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Summary 
 

Cephalopods first appeared around 500 million years ago. Since then 

they have developed from the external shelled ammonites, 

belemnites and nautiloid’s to the soft bodied organisms we find 

today. By becoming soft bodied, protection which would have been 

provided by the shell was lost and a different approach to predator 

avoidance was adopted.  

 

Modern day cephalopods such as octopus, squid and cuttlefish 

frequently use camouflage techniques to avoid detection. In addition 

to countershading, which is an often used camouflage technique by 

aquatic species, the presence of chromatophores allow a versatile 

and rapid response in relation to stimuli. Cuttlefish expression of 

these chromatic responses can be categorised into chromatic 

components. It is the intensity and combination of the expression 

which makes them an interesting organism to study, when looking at 

how the environment influences camouflage decisions.  

 

In this thesis, I present six experiments looking at how external 

environmental factors influence camouflage in Sepia officinalis. 

 

The first experimental chapter looks at how 3D objects and proximity 

play a role in not only camouflage, but behavioural responses. The 

first set of experiments discuss how factors such as contrast and size 

of an object may elicit different responses both behaviourally and 

chromatically. The proximity of the cuttlefish to the object was then 



investigated to determine if visual input was a possible cause for the 

differences. Size of the object, proximity and contrast produced a 

differing response to that of a cuttlefish on a uniform background.  

 

The two subsequent chapters look at differing light information and 

whether cuttlefish treat these differences similar to that of low 

contrast. Reaction to turbid and low light levels show similar 

responses in camouflage, suggesting that similar mechanisms are 

employed when there is reduced light and high scatter information. In 

respect to luminance versus reflectance, cuttlefish seem to be able to 

differentiate between a projected and reflected image where they 

appear to treat projected images like a lower contrast value. 

 
The last experimental chapter investigates motion camouflage in 

respect to predation. Prey and distance had a large effect on 

behaviour and how camouflage was expressed. Over greater 

distances behavioural variance reduced. Darkening of the head 

region and arm waving was also present over a greater distance. 

Camouflage varied in relation to background with a more uniform 

background producing reduced expression when moving. Stationary 

predation therefore elicits a different response than that of motion 

camouflage in cuttlefish. 
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Chapter 1: General Introduction 
 
 

1.1 Environment conditions 
 
1.1.1 Aquatic environment 
 
Water makes up 70% of the worlds surface with only 1% of this being 

freshwater, making the world oceans one of the most varied and 

abundant habitats. The sea floor can be divided into the continental 

shelf, continental slope and the abyssal plain. All three of these 

environments provide different challenges and habitats to the 

organisms that live in them. The continental shelf only accounts for 3% 

of the global ocean area, but even so benthic marine habitats extend 

from the shore to the shelf break, which is on average 130km from the 

coast (Johnsen 2012). This environment is highly variable with wide 

temperature fluctuations, high sediment settling and relatively high 

current and tidal oscillations. 

 
1.1.2 Optical properties of sea water 
 
Optical properties of natural seawater are quite different to those of air 

and even of pure water, due to the presence of particles and dissolved 

absorbing substances (Johnsen 2012). Light is both scattered and 

absorbed in water, with absorption having a strong wavelength 

dependence. The red and oranges with the shortest (UV) wavelengths 

are lost first, with blue and green penetrating to the greatest depths 

(Stramski et al 1991). The importance of this can be observed in 

relation to aquatic animal colouration. Many species that occur at deep 

depths are black or red where only the blue/green wavelengths reach. 

It is suggested this colouration is to modulate the animal’s reflectance 

in the blue green spectrum. For instance, if you shine a blue green 

light the organism background matches well compare to that under red 

light (Marshall et al 2003) At a shallower depth this sort of colouration 

would be less useful in an environment with higher light intensity and a 

wider illumination spectrum.  
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In cases of animals that live in the shallower parts of the water column 

certain structures may be used by organisms to alter light. Strategies 

such as being a transparent organism mean that light is scattered and 

therefore provides some protection from predation. In other animal’s, 

structures may be used to reflect light such as silvery appearance in 

fish, tapeta in eyes and the iridophores in cephalopods (Johnsen 

2012) 

 
1.1.3 Location of sepia 
 
Cuttlefish is in the genus Sepia, which includes over 100 species. 

They are predominantly demersal in habitat and found around the 

globe, but are absent from polar regions and the North West Atlantic. 

Sepia officinalis, the subject of this Thesis, are widespread in 

geographical distribution (Compagno 2001). In the English Channel 

adults migrate from deep water where they spend the Winter to 

localised spawning grounds along the coast of France and England 

during April. Males arrive before females, and large scale hatching 

occurs in August. Afterwards S. officinalis move off inshore waters into 

central areas of the channel. Life span can be anywhere from 12-24 

months which seems to suggest that there are long and short 

generation cycles dependent on time of maturity. 

 
1.2 Cephalopod body form  
 
 
1.2.1 Basic Biology 
 

 

The coleoid cephalopods - squid, octopuses and cuttlefish - share 

many features in their sensory apparatus including: 

mechanoreceptors, ‘lateral lines’, touch and pressure receptors, 

chemoreceptors and photoreceptors (Hanlon and Messenger 1988). 

These sensory inputs give a rich source of information about the 

environment. In addition to the usual response animals use, coleoids 
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can control remarkable changes in visual appearance, especially skin 

coloration patterns, and surface texture. They use these patterns for 

camouflage and communication, offering an insight into how these 

remarkable animals sense and especially see their environments. 

These behaviours are the subject of this Thesis. 

   

1.2.2 Cuttlefish skin 
 
 
Unlike the Nautilus that have retained their external shell, cuttlefish 

have internalised their ‘shell’ in the form of a cuttlebone. Due to the 

soft body nature, cuttlefish - like other coleoids - have developed other 

mechanisms to deal with predatory threat. One of these mechanisms 

is to use chromatophores, iridophores and leucophores located in the 

epidermis for camouflage (Figure 1.1). Chromatophores consist of a 

granulated elastic pigmented sac which is expanded by radial 

muscles, and otherwise collapses to a point. This means motoneurons 

running directly from the brain allow a mixture of colour to be displayed 

on the epidermis of the cuttlefish, to vary its intensity and patterns. 

Beneath the chromatophores are matte white leucophores and mirror-

like iridophores which produce a white background for the 

chromatophores (Hanlon and Messenger 1988). Combining these 

different types of cells allows the cuttlefish to change their 

appearance, to first to prevent detection by predators, and then to 

deter them with warning signals (Langridge et al 2007; Langridge 

2009).  

 

 

 

 

 

 
 
Figure 1.1 Skin arrangement of elements that contribute to body 
patterning in cephalopods 
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1.2.3 Cuttlefish vision and the eye 
 
The eye in cephalopods is considered an excellent example of 

convergent evolution with that of underwater vertebrates (Land and 

Nilsson 2002). However, unlike the vertebrate eye which has a large 

amount of processing occurring in the retina, cuttlefish eyes process 

visual information outside the eye in the optic lobe. The eye also 

differs due to the presence of just one visual pigment effectively 

making the cuttlefish colour blind (Ferguson and Messenger 1991). 

This combination of camouflage ability and vision makes cuttlefish an 

interesting organism to study.  

 

1.2.4 Camouflage in the aquatic environment 

 

Stevens and Merilaita (2011) describe crypsis as ‘all traits that reduce 

an animal’s risk of becoming detected when it is potentially 

perceivable to an observer’. Camouflage relies on making oneself 

inconspicuous in the environment through strategies such as 

background matching and disruptive patterning (Stevens 2007). A 

habitat or lifestyle that includes high variation of the visual environment 

may benefit animals that can vary their camouflage. An example of 

this would be in animals such as chameleons, flounders and cuttlefish 

(Stevens and Merilaita 2011). This necessity to change in relation to 

one’s environment may be dependent on the environment itself being 

variable.  

 

It is striking that the animals who are best at varying their appearance 

for camouflage are flatfishes and benthic cephalopods. Ocean 

environments can be highly variable, so large amounts of visual 

information are needed when making camouflage decisions. 

Organisms living in benthic environments may take the substrate into 

consideration when concealing themselves from potential predators 

and prey. Background matching, obliterate shading and disruptive 
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colouration have all been suggested as camouflage techniques 

(Stevens 2007), which would help conceal the organism against the 

sea floor. The ocean however is not a 2-Dimensional environment. 

Both horizontal and vertical information is present in the visual fields 

such as rocks and seaweed.  How much an animal would take 3-

Dimensional structures into consideration for camouflage may depend 

heavily on their visual acuity and their ability to camouflage. In relation 

to 3-Dimensional structures a masquerade response, where the 

animal resembles a commonplace object rather than the background, 

may be more suitable for an aquatic organism. Monoclirhus 

polyacanthus an Amazonian fish resembles leaves of the Amazon 

forest. Skelhorn et al (2011) showed that even in the absence of 

crypsis, masquerade had additional benefit in brimstone moth 

caterpillars. They also suggested that cognitive strategies of the 

predator, rather than sensory capabilities, are the selective force 

driving evolution of masquerade. This would suggest that if an animal 

is searching for their prey in an aquatic environment, their recognition 

and identification of the prey would be more important than the visual 

abilities of the animal. Distance of the predator to the prey may also 

influence detection. Colour patterns of some animals may therefore be 

distance dependent, conspicuous in close proximity and camouflaged 

from a distance (Stevens et al 2011) 

 

Being cryptic can be effective when stationary due to strategies such 

as background matching. This strategy however relies heavily on the 

animal being similar to the background they are situated in (Stevens et 

al 2011). Once the animal moves the concealment that may have 

existed is often lost. In turn this increases the likelihood of an attack by 

a predator. Studies have suggested that some animals have 

developed certain camouflage strategies to confuse predators. 

Markings such as contrast bands, stripes and zig zags may reduce the 

predator’s judgement of speed and trajectory (Stevens et al 2011). 

These strategies may however come at a cost due to the markings 

being conspicuous when stationary.  In an animal which can change 
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their camouflage the strategy of banded markings may not be as 

necessary. When stationary the animal could use a more concealing 

camouflage technique and a different motion based camouflage 

technique when moving. 

 

 

1.2.5 Aims of this thesis 

 

Chapter 3: Camouflage in complex visual environments 

 

As discussed earlier in this chapter the aquatic environment is highly 

variable. It is this along with the cuttlefish’s ability of rapid camouflage 

that we wish to investigate in this thesis. Firstly, we will test a more 

natural situation with rocks of varying contrast and sizing. This will test 

behavioural and camouflage against a natural 3-Dimensional object. 

As the cuttlefish will be able to move within an arena with the rocks a 

further study looking at proximity of information will test whether the 

proximity of an object has influence on camouflage.  It is hypothesised 

that there will be an influence of the objects and their distance on the 

cuttlefish camouflage expression. 

 

The aims of Chapter 3 are: 

 

1.To record the behavioural response to the presence of 

varying stone contrast and sizes 

 

2.Determine the effect of a 3-Dimensional stone characteristics 

of contrast and size on camouflage 

 

3.To examine how distance of varying checkerboard 

backgrounds on a vertical and horizontal axis influence 

expression of camouflage 
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Chapter 4: Effects of viewing conditions on camouflage 

 

Camouflage is highly reliant on visual information and therefore it is 

important to understand how reduction of this information may affect 

camouflage. In situations such as low light and high turbidity visual 

information is reduced to the eye due to the reduction of light or high 

scatter in the latter. The influence of these on camouflage has only 

been tested in a couple of experiments Allen et al 2010, Cartron et al 

2013 and has yet to determine if the reduction of information results in 

similar camouflage of a low contrast environment. A comparison 

between low contrast, high turbidity and low light is tested and 

discussed in Chapter 4.  It is hypothesised that turbidity, low light and 

low contrast may influence camouflage expression in similar ways. 

 

The aims of Chapter 4 are: 

 

1. To determine the role turbidity has on cuttlefish camouflage 

 

2. To investigate how low light effects camouflage 

 

3. To compare any similarities of camouflage between lowlight and 

turbidity and that of low contrast 

 

Chapter 5: Shadow Perception 

 

After investigating low light and high turbidity which is reduced 

information to the eye in the aquatic environment, a further 

investigation into how light information is transmitted to the eye would 

further our understanding on the camouflage instigated. Reflectance 

versus luminance was tested by casting shadows. Shadows would 

naturally be cast into an aquatic environment, which would create 

natural luminance compared to bouncing off an object (reflectance). 
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However, little is known how these effect camouflage decisions. In 

Chapter 5 shadow perception is investigated in a preliminary study to 

test whether shadows are observed as low contrast, or are treated 

with a different form of camouflage. It is hypothesised that cuttlefish 

will treat the two treatments differently. 

 

The aims of Chapter 5 are: 

 

1. Can cuttlefish differentiate between low contrast, projected 

image and reflectance 

 
2. How do cuttlefish respond to a projected image 

 

Chapter 6: Motion Camouflage 

 

Whereas the other experimental chapters have dealt with stationary 

camouflage the effect of motion on expression of camouflage is 

investigated in this chapter. There has been an increased interest in 

camouflage with motion in cuttlefish over the last few years Zylinski et 

al 2009b, Staudinger et al 2013. However only a few have looked at 

feeding in relation to behaviour and camouflage combined (Adamo et 

al 2006, Messenger 1968). Do cuttlefish use motion camouflage 

during prey capture and does it differ dependent on species and 

background? It is hypothesised that the behaviour and camouflage 

expression will change over distance, different backgrounds and prey 

items. 

 

The aims of Chapter 6 are: 

 

1. To determine the behaviour of prey capture over distance and 
substrate 

 
2. To describe and analyse the different camouflage expression 

during predation 
 

3. To investigate how prey items effect camouflage  
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Chapter 7: General Discussion 

 
Finally, the overall trends and results will be compared and related to 

environmental conditions cuttlefish may encounter. In addition, the 

context of which these experiments relate to the larger picture of 

cephalopod camouflage and other animals will be discussed. 
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Chapter 2: Cuttlefish Husbandry 
and Experimental Methodology  
 
 
 

2.1 New European Union legislation  
 
On the 9th of November 2010 the European Directive on the 

protection of animals used for scientific purposes (Directive 

2010/63/EU) came into force.  With the implementation of the directive 

came a new set of regulations of which for the first time included 

cephalopods into a regulatory framework. The set of new regulations 

were transposed into national legislation and came into effect on the 

1st of January 2013. 

 

Vertebrates have been included under regulatory frameworks in 

research to promote excellent animal welfare for many years. 

However, apart from the United Kingdom which had included Octopus 

vulgaris as an ‘honorary’ vertebrate, cephalopods were not included 

until now. With the new inclusion to a legislative framework, welfare 

and guiding principles and humane end points need to be discussed 

and implemented within the cephalopod research community (Home 

Office 2014).  

 

All the experiments in this thesis were either conducted before the 

implementation of the directive or did not require a licence to be 

conducted since implementation. 
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2.2 Husbandry of cuttlefish 
 

The constraints and methods of keeping cuttlefish seem to differ 

dependent on the experimentation needs of the individual research 

laboratory. However, there are some basic and necessary standards 

which would lead to good overall husbandry practice and therefore 

better cuttlefish welfare.   

 
2.2.1 Water parameters 
 
Water quality is vitally important when keeping cuttlefish in any lab 

situation. Like any aquatic animal being housed, biological waste 

should be monitored and controlled. Ammonia (NH3) being the most 

toxic of the waste products should be maintained at undetectable 

levels of <0.5mgL this can be done by either filtration of the water, 

water changes or a constant turnover of water. Nitrite (NO2) and 

Nitrate (NO3) also should be maintained at low levels of <0.2mgL with 

the latter being less toxic and being able to be maintained up to 

80mgL.  There are varying thoughts on the limits in how european 

cuttlefish can be maintained (Figure 2.1)  

 a)Guidelines 

-Sepia sp 

b)Biaza 

guidelines 

c)S.officinalis 

Cephalopod 

Culture  

Temperature 12-25 10-23 13-24 

Salinity 29-33 30-35 33-37 

pH 8.2 no data  no data 

Max NH3 <0.5mgL 0  no data 

MaxNO2 <0.2mgL <0.3  no data 

Max NO3 <80.00mgL <25.00mgL  no data 

Min O2 7.0ppm  no data  no data 

Figure 2.1: Review of recent husbandry literature in relation to parameters a) Fiorito et 

al (2014) b) Slater et al (2013) c) Iglesias et al (2014) 
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2.2.2 Housing 
 
The amount of space required for keeping cuttlefish is often debated 

(Figure 2.2). Dependent on the needs and resources of laboratory, 

stocking numbers can vary greatly. For example, a lab requiring a few 

studies but not wishing to conduct aquaculture may only keep a few 

individuals. This may make it easy for individual identification and take 

up only a small amount of space due to individual housing of the 

cuttlefish. However, if several cuttlefish are required for study where 

individuals are not kept separately, this can cause difficulty due to 

identification, infighting, damage due to over stocking and disease.   

 

In cases where a round vat is available this may be the best option if 

there is a lot of space, however this is more likely to be an option in an 

aquaculture facility rather than a research space. Glass tanks or 

rectangular holding tanks are probably more available. Both have 

merit although depending on size, problems can be caused as the 

cuttlefish get bigger due to damage to cuttlebone or mantle epidermis 

through repeated swimming into the side (Hanlon and Messenger 

1996). Glass tanks may also not be suitable due to habituation of the 

cuttlefish to humans and their surroundings, dependent on the study.   
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Species a) 

Guidelines 

b) Home 

office 

2014 

c)Biaza 

Work 

Group 

d) S. officinalis 

Cephalopod 

culture 

Cuttlefish Grouped Grouped Grouped Grouped 

Ratio-

Juveniles 

200 per m2 No 

guidance 

10 per sq 

foot 

120 m2 with 

minimum area of 

1083cm2 

Ratio-

Adults 

2 per m2 -

adult 

No 

guidance 

20 

x1000L-

2months 

10 x 

1000L 3 

months 

4x 1000L 

6 months 

30DAH to 10g 

Figure 2.2: Ratio of cuttlefish grouping a) Fiorito et al (2014) b) Home office (2014) c) 

Slater et al (2013) d) Iglesias et al (2014) 

 

 
2.2.3 Substrate 
 
Substrate can also be a contentious issue dependent on the study. 

Studies requiring naivety may reduce substrate or backgrounds to 

eliminate bias.  Whether this is depriving the cuttlefish of their natural 

behaviour of burying into substrate is unknown. Using sand at the 

bottom of tanks however can prove to be problematic, sand provides a 

filter for the waste of the cuttlefish, however it is also a source of 

possible contamination. There has however, been suggestions that 

using images of substrates or hides could provide some relief (Cooke 

and Tonkins 2015). In either case if not maintained properly it can 

produce less than optimal conditions which may lead to disease or 

stress of the animal. 
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2.2.4 Lighting 
 
Lighting seems to be less important but the maintenance of a day 

night cycle should be implemented. Low lighting may be better than 

bright overhead lights and cuttlefish are less startled in these 

conditions. 

 
 

2.3 Growth and Ontogeny 
 
2.3.1 Nutrition 
 
Food can greatly effect survival rate and growth of the cuttlefish. Dead 

food in early stages of development often produce high mortality rate 

and poor growth with individuals being considerable smaller (Navarro 

et al 2014).  However, a mixture of live and dead food produces similar 

results to solely live food. This is beneficial if live food becomes scarce 

or one wants to reduce the cost of purchasing live food. There have 

been trials with artificial diet, but, as of yet have none have been 

brought to market (Navarro et al 2014) 

 
2.3.2 Growth 
 
Growth is dependent on amount or nutrition of the available food. If 

live food is fed continuously then growth can be considerable. A 

mixture of dead and live food may reduce the growth rate due to the 

decrease in the nutritional value, which is caused by freezing or 

storing dead food.  

 
2.3.3 Lifespan 
 
Cuttlefish lifespan differs considerably dependent on environmental 

factors and food constraints. Water temperature can increase 

cuttlefish activity and therefore food consumption, resulting in a faster 

growth rate and in some cases reaching of sexual maturity faster. In 

Portugal individuals often become sexually mature at 8 months (Sykes 

per comm) whereas in England it can be anywhere from 12-18months 

before reproduction occurs despite the opposite sex being present.  
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2.3.4 Damage and disease 
 
Being a soft-bodied organism cuttlefish are more susceptible to 

damage and possible infection. Poor housing conditions where 

cuttlefish can damage themselves can lead to broken or damaged 

cuttlebones. Broken skin can also be present which can allow bacteria 

or infection to colonise the affected area. If not caught early infection 

can kill cuttlefish exceedingly fast (Sykes and Gestal 2014). The type 

of treatment is highly debatable due to no specialised drugs being 

available and it is often a trial and error due to the properties of the 

antibiotic Oestmann et al (1997) 
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2.4 Drug Case Study 

 

2.4.1 Background 

 

Cuttlefish are soft bodied and as such are at a higher risk of getting 

damaged or colonisation of bacteria around wounds. Until recently 

most of the disease and infections that had been identified and 

suitable treatments were listed in the DOMA guidelines (Hochberg and 

Kinne 1990). However, as our knowledge of infection and cuttlefish 

immune response increases new trials of drug treatments are being 

implemented.  

 

 

2.4.2 Presenting signs 

 

In this case three Cuttlefish presented with damage to the epidermis 

on the mantle and floating at the top of the water column.  The 

presenting signs suggest it was some sort of bacterial infection. 

 

2.4.3 Treatment 

 

In consultation with International Zoological Veterinary Group (IZVG) it 

was decided to try a different treatment of Baycox 300mg solution in 

water at a concentration of 100mg per 100 Litres. A 50% water change 

was conducted each day. 

 

 

 

 

 

 

 



25 
 

 

 

2.4.4 Results 

 
 
Figure 2.3: Treatment with Baycox over 7 days and results after 3 weeks from 
initial presentation of signs 
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2.4.5 Discussion 

 

Out of the three cuttlefish that were treated, two were treated 

successfully and lasted through to maturity after treatment without any 

additional treatments needed. The deceased cuttlefish was sent for 

pathology to identify the cause of the symptoms. The mantle lesions 

contained bacteria consistent with vibrio’s along with what resembled 

Ichthyobodolike bodonid organism. After initial treatment, there 

appeared to be epidermis damage and subsequently abnormal 

chromatophore function. As the cuttlefish developed however the 

chromatophore function returned and the epidermis repaired. 

Behaviour of the cuttlefish did not seem to be effected after the initial 

treatment and there was little differentiation between those treated and 

other cuttlefish of similar age.  

 
 
 

2.5 Set up of Experimental tank 
 
 

Cuttlefish were housed in a purpose-built tank at Brighton Sea Life 

centre, UK described by Kelman (2007). The holding tank was 

constructed of grey 9mm PVC of 2000mm x 900mm x 600mm 

dimension. Within the holding tank the internal space can be divided 

into 6 sections when needed, with a flow through ability to a stand pipe 

in the farthest left section. Each section contains an airline and stone. 

There are also three valves of saltwater feeds inputting water into the 

tank from an open system of coastal saltwater. Overhead fluorescent 

room lights were used on a 10L:14D and tanks were syphoned daily.  

 

 Filming was conducted in a designated filming tank of 900mm x 

750mm x 150mm (Figure 2.4). A black aluminium hood surrounded 

the top of the filming tank with a mirror set above the tank at 45 angle 

to reduce disturbance to the cuttlefish during filming. Lights were two 

30w fluorescent bulbs down either side of the tank and five 20w 
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halogen bulbs. There was a viewing window which was used to taken 

video and pictures.  Video was taken with a Sony video camera HDR-

XR100 and still photos with a Nikon D500.   

 

 
 
 
 

 
 
 
Figure 2.4: Set up design of filming tank 

 
 

2.6 Grading of images 
 
Components were used from an existing list like that used by Zylinski 

(2009) and described in Hanlon and Messenger (1988) (Figure 2.5).  

Cuttlefish images were graded by eye on a three-point scale with 

scores being entered into a SPSS v22 spreadsheet to be analysed. 

When a component was expressed a score was noted, with the most 

heavily expressed component having the highest score, in comparison 

absence of a component was scored as 0.  
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Figure 2.5: Components described by Hanlon and Messenger 1988. Notice the large array 

chromatic components. Taken from Hanlon and Messenger (1988) 
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Figure 2.6: Examples of components identification. 1) Median mantle stripe 2) 
White mantle triangle 3) White landmark spots (white square) 4) White 
landmark spots (head) 5) White Square 6) Paired mantle spots anterior  

 
 

2.7 Statistics 
 

A Principal Component Analysis (PCA) was conducted on the grading 

scores and subsequent component regressions analysed by ANOVA. 

Post Hoc Bonferroni tests were conducted to determine more detailed 

significance. Principal Component Analysis is excellent for large 

multivariate data sets, which due to their size can prove difficult to 

recognise trends and often complex in relation to the data (Figure 2.7). 

The dimensions of the data are reduced so that similar trends can be 

recognised and grouped together. The list of similar components is 

produced by the degree of covariance between sets of the original 

variables. This has been proven to be an excellent method for 

investigating cuttlefish camouflage due to the array or expression and 

combinations possible. (Kelman 2007). The components are derived 

by eigenvalues. A larger eigenvalue suggests a larger share of the 

combination of characteristics. The largest eigenvalue will be termed 

Principal Component 1 and will have the largest of the eigenvalues. 

Once the eigenvalue drops below 1 the relatedness and the size of 

degree of the covariance also drops (Figure 2.8). As a result, the first 

3-4 Principal Components seem to be the most useful for explaining 

the variance of the data. Any co-efficient below 0.3 was disregarded 

due to it not having a strong representation in the component. The 
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robustness of the data is described with the Kaiser Meyer-Olkin (KMO) 

score with a score above 0.5 showing that the data is robust and has 

relatedness. In data that had very little co-incidence either the KMO 

score would be low or the data would not rotate within 25 degrees of 

rotation. In relation to this thesis all PCA’s would rotate within 8-11 

iterations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: Components displayed as a matrix with loading(co-

efficient) scores  

 

 

 

 

 

 

 

 

 

 

Figure 2.8:  Example of Component Eigenvalue plotted against 
component number. Note the drop below 1 at component 6. 
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A result of doing PCA’s is that the rotation of the data produces 

regression scores which allows plotting and investigation of the 

relatedness of the data to the Component matrix. With mean 

regression scores, ANOVA and post hoc tests can be performed to 

determine if there is a significant difference between components and 

their level of expression in different situations. 
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Chapter 3: Camouflage in 
complex visual environments   
 

 
 

3.1 Introduction 
 

3.1.1 Camouflage techniques in an aquatic environment 

 

Endler (1978) suggested that cryptic camouflage can be understood 

as a sample of the background. Visual resemblance to the background 

decreases the risk of detection which is known as background 

matching (Merilaita and Tullberg 2005). The principle of being similar 

to the visual background with the colours and geometry of a prey 

colour pattern, the more difficult it should be for the predator to detect 

the prey (Cott 1940, Norris and Lowe 1964, Edmunds 1974, Endler 

1978). It is also suggested (Endler 1978,1984) that colour patterning is 

cryptic if it resembles a random sample of the background in which 

they are most vulnerable. That is, in relation to time, age and 

microhabitat of the prey for visual predators. This theory also assumes 

all random samples of given background are equally cryptic (Endler 

1978,1984). For cuttlefish, which can control their appearance, this 

raises the question of how they sample the background by integrating 

information over their visual field, and which background textures or 

objects drive the camouflage response. 

 

3.1.2 Cuttlefish environment perception 

  
The question of how cuttlefish sense 2-D backgrounds to produce a 

camouflage pattern has been well studied (Hanlon and Messenger 

1988).  When they settle on a flat substrate such as sand, gravel or a 

patterned surface they use a range of visual cues to select their 

pattern. These include the size of objects, the presence of edges, 

contrast in the pattern, and three dimensionalities of the substrate 
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(Kelman et al 2008; Zylinski et al 2009; Hanlon and Messenger 1988, 

Shohet et al 2006, Chiao et al 2009). However, the seafloor is not a 

continuous flat visual texture, but varies over short distances, and 

often includes larger objects such as stones and seaweed. This 

chapter examines how cuttlefish respond to features that do not form 

the substrate directly beneath the animal: namely seafloor 

backgrounds that are some distance away, and stones of varying size 

and contrast. In the latter case the cuttlefish must make two decisions: 

firstly, whether to settle near or far from the stone, and then whether to 

adopt the appearance of the stone, a strategy known as masquerade 

(Ruxton et al 2004; Skelhorn 2011) -, or to camouflage against the 

background. How do cuttlefish respond to such complex scenes, and 

what does this tell us about their perception and their camouflage 

behaviour? 

  

Previously, in a study of asymmetrical body patterns, Langridge (2006) 

found that when cuttlefish settle with the left side of the body on one 

type of background and the right side on another they tend to adopt a 

symmetrical pattern that roughly averages the two backgrounds.  

Comparing vertical and horizontal patterns, Barbosa et al (2008) found 

that cuttlefish take both vertical and horizontal information into 

consideration when camouflaging.  Ulmer et al (2013) demonstrated 

that vertical information is indeed integrated into overall camouflage 

decisions in Sepia officinalis, and, quite surprisingly, that information in 

the vertical field takes precedence over the horizontal information from 

the substrate. Buresch et al (2013) investigated the influence of 3D 

objects on cuttlefish camouflage, and focused on masquerade. They 

found that cuttlefish used masquerade rather than background 

matching in the presence of a nearby 3D object of high contrast, when 

the surrounding substrate is of low contrast.   

  

Here we extend these studies by comparing how cuttlefish integrate 

information from across a horizontal visual field with the effects of a 

vertical ‘background’, and examine their responses to stones of 
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different sizes and contrast. As with other aspects of camouflage 

behaviour, we find that the animals integrate a range of visual cues to 

make complex behavioural decisions about the best defensive 

strategy in a given visual environment. 

 

The aims of Chapter 3 are: 

 

1.To record the behavioural response to the presence of 

varying stone contrast and sizes 

 

2.Determine the effect of a 3-Dimensional stone characteristics 

of contrast and size on camouflage 

 

3.To examine how distance of varying checkerboard 

backgrounds on a vertical and horizontal axis influence 

expression of camouflage 
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3.2 Methods 

 

 

All experiments were conducted at Brighton Sea Life Centre in a 

designated filming tank. Cuttlefish were placed within a Perspex arena 

of 300mm diameter. We used 10 animals ranging from 120-360 days 

in age with 70mm-90mm mantle length. Following standard 

procedures (Kelman 2007), the expression of behavioural components 

by cuttlefish were blind selected and graded by eye from photographs 

on a three point scale with scores being entered into a SPSS v 22 

spreadsheet. A Principal Component Analysis (PCA) with Varimax 

rotation was then conducted on the grading scores, and subsequent 

component regressions analysed by ANOVA and Bonferroni post hoc 

tests. 

 

 

3.2.1     Experiment 1: High and low contrast objects on a natural 

background 

 

 

To test responses to stones of varying size and contrast, cuttlefish 

were allowed to settle on a natural background of fine grade sand 

fixed with silicone to an acrylic sheet. Cuttlefish were then subjected to 

four different treatments (Figure 3.1). Stones of three sizes (30-50 

mm, 70-100mm,150-170mm diameter) and three contrasts (Dark, 

Light, Medium) were placed in the centre of the arena (Figure 3.2).   
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Figure 3.1: Cuttlefish treatments divided by contrast and size of stone. Size of stone is 

divided into ratio small 1.5-2 cuttlefish times larger than the stone, Medium 0.75-0.9 

stone similar size to the cuttlefish, Large 0.45-0.67 cuttlefish smaller than the stone.  

Sand with no stone was used as a control 

 

Cuttlefish were allowed to settle for no less than 5 minutes and then 

filmed for 10 minutes. The film was then edited to 5 min lengths with 

photographic stills taken randomly from the film. The stills were 

compared first to make sure they were a fair representation of the 

overall film before the random selection. The distance the cuttlefish 

settled from the stone was also recorded. 

 

 

Figure 3.2: Experimental tank set up with ring enclosure. Sand substrate was used on 

the horizontal surface. Stone was positioned in the centre of enclosure 
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3.2.2    Experiment 2: Spatial Integration 
 
Cuttlefish were placed in a smaller arena of 100mm diameter to stop 

movement over different backgrounds. A larger ring arena was also 

present at 300mm diameter for testing further vertical information. 

Three checkerboard sizes of small (3mm) medium (8mm) and Large 

(12mm) were selected (Figure 3.3).  

 

Figure 3.3: Checkerboard size divided between the outer area and inner area and 

vertical information.  

 

These checkerboard designs were used either horizontally inside or 

outside of the arena or vertically in close proximity around the edge of 

the 100mm arena or further away on the 300mm area (Figure 3.4). 

The three checkerboard sizes were used inside the arena, and the 

outer area could be either the same as the inner arena or one of the 

other check sizes.  

 

 

     

 

 

 

Figure 3.4: Examples of horizontal checkerboard set up (not to scale) a) inner circle 

small check outer circle medium check b) inner circle small check outer circle further 

away with middle check 

 



38 
 

 

3.3 Results 

  

Experiment 1: High and low contrast objects on a 

natural background 

Cuttlefish were placed in a relatively simple natural environment with 

one stone in the middle of the arena on a sand background. The stone 

varied in size and contrast. A sand substrate without a stone was the 

control. 

 

3.3.1: Principal Component Analysis 

The first three components explained 42 percent of the overall 

variance in the body coloration patterns. The Principal Components 

corresponded approximately to dark uniform (PC1), mottle (PC2) and 

disruptive (PC3) body patterns (Figure 3.5; Hanlon and Messenger 

1988).  The Principal Components were distinct, with only two features 

(Behavioural components) being shared by PC1 and PC3 (Figure 3.4)  

 

 

 

 

Figure 3.5: First 3 Principal Components explaining for 42 percent of the variance. 

Kaiser-Meyer-Olkin =0.755, p=0.0002 
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Figure 3.6: Principal Component Matrix for Experiment 1. All component scores were 

0.5 or higher.   
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3.3.2 Location of cuttlefish in relation to stone 

 

Cuttlefish are sensitive to both the size and the contrast of the stone in 

their choice of where to settle. They did not settle close to the small 

stone except with the medium contrast treatment. Settling by the stone 

increased as the stone size increased (P<0.05). (Figure 3.7). Cuttlefish 

chose to sit by the large stones in 75% of tests.  

 

 

 

 

 

Figure 3.7: The choice to settle near a stone depends both its size and colour. 

Percentage of cuttlefish located by the stone plotted against size of stone. 

Divided between the different colour treatments. Note that cuttlefish only chose 

to sit in all three sizes by the medium (neutral) stone and only the large stone 

in white 

 

 

 

 

 

 

 

 

 

 

% of 
Cuttlefish 
settling by 
stone 
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3.3.3 Effect of location and stone contrast on cuttlefish 

colouration 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: Effect of size, contrast and proximity of the stone on cuttlefish colouration. 

Expression of Principal Component scores divided into stone contrast groups.  PC1 

expression was significantly enhanced in the presence of dark and medium stones of 

medium and smaller size (p<0.05), and by proximity to the stone (P<0.05). PC3 was 

significantly greater (p<0.05) to the light stone than to the other two stone contrasts 

(DN=Dark stone Near, DF=Dark stone far, MN=Medium stone near, MF=Medium stone 

far, LN=Light stone Near, OF=Light stone far, C= sand).  

 

 

Regression 
score 

Regression 
score 

Regression 

score 
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Compared to the sand control, the presence of a stone affected the 

cuttlefish colouration pattern in varying degrees depending on whether 

the animal settled near or far from the stone (Figure 3.8).  

 

 

Stone colour and size Stone location Response. Compared 

to sand control 

Medium (30-50mm) Near PC1+ 

Medium (70-100mm) Near  PC1+ 

Dark(30-50mm) Near PC1+ 

Dark (70-100mm) Near  PC1+ 

Light (150-170mm) Near PC3+ 

Light (150-170mm) Far PC3+ 

Figure 3.9: Significant differences in response to sand control + designates a greater 
mean value. In Medium and Dark treatment PC1 was effected. In Light large stones PC3 
was effected 

 

 

The presence of the stone near the cuttlefish significantly (p<0.05) 

increased expression of PC1 (Uniform dark) in the dark(black) and 

Medium(Neutral) treatments with PC1 being significantly stronger 

(p<0.05) when the stone is near than when it is far (Figure 3.9). As the 

PC1 pattern resembles the stone this behaviour could be termed 

masquerade (Skelhorn et al 2011). The colour of the stones affected 

the expression of PC3 (p<0.05), mainly due to the increase with the 

size of the white stone (Figure 3.10). This Principal Component 

contained white components, and is consistent with previous studies 

(Chiao et al 2007). In contrast the medium (neutral) Principal 

Components became similar to the sand control in the large stone, 

and are not significantly different from each other (p >0.05.) 

suggesting that there is a different camouflage response to that of 

small or medium size medium (neutral) stone. 
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Figure 3.10:  Cuttlefish only sat near white stones when they were 

larger than themselves. Graph of PC3 in relation to stone size and 

location in white stone treatment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Location 

Regression 
Score 

Edge of Arena Next to stone 
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Figure 3.11: Table of cuttlefish camouflage in relation to stone size and proximity to the 

stone.  
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Experiment 2: Spatial Integration 

 

This experiment compared the responses of the animal to uniform 

horizontal backgrounds, with those backgrounds containing two visual 

textures (checkerboards), which were placed either horizontally or 

vertically. We also examined the effects of stimulus distance on these 

responses. 

 

3.3.4 Principal Component Analysis 

In this experiment, the Kaiser-Meyer-Olkin statistic of 0.69 three 

Principal Components explained 38% of the variance. PC1 and PC2 

are disruptive patterns (though using mostly separate sets of 

behavioural components) (Fig. 3.12) with PC3 a mottle trait (Figure 

3.12) 

 

 

 

 

Figure 3.12: First 3 Principle Components explained 38% variance in the Principal 

Component Analysis. Kaiser-Meyer-Olkin =0.687, p=0.00 
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Figure 3.13: Matrix of first 3 principal components.  

 

 

 

 

 



47 
 

 

 

 

 

3.3.5 Horizontal checkerboards 

 

 Control checkerboards 

 

As expected for a uniform checkerboard background, check size 

affected the body pattern (Figure 3.14; Zylinski et al 2009). PC1 and 

PC2 expression was significantly different (p<0.05) between the three 

checkerboard sizes suggesting that cuttlefish were expressing 

different camouflage on the different check sizes.  

 

 

 

 

Figure 3.14: Control checkerboards on A4 sheets at 100% contrast. PC1 increases as 

the check size increases. S= Small Checkerboard, M= Medium Checkerboard, L= Large 

Checkerboard 

 

 

 

 

 

 

 

 

Regression 
 Score 
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Half and Half Checkerboard 

 

When the cuttlefish rested simultaneously on two backgrounds PC1 

showed the more variability than PC’s 2,3. Medium/Large (M/L) mix 

and Small/Large (S/L) mix showed a significant difference in PC1 

(p<0.05) (Figure 3.15). If we compare to the control (Figure 3.14) we 

can see a mixture of the control regression scores. PC1 showed the 

most variation against the control in the M/L treatments with PC1 

showing a significant difference against the medium checkerboards, 

and PC2 significant difference against the large, suggesting that 

regression scores are dependent on the mixture of checkerboard 

sizes. The finding that cuttlefish lying on two backgrounds adopt an 

intermediate pattern is qualitatively consistent with previous work 

(Langridge 2006). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15: Half and Half Checkerboard at 100% Contrast. PC1 shows 

a significant difference between SL mix and ML mix (p<0.05). None of 

the half checkerboards showed similar component profiles. ML= 

Medium and Large mix, SL=Small and Large mix and MS= Medium 

Small  

 

Regression 
 Score 
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Regression 
score 

 

Horizontal checkerboards 

 

Small checkerboards showed similar component expression to that of 

the half and half checkerboards (P>0.05) (Figure 3.16a). In contrast 

PC1 in the medium checkerboards showed a diminished expression 

compared to the half and half in both sizes (P<0.05) (Figure 3.16b) 

suggesting that presence of another checkerboard had an effect 

although the distance did not seem to effect expression (p>0.05).  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Regression  
Score 

a) 

b) 

Medium checkerboards with variable outer checks compared 
to half and half 
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Figure 3.16 : a) Small Check inner with medium and large check outer rim. SMF= Small 

check inner background Outer ring Medium check, SM=Small/Medium half and half 

check, SLF= Small check inner background Outer ring Large check, SL= Small/Large 

half and half check b) Medium Check inner Check with Small and Large check outer 

rim. MSN= Medium check inner background Outer ring Small Check near, MSF= 

Medium check inner background outer ring small check far SM=Small/Large half and 

half check MLN= Medium Check inner background Large check near, MLF= Medium 

Check inner background large check far c) Large check inner Check with Small and 

Large check outer rim.  LSN= Large check inner background Small check near, LSF= 

Large check inner background small check far LMN= Large check inner background 

and medium check near, LMF= Large check inner background and medium check far 

 

 

The response to the large checkerboard inner circle with small checks 

outer rim was not significantly different to the small/large half and half 

treatment, and showed similar levels of expression at both near and 

far small checkerboard (Figure 3.16c). PC1 was significantly different 

in large check inner circle medium near to that of the medium/large 

half and half. In both the large inner treatments, expression of PC’s 

increased with distance.  PC1 was the only component that showed 

significant variation in all the cases suggesting that this is most 

sensitive to checkerboard size for the horizontal patterns. 

c) 

Regression 
score 
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3.3.6 Vertical Checkerboards 

Vertical distance information effects horizontal cuttlefish camouflage. 

In contrast to the horizontal checkboard information in which PC1 

fluctuated in relation to treatment, PC2 showed the greatest variation 

and largest expression in all checkerboard sizes. In the small 

checkerboard PC2 was significantly different in the Medium and Large 

vertical to that of the small vertical checks both near and far (p<0.05).  
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a) 

VERTICAL 

b) 

HORIZONTAL  

Regression 
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Figure 3.17:Checkerboard with varied vertical checkerboard information SCN= Small 

Checkerboard near, SCF= Small checkerboard far MCN=Medium Checkerboard near, 

MCF= Medium Checkerboard Far, LCN= Large Checkerboard near, LCF=Large 

Checkerboard Far a) Small checkerboard with small, medium and large vertical check 

at a close and far distance b) Medium checkerboard with small and medium check at 

close distance and far distance c) Large checkerboard with small and large check at 

close and far distance 

 

In the medium checkerboard horizontal background, a small vertical 

checkerboard affected similar expression in both near and far 

conditions with a slight increase in PC3 at a greater distance (Figure 

3.17b). With the vertical medium size checks PC2 decreased as 

distance increased, however not significantly. In comparison, the large 

checkerboard horizontal with vertical small checks showed a decrease 

in PC2 from that in the medium horizontal checkerboard. Again, PC3 

increased in the far large vertical checks when distance increased 

(Figure 3.17c). 

 

 If we compare distance information of a vertical large checkerboard 

with that of a near vertical medium checkerboard we can see 

similarities in the expression of the Principal Components (Figure 

3.18).  

 

VERTICAL 

c) 

HORIZONTAL  

Regression 
score 
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Figure 3.18: Comparison of distance and size of vertical information. Near information 

appears to have similar expression to larger size checks at a further distance SCN= 

Small check near, MCF=Medium check far, MCN= Medium check near, LCF= Large 

check Far 

 

3.3.7 Overall Proximity Results 

 

With the control checkerboards PC1 increased as size of checks 

increased and the presence of the white square can be seen in both 

the medium and the large checkerboards (Figure 3.14). When the 

cuttlefish were given half and half checkerboards they seem to 

produce a mixture of expression of patterns typical of the two 

checkerboard sizes similar to Langridge (2006). When the cuttlefish 

were surrounded by a different size checkerboard there seemed to be 

variation in their response. In the small checks the camouflage was 

similar to that of the half and half, however in the medium and large 

checkerboards PC1 was significantly different to that of the half and 

half treatments. 

 

In the presence of a vertically oriented pattern the distance to the 

surface affected the expression of the body patterns. PC2 tended to a 

decrease with distance in all treatments, whereas PC3 increased with 

distance for both the medium and large checkerboards (p<0.1) In 

VERTICAL 

HORIZONTAL  

Regression 
score 
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general distance to vertical surfaces produced similar expression 

patterns to those typical of a smaller checkerboard nearby, suggesting 

that the animals responded to the size of the checks in the retinal 

image, rather than their real size. For example, the response to Large 

far check was like that of the Medium near checkerboard. 

 

  

Figure 3.16: Representation of camouflage in each of the different treatments. 
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3.4 Discussion 

 

3.4.1 Behaviour response to location of stone 

Cuttlefish commonly chose to settle near to vertical surfaces, such as 

aquarium walls, while Buresch et al (2011) concluded that S.officinalis 

prefer to resemble a 3D object than the benthic substrate. Here I have 

shown that these characterizations are nuanced, with the preference 

to settle near the stone and the choice of whether to masquerade or to 

match the background being dependent on the size and contrast of the 

stone. Experiment 1 finds that this behaviour depends upon the size 

and the contrast of the object. The likelihood that cuttlefish would 

settle adjacent to a stone increased with its size over the range of 0.5 

– 2 mantle lengths, and were also affected by its contrast. Cuttlefish 

only settled near stones of the smallest size when they were Medium 

contrast(Contrast 0.36); at least 50 % of cuttlefish chose to settle 

beside medium sized stones when they were medium or dark stone, 

but 0% when they were light.  For the largest size of stone 75% of the 

cuttlefish chose to settle by the stone.  The reasons for this selectivity 

are not clear. It may be that the stone offered little protection or drew 

attention to the location of the cuttlefish at smaller sizes, as the 

cuttlefish can vary their colour from light to dark it is unclear why 

contrast had such a clear affect. If we compare these results to that 

described in octopuses we can draw some similarities. Josef et al 

(2012) determined that both Octopus cyanae and Octopus vulgaris 

based their body patterns on selected features of nearby objects. It 

was suggested that this allows the octopus to camouflage in partly 

occluded environments. 
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3.4.2 Effect of contrast and size 

In addition to making a choice about whether to settle next to a stone 

or further way the cuttlefish can either use masquerade to resemble 

the stone, or match the background. Here we can elaborate on this 

finding. When settled by the stone, expression a disruptive camouflage 

increased as stone size increased, whereas at the edges camouflage 

was more uniform light components and close to the sand control 

(p>0.05). Disruptive patterns were shown with larger light stones, 

consistent with Chiao et al (2007) and other’s finding that cuttlefish 

react to white cues as well as to the spatial scale and overall 

brightness of the background. The best evidence for masquerade 

camouflage is seen in the responses to the dark and medium stones, 

where a uniform almost black camouflage was displayed.  

 

If we consider the viewpoint of a potential predator dependent on the 

angle of their viewpoint cuttlefish could be perceived as an extension 

of an object or another rock (Endler 1991). Possibly the key factor in 

causing the masquerade is that the natural background was uniform 

which could potentially draw greater detection of the cuttlefish’s 

outline. Ruxton et al (2004) suggests that masquerade sometimes 

involves a close evolutionary relationship. Stuart-Fox et al (2008) 

suggested that dwarf chameleons may be able to adjust their 

camouflage in relation to differences in predator visual systems. This 

raises the question is there predatory pressure driving the 

masquerade? Visibility in the habitat in which S.officinalis lives in, is  

variable sometimes with low visibility. Predators in a low visibility 

environment may use different techniques other than vision to detect 

prey, or certain aspects of vision for detection such as outline 

detection or motion. In this case masquerading as a rock would be a 

good technique for the cuttlefish to avoid detection.  
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3.4.3 Horizontal proximity checkerboards 

 

Allen et al (2010) suggested that cuttlefish take visual cues from their 

surroundings and respond with the appropriate camouflage in addition 

to the background directly beneath the animal. Consistent with this 

observation we have found that in addition several factors affect the 

choice of camouflage. They integrate information over a horizontal 

range exceeding a body length, and take account of vertical and 3D 

information in their visual fields. Distance of this pattern significantly 

effects camouflage expression.  

 

In a situation where the cuttlefish was restricted in its choice of 

location, we can see that the cuttlefish take multiple cues horizontally, 

as described by Langridge (2006) and Allen et al (2010). When 

presented with backgrounds of differing check size on either half, 

cuttlefish combined cues to a mixture between the two check sizes. 

When the same information was presented with the differing check 

size in an outer ring cuttlefish exhibited similar combination of 

camouflage, rather than displaying the camouflage for the background 

that they were settled on. The camouflage exhibited was more 

disruptive in its expression with PC1 and PC3 being significantly 

different when there was different check size horizontally in the 

distance. When the outer ring of the check size was moved even 

further away similar results were found, although slightly diminished, 

suggesting that there is some component of size being been detected 

independent of distance. 

 

3.4.4 Vertical proximity checkerboards 

 

Ulmer et al (2013) suggested cuttlefish respond to small percentage of 

their visual field and that vertical information plays a key visual feature 

to drive camouflage. Whereas, Allen et al (2010) showed cuttlefish 

integrated conflicting visual cues by producing mixed body patterns 
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similar to what was seen in this study on a horizontal field. Cuttlefish 

when presented with camouflage in the vertical field seemed to follow 

more Ulmer et al (2013) results and responded to the vertical 

information and similar expression of the patterns of the PC’s, even if 

the horizontal checkerboard pattern was different rather than a 

combination of both. 

 

3.4.5 Comparison of Horizontal and vertical checkerboards 

 

Behaviour as well as the visual aspects of the environment seem to 

play an important role in overall camouflage decisions. When sat in 

proximity of objects monocular cues such as visual angles, textures, 

size and motion parallax may factor into cuttlefish visual processing. 

Vertical and horizontal information feed as 3D information into a 2D 

image on the retina in vertebrates, and then convert back into 3D 

information to allow for judging of the environment. Josef et al (2014) 

investigated if this held true for cuttlefish by looking at visual textual 

density gradient. They found that cuttlefish sensed illusory crevasses 

created by a visual texture density gradient. As texture density 

gradient relates to change in size and shape that occur as a function 

of depth or distance, we can relate this back to the results exhibited 

with the proximity of checkerboards. The fact they combined 

camouflage similar to the half and half checkerboards on the 

horizontal field, would suggest that cuttlefish have some ability to 

determine depth cues and differentiate size of objects in their visual 

field. 
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3.5 Conclusion 

 

Cuttlefish moving and locating themselves near objects would gain 

protection along with possible masquerade camouflage. Cuttlefish 

visual ability and the flexibility of their behavioural responses allows 

them to protect themselves in the visually varied environment they 

inhabit. Integrating over an area of the substrate well beyond their 

immediate background and making nuanced – and to us inexplicable - 

choices about whether to use masquerade.  Oddly however, they do 

not seem to take account of distance in ‘matching’ vertical surfaces. 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



60 
 

 

Chapter 4: Effects of viewing 
conditions on camouflage  
 
 
 

 4.1 Introduction 
 

As explained at the start of Chapter 3, it is usual to assume that 

camouflage patterns will tend to match, or perhaps to be suited to the 

background. However, a pattern is very unlikely to exactly match a 

background that is not of a uniform colour. In fact, it may be the visual 

information the animal can use to sense the background, and more 

important that a predator can use to break the camouflage, will depend 

upon the viewing conditions. For example, Zylinski (2009) found that in 

good viewing conditions cuttlefish are sensitive to components in 

checkerboard with a spatial period exceeding about 4mm. One might 

expect (Land and Nilsson 2012) that the sensitivity of both the 

cuttlefish and visual predators will be adversely affected by reducing 

the light level, or increasing the turbidity of the water. Nonetheless a 

recent study (Allen et al 2010) concluded that cuttlefish camouflage is 

unaffected by light level down to intensities close to starlight – when 

human spatial resolution is severely compromised (Land and Nilsson 

2012). This chapter investigates this question further, and finds that 

both light level and turbidity strongly affect patterns in a way that is not 

consistent simply with a reduction in visual contrast. We cannot 

however be sure whether the cuttlefish is ‘misreading’ the background, 

or is seeing it correctly but making adjustments to take account of 

what a fish at some distance from the animal would see. 

 

4.1.1 Optical properties of saltwater 

 

Factors such as turbidity of the water, light conditions and shadow are 

found in the aquatic environment and potentially influence camouflage. 

Chemical changes in the water such as eutrophication and chemical 
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pollution can lead to algal blooms. this in addition to mechanical 

disturbance such as churning of substrate and the suspension of 

inorganic particles causes disruption to light propagation (Johnsen 

2012). In addition, turbidity adds to light absorbance of pure water to 

reduce the overall amount of ambient light in the water column. Light 

in turbid water is therefore more scattered, and depending on depth, 

can change the perceived colour (Ender 1990). This can alter an 

organism’s visual capability in the environment.  

 

Signal to noise ratio is an important measure of how well a visual 

system can see under low light, and is an effective way to determine 

the ability to distinguish two objects of similar radiances (Johnsen 

2012). This can then be observed in the context of a predator prey 

interaction and camouflage that may result in hiding from a predator in 

a low visibility environment. Different levels of light promote various 

levels of counter shading. Where light intensity is higher, 

countershading may be more prevalent than in situations where 

scattering is also high (Hailman 1977). When particles scatter light a 

brighter veil is seen between the object and the eye. This in turn 

degrades the object brightness and colour contrast when hitting the 

individuals’ eye (Lythgoe 1979). This loss of information to an 

organism such as a fish predator could be costly in terms of finding 

prey, as enough light must be reflected from a sufficiently large 

surface and sufficient visual contrast to distinguish it from the 

background (Utne-Palm 2002). In fish the probability of prey detection 

has been found to be proportional to the reaction distance of the fish 

(Confer and Blades 1975). Low light and turbidity severely hinder this, 

although fish may deploy additional senses like juvenile Atlantic cod, 

which use olfaction for prey detection (Meager and Batty 2007).  

 

Scattered light is polarised (Johnsen 2012), which means animals 

such as cuttlefish that are able to detect polarised light may use this 

ability to enhance contrast in turbid environments. This, in addition to 

their ability to vary camouflage so successfully in a variable ocean 
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environment, makes them an interesting organism to study in low light 

and turbid environments.  

 

4.1.2 Cuttlefish camouflage in reduced visibility water 

 

Cartron et al (2013) looked specifically at polarised reactions in the 

presence of a predator in both clear and turbid environments. The 

cuttlefish (Sepia prashadi and Sepia pharaonis) however, were not 

tested so much for their camouflaging in relation to the turbidity, but to 

the presence of a predator in a turbid environment. It was suggested 

the large size, sudden increase of predator’s shape aided in 

identification of the threat in a turbid environment. As S. officinalis live 

in a coastal environment which is highly variable in light conditions, it 

is important to test how cuttlefish react to these conditions without a 

predator stimulant. Therefore, it is hoped set of experiments will help 

to achieve a better understanding on how cuttlefish camouflage relates 

to natural environment, without a sudden stimulus. 

 

Previous studies by Allen et al (2010) showed cuttlefish continued to 

camouflage under low light conditions. Whether this was to deceive 

predators or prey was not determined as the study focused on whether 

the cuttlefish could camouflage themselves in such low light 

conditions. It was suggested that maintaining camouflage may be 

energetically costly, and if it was not necessary they would not express 

any camouflage. A uniform pale colour due to all chromatophores 

being closed (Messenger 2001) is the lowest energy state of the 

animal. Allen et al (2010) found cuttlefish do indeed camouflage under 

low light conditions. The question is the camouflage maintained due to 

predator/prey pressure, reaction to the information received by the 

eye, or a conscious decision of the cuttlefish. If it is a reaction to the 

reduced information to the eye then by testing it in reduced light 

conditions and high turbidity conditions against low contrast we may 

see similar responses. 

 



63 
 

 

In this experiment cuttlefish were tested in relation to varying strengths 

of turbidity to see how scatter of light effects their camouflage 

response. In contrast varying light conditions were also tested to 

determine if there were any similarities in response of camouflage.  

The results from these conditions where then compared with low 

contrast responses to investigate if they were of a similar response. 

 

The aims of Chapter 4 are: 

 

1. To determine the role turbidity has on cuttlefish camouflage 

 

2. To investigate how low light effects camouflage 

 

3. To compare any similarities of camouflage between lowlight and 

turbidity and that of low contrast 
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4.2 Method 

All experiments were conducted at Brighton Sea Life centre in a 

designated filming tank. 10 animals were used, ranging from 120-360 

days in age. As for Chapter 3, cuttlefish images were graded by eye 

on a three point scale with scores being entered into a SPSS v22 

spreadsheet. A principal Component Analysis (PCA) was then 

conducted on the grading scores and subsequent component 

regressions analysed by ANOVA. 

 

4.2.1 Experiment 1: Turbidity on checkerboard backgrounds 

 

Three different checkerboards of 100% contrast (0.93 a.u) and varying 

sizes (check size 30mm, 80mm and 120mm) were placed in the main 

filming tank. Cuttlefish were housed in a separate circular tank 

(160mm diameter) within the main filming tank of (900 x 750mm). To 

make the water turbid 100, 200 and 400ml of oat milk was mixed into 

100 Litres of saltwater in the outer part of the tank (Figure 4.1). The 

mixture was then left for 10 minutes to acclimatise in tank. Cuttlefish 

were photographed every minute for 5 minutes, and an image 

randomly selected from the five for analysis. Cuttlefish appeared to 

have no adverse reaction to the oat milk, which resembles suspended 

organic matter that might be found in many coastal habitats. 

 

Figure 4.1 Different concentrations of oat milk in 100 litres of see water 

 

Calibration of scatter in turbid media is complicated (Johnsen 2012), 

and here we simply measured the degradation of the image as it was 
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transmitted through the turbulent medium. This was done by looking at 

the modulation transfer function (MTF) of images passing through the 

200mm depth of the tank. Photographs of a graduated scale in the 

different concentrations were taken and the Michelson coefficient 

calculated at numbers of line visible (Figure 4.2).    

 

Figure 4.2: Modulation transfer function of 200mm of oatmilk represented by the 
contrast of black and white gratings of varying width viewed through 200mm with the 
oatmilk concentrations used in this study. The insensitivity to grating size suggests 
that scattered light had the main affect. 
 

4.2.2 Experiment 2: Low light with checkerboard backgrounds 

  

Cuttlefish were tested on three different sized 100% contrast 

checkerboard backgrounds (30mm,80mm and 120mm) at three 

different illuminations (10000lux, 1000lux and 0.1lux), which 

correspond roughly to light levels experience under bright sunlight, 

overcast daylight and moonlight (Land and Nilsson 2012). Cuttlefish 

were photographed every minute for 5 minutes and an image 

randomly selected from the five to analyse.  

 

4.2.3 Control for contrast 

To test whether the effects of varying light level and turbidity were 

equivalent to changing the contrast of the background, the animals 

were also tested on backgrounds of 100% (nominal), 50%, 25% and 

0% contrast. 

MTF (a.u) 

Lines per cm 
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4.3 Results 
4.3.1 Principal Component Analysis 

 

 

 

Figure 4.3: Principle Component matrix for combined turbidity, low light conditions and 
reduced contrast with values greater than 0.3 values. KMO score was 0.66 and 50% of 
the variance was explained in the first three factors. 
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Figure 4.4: First 3 expressed Principal Components, PC1: disruptive characteristics 

PC2: mottle characteristics, PC3 A mixture of PC1 and PC2 

 

Principal Component 1 (PC1) was more disruptive in its camouflage 

patterning with a slight mottle with Principal Component 2 (PC2) being 

a more mottled effect going towards uniform, and Principal Component 

3 (PC3) a mixture between PC1 and PC2 with lighter components 

(Figure 4.4). Here we will discuss the PC1 and PC2 components as 

PC3 showed no significant difference between treatments (p>0.05). 

 

4.3.2 Experiment 1: Turbidity on checkerboard backgrounds 

As expected there was a strong effect of checkerboard size (p<0.05) 

on the coloration pattern. In addition to differences between 

checkerboards, as turbidity increases PC1, which has disruptive 

characteristics, decreased (p<0.05). In contrast PC2 which has a more 

mottled appearance, increased with increased turbidity (p<0.05). 

(Figure 4.5) 
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Figure 4.5: Table of turbidity camouflage categorised into intensity and checkerboard 

size. As turbidity increases white papillae increase and darker components decrease. 
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4.3.3 Experiment 2: Low light on checkerboard backgrounds 

 

PC2 shows a significant difference (p<0.05) when check size and light 

intensity are accounted for. Figure 4.6 shows that as light is reduced a 

more mottled effect is seen in the cuttlefish, which is part of the 

component of PC2 (Figure 4.1). PC1 showed no significant difference 

in intensity and check size with interaction.  

 

Figure 4.6: Table of light intensity versus checkerboard size 
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Comparison of the maximum turbid water concentration and the 

darkest condition yield similar responses, with increased areas of 

white patches and papillae (Figure 4.7), which were absent on 

reduced contrast backgrounds. 

 

 

Figure 4.7: Comparison between the lowest light and highest turbid environment 

broken down into checkerboard size 
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When we compare the turbid, low light and low contrast, there are 

similarities in the expression of the PC’s when comparing the low light 

and high turbidity (p>0.05), (Figure 4.8), and clear differences from the 

reduced contrast backgrounds (P<0.05). Hence not only does turbidity 

and low light seem to have an effect on camouflage as it increases 

but, it is not simply equivalent to varying contrast (p<0.05).  

 
  
Figure 4.8: Comparison of PC1 (Disruptive) and PC2 (Mottle) responses to 3mm (fine), 

8mm (medium) and 12mm (coarse) checks of varying contrast, turbidity and light-level. 

No significant difference is seen between PC1 values. There was no significant 

difference between turbid and low light PC2 however they were significantly different 

(p<0.05) to both lowered contrast 
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4.4 Discussion 

4.4.1 Camouflage in relation to predator detection 

 

Turbid and low light conditions affected camouflage differently than 

that on reduced contrast backgrounds. In the turbidity experiment, 

disruptive mottle Principal Component 2 pattern increases with 

increasing turbidity. At high turbidity in the natural environment visual 

predator prey interactions would occur at a shorter distance 

(Abrahams and Kattenfeld 1997). One can speculate from our findings 

here that the cuttlefish benefit from reducing contrast and especially 

disruptive patterning, resulting in an increase in mottle. In the case of 

these experiments the cuttlefish were still on a non-turbid background 

in the inner arena. To change to a completely mottled or uniform 

camouflage may be a disadvantage as a greater contrast between the 

background and the cuttlefish would arise and therefore draw attention 

of the predator. At some point, there would be an energetic trade off 

as suggested by Allen et al (2010) between the intensity of the 

camouflage and concealment from the predator This is possibly seen 

by the very subtle changes in the first two treatments of the turbidity 

concentrations where there was still some visibility of the squares in 

the outer arena. In respect to the cuttlefish detection by a predator 

Cartron et al (2013) suggest that cuttlefish polarisation vision would 

provide a reliable method to detect predator and prey in such turbid 

conditions. The possibility of the cuttlefish escaping either detection or 

capture may depend on this polarised vision ability along with the 

searching and reactive distances of the predator. In freshwater 

environments fish such as bluegills feeding reduces in turbid 

environments (Gardner 1981). As cuttlefish potentially also hunt in 

these conditions further studies of motion camouflage in turbid 

conditions would aid our understanding of more natural situations. 

 

Both turbidity and low light environments provide cuttlefish with 

reduced light information but by different methods, however we can 



73 
 

 

see that the two experiments showed similar camouflage strategies. In 

the turbid environment, a mottled disruptive increased whereas the 

disruptive camouflage decreased. In reduced lighting camouflage was 

similar, but with an increase of white patches and papillae. As 

cuttlefish are active both day and night their ability to camouflage in 

reduced light conditions is not surprising. In fact, Allen et al (2010) 

found cuttlefish camouflage themselves in low light conditions 

comparable to nighttime levels. As numerous fish have adapted to low 

light conditions it was suggest the continued camouflage was for 

predator avoidance and possibly hunting success. As suggested by 

Allen et al (2010) producing camouflage has an energy expenditure 

trade off and if it was not necessary then could be costly to the 

organism. The similar camouflage strategies between the turbid and 

low light conditions should be considered due to the type of visual 

information presented to the cuttlefish.  

 

4.4.2 Visual information to the eye of the cuttlefish 

 

In nature light levels vary with the day night cycle. Decreasing light 

levels, and hence the rate of photon absorption, generally reduce 

visual information (Land and Nilsson 2012). What is interesting is the 

similarities in the responses to low light and the turbid environment 

where image quality is degraded as light is scattered by suspended 

particles (Johnsen 2012). However, when we consider the information 

that is being presented to the eye of the cuttlefish, both result in a 

smaller difference between signals received from surfaces with a given 

difference in reflectance, though of course the visual contrast (ratios of 

light reflected from different surfaces) is reduced by turbidity but not by 

varying light levels. The question remains as to whether camouflage 

that is displayed depends simply on what the cuttlefish can sense 

about the background, or rather the background is sensed correctly 

and then is adjusted to be optimal for defence against visual 

predators. In this context, it is notable that cuttlefish routinely enhance 

their contrast in camouflage when a predator approaches (Langridge 
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et al 2007; Langridge 2009), suggesting they do not simply make a 

general best match to the background, and may indeed take a 

predator’s eye view of their camouflage. 

 

If it were the case that camouflage was directly dependent on the 

optical image on hitting the retina, one could suggest a similarity to 

that of low contrast (Ultne-Palm 2002). However, we can see in the 

small and medium checks that PC2 reaction are significantly different 

from that of the lower contrast (Figure 4.9). The increase of papillae as 

well as the mottle effect although seen in a reduced contrast was not 

as prominent when the cuttlefish was exposed to turbidity or low light. 

This suggests it is not just the reduction of light level information hitting 

the retina that results in the displayed camouflage.  

 

Figure 4.9: Comparison between full light and low contrast conditions and the 

highest turbidity value (0.2 a.u) and lowest light level (0.1 lux). 
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4.4.3 Role of polarisation  

 

It may be that polarisation sensitivity enhances vision in turbid 

conditions (Schechner et al 2003; Cartron et al 2013). Although the 

use of polarisation information was not tested in these experiments it 

may well be relevant to cuttlefish camouflage, especially in turbid 

water. Cartron et al (2013) and Pignatelli et al(2011) both showed the 

presence of a predator in turbid water caused cuttlefish to react in an 

anti-predator response. However, neither of these described in detail 

the camouflage of the cuttlefish before the presence of a predator, so 

it remains unclear how much cuttlefish use polarised vision in a turbid 

environment for camouflage versus predator detection. Cartron et al 

(2013) suggests the polarisation channels are used for predator and 

prey detection in low contrast situations such as when luminance 

contrast is low. It is therefore possible that polarised vision is not used 

for camouflage decisions but more in response to predator and prey 

detection. 

 

4.5 Conclusion 

 

Reaction to turbid and low light levels show similar responses in 

camouflage, suggesting similar mechanisms are employed when there 

is reduced light and high scatter information. Cuttlefish continue to 

camouflage under these conditions, however, with reduced visual 

information cuttlefish increase mottle patterning and papillae. It is 

suggested this is to break up their overall outline to predators as high 

contrast patterns would have greater detection by predators. Further 

studies need to be conducted to determine what role if any polarised 

light has in these conditions to aid camouflage. 
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Chapter 5 : Shadow perception 
 

 

 
5.1 Introduction 
 
The optical image on the retina – a pattern of varying light intensity – 

needs to be interpreted by perceptual mechanisms in the brain to infer 

its physical cause, and hence to allow the animal to respond 

appropriately to those causes. A simple example of the problems that 

need to be solved by the brain is the distinction between the effects of 

varying illumination – shadows and highlights – and the effects of 

changing material properties in the reflective surface.  For a cuttlefish 

that wants to camouflage itself in shallow water this is a potential 

problem, because shadows cast from above will of course be 

projected onto the animal so there is no need for it to match them.  

This chapter investigates using simple checkerboards to see whether 

cuttlefish can discriminate cast shadows from above to that of a 

patterned surface. This to our knowledge has not been investigated in 

cuttlefish before. 

 

5.1.1 Light properties in a water medium 

 

Organisms use various different cues of this visual information to 

perceive the world around them. Edge detection, area, visual depth 

and contrast all feed into the way the visual world around them is 

processed. To what degree the information is processed is dependent 

on the medium of which it is transmitted and the ability to gain the 

visual information in such medium. In water, certain visual cues may 

be lost or affected because of environmental factors such as turbidity, 

obstructions or light levels. As we have seen in previous chapters 

when the visual information is altered, cuttlefish camouflage responds 

in varying degrees. When the light is blocked entering the water 

column the result is a cast shadow. Shadows are used by animals to 
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place objects in context but also gives information about objects in a 3-

Dimensional space (Rosenthal 2007). In the aquatic environment as 

the light source is often from above objects such as rock outcrops or 

even other organisms cast shadows onto the seafloor, as do ripples at 

the water surface.  To what effect the shadow has on camouflage 

decisions has yet to be investigated in cuttlefish. This experiment is a 

preliminary study to determine if there is discrimination between the 

shadow and artificial background. 

 

5.1.2 Cuttlefish environmental cues 

 

Kelman and others (2007) found evidence that cuttlefish can sense the 

difference between 2D photographs of a gravel substrate and real 3D 

gravel, even when both are placed under a layer of Perspex. Other 

studies in this Thesis and elsewhere (Barbosa 2008, Ulmer 2013) 

have shown cuttlefish can recognise objects such as stones, plants 

and vertical structures. The fact the cuttlefish can distinguish the 

objects suggest they have the ability to detect and utilize the visual 

cues in their environment to recognise objects and their 3-D form. 

These objects would all give edge information through the form of 

shadows, but also reflectance of the light of the object. Using simpler 

stimuli many studies (e.g. Zylinski et al 2009) have found cuttlefish can 

sense 2D patterns such as a checkerboard pattern where the 

information is from reflected light rather than changing illumination 

(that is shadowing).  In this experiment we will investigate, using 

camouflage patterns, how shadows in the form of a projected image 

versus reflected information are perceived by cuttlefish. The decision 

was to use a projected image over that of a backlit object. The reason 

was to try and reduce to the influence of having an object directly 

above the cuttlefish. 
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The aims of Chapter 5 are: 

 

1. Can cuttlefish differentiate between low contrast, projected 

image and reflectance 

2. How do cuttlefish respond to a projected image 
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5.2 Method 
 

The main purpose of this study was to compare responses to high 

contrast project patterns (i.e. shadows) to similar printed 

checkerboards. To control for the minor effects of distortion in the 

water column and to distinguish quantitative from qualitative effects 

(did the cuttlefish see the shadow pattern as a low contrast reflected 

pattern or as something quite different). We used 100%, 50% and 25% 

contrast checkerboard with 120mm checks, and in addition (50% 

Gaussian) blurred checkerboard. A uniform grey background was 

used as a control (Figure 5.2). Checkerboards were projected into the 

filming tank with a 3M mpro-150 projector which was mounted on the 

filming window of the tank (Figure 5.1). Once the cuttlefish were 

settled photos were taken every minute for 5 minutes. One photo was 

then randomly selected for each cuttlefish to be analysed. 

 

 
 

 

 

 

 

 

 

Figure 5.1: Set up of experimental tank. Projector light was bounced off a mirror into 
the filming tank 

Figure 5.2: Table divided into treatments showing level of contrast in each size and treatment.  

B=Printed Background, P= Projected Background 
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5.3 Results 

 

KMO score 0.751 explains 47% first 3 PC’s 

 

Principal Component 1(PC1) has more disruptive camouflage 

patterning with Principal Component 2 (PC2) and Principal 

Component 3 (PC3) being a more mottled effect (Figure 5.3).  

 

Cuttlefish seem to differentiate between the projected image and that 

of reflected or low contrast, shown by a significant difference 

between the background and projected image in PC1 and PC3 

(P<0.01). Large checks followed a reduction in PC1 but retained a 

mottle camouflage at low contrast. 

 

 

Figure 5.3: First three Principal Components   
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Figure 5.4: Principal Component matrix for projected, low contrast and 

blurred treatments. 
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Figure 5.5: Graphs of projected image versus checkerboard contrast divided into to 
the 3 Principal components. Blurred and grey treatments are also plotted to compare 
against projected and background images. 
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For PCs 1 and 3 responses to the 25% contrast projected and 

printed backgrounds were in most cases very similar to one 

another and to the uniform grey (p>0.05) (Figure 5.5). If we 

compare these to Zylinski et al (2009) we can see that in the large 

check as contrast decreases, white square was reduced which is 

similar in PC1 and PC3.  

 

5.4 Discussion  

 

We have found here that the response of the cuttlefish to high 

contrast shadows is close to a uniform background. That is the 

physical surface on which the animal is resting, compared to a 

visually similar printed checkerboard, to a 50% contrast 

checkerboard or the blurred version.  The responses to the 25% 

contrast checkerboard, the projected pattern and the uniform surface 

are not separable. Thus, it is reasonable to conclude that the animal 

‘sees’ shadowed surface either as being physically uniform in 

reflectance – as it is – or possibly a low contrast pattern. The most 

variation is seen in PC1 and PC2. PC2 increased as checkerboard 

contrast was reduced, whereas the projected checkerboard 

decreased as contrast was reduced. The results are all the more 

striking given the rather artificial nature of the projected 

checkerboard, compared to shadowing caused by the surface ripples 

or seaweed in nature. We can only speculate how the cuttlefish is 

able to make the distinction between illumination and reflectance. It 

might perhaps see the pattern beneath its mantle when it casting its 

own shadow. 

 

In the wild, shadows would give important information for depth 

perception and for spatial information. In this study the shadows were 

cast from above rather than a directional light sideways. Therefore, 

the shadows were cast down onto the cuttlefish as if an object was 

above rather than from the side. Further studies would be need to be 
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conducted to determine how directional light alters camouflage. In 

the more natural situation it would be conceivable the object casting 

the shadow would also influence a possible cuttlefish camouflage 

decision. When we look at the cuttlefish in this experiment we can 

see they still respond to the cast checkerboard pattern, suggesting 

they still use edge detection in camouflaging. A white square 

expression would be a good indication of this. It is possible the 

cuttlefish actually use the shadow that is being cast upon them as a 

form of camouflage and therefore a greater chromatic response 

would not be required. As this was a preliminary study with a new 

experimental design, more investigation would be needed to expand 

on this possible hypothesis.  

 

5.5 Conclusion 

 

Overall, cuttlefish seem to be able to differentiate between a 

projected and reflected image. Cuttlefish appear to treat projected 

images similar to a lower contrast. The implication and scope in 

different settings would still need to be examined before being able to 

draw overriding conclusions. 
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Chapter 6: Motion Camouflage 
 

6.1 Introduction 
 
Predators drive the evolution of animal defences, which include 

morphology, behavioural adaptation, warning signals to conspecifics 

and determination of the predator’s location (Caro 2005). The ability 

of predators to recognise prey is vital, and recognition depends first 

on seeing the prey as an object distinct from the background. Here, 

several environmental factors need to be taken into consideration, 

notably the light source, the background including its spatial and 

temporal heterogeneity and light transmission through the medium, 

especially in water (Rosenthal 2007).  Together these factors mean 

the effectiveness of a given type of cryptic camouflage will be 

dependent on the visual environment, as well as the distance of the 

viewer and their visual abilities (Ruxton et al 2004).  

 

6.1.1 Motion Camouflage 

 

Crypsis, based on background matching, is likely to be most effective 

when an animal is stationary. Movement causes two problems. 

Firstly, the new location may offer a different background, but more 

importantly that movement itself breaks camouflage by allowing the 

predator to recognise a coherently moving object. There is evidence 

certain camouflage strategies work by confusing predators when 

prey is moving. Notably so-called ‘dazzle’ patterns whereby markings 

such as high-contrast bands, stripes and zig zags might reduce the 

predator’s judgement of speed and trajectory (Stevens et al 2011), 

but dazzle patterns are likely to be conspicuous when the prey is 

stationary.  Of course, an animal such as the cuttlefish that can 

change its camouflage may not need to compromise between motion 

and stationary camouflage, by selecting the appropriate pattern for 

each condition. This offers an opportunity to study what techniques 

may be employed to reduce detection while in motion 

 



86 
 

 

6.1.2 Cuttlefish motion camouflage 

 

While there are several studies on camouflage of stationary animals 

(Hanlon 2007, Chiao et al 2010), motion studies have focused on 

determining camouflage on standardised backgrounds without 

predatory influences (Zylinski et al 2009b, Josef et al 2015, Josef et 

al 2016). Contrary to some predictions (Stevens et al 2011), Zylinski 

et al (2009b) found cuttlefish did not use high contrast motion dazzle, 

instead the contrast of body pattern components was reduced during 

movement. Josef et al (2015) went one step further describing colour 

matching through movement. However, it was not determined how 

this translates to an environment where other factors such as hunting 

may be relevant. Casual observation shows cuttlefish often change 

coloration when feeding. Messenger (1968) and Adamo et al (2006) 

documented postural and chromatophore change in cuttlefish 

camouflage when feeding, but focused more on posture and 

behavioural aspects of the prey capture. Messenger (1968) identified 

three stages of prey capture: attention, positioning and seizure. In the 

attention stage the cuttlefish responds to the prey item by either 

turning its head or by colour change. During positioning the cuttlefish 

either retreats or approaches along the prey-body axis, this is when 

the cuttlefish is directly facing the prey. Finally, the cuttlefish seizes 

the prey. During these movements cuttlefish often undergo 

substantial changes in colouration, whose function is unclear. Are 

they aggressive, or defensive? 

 

This chapter investigates these changes, and examines how prey 

influence motion camouflage of cuttlefish both in uniform and in 

varied environments. Just as responses to predators depend on the 

level of threat and the type of predator (Langridge et al 2007; 

Langridge 2009), the feeding cuttlefish seem to deploy their 

repertoire of coloration patterns in a complex and flexible manner. 

The choice of coloration pattern depends on a number of factors 
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including the background, the type of prey and the particular 

movements used during an attack. 

 

The aims of Chapter 6 are: 

 

1. To determine the behaviour of prey capture over distance and 
substrate 

 
2. To describe and analyse the different camouflage expression 

during predation 
 

3. To investigate how prey items effect camouflage  
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6.2 Method 
 
All experiments were conducted at Brighton Sea Life centre in a 

designated filming tank. The 10 animals ranged from 120-360 days in 

age with 70mm-90mm mantle length. Backgrounds were either sand 

or small (<15mm diameter) pebbles. The cuttlefish were presented 

with two food types, shrimp (Crangon crangon) or crab (Carcinus 

maenas) with approximate total length of 30mm in Shrimp and 27mm 

carapace in crabs. We recorded distance to the prey item, the 

direction of movement of the cuttlefish and the predation behaviour 

as prey were more or less stationary after introduction. Video was 

taken of the prey interaction and stills were taken for the three stages 

described by Messenger (1968) (Figure 6.1), but in addition to 

attention and orientation pre attack and post attack (seizure) were 

separated This was repeated for all 10 cuttlefish over the varying 

distances, on two backgrounds stones and sand and for both types 

of prey. 

 

 

Attention Positioning Seizure 

   

Figure 6.1 The three stages of prey capture described by Messenger (1968) 

 

 

Cuttlefish images were scored blind and graded by eye with the 

pattern components scored on a three point scale as according to 

standard procedure (Refer to Chapter 2). Scores were entered into a 

SPSS v22 spreadsheet. A principal component analysis was then 

conducted on the grading scores and subsequent component 

regressions analysed by ANOVA. The first four components (PC’s) 

explain for 40% variance with a KMO score of 0.681. PC1 has a 
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darkened head region with some disruptive characteristics such as a 

white square and median stripes. PC2 has light disruptive 

characteristics. PC3 has a darkened head region with certain other 

dark components. PC4 is more uniform with some stippling.  

 

 
Figure 6.2: Table of first 4 principal components  
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Figure 6.3: Principal component matrix for motion camouflage with values greater 
than 0.3 values. KMO score was 0.681 and 40% of the variance was explained in the 
first four factors 
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6.3 Results 
 
 
6.3.1 Movement Response 
 
 

Behavioural responses to prey items were varied and could be split 

into instances of orientation movements without translation 

(henceforth ‘stationary’), movement across half the arena and 

movement across the whole arena.  

 

 

 

   

Figure 6.4 : Diagram of different behaviour exhibited on approach to prey 

item a) straight attack b) Straight attack with curved  c) Straight attack with 

arm raise d) curved attack e) curved with arm raise 
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Cuttlefish movements could be broken down into further categories 

(Figure 6.4). The capture method was dependent on distance and 

prey (Figure 6.5).  At shorter distances a curve with an arm wave 

was used 57% of the time when a crab was the prey item (n=14), this 

reduced to 36% when the distance was across the arena (> 2 mantle 

lengths) (P<0.00) A straight path across the arena with an arm wave 

was the next most observed within the crab treatment at 21% (n=19). 

When shrimp was prey, a straight attack was seen 50% of the time 

when halfway across the arena (n=20), this fell to 30% when it was a 

longer distance across the arena. In contrast a curved attack with 

arm wave increased to 30% across the arena from 15% half across 

the arena. This suggests different techniques are needed over longer 

distances.  

 

Figure 6.5: Cuttlefish behaviour broken down into food type and distance. Distance 

effects the behaviour used (p<0.00) . Across the arena has more variability in 

behaviours used than that of half across the arena. 
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6.3.2 Camouflage in motion on different backgrounds 
 
 
Strength of the Principal Components’ expression was dependent on 

distance and background. On a pebble background PC2 expression 

differs significantly (p=.0.004) between stationary predation (Figure 

6.6a) and when there was movement across the arena (Figure 6.6b). 

In stationary predation PC2 increased during the orientation and 

attack stages. With movement across the arena PC2 decreased 

during the orientation stage, but peaked at the attack stage. PC1 also 

showed a significant increase (p=0.00) during the attack stage on a 

pebbled background (Figure 6.7).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6 a) Stationary predation camouflage on pebble background where PC2 

increases over attack stages b) Motion predation camouflage where PC2 shows only 

a slight increase at attack stage 

a) 

b) 
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On a sand background PC fluctuations were reduced in the 

stationary predation. PC2 increased slightly around the orientation 

but was not significantly different from PC2 in motion the predation. 

Whereas PC1 showed a gradual increase through the different 

stages of the motion predation with a non-significant (p>0.05) drop 

off in post attack  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7: a) Stationary predation camouflage on sand background where PC2 

increases during orientation but not significantly b) Motion predation camouflage 

where PC1 increases over orientation and attack stage.  
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6.3.3 Camouflage in motion compared to prey type 
 

When food type and distance are analysed we can see there are 

similar trends in both PC1 and PC2 when travelling across the arena 

(p<0.05) (Figure 6.8) When motion was only half way across the 

arena, PC2 had a greater fluctuation at the orientation stage when 

faced with crab as prey.  

Figure 6.8: PC1 have been divided into distance and food type. PC1 increases at the 
attack stages over distance in both prey types 
 

Figure 6.9: PC2 divided into distance and food type. PC2 decreases at orientation 
stage in both types of prey with the exception of crab half across the arena 
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6.4 Discussion 
 
 

6.4.1 Behaviour in response to prey 

 

Both Boal et al (2000) and Adamo et al (2006) found cuttlefish 

avoided the claws when attacking crabs, while Adamo et al (2006) 

found they were seized in different ways: fish and shrimp with the 

tentacles, but an arm grab for crabs. Similarly, we found different 

approach movements to prey. For crab a curved attack with arm 

wave most frequent in both half arena and full arena movement. In 

comparison, the shrimp attack was more varied, from short distance 

there was a straight attack on 50% of occasions. When the distance 

increased to the width of the area straight attacks on shrimps 

decreased to around a third of the total. These behavioural 

differences could be due to the defensive capabilities of the prey. 

Crabs can injure a cuttlefish, so distraction of the prey and attacking 

from the side or back would reduce risk of a nip. In contrast the 

shrimps (C. crangon) used in this study had no such defences, but 

are more agile. At a short distance a straight approach is quick as the 

cuttlefish can use their tentacles for the attack. At a longer distance 

the chance of being spotted by the prey item is greater. Srinivsan 

and Davey (1995) point out a curved path can allow the cuttlefish to 

appear as stationary object if it keeps its initial distance to the 

cuttlefish being in the constraint line of the prey’s vision. If we 

compare the cases where cuttlefish are moving as are the prey, we 

can see some similarities with Srinivsan and Davey (1995) predicted 

trajectories, but further study would be needed to confirm if the 

cuttlefish are indeed using their motion camouflage strategy (Figure 

6.9) 
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Figure 6.9: Trajectory of cuttlefish and prey with Srinivsan and Davey (1995) algorithm 
for comparison. Diamond and star designates prey and circle predator. Body 
orientation is designated by directional line a) Curved predating cuttlefish with 
moving shrimp b) Straight predation cuttlefish with stationary prey c) Curved 
predating cuttlefish with stationary prey d) Prey and predator moving at varying 
speed to a moving target e) Constant moving prey in straight line to a fixed target with 
predator moving. 

 

6.4.2 Distance in relation to prey 

 

For both types of prey when distance was increased so did the 

frequency of arm waving behaviour in both straight and curved 

attacks (Figure 6.5). Cuttlefish raise their arms in response to visual 

stimuli, probably for camouflage amongst 3D objects (Barbosa et al 

2012), but here the fact that arm wave overall increased with 

distance for both the straight and curved attacks (Figure 6.5), is 

consistent with the logical possibility that cuttlefish need to confuse 

prey when attacking from a long range.  Hanlon and Messenger 

(1988) suggest the arm wave ‘mesmerizes’ the prey, and its use 

could be due to individual preference from early learning, or is 

perhaps genetic. However, it could also be a distraction technique, or 

possibly to mimic a prey item for fish. It is noteworthy that crabs living 

in complex visual environments (such as rocky shores) have a 

pronounced acute zone in their visual field (Nalbach et al 1989), and 

movement around the equator of the visual field can produce eye 
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movements. As such there is a fixation response with the fixation on 

the object beginning when something is approximately 28 degrees 

above the horizon.  As the eye moves the input images need to be 

translated and integrated into the visual system.  An image close to 

the crab in the vertical plane would have to distinguish distance, 

which could be counterbalanced by image motion in each eye. If the 

cuttlefish is able to conceal the rest of its movement, then waving of 

the arms could indeed ‘mesmerize’ the prey and confuse motion 

information. Oliva et al (2007) showed that depending on direction 

and colour of the stimuli different neural and behavioural responses 

are elicited. Darker approaching objects showed the greatest 

response of evasion, however a lateral moving object or light object 

showed a reduction in neural response and evasion. It is interesting 

to note arm waving coincides more with a curved approach with both 

shrimp and crab prey items.  

 

6.4.3 Background influence on motion camouflage 

  

As the cuttlefish moves it is important to also take into consideration 

their visibility to predators as well as prey.  There are strategies that 

a cuttlefish may implement to reduce their visibility to the predator. 

Langridge et al (2007) suggested several things needed to be taken 

into consideration when considering predatory threat to a cuttlefish. 

The type of predator, the proximity of the predator, direction of 

movement and substrate. It was found that behavioural responses 

were strongly associated with the overall threat level during 

encounters with threatening species. Staudinger et al 2013 

supported this idea that different predator elicited different responses 

when cuttlefish were exposed to flounder, seabass and bluefish.  It 

was also suggested that the defences were highly context 

dependent. In active searching predators such as bluefish cryptic 

behaviours may be more important. However, if the cuttlefish moves 

a couple of strategies could be used. One would be to use motion 

dazzle, which would confuse the viewer of the direction and speed of 
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the cuttlefish as it moves (Stevens et al 2008).  Another would be to 

reduce contrast to confuse speed information or another pattern to 

reduce detection. (Zylinski et al 2009b). A dazzle display consists of 

high contrast markings to inhibit the predator’s judgement of speed 

for example in snakes, fish and mammals. (Stevens et al 2011). 

Capture rates of such displays have been compared with that of low 

contrast and found uniform grey targets were missed more often than 

a patterned target (Stevens et al 2011).   

 

Zylinski et al (2009b) found cuttlefish reduced high contrast 

characteristics when moving over substrate, suggesting it was to 

reduce detection by predators. Josef et al 2015 went one step further 

suggesting that cuttlefish showed background matching during 

motion. However, there was no perceived threat or motivational 

stimulus in these studies. In comparison, this study shows differing 

distance produces differences in camouflage technique. On a pebble 

background a stationary response causes some lightening of 

chromatic features (PC2), whereas movement background causes a 

marked increase in PC1 at the attack stage. On sand backgrounds 

the pattern of change is similar, but weaker than on pebbles 

(p>0.05). PC2 increased, but not significantly, during the orientation 

in stationary attacks, and there PC1 increased during the final 

phases of the attack when the animal needed to move to capture its 

prey.  It could be suggested that the lower contrast patterns on sand 

are a result of the animals need to maintain camouflage on a 

conspicuous background during the moving stage of prey capture.  

 

6.5 Conclusion  

 

Overall both the prey type and its range affected coloration. At a 

greater distance PC1 increased around the attack stage in both 

shrimp and crab.  The importance behaviour has on the stimuli and 

strength for the change in colouration has yet to be determined. 
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However, due to the increase in distance it would be likely that there 

is a greater risk of detection by prey and predators. Therefore, 

different techniques may need to be used to counteract this. Perhaps 

a larger movement entails the use of motion camouflage. 
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Chapter 7: General Discussion 
 
 

7.1 Objects in the environment  

 

There are three ways in which behaviour can influence camouflage. 

Choosing a microhabitat to increase similarity to background, 

orientation alignment to the background to increase localised 

similarity or choosing a background to increase scene complexity 

(Stevens and Merilaita 2011). When proximity of objects was taken 

into account cuttlefish behaviourally chose whether to sit near an 

object based on its optical properties such as reflectance and size. In 

objects with less reflectance cuttlefish used them for possibly 

mimicry. In shrimps where Sargassium habitat is varied, camouflage 

and plant-part mimicry can depend on the size, shape and colour of 

the shrimp (Hacker 1991).  

 

The size of these objects and overall location in the cuttlefish’s vision 

played an important role in camouflage. Objects in a vertical plane 

had a significant impact on the expression of camouflage, but also 

the distance on the horizontal plane. Even at a greater distance, 

objects and backgrounds had some influence on the camouflage 

expression often resulting in a mixture of backgrounds in the 

camouflage.  This outlines the complexity to which the cuttlefish take 

in their surroundings for camouflage. It may be that they may have a 

similar strategy to that described by Josef et al (2014) regarding 

octopus. It has already been determined by other researchers 

(Kelman 2007) that depth cues were an important factor. It was 

suggested by Zylinski (2009) that cuttlefish vision uses multiple cues 

in visual tasks with several parameters involved. With Josef et al 

(2014) not only the immediate surroundings were considered in 

camouflage decisions. The findings in Chapter 3 show similar 
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strategy in addition to a behavioural component. What drives the 

behavioural component is almost certainly the possibility of 

concealment.  Skelhorn et al (2011) suggest that it is the predators 

cognitive strategies (such as recognition and identification) rather 

than sensory capabilities that are the selective force driving the 

evolution of masquerade. Cuttlefish predators such as sea bass have 

a high visual acuity and it is possible that this may be one of the 

driving factors to resembling stones on a uniform background where 

there would be little cover.  

 

 

7.2 Reduced visual information 

 

Camouflage displayed by cuttlefish varied significantly dependent on 

the visual input and the parameters of the surrounding environment 

(Figure 7.1). In an aquatic environment parameters can have high 

variability due to factors such as ocean current, sedimentation and 

light levels. When optical information is altered by these variances 

such as low light or high turbidity, cuttlefish adjust camouflage as 

demonstrated in Chapter 4. The level of expression of disruptive 

components is diminished with lighter components increasing, giving 

a more mottled appearance, possibly breaking up the overall outline 

of the components and the cuttlefish. This would aid in the reduced 

detection by a predator as in these conditions predators would have 

to be closer to detect a prey item. Gobiusculus flavescens show a 

significant reduction in reaction distance in both reduced illumination 

and increased turbidity (Utne 1996). In turn, distance of objects, and 

in this case predators, plays a major role in the expression of 

camouflage in cuttlefish. In fish predator studies Ranaker et al 2012 

found that there was a reduction in striking distances in pike when 

only using visual cues and that the prey’s escape distances 

increased in turbid water. However, when chemoreception was 

present there was no significant difference in strike distance in turbid 
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water. This suggests that predators that use multiple cues to hunt 

would not be as greatly affected when hunting cuttlefish in a turbid 

environment. 

 

The level at which the cuttlefish can detect reduction of visual cues is 

still a question under investigation, but when looking at shadow and 

normal light conditions we can see cuttlefish can indeed detect a 

difference between reflectance versus luminance as demonstrated in 

Chapter 5, and that they treat shadows similar to a low contrast 

background of similar configuration rather than a uniform grey 

background or a blurred image. How cuttlefish use this in a more 

natural situation is still to be determined. It may be a shadow is used 

in camouflage due to possible concealment if the cuttlefish is 

uniform. The previously described chapters were testing 

environmental parameters that may be present in the natural 

environment. However, all the camouflage was in relation to 

stationary camouflage, where as in the ocean cuttlefish would be 

moving dependent on stimulus such as predatory pressure or 

hunting.  

 

7.3 Motion and predation 

 

By looking at situations where cuttlefish were stimulated to move 

over varying distances and backgrounds, we can see if components 

that are expressed in stationary situations are held or altered during 

movement. Zylinski (2009) suggested cuttlefish altered their 

camouflage dependent on movement by lighting contrast. This was 

conducted by a simple disturbance. Josef et al 2015 took it one step 

further and described a sigmoidal, colour-changing mechanism, 

which they suggested reduced detection. In this experiment, I wanted 

to test if, when there was motivation such as food, whether these 

observations held true or were altered due to the presence of the 

prey item. In Chapter 6 it was shown that although they do alter the 
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camouflage when moving, it is not as straight forward as just 

reducing contrast of the components when moving towards a prey 

item. Not only did behaviour change depending on distance and prey 

item, but also camouflage changed over different backgrounds. The 

approach to prey seemed to reflect the possible risk of detection or 

possible damage in the case of the crab. The motion camouflage 

displayed in some cases did resemble techniques to confuse motion 

detection. It appears the head region has separate expression than 

the mantle. It is suggested here that this is due to predator versus 

prey viewpoint. Mantle expression would be to confuse potential 

predators who may be viewing from above in comparison to the prey 

item, which would see the head region coming towards it. If both 

regions showed similar camouflage the effectiveness may be 

reduced in possible capture of the prey. It is interesting to note that 

dazzle camouflage does not seem to be used. More studies need to 

be conducted looking at motion camouflage in cuttlefish to determine 

whether or not these theories hold true in a more complex 

environment. 

 

The experiments outlined in this thesis have investigated a range of 

different environmental factors and their influence on camouflage. It 

has highlighted the importance of not only thinking of the camouflage 

produced, but also the visual input and the environmental pressures 

that drive camouflage decisions in cuttlefish. In addition, it has raised 

new questions to be investigated and ideas to be discussed. 
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