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ABSTRACT

Electronic patient records, containing data about the health and care of a patient, are

a valuable source of information for longitudinal clinical studies. The General Practice

Research Database (GPRD) has collected patient records from UK primary care practices

since the late 1980s. These records contain both structured data (in the form of codes and

numeric values) and free text notes. While the structured data have been used extensively

in clinical studies, there are significant practical obstacles in extracting information from

the free text notes. The main obstacles are data access restrictions, due to the presence

of sensitive information, and the specific language of medical practitioners, which renders

standard language processing tools ineffective.

The aim of this research is to investigate approaches for computer analysis of free text

notes. The research involved designing a primary care text corpus (the Harvey Corpus)

annotated with syntactic chunks and clinically-relevant semantic entities, developing a

statistical chunking model, and devising a novel method for applying machine learning for

entity recognition based on chunk annotation. The tools produced would facilitate reliable

information extraction from primary care patient records, needed for the development of

clinically-related research. The three medical concept types targeted in this thesis could

contribute to epidemiological studies by enhancing the detection of co-morbidities, and

better analysing the descriptions of patient experiences and treatments.

The main contributions of the research reported in this thesis are: guidelines for chunk

and concept annotation of clinical text, an approach to maximising agreement between

human annotators, the Harvey Corpus, a method for using a standard part-of-speech

tagging model in clinical text chunking, and a novel approach to recognising clinically-

relevant medical concepts.
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NOTATION

The notation used in this thesis generally follows the conventions in NLP literature. The

notation related to inter-annotator agreement is based on the one used by Artstein and

Poesio (2008) with minor changes aimed at better consistency. Also the term coder is

replaced with annotator in order to comply with the terminology in the rest of the thesis.

A inter-annotator agreement (IAA)

Ao observed IAA

Ae IAA expected by chance

K set of annotation categories

C set of annotators

I set of annotation items

n number of annotation items |I|

η number of judgment pairs
(
n
2

)
mi number of annotators that have assigned a category to

item i

S IAA coefficient defined by Bennett et al. (1954)

π IAA coefficient defined by Scott (1955)

κ IAA coefficient defined by Cohen (1960)

α IAA coefficient defined by Krippendorff (1980, 2004)

δ difference function appropriate to the metric of the data;

used for Krippendorf’s α

X matrix of annotation categories with annotation items as

rows and annotators as columns; Xi,c is the annotation

category to which annotator c assigned item i
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Y matrix of annotation counts with annotation items as rows

and annotation categories as columns; Yi,k is the number

of annotators that assigned item i to category k

Z coincidence matrix of annotation categories; Zi,j is the co-

incidence of the i-j category pair

Θ square matrix of disagreement weights between categories;

Θi,j is the disagreement weight of the category pair i and

j; weights are in the range [0, 1] zero being the agreement

P(x) probability of x

P̂(x) observed probability of x

Upper case letters are used for sets and their lower case versions for the set members,

e.g. k is a category from the set of annotation categories K. The size of sets is denoted by

straight lines — the number of annotation categories is |K|.



1
INTRODUCTION

Clinical text — text written by healthcare workers about the care given to individual

patients — is a source of rich, detailed information that could be of great use for health

service planning and for the study of disease. However, unlocking that information at scale

for research purposes is hindered by processing difficulties caused by the peculiarities of

clinical language use, and the limited available development data due to the presence of

sensitive information that could potentially identify patients. An important research goal

is to achieve a reliable language processing foundation to allow more complex information

extraction (IE) tasks to reach a sufficiently reliable performance level. Achieving this goal

would allow the use of automated algorithms for processing clinical text in secure storage

environments, thereby allowing researchers to analyse data without accessing it directly.

Such analysis will avoid the manual de-identification currently required for researchers

accessing the data, which will decrease the time and financial costs of their work.

Over the past fifteen years or so, Natural Language Processing (NLP) technology has

reached a state of maturity that has allowed it to be used in a diverse range of real-world

applications, some involving clinical text. Most NLP systems are developed on standard,

grammatical, edited text, and are intended to be applied to text of the same type. Their

accuracy is significantly degraded when applied to clinical text. Therefore, researchers have

created new clinical text corpora to facilitate the development of accurate NLP tools in

the clinical domain. Apart from terminology and some idiosyncratic expressions, discharge

summaries — the predominant document type in clinical corpora — typically consist of

well formed descriptive grammatical text. In contrast, progress notes and primary care

notes give rise to difficult language processing issues arising from their typically heavy

use of abbreviations, acronyms, medical jargon, ungrammatical constructions, and other
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non-canonical (or non-standard) language. The goal of the studies conducted for this the-

sis is to achieve reliable automatic concept extraction for UK primary care text, adapting

existing machine learning (ML) technology and language resources where appropriate, and

developing new technology and research when necessary. The medical concepts targeted in

the studies are diseases, symptoms and signs of diseases, and drug names. In the context

of clinical notes, those are mentions of diseases and drug names, and records of symp-

toms stated by the patients and signs observed by the medical practitioner. On the one

hand these concepts are interesting for epidemiological, pathological and pharmaceutical

research, while on the other existing technology can be adapted to their natural language

occurrence patterns.

While the trivial way to identify these concepts is to compile an approximation of a

comprehensive keyword list, in reality such an approach has two significant limitations.

First, keyword lists are not easily scalable. Compiling an exhaustive list of keywords for

a single concept may seem like an easy enough task, but scaling the list to all possible

concepts is an arduous task, especially in the clinical domain where the same concept

may be expressed in many and unpredictable ways. Second, even a well crafted keyword

list needs to deal with false positives — not all contexts of a word may align with the

presumed meaning. On the other hand, recent advances in NLP technology could allow

more accurate and scalable recognition of clinical concepts. Given the challenges of the

language of primary care data, it is difficult develop solutions for all components of such

a system to their respective state-of-the-art levels, but constructing a robust prototype

could 1) serve as proof of concept for further research in exploring primary care data, and

2) confirm the feasibility of the approach.

1.1 data background

Large samples of primary care electronic patient records in the UK are collected and kept

in regional and national databases, the largest of which is the General Practice Research

Database (GPRD), hosted at the UK’s Medicines and Healthcare Products Regulatory

Agency (MHRA). These records have a structured part, based on the Read code system

(Bentley et al., 1996), and a free-text part also referred to as a note. The primary care
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data relevant for this thesis was manually de-identified and supplied to the Patient Records

Enhancement Programme (PREP)1 by the GPRD under a licence for research purposes.

1.1.1 Read Code System

The Read codes are a clinical terminology system used in primary care in the United

Kingdom. The Read code system encodes a wide variety of patient data including symp-

toms and observations, diagnosis, performed procedures, gender, race, religion, and others,

including administrative items such as missed appointments. The original codes in the

system were developed in the 1980s by Dr. James Read to facilitate the input of certain

aspects of patient care into a computer system. There are three designs of the code sys-

tem, the latest of which, the Clinical Terminology Version 3 (CTV3), was mandated by

the UK National Health Service (NHS) for standard use in general practice electronic

medical records (EMR). In its latest designs the codes are structured as a polyhierarchy

of indefinite depth, meaning that a code in the hierarchy can have more than one parent.

The CTV3 system is set to be phased out of primary care, and replaced by its successor

SNOMED-CT by the end of 20162.

1.1.2 The General Practice Research Database

The GPRD is a longitudinal database of primary care medical records. It contains com-

prehensive observational data from general practices, which makes it a valuable resource

for a broad range of research areas, such as clinical epidemiology, disease patterns, disease

management, research outcomes, and drug utilisation. Its data consists of primary care

medical records; in these, general practitioners (GP) and other healthcare workers input

information on events regarding their patients as structured data and free text. The struc-

tured data varies between the several software systems for primary care certified by the

National Health Service, although a Read code and a term associated with it are always

present in each record (see Figure 1.1).

1 http://prep.sussex.ac.uk/
2 Mapping tables between the standards can be found at https://isd.hscic.gov.uk/trud3/.

http://prep.sussex.ac.uk/
https://isd.hscic.gov.uk/trud3/
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Communication

with patient
Test resultsLetter

Read code

Content types

Figure 1.1: Patient record content diagram

The language and content of the free text is related to the role of GPs in the NHS.

They are the gatekeepers to specialist care, charged with basic care for the patients, and

with initial assessment and recommendation for specialist treatment. They are organised

in practices of one or a small number of general practitioners, set up independently from

the hospital system. Apart from correspondence with specialists, GP notes are mainly

intended for use within the general practice in which they were created.

1.1.3 Research Using UK Primary Care Data

The information in UK primary care records is an important medical research resource,

but so far only a small fraction of the information in the free text has been extracted and

utilised. Some of the first studies in this area show that information gathered from free

text notes has great potential.

The Freetext Matching Algorithm (Shah et al., 2012) is an automated method for ex-

tracting information from free text. The algorithm uses dictionaries of Read code terms

(the text representation of Read codes) and “regular” words, as well as spelling correction

software to make the language more canonical (i.e. more like standard English). Then it

uses synonym look-up tables and phrase patterns to identify diagnoses, dates, and selected

kinds of test results. The algorithm creates approximate matches between words and ex-

pressions in the free text on one side, and Read codes and OXMIS codes3 on the other.

3 The Oxford Medical Information System (OXMIS) was an earlier terminology system used in primary care
computer systems from 1987, when GPRD started. Practices switched over to the Read code system at
different times in the 1990s (Shah et al., 2012).
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It was tested on two sets of 1,000 records — one general and one associated with death

— each taken from the GPRD. The algorithm achieved 98 precision and 93 recall on the

death related dataset, and 92 precision and 77 recall on the other dataset. The authors also

presented a cause of death detection algorithm aided by the Freetext Matching Algorithm

to deal with records where the cause of death was recorded only in the free text. They

conclude that the algorithm has achieved sufficient precision, and may facilitate research

using patient record free text, particularly for extracting cause of death.

Koeling et al. (2011b) describe the development of a method for automatically determin-

ing common symptoms of ovarian cancer in free text notes. The model was based on 344

annotated records of women in the year prior to an ovarian cancer diagnosis. The study was

concerned with finding the incidence of five common symptoms of ovarian cancer. Through

manual annotation of notes, the estimates of the incidence of symptoms increased by 40%

or more when the coded data was augmented with the free text annotation. The automatic

symptom detection method was able to extract a significant proportion of this extra in-

formation (46 recall) with high precision (96). The automated approach developed for the

study was intended to aid medical researchers wishing to validate studies based on codes,

or to accurately assess symptoms, using information that can be automatically extracted

from free text.

1.2 the challenges

While great efforts are being made to process, interlink, and reuse the structured part

of primary care patient records, as well as secondary care data (Frederick, 2003; Ávarez

et al., 2011; Trust, 2015), very few studies have used the information in the free text

notes. Details about symptoms and diseases typed by general practitioners, have not

only the potential to enrich the majority of their structured information counterparts,

but in many cases they can be the only source of relevant information. The latter is

well illustrated by structured (coded) data entries such as had a chat to patient and

telephone encounter , which have no association with a medical concept and rely solely

on the information recorded in the associated text to convey details about the patient

encounter (see Example 1.1). Similar arguments are made by Stubbs et al. (2015b), moti-
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vating the organisation of the 2014 i2b2 track on recognising risk factors associated with

heart disease.

Telephone encounter tel from wife pt v scared re mri next wed- ok for small dose
dz

Constipation NOS 1 BM 3 days ago following 5 days without any. now no
BM last 3 days either. breast fed baby ! o/e abd soft. no
palpable faeces. try lactulose 2.5 ml bd

Cardiac failure therapy Hxnsyx settled ? feels abit better OE creps R base only.
jvp not seen. IMP better re fluid status, rate still ok. P
cont w bloods 2/7, rv 1w

Had a chat to patient re. cough at night; see letter from Mr ~~~~~

Example 1.1: Examples of examination records from the GPRD consisting of a structured entry
(left) and a text note (right).

It is important to compare the more refined language of the MED corpus of clinical notes

(Coden et al., 2005), shown in Example 1.2, to the one demonstrated in Example 1.1. The

differences are even starker when primary care text is compared to the terminology-rich

biomedical text of GENIA (Ohta et al., 2002), or the edited news text of the Penn Treebank

(Marcus et al., 1993).

A good idea of the importance of the information contained in primary care text can

be drawn from a review of information extraction research focused on secondary care

text, such as the i2b2 challenges (Uzuner et al., 2007a, 2010b, 2011; Sun et al., 2013a)

and the Conference and Labs of the Evaluation Forum (CLEF) initiative (Roberts et al.,

2009). Some of the studies focus on identifying specific concepts like a subset of symptoms,

drugs and time expressions, while others also aim to recognise relations between them,

e.g. the locus of a medical finding or the frequency of the administration of a drug. Other

studies, such as the one reported by Uzuner (2009), look even further and consider relations

between concepts spread throughout the medical history of a patient. Studies with such

scope and the tools they produce approach the real-life needs for NLP tools in large scale

clinical research. Aiming to achieve that is the long term goal of processing primary care

text.

Although the coreference resolution study by Uzuner et al. (2012) showed good results

for rule-based and hybrid methods, the majority of research into NLP technologies for
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MED # 1 Left ACL disruption, return-to-work evaluation Patient of Dr.
NAME. Samples mailed to home address. Patient is on Prilosec 20 mg
bid. The ACE level remains in the lower limit of normal. Total cholesterol
is 160 with an HDL cholesterol of 43, and LDL of 92, and a triglyceride
of 123.

GENIA TI - IL-2 gene expression and NF-jB activation through CD28 requires re-
active oxygen production by 5-lipoxygenase. AB-activation of the CD28
surface receptor provides a major costimulatory signal for T-cell acti-
vation resulting in enhanced production of interleukin-2 (IL-2) and cell
proliferation.

PTB The asbestos fiber, crocidolite, is unusually resilient once it enters the
lungs, with even brief exposures to it causing symptoms that show up
decades later, researchers said. Lorillard Inc., the unit of New Yorkbased
Loews that makes Kent cigarettes, stopped using crocidolite in its Mi-
cronite cigarette filters in 1956.

Example 1.2: Text samples from the MED (Coden et al., 2005), GENIA (Ohta et al., 2002), and
Penn Treebank (Marcus et al., 1993) corpora provided by Coden et al. (2005).

processing secondary care text has been based on machine learning techniques. In contrast,

the few studies that have successfully made use of UK primary care clinical notes mostly

use heuristics and rule-based algorithms to achieve their goals (Koeling et al., 2011b; Shah

et al., 2012). No significant studies to date have applied machine learning methods to them.

The main reason is the difference between the non-canonical language of the notes, and

the grammatically well-formed language of edited text that is normally targeted in NLP

research. Primary care notes are characterised by extreme brevity of expression, numerous

medical terms and jargon, ungrammatical constructions, spelling mistakes, and irregular

and unorthodox usage of punctuation. Successful use of machine learning based methods

benefits from an adequate choice of task and sufficient amount of training data. Therefore,

a corpus of reasonable size needed to be developed. Certain similarities exist between

primary care text notes and some types of secondary care text such as radiology reports

and progress notes, but applying tools trained on the latter to primary care text would

not produce optimal results. There are differences in the types of language they use, as

well as in the topics they discuss – general practices use a much wider variety of topics

and vocabulary compared to radiology reports for instance.

A key factor in the development of NLP tools for specific high level tasks is the relia-

bility of core processing: text normalisation, part-of-speech (POS) tagging, chunking, and

parsing. These processing steps supply an important part of the information needed for
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good application performance. Syntactic chunks, for instance, are an important feature for

concept recognition models. Using existing tools developed for other kinds of text would

save development effort, but differences in the type of language and vocabulary might

degrade their performance too much. Therefore, the first challenge is to find out which

tools and resources can be used or adapted to primary care notes, and which ones should

be rebuilt from scratch. Once a set of reliable core NLP processes is established, these can

support the development of concept recognition models.

1.3 a processing road map to concept extraction

Extracting medical concepts, such as symptoms, diseases, and drug names, from clinical

text is in essence similar to Named Entity Recognition (NER) in generic text. Both aim

to identify various types of multi-token constructions representing some sort of semantic

entity, and have been approached in similar ways in previous research involving clinical

text (Uzuner, 2009; Uzuner et al., 2010a, 2011). A processing pipeline producing concept

annotation is typically made up of a tokeniser and a sentence splitter, a part-of-speech

tagger, a chunker or a constituency parser, and a concept recognition module. There are

readily available tools and models to build a processing pipeline that prepares data for

developing a concept recognition model, but the cost of applying this successfully across

domains is unclear. Evaluating them in some way on primary care text was needed before

drawing a clear road map for achieving reliable medical concept extraction. Ideally, such

an evaluation would use a substantial amount of annotated gold standard data, but unfor-

tunately such a resource was not available at the beginning of the work described in this

thesis.

Another potential alternative is evaluating the tools on a small manually annotated

data set, but the results of such an evaluation would most likely be misleading given the

data sparsity. This approach would also not provide much insight into the shortcomings of

the tools. Instead, an approach of observing and analysing the errors manually was used

to determine the applicability of tools and statistical models. The following paragraphs

describe the observations made on initial attempts to apply core NLP analysis tools to

the data.
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tokenisation and sentence splitting are fundamental tasks in NLP appli-

cations, yet there is relatively little research in this area due to the widespread use of es-

tablished gold standard annotated corpora containing segmented text (Dridan and Oepen,

2012). Although there are a number of segmentation tools developed for less canonical

types of text (Kulick et al., 2004b; Gimpel et al., 2011), adapting one of them still left

too many segmentation issues unresolved, and the errors would inevitably propagate in

further processing. The observed tokenisation errors, although unusual, were simple, and

could be addressed by developing a tokeniser specific to this type of text. In contrast,

sentence structures in the primary care text could not be identified by the tools, nor by

humans for that matter, due to missing sentence-level syntax in this telegraphic style of

expression.

part-of-speech tagging is the task of assigning parts of speech to words or to-

kens. The assignment is mostly dependent on the word itself and the immediately preceding

and following words, so it should remain mostly unaffected by the terseness of primary

care text. Unknown words were an expected source of errors, due to the lack of coverage

of clinical vocabulary in the text the model was trained on (Penn Treebank described in

Marcus et al. 1993 and GENIA described in Ohta et al. 2002). Despite the issues, the POS

annotation seemed to be at a level of accuracy that would be sufficient for recognising

higher level syntactic structure.

chunking is preferred to other forms of syntactic parsing in NER-like tasks, because

it focuses on phrases rather than sentences, thereby minimising the error rate while re-

taining the most important information about the syntactic structure. A few chunking

tools (YamCha models as described in Kudo and Matsumoto 2003, CRF++ models4, and

GENIA as described in Kulick et al. 2004b) were applied in order to draw general con-

clusions about errors. Chunking used POS annotation generated by the Stanford POS

tagger (Toutanova et al., 2003). The chunkers correctly identified most chunks, but often

attempted building longer chunks and thereby wrongly attached part of a neighbouring

chunk, or merged two smaller chunks into one. Other causes of errors were error propaga-

tion from the POS annotation, and unseen words. Despite the many mistakes, the obser-

4 CRF++ and the models are available at http://taku910.github.io/crfpp/

http://taku910.github.io/crfpp/
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vations showed that if short (base) noun phrases could be recognised, chunking could be

adapted to primary care text, given sufficient amount of annotated text from the domain.

This observation was important, as it showed that chunking is a potentially successful

approach to the syntactic analysis of this type of primary care text but only if the models

are trained on annotated data from the same domain. The reason a new annotation was

necessary was that all other available English language resources that involved chunking

were produced by trimming down constituency parse trees.

full parsing , being a more complex sentence-based syntactic analysis, had little

chance of presenting a better alternative to chunking considering the qualities of the data;

however, an overview of the errors seemed beneficial for the better understanding of the

challenges presented by the data. The Stanford dependency parser (Manning, 2011) and

the RASP constituency parser (Briscoe et al., 2006) were used for the tests. Due to the lack

of sentence structure, the data was input to the parsers without any sentence segmentation.

An important observation became obvious: the lack of sentence units caused the parsers to

make major errors. They would try to stitch relatively well parsed small segments into a

sentence, when in fact they were separate sentence-like units with no syntactic connection.

the plan for the research described in this thesis took into account the preliminary

observations and analysis outlined above. Achieving satisfactory medical concept recogni-

tion would require most NLP processes to be adapted to the target data. A new tokeniser

was necessary to deal with the text peculiarities; an existing POS tagger could be used,

but the most suitable one had to be determined; a corpus with chunk annotation was

needed to develop an accurate chunker; finally, a concept annotation model could be built

taking the NP chunk annotation as input.

the motivation for this particular way of developing a system has several key

aspects. Ideally, a new dataset with all core NLP annotations would be needed to address

all of the issues identified above, but due to limited time and resources, a cheaper and faster

compromise had to be reached. Noun chunking offered a good chance to eliminate the flaws

of the readily available models, while relying on the relatively good performance of POS

tagging models. It also provided a platform for concept annotation at a low cost, assuming
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certain qualities of medical concepts. The assumption was that since the targeted concepts

are noun-centric constructions — symptoms, drug names, diseases — noun chunks can be

used as candidate units for annotation, i.e. after (noun) chunks are annotated, the output

annotations are annotated again with concept types (or nothing). This style of annotation

simplified the task, and consequently the preparation for it. These advantages of chunking

made it the most promising annotation type out of the three in consideration.

an alternative approach would be to use a parsing method designed to deal with

ungrammatical sentences. The approach suggested by Foster (2007) allows parsing mod-

els to overcome grammar or spelling errors in a sentence. Fan et al. (2013) implements

a method following this approach. It accounts for missing and spurious words by adding

special nodes in the annotation. It also simplifies the internal structure of some of the

phrases, making them flatter to avoid errors caused by unusual or ungrammatical expres-

sions. This approach is more complex than chunking, yet only slightly more informative.

Another major problem with applying it to the primary care data was the lack of identified

sentence boundaries.

another alternative approach would be using domain adaptation (Ben-David

et al., 2010) — a technique which adapts machine learning models trained on a domain

with a sufficient amount of labelled data to a domain with little labelled data. The method

is likely to be suitable for adapting a part-of-speech tagger model to primary care text, but

even if an adapted model is successfully developed, it is also very likely that an adapted

chunking model should be developed as well. The prospect of developing not one but two

layers of annotation of the target data set, made this approach seem like high-cost alterna-

tive, which may have required more time and resources than were available for the writing

of this thesis. Nevertheless, it is a viable approach and could be part of the future develop-

ment of this work. The use of domain adaptation for chunking alone was also considered,

but it was not clear if that would be a successful approach given the stark differences

in syntax between edited text and the targeted primary care text. In addition, such an

approach would require some labelled data and creating manual annotation compatible

with the types of chunks produced automatically through constituency parsing seemed

difficult and somewhat risky compared to starting from scratch.
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1.4 main contributions of the thesis

The main contributions of the research reported in this thesis are an approach to devel-

oping a system for extracting information from primary care text, the Harvey Corpus of

clinical text, two sets of guidelines used for annotating the corpus, an approach to maximis-

ing agreement between human annotators, a method for using a standard part-of-speech

tagging model in clinical text chunking, and a novel method of concept recognition for

text with terse expressions.

The challenges of primary care text, and the limited applicability of standard NLP tools

to this kind of text make the implementation of a prototype concept recognition system

an important first step towards deeper and more flexible analysis of primary care data.

Such a system could be of great benefit to epidemiologists and other clinical researchers.

Fast, automated analysis of this type could also support better exploratory analyses of

large samples of data.

Even though access to the Harvey Corpus is still very limited, if the corpus could be

released under a research license, it could be of significant importance for the development

of clinical NLP research. In addition, from a corpus linguistics point of view, the set of

chunking guidelines are an important document as it is the first of its kind for the English

language (previous chunking annotation having been produced only for edited text, and

as a by-product of parsing).

Finally, the new approach to concept recognition points the way towards tackling similar

issues in the processing of other kinds of terse text, such as hospital progress notes.

1.5 thesis summary

This thesis presents the Harvey Corpus of primary care text notes, named after the six-

teenth century English physician William Harvey5, and a medical concept extraction sys-

tem tuned to the specific language of the domain. Chapter 2 gives an overview of theory

and research literature relevant to the topics and aims of the thesis. It discusses other avail-

able corpora inside and outside the clinical domain, corpus annotation, relevant machine

5 The first accurate account of blood circulation is attributed to William Harvey, and presented in his book
De Motu Cordis, also known as On the Motion of the Heart and Blood.
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learning methods including classification, word embeddings, clustering, and evaluation, as

well as fundamental NLP processes and how they have been used for analysing clinical

text. Chapter 3 traces the design and building processes of the Harvey chunking annotation

guidelines and corpus, and the training of medical specialists to annotate text. It describes

in detail the aims, rationale, and the process behind building the two resources, as well as

issues encountered along the way. Chapter 4 describes an extensive series of experiments

developing the optimal combination of an existing publicly available part-of-speech model,

and a feature set for a chunking model. The experiments also explore the role of word

representation, a broad variety of context features, common classification algorithms, and

problems of parameter optimisation. Chapter 5 introduces a further, clinical concept layer

of annotation of the Harvey Corpus produced using another set of guidelines, and the final

step of the system: recognising clinical concepts. The discussion focuses on a comparison

between the usual method of concept recognition, and a novel approach that exploits the

specific characteristics of the kind of text being processed. The chapter concludes with an

evaluation of the entire system in real world conditions. Finally, Chapter 6 summarises

the experimental results and achievements of this work, relates its contributions to various

practical aspects of science and industry, discusses its limitations, and proposes directions

for future work.

F 8 f



2
BACKGROUND & RELATED WORK

The medical concept recognition at the centre of this thesis is an information extraction

(IE) task, focusing on recognising and classifying specific types of clinical concepts; as

such it is similar to named entity recognition (another information extraction task) in the

types of linguistic constructions they both target and partial overlap of some entities. For

example, they both target dates and various types of measures, as well as different types

of noun phrases. The most significant difference is perhaps that named entity recognition

includes all kinds of named entities, i.e. names of places, objects and people, while medical

concept recognition focuses on entities that are relevant for the medical narrative of a text,

like drug and disease names, symptoms, procedures, and others. The two tasks are also

approached in similar ways using virtually the same sequence tagging techniques. As these

techniques rely on the output of a number of lower level NLP analyses and techniques, it

is essential to review the relevant theory and literature for everything that was used or

considered during the studies described in the following chapters, in order to determine

their relevance to the primary care notes domain.

Regardless of the chosen methodology, adapting existing processing to a new domain

requires a certain amount of labelled data. The data is needed for validation purposes if

rule-based, unsupervised or cross-domain machine learning methods are used, and for both

training and validation in the case of supervised machine learning methods. Section 2.1

introduces the notion of text corpora, some of the key issues in corpus development, and

the most notable corpora in the biomedical and clinical domains. A particularly important

aspect of corpus development and an objective measure of annotation quality is inter-

annotator agreement (IAA). Section 2.2 surveys the different IAA metrics, explaining the

choices made for the annotation processes in Chapter 3 and Chapter 5.
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Machine learning methods dominate most parts of modern NLP, as well as the ap-

proaches taken in this thesis. Therefore, the chapter reviews the fundamental concepts

and theory in order to facilitate the description of the methods discussed in the following

chapters. Section 2.3 gives a shallow overview of classifiers, the broad feature engineering

process, and recent research word representation clusters and embeddings. It also describes

evaluation techniques commonly applied in classification tasks, and the domain adaptation

technique in machine learning.

The basic principles and issues behind the various NLP processing steps leading up to

information extraction are the culmination of this chapter. A typical IE system consists of a

text segmentation step, optionally a word normalisation stage, a POS tagger, a chunker or

a full syntactic parser, and various high level IE processes, such as named entity recognition

and coreference resolution. Section 2.4 gives a description of each step and a brief account

of relevant research literature, while Section 2.5 provides a more specific overview of NLP

challenges, methods and research in the domain of clinical text.

2.1 corpora

The field of corpus linguistics is based on the assumption that linguistic theory can be

abstracted or induced in an empirical way from large samples of recorded natural language

usage, also known as text corpora. The authors of the Brown corpus (Kučera and Francis,

1967), one of the most notable early resources of its kind, stated that it should “offer

useful material for the development and improvement of statistical procedures of linguistic

analysis and will make possible the construction of more satisfactory mathematical models

of language.”

With advances in computing, larger language corpora have underpinned the develop-

ment of modern natural language processing, especially so using statistical models. How-

ever, having a large enough corpus is not sufficient to solve all problems in NLP, as there

needs to be a good match between the text in the corpus and the one to be processed. The

reason for this dependency is that corpora are usually annotated with information that

helps analyse a particular type of language, but more importantly it allows the induction

of such information from unseen text based on some automatic processing. Thus the us-

ability of corpora is still limited by various aspects of the language type they were sampled
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from. Their characteristics remain dependent on the frequency distribution of word types,

syntactic constructions, and other language patterns. However, there are some measurable

qualities of corpora that may play a role in their applicability to certain tasks. McEnery

and Hardie (2012) define the representativeness of a corpus as “one that is sampled in such

a way that it contains all the types of text, in the correct proportions, that are needed

to make the contents of the corpus an accurate reflection of the whole of the language

or variety that it samples.” They further define a corpus as balanced if “the relative sizes

of each of its subsections have been chosen with the aim of adequately representing the

range of language that exists in the population of texts being sampled.” The two qualities

are somewhat related, because a representative corpus has to be balanced, but a balanced

corpus is not necessarily representative (Temnikova et al., 2014). For example, the British

National Corpus (Clear, 1993) may have been representative and balanced at the time of

its creation, but currently it is only balanced.

Despite the properties described above, comparing corpora in an objective and quantifi-

able manner still remains an open issue in the field of corpus linguistics (Kilgarriff, 2001).

Therefore improving or adapting corpora to a new domain remains difficult and somewhat

of a “black art”. Adapting statistical language models to new domains, however, is still a

necessity in NLP, because it remains the best means of developing and validating methods

and models adapted to a new domain.

Beyond the language qualities of corpora, the types of annotation they are equipped with

are another one of their important aspects. Even though corpora can be used to explore

language characteristics on a large scale and derive or support linguistic theory through

empirical methods, their main purpose in modern natural language processing is mainly

as gold standard resources to be used for training statistical models and performance

validation. Thus, corpora often have more than one annotation layer to serve different

NLP tasks. The layers can be both manually created by human annotators, as in the cases

of the Penn Treebank (Marcus et al., 1993) and the Prague Dependency Treebank (Bejček

et al., 2013), or automatically generated by an annotation tool, as in the case of the British

National Corpus (BNC). Treebanks are a common format of annotated corpora, which, as

suggested by the name, contain (both constituency or dependency) parse tree annotations

as well as the necessary parts of speech, and sometimes additional annotation.
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Creating manually annotated corpora can be an arduous and convoluted process, de-

pending on the annotation type and complexity. Each annotation process requires the

selection or design of a set of annotation guidelines to set the course of the process. Some

annotation formats like the Penn Treebank (Marcus et al., 1993) have become a de facto

standard, and are frequently reused or modified by other corpora (Ritter et al., 2011;

Derczynski et al., 2013), but very few are suitable for cross-language usage (Petrov et al.,

2012). Strategies such as double-blind annotation are often used in corpus building in or-

der to ensure the reliability of the data and to minimise the human bias of the annotators.

The agreement between annotators is usually a good measure of the overall reliability

of the annotation. It is usually reported using special coefficients, accounting for chance

agreement, which are discussed in detail in Section 2.2.

Even though a great variety of corpora have already been created and there are some

established good practices (Roger Garside and Geoffrey Leech and Anthony McEnery,

1997; Wynne, Martin, 2005), it is still difficult to identify firm rules about how to build

or evaluate corpora in an objective and consistent way. The rest of this section briefly

presents the more important corpora in the biomedical (Section 2.1.1) and the clinical

(Section 2.1.2) domains, giving some details on how and why they were built and what

data was used in the process.

2.1.1 Biomedical Corpora

The term biomedical corpora is generally used to refer to collections of text on topics in

the life and biomedical sciences. Typically, they may contain a very wide range of studies

and annotation types, but generally keep to sources of scientific writing commonly found

through MEDLINE and PubMed. The rich terminology of such texts along with some

semantic differences presents some difficulties for their processing with tools developed

for general domain text, such as news articles. Given the similarities discussed above, it

is important to review the corpora with more widely recognised impact in the field. In

addition, Verspoor et al. (2012) provide a link to a nearly comprehensive list of publicly

available biomedical corpora 1.

1 http://compbio.ucdenver.edu/ccp/corpora/obtaining.shtml
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GENIA (Ohta et al., 2002) and GENETAG (Tanabe et al., 2005) are two of the best

established and widely applied biomedical NLP resources. They both contain protein and

gene annotation, providing a solid base for Information Extraction (IE) research. GE-

NIA was manually annotated by domain experts using an ontology developed in parallel

with the annotation process. Tanabe et al. (2005) used annotation guidelines that pro-

vided several related alternatives for each annotated protein or gene. This allowed a more

structured partial matching for the evaluation of the entity recognition models it aimed

to develop. They used a Naïve Bayes classifier to determine the likelihood of a docu-

ment containing a gene or protein name. The selected documents were tagged using the

AbGene tagger (Tanabe and Wilbur, 2002) and finally the annotations were manually

transformed into GENETAG annotation by three domain experts. The Colorado Richly

Annotated Full-Text (CRAFT) corpus described by Cohen et al. (2010) is a more recent

resource that comprises 97 Open Access journal articles with syntactic, coreference, and

concept annotations. Initially coreference was annotated using a modified version of the

OntoNotes guidelines (Hovy et al., 2006). Later Verspoor et al. (2012) added syntactic

annotation following the Penn Treebank annotation guidelines (Bies et al., 1995) and the

BioIE addendum (Warner et al., 2004). At the same time, concept annotation was added

to the corpus, identifying mentions of nearly all concepts from nine prominent biomedical

ontologies and terminologies (Bada et al., 2012).

Another group of biomedical corpora worth mentioning were created through the BioCre-

ative series of challenges. Most of the challenges in the series focus on protein-protein in-

teraction extraction (Hirschman et al., 2005; Morgan et al., 2008; Krallinger et al., 2008;

Leitner and Krallinger, 2010) as well as other types of relation extraction (Wei et al.,

2016).

2.1.2 Clinical Corpora

Clinical text is written by medical practitioners in a clinical setting, describing interviews

with patients, their medical history and pathology, medical findings established during

interviews or procedures, and others. The spectrum of texts covered by the term “clinical”

is, in fact, quite wide and can vary significantly in content, length, and style. For example,

the GP notes central to this thesis are generally short with terse expressions, and difficult
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to understand language, while internal research reports can resemble biomedical texts in

both length and writing style.

During the past ten years a number of clinical corpora have been developed by the NLP

community, thereby facilitating a great number of studies in the area (see Table D.3 for a

representative list). Although the corpora have favoured longer text with more standard

language such as admission and discharge summaries, other types of documents are also

commonly included in the studies, e.g. progress notes and radiology reports.

Due to the difficulty in getting access to these kinds of data, shared tasks and chal-

lenges have played an important role in the development of the field, providing relatively

easy access to the same resources to a wider range of scientists. Perhaps the most notable

such enterprise is the i2b2 series of shared tasks and challenges, which also included a

community annotation task. Uzuner et al. (2010b) present a set of guidelines for the an-

notation of a list of seven attributes associated with medications in discharge summaries.

The guidelines were developed through an iterative process during which a group of stu-

dents annotated a small number of discharge summaries and provided feedback used for

the next revision of the guidelines. The guidelines were used in the i2b2 community an-

notation experiment, comparing the inter-annotator agreement (measured in F1-score) of

community annotator teams and expert annotator teams. The authors found that the

IAA of the community teams was comparable to that of the experts, and concluded that

involving the community in fairly complex annotation processes is an acceptable alterna-

tive to using expert annotators. The second part of the task was to automatically extract

medication information (Uzuner et al., 2010a). The rest of the i2b2 challenge corpora were

provided to the community in order to promote research in particular areas. Uzuner et al.

(2007b) present an evaluation of the participating automatic de-identification systems,

trained and evaluated on a corpus of 889 de-identified discharge summaries. A subset of

that corpus containing 502 summaries was also annotated with patient smoker status for

the purposes of one of the challenge subtasks (Uzuner et al., 2007a). Another i2b2 chal-

lenge was aimed at identifying obesity and its comorbidities in clinical text using a corpus

of 1,237 discharge summaries (Uzuner, 2009). A subset of this corpus was later annotated

with medical concepts and relations pertinent to congestive heart failure as part of the

PhenoCHF corpus (Alnazzawi et al., 2014). The 2010 i2b2 challenge focused on identifying

medical concepts, assertions, and relations (Uzuner et al., 2011). The organisers provided
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the participants with 871 discharge summaries suitably annotated. Finally, a corpus of

310 discharge summaries annotated with temporal relations was provided for the latest

i2b2 challenge (Sun et al., 2013a). The data annotation of all challenge corpora used two

independent annotators and an adjudicator when possible. However, it is interesting to

note that the adjudicators of the last challenge corpus were also allowed to edit or remove

annotations in cases where the other annotators disagreed.

Other shared tasks have focused on document level annotation of clinical corpora. The

Medical Records track of TREC 2011 and 2012 used 17,264 clinical documents of vari-

ous types from the University of Pittsburgh NLP repository for a topic modelling task

(Voorhees and Hersh, 2012). Pestian et al. (2007) present a small corpus of radiology

reports annotated with ICD-9-CM codes.

Wang and Patrick (2009) present a small corpus of 311 admission summaries (45,953

tokens, 13,576 annotations), annotated with ten types of concepts based on SNOMED-CT.

The guidelines were developed jointly by linguists and clinicians who annotated ten notes

together. The guidelines were further refined in five iterations of annotation and analysis

during each of which further five notes were annotated. The guidelines were completed once

the inter-annotator agreement reached stable levels, at which point the real annotation

began involving two computational linguists with some medical knowledge.

The CLEF corpus is another prominent clinical text resource (Roberts et al., 2008,

2009). It was developed to assist the development and evaluation of an IE system as part

of a larger framework for the capture, integration and presentation of clinical information.

The corpus includes 565,000 de-identified records of 20,234 deceased patients of the Royal

Marsden Hospital oncology centre. An annotation scheme was developed using a cyclic

process of annotating, analysing and improving. The records were first annotated by two

medical domain experts and then the two sets of annotations were adjudicated by a third

medical expert.

A few studies have focused on dealing with annotation supporting core NLP tasks such

as part-of-speech (POS) tagging and syntactic parsing of clinical text. Pakhomov et al.

(2004) describe the annotation of 271 clinical notes (100,650 tokens across 7,299 sentences)

using the Penn Treebank guidelines (Santorini, 1990), achieving 87.95% average agreement

of POS tagging annotation between three medically trained annotators calculated using

Cohen’s kappa (Cohen, 1960). More recently, Fan et al. (2011) presented two sets of 25



u 21 U

annotated progress notes from Kaiser Permanente Southern California (KPSC) and the

University of Pittsburgh Medical Center (UPMC), a subset of the i2b2/VA challenge. They

were annotated with POS tags for the purpose of developing and evaluating POS tagging

models. The corpus comprises 31,400 tokens in 3,283 sentences annotated using a modified

version of the original Penn Treebank part-of-speech tagging guidelines (Santorini, 1990).

A following study on part of the same data presented a set of guidelines for syntactic

parsing of ill-formed clinical sentences and a Treebank of 1,100 syntactically annotated

sentences from the i2b2/VA challenge (Fan et al., 2013). The presented guidelines are an

extended version of the Penn Treebank II bracketing guidelines (Bies et al., 1995). They

were modified to help the annotators handle the non-canonical language of clinical text by

flattening certain syntactic constructions, introducing a mechanism for handling omitted

words, amongst other issues. The authors report IAA F1-score reaching 93 on the final

set of 450 sentences, and parsing accuracy reaching 81 using a statistical model trained

on mixed data (newspaper and clinical text). Another syntactically annotated clinical re-

source is the MiPACQ corpus of Mayo Clinic pathology notes presented by Albright et al.

(2013). The corpus consists of 127,606 tokens of text related to colon cancer annotated

with POS tags and constituency parsed trees using a version of the Penn Treebank guide-

lines adapted to clinical text with some additional non-terminal nodes, e.g. for dropped

subjects. In contrast with other corpora, the MiPACQ corpus was automatically anno-

tated for the most part using existing tools (Coden et al., 2005; Bikel, 2002), and then

corrected according to the guidelines, while only a small part was double blind annotated.

Additionally, the MiPACQ corpus was annotated with semantic roles in the style of Prop-

Bank (Palmer et al., 2005), UMLS entities, and syntactic dependencies. The dependency

annotation was generated through conversion from the constituency annotation using the

Clear converter described by Choi and Palmer (2010) with some modifications to match

the Stanford typed dependencies representation (De Marneffe and Manning, 2008). Xu

et al. (2011) manually annotated 50 randomly selected sentences from the i2b2-2010 data

with constituency parse trees using the original Penn Treebank bracketing guidelines with

some additional examples from clinical text, which were developed through an iterative

process of annotation, discussion, and guideline correction. Finally, the latest i2b2 chal-

lenge (Stubbs et al., 2015a,b) presented a corpus of 1,304 medical records for 296 diabetic

patients where all protected health information (PHI) had been removed and replaced with



u 22 U

realistic surrogates. The data was distributed with PHI annotation for the de-identification

track (Stubbs and Uzuner, 2015a), and heart disease risk factors annotation for the other

track (Stubbs and Uzuner, 2015b).

2.2 inter-annotator agreement

All hand-annotated data resources, even ones made with exceptional skill come with the

possibility of human error. That possibility decreases, but does not disappear with anno-

tation of the same data by multiple annotators. It is virtually impossible to determine

the existence of errors with absolute certainty, because all annotation that can serve as

ground truth is also man made. However, the agreement between the two annotators can

be measured using the same annotation guidelines on the same data. The assumption is

that if different annotators agree in the categories they assign to the items in the data,

they perform consistently, which is evidence of a similar understanding of the annotation

guidelines, and ultimately of the validity of the annotation scheme, which is how well it

captures the “truth” of the phenomenon being studied (Artstein and Poesio, 2008).

Inter-annotator agreement (IAA) can be measured in a variety of ways depending on

the annotation setting and goals. Scott (1955) defines percentage agreement or observed

agreement (Ao) as “the percentage of judgments on which the two analysts agree when

coding the same data independently”. However, observed agreement estimation does not

account for chance, as also noted in the same article and illustrated by Artstein and Poesio

(2008) with the following example. Consider the independent random classification of data

items by two annotators using an annotation scheme. If the annotation scheme has two

labels, then the annotators will agree on half of the items; if it has three labels, they

will agree on one third of the items. Therefore, the observed agreement measurement is

biased towards annotation schemes with fewer categories (labels), which makes the measure

unsuitable for comparing different annotation schemes. Artstein and Poesio also note that

observed agreement does not account for the distribution of items across categories, which

greatly influences what can be perceived as high or sufficient level of agreement. Carletta

(1996) gives the following example: if both annotators were to use one of two categories,

but use one of the categories 95% of the time, we would expect them to agree 90.5% of

the time (0.952 + 0.052 , or, in words, 95% of the time the first annotators chooses the
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first category, with a 0.95 chance of the second annotator also choosing that category, and

5% of the time the first annotator chooses the second category, with a .05 chance of the

second annotator also doing so). Given perfectly plausible cases like this, it is clear that

there cannot be a single standard value for good or even acceptable observed agreement

that can be used across different studies.

2.2.1 Chance Corrected Agreement Coefficients

The most popular inter-annotator agreement coefficients that correct for chance are based

on the same idea of estimating the expected agreement by chance (Ae), and then compar-

ing the observed agreement beyond chance to all the available agreement beyond chance.

The former is calculated as the difference between the observed agreement (Ao) and the

probability of agreement by chance, while the latter is the difference between 1 and Ae.

S = π = κ =
Ao −Ae

1−Ae
(2.1)

The coefficients S (Bennett et al., 1954), π (Scott, 1955), and κ (Cohen, 1960) use

the formula in Equation 2.1, which reflects the above mentioned idea of accounting for

agreement by chance.

AS
e = Aπ

e = Aκ
e =

∑
k∈K

P(k|c1)P(k|c2) (2.2)

The coefficients differ in the way Ae is estimated — more precisely, in the estimation

of P(k|ai) in Equation 2.2, which represents the joint probability of annotators c1 and c2

independently assigning an item to an arbitrary category k from the set of categories K

(Zwick, 1988; Hsu and Field, 2003; Artstein and Poesio, 2008).

bennett’s s coefficient assumes that a uniform distribution would be obtained if

annotators were operating by chance alone. That implies that all annotation categories

are equally likely, meaning P(kj|cm) = P(kl|cn) for any two annotators cm, cn and any
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two categories kj, kl. The expected chance agreement for the S coefficient is then defined

as:

AS
e =

1

|K|
(2.3)

where |K| is the number of items assigned to class k. This definition rewards the usage of a

larger number of categories, because as |K| grows AS
e gets smaller, which means the chance

agreement for S also gets smaller (Scott, 1955; Artstein and Poesio, 2008). This could be

a problem when the distribution of categories over the annotated dataset is not uniform.

Extremely fine-grained POS tagsets with many tags occurring very rarely or not at all in

real life data, would be heavily favoured by the S coefficient compared to a simple tagset

with under a dozen POS tags.

scott’s pi coefficient tries to address the limitations of S’s uniformity assumption

through estimating the prior distribution of the annotation categories using the behaviour

of the annotators. The idea was first proposed by Scott (1955) based on the assumption

that there is an underlying distribution of the categories that governs the random assign-

ment of items into them by the annotators. Under this assumption, the probability P̂(k)

of an arbitrary item being assigned to a category k can be estimated using the observed

probability of assignment to k, defined as the number of items assigned to k by both

annotators normalised by the total number of assignments made by the two annotators.

Scott does not account for any individual annotator bias, thus the probability of an item

being annotated with a category k by any annotator is equal to P̂(k):

P(k|c1) = P(k|c2) = P̂(k) =
na
k

2n
(2.4)

where na
k is the number of items assigned to category k by both annotators and n is the

total number of annotation items.

Assuming that each assignment of an item to a category is independent from other

assignments, the probability of two annotators agreeing by chance can be estimated as
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the joint probability of each of them randomly assigning that category summed over all

categories.

Aπ
e =

∑
k∈K

P̂(k) · P̂(k) = 1

4n2

∑
k∈K

n2
k (2.5)

Considering the chance agreement estimation in Equation 2.5, it is easy to show that

AS
e ⩽ Aπ

e , as well as that S ⩾ π, with the equality being achieved only with a uniform

distribution of annotation categories.

cohen’s kappa coefficient assumes that each annotator has their own individual

bias which is reflected in the prior distribution that governs the random assignment of

items to categories (Cohen, 1960). Thus P(k|ci), the probability that the annotator ci

will put an arbitrary item into the category k, can be estimated as P̂(k|ci), the observed

proportion of items assigned to k by annotator ci compared to the total number of items

n:

P(k|ci) = P̂(k|ci) =
nci,k

n
(2.6)

Making the same independence assumptions about chance agreement as for π, the chance

agreement for κ can also be estimated by the joint probability of each annotator assigning

an arbitrary item to category k.

Aκ
e =

∑
k∈K

P̂(k|c1) · P̂(k|c2) =
∑
kinK

nc1,k

n
·
nc2,k

n
=

1

n2

∑
k∈K

nc1,k ·nc2,k (2.7)

Based on Equation 2.7 it can be shown that given the same set of annotated data,

Aπ
e ⩾ Aκ

e as well as π ⩽ κ.
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2.2.2 Weighted Agreement Coefficients

One of the greatest limitations of the chance corrected coefficients presented in the last sec-

tion is their equal treatment of disagreement. That quality is suited for category sets with

mutually exclusive members, but often NLP requires much more fine-grained approaches

to annotation, which include categories with much in common, differing in just one par-

ticular aspect. For example, the Penn Treebank tagset (Santorini, 1990) focuses on the

number aspect of nouns, and whether they are common or proper nouns, thus including

four noun POS tags. If two annotators choose different noun tags, then that could be

interpreted as mild disagreement, while if one annotator chooses a noun tag and the other

an adverb tag, the disagreement could be interpreted as severe. In other cases such as

annotation of coreference chains (used in coreference resolution), having different levels of

agreement is absolutely necessary. A difference in one member between two sets, or even

a difference in the number of members renders the sets different, thereby making the IAA

coefficient extremely conservative and not as useful. The rest of this subsection discusses

Krippendorff’s α and Cohen’s weighted κ coefficients, which aim to reflect different levels

of disagreement.

krippendorf’s alpha coefficient was introduced by Krippendorff (1980, 2004) for

the purposes of content analysis, but it has since been applied in a variety of cases where

two or more methods of data generation are applied to the same set of items, and the

reliability of the resulting data needs to be measured. It can be applied to data with

any number of annotators, containing any number of categories, scale values, or measures

(Krippendorff, 2011). It can also handle missing annotations, where not all items need to

be annotated by the same number of annotators. It differs from other coefficients, which

are all based on the formula in Equation 2.1, as in its general form its calculation is based

on observed and expected by chance disagreement measures:

α = 1−
Do

De
(2.8)
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Krippendorff (2011) gives detailed instructions on calculating α with different kinds of

data in four steps. The first step is to create a reliability data matrix of all annotations

organised by items and annotators (see X in notation). In step two the data in the reliability

matrix is tabulated in a category pair coincidence matrix — a square matrix containing the

coincidence value for each combination of annotation categories. The coincidence value of a

category pair p-q for an annotation item i is defined as the number of times that category

pair exists in all assignment pairs for i, normalised by mi - 1, where mi is the number of

annotators that have assigned a category to item i. Thus the overall coincidence value for

p-q is the sum of the item coincidence values over all annotation items:

Zp,q =
∑
i∈I

∑
p∈C

∑
q∈C

ω(p,q, i)
mi − 1

, (2.9)

where ω is defined as:

ω(p,q) =


1 : Xi,p = Xi,q

0 : Xi,p ̸= Xi,q

(2.10)

The third step is to determine a difference function δ to apply an appropriate weight to

each coincidence value. If no weights are to be used, that is two categories either match

or they don’t, δ can be defined as:

δ(p,q) =


1 : p = q

0 : p ̸= q

(2.11)

When using that difference function and given that all annotators assigned all items to

a category, it can be noted that Do is the exact complement of multi-π’s Ao. In fact, in

that case π is almost equal to α with a difference factor of (n|C|− 1)/n|C| (Artstein and

Poesio, 2008). It should also be noted that in order for α to work properly the difference

functions need to project zeroes, i.e. agreement, along the main diagonal.
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The difference function and the coincidence matrix are then used in the calculation of

Do and De. The observed disagreement is represented as the sum of coincidence values

for each category pair weighed by the square of its difference function, and normalised by

the number of annotation items.

Dα
o =

1

n

∑
p∈C

∑
q∈C

Zp,q · δ(p,q)2 (2.12)

The function ξ(p) is defined as the sum of all coincidence values of all pairs including a

category p, that is the sum of all values in a row or column in Z:

ξ(p) =
∑
q∈C

Zp,q (2.13)

The disagreement by chance for a category pair p-q can be defined as the product of

the sums of all coincidence values of each of the categories weighed by the square of the

difference function, and normalised by the total number of annotation pairs η. Using ξ

that definition can be expressed in the following way:

Dα
e =

1

η

∑
p∈C

∑
q∈C

ξ(p) · ξ(q) · δ(p,q)2 (2.14)

The last step in the calculation is replacing Equations 2.12 and 2.14 in Equation 2.8.

cohen’s weighted kappa presented by Cohen (1968) is an alternative weighted

IAA measuring coefficient. In some respects, such as using the same general framework as

in Equation 2.8 and assigning disagreement weights to each category pair, it is similar to

Krippendorff’s α, but in others it is quite different.

κw = 1−
Do

De
(2.15)
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The two major differences are that κw is designed to handle only two annotators as

opposed to an arbitrary number, and its weights are not restricted in any way, i.e. there

is no predetermined minimum or maximum weight — although agreeing pairs must have

zero weights.

The observed disagreement for an item i is calculated as the weight of the pair of

annotation categories it was assigned to by the annotators as in the following equation:

disagri = ϑ(Xi,c1
,Xi,c2

), (2.16)

where ϑ returns the disagreement weight of two categories p and q:

ϑ(p,q) = Θp,q (2.17)

where Θp,q is the disagreement weight of the category pair p and q (values between 0

and 1). Then the overall observed disagreement is the mean disagreement of all items

normalised by the observed maximum ϑmax.

Dκw

o =
1

n · ϑmax

∑
i∈I

disagri =
1

n · ϑmax
·
∑
i∈I

ϑ(Xi,c1
,Xi,c2) (2.18)

Given Equation 2.18 we can set the disagreement weights in such a way that Dκw

o will

be the exact complement of Aκ
o similarly to what was previously shown for α and multi-

π. To achieve that for κw, all disagreements need to be set to an equal weight, that is

ϑ(kp,kq) = 1.

The overall expected disagreement by chance Dκw

e is estimated practically using a sim-

plified version of the same approach as α. Instead of it being based on coincidence values,

the expected disagreement for an arbitrary item being assigned to a category k by an

annotator c remains as originally defined for κ in Equation 2.6. Thus the probability of

annotator c1 assigning an item i to a category kp while annotator c2 assigns the same

item to a category kq is P̂(kp|c1) · P̂(kq|c2), the joint probability of each of the annotators

making the assignments independently. The overall expected disagreement is the sum of
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the aforementioned joint probability normalised by the number of items, and weighted

by the respective category pair disagreement across all ordered category pairs, and then

normalised by the maximal weight ϑmax.

Dκw

e =
1

ϑmax

∑
p∈K

∑
q∈K

P̂(kp|c1) · P̂(kq|c2) · ϑ(kp, kq) (2.19)

=
1

n2 · ϑmax

∑
p∈K

∑
q∈K

nc1,q ·nc2,p · ϑ(kp,kq)

Again, the disagreement weights can be set to the same level, and it should achieve a

Dκw

e value that is the exact complement of Dk
e as defined in Section 2.2.1.

2.2.3 Pairwise Agreement Coefficients

The higher the number of annotators agreeing on an assignment, the more reliable it can be

considered to be. Therefore, generalised versions of the π and κ coefficients have been used

in studies using more than two annotators. Fleiss (1971) described a version of Scott’s π

coefficient suitable for more than one annotator2, and Davies and Fleiss (1982) introduced

a version for κ. The coefficients are calculated using the formula in Equation 2.1, but with

different estimation of the Ao and Ae values. Following the pairwise coefficient naming

convention used by Artstein and Poesio (2008), the generalised versions are referred to

as multi-π and multi-κ. Fleiss proposed that when there are more than two annotators,

the estimation of inter-annotator agreement for an item i being assigned to a category k

should be based on the ratio between the agreeing pairs of judgments and the total number

of judgement pairs η. Thus the observed agreement for an item i is the sum of this ratio

over all categories.

ai =
1

η

∑
k∈K

(
Yi,k

2

)
(2.20)

2 The original paper by Fleiss (1971) referred to the new coefficient as kappa, and in subsequent literature
it was referred to as Fleiss’ kappa or K when referring to the definition by Siegel and Castellan (1988).
However, in essence both definitions are generalised versions of Scott’s π because of its chance agreement
estimation method (Artstein and Poesio, 2008).
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where Yi,k is the number of annotators that assigned item i to category k. The observed

agreement is then calculated as shown below:

Ao =
1

n

∑
i∈I

ai =
1

nη

∑
i∈I

∑
k∈K

(
Yi,k

2

)
(2.21)

where η is the number of judgement pairs
(
n
2

)
.

Fleiss makes the same uniform distribution assumption for the estimation of chance

agreement in multi-π as assumed in Scott’s estimation of π. Therefore chance agreement

is estimated using P̂(k), that is the proportion of items assigned to category k by all

annotators out of the total number of assignments by all annotators:

P(k|c) = P̂(k) =
1

n · |C|
∑
c∈C

nc,k (2.22)

where nk is the number of items assigned to category k by all annotators. Based on

Equation 2.22 and given the assumption that annotators act independently, the chance

agreement for multi-π can be calculated as the joint probability of all annotators assigning

an item to the same category summed over all categories. Equation 2.5 (Section 2.2.1)

constitutes a special case of estimating chance agreement with exactly two annotators,

but it can be generalised if 2 is replaced by the number of annotators |C| as shown below:

multiA
π
e =

∑
k∈K

(P̂(k))|C| =
1

(n · |C|)|C|

∑
k∈K

(∑
i∈I

Yi,k

)|C|

(2.23)

As was shown in Section 2.2.1, the only differences between IAA coefficients are in the

way they estimate the agreement by chance variable in Equation 2.1. Equation 2.7 shows

the agreement by chance for only two annotators, which is based on the joint probability of

two annotators independently assigning an arbitrary item to the same category. To adapt
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this probability for more than two annotators, the joint probability needs to be adjusted

to account for all annotators.

multiA
κ
e =

∑
k∈K

∏
c∈C

P̂(k|c) =
1

n|C|

∑
k∈K

∏
c∈C

nc,k (2.24)

2.2.4 Agreement on a Large or Unknown Number of Items

Historically, inter annotator agreement, or inter-coder reliability, coefficients originated in

the psychology and content analysis fields, before being suggested to the NLP community

by Carletta (1996). They have since become the standard for measuring the reliability of

gold standard resources for certain NLP tasks, but not all. Hripcsak and Rothschild (2005)

raised the issue of intractability of using chance-corrected coefficients for studies with an

unknown or very large number of negative or irrelevant items. Even though Hripcsak

and Rothschild raise the issue of calculating κ in the context of information retrieval,

here the issue is observed from the point of view of annotating multi-word entities in

natural language text, i.e. considering tasks such as syntactic chunking and named entity

recognition.

Before delving into why chance related coefficients are not suitable for multi-word enti-

ties, we should discuss what kind of data they are suitable for and why. Inter-annotator

agreement is built upon the following three finite sets: a set of annotators, a set of annota-

tion categories, and a set of items. For instance, these sets can be identified when creating

part-of-speech tagged data — corpora contain a finite number of tokens (items), they

are annotated by two or more annotators, using a set of part-of-speech tags (annotation

categories).

When considering multi-word entity annotation, tag sets similar to part-of-speech tag

sets can be defined, but coming up with a set of items of tractable size to assign categories

to is not as simple. In fact, it all hinges on what are items (entities) defined to be. In

the case of POS tagging, they are defined as tokens, but entities consist of an arbitrary

number of words (or tokens) in a particular place in the text. So in a nutshell the important

difference between POS annotation and the annotation of some sort of multi-word entities
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is that the latter should also determine the boundaries of the items in the text as well as

their categories. Given this information the number of items in an entity annotation task

can be defined in at least two ways.

The naïve way is to adopt the strategy used for automatic tagging of entities of arbitrary

size and position in text. That strategy uses a token-based tagset with prefixes for the

beginning, inside, and outside of a tag. Its assumption is that annotators should agree at

the token level. However, measuring agreement this way could be very misleading. Token

level agreement measures would be unfair if the variance of the average annotation token

span is large. In this case the overall agreement would be skewed towards the agreement on

annotation categories with greater average token span. For example, if annotator Amarked

two annotations, one with token span 4 and one with token span 1, and annotator B agreed

only with the first one, then the observed agreement would be 80%. Furthermore, even if

all categories are of the same fixed size the naïve approach will still be overly positive as

entity annotation usually does not cover all tokens in the text, rather only a small number

of sub-sequences.

The second option of defining the items in an entity annotation task is what can be called

the brute force approach. We can assume that the text spans between entity annotations

are in fact outside-entity annotations. Given this assumption, items can be defined as a

sequence of one or more tokens at an arbitrary position in the text. So during annotation

an annotator would pick an item (by defining its boundaries) and a category for it at the

same time; thus non-annotated text would automatically become outside-entity. Given that

perception of the annotations, the sum of the token spans of all annotations (including

outside ones) will always amount to the total number of tokens. Therefore, we can consider

the total number of items nι as the sum of a series of stars and bars problems3, where

the cardinality of the distinct tuples k ranges from 0 to the number of tokens in the

text nτ. Feller (1968) popularised the use of stars and bars as a graphical aid to solving

combinatorial problems, such as counting the ways to put n indistinguishable balls into

k distinguishable bins. The stars and bars approach is used in the proof of the following

theorem:

3 Stars represent objects and bars represent the divisions between them. A sequence containing n stars and
m bars represents a single possible grouping of n objects into m groups.
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Theorem 1 For any pair of positive integers n and k, the number of distinct k-tuples of

positive integers whose sum is n is given by the binomial coefficient
(
n−1
k−1

)
.

Using Theorem 1 we can derive the following formula to calculate the total number of

items:

nι =

nτ∑
k=0

(
nτ − 1

k− 1

)
(2.25)

Given the item count calculation method in Equation 2.25, any text beyond a few

sentences will have a vast number of items. For a corpus of one hundred tokens the number

of items is approximately equal to 6.34e+29. Such a great number of total possible items

makes any agreement calculation unusable as it will virtually always be approaching 1

even when measuring a corpus with millions of disagreeing annotations.

So far in this subsection it was shown that defining items in the case of entity annotation

in (two different) ways that approximate their original definition (see the beginning of

Section 2.2) compromises the fairness of the very agreement coefficients for the calculation

of which an item definition was needed in the first place.

An alternative approach offered by Hripcsak and Rothschild (2005) addresses this issue

by using F1-score to represent annotation reliability, i.e. inter-annotator agreement, in

cases where the number of negative examples (and therefore their total count) is very

large or unknown.

the f1 -score also referred to as the f-score4 or the f-measure, is the established

performance metric for information retrieval tasks. It is in fact the harmonic mean of

precision and recall (Equation 2.26), which reflect respectively the fraction of retrieved

instances that are relevant, and the fraction of relevant instances that are retrieved. The

two metrics are also referred to as positive predictive value and specificity in the medical

literature. There is a well established trade-off between the two ratios — systems that

4 This thesis uses f-score to refer to F1-score unless it is necessary to specify the exact value of β for
comparison reasons.
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favour precision suffer in recall and vice versa — and the F1-score seeks to reward systems

that balance them.

F1 = 2 · precision · recall
precision+recall

(2.26)

Consider the confusion matrix of a binary classifier system with the following cells: true

positives, false positives, false negatives, and true negatives. Using the confusion matrix

the following formulae calculating precision and recall can be derived:

precision =
true positives

true positives + false positives (2.27)

recall =
true positives

true positives + false negatives (2.28)

Although in most cases it is better to have a balance between precision and recall, in

some cases it might be required to favour one of them for external reasons. In such cases

the general Fβ-score formula is used with β being a positive real number (Equation 2.29).

The standard precision biased value for β is 0.5 (F0.5), while 2 is the standard value if a

recall bias is desired (F2).

Fβ = (1+β2) · precision · recall
(β2 · precision)+ recall (2.29)

ANN1
Positive Negative

A
N
N
2 Positive a b

Negative c d

Table 2.1: Confusion matrix of the agreement categories for a two-class annotation task with two
annotators (Rogot and Goldberg, 1966). Each cell represents unit counts.
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Hripcsak and Rothschild (2005) showed that if the annotations of either annotator are

assumed to be the “gold standard” and the others the output of a “system”, the F1-

score of the “system” approaches κ5. To illustrate this we need to consider the F1-score

representation using a confusion matrix for a retrieval task (see Table 2.1).

Fβ=1 =
2 · a

a+b
· a
a+c

a
a+b

+ a
a+c

=
2a

2a+ b+ c
(2.30)

Using the same notation Hripcsak and Rothschild express κ as in Equation 2.31.

κ =
2(ad− bc)

(a+ c)(c+ d) + (b+ d)(a+ b)
(2.31)

For very large numbers, however, Equation 2.31 can be used to show that κ approaches

F1-score. Consider Equation 2.32 where d is very large and therefore all other variables

are insignificant in the context of the ratio that κ represents. This allows us to remove

any product that does not involve d and then remove d itself from the numerator and the

denominator. This shows that the larger d the closer is κ to F1-score.

κ =
2ad− 2bc

ac+ ad+ c2 + cd+ ba+ da+ b2 + db
(2.32)

≈ 2ad

ad+ cd+ da+ db
≈ 2a

2a+ b+ c

However, will this still hold true for a multi-label task? To answer this one needs an

understanding of how sequence labelling tasks are evaluated using f-score.

2.2.5 MUC-7 Scoring for NER Annotation

While it is easy to see how the elements of F1-score are extracted from an information

retrieval task, it is slightly less obvious how F1-score can be calculated for inter-annotator

agreement. The MUC-7 (Chinchor, 1998) scoring system for evaluating named entity recog-

5 The choice of the annotator used as a “gold standard” is irrelevant as the different cases would only swap
the values for precision and recall but keep the same F1-score.
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nition systems uses six categories instead of the values from the contingency table, while

still calculating precision and recall (see Section 2.4.6 for a discussion of named entity

recognition). The output of one of the annotators is treated as the gold standard, and

then annotations are categorised into correct, incorrect, spurious (not present in the gold

standard), missing (not present in the candidate annotation), partial (partial matches),

and non-committal (null fills generated by the candidate annotation that were also null in

the gold standard). Using these categories, precision and recall are calculated as follows6:

precision =
cor

cor + inc + par + spu (2.33a)

recall =
cor

cor + inc + par + mis (2.33b)

These representations of precision and recall illustrate how different errors (also dis-

agreement) contribute to the ratios. Annotation boundaries are more important than the

label, so mismatch on that level is handled regardless of the labels through the notions of

spurious and missing annotations. The label errors (disagreement) are put in the incorrect

category. If we need to express this with the notation from Table 2.1, the MUC-7 f-score

expresses b and c as spu + inc and mis + inc (in any order), while a is the cor cate-

gory. One might be tempted to interpret the incorrect category as part of a that was not

correctly labelled, but the reason that is not true is that the multi-label annotation tasks

add an additional dimension to what constitutes a retrieved document in a retrieval task.

This view of the task increases the number of documents in the universe by a factor equal

to the number of types in consideration, i.e. the annotator will need to agree or disagree

that document x is of type y for each document and each type. Therefore, κ approaches

F1-score also in the case of multi-label annotation tasks.

2.2.6 Micro- and Macroaveraging of f-score Results

When an annotation process involves more than one annotation class (category) each with

its own set of labels, the question of performance averaging arises. So far the discussion

considered measuring reliability using f-score fitting either one class or a single set of

6 The MUC-7 evaluation did not award any partial credit, i.e. all partial matches were considered incorrect.
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mutually exclusive non-overlapping classes. This section presents two complementary ways

of averaging f-score.

the macroaveraging approach gives equal weight to each class regardless of the

size of its population (Manning et al., 2008). It is calculated as the arithmetic mean of the

f-scores of each class or group of classes:

fmacro =
1

|Q|

∑
i∈Q

f(cori, inci, pari, spui, misi), (2.34)

where f calculates the f-score using precision and recall formulae in the style of Equation 3.1

or 3.2, while Q is the set of classes or groups of classes to be averaged over.

the microaveraging approach gives equal weight to each item of each class or

set of classes (Manning et al., 2008). It calculates the f-score based on a pooled set of

countable categories (such as cor, the true positives) — in other words the items of each

countable category are counted together across all averaged annotation categories or sets

of annotation categories and then the sums are used to calculate the average f-score:

fmicro = f(
∑
i∈Q

cori,
∑
i∈Q

inci,
∑
i∈Q

pari,
∑
i∈Q

spui,
∑
i∈Q

misi) (2.35)

As mentioned above, the two ways of averaging differ in whether they view classes or

instances as primary. Macroaveraging gives equal weight to each class, whereas microav-

eraging gives equal weight to each instance (decision). This makes microaveraging biased

towards the performance of classes with higher frequencies, while macroaveraging results

are susceptible to giving too much influence to outlier classes. Manning et al. (2008) sum-

marises this as microaveraged results really being a measure of effectiveness on the large

classes, while macroaveraged results provide a sense of effectiveness on small classes.

Generally, it is a good idea to use both averaging methods when reporting results, but

given the flaws described above, it is better to provide the class specific metrics as well.
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2.2.7 Agreement Calculation in the Context of This Thesis

Even though this section provides an extensive review of inter-annotator agreement coeffi-

cients, it is important to highlight only two that will be used in the context of this thesis.

F1-score is used for the multi-token annotation tasks in Chapter 3, while Cohen’s κ is used

for the labelling of symptoms, drugs and diseases among noun chunks in Chapter 5. The

use of Krippendorff’s α and weighted κ were considered for the latter task in order to

explore the effect of different penalties for disagreement between certain classes, but no

experiments were reported eventually.

2.3 machine learning in nlp

Machine learning is the scientific discipline that studies and develops algorithms that allow

computers to learn from data, and then be able to make predictions or decisions based

on that learning rather than following pre-specified instructions entered by a human. Ma-

chine learning methods are most often used in computing tasks whose scale or complexity

prevents the design of an effective rule-based solution, which is the case for many NLP

tasks.

In machine learning, classification is the problem of identifying the category of an obser-

vation from a set of categories. It is usually tackled as a supervised learning task, which

means that it needs a set of correctly identified observations from which the statistical

model is built. Its unsupervised counterpart is called clustering — a method of grouping

observations into subgroups called clusters based on a similarity or distance function.

This section discusses the application of machine learning for particular NLP tasks

that are relevant for the experiments presented in the following chapters of this thesis.

The discussion focuses on part-of-speech tagging, chunking (shallow parsing), concept

recognition, and document classification.

Most natural language processing tasks can either be framed as a straight-forward clas-

sification task, or they can be broken down into a sequence of such tasks. For instance,

part-of-speech tagging, assigning of the correct part-of-speech label to each token in a

sentence, is a sequence of clearly defined classification problems. Other tasks need to be
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approached differently in order to present them in a way that will make the classification

optimal for supervised learning. For example, chunking can be seen as two separate classi-

fication problems – one determining the borders of a chunk, and one its type. Considered

in such a way, the task seems rather complex and difficult, but it could also be simplified

to a problem similar to part-of-speech tagging, where instead of phrase border and type

classification, the problem is framed as token classification using a BIO notation.

The rest of this section discusses commonly used classification algorithms (Section 2.3.1),

designing feature sets used by a classifier (Section 2.3.2), semantic word representation

techniques (Section 2.3.3), as well as common classifier evaluation methods (Section 2.3.4).

2.3.1 Common Classifiers

A machine learning classifier is the implementation of a concrete classification algorithm

that uses a model to determine the class of an instance based on a feature vector generated

from its properties. In supervised machine learning an instance is an observation whose

class needs to be determined — a token that needs a POS tag, a text document whose

topic needs to be determined, etc. The possible classes are a finite set of discrete values or

categories. As the machine learning model involves “learning” and storing different aspects

of the training data, it is difficult to provide a simple but precise definition of its contents

and building. However, we can characterise it as a machine learning device extracted from

the training data and used to classify unseen observations.

Machine learning algorithms are based on mathematical and statistical operations, so

in order to feed them observations in a non-numerical form, such as text snippets, these

observations need to be represented in a suitable way. Feature vectors are used as the

“classifier-friendly” representation of observations. They are ordered sequences of indi-

vidual measurable properties, features, of an instance. A feature may be expressed with

values of various types (binary, integer, real, categorical) depending on the classification

algorithm. The length of the feature vector may be arbitrary as long as it is the same for

all instances, but the decision on its length is not without consequence. A richer (larger)

feature set is usually beneficial for the classifier, but it can also mean that the data contains

more irrelevant information, which is a drawback. Finding the balance between feature set

size and feature importance is usually an empirical issue.
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There is a wide variety of methods, algorithms, and techniques in machine learning

applicable to some aspect of NLP. The following sections give a brief account of the most

relevant machine learning methods to this thesis.

2.3.1.1 Single Prediction Classifiers

Classifiers that make predictions of the class of a single instance are the most common

type used in NLP. This is so, because some NLP tasks require classification of indepen-

dent instances, while others can be easily reformulated in order to fit that paradigm. In

a simple approach to document classification the feature vectors are generated based on

term frequencies, which are essentially the frequencies of the words occurring in the doc-

ument. Classification accuracy is usually improved if the term frequencies are normalised.

Normalisation approaches include tf-idf (Spärck Jones, 1972) and smoothing, but unless

there is a known relation between instances, it always remains true that a document class

is independent from other documents, including their class and content. Therefore, target

documents may be classified one by one in any particular order.

However, in part-of-speech tagging, and all other token-based classification tasks, some

of the target instances depend on each other — mostly ones that are near each other,

for example, in the same sentence. That dependency is implemented through the feature

vectors, which are constructed from what are known as context features. As it is impossi-

ble to distinguish between words with multiple potential meanings or grammatical roles

without the context they are used in, the features that play a decisive role in such clas-

sification decisions are drawn from the context of the token instance. However, for some

locally-dependent tasks (e.g. POS tagging or syntax parsing) context features are limited

to a small window around the target token, which should not reach outside the sentence.

Based on how feature vectors are constructed, token-based processing assumes that tokens

from the same sentence should be processed together. The processing order used by the

majority of classifiers is the order of reading of the language, i.e. left ot right for English,

but there are exceptions. Church (1988) takes a right-to-left approach, while Giménez and

Màrquez (2004) describe a tool that is able to process tokens from each direction, as well

as to combine their outputs.



u 42 U

naïve bayes is a family of classifiers (Stigler, 1983; Rish, 2001; Manning et al.,

2008; Wikipedia, 2015a) based on a conditional probabilistic model derived from Bayes’

law (Equations 2.36 & 2.37).

P(A|B) =
P(A)P(B|A)

P(B)
, (2.36)

posterior =
prior× likelihood

evidence
(2.37)

These classifiers are called “naïve” because of the often unrealistic assumption that all

features are conditionally independent from each other given a class. What that means is

that each feature contributes independently of all other features regardless of any corre-

lations that exist between them. The derivation of the naïve Bayes’ classifier is based on

the conditional probability of a class yk given a feature vector X:

P(yk|X) =
P(yk)P(X|yk)

P(X)
(2.38)

Since the denominator is a constant, which does not depend on the class yk, the equation

above can be re-written as the joint probability of the class and the feature vector:

P(yk|X) ∝ P(yk,X) = P(Yx, x1, ..., xn) (2.39)

At this point the assumption of conditional independence of the features allows the use

of the chain rule of probability, and rewrite the joint probability in the following way:

P(yk|X) = P(yk)

n∏
i=1

P(xi|yk) (2.40)
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Using that conditional probability model, the classifier selects the class with the highest

probability as its prediction ŷ, which is also known as the maximum a posteriori rule:

ŷ = arg max
k∈K

P(yk)

n∏
i=1

P(xi|yk) (2.41)

There are three main versions of the naïve Bayes classifier, which differ from each other

in the way they calculate the likelihood probability P(xi|yk), or rather what distribution

of the features they assume. A multinomial distribution is typically used for document

classification tasks in which the feature vectors are essentially a histogram of term occur-

rences. A Bernoulli distribution (Kullback, 1935) is assumed, if the features are binary,

which can be used in classifying short documents or tasks with context feature vectors. A

Gaussian is usually not used in NLP as it is meant to handle continuous variables in the

feature vector, which has few uses in language processing.

support vector machines (svms) are machine learning devices that construct

hyperplanes in a high-dimensional space, which can be used for binary classification. The

intuition is that feature vectors are in fact data points in a p-dimensional space, and there

exist (p− 1)-dimensional hyperplanes that separate one class from the other (see Figure

2.1a). The margin is the distance between such a hyperplane and the nearest data points

on each side, called support vectors. Linear SVM classifiers find the hyperplane separating

a class from the rest with the maximum margin (See Figure 2.1b).

In some cases the maximum margin between classes is very small because of outliers that

are very close to each other. Cortes and Vapnik (1995) introduce the soft margin variation

of SVM classifiers, which optimises a trade-off between margin width and error penalty

using a slack function. In other cases there is no linear classification solution, so the dimen-

sionality of the feature vectors needs to be increased in a way suitable for classification.

However, as feature vectors are already of high dimensionality, that may be challenging

from a computational point of view. Boser et al. (1992) described a method that applied

the “kernel trick” proposed by Aizerman et al. (1964) to maximum margin hyperplanes.

Through that trick, non-linearly separable data can become linearly separable, thus easier

for classification, in a higher dimensional space (see Figure 2.2).
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(a) (b)

Figure 2.1: (a) Different possible class separations illustrated as hyperplanes dividing the data
points. H1 does not separate the two classes, H2 does so by a very small margin, while
H3 achieves separation with the maximum margin. Image based on Wikipedia (2015b);
(b) Separation of two classes of data points by a hyperplane (unbroken line). Double
circled data points indicate support vectors. Image by Haenel et al. (2013)

(a) Input space (b) Feature space

Figure 2.2: Illustration of the kernel trick. Images based on Wagner (2012)

Even though support vector machines are a very powerful tool, they have the limitation

of being binary classifiers, and two classes is not enough for many tasks, especially in

NLP. The solution to this limitation is problem binarisation and training of multiple

classifiers. For example, part-of-speech tagging may use SVM classifiers by breaking down

the multi-class classification task into either one-vs-rest decisions for each class, or one-

vs-one decisions for each pair of classes. The rating is then done according to the SVM

output function when using one-vs-rest classifiers, or according to the most wins when

using one-vs-one classifiers.

maximum entropy (maxent) classifiers (Malouf, 2002), also called multinomial

logistic regression (Engel, 1988), generalise logistic regression classification to a problem
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with more than two possible discrete outcomes. Logistic regression relies on a linear combi-

nation of observed features, usually continuous variables, and problem-specific parameters

called weights to make a binary classification decision using the logistic function

F(x) =
1

1+ e−(β0+β1x)
(2.42)

where β0 is the bias, β1 is a vector of weights, and x is the observed feature vector.

Logistic regression does not assume independence of the observed feature variables, as

Naïve Bayes does, and unlike other binary linear classifiers its output can be interpreted

as a probability.

Multinomial logistic regression is represented as a set of independent binary regressions,

which enforces an additional assumption of independence of irrelevant alternatives. This

assumption states that the odds of a class being selected over another are independent of

the existence of “irrelevant” alternative classes. For example, the relative odds of choosing a

pet cat over a pet dog should remain the same if the possibility of a pet pony is introduced.

MaxEnt classifiers are often used in NLP as an alternative to Naïve Bayes since they

do not make the naïve independence assumption, and there are a number of tasks to

which they have also been applied successfully, for instance POS tagging (Toutanova and

Manning, 2000; Toutanova et al., 2003) and chunking (Koeling, 2000).

2.3.1.2 Structured Prediction Classifiers

So far the discussion focused on methods of classification that deal with one decision at

a time. This paradigm is suitable for some NLP tasks like document classification where

documents are classified completely independently from each other, but it requires certain

compromises in other cases such as POS tagging and parsing where classifications within

the same sentence often depend on each other. There are ways to mitigate the effects of

the assumption of independence in such cases by introducing dynamic features (using POS

tags of already tagged tokens as context features), but they do not resolve the problem

completely.

Structured prediction classifiers are a group of machine learning techniques that are

able to predict structured objects, rather than single values. Many of them are based on
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probabilistic graphical models such as Bayesian networks, but some are generalisations of

other algorithms such as structured SVMs. A number of such algorithms have been used in

NLP — hidden Markov models (Jurafsky and Martin, 2009, Chapter 6), maximum entropy

models (Ng and Jordan, 2002), and conditional random fields (Lafferty et al., 2001) — the

latter being one of the most widely used machine learning methods for sequential tagging

tasks in recent years.

conditional random fields is a discriminative undirected graphical model whose

nodes are made up of the disjoint sets of observed variables X (e.g. tokens), and label vari-

ables Y (e.g. POS tags). A structured prediction about a sequence is then modelled as the

conditional distribution P(Y|X). Lafferty et al. (2001) provide the following definition of

conditional random fields (CRF):

Let G = (V ,E) be a graph such that Y = (Yv)v∈V , so that Y is indexed by

the vertices of G. Then (X, Y) is a conditional random field in case, when

conditioned on X, the random variables Yv obey the Markov property with

respect to the graph: P(Yv|X,Yw,w ̸= v) = P(Yv|X, Yw,w ∼ v) where w ∼ v

means that w and v are neighbours in G.

Given this definition, the problem of inference in the case of general graphs is intractable,

but in the special case of trees (and chains), inference is possible using algorithms similar to

the forward-backward and Viterbi algorithms (Lafferty et al., 2001). The main advantage

of CRFs over other probabilistic graphical models used for structured prediction is that

they do not make strong independence assumptions (Lafferty et al., 2001). This allows

the model to be optimised considering the whole observation sequence. Additionally CRFs

avoid the bias of directed graphical models towards states with few successor states, also

known as the Label Bias problem (Bottou, 2001; Lafferty et al., 2001).

Linear Chain CRFs are a widely used classification method in NLP which have been

applied to POS tagging, chunking, and various entity recognition tasks (NER, gene recog-

nition, medical concept recognition, etc.).
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2.3.2 Feature Engineering

Machine learning classifiers require relevant aspects of language to be encoded in the

format of a feature vector. However, deciding what those features should be is a problem

in its own right. Feature engineering is the process of designing a suitable feature set for

a particular task.

Token labelling tasks (e.g. POS tagging, chunking, and entity recognition) typically

rely on features extracted from a context window around the token being classified. Com-

mon features are the surrounding tokens, and any available annotation — higher levels of

analysis use lower levels, for example POS tags are used in chunking, chunks in named en-

tity recognition, etc. Languages with rich morphology make use of morphological features,

which could be of great importance, although they are of less consequence for English.

There is also a wide variety of binary features like capitalisation, which could aid classifi-

cation in particular cases.

Document classification on the other hand aims at using the most relevant subset of

all tokens in the document regardless of their position, but using other methods such as

frequency to weight the relative impact of features. Additionally, token features can be

integrated with various types of linguistic analysis depending on the goals of the particular

classification task. This may increase the number of features tremendously, and introduce

noise to the classification process. Feature selection is the process of selecting the most rele-

vant subset of features based on a metric that indicates their contribution to classification

decisions (Guyon and Elisseeff, 2003).

In some cases the data from which features are extracted provides more information

or has more variability than is needed for the purposes of a particular classification task.

In such cases the features can be transformed into less variable form — a process called

feature canonicalisation. For example, converting all words to lower case is a common

practice in document classification as disregarding casing reduces the number of features

and consolidates the word frequencies, thereby reducing training time and potentially

improving performance. However, feature canonicalisation is applied on a case by case

basis since for some tasks the discarded information may be of importance, e.g. word

capitalisation information is crucial for named entity recognition.
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2.3.3 Word Representation

Determining the meaning of words, phrases, sentences, and language as a whole is a well

known problem in philosophy dating back to the works of Parmenides and Socrates. It also

receives a fair amount of attention in 20th century philosophy through the work of some

of its most influential philosophers Saussure (Culler, 1976) and Wittgenstein (2010). In

computational linguistics there are two general approaches to the problem, one, referred

to as computational semantics, seeks to compute meaning through a formalism based

on formal logic (e.g. Universal Grammar by Montague (1974)), and the other, referred

to as distributional semantics, represents meaning following Wittgenstein’s dictum that

meaning is use. This section briefly discusses distributional semantics, and two types of

machine learning features derived through it.

2.3.3.1 Word Embeddings

One of the simplest yet accurate descriptions of the notion of distributional similarity can

be expressed through the famous quote by John Rupert Firth stating that “[y]ou shall

know a word by the company it keeps” (Firth, 1957). Lazaridou et al. (2014) illustrate

this notion using the made up word wampimuk in the following example sentence:

We saw a cute little wampimuk sleeping in the tree

Given how it was used one can assume that a wampimuk is a living being with certain

sympathetic features which is also able to climb a tree. Given sufficient additional examples,

one can even come close enough to a full characterisation of the word’s meaning. Thus the

meaning of a word can be denoted by the set of contexts it occurs in. If all possible contexts

are ordered, the meaning of a word can be represented by a vector, which effectively allows

the learning of word representations from unlabelled data7. Such word representation

vectors are sometimes referred to as word embeddings.

There are two broad classes of algorithms for building distributional representations

for a single word. The first, commonly referred to as “counting” algorithms, was pro-

posed by Grefenstette (1994). Such algorithms produce a model by counting the occur-

rences of a feature in the context of a word occurrence. Features are typically defined
7 As pointed out by Erk (2012) some authors choose to represent words as higher-order tensors, trees, or

forests in order to capture more complex properties of their behaviour.
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as other words or short phrases. The context of a word is considered to be the words

occurring within a distance of k words in the same sentence. For example, in the sentence

Mary likes white dogs the features of the word token likes would be the set {Mary,

white} if using a symmetric window of size one, or {dogs, Mary, white} if using a win-

dow of size two and single words as features. Alternatively, pairs of adjacent words can be

used as features, in which case the features would be the set {white_dogs}.

The feature counts are typically weighed by a factor that reflects their informative-

ness, which is motivated by the intuition that not all contexts are equally important. For

example, common words such as the and to can easily end up as contexts of most word en-

tries given a wide enough window. Common methods for re-weighting the context counts

include (positive) mutual information, log-likelihood ratio, and χ2 (Evert, 2005).

The context vectors are typically of a very high dimensionality, which makes them

difficult to work with in practice. Dimensionality reduction techniques, such as Singular

Value Decomposition and Non-negative Tensor Factorisation, are commonly employed to

address the issue (Turney and Pantel, 2010; de Cruys, 2010).

The second type of algorithms for building distributional word representations is driven

by the same intuition as the “counting” approach — count, re-weight, reduce — however,

instead of three consecutive processes these algorithms encode the desirable properties of

the produced word vectors as a loss function, which is optimised using a neural network.

There are two popular instances of that class of algorithms — word2vec (Mikolov et al.,

2013) and glove (Pennington et al., 2014) — the work in this thesis draws on the former.

The size of the resulting embeddings produced by both types of algorithms typically

ranges between twenty and several thousand. The common approach to using them for

building machine learning models is to simply extend whatever feature vectors were built

using regular feature extraction. In some cases, though, they have been used to completely

replace regular features (Lebret et al., 2013).

2.3.3.2 Clustering

Clustering or cluster analysis (Driver and Kroeber, 1932) is the grouping of a set of objects

in such a way that members of each group are more similar to each other than to members

of other groups. The technique is most often used for exploring and analysing data in a

visually accessible way. As clusters are “in the eye of the beholder” (Estivill-Castro, 2002)
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there is no single definition of what a cluster is, or how one should be derived. There are

a number of very different algorithms that produce clusters with a variety of qualities and

suitable for different applications.

Word representation clusters are essentially thesauri based on distributional similarity.

The words are grouped together based on a similarity measure computed from their context

distributions. Here are some examples of such clusters produced by one of the most popular

algorithms currently used in NLP (Brown et al., 1992):

.

{Friday Monday Thursday Wednesday Tuesday Saturday Sunday weekends

Sundays Saturdays}

{June March July April January December October November September

August}

{people guys folks fellows CEOs chaps doubters commies

unfortunates blokes}

{down backwards ashore sideways southward northward overboard aloft

downwards adrift}

{American Indian European Japanese German African Catholic Israeli

Italian Arab}

{liberal conservative parliamentary royal progressive Tory

provisional separatist federalist PQ}

{head body hands eyes voice arm seat eye hair mouth}

The algorithm is commonly referred to as Brown or IBM clustering. It is a hierarchical

clustering algorithm based on an n-gram language model. Hierarchical means that the

algorithm builds multiple layers of embedded clusters with different granularity. Although

it has been previously applied to POS tagging (Ushioda, 1996), it only gained popularity in

the NLP community once the computational costs of processing sufficiently large amounts

of text became tractable, also enabling work on other word representation techniques

(Turian et al., 2010).

There are a number of widely used word representation cluster resources, which were

derived from huge corpora such as the RCV1 (Lewis et al., 2004) or the English Wikipedia,

which have both very high numbers of words as well as high variation of their usage.
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However, the word usage patterns in more specialised types of language, such as those in

biomedical and clinical texts, are often not reflected in the word representations drawn

from general text. Stenetorp et al. (2012b) present a study examining the effects of clusters

and word embeddings on NER of biomedical text. They show that Brown clusters based

on PubMed abstracts are more successful than those based on RCV1.

One of the most widely used set of clusters in POS tagging and chunking, the one used by

the Stanford NLP tools, is based on another distributional similarity algorithm described

by Clark (2003). Clark’s clustering algorithm is commonly known as Ney-Essen clustering

because it is an extension of the algorithm suggested by Ney et al. (1994). However,

Clark’s algorithm also integrates morphological information about the words. One of its

main objectives was to be able to cluster less frequent words, which are generally more

difficult to deal with when using purely data-driven techniques.

2.3.4 Evaluation of Machine Learning Classifiers

Estimating the accuracy of a model is important not only to demonstrate how it may

perform on real world data, but also to provide a success measure that can be used

to select the best configuration of parameters and features (Kohavi, 1995). Ideally the

accuracy estimation method should have both low bias and low variance, but minimising

both types of errors is subject to the bias-variance trade-off (Manning et al., 2008). Bias is

the algorithm error caused by erroneous assumptions, which often happens if there are not

enough features or training data. Variance on the other hand is caused by sensitivity to

small fluctuations in the training set. This happens when the algorithm has “memorised”

the data too well.

To make this trade-off, models need to be evaluated on unseen data. Since all datasets

are finite, the simplest way to achieve this is to hold out some of the data from the training

process and use it for evaluation. A potential flaw of this approach is that one or more of

the classes of interest may be over- or under-represented, making the evaluation results less

representative of the whole dataset. A very large dataset is less likely to have this problem,

but since annotated resources are expensive to create, they are often relatively small. Thus

validation techniques are used for assessing how the results of statistical analysis will

generalise to an independent (real life) dataset. The evaluation methods should provide
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the optimal partitioning of a small pool of data into independent subsets, which should

be as large and as representative as possible.

Kohavi (1995) recommends k-fold stratified cross-validation as the best method for

model development compared to repeated-learning testing (Zhang, 1993; Arlot and Celisse,

2010), also known as Monte-Carlo cross-validation, and bootstrapping (Efron, 1979; Efron

and Tibshirani, 1997). In k-fold cross-validation (CV) the entire dataset is split into k

equal subsets, each of which is in turn used as the validation set (while the rest are used

for training). Stratified cross-validation ensures approximately the same proportion of

instances of each class in each subset. In contrast, Monte-Carlo cross-validation repeatedly

splits the data, selecting a predefined number of data points for the training set at random

without replacement (meaning any data point can be selected only once per sampling),

while the remaining are used for the test set. Even though there is no universally accepted

proportion between training and testing data items (Arlot and Celisse, 2010), 10-fold CV

(90:10) is the most widely used evaluation variety in NLP.

Bootstrapping, especially with high numbers of data items, is a computationally-heavy

evaluation technique. The method divides the data pool randomly in two — a training

and a test set — and then repeatedly resamples the two datasets with replacement. The

resampling-evaluation process is repeated ideally as many times as the number of data

items, but in cases where that is intractable, a lower number is selected instead.

The process of feature engineering typically involves following some theory or body

of experience about what features may be useful, or simply searching for a combination

through trial and error. In either case one needs to ensure that the best feature set is

objectively evaluated on unseen data, which is likely to be overly optimistic if done using a

simple training-testing split as discussed so far. Instead, a third subset has to be introduced

for reporting evaluation results after a model has been selected. For example, in the case

of k-fold CV, leaving an extra validation set is called inner cross-validation (Azzalini and

Scarpa, 2012). The method divides the data pool into k+1 subsets and uses k of them to

select a model via k-fold cross-validation, while the last one is used as a final validation

set. Reporting the results of the final evaluation, rather than what was achieved during

the model development, ensures the objective estimation of the model’s performance.
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2.3.5 Domain Adaptation of Supervised Machine Learning

Applying machine learning to data that does not match the initial training set often

produces poor results. Domain adaptation of supervised machine learning is the task of

adapting a statistical model to maximise its performance in a target domain where little

or no labelled data is available, while there is another (source) domain with a much larger

amount of training data available (Ben-David et al., 2010). There are a number of different

ways of achieving that goal through different types of feature manipulations (Daumé III,

2007; Finkel and Manning, 2009; Ben-David et al., 2010; Schnabel and Schütze, 2014), but

most methods do require some minimal amount of training data in the target domain.

2.4 basic natural language processing

Natural language processing (NLP) is a fast moving academic field that involves both

basic and applied research, with strong relationships to the fields of Computer Science

(CS), Artificial Intelligence (AI), and Linguistics. As such, the tasks it involves could

be divided into the two non-exhaustive groups: natural language analysis and natural

language generation. This thesis is exclusively concerned with the former, and thus all

references to NLP below actually refer to natural language analysis.

Many NLP applications comprise a sequence of lower-level basic tasks. This section

briefly presents the basic NLP tasks, as well as information extraction which is especially

relevant for the rest of the thesis. Note that some tasks, such as morphological analysis

are omitted here as they are not particularly important for processing English language,

but they do play an important role in other languages.

2.4.1 Segmentation

The most basic task in NLP is the breaking-up of text into segments that reflect the linear,

sequential structure of language. Typically this involves two processes — tokenisation

and sentence splitting (also known as sentence boundary detection). Tokenisation is the

process of segmenting a sentence into tokens, which are mostly words and numbers, but
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also punctuation and various other signs used in text. The two processes are sometimes

carried out together, although more often sentence splitting is performed first.

Although there are implementations of tokenisation and sentence splitting using ma-

chine learning, simple generic rule-based approaches are the predominant solution for

edited text, because of its regularity (Dridan and Oepen, 2012). Rule-based approaches

are also preferable in specific cases like tweets where segmentation is particularly important

(Gimpel et al., 2011).

2.4.2 Spelling Correction

Spelling correction is the task of recognising and correcting spelling mistakes. Kukich

(1992) defines three types of error correction:

• non-word error correction: correcting errors, which result in non-words (e.g. tere

instead of there)

• isolated-word error correction: correcting errors resulting in non-words, but only

looking at the word in isolation

• context-dependent error detection and correction: detecting and correcting

with the help of context spelling errors resulting in real words, e.g. there instead of

their or three

These correction problems are generally tackled using four groups of methods: edit

distance metrics (e.g. Levenshtein distance Levenshtein 1966, or the SOUNDEX algorithm

O’Dell and Russell 1922), the noisy channel model (Shannon, 1948), machine learning

classifiers, or machine translation.

The methods using edit distance metrics use dictionaries and a metric to rank the

possible corrections of a word. The metrics are based on orthographic operations that

convert a wrong string representation to a possible correction, e.g. character insertion,

replacement, deletion, and transposition. On one the hand they have an advantage in

being able to correct errors in isolated words, but on the other hand by themselves they do

not consider the word context, thus cannot be used for errors with real word observations.

Some notable studies using this method were presented by Pollock and Zamora (1984),

and Wong et al. (2006).
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The noisy channel model is a general approach to the problem of normalising noisy

signal that has been applied in many fields and is one of the preferred techniques for text

normalisation (Mays et al., 1991; Church and Gale, 1991; Brill and Moore, 2000; Toutanova

and Moore, 2002; Choudhury et al., 2007; Cook and Stevenson, 2009). It assumes a scenario

where a signal is sent through a noisy channel which alters it so that the received signal is

different from the sent signal. The model seeks to identify the best version of the original

signal given the received (observed) signal.

If text in need of normalisation is assumed to be the same text that was intended by

the author, only written in another language, then it seems logical to emulate statistical

machine translation for the purpose of text normalisation (Aw et al., 2006; Kobus et al.,

2008). The strongest point of such approaches should be their ability to replace m words

with n words from both sides during normalisation. Their drawbacks are that they are not

robust, and they require aligned training data.

Finally, it is difficult to imagine word normalisation, as a whole, as a classification

problem, although parts of it could be broken down to small tasks which can be handled

by classifiers with high accuracy. Sproat et al. (2001) classify the types of normalisation

that can be applied to tokens, while Lita et al. (2003) approach case normalisation as a

classification task and use HMMs to tackle it. Han et al. (2012) use an SVM classifier to

find out if correction is needed, and if so to select the best correction candidate based on a

closed set of possible corrections generated using letter- and phoneme-based edit distance

features.

2.4.3 Part-of-Speech Tagging

Part-of-speech (POS) tagging is the assignment of a label out of a predetermined set of

POS tags to each of the tokens in segmented text. The difficulty of the task comes from the

fact that often words have many possible parts of speech depending on the context they

are used in. Therefore determining the most likely part of speech must take into account

the surrounding words and their parts of speech.

A widely used tagset, The Penn Treebank tagset (Santorini, 1990), has somewhat over

thirty tags (exact number depends on the version), although there are only ten basic parts

of speech commonly used in English: noun, verb, adjective, adverb, pronoun, preposition,



u 56 U

conjunction, interjection, numeral, article. The additional labels come from incorporating

different aspects of grammar like verb tenses, distinguishing between punctuation symbols,

and accounting specially for certain words with idiosyncratic grammatical behaviour, such

as the existential there. Generally, richer tagsets offer better solutions, but a trade-off

exists between the tagset size and the difficulty of the tagging task. This makes using

extremely fine-grained tagsets somewhat impractical from an automatic tagging point of

view, while using oversimplified ones has limitations. There are cases such as processing

tweets (Gimpel et al., 2011) or cross-language processing (Petrov et al., 2012), in which

a limited tagset could be beneficial. There are also cases where a fine-grained tagset can

yield better results, as is the case of the BulTreebank tagset for Bulgarian (Simov et al.,

2004), which incorporates morphosyntactic information.

Although rule-based approaches have been used in the past, modern approaches to part-

of-speech tagging put an emphasis on machine learning aided in certain cases by rules.

The reason is that the problem setting of the task, given some assumptions, is a perfect

classification task. Assuming that each POS tag is a class label in a classification process,

and that the label of each word does not depend on the POS tag of its neighbours, classifiers

such as Naïve Bayes (described later in this chapter) and Support Vector Machines (Vapnik,

1998) can be easily adapted to the task by using them to label tokens in order from left

to right (or vice versa). Alternatively, structured classifiers such as CRFs do not need the

independence assumption as they can determine the POS tags of all tokens in a sentence

at the same time, optimising for the overall solution.

2.4.4 Parsing & Chunking

The syntactic analysis of a string of symbols according to a formal grammar is called

parsing. It is a procedure used not only for natural language, but also for systems in which

symbols obey structural constraints, such as computer programming and gene sequences.

There are two common kinds of formal grammars used for natural language: constituency

grammars and dependency grammars.
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2.4.4.1 Constituency Parsing

A constituency parse represents the syntactic structure of a sentence as a tree consisting

of a hierarchy of phrases (or constituents), with words at the lowest level. The types of

structures that may be produced are defined by a grammar. One of the simplest kinds of

phrase structure grammar is context-free grammar (Chomsky, 1957) shown in Example

2.1. Other notable constituency grammar formalisms are head-driven structure grammar,

HPSG (Pollard and Sag, 1994), lexical function grammar, LFG (Bresnan, 2001), and

tree-adjoining grammar, TAG (Joshi and Schabes, 1997). The tree that is produced by

a constituency parser divides a text into phrases. The non-terminal nodes are types of

phrases, while the terminal nodes are the words in the sentence. The edges have no labels

and represent the hierarchical structure.

S → NP VP NP → NNP
VP → VBZ ADJP ADJP → JJ

Example 2.1: Phrasal structure grammar used for the parse tree in Figure 2.3a.

Natural language is very complex, thus often allows more than one valid syntactic in-

terpretation of a sentence. It is also immensely diverse, which makes the manual design

of a complete grammar very difficult. Therefore, grammars are commonly constructed by

inferring them from a syntactically annotated corpus called a syntactic treebank (e.g. the

Penn Treebank, Marcus et al. 1993).

Probabilistic context-free grammars, PCFG, (Sarkar, 2011) can be inferred from tree-

banks, together with estimates for probabilities for the different rules of the grammar, in

order to select the most probable parse tree out of all possible trees. While this approach

calculates the probability of a parse tree as the joint probability of the rules that were used

to construct it, the history-based approach (Black et al., 1992) is a generative method that

takes the tree building process into account. It calculates the probability of a parse tree as

the product of conditional probabilities of each building step given its history, i.e. the par-

tial tree. Some notable history-based parser implementations are presented by Charniak

(2000), Collins (2003), and Klein and Manning (2003).

One of the problems with PCFGs is that often the correct parse tree receives a slightly

lower probability than an incorrect one. Charniak and Johnson (2005) use a maximum
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entropy ranker to determine the best parse tree among the n-best possibilities provided

by the generative model of Charniak (2000). Discriminative parsing is another approach

that represents the task as a series of classification problems. Ratnaparkhi (1997) proposes

a bottom-up and left-to-right approach, using a maximum entropy classifier to make de-

cisions for constructing individual phrases. More recently, research has started to use

conditional random fields to model the whole tree structure instead of only parts of it

(Finkel et al., 2008; Tsuruoka et al., 2009).

....S.....

..VP.....

..ADJP...

..JJ...

..awesome

.

..

..VBZ...

..is.

..

..NP...

..NNP...

..Santana

(a) constituency tree

....Santana ..is ..awesome.

ROOT

.

nsubj

.

cop

(b) dependency tree

Figure 2.3: Sample parse trees generated using Stanford’s NLP toolkit trained on the Penn Tree-
bank.

2.4.4.2 Dependency Parsing

Syntactic dependency parsing is the task of deriving a parse tree based on binary head-

dependent relations between the each word in the input sentence (Jason Eisner, 2007).

The resulting tree is a graph where the nodes are the words, the edges are the binary

dependency relations, and the finite verb is linked to a root node (see Figure 2.3b). Even

though the parsing is not centred around phrase structure, this is still represented though

implicitly since “the head of a phrase comprises the whole phrase” (Covington, 2001).

Additionally, dependency parsers assign a label to each edge, which represents the type of

the dependency relation between the head and the dependent.

Yamada and Matsumoto (2003) suggested a left-to-right transition-based dependency

parsing algorithm with three actions — shift, right, and left — based on a discriminative

machine learning approach using a support vector machine classifier with context features.

Another algorithm with an additional reduce action was suggested by Nivre (2003). Both
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studies were later used as a foundation for the MaltParser (Nivre et al., 2006) — one of

the most commonly used dependency parser implementations. One of the difficult aspects

of this approach is the design and optimisation of features for the machine learning algo-

rithm. An interesting innovation in this respect is presented by Chen and Manning (2014)

who employ artificial neural networks to generate the feature vectors instead of designing

them by hand. Another interesting approach involving transition-based dependency pars-

ing attempts to perform the task simultaneously with POS tagging (Bohnet and Nivre,

2012).

Another notable approach to dependency parsing treats the task as a graph problem

rather than computing a sequence of transitions. The main idea is that the task can be

formalized as the search for a maximum spanning tree in a directed graph (McDonald et al.,

2005). Some notable implementations of the graph-based approach are the MSTParser

described by McDonald and Pereira (2006), and later the Tools for Natural Language

Analysis, which uses a significantly faster implementation described by Bohnet (2010).

2.4.4.3 Chunking

Chunking is the task of identifying non-recursive phrases in text (Abney, 1991, 1995). It

can be regarded as a kind of “shallow” parsing since it does not produce a fully hierarchical

phrase structure, which makes it a less challenging task than dependency or constituency

parsing. This can make it a preferable choice for syntactic analysis in applications involving

non-standard language, such as clinical text. Even though chunking does not provide as

much syntactic information as full parsing, it is an excellent method for identifying base

noun phrases, which have a key role in higher level tasks such as named entity recognition.

Even though there have been some chunking systems using rule-based approaches (Grover

and Tobin, 2006; Vilain and Day, 2000), the predominant method for automatic chunking

is using statistical sequential tagging methods similar to statistical POS tagging (Tjong

Kim Sang and Buchholz, 2000; Kudo and Matsumoto, 2001; Sha and Pereira, 2003). Since

chunks typically comprise more than one token, the chunk tagset usually defines the be-

ginning, the inside (or ending), and the outside tags using a BIO scheme (Tjong Kim Sang

and Buchholz, 2000), standing for beginning, inside, outside. There is also an alternative

scheme, which additionally distinguishes between ending tokens, and single token chunks,

producing a finer representation of the chunk tags (Kudo and Matsumoto, 2001).
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One of the great advantages of chunking is the simplification of a fairly complex problem

to a classification-based task, which allows it to be solved using a wide variety of machine

learning methods. Generally, chunking can be approached as a left-to-right (or the oppo-

site) processing task using standard classifiers such as SVM (Kudo and Matsumoto, 2001)

or MaxEnt (Koeling, 2000), or as a sequence labelling task using a structured classifier

such as a CRF (Sha and Pereira, 2003) or maximum margin Markov networks (Buzhou

et al., 2008).

2.4.5 Word Sense Disambiguation

Natural languages are ambiguous, many words have multiple possible interpretations.

Word sense disambiguation (WSD) is the task of selecting the intended meaning of a

word in a particular context. It can be applied in two ways depending on the words sub-

jected to disambiguation (Navigli, 2009). The word meanings that are the end point of

disambiguation are typically sourced from structured language resources, such as machine-

readable dictionaries (Proctor, Paul, 1978; Soanes, Catherine and Stevenson, Angus, 2003),

thesauri (Kilgarriff and Yallop, 2000), and ontologies (Miller et al., 1990; Fellbaum, 2005),

but they can also be derived from unstructured resources such as corpora and word lists.

Essentially, WSD can be represented as choosing a single meaning out of a closed set,

which is roughly the definition of a classification task. Supervised machine learning meth-

ods have used a range of different classifiers: Naïve Bayes (Singh et al., 2014), MaxEnt

(Suárez and Palomar, 2002; Dang and Palmer, 2002), decision trees (Pedersen, 2001, 2002),

SVMs (Buscaldi et al., 2006), and CRFs (Hatori et al., 2008). The main drawback of su-

pervised learning approaches is the knowledge acquisition bottleneck (Gale et al., 993 ),

since the training data has to contain examples of each word annotated with its intended

meaning in many representative contexts. There are a number of methods used to auto-

matically expand the available annotated data, such as using monosemous related words

(Leacock et al., 1998; Mihalcea and Moldovan, 1999; Agirre and Martínez, 2004), parallel

corpora or text translations (Diab and Resnik, 2002; Ng et al., 2003; Wang and Carroll,

2005; Wang and Martinez, 2006), the hyperlink graph of Wikipedia (Mihalcea, 2007), or

distributional semantics thesauri (Miller, Tristan and Biemann, Chris and Zesch, Torsten

and Gurevych, Iryna, 2012).
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Unsupervised WSD approaches try to address the knowledge bottleneck issue. The

corpus-based unsupervised approach used by Schütze (1998) essentially clusters human

annotated words based on their contexts, and then projects new occurrences into the

same vector space and assigns them to the cluster with nearest centroid (the average

projection of its members). Pantel and Lin (2002) propose another clustering approach

based on a similarity measure using dependency relation pairs. Mccarthy et al. (2004) de-

scribe a corpus-based approach, which integrates information from a manually constructed

ontology.

Finally, there are knowledge-driven methods, which rely on different language resources

(mentioned above) to approach the task (Lesk, 1986; Galley and McKeown, 2003; Navigli

and Velardi, 2005). These methods typically have wider coverage than their supervised

machine learning counterparts, due to the large scale of the resources they use, but are

generally less accurate (Navigli, 2009).

2.4.6 Information Extraction

Information extraction is the automated extraction of structured information from un-

structured data sources, typically, but not restricted to natural language text. It differs

from information retrieval (IR) in the sense that the latter returns documents that satisfy a

query (e.g. search engines), rather than structured information (Meystre et al., 2008). Due

to the broad definition of IE, researchers have taken specialised approaches to different

aspects of the problem, rather than come up with a single universal approach. Therefore,

information extraction can be considered an umbrella term for a number of tasks with

similar rationale and methodology, but with different aims and specific solutions.

Although there are variations, the most common tasks in information extraction aim at

recognising entities (expressed using single words or phrases), references to and relations

between them, and expressed events. Relation extraction, the recognition of particular

relations between known entities in the text, was one of the earliest developments in the

field. It can be simplified to a variation of pattern matching based on world knowledge

and the linguistic analysis of the text produced by NLP processes such as part-of-speech

tagging and parsing. The JASPER system (Andersen et al., 1992) and the NAS system
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(Kuhns, 1988) are examples of early systems using this method to process news wire stories,

and extract structured information about company mergers and acquisitions.

In these instances, the entities to be recognised were given to the system, and their

attributes had a specific form such as the price per share in dollars, or the year quarter

number of a report. To be able to generalise such systems required a way to recognise and

classify entities such as company names, names of executives, numeric values, and others

(referred to as named entities), which led to the definition of the named entity recognition

and classification8 task in MUC-6 (Grishman and Sundheim, 1996). Supervised learning

approaches are currently the predominant group of methods used for NER, although some

studies have used semi-supervised and unsupervised methods. Brin (1999) proposes a semi-

supervised method that uses identifiable “seed” entities to extend the range of contexts

recognised by a system based on regular expression matching. For example, book names

and authors are likely to be mentioned in the same style on the same web page, e.g. The

Lord of The Rings, by J.R.R. Tolkien and Of Mice and Men, by John Steinbeck, so a

rule can be inferred from the first of these to be able to detect the second. Shinyama

and Sekine (2004) propose an unsupervised method for discovering and classifying new

entities through analysing the distribution of rare words in articles for a given time period,

assuming that named entities would have different distributions to normal nouns, and

thereby identifying and classifying new named entities from huge amounts of unannotated

text. The CoNLL-2003 shared task introduced a corpus based on the Penn Treebank

annotated with named entities (Tjong Kim Sang and De Meulder, 2003), which is still a

commonly used benchmark for NER systems. The shared task is also a good example of

NER studies using supervised learning approaches, as the vast majority of the participants

used machine learning methods. Balasuriya et al. (2009) automatically inferred named

entity gold standard annotation from Wikipedia’s hyperlink structure, creating a vast new

language resource. The authors also show that models trained on that corpus outperform

ones trained on the Penn Treebank models when applied to Wikipedia text by a margin

of 7.7 percentage points. In recent years, NER research has also been driven forward by

domain specific studies, such as in clinical, chemical, and biomedical domains (A. Roberts

and R. Gaizauskas and M. Hepple and Y. Guo, 2008; Corbett and Copestake, 2008; Alex

et al., 2007).

8 The task is more commonly referred to as Named Entity Recognition or NER, including in this thesis.
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Additionally, the subtask of named entity disambiguation has emerged, as the related

knowledge bases of named entities have grown.This subtask, determining the real-world

referent of an entity, has become more difficult, as the field achieves a real-world scale.

There is often more than one entity instance of the same type. For example, there are

sixteen different places that Wikipedia refers to on its disambiguation page for the name

Norfolk, ten of them being in the USA9. Alhelbawy and Gaizauskas (2014) use a three

step process based on graph ranking to disambiguate between such collections of named

entities.

Another task that arises in relation to named entity recognition and information ex-

traction (also originating from MUC-6) is anaphora resolution, often referred to in IE as

coreference resolution. In short, the task can be defined as the identification of the parts of

text that refer to the same discourse entity (Poesio et al., 2011)10 as illustrated in Example

2.2.

Apple announced it will release the company’s new iPhone on the market when
the device is ready.

Example 2.2: Pieces of text coreferring to Apple Inc. and iPhone.

Poesio et al. (2011) give an extensive account of the historical development of coreference

resolution, as well as some of the more recent trends. The majority of modern methods

approach the problem by constructing coreference chains that link together parts of the

text that refer to the same entity using machine learning classifiers, and breaking down the

task into recognising candidates and finding their coreference chain or starting a new one.

This approach was first suggested by Soon et al. (2001), and is now commonly referred

to as the pairwise coreference model. Although many recent systems are based on that

approach, the most recent best accuracies were achieved by rule-based systems like the

Stanford multi-pass sieve algorithm (Lee et al., 2011), and by unsupervised multigraph

clustering, which achieved comparable results (Martschat, 2013).

9 https://en.wikipedia.org/wiki/Norfolk_(disambiguation), last accessed on 14th November 2015
10 Van Deemter and Kibble (2000) discuss differences between the two terms, anaphora and coreference,

that exist in certain contexts. However, Poesio et al. (2011) explain why the two terms can be used
interchangeably in the context of this thesis.

https://en.wikipedia.org/wiki/Norfolk_(disambiguation)
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2.5 clinical natural language processing

The target domain has a great influence on the performance of both rule-based and machine

learning NLP approaches. Applying a given model or algorithm to text with different

properties usually results in lower performance than was achieved on the text used for

development. The errors could be caused by unknown words and constructions, or by the

inability of the approach to generalise sufficiently beyond the data used in development.

In either case, a transition to a different domain often requires some adaptation of a model

or algorithm. Additionally, not all domains have the same challenges in terms of language

analysis, thus the goals of the NLP tasks may vary.

This section presents a range of approaches for analysing clinical text. Ensuring that

NLP preprocessing is appropriate for the data is especially important, as errors could easily

propagate to subsequent processes. In the context of information extraction, segmentation,

word sense disambiguation, part-of-speech tagging, and parsing can be considered as pre-

processing steps. Section 2.5.1 presents several studies which have adapted part-of-speech

tagging and both constituency and dependency parsing to the clinical domain. This is

followed in Section 2.5.2 by a discussion of common language-based application tasks in-

volving analysis of clinical text.

2.5.1 Preprocessing

Information extraction, as previously described, usually relies on a set of text prepro-

cessing steps. Hobbs (1993, 2002) lists the components of a typical IE system as being

a tokenizer, sentence boundary detector, part-of-speech tagger, morphological analyzer,

shallow parser, deep parser (optional), gazetteer (lists of location names), named entity

recognizer, discourse module, template extractor, and template combiner. The first six of

these components can be considered to be preprocessing steps, which would generally need

to be specially developed or adapted for application to clinical text.

Spelling correction is an example of a task that has different implications depending on

the exact type of clinical text it is applied to. Tolentino et al. (2007) describe a system for

spelling correction of reports of adverse events following immunization, based on dictio-
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naries, in their case the Unified Medical Language System (UMLS), and an edit distance

metric. Even though it is generally perceived as a preprocessing step meant to enhance the

quality of higher level tasks, sometimes the direction can be reversed as in the case of the

work of Ruch et al. (2003), where WSD and NER modules are used to aid an edit distance

spelling module. However, it is unclear if these techniques are applicable to primary care

text, as they are clearly targeted at reports written in a style closer to standard language.

Applying an automatic spelling correction mechanism to GP notes may result in more

harm than gain. For example, the abbreviation re could be reasonably interpreted as re-

garding, reply, or recommend (the latter being the most common meaning in GP notes),

but it is far more likely to be matched with red by any spelling module using edit distance

metrics or even part-of-speech tags, as the abbreviation is usually followed by a phrase

like fybogel twice a day.

Part-of-speech tagging has been previously applied to text in specialised domains like

biomedical literature and tweets. Both the GENIA tagger (Tsuruoka et al., 2005) and

the ARK tagger (Gimpel et al., 2011) show that in-domain training data is critical for the

good performance of a statistical model. The GENIA tagger is an especially good example,

because it shows that adding out of domain data, such as the Wall Street Journal part

of the Penn Treebank slightly decreases accuracy. Similar results involving clinical text

are reported by Coden et al. (2005), who compare POS taggers using the Penn Treebank,

GENIA, and a small part of the MED corpus annotated with parts of speech (Pakhomov

et al., 2004) as training sets, and evaluating the models on clinical text. However, Fan

et al. (2011) describe an experiment which involved two clinical data sets of progress notes

from different institutions, annotated with POS tags. The study showed that the sources of

training and evaluation data can influence the model performance considerably, although

in all cases it remained higher than the performance of the cTAKES POS tagging module

(Savova et al., 2010). In a different approach Ferraro et al. (2013) show that using a small

amount of annotated in-domain data can improve the performance of POS tagging models

trained on standard text by using domain adaptation algorithms (Daumé et al., 2010).

Word sense disambiguation in the clinical domain has been largely focused on expansion

of abbreviations and acronyms, which can be seen as a slightly simpler WSD task. Moon

et al. (2015) provide an overview of the problem, discussing the language and privacy

issues of the data along with the lack of language resources with clinical abbreviations
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and acronyms, or even comprehensive lists of such entities and possible “expansions” —

Xu et al. (2009) and Joshi et al. (2006a) being notable exceptions. The problem is fre-

quently approached using a discriminative machine learning methods with various classi-

fiers (Pakhomov, 2002; Joshi et al., 2006a,b; Stevenson et al., 2009; Moon et al., 2015).

While the majority of classification approaches use standard feature sets such as bag of

words, POS tags and other linguistic features, and semantic information from UMLS con-

cepts and location in the text structure, some studies have also employed word represen-

tation features. Wu et al. (2015) and Li et al. (2015) suggest using different modifications

of the embeddings proposed by Mikolov et al. (2013) to improve the feature sets of the

WSD classification models. In contrast to the abbreviation and acronym expansion stud-

ies, Savova et al. (2008b) explore discriminative WSD methods in biomedical and clinical

texts focusing on the contribution of different feature types.

Syntactic level processing parsing is essential for capturing chunks of valuable medical

terminology in medical and clinical texts, so parsing has been a steady topic of research

since the 1970s (Hirschman et al., 1976; Sager et al., 1987; A. M. Rassinoux and R. H.

Baud and J. R. Scherrer, 1994; Baud et al., 1998). Early approaches used dictionaries

and sets of rules and constraints to parse clinical text, while machine learning methods

have been developed more recently, based on the necessary in-domain annotated training

data. Xu et al. (2011) reported 81.0 f-score using the Stanford constituency parser on

a small manually annotated part of the i2b2-2010 dataset, which shows a significantly

lower performance than general edited text. Fan et al. (2013) reports an almost equal

result (81.1) for their dependency parsing models trained using the Stanford parser and

a combination of clinical and newswire text data. Finally, Jiang et al. (2014) compares

three prominent parser implementations on two clinical treebank resources (Albright et al.,

2013; Fan et al., 2013), and the Penn Treebank, concluding that the highest accuracy is

achieved by training on a combination of general domain and domain-specific dependency

treebanks.

2.5.2 Information Extraction

Clinical NLP has tackled a wide range of problems using many different approaches. How-

ever, most can be regarded as focusing on one or more of the same three basic information
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extraction tasks discussed in Section 2.4.6: recognising concepts, finding and linking refer-

ences to concepts (i.e. coreference resolution) and identifying relations between concepts.

Clinical NLP often faces difficult information access issues due to the sensitive content

of the data. Text de-identification is one of the necessary supporting tasks when working

with clinical data. The task aims to remove identifying information from clinical data

in order to prevent immediate connection to patients’ identity. Automating this task is

an important step towards better data access for the community. Although criteria vary

across countries of origin, clinical data is generally protected by privacy laws that severely

restrict access to it. Ideally, the data should be anonymised preventing any link to the

patients, but without causing qualitative change in the data (Meystre et al., 2014; Walker,

2015). Bodies responsible for information governance commonly define a set of concepts,

called protected health information (PHI), to be pseudonymised or redacted before wider

access to the data is granted. From a technical point of view the process is similar to

NER and concept recognition, as the targeted entities are typically names of patients,

clinicians and facilities, addresses, and dates of birth. The main challenges of the task are

its virtually zero error tolerance, and high human annotation cost (Dorr et al., 2006).

Historically, a number of studies have suggested automated de-identification that achieved

f-score results in the mid- and upper 90s using various methods including customised al-

gorithms for each PHI type (Sweeney, 1996), regular expressions (Fielstein et al., 2004),

machine learning (Taira et al., 2002), and even adapting a WSD system (Ruch et al.,

2000). Sibanda and Uzuner (2006) created surrogate PHIs put in place of the real redacted

PHIs, and then used an SVM classifier to recognise them, virtually simulating the pro-

cess of de-identification. The same corpus with more realistic surrogates was used for

the de-identification challenge of the 2006 i2b2 shared task (Uzuner et al., 2007b). The

best performance among the participants, 98.35% f-score, was achieved by Wellner et al.

(2007), using a CRF entity recognition model. Track 1 of the i2b2 challenge from 2014

(Stubbs et al., 2015a) sought to improve the anonymisation of longitudinal patient records

by removing even more PHI than required under the US Health Insurance Portability and

Accountability Act (HIPAA). The overall accuracy was lower than the previous task as

the complexity had increased, but the highest performances still yielded f-scores in the

90s with a top score of 93.6 achieved by Yang and Garibaldi (2015).
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Electronic health records often contain information about patient attributes such as

smoker status, or presence of a particular disease or condition. The i2b2 challenges have

included tasks to identify these kinds of attributes. One of the tracks in 2006 sought to

recognise patient smoker status (Uzuner et al., 2007a), while the challenge in 2008 aimed

to determine if the patient is obese before determining a set of co-morbidities associated

with that condition (Uzuner, 2009). The majority of participants used machine learning

based methods although the problems were approached in different ways (Aramaki et al.,

2006; Carrero et al., 2006; Cohen, 2008). Some methods were rule-based (Guillen, 2006),

and some used pre-existing IE systems (Heinze et al., 2008).

The i2b2 challenges have included clinical concept recognition tasks several times, fo-

cusing on identifying obesity comorbidities (Uzuner, 2009), medication (Uzuner et al.,

2010a), and risk factors for heart disease (Stubbs et al., 2015b). Since clinical concepts are

expressed via medical terminology, lexical resources such as UMLS can play an important

role in their recognition. Generally the participants in all challenges favoured rule-based

approaches, but there is an increasing trend towards using a machine learning element in

combination with rules and terminology resources. The rule-based approaches mostly rely

on lexical resources to detect candidate terms and rules to determine their validity, e.g.

recognising negation using NegEx (Chapman et al., 2001). On the other hand, machine

learning approaches used mainly CRF and SVM classification (Savova et al., 2008a; Patrick

and Li, 2009; Halgrim et al., 2010; Chen et al., 2014; Roberts et al., 2015) to recognise

entities, but still made use of rule-based tools like NegEx or heuristics for boosting their

results through pre- and post processing steps. Wang and Patrick (2009) suggested a two-

tier classification method aimed at resolving correctly recognised, but incorrectly classified

clinical concepts. SVM and MaxEnt classifiers were used to re-classify the concepts that

were initially recognised by a CRF classifier. The final class of each concept was decided

through a weighted voting process between the classifiers, which led to an f-score increase

of 3.35 points.

Detailed information is at the heart of clinical data, but to access it, a system needs to be

able to identify certain relations and attributes of the targeted medical concepts (entities).

Some examples are detecting negation, determining absolute and relative time references,

as well as relations between medical concepts such as disease indication or causation. R.

Gaizauskas and H. Harkema and M. Hepple and A. Setzer (2006) suggested that entities
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and relations from a patient’s EHR should be integrated into a chronicle covering their

condition, diagnosis and treatment over the period of care. They proposed an IE system

containing pre-existing tools within the GATE processing platform (Cunningham et al.,

2002) using a rule-based algorithm for relation extraction. More than 332,000 clinical

narratives about roughly 37,000 cancer patients were used in their study. The system

concentrated on a limited number of temporal relations achieving 72.83 precision and 58.70

recall. A more sophisticated approach was suggested by A. Roberts and R. Gaizauskas

and M. Hepple (2008) who treated the relation recognition problem as a classification

task, and designed a GATE pipeline that used an SVM classifier module for relation

recognition. As the classification process should consider all pairs of candidate entities for

possible relations, the pipeline also made use of some heuristics in order to decrease the

number of pairs considered. The approach was applied to the full clinical records of more

than 20,000 cancer patients from the Royal Marsden Hospital.

Two of the i2b2 challenges also focused on extracting relations from clinical text. The

2010 challenge investigated groups of relations regarding treatments, tests, and medical

problems (Uzuner et al., 2011). The participants were given access to 394 reports (progress

reports and discharge summaries) for training, and 477 for testing, plus 877 unannotated

reports. Most participants used SVM classifiers with the best performance reaching 73.7

f-score. The challenge organisers concluded that the relatively low performance was due

to the lack of explicit contextual information to determine relations, and the complexity

of the language. The 2012 challenge focused on temporal relations in addition to clinically

significant events and temporal expressions (Sun et al., 2013b). The data used for the

challenge comprised 310 discharge summaries from Partners Healthcare and the Beth

Israel Deaconess Medical Center. The systems that used hybrid approaches combining

machine learning and heuristics achieved the highest performance. However, the highest

performing system achieved only 69.00 f-score, which hints at the unresolved challenges

facing the task of clinical temporal reasoning (Sun et al., 2013c).

Despite its importance in IE applications in other domains, coreference resolution is, as

Zheng et al. (2011) points out, one of the less explored areas of clinical NLP. The first

annotated data resource in this area was created during the 2011 i2b2 challenge (Uzuner

et al., 2012), and to date it remains the most significant resource of its kind. The chal-

lenge provided data from the Ontology Development and Information Extraction Corpus
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in addition to data from the i2b2 VA corpus (data from Beth Israel Deaconess Medical

Center, Partners Healthcare, and University of Pittsburgh Medical Center), amounting to

978 reports of various types. The challenge consisted of three tasks. The first task con-

sisted of identifying concept mentions in the text, and performing coreference resolution

on the recognised mentions to construct coreference chains. The second and third tasks

focused only on coreference resolution using text with ground truth concept mention an-

notations on the ODIE corpus and the i2b2/VA clinical records respectively. The tasks

were approached using rule-based, statistical, and hybrid approaches, which often com-

plemented each other with regard to their errors. The top f-scores of the participating

systems were 82.4, 91.5, and 91.4 for the respective tasks. Considering this relatively high

performance, Uzuner et al. (2012) concluded that the systems perform well, but face diffi-

culties in solving coreference in cases requiring domain knowledge. They point out that the

key to improving performance is further integration of domain knowledge. More recently,

Jindal and Roth (2013) have made use of the i2b2 coreference corpus, and successfully

applied constraints for improved pronoun resolution. Jindal et al. (2014) have built upon

the idea and used it in a new approach that replaces the common pipeline approach of

linking mention pairs through a sequence of inference steps, with one joint global inference

process. It should be noted that both ideas are domain-independent and could be applied

to coreference resolution of text in other domains.

F 8 f



3
BUILDING THE HARVEY CORPUS

Applying a natural language processing (NLP) system to text in a genre or domain that

is different to the text used for its development is still one of the greatest challenges in

NLP. Retraining or redeveloping the system using a language resource representative of

the new, target domain is currently the safest approach to addressing this problem. This

chapter describes the building of the Harvey Corpus to support one of the main goals

of this thesis — producing a medical concept extraction system for primary care text.

It provides a detailed account of its preparation, assembly, and evaluation. The corpus

was built based on two principles: 1. randomly selected data of the targeted type to

ensure appropriate representativeness, and 2. reusable annotation reflecting the properties

of the target language, while serving the final goal of the thesis. While a number of

technical difficulties emerged throughout the whole process, the main challenges of critical

importance for the final result were the annotator training, and the balance between the

complexity and informativeness of the annotation guidelines.

Section 3.1 gives information about the origin of the target data, and reviews the pecu-

liar characteristics that make it challenging to process with existing NLP tools. Section 3.2

recounts the rounds of annotation guideline development, and the document that was pro-

duced as a result1. Section 3.3 traces the stages of assembly of the Harvey Corpus, starting

from the selection and annotation of the data, to its marshalling as a data structure, and

current availability. Finally, Section 3.4 describes an extrinsic evaluation of the corpus to

establish whether the annotation quality is sufficient to support a stable training process

for a statistical model derived from the corpus.

1 The final version of the annotation guidelines discussed in this chapter is available in Appendix A
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3.1 gprd data

The Harvey Corpus was built from a subset of free text GP notes obtained under a licence

for the purposes of the Patient Records Enhancement Programme (PREP). This research

project was funded by the Wellcome Trust in 2008 “The Ergonomics of Electronic Patient

Records” (Grant No. 086105/Z/08/Z). The project addressed the potential of free text

to augment structured primary care electronic health records, through interdisciplinary

work in areas including epidemiology, human-computer interaction, and natural language

processing.

The data was manually de-identified by the GPRD before it was acquired for PREP.

All protected health information (PHI) in the text (personal names, dates of birth, phone

numbers, and addresses) was replaced with strings of tilde characters of the same length

as the original string.

The pool of notes that the corpus data was selected from can be divided into three major

categories depending on content: letters to and from specialists; test and scan results; and

general notes of a patient visit or interaction (see Figure 1.1 in Chapter 1). The letters

are usually very descriptive and detailed, grammatically well written, and generally meant

to clearly communicate a message between the GP and a specialist. The test and scan

results primarily contain result values, and optionally additional comments on the results.

The general notes are about various kinds of patient interactions – telephone encounters,

home visits, hospitalisation, etc. – but mostly they are about interaction with patients at

a general practice. The last kind of notes are often divided into a part that describes what

the patients said about their problems, and a part that records the GP’s train of thought

during examination, which might variously include observations, conclusions, reflection on

alternatives, and proposed further action. The two parts are commonly separated by a

phrase or an acronym that roughly means “on examination”, e.g. o/e.

The general notes, as illustrated in Example 1.1 in Chapter 1, are written in a sub-

language characterised by extreme brevity and a telegraphic style of expression. The qual-

ity and presence of punctuation varies from completely missing to well placed commas and

end of sentence markers. There is also an abundance of spelling mistakes due to mistyping

or omitted spaces between words.
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Another important feature of the free text notes is the use of heavily abbreviated words

and terminology, often trimmed down to a single letter. GPs also use a number of signs

and short jargon words to denote commonly used longer words or expressions. However,

the issue with possibly the greatest impact on language processing is the lack of standard

grammar as clinicians strive for terse expression.

A free text note is often a list of items that the patient talked about, or the GP observed

or looked for during the examination. Thus, many function words are omitted and the

text is presented in a virtually list-like format of items of interest and their respective

pertaining information. In fact, the use of the copula is so rare that it could be perceived

as an exception rather than the grammatical norm.

Some of the characteristics described above are also observed with other types of text,

however the combination of them together greatly intensifies the need for the reader to

have context awareness and domain knowledge to fully comprehend the text. Consequently

there are a number of specific obstacles before it is possible to carry out any automatic

processing of the data using NLP technology, as well as before any manual processing by

experts without medical training.

Since the text notes often begin mid-sentence assuming the Read term (the text repre-

sentation of a Read code) as part of the text, it made sense to include the Read term in

the text. However, the term and the rest of the note were separated by a double pipe sign

(||) in order to keep the distinction.

3.2 annotation design

When developing a new annotated corpus, one of the key decisions is whether to adopt an

existing annotation scheme and guidelines or to design new ones. Even though the CoNLL-

2000 shared task (Tjong Kim Sang and Buchholz, 2000) established a chunk annotated

corpus standard, there are no written guidelines for its chunk annotation scheme. Picking

a single annotation scheme for semantic entities also seems difficult, as even though there

are quite a few annotated resources, they are usually quite specific and dependent on the

task they were designed to support. Perhaps the only exception to this is TimeML (ISO,

2008), which was used in a number of studies as a basis for the scheme definitions and

annotation guidelines for temporal events.
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Another important issue is the choice of annotators and their background. Roberts et al.

(2009) show that clinically trained annotators are potentially better at annotating clini-

cal records with semantic relations than linguists or computer scientists. However, there

is no clear evidence that this is true for linguistic annotation such as chunking. On the

other hand, Fan et al. (2013) use linguist annotators for syntactic annotation of malformed

POS-tagged sentences of clinical text. Ultimately the choice of annotators depends on the

amount of effort and training that they would need to achieve comparable results. The in-

tuition was that chunking should be relatively simple enough to teach to medical students

with a basic understanding of grammar, while teaching linguists clinical vocabulary and ba-

sic background knowledge of clinical procedures seems like a more difficult task. Therefore

the choice was made to train as annotators fourth year medical students with substantial

medical knowledge and sufficient experience with GP notes. However, achieving good re-

sults depends also on keeping the annotation as simple and clear as possible to minimise

the required linguistic training, and so a custom annotation scheme and guidelines needed

to be devised for the Harvey Corpus.

A slightly more technical, but nonetheless important issue is the choice of annotation tool

suitable for the task. The web-based annotation platform brat (Stenetorp et al., 2012a) was

chosen, because of its clean and simple interface, flexibility, and centralised data storage.

The platform allows remote access for the annotators, but originally did not prevent them

from copying the text (the research license does not allow the re-distribution of the data).

A small modification to the Brat source was implemented in order to achieve that. It also

kept a log with a time stamp of all annotations, in order to roughly track the time periods

the annotators were working for.

Finally, in order to access the progress of annotation design, an appropriate inter-

annotator agreement metric needed to be chosen. Following previous practice in the field,

the f-score was used as suggested by Hripcsak and Rothschild (2005), but anticipating the

sparsity of the data, an alternative, more relaxed calculation is suggested in Section 3.2.1.

This section describes in detail the design and refinement of an annotation scheme and

guidelines for chunking and entity annotation. They were developed in a similar fashion

to the CLEF corpus and guidelines (Roberts et al., 2009) which adhere to the principles of

language resource annotation for information retrieval formulated by Boisen et al. (2000).

First, a draft version of the scheme and guidelines were developed (see Sections 3.2.2 and
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3.2.3), and then incrementally refined with the helpful feedback of two medical students

who subsequently became the first annotators (see Section 3.2.1). Finally, another medical

student was trained to both annotate text and adjudicate the annotations of the other

two (see Section 3.2.5).

3.2.1 Inter-Annotator Agreement for the Harvey Corpus

Calculating agreement between BIO-style annotations is typically done using an f-score

as described in Section 2.2.4. The reason for calculating agreement between text spans is

the very high number of possible annotation borders, even if borders can only be between

tokens. One of the shortcomings of using the BIO f-score is that it is not forgiving towards

partial matches. Given the sparsity of the data it was important to come up with a more

relaxed metric.

The scoring definitions for the NER evaluation at the seventh Message Understanding

Conference (MUC-7) are very similar to what was later suggested by Hripcsak and Roth-

schild (2005) for calculating inter-annotator agreement (see Section 2.2) — one annotator

being assumed as the gold standard, and the other as the test output. While Hripcsak and

Rothschild give a mathematical justification of why it is possible to use the f-score to cal-

culate inter-annotator agreement, the MUC-7 scoring instructions give a better breakdown

of how that should be implemented. Their approach gives perhaps the clearest perspec-

tive on calculating inter-annotator agreement, but with a small correction in how partial

matches are treated. The guidelines take account of the possible need to include partial

matches in the calculation, although they do not actually do that in their evaluation —

that is they are either assumed to be part of the incorrect matches or discarded.

Five of the MUC-7 counting categories involved in the precision and recall calculation

were used (see the full list of categories in Table C.1): correct, incorrect, partial,

spurious, and missing. To translate the meaning of these categories to inter-annotator

agreement, one annotator is assumed to be the “evaluated system” and the other the “gold

standard”. Given that assumption, there are two aspects of an annotation that need to

match the gold standard in order for it to be correct: the annotation category and the

annotation word span. Naturally, annotations that match both are considered correct,

but not all of the rest are considered incorrect. Annotations that have the same annota-



u 76 U

tion category, but only partially matching word spans are considered partial only if one

of the word spans fully contains the other as in the two different annotations of the door

in Figure 3.1. Note that annotations which partially overlap with the gold standard are

considered incorrect, in addition to annotations that do not match the category of their

gold standard counterpart, for example, city bus and bus driver in Figure 3.1. Annotations

by the “evaluated system” annotator which were not annotated by the “gold standard”

annotator are considered spurious. Finally, the annotations which were made only by the

gold standard annotator are considered missing.

Figure 3.1: Two different annotations of the same text

Precision and recall are defined by the following two equations:

precision =
correct

cor + inc + par + spu (3.1a)

recall =
cor

cor + inc + par + mis (3.1b)

Even though the definition of syntactic chunks can be strict about their boundaries,

semantic entities such as symptoms often cannot be strictly defined, which leaves room

for ambiguity and disagreement. Therefore, it is important to compute not only a strict

conservative measure of agreement such as the ones defined in Equations 3.1, but also a

flexible relaxed measure that acknowledges the cases where the annotators came close to

fully agreeing. A second, relaxed form of precision and recall are calculated as well, treating

the partial category as correct:

precisionR =
cor + par

cor + inc + par + spu (3.2a)

recallR =
cor + par

cor + inc + par + mis (3.2b)
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Another point in favour of having a relaxed measure is that the strict measure does

not account for the way the final version of the data is produced. One can ignore the

disagreement items, use a voting system in the case of more than two annotators, or use

what is the common practice in the clinical NLP field, a third annotator (adjudicator) who

ultimately resolves the cases of disagreement (Alnazzawi et al., 2014; Sun et al., 2013a;

Uzuner, 2009). Using an adjudicator does not make the final data perfect, but it certainly

improves its reliability. It is not clear how to fairly quantify that improvement, but if

we have to pick the cases with the greatest chance of improvement, they would be the

near matches of the partial category. Therefore it makes sense to present an agreement

measure that accounts for that potential.

3.2.2 Annotation Scheme

The greatest challenge in the initial design of the annotation scheme was to find the

appropriate balance between encoding enough information to support further research,

and achieving clarity, simplicity, and conciseness in the guidelines. The annotation scheme

had to capture as much syntactic structure as possible, while not “inventing” elements

that were not there in order to create canonical structures. Adopting chunks as the main

units of annotation was a logical solution, as Abney (1991) defines them as “the parse

trees that are left behind after we have unattached problematic elements.” In other words,

chunking trades the levels of the parse tree closer to the root (the longer range relations)

for better quality in the levels closer to the leaves (shorter range relations). But while

chunking sacrifices information in standard grammatical text, it is appropriate for clinical

notes because there is less tree structure to be lost.

Unfortunately there are few papers on chunking annotation. The only available compre-

hensive chunking guidelines seem to be those presented by Bharati et al. (2006); however,

their design was targeted at Indian languages and annotators with a linguistic background,

which made them unsuitable for the purposes of this thesis. A more popular approach to

chunking, or shallow parsing, is the pruning of full parse trees, as suggested by Abney

(1991). The CoNLL-2000 chunking challenge (Tjong Kim Sang and Buchholz, 2000) used

this approach, trimming down a subset of the Penn Treebank (Marcus et al., 1993) to

chunks using a pattern-matching rule-based script. Given the absence of similar prior
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work a new annotation scheme was developed along with a set of corresponding annota-

tion guidelines taking into account the telegraphic language style and many omitted words

in the data. The background of the annotators was also taken into consideration, as they

were expected to be native English speakers, but with limited understanding of linguistic

theory and terminology such as parts of speech and syntax.

After preliminary discussions, an initial annotation scheme was produced and applied

to a few records to enable any problems and possible improvements to be identified. The

initial set of chunk types comprised noun phrase chunks (NPs), adjectival phrase chunks

(APs), main verbs (MVs), and prepositional phrase chunks (PPs). Several alterations to

the set of annotation types were made in order to make them clearer and simplify the task.

Base noun phrase chunks were introduced because they allowed more flexible analysis

than full noun phrases. Prepositional phrase chunks were excluded as many of them can

be reliably recognised using pattern matching on top of NPs. The AP definition was

altered to include only comparative expressions and predicative expressions such as brown

and better in My dog is brown and Patient’s tummy feels better.

On another note, producing language resources such as the Harvey Corpus requires

significant amounts of money, time, and labour. This motivated looking for further useful

annotation types that could be added to the scheme in order to make the annotation

process more cost effective. Four additional types of semantic annotation, similar to what

is commonly referred to as Named Entities (NE), were introduced as they were thought

likely to be useful in future research. The following entity types were added: quantitative

expressions (QE), temporal expressions (TE), locative expressions (LE) and on examination

expressions (OE).

Quantity, frequency, and time of occurrence are important additional pieces of informa-

tion not only for symptoms and diseases, but also for drug prescription and administration.

Such information may contribute to symptom and disease recognition, but it is also useful

for healthcare related research, such as studying drug side effects. Quantitative expressions

cover all forms of the various quantities recorded in the data, such as pulse 90, 20ml, etc.

They should not be mistaken for identification numbers or any other numbers not signi-

fying quantities. The only quantities that are not annotated as QEs are units of time, e.g.

1h. Temporal expressions are defined as words, phrases or clauses that contain information

related to time. They can manifest as a reference to a specific moment in time (in two
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days), the duration of an event (for two hours), or an event’s frequency (twice a day).

Even though using TimeML for clinical text was popularised with the last i2b2 challenge

(Sun et al., 2013a), using it for this annotation enterprise would have overcomplicated

the annotation scheme given that the corpus would not contain any connections between

the records. Location is also an important aspect of the information contained in clinical

text. The location of the patient encounter (home vs. clinic) might be important, as well

as the locus of a symptom (joint pain) or a disease (lung cancer). Locative expressions

were introduced to mark these two types of location in the corpus. Finally, there are a

number of expressions, such as o/e, that mark the border between patient narrative and

the GP’s train of thought, called on examination expressions. The ability to recognise such

markers could provide contextual information. For example, speculative diagnoses before

the marker are likely to be associated with the patient and after the marker with the GP.

Syntactic chunks and semantic entities were considered to be two separate almost inde-

pendent groups of annotations, which were bound to co-occur in some cases. Therefore,

a set of rules governing such co-occurrences needed to be established. The following rule

was introduced to ensure that no annotation embedding was done within the same tagset:

1. Rule of structure simplicity: no chunk annotation can be embedded in another

chunk annotation, and no semantic entity annotation can be embedded in another

semantic entity annotation.

While the first rule does preclude embedding annotations of the same type (syntactic and

semantic), it doesn’t do so for annotations of different types. Additionally, it was assumed

that all annotations should be representable as syntactic constituents, and therefore if

their boundaries overlap, one of them must contain the other. If this is not the case, at

least one of them surely is not a well-formed syntactic constituent. The following rule was

introduced in order to reflect this assumption:

2. Rule of compatibility: annotation embedding may occur only when the annotation

borders coincide or when one of the annotations is inside the other (inclusive border

indices).

Figure 3.2 illustrates correct and incorrect use of embedded annotations according to the

rules defined above. The first sentence illustrates a contradiction to the rule of simplicity:
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an AP is embedded in an NP, and a QE in a TE. The embedded annotations of the

second sentence partially overlap each other without any of them fully containing another

annotation. The annotations in the third sentence show the correct way of embedding,

complying with both rules.

Figure 3.2: Examples illustrating correct (line three) and incorrect (lines one and two) use of em-
bedded annotations.

3.2.3 Annotation Guidelines

A document was developed (available in Appendix A) to describe the annotation types

and to explain how difficult cases should be treated, to ensure consistency. The goal was

to write the document as a training manual, while including enough examples so that it

could be used as a reference during annotation. It was meant to address the expected

lack of linguistic knowledge of the annotators by giving a short practical introduction to

English grammar2.

The guidelines cover three main topics. After a short introduction to the project goals

and expectations, the first part introduces the reader to the basics of grammar. It de-

scribes the concepts of phrases and parts of speech, concentrating on verbs, NPs, and APs

in particular. The main purpose of this section is to define the basic concepts used in the

rest of the guidelines thus allowing the training of annotators without any linguistic back-

ground. The second part of the guidelines provides detailed definitions of the annotation

chunks and expressions, along with examples and special cases that can be used as a quick

2 Some of the linguistic theory and explanations were simplified in order to make them more accessible to
annotators without a linguistic background; as a result the explanations do not completely comply with
conventional linguistic theory.
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reference manual during annotation. The last part of the guidelines helps to increase the

quality and consistency of the produced annotation by giving practical advice on some

common issues and detailed instructions on how to handle particular situations — they

urge the annotators to be confident in their opinion, while not annotating text they do

not understand. The annotators are also encouraged to consider the possible content of

redacted text in their analysis, and to annotate acronyms and abbreviations whenever they

can be identified as chunks or expressions. Key issues such as punctuation, conjunctions,

and embedding of annotation are also discussed in the final part of the guidelines.

Figure 3.3: Brat annotation showing labelled spans

The guidelines also include a short introduction to the Brat annotation platform. Brat

allows the annotators to work with a web-based interface from a remote location (see

Figure 3.3 for a screenshot of part of the annotation window), while preventing them from

downloading any of the data. Finally, the guidelines describe the adjudication process and

the role of the third annotator, which follows the example of Roberts et al. (2008) in

restricting their duties to resolving annotation conflicts without adding or removing any

information. The annotators are considered to agree when both of them have provided

the same borders and tag for an annotation. In cases where only one annotation has been

provided, it is considered to be correct as it is the only one available. The judge should

intervene only in cases where candidate annotations overlap, using their own judgement

to select the better annotation.
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3.2.4 Refinement

After the guideline development and refinement process, following Roberts et al. (2008),

an iterative process was set up going through annotation, evaluation, and refinement

stages. The plan was to send out small batches of 25 to 50 records to the annotators

and analyse their results to improve the guidelines to a sufficient level. The aim was

to create a set of guidelines that would allow anyone to learn and produce reasonable

quality annotations with minimal in-person training. Such training was avoided initially

in favour of independent self-training, because it was believed that teaching by example

might prevent the annotators from learning the appropriate linguistic generalisations.

The two domain experts (referred to below as annotators A and B) annotated fifty

records remotely over the course of two weeks during the first annotation round. The

agreement achieved only 35 f-score, which is the lowest that was ever measured through-

out the experiments. An error analysis identified a few basic problems with the guidelines,

including an ambiguity in the definitions of NPs and APs, which led to a great number

of errors as they comprise a dominant part of the annotations. The two annotation types

needed to be made more clearly distinguishable from one another. At this point the basic

grammar section was simplified, a definition of gerunds was added, and on-examination

expressions were clearly redefined as markers between sections. The error analysis con-

clusions were also confirmed by feedback from the annotators. They suggested that the

examples in the guidelines should be improved and expanded. This prompted the creation

of an interactive tutorial using the Brat platform to show definitions of all annotations

with made-up examples, while asking the annotators to test their skills and compare them

to a solution key. During this first refinement round very little was changed regarding the

definitions of semantic entity annotations. The annotators did not feel confident in creat-

ing embedded annotations, and so annotated semantic entities only sporadically, which

resulted in extremely low agreement in that category.

The updated guidelines led to significantly better results in the second annotation batch.

The agreement in all chunk categories and the on-examination expression improved, as well

as overall agreement f-score, which reached 43. However, there were considerably more

instances of the other expression annotations, which decreased agreement in those specific

categories even more.
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In order to gather more feedback from the annotators, a workshop on the use of the

guidelines was organised before the second refinement stage. The annotators were engaged

in a series of discussions about each annotation type, stressing the relevant grammar points

using non-medical examples and attempting to lead them to a correct understanding of

the annotation through asking the right questions.

During the workshop it became obvious that the guidelines needed to explain the dif-

ferent roles of participles because the annotators experienced difficulty in distinguishing

passive voice from adjectives, and continuous verb forms from gerunds. They also contin-

ued to avoid embedding different types of annotations, because the embedding rules were

not clearly explained and illustrated by examples in the guidelines.

The third annotation batch had a steady overall improvement to 50 agreement f-score in

all categories except APs. The APs continued to be a confusing concept for the annotators,

so they were redefined to be as simple as possible, and an extensive range of examples

was added. It was also noted that even though certain aspects of the annotation improved

and became more consistent, others worsened significantly in a way that could not be

attributed to an ambiguity or lack of information in the guidelines. This showed that

there must be another reason behind the errors, or at least a big part of them. The Brat

platform log showed that the annotators worked on small 5-10 record subsets at a time,

with breaks of at least a day between them. This confirmed a suspicion that the annotators

were not fully concentrating when doing parts of the annotation, which often made them

inconsistent. It became clear that it would be difficult to preemptively list all possible

wrong interpretations of the guidelines and adjust the guidelines accordingly or warn the

annotators about them. Thus even though the IAA results were improving, a change of

training approach was required. It was decided that the annotation scheme and guidelines

had reached a stable level and any further efforts should focus on setting up a productive

environment for the annotation process.

3.2.5 Annotator Training

The observations made during the first three annotation rounds suggested that the context

of the annotation process could be just as important as the training instructions. The

annotators had always been advised to work on as many records as possible in a single
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session, but during the first three batches they did not follow that advice, which resulted

in many short annotation sessions with low consistency. Another observation, made by the

annotators themselves, suggested that their understanding of the annotation deteriorates

over time, for example during the two-week gap between the second and third annotation

batches. They also consistently found that the first few records in every session would take

them more than the usual time and effort.

These issues were addressed through setting up the annotation sessions in a university

computer lab rather than at home, with the author of this thesis present to answer ques-

tions, which were restricted to the interpretation of the guidelines and not about their

application in a particular instance. The new setup aimed to increase annotator concen-

tration, while also introducing some training into the process by making them generalise

their questions in order to receive answers. A week before the fourth annotation round, a

short tutorial was organised to refresh their skills and to address some of the error patterns

from the previous annotation rounds. The new annotation strategy resulted in a jump in

the overall agreement to 76 f-score, and a general increase in all separate categories, most

notably in the chunks. Three out of the next four annotation sessions yielded similar results

within 5 base points (see Figure 3.4), which indicated that the annotators had achieved a

sufficient level of consistency to start producing annotation for the corpus.
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Figure 3.4: Inter-annotator agreement during the training period

The training of the third annotator (referred to below as annotator C) started when

annotators A and B had almost completed their training. The selected domain expert was
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given a short introduction to the project and the guidelines before being assigned the first

annotation batch. The annotation quality of the first batch appeared encouraging although

it was hard to evaluate it using IAA as the annotation quality of the other annotators was

low at the time.

After the first batch, annotator C was given two more annotation rounds with feedback

and took part in a workshop along with the other annotators at the end of the training

phase.

Strict Relaxed

Precision Recall f-score Precision Recall f-score

chunks 0.65 0.64 65 0.82 0.80 81

entities 0.50 0.56 53 0.69 0.78 73

all 0.57 0.57 57 0.71 0.71 71

Table 3.1: IAA between annotators C and D on their training annotation batches. The results in
all are calculated as microaverages.

Unfortunately annotator A exited the project before its completion for personal reasons

and due to scheduling issues was replaced by annotator C for the last three annotation

batches of the corpus (see Figure 3.6). A fourth annotator (annotator D) was trained to

both annotate and adjudicate as was done with annotator C, although a slightly more

hands-on approach with more detailed error feedback was used. Table 3.1 shows the IAA

between C and D during their training period. The results are much higher than what was

achieved by A and B in the development stage, but they are also lower than their results

after the guidelines were completed (see Figure 3.4).

Table 3.2 presents the pairwise IAA results of all annotators on a small dataset (60

records) which was the only part of the data annotated by four of the annotators. The

data is the completed part of the last batch A worked on (also completed by B), which

is also the first batch C annotated. It was also purposefully chosen as the data for the

final training of D. None of the annotators had seen the data before they annotated it.

While still the lowest score, the agreement between C and D has significantly improved

after training, and in fact they score better when paired with the other annotators. The

complete agreement between A and C may seem odd, but it can be explained by the fact
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that there are only 15 semantic entities in the dataset. Such a low density is not unusual

for the whole corpus, as is shown in Section 3.3.3.

Chunks Entities
AB CD AC BC AD BD AB CD AC BC AD BD

PrS 0.86 0.82 0.90 0.81 0.86 0.85 0.79 0.60 1 0.79 0.60 0.50
ReS 0.84 0.75 0.91 0.84 0.78 0.78 0.73 0.90 1 0.73 0.90 0.70
F1 S 85 78 90 82 82 82 76 72 100 76 72 58

PrR 0.90 0.92 0.90 0.84 0.94 0.92 0.79 0.67 1 0.79 0.67 0.50
ReR 0.88 0.84 0.92 0.87 0.85 0.84 0.73 1 1 0.73 1 0.70
F1 R 89 88 91 86 90 88 76 80 100 76 80 58

Table 3.2: Pairwise IAA between all annotators. The S and R subscripts stand for strict and relaxed
agreement. Columns represent annotator pairs denoted by their letters.

3.3 the harvey corpus

The Harvey Corpus is a collection of linguistically annotated de-identified clinical text.

The data consists of 750 primary care patient examination notes (around 17,656 words,

23,969 tokens) with three layers of linguistic annotation. The first layer contains part-of-

speech tags automatically assigned by cTAKES (Savova et al., 2010). The second and the

third layers consist of manually annotated syntactic chunks and semantic entities. The

rest of this section provides a description of the data selection process (Section 3.3.1), a

more detailed explanation of the text processing and data manipulation that produced a

single coherent data structure (Section 3.3.2), and an analysis of the annotation statistics

(Section 3.3.3).

3.3.1 Data Selection

The Harvey Corpus data was randomly sampled from two datasets of GPRD data pooled

together. The datasets were compiled for previous PREP studies, which focused on patients

diagnosed with ovarian cancer (Koeling et al., 2011a,b; Carroll et al., 2012) and rheumatoid

arthritis (Nicholson et al., 2013; Ford et al., 2013, 2015). The data included the records



u 87 U

of 344 ovarian cancer patients and 6,387 patients with rheumatoid arthritis diagnosed

between 1/6/2002 and 31/5/2007, and between 1/1/2005 and 31/12/2008 respectively.

The data included the records of each of the selected patients for one year before the

diagnosis and two weeks after.

These samples were compiled by selecting a number of patients with the relevant di-

agnosis and retrieving all their records for the preceding year. Therefore, even though

the Harvey source data has some diversity, it is not representative of the entire GPRD.

Additionally, before the random selection, the data was filtered to remove all notes under

five tokens, notes containing only test results or image attachments, and communication

with specialists. The latter records were excluded because the language of letters is quite

formal and detailed, which makes it completely different from the language of GP-written

notes.

3.3.2 Data Assembly

The Harvey Corpus consists of a set of records, each about a patient encounter. Each

record consists of a Read code term, followed by a sequence of tokens. The records were

tokenised in two stages – before and after the annotation phrase. The first stage used

simple, conservative rules to tokenise regular use of punctuation, while the second stage

involved tokenisation rules that were more specific to the patterns in the text. The second

stage also integrated information from the manual annotation layers to identify additional

token borders. The final version of the corpus contained 750 records, 23,969 tokens, and

11,290 annotations.

The POS annotation layer was generated using the cTAKES system (Savova et al., 2010).

This system was chosen because clinical text was used to train its models. The choice was

further supported by the observation that the model correctly tags some idiosyncratic

medical abbreviations such as c/o (complains of). Finally, syntactic chunks and semantic

entities were manually annotated as described in Section 3.2.
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3.3.3 Data Analysis

Compared to well-known clinical and biomedical corpora, the Harvey Corpus is quite

small (see Table D.3), but it is comparable in size to the corpora of clinical text that

have been linguistically annotated (Pakhomov et al., 2004; Fan et al., 2011, 2013). Table

3.4 shows annotation counts and tokens per annotation. On average, semantic entities are

longer than chunks, which is to be expected from their definitions. QEs normally contain a

quantity and a unit of measurement; TEs are very variable, ranging from very short jargon

expressions such as 2/7 (meaning two days), to full adjunct constructions like a month

before cancer diagnosis; and OEs are dominated by the three character abbreviation O/E.

Only LEs tend towards a single token average, because they typically occur as modifiers to

a head noun in compound nouns such as abdomen pain, or abbreviated in one token – ULQ

(upper left quadrant). Syntactic chunks tend to be short and frequent, as a consequence of

the telegraphic nature of the notes. The average number of tokens per chunk is below 1.5,

which is indicative of a very large proportion of single token chunk annotations. While this

is to be expected from MVs and APs, the frequency and brevity of NPs certainly reflects

the qualities of this kind of clinical language.

Chunk NP MV AP CHs TE LE QE OE SEs All

PrS 0.87 0.89 0.68 0.85 0.77 0.65 0.84 0.95 0.74 0.83
ReS 0.87 0.89 0.78 0.87 0.70 0.63 0.65 0.96 0.68 0.84
F1 S 87 89 73 86 74 64 73 95 71 84

PrR 0.93 0.90 0.73 0.90 0.91 0.74 0.90 0.96 0.84 0.89
ReR 0.93 0.90 0.84 0.92 0.83 0.72 0.69 0.97 0.77 0.89
F1 R 93 90 78 91 87 73 78 97 80 89

Table 3.3: Harvey Corpus Statistics: strict and relaxed inter-annotator agreement measured as
f-score. The performance for the two groups, chunks (CHs) and semantic entities (SEs),
was measured using micro-averaging.

Another aspect of the data that highlights the gap between the frequency of NPs and

the other annotation types is the number of records with more than five occurrences of a

single annotation type. The figures in Table 3.4 suggest that only NPs and MVs are likely
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to occur more than 5 times in a single record. This is confirmed in Figure 3.5 which shows

the number of records with the number of each type of annotation.

The inter-annotator agreement shows a continuation of the positive trend from the

training stage across the nine batches into which the corpus was divided for the annotation

process (see Figure 3.6). The relatively large difference between the strict and relaxed

agreement scores for most annotation types (5 percentage points on average, see Table

3.3) shows that a significant amount of the conflicting annotation could be overcome with

minimal intervention during the adjudication process. This provides further evidence of

the good quality of the final corpus annotation. The agreement improvement varies from

less than 1% (OEs) to over 13% (TEs) depending on the characteristics of the annotation

types. Main verbs are much less prone to chunk boundary disagreement, because in most

cases they are a single word. On the other hand, the boundaries of temporal expressions

could be difficult to identify with confidence in more complex cases such as periods of time

(e.g. more than six months).

(a) (b)

Figure 3.5: Distributions of annotations by annotation type: chunks (a) and semantic entities (b).

Chunk NP MV AP CHs TE LE QE OE SEs All

Count 6,304 2,613 893 9,810 605 481 321 73 1,480 11,290
Tok/Ann 1.61 1.00 1.18 1.41 1.66 1.34 1.49 1.13 1.49 1.52
Ann/Rec 8.40 3.48 1.19 13.08 0.81 0.64 0.43 0.10 1.97 15.05

Table 3.4: Harvey Corpus Statistics: annotation counts, average tokens per annotation, and average
annotations per record
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Figure 3.6: Inter-annotator agreement for the nine annotation batches of the corpus, in the order
they were annotated.

3.3.4 Corpus Availability

The data that the Harvey Corpus was drawn from was obtained as part of the Patient

Records Enhancement Programme under a licence from the GPRD. Currently it is not

permitted to share any of the data with anyone not covered by this licence agreement.

However, the PREP team is working towards public release of the data. Meanwhile the

annotation guidelines as well as the annotation (without the text) are available for down-

load on GitHub3.

3.3.5 Additional Data

The annotator training process generated a considerable amount of annotated data. Most

of those annotations cannot be considered of good quality. However, the ones created in

the later stages of training are comparable with the quality of the corpus, except for the

way they were adjudicated. But since they were of generally good quality, it was decided

that they should be included in the corpus.

The first of these datasets was created during an annotation workshop organised for

the first three annotators. Each of them annotated thirty GP notes, a third of the dataset

(ninety notes, 728 tokens), and then passed them on for review to the next annotator. In

this way, the data was annotated once and reviewed twice. During the review the annota-

3 https://github.com/savkov/harvey-corpus

https://github.com/savkov/harvey-corpus
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tors were allowed to change the annotation in any way, and were given the opportunity

to discuss changes with their colleagues.

The second dataset included in the corpus was generated in the final stages of the train-

ing of the last annotator, later used as an adjudicator. Fifty GP notes (2,073 tokens) were

annotated by the medical student, and then the annotation was discussed and improved

in cooperation with a computational linguistics expert (the author of this thesis).

Chunk NP MV AP CHs TE LE QE OE SEs All

Count 7,234 2,915 1,034 11,183 741 612 369 97 1819 13,002
Tok/Ann 1.64 1.02 1.20 1.44 1.68 1.41 1.51 1.13 1.53 1.45
Ann/Rec 8.13 3.28 1.16 12.57 0.83 0.69 0.41 0.11 2.04 14.61

Table 3.5: Extended Harvey Corpus Statistics: annotation counts, average tokens per annotation,
and average annotations per record

Table 3.5 shows a version of Table 3.4 updated with the additional data described above.

3.4 extrinsic evaluation

The lack of an established quality metric for annotated corpora makes it difficult to com-

pare and evaluate them. Therefore, corpora are often extrinsically evaluated through the

impact they make on an application task. Following this methodology, experiments were

set up to evaluate the performance of two statistical models trained on Harvey Corpus

data: one for chunking, and one for entity recognition. A comparison experiment was

also set up using a randomly selected dataset (of size comparable to the Harvey Corpus)

extracted from the Penn Treebank chunk data from CoNLL-2000. YamCha (Kudo and

Matsumoto, 2001, 2003), a widely-used SVM-based sequential tagger, was used to gen-

erate the models in all three experiments. The first two experiments aimed to establish

if the corpus provides enough training data to achieve adequate results for the tasks of

syntactic chunking and entity recognition. The third experiment aimed to compare the

learning rates and the difference in performance between the Harvey data chunking model
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and one trained on edited text. The experiments with Harvey data were based on a 90:10

split of the 750 annotated records into a training and validation set.

(a) chunking (b) semantic entity recognition

Figure 3.7: 500-fold bootstrapping learning curves generated using YamCha. Shaded regions indi-
cate 95% confidence intervals. The subsampling process used for the bootstrapping was
always sampled from the same training set, and the evaluation was always performed
on the same validation set using the evaluation script from CoNLL-2000.

Figure 3.7 shows the accuracy of the models estimated using bootstrapping (Efron,

1979, 1983; Efron and Tibshirani, 1997) as the training data size increases. Instead of

repeatedly analysing disjoint subsets of the data, as in cross-validation, bootstrapping

repeatedly analyses sub-samples. Each sub-sample is a random sample with replacement

from the full sample. The number of used sub-samples typically should reach the number

of data points but in some cases that is not necessary depending on the task. Each data

point on the curves represents the mean f-score of five hundred repeated evaluations using

bootstrapping. As a result, the average standard error of the mean is low: 0.14 base points

for the chunks curve, and 0.30 for the semantic entities curve.

The monotonically increasing learning curve of the Harvey Corpus chunking, and the

decreasing standard deviation suggest that the corpus contains consistent chunking anno-

tation, supporting a stable learning process. The increasing curve trend indicates that more

training data should improve the performance, but it is difficult to predict to what extent.

The gradient of the Harvey Corpus learning curve is very similar to that of a model trained

on the Wall Street Journal, but the absolute performance is much lower. The experiment

did not try to adjust the training process in any way, but used the standard YamCha fea-

ture set (Kudo and Matsumoto, 2001) and evaluation. Improving the quality of the POS

tags of the Harvey Corpus and tuning the features may provide performance improvement.
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Note that the model used automatically generated POS tags using the cTAKES model

(Savova et al., 2010). It is also likely that the proportion of unknown tokens encountered

by the clinical text model is much higher than that of the Penn Treebank model, which

leaves more room for improvement through techniques tackling that issue.

On the other hand, the entity recognition model has a steeper learning curve, but a much

lower final performance of 0.43 f-score. However, these results are promising, because the

distribution of entity annotation is less balanced and much less frequent than that of the

syntactic chunks, which is more uniform and covers about 60% of all tokens (see Table 3.4

and Figure 3.5). A closer look at the results shows that locative expressions are recognised

with low accuracy, achieving only 25% correctly tagged tokens, as opposed to over 90%

for on-examination expressions and 55% for temporal and quantitative expressions. This

can be explained by the very large vocabulary of the locative expressions, including body

parts and regions expressed in both conversational and medical language style.

3.5 chapter summary

This chapter described the development of a set of annotation guidelines and an annotated

corpus of primary care clinical records consisting of physician-typed free-text notes and

Read codes. It discussed the background, motivation, and data source of the corpus as

well as an evaluation of its annotation quality.

Since the chunk annotations of most established language resources have been automat-

ically generated rather than hand-annotated, the chunk annotation guidelines presented

in this study are without parallel for the English language. They were planned as a self-

sufficient tuition instrument specifically for use by domain experts. They contained enough

easily digestible linguistic knowledge to support the annotation process. Their development

and the annotator training were set up as iterative processes, with annotation accuracy

improving on each iteration. It was found that experience and longer annotation sessions

improves IAA, while long periods of time between annotation sessions result in deteri-

oration. After the training process was complete, inter-annotator agreement reached 86

f-score for annotation of chunks, 71 for semantic entities, and 84 overall. The resulting

parallel annotations of the corpus were combined by a third domain expert resolving the

conflicts with minimal intervention, producing the final version of the Harvey Corpus, con-
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taining 750 records, 23,969 tokens, and 11,290 annotations. The corpus was extrinsically

evaluated using two practical machine learning tasks, showing that its chunk annotation

is consistent and reliable (although the semantic entity annotation is not sufficient for

training an accurate classifier). The experiments showed that performance increases with

more training data and that the learning rate of the chunking classifier is comparable (but

with a lower starting point) to a classifier using data from the CoNLL-2000 data set.

Despite these positive results, there are limitations to the Harvey Corpus: its relatively

small size compared to other clinical text corpora, and lack of other important annotation

layers such as parts of speech. Even though adding more data seems unlikely to increase

chunking accuracy to levels seen with edited text, it is evident from the learning curves

that adding more data will improve accuracy. Addressing other issues, such as POS tagging

errors, should also decrease the chunking error rate, as its imperfect quality could have

a harmful effect on the decisions made by the classifier. However, quantifying that effect

requires a much more detailed analysis of the relation between the two. Such analysis

should also optimise the features of the models for primary care data, as the configuration

used in this study was the optimal YamCha configuration for the CoNLL-2000 data.

While the Harvey Corpus is the first annotated language resource based on UK primary

care text large enough to be used for developing machine learning tools, there are previous

studies on US secondary care data with comparable goals. Both this study and that of

Fan et al. (2013) are essentially aiming to add syntactic information to difficult to process

clinical text, but using different approaches and different data. It is difficult to compare

results as there is free access only to the annotation, but not the textual data of their

study. However, the learning curve suggests that if more data is available the chunking

accuracy may reach 80, which is comparable to the performance of Fan et al.’s constituency

parser. Even so, a fair evaluation would require an extrinsic measurement, such as impact

on symptom identification, since chunking and constituency parsing are evaluated in very

different ways.

In conclusion, the Harvey Corpus provides a shallow parsing gold standard for physician-

typed clinical notes text, which allows the development of accurate tools for syntactic

chunking. The accompanying guidelines are a unique resource that allows annotation of

clinical data to be carried out for future research. The corpus and annotation guidelines
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can support future research in processing this kind of text and could serve as a foundation

layer for annotating medication, symptoms, and diseases.

F 8 f



4
CORE NATURAL LANGUAGE PROCESS ING

This chapter discusses the application of part-of-speech tagging and chunking to primary

care text. The output of these processing steps is a key factor in developing a reliable

processing pipeline, because they are the basis for the most important features used in

higher level tasks such as named entity recognition (NER), and in the case of this thesis —

medical concept recognition.

The experiments described in this chapter follow the previously proposed strategy con-

centrating on developing a machine learning model for chunking of primary care text.

The necessary resources for the full development of a POS model were not available, so a

number of widely used part-of-speech models representing a range of different approaches,

were included in the development process.

The chunking research and associated model presented in this chapter aimed to answer

four questions: 1. how successful are standard models applied without any customisation

to the task (Section 4.1); 2. how well would the available tools and techniques deal with

the challenges of the task at hand if they were optimised for it (Section 4.2); 3. will bespoke

new features improve performance substantially, and which ones exactly, e.g. what data

should be used for word representation features, what type of suffix features work best for

primary care text (Section 4.3); 4. what is the most suitable feature set for the task given

the process may involve different classifiers and part-of-speech annotation (Section 4.4).

4.1 applying existing technology

A natural first step in developing specialised statistical NLP models is evaluating and

analysing the performance of freely available general domain tools and models applicable
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to the task. This is necessary as it should determine the need for a new specialised model,

and the issues with existing technology that should be addressed by such a model. This

section describes the first experiments with Harvey Corpus data, and the limitations of

using models and tools trained on general domain data, or datasets with some similarities

to UK GP notes.

4.1.1 Approximate Evaluation of Part-of-Speech Processing

The idea of annotating the corpus directly with higher level annotation layers without part-

of-speech tags relied on the observation-based conviction that the current state-of-the art

tools are capable of providing an adequate POS processing of the data. The POS tagger

performance could be judged based on two different types of outcomes: the traditional

evaluation against a gold standard, which would require further annotation; or measured

extrinsically as the improvement of the performance of a higher level (chunking or NER)

model evaluated against its respective gold standard. While the former method is much

more reliable and informative than the latter, as discussed in Chapter 3, it requires a

significant effort into creating an evaluation set of good quality. Perhaps the best way

to approach part-of-speech evaluation in this situation is to use extrinsic methods as the

main measurement. At the same time, it is a good idea to produce a small POS annotated

subset of the Harvey Corpus in order to get a sense of the absolute performance rate, and

to a certain extent validate the performance assumptions.

The author of this thesis annotated 100 records (2,077 tokens) following the Penn Tree-

bank annotation guidelines (Santorini, 1990). A range of freely available part-of-speech

tagging models were selected for an evaluation experiment on that dataset. The selection

was made so that it represents a wide range of approaches to the task, while using es-

tablished tools and models. The evaluation process over the small dataset showed that

the models achieved f-score ranging between the 70s and the lower 80s (see Table 4.1). It

seemed only natural that the best performing taggers are cTAKES (Savova et al., 2010),

which is the only one with training set containing clinical text, GENIA (Kulick et al.,

2004a; Tsuruoka et al., 2005; Tsuruoka and Tsujii, 2005), which is the state of the art

in processing biomedical literature, and the POS tagger from the Stanford NLP toolkit

(Toutanova et al., 2003).
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Model Accuracy

ARKNPS 75.43%
ARKRitter 75.72%
cTAKES 82.40%
GENIA 80.61%
Stanford 80.69%
SVMTool 76.41%
Wapiti 73.37%

Table 4.1: Accuracy of POS tagging models evaluated on 100 manually annotated records from the
Harvey Corpus.

The ARK tagger (Gimpel et al., 2011; Owoputi et al., 2013) models (one trained on

the NPS Chatroom Conversations corpus, and one trained on the corpus presented by

Ritter et al. 20101) were also included in the experiment in the expectation that the

robustness needed for processing tweets could be of use when processing Harvey Corpus

text. It is interesting that their results are comparable to those of the SVMTool (Giménez

and Màrquez, 2004) and Wapiti (Lavergne et al., 2010) models. However, the difference in

accuracy between the Stanford model and the other models trained on the Penn Treebank

(Wapiti and SVMTool) seems too large given that they were trained on the same data

with slightly differing feature sets, and the fact that the structured classifier (Wapiti)

does not have the advantage. Only the Stanford model uses word representation features

(distributional similarity word clustering based on ”POS induction” Clark, 2013), but even

so it seems unlikely that it should be the sole reason given that the thesaurus, from which

the features were extracted, was also generated from the Penn Treebank.

The models can be clustered into two groups based on their accuracy. The differ-

ence between the groups is quite large, but some of those within the groups were quite

small. There are a number of ways to test if such differences are statistically significant.

Computationally-intensive randomisation tests are a type of stratified shuffling (Noreen,

1989, Chapter 2) similar to the matched-pairs t-test (Cohen, 1995, Section 5.3.2). Under

the null hypothesis of this method the two compared techniques should be the same, so any

output that comes from one of them could just as well have come from the other. Therefore,

if the paired outputs are shuffled, very little should change in the overall evaluation metric.

If the process is repeated for all possible ways that can be done, the results can be used to

1 Throughout this thesis these corpora are referred to as the NPS corpus and the Ritter corpus.
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estimate the probability of a difference at least as large as the initial difference between

the methods occurring by chance. If that probability is found to be too small, then the

null hypothesis is rejected. Yeh (2000) suggest that such a way of computing the test is

tractable for items n < 20, as the total number of iterations should be 2n (1,048,576).

For the case of n > 20 an approximation was suggested where each shuffle is performed

with random assignments. That is all output items of the compared methods are iterated

through, tossing a coin to decide if they should be swapped, and repeating that 220 times.

cTAKES GENIA NPC Ritter Stanford SVMTool

GENIA P<0.092 -
NPC P<0.001 P<0.001 -
Ritter P<0.001 P<0.001 P<0.470 -
Stanford P<0.089 P<0.791 P<0.002 P<0.001 -
SVMTool P<0.001 P<0.001 P<0.972 P<0.609 P<0.001 -
Wapiti P<0.001 P<0.001 P<0.079 P<0.187 P<0.001 P<0.023

Table 4.2: Statistical significance between pairs of POS models evaluated on Harvey Corpus data.
P-values were calculated using approximate randomisation test.

The p-values in Table 4.2 were calculated using approximate randomisation tests with

one million repetitions. The table shows that only model pairs from different clusters have

achieved significant difference in their accuracy.

The accuracy of the models presented in this section confirms that part-of-speech taggers

perform at a level much lower than their general domain achievements (e.g. on the Wall

Street Journal part of the Penn Treebank). However, whether that level is acceptable

for developing a chunking model, which is the main focus of this chapter, is difficult to

determine without experimentation.

4.1.2 Approximate Evaluation of Existing Chunking Models

A fully reliable evaluation of the chunking models trained on other resources is unfortu-

nately impossible due to the annotation scheme used in the Harvey Corpus. The CoNLL-

2000 scheme includes prepositional phrase chunks, and the noun phrase chunks and verb

chunks are defined differently. However, since the definition of NP chunks used in Harvey
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is base NPs, which is a subset of the NP chunks in the CoNLL-2000 dataset, it was worth

testing the accuracy of established models trained on that dataset at least in that isolated

case. Even though the tests would not be fair from multiple perspectives (different number

of tags in each tagset; very different distribution of the outside tag), it was important to

investigate whether existing chunking models could be used as a realistic baseline for mod-

els optimised specifically for the Harvey Corpus data. In this experiment, existing chunking

models were used to annotate the Harvey Corpus, and their output was compared to the

gold standard annotation. All models used POS tag features, which were obtained using

the cTAKES POS tagging model already used for the experiments in Section 3.4.

The evaluation was conducted by transforming all chunk annotations other than NPs

into outside tags in both the test and gold standard outputs, and then calculating preci-

sion and recall using the CoNLL-2000 evaluation script. The left results column in Table

4.3 shows the f-score of four chunking tools, ranging from low to the mid 40s. The GENIA

and cTAKES taggers were selected because of their training data, and the YamCha (Kudo

and Matsumoto, 2003, 2001) and CRF++2 as a representation of structured and binary

prediction algorithms. GENIA shows the best performance by nearly 2 percentage points,

followed by YamCha, and CRF++, which have been developed by the same author. Sur-

prisingly the performance of cTAKES (Savova et al., 2010) in this case is much lower than

GENIA.

Harvey WSJ
All NPs All

GENIA 46.41 n.a. n.a.
YamCha 44.39 47.84 93.91
CRF++ 43.76 46.32 93.83
cTAKES 42.57 n.a. n.a.

Table 4.3: F-scores of the four chunking models on the Harvey Corpus, using the full tagset, or
only the NP annotations, compared to their accuracy measured on the CoNLL-2000 test
set.

A natural improvement of this experiment was to also isolate the NPs in the training

data, i.e. convert all other annotations to outside annotations. Again, an obvious flaw

2 CRF++ is an established CRF-based tool by Taku Kudo. It can be downloaded under the LGPL license
from http://taku910.github.io/crfpp/



u 101 U

of this approach is the “annotation” of many noun phrase chunks as non-chunks, because

they were part of a prepositional phrase chunk. Additionally, this experiment could not

be performed with all available tools for technical reasons: to the best of this author’s

knowledge the publicly available software of the GENIA tagger does not support training

a new model, while the cTAKES tagger was trained on the MED corpus, which was not

available for this study. A significant improvement in the performance of YamCha and

CRF++ were achieved when their training data was manipulated (see Table 4.3).

It is difficult to determine what part of the errors made by the models were caused

by the mismatch of definitions of NPs, and other plausible reasons, such as unknown or

missing words, and ungrammatical constructions. However, the accuracy of the models is

only around half of what they achieve on text similar to their training data, and about

30 base points less than those of the models demonstrated during the extrinsic evaluation

of the Harvey Corpus in Chapter 3. Such a stark difference between models trained on

general and clinical text highlights the need for in-domain training data when processing

primary care text such as that in the Harvey Corpus.

4.1.3 Training Models with Standard Tool Configurations

In the previous two sections it was established that using readily available chunking models

has very low accuracy compared to an in-domain model using a training configuration

(see Chapter 3), while the selected group of POS tagging models achieved f-scores much

lower than their accuracy on text similar to their training data. This section describes an

experiment comparing models trained on the Harvey Corpus using YamCha and CRF++

with their respective best-performance model training configurations. The part-of-speech

annotation plays an important role in forming the feature vectors of machine learning

models, so the experiments were replicated for each of the POS tagging models listed in

Section 4.1.1, and two other models using different tagsets — the POS tagger part of the

RASP parser (Briscoe et al., 2006) and an ARK model using a specific tagset tailored for

tweets (Gimpel et al., 2011). Each model was evaluated using ten-fold cross-validation on

the whole Harvey Corpus.

The results in Table 4.4 show that the effect of POS annotation on chunking performance

is different from what would be expected from the results discussed in Section 4.1.2. The
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YamCha CRF++
Pr Re f-score Pr Re f-score

ARKNPS 75.51 74.34 74.89a 76.02 75.16 75.57c,d

ARKTwitter 76.22 76.23 76.23 76.74 76.15 76.51e

ARKRitter 76.53 74.91 75.68 77.00 75.61 76.32e

cTAKES 75.37 73.66 74.59b 76.11 74.54 75.28
GENIA 73.59 71.54 72.52 74.39 72.76 73.61f

RASP 75.43 73.71 74.62b 76.45 74.84 75.62d,g

Stanford 75.60 74.11 74.79a 76.28 75.27 75.71c,g

SVMTool 74.45 72.76 73.61 75.15 73.58 74.33
Wapiti 74.15 71.57 72.91 74.58 72.62 73.66f

baseline 67.14 60.21 63.53 69.98 65.09 67.34

Table 4.4: Impact of part-of-speech annotation on chunking using various POS models and chunk-
ing configurations. The baseline is trained without POS annotation features. The result
values are the mean outcomes of ten repeated 10-fold cross-validation experiments. Val-
ues with matching superscripts do not differ significantly from one another.

performances of the ARK tagger models are much better than the expectations based on

the previous evaluation, while the GENIA results shift from one of the highest to one of

the lowest. The fact that a model using a simple tweet-bespoke tagset delivers the top

performance on primary care data, suggests that re-training some of the available POS

models with a simple POS tagset may lead to improvements in chunking accuracy.

As the majority of the results are quite close, it is not obvious which differences are

statistically significant. As it cannot be assumed that the population variance of each

sample (set of repeated experiments) is the same, Welch’s t-test (Welch, 1947) was per-

formed on each pair of result averages. The null hypothesis for each test was that the

averages are not significantly different from each other. Using a conservative 0.01 p-value,

that hypothesis was rejected for most of the tested pairs except for ones marked with

matching superscripts in Table 4.4. The tests were also performed using the more relaxed

0.1 p-value finding that two more pairs rejected the null hypothesis. These tests confirmed

that the YamCha model trained with ARKTwitter POS annotation performs significantly

better than all other YamCha models, which supports the suggestion that a simpler POS

tagset might improve chunking. However, in the case of the CRF++ model, the advantage

may not be significant, since there is little difference in accuracy between the model using

tags produced by ARKTwitter, and by ARKRitter.
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Section 4.1.2 showed little difference in the accuracies of the YamCha and CRF++ chunk-

ing models. The series of experiments in this section show that CRF++ consistently achieves

slightly higher results than YamCha. The differences were found significant using Welch’s

t-test on all model pairs using the same POS annotation. This proves that using the fea-

ture sets suitable for the news domain (Penn Treebank), CRF++ performs better than

YamCha. However, at this stage it is not clear if these feature sets are optimal for the data

at hand.

4.2 optimising available chunking models

The evaluation reported in the previous section showed that by simply re-applying the

training process of successful chunking models, we could achieve reasonable accuracy on the

Harvey Corpus. However, these results could be potentially improved through optimising

the machine learning features and hyperparameters, as well as exploring other options. For

example, the chunk representation scheme (the way chunks are broken down into token

level annotations) could have an influence on the results, as well as the type of machine

learning algorithm used in the chunking tools, or the part-of-speech tagset of the training

data.

Most approaches to the analysis of natural language base their processing on the tokens

(words) and other levels of linguistic annotation from the context in which each token

occurs. Normally the final stage of optimising a machine learning system for a particu-

lar problem (or kind of data) involves the fine tuning of these context features and the

algorithm hyperparameters. The tuning process, also referred to as (model) development

stage, may test certain ideas logically motivated by given features of the data, or con-

clusions drawn from an error analysis, but others, e.g. hyperparameters, may simply be

optimised through a trial and error approach.

Considering the potential improvement avenues, a series of experiments aiming at three

potential sources of improvement were conducted. All experiments sought the optimal

configuration of context features and hyperparameters within a reasonably limited search

space. Firstly, as shown above, POS models may have a significant impact on chunking

performance, so the experiments explored a wide range of POS annotation. Nine POS

taggers were used covering various machine learning techniques and types of training data
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Name Algorithm Training Data

ARK CRF ARK tweet dataset
(Owoputi et al., 2013)

ARKNPS CRF NPSChat IRC
(Forsythand and Martell, 2007)

ARKRitter CRF Ritter tweets (Ritter et al., 2010)
cTAKES MaxEnt Mayo Clinic (Pakhomov et al., 2004),

GENIA, PTB
GENIA MEMM WSJ, GENIA, PennBioIE
SVMTool SVM WSJ
Stanford NLP MaxEnt WSJ, PennBioIE, small custom

datasets
Wapiti CRF WSJ

Table 4.5: List of POS tagging models used in the chunking feature optimisation experiments.

(see Table 4.5). Secondly, the differences in performance between SVM-based and CRF-

based chunking models were also explored. Finally, the implications of choosing between

two chunk representation patterns were investigated.

4.2.1 Experimental Setup

Before conducting experiments, it was important to settle on an evaluation scheme to be

used across the whole model development, ensuring that only the final model was tested

on the unseen validation set. Inner cross-validation (Azzalini and Scarpa, 2012) is an

evaluation scheme (see Section 2.3.4) that was used for all model development experiments.

The Harvey Corpus was split into a development set, which was approximately 90% of the

data, and a test set made up of the remaining 10%. Each development experiment uses

cross-validation (with a 90:10 split of the development set) for evaluating different features,

while the final evaluation process (see end of Section 3.4) uses the whole development set

for training and the test set for evaluation.

The main method of optimising the performance of a model feature set in most ex-

periments is searching across all context window sizes and other parameter values of the

feature types (e.g. POS annotation). Due to the high number of feature types, an unre-

stricted search space would have been intractable, so a global restriction on the width of

the context window was imposed during experimentation. There was little preliminary ev-
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idence that a window wider than three tokens in each direction would be helpful, agreeing

with the observation that there is little global structure within each text record.

Hyperparameters were generally not tuned during most of the development experiments

to avoid combinatorial explosion. The intuition was that the process of searching for the

optimal feature vector should precede the tuning process, so the latter is only done at the

end of the development process.

The use of cross-validation during development made the task of testing the significance

of result differences less complicated, because it involved ten repetitions of each evaluation

on different data splits. Then the comparison of the two experiments could be regarded

as a comparison between the means of two groups of repeated measurements. Since the

sample pairs contain only ten observations and their distribution is unknown, the Wilcoxon

signed-rank test, referred from here on simply as the Wilcoxon test (Wilcoxon, 1945), is

the most appropriate choice. The p-value threshold that indicates statistical significance

for the development experiments is set to ⩽0.01.

4.2.2 CRF++ vs. YamCha

Even though the various machine learning algorithms have advantages in different cir-

cumstances and problem settings, it is difficult to single out only one algorithm that will

always deliver top performance. This section compares the two most widely used machine

learning tools for sequential tagging problems: CRF++ and YamCha. Normally, a struc-

tured algorithm such as conditional random fields is expected to have an advantage in

solving sequential tagging problems due to its global optimisation, but each record has

little global structure, which may potentially negate the aforementioned advantage.

To determine the better option, a new feature tuning experiment was set up using both

tools optimising over all supported feature types within a context window of three in

each direction. The results in Table 4.6 confirm that the CRF-based tool achieves better

performance with all considered POS annotations and against the baseline, although not

all differences are statistically significant if a strict 0.01 p-value is assumed.
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Precision Recall F-score
POS c yc c yc c yc p

ARKNPS 77.65 74.84 76.87 73.71 77.26 74.26 0.007
ARKRitter 76.23 73.51 74.19 70.93 75.20 72.20 0.007
ARKTwitter 78.15 75.28 77.40 75.52 77.76 75.40 0.047
cTAKES 77.47 75.00 75.40 73.16 76.42 74.06 0.059
GENIA 76.62 72.77 74.79 70.82 75.68 71.77 0.007
RASP 77.58 74.59 75.83 72.88 76.69 73.72 0.007
Stanford 77.90 75.01 76.59 73.67 77.23 74.33 0.028
SVMTool 76.73 73.83 75.22 72.31 75.97 73.06 0.012
Wapiti 76.04 73.36 74.26 70.70 75.14 72.00 0.022

baseline 71.39 68.06 66.74 62.20 68.98 64.99 0.009

Table 4.6: Comparison between CRF++ (c) and YamCha (yc) chunkers trained on the Harvey Cor-
pus using different POS annotations. The p-values were calculated using the Wilcoxon
test.

4.2.3 Chunk Representation

A chunk is by definition a multi-token entity, so it can be represented with a single label

or entry only using stand-off annotation that refers to its scope with text position indices.

Such a style of annotation is also suitable for representing relations, and it is usually

chosen for corpora with a number of different annotation layers. However, a more suitable

representation for natural language analysis tools that functions on the token level breaks

chunk annotation down into a pattern of token labels, rather than a single chunk label.

The chunk representation pattern BIO, which is most commonly used, stands for begin-

ning, inside, outside. It takes a minimalistic approach to the representation problem in

order to keep the number of labels low. It was introduced by Ramshaw and Marcus (1995)

and later established in the NLP community with the CoNLL-2000 shared task (Tjong

Kim Sang and Buchholz, 2000). Note that for chunking representations the total number

of labels is the product of the chunk types and the set of representation types plus the

outside tag, meaning that for BIO with a set of three chunk types such as the one used

for the Harvey Corpus (NP, MV, AP) there will be seven labels: B-NP, I-NP, B-AP,

I-AP, B-MV, I-MV, and O.
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Alternatively, chunks could be represented using a more fine grained pattern such as

BEISO3, standing for begin, end, inside, single, outside, as was used by Kudo and Mat-

sumoto (2001). Such a pattern naturally increases the cost of learning due to the greater

size of the tagset, and it could be considered unnecessary, because it is deterministically

inter-convertible with the BIO representation pattern. However, it could be useful in cases

where a more fine-grained tagset could pick up more detailed disambiguation information.

For instance, an end tag could be useful for better recognition of boundaries between con-

secutive chunks of the same type. In this case, the BEISO tagset model would consider

the boundary before and after crossing it, while a BIO model would only consider it after.

This difference should return only a small gain with standard edited text, because the

chunk type distribution is more balanced, and punctuation divides ambiguous cases such

as lists of compound nouns. However, the Harvey Corpus is fairly NP-heavy, and contains

many sequences of NP chunks without any punctuation or other markers between them

to indicate their boundaries.

Precision Recall F-score
POS bio beiso bio beiso bio beiso p

ARKNPS 77.65 77.05 76.87 78.29 77.26 77.66 0.445
ARKRitter 76.23 74.52 74.19 75.05 75.20 74.78 0.508
ARKTwitter 78.15 77.21 77.40 78.88 77.76 78.03 0.721
cTAKES 77.47 76.86 75.40 76.82 76.42 76.84 0.678
GENIA 76.62 75.47 74.79 76.43 75.68 75.94 0.646
RASP 77.58 76.21 75.83 76.99 76.69 76.59 0.646
Stanford 77.90 77.20 76.59 78.26 77.23 77.72 0.575
SVMTool 76.64 75.57 75.13 76.60 75.97 76.08 0.959
Wapiti 76.04 74.76 74.26 75.27 75.14 75.01 0.721

baseline 71.39 70.06 66.74 69.31 68.98 69.67 0.285

Table 4.7: Comparison between chunking models using different chunk representation schemes.

The two chunk representations were evaluated in combination with each POS tagger,

and the results in Table 4.7 show that for each POS model there is no significant difference

in chunk f-score between BIO and BEISO representation. Although most of the achieved

3 Sometimes also abbreviated as IOBSE.
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results are in favour of the BEISO representation, given that the BIO representation

has been established as a standard in the field, and the lack of significant difference in

performance, it was decided that further experiments should use BIO.

4.2.4 Result Summary & Discussion

The optimal model configuration in the experiments above uses CRF++ with BIO chunk

representation, inner cross-validation development process, and one of the four POS mod-

els: ARKTwitter, RASP, cTAKES, or Stanford. The SVM-based YamCha was decisively

outperformed by CRF++. Although the BEISO chunk representation configurations had

higher scores in most cases, they were not significantly different from their BIO counter-

parts.

Even though the optimisation experiments described above aimed to be as thorough as

possible, there are certain limitations that prevented the exploration of other interesting

kinds of models. The chunking tools offer only a limited range of essential feature types,

and they lack support for the recently proposed word representation features such as word

clusters and embeddings. Therefore, in order to explore further possible improvements,

experimentation with more flexible tools was required.

4.3 further feature engineering

Drawbacks of the chunking tools used for the experiments in the last section are the lack of

integrated semantic word representation feature capabilities, and the lack of flexibility in

defining new context features. Given that the error rate of the chunking models remained at

a level where one in five chunks is incorrect, it was important that all possible improvement

avenues were pursued. In order to explore the influence of word representation and a

number of less commonly used, yet potentially useful features, a new software tool was

needed. This more flexible tool was used in a series of proof-of-concept experiments to

determine whether the suggested additional features were beneficial to the performance of

chunking models on primary care data.
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The purpose of those experiments was not to find the best possible model using these

features, but to make a quick assessment of their potential. Therefore, they concentrate

on the effects of adding new feature types using the same narrow context window ([-1:0]).

The rest of this section begins with a brief description of a new feature extraction

software package developed as part of this research (Section 4.3.1). Section 4.3.2 explores

the effects of using a simpler tagset. Then a series of commonly used features are tested in

Section 4.3.3. And finally, Section 4.3.4 discusses the use of a number of publicly available

word representation clusters, as well as some newly generated from the Harvey Corpus

and other available primary care text.

4.3.1 CRFSuite Feature Extractor

Existing chunking and POS tagging software tools integrate the extraction of features

from data with the core machine learning algorithm. This integration improves the user-

friendliness, but limits the kinds of information represented in the feature vectors. For

the next set of experiments it was therefore necessary to identify a suitable separate core

machine learning-backed software tool, and implement an interface to a feature extractor,

in order to allow more freedom in how feature vectors are constructed. python-crfsuite4 is

a Python binding for the CRFSuite sequence tagger tool (Okazaki, 2007). It is one of the

fastest CRF tools available (see Figure 4.1).

Figure 4.1: Training speed benchmark comparing CRFSuite to Wapiti and CRF++. Data acquired
from http://www.chokkan.org/software/crfsuite/benchmark.html.

4 python-crfsuite homepage is at https://github.com/tpeng/python-crfsuite

http://www.chokkan.org/software/crfsuite/benchmark.html
https://github.com/tpeng/python-crfsuite
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A new feature extractor with various feature types was implemented to match the

input of the python-crfsuite library5. The feature extraction software was designed to

allow extensibility for further types of features using Python’s ability to pass functions as

objects.

The initially designed features included word representation clustering (plain numbers),

Brown clustering (Brown et al., 1992), word embeddings (Collobert and Weston, 2008;

Huang and Yates, 2009), and a number of binary features, canonicalisation features, and

suffix features.

CRF++ CRFSuite p

ARKNPS 77.26 77.42 0.931
ARKRitter 75.20 75.62 0.104
ARKTwitter 77.76 77.87 0.891
cTAKES 76.42 77.05 0.049
GENIA 75.68 76.05 0.113
RASP 76.69 76.71 0.945
SVMTool 75.97 76.29 0.887
Stanford 77.23 77.44 0.829
Wapiti 75.14 75.28 0.918

baseline 68.98 70.50 0.007

Table 4.8: A comparison between development models built using CRF++ and CRFSuite and the
top feature set for each POS model from the experiments in Section 4.2. The p-value is
calculated using Wilcoxon signed-rank test.

A new experiment was set up to compare the best development performances achieved

using CRF++ models from Section 4.2 to CRFSuite counterparts with the new feature

extractor, but using the same feature sets. The models were evaluated using ten-fold cross-

validation. Table 4.8 compares mean development performance of each CRF++ model with

the respective CRFSuite model, showing that although CRFsuite achieves better scores in

the majority of cases, the differences are not statistically significant for all but the baseline

model comparison. It is therefore justified to use the faster CRFSuite library with a more

flexible feature extractor for the remaining experiments.

5 The CRFSuite feature extractor source code, documentation, and installation instructions are available at
https://github.com/savkov/CRFSuiteTagger

https://github.com/savkov/CRFSuiteTagger
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4.3.2 Using The Universal Tagset

The good results of the chunking model using a relatively simple part-of-speech annota-

tion (ARK-Twitter) suggested that an even smaller tagset should be considered, which

may be more fitting to the limited syntax of the primary care notes. In the general case,

choosing or designing a tagset for POS tagging is mainly influenced by three factors — the

purpose of the generated annotation, the amount of training data, and the distribution

of targeted grammatical phenomena. Normally, POS tagging is used to support deeper

linguistic analysis (parsing, NER, etc.), which may benefit from fine grained tagsets. How-

ever, annotated data used for training is limited and rarely has been compiled in a way

that guarantees even representation of linguistic phenomena and types of language, which

may lead to poor representation of less common part of speech types. The British Na-

tional Corpus (BNC) was compiled with the aim of representing a wide range of variations

and subdomains of British English, but only a small non-representative subset of its texts

was manually annotated (Bentley et al., 1996). Possibly the most widely used resource

in NLP, the Wall Street Journal part of the Penn Treebank (Marcus et al., 1993; Taylor

et al., 2003), is comprised of narrow range of text types and subject domains.

The variety and scope of the language types used in these resources justified the use of

fine-grained tagsets to support higher level analysis such as syntactic parsing. However,

given the simpler global syntax structure of the Harvey Corpus text, and the results of

the ARKTwitter model shown above, it was interesting to test if a simpler tagset was more

suitable.

The Universal Tagset (UT), introduced by Petrov et al. (2012), aims to capture an

optimal number of part-of-speech categories that are universal across languages in order to

facilitate or avoid altogether the mapping of tagsets. The tagset has a number of potential

applications, the most important of which is that it allows the building and evaluation of

unsupervised and cross-lingual taggers and parsers. The difference between the language

in primary care notes and the one in news articles can be seen as an extreme case of this

particular application of the tagset, which makes it a good choice for these circumstances.

It should be noted that the tagset is even smaller than the one used by the ARK tagger;

although the missing tags are mostly specific to tweets, the proper name tag is merged

into the noun tag, which could be an important difference.
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There are two ways to test if another tagset improves chunking performance on primary

care text. The naïve approach would simply map the existing annotations to the new

tagset, and then use the data for training of chunking models. A more thorough approach

would include mapping the original POS-tagging training data to the new tagset, and

also re-training the tagging models. Under ideal circumstances the original text should

be manually annotated in case the mappings are imperfect or not universally applicable

to the data, however, within the scope of this thesis only the automatic mapping was

considered.

Original UT p Retrained p

ARK-NPS 77.52 77.12 0.139 - -
ARK-Ritter 75.07 74.42 0.017 - -
ARK-Twitter 78.17 77.95 0.103 - -
cTAKES 76.82 76.64 0.202 - -
GENIA 74.91 75.07 0.445 - -
Stanford 76.54 76.42 0.683 75.87 0.012
SVMTool 75.41 75.14 0.541 74.68 0.017
Wapiti 75.11 74.72 0.203 74.01 0.009

Table 4.9: Comparison of chunking f-score between models using original POS annotation gener-
ated by the model, models using annotation converted to UT after POS tagging, and
annotation generated by models trained using UT.

The chunking experiments were set up to test the two approaches described above.

Unfortunately, not all models could be retrained due to lack of software functionality or

unavailable data. Table 4.9 shows that simply converting the tagset in each version of

the Harvey Corpus used for training did not yield positive results, compared to what was

achieved with the original POS annotations. Even though the UT models have a lower

accuracy, differences are not statistically significant in all but one of the cases. The results

for the three models retrained using the UT show larger differences one of which (Wapiti)

is statistically significant.

From the results of the conducted experiments it can be concluded that the effect of

the universal tagset on chunking models is either negative or statistically insignificant.

Therefore, it is justified to continue using the Penn Treebank tagset for the remaining

experiments.
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4.3.3 Common Feature Types

The main motivation behind using a more flexible tool and switching to the CRFSuite

library was the opportunity to use a wider variety of features. Apart from word repre-

sentation features there are a number of other feature types that might be appropriate,

especially for sparse data with a considerable mixture of numbers, signs, and abbreviated

words.

This section presents a series of experiments contributing to (in most cases significant)

improvements in chunking performance. The baselines for comparison are models trained

using the most successful feature set from Section 4.2. Section 4.3.3.1 explores the effects

of different affix-based features, including these from the medical domain, Section 4.3.3.2

studies the effect of pre-processing and normalising the tokens before building the feature

vectors, and finally Section 4.3.3.3 investigates n-gram-based features for words, as well as

POS annotations.

4.3.3.1 Affix Features

The processing of morphologically rich languages often depends a great deal on the ability

to preprocess and extract various morphological features. Such analysis can often be crucial

for POS tagging and syntactic parsing. English has simple inflectional morphology, so

affixes are normally not as important for NLP as they would be in many other languages,

for example Finnish NLP. However, English has a rich derivational morphology, especially

in forming nouns, which can be useful in guessing the part of speech of an unknown word.

If we consider the made-up word footion without any context, the best guess that can be

made about it is that it might be a noun, as it ends with the suffix -tion. In a nutshell,

this is how morphological features help statistical classifiers — unknown words trigger

very few features, so the ones that fire become much more important. Given the amount

of terminology and spelling errors in primary care text, it is worth exploring whether

morphology features could be of benefit.

There are two approaches to generating morphological features for machine learning —

through manually created affix sets, and through automated extraction from text. The

manually compiled affix lists can be divided into sub-types, e.g. based on their part of

speech. For the purposes of these experiments, the following lists of affixes were compiled
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from Wikipedia and Wiktionary6: medical affixes, noun affixes, adjective affixes, and verb

affixes. The automated approach on the other hand, “generates” the affixes by cutting

them out of a word during feature extraction using a predefined number of characters, e.g.

the two-character suffix of generation is -on.

Base Med p POS p All p

ARKNPS 77.52 77.60 0.445 77.81 0.074 77.93 0.017
ARKRitter 75.07 75.37 0.169 75.44 0.059 75.62 0.059
ARKTwitter 78.17 78.40 0.221 78.58 0.013 78.73 0.059
cTAKES 76.82 76.97 0.508 76.97 0.359 77.09 0.114
GENIA 74.91 75.43 0.074 75.15 0.508 75.48 0.074
RASP 76.68 76.63 0.575 76.99 0.169 76.96 0.203
Stanford 76.54 76.93 0.059 76.81 0.047 76.88 0.059
SVMTool 75.41 75.43 0.959 75.57 0.333 75.83 0.074
Wapiti 75.11 75.46 0.139 75.43 0.092 75.32 0.445

baseline 70.16 71.00 0.007 71.32 0.011 72.13 0.005

Table 4.10: Comparison between models without affix features (Base), and models with medical
affixes features (Med), part-of-speech based features (POS), and the combination of
the two (All). All p-columns refer to Wilcoxon significance tests performed between
an affix feature model and the corresponding one without affix features. Top result
indicated in bold.

manually-created affixes were grouped by location (prefix, suffix), and by

origin (noun, adjective, verb, medical). A preliminary round of experiments showed that

the verb affixes have a negative effect on the performance of chunking models, so they

were not included in the following experiments. During those experiments the noun and

adjective affixes were found to work best together, so they were bundled in the following

comparison, that is the features were used together, but the affix groups (medical suffix,

noun prefix) were kept separate in the feature vectors.

Three experiments were set up to test the effects of each group separately and together.

Each was set up as a proof of concept experiment – new feature sets were tested using

cross-validation on the development dataset as used previously for inner cross-validation.

The context window of the new features was selected conservatively based on the most

common token window among the best performing models from the experiments in Section

6 The scripts to scrape the suffixes are available at https://github.com/savkov/MedAffix

https://github.com/savkov/MedAffix
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4.2 — [-1:0]. The results showed all affix types to make a slight improvement, although not

statistically significant in all cases (see Table 4.10). Part-of-speech affix types in general

made a greater contribution than medical affixes, but the models using the two together

showed even better performance. While the differences between the different affix feature

models are not statistically significant, many of them show notable improvements over the

corresponding base models.

automatically generated affixes have a few advantages over hand-crafted

affix sets. They require no linguistic knowledge or manual work beyond a trivial implemen-

tation in a feature extractor. Additionally, they are representative of the training data,

which means that they may generate more useful affixes even if they do not comply with

morphological theory. However, they may generate misleading features that link very dif-

ferent words, e.g. -oes in potatoes and goes. Finally, there needs to be enough data to form

well-defined classes in order to avoid noise.

POS M+P Suffix p Prefix p All p

ark_irc 77.93 77.68 0.838 77.44 0.059 77.87 0.789
ark_ritter 75.62 75.44 0.308 75.14 0.059 75.59 0.878
ark_twitter 78.73 78.44 0.721 78.11 0.041 78.42 0.139
ctakes 77.09 77.33 0.241 76.79 0.241 77.34 0.367
genia 75.48 75.43 0.646 74.94 0.059 75.47 0.878
rasp 76.96 77.22 0.260 76.69 0.333 77.06 0.485
stanford 76.88 76.82 0.575 76.62 0.333 76.66 0.333
svmt 75.83 75.65 0.575 75.19 0.059 75.41 0.386
wapiti 75.32 75.28 0.508 75.06 0.139 75.33 0.951

Baseline 72.13 72.41 0.291 70.50 0.007 72.63 0.176

Table 4.11: Comparison between models with tailored affix features (M+P), automatically gener-
ated suffixes (Suffix) and prefixes (Prefix), and models with manually-crafted affixes
and automatically generated suffixes (All). All p-columns refer to Wilcoxon significance
tests performed between a model with automatically generated affix features and the
corresponding model with hand-crafted affix features. Top result indicated in bold.

Three experiments involving automatically generated three-character affix features were

set up, and their results were compared to the models using only hand-crafted affixes. Ta-

ble 4.11 shows that prefix features have a negative effect on chunking performance, while
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models with suffix features score slightly lower than the optimal combination of manually-

created affix features (although not with a statistically significant difference). The com-

bination of manually-crafted affixes and automatically generated affixes yields slightly

better results than only automatic suffixes and slightly worse than manually-created af-

fixes. No statistically significant improvement in accuracy was noted beyond that of the

models with hand-crafted features. The same set of experiments was also conducted with

a two-character affixes, but the results were similar. Therefore, even though automatically

generated affixes contribute to the accuracy of the baseline model, they have a lesser

impact than manually-created features when used in conjunction with POS annotation.

4.3.3.2 Canonicalisation Features

One of the weaknesses of token features is the presence of a large proportion of singleton

tokens. Many numbers and misspelled words occur only once or twice in the Harvey Corpus.

At this level such features are regarded as uninformative and ignored. Most machine

learning tools and libraries have a minimum feature occurrence threshold. In the case

of misspelled words that is probably the best that can be done, short of correcting the

mistakes. However, in the case of numbers, valuable information can be gathered if all

unique number tokens are all treated as a single numeric token. Feature canonicalisation

takes tokens with varying form, but a common semantic type, and replaces them a place

holder token, e.g. <number> for any number expressed with digits.

The Harvey Corpus is rich in numbers and quantities, but it also has a specific feature

that fits canonicalisation perfectly, namely redacted text. Redacted text as discussed pre-

viously is represented by a string of tilde characters of equal number to the letters in the

redacted word. Given that many of the redacted tokens were names of people or places,

replacing the tildes with one common token that behaves like a name could be considered

as extracting hidden information from the data.

The experiments were conducted in the same manner as the previously described affix

features experiments using cross-validation and a narrow context window. The results in

Table 4.12 show that the models with canonicalisation features achieve significantly better

results than the baseline and the affix feature models. The combination of canonicalisation

and affix features, however, does not seem to make a statistically significant difference in
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Baseline A C p A+C p

ARKNPS 77.52 77.93 78.12 0.007 78.70 0.007
ARKRitter 75.07 75.62 75.51 0.139 76.15 0.139
ARKTwitter 78.17 78.73 78.62 0.007 79.18 0.007
cTAKES 76.82 77.09 77.38 0.760 77.50 0.760
GENIA 74.91 75.48 75.63 0.103 76.02 0.103
RASP 76.68 76.96 77.13 0.074 77.46 0.074
Stanford 76.54 76.88 77.61 0.721 77.68 0.721
SVMTool 75.41 75.83 76.33 0.333 76.64 0.333
Wapiti 75.11 75.32 75.67 0.445 75.84 0.445

baseline 70.16 72.13 71.78 0.009 73.26 0.009

Table 4.12: A comparison between models with affix features (A), models with canonicalisation
features (C), and models with both (A+C). The optimal configuration achieved during
the Section 4.2 experiments used as the baseline. Significance tests are for the pairs
A:C and C:A+C using a Wilcoxon test. Top result indicated in bold.

most cases. However, it should be noted that in the cases where such a difference exists it

is with a very low p-value.

4.3.3.3 N-gram Features

All the context feature discussed so far are sequences of length one, i.e. unigrams. Bigrams

and other longer sequences have more information content than unigrams, however, as

features they are not always preferred over them. Longer n-grams are generally used when

there is a large amount of data, enough to ensure that enough combinations of items will

occur more than just once or twice. Part-of-speech n-grams can become useful with less

available data as the number of unique items is small compared to word n-grams.

As discussed previously in Chapter 3, the Harvey Corpus is not particularly large. There-

fore it is unlikely that n-gram token features will have a positive influence on chunking

models, but POS n-grams are worth investigating.

The experiments presented in this section were designed to determine if token and

part-of-speech bigram features have a positive effect on chunking. As a result a series of

experiments were conducted, three of which are presented in Table 4.13.

Token bigrams were not expected to contribute to the chunking performance given the

small size of the corpus, but the experiments showed that, in fact, in many cases they

even have a negative effect. In contrast, part-of-speech bigrams show improvement both
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Base A+C Nt Np Nt,p+A+C p

ARKNPS 77.52 78.70 76.72 77.71 78.97 0.126
ARKRitter 75.07 76.15 74.68 75.80 76.52 0.445
ARKTwitter 78.17 79.18 77.37 78.37 79.31 0.374
cTAKES 76.82 77.50 76.02 77.33 78.05 0.059
GENIA 74.91 76.02 74.92 76.09 76.93 0.013
RASP 76.68 77.46 76.08 76.83 77.77 0.386
Stanford 76.54 77.68 76.50 77.45 78.42 0.017
SVMTool 75.41 76.64 75.23 76.24 77.42 0.013
Wapiti 75.11 75.84 74.57 75.69 76.54 0.028

baseline 70.16 73.26 67.53 70.42 74.17 0.009

Table 4.13: A comparison between a model using affix and canonicalisation features (A+C), a
model with token bigram features (Nt), one with POS bigram features (Np), and a
model with the combination of them all (Nt,p+A+C). The p-values were calculated for
the differences between A+C and Nt,p+A+C. Top result indicated in bold.

when used alone and in combination with the affix and canonicalisation features. The

results of the bigrams alone are not better than what was achieved in the experiments

from the previous subsection. The combination of bigrams and the best configurations so

far increases the performance of the models, but not by a statistically significant margin

(see the p-value column of Table 4.13).

A further experiment with part-of-speech trigrams was conducted, but it showed slightly

lower and statistically insignificant performance compared to the combination of bigram,

affixes, and canonicalisation features.

4.3.4 Word Representation & Clinical Text

Semantic word representations have been investigated intensively in NLP research in recent

years. They allow machine learning tools to harness the knowledge from large amounts of

raw unannotated text. Four of the POS-tagging models use clusters generated based on the

context distribution of words. The ARK tagger (Owoputi et al., 2013) uses a clustering

of 216 thousand word types (unique tokens) distributed in 1,000 clusters using Brown

hierarchical clustering (Brown et al., 1992). The clusters were generated from a corpus of

847 million tokens. The Stanford NLP package (Manning, 2011) uses Brown clustering

as described and implemented by Clark (2013) generated from the Reuters RCV1 (Lewis
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et al., 2004) and Gigaword 4 (Napoles et al., 2012) corpora. Word embeddings have also

been applied to biomedical NLP (Stenetorp et al., 2012b).

Generating such clusters and embeddings can be a long, laborious, and computationally

challenging process, so a certain set of pre-computed clusters and embeddings are com-

monly used by researchers. The experiments in this section are separated into two groups

according to the origin of the resources they use. First, in Section 4.3.4.1, publically avail-

able general domain clusters and embeddings are tested through evaluation of chunking

models enhanced with features generated from them. Cluster features were represented as

an integer denoting the cluster number, while the word embeddings were simply concate-

nated (in the same position) to the existing feature vector. Then Section 4.3.4.2 discusses

the effect of using clusters and embeddings generated from biomedical and clinical text.

In order to keep the number of experiments within bounds, only four POS models

were selected for testing. From the results presented so far it is clear that the ARKTwitter,

ARKNPS, and the Stanford annotations lead to the best performing models, so they were

selected along with the baseline — no POS annotation. The style of the experiments was

slightly changed from the previous proof-of-concept experiments to set the context window

for word representation features to only cover the focus token ([0]). The latter limit was

adopted, because the preliminary experiments showed that larger feature windows lead to

decreased performance. The small amount of both labelled and unlabelled data that the

features and classifiers use is a very likely reason for this decrease. However, analysing the

exact cause is outside of the scope of this thesis due to the limited amount of domain data.

4.3.4.1 Pre-computed Clusters & Embeddings

The amount of data used for generating word representation embeddings and clusters is

one of the most crucial factors for their success. However, the greater the size of the used

data, the more time and resources (and skills to some extent) are required to perform the

computation. Researchers often make such resources publicly available as they have no

legal restrictions like corpora, and some have become a baseline for comparisons in the

NLP field. Stenetorp et al. (2012b) compare some “standard” clusters and embeddings to

ones created from biomedical text when used in biomedical NER and semantic category

disambiguation. They concluded that in-domain word representation features show greater

and more consistent benefits than those based on out-of-domain (general purpose) data.
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This section examines the effectiveness of publicly-available embeddings and clusters

on chunking evaluated on the Harvey Corpus. The Collobert and Weston (2008) style

embeddings and Hierarchical Log-Bilinear (HLBL) embeddings (Mnih and Hinton, 2008),

as well as RCV1 Brown (Brown et al., 1992) clusters, all generated as part of experiments

by Turian et al. (2010), were acquired from the MetaOptimize web page7. Also acquired

was a set of word embeddings generated by Google using word2vec (Mikolov et al., 2013) on

a Google News corpus with nearly 3 million word types8. Another three cluster resources

were also acquired: the in-domain Brown clusters generated by Stenetorp et al. (2012b)9,

the Ney-Essen clusters (Ney et al., 1994) used by the Stanford NLP package generated

by Clark (2003)10, and the Brown clusters used by the ARK POS tagger (Owoputi et al.,

2013)11.

type size ARKTwitter ARKNPS Stanford No POS

CW 100 79.04 78.38 77.23 73.40
CW 200 79.18 78.25 77.33 73.50
CW 25 79.30 78.57 77.42 73.37
CW 50 79.16 78.48 77.29 73.42
OSCCA 200 79.22 78.35 77.10 74.13
TSCCA 200 79.22 78.90 77.53 74.67
HLBL 100 79.39 78.46 77.28 73.53
HLBL 50 79.05 78.33 77.30 73.52
word2vec 300 79.31 78.49 77.54 73.31

baseline 79.31 78.97 78.42 74.17

Table 4.14: Comparison of chunking models using pre-computed word embeddings (vectors). CW
= Collobert and Weston (2008) embeddings; *CCA = Canonical Correlation Analy-
sis embeddings (Dhillon et al., 2015); HLBL = Hierarchical Log-Bilinear embeddings
(Mnih and Hinton, 2008). The baseline is the best performance in experiments de-
scribed so far without features based on embeddings. The size is the vector size of the
embeddings. Top result indicated in bold.

The series of experiments evaluating the effect of features based on the embedding re-

sources showed that they do not improve chunking performance in almost all cases. There

is only one case of significantly better performance (p-value at 0.1): TSCCA embedding fea-

7 http://metaoptimize.com/projects/wordreprs/
8 https://code.google.com/p/word2vec/
9 http://wordreprs.nlplab.org/

10 http://nlp.stanford.edu/software/egw4-reut.512.clusters
11 http://www.ark.cs.cmu.edu/TweetNLP/clusters/50mpaths2

http://metaoptimize.com/projects/wordreprs/
https://code.google.com/p/word2vec/
http://wordreprs.nlplab.org/
http://nlp.stanford.edu/software/egw4-reut.512.clusters
http://www.ark.cs.cmu.edu/TweetNLP/clusters/50mpaths2
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tures help improve the performance of the model without POS features. In contrast there

are a number of cases where there is a statistically significant decrease in the performance

of the Stanford annotation models (see Table D.1). The lack of statistically significant dif-

ference in most of the experiments with a tendency for negative impact in the rest suggests

that the embeddings add little useful information beyond what is already there. There are

three factors that could be the cause of such an outcome: limited word coverage, limited

impact (features do not change anything), and unfavourable impact on the feature vectors.

The vocabulary of the embeddings covers 79.8% of the tokens and 62.9% of the word types

in the cross-validation set, which is a reasonable level of coverage. The output of models

with embedding features was compared to the output of the same models without embed-

ding features, and it was found that the number of affected tokens ranges between 2.5%

and 3.5% — more tokens were affected in models without POS features. Furthermore the

numbers of tokens with improving and deteriorating chunk annotation is slightly in favour

of deterioration. Therefore, given that there is generally little change in performance, and

even a few cases of decline, while there is significant impact on the classification process,

it can be deduced that the information introduced by the embeddings is of little use. That

may be due to the cross-domain usage of the embeddings, but it is also possible that

the baseline feature set has a very similar effect thereby cancelling the improvement. The

second possibility was rejected through a series of experiments where the effects of the

embeddings were measured on models with minimalistic feature sets, and also found to be

statistically insignificant.

The cluster features, the other form of word representation features, were tested in

the same type of experiments as word embeddings. The results in Table 4.15 single out

the Ney-Essen clustering as giving the best all-round performance. Although all other

clusters made significant improvements to models without POS features, it is particularly

interesting that the Ney-Essen clusters managed to increase it by nearly 3 percentage

points. Another interesting issue is the performance of Brown cluster features based on

the work of Stenetorp et al. (2012b) which were created from PubMed abstracts. Although

in some cases there are significant differences from the baseline (e.g. 320 and 500 PubMed

models), the two groups of clusters show no statistical significance.

In summary, word embeddings generated from out-of-domain data are of very little use

when applied to this primary care chunking task, but clustering features show significant
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type source size Twitter NPS Stanford No POS

Brown Twitter 1,000 79.28 78.60 77.85 76.28
Brown PubMed 100 79.46 78.87 77.84 76.39
Brown PubMed 1,000 79.52 78.85 78.07 75.96
Brown PubMed 150 79.44 78.66 77.72 76.25
Brown PubMed 320 79.71 78.75 78.15 75.84
Brown PubMed 500 79.68 78.53 77.87 75.93
Brown RCV1 100 79.42 78.65 78.02 76.26
Brown RCV1 1,000 79.34 78.59 77.91 75.96
Brown RCV1 320 79.47 78.80 77.67 76.18
Brown RCV1 3,200 79.32 78.44 77.45 75.97
Ney-Essen RCV1 512 79.26 79.39 79.11 77.08

baseline - - 79.31 78.97 78.42 74.17

Table 4.15: Comparison of chunking models using pre-computed cluster features. Top result indi-
cated in bold.

contribution in all cases of missing POS features, as well as some of the others. This

suggests that cluster features, especially if well designed, could replace a large part of the

contribution of POS features.

4.3.4.2 In-domain Clusters & Embeddings

The type and amount of the training data are probably the most important factors in

applying machine learning to any problem. Stenetorp et al. (2012b) show that the choice

of in-domain data for word representation cluster features has a positive effect on NER

performance for biomedical text (PubMed abstracts). However, in the previous subsection

it was shown that the same word embeddings show very little difference when applied to

primary care text. As there are no publically available embeddings or clusters based on

primary care data, the only way to determine if in-domain data is helpful was to generate

them from the available GPRD data. The total amount of unlabelled data including the

Harvey Corpus (without the development and test sets) amounts to approximately 650,000

tokens, and 44,000 word types. Although the amount of tokens in the data is half as much

as the Wall Street Journal part of the Penn Treebank (which has roughly 1.28 million

tokens, 51,500 word types), it is tiny compared to the typical size of corpora commonly

used for generation of embeddings and clusters, such as RCV1, English Wikipedia.
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size ARKTwitter ARKNPS Stanford No POS

word2vec 100 79.27 78.47 77.38 73.46
word2vec 25 78.93 78.72 77.48 73.33
word2vec 50 79.43 78.51 77.39 73.69

baseline 79.31 78.97 78.42 74.17

Table 4.16: Chunking performance of models with word2vec embeddings generated from GPRD
data. Top result indicated in bold.

Two groups of experiments analogous to the ones described in the previous subsection

were conducted to test the effects of in-domain embeddings and clusters on the chunking

of primary care text. In preparation, a set of word embeddings were generated from the

GPRD data using word2vec, as well as two types of clusters of different sizes — Brown

and Ney-Essen. The clusters were generated using the implementations by Liang (2005)12

and Clark (2003)13 respectively.

The results of the new word embedding experiments showed a similar pattern as pre-

computed word embeddings. No significant improvement was achieved, and in a few cases

performance even decreased significantly (see Table 4.16). In contrast, the cluster features

led either to no significant change or to improvement in performance. The trend in improv-

ing the No POS models is still present, although not by the same margin. It is interesting

to note that the 250 Brown clusters achieved the best performance so far in these series

of experiments, although not significantly better than the results of other models using

pre-computed word clusters.

Clustering size Twitter NPS Stanford No POS

Brown 100 79.36 79.02 77.99 75.25
Brown 250 79.81 79.03 77.92 75.55
Brown 500 79.49 78.87 77.94 75.60
Ney-Essen 500 79.21 79.00 78.67 75.86
Brown+NE 250 & 500 78.06 77.09 76.84 72.02

baseline - 79.31 78.97 78.42 74.17

Table 4.17: Chunking performance by models using Brown and Ney-Essen cluster features gener-
ated from the GPRD data. Top result indicated in bold.

12 https://github.com/percyliang/brown-cluster
13 https://github.com/ninjin/clark_pos_induction

https://github.com/percyliang/brown-cluster
https://github.com/ninjin/clark_pos_induction
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The results of the experiments both using pre-computed and in-domain embeddings

and clusters can be summarised in the following way. First, it is evident that embed-

ding features have mostly no significant effect, and sometimes even a negative influence

on chunking performance on this primary care text. Second, cluster features show both

positive and negative influence by a good margin, but the Ney-Essen clusters trained on

RCV1 show a notable improvement in three out of four tested models. And third, even

though models with in-domain word clusters achieved significant improvements compared

to the baseline, they fail to surpass their pre-computed generic counterparts. In practical

terms, it seems that Ney-Essen clusters are a poor choice for models with Twitter POS

annotation, while they provide an impressive performance boost to both Stanford and No

POS models.

Judging from the results, Brown and Ney-Essen clusters seem to complement each other

across different POS annotation models, so it was worth investigating if using them to-

gether would work better than using them separately. An experiment was set up using

Brown and Ney-Essen clusters from GPRD data. The 250 Brown clusters were used since

they were the highest ranking of the three Brown clusterings. The results showed a signif-

icant decrease in the performance of all models.

4.4 solving a complex parameter tuning problem

Finding informative types of context features is only a part of shaping the optimal feature

set for a given task. The performance of each feature type is largely influenced by the scope

of its context: if the scope is too wide, it may introduce noise and bring down performance,

whereas if it is too narrow its effect may be marginal. Finding the optimal scope of a single

feature empirically is usually not difficult, given sufficient parallel processing resources.

However, the informativeness of machine learning features also depends on other features

present in the feature vector. Thus the size of the optimisation problem grows exponentially

with the the number of features in the vector:

s = (wleft ·wright)
n (4.1)
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The w’s are the sizes of the explored context window on each side, and n is the number

of context features. Therefore, exploring the full search space of context windows for any

feature vector with more than a few features becomes intractable. For instance, a grid

search of all context window combinations of the feature vector used in the experiments

described in Section 4.3.4 would give a problem size of 4.9517602 × 1027.

The rest of this section explores two approaches to feature optimisation, compared

to a baseline of greedy feature-by-feature optimisation. Bayesian Optimisation (BO) is

discussed in Section 4.4.1; this is a method that employs machine learning to make a

series of tests in order to determine the global optimum. A slightly less greedy version of

the baseline optimisation method is described in Section 4.4.2.

All experiments considered below are based on data using the ARK-Twitter POS anno-

tation, and the list of useful features excluding word representation (i.e. after experiments

in Section 4.3.3). The baseline method optimises the model by adding and optimising

each feature in a subjective order of importance. This method achieved 78.16, which is

significantly lower than the f-score reported in Section 4.3.3.3.

4.4.1 Bayesian Optimisation

One of the most common problems when working with machine learning classifiers is hy-

perparameter tuning. Typically this task is carried out either based on the researcher’s

intuition about good parameter ranges, or brute force grid search of a range of values. Need-

less to say the first approach is far from exhaustive, while the second one is computationally

expensive and offers limited guarantees of success. Bayesian optimisation (Mockus, 1977)

optimises the parameter x ∈ RD of a function f(x) on some bounded set X. The feature

that sets Bayesian optimisation apart from other methods is the usage of a probabilistic

model based on Bayes’ law to infer the parameter values for every further evaluation of

f(x). The advantage of this approach is that it uses all the information generated from

previous evaluations of f(x) to significantly decrease the number of iterations needed to

find the minimum of a non-convex function. Bayesian optimisation computation comes at

a greater cost compared to other optimisation techniques, but in the case of optimising

the parameters of machine learning models, may be justified since re-training a model is

often expensive.
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Although the typical application of Bayesian optimisation is tuning to hyperparameters,

one can also use it to tune context windows in feature vectors. For example, tuning the

context window of a feature can be represented as tuning a two parameter function, the

parameters being the borders of the context window and the function being the evaluation

of the model using this defined context window. Snoek et al. (2012) describe an algorithm

implemented in the Spearmint system that can surpass a human expert level of optimisa-

tion of a variety of machine learning algorithms. The algorithm can also surpass human

expert optimisation of functions (algorithms) with four parameters. Furthermore, it allows

parallel experimentation that can take advantage of multiple processing cores14.

Even though the algorithm has been shown to deal with optimisation of multiple param-

eters, it seems unlikely that this would be as successful when tuning whole feature vectors

such as the ones discussed in Section 4.3.4, given their size (more than ten feature types).

An initial experiment based on the feature vector of the best performing ARK-Twitter

model without word representation was carried out to get an indication of whether the

algorithm could achieve the same performance using Bayesian optimisation (BO). The

initial test was set to optimise four features at the same time (tokens, POS tags, POS tag

bigrams, and canonicalisation) in order to maximise the chances of finding a maximum

within the first few iterations (with the limit set to 50 iterations for this experiment). The

rest of the context features were kept as they were. The optimised parameters were set

to be integers in the ranges [-3:0] and [0:3]. The best performance of the algorithm was

obtained in the 42nd iteration, when the chunker achieved an f-score of 78.83, which is

higher than the baseline (p-value 0.053), but significantly lower than what was achieved

during the previous experiments (79.31). The experiment was extended to more than 500

iterations and the same score was achieved again, but never surpassed. It should also be

noted that the configuration suggested by the algorithm differed fundamentally, as it was

using a much wider context for all but the canonicalisation features.

It was unclear whether the shortcomings of the algorithm are caused by the number of

optimised parameters or by much more sensitive relationships between the tuned param-

eters. Therefore a further experiment was carried out which instead of optimising eight

parameters at the same time, separated the parameters into two groups, which were op-

timised in sequence — the second group building on top of what was achieved by the

14 A Python implementation of Snoek et al.’s variation of Bayesian optimisation is available at https://
github.com/HIPS/Spearmint

https://github.com/HIPS/Spearmint
https://github.com/HIPS/Spearmint
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first. The groups were formed by ordering the features by intuitive importance (see the

order in the final feature vector in Table C.2) and putting the more important ones in the

first group and the less important ones in the second group. The resulting configuration,

found in 22 + 14 iterations matched exactly the one from the manually crafted configura-

tions. This achievement showed that Bayesian optimisation can deal with the optimisation

problem in smaller chunks faster than a grid search, which would require 256 iterations

to tune two pairs of features; however optimising more parameters at a time comes at a

performance cost. It should be noted that BO does not complete upon finding a local or

global optimum, but upon a pre-set number of iterations. Thus a more realistic appraisal

of its effectiveness should consider a fixed number of iterations needed to find an optimum,

e.g. 50 or 100, rather than stopping at an optimum. Considering an approximate cost of

50 iterations for BO (100 in total), the cost difference between using BO and grid search

in the same way is only 2:5. Given the capabilities of current high performance computing

clusters, BO’s modest reduction in processing cost is not worth the risk of missing the

global optimum.

4.4.2 Greedy Parameter Group Optimisation

The baseline method described above takes a computationally cheap, but also naïve ap-

proach to feature vector optimisation. It assumes a feature modularity that does not exist

in reality — the gain yielded by two features together is not necessarily equal to what is

gained from them being used separately. In addition, due to optimising features one at a

time, the baseline assumes that the order in which features are added and optimised is

the most suitable, although there is no hard evidence supporting that assumption.

So the baseline makes assumptions that are very likely to be misleading, but as pre-

viously explained, if all features are optimised simultaneously the process becomes in-

tractable. However, the possibility of inaccuracies due to the assumptions can be decreased

if features are optimised in groups of three instead of one at a time. This means that dur-

ing the development process features are added in triples and optimising after each vector

extension. In this case the choice of the sequence of optimisation is less important as more

features are optimised together, but an element of a human “craft” still exists (unless, of

course, all possible permutations of groups are tested). The difference between the baseline
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and the results achieved in Section 4.3.3, where new features are added to a fully optimised

group, already shows that group optimisation works better.

When applied to the feature vector from Section 4.3.3.3 using the ARK-Twitter data,

the greedy group optimisation method yielded a slight f-score improvement reaching 79.36,

which is of no statistical significance. The feature vector resulting from the optimisation

differs only marginally from the narrow context windows used in the initial experiments

— only one feature context border is different. This shows that the intuition of using a

narrow context window for the feature vector development was a good idea. However, out

of the considered optimisation methods, greedy group optimisation is the best compromise

between performance and reliability.

4.5 final optimisation

Although the experiments discussed so far give a good idea about which features should be

used in the optimal feature vector, it is difficult to make an objective choice of clustering

features for a single “final” optimisation. Instead, one of each group of clustering features

was chosen to be optimised using greedy feature group optimisation based on their average

performance across the evaluated models. Groups were defined by the combination of

clustering method and source data. Thus both Ney-Essen instances were included, as well

as Brown clusters from RCV1, PubMed, and GPRD data. The number of clusters selected

in the latter three were 320, 320, and 250 respectively. The results of this optimisation

experiment were used to determine the model used for further experimentation in the

thesis. It is important to choose only one model during development before evaluating

on the test set, since the concept recognition experiments intended to benefit from the

model (these are described in Chapter 5) had to use the same data splits. Thus if a model

had been chosen based on test set performance, this would have introduced a bias in the

concept recognition experiments.

The parameter groups optimisation yielded little improvement over the proof-of-concept

experiments, at least for the majority of the models (see Table 4.18). A noteworthy excep-

tion is the Ney-Essen clustering based on the GPRD data, which has improved considerably

(p=0.036). The overall experiment results offer clear evidence that the ARKTwitter models

performs better than the Stanford models (0.01<p<0.05 for all relevant p-values), and
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NE-R NE-GP B-PM B-GP B-R

Twitter 79.49 79.97 79.82 79.76 79.48
NPS 79.27 79.32 79.18 79.30 78.80
Stanford 79.11 79.03 78.35 78.56 78.04

Table 4.18: Final optimisation results for models with Ney-Essen (NE) and Brown (B) clustering,
using data from the GPRD (GP), PubMed abstracts (PM), and Reuters Corpus (R).

marginally better than the ARKNPS ones (0.01<p<0.10 for all relevant p-values). Consid-

ering only the Twitter models, the clusters based on RCV1 perform marginally worse than

those generated from GPRD and PubMed data. The search for the model with the optimal

performance eventually came down to a choice between three models: Ney-Essen clusters

from GPRD data (NE-GP), Brown clusters from PubMed data (B-PM), and Brown clus-

ters from GPRD data (B-GP). The lack of a statistically significant difference makes the

choice of the highest scoring model among them rather arbitrary, yet the NE-GP model

was selected based on the f-score as “most optimal” for the lack of a better motivation

(see the feature vector template used for the model in Table C.2).

Upon the completion of the development process a final experiment using the final

feature vector was carried out to determine the model performance on the test set. As

previously stated, for the final evaluation the model was trained on the full development

set (90% of the whole corpus) and evaluated on the test set (the remaining 10%). It

achieved a slight (statistically insignificant) increase in the performance, reaching an f-

score of 79.89. This result was a sign of successful model development, since the final

model evaluation showed a performance consistent with the results from the development

process.

4.6 chapter summary

This chapter provided an account of the development of machine learning models for

chunking, optimised for the UK primary care data of the Harvey Corpus. Initial experi-

ments showed that pre-existing part-of-speech tagging tools and models achieve reasonable

accuracy, whereas pre-existing chunking models have poor accuracy. Models trained on

the Harvey Corpus using POS annotation generated by various publicly available taggers
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showed a performance that is much better, although far below the best results reported

for news text or PubMed abstracts (see Section 4.1).

Section 4.2 established an experimental baseline using a data split allowing model devel-

opment using 10-fold cross-validation over the development set (90% of the whole corpus),

while performing the final evaluation on the test set (the remaining 10%). Optimisation

experiments were conducted to determine which machine learning tool performed better,

CRF++ or YamCha (Section 4.2.2), and what chunk representation is most suitable for

the data (Section 4.2.3). The results showed that CRF++ yields significantly higher accu-

racies than the SVM-based YamCha. In contrast, the two chunk representation schemes

considered showed no statistically significant difference, although BEISO achieved higher

scores in the majority of cases. However, the commonly used BIO was selected as being

more comparable with other research in the field (as used in the CoNLL-2000 shared task

in chunking). Finally, the experiments indicated that differences in POS annotation are

a fundamental factor in developing a chunking model, but it is difficult to determine a

single most favourable POS annotation model. Nevertheless a group of POS annotations

generated by the ARKTwitter, ARKNPS, and Stanford POS models were considered to be

the top candidates, closely followed by those of cTAKES and RASP.

Section 4.3 describes a series of further experiments that were conducted using the

same experimental scheme in order to test a number of additional features. A new feature

extractor wrapped around the CRFSuite library was developed to allow models with

more flexible feature types to be developed (Section 4.3.1).

The hypothesis that a simpler tagset would improve performance was tested in Section

4.3.2 using the universal tagset as there are pre-existing mappings from it to other popular

tagsets. The experiments rejected the hypothesis, both when the tagset was directly sub-

stituted in annotated Harvey data, and when retrained UT models were used to annotate

the Harvey Corpus. One likely reason for the lower performance, compared to the ARK

tagset, is that the proper name tag, used by ARK, is merged with the other noun-like

tags into the N tag in UT. This affects over 2000 occurrences, which is roughly 7% of the

tokens in the corpus. Designing a new similar tagset with consideration for the data might

be a potentially good and interesting idea, which can be pursued in future work.

Three types of well-established features were tested and found beneficial for chunking

models in Section 4.3.3. Medical and POS based affix features were introduced, as well as
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POS n-grams and canonicalisation features. A wide range of features based on semantic

word representation embeddings and clusters were also evaluated. None of the embedding

features were found to contribute substantially, while word representation clusterings had

mixed success depending on the data they were based on. The Ney-Essen clusters showed

the most consistent improvement, as well as the highest gain over the baseline model

(without POS annotation). Brown and Ney-Essen clusters generated from the available

GPRD data also showed significant improvements to the baseline, and in some of the other

models. The highest development f-score was achieved by a model using Brown clusters

(250) based on the GPRD data.

Section 4.4 discusses two additional feature vector optimisation techniques: Bayesian

optimisation including all feature parameters and a greedy group optimisation. These are

considered in addition to the greedy one-by-one optimisation which was essentially im-

plemented during the feature vector development process presented in Sections 4.2 & 4.3.

None of the considered optimisation methods showed a statistically significant improve-

ment. However, BO still poses some small risk of reaching a local maximum, while the

greedy group optimisation offers comparable reduction of the experiment rounds avoiding

that risk.

Finally, Section 4.5 describes the final optimisation using the greedy parameter group

optimisation approach. The model groups were defined by the type of word representation

cluster features they used. The optimisation suggested that the ARKTwitter models had

better performance than the other two POS models considered. Models with cluster fea-

tures based on RCV1 performed marginally worse than the ones based on PubMed and

GPRD. The model using Ney-Essen clusters based on GPRD data was selected as the

best out of the three highest performing models based on its higher performance. When

evaluated on the test set, it achieved 79.89 f-score, which is consistent with its results on

the development set, indicating a robust model development process.

The accuracy reported in the final chunking evaluation of this chapter is considerably

better than the first experiments that used knowledge and resources adapted from another

domain. However, in absolute terms it is still quite far from the results achieved by the

same and similar approaches on the Penn Treebank, biomedical abstracts, and even some

types of clinical data. However, one can argue that the state of the art in other domains

is not the correct benchmark. Instead, in-domain human consistency should be considered
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as what can be realistically achieved. If the inter-annotator agreement reported on the

Harvey Corpus in Chapter 3 is considered as the goal, then the best performing model is

just over five percentage points short of achieving it.

In conclusion, this chapter presented the development of a text chunker for the Harvey

Corpus, working in conjunction with a pre-trained part-of-speech model originally devel-

oped for tagging tweets. Together, the two models provide a solid foundation for further

analysis, working to a level of performance that is reasonable given the characteristics of

the data.

F 8 f



5
MEDICAL CONCEPT RECOGNITION

Recognising semantic entities is an important processing step for many natural language

processing applications. It is a broadly defined task since what classes should be recognised

(whether abstract ones or such referring to entities in the real world) depends on the

application. Colours, shoe brands, feelings, and chemical compounds are all valid semantic

classes. Not all such classes need a complex algorithm to be recognised — searching for

keywords or simple patterns may be sufficient to recognise some, while others could be so

abstract that none of the current technology could recognise them. Their content has very

few restrictions by definition — any sub-sentence sequence of tokens can be an entity, as

long as its meaning fits the class definition. The same rationale can be applied to medical

concepts such as symptoms, diseases, and drug names, the recognition of which is the

subject of this chapter.

Named entities are the most commonly targeted type of semantic entities, and the

process of their recognition is an established NLP task. Its goal is to identify and classify

any rigid designators, i.e. names, that reference specific entities, such as people, locations,

etc. Temporal expressions and several other number-oriented semantic entities have also

been considered to be part of the task, even though they are defined in a completely

different way. In clinical NLP, medical concepts are an important kind of semantic entities

(Uzuner et al., 2010a, 2011; Bada et al., 2012) due to their paramount importance to

understanding clinical data.

As part of PREP and using one of the datasets used for the Harvey Corpus, Tate et al.

(2009) showed that many symptoms commonly associated with ovarian cancer are recorded

in the text part of medical records prior to the recorded date of diagnosis: abdominal pain

(41%), urogenital problems (25%), abdominal distension (24%), constipation/change in
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bowel habits (23%) with 70% of cases reporting at least one of these. They concluded

that “[f]ree text information may be essential in obtaining accurate estimates of incidence,

and for accurate dating of diagnoses.” Similar conclusions were reached by Ford et al.

(2013) using PREP data for rheumatoid arthritis patients. Koeling et al. (2011b) reported

that incidence estimates of ovarian cancer symptoms increased by at least 40% when

complementing coded (structured) data with symptoms manually extracted from free text.

Given the potential benefits of including information from free text notes in epidemi-

ological studies, the automatic detection of symptoms, drugs, and diseases becomes an

important step towards enhancing future research involving primary care data. The se-

mantic entities discussed in this chapter are medical concepts roughly defined as diseases,

symptoms, and drugs. They are typically confined in noun phrases, so they are likely to be

only partially affected by the terse language style of primary care text, while their recog-

nition should be aided by the existing noun chunk annotation. The importance of noun

chunks is also the reason the annotation and modelling of these entities was packed in a

separate task. A system able to automatically recognise these three types of concepts in

primary care text could be of great use to epidemiologists and other e-health researchers

and data scientists trying to explore massive quantities of clinical data.

The rest presented below describes the process of developing a machine learning model

for concept recognition based on the Harvey Corpus. Section 5.1 recounts the process

of designing and implementing an extension to the Harvey Corpus annotation with the

concepts listed above. Section 5.2 and 5.3 present two approaches to the task: the first

is the usual approach for BIO annotation tasks, which uses sequential taggers, while the

second utilises the particular language characteristics of primary care text to make the

assumption that all medical concepts are base NPs, which allows the task to be formulated

as document classification. Finally, Section 5.4 compares the two methods in a realistic

setting.

5.1 extending the harvey corpus

Semantic annotation is in general a difficult undertaking due to the somewhat looser def-

initions of entities compared to parts of speech for example. Another difficulty arises in

annotating higher level semantic entities that may not be confined to a single syntactic
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constituent or a sentence. This makes difficult to formulate precise annotation guidelines,

and shortcomings are inevitable in certain cases. However, the extent to which the annota-

tion task is affected by these shortcomings depends on the nature of the targeted entities.

Classic NER, for example, is less affected by it, because it focuses mainly on measurement

units, certain quantifiers, and names, which in general have clearly identifiable borders in

the text, at least in the majority of cases. The observations about inter-annotator agree-

ment of semantic entities made in Chapter 3 demonstrate that the task difficulty is largely

dependent on the type of entities being annotated. Annotators agreed upon time expres-

sions much more often than upon locative expressions. Often the most difficult part of

annotating such entities is not so much detecting their presence, as recognising their cor-

rect boundaries. This section describes the annotation of symptoms, diseases, and drug

names, which circumvents boundary recognition issues by using the boundaries of existing

NP annotation to define units for the annotation.

5.1.1 Annotation Approach

The telegraphic, NP-heavy style of the primary care notes of the Harvey Corpus puts the

design of a semantic annotation scheme at an advantage. The incentive of medical workers

to pack as much thought as possible in as little text as possible has its consequences in the

expression of medical concepts as well as syntactic structures. As previously stated, when

looking at the data, it is easy to notice that medical concepts, such as symptoms, diseases,

and drug names, are almost always expressed as a single base NP. A simple assumption

that this observation is true in all cases would make the annotation task much simpler and

safer (from an agreement point of view), as it explicitly defines the units to be annotated

(i.e. classified), rather than relying on the annotators to consistently find their boundaries

in the text. In a way, this assumption simplifies the annotation of multi-token entities to

the level of POS annotation, where words are the unit of annotation. However, the risk

of this assumption is that only part of the syntactic structure will be captured in the few

cases where more complex noun phrases are used to express the concepts.

This assumption can be tested by comparing the number of potentially fragmented

entities to the potential disagreement of annotators (which is the best available annotator

error measure). The former can be approximated using the number of occurrences of
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prepositions. As prepositions occur relatively rarely in the notes, surveying their usage

is a feasible task. Instances of the prepositions “of” (253), “in” (244), “with” (192), “on”

(183), and “from” (78) occurring outside the initial Read code terms representation were

examined for potential use in concept-related complex noun phrases, e.g. shortness of

breath (note that although frequently used in the GP notes this concept is predominantly

expressed in abbreviated forms such as sob). Very few were found to be used in such

context — 9, 10, 1, 7, and 0 respectively. Thus assuming that all concepts are base NPs

carries a smaller risk of error than the human annotator agreement error margin for the

Penn Treebank (Manning, 2011) – one of the best resources in terms of annotation quality.

5.1.2 Guidelines Design & Annotator Training

As the concept annotation task was formulated as classification of base noun phrases, the

design of the guidelines was much simpler compared to the guidelines discussed in Chapter

3. It was no longer necessary to train the annotators to recognise target concepts in text.

Instead, their task was limited to considering syntactic chunks in context, and allocating

them to one of the classes defined by the guidelines.

Three classes of medical concepts were defined in the guidelines: symptoms, disease

names, and drug names. Diseases are the names assigned to concepts of illness with a

known cause, i.e. there is a known explanation for an affliction. Symptoms on the other

hand, are the manifestations of diseases, but they may not always point to a single disease.

Additionally, symptoms are often described as what the patient experiences, rather than

what the doctor observes (King, 1982). The doctor’s observations associated with a disease

are called signs for that disease. For example, fever or dizziness are common symptoms

reported by patients, but they are signs for a large number of diseases, e.g. flu, pharyngitis,

and cancer of the larynx. A group of symptoms is referred to as a syndrome, however the

term is used predominantly in the absence of a diagnosis. For example, the term acquired

immune deficiency syndrome (AIDS) was used before the medical explanation for the

symptoms was discovered — the human immunodeficiency virus (HIV) infection. The

definitions of the three classes were made so that drug names refer only to names of drugs,

disease names refer only to names of diseases, and symptoms refer to any of the following:

symptoms, syndromes, and signs. The reason three slightly different concepts are combined
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under one class is the subtle differences between them that may not always be apparent in

the text. On the other hand all three have the same characteristic of being manifestations

of a disease. Martin et al. (2014) take the same approach (not mentioning syndromes),

giving as a reason the fact that both symptoms and signs are taken into consideration

when a diagnosis is made.

The next step in the process was the selection of annotators. The logical choice was

again medical experts, as the task depended only on medical expertise. There was a short

process of guideline development and annotator training as the assumption was that the

annotators would have a much better understanding of the concept classes and how to

differentiate between them, than the author of the thesis. Therefore the guidelines aimed to

provide a clear outline of the task, and the technical information needed for its execution,

while keeping the class definitions as short and clear as possible (see Appendix B).

The guidelines arranged the adjudication of annotation disagreement in a different way

to what was previously used for the Harvey Corpus. The task was delegated to the same

annotators who needed to decide upon one class together, referring to medical dictionaries

for term definitions. The reason there was no need for a third expert is that the only

element where personal bias was likely to occur was co-morbidities, i.e. when a disease is

also the sign for another disease. For example, retinopathy could be a sign of diabetes, but

it could also be caused by arterial hypertension. In these cases it could be very difficult

to decide which use the author intended, so the guidelines instruct that the disease rather

than symptom class should be used in all such cases.

After the guidelines were completed, they were used to train two medical students as

annotators in a two-hour training session. The training was followed by independent test

annotation of a small data sample (not part of the Harvey Corpus). As in-text boundaries

were no longer part of the annotation process, inter-annotator agreement had to be cal-

culated using a different metric. Krippendorff’s κ with equal label weights was the most

suitable, as the annotation task was essentially multi-label classification. The measured

agreement during training was 83%. A significant portion of the disagreement was caused

by annotators failing to annotate concepts rather than intentionally not doing so. This

can be explained by the fairly passive way the annotation platform works. The annotators

are the active side browsing through text, and identifying concepts. However, that did

not need to be the mode of working, as the number of annotations to be classified was
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pre-established. Therefore, an extra non-concept annotation type was added to the guide-

lines in order to force the annotators to make a conscious decision for each annotation.

In addition, they were given individual feedback on their trial work, and introduced to

the new non-concept class. Given the high agreement rate and the improvements to the

annotation process, it was decided that they were ready to start annotating the corpus.

5.1.3 Analysis

The corpus annotation process was much shorter compared to the process described in

Chapter 3. The annotators achieved 89% κ coefficient, which is 6 percentage points bet-

ter than the agreement from the training session. The final annotations were produced

through a consensus round during which the annotators discussed their disagreement and

reached a decision together. Table 5.1 shows a confusion matrix of the disagreement cases,

showing that most disagreement is accumulated while differentiating between diseases and

symptoms. In second place comes disagreement involving no annotation, i.e. the NPN cat-

egory, which has two potential causes: disagreement on relevance and annotation error.

When discussed with the annotators after their consensus round, it was established that it

was a mix of both in roughly equal measures. It is curious to note that agreement on the

NPDRG category appears to be quite high between the relevant categories while some

disagreement (possibly due to human error) exists while deciding the relevance/existence

of drug annotations.

NPD NPDRG NPN NPS
NPD 0 1 36 90
NPDRG 0 0 17 3
NPN 19 22 0 47
NPS 118 0 29 0

Table 5.1: A confusion matrix of the disagreement between the two annotators measured on the
whole corpus annotation. Note that this matrix shows disagreement rather than the
more usual agreement.

The relevant annotations included 1,169 taggings of symptoms, 482 of disease names,

and 556 of drug names. However, only two thirds of these occurrences had unique string
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representations. Around 85% of them occurred only once, while the remaining 15% ac-

counted for 36% of all annotations.

Category # Types Singletons Top Types

NPS 1,169 897 782 pain (39), cough (17), wound (11), abdominal
pain (11), diarrhoea (10), constipation (9)

NPD 482 356 303 malignant neoplasm (27), ca (12), mi (6), con-
gestive heart failure (5), carcinoma (5), chest
infection (4)

NPDRG 556 399 327 zoladex (22), paracetamol (11), casodex (8),
frusemide (6), cyproterone (6), lactulose (6),
ibuprofen (5)

NPN 5298 2767 1071 patient (105), he (85), telephone encounter
(51), prostate (49), chest (43), hospital (32)

All 7,505 4,419 2,483 -

Table 5.2: Annotation statistics for the extended Harvey Corpus. Types: unique string representa-
tions of concepts. Singletons: types occurring only once.

The top entries in Table 5.2 show that the frequency distribution of annotation types

(the unique string representations) is relatively flat with the exception of the two most

frequent. These characteristics of the data suggested that concept recognition models may

have difficulties if they relied solely on word-based features. This is further supported by

the low average word type frequency of 2.26 inside the annotations — 2.68 for symptoms,

2.37 for diseases, and 1.73 for drug names.

5.2 traditional concept recognition

The most common approach to named entity recognition encodes the target information

as BIO token-based annotation to allow the use of sequence classifiers. The technique was

previously demonstrated in the extrinsic evaluation of the initial semantic annotation of

the Harvey Corpus in Chapter 3. This section reports a series of experiments set up in

a very similar way to the CRFSuite optimisation experiments in Chapter 4. Inner cross-

validation (Azzalini and Scarpa, 2012) with the same data splitting was used for model

development, while an extra layer of semantic annotation was added to the dataset. Section

5.2.1 describes the optimisation of the feature types described in Chapter 4 for the purposes
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of the current task as well as the testing of some new features. In contrast to the previous

chapter where the source of POS annotation was a factor in the optimisation due to lack of

a gold standard, the process here uses only the POS annotation selected as most favourable

for the chunking models. This choice is important, because it ensures that the model

development is optimal for real world applications, where models use features derived

from dynamically generated annotation. Section 5.2.2 describes a comparison between the

performance of optimised models using (static) gold standard annotation, and models using

dynamically generated annotation. The difference between the two is crucial in the context

of real-life applications where error propagation needs to be considered. The section also

compares the strengths and weaknesses of the models in both contexts.

5.2.1 Feature Set Optimisation

The set of features explored in the previous chapter is underpinned by general properties

of the processed language rather than characteristics specifically beneficial for chunking.

Therefore, there is no apparent reason why those features should not be useful to concept

recognition models. However, the optimal context windows for each feature type may

differ from task to task. Adopting the best feature set configuration from Chapter 4 is

unlikely to be the most optimal solution for concept recognition, but it can be used as a

reasonable baseline for the optimisation. Using the feature set directly yields 54.79 f-score

without using chunking annotation. Adding chunking features (containing type and border

information) with the standard narrow context window increased the model performance

to 63.98.

After a baseline was established, the optimisation process was carried out in three stages

of cumulative improvement. First, the contribution of all features used for chunking models

were evaluated using a narrow context window, in order to build a vector of feature types.

Then their optimal context windows were determined through greedy group optimisation,

and finally, Bayesian optimisation was used to tune the CRF hyperparameters.

Table 5.3 lists the feature types with positive contribution to the concept recognition

model, as well as the performance resulting from their consecutive inclusion in the model

feature vector. Compared to the optimal chunking feature vector (see Table C.2), the list

of features is quite different. It seems that medical affixes are not as useful here as they
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Growing Feature Set Models

word + + + + + + + +
POS + + + + + + +
chunk + + + + + +
Ney-Essen + + + + +
Brown + + + +
canonical + + +
suffix + +
auto affix +

f-score 45.74 47.91 56.81 60.72 64.25 64.61 68.32 69.46

Table 5.3: Features with positive contributions to concept recognition models. Columns represent
models, pluses indicate presence of feature. The bottom row shows the f-score achieved
by the model.

were to chunking, as opposed to automatically generated affixes, which contribute more

than 1.5 percentage points to this task (note that these are in fact two feature types —

automatically generated suffixes and prefixes each contributing roughly the same). The

generic suffixes also show better performance when used together rather than separately

based on part-of-speech. Another difference from the chunking vectors is the positive

contribution from both Ney-Essen and Brown vectors — the use of both word cluster

features did not lead to better performance in chunking even though they contributed

significantly when used separately. Finally, none of the n-gram features were used because

they all had a negative effect on the model performance.

One aspect of the feature vectors that needed additional attention was the sources of

the cluster features. The best performing clusters were used for the initial experiment, but

it was not clear whether they were the most optimal choice. Two series of experiments

were conducted to determined the best combination of Ney-Essen and Brown clusters.

The first series tested the best performing Brown clusters using the feature vector scheme

in Table 5.3 and the 250 Ney-Essen clusters trained on the GPRD data. The results of

the experiment showed that the 250 GPRD Brown clusters performed better than the

rest although not all of the differences were statistically significant. The second series of

experiments also found that the initially selected cluster set was the most suitable for

the task, although the difference from the Stanford clusters was not significant (69.23,

p=0.616).
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Once the choice of feature types was finalised their context windows were optimised

using the group optimisation technique discussed in Chapter 4. The nine feature types

were grouped in threes: 1. word, POS, chunk; 2. canonical, Ney-Essen, Brown; 3. suffix,

automatic prefix, automatic suffix. The context window optimisation process yielded a very

slight improvement in performance reaching 69.80 (p=0.41). Finally, Bayesian optimisation

was used for tuning the two CRF hyperparameters, which increased the performance more

significantly, reaching 70.68.

5.2.2 Performance Analysis

The f-score of the concept recognition model measured in the final stage of the inner cross-

validation evaluation was 65.93. It is difficult to compare this performance to that achieved

by other researchers, not only because this is the first model used on this corpus, but also

because related tasks focus on different concepts or different data. Nonetheless, with some

exceptions (Pyysalo et al., 2013; Stenetorp et al., 2012b), NER-like tasks typically score

in the high 80s or even low 90s (Tjong Kim Sang and De Meulder, 2003; Y. Guo and R.

Gaizauskas and I. Roberts and G. Demetriou and M. Hepple, 2006). It therefore seems

that the model performance is relatively low, but there is also the question of the task

complexity and the reasons behind the errors of the model.

The model achieved 69.59 precision and 62.63 recall; immediately noticeable is the

comparatively low recall and the large precision-recall gap. Such a large gap may be

indicative of a BIO-task optimisation problem noted by Manning (2006). In the case of

NER, and by extension other tasks using BIO annotation, optimising for F1-score often

leads to a conservative model with lower recall. The reason for this bias is rooted in the

definition of a correctly recognised concept. In the case of simple classification, data points

fall into one of four classes — true positives (tp), false positives (fp), true negatives (tn),

and false negatives (fn) — while tasks using BIO annotation have a complex definition

of a data point, which causes errors in border recognition and label classification or both.

Manning describes an experiment where three new categories of errors are introduced:

label error (when the boundaries fully overlap but the labels are different), boundaries

error (when the labels are the same but the boundaries only partially overlap) and label

and boundary error (when the labels are different and the boundaries partially overlap).
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He shows that in a classic NER experiment the majority of errors fall into one of those

categories as opposed to the classic four. His argument is that f-score optimisation punishes

these categories harder than the rest thus favouring more conservative (passive) models.

A somewhat involved but cleaner explanation to the problem can be derived from the

mechanics of calculating f-score for BIO tagging. The f-score metric makes intractable eval-

uation tractable. In the evaluation of information retrieval systems (e.g. TREC (Voorhees

and Hersh, 2012)), documents are only considered if they have been retrieved by one of

the systems (i.e. marked as positive). For retrieval problems this is absolutely fine but for

BIO annotation, there is a small problem: retrieving some documents makes the retrieval

of others impossible. For example, consider the symptom abdominal pain and the following

wrongly guessed annotation:

Guess: abdominal/O pain/B-NPS

Gold: abdominal/B-NPS pain/I-NPS

The system has produced a partial match and missed the real one. So there is a new

document in the universe that is a false positive, which is normal, but at the same time

it also becomes impossible for the model to produce the right document. So essentially,

with one action the model makes two decisions: 1. creates a new document which is a false

positive, and 2. gives up on finding the correct one which is a false negative. Considering

this imbalance, it is possible that a model with an unusually large precision-recall gap

was selected during the model development. The rest of this subsection investigates that

possibility by analysing the precision-recall gaps of the development models across the

relevant experiments.

The simplest analysis step (apart from checking if the first few models have similar

precision-recall gaps) is to look for outliers as well as the distribution of the gap size across

all development experiments involving optimisation of BIO annotation models. Figure 5.1

shows a histogram of those sizes which shows that the gaps in the concept recognition

model during the development process are even bigger than in the final evaluation. They

are also much larger than the precision-recall gaps of the chunking development model

(again a BIO model), which are mostly less than 1 and in some cases even negative

(meaning recall is greater than precision). Due to the difference between the performance

in development and the final evaluation, it is not possible to determine only from the gap
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(a) concepts (b) chunks

Figure 5.1: A counts histogram of the precision-recall gap in concept recognition (a) and chunking
(b). The estimates are based on data from the greedy group optimisation experiments.

distribution whether the optimisation process was misled, although it is clear that recall

is generally much lower than precision across all development results.

(a) (b)

Figure 5.2: (a): Average precision and recall values of the top 100 development models across β

values between 0.5 and 2. (b): precision-recall gap for the top 100 development models
compared to the average across all models.

A more detailed analysis of the precision and recall results in the development pop-

ulation indicates that they are both relatively stable. Figure 5.2b shows little variation

for both precision and recall for the top 100 models (based on f-score measured during

the development process) for β values ranging between 1 and 2. Both Figure 5.2b and

5.2a reveal a fairly consistent precision-recall gap, while the second also indicates that the

gap for the best performing model is lower than the average for all development models.

Perhaps the only place that presents some evidence of a recall bias is the comparison of

projections of top f-score for different values of β shown in Figure 5.3. The top model for

β=1 coincides with the one for β=2, and performs slightly worse than the top model for
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β=3. However, the absolute difference in performance is not statistically significant for

any plausible α threshold (p=0.109 using a Wilcoxon test), so it is fair to conclude that

the recall optimisation bias was not decisive for model selection.

Figure 5.3: Average f-score distribution of development results across different β values, compared
to the distribution of the top f-score for β=0.5,1,2. The shaded area indicates variation
boundaries.

Since recall levels across the development experiments are consistent and there are no

specific reasons for a significant bias, it is possible that the low levels are caused by the

high proportion of words occurring only once, as mentioned in Section 5.1.3. This is likely

to be the cause of border errors as well as of standard recall errors (missing concepts).

Additionally, border errors impair both precision and recall, which is consistent with the

observed development results seen in Figure 5.2b. However, Table 5.4 indicates that the

proportion of tokens erroneously classified outside a concept is consistently greater than

that of border and label errors. This is also confirmed at the concept level, where 42

out of 190 concepts were not detected at all, compared to 14 label errors and 5 border

errors. This behaviour suggests that the classifier has not acquired enough information to

recognise concepts containing unknown words. Additionally, there were fewer (24) spurious

annotations, i.e. false positives in places without any gold standard counterpart, than

missing annotations, which indicates that the classifier is better at recognising what is not

a concept. This analysis, in conjunction with the low repetition rate of concept words in

the corpus, indicates that more training data is needed to strengthen the word features in

the classification model.
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B-D B-DR B-S I-D I-DR I-S O All

B-D - - 6.38 2.13 - - 34.04 42.55
B-DR - - - - - - 24.32 24.32
B-S 10.38 - - - - - 18.87 29.25
I-D 2.33 - - - - 9.3 25.58 37.21
I-DR - 11.11 - - - - 44.44 55.55
I-S - - - 11.63 - - 15.12 26.75
O 0.22 0.13 0.71 0.49 0.09 0.94 - 2.58

Table 5.4: Token-level errors analysis by category as percentage of all annotation in that category.
Rows are gold standard categories, columns are inferred categories. B: begin; I: inside;
O: outside; D: disease; DR: drug; S: symptom.

5.3 an alternative approach: divide & conquer

Most machine learning approaches to NER-like tasks use methods based on BIO-annotated

tokens, which combines recognising the borders of an entity, and determining its class. The

task is rather similar to chunking and POS tagging in terms of classification mechanics,

but it is marginally more difficult to train a good classifier for it. Typically, the targeted

entities are within some form of a syntactic constituent such as a NP, but their exact

boundaries do not necessarily coincide. This relationship between entities and syntactic

structure is the reason syntactic features play a key role in building a successful statistical

model for an NER-like task, as was demonstrated in Section 5.2. However, the parameters

of the task discussed in this chapter allow for a significant simplification due to the terse

language used in primary care notes. The targeted medical concepts happen to be mostly

base NP chunks, so the borders of all potential concepts could be inferred automatically

from the chunk annotation by making the assumption that they are all also NP chunks.

Following this approach, referred to hereafter as the Divide & Conquer (DC) approach,

the classic NER-like task could be simplified to a multi-class document classification where

NP chunks are treated as documents. Even though the assumption that NPs can be used

as boundaries for entities is new, the idea of dividing up an entity recognition task has

been suggested before (Carreras et al., 2002; Wang and Patrick, 2009). Wang and Patrick

(2009) describe a similar approach to NER in clinical notes as cascaded classifiers. They

use CRFs to identify the boundaries of entities, while leaving their labelling to an ensemble

of a SVM classifier and a MaxEnt classifier. They report 88.12 f-score in recognising eight
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types of entities in 311 admission summaries from patients admitted to a hospital intensive

care unit.

The fundamental difference between the previous and the proposed approaches, namely

the explicit knowledge that concepts are always NP chunks, suggests that their results

should not be comparable. However, this can be determined empirically by looking at the

annotations made by the model using the previous approach. Only one out of 674 concept

annotations was created at a place where a chunk did not begin. This is solid evidence

that the model has learned what is available to a DC model by design, and so comparing

their performance should be possible.

Even though the data and the types of features available for extraction remain practically

the same as what was described in the previous section, the use of a document classification

approach for the concept recognition task required the whole model development process

to be revisited. Support vector machine classifiers are commonly used for such tasks, and

are typically compared to a Naïve Bayes (NB) baseline. However, the choices of SVM

kernel and multi-class classification strategy play an important role in the behaviour of

the trained models. Feature engineering is also approached differently in classic document

classification compared to structured classification (e.g. by CRFs). However, the small

size of the document collection in this model development also allowed the use of both

positional and bag-of-words features.

The experiments were set up considering the text within all NP chunks as documents

and their associated concept annotation as labels. The non-concept annotation introduced

for the convenience of annotators was assumed to be the negative label, meaning that

correctly classified non-concepts were not counted as true positives, but as true negatives.

This was necessary in order to ensure fair assessment of the classifier performance on

the target concepts. The model development process was carried out using inner cross-

validation scheme in the same way as for the traditional approach. It should be noted that

the f-score calculation had to treat the non-concept class as a negative label as opposed

to a class of equal importance in order for the evaluation to be fair (see Algorithm C.1 for

a Python implementation).
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5.3.1 Surveying Classifiers

There is a wide variety of classifiers that are able to deal with the document classification.

Multi-class classifiers such as multinomial Naïve Bayes, k-nearest neighbours (kNN), and

decision trees are a natural fit for the task, while binary classifiers such as linear kernel

SVMs can be adapted to multi-class classification using one-vs-rest or one-vs-one strategies.

Table 5.5 compares the performance of these classifiers on the concept classification task

using a simple set of positional word and POS tag features, and a bag-of-words (BoW)

set of the same feature types (with the feature-value representations in Example 5.1). The

positional features link the extracted information with a position in the document, while

the BoW approach disregards word positions and concentrates on occurrence counts in

the documents.

{pain: 1, severe: 1}
(a) Bag of words

{word1: severe, word2: pain}
(b) Positional

Example 5.1: Feature extraction approaches giving feature-value pairs for severe pain.

SVMs achieve the highest results using both feature sets, but while their advantage is

statistically significant for positional features, multinomial Naïve Bayes achieves a com-

parable performance using the bag-of-words approach. Additionally, the reported results

were achieved after some initial investigation of the classifier parameters using Bayesian

Optimisation. The process produced some interesting findings, such as the influence of

SVM kernels as shown in Table 5.6.

Positional Bag of Words

Naïve Bayes 50.42 73.21
kNN 45.51 42.50
Decision Trees 57.87 70.40
SVMs 66.91 73.34

Table 5.5: F-score of classifiers on the concept classification task using a positional and a bag-of-
words style feature set.
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The low performance of kNN is most likely caused by the small size of the training set,

and the imbalanced number of non-concepts compare to the rest of the classes. It has a

particularly low recall (34.21) indicating that the non-concept class (which is the negative

class) is favoured by the classifier, which means that it outvotes the rest even in cases

where it should not.

Kernel Strategy Positional BoW

Linear one-vs-rest 66.91 73.03
Linear one-vs-one 66.19 73.28
Polynomial one-vs-one 66.15 73.34
RBF one-vs-one 65.21 56.39
Sigmoid one-vs-one 30.36 48.08
Crammer and Singer (2002) multi-class 65.57 73.19

Table 5.6: Performance comparison between different SVM kernels and multi-class strategies.

Even though it was interesting to investigate the impact of different SVM kernels, multi-

class strategies, and hyperparameters, any conclusions drawn at this point may not have

held at a later stage of development using a richer feature model. To a certain extent

this was also true for the choice of a classifier, so it was decided that SVMs (which were

the top performing classifiers from this round of experiments) should be used for model

development, after which another round of experiments was needed to give more context

to the comparison.

5.3.2 Feature Engineering: Bag of Words

The main part of the model development process needed to explore four directions of varia-

tions regarding the SVM models: both positional and BoW feature extraction approaches

needed to be considered; a range of feature types derived from their CRF counterparts

had to be tested; and finally the choice of kernels and their specific parameters and hyper-

parameters. To explore these possible model variations two groups of experiments were

set up — one for each feature extraction approach. Each group explored separately the

effects of newly crafted features, the use of kernels, and hyperparameters.
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The features found helpful during the CRF-based model development in the previous

section of this chapter were also considered in the context of BoW features for document

classification. Only one feature type was left out of the experiments because it was expected

to be of little use due to the new structure of the task — the chunk annotation. The rest of

the feature types discussed in Section 5.2 were used in the experiments, but none of them

achieved any improvement over the initial model. Some of them (POS bigrams, suffixes,

prefixes) had no or very little effect on the model performance, while others degraded it

significantly (word embeddings, Brown and Ney-Essen clusters).

Another attempt at improving the performance looked at adding some context to the

document, which meant including the words preceding and following the NP chunk in the

document. This approach had both potential advantages and disadvantages. If the context

meant that a verb can be recognised around the document that could be useful, as, for

example, in the case of prescribe_MV fybogel_NP. But context could also be misleading

if two NP chunks are next to each other as in no coughing high fever. Experiments showed

that introducing context tokens led to a severe drop in performance that was proportional

to their number.

However, the model was improved by the least expected feature type — chunk anno-

tation. The only information that it could contribute in its current BIO state was to

differentiate between the first word in a document and the rest. The new model received a

performance boost of a little more than half a percent f-score reaching 73.92 which could

be considered significant at an undemanding threshold (p=0.028).

Even though there was very little gain from the model development process, the devel-

opment results were still higher than the f-score achieved by the CRF model, which could

be considered a good baseline for the model.

5.3.3 Feature Engineering: Positional Features

The positive effect of the chunking annotation features for the BoW model indicated that

word position is important, which gave further support for investigating positional feature

extraction. All feature types described above were also tested using the positional feature

extraction approach.
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Adding chunk annotation features to the baseline word and POS annotation model

resulted in a slight statistically insignificant drop in model performance (66.83). This is

not too surprising given that the much more informative POS annotation increases the

performance of a purely word feature driven model from 66.30 to 66.91, a borderline

significant difference (p=0.013).

The context features discussed above generally had a very small mostly negative effect

on the model performance, except for the word immediately preceding the document which

improves the model performance to 68.42 (all results available in Table D.5). Note that the

reported results include both word and form features from the context position, each of

them contributing a roughly equal share. An additional experiment was conducted to test

if the chunking annotation may be useful under these conditions, given that it will highlight

the border between a concept and non-concept, but the results showed an insignificant dip

in the performance to 68.37 rather than an improvement.

The addition of each word representation feature type increased the model performance

more than any other discussed so far for this task. Additionally, their influence in absolute

percentage points was also more than in any other experiment described in this thesis

(results from all word representation experiments are available in Tables D.6, D.7, & D.2).

Additionally, the results shown in Table 5.7 indicate that combining two or three of the

feature sets also leads to improvements, in contrast to what was observed in the chunk-

ing experiments in Chapter 4, where combining them did not lead to any improvement.

It is worth noting the consistently good performance of the GPRD cluster features. Fi-

nally, it is interesting that all word embeddings lead to some positive effect, but only the

features based on the Dhillon et al. (2015) embeddings showed a statistically significant

improvement.

Word n-grams and fixed-size substring affixes also proved to have a positive effect when

used with positional feature extraction. Both word bigrams and trigrams increased the

f-score by more than one percentage point to 75.83 and 75.54 respectively, but their

combined use did not improve upon bigrams alone. Similarly, prefix and suffix features

achieved almost the same improvement on their own — 78.26 at size three and 78.30 at

size two respectively — but again combining them did not reap any improvement over

suffixes alone (78.28).
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source size f-score precision recall

Embeddings Dhillon 200 69.78 79.70 62.37
Brown GPRD 512 72.67 79.39 67.00
Ney-Essen GPRD 512 71.58 77.85 66.40
B+NE - - 73.77 77.46 70.68
All - - 74.57 78.23 71.54

Baseline - - 68.43 83.67 58.15

Table 5.7: Comparing positional DC performance impact of word representation features, sepa-
rately and together.

(a) {word1: severe, word2: pain}

(b) {word1: possible, word2: severe, word3: pain}

Example 5.2: Left alignment of positional features in the documents (a) severe pain and (b) possible
severe pain.

Additionally, the choice of left or right alignment of positional features was reviewed,

since NPs usually have their head word in the rightmost position. If left alignment is used

as illustrated in Example 5.2 then the common features word1 and word2 will have

different values. If feature extraction is aligned to the right then the common features will

have matching values. Using right alignment significantly increased the f-score to 80.00.

There were a few further model improvement avenues that seemed worth investigating,

but did not help. Character n-gram features, which are essentially a more generic version

of the affix features, consistently decreased performance (77.01) so they were left out.

Count-based word features were also explored, because of their importance for the BoW

model performance, but eventually they ended up slightly decreasing the performance of

the positional model.

5.3.4 Feature Selection

The purpose of feature selection is to sieve out the features with high entropy, leaving

only the “useful” ones in the set. In fact, considering that a feature set already existed

before looking into the DC approach, the process described in the previous two sections

is similar to forward stepwise selection (Caruana and Freitag, 1994). A more principled

approach uses a statistic to weed out features that fail to discriminate between classes by
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picking a subset of them that score over some threshold. Two common statistics used for

this purpose are the ANOVA F-test value (Markowski and Markowski, 1990), and the χ2

statistic.

ST FS classifier 10% 20% 50% 90% crafted

χ2 P SVMRBF 79.03 80.17 62.92 42.45 45.32
F-test P SVMRBF 78.89 80.05 62.92 42.45 45.32
χ2 P NB 78.25 79.47 80.10 71.62 67.95
F-test P NB 78.22 79.47 80.10 71.62 67.95
χ2 P SVMLinear 79.94 78.04 76.56 79.45 80.00
F-test P SVMLinear 80.02 78.06 76.56 79.45 80.00
χ2 BoW SVMPoly 69.96 69.54 68.89 69.15 73.91
F-test BoW SVMPoly 69.24 68.78 66.09 66.24 73.91

Table 5.8: Comparison of models using feature selection to a model using a manually crafted feature
set. The crafted column shows the classifier performance using the best crafted feature
set. ST: statistic, FS: feature set type, P: positional feature set, BoW: bag-of-words
features, RBF: radial basis function

Table 5.8 lists results from eight experiments which tested feature selection using F-

test and χ2 on the full bag-of-words feature set and the full positional features set (see

Table D.9 for all experiments). In many cases, especially for models using BoW features,

the feature selection process led to a significant drop in performance, but in other cases

the process led to significant improvement. Even though the highest result was achieved

by the RBF kernel SVM classifier using the top 20% of the features selected using χ2, each

of the shown models with position-based features achieved comparable results, meaning

without statistically significant difference. Given the close scores the choice of a model

needed to be motivated by different factors.

classifier ST FT f-score σ precision recall

SVMLinear - crafted 80.00 1.82 84.16 76.38
SVMLinear F-test 10% 80.02 1.63 88.83 73.01
SVMRBF χ2 20% 80.17 2.18 79.29 81.07
Naïve Bayes F-test 50% 80.10 2.25 77.31 83.09

Table 5.9: Precision-recall gap comparison in top scoring models. ST: statistic, FS: feature set type.
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The model using a linear SVM kernel was chosen as the safest model as it is least

sensitive to feature selection across different thresholds, which indicates that it is less

prone to overfitting. The models using feature selection and a crafted feature set achieve

virtually the same result, in contrast to the Naïve Bayes and the RBF kernel SVM models.

The latter two also have a higher f-score standard deviation (see Table 5.9). The small

precision-recall gap of opposite polarity is the only advantage that other models have

over those using a linear kernel SVM classifier. However, that may also be considered a

drawback if the overall goal is high precision.

5.3.5 Performance Analysis

The model using linear kernel SVM with top 10% F-test feature selection yielded surpris-

ingly high results on the final test set. Its f-score reached 83.76, which is significantly

higher than the development levels, but more impressively the precision-recall gap had

shrunk down to 1.43 percentage points (84.48 precision and 83.05 recall).

diseases drugs symptoms none

diseases -/- -/- 5.33/1.75 12.00/14.04
drugs -/- -/- 2.67/- 13.33/12.28
symptoms -/15.79 1.33/1.75 -/- 42.67/26.23
none 1.33/10.53 5.33/7.02 16.00/10.53 -/-

Table 5.10: Label error rate comparison between the development set (left; mean values) and the
test set (right) as a proportion of all correct occurrences of this label. Rows signify
correct labels, columns labels assigned by the classifier.

Comparing the rate at which true labels are mistaken for other labels is a good way

to identify what has improved between development and the final test. Table 5.10 shows

that the Type II errors for the symptom class (rightmost column) have decreased by more

than 15 percentage points, while Type I errors have increased overall. These observations

suggest that the model behaves in a less conservative way than on the development data.
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5.4 dynamic model evaluation

Even though the performance of many of the models using the DC concept recognition

approach reported so far are much higher than the models using the traditional approach,

a fair comparison of the real-life applicability of the two approaches requires assessment of

their vulnerability to substandard chunking annotation. Both approaches rely on accurate

chunking. On one hand, a chunking border mistake does not necessarily entail a concept

recognition mistake for the traditional model, but it makes it very likely. The model

has a chance of recognising the concept with the correct borders (depending on the other

features), but typically it would either not recognise the concept or make a border error. In

contrast, the DC model has no possibility of making a correct decision in this situation. On

the other hand, a chunking label mistake always entails a non-concept recognition for the

DC model, which is correct in most cases, since most NPs are non-concepts. A traditional

approach model is less likely to recognise a concept without chunking annotation, but it

is not impossible, as shown in earlier experiments without chunking features (see Table

5.3). So following this rationale the traditional approach should be at an advantage if

substandard, dynamically generated chunking annotation is used in the final validation

set as opposed to the static gold standard.

The same data splitting was used for concept recognition as for the chunking experi-

ments, so the inferred chunking annotation for the validation set in Chapter 4 could be

used for the dynamic evaluation of concept recognition. This validation set was used to

re-evaluate the two best performing models of each approach, and it was found that al-

though the performance of both methods drops severely, the Divide & Conquer approach

still retains a large advantage over the traditional approach. The latter achieved 57.85

f-score (60.69 precision, 55.26 recall), while the former achieved 70.67 f-score (70.32 pre-

cision, 71.03 recall). These results indicate that the DC fares better than the traditional

approach even in unfavourable circumstances. It should be noted, however, that the per-

centage points lost due to dynamic chunking annotation is significantly greater for the DC

approach in both absolute and relative terms.
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5.5 chapter summary

This chapter presented the design and development of approaches to clinical concept recog-

nition, covering symptoms, diseases, and drug names. An extra layer of annotation was

added to the Harvey Corpus to enable the training of such recognition models. Two an-

notators were trained using a set of guidelines based on the assumption that the targeted

concepts are always noun phrases. The corpus was annotated independently by each an-

notator, with inter-annotator agreement reaching 89% Krippendorff’s α. A novel semantic

entity recognition method was proposed, which approached the entity identification and

classification problems while utilising the terse NP-heavy characteristics of primary care

data. A comparison between this approach and the traditionally used sequence taggers

showed that the former achieves better f-score performance both when using gold stan-

dard and dynamically generated chunking annotation.

The f-score of a sequence tagging model developed using inner cross-validation yielded

69.59, which was disappointing. However, the model development proved word representa-

tion features, including word embeddings, to be much more important than they were for

the chunking models discussed in the previous chapter. Due to a large difference between

the precision and recall of the model, it was suspected that the optimisation process had

led to the selection of a conservative model favouring low recall in order to boost f-score.

An analysis of the performance of all development models showed that the size of the

precision-recall gap is not unusual, and that the selected model would have been the same

even if a recall-favouring f-score was used (β=2). Additionally, an error analysis of the

results suggested that the classifier was much more likely to fail to recognise concepts

rather than their classification or borders, which can be indicative of insufficient training

data.

The alternative approach proposed in this chapter (called Divide & Conquer) took ad-

vantage of the NP-heavy primary care notes to eliminate the border recognition part of

the task. It assumes that all of the target concepts must be noun chunks, as symptoms,

diseases, drug names are undoubtedly centred around nouns. Thus the concept recognition

problem becomes an NP chunk classification problem with four classes, one of which is a

non-concept (negative) class. The new approach achieved results far better than the tradi-

tional approach during the development stage of the inner cross-validation, and achieved
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83.76 f-score on the validation set. The model development process tested the performance

of typical document classification algorithms, while following two feature engineering ap-

proaches, one using standard document classification bag-of-words features, and one using

positional features designed in a similar way to sequence modelling tasks. Additionally,

hand-crafting a feature set was compared to feature selection techniques based on χ2 and

ANOVA F-test values. The positional features proved to give overall better performance

than BoW, while the hand-crafted feature set used with a linear kernel SVM was among

the top performing models, along with three others using feature selection and linear ker-

nel SVM, RBF kernel SVM, and Naïve Bayes classification. The final model was chosen to

be the 10% F-test feature selection model using linear kernel SVM. The decision was made

based on the stability of linear kernels and the assumption that feature selection based on

F-test value generalises better than the hand-crafted approach (although the development

performance was virtually the same).

Perhaps the most important test described in this chapter was measuring how using

substandard chunking annotation affects both methods. It was established that the Divide

& Conquer approach still performs better both in absolute and relative terms, although

its f-score dropped significantly to 70.67. This finding is particularly important as it gives

an indication of the potential real life performance of the model presented in this chapter.

In conclusion, the chapter presented a statistical model for recognising symptoms, dis-

eases, and drug names based on a new annotation layer of the Harvey Corpus. Although

the model did not achieve results as high as recent entity recognition models for edited

text, it still demonstrates that relatively reliable results can be achieved despite the non-

standard nature of the language of primary care notes.

F 8 f



6
DISCUSS ION & FUTURE WORK

6.1 thesis summary

This thesis presented the research efforts behind the development of a novel clinical concept

recognition system that is able to handle the terse and non-canonical language of primary

care electronic text notes. The system is the first of its kind suited for the language in the

text part of UK primary care electronic medical records. It has to account for spelling and

grammar errors, abundant terminology, terseness of expression, and numerous acronyms

and abbreviations, which are difficult for any generic natural language processing system

or model to deal with correctly. Additionally, the amount of available data resources was

restricted due to the presence of sensitive information, which imposed further difficulties

in the development process. The work described in the thesis addressed these challenges

by developing new language resources and statistical models suited to primary care text

processing. The overall strategy to achieving robust information extraction results involved

selecting the most suitable existing part-of-speech (POS) model rather than develop it

from scratch, and concentrating on creating language resources and models for syntactic

chunking and concept recognition.

The first step towards the development of statistical models suited to a new type of

text is creating an adequate language resource, i.e. an annotated text corpus. Chapter 3

described the first stages of the development of the Harvey Corpus of primary care text,

in which a random sample of electronic medical records was selected for annotation. A

set of guidelines were created through an iterative development and evaluation process

involving a group of researchers and a pair of annotators with medical training. The

selected records were annotated with syntactic chunk annotations specifically developed for
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this type of text, and four types of semantic entities. The annotation process involved two

annotators creating independent versions of the annotations, and an adjudicator reviewing

and resolving the cases of disagreement. The inter-annotator agreement reached an average

f-score of 85 for the chunking annotation and 71 for the semantic entity annotation. The

corpus eventually included 850 electronic medical records constituting more than 25,000

tokens. Another annotation layer was added at a later stage when the corpus was prepared

for the development of concept recognition models. The process was slightly simplified

as it was assumed that medical concepts occur almost exclusively as noun phrases in

the context of primary care text. Thus, the annotated noun phrases were upgraded with

medical concept annotation, covering symptoms, diseases and drug names. The annotators

achieved 89% inter-annotator agreement, measured using Krippendorff’s α coefficient.

The Harvey Corpus enabled the development and evaluation of statistical models for

processing primary care data, which led to a methodical process of model feature experi-

mentation and model development for syntactic chunking and concept recognition, using

different machine learning algorithms. Chapter 4 explored in depth the best approach

to achieving good results in the POS tagging and chunking tasks. Existing models for

both tasks were evaluated on the Harvey Corpus, yielding 80.69% POS accuracy and

46.41 f-score for chunking. Considerable compromises had to be made in order to perform

this evaluation, so the results were treated as indicative of trends rather than absolute

performance. Nevertheless, the rationale was to rely on available POS models, while con-

centrating on developing chunking models. The next step was optimising existing tools

and methods for chunking using the Harvey data, which achieved chunking performance

reaching 77.76 f-score. The experiments revealed that a CRF-based tool performed better

than an SVM-based tool, and that although BEISO annotation achieved higher results in

more of the experiments, there was no significant difference between any of them. A more

flexible machine learning tool was developed based on the CRFSuite library, allowing the

optimisation of a wider range of commonly used feature types including word represen-

tation clusters and vectors. The chapter also investigated the issue of multi-parameter

optimisation, exploring Bayesian optimisation for feature set development, and comparing

it to isolated grid search across hand-crafted groups of feature types. The development

process produced a model that achieved 79.89 f-score on the final validation set.
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Chunking and clinical concept annotations allowed the development of the final step of

the concept recognition pipeline. The task was approached in both the traditional NER-like

way, and using a new method exploiting the specific primary care language features to its

advantage. The traditional approach followed roughly the same experimental setup as the

chunking task with some modifications and new features adapted to the task. The results

achieved using that method were much lower than results typically reported in clinical

concept recognition studies, reaching only 65.93 f-score. The results had an unusually

wide precision-recall gap with a skew towards precision, which seemed consistent with a

F1-score optimisation bias previously suggested by Manning (2006). The scores from the

whole optimisation process were recalculated optimising for the whole spectrum between

F0.5 and F1.5, but there was very little change in the configuration order, which showed

that even if there is a bias due to optimising for F1-score it was not what caused the gap.

The alternative approach, called Divide & Conquer, took advantage of the telegraphic

style of the text which generally packs information, including medical concepts, in base

noun phrases, i.e. NP chunks. Using that domain specific knowledge, the method assumed

that all NP chunks are potential candidates for concepts, which transformed the recogni-

tion task into a text string (or document) classification task as borders no longer needed

to be recognised. Traditionally, document classification tasks favour bag-of-words (BoW)

features over positional features for a number of reasons, but in the case of phrase sized

documents, considering word positions seemed important, so both types of feature engi-

neering experiments were pursued. The validation scores of the positional feature model

outperformed the BoW best model by more than fourteen percentage points, reaching

83.76 f-score compared to 69.59.

Finally, the two approaches were also tested in a real-life system setup, where both

the POS and chunking annotations were generated automatically. Even though positional

features dominated so decisively, it was interesting to see how dependent they would be

on the quality of the chunking annotation and to compare that dependence to the bag-

of-words model. The performance of both models decreased as would be expected, but

surprisingly the loss on both sides was very close. The positional model achieved 70.67,

while the BoW performance dropped to 57.85. The performance drops were very similar in

absolute terms (under a percentage point apart), but the positional approach lost less from
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the annotation in relative terms, which is slightly unexpected given its strong dependence

on good chunking annotation.

The development of a clinical concept recognition system for primary care text along

with the research that led to it has interesting implications for the field of clinical NLP, as

well as epidemiology and other forms of clinical research. This work showed that despite the

difficulties posed by the non-canonical language in primary care free text notes, automated

analysis is still possible through adapting existing technology and exploiting the terseness

of the language. Additionally, the prototype system presented here is a major step towards

developing robust task-independent tools to aid medical researchers in exploring primary

care data on a large scale.

6.2 main findings

The main findings revealed over the course of the research conducted for this thesis are

briefly described below.

During the development of the chunking guidelines, it was noted through the logs of

the annotation platform that annotators perform qualitatively better when working for

longer periods of time. Annotations produced during sessions shorter than thirty minutes

were found to be of considerably lower quality compared to those produced during longer

sessions. In relation to this finding, it was also noted that generally the quality of the

first few records annotated during a session is lower than the average for the session. The

annotation process was adjusted in order to account for these negative effects — annotators

were assigned longer, supervised sessions, and were encouraged to review their work at the

end of each ten-record annotation batch, as well as whenever necessary in general.

Word representation features were an important part of the experiment base of this

thesis. Word cluster features were found to be particularly useful in the BIO-based tagging

tasks (chunking and traditional concept recognition), as well as the document classification

task (Divide & Conquer concept recognition). In contrast, the influence of word embedding

features on the performance of the two BIO-based tagging tasks was generally found to

be statistically insignificant. They did, however, contribute significantly to the models

using the document classification approach. Additionally, the experimental findings were

complementary to the findings of Stenetorp et al. (2012b), as the word representation
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features based on in-domain (i.e. primary care) data performed on a par with those based

on biomedical text and general domain text, in spite of smaller data set size.

Bayesian optimisation, an optimisation method that has recently grown popular among

machine learning researchers, was successfully used to tune hyperparameters of NLP classi-

fiers, but it was found to be better than greedy parameter group optimisation only in some

cases of feature set optimisation. The experiments showed that Bayesian optimisation was

several times faster when the optimised feature set had four or less tunable feature types,

but it did not improve on the performance of greedy parameter group optimisation when

tuning eight feature types — even after a very high number of repetitions. Even though

the experiments suggest so, it is still uncertain if the poorer performance with more tuning

parameters (i.e. feature set types) is due to the higher number of combinations. Another

possible explanation is a greater or more unpredictable impact of adjusting feature set

types compared to adjusting hyperparameters, which would make the task more difficult

to model.

Syntactic chunks are usually good indicators of the borders of semantic entity annota-

tions, but there are many exceptions. Therefore the general practice is to detect borders

together with entity classes in a BIO annotation, while using chunk features. However,

in this thesis it is assumed (based on an empirical analysis) that medical concepts are

predominantly expressed as base noun phrases, which allowed the direct classification of

predefined text units (documents) into medical concept (or non-concept) classes. Addition-

ally, even though such a classification approach seems to have an unfair advantage over

the traditional approach, in practice the advantage was negligible as the developed BIO

tagging model made almost no border errors on the same task.

6.3 contributions to nlp & clinical research

Health researchers rarely use NLP tools when carrying out studies on primary care text

due to the sensitive information contained in the text, and the difficulty of processing

this kind of language with tools and models trained on text from a different domain.

The main contributions of this thesis are a clinical concept recognition system for UK

primary care text, and the exploratory work through which the system was developed.

Even though the system’s accuracy did not reach that of similar techniques in other text
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domains, it provided an indication that semantic information can be extracted from GP

text notes. In essence this work should be considered as an initial step towards large-

scale extraction of information from primary care text notes in clinical and other medical

research. Additionally, the development of primary care text processing tools will reduce

the need for humans to read text containing confidential information, as well as motivate

the development of future research into mining information currently locked up in primary

care text notes.

The Harvey Corpus, the two sets of annotation guidelines, and the work associated

with creating and using these resources are another important group of contributions to

the fields of NLP and corpus linguistics. Despite the corpus being available only under

a special licence, the annotation and the guidelines are freely available, thus allowing

reusability under certain conditions.

Finally, a more technical contribution is the concept recognition method for terse text,

which was successfully applied to primary care notes, outperforming the standard method

in both an idealised and an emulated realistic scenario. Even though the idea of using

an entity classifier in an NER task is not new (Carreras et al., 2002; Wang and Patrick,

2009), it was previously used to correct the output of a BIO-based NER tagger. The work

presented in this thesis showed that in the case of terse primary care text the first step is

not necessary if all base NPs are assumed to be classification candidates.

6.4 limitations of the work

The main limitation of this work is the difficulty in distributing its data resources. Even

though models, guidelines and annotation are freely available, building on this research

will be difficult unless the source data can be licensed.

The size of the annotated data is another limitation. The Harvey Corpus has more

records than the average i2b2 corpus, but the mean size of GP notes is much smaller

than those of other document types used in clinical corpora, e.g. discharge summaries and

radiology reports. The increasing trend of the learning curve shown in Chapter 3 suggests

that more annotated data should increase the performance of the machine learning models,

although at a decreasing rate. Additionally, due to the limited resources available for

the work described in this thesis, a compromise was made with the quality of part-of-
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speech annotation. Ideally, a new specialised model should be developed for primary care

text, either through training on enough in-domain annotated text, or through a domain

adaptation method. In either case, improving the POS annotation of the Harvey Corpus

is very likely to lead to better results in higher level tasks.

The limitations noted above have an impact on the performance of the final system,

which is perhaps the only way that their influence can be objectively quantified. Thus

overcoming them should also indirectly improve the system.

6.5 future work

There are several directions in which this research can be developed.

Given additional resources, the current annotated data could easily be expanded in

different ways, including making it larger using the rest of the unannotated text notes

under the same licence. The benefit of in-domain part-of-speech annotation could also be

assessed through a sufficiently large annotated corpus, and extended to the whole corpus

if found appropriate. It would also be interesting to investigate adapting a POS tagset to

primary care data as mentioned in Chapter 4. Additionally, the approach to annotation

could be further tested by comparing current inter-annotator agreement performance with

linguistics expert annotators, or even teams combining linguistic and clinical expertise. The

medical concept annotations could also be linked to SNOMED-CT concepts, which would

allow the systems trained on the corpus to produce more generalisable results.

Domain adaptation is a direction that should certainly be explored in any further de-

velopment of this work, especially if enough POS annotated data could be produced. The

approach has high potential for improving POS tagging, due to the already good perfor-

mance of the general domain models on primary care data. Another area that could be

explored further in light of the recently published work by Levy et al. (2015) is word repre-

sentation, and word embeddings in particular. Levy et al. presented an in-depth analysis

of the algorithms behind word2vec and GLoVe, identifying their preprocessing and param-

eters to show that embeddings are produced in a similar way to positive pointwise mutual

information (PPMI), which is an established method in earlier distributional semantics

work (Baroni and Lenci, 2010; Turney and Pantel, 2010). The authors also demonstrated

that embeddings have been thus far somewhat unfairly evaluated, as the new software
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packages have been used as black boxes without accounting for some hidden processes,

which could also be applied to PPMI. The word representation experiments reported in

this thesis are not exhaustive as they do not optimise the embeddings creation process

itself, but considering these findings, it is now evident that achieving better results using

word embeddings requires more attention and thorough experimentation than previously

thought.

A robust basic natural language processing framework allows the development of solu-

tions to a variety of more complex problems, such as relation recognition. Longitudinal

relations, for example, are particularly important for clinical data as they provide an

overview of the data that can reveal specific slowly developing patterns (Stubbs et al.,

2015b).

Negation and other elements of context around concepts also play an important role

in correctly analysing the clinical data. Often the mention of a concept does not auto-

matically mean its presence in the patient at the time of the examination. It may refer

to its absence, previous occurrence, a reference to family health history, or merely the

possibility of presence. It is also important to determine the identity of such concepts by

linking different text representations of the same entity. There are multiple approaches to

the problem that could be explored in the context of primary care text in the future. A

thorough analysis should include experiments with rule-based systems, supervised machine

learning models, and more complex hybrid systems.

Finally, the work described in this thesis and solutions to these and other similar prob-

lems could make future health research using primary care text faster, more scalable, and

more effective, while decreasing the need for researchers to access confidential data.

F 8 f



A
APPENDIX A : ANNOTATION GUIDELINES I

a.1 introduction

the purpose of these guidelines is to introduce the reader to the annotation of general
practitioner (GP) notes with syntactic chunks and semantic expressions. To achieve that
these guidelines provide some basic grammar and linguistics knowledge, as well as some
additional instructions about annotation techniques.

the task itself amounts to identifying and annotating a number of different linguistic
phrases and expressions in GP notes using the web-based annotation tool Brat.

the motivation for this task lies in the crafting of gold standard data for training
and evaluating machine learning tools that will automate the process of linguistic analysis.
This automated process will ultimately serve as the basis of more complex analysis leading
to the automated extraction of information about symptoms and diseases from GP notes.

the information in these guidelines is distributed in three sections. The Common
Grammar section introduces the reader to basic notions of grammar and linguistics. This
section may be skipped by a reader with prior linguistic experience. The Chunks section
explains the notion of syntactic chunks and their annotation according to these guidelines.
In the last section, called Annotation, we discuss the details of a good annotation practice,
as well as some of the specific issues and tasks of the annotation of medical records.

notes on the use of bold and italics in the guidelines. All examples are marked with
italics. The focus area of the example, e.g. the phrase head, is marked with bold italics.
Key points in the guidelines are highlighted in bold face only.
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a.2 common grammar

This section explains the basic notions of parts of speech, noun and adjective phrases, and
main verbs. This information is crucial for a complete understanding of the guidelines.
However, readers who are familiar with basic grammar should be able to skip it and
continue reading at Section A.3.

a.2.1 Parts of speech

English words are traditionally classified into eight lexical categories, or parts of speech:
nouns, pronouns, adjectives, verbs, adverbs, prepositions, conjunctions, and interjections.

• Nouns are abstract or concrete entities: a person (policeman, Michael), a place (bank,
Brighton), a real object (tie, radio), an imaginary object (unicorn), a feeling or an
idea (joy, democracy), or a quality (cleverness). Nouns could be grouped together
to form compound nouns as in bus driver, desk lamp, or party animal.

• Pronouns are generally used instead of nouns and personal names in different situa-
tions with different functionality. Here are examples of all the types: I, you, we, etc.;
me, her, them, etc.; my, mine, your, yours, their, our, etc.; this, that, these, those,
etc.; anyone, anything, etc.; who, which, etc.; who, whom, etc.

• Adjectives are words used to describe qualities and attributes of nouns: green, lazy,
tall, heavy, kind. They also include comparative and superlative forms like better,
best, worse, worst, taller, tallest, etc.

• Verbs are words that indicate an action (walk, write), an occurrence (happen, occur),
or a state of being (be).

• Adverbs are qualifiers of adjectives (slightly green; absolutely fresh), verbs (to
work efficiently; suddenly disappeared), clauses, sentences, or other adverbs (walk-
ing slightly impatiently). They are usually the answer to the questions How?, Where?,
or When?.

• Prepositions are words that express some sort of relation, for example a spacial
relation is expressed by prepositions such as to, under, before, inside, etc.

• Conjunctions are words that connect other words and phrases, e.g. and and or.

• Interjections are words of emotional greeting (or exclamation) like wow, tut-tut,
ugh

a.2.2 Phrases

In everyday speech, an arbitrary group of words may be called a phrase. However, in
linguistics, a phrase is defined as one word or a sequence of words that function as a single
unit in the syntax of a sentence.

a.2.2.1 Noun Phrases

A noun phrase (NP) is a unit centred around one noun or pronoun or a gerund, which is
called the head of the noun phrase. The rest of the phrase consists of modifiers that give
further information about the head. So if a noun denotes an entity (e.g. dog), the noun
phrase provides us with more information about that entity. For example, in the sentence
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John has a big brown dog the noun phrase a big brown dog gives us information about the
colour and size of a dog owned by John. Other examples of the information conveyed by
modifiers are attributes (the green mile), location (the door in the floor), ownership (my
girl), quantity (seven samurai), and other more complex notions (the girl who played with
fire). Usually the entity that is in the focus of the noun phrase is a noun or a pronoun,
but it could also be the present participle form of a verb (as in I love reading), which is
called a gerund (see Section A.2.3 for more information).

a.2.2.2 Adjective Phrases

Adjective phrases (AP), are syntactic constructions with a head and zero or more modifiers.
The head of an adjective phrase is naturally an adjective, e.g. very fast. The number of
words in APs may vary just like the one of NPs. APs could also include some modifiers of
the adjective head as in The river is crystal clear, wound severely infected, The wine
tastes very good and Patient feels slightly constipated.

a.2.3 Verbs

For the purpose of these guidelines we discuss three types of verbs depending on their
semantic and syntactic roles in a sentence or a clause. The first group is that of the main
verbs which express the central action, occurrence, or state of being of the sentence or the
clause. The second group, which are called auxiliary verbs, carry additional grammatical
information about the main verb such as tense, (passive) voice, or modality. It is important
to note that some auxiliary verbs can be also main verbs and even be used twice in the
same sentence with different function or meaning as in sentence 2. below. Some main verbs,
called phrasal verbs, on the other hand, can be comprised of a verb and a preposition or
a particle as illustrated in example 6. below. The following examples show verbs in small
caps and main verbs in bold:

1. The bears are eating the berries in the garden.

2. The bears have always had berry snacks in the summer.

3. The bears will eat berries.

4. The bears can eat berries if they find any.

5. The bears should not eat too many berries.

6. The bears could run into berry bushes.

The third type of verbs, which are called raising verbs, always appear in conjunction
with the main verb as shown (in bold) in the following sentences:

7. The bears need to eat berries.

8. The bears have to eat berries.

9. The bears appear to eat berries.

10. The bears seem to eat berries.
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a.2.4 Gerunds

Gerunds are a special case where verbs in present participle form (ending with -ing) act
as nouns and form noun phrases. Here are some examples of base NPs with gerunds:

11. This house needs cleaning.

12. The patient has normal bowel emptying.

13. Apple picking is fun.

a.3 annotation types

In this section we describe the different types of annotations and we provide guidance
for their correct annotation. The annotations are divided into two groups: phrase chunks
and expressions. The former includes syntactic chunks based on noun phrases, adjective
phrases and main verbs, while the latter includes locative, temporal, quantitative and
”on-examination” expressions.

a.3.1 Base Noun Phrase Chunks

Base NPs are a subset of NPs that do not contain other NPs. A useful trick for
identifying them is to watch out for prepositions, which should not be present in them.
For example, The cat in the mirror is not a single base NP chunk, but two of them
(in bold). To help identify base NPs we provide a list of modifiers that can appear within
them along with examples:

• determiners
– articles: the dog, a cleaning
– demonstrative pronouns: this girl, that man
– possessive determiners: my homecoming, your dog, our car, the police offi-

cer’s wife, the neighbour’s constant complaining
– quantifiers: some people, every day, most children, any student, all birds, no

coffee, five cakes, 10 miles

• adjectives preceding the head, such as large, beautiful, sweeter, excruciating, soothing

• nouns immediately preceding the head, such as college in a college student; note
that the number of preceding nouns is unconstrained, so they could be stacked as in
bus driver, school bus driver, city school bus driver

annotation Two things need to be considered when annotating a base NP: its head
and its borders. First, there should be just one head in the NP. In most cases this means
just one noun, pronoun, or a gerund inside it. For example, a good dog, twelve angry men,
someone. However, one has to be careful not to mistake the nouns modifying the head as
heads. Consider the base NP the black dragon tattoo, in which the word dragon modifies
tattoo, which is the head of the base NP. The same logic is applied when dealing with
more than one preceding nouns, e.g. the school bus driver. One should also bear in mind
the opposite situation, where two base NPs are listed one after another without the usual
punctuation, as well as the mixture of both. Consider the sample clinical text snippet
c/o fever cough back pain, in which there are three base NPs: fever, cough, and back pain.
Another matter to consider is the length of base NPs, which in some cases could be quite
substantial, e.g. the long winding high mountain roads.
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a.3.2 Adjective Chunks

We define adjective chunks (AP) to be adjective phrases that act as predicative expres-
sions. In simple terms this generally means when they follow a copula verb. The copula
verbs used most often in the notes are to be and feel, although there are also others: seem,
look, etc. In grammatical text copula verbs should always be present in predicative con-
structions (The carpet is red; The sky looks dark), but in the notes they are often omitted
and the construction is implied by the context: blood pressure normal; abdomen tender;
[baby] coos and alert and happy. Here are some examples of typical AP cases (in bold)
with comments:

1. patient is anxious — standard predicative construction following the verb be

2. chest clear — omitted copula verb (be)

3. leg feels much better — the determiner much is part of the AP

4. finger is severely infected — the adverb severely is part of the AP

5. worried wants to be admitted today — predicative construction (patient is worried)
was reduced to only an adjective phrase

annotation When annotating an adjective chunks the annotator should take care to
include all modifiers of the adjective (usually adverbs) as in example 3. and 4. above. The
annotator should always bear in mind predicative constructions and not mistake NPs with
adjective modifiers for adjective phrases The patient has high fever.

a.3.3 Main Verb Chunks

Main verb chunks usually contain only the main verb. The only other words that may be
included are adjacent prepositions or particles in the cases of phrasal verbs, like show up,
take care, calm down, etc. Gerunds (see end of Section A.2.3) should not be confused with
main verbs, they should be annotated as part of base noun chunks (see Section A.3.2).

annotation The annotation of a main verb is more or less a straight-forward matter
as its scope is usually a single word. The cases where its annotation scope spans over
other words are those of phrasal verbs that include particles (show up, calm down) and/or
prepositions (power through). However, those particles should not be annotated when they
are not adjacent to the main verb as in Please, calm him down. Verb negation should
not be included in the main verb chunk annotation also when it is contracted (isn’t).

a.3.4 Expressions

temporal expressions are words, phrases or clauses that contain information
related to time. Some refer to a specific moment or a period in time related to an event
discussed in the sentence like in seven minutes, an hour ago, yesterday, next year. Others
refer to the duration of an event, for example, for three days, lasting two weeks. The
third type of temporal expressions describes frequency of repetition: twice a day, every
week, biannually, etc. Temporal expressions may not always refer to time units directly,
sometimes they refer to the time or duration of other events as in last time, when they
were young, while the sun was up. There are also temporal expressions that are more vague
and indefinite like recently and already.
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locative expressions cover two types of expressions related to location. The first
type points to the locus of a medical finding (infection, bruise, pain, etc.). The second type
points to real places such as hospitals and geographical entities. The expressions may be
a one of the modifiers of a base NP as in back pain, or a whole prepositional phrase such
as in the hospital. There are cases in the notes where loci are expressed with omitted or
ungrammatical syntactic constructions, for example chest pain lower left quadrant.

quantitative expressions represent some sort of quantity or measurement,
like number (five spots), weight (5kg, ten grams), volume (10cc, a pint), length (12cm,
three inches), etc. The quantity in a quantitative expression doesn’t need to be explicit, it
may be vaguely defined or inferred as in several inches and a few kilos. It is important to
emphasise that the items that are quantified should also be part of the annotation, i.e. a
few kilos, 12cm. Quantities of time like two hours could also be regarded as quantitative
expressions, but for the purposes of annotation they should NOT be annotated as quan-
titative expressions (see Section A.4.3). There are also numbers that are not quantities,
but identifiers or placements in a sequence, e.g. group 3, second testing, phone 012345678.
Such number occurrences should not be annotated as quantities.

on-examination expressions are different versions of the the expression on examina-
tion that marks the border between the complains and the examination obser-
vations. These expressions are constructed and/or abbreviated in different ways, e.g. o/e
or during examination. The task of the annotator is to identify such expressions in the
record.

a.4 annotation process

The process of annotation is the assignment of labels, called tags, to parts of the text
based on the definitions and instructions in the sections above. This section discusses
some technical issues and rules of conduct for this process, common problems and a few
useful annotation tips.

a.4.1 Annotation Tasks

The first stage of the annotation process, called prime annotation, is the stage when
two or more annotators annotate the same data independently, assigning the annotation
tags listed below. After the prime annotation process is complete, the results go through
a process, called referral, that resolves any disagreement between the prime annotations
to ensure the quality and consistency of the annotation.

list of annotation tags:

• Noun Phrase Chunk (NP)

• Adjective Chunk (AP)

• Main Verb (MV)

• Locative Expression (LE)

• Temporal Expression (TE)

• Quantitative (QE)

• On-Examination Expression (OE)



u 172 U

a.4.2 Prime Annotation Tips

This section gives directions about specific data issues and discusses some general good
annotation practices. It also gives some tips to help ensure more consistent annotation
results.
We recommend that annotation is done one record at a time, considering the whole

record and not just parts of it. This means that the annotator should read the whole
record and try to understand its meaning before starting to annotate.
It is important to remember that lists of items of the same type should be annotated

separately. For example, the Christmas presents in the following sentence are three different
NP chunks: Johnny got a teddy bear, a remote-controlled car, and a hokey stick
for Christmas.
If an expression seems complicated and the annotator is unsure how to deal with it, he

or she can start by annotating to its left and right thus closing down its word span and
making the task easier.
Annotation is not an exact science and sometimes the descriptions in the guidelines

won’t fit perfectly. In those cases the annotator should make an approximate decision,
which is acceptable as long as it doesn’t stray too far from the guidelines. The annotator
should also have in mind that the decisions they make will undergo a referral process
that is meant to improve the quality of annotation in exactly such ambiguous or unclear
situations.
Consistency is the annotator’s best friend. The annotator should make sure that they

handle similar situations in the same way across the whole data. Going back to fix things is
inevitable, but it gets harder towards the end of the annotation, so we recommend paying
extra attention to cases that seem difficult in the beginning, when going back and fixing
all previous occurrences is still feasible.
In cases of uncertainty we recommend being conservative. When none of the annotations

seem to fit, no annotation should be made. Also in the cases of conjunction (see Section
A.4.4), chunks should be annotated separately unless it is clear they are part of entities
that should be annotated together, e.g. bits and pieces, this and that, black and white.
Finally, we advise the annotators to not worry too much. They shouldn’t ”overthink”

problems as this might lead to confusion. If they encounter more difficult cases, they should
look for them or a version of them here in the guidelines or just make a note of them and
carry on.

a.4.3 Priority and Embedding of Annotation

The phrase chunks defined in these guidelines are very restricted. They have a very basic
form with just a few words. We call chunks and/or expressions embedded if one of them
contains the other. They coincide if they include the same words. Embedding and coincid-
ing of annotations is allowed when a phrase chunk or a main verb is contained in
an expression or the other way around (see 1. and 2. in Example A.1). However, while
embedding phrase chunks into expressions is allowed, their partial overlapping is not
(see 3. in Example A.1). Therefore, in order to avoid errors in identifying the span of the
expressions, we recommend that the annotation of phrases and main verbs precede the
annotation of expressions. The rules for embedding annotation are incorporated in Brat
(see Section A.4.8), which warns the annotators when they make overlapping annotations
by highlighting it in red.
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Figure A.1: Examples of annotation overlapping. NP chunks are denoted with bold face and tem-
poral expressions are underlined

a.4.4 Including Conjunctions

Conjunctions are words such as and and or, which are used to join words, phrases, clauses,
and sentences together. In most cases they are not included in the annotation of phrase
chunks (NPs, APs, MVs), except when they connect modifiers (the tall and handsome man;
a green or blue jacket; slow but steady pace; scary yet exciting adventures). Normally when
conjunctions connect two phrases as in the sentence We have a cat and a dog, the phrases
are annotated separately. Only when they connect phrases that usually go together and
have become fixed expressions like black and white or bits and pieces, they are annotated
as one phrase.
However, if in doubt about whether a conjunction should be included in a phrase, it is

recommended that the more conservative decision is taken, namely separate annotation.
The guidance above is not relevant to conjunctions within expressions (see Section

A.3.4), which are not defined so strictly.

a.4.5 Redacted Text

The clinical records data contained sensitive information that was redacted and replaced
with the tilde symbol (∼). In most cases the context gives enough information to make a
good guess what sort of words are missing – usually either names or places. Such redacted
words should be annotated as if they were apparent. The annotator should also make a
note of their guess about such words. For example, in as per dr. ∼∼∼∼∼∼ advise the doctor’s
name was removed, but it should still be annotated as an NP chunk. The annotators should
use upper case letters with surrounding angle brackets to denote abstract entities in their
guesses. For example, <NAME>’s will be a good guess for the redacted text from the
example above.

a.4.6 Abbreviations and Acronyms

Abbreviations and acronyms need to be considered and annotated as their full forms. For
example, the phrase poss ovarian should be annotated as an adjective phrase, and FBC
(full blood count) should be annotated as a noun phrase. However, acronyms of phrases
and sentences that could not be annotated with one tag like spt (seen patient today) should
not be annotated. As a rule of thumb the annotators should think about acronyms as their
full forms and annotate them accordingly only if the whole acronym can be annotated
with one annotation.
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a.4.7 Punctuation and Special Symbols

The nature of the clinical records data uses punctuation and special symbols in two differ-
ent ways: 1. in their classical context and usage, and 2. as an abbreviation or a substitute
for words and/or expressions.
Square bracket prefixes should be excluded from the annotations. For example, [D]Difficulty

should be annotated as a NP-chunk starting after the closing bracket.

normal punctuation
As a rule of thumb punctuation that is inside the span of an annotation should be left
there (e.g. hyphens, (on-line), apostrophes (Jimmy’s), commas, etc.) and punctuation
that is on the annotation fringes should be excluded (e.g. quotation marks, braces, etc.).
An exception to the last rule is the apostrophe sign in sentences like The dog is my
neighbours’.

special symbols and punctuation
As mentioned before, often punctuation and other symbols like a plus, a minus, slash, etc.
are used for some peculiar unorthodox purposes. Annotators should try to use their best
judgement in identifying the purpose of the symbols in these cases. Symbols that are used
to convey the meaning of words should be treated as such. For example, question marks
could replace the word possible, and a series of plus signs could indicate an increase in
some value. We encourage the annotators to use their judgement in the annotation of such
symbols, but we emphasise the need for consistency in their decisions.

a.4.8 Brat Annotation Tool

The annotations will be recorded using the Brat annotation tool, which is a web-based
tool that allows annotators to access data from and input annotation to a remote server.
No local installation is required, only JavaScript and cookies need to be enabled for
the successful loading of the tool in the browser . The full functionality and performance
of the tool is only guaranteed when using the latest version of one of the two supported
browsers: Google Chrome or Safari. Even if the tool seems to run using other browsers,
such as Internet Explorer or Firefox, they should not be used, because its performance
there is not predictable and it may end up damaging the input or even the existing data.

prime annotation
The prime annotators will be assigned a personal folder with documents each containing a
small batch of clinical records. The folder should be loaded using the Collection button
in the left upper corner of the interface. Annotations are created by selecting the portion
of a text using the mouse and choosing the appropriate annotation type from the pop-up
menu. Annotations can be edited or deleted by double-clicking on them at any time. We
recommend reading through the tutorial available at http://weaver.nlplab.org/~brat/
demo/latest/#/ for a better and more practical understanding of the annotation process
with Brat.

annotation referral
The annotation referral process aims at selecting the best version of an annotation out of
all prime versions. The referee should edit merged versions of all annotations, exposing all
conflicting annotations. They should resolve the conflicts by deleting the less appropriate
annotations.

http://weaver.nlplab.org/~brat/demo/latest/#/
http://weaver.nlplab.org/~brat/demo/latest/#/
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a.4.9 Annotation Referee

This section gives instructions for the annotation referee and should not concern prime
annotators.
The most important notion that we want to emphasise here is that the annotation referee

must NOT add any information, but only choose between already existing annotations
without changing them. In the cases of only one existing prime annotation for a certain
bit of text, the annotation should remain unchanged. If all prime annotations seem wrong,
the one that seems nearest to a correct annotation among them should be chosen.
When comparing annotations of roughly the same chunks or expressions, the annotation

label is more important than the annotated word sequence. For instance consider the
sentence in Example A.2. If one annotation identifies the word sequence big black bear as
an NP chunk and the other identifies the word sequence the big black bear as an AP chunk,
the NP chunk annotation is considered better, because even though it should include one
more word, it is labelled correctly as a NP chunk.
The word sequence of an annotation on the other hand is important to the referee in

cases of annotations with the same label. Then the annotation that includes the word
sequence closest to the correct one is considered better. For example, consider the NP
chunk the big black bear in Example A.2, which is identified in two different ways (1. and
2.). The annotation in 2. is considered the correct (or the better) choice, because it includes
all the words of the NP chunk.

Figure A.2: Word span of annotation example

Naturally, in cases of uncertainty with regard to the word span, the annotation referee
is advised to be conservative and keep to smaller word spans and the label choice of the
majority (if applicable).
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APPENDIX B : ANNOTATION GUIDELINES I I

b.1 semantic entities

The purpose of these guidelines is to introduce the reader to the annotation of three types
of semantic entities in primary care free text notes using the brat web annotation platform.
The entities are defined as follows with their respective label abbreviations:

• symptoms, and signs of a disease or disorder, as well as syndromes (NPS)

• disease name or shorthand (NPD)

• drug names (NPDRG)

The guidelines assume that these entities can only be found as base noun phrases (NP) at
least in the primary care text at hand. Therefore, the annotators should in fact annotate
existing base NP annotation with the semantic entities listed above. A fourth type of
annotation, a not-entity (NPN), is used to allow keeping track of already considered NPs.

b.2 annotation mechanics

The annotators will be using the brat annotation platform, which allows interactive la-
belling of free text. The data will be displayed ten notes at a time with base NP anno-
tations. The label of each NP needs to be changed to one of the four annotations listed
above. NPs that are not considered semantic entities should nonetheless be annotated with
the not-entity label. Annotation should be performed alone without consultation between
different annotators, although using literature and other resources is allowed.

b.3 disagreement resolution

After both annotators complete the annotation process, the resulting annotations are
merged and used in a new round of annotation resolution. During this round the two
annotators consider all disagreeing annotations together, and determine the better solution
through discussion and reference to medical literature. In the cases where diseases are also
signs (symptoms) of other diseases, the disease label should be applied.
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APPENDIX C : MISCELLANEOUS

*Name Abbreviation Description *

*Correct COR number correct *
*Partial PAR number partially correct (no par-

tial credit was given in MUC-7)
*

*Incorrect INC number incorrect *
*Missing MIS number missing *
*Spurious SPU number spurious *
*Non-committal NON number non-committal (null fills

generated by system that were null
in the answer key)

*

*Possible POS number possible (COR + INC +
MIS), i.e. the number of fills in the
answer key plus any optional fills
allowed by the key and generated
by the system.

*

*Actual ACT number actual (COR + INC +
SPU), i.e. the number of fills gen-
erated by the system under evalua-
tion

*

*Precision PRE Precision = COR/POS *
*Recall REC Recall = COR/ACT *
*Undergeneration UND Undergeneration = MIS/POS *
*Overgeneration OVG Overgeneration = SPU/ACT *
*Substitution SUB Substitution = INC/(COR + INC)*
*Error per re-
sponse fill

ERR Error per response fill
= (INC + SPU +
MIS)/(COR+INC+SPU+MIS)

*

Table C.1: MUC-7 scoring table.
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def f1_eval(gold, inf):
# symptoms, diseases, drug names
tagset = {'NPS', 'NPD', 'NPDRG'}
tp, tn, fp, fn = 0, 0, 0, 0
for g, i in zip(gold, inf):

if i in tagset: # positive
if i == g:

tp += 1 # true positive
else:

fp += 1 # fasle positive
elif i != g: # negative

fn += 1 # false negative
pr = 100 * float(tp) / (tp + fp) if tp + fp else 0
re = 100 * float(tp) / (tp + fn) if tp + fp else 0
f1 = 2.0 * pr * re / (pr + re) if tp + fp else 0
return f1, pr, re

Algorithm C.1: A Python implementation of the f-score calculation for the Divide & Conquer ap-
proach where non-entity labels are considered negative.

Feature Name Left Border Right Border

word -1 1
POS tag -1 1
POS tag bigram -1 0
POS tag trigram -1 0
canonicalised form -1 1
Ney-Essen clusters -1 0
noun suffixes -1 0
adjective suffixes -1 0
medical suffixes -1 0
medical prefixes -1 0

Table C.2: Final feature vector with context windows used for chunking models.
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size source Twitter NPS Stanford nopos

CW 25 RCV1 -0.971 -0.798 -0.168 0.114
CW 50 RCV1 -0.877 -0.646 -0.168 0.139
CW 100 RCV1 -0.778 -0.575 -0.059 0.059
CW 200 RCV1 -0.905 -0.686 -0.074 0.046
OSCCA 200 RCV1 -0.910 -0.386 -0.128 0.196
TSCCA 200 RCV1 -0.939 -0.841 -0.241 0.005
HLBL 50 RCV1 -0.741 -0.507 -0.074 0.139
HLBL 100 RCV1 0.386 -0.721 -0.046 0.336
word2vec 25 GPRD -0.646 0.507 0.241 0.723
word2vec 50 GPRD 0.444 -0.798 -0.139 0.296
word2vec 100 GPRD 0.575 -0.798 -0.168 0.462
word2vec 300 Google -0.989 -0.137 -0.081 0.139

Table D.1: Significance test results for chunking models using embeddings features. The p-values
were calculated using Wilcoxon signed-rank test. Negative p-values signify performance
lower than the baseline.

source corpus size f-score precision recall

- GPRD 512 71.58 77.85 66.40
- GPRD 1000 71.55 77.84 66.38
Stanford RCV1 512 70.16 78.44 63.72
- GPRD 250 70.16 77.48 64.31
- GPRD 10000 69.34 80.67 61.06

Baseline - - 68.43 83.67 58.15

Table D.2: Comparison of performance impact by different Ney-Essen cluster features in DC entity
recognition with positional feature sets. Baseline model uses word, POS, and preceding
context word features.
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Corpus # Document type Annotation type

Harvey Corpus 750 GP notes syntactical chunks, 4 semantic
annotation types

Pakhomov et al.
(2004)

273 outpatient notes, dis-
charge summaries, inpa-
tient service notes

POS tags

Uzuner et al.
(2007b)

889 discharge summaries de-identification, smoker status
(subset)

Uzuner (2009) 1237 discharge summaries present, absent, questionable
for obesity + 15 comorbidities

Uzuner et al.
(2010b)

1243 discharge summaries medications, dosages, frequen-
cies, modes, reasons, durations,
list/narrative

Uzuner et al.
(2011)

871 discharge summaries,
progress reports

concepts, assertions, relations

Sun et al. (2013a) 310 discharge summaries temporal relations
Roberts et al.
(2009)

565K histopathology reports,
clinical narratives, and
imaging reports

entities and relations

Pakhomov et al.
(2004)

271 clinical notes POS

Ogren et al.
(2008)

160 outpatient notes concepts from a subset of
SNOMED-CT

Voorhees and
Hersh (2012)

~17K patient visits consisting
of history and physical
reports, surgical pathol-
ogy reports, radiology
reports

topics

Pestian et al.
(2007)

1954 radiology reports ICD-9-CM codes

Wang and Patrick
(2009)

311 admission summaries entities based on SNOMED-CT

Fan et al. (2011) 50 progress reports POS
Fan et al. (2013) 25 progress reports syntactic trees of ill-formed sen-

tences

Table D.3: A non-exhaustive list of notable clinical corpora. Note that the size of GP notes is
around 30 tokens, while the length of other documents varies, but is generally greater.
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size data Twitter NPS Stanford nopos

Brown 50 Twitter 0.515 -0.575 0.508 0.005
Brown 100 PubMed 0.284 0.799 0.575 0.005
Brown 150 PubMed 0.508 -0.959 0.799 0.005
Brown 320 PubMed 0.093 0.878 0.214 0.005
Brown 500 PubMed 0.059 -0.721 0.415 0.005
Brown 1000 PubMed 0.093 0.508 0.241 0.005
Brown 100 RCV1 0.333 -0.959 0.203 0.005
Brown 320 RCV3 0.285 0.721 -0.859 0.005
Brown 1000 RCV2 0.508 -0.241 0.445 0.005
Brown 3200 RCV4 0.575 -0.444 -0.445 0.005
Brown 100 GPRD 0.541 0.333 0.445 0.005
Brown 250 GPRD 0.047 0.575 0.333 0.005
Brown 500 GPRD 0.066 0.386 0.093 0.005
Ney-Essen 512 GPRD -0.571 0.481 0.239 0.005
Ney-Essen 512 RCV1 -0.694 0.052 0.029 0.005

Table D.4: Significance test results for chunking models using word representation cluster features.
The p-values were calculated using Wilcoxon signed-rank test. Negative p-values signify
performance lower than the baseline.

preceding following f-score precision recall

1 0 68.42 83.67 58.15
1 1 68.42 83.67 58.15
1 2 67.81 81.68 58.27
2 0 66.93 80.59 57.47
2 1 66.93 80.59 57.47
0 1 66.91 85.09 55.38
0 2 66.73 83.64 55.77
2 2 66.15 78.78 57.19

0 0 66.91 85.09 55.38

Table D.5: Comparing different scopes of context features for positional DC document classification
of entity recognition. Baseline without any additional context is in italics.
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source corpus size method f-score precision recall

Dhillon RCV1 200 oscca 69.78 79.70 62.37
Dhillon RCV1 200 tscca 69.78 79.70 62.37
Turian RCV1 100 HLBL, scaled 68.91 79.66 60.95
Turian RCV1 50 HLBL, scaled 68.91 79.66 60.95
Turian RCV1 100 HLBL 68.91 79.66 60.95
Turian RCV1 50 HLBL 68.91 79.66 60.95
Turian RCV1 100 C&W 68.80 79.42 60.93
Turian RCV1 200 C&W 68.80 79.42 60.93
Turian RCV1 25 C&W 68.80 79.42 60.93
Turian RCV1 50 C&W 68.80 79.42 60.93
Turian RCV1 100 C&W, scaled 68.80 79.42 60.93
Turian RCV1 200 C&W, scaled 68.80 79.42 60.93
Turian RCV1 25 C&W, scaled 68.80 79.42 60.93
Turian RCV1 50 C&W, scaled 68.80 79.42 60.93
- GPRD 100 word2vec 68.56 80.80 59.83
- GPRD 25 word2vec 68.56 80.80 59.83
- GPRD 50 word2vec 68.56 80.80 59.83

Baseline - - - 68.43 83.67 58.15

Table D.6: Comparison of performance impact by different word embeddings features in DC entity
recognition with positional feature sets. Baseline model uses word, POS, and preceding
context word features.

source corpus size f-score precision recall

- GPRD 512 72.67 79.39 67.00
Ananiadou PubMed 1000 72.52 79.69 66.53
Ananiadou PubMed 320 71.52 78.53 66.01
Ananiadou PubMed 500 71.10 78.66 65.21
- GPRD 250 71.10 77.36 66.09
- GPRD 100 70.50 78.99 64.03
Ananiadou PubMed 150 70.26 78.23 64.07
ARK Tweets 1000 69.60 77.88 63.05
Turian RCV1 3200 69.36 78.29 62.45
Turian RCV1 1000 69.20 77.67 62.62
Turian RCV1 320 68.97 77.25 62.45
Turian RCV1 100 68.93 78.78 61.50
Ananiadou PubMed 100 68.59 79.12 60.77

Baseline - - 68.43 83.67 58.15

Table D.7: Comparison of performance impact by different Brown cluster features in DC entity
recognition with positional feature sets. Baseline model uses word, POS, and preceding
context word features.
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sizes type F1 precision recall

(2,) suffix 78.30 82.64 74.62
(2,3) suffix 77.91 83.12 73.57
(3,) suffix 77.91 83.12 73.57
(2,3,4) suffix 77.00 82.84 72.19
(2,4) suffix 77.00 82.84 72.19
(3,4) suffix 77.00 82.84 72.19
(4,) suffix 77.00 82.84 72.19

(3,) prefix 78.26 82.12 75.06
(2,3) prefix 78.26 82.12 75.06
(2,) prefix 78.09 81.82 74.95
(2,3,4) prefix 78.07 82.34 74.47
(2,4) prefix 78.07 82.34 74.47
(3,4) prefix 78.07 82.34 74.47
(4,) prefix 78.07 82.34 74.47

Baseline - 75.83 81.62 70.83

Table D.8: All experiment results with affix features using linear kernel SVM with positional fea-
tures. The baseline uses words, POS, preceding context words, word bigrams, and all
word representation features.
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stat fts classifier 10% 20% 50% 90% crafted

χ2 pos kNN 34.03 25.66 13.20 30.31 51.02
F-test pos kNN 38.15 31.94 29.10 48.42 51.02

χ2 pos Linear SVM 79.94 78.04 76.56 79.45 80.00
F-test pos Linear SVM 80.02 78.06 76.56 79.45 80.00

χ2 pos Decision Tree 68.52 68.79 68.86 68.98 70.54
F-test pos Decision Tree 68.81 68.90 69.04 69.17 70.54

χ2 P Naïve Bayes 78.25 79.47 80.10 71.62 67.95
F-test P Naïve Bayes 78.22 79.47 80.10 71.62 67.95

χ2 pos Polynomial SVM 77.69 75.30 72.14 76.41 75.78
F-test pos Polynomial SVM 77.80 75.26 72.14 76.41 75.78

χ2 pos Sigmoid SVM 49.91 49.82 48.67 49.41 62.07
F-test pos Sigmoid SVM 50.37 49.14 48.67 49.41 62.07

χ2 P SVMRBF 79.03 80.17 62.92 42.45 45.32
F-test P SVMRBF 78.89 80.05 62.92 42.45 45.32

χ2 bow Polynomial SVM 69.96 69.54 68.89 69.15 73.91
F-test bow Polynomial SVM 69.24 68.78 66.09 66.24 73.91

χ2 bow kNN 29.89 30.01 30.07 30.15 32.50
F-test bow kNN 29.84 30.12 30.23 30.48 32.50

χ2 bow Linear SVM 68.01 68.15 68.47 68.61 72.70
F-test bow Linear SVM 67.63 67.39 67.56 67.58 72.70

χ2 bow Decision Tree 59.21 59.46 59.62 59.94 60.80
F-test bow Decision Tree 59.12 59.34 59.67 60.01 60.80

χ2 bow Naïve Bayes 64.74 66.46 58.06 52.16 73.24
F-test bow Naïve Bayes 63.94 66.21 58.12 52.18 73.24

χ2 bow Sigmoid SVM 52.33 51.98 51.78 51.57 65.55
F-test bow Sigmoid SVM 53.01 52.74 52.12 51.79 65.55

χ2 bow RBF SVM 60.62 60.94 59.37 58.99 63.69
F-test bow RBF SVM 60.87 60.13 59.39 58.99 63.69

Table D.9: Comparison between DC models using different classifiers with automatically selected
positional and BoW features (10%, 20%, 50%, and 90%), and the crafted feature set.
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