

NMR (128.2 MHz, CDCl3): δB = 29.7. 29Si{1H} NMR (79.4 MHz, CDCl3): δSi = 12.20. 

HRMS (ESI) m/z: [M + Na]+: Calcd for C25H35O2BSiNa 429.2392; Found 429.2376. 

Elem. Anal.: Calcd for C25H35O2BSi: C, 73.88%; H, 8.68%. Found: C, 73.72%; H, 8.59%. 
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3.7.8 Synthesis of dimethyl 2-(dimethyl(phenyl)silyl)-3-(4,4,5,5-tetramethyl-1,3,2-

dioxaborolan-2-yl)maleate (3.8) 

Dimethyl acetylenedicarboxylate (37.0 μl, 0.30 mmol) and PhMe2SiBpin (82.0 μl, 0.30 

mmol) were dissolved in C6D6 (420 μl). To this stirred mixture, a stock solution of 3.1 

(0.16 mg, 0.30 μmol) in C6D6 (181 μl) was added.  The resulting reaction mixture was 

heated to 100 oC for 24 h. At this stage, the volatiles were removed under reduced 

pressure. The crude product was purified by column chromatography (eluent: 

hexane/EtOAc, 4:1) resulting in a colourless oil. Yield: 0.111 g, 86%. 1H NMR (399.5 

MHz, CDCl3): δH = 7.55 [m, 2H, SiMe2Ph], 7.33 [m, 3H, SiMe2Ph], 3.71 [s, 3H, 

CO2Me], 3.63 [s, 3H, CO2Me], 1.05 [s, 12H, Bpin], 0.49 [s, 6H, SiMe2Ph]. 13C{1H} 

NMR (100.46 MHz, CDCl3): δC = 172.2 [C(O)Me], 167.6 [C(O)Me], 160.2 [C=C], 136.4 

[SiMe2i-Ph], 134.4 [SiMe2Ph], 129.6 [SiMe2p-Ph], 127.9 [SiMe2Ph], 84.6 [Bpin], 52.2 

[CO2Me], 51.6 [CO2Me], 24.8 [Bpin], −1.5 [SiMe2Ph]. 11B{1H} NMR (128.2 MHz, 

CDCl3): δB = 29.8. 29Si{1H} NMR (79.4 MHz, CDCl3): δSi = −7.74.  HRMS (ESI) m/z: 

[M + Na]+ Calcd for C20H29O6BSiNa 427.1719; Found 427.1713. Elem. Anal.: Calcd for 

C20H29O6BSi: C, 59.41%; H, 7.23%. Found: C, 59.50%; H, 7.14%. 

 

3.7.9 Synthesis of (E)-(1,2-bis(4-methoxyphenyl)-2-(4,4,5,5-tetramethyl-1,3,2-

dioxaborolan-2-yl)vinyl)dimethyl(phenyl)silane (3.9) 

Bis(4-methoxyphenyl) acetylene (0.114 g, 0.47 mmol) and 3.1 (0.002 g, 0.47 µmol) were 

dissolved in C6D6 (1.0 mL). To this mixture PhMe2SiBpin (130.0 µL, 0.47 mmol) was 

added and the resulting reaction mixture was heated to 100 C for 6 h. On cooling, the 

volatiles were removed in vacuo. The resulting oily solid was purified by column 

chromatography (eluent: hexane/ethylacetate, 20:1) yielding a white solid. Yield: 0.164 

g, 69%. 1H NMR (399.5 MHz, C6D6): δH = 7.88 [m, 2H, SiMe2(o-Ph)], 7.31 [m, 2H, 
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SiMe2(m-Ph)], 7.24 [m, 1H, SiMe2(p-Ph)], 7.24 [m, 2H, o-anisole(2)], 6.86 [m, 2H, o-

anisole(1)], 6.63 [m, 2H, m-anisole(2)], 6.57 [m, 2H, m-anisole(1)], 3.15 [s, 3H, OMe(1)], 

3.12 [s, 3H, OMe(2)], 0.92 [s, 12H, Bpin], 0.56 [s, 6H, SiMe2Ph]. 13C{1H} NMR (100.46 

MHz, C6D6): δC = 158.1 [p-anisole(2)], 157.6 [p-anisole(1)], 154.3 [C=C(1)], 140.7 

[SiMe2(i-Ph)], 137.3 [i-anisole(1)], 135.8 [i-anisole(2)], 134.8 [SiMe2(o-Ph)], 133.5 

[C=C(2)], 130.8 [o-anisole(2)], 129.9 [o-anisole(1)], 129.0 [SiMe2(p-Ph)], 128.0 

[SiMe2(m-Ph)], 113.6 [m-anisole(1)], 113.4 [m-anisole(2)], 83.8 [Bpin(quaternary C)], 

54.4 [OMe(1)], 54.4 [OMe(2)], 25.1 [Bpin], 0.5 [SiMe2Ph]. 11B{1H} NMR (128.2 MHz, 

C6D6): δB = 30.5. 29Si{1H} (79.4 MHz, C6D6): δSi = −9.37. HRMS (ESI) m/z: [M + Na]+ 

Calcd for C30H37O4BSiNa 523.2446; Found 523.2441. Elem. Anal.: Calcd for 

C30H37O4BSi: C, 71.99%; H, 7.45%. Found: C, 71.88%; H, 7.52%. 

 

3.7.10 Synthesis of (E)-dimethyl(phenyl)(2-(4,4,5,5-tetramethyl-1,3,2-

dioxaborolan-2-yl)-1,2-bis(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)phenyl)vinyl)silane (3.10) 

A stock solution of 3.1 (0.24 mg, 0.45 µmol) in C6D6 (242.0 µL) was added to a mixture 

of 4,4’-(acetylene-1,2-diyl)bis(phenylboronic acid pinacol ester) (0.039 g, 0.09 mmol) 

and  (dimethylphenylsilyl)boronic acid pinacol ester (25.0 µL, 0.09 mmol). The resulting 

reaction mixture was heated to 100 C for 3 h. Upon cooling the crude reaction mixture 

was purified by column chromatography (Eluent: hexane/ethyl acetate, 6:1) yielding a 

white solid. Yield: 0.044 g, 71 %. 1H NMR (399.5 MHz, CDCl3): δH = 7.63 [m, 2H, 

SiMe2Ph], 7.45 [d, 3JHH = 7.9 Hz, 2H, (2)m-Ph], 7.43 [d, 3JHH = 7.9 Hz, 2H, (1)m-Ph], 

7.33 [m, 3H, SiMe2Ph], 6.96 [d, 3JHH = 7.9 Hz, 2H, (2)o-Ph], 6.73 [d, 3JHH = 7.9 Hz, 2H, 

(1)o-Ph], 1.30 [s, 12H, (2)PhBpin], 1.29 [s, 12H, (1)PhBpin], 1.01 [s, 12H, Bpin], 0.30 

[s, 6H, SiMe2Ph]. 13C{1H} NMR (100.46 MHz, CDCl3): δC = 155.2 [(1)C=C], 147.7 
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[(1)i-PhBpin], 145.9 [(2)i-PhBpin], 139.6 [SiMe2i-Ph], 134.4 [SiMe2Ph], 134.0 [(1)m-

PhBpin], 133.9 [(2)m-PhBpin], 128.8 [SiMe2p-Ph], 128.3 [(2)o-PhBpin], 127,8 [(1)o-

PhBpin], 127.8 [SiMe2Ph], 84.0 [Bpin], 83.6 [(1)PhBpin], 83.6 [(2)PhBpin], 25.1 

[PhBpin], 25.1 [PhBpin], 25.0 [Bpin], 0.1 [SiMe2Ph], 3 x B-C peaks are not observed 

due to quadrapolar broadening. 11B{1H} NMR (128.2 MHz, CDCl3): δB = 31.5 (v. br.). 

29Si{1H} NMR (79.4 MHz, CDCl3): δSi = 9.30. HRMS (ESI) m/z: [M + Na]+: Calcd for 

C40H55O6B3SiNa 715.3939; Found 715.3973. Elem. Anal.: Calcd for C40H55O6B3Si: C, 

69.39%; H, 8.01%. Found: C, 69.28%; H, 7.99%. 

 

3.7.11 Synthesis of (E)-1,1'-((1-(dimethyl(phenyl)silyl)-2-(4,4,5,5-tetramethyl-1,3,2-

dioxaborolan-2-yl)ethene-1,2-diyl)bis(1,4-phenylene))bis(2,5-dimethyl-1H-pyrrole) 

(3.11) 

A stock solution of 3.1 (0.002 g, 7.02 µmol) in C6D6 (230.0 µL) was added to a mixture 

of 1,2-bis(4-(2,5-dimethyl-1H-pyrrol-1-yl)phenyl)ethyne (0.032 g, 0.08 mmol) and 

(dimethylphenylsilyl)boronic acid pinacol ester (24.5 µL, 0.09 mmol). The resulting 

reaction mixture was heated to 100 C for 36 h. Upon cooling the crude reaction mixture 

was purified by column chromatography (Eluent: hexane/ethyl acetate, 4:1) yielding a 

colourless oily solid. Yield: 0.035 g, 64.0 %. 1H NMR (399.5 MHz, CDCl3): δH = 7.62 

[m, 2H, SiMe2Ph], 7.33 [m, 3H, SiMe2Ph], 7.08 [d, 3JHH = 8.3 Hz, 2H, (2)o-Ph], 6.89 [d, 

3JHH = 8.3 Hz, 2H, (2)m-Ph], 6.84 [m, 2H, (1)m-Ph], 6.80 [m, 2H, (1)o-Ph], 5.83 [s, 2H, 

(1)3,4-PyrH], 5.83 [s, 2H, (2)3,4-PyrH], 1.88 [s, 6H, (2)2,5-PyMe2], 1.86 [s, 6H, (1)2,5-

PyrMe2], 1.12 [s, 12H, Bpin], 0.45 [s, 6H, SiMe2Ph]. 13C{1H} NMR (100.46 MHz, 

CDCl3): δC = 155.6 [(1)C=C], 144.0 [(1)Ph-C], 142.2 [(2)Ph-C], 139.0 [SiMe2i-Ph], 

136.3 [(2)Ph-C], 135.7 [(1)Ph-C], 134.2 [SiMe2Ph], 129.5 [(2)o-PhCH], 128.9 [(1)o-

PhCH], 128.8 [SiMe2p-Ph], 128.6 [(2)2,5-PyrrC], 128.6 [(1)2,5-PyrrC], 127.6 
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[SiMe2Ph], 127.1 [(2)m-PhCH], 127.0 [(1)m-PhCH], 105.2 [(2)3,4-PyrrC], 105.2 

[(1)3,4-PyrrC], 84.1 [Bpin], 24.8 [Bpin], 12.7 [(2)2,5-PyrrCH3], 12.6 [(1)2,5-PyrrCH3], 

0.4 [SiMe2Ph]. 11B{1H} NMR (128.2 MHz, CDCl3): δB = 29.4. 29Si{1H} NMR (79.4 

MHz, CDCl3): δSi = 9.00. HRMS (ESI) m/z: [M + H]+: Calcd for C40H47O2N2BSiH 

627.3573; Found 627.3569. Elem. Anal.: Calcd for C40H47O2N2BSi: C, 76.66%; H, 

7.56%; N, 4.47%. Found: C, 76.55%; H, 7.38%; N, 4.54%. 

 

3.7.12 Synthesis of (E)-(2-(dimethyl(phenyl)silyl)-2-phenyl-1-(4,4,5,5-tetramethyl-

1,3,2-dioxaborolan-2-yl)vinyl)trimethylsilane (3.12a) 

A stock solution of 3.1 (0.001 g, 2.06 µmol) in C6D6 (1083.0 µL) was added to a mixture 

of 1-phenyl-2-trimethylsilylacetylene (80.0 µL, 0.41 mmol) and 

(dimethylphenylsilyl)boronic acid pinacol ester (111.0 µL, 0.41 mmol). The resulting 

reaction mixture was heated to 100 C for 1 h. Upon cooling, 1H NMR analysis of the 

crude material suggested an 80:20 ratio of regioisomers. The crude mixture was purified 

by column chromatography (Eluent: hexane) resulting in the isolation of 3.12a as a 

colourless oil (the major isomer and a coeluted mixture of 3.12/minor regioisomer was 

also obtained). Yield: 0.131 g, 74 %. 1H NMR (499.5 MHz, CDCl3): δH = 7.53 [m, 2H, 

SiMe2Ph], 7.30 [m, 3H, SiMe2Ph], 7.17 [m, 2H, m-Ph], 7.11 [pseudo-tt, 3JHH = 7.6 Hz, 

4JHH = 1.3 Hz, 1H, p-Ph], 6.84 [m, 2H, o-Ph], 1.15 [s, 12H, Bpin], 0.25 [s, 6H, SiMe2Ph], 

0.18 [s, 9H, SiMe3]. 13C{1H} NMR (100.46 MHz, CDCl3): δC = 170.6 [(PhMe2Si)C=C], 

153.7 [C=C(Bpin)], 148.1 [i-Ph], 139.2 [SiMe2i-Ph], 134.6 [SiMe2o-Ph], 128.8 [SiMe2p-

Ph], 127.7 [SiMe2m-Ph], 127.6 [m-Ph], 127.4 [o-Ph], 125.6 [p-Ph], 83.7 [Bpin], 26.1 

[Bpin], 1.4 [SiMe3], 0.1 [SiMe2Ph]. 11B{1H} NMR (128.2 MHz, CDCl3): δB = 30.6. 

29Si{1H} NMR (79.4 MHz, CDCl3): δSi = 7.52 (SiMe3), 10.81 (s, SiMe2Ph). HRMS 
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(ESI) m/z: [M + Na]+: Calcd for C25H37O2BSi2Na 459.2317; Found 459.2313. Elem. 

Anal.: Calcd for C25H37O2BSi2: C, 68.78%; H, 8.54%. Found: C, 68.64%; H, 8.63%. 

 

3.7.13 Synthesis of (E)-dimethyl(phenyl)(1-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-

dioxaborolan-2-yl)prop-1-en-1/2-yl)silane (3.13a/3.13b) 

A stock solution of 3.1 (0.43 mg, 0.80 µmol) was added to a mixture of 1-phenyl-1-

propyne (20.0 µL, 0.16 mmol) and (dimethylphenylsilyl)boronic acid pinacol ester (44.0 

µL, 0.16 mmol). The resulting reaction mixture was heated to 100 ˚C for 1 h. Upon 

cooling, 1H NMR analysis of the crude material suggested a 93:7 mixture of regioisomers. 

The crude mixture was purified by column chromatography (Eluent: 100 % hexane 

followed by 100 % ethylacetate) resulting in isolation of 3.13a as a white solid (the major 

isomer; the minor regioisomer of 3.13b was also obtained). Major (3.13a): Yield: 0.053 

g, 87 %. 1H NMR (399.5 MHz, CDCl3): δH = 7.56 [m, 2H, SiMe2Ph], 7.28 [m, 5H, 

SiMe2Ph and Ph], 7.12 [m, 1H, p-Ph], 6.88 [m, 2H, Ph], 1.65 [s, 3H, ≡CMe], 1.04 [s, 

12H, Bpin], 0.21 [s, 6H, SiMe2Ph]. 13C{1H} NMR (100.46 MHz, CDCl3): δC = 156.1, 

145.9, 140.9, 134.2, 128.4, 128.2, 127.6, 127.2, 125.1. 83.6, 24.9, 20.6, 0.1. 11B{1H} 

NMR (128.2 MHz, CDCl3): δB = 30.2. 29Si{1H} NMR (79.4 MHz, CDCl3): δSi = 11.13. 

Minor (3.13b): 1H NMR (399.5 MHz, CDCl3): δH = 7.60 [m, 2H, SiMe2Ph], 7.32 [m, 

5H, SiMe2Ph and Ph], 7.19 [m, 1H, p-Ph], 7.09 [m, 2H, Ph], 1.68 [s, 3H, =CMe], 1.04 

[s, 12H, Bpin], 0.49 [s, 6H, SiMe2Ph]. 13C{1H} NMR (100.46 MHz, CDCl3): δC = 152.8 

[C=C], 148.8 [C=C], 143.7 [i-Ph], 140.2 [SiMe2i-Ph], 134.2 [SiMe2Ph], 128.7 

[SiMe2Ph], 128.5 [Ph], 128.0 [Ph], 127.8 [SiMe2Ph], 125.8 [p-Ph], 83.6 [Bpin], 25.0 

[Bpin], 21.5 [=CMe], 0.7 [SiMe2Ph]. 11B{1H} NMR (128.2 MHz, CDCl3): δB = 29.9. 

29Si{1H} NMR (79.4 MHz, CDCl3): δSi = 8.24. HRMS (ESI) m/z: [M + Na]+: Calcd for 

C23H31O2BSiNa 401.2079; Found 401.2080. 
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3.7.14 Synthesis of cis-[Pd(ITMe)2(SiMe2Ph)(Bpin)] (3.14) and 3.2 

Isolation of 3.14 

3.1 (0.022 g, 0.04 mmol) was partially dissolved in toluene (5.0 mL). PhMe2SiBpin (25.0 

µL, 0.09 mmol) was added to this stirred suspension. The reaction mixture was 

subsequently stirred for 0.5 h. The volatiles were removed in vacuo. The resulting off--

white solid dissolved in a minimum volume of CH3CN and crystallized by leaving in a 

30 C freezer for 2 days. The mother liquor was decanted and the remaining crystals 

were dried in vacuo. Yield: 0.018 g, 69 %. 1H NMR (399.5 MHz, CD3CN): δH = 7.22 [dd, 

3JHH = 7.8, 1.6 Hz, 2H, SiMe2Ph], 7.00 [m, 2H, SiMe2Ph], 6.96 [m, 1H, SiMe2p-Ph], 

3.62 [s, 6H, N(1,3)-CH3], 3.34 [s, 6H, N(1,3)-CH3], 1.99 [s, 6H, C(4,5)-CH3], 1.90 [s, 

6H, C(4,5)-CH3], 0.91 [s, 12H, Bpin], 0.12 [s, 6H, SiMe2Ph]. 1H NMR (399.5 MHz, 

C6D6): δH = 7.82 [m, 2H, SiMe2Ph], 7.22 [m, 2H, SiMe2Ph], 7.13 [m, 1H, SiMe2p-Ph], 

3.55 [s, 6H, N(1,3)-CH3], 3.23 [s, 6H, N(1,3)-CH3], 1.49 [s, 6H, C(4,5)-CH3], 1.46 [s, 

6H, C(4,5)-CH3], 1.14 [s, 12H, Bpin], 0.91 [s, 6H, SiMe2Ph].  13C{1H} NMR (100.46 

MHz, CD3CN): δC = 196.5 [NCN], 192.4 [NCN], 157.2 [i-Ph], 134.15 [Ph], 126.9 [Ph], 

125.3 [p-Ph], 125.0 [C(4,5)-CH3], 124.6 [C(4,5)-CH3], 80.35 [Bpin], 35.7 [N(1,3)-CH3], 

35.3 [N(1,3)-CH3], 25.8 [Bpin], 9.0 [C(4,5)-CH3], 9.0 [C(4,5)-CH3], 6.8 [SiMe2Ph]. 

11B{1H} NMR (128.2 MHz, CD3CN): δB = 46.2. 29Si{1H} NMR (79.4 MHz, CD3CN): 

δSi =  5.35. Elem. Anal.: Calcd for C28H47N4O2BSiPd: C, 54.50%; H, 7.68%; N, 9.08%. 

Found: C, 54.40%; H, 7.65%, N, 9.02%. 

Crystal data for 3.14: C28H47BN4O2SiPd, Mr = 616.99 g mol-1, monoclinic, space group 

P21/n, a = 12.9381(3) Å, b = 17.8318(3) Å, c = 14.8311(4) Å, α = 90o, β = 113.454(3)o, γ 

= 90o, V = 3138.99(13) Å3, Z = 4, T = 173 K, λCu(Kα) = 1.54184, R1 [I > 2σ(I)] = 0.0350, 

wR2 (all data) = 0.0880, GooF = 1.044. 
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Isolation of 3.2 

The mother liquor decanted above was filtered through a plug of silica in air. The volatiles 

from the filtrate collected were removed under reduced pressure to reveal a white 

powdered solid. Yield: 0.017 g, 92%. 1H NMR (399.5 MHz, CDCl3): δH = 7.65 [m, 2H, 

SiMe2Ph], 7.34 [m, 3H, SiMe2Ph], 6.97 [m, 8H, Ph], 6.71 [m, 2H, p-Ph], 1.05 [s, 12H, 

Bpin], 0.34 [s, 6H, SiMe2Ph]. 13C{1H} NMR (125.7 MHz, CDCl3): δC = 155.1, 144.6, 

142.9, 139.8, 134.5, 129.1, 128.8, 128.6, 127.8, 127.3, 127.3, 125.5, 124.8, 84.0, 25.0, 

−0.1. 11B{1H} NMR (128.2 MHz, CDCl3): δB = 30.0. 29Si{1H} NMR (79.4 MHz, CDCl3): 

δSi = −9.32. HRMS (ESI) m/z: [M + Na]+ Calcd for C28H33O2BSiNa 463.2235; Found 

463.2239. 

 

3.7.15 Stoichiometric Synthesis of 3.1 and 3.2 from 3.14 

In a J Young tap NMR tube, 3.14 (0.006 g, 9.72 µmol) and diphenylacetylene (0.005 g, 

28.05 µmol) were dissolved in C6D6 (1.0 mL). The resulting reaction mixture was agitated 

for 10 min at room temperature. 1H NMR analysis indicated full conversion of 3.14 to 3.1 

and 3.2. 

 

3.7.16 Synthesis of [Pd(ITMe)2(PhC≡CNA)] (3.16) 

An isopropanol (9.5 µL, 0.12 mL) toluene (2.0 mL) solution was added to a mixture of 

[(ITMe)Pd(methallyl)Cl] (0.040 g, 0.12 mmol), ITMe (0.017 g, 0.14 mmol) and tBuOK 

(0.014 g, 0.13 mmol) were suspended in toluene (10.0 mL). The resulting reaction 

mixture was stirred at room temperature for 4.5 h. At this stage, the volatiles were 

removed in vacuo, the crude material was re-dissolved in toluene (15.0 mL) and 1-

(phenylethynl)naphthalene (0.032 g, 0.14 mmol) was added. The reaction mixture was 

stirred at room temperature for a further 16 h and then the solution was filtered via 
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cannula. The filtrate’s volatiles were removed in vacuo and the orange solid was washed 

with hexane (3 x 5.0 mL). Yield: 0.052 g, 72%. 1H NMR (399.5 MHz, C6D6): δH = 8.98 

[d, 3JHH = 8.2 Hz, 1H, 10-NA], 7.95 [m, 1H, 2-NA], 7.79 [dd, J = 8.1, 1.2 Hz, 2H, o-Ph], 

7.76 [m, 1H, 9-NA], 7.57 [d, 3JHH = 8.2 Hz, 1H, 7-NA], 7.39 [m, 1H, 3-NA], 7.29 [m, 

1H, 8-NA], 7.25 [m, 1H, 4-NA], 7.19 [m, 2H, m-Ph], 7.02 [m, 1H, p-Ph], 3.54 [s, 6H, 

N(1,3)-CH3], 3.40 [s, 6H, N(1,3)-CH3], 1.56 [s, 6H, C(4,5)-CH3], 1.44 [s, 6H, C(4,5)-

CH3]. 13C{1H} NMR (100.5 MHz, C6D6): δC = 198.1 [NCN], 197.7 [NCN], 140.0 [1-

NA], 137.5 [i-Ph], 134.8 [5-NA], 131.4 [6-NA], 130.9 [o-Ph], 129.0 [10-NA], 128.1 [m-

Ph], 128.1 [9-NA], 127.5 [C=C], 126.4 [3-NA], 125.5 [8-NA], 125.2 [C=C], 124.7 [2-

NA], 124.5 [p-Ph], 124.4 [4-NA], 123.7 [7-NA], 123.2 [C(4,5)-CH3], 123.0 [C(4,5)-

CH3], 35.3 [N(1,3)-CH3], 35.1 [N(1,3)-CH3], 9.0 [C(4,5)-CH3], 8.9 [C(4,5)-CH3]. Elem. 

Anal.: Calcd for C32H36N4Pd: C, 65.92%; H, 6.22%; N, 9.61%. Found: C, 65.76%; H, 

6.31%, N, 9.57%. 

 

3.7.17 Synthesis of [Pd(ITMe)2({4-Et}PhC≡CPh{4-OMe})] (3.17) 

An isopropanol (8.5 µL, 0.11 mmol) toluene (2.0 mL) solution was added to a mixture of 

[(ITMe)Pd(methallyl)Cl] (0.036 g, 0.11 mmol), tBuOK (0.014 g, 0.12 mmol) and ITMe 

(0.016 g, 0.13 mmol) suspended in toluene (10.0 mL). The resulting reaction mixture was 

stirred at room temperature for 4.5 h. At this the volatiles were removed in vacuo, the 

crude material was re-dissolved in toluene (15.0 mL) and 1-ethyl-4-((4-

methoxyphenyl)ethynl)benzene (0.032 g, 0.13 mmol) was added. The reaction mixture 

was stirred for a further 19 h at room temperature and then the solution was filtered via 

cannula. The filtrate’s volatiles were removed in vacuo and the yellow solid was washed 

with hexane (3 x 5.0 mL). Yield: 0.045 g, 68%. 1H NMR (399.5 MHz, C6D6): δH = 7.96 

[m, 4H, o-PhEt and o-PhOMe], 7.16 [m, 2H, m-PhEt], 6.89 [m, 2H, m-PhOMe], 3.52 [s, 
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12H, N(1,3)-CH3], 3.36 [s, 3H, OMe], 2.54 [q, 3JHH = 7.7 Hz, 2H, CH2CH3], 1.57 [s, 

12H, C(4,5)-CH3], 1.15 [t, 3JHH = 7.7 Hz, 3H, CH2CH3]. 13C{1H} NMR (100.5 MHz, 

C6D6): δC = 199.4 [NCN], 199.4 [NCN], 157.4 [p-PhOMe], 139.4 [p-PhEt], 136.3 [i-

PhEt], 131.6 [o-PhOMe], 131.0 [i-PhOMe], 130.3 [o-PhEt], 127.8 [m-PhEt], 124.3 

[C≡C], 123.3 [C≡C], 123.0 [C(4,5)-CH3], 113.9 [m-PhOMe], 54.8 [OMe], 35.2 [N(1,3)-

CH3], 29.2 [CH2CH3], 16.1 [CH2CH3], 9.0 [C(4,5)-CH3]. Elem. Anal.: Calcd for 

C31H40N4OPd: C, 62.99%; H, 6.82%; N, 9.48%. Found: C, 62.90%; H, 6.89%, N, 9.39%. 
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Chapter 4 

 (N-Heterocyclic-Carbene)2Pd(0) Catalyzed Diboration of Internal and Terminal 

Alkynes 

 

4.1 Introduction 

The transition metal catalyzed π-insertion of alkynes into homo and hetero element-

element (E-E’) bonds provides the most atom economical route for the stereoselective 

synthesis of tri- and tetra-substituted alkenes.[1] Among the various E-E’ reagents used in 

such transformations, B-B bonds (diborons) in particular have attracted substantial 

interest.[2–6] The resulting 1,2-diboryl alkenes, due to their participation in Suzuki-

Miyaura cross-coupling,[7–9] are recognized as important building blocks in, for example, 

the synthesis of pharmaceuticals,[10–12] chirotopical devices,[13] and 

optically/electronically active polymeric materials.[14] A number of transition metals have 

been utilized in both homogeneous and heterogeneous catalytic addition of B-B bonds 

(diboration) to alkynes including cobalt,[15] copper,[16] iridium,[17] rhodium,[17] iron,[18] 

platinum,[19] and palladium.[20,21] To date, platinum is by far the most effective and widely 

studied;[22–26] this is attributed to the facile cleavage of the B-B bond and the lability of 

the corresponding bis(boryl)platinum complexes.[27,28] As a result, even easily handled 

and often air stable tetraalkoxy- and tetraaryloxydiboron reagents can be utilized, 

regardless of their relatively high B-B bond strength.[29] However, despite the extensive 

studies, a number of general limitations remain: the use of elevated temperatures, high 

catalyst loadings and long reaction times. Only two examples of palladium catalysed 

alkyne diborations have been described in the literature, both by Braunschweig and co-

workers involving the heterogeneous catalysed diboration of alkynes using 

[2]borametalloarenophanes.[20,21] The reactions required 6 mol% of Pd/C and proceeded 
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over a period of 5-16 days at temperatures of 95-100 oC (Scheme 4.1). The dearth of 

reported palladium examples is attributed to the energetics of the B-B oxidative addition. 

The process is endothermic with a very low reverse activation barrier,[30] and therefore 

kinetically and thermodynamically unfavourable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 4.1 Palladium catalysed diboration of alkynes 

 

The synthesis of the N-heterocyclic carbene bearing[31–33] complex 

[Pd(ITMe)2(PhC≡CPh)] (ITMe = 1,3,4,5-tetramethylimidazol-2-ylidene) (4.1) and its 

high catalytic reactivity in bis(silyl)ation,[34] and silaboration of internal and terminal 

alkynes,[35] were reported in Chapter 2 and 3. This prompted an investigation into the 

potential of 4.1 for the diboration of alkynes. Herein, the use of 4.1 in the unprecedented 

palladium catalysed diboration of sterically demanding internal and terminal alkynes, 
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employing low catalytic loadings and mild reaction temperatures is detailed. In addition, 

a summary of a thorough density functional theory (DFT) study that establishes a likely 

mechanistic pathway explaining this reactivity, conducted by collaborators at the 

Universidade de São Paulo, Brazil, is reported. 

 

4.2 Catalytic diboration of alkynes 

The reaction parameters were optimized using diphenylacetylene and commercially 

available bis(pinacalato)diboron (B2pin2) as the model substrates, with C6D6 as the 

solvent in order to monitor the progression by 1H NMR spectroscopy. 100% 

stereoeselective conversion to (Z)-1,2-diphenyl-1,2-bis(4,4,5,5-tetramethyl-1,3,2-

dioxaborolan-2-yl)ethane (4.2) was observed using 0.5 mol% of 4.1 at room temperature 

in 21 h. Unfortunately, initial workup procedures proved troublesome, with the use of 

either silica and alumina columns resulting in very low isolated yields presumably due to 

reactivity with, or strong binding to the stationary phase. Kugelrohr distillation is an 

alternative methodology reported in the literature,[36] but is generally applicable to small 

quantities of material and therefore unviable as a scalable procedure. The more noticeable 

impurity was unreacted B2pin2. To remove it, the crude dry material was stirred in 

deionized H2O at room temperature over 24 h.[37] Subsequent filtration and drying 

resulted in the clean isolation of 4.2 in a 99% yield. While there are several protocols in 

the literature for the synthesis of 4.2, the previous highest yield was reported by Jin and 

co-workers who obtained a comparable yield using 2 mol% of nanoporous gold at 100 oC 

over 12 h.[38] To test the potential of this protocol for scaling-up, the synthesis of 4.2 was 

also carried out in non-deuterated benzene and toluene on a larger practical scale, 

resulting in comparable isolated yields (Table 4.1). The potential of 4.1 to catalyse this 

reaction using other diboron reagents was also investigated, but unfortunately neither 
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bis(catecholato)diboron (B2cat2) nor bis(neopentylglycolato)diboron (B2neop2) afforded 

any of the diboration products. 

With this information in hand, a series of sterically and electronically demanding alkynes 

were reacted with B2pin2 (Table 4.1). The diboration of alkyl and aryl terminal alkynes 

proceeded using 0.5 mol% of 4.1 at room temperature over 1-48 h with 100% 

stereoselectivity. A wide range of functionalities on the aryl moiety was tolerated 

including fluoro, trifluoromethyl, methoxy and alkyl groups in the ortho, meta and para 

positions. Compounds 4.3, 4.4, 4.5 and 4.6 were synthesized using lower catalyst 

loadings, milder temperatures and in higher or comparable yields to the highest yielding 

protocols in the literature (using 2 mol% nanoporous gold at 100 oC),[38] and 4.5 and 4.6 

were synthesized with comparatively higher stereoselectivities (Table 4.1). Low reaction 

temperatures have been reported for the synthesis of these compound using both homo- 

and heterogeneous platinum complexes, although at the expense of lower yields and in 

many cases higher catalyst loadings.[22–26,39,40] Compound 4.7 was synthesized in a higher 

yield than the highest yielding protocol in the literature (using 0.2 mol% Pt/TiO2 at 70 

oC, 16 h).[25] The previous highest yielding synthesis for compound 4.8 was reported by 

Miyaura and co-workers (94% yield) using 3 mol% [Pt(CO)2(PPh3)2] at 80 oC in DMF 

over 24 h.[22] The novel compounds 4.9, 4.10 and 4.11 were synthesized with 100% syn-

stereoselectivity as established by NOESY NMR spectroscopy (Table 4.1). In the case of 

4.11 chemoselectivity is achieved since the olefin remains unreacted. Unsymmetrical 

internal alkynes also reacted well under these conditions, albeit at higher -but still mild- 

temperatures (50 oC). The novel compounds 4.12 and 4.13 were synthesized with 100% 

syn-stereoselectivities. The diboration of 1-phenyl-2-trimethylsilane, resulting in the 

formation of 4.14, required an increased catalyst loading of 2 mol% and a higher 
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Table 4.1 Diboration of terminal and internal alkynes 



155 
 

temperature (100 oC). The previous best procedure for the synthesis of 4.14 was detailed 

by Nishihara, obtaining a comparable yield using 5 mol% of [Pt(PPh3)4] at 80 oC.[26] 

Finally, the diboration of 4-octyne resulted in a maximum conversion to 4.15 of 39%. 

Even lower conversions and the formation of palladium black were observed when the 

reaction was carried out at higher temperatures. It is presumed that the electron-rich 

nature of the alkyne results in a low binding affinity to the very electron-rich, active 

catalyst and therefore discourages diboration.  

 

4.3 Mechanism 

4.3.1 General Mechanism 

The accepted experimental and theoretical mechanism for platinum group transition metal 

catalysed diboration of alkynes involves: (i) oxidative addition of the B-B bond to a 

M(0)L2 centre forming L2M(II)(B)2, (ii) dissociation of an L ligand (a phosphine) and 

coordination of an alkyne in its place, (iii) insertion of the alkyne into the M-B bond, (iv) 

isomerization of the resulting complex, followed by re-coordination of the L ligand, and 

(v) stereoselective reductive elimination.[30,41] This mechanism is general and applies to 

other E-E’ bond additions to alkynes.[42–47] In Chapter 2 and 3 it was proposed that the 

use of NHCs as a ligand set results in a different mechanism, in which both NHCs remain 

coordinated throughout. This alternative pathway was used as an explanation for the 

observed increase in reactivity of 4.1 compared to their phosphine an isocyanide 

analogues in alkyne bis(silyl)ations[34] and silaborations.[35]  

 

4.3.2 Attempted Synthesis of [(NHC)2Pd(Bpin)2] Complexes 

Within Chapter 2 and 3 the corresponding (element)(element’)Pd(II) intermediates were 

isolated with ease. However, the oxidative addition of B-B bonds at a palladium centre 
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has not been reported in the literature. Computational studies predicted that this oxidative 

addition step possessed an activation barrier of 8.6 kcal mol-1. However, the B-B 

oxidative addition to Pd(0) was characterized as an endothermic process with a reverse 

barrier of only 0.1 kcal mol1.[30] The cause of this low reverse barrier was attributed to 

the promotion energy from d10Pd(0)L2 with linear geometry (singlet – ground state) to 

d9s1Pd(0)L2 with bent geometry (triplet – excited state). The energy difference between 

these two electronic configurations is larger for Pd(0)L2 than for Pt(0)L2 with phosphines. 

Despite this damning report, attempts at isolation of such oxidative addition complexes 

were undertaken by reacting the diboron reagent B2pin2 with 4.1. The reactions were 

performed in C6D6, CD3CN and hexane at room temperature and 50 oC (Scheme 4.2). 

However, in all instances the only palladium species observed was [Pd(ITMe)2], as 

determined by the NHC based CH3 resonances in the 1H NMR spectrum at 3.93 and 1.55 

ppm. 1H NMR analysis of crude material also indicated a 100% conversion of 

diphenylacetylene to the organic product 4.2. These observations suggest that at least on 

an isolable level oxidative addition of a B-B at a NHC-Pd(0) centre is not, as predicted, a 

favourable process. Extension to other diboron reagents, B2cat2 and B2neop2, was 

unsuccessful.  

 

Scheme 4.2 Stoichiometric addition of B2pin2 to 4.1 
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4.3.3 Computationally Calculated Mechanism 

To gain insight into the mechanism and role of 4.1 in the diboration of alkynes, a density 

functional theory study was carried out on the optimized model substrates employing a 

M06-L/BSI level of theory by our collaborators, Professor Ataualpa A. C. Braga and his 

group. Their investigations suggested that the Pd(0)-catalyzed alkyne diboration 

supported by NHC ligands proceeded through the same mechanism as the phosphine 

analogues. This mechanism, depicted in Scheme 4.3, can therefore be summarized as (i) 

activation of the catalyst by alkyne dissociation from 4.1, (ii) oxidative addition of the B-

B to Pd(0), (iii) ligand dissociation from bis(boryl)palladium(II) complex 4.M3, (iv) 

insertion of the alkyne into a Pd-B bond via migratory insertion, (v) cis-trans 

isomerization involving the C-Bpin and the allyl ligands, and (vi) reduction of Pd(II) to 

Pd(0) with the elimination of the syn-1,2-diborylated product.[48]
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Scheme 4.3 Proposed mechanism for [Pd(NHC)2] catalysed diboration of alkynes



159 
 

Sasaki and co-workers, studied the activity of Pd(0)L2 and Pt(0)L2 catalyst (L = 

phosphine) in the C-H activation of methane by oxidative additions.[49] They observed 

that chelating phosphines destabilize the M(0)L2 complexes bringing the reactants closer 

and promoting the oxidative addition transition state, [(diboron)Pd(0)L2]. (NHC)-Pd(0) 

catalysts were also investigated in the activation of methane by oxidative addition,[50] and 

considered better candidates as catalyst than the analogous phosphines-based Pd(0) 

complexes. Based on these results, it is proposed that the considerably increased reactivity 

of NHC-bearing complex 4.1 in the alkyne diboration is a consequence of oxidative 

addition step. More specifically, on the destabilization of [(diboron)Pd(0)L2] adduct  by 

the NHC ligands resulting in a lower activation free energy for the oxidative addition (3.9 

kcal mol-1) 

 

4.4 Conclusions 

Catalytic investigations have shown that complex 4.1 acts as highly active catalyst in the 

diboration of sterically and electronically demanding alkynes. For terminal alkynes, low 

catalyst loadings and temperatures were used for the 100% stereoselective synthesis of 

syn-1,2-diborylalkenes. Internal alkynes can react using this protocol, albeit requiring 

elevated temperatures. This represents the first example of homogeneous palladium 

catalysed diboration of alkynes. DFT calculations were performed by collaborators to 

understand the activity of the NHC-bearing catalyst 4.1. The results suggest that 4.1 

follows the same mechanistic path as the corresponding analogous phosphine system. The 

dissociation of one NHC is a crucial part of the mechanism, unaccounted for in the 

proposed pathways for the other E-E’ bond additions to alkynes (Chapter 2 and 3). 

Despite their strong coordination to metal centres, it has been previously shown that the 
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reversible dissociation of an NHC from an oxidative addition products is a mechanistic 

possibility.[51,52] The DFT study also showed that the destabilization of the 

(diboron)Pd(0)L2 adduct by the NHCs was key to the successful oxidative addition of the 

B-B bond. This study was reported in the journal Catalysis Science and Technology.[48] 

 

4.5 Experimental Details for Chapter 4 

General experimental details are given in appendix A1. 

4.5.1 Scaled Synthesis of [Pd(ITMe)2(PhC≡CPh)] (4.1) 

In a vial, isopropanol (109.0 μL, 1.42 mmol) was added to a mixture of [(ITMe)Pd 

(methallyl)Cl] (0.457 g, 1.42 mmol), tBuOK (0.161 g, 1.44 mmol) and ITMe (0.183 g, 

1.48 mmol) in toluene (80 mL). The resulting reaction mixture was stirred at room 

temperature under a N2 for 4 h. At this point, diphenylacetylene (0.280 g, 1.57 mmol) was 

added and the reaction mixture was stirred for a further 18 h. At this stage, the volatiles 

were removed in vacuo. Crude 4.1 was dissolved in CH3CN (100 mL) and filtered. The 

filtrate volatiles were removed under reduced pressure and yellow powdered solid was 

washed with a 1:1 toluene/hexane solution (3 x 20 mL) followed by pentane (3 x 20 mL). 

Yield: 0.407 g, 54 %. 1H NMR (399.5 MHz, C6D6): δH = 7.99 [dd, 3JHH = 8.1, 4JHH = 1.3 

Hz, 4H, m-Ph], 7.27 [m, 4H, o-Ph], 7.05 [tt, 3JHH = 7.3, 4JHH = 1.3 Hz, 2H, p-Ph], 3.49 [s, 

12H, N(1,3)-CH3], 1.54 [s, 12H, C(4,5)-CH3]. 
13C{1H} NMR (100.46 MHz, C6D6): δC = 

198.7 [NCN], 138.6 [C≡C], 130.1 [o-Ph], 128.2 [m-Ph], 126.3 [i-Ph], 124.2 [p-Ph], 123.1 

[C(4,5)-CH3], 35.2 [N(1,3)-CH3], 9.0 [C(4,5)-CH3]. 

 

4.5.2 Stock Solution of 4.1 

Stock solutions were made in batches; in a glovebox 5 mg of 4.1 was dissolved in 5 mL 

of C6D6. 
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4.5.3 Synthesis of (Z)-1,2-diphenyl-1,2-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-

2-yl)ethane (4.2) 

A stock solution of 4.1 (0.47 mg, 0.78 µmol) in C6D6 (471 µL) was added to a mixture of 

diphenylacetylene (0.032 g, 0.18 mmol) and bis(pinacolato)diboron (0.046 g, 0.18 

mmol). The resulting reaction mixture was stirred at room temperature for 21 h under a 

N2 atmosphere. At this point all volatiles were removed in vacuo. Deionized H2O (35 mL) 

was added and the mixture was stirred at room temperature for 24 h. Filtration and drying 

under reduced pressure resulted in the collection of a white solid. Yield: 0.076 g, 99%. 

1H NMR (399.5 MHz, CDCl3): δH = 7.05 [m, 6H, Ph], 6.95 [m, 4H, Ph], 1.32 [s, 24H, 

Bpin]. 13C{1H} NMR (100.46 MHz, CDCl3): δC = 141.4, 129.5, 127.5, 125.9, 84.2, 25.0. 

11B{1H} NMR (128.2 MHz, CDCl3): δB = 30.3 (spectroscopic data in agreement with the 

literature). 

 

4.5.4 Synthesis of (E)-2,2'-(1-phenylethene-1,2-diyl)bis(4,4,5,5-tetramethyl-1,3,2-

dioxaborolane) (4.3) 

To a stock solution of 4.1 (0.61 mg, 1.14 µmol) in C6D6 (607 µmol) was added to a 

mixture of phenylacetylene (25.0 µL, 0.23 mmol) and bis(pinacolato)diboron (0.058 g, 

0.23 mmol). The resulting reaction mixture was stirred at room temperature for 3 h under 

a N2 atmosphere. The volatiles were removed in vacuo, deionized H2O (35 mL) was 

added to the crude material and the mixture was stirred for 24 h. Decanting the H2O and 

drying under vacuum resulted in the isolation of a yellow oil. Yield: 0.074 g, 91 %. 1H 

NMR (399.5 MHz, CDCl3): δH = 7.43 [m, 2H, Ph], 7.28 [m, 3H, Ph], 6.28 [s, 1H, =CH], 

1.37 [s, 12H, Bpin], 1.30 [s, 12H, Bpin]. 13C{1H} NMR (100.46 MHz, CDCl3): δC = 

143.2, 128.4, 127.7, 126.7, 84.3, 83.7, 25.2, 25.0. 11B{1H} (128.2 MHz, CDCl3): δB = 

30.1 (spectroscopic data in agreement with the literature). 
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4.5.5 Synthesis of (E)-2,2'-(1-(o-tolyl)ethene-1,2-diyl)bis(4,4,5,5-tetramethyl-1,3,2-

dioxaborolane) (4.4) 

A stock solution of 4.1 (0.42 mg, 0.79 µmol) in C6D6 (423 µL) was added to a mixture of 

1-ethynyl-2-methylbenzene (20.0 µL, 0.16 mmol) and bis(pinacalato)diboron (0.051 g, 

0.20 mmol). The resulting reaction mixture was stirred for 2 h at room temperature under 

a N2 atmosphere. At this point all volatiles were removed in vacuo, deionized H2O (50 

mL) was then added and the mixture was stirred for 24 h. The H2O was decanted, the 

resulting pale brown solid was washed with more deionized H2O (3 x 25 mL) and dried 

thoroughly under a high vacuum. Yield: 0.046 g, 79 %. 1H NMR (399.5 MHz, CDCl3): 

δH = 7.12 [m, 4H, 3,4,5,6-Ph], 6.02 [s, 1H, =CH], 2.31 [s, 3H, PhCH3], 1.33 [s, 12H, 

Bpin], 1.29 [s, 12H, Bpin]. 13C{1H} NMR (100.46 MHz, CDCl3): δC = 144.8, 134.7, 

130.0, 128.1, 126.8, 125.7, 84.1, 83.7, 25.1, 25.0, 20.6, 2 C=C were not observed due to 

quadrapolar broadening caused by adjacent B atoms. 11B{1H} NMR (128.2 MHz, 

CDCl3): δB = 30.0 (spectroscopic data in agreement with the literature). 

 

4.5.6 Synthesis of (E)-2,2'-(1-(4-fluorophenyl)ethene-1,2-diyl)bis(4,4,5,5-

tetramethyl-1,3,2-dioxaborolane) (4.5) 

A stock solution of 1 (0.50 mg, 0.94 µmol) in C6D6 (500 µL) was added to a mixture of 

1-ethynyl-4-fluorobenzene (0.023 g, 0.19 mmol) and bis(pinacalato)diboron (0.048 g, 

0.19 mmol). The resulting reaction mixture was stirred at room temperature for 9 h under 

a N2 atmosphere. At this point the volatiles were removed in vacuo, deionized H2O (35 

mL) was added and the resulting mixture was stirred at room temperature for 24 h. The 

H2O was then decanted and the resulting yellow oil was dried under vacuum. Yield: 0.067 

g, 95 %. 1H NMR (399.5 MHz, CDCl3): δH = 7.41 [m, 2H, Ph], 6.98 [m, 2H, Ph], 6.24 [s, 

1H, =CH], 1.37 [s, 12H, Bpin], 1.30 [s, 12H, Bpin]. 13C{1H} NMR (100.46 MHz, CDCl3): 
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δC = 162.7 [d, 1JCF = 246.6 Hz, p-Ph], 139.2 [d, 4JCF = 3.3 Hz, i-Ph], 128.3 [d, 3JCF = 8.0 

Hz, o-Ph], 115.3 [d, 2JCF = 21.4 Hz, m-Ph], 84.3 [Bpin], 83.7 [Bpin], 25.2 [Bpin], 25.0 

[Bpin], 2 C=C were not observed due to quadrapolar broadening caused by adjacent B 

atoms. 11B{1H} NMR (128.2 MHz, CDCl3): δB = 30.1. 19F NMR (375.9 MHz, CDCl3): 

δF = 115.10 (m) (spectroscopic data in agreement with the literature). 

 

4.5.7 Synthesis of (E)-2,2'-(1-(4-methoxyphenyl)ethene-1,2-diyl)bis(4,4,5,5-

tetramethyl-1,3,2-dioxaborolane) (4.6) 

A stock solution of 4.1 (0.50 mg, 0.93 µmol) in C6D6 (496 µL) was added to a mixture of 

1-ethynyl-4-methoxybenzene (0.025 g, 0.18 mmol) and bis(pinacalato)diboron (0.055 g, 

0.22 mmol). The resulting reaction mixture was stirred at room temperature for 4 h under 

a N2 atmosphere. At this point all volatiles were removed in vacuo, deionized H2O (35 

mL) was then added and the mixture was stirred for 24 h. The H2O was decanted, the 

resulting dark yellow oil was washed with more deionized H2O (2 x 25 mL) and dried 

thoroughly under a high vacuum. Yield: 0.063 g, 88 %. 1H NMR (399.5 MHz, CDCl3): 

δH = 7.40 [m, 2H, Ph], 6.84 [m, 2H, Ph], 6.22 [s, 1H, =CH], 3.79 [s, 3H, OMe], 1.38 [s, 

12H, Bpin], 1.30 [s, 12H, Bpin]. 13C{1H} NMR (100.46 MHz, CDCl3): δC = 159.6, 135.6, 

133.7 [C=C], 127.9, 114.1 [C=C], 113.9, 84.2, 83.6, 55.3, 25.3, 25.0. 11B{1H} NMR 

(128.2 MHz, CDCl3): δB = 30.4 (spectroscopic data in agreement with the literature). 

 

4.5.8 Synthesis of (E)-2,2'-(1-(4-(trifluoromethyl)phenyl)ethene-1,2-

diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (4.7) 

A stock solution of 4.1 (0.41 mg, 0.77 µmol) in C6D6 (408 µL) was added to a mixture of 

1-ethynyl-4-(trifluoromethyl)benzene (25.0 µL, 0.15 mmol) and bis(pinacalato)diboron 

(0.055 g, 0.22 mmol). The resulting reaction mixture was stirred at room temperature for 
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13 h under a N2 atmosphere. At this point the volatiles were removed in vacuo, deionized 

H2O (35 mL) was then added and the mixture was stirred for 24 h. The H2O was then 

decanted and the resulting product was washed with more deionized H2O (2 x 25 mL). 

The off-white solid was then dried under a high vacuum. Yield: 0.061 g, 94 %. 1H NMR 

(399.5 MHz, CDCl3): δH = 7.55 [m, 4H, o- and m-Ph], 6.35 [s, 1H, C=CH], 1.37 [s, 12H, 

Bpin], 1.32 [s, 12H, Bpin]. 13C{1H} NMR (100.46 MHz, CDCl3): δC = 146.9 [i-Ph], 129.5 

[q, 2JCF = 32.4 Hz, p-Ph], 127.0 [o-Ph], 125.4 [q, 3JCF = 3.8 Hz, m-Ph], 124.4 [q, 1JCF = 

272.8 Hz, CF3], 84.5 [Bpin], 84.0 [Bpin], 25.1 [Bpin], 25.0 [Bpin], 2 C=C were not 

observed due to quadrapolar broadening caused by adjacent B atoms. 11B{1H} NMR 

(128.2 MHz, CDCl3): δB = 30.3. 19F NMR (375.9 MHz, CDCl3): δF = 62.53 

(spectroscopic data in agreement with the literature). 

 

4.5.9 Synthesis of (E)-2,2'-(oct-1-ene-1,2-diyl)bis(4,4,5,5-tetramethyl-1,3,2-

dioxaborolane) (4.8) 

A stock solution of 4.1 (0.51 mg, 0.96 µL) in C6D6 (514 µL) was added to a mixture of 

1-octyne (15.0 µL, 0.19 mmol) and bis(pinacolato)diboron (0.055 g, 0.21 mmol). The 

resulting reaction mixture was stirred at room temperature for 33 h under a N2 

atmosphere. At this point, the volatiles were removed in vacuo. The resulting crude 

product was stirred in deionized H2O (30 mL) over 24 h, the H2O was then decanted and 

colourless oil was dried under vacuum. Yield: 0.070 g, 87 %. 1H NMR (399.5 MHz, 

CDCl3): δH = 5.82 [s, 1H, C=CH], 2.18 [t, 3JHH = 7.6 Hz, 2H], 1.38 [m, 2H], 1.29 [s, 12H, 

Bpin], 1.27 [m, 6H], 1.24 [s, 12H, Bpin], 0.84 [t, 3JHH = 6.9 Hz, 3H, CH3]. 
13C{1H} NMR 

(100.46 MHz, CDCl3): δC = 83.5, 83.2, 39.8, 31.7, 29.1, 28.6, 24.9, 24.8, 22.5, 14.0. 

11B{1H} NMR (128.2 MHz, CDCl3): δB = 30.5 (spectroscopic data in agreement with the 

literature). 
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4.5.10 Synthesis of (E)-2,2'-(1-(3,5-bis(trifluoromethyl)phenyl)ethene-1,2-

diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (4.9) 

A stock solution of 4.1 (0.38 mg, 0.71 µL) in C6D6 (377 µL) was added to a mixture of 

1-ethynyl-3,5-bis(trifluoromethyl)benzene (25.0 µL, 0.14 mmol) and 

bis(pinacalato)diboron (0.049 g, 0.19 mmol). The resulting reaction mixture was stirred 

at room temperature for 48 h under a N2 atmosphere. At this point all the volatiles were 

removed in vacuo. Deionized H2O (50 mL) was added to the reaction mixture and this 

was allowed to stir for 24 h. The H2O was decanted and the product was washed with 

further quantities of deionized H2O (3 x 20 mL). The yellow oil was dried under a high 

vacuum. Yield: 0.055 g, 79%. 1H NMR (399.5 MHz, CDCl3): δH = 7.88 [s, 2H, o-Ph], 

7.74 [s, 1H, p-Ph], 6.41 [s, 1H, =CH], 1.37 [s, 12H, Bpin], 1.33 [s, 12H, Bpin]. 13C{1H} 

NMR (100.46 MHz, CDCl3): δC = 145.3 [i-Ph], 131.7 [q, 2JCF = 32.1 Hz, m-Ph], 127.0 

[o-Ph], 123.6 [q, 1JCF = 272.6 Hz, -CF3], 121.1 [p-Ph], 84.8 [Bpin], 84.22 [Bpin], 25.1 

[Bpin], 25.1 [Bpin], 2 C=C were not observed due to quadrapolar broadening caused by 

adjacent B atoms. 11B{1H} NMR (128.2 MHz, CDCl3): δB = 30.2. 19F NMR (375.9 MHz, 

CDCl3): δF = 63.1. HRMS (ESI) m/z: [M + Na]+ Calcd for C22H28F6O4B2Na 515.1970; 

Found 515.1970. Elem. Anal.: Calcd for C22H28F6O4B2: C, 53.70%; H, 5.74%. Found: C, 

53.55%; H, 5.67%. 

 

4.5.11 Synthesis of (E)-2,2'-(1-mesitylethene-1,2-diyl)bis(4,4,5,5-tetramethyl-1,3,2-

dioxaborolane) (4.10) 

A stock solution of 4.1 (0.51 mg, 0.96 µmol) in C6D6 (511 µL) was added to a mixture of 

2-ethynl-1,3,5-trimethylbenzene (30.0 µL, 0.19 mmol) and bis(pinacolato)diboron (0.054 

g, 0.21 mmol). The reaction mixture was stirred at room temperature for 1 h under a N2 

atmosphere. At this point the volatiles were removed in vacuo, the resulting colourless 
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oil was washed with deionized water (3 x 30 mL) at which point a white solid precipitated. 

This white solid was collected by filtration and dried. Yield: 0.072 g, 94 %. 1H NMR 

(399.5 MHz, CDCl3): δH = 6.81 [s, 2H, Ph], 5.85 [s, 1H, =CH], 2.25 [s, 3H, p-PhCH3], 

2.18 [s, 6H, o-PhCH3], 1.33 [s, 12H, Bpin], 1.24 [s, 12H, Bpin]. 13C{1H} NMR (100.46 

MHz, CDCl3): δC = 141.6 [i-Ph], 135.1 [p-Ph], 134.5 [o-Ph], 128.0 [m-Ph], 83.7 [Bpin], 

83.4 [Bpin], 25.1 [Bpin], 24.9 [Bpin], 21.1 [p-PhCH3], 20.8 [s, o-PhCH3], 2 C=C were 

not observed due to quadrapolar broadening caused by adjacent B atoms. 11B{1H} NMR 

(128.2 MHz, CDCl3): δB = 29.7. HRMS (ESI) m/z: [M + Na]+ Calcd for C23H36O4B2Na 

421.2692; Found 421.2695. Elem. Anal.: Calcd for C23H36O4B2: C, 69.38%; H, 9.11%. 

Found: C, 69.29%; H, 9.16%. 

 

4.5.12 Synthesis of (E)-2,2'-(1-(cyclohex-1-en-1-yl)ethene-1,2-diyl)bis(4,4,5,5-

tetramethyl-1,3,2-dioxaborolane) (4.11) 

A stock solution of 4.1 (0.34 mg, 0.64 µmol) in C6D6 (340 µL) was added to a mixture of 

1-ethynylcyclohex-1-ene (15.0 µL, 0.13 mmol) and bis(pinacalato)diboron (0.039 g, 0.15 

mmol). The resulting reaction mixture was stirred at room temperature for 24 h under a 

N2 atmosphere. At this point all volatiles were removed in vacuo, deionized H2O (35 mL) 

was added and the resulting mixture was stirred at room temperature for 24 h. At this 

point the beige solid was collected by filtration and dried under a high vacuum. Yield: 

0.041 g, 89 %. 1H NMR (399.5 MHz, C6D6): δH = 6.30 [m, 1H, =CHCH2], 6.26 [s, 1H, 

=CH], 2.16 [m, 2H, (2)CH2], 2.05 [m, 2H, (5)CH2], 1.45 [m, 2H, CH2], 1.36 [m, 2H, 

CH2], 1.31 [s, 12H, Bpin], 1.11 [s, 12H, Bpin]. 13C{1H} NMR (100.46 MHz, C6D6): δC 

= 140.8 [(1)cyclohexen-1-yl], 131.2 [(6)cyclohexen-1-yl], 83.6 [Bpin], 83.1 [Bpin], 26.7 

[(5)cyclohexen-1-yl], 25.6 [Bpin], 25.5 [(2)cyclohexen-1-yl], 25.0 [Bpin], 23.1 

[cyclohexen-1-yl], 22.6 [cyclohexen-1-yl], 2 C=C were not observed due to quadrapolar 
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broadening caused by adjacent B atoms. 11B{1H} NMR (128.2 MHz, C6D6): δB = 30.9. 

HRMS (ESI) m/z: [M + Na]+ Calcd for C20H34O4B2Na 383.2535; Found 383.2526. Elem. 

Anal.: Calcd for C20H34O4B2: C, 66.71%; H, 9.52%. Found: C, 66.79%; H, 9.43%. 

 

4.5.13 Synthesis of (Z)-2,2'-(1-(4-ethylphenyl)-2-(4-methoxyphenyl)ethene-1,2-

diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (4.12) 

A stock solution of 4.1 (0.35 mg, 0.66 µmol) in C6D6 (354 µL) was added to a mixture of 

1-ethyl-4-((4-methoxyphenyl)ethynyl)benzene (0.031 g, 0.13 mmol) and 

bis(pinacolato)diboron (0.043 g, 0.17 mmol). The resulting reaction mixture was heated 

to 50 ˚C for 5 h under a N2 atmosphere. Upon cooling the reaction mixture, the volatiles 

were removed in vacuo. Deionized H2O (35 mL) was added to the resulting off-white 

solid and this was stirred at room temperature for 24 h. The white solid was collected by 

filtration and dried under a high vacuum. Yield: 0.055 g, 85 %. 1H NMR (399.5 MHz, 

CDCl3): δH = 6.88 [m, 6H, o,m-Ph(4-Et) and o-Ph(4-OMe)], 6.61 [m, 2H, m-Ph(4-OMe)], 

3.71 [s, 3H, OMe], 2.53 [q, 3JHH = 7.7 Hz, 2H, CH2CH3], 1.32 [s, 12H, BPin], 1.32 [s, 

12H, Bpin], 1.16 [t, 3JHH = 7.7 Hz, 3H, CH2CH3]. 1H NMR (499.5 MHz, C6D6): δH = 7.30 

[d, 3JHH = 8.2 Hz, 2H, o-Ph(4-Et)], 7.26 [d, 3JHH = 8.7 Hz, 2H, o-Ph(4-OMe)], 6.90 [d, 

3JHH = 8.2 Hz, 2H, m-Ph(4-Et)], 6.60 [d, 3JHH = 8.7 Hz, m-Ph(4-OMe)], 3.14 [s, 3H, 

OMe], 2.32 [q, 3JHH = 7.6 Hz, 2 H, CH2CH3], 1.19 [s, 12H, Bpin], 1.18 [s, 12H, Bpin], 

0.95 [t, 3JHH = 7.6 Hz, 3H, CH2CH3]. 13C{1H} NMR (100.46 MHz, CDCl3): δC = 157.8 

[p-Ph(4-OMe)], 141.5 [p-Ph(4-Et)], 138.8 [i-Ph(4-Et)], 134.0 [i-Ph(4-OMe)], 130.7 [o-

Ph(4-OMe)], 129.5 [o-Ph(4-Et)], 127.1 [m-Ph(4-Et)], 113.1 [m-Ph(4-OMe)], 84.1 [Bpin], 

84.1 [Bpin], 55.1 [OMe], 28.6 [CH2CH3], 25.1 [Bpin], 25.1 [Bpin], 15.3 [CH2CH3], 2 

C=C were not observed due to quadrapolar broadening caused by adjacent B atoms. 

13C{1H} NMR (100.46 MHz, C6D6): δC = 158.4 [p-Ph(4-OMe)], 141.6 [p-Ph(4-Et)], 
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140.0 [i-Ph(4-Et)], 134.7 [i-Ph(4-OMe)], 131.1 [o-Ph(4-OMe)], 130.0 [o-Ph(4-Et)], 127.6 

[m-Ph(4-Et)], 113.7 [m-Ph(4-OMe)], 83.8 [Bpin], 83.8 [Bpin], 54.5 [OMe], 28.8 

[CH2CH3], 25.1 [Bpin], 25.1 [Bpin], 15.3 [CH2CH3], 2 C=C were not observed due to 

quadrapolar broadening caused by adjacent B atoms. 11B{1H} NMR (128.2 MHz, 

CDCl3): δB = 30.8. 11B{1H} NMR (128.2 MHz, C6D6): δB = 30.8. HRMS (ESI) m/z: [M 

+ H]+ Calcd for C29H40O5B2H 491.3135; Found 491.3132. Elem. Anal.: Calcd for 

C29H40O5B2: C, 71.05%; H, 8.22%. Found: C, 70.94%; H, 8.26%. 

 

4.5.14 Synthesis of (Z)-2,2'-(1-(naphthalen-1-yl)-2-phenylethene-1,2-

diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (4.13) 

A stock solution of 4.1 (0.39 mg, 0.72 µmol) in C6D6 (385 µL) was added to a mixture of 

1-(phenylethynyl)naphthalene (0.033 g, 0.14 mmol) and bis(pinacalato)diboron (0.049 g, 

0.19 mmol). The resulting reaction mixture was heated to 50 ˚C for 24 h under a N2 

atmosphere. At this point all volatiles were removed in vacuo, deionized H2O (30 mL) 

was added and the reaction mixture was stirred for 24 h. The H2O was removed and the 

off-white solid was dried under high vacuum. Yield: 0.070 g, 94 %. 1H NMR (399.5 MHz, 

CDCl3): δH = 7.97 [m, 1H, naphth], 7.70 [m, 1H, naphth], 7.54 [m, 1H, naphth], 7.35 [m, 

1H, naphth], 7.35 [m, 1H, naphth], 7.17 [m, 1H, naphth], 6.95 [m, 1H, naphth], 6.86 [m, 

5H, Ph], 1.37 [s, 6H, Bpin], 1.35 [s, 6H, Bpin], 1.21 [s, 6H, Bpin], 1.20 [s, 6H, Bpin]. 

13C{1H} NMR (100.46 MHz, CDCl3): δC = 141.6, 140.1, 133.3, 132.2, 128.3, 128.1, 

127.4, 126.9, 126.6, 126.3, 126.0, 125.4, 125.4, 125.1, 84.3, 84.2, 25.3, 24.9, 24.9, 24.8. 

11B{1H} NMR (128.2 MHz, CDCl3): δB = 30.7. HRMS (ESI) m/z: [M + H]+ Calcd for 

C30H36O4B2H 483.2872; Found 483.2871. Elem. Anal.: Calcd for C30H36O4B2: C, 

74.72%; H, 7.52%. Found: C, 74.63%; H, 7.46%. 

 



169 
 

4.5.15 Synthesis of (Z)-trimethyl(2-phenyl-1,2-bis(4,4,5,5-tetramethyl-1,3,2-

dioxaborolan-2-yl)vinyl)silane (4.14) 

A stock solution of 4.1 (0.002 g, 3.06 µmol) in C6D6 (406 µL) was added to a mixture of 

trimethyl(phenylethynyl)silane (30.0 µL, 0.15 mmol) and bis(pinacolato)diboron (0.042 

g, 0.17 mmol). The resulting reaction mixture was heated to 100 ˚C for 30 h under a N2 

atmosphere. Upon cooling the reaction mixture, the volatiles were removed in vacuo. At 

this point all volatiles were removed in vacuo, deionized H2O (30 mL) was added and the 

reaction mixture was stirred for 24 h. The H2O was removed and the off-white powdered 

solid was dried under high vacuum. Yield: 0.056 g, 85 %. 1H NMR (399.5 MHz, CDCl3): 

δH = 7.21 [m, 3H, m,p-Ph], 7.11 [m, 2H, o-Ph], 1.37 [s, 12H, Bpin], 1.22 [s, 12H, Bpin], 

0.18 [s, 9H, SiMe3]. 
13C{1H} NMR (100.46 MHz, CDCl3): δC = 146.0 [i-Ph], 128.0 [o-

Ph], 127.6 [m-Ph], 126.3 [p-Ph], 84.1 [Bpin], 83.8 [Bpin], 25.7 [Bpin], 24.9 [Bpin], 1.0 

(SiMe3], 2 C=C were not observed due to quadrapolar broadening caused by adjacent B 

atoms.. 11B{1H} NMR (128.2 MHz, CDCl3): δB = 30.8, 29.1. 29Si{1H} (79.4 MHz, 

CDCl3): δSi = 7.43 (spectroscopic data in agreement with the literature. 

 

4.5.16 Synthesis of (Z)-2,2'-(oct-4-ene-4,5-diyl)bis(4,4,5,5-tetramethyl-1,3,2-

dioxaborolane) (4.15) 

A stock solution of 4.1 (0.45 mg, 0.85 µL) in C6D6 (454 µL) was added to a mixture of 

4-octyne (25.0 µL, 0.17 mmol) and bis(pinacalato)diboron (0.045 g, 0.18 mmol). The 

resulting reaction mixture was stirred at room temperature for 23 h under a N2 

atmosphere. At this point no further conversion was observed (39 % conversion). At this 

point all volatiles were removed in vacuo. The resulting off-white oily solid was stirred 

in deionized H2O (35 mL) for 24 h. The H2O was then decanted and the product was 

washed with further quantities of deionized H2O (3 x 25 mL). The resulting colourless oil 
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was dried under a high vacuum. Yield: 0.012 g, 20 % (39 % conversion). 1H NMR (499.5 

MHz, CDCl3): δH = 2.17 [m, 4H], 1.37 [m, 4H], 1.28 [s, 24H, Bpin], 0.91 [t, 3JHH = 7.4 

Hz, 6H, CH3]. 13C{1H} (100.46 MHz, CDCl3): δC = 83.4, 33.2, 25.1, 23.2, 14.7, 2 C=C 

were not observed due to quadrapolar broadening caused by adjacent B atoms. 11B{1H} 

NMR (128.2 MHz, CDCl3): δB = 30.6 (spectroscopic data in agreement with the 

literature). 

 

4.5.17 Stoichiometric Reactivity of 4.1 with B2pin2 

In a vial, 4.1 (1 equiv.) and B2pin2 (2-20 equiv.) were dissolved in solvent (C6D6, CD3CN 

or hexane) and stirred at either room temperature or 50 oC. The reaction progress was 

monitored by 1H NMR spectroscopy. 

[Pd(ITMe)2]: 
1H NMR (399.5 MHz, C6D6): δH = 3.93 [s, 12H, N(1,3)-CH3], 1.55 [s, 12H, 

C(4,5)-CH3]. 

4.2: 1H NMR [399.5 MHz, CDCl3]: δH = 7.05 [m, 6H, Ph], 6.95 [m, 4H, Ph], 1.32 [s, 24H, 

Bpin]. 
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Chapter 5 

Synthesis of Functionalized Hydrazines: Facile Homogeneous (N-Heterocyclic 

Carbene)-Pd(0) Catalyzed Diboration and Silaboration of Azobenezenes 

 

5.1 Introduction 

The transition metal catalysed diboration (B-B) and silaboration (Si-B) of carbon-based 

unsaturated bonds such as alkynes,[1–7] alkenes,[8–12] and 1,3-dienes,[13–15] represents some 

of the most valuable and widely studied organic transformations in the literature. 

Nevertheless, the translation of this chemistry to other element-based unsaturated bonds 

remains a considerable challenge. In particular, the diboration and silaboration of N=N 

(azo) bonds harnesses the potential for the synthesis of highly functionalized hydrazines 

as precursors to, for instance, polymeric materials,[16,17] DNA modifiers,[18,19] and 

glycosidase inhibitors.[20] Despite this potential, such element-element additions to azo 

moieties are extremely rare. There are only three reported isolated examples of azo 

diborations to yield the corresponding 1,2-bis(boryl)hydrazines. These require the use of 

either an extremely reactive B-B bond in the form of azadiboriridenes,[21] or 

dichlorodiboranes,[22] or a highly strained B-B bond as in [2]borametallarenophanes 

(Scheme 5.1).[23] Recently however, a combined computational and experimental article 

from Li and co-workers showed that the diboration of N=N bonds using a commercially 

available and air stable tetraalkoxydiboron reagent such as bis(pinacolato)diboron is 

feasible.[24] There were no prior examples in the literature of N=N silaborations. 

The synthesis of [Pd(ITMe)2(PhC≡CPh)] (5.1) was reported in Chapter 2, 3 and 4,[25] and 

has showed high catalytic reactivity in the regio- and stereoselective diboration,[26] and 

silaboration of alkynes.[27] The ability of 5.1 to catalyse the element-element bond  
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Scheme 5.1 Element-element additions to N=N bonds 

 

additions to other unsaturated bonds was investigated. Herein, 5.1 is employed as a very 

active pre-catalyst in the diboration and silaboration of azobenzenes (N=N bonds). The 

products represent the first isolated examples of 1,2-bis(boryl)hydrazines and 1-silyl-2-

borylhydrazines starting from commercially available diboranes and silaboranes, 

respectively. 
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5.2 Catalysis 

5.2.1 Catalytic Diboration of Azobenzenes 

The viability of the diboration of azobenzenes were assessed by combining, under an inert 

atmosphere and at room temperature, azobenzene (PhN=NPh), bis(pinacolato)diboron 

(B2pin2) and catalytic quantities of 5.1, in C6D6 in order to monitor the reaction 

progression by 1H NMR spectroscopy. The optimization of the reaction parameters 

resulted in 100% conversion to 1,2-diphenyl-1,2-bis(4,4,5,5-tetramethyl-1,3,2-

dioxaborolan-2-yl)hydrazine (5.2) after 2 h, using as little as 0.5 mol% of 5.1 (Table 5.1). 

The reaction also proceeded in toluene under the same conditions on a larger scale. After 

several recrystallizations from hexanes, 5.2 was isolated as an air and moisture sensitive 

white powder in a 63% yield. Single crystals of 5.2 were isolated from a saturated hexane 

solution at 30 oC and the resulting X-ray analysis is depicted in Figure 5.1. The 

crystalline structure of 5.2 was solved in the P212121 space group with one of the Bpin 

functionalities displaying a degree of dynamic disorder. A notable feature of this 

molecular structure is the length of the N-N bond [1.419(4) Å] which is, as expected, 

comparable to the N-N bond in diphenylhydrazine [1.394(7) Å],[28] and much longer than 

the N=N bond of azobenzene [1.25 Å]. Each N atoms exhibits a distorted trigonal planar 

geometry [115.2(2)-128.4(6)o; N1, N2: Σ = 360o]. The B-N bond lengths [1.410(14) Å 

and 1.433(4) Å] are in agreement with those of other aminoboranes of the form 

R2BNR’2,
[23,29,30] and imply partial double bond character.[31] The distorted trigonal planar 

geometry surrounding each B atom is indicative of sp2 hybridization [133.0(9)-127.6(9)o; 

B1, B12: Σ = 360o]. 
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Table 5.1 Diboration of Azobenzenes 

 

 

 

 



178 
 

 

 

 

 

 

 

 

 

Figure 5.1 Molecular structure of 5.2 with thermal ellipsoids at the 50% probability level. 

Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [o]: N1-N2 

1.419(4), N1-B1 1.433(4), N2-B2 1.410(14); C1-N1-B1 128.1(3), N2-N1-C1 116.2(2), 

N2-N1-B1 115.2(2), C7-N2-N1 116.1(2), B2-N2-N1 115.5(6), B2-N2-C7 128.4(6), O1-

B1-N1 124.6(3), O1-B1-O2 114.3(3), O2-B1-N1 121.3(3) O13-B2-N2 119.4(12), O13-

B2-O13 113.0(9), O14-B2-N2 127.6(9). 

 

The versatility of this catalytic diboration using B2pin2 was assessed and this protocol 

was extended to a series of azobenzenes with a range of functionalities including alkyl, 

methoxy and amido moieties in the ortho, meta and para positions. As with 5.2, the 

synthesis of the novel compounds 5.3, 5.4 and 5.5 only required 0.5 mol% of 5.1, 

proceeded at room temperature and were completed in 2.5-4 h (Table 5.1). 

Single crystals of 5.4 suitable for X-ray analysis were grown in a saturated hexane 

solution at 30 oC. The molecular structure of 5.4 was solved in the same space group, 

P212121, and exhibited comparable N-N [1.416(3) Å] and B-N [1.431(4) and 1.440(4) Å] 

bond lengths as 5.2 (Figure 5.2). The synthesis of 5.6, required an increase of temperature 

(80 oC) and reaction time (22 h) to reach completion. This was attributed to the limited  

N1 

N2 

B2 

C7 

B1 

  C1 
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Figure 5.2 Molecular structure of 5.4 with thermal ellipsoids at the 50% probability level. 

Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [o]: N5-N6 

1.416(3), N5-BR 1.440(4), N6-C7 1.426(4); N6-N5-C8 116.3(2), N6-N5-BR 116.0 (2), 

C8-N5-BR 127.7(2), N5-N6-C7 116.7(2), N5-N6-BP 115.8(2), C7-N6-BP 126.0(2). 

 

solubility of the azobenzene in C6D6 and toluene. It was also possible to exchange the 

diboron reagent for other commercially available B-B analogues such as 

bis(neopentylglycolato)diboron and bis(catecholato)diboron. This resulted in the 

formation of 5.7 and 5.8 respectively, albeit employing higher catalyst loadings, higher 

temperatures, and longer reaction times than those for their B2pin2 counterpart. The 

reaction of tetramethoxy-diborane(4) with PhN=NPh at room temperature resulted in a 

33% conversion to 5.9. This conversion was not improved on extending reaction time or 

elevating the temperature. Isolation of 5.9 also proved troublesome with starting 

PhN=NPh and tetramethoxy diboron (B2{OMe}4) persisting, even after multiple re-

crystallization attempts (Scheme 5.2).  

 

B
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Scheme 5.2 Synthesis of 5.9 

 

The diboron, tetrakis(dimethylamino)diboron (B2{NMe2}4), was unreactive towards 

diboration of PhN=NPh under optimized conditions. 

An experimental NMR study by Bryce and co-workers showed that the J(11B,11B) 

coupling, obtained from 11B DQF J-resolved NMR spectroscopic experiments on 

different diborons, was directly correlated to the B-B bond dissociation energy.[32] These 

data are also consistent with crystallographic data for the corresponding B-B bond 

lengths.[33] Studies showed that a decrease in J(11B,11B) coupling was consistent with a 

B-B bond that possesses a decreased bond energy and increased bond length. Hence, 

diboron reagents with larger B-B bond lengths are predicted to exhibit higher reactivity. 

This rationale agrees perfectly with the necessity for harsher reaction conditions in the 

diboration of azobenzene when employing the diboron, B2cat2 over B2pin2. B2cat2 

displays a shorter B-B bond length than B2pin2 [1.678(3) Å vs. 1.711(6) Å], and a higher 

J(11B,11B) coupling [135 Hz vs. 120 Hz].[32,33]  

B2(OMe)4 [B-B, 1.720(6) Å] and B2(NMe2)4 [B-B, 1.762(1) Å], based on the above 

assumptions, are expected to have an equal and more facile reactivity in comparison to 

B2pin2. However, these reactivity patterns were not observed. A plausible explanation for 

this phenomenon may be attributed to the dihedral angles between the BO2 and BN2 

units.[33] B2pin2, B2cat2 and B2neop2 demonstrate dihedral angles of 0o, meaning the BO2 
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units are essentially coplanar. This would allow for a favourable interaction between the 

B-B bond LUMO and the Pd(0) catalyst HOMO, and thus a more facile oxidative addition 

of the B-B bond. The dihedral angles for B2(OMe)4 and B2(NMe2)4 are 49.5o and 90.0o.[33] 

The increase in staggered conformation of the B atoms is consistent with the decreased 

reactivity of the diboron in this reaction. As the dihedral angle distorts from 0o, it is 

expected that steric clashing, between the B-B bond and Pd(0) species, and misalignment 

of frontier orbitals will increase. This results in a more difficult oxidative addition and a 

decrease in the propensity for diboration.  

 

5.2.2 Catalytic Silaboration of Azobenzenes 

Attention was next turned to the catalytic silaboration of azobenzenes. The silaborane of 

choice was the readily available (dimethylphenyl)silyl boronic acid pinacol ester 

(PhMe2SiBpin). The reaction parameters were optimized using PhMe2SiBpin and 

azobenzene as the model substrates. (dimethyl(phenyl)silyl)-1,2-diphenyl-2-yl)hydrazine 

(5.10) was synthesized with a 100% conversion in 2 h in C6D6 and toluene. Interestingly, 

compound 5.10 is air and moisture stable which simplified purification. On stirring the 

crude reaction mixture in deionized H2O overnight, 5.10 was recovered as a white powder 

in 87% yield (Table 5.2).  
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Table 5.2 Silaboration of azobenzenes 

 

Single crystals of 5.10 were isolated from the slow evaporation of a saturated acetone 

solution at room temperature. The molecular structure of 5.10 obtained from X-ray 

analysis is shown in Figure 5.3. There are some noteworthy features in this molecular 

structure, the first one was that it was solved in the P21 space group. The N-N bond length 

[1.417(4) Å] is comparable to 5.2 [1.419(4) Å] and/or shorter than that for other silyl 

substituted hydrazines (e.g. Ph2Si{NHNH}SiPh2 and PhSi{NHNHMe}2) reported in the 

literature [1.421(5)-1.4820(2) Å].[34–36] The bonding around each N atom, as with 5.2, 

showed a distorted trigonal planar geometry [115.3(2)-127.9(2)o; N1, N2: Σ = 360o]. The 
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B-N bond length [1.438(5) Å] is in agreement with other aminoboranes including 5.2 and 

the geometry surrounding the B-atom is distorted trigonal planar [114.6(4)-123.8(3)o; Bp: 

Σ = 360o]. The Si-N bond length is longer [1.773(2) Å] than that for other silyl amines of 

the form R3SiNR’2.
[34–39] 

 

 

 

 

 

 

 

 

 

Figure 5.3 Molecular structure of 5.10 with thermal ellipsoids at the 50% probability 

level. Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [o]: 

N1-N2 1.417(4), N1-B1 1.438(5), Si1-N2 1.773(3); N2-N1-C7 115.8(3), N2-N1-B1 

116.3(3), C7-N1-B1 127.8(3), N1-N2-Si1 115.3(2), C6-N2-Si1 127.9(2), C6-N2-N1 

116.3(3), O2-B1-N1 123.8(3), O3-B1-O2 114.6(3), O3-B1-N1 121.6(3). 

 

The potential of 5.1 in the silaboration of other azobenzenes was extended to ortho, meta 

and para substituted symmetrical azobenzenes with alkyl and fluoro groups. The novel 

compounds 5.11, 5.12 and 5.13 were synthesized using 0.5 mol% of 5.1 at room 

temperature reaching completion in 1.5 to 8 h (Table 5.2). Compounds 5.11, 5.12 and 

5.13 were also stable to air and moisture. Single crystals of 5.12 were grown from slow 

evaporation of a saturated acetone solution at room temperature. The molecular structure 

N2 

N1 

Si1 
B1 
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of 5.12 is depicted in Figure 5.4 and is, within experimental error, identical to 5.10 in 

terms of space group, bond lengths and angles.  

 

 

 

 

 

 

 

 

 

Figure 5.4 Molecular structure of 5.12 with thermal ellipsoids at the 50% probability 

level. Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [o]: 

N6-N7 1.412(5), Si1-N7 1.773(4), N6-BR 1.433(6); N7-N6-CA 115.4(4), N7-N6-BR 

116.5(4) CA-N6-BR 128.0(4), N6-N7-Si1 115.6(3), C8-N7-Si1 128.1(3), C8-N7-N6 

115.8(4). 

 

As expected, the application of this silaboration protocol to unsymmetrical azobenzenes 

resulted in a statistical mixture of regioisomers (see Experimental Details). 

 

5.3 Mechanism of Diboration/Silaboration of Azobenzenes 

5.3.1 Isolation of [Pd(ITMe)2(PhN=NPh)] 

The attempts at catalytic bis(silyl)ation of PhN=NPh using hexamethyldisilane and 5.1 at 

room and elevated temperatures were unsuccessful. However, 1H NMR data suggested 

the formation of a new NHC-Pd species with NHC based CH3 resonances at 3.29 and 

Si1 N7 

N6 
C8 

B
R
 

CA 
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1.36 ppm. The new NHC-Pd species was tentatively identified as 

[Pd(ITMe)2(PhN=NPh)] (5.14). The identity of the latter was confirmed through its 

independent synthesis, reacting 5.1 with PhN=NPh (Scheme 5.3, a). The formation of 

5.14 through this route represented a ligand displacement reaction and suggested that 

PhN=NPh has a higher binding affinity to the Pd(0) than diphenylacetylene. Attempts to 

react 5.14 with diphenylacetylene resulted in a complete recovery of 5.14. 

The synthesis of 5.14 was scaled-up following a similar route to the synthesis of 5.1. 

[(ITMe)Pd(methallyl)] was reacted with one equivalent of each of potassium tert-

butoxide, isopropanol and ITMe at room temperature to form [Pd(ITMe)2], which was 

then exposed in situ to an excess of PhN=NPh at room temperature for 17 h to form 5.14 

(Scheme 5.3, b). 

 

Scheme 5.3 Methods for the synthesis of 5.14 

 

 Single crystals of 5.14 were obtained via a double recrystallization in a saturated 

toluene/hexane (2:1) solution and X-ray analysis is depicted in Figure 5.5.  5.14 

demonstrates a Y-shaped structure and an elongation of the N-N bond [1.412(6) Å] when 
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compared to free PhN=NPh [1.25 Å]. The lengthening of the N-N bond is consistent with 

single bond character between the two N atoms. This feature is commonly observed 

amongst other transition metal-azobenzene coordination complexes in a zero oxidation 

state, including in platinum [1.430(13) Å],[40] nickel [1.385(5) Å],[41] and iron [1.398(2) 

Å] analogues.[42] The NHC Pd-C bond lengths in 5.14 are longer [2.057(5) and 2.075(5) 

Å] than in 5.1 [2.029(3) and 2.033(3) Å] and 13C{1H} NMR resonance for the carbenic 

carbon in 5.14 is significantly shifted upfield (189.0 ppm) in comparison to 5.1 (198.7 

ppm). These data suggest that the coordination of PhN=NPh versus diphenylacetylene 

results in a much greater electron density at the palladium centre. The formation and 

isolation of 5.14 represented the first NHC-Pd based coordination complex of 

azobenzenes. 

 

 

 

 

 

 

 

 

Figure 5.5 Molecular structure of 5.14 with thermal ellipsoids at the 50% probability 

level. Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [o]: 

N2-N5 1.412(5). Pd1-N2 2.066(4), Pd1-N5 2.093(4), Pd1-CA 2.075(5), Pd1-CD 2.057(5); 

N2-Pd1-N5 39.69(17), CA-Pd1-N5 113.94(18), CD-Pd1-N2 110.4(2). 
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5.3.2 Stoichiometric Reactivity between 5.14 and B2pin2 

The reaction between 5.14 and >2 equivalents of B2pin2 in C6D6 at room temperature was 

monitored by 1H NMR spectroscopy. As expected, 5.2 formed with ease and 100% 

conversion of the azobenzene was observed. [Pd(ITMe)2] was also found to be the major 

NHC-Pd species (Scheme 5.4).  Minor unassigned NHC based resonances were also 

noted in the 1H NMR spectrum. It was not possible to separate and isolate these minor 

compounds.  

 

Scheme 5.4 Stoichiometric reaction between 5.14 and B2pin2 

 

5.3.3 Possible Mechanistic Routes 

A similar mechanistic pathway, as observed in Chapter 4, may be envisaged for the 

diboration and silaboration of azobenzenes.[26] This can be summarized as (i) dissociation 

of the azobenzene from 5.14, (ii) oxidative addition of an E-B bond (E = Si or B) to Pd(0) 

centre, (iii) an NHC dissociation from the (E)(B)palladium(II) complex followed by 

azobenzene coordination, (iv) insertion of azobenzene into a Pd-B bond via migratory 

insertion, and (v) reduction of Pd(II) to Pd(0) with the elimination of 1-element-2-boryl 

hydrazine (Scheme 5.5). However, due the availability of N lone pairs and the Lewis 

acidic nature of the B atoms, it is impossible to rule out other mechanistic pathways such 

as a concerted route (Scheme 5.5).[43–45]  
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Scheme 5.5 Proposed mechanistic pathways for diboration and silaboration of 

azobenzenes 

 

5.4 1,2-Bis(boryl)hydrazine and 1-Silyl-2-borylhydrazine Hydrolysis 

Upon stirring 5.2 in degassed deionized H2O overnight the Bpin groups were 

hydrolytically cleaved to afford the corresponding 1,2-diphenylhydrazines (5.15, Scheme 

5.6). This result, albeit accessed through palladium catalysis, supported the proposed 

mechanism by Li and co-workers whereby 5.2 was computationally calculated as an 
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intermediate in the organocatalytic formation of hydrazines from their corresponding 

azobenzenes. Interestingly, the same conditions proved to be ineffective for the 

hydrolysis of 5.10. Instead the cleavage of both the Si-N and B-N bonds was achieved 

using KOtBu in an isopropanol/toluene mixture (Scheme 5.6). The cross-coupling 

potential of the N-B bond in 5.10 was assessed, however, initial investigations, using 

standard conditions, proved unsuccessful (see Experimental Details).[46]  

 

 

 

 

 

 

 

 

 

Scheme 5.6 Synthesis of 5.15 from 5.2 and 5.10 

 

5.5 Conclusions 

Complex 5.1 acts as a highly active pre-catalyst in the diboration and silaboration of 

azobenzenes using commercially available diboranes and silaboranes, respectively. Novel 

1,2-bis(boryl)hydrazines and 1-silyl-2-borylhydrazines were synthesized using low 

catalyst loadings, mild temperatures, and short reaction times. Initial reactivity studies 

show that the 1,2-bis(boryl)hydrazines are highly susceptible to hydrolytic cleavage, 

whereas 1-silyl-2-borylhydrazines are stable under ambient conditions and require much 

harsher conditions to form the corresponding hydrazines. 5.14 was synthesized 
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presumably as a resting state or intermediate in the catalytic cycle of these reactions. This 

study was reported in Advanced Synthesis and Catalysis as a communication.[47] The 

reactivity potential of the novel 1,2-bis(boryl)hydrazines and 1-silyl-2-boryl hydrazines 

will be the focus of future investigations. 

 

5.6 Experimental Details for Chapter 5 

General experimental details are given in appendix A1. 

5.6.1 Synthesis of 1,2-di-p-tolyldiazene 

p-Toluidine (0.331 g, 3.09 mmol), copper(I) bromide (0.013 g, 0.09 mmol) and pyridine 

(22.5 µL, 0.28 mmol) were dissolved in toluene (5 mL). The resulting reaction mixture 

was heated to 60 C under an atmosphere of air for 3 days. At this point the reaction 

mixture was cooled to room temperature and filtered through a plug of silica. The 

resulting filtrate was concentrated and the crude mixture was purified by flash 

chromatography (eluent: 100% hexane). Yield: 0.110 g, 34%. 1H NMR (399.5 MHz, 

C6D6): δH = 7.81 [d, 3JHH = 8.0 Hz, 4H], 7.30 [d, 3JHH = 8.0 Hz, 4H], 2.43 [s, 6H]. 13C{1H} 

NMR (100.46 MHz, CDCl3): δC = 151.0, 141.3, 129.9, 122.9, 21.6. 

 

5.6.2 Synthesis of 1,2-bis(4-fluorophenyl)diazene 

4-Fluoroaniline (94.6 µL, 1.00 mmol), copper(I) bromide (0.004 g, 0.03 mmol) and 

pyridine (8.9 µL, 0.11 mmol) were dissolved in toluene (4 mL). The resulting reaction 

mixture was heated to 60 C for 48 h. Upon cooling, the reaction mixture was filtered 

through a plug of silica, the filtrate volatiles were removed in vacuo and the crude solid 

was purified by flash chromatography (eluent: 100% hexane). Yield: 0.100 g, 92%. 1H 

NMR (399.5 MHz, CDCl3): δH = 7.92 [m, 4H], 7.20 [m, 4H]. 1H NMR (399.5 MHz, 

C6D6): δH = 7.76 [m, 4H], 6.78 [m, 4H]. 13C{1H} NMR (100.46 MHz, CDCl3): δC = 164.6 
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[d, 1JCF = 251.2 Hz], 148.2 [d, 4JCF = 2.6 Hz], 125.0 [d, 3JCF = 9.0 Hz], 116.2 [d, 2JCF = 

23.1 Hz]. 19F NMR (375.9 MHz, CDCl3): δF = 109.38 [m]. 

 

5.6.3 Synthesis of [Pd(ITMe)2(PhC≡CPh)] (5.1) 

5.1 was synthesised following previous literature preparation.[27] 

 

5.6.4 Stock Solution of 5.1 

Stock solution were made in batches; in a glovebox 5 mg of 5.1 was dissolved in 2 mL of 

C6D6 (9.38 µmol, 4.69 x 10-3 M). 

 

5.6.5 Synthesis of 1,2-diphenyl-1,2-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)hydrazine (5.2) 

In C6D6 

PhN=NPh (0.025 g, 0.14 mmol), B2pin2 (0.041 g, 0.16 mmol) and 5.1 (0.001 g, 2.62 

µmol) were dissolved in C6D6 (0.7 mL). The resulting reaction mixture was stirred at 

room temperature for 2 h. At this point the reaction mixture was filtered by cannula and 

all volatiles were then removed in vacuo. The resulting off-white solid was recrystallized 

in hexane at 30 ˚C. On decanting the volatiles, the colourless crystals were dried under 

a high vacuum to give a white powder. 

In toluene 

In an ampoule, PhN=NPh (0.101 g, 0.55 mmol), bis(pinacalato)diboron (0.109 g, 0.43 

mmol) and 5.1 (0.001 g, 2.06 µmol) were dissolved in toluene (2 mL). The resulting 

reaction mixture was stirred at room temperature under an N2 atmosphere for 2 h. At this 

stage the reaction mixture was filtered via cannula and the filtrates volatiles were removed 

in vacuo. The resulting crude solid was recrystallized in hexane (3 x 5 mL), which resulted 
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in isolation of an off-white powder. Yield: 0.119 g, 63%. 1H NMR (399.5 MHz, C6D6): 

δH = 7.76 [m, 4H, Ph], 7.16 [m, 4H, Ph], 6.81 [m, 2H, p-Ph], 1.12 [s, 12H, Bpin], 1.08 [s, 

12H, Bpin]. 13C{1H} NMR (100.46 MHz, C6D6): δC = 146.5 [i-Ph], 129.2 [Ph], 121.6 [p-

Ph], 117.0 [Ph], 83.5 [C, Bpin], 24.8 [CH3, Bpin], 24.4 [CH3, Bpin]. 11B{1H} NMR 

(128.2 MHz, C6D6): δB = 25.8. Elem. Anal. Calcd for C24H34O4N2B2: C, 66.09%; H, 

7.86%; N, 6.42%. Found: C, 66.41%; H, 7.56%; N, 6.62%. 

Crystal data for 5.2: C24H34N2B2O4, Mr = 436.15 g mol-1, orthorhombic, space group 

P212121, a = 11.248(3) Å, b = 12.019(6) Å, c = 17.861(4) Å, α = 90o, β = 90o, γ = 90o, V 

= 2414.6(15) Å3, Z = 4, T = 103 K, λMo(Kα) = 0.71073, R1 [I > 2σ(I)] = 0.0483, wR2 (all 

data) = 0.0982, GooF = 1.017. 

 

5.6.6 Synthesis of 1,2-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2-di-m-

tolylhydrazine (5.3) 

3,3’-dimethylazobenzene (0.025 g, 0.12 mmol), B2pin2 (0.041 g, 0.16 mmol) and 5.1 

(0.32 mg. 0.59 µmol) were dissolved in C6D6 (0.7 mL). The reaction mixture was stirred 

at room temperature under a nitrogen atmosphere for 2.5 h. At this point the volatiles 

were removed in vacuo. The resulting off-white solid was recrystallized in toluene/hexane 

(1:3, 5.0 mL) and then hexane (2 x 2.0 mL) at 30 C. Yield: 0.040 g, 72%. 1H NMR 

(399.5 MHz, C6D6): δH = 7.63 [m, 2H, 6-Ph], 7.63 [s, 2H, 2-Ph], 7.13 [m, 2H, 5-Ph], 6.68 

[d, 3JHH = 7.4 Hz, 2H, 4-Ph], 2.11 [s, 6H, Me], 1.14 [s, 12H, Bpin], 1.11 [s, 12H, Bpin]. 

13C{1H} NMR (100.46 MHz, C6D6): δC = 146.7 [1-Ph], 138.6 [3-Ph], 129.1 [5-Ph], 122.5 

[4-Ph], 117.7 [2-Ph], 114.5 [6-Ph], 83.5 [C, Bpin], 24.9 [CH3, Bpin], 24.4 [CH3, Bpin], 

21.9 [Me]. 11B{1H} NMR (128.2 MHz, C6D6): δB = 25.5. Elem. Anal. Calcd for 

C26H38O4N2B2: C, 67.27%; H, 8.25%; N, 6.03%. Found: C, 67.33%; H, 8.27%; N, 6.10%. 
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5.6.7 Synthesis of 1,2-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2-di-p-

tolylhydrazine (5.4) 

1,2-di-p-Tolyldiazene (0.025 g, 0.11 mmol), B2pin2 (0.033 g, 0.13 mmol) and 5.1 (0.30 

mg, 0.56 µmol) were dissolved in C6D6 (0.7 mL). The resulting reaction mixture was 

stirred at room temperature under a N2 atmosphere for 3 h. At this point, the volatiles 

were removed in vacuo and the crude reaction mixture was recrystallized in hexane (3 x 

2 mL) at 30 C resulting in the isolation of a white powder. Yield: 0.040 g, 75%. 1H 

NMR (399.5 MHz, C6D6, 400 MHz): δH = 7.69 [m, 4H, o-PhMe], 7.00 [m, 4H, m-PhMe], 

2.07 [s, 6H, PhMe], 1.15 [s, 12H, Bpin], 1.11 [s, 12H, Bpin]. 13C{1H} NMR (100.46 

MHz, C6D6): δC = 144.2 [i-PhMe], 130.4 [p-PhMe], 129.7 [m-PhMe], 117.3 [o-PhMe], 

83.4 [C, Bpin], 24.9 [CH3, Bpin], 24.5 [CH3, Bpin], 20.6 [PhMe]. 11B{1H} NMR (128.2 

MHz, C6D6): δB = 25.5. Elem. Anal. Calcd for C26H38O4N2B2: C, 67.27%; H, 8.25%; N, 

6.03%. Found: C, 67.19%; H, 8.27%; N, 6.12%. 

Crystal data for 5.4: C26H38N2B2O4, Mr = 464.20 g mol-1, orthorhombic, space group 

P212121, a = 11.3842(5) Å, b = 12.2242(5) Å, c = 19.0048(8) Å, α = 90o, β = 90o, γ = 90o, 

V = 2644.75(19) Å3, Z = 4, T = 173 K, λCu(Kα) = 1.54184, R1 [I > 2σ(I)] = 0.0503, wR2 

(all data) = 0.1288, GooF = 0.970. 

 

5.6.8 Synthesis of 1-(4-methoxyphenyl)-2-phenyl-1,2-bis(4,4,5,5-tetramethyl-1,3,2-

dioxaborolan-2-yl)hydrazine (5.5) 

1-(4-Methoxyphenyl)-2-phenyldiazene (0.099 g, 0.46 mmol), B2pin2 (0.144 g, 0.61 

mmol) and 5.1 (0.001 g, 0.24 µmol) were dissolved in C6D6 (0.7 mL). The resulting 

reaction mixture was stirred at room temperature under a N2 atmosphere for 4 h. At this 

stage the sample was filtered via a cannula, the filtrate volatiles were removed in vacuo 

and the resulting off-white solid was recrystallized in hexane (3 x 4 mL). Yield: 0.170 g, 
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79%. 1H NMR (399.5 MHz, C6D6): δH = 7.77 [m, 2H, m-Ph], 7.62 [m, 2H, PhOMe], 7.18 

[m, 2H, o-Ph], 6.83 [m, 1H, p-Ph], 6.75 [m, 2H, PhOMe], 3.28 [s, 3H, OMe], 1.15 [s, 

6H, Bpin], 1.14 [s, 6H, Bpin], 1.11 [s, 6H, Bpin], 1.10 [s, 6H, Bpin]. 13C{1H} NMR 

(100.46 MHz, C6D6): δC = 155.2 [p-PhOMe], 146.7 [i-Ph], 139.7 [i-PhOMe], 129.1 [o-

Ph], 121.5 [p-Ph], 118.6 [PhOMe], 117.2 [m-Ph], 114.6 [PhOMe], 83.5 [C, Bpin], 55.0 

[OMe], 24.9 [CH3, Bpin], 24.5 [CH3, Bpin]. 11B{1H} NMR (128.2 MHz, C6D6): δB = 

25.3. Elem. Anal. Calcd for C25H36O5N2B2: C, 64.41%; H, 7.78%; N, 6.01%. Found: C, 

64.28%; H, 7.65%; N, 6.09%. 

 

5.6.9 Synthesis of N-(4-(1,2-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(o-

tolyl)hydrazinyl)-2-methylphenyl)acetamide (5.6) 

4-Acetamido-2’,3-dimethylazobenzene (0.120 g, 0.45 mmol), B2pin2 (0.144 g, 0.57 

mmol) and 5.1 (0.001 g, 2.25 µmol) were dissolved in toluene (1.5 mL). The resulting 

reaction mixture was heated to 80 C under a N2 atmosphere for 22 h. At this point, the 

reaction mixture was cooled to room temperature, dissolved in dioxane (15 mL) and 

filtered via cannula. The filtrate volatiles were removed in vacuo. The off-white solid was 

recrystallized in toluene/hexane (5:1, 2 x 5 mL) at 30 C and then washed with hexane 

(5 mL). Yield: 0.169 g, 72%. 1H NMR (399.5 MHz, C6D6): δH = 7.92 [d, 3JHH = 8.7 Hz, 

1H, (1)5-PhH], 7.74 [m, 1H, (2)4-PhH], 7.63 [d, 3JHH = 8.7 Hz, (1)6-PhH], 7.47 [s, 1H, 

(1)2-PhH], 7.06 [m, 2H, (2)3-PhH/(2)5-PhH], 6.88 [m, 1H, (2)6-PhH], 5.84 [s, 1H, 

C(O)NH], 2.63 [s, 3H, (2)2-PhMe], 1.83 [s, 3H, (1)3-PhMe], 1.51 [s, 3H, MeC(O)NH-], 

1.15 [s, 12H, Bpin], 1.13 [s, 12H, Bpin]. 13C{1H} NMR (100.46 MHz, C6D6): δC = 166.7 

[C(O)NH], 144.9 [(2)1-Ph], 143.8 [(1)1-Ph], 132.9 [(2)2-Ph], 131.5, 131.4 [(2)3-Ph], 

129.8, 126.6 [(2)5-Ph], 125.0 [(2)6-Ph], 124.7 [(2)4-Ph], 124.2 [(1)5-Ph], 122.0 [(1)2-

Ph], 118.6 [(1)6-Ph], 83.5 [C, Bpin], 25.1 [CH3, Bpin], 25.1 [CH3, Bpin], 24.6 [CH3, 
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Bpin], 24.4 [Bpin], 23.6 [MeC(O)NH], 19.8 [(2)2-PhMe], 18.1 [(1)3-PhMe]. 11B{1H} 

(128.2 MHz, C6D6): δB = 25.2. Elem. Anal. Calcd for C28H41O5N3B2: C, 64.52%; H, 

7.93%; N, 8.06%. Found: C, 64.66%; H, 8.07%; N, 8.21%. 

 

5.6.10 Synthesis of 1,2-bis(5,5-dimethyl-1,3,2-dioxaborinan-2-yl)-1,2-

diphenylhydrazine (5.7) 

PhN=NPh (0.025 g, 0.14 mmol), 5,5,5’,5’-tetramethyl-2,2’-bi(1,3,2-dioxaborinane) 

(0.035 g, 0.15 mmol) and 5.1 (0.001 g, 2.63 µmol) were dissolved in C6D6 (0.7 mL). The 

resulting reaction mixture was heated to 80 C under an N2 atmosphere for 48 h. At this 

stage, the reaction mixture was cooled to room temperature, the volatiles were removed 

in vacuo. The resulting brown oily solid was recrystallized in toluene/hexane (2:3, 2 mL) 

and then hexane (2 x 2 mL) at 30 C. A colourless crystalline solid was obtained as a 

result. Yield: 0.043 g, 77%. 1H NMR (399.5 MHz, C6D6): δH = 7.83 [d, 3JHH = 8.1 Hz, 4 

H, Ph], 7.23 [m, 4H, Ph], 6.86 [pseudo t, 3JHH = 7.3 Hz, 2H, p-Ph], 3.37 [m, 8H, CH2], 

0.63 [s, 12H, CH3]. 13C{1H} NMR (100.46 MHz, C6D6): δC = 147.1 [i-Ph], 128.5 [Ph], 

120.8 [p-Ph], 118.0 [Ph], 72.2 [CH2], 31.4 [C(CH3)2], 21.1 [CH3]. 
11B{1H} NMR (128.2 

MHz, C6D6): δB = 21.3. Elem. Anal. Calcd for C22H30O4N2B2: C, 64.75%; H, 7.41%; N, 

6.86%. Found: C, 64.66%; H, 7.44%; N, 6.90%. 

 

5.6.11 Synthesis of 1,2-bis(benzo[d][1,3,2]dioxaborol-2-yl)-1,2-diphenylhydrazine 

(5.8) 

In C6D6 

PhN=NPh (0.025 g, 0.14 mmol), 2,2'-bibenzo[d][1,3,2]dioxaborole (0.035 g, 0.15 mmol) 

and 5.1 (0.001 g, 2.63 µmol) were dissolved in C6D6 (0.7 mL). The resulting reaction 

mixture was heated at 80 C under a N2 atmosphere for 24 h. At this stage the volatiles 
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were removed in vacuo, the crude brown oily solid was then recrystallized in 

toluene/hexane (1:3, 2 mL) and then toluene (1 x 5 mL) at 30 C. This resulted in the 

isolation of an off-white solid. 

In toluene 

PhN=NPh (0.060 g, 0.32 mmol), 2,2'-bibenzo[d][1,3,2]dioxaborole (0.078 g, 0.33 mmol) 

and 5.1 (0.003 g, 6.38 µmol) were dissolved in toluene (1.5 mL). The resulting reaction 

mixture was heated to 80 C and stirred at this temperature under a N2 atmosphere for 24 

h. The volatiles were removed in vacuo and the crude oily solid was recrystallized in 

toluene (3 x 3 mL) at 30 C. The resulting off-white powder was washed with hexane 

(3 x 3 mL). Yield: 0.089 g, 66%. 1H NMR (399.5 MHz, C6D6): δH = 7.70 [d, 3JHH = 8.3 

Hz, 4H, N(o-Ph)], 7.13 [m, 4H, N(m-Ph)], 6.87 [dd, J = 8.3 Hz, 6.6 Hz, 2H, N(p-Ph)], 

6.81 [m, 4H, cat-3-Ph], 6.64 [m, 4H, cat-2-Ph]. 13C{1H} NMR (100.46 MHz, C6D6): δC 

= 148.8 [cat-1-Ph], 144.3 [N(i-Ph)], 129.7 [N(m-Ph)], 123.6 [N(p-Ph)], 122.7 [cat-2-Ph], 

117.7 [N(o-Ph)], 112.5 [cat-3-Ph]. 11B{1H} (128.2 MHz, C6D6): δB = 26.7. Elem. Anal. 

Calcd for C24H18O4N2B2: C, 68.63%; H, 4.32%; N, 6.67%. Found: C, 68.63%; H, 4.38%; 

N, 6.59%. 

 

5.6.12 Synthesis of 1,2-bis(dimethoxyboryl)-1,2-diphenylhydrazine (5.9) 

PhN=NPh (0.025 g, 0.14 mmol), B2(OMe)4 (0.040 g, 0.27 mmol) and 5.1 (0.001 g, 2.63 

µmol) were dissolved in C6D6 (0.7 mL). The resulting reaction mixture was stirred at 

room temperature for 40 h and, separately, at 80 oC for 24 h. 1H NMR analysis indicated 

a maximum 33% conversion to 5.9. Multiple recrystallization attempts in toluene/hexane 

solution (1:5 to 5:1) proved unsuccessful with starting material persisting.  

5.9: 1H NMR (399.5 MHz, C6D6): δH = 7.31 [m, 4H, Ph], 7.12 [m, 4H, Ph], 6.80 [m, 2H, 

p-Ph], 3.46 [s, 12H, OMe]. 11B{1H} NMR (128.2 MHz, C6D6): δB = 22.1. 
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5.6.13 Synthesis of 1-(dimethyl(phenyl)silyl)-1,2-diphenyl-2-(4,4,5,5-tetramethyl-

1,3,2-dioxaborolan-2-yl)hydrazine (5.10) 

In C6D6 

PhN=NPh (0.025 g, 0.14 mmol), PhMe2SiBpin (46.0 µL, 0.17 mmol) and 5.1 (0.36 mg, 

0.68 µmol) were dissolved in C6D6 (0.7 mL). The resulting reaction mixture was stirred 

at room temperature for 2 h. At this point the volatiles were removed in vacuo and the 

resulting oily solid was washed with cold hexane (4 x 1 mL). Upon drying the title 

compound was obtained as a white powder without further purification. 

In toluene 

PhN=NPh (0.070 g, 0.38 mmol), PhMe2SiBpin (0.120 g, 0.46 mmol) and 5.1 (0.001 g, 

1.31 µmol) were dissolved in toluene (1.5 mL). The reaction mixture was stirred at room 

temperature under a N2 atmosphere for 2 h. At this stage the volatiles were removed in 

vacuo, the resulting oily solid was stirred in deionized H2O overnight and a white powder 

was obtained upon filtering. Yield: 0.148 g, 87%. 1H NMR (399.5 MHz, C6D6): δH = 7.85 

[m, 2H, SiMe2Ph], 7.68 [m, 2H, o-Ph(1)], 7.23 [m, 3H, SiMe2Ph], 7.16 [m, 2H, m-Ph(1)], 

7.03 [m, 4H, o- and m-Ph(2)], 6.85 [m, 1H, p-Ph(1)], 6.68 [m, 1H, p-Ph(2)], 1.05 [s, 6H, 

Bpin], 1.01 [s, 6H, Bpin], 0.61 [s, 3H, SiMe2Ph], 0.58 [s, 3H, SiMe2Ph]. 13C{1H} NMR 

(100.46 MHz, C6D6): δC = 149.8 [i-Ph(2)], 147.5 [i-Ph(1)], 138.3 [SiMe2i-Ph], 134.8 

[SiMe2Ph], 129.7 [SiMe2p-Ph], 129.3 [Ph(2)], 129.1 [m-Ph(1)], 128.1 [SiMe2Ph], 121.9 

[p-Ph(1)], 119.1 [p-Ph(2)], 118.0 [o-Ph(1)], 114.1 [Ph(2)], 83.6 [C, Bpin], 24.8 [CH3, 

Bpin], 24.4 [CH3, Bpin], 0.7 [SiMe2Ph], 0.8 [SiMe2Ph]. 11B{1H} NMR (128.2 MHz, 

C6D6): δB = 25.8. 29Si{1H} NMR (79.4 MHz, C6D6): δSi = 4.59. Elem. Anal. Calcd for 

C26H33O2N2SiB: C, 70.26%; H, 7.48%; N, 6.30%. Found: C, 70.18%; H, 7.50%; N, 

6.30%. 
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Crystal data for 5.10: C26H33N2O4BSi, Mr = 444.44 g mol-1, monoclinic, space group P21, 

a = 8.51365(19) Å, b = 12.4441(3) Å, c = 11.7153(3) Å, α = 90o, β = 91.067(2)o, γ = 90o, 

V = 1240.96(5) Å3, Z = 2, T = 103 K, λCu(Kα) = 1.54184, R1 [I > 2σ(I)] = 0.0574, wR2 

(all data) = 0.1604, GooF = 1.043. 

 

5.6.14 Synthesis of 1-(dimethyl(phenyl)silyl)-2-(4,4,5,5-tetramethyl-1,3,2-

dioxaborolan-2-yl)-1,2-di-m-tolylhydrazine (5.11) 

1,2-di-m-Tolyldiazene (0.024 g, 0.11 mmol), dimethyl(phenyl)(4,4,5,5-tetramethyl-

1,3,2-dioxaborolan-2-yl)silane (0.040 g, 0.15 mmol) and 5.1 (0.30 mg, 0.56 µmol) were 

dissolved in C6D6 (0.7 mL). The resulting reaction mixture was stirred at room 

temperature under a N2 atmosphere. After 2.5 h, the volatiles were removed in vacuo, 

deionized H2O (100 mL) was added and the crude reaction mixture was stirred at room 

temperature for 15 h. The product was obtained cleanly as a white powder on filtering the 

precipitate. Yield: 0.052 g, 98%. 1H NMR (399.5 MHz, C6D6): δH = 7.88 [m, 2H, SiMe2o-

Ph], 7.62 [dd, J = 8.3, 2.2 Hz, 1H, (2)Ph{6}], 7.55 [s, 1H, (2)Ph{2}], 7.24 [m, 3H, 

SiMe2m/p-Ph], 7.15 [m, 1H, (2)Ph{5}], 6.96 [m, 3H, (1)Ph{2/5/6}], 6.71 [m, 1H, 

(2)Ph{4}], 6.53 [m, 1H, (1)Ph{4}], 2.13 [s, 3H, (2)Me], 2.01 [s, 3H, (1)Me], 1.08 [s, 6H, 

Bpin], 1.04 [s, 6H, Bpin], 0.67 [s, 3H, SiMe2Ph], 0.62 [s, 3H, SiMe2Ph]. 13C{1H} NMR 

(100.46 MHz, C6D6): δC = 149.9 [(1)Ph{1}], 147.6 [(2)Ph{1}], 138.7 [(1)Ph{3}], 138.6 

[(2)Ph{3}], 138.5 [SiMe2i-Ph], 134.9 [SiMe2o-Ph], 129.7 [SiMe2p-Ph], 129.3, 129.1 

[(2)Ph{5}], 128.1 [SiMe2m-Ph], 122.7 [(2)Ph{4}], 120.1 [(1)Ph{4}], 118.4 [(2)Ph{2}], 

115.3 [(2)Ph{6}], 114.6, 111.5, 83.5 [C, Bpin], 24.8 [CH3, Bpin], 24.4 [CH3, Bpin], 21.8 

[(1)Me], 21.8 [(2)Me], 0.6 [SiMe2Ph], 0.9 [SiMe2Ph]. 11B{1H} NMR (128.2 MHz, 

C6D6): δB = 25.8. 29Si{1H} NMR (79.4 MHz, C6D6): δ = 4.40. Elem. Anal. Calcd for 
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C28H37N2O2SiB: C, 71.17%; H, 7.89%; N, 5.93%. Found: C, 71.06%; H, 7.74%; N, 

5.75%. 

 

5.6.15 Synthesis of 1-(dimethyl(phenyl)silyl)-1,2-bis(4-fluorophenyl)-2-(4,4,5,5-

tetramethyl-1,3,2-dioxaborolan-2-yl)hydrazine (5.12) 

1,2-bis(4-Fluorophenyl)diazene (0.027 g, 0.12 mmol), PhMe2SiBpin (0.038 g, 0.14 

mmol) and 5.1 (0.33 mg, 0.62 µmol) were dissolved in C6D6 (0.7 mL). The resulting 

reaction mixture was stirred at room temperature for 1.5 h under a N2 atmosphere. At this 

stage the volatiles were removed in vacuo, deionized H2O (100 mL) was added and the 

reaction mixture was stirred for a further 24 h at room temperature. The H2O was then 

decanted and the off-white solid was dried under a high vacuum. Yield: 0.050 g, 84%. 1H 

NMR (399.5 MHz, C6D6): δH = 7.68 [m, 2H, SiMe2o-Ph], 7.37 [m, 2H, (2)o-PhF], 7.17 

[m, 3H, SiMe2m,p-Ph], 6.74 [m, 2H, (1)o-PhF], 6.74 [m, 2H, (2)m-PhF], 6.60 [m, 2H, 

(1)m-PhF], 0.97 [s, 6H, Bpin], 0.92 [s, 6H, Bpin], 0.48 [s, 3H, SiMe2Ph], 0.43 [s, 3H, 

SiMe2Ph]. 13C{1H} NMR (100.46 MHz, C6D6): δC = 159.8 [d, 1JCF = 239.7 Hz, (2)p-

PhF], 158.3 [d, 1JCF = 236.7 Hz, (1)p-PhF], 145.6 [(1)i-PhF], 143.3 [(2)i-PhF], 137.8 

[SiMe2i-Ph], 134.6 [SiMe2o-Ph], 130.0 [SiMe2p-Ph], 128.2 [SiMe2m-Ph], 119.1 [d, 3JCF 

= 7.6 Hz, (2)o-PhF], 115.8 [d, 2JCF = 21.9 Hz, (2)m-PhF], 115.6 [d, 2JCF = 21.9 Hz, (1)m-

PhF], 114.7 [d, 3JCF = 7.6 Hz, (1)o-PhF], 83.7 [C, Bpin], 24.8 [CH3, Bpin], 24.3 [CH3, 

Bpin], 0.8 [SiMe2Ph], 1.1 [SiMe2Ph]. 11B{1H} NMR (128.2 MHz, C6D6): δB = 25.4. 

19F{1H} NMR (375.9 MHz, C6D6): δF = 122.60 (m), 126.70 (m). 29Si{1H} NMR (79.4 

MHz, C6D6): δSi = 4.85. Elem. Anal. Calcd for C26H31O2N2F2SiB: C, 65.00%; H, 6.50%; 

N, 5.83%. Found: C, 64.81%; H, 6.39%; N, 6.00%. 

Crystal data for 5.12: C26H31N2O2F2BSi, Mr = 480.43 g mol-1, monoclinic, space group 

P21, a = 8.58378(17) Å, b = 12.6067(2) Å, c = 11.7191(2) Å, α = 90o, β = 90.5690(18)o, 
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γ = 90o, V = 1268.10(4) Å3, Z = 2, T = 173 K, λCu(Kα) = 1.54184, R1 [I > 2σ(I)] = 0.0635, 

wR2 (all data) = 0.1806, GooF = 1.061. 

 

5.6.16 Synthesis of 1-(dimethyl(phenyl)silyl)-2-(4,4,5,5-tetramethyl-1,3,2-

dioxaborolan-2-yl)-1,2-di-p-tolylhydrazine (5.13) 

1,2-di-p-Tolyldiazene (0.031 g, 0.15 mmol), dimethyl(phenyl)(4,4,5,5-tetramethyl-1,3,2-

dioxaborolan-2-yl)silane (45.0 µL, 0.17 mmol) and 5.1 (0.40 mg, 0.74 µmmol) were 

dissolved in C6D6 (0.7 mL). The resulting reaction was stirred at room temperature under 

a N2 atmosphere for 8 h. At this stage, the volatiles were removed in vacuo, deionized 

H2O (80 mL) was added and the precipitated mixture was stirred at room temperature for 

16 h. The H2O was decanted resulting in isolation of a white powder. Yield: 0.069 g, 91%. 

1H NMR (399.5 MHz, C6D6): δH = 7.90 [m, 2H, SiMe2o-Ph], 7.64 [m, 2H, (2)o-PhMe], 

7.26 [m, 3H, SiMe2m,p-Ph], 7.00 [m, 4H, (1)o-PhMe and (2)m-PhMe], 6.82 [m, 2H, 

(1)m-PhMe], 2.10 [s, 3H, (2)PhMe], 2.04 [s, 3H, (1)PhMe], 1.07 [s, 6H, Bpin], 1.03 [s, 

6H, Bpin], 0.65 [s, 3H, SiMe2Ph], 0.62 [s, 3H, SiMe2Ph]. 13C{1H} NMR (100.46 MHz, 

C6D6): δC = 147.5 [(1)i-PhMe], 145.2 [(2)i-PhMe], 138.7 [SiMe2i-Ph], 134.8 [SiMe2o-

Ph], 130.8 [(2)p-PhMe], 129.9 [(1)m-PhMe], 129.7 [(2)m-PhMe], 129.7 [SiMe2p-Ph], 

127.9 [SiMe2m-Ph], 127.7 [(1)p-PhMe], 118.1 [(2)o-PhMe], 114.1 [(1)o-PhMe], 83.4 [C, 

Bpin], 24.8 [CH3, Bpin], 24.4 [CH3, Bpin], 20.6 [(1)PhMe], 20.4 [(2)PhMe], 0.6 

[SiMe2Ph], 0.8 [SiMe2Ph]. 11B{1H} NMR (128.2 MHz, C6D6): δB = 25.8. 29Si{1H} 

NMR (79.4 MHz, C6D6): δSi = 4.10. Elem. Anal. Calcd for C28H37O2N2SiB: C, 71.17%; 

H, 7.89%; N, 5.93%. Found: C, 70.99%; H, 8.02%; N, 5.90%. 
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5.6.17 Reaction of 1-(4-methoxphenyl)-2-phenyldiazene and PhMe2SiBpin 

1-(4-Methoxyphenyl)-2-phenyldiazene (0.025 g, 0.12 mmol), dimethyl(phenyl)(4,4,5,5-

tetramethyl-1,3,2-dioxaborolan-2-yl)silane (35.0 µL, 0.13 mmol) and 5.1 (0.31 mg, 0.59 

µmol) were dissolved in C6D6 (0.7 mL). The resulting reaction mixture was stirred at 

room temperature for 24 h under a N2 atmosphere. Crude NMR analysis at this stage 

showed a mixture of inseparable regioisomers (see 1H NMR spectrum in supporting 

information). 

 

5.6.18 Synthesis of [Pd(ITMe)2(PhN=NPh)] (5.14) from 5.1 

5.1 (0.032 g, 0.06 mmol) and PhN=NPh (0.019 g, 0.10 mmol) were dissolved in toluene 

(5.0 mL). The resulting reaction mixture was stirred at room temperature for 3 h. At this 

stage, the volatiles were removed in vacuo and the crude material was washed 

recrystallized in a toluene/hexane solution (3:1, 2 x 2.0 mL). The resulting yellow powder 

was washed with pentane (3 x 2.0 mL). Yield: 0.020 g, 62%. 1H NMR (399.5 MHz, 

C6D6): δH = 7.80 [m, 4H, Ph], 7.26 [m, 4H, Ph], 6.87 [pseudo-t, J = 7.2 Hz, 2H, p-Ph], 

3.31 [s, 12H, N(1,3)-CH3], 1.38 [s, 12H, C(4,5)-CH3]. 13C{1H} NMR (100.5 MHz, C6D6): 

δC = 189.0 [NCN], 163.0 [i-Ph], 128.9 [Ph], 124.1 [C(4,5)-CH3], 120.5 [Ph], 117.0 [p-

Ph], 35.2 [N(1,3)-CH3], 8.7 [C(4,5)-CH3]. Elem. Anal. Calcd for C26H34N6Pd: C, 58.15%; 

H, 6.38%; N, 15.65%. Found: C, 58.10%; H, 6.47%; N, 15.60%. 

Crystal data for 5.14: C26H34N6Pd, Mr = 721.26 g mol-1, orthorhombic, space group 

P212121, a = 12.7436(9) Å, b = 15.31140(12) Å, c = 18.9685(13) Å, α = 90o, β = 90o, γ = 

90o, V = 3702.0(5) Å3, Z = 4, T = 173 K, λCu(Kα) = 1.54184, R1 [I > 2σ(I)] = 0.0370, wR2 

(all data) = 0.0964, GooF = 1.032. 
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5.6.19 Scaled-up Synthesis of 5.14 

Isopropanol (12.2 µL, 0.16 mmol) was added to a stirred mixture of 

[(ITMe)Pd(methallyl)Cl] (0.051 g, 0.16 mmol), ITMe (0.024 g, 0.19 mmol) and 

potassium tert-butoxide (0.019 g, 0.17 mmol) suspended in toluene (5.0 mL). The 

reaction mixture was stirred at room temperature under an N2 atmosphere for 4.5 h, at 

which point PhN=NPh (0.036 g, 0.20 mmol) was added and the solution was stirred for a 

further 17 h at room temperature. The resulting reaction mixture was filtered, the filtrates 

volatiles were removed in vacuo and the crude material was recrystallized in a 

toluene/hexane solution (2:1, 2 x 15.0 mL) at 35 oC. A yellow solid was obtained after 

filtration and subsequent washes with hexane (3 x 5.0 mL). Yield: 0.060 g, 70%. (See 

above for NMR assignment). 

 

5.6.20 Hydrolysis of 5.2 to Form 1,2-diphenylhydrazine (5.15) 

To 5.2 (0.014 g, 31.49 µmol) degassed deionized H2O (10 mL) was added. The resulting 

reaction mixture was stirred for 48 h at room temperature under an argon atmosphere. At 

this stage the H2O was filtered off and the resulting white powder was dried in vacuo. 

Yield: 0.005 g, 90%. 1H NMR (399.5 MHz, C6D6): δH = 7.08 [m, 4H], 6.76 [m, 2H], 6.62 

[m, 4H], 4.71 [s, 2H]. 13C{1H} NMR (100.46 MHz, C6D6): δC = 149.4, 129.5, 120.0, 

112.7. 

 

5.6.21 Base Driven Alcoholysis of 5.10 to Form 5.15 

5.10 (0.025 g, 0.06 mmol) and KOtBu (0.013 g, 0.12 mmol) was dissolved in 

iPrOH/toluene (1:1, 2 mL). The resulting reaction mixture was stirred at room temperature 

for 22 h under an N2 atmosphere. The volatiles were removed in vacuo and the product 
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extracted with hexane (2 x 1 mL). Colourless crystals were obtained on recrystallizing 

the hexane extracts at 30 C. Yield: 0.009 g, 85% (see above for NMR assignment). 

 

5.6.22 Attempted Cross-Coupling of 5.10 

In an ampoule, 5.10 (0.025 g, 0.06 mmol), potassium carbonate (0.092 g, 0.66 mmol) and 

[Pd(PPh3)4] (0.005 g, 4.15 µmol) were stirred under a high vaccum. A solution of 

iodobenzene (10.0 µL, 0.09 mmol) in THF/H2O (9:1, 2.0 mL) was added to this stirred 

mixture of solids. The resulting reaction mixture was then heated to reflux under an argon 

atmosphere for 24 h. Upon cooling, the volatiles were removed in vacuo and the crude 

mixture was analysis by 1H NMR spectroscopy. NMR analysis was inconclusive and 

suggested that both the boryl and silyl moieties were no longer present. 
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Chapter 6 

Preliminary Investigative Studies and Future Directions 

 

6.1 Prologue 

Previous chapters have demonstrated the high degree of success in the use of a 

NHC2Pd(0) complex and its derivatives in a range of catalytic transformations. This final 

chapter outlines some preliminary studies that further explore the reactivity scope of these 

complexes, and serves as future directions. 

 

6.2 Germanium-Germanium Bond (Ge-Ge) Reactivity 

The studies into transition metal mediated element-element bond activations and 

subsequent alkyne insertions reported in Chapters 2, 3 and 4,[1–3] were extended to an 

initial examination of Ge-Ge bonds. Ge is directly below silicon (Si) and above tin (Sn) 

in the periodic table, hence organogermanium compounds are expected to demonstrate 

properties somewhere in-between their Si and Sn analogues.[4] However, 

organogermanium chemistry remains relatively unexplored. Palladium mediated 

digermylation of alkynes has been studied to a much lesser extent than bis(silyl)ation and 

distannation,[5–7] and this chemistry has been largely limited to the use of strained or 

activated digermanes (e.g. containing at least one electron withdrawing group).[8,9] 

Preliminary investigations into the oxidative cleavage of the non-activated 

hexamethyldigermane (Me3GeGeMe3) with [Pd(ITMe)2] resulted in the isolation of cis-

[Pd(ITMe)2(GeMe3)2] (6.1, ITMe = 1,3,4,5-tetramethylimidazol-2-ylidene). 6.1 was 

synthesized by reacting [Pd(ITMe)2], formed by combining [(ITMe)Pd(methallyl)Cl] and 

stoichiometric quantities of ITMe, potassium tert-butoxide and isopropanol,[1] with 
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Me3GeGeMe3 at room temperature. After work-up, 6.1 was isolated in a 59% yield 

(Scheme 6.1).  

 

 

 

 

 

Scheme 6.1 Synthesis of 6.1 

 

Single crystals of 6.1 suitable for X-ray analysis were isolated from a saturated toluene 

solution at 30 oC, however it was not possible to refine the data for lengthy discussions 

on bond lengths and angles (R1 = 8.8% and wR2 = 27.7%). Figure 6.1 depicts the 

molecular structure, displaying connectivity only, proving the cis-configuration.  

 

 

 

 

 

 

 

 

Figure 6.1 Molecular structure of 6.1 with thermal ellipsoids at the 50% probability level. 

Structural data suitable for connectivity analysis only. 
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Ge2 Ge3 
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6.1 was also formed by exposing [Pd(ITMe)2(PhC≡CPh)] (6.2) to 2 equivalents of 

Me3GeGeMe3.
[2] Additionally, by following the reaction using 1H NMR spectroscopy, it 

was observed that all the diphenylacetylene was converted to the air and moisture stable, 

novel compound (Z)-1,2-diphenyl-1,2-bis(trimethylgermyl)ethene (6.3, Scheme 6.2).  

 

 

 

 

 

Scheme 6.2 Synthesis of 6.1 and stoichiometric digermylation to form 6.3 

 

Previous attempts at performing digermylations of alkynes employing Me3GeGeMe3 in 

the literature were limited to the use of terminal alkynes, high loadings of platinum 

catalysts and elevated temperatures of 120 oC.[10] 6.2 capacity to catalyse the 

digermylation of diphenylacetylene using Me3GeGeMe3 was assessed. The digermylated 

stilbene 6.3 was obtained in a 98% yield (100% stereoselectivity) employing 1 mol% of 

6.2 at 100 oC in 24 h (Scheme 6.3).  

 

Scheme 6.3 Catalytic digermylation of diphenylacetylene to form 6.2 
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Single crystals of 6.3 were isolated from slow evaporation of a saturated acetone solution 

at room temperature and the molecular structure is depicted in Figure 6.2. 

 

 

 

. 

 

 

 

Figure 6.2 Molecular structure of 6.3 with thermal ellipsoids at the 50% probability level. 

Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [o]: C5-C6 

1.358(7), Ge1-C5 1.973(5), C5-CB 1.489(6), Ge2-C6 1.977(4), C6-C8 1.498(6); C6-C5-

Ge1 128.1(4), C6-C5-CB 120.0(4), CB-C5-Ge1 111.9(3), C5-C6-Ge2 129.6(3), C5-C6-

C8 119.2(4), C8-C6-Ge2 111.2(3). 

 

Further examination is necessary in order to assess the scope and limitations of this 

catalytic protocol.  

 

6.3 Semi-Hydrogenation of Diphenylacetylene 

Semi-hydrogenation of alkynes to Z-alkenes is traditionally mediated by the improved 

Lindlar’s catalyst (Pd black on BaCO3 that is poisoned with PbOAc and quinoline).[11,12] 

However, this procedure is often limited by the necessity for elaborate equipment set up, 

partial Z to E alkene isomerization, double-bond shifts and the requirement of pressurized 

molecular hydrogen. Transition metal catalysed transfer hydrogenation provides a 

promising alternative.[13] During these reactions, a molecule of hydrogen is effectively 

C5 C6 

C
B
 C8 

Ge1 Ge2 
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moved from one compound (a hydrogen source) to another. This circumvents the use of 

hydrogen gas, providing a more practical and safer protocol. Sources of stored hydrogen 

include formic acid and ammonia-borane.[14,15] Although other transition metal mediators 

are known,[16–18] the semi-hydrogenation of alkynes to Z-alkenes via transfer 

hydrogenation frequently employs palladium catalysts,[13] sometimes with N-heterocyclic 

carbenes as a ligand set.[19–22] 

A recent report from Cazin and co-workers detailed the semi-hydrogenation of 

diphenylacetylene to form 6.4 with a high Z-stereoselectivity using ammonia-borane and 

a mixed N-heterocyclic carbene-phosphine Pd(0) catalyst, [Pd(SIPr)(PCy3)] (SIPr = 1,3-

bis(2,6-diisopropylphenyl)imidazolidine;  Cy = cylcohexyl). The reaction was carried out 

with catalyst loadings of 0.05 mol% at 50 oC over 16 h (Scheme 6.4).  

 

 

 

 

Scheme 6.4 Cazin’s N-heterocyclic carbene or NHC-Pd(0) catalysed semi-hydrogenation 

of diphenylacetylene using ammonia borane as the hydrogen source 

 

Cazin observed that bis(NHC)Pd(0) complexes, e.g. [Pd(IPr)2] (IPr = 1,3-bis-(2,6-

diisopropylphenyl)imidazole-2-ylidene), were ineffective under these standard 

conditions and resulted in low yields of the semi-hydrogenation products. Despite this, 

the unprecedented catalytic conditions accessible in element-element additions to alkynes 

utilizing 6.2,[1–3] prompted a preliminary investigation into its ability to mediate transfer 

hydrogenation of alkynes using the amine-borane, Me2NH·BH3. 
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Diphenylacetylene was reacted with Me2NH·BH3 in the presence of 5 mol% of 6.2 at 

room temperature under an N2 atmosphere. The reaction reached completion after 24 h 

and crude 1H NMR analysis suggested the formation of primarily 6.4 (Scheme 6.5).  

 

 

 

 

Scheme 6.5 Semi-hydrogenation of diphenylacetylene using Me2NH·BH3 and catalytic 

quantities of 6.2 

 

Although a thorough optimization of this protocol and work-up procedure were not 

established, this early result suggests that 6.2 could very well be an efficient semi-

hydrogenation catalyst. However, catalyst loading must be significantly reduced. 

 

6.4 Synthesis of Mono(silyl)palladium(II) Bromide Complexes 

Mono(silyl)palladium(II) halide species are proposed as key intermediates in the 

synthesis of allylsilanes.[23,24] Although abundant in palladium pincer chemistry,[25–29] 

examples of their isolation in this catalytic cycle are rare. Ozawa and co-workers detailed 

the reaction between trans-[Pd(L)2(SiF2Ph)] (L = PMe3, PMe2Ph and PMePh2) and allyl 

bromide to afford trans-[Pd(L)2(SiF2Ph)(Br)] and the corresponding allylsilane.[23] Later, 

Watson and co-workers synthesized [(tBuPAr2)Pd(SiMe3)(I)] (Ar = 3,5-Me2-4-OMe-

C6H2) from stoichiometric quantities of [(cod)Pd(CH2SiMe3)2] (cod = 1,5-

cyclooctadiene), tBuPAr2 and Me3SiI.[24]  
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Preliminary studies revealed the first synthesis of non-pincer mono(silyl)palladium 

bromide complexes bearing a NHC ligand set. The bis(silyl)palladium complexes, cis-

[Pd(ITMe)2(SiR3)2] (SiR3 = SiMe3 and SiMe2Ph), synthesized in Chapter 2,[1,2] were 

reacted with excess allylbromide at room temperature under an N2 atmosphere to yield 

trans-[Pd(ITMe)2(SiMe3)(Br)] (6.5a) and trans-[Pd(ITMe)2(SiMe2Ph)Br] (6.5b) in a 

92% and 93% yield respectively (Scheme 6.6).  

 

Scheme 6.6 Stoichiometric synthesis of mono(silyl)palladium bromide complexes 

 

In following the reaction progress by 1H NMR spectroscopy, characteristic resonances of 

the corresponding allylsilanes (6.6a, allyltrimethylsilane and 6.6b, 

allyldimethylphenylsilane) were also observed. However, these compounds were not 

isolated. 

Single crystals of 6.5a, suitable for X-ray analysis, were grown by slow evaporation of a 

saturated deuterated benzene solution at room temperature. However, it was not possible 

to refine the data for lengthy discussions on bond lengths and angles (R1 = 9.7% and wR2 

= 34.2%). The unit cell consisted of three molecules of 6.5a and two molecules of 

benzene, each exhibiting varying degrees of structural disorder. Figure 6.3 depicts the 

molecular structure of a single molecule of 6.5a, proving its trans-configuration. 
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Figure 6.3 Molecular structure of 6.5a with thermal ellipsoids at the 50% probability 

level. Structural data suitable for connectivity analysis only. 

 

Single crystals of 6.5b were isolated by slow evaporation of a saturated deuterated 

benzene solution at room temperature. X-ray analysis revealed that 6.5b displays a 

marginally distorted square-planar geometry with the two NHCs in a trans-configuration 

and orthogonal to the Br-Pd-Si plane (Figure 6.4). 

 

 

 

 

 

 

 

 

Figure 6.4 Molecular structure of 6.5b with thermal ellipsoids at the 50% probability 

level. Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [o]: 

Si8 
C139 

C48 
Br13 

Pd3 

Pd1 

Br2 

Si3 

C9 

C5 
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Pd1-Br2 2.6334(7), Pd-Si3 2.2945(17), Pd1-C5 2.027(4), Pd1-C9 2.025(5); C5-Pd1-Br2 

94.96(15), C5-Pd1-Si3 89.16(16), C9-Pd1-Br2 87.63(16), C9-Pd1-Si3 88.60(17). 

 

The carbenic carbon-Pd bond lengths in 6.5b [2.027(4) and 2.025(5) Å] are significantly 

shorter than in cis-[Pd(ITMe)2(SiMe2Ph)2] [2.105(3) and 2.123(3) Å] suggesting 

SiMe2Ph exhibits a stronger trans-influence than ITMe.[30] The decreased length of the 

Pd-Si bond in 6.5b [2.2945(17) Å] versus cis-[Pd(ITMe)2(SiMe2Ph)2] [2.3445(8) and 

2.3346(8) Å] infers a stronger Pd-Si bond in 6.5b and demonstrates the weak trans-

influence of Br. Based on these data, the intensity of the trans-influence in these two 

structures follows the sequence: Br < ITMe < SiMe2Ph. The trans-configuration observed 

in 6.5b is thought to be favoured, thermodynamically and kinetically, as a result of the 

high trans-influence of SiMe2Ph and relatively large steric size of Br. 

A possible mechanism for the formation of 6.5 includes either a σ-bond metathesis 

between a Pd-Si, in cis-[Pd(ITMe)2(SiR3)2], and Br-C bond, in allylbromide, or an 

SN2/SN2’ by the nucleophilic Pd-Si bond at the electrophilic sites in the allylhalide. An 

NHC would then dissociate from the palladium centre, a cis to trans isomerization of the 

Br and Si moieties would follow and finally the dissociated NHC would re-coordinate 

(Scheme 6.7).[31,32]  
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Scheme 6.7 Possible mechanistic routes for 6.5 

 

Although not evaluated, it is predicted that the facile formation and apparent stability of 

6.5 would prohibit catalytic silylation of allylhalides. This is attributed to a cis-

configuration being a requirement for reductive elimination, the re-formation of the active 

catalyst and therefore completion of the catalytic cycle.  
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6.5 Conclusions 

This chapter demonstrates preliminary studies that further explore the reactivity scope of 

(ITMe)-Pd based complexes. [Pd(ITMe)2] and [Pd(ITMe)2(PhC≡CPh)] oxidatively 

cleaved the Ge-Ge bond in hexamethyldigermane to afford cis-[Pd(ITMe)2(GeMe3)2]. 

This represents the first bis(trimethylgermanium)Pd complex bearing NHC ligands. 

Furthermore, [Pd(ITMe)2(PhC≡CPh)] acts as a highly active pre-catalyst in the 

digermylation of diphenylacetylene to form the novel compound (Z)-1,2-diphenyl-1,2-

bis(trimethylgermyl)ethene. As a future study, this catalytic protocol should be extended 

to a range of alkynes, with contrasting electronic and steric properties, in order to assess 

the scope and limitations. 

[Pd(ITMe)2(PhC≡CPh)] was also assessed as semi-hydrogenation catalyst. Although not 

fully optimized, an initial experiment showed that it was possible to catalyse the semi-

hydrogenation of diphenylacetylene to (Z)-stilbene, utilizing an amine-borane as a 

transfer hydrogenation source. Future work should involve optimization of this procedure 

including an extensive study into the source of hydrogen and alkyne scope. Additionally, 

a computational study should also be undertaken for a greater understanding of this 

system. 

Finally, the first non-pincer NHC mono(silyl)palladium halide complexes were 

synthesized, trans-[Pd(ITMe)2(SiR3)(Br)] (SiR3 = SiMe2Ph and SiMe3), in the reaction 

of allylbromide with the corresponding cis-[Pd(ITMe)2(SiR3)2] under mild conditions. A 

possible mechanistic route for the formation of trans-[Pd(ITMe)2(SiR3)(Br)] includes 

either a σ-bond metathesis or an SN2/SN2’ reaction between allybromide and cis-

[Pd(ITMe)2(SiR3)2]. This is then followed by a cis-trans isomerization that involves an 

NHC dissociation. The reactivity of trans-[Pd(ITMe)2(SiR3)(Br)] is unexplored, however 

future work may include attempts at halide abstraction to form 
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[Pd(ITMe)2(SiR3)][Anion],[33–35] and utilization of these cationic palladium(II) 

complexes as catalysts in polymerization reactions.[36–38] 

 

6.6 Experimental Details for Chapter 6 

General experimental details are given in appendix A1. 

6.6.1 Synthesis of cis-[Pd(ITMe)2(GeMe3)2] (6.1) from [(ITMe)Pd(methallyl)Cl] 

Isopropanol (10.0 µL, 0.14 mmol) was added to a suspension of [(ITMe)Pd(methallyl)Cl] 

(0.046 g, 0.14 mmol), ITMe (0.019 g, 0.16 mmol) and potassium tert-butoxide (0.017 g, 

0.15 mmol) in toluene (10.0 mL). The resulting reaction mixture was stirred at room 

temperature under an N2 atmosphere for 4.5 h. At this stage, Me3GeGeMe3 (58.0 µL, 0.29 

mmol) was added and the reaction mixture was stirred for a further 19 h at room 

temperature. The solution was then filtered via cannula, the filtrate’s volatiles were 

removed in vacuo and the resulting off-white solid was washed with hexane (3 x 5.0 mL). 

Yield: 0.050 g, 59%. 1H NMR (399.5 MHz, C6D6): δH = 3.33 [s, 12H, N(1,3)-CH3], 1.42 

[s, 12H, C(4,5)-CH3], 0.64 [s, 18H, GeMe3]. 13C{1H} NMR (100.5 MHz, C6D6): δC = 

193.6 [NCN], 123.5 [C(4,5)-CH3], 35.0 [N(1,3)-CH3], 8.6 [C(4,5)-CH3], 7.6 [GeMe3]. 

Elem. Anal. Calcd for C20H42N4Ge2Pd: C, 40.70%; H, 7.17%; N, 9.49%. Found: C, 

41.13%; H, 7.44%; N, 9.46% (repeated analysis did not lead to improved results – 

decomposition may be a result of exposure to air or moisture during analysis). 

 

6.6.2 Synthesis of 6.1 from 6.2 

In a Young’s tap NMR tube, 6.2 (0.004 g, 8.23 µmol) and Me3GeGeMe3 (0.005 g, 22.93 

µmol) were dissolved in C6D6 (0.7 mL). The progress of the reaction was monitored by 

1H NMR spectroscopy showing full conversion to 6.1 and (Z)-1,2-diphenyl-1,2-

bis(trimethylgermyl)ethene (6.2) after stirring at room temperature under an N2 
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atmosphere for 3 days. See sections 6.5.1 and 6.5.3 for spectroscopic analysis of 6.1 and 

6.2, respectively. 

 

6.6.3 Catalytic Formation of 6.3 

Diphenylacetylene (0.025 g, 0.14 mmol), Me3GeGeMe3 (45.0 µL, 0.22 mmol) and 6.2 

(0.75 mg, 1.41 µmol) were dissolved in C6D6 (0.7 mL). The resulting reaction mixture 

was heated under an N2 atmosphere to 100 oC for 24 h. Upon cooling the volatiles were 

removed in vacuo, the crude material was re-dissolved in CH2Cl2 (10.0 mL) and 

subsequently filtered through flame dried Celite. The filtrate volatiles were removed in 

vacuo to reveal an off-white solid. Yield 0.057 g, 98%. 1H NMR (399.5 MHz, CDCl3): 

δH = 6.99 [m, 4H, Ph], 6.87 [m, 2H, p-Ph], 6.66 [m, 4H, Ph], 0.24 [s, 18H, GeMe3]. 

13C{1H} NMR (100.5 MHz, CDCl3): δC = 157.2 [C=C], 146.1 [i-Ph], 127.7 [Ph], 127.3 

[Ph], 124.4 [p-Ph], 1.5 [GeMe3]. Elem. Anal. Calcd for C20H28Ge2: C, 6.82%; H, 58.06%. 

Found: C, 6.89%; H, 58.07%. 

Crystal data for 6.3: C20H28Ge2, Mr = 413.60 g mol-1, triclinic, space group P-1, a = 

11.5360(8) Å, b = 12.4807(7) Å, c = 15.1324(8) Å, α = 75.511(5)o, β = 89.743(5)o, γ = 

73.967(5)o, V = 2022.5(2) Å3, Z = 4, T = 173 K, λCu(Kα) = 1.54184, R1 [I > 2σ(I)] = 

0.0610, wR2 (all data) = 0.1841, GooF = 1.175. 

 

6.6.4 Synthesis of (Z)-1,2-diphenylethene (6.4) 

Diphenylacetylene (0.050 g, 0.28 mmol), Me2NH·BH3 (0.017 g, 0.29 mmol) and 6.2 

(0.008 g, 14.07 µmol) were dissolved in C6D6 (0.7 mL). The resulting reaction mixture 

was stirred at room temperature under an N2 atmosphere for 24 h. At this stage, crude 1H 

NMR analysis suggested 100% conversion of starting diphenylacetylene and formation 

of 6.4 as the major product. 
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6.4: 1H NMR (399.5 MHz, C6D6): δH = 7.23 [m, 4H, Ph], 7.01 [m, 6H, Ph], 6.47 [s, 2H, 

CH=]. 

[Chemical shifts agree with those reported in the literatures].[39] 

 

6.6.5 Synthesis of trans-[Pd(ITMe)2(SiMe3)(Br)] (6.5a) and allyltrimethylsilane 

(6.6a) 

Allylbromide (0.032 g, 0.26 mmol) was added to a solution of cis-[Pd(ITMe)2(SiMe3)2] 

(0.043 g, 0.09 mmol) in C6D6 or toluene (3.0 mL) and the resulting reaction mixture was 

stirred at room temperature for 1.5 h. At this stage, the volatiles were removed in vacuo 

and the off-white powder was washed with hexane (3 x 4.0 mL).  

6.5a, Yield: 0.040 g, 92%. 1H NMR (399.5 MHz, C6D6): δH = 3.68 [s, 12H, N(1,3)-CH3], 

1.42 [s, 12H, C(4,5)-CH3], 0.12 [s, 9H, SiMe3]. 
13C{1H} NMR (100.5 MHz, C6D6): δC = 

184.9 [NCN], 124.0 [C(4,5)-CH3], 35.1 [N(1,3)-CH3], 8.5 [C(4,5)-CH3], 6.9 [SiMe3]. 

29Si{1H} NMR (79.4 MHz, C6D6): δSi = 7.68. Elem. Anal. Calcd. for C17H33N4SiBrPd: 

C, 40.20%; H, 6.55%; N, 11.03%. Found: C, 40.15%; H, 6.54%; N, 10.95%. 

6.6a (from crude reaction solution), 1H NMR (399.5 MHz, C6D6): δH = 5.77 [m, 1H, 

CH=], 4.92 [m, 1H, CH=], 4.89 [m, 1H, CH=], 1.44 [m, 2H, CH2], 0.03 [s, 9H, SiMe3]. 

[Agrees with an independently taken NMR sample of allyltrimethylsilane]. 

 

6.6.6 Synthesis of trans-[Pd(ITMe)2(SiMe2Ph)(Br)] (6.5b) 

Allybromide (6.0 µL, 0.07 mmol) and cis-[Pd(ITMe)2(SiMe2Ph)] (0.021 g, 0.03 mmol) 

were dissolved in C6D6 or toluene (1.0 mL). The resulting reaction mixture was stirred at 

room temperature for 2 h under an N2 atmosphere. At this stage, all volatiles were 

removed in vacuo and the resulting white solid was washed with hexane (3 x 2.0 mL). 

Yield: 0.018 g, 93%. 1H NMR (399.5 MHz, C6D6): δH = 7.20 [m, 2H, SiMe2Ph], 7.07 [m, 
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3H, SiMe2Ph], 3.51 [s, 12H, N(1,3)-CH3], 1.42 [s, 12H, C(4,5)-CH3], 0.31 [s, 6H, 

SiMe2Ph]. 13C{1H} NMR (100.5 MHz, C6D6): δC = 183.4 [NCN], 149.6 [SiMe2i-Ph], 

133.1 [SiMe2Ph], 127.0 [SiMe2Ph], 126.5 [SiMe2p-Ph], 124.2 [C(4,5)-CH3], 34.9 

[N(1,3)-CH3], 8.5 [C(4,5)-CH3], 4.2 [SiMe2Ph]. 29Si{1H} NMR (79.4 MHz, C6D6): δSi = 

2.44. (It was not possible to obtain elemental analysis for 6.5b – every attempt resulted 

in numbers that were inconsistent with calculated values. A possible reason for this is 

decomposition of 6.5b by exposure to air or moisture on transit to data collection). 

Crystal data for 6.5b: C22H35N4SiBrPd, Mr = 569.94 g mol-1, orthorhombic, space group 

P2=2121, a = 10.5467(4) Å, b = 14.3455(3) Å, c = 16.7301(4) Å, α = 90o, β = 90o, γ = 90o, 

V = 2531.23(13) Å3, Z = 4, T = 173 K, λMo(Kα) = 0.71073, R1 [I > 2σ(I)] = 0.0345, wR2 

(all data) = 0.0677, GooF = 1.011. 

[Crude 1H NMR data is consistent with the formation of allyldimethylphenylsilane (6.6b) 

as a product of this reaction. However, this was not isolated in this instance].[40] 
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Chapter 7 

Thesis Summary 

 

7.1 Summary 

7.1.1 Chapter 1 

This chapter introduced the transition metal (TM) mediated element-element’ (E-E’) 

additions to alkynes and provided a thorough literature review on this topic. The chapter 

began by providing an initial background of alkenes and outlined their properties, 

geometry, importance in industrially relevant compounds, and methods of stereoselective 

synthesis. TM mediated E-E’ additions to alkynes was described as the most atom 

economical route to Z or syn-alkenes. The subsequent section illustrated the general 

mechanism of this process (platinum group mediated) and provided a comprehensive 

literature review covering a range of E-E’ bonds including Si-Si, B-B, Si-B, Sn-Sn, Sn-

Si, Sn-B, S-S, Se-Se, S-Si, S-B, Ge-Ge, Ge-Sn and Ge-B. This review presents the scope 

and limitations in this area of chemistry. 

The final segment of this introductory chapter detailed the background, properties, 

binding modes to TMs and benefits in palladium catalysis of N-heterocyclic carbenes 

(NHCs). A concluding paragraph sets the scene for the subsequent chapters and defines 

the chemical target, [Pd(ITMe)2] (7.1, ITMe = 1,3,4,5-tetramethylimidazol-2-ylidene). 

 

7.1.2 Chapter 2 

Arguably, chapter 2 is the seminal chapter to this thesis and describes the first solution-

based synthetic route to 7.1. Initially an improved synthesis of ITMe was detailed. ITMe 

was then reacted with [Pd(methallyl)Cl]2 to afford the novel complex 

[(ITMe)Pd(methallyl)Cl]. An experimental investigation, based on a fundamental 
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understanding of the possible mechanism, resulted in the formation of 7.1 by exposure of 

[(ITMe)Pd(methallyl)Cl] to stoichiometric quantities of ITMe, tBuOK and isopropanol. 

However, the isolation of 7.1 proved troublesome; this was attributed to its limited 

solubility in most organic solvents and its reactivity with others (e.g. chlorinated and 

protic solvents). Instead, 7.1 was reacted in situ with hexamethyldisilane (Me3SiSiMe3) 

resulting in the isolation of cis-[Pd(ITMe)2(SiMe3)2] (7.2) under mild conditions. This 

represented the first isolated example of a bis(trimethylsilyl)palladium complex obtained 

from the oxidative addition of Me3SiSiMe3 at a Pd(0) centre. This oxidative addition 

procedure in the synthesis of cis-bis(silyl)palladium complexes was deemed general and 

extended to other non-activated disilanes (1,2-diphenyl-1,1,2,2-tetramethyldisilane and 

1,2-bis(2-methoxyphenyl)-1,1,2,2-tetramethyldisilane). Attempts at oxidatively cleaving 

the Si-Si bond in Me3SiSiMe3 employing other low valent NHC-Pd(0) complexes 

including [(ITMe)2Pd0(ma)] and [(Pd0{IPr}{nq})2] (ma = maleic anhydride, nq = 1,4-

naphthoquinone) were unsuccessful. 

Stoichiometric reactivity studies showed that 7.2 can undergo, in solution, a temperature 

dependent reversible reductive elimination. Furthermore, 7.2 mediated the stoichiometric 

bis(silyl)ation of diphenylacetylene at room temperature to afford (Z)-1,2-diphenyl-1,2-

bis(trimethylsilyl)ethene (7.3) and [Pd(ITMe)2(PhC≡CPh)] (7.4), the first 

bis(NHC)Pd(0)-alkyne complex reported in the literature. 7.4 was shown to 

stoichiometrically react with Me3SiSiMe3 to reform 7.2 and afforded another equivalent 

of 7.3. This effectively completed a cycle with promise for catalytic applicability. 

7.2 was subsequently utilized as a pre-catalyst in the bis(silyl)ation of electronically and 

sterically demanding internal and terminal alkynes to yield the corresponding 1,2-

disilylalkenes with a 100% Z-stereoselectivity. The reaction proceeded employing 1 

mol% of 7.2 at 100 oC in 24 h. This catalytic protocol demonstrated the first bis(silyl)ation 
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of internal alkynes using Me3SiSiMe3. A proposed catalytic cycle suggested 7.4 to be a 

resting state of 7.1, the active catalytic species. 7.1 oxidatively cleaved Me3SiSiMe3 to 

yield 7.2. An alkyne then binds in the z-plane of the Pd metal, followed by its migratory 

insertion into a Pd-Si bond and the formation of the corresponding silyl-palladium-

vinylsilyl intermediate. A subsequent stereoselective reductive elimination generated the 

active catalyst, 7.1 and a Z-1,2-disilylalkene. The enhanced reactivity observed with 7.2 

was suggested to be a result of the NHCs remaining coordinated throughout the cycle. 

 

7.1.3 Chapter 3 

In chapter 3, the investigations into E-E’ additions to alkynes were extended to Si-B 

bonds. This chapter started with an improved synthesis for 7.4 from the reaction between 

in situ formed 7.1 and diphenylacetylene. Other bis(NHC)Pd(0)-alkyne complexes were 

also accessible utilizing this protocol including [Pd(ITMe)2(PhC≡CNA)] (NA = 

naphthyl) and [Pd(ITMe)2({4-Et}PhC≡CPh{4-OMe})]. The silaboration of alkynes was 

initially pursued using the model substrates diphenylacetylene and 

(dimethylphenylsilyl)boronic acid pinacol ester (PhMe2SiBpin) with catalytic quantities 

of 7.4. After optimization of the reaction parameters, (E)-(1,2-diphenyl-2-(4,4,5,5-

tetramethyl-1,3,2-dioxanborolan-2-yl)vinyl)dimethyl(phenyl)silane was formed in the 

presence of 0.5 mol% 7.4 at room temperature in 0.5 h. This procedure was then extended 

to a range of electronically and sterically challenging terminal alkynes to synthesize the 

corresponding 1-silyl-2-boryl alkenes with a 100% regio- and Z-stereoselectivity. These 

reaction conditions were unprecedented in terms of catalyst loadings, reaction 

temperatures and times. Despite requiring temperatures of 50-100 oC, symmetrical and 

unsymmetrical internal alkynes were also accessible under these conditions. 
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Investigation into the catalytic cycle resulted in the isolation of cis-

[Pd(ITMe)2(SiMe2Ph)(Bpin)] (7.5) from the reaction of 7.4 and PhMe2SiBpin at room 

temperature. 7.5 represented a very rare example of an isolated (silyl)(boryl)palladium 

complex. Mechanistically, a similar pathway to that in Chapter 2 was proposed for the 

silaboration of alkynes. Again, the reluctance of NHCs to decoordinate being the 

suggested reasoning behind the enhanced activity of 7.4 in this reaction.  

 

7.1.4 Chapter 4 

The dearth of reported palladium catalysed diborations of alkynes in the literature is 

attributed to the energetics of the B-B oxidative addition. The process is endothermic with 

a very low reverse activation barrier and therefore kinetically and thermodynamically 

unfavourable. Despite this, chapter 4 describes the use of 7.4 as a highly active pre-

catalyst in such a reaction. 

Initial catalysis was carried out using the model substrates diphenylacetylene and 

bis(pinacolato)diboron (B2pin2). A thorough optimization of this protocol, employing 0.5 

mol% of 7.4 at room temperature, resulted in the formation of (Z)-1,2-diphenyl-1,2-

bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethane in near quantitative yields. A 

range of alkyl and aryl terminal alkynes bearing a variety of functionalities were 

accessible under these conditions. The diboration of internal alkynes was also possible, 

but required elevated temperatures of 50-100 oC. In all cases, 100% Z-stereoselectivity 

was observed.  

Our collaborators carried out a density functional theory (DFT) study to highlight the 

reasoning as to why 7.4 mediated diboration of alkynes. Calculations showed that the 

reaction followed a similar mechanistic pathway to that of analogous phosphine platinum 

catalysts e.g. (i) oxidative addition of B2pin2 by 7.1 resulted in the formation of cis-
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[Pd(ITMe)2(Bpin)2], (ii) an NHC would then dissociate followed by coordination of an 

alkyne in its place, (iii) the alkyne would then undergo a migratory insertion into a Pd-B 

bond to form a boryl-palladium-vinylboryl intermediate, (iv) a cis-trans isomerization of 

the boryl and vinylboryl moieties would follow, (v) the NHC would recoordinate 

inducing a stereoselective reductive elimination and the formation of the corresponding 

Z-1,2-diborylalkene. It was suggested that successful oxidative addition and thus 

diboration was due to the destabilization of the (diboron)Pd(0)L2 adduct by the NHCs. 

This mechanism differs from the proposed mechanisms for the bis(silyl)tion and 

silaboration of alkynes reported in Chapter 2 and 3. In these chapters, it was suggested 

that the NHCs remain coordinated throughout (due to their strong σ-donor character) and 

the alkyne would coordinate above the plane of the palladium to form an 18-electron, 

penta-coordinate nearly square based pyramidal complex. However, calculations for the 

diboron system suggest this intermediate is highly unstable with a large free energy of 

41.7 kcal mol-1 (vs. cis-[(NHC)2Pd(B)2]). On the other hand, the decoordination of an 

NHC from cis-[(NHC)2Pd(B)2], followed by the coordination of an alkyne requires an 

input energy of 10.1 kcal mol-1. This is an energetically more favoured route and it is 

therefore envisaged that the calculated mechanism reported in Chapter 4 is pertinent to 

the bis(silyl)ation and silaboration systems. 

 

7.1.5 Chapter 5 

Chapter 5 describes the B-B and Si-B additions to the N=N bond in azobenzenes. 

Literature precedence for such reactivity was scarce with only B-B examples reported. 

Even then, the diborons employed exhibited highly strained or reactive B-B bonds. 7.4 

was observed to catalyse the diboration and silaboration of azobenzenes using 

commercially available diboron and silaborane reagents under mild conditions. 
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The catalytic optimization for the diboration of azobenzenes concentrated on azobenzene 

and B2pin2 as the model substrates. The novel compound, 1,2-diphenyl-1,2-bis(4,4,5,5-

tetramethyl-1,3,2-dioxaborolan-2-yl)hydrazine (7.6) was isolated using 0.5 mol% of 7.4 

at room temperature. This protocol was extended to a range of azobenzenes, bearing alkyl, 

alkoxy and amido functionalities, and to alternative diboron reagents e.g. 

bis(catecholato)diboron and bis(neopentyl glycolato)diboron. The resulting novel 1,2-

diborylated hydrazines were noted to be extremely sensitive to air and moisture. A 

controlled reaction of 7.6 with degassed deionized H2O resulted in the formation of 

diphenylhydrazine (7.7) at room temperature. 

The silaboration of azobenzenes was also achieved under these optimized conditions 

using the silaborane, PhMe2SiBpin. The resulting novel 1-silyl-2-borylhydrazines formed 

contained alkyl or fluoro moieties in ortho, meta and para positions on the aryl rings. In 

contrast to the 1,2-diborylhydrazines, 1-silyl-2-borylhydrazines were stable to air and 

moisture. However, it was possible to remove the Si and B groups to form 7.7 from 

[dimethyl(phenyl)silyl]-1,2-diphenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)hydrazine under base driven alcoholysis conditions. 

In an unsuccessful attempt to extend these additions to disilanes, the formation of 

[Pd(ITMe)2(PhN=NPh)] (7.8) was observed. 7.8 was independently synthesized from the 

reaction of 7.1 or 7.4 with azobenzene, and represents the first NHC-Pd azobenzene 

complex. 

The diboration and silaboration of azobenzenes using 7.4 as a catalyst was proposed to 

proceed either through a similar mechanism to that of alkyne diboration reported in 

chapter 4 or through a concerted mechanism involving 7.8. 
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7.1.6 Chapter 6 

Chapter 6 details preliminary further reactivity investigations of the ITMe-Pd complexes 

reported in the preceding chapters, and serves as a basis for future work in this area of 

chemistry. The E-E’ additions to alkynes was extended to Ge-Ge bonds. Initial 

stoichiometric reactivity between 7.1 or 7.4 and hexamethyldigermane (Me3GeGeMe3) 

resulted in the isolation of cis-[Pd(ITMe)2(GeMe3)2] (7.9). 7.9 represents the first 

bis(trimethylgermyl)palladium complex reported. In the case of the reaction involving 

7.4, the novel compound (Z)-1,2-diphenyl-1,2-bis(trimethylgermyl)ethene (7.10) was 

also obtained. Furthermore, 7.10 was catalytically formed in the digermylation of 

diphenylacetylene with Me3GeGeMe3 using 1 mol% of 7.4 at 100 oC in 24 h. 

Additionally, 7.4 acted as a pre-catalyst in the semi-hydrogenation of diphenylacetylene 

to Z-stilbene employing dimethylamine-borane as a transfer hydrogenation source. 

Although the catalytic procedure was not optimized this provided substantial evidence 

that an alkyne semi-hydrogenation study was worthwhile. 

In previous chapters the reactions of complexes of the type cis-[Pd(ITMe)2(SiR3)2] (SiR3 

= SiMe3 {7.2} or SiMe2Ph) were limited to alkynes. Mono(silyl) palladium halides are 

reported in the literature as important intermediates in the formation of allylsilanes, 

however isolation of these complexes in the catalytic cycle were limited. It was observed 

that trans-[Pd(ITMe)2(SiR3)Br] (7.11) and the corresponding allylsilane formed on 

reacting cis-[Pd(ITMe)2(SiR3)2] with allyl halide. A possible mechanism for the 

formation of 7.11 was proposed: cis-[Pd(ITMe)2(SiR3)2] either undergoes a σ-bond 

metathesis or an SN2/SN2’ reaction with allyl bromide to form cis-[Pd(ITMe)2(SiR3)Br]. 

One NHC would decoordinate, an isomerization would occur and recoordination of the 

NHC to form 7.11 would follow. Initial reactivity studies of 7.11 were not established, 

but it is anticipated that these complexes would undergo a halide abstraction to form the 
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cationic palladium complexes, [Pd(ITMe)2(SiR3)][anion] (7.12). 7.12 could then serve as 

polymerization catalysts. 

 

7.2 Thesis Outputs 

7.2.1 Published Work 

- M. B. Ansell, D. E. Roberts, F. G. N. Cloke, O. Navarro, J. Spencer, Angew. 

Chem. Int. Ed. 2015, 54, 5578-5582. Highlighted in EPSRC UK National Mass 

Spectrometry Facility Annual Report 2015/2016, p27. 

- M. B. Ansell, J. Spencer, O. Navarro, ACS Catal, 2016, 6, 2192-2196. 

- M. B. Ansell, V. H. Menezes de Silva, G. Heerdt, A. A. C. Braga, J. Spencer, O. 

Navarro, Catal. Sci. Technol. 2016, 6, 7461-7467. 

- M. B. Ansell, G. E. Kostakis, H. Braunschweig, O. Navarro, J. Spencer, Adv. 

Synth. Catal. 2016, 358, 3765-3769. 

- M. B. Ansell, O. Navarro, J. Spencer, Coord. Chem. Rev. 2017, 36, 54-77. 

 

7.2.2 Honours and Awards 

- Royal Society of Chemistry Research Mobility Grant (2016 – to visit the 

Braunschweig Lab). 

- Royal Society of Chemistry Dalton Division Travel Grant (2015 – attendance at 

the 250th American Chemical Society Meeting, Boston MA, USA). 

- University of Sussex Doctoral Overseas Conference Grant (2015 – attendance at 

the 250th American Chemical Society Meeting, Boston MA, USA). 

- University of Sussex Alumni Study Award (2013, 2014, 2015). 
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7.2.3 Presentations 

- ‘Synthesis of a (N-Heterocyclic Carbene)2Pd(0) Complex: Catalytic Element-

Element 1,2-Additions to Alkyne and Azo Moieties’ CheM62 Meeting, 

AstraZeneca, Macclesfield, UK, November 2016. Poster. 

- ‘The Synthesis of a (N-Heterocyclic Carbene)2Pd(0) Complex: Catalytic Element-

Element 1,2-Additions to Alkyne and Azo Moieties with Mechanistic Insights’ 2nd 

Southern Dalton Meeting, University of Reading, UK, September 2016. Talk. 

- ‘Synthesis of an (NHC)2Pd(SiMe3)2 Complex. Catalytic, cis-Bis-Silylations of 

Internal Alkynes with Unactivated Disilanes’ 1st Dalton Young Members Event, 

University of Leeds, UK, September 2015. Talk. 

- Synthesis of an [(NHC)2Pd(SiMe3)2] Complex and Catalytic cis-Bis(silyl)ations 

of Alkynes with Unactivated Disilanes’ 250th American Chemical Society 

Meeting, Boston MA, USA, August 2015. Poster. 

- ‘Synthesis of an (NHC)2Pd(SiMe3)2 Complex. Catalytic, cis-Bis-Silylations of 

Internal Alkynes with Unactivated Disilanes’ 26th SCI Postgraduate Symposium 

on Novel Organic Chemistry, University of Southampton, UK, May 2015. Talk. 

- ‘Synthesis of an[(NHC)2Pd(SiMe3)2] Complex and Catalytic cis-Bis(silyl)ations 

of Alkynes with Unactivated Disilanes’ Southern Dalton Meeting, University of 

Sussex, UK, April 2015. Poster. 
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Appendix 1: Experimental Details 

A1.1 General Procedures 

The manipulation of air sensitive compounds and their spectroscopic measurements were 

undertaken using standard Schlenk line techniques under pre-dried Ar (using a BASF R3-

11(G) catalyst and 4 Å molecular sieves), or in a MBraun glovebox under N2 (O2 < 10.0 

ppm). All glassware was dried in a 160 oC oven prior to use. Celite was pre-dried in a 200 

oC oven and then dried with a heat gun under a dynamic vacuum prior to use. Filter 

cannulae equipped with microfibre filters were dried in an oven at 160 oC prior to use. 

 

A1.2 Purification of Solvents 

All solvents used for air sensitive compounds were dried by vacuum distillation followed 

by distillation of potassium (e.g. hexane and toluene) or stored over activated 4 Å 

molecular sieves under an Ar atmosphere (e.g. 2-methyl tetrahydrofuran). Dried solvents 

were degassed and stored over Ar in ampoules containing activated molecular sieves. For 

reactions carried out under ambient conditions solvents were used as purchased.  

Deuterated benzene, C6D6, was degassed and dried by refluxing over potassium for 3 

days, vacuum transferred into ampoules and stored under N2. Deuterated chloroform, 

CDCl3, was used as purchased. 

 

A1.3 Instrumentation 

A1.3.1  NMR Spectroscopy 

NMR spectra were recorded on a Varian VNMRS 400 (1H 399.5 MHz; 13C{1H} 100.5 

MHz; 11B{1H} 128.2 MHz; 19F 375.9 MHz; 29Si{1H} 79.4 MHz) or 500 (1H 499.9 MHz; 

13C{1H} 125.7 MHz). Chemical shifts are reported in ppm. The spectra were referenced 

to the corresponding protic solvent (1H) or signals of the solvent (13C). 11B{1H}, 19F and 
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29Si{1H} NMR spectra were referenced externally relative to BF3.OEt2, CFCl3 (10%) and 

SiMe4 respectively. 

 

A1.3.2  Mass Spectrometry 

High resolution mass spectrometry was carried out by Dr A. Abdul-Sada at the University 

of Sussex or by the EPSRC UK Nation Mass Spectrometry Facility, University of 

Swansea. 

 

A1.3.3  Elemental Analysis 

Elemental analyses were carried out by Stephen Boyer at the Elemental, Analysis Service, 

London Metropolitan University.  

 

A1.3.4  X-Ray Crystallography 

Single crystal X-ray diffraction data for 2.4, 2.7, 2.8, 2.12, 2.13, 2.18, 3.2, 3.14, 5.4, 5.10, 

5.12, 5.14, 6.1, 6.3, 6.5a and 6.5b were collected at the University of Sussex on an Agilent 

Technologies Xcalibur Gemini Ultra diffractometer (λCu(Kα) = 1.54184 or λMo(Kα) = 

0.71073) equipped with a Eos CCD area detector. The data were collected at 173 K using 

an Oxford Cryosystems Cobra low temperature device. Data were processed using 

CrysAlisPro, and the unit cell parameters were refined against all data. Semi empirical 

absorption corrections were carried out using the MULTI-SCAN program.[1] The 

structures were solved by using an intrinsic phasing method (SHELXT),[2] and refined F0 

by full matrix least squares refinement using SHELXL-2013,[3] within OLEX2.[4] All 

non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen 

atoms were added at calculated positions and refined using riding models with isotropic 

displacement parameters based on the equivalent isotropic displacement parameter (Ueq) 



236 
 

of the parent atoms. The crystal data of 5.2 was collected on a BRUKER X8-APEC II 

diffractometer with a CCD area detector and multi-layer mirror monochromated Mo(Kα) 

radiation. The structure was solved using intrinsic phasing method (SHELXT),[2] refined 

with the SHELXL program,[5] and expanded using Fourier techniques. All non-hydrogen 

atoms were refined anistropically. Hydrogen atoms were included in structure factor 

calculations. All hydrogen atoms were assigned to idealised geometric positions. 

Structures 2.4, 2.7, 2.8, 2.12, 2.13, 2.18, 3.2, 3.14, 5.2, 5.4, 5.10, 5.12, 5.14, 6.1, 6.3, 6.5a 

and 6.5b were solved by M. B. Ansell, with special thanks to Dr George E. Kostakis for 

patience, advice and support with crystallography. 

Structures 2.4, 2.7, 2.8, 2.12, 2.13, 2.18, 3.2, 3.14, 5.2, 5.4, 5.10 and 5.12 were submitted 

to the Cambridge Crystallographic Data Centre (CCDC) and assigned the numbers 

1029150, 1045559, 1029151, 1053253, 1053277, 1434732, 1442149, 1432628, 1501645, 

1501646 and 1501647 respectively. 
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