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Summary

We study quantum (T = 0) phases of strongly-correlated matter, and their pos-
sible implementation in a quantum simulator. We focus on the non-perturbative re-
gimes of 1D spin-boson models. As a reference physical system we consider trapped-
ion chains.

We realize complex many-body states, such as a ground state exhibiting magnetic
frustration, a lattice gauge theory, and a topological insulator. The exquisite control
over these phases offered by a quantum simulator opens up exciting possibilities
for exploring the exotic phenomena emerging in these systems, such as enhanced
fluctuations and correlations.

We address the non-perturbative regimes of the phase diagrams by means of
mean-field theories and the numerical algorithm DMRG. We have established the
universality class of the continuous transition in the spin-boson chain, the existence
of a first order phase transition when the system is endowed with a gauge symmetry,
and the possibility of probing topological states of matter in these systems.

Our results show that some of the most exotic phases of quantum matter can
be readily realized in trapped-ion quantum simulators. This offers the possibility of
exploring these physical models beyond their original realm of applicability, which
may provide us with new insights on both theoretical and applied fields of physics,
ranging from high-energy processes to low-energy cooperative phenomena.
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Chapter 1

Introduction

In our daily life we are surrounded by ordinary, classical matter. Beyond our every-

day experience, though, it turns out that quantum matter is as prevalent in nature

as its classical counterpart. It is present at the core of neutron stars, which are pre-

vented from collapsing because of the degeneracy pressure, or in the nuclear matter

comprising every atomic species. Interactions among the particles that made up

both classical and quantum matter render the description of these systems very

challenging. In the latter case, though, matters are even more complicated, since

quantum particles are indistinguishable, and their behaviour can only be described

collectively. This has not prevented us from explaining many interesting instances

of quantum matter, as long as they can be described in terms of weakly-interacting

collective excitations, or quasi-particles. In these cases, we can deal with the in-

teractions by performing a weak coupling expansion about the free quasi-particles.

Nevertheless, when interactions are exceedingly large, the weak coupling point of

view has to be abandoned. Strong interactions lead to the appearance of strong cor-

relations between the particles, and to the emergence of qualitatively new behaviour

compared to weakly interacting systems [1–3].

Phases where strong interactions play a major role often occur in the context

of condensed-matter physics. Examples include quantum spin liquids (QSLs) in

frustrated magnets1 [4–7], or topologically ordered phases, such as the fractional

quantum Hall states [8], to name a few. Some of these phases are very appealing

1Conclusive experimental evidence for these states is still missing, and it heavily depends on

the theoretical interpretation.
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from the theoretical point of view, since they may exhibit exotic properties such as

emergent gauge fields [9] or fractional particle excitations [10]. They are also inter-

esting from a practical point of view, because they could find application in areas

such as quantum information processing [11, 12]. Nevertheless, strong correlations

are not limited to the realm of low-energy physics. Gauge theories, the concep-

tual building blocks of the standard model of particle physics [13, 14], may feature

strongly-correlated phases as well, such as the quark-gluon plasma of quantum chro-

modynamics (QCD) [15–17].

The description of strongly-correlated phases from first principles is a highly

non-trivial task. One may develop microscopic many-body models that capture the

physics of the strongly-correlated phase, but usually they cannot be exactly solved.

Furthermore, the computational simulation of these models requires resources that

scale up exponentially with the size of the problem, a difficulty that cannot be

circumvented with any classical computer [18]. This state of affairs seems to render

many-body models intractable, but fortunately quantum technologies have matured

up to the point where they can provide us with a novel route to deal with these

problems. We can build a device that follows the laws of quantum mechanics, and

engineer the interactions in such a system to mimic those of a given model. Then,

we can obtain the quantities of physical interest by performing a measurement upon

the system. This idea lies at the core of the field of quantum simulation [19, 20],

and constitutes the major theme of this thesis.

Our motivation in the present work is to show that the aforementioned phases can

be naturally realized in quantum simulators. We study a system hosting enhanced

quantum fluctuations and correlations, which are phenomena associated with spin-

liquid phases. We also show how to implement a simple instance of a gauge theory,

that is a model endowed with a local invariance. Finally, we explain how one can

engineer a topological insulator [21–23] that, in spite of being a non-interacting

system, is associated with the existence of a bulk invariant, which is one of the

defining features of topological order. These models are strung together by the

feasibility of implementing them in a particular experimental platform, that will

be our reference system along the thesis, and that has emerged as one of the most

promising quantum technologies: trapped-ion quantum simulators [24–29].
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1.1 Overview of the thesis

This thesis is structured as follows:

• In chapter 2 we summarize the background theory and the methods that we

use along the thesis for the study of the different quantum simulations. We

begin by introducing the concept of a quantum phase transition, which is

closely linked to the occurrence of strongly-correlated phases. We also present

the concept of quantum simulation, and describe the specifics of trapped-

ion quantum simulators. Finally, we briefly review the numerical algorithm

that we have utilized in the thesis to establish the properties of the differ-

ent strongly-correlated phases, known as the Density Matrix Renormalization

Group (DMRG).

• In chapter 3 we introduce the cooperative Jahn-Teller (cJT) model. We begin

by illustrating the concept of magnetic frustration, which naturally arises in

the ground state of the cJT model. Then, we present the implementation of

the model with trapped ions. We discuss the phase diagram of the model,

firstly without frustration, and afterwards with frustrated interactions. We

study as well an algorithm to prepare the ground state in the presence of frus-

tration, known as quantum annealing. Finally, we present some experimental

parameters for the implementation with trapped ions, and the conclusions of

the chapter.

• In chapter 4 we introduce the concept of local invariance, and illustrate it in a

generalization of the cJT model, known as Ising-Rabi lattice (IR) model. Then

we show how to implement the model with trapped ions, and discuss its phase

diagram by means of perturbation theory, two variational wave functions, and

the DMRG. Finally, we present the experimental parameters for an eventual

implementation, and comment on the conclusions of the chapter.

• In chapter 5 we briefly explain what is a topological insulator, and illustrate its

properties for the Su-Schrieffer-Heeger (SSH) model. We show how to imple-

ment the model with trapped ions. We discuss the effect of the effective inter-

actions on the edge states associated with the topological phase, and present
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a protocol to probe them. We also study the many-body ground state, to seek

for any trace of the localized components occurring in the one-body spectrum.

We present the experimental parameters for an eventual implementation, and

the conclusions of the chapter.

• Finally, in chapter 6 we present the main conclusions and the outlooks for

further work on these strongly-correlated systems.

1.2 Summary of results

The central theme of this thesis is the simulation of strongly-correlated phases in

trapped-ion quantum simulators. Our motivation for studying the particular models

covered is the feasibility of their implementation in these systems. We will establish

that:

• The simulation of frustrated interactions is scalable

We show that the dressing of the spin interactions associated with trapped-

ion quantum matter suffices to induce frustration. This is advantageous with

respect to other proposals, since our method does not rely on addressing a

specific motional mode, and it is therefore scalable to many ions.

• The cooperative Jahn-Teller model belongs to the universality class

of the quantum Ising chain

We study the phase diagram of this model in the regime of strong spin-phonon

coupling, departing from the usual simulations of quantum magnetism with

trapped ions. By means of numerical calculations with the DMRG we establish

the universality class of the spin-phonon chain, a result that had not been

properly demonstrated so far, to the best of our knowledge.

• Features of a quantum spin-liquid phase can occur in trapped-ion

quantum matter

We show that in the frustrated regime of the cJT model, defined on a finite

chain, there is a stable phase exhibiting enhanced quantum fluctuations and

correlations, as expected of a QSL.



5

• Quantum annealing performs poorly in presence of frustration in

the cJT model

We carry out a mean-field study of the quantum dynamics in the cJT model

under quantum annealing. We show that the algorithm significantly fails to

find the ground state whenever this is not uniquely defined. Nevertheless,

this study is not completely conclusive about the performance of quantum

annealing, since it neglects the quantum correlations.

• Minimal extensions of the cooperative Jahn-Teller model can realize

a gauge theory

We show that the phononic degrees of freedom of a trapped-ion quantum

simulator can give rise to a local symmetry so that the resulting cJT model no

longer belongs to the Ising universality class. We refer to these new class of

models as Ising-Rabi lattices, and show that the global symmetry analogous

to the parity invariance of the Ising chain is broken all over the phase diagram

of the IR lattice.

• The Ising-Rabi lattice model undergoes a quantum first-order phase

transition

We establish that the IR lattice presents a level crossing for finite system

size, a signature of a first-order phase transition. The absence of a diverging

correlation length prevents the classification of the critical behaviour in terms

of the paradigm of universality classes. Nevertheless, there are examples of

systems undergoing an analogous transition, such as the liquid-gas transition

of magnetic monopoles in spin ice [30], or the sudden magnetization jump in

metamagnetic samples [31].

• The engineering of interactions by periodic drivings allows the im-

plementation of a 1D topological insulator

We show that dressing the effective spin interactions of the cJT model allows

the simulation of a simple instance of a topological insulator, the SSH model.

In the long range regime of the spin interactions there is an enhancement of

the localization length associated with the topological edge states.
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• The edge states of the Su-Schrieffer-Heeger model survive to the

interactions between ions

We show that the coupling between ions in the simulation of the SSH model

gives rise to a strongly-interacting fermionic model. We study the ground

state of the resulting problem, and show that it retains some localization at

the edges, at least in the event of short range interactions.
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Chapter 2

Theoretical framework and

methods

The aim of this chapter is to present the main theoretical concept underlying this

thesis: quantum phase transitions. All the strongly-correlated phases that we shall

study arise as a result of quantum phase transitions, and therefore we need to

introduce the tools to establish their emergence, and to tell the different phases

apart. We also motivate the necessity for quantum simulation, that arises not only

in the context of strongly-correlated models, but in quantum statistical mechanics

or quantum chemistry as well. We later describe the degrees of freedom and the

interactions that can be engineered in the experimental systems of reference used in

the thesis, trapped-ion quantum simulators. Finally, we summarize the numerical

method that we have utilized to gain insight into the physical properties of the 1D

systems that we shall study, known as the Density Matrix Renormalization Group

[32–35].

2.1 Quantum phase transitions

Our understanding of a strongly-correlated phase begins with the construction of its

corresponding many-body model, which is defined by a Hamiltonian. The Hamilto-

nian depends on the parameters of the model, and changes on these can lead to

dramatic qualitative differences in the ground state. The strongly-correlated phase,

in particular, may occur in the ground state for specific values of the parameters.
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The description of the phases of a model in terms of its parameters is summarized in

the phase diagram. Different phases are separated by boundary lines, which signal

the appearance of a phase transition [36–40].

Quantum phase transitions happen at zero temperature. They are associated

with points in the phase diagram where the energy of the ground state is no longer

an analytic function of the parameters. The non-analyticity stems from a level

crossing, either appearing at finite system size or in the thermodynamic limit [40].

We will encounter two types of quantum phase transitions in this thesis, which

are referred to as first- and second-order [41]. This nomenclature originates from the

order of the first derivative of the energy which is discontinuous at the transition.

First-order phase transitions are characterized by a discontinuity in some ob-

servable at the transition. The nature of correlations at phase boundaries does not

exhibit a qualitative change, and they decay exponentially with the distance all over

the phase diagram. We will encounter an example in chapter 4.

On the other hand, second-order phase transitions are accompanied by a qual-

itative change in the correlations. Away from the transition, two-point correlators

of any observables decay exponentially with the distance, as happens in first-order

transitions. However, exactly at the transition, known in this context as the critical

point, correlations follow a power law [40]. This is associated the divergence of the

typical length of the fluctuations or, equivalently, with the vanishing of their typical

energy (cf. the relationship between the energy (mass) of a scalar field and the range

of the Yukawa potential discussed in appendix A). We will find this type of phase

transition in chapter 3.

The power-law behaviour of the correlations is a feature shared with other quant-

ities at criticality, such as the susceptibility to an external field. It turns out that

the exponents of these power laws are independent of the microscopic details of

the model, and solely depend on its generic symmetries and dimensionality. This

phenomenon is characteristic of second-order phase transitions, and is known as

universality [40]. Two microscopic models sharing the same critical exponents are

said to belong to the same universality class. We will establish the universality class

of the cJT model in chapter 3.

Let us illustrate now a phase transition in a simple example.
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2.1.1 Case study: the quantum Ising chain

The quantum Ising chain in a transverse field is one of the simplest examples of a

model undergoing a (second-order) phase transition [42]. It can be exactly diagonal-

ized, and it is possible to obtain formulas for the energy of the ground state and the

correlations in the thermodynamic limit. Therefore, it will serve us to illustrate the

vanishing of the energy of the fluctuations and the non-analyticity of the observables

at the transition, and the qualitative change of correlations at criticality.

We can visualize this model as describing a set of interacting spin-1/2 particles,

each of them located at one of the N sites of a one-dimensional (1D) chain (cf. Fig.

2.1). The Hamiltonian of the Ising chain is given as

Figure 2.1: Spin chain on which the Ising model is defined. Neighbouring sites are

coupled with magnitude J , and an external field is applied in the −x direction.

HI = −J
N−1∑
j=1

σzjσ
z
j+1 − Γ

N∑
j=1

σxj , J,Γ > 0. (2.1)

The spin operators correspond to the Pauli matrices

σz =

 1 0

0 −1

 , σx = σ+ + σ− =

 0 1

0 0

+

 0 0

1 0

 . (2.2)

The interaction couples spins in neighbouring sites, and favours their alignment

in the z direction, since −Jσzjσzj+1 assigns a lower energy to states in which spins

point parallel to each other. A spin state at site j pointing upwards (downwards)

is written as |↑〉j (|↓〉j), and fulfils 〈σzj 〉 = +1(−1). On the other hand, the former

interaction competes against the effect of a transverse field in the −x direction. This

field induces the mixing (tunnelling) of states |↑〉j and |↓〉j, since σxj = σ+
j +σ−j flips

their orientation.

We can diagonalize the Hamiltonian of the Ising model by mapping the spin

operators to fermions, and then applying a canonical transformation to render a
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representation which is diagonal in the fermionic operators. The necessity of this

mapping stems from the fact that there is no canonical transformation respecting the

mixed commutation relations associated with σ+
j and σ−j ; they behave as fermions,

since {
σ−j , σ

+
j

}
= 1,

(
σ+
j

)2
=
(
σ−j
)2

= 0, (2.3)

and, simultaneously, as bosons, since

[
σ+
j , σ

−
k

]
=
[
σ+
j , σ

+
k

]
=
[
σ−j , σ

−
k

]
= 0, j 6= k. (2.4)

Fortunately, it is possible to express the raising and lowering spin operators in terms

of solely fermionic creation and annihilation operators c†j and cj. The fermionic

vacuum is then identified with the spin state |↓〉j. This is known as the Jordan-

Wigner transformation [43], and allows the exact solution of many spin problems,

such as the XY model [44], or the Kitaev honeycomb model [45]. It is usually stated

as

σ−1 = c1, σ−i =
i−1∏
j=1

(1− 2c†jcj)ci (i = 2, . . . , N),

σ+
1 = c†1, σ+

i = c†i

i−1∏
j=1

(1− 2c†jcj) (i = 2, . . . , N).

(2.5)

The string of operators
∏i−1

j=1(1 − 2c†jcj) compensates for the anticommutation of

fermions under exchange. Before applying this mapping to HI, it is customary to

rotate the system, so that σxj → σzj , σ
z
j → σxj . Also, the Hamiltonian is scaled with

Γ, and we define the parameter λ = J/Γ. Assuming Periodic Boundary Conditions

(PBC) for our spin chain,

HI = −λ
N∑
j=1

σxj σ
x
j+1 −

N∑
j=1

σzj , σαN+1 = σα1 . (2.6)

We perform now the Jordan-Wigner transformation, and thus

HI = N−2
N∑
j=1

c†jcj−λ
N∑
j=1

(c†j−cj)(c
†
j+1 +cj+1)−λ(c†N−cN)(c†1 +c1)(eiπL+1), (2.7)

where L =
∑N

j=1 c
†
jcj. For simplicity, we will ignore the last term on the grounds

that its contribution is negligible in the thermodynamic limit. Now we consider
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fermions in momentum space

cq =
1√
N

N∑
j=1

cje
iqj,

c†q =
1√
N

N∑
j=1

c†je
−iqj,

(2.8)

where q = 2πm/N , and m = −N/2, . . . , N/2. The Hamiltonian becomes

HI = N − 2
∑
q

(1 + λ cos q)c†qcq − λ
∑
q

(e−iqc†qc
†
−q − eiqcqc−q). (2.9)

In terms of q > 0 modes only, the Hamiltonian can be recast as

HI = −2
∑
q>0

(
c†q, c−q

)1 + λ cos q −iλ sin q

iλ sin q −(1 + λ cos q)

 cq

c†−q

 , (2.10)

where the constant N has been exactly cancelled by using that c†−qc−q = 1− c−qc†−q.

The former manipulations have allowed us to write HI as a sum of N/2 decoupled

problems, labelled by the wave vector q. Each of these problems can be diagonalized

by a Bogoliubov transformation [43], which is a canonical transformation of the

operators c†q and cq into a linear combination of new operators η†q and ηq. We skip

the details of this last step, that can be found in [42], and present the final form of

the Hamiltonian,

HI = 2
∑
q

ωqη
†
qηq + E0, E0 = −

∑
q

ωq. (2.11)

where ωq =
√

1 + 2λ cos q + λ2.

The diagonalized form of the Hamiltonian in (2.11) allows us to compute all

the observables of the model. To begin with, we see that the energy of any single

excitation about the ground state is dictated by its dispersion relation ωq. There

is always a finite energy gap in the excitation spectrum, with the only exception of

λ ≡ λc = 1 for wave vector q = π, since in this case

ωq→π = |1− λ|. (2.12)

The vanishing of the energy of the fluctuations at λ = λc indicates the emergence

of the quantum phase transition. On the other hand, to characterize the phases at

both sides, it is customary to attend at the presence or absence of long-range order,
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that is, if distant points in the system fluctuate in a correlated manner [40]. The

measure of the degree of order in a system is associated with an order parameter,

which is defined so that it only takes non-zero values in the ordered phase. The

form of the order parameter depends on the specificities of every particular system.

In the case of the Ising chain, it is given by the magnetization perpendicular to the

external field, that can be computed from the exact solution as [42]

〈σxj 〉 = ±(1− λ−2)1/8, λ > 1; 〈σxj 〉 = 0, λ < 1, (2.13)

where the sign freedom stems from the parity symmetry of the interaction term.

As can be seen from Fig. 2.2, the order parameter takes a non-zero value only for

0 0.5 1 1.5 2

λ

0

0.2

0.4

0.6

0.8

1

|〈
σ
x j
〉|

Figure 2.2: Expectation value of the operator σxj upon the ground state of the

quantum Ising chain.

λ > 1. We note that close to the transition the magnetization follows a power-law,

whose exponent is β = 1/8. This is one of the critical exponents of the Ising model.

We see that the order parameter is a continuous function at the transition,

although its first derivative is discontinuous. This is shared by other quantities at

criticality and is a consequence of the thermodynamic limit. Let us illustrate this for

the energy of the ground state, that is given by E0. We note that this energy is a sum

of continuous functions, and therefore analytic in the parameter λ. Nevertheless,

this situation may change when N →∞. In that case, the energy can be expressed
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in terms of the elliptic integral of the second kind [46, 47]

E(φ, θ) ≡
∫ φ

0

√
1− θ2 sin2 kdk, (2.14)

so that

− E0

N
=

2

π
(1 + λ)E

(π
2
, θ
)

; θ2 =
4λ

(1 + λ)2
. (2.15)

We have plotted this expression in Fig. 2.3, along with its derivatives. We note that

0 0.5 1 1.5 2
λ

0

0.5

1

1.5

2

Energy

First derivative

Second derivative

Figure 2.3: Energy (2.15) as a function of the parameter λ, along with its first and

second derivatives. We note the discontinuity at the transition λ = λc.

E0 is no longer an analytic function of λ for λc = 1, since the second derivative is

discontinuous at that point. This illustrates the fact that phase transitions strictly

appear in the thermodynamic limit.

The range of fluctuations upon the ground state is given by the correlations [40].

In the transverse direction, for instance, fluctuations are measured by the connected

correlator

Czz
j,l = 〈σzjσzl 〉 − 〈σzj 〉〈σzl 〉. (2.16)

This quantity can be computed from the exact solution in terms of the Jordan-

Wigner fermions. One must make use of Wick’s theorem [48] to express four-fermion

expectation values as products of two-fermions; details can be found in [42]. Finally,

one obtains Czz
j,l = G2

j,l, where

Gj−l =

∫ π

−π

dq

2π
eiq(j−l)

(
1 + λeiq

1 + λe−iq

)1/2

. (2.17)
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We plot this expression in Fig. 2.4. It admits a closed form at the critical value

λc = 1, where it decays with the distance as a power law

Czz
j,l =

4

π2

1

4|j − l|2 − 1
. (2.18)

This result has the important consequence that fluctuations are scale free, since

there is no typical length appearing in Czz
j,l . Also, this provides us with another

critical exponent1, as Czz
j,l ∼ |j − l|−ν , and ν = 2 (cf. Fig. 2.4). We will use this

result in chapter 3 to establish that the cJT model belongs to the same universality

class of the Ising chain. Outside criticality there is no closed form of Czz
j,l , but we

see from Fig. 2.4 that Czz
j,l ∼ Ae−|j−l|/ξ, with finite correlation length ξ. In this case,

fluctuations in the system have a typical length associated with them, and they are

restricted to a particular scale.
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Figure 2.4: (Left panel) Semi-log plot of the correlations Czz
j,l on the ground state,

for λ = 0.2 (blue line), 0.5 (red line) and 1 (yellow line). Outside the critical

value the correlations follow an exponential decay. (Right panel) Log-log plot of the

correlations for λ = λc = 1. We fit the result to a line, whose slope is −2 =⇒ ν = 2.

The availability of the exact solution for the Ising model has provided us with

exact values for the observables. Typically, however, many-body models cannot be

exactly diagonalized, and one must rely on approximations to describe qualitatively

1Although we do not follow this convention, it is customary to use the greek letter ν for the

exponent of the correlation length.
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their phase diagrams. The standard procedure in the context of quantum phase

transitions is known as mean-field theory, which involves replacing all the interac-

tions by an average, or mean-field [40]. Equivalently, the mean-field approximation

neglects any quantum correlations, meaning that Czz
j,l ≡ 0 in this approximation.

2.1.2 Mean-field theory

We will use a mean-field theory in conjunction with the variational method [49–51]

to investigate the phases of the Ising-Rabi lattice model in chapter 4. It is known

that mean-field theory is a poor approximation for systems below four dimensions,

or may even lead to wrong results [52, 53]. Therefore, we will have to support any

mean-field prediction with numerical and/or perturbative arguments. In particular,

the Density Matrix Renormalization Group will be our method of choice to establish

solid evidences about the phases being investigated.

The variational method is a technique to approximate the wave function of the

ground state. It begins by assuming a particular form for the wave function, an

ansatz, which is defined in terms of some parameters. One computes the energy upon

this ansatz, which in the mean-field approximation contains no correlations. The

energy is minimized with respect to the parameters of the ansatz. The wave function,

for the values that optimally minimize the energy, is the closest approximation to

the actual ground state that can be attained with that ansatz.

We can illustrate the former ideas in the particular case of the quantum Ising

chain. To investigate the existence of a phase transition in HI, as given in (2.1), we

use a trial wave function to approximate the actual ground state. Let us assume the

ansatz

|ΨMF〉 =
N⊗
j=1

(
cos

θj
2
|↑〉j + sin

θj
2
|↓〉j
)
, (2.19)

which it is a separable wave function of spin states at every site of the chain. This

structure neglects correlations between different sites, and therefore |ΨMF〉 is a mean-

field ansatz. Assuming Periodic Boundary Conditions (PBC), and that the ground

state is homogeneous, the mean-field energy per spin is given as

EMF(θ) = −J cos2 θ − Γ sin θ. (2.20)
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This expression attains a minimum whenever cos θ = 0, unless

sin θ =
Γ

2J
≤ 1. (2.21)

The former result shows that the Ising model undergoes a quantum phase transition

at a critical field Γc = 2J . This prediction is qualitatively correct, as we know from

the exact solution, but the position of the critical point within mean-field theory

is twice the actual value. The variational wave function for the values of θ that

minimize EMF provides the mean-field ground state, in terms of which we can define

• The ferromagnetic phase, Γ ≤ Γc

|ΨMF〉 =
N⊗
j=1

(
Γ

2J
|↑〉j +

√
1− Γ2

4J2
|↓〉j

)
, (2.22)

• The paramagnetic phase, Γ ≥ Γc

|ΨMF〉 =
N⊗
j=1

1√
2

(
|↑〉j + |↓〉j

)
. (2.23)

If we evaluate the magnetization upon the ansatz (2.19), and take into account Eq.

(2.21), we have that

〈ΨMF|σzj |ΨMF〉 = cos θ =

√
1− Γ2

4J2
, Γ ≤ 2J. (2.24)

This must be compared with the exact magnetization (2.13), which is given in the

rotated basis σxj → σzj , σ
z
j → σxj . We see that the exponent of the magnetization

in mean-field, βMF = 1/2, differs from the exact value of β = 1/8. Again, we find

a numerical mismatch between an exact value and the mean-field prediction. This

issue is even worse in the case of the exponent of the correlator Czz
j,l , since the current

mean-field treatment does not predict any dependence on j, l for this quantity.

In spite of these shortcomings, the qualitative insight gained from mean-field

theory, supplemented with a numerical calculation of the critical exponents, is a

standard procedure to establish the physical properties of many models [40]. For

completeness we will mention that there is a technique beyond mean-field theory

that would allow us to get the correct value of β, or to compute the exponent of Czz
j,l .

In Landau theory of phase transitions [54, 55], we promote the order parameter to

a field φ(x) which, most importantly, can depend on the position. This field can be
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understood as a coarse-grained average of the order parameter. The description of

the phase transition in terms of φ(x) is motivated by the divergence of the length

scale of fluctuations. Its value upon the ground state is obtained by minimizing a

certain energy functional F [φ(x)] [40]. Landau theory below four dimensions re-

quires the use of the renormalization group to render physical results [56]. Although

these considerations lie beyond the scope of this thesis, there is one aspect of Landau

theory that we need to introduce. Phases that exhibit long-range order can some-

times be associated with the concept of a broken symmetry. Considerations based

on the symmetries of the ground state and the Hamiltonian are very general, and

prove very useful to tell different phases apart. Thus, we finish this introduction to

phase transitions with an illustration of these aspects.

2.1.3 Spontaneous symmetry breaking

If the Hamiltonian H of a many-body model is invariant under a transformation

P , such that [H,P ] = 0, the ground state is simultaneously an eigenstate of H

and P [49–51]. This is strictly true only for finite systems, though. Conversely, in

the thermodynamic limit there may be states which are no longer invariant under

P , but still minimize the energy [54, 55]. We say that in this case the symmetry is

spontaneously broken. Very often spontaneous symmetry breaking occurs only at one

side of the phase transition, and therefore it becomes a powerful tool to distinguish

different phases.

Let us use the Ising model again to illustrate these ideas. We note that HI is

invariant under the transformation σzj → −σzj . This parity symmetry is generated

by the operator P = ⊗Nj=1σ
x
j , and since [HI, P ] = 0, the ground state |Ψ〉 must fulfil

P |Ψ〉 ∝ |Ψ〉. Actually, since P 2 = I and P † = P , we have that P |Ψ〉 = ±|Ψ〉. One

consequence of this is that the magnetization in the z direction is zero all over the

phase diagram

〈Ψ|σzj |Ψ〉 = 〈Ψ|P 2σzjP
2|Ψ〉 = −〈Ψ|σzj |Ψ〉 =⇒ 〈Ψ|σzj |Ψ〉 = 0. (2.25)

Nevertheless, we have claimed that this argument may break down in the thermo-

dynamic limit. To see if this is the case, we are going to carry out a perturbation
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theory in Γ upon the exact ferromagnetic eigenstates at zero field, that are given as

|↑〉 ≡
N⊗
j=1

|↑〉j , |↓〉 ≡
N⊗
j=1

|↓〉j . (2.26)

We note that these states break the parity, so our aim is to show that the symmetry

breaking remains for finite Γ.

States (2.26) are degenerate, with energy E0 = −NJ (we assume PBC). The

effect of a small transverse field Γ must be dealt within the framework of degenerate

perturbation theory [49–51], which shows that degeneracy is lifted at order N , and

that |↑〉 and |↓〉 get mixed with an amplitude

∆ = ΓN
∑

n1,n2,...,nN−1
j1,j2,...,jN−1

〈↑|σxj1 |n1〉 〈n1|σxj2 |n2〉 〈n2| · · · |nN−1〉 〈nN−1|σxjN−1
|↓〉

(En1 − E0)(En2 − E0) · · · (EnN−1
− E0)

. (2.27)

The ni label all the eigenstates of HI for zero transverse field apart from |↑〉 and

|↓〉. Because of the action of σxj , (2.27) is non-zero if and only if |ni〉 are comprised

of all the spins to the left of site j pointing upwards, and all the spins to the right

pointing downwards. It is straightforward to see that Eni − E0 = 2J ∀i and, thus,

∆ =

(
Γ

2J

)N
. (2.28)

This prediction holds only deep in the ferromagnetic phase, where we can assume

that Γ � 2J . In this case, the limit N → ∞ has a very important consequence:

the tunnelling amplitude between states |↑〉 and |↓〉 becomes zero, and they are

degenerate for finite values of the transverse field. This degeneracy makes these

states infinitesimally susceptible to fluctuations, and the system chooses as minimum

energy configuration only one of the two. This illustrates the spontaneous breaking

of the parity symmetry.

2.2 Quantum simulation

The exact solution of the quantum Ising chain has provided us with all the inform-

ation about the model. In particular, we have been able to extract the value of

the exponent in the power-law decay of the correlations at the transition. Other

quantities, such as the magnetization or the susceptibility, also follow power laws

at criticality [42], whose exponents can be equally read from the exact solution.
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The importance of knowing all the critical exponents can hardly be overemphas-

ized, since they determine the physical properties of the systems described by the

quantum Ising model. Real examples include ferroelectrics2 such as KH2PO4 [57],

or ferromagnets3 such as CoNb2O6 [58].

The availability of an exact solution is the exception and not the rule for many-

body models. Without a solution, there are still analytical techniques, such as the

renormalization group [56], that may offer some insight into the nature of the phase

transition. Ultimately, though, one must rely on numerical simulations to get an

accurate value for the critical exponents. Unfortunately, the complexity of simu-

lating quantum systems with classical computers is in many cases insurmountable,

as already noted by Feynman at the dawn of the computer simulations of phys-

ical problems [18]. The underlying reason for this complexity is actually easy to

illustrate.

Let us imagine that we have a Hamiltonian H of a many-body model. We

want to calculate the values of some observables upon its ground state |Ψ〉. In

the absence of an analytical solution, we can try to find |Ψ〉 by diagonalizing the

matrix representation of H in a computer. Assuming that the model is defined on

a chain with L sites, and that the dimension of the Hilbert space at every site is

Nsite, the size of the total state space is given as NL
site. This means that we need

NL
site numbers to describe |Ψ〉. Because this quantity increases exponentially with

the system size, the dimension of the state space becomes unmanageable already

for modest numbers of particles. Some methods have managed to cleverly bypass

this issue, such as Monte Carlo simulations [59], but it is known that they cannot

deal with fermionic or frustrated problems for dimensions 2 or more, because of the

so-called sign problem [60].

Therefore, in general we are faced with the necessity of an exponentially large

amount of resources for the classical simulation of many-body problems. This pre-

vents us from gaining any insight into many interesting phase transitions and uni-

versality classes. Fortunately, though, Feynman also pointed a possible solution to

2A ferroelectric material is defined by having a spontaneous electric polarization in absence of

an external electric field.
3A ferromagnet presents spontaneous magnetic polarization in absence of external magnetic

fields.
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this problem [18]. He suggested to use ‘quantum simulators’, devices which function

following the laws of quantum mechanics. Such a device, composed of the same

degrees of freedom as the model we want to simulate, must allow us to engineer the

interaction between them, so that to mimic the model Hamiltonian. In this way,

the value of any physical observable is read at the end of the process by performing

suitable measurements [61–64].

The potential applications of quantum simulators are not limited to the study

of phase transitions, and encompass many problems in condensed-matter phys-

ics, quantum statistical mechanics, high-energy physics or quantum chemistry [63].

For instance, being able to perform exact calculations of the molecular electronic

Hamiltonian of a generic stable molecule would revolutionize quantum chemistry,

and could have a deep industrial impact. These kind of computations are seemingly

intractable for classical algorithms, but quantum simulators have been shown to

provide us with the possibility of tackling these problems [65, 66]. Furthermore,

chemical reactions are dynamical processes, and there is evidence that simulation

of generic quantum long-time dynamics cannot be performed efficiently by classical

means either [67]. Quantum simulation would consequently emerge as the only

practical tool to answer these questions.

Nevertheless, a quantum simulator is not only interesting because it may outper-

form the computational capabilities of classical machines. A very promising avenue

is the realization of many-body models which may not correspond with any real

physical system, but can be used as test-beds of numerical methods or approx-

imations. Furthermore, this opens up the possibility of exploring completely new

physical models, or parameter regimes that are unattainable in real systems.

Any quantum simulation of a many-body model requires, primarily, of suitable

quantum degrees of freedom. These can correspond with many different physical

systems. In addition, the simulation of any model hosting a strongly-correlated

phase must consist of the following three steps:

Initialization: The simulator is prepared in a state that is easy to realize experi-

mentally. Usually, this is the ground state of a trivial limit of the many-body

model.

Implementation of the interactions: The Hamiltonian is physically realized by
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engineering the interactions between the particles, or between these and ex-

ternal fields. Usually its role is to drive the system from the initial state into

a target state of the many-body model.

Detection: The strongly-correlated phase is probed by performing suitable meas-

urements upon the final state.

Quantum simulators benefit from the possibility of representing and manipulating

large amounts of information in a relatively small number of degrees of freedom.

For instance, the exponentially large amount of numbers (2N) required to specify

the state of a system of N spin-1/2 particles can be encoded in an amount of qubits

which are a polynomial function of N . The key for the success of quantum simulation

is, thus, being able to realize the initial-state preparation, the implementation of the

evolution, and the measurement with polynomial resources. Depending on how this

is done we distinguish two classes of quantum simulations, that we introduce now.

2.2.1 Analogue and digital quantum simulation

Feynman originally devised using quantum computers to simulate quantum systems

[18]. A quantum computer is any generic device comprised of quantum degrees of

freedom, that exploits quantum features such as the superposition principle and

entanglement to carry out computational tasks more efficiently than any classical

machine [68]. A quantum computer can act as an universal quantum simulator,

meaning that it can be programmed to simulate any quantum system. This intuition

was put on solid ground by Seth Lloyd [61], making use of the result that any

local Hamiltonian can be realized as a finite sequence of quantum gates. A local

Hamiltonian is of the form

H =
∑̀
i=1

hi (2.29)

where each hi acts on a Hilbert space of dimension mi, comprised of at most k

operators. He showed that the number of gates necessary to implement the dynamics

generated by H scales polynomially with the number of particles. Therefore, the

evolution of any quantum system can be efficiently simulated.

The idea behind Lloyd’s argument is the following. Let us imagine that we are

given a many-body model whose Hamiltonian is of the form (2.29), and an initial
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state |Ψ(0)〉. We want to determine the physical properties of the state at some later

time t, and therefore we need to compute |Ψ(t)〉 = eitH |Ψ(0)〉. To avoid storing the

exponentially large amount of numbers associated with |Ψ(0)〉, we encode it in the

computational basis in terms of qubits [69]. Then we apply the Trotter formula to

approximate eitH by [69]

eitH ≈
(
eith1/n · · · eith`/n

)n
. (2.30)

This formula shows that the dynamics under H is equivalent to the repeated applic-

ation of the terms eithi/n, in n time slices of duration t/n. The insight of Lloyd was

to note that the simulation of hi only requires O(m2
i ) operations, and therefore the

total computational overhead is O(n`m2), where m ≡ maximi. For typical local in-

teractions, ` ∝ N , the number of degrees of freedom [61]. Thus, simulating eitH only

needs an amount of resources scaling polynomially in the system size. Of course,

the time-slicing of the evolution introduces an error, but it can be made as small

as desired by making n sufficiently large4 [61]. The final state is then appropriately

measured to extract the desired physical properties. However, there is a caveat to

be made with regards to this process. If we were to recover all the parameters com-

prising the state, this would require again the storage of an exponentially large set

of numbers. Therefore, we need quantum algorithms for the direct estimation of

quantities of physical interest, such as energies or correlation functions [70, 71].

The process of sequentially applying logic operations to the state in the com-

putational basis is analogous to the functioning of any digital device, and has been

consequently named as digital quantum simulation [72–80]. In principle, a digital

quantum simulator would be able to simulate any Hamiltonian, by reducing it to a

combination of simple quantum gates. We can illustrate this fact for the simulation

of eitH , where H is a three-body Hamiltonian such as H = ⊗3
j=1σ

z
j , and whose cor-

responding quantum circuit is shown in Fig. 2.5. We note that although H involves

a term with three operators, it can be reduced to a sequence of two- and one-qubit

gates. It is clear, however, that a digital quantum simulator would be as difficult to

build as a quantum computer. In particular, it would require the full control of the

quantum many-body system, and the implementation of error-correction protocols

to achieve fault tolerance [63]. These are still long-term goals, although some digital

4So long as it does not get exponentially large.
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Unitary evolution.—We now discuss in more detail how to
obtain U. We assume that the Hamiltonian can be written as a
sum of many terms that describe local interactions:

H ¼
XM
l¼1

Hl: (3)

Examples of Hamiltonians of this form include the Hubbard
and Ising Hamiltonians. If ½Hl;Hl0 � ¼ 0 for all l and l0, then

U ¼
Y
l

expf−iℏHltg: (4)

In this case, the decomposition of U into a sequence of local
gates is straightforward. Unfortunately, in most cases of
practical interest ½Hl;Hl0 � ≠ 0 in general. As a result, when
taken as a whole, the decomposition of U cannot be obtained
efficiently using classical methods. An important step in this
regard is breaking up the evolution time into a large number of
small time steps of duration Δt each:

U ¼ ðexpf−iℏHΔtgÞt=Δt: (5)

There are approximations available for decomposing
expf−iℏHΔtg into local gates. For example, the first-order
Trotter formula [see, e.g., Nielsen and Chuang (2000), Ortiz
et al. (2001), and Somma et al. (2002)] gives

UðΔtÞ ¼ e−iℏ
P

l
HlΔt ¼

Y
l

e−iℏHlΔt þOððΔtÞ2Þ: (6)

As a result, when Δt → 0,

UðΔtÞ ≈
Y
l

expf−iℏHlΔtg: (7)

The drawback of this approach is that high accuracy comes at
the cost of very small Δt and therefore a very large number of
quantum gates. Recent results have reemphasized the short-
comings of using this first-order Trotter formula (Brown,
Clark, and Chuang, 2006; C. R. Clark et al., 2009; Whitfield,
Biamonte, and Aspuru-Guzik, 2011), showing that higher-
order decompositions can be more efficient [see, e.g., Dür,
Bremne, and Briegel (2008)]. Recently quantum algorithms
for simulating time-dependent Hamiltonian evolutions on a
quantum computer have also been investigated (Wiebe
et al., 2011). The topic was further discussed by Poulin et
al. (2011), where it was shown that by using randomness it is
possible to efficiently simulate local bounded Hamiltonians
with arbitrary time dependence.
We now consider an example of constructing rather com-

plex operations from simple quantum gates. Take the
Hamiltonian

H ¼ σz1 ⊗ σz2 ⊗ � � � ⊗ σzN; (8)

where σzi is the Pauli matrix acting on spin (qubit) i.
Throughout the paper we denote by σαi , with α ¼ x, y, z,
the corresponding Pauli matrix acting on spin (qubit) i. The
quantum circuit in Fig. 3 realizes the unitary transformation
U ¼ expf−iℏHtg for N ¼ 3 (Nielsen and Chuang, 2000). It

is composed of six two-qubit (CNOT) gates and one single-
qubit gate. Note that an ancilla qubit is used. Similar quantum
circuits can be written for any product of Pauli matrices

H ¼⊗N
l¼1 σ

α
l : (9)

Although the example above might look simple, the
efficient simulation of a general many-body interaction
Hamiltonian using two-body interactions is by no means
easy (Bennett et al., 2002; Nielsen et al., 2002). This question
has been thoroughly studied, and several methods have been
developed [see, e.g., Dodd et al. (2002), Wang and Zanardi
(2002), Wocjan, Janzing, and Beth (2002), Wocjan, Rötteler,
Janzing, and Beth (2002a, 2002b), Bremner, Bacon, and
Nielsen (2005), Hastings (2006), Berry et al. (2007),
Bravyi et al. (2008), Dür, Bremne, and Briegel (2008), and
Brown et al. (2011)], but it still remains a difficult problem.
Moreover, note that ancilla qubits are required, which adds to
the resource requirements (see Sec. V.B).
We now take a look at another example: the algorithm given

by Aspuru-Guzik et al. (2005) for the calculation of molecular
energies using a recursive phase-estimation algorithm. The
quantum circuit is shown in Fig. 4. This procedure provides an
arbitrarily accurate estimate of the energy, with the accuracy
increasing with increasing number of iterations. The first
iteration gives a rough estimate for the energy. This estimate is
then used as a reference point for the next iteration, which

FIG. 3. Quantum circuit for simulating the three-body Hamil-
tonian H ¼ σz1 ⊗ σz2 ⊗ σz3. The circuit contains six CNOT gates
and utilizes a fourth, ancilla qubit (bottom line) in order to
achieve the desired effective Hamiltonian. From Nielsen and
Chuang, 2000.

FIG. 4. Quantum circuit for the calculation of molecular energies in
Aspuru-Guzik et al. (2005). The circuit implements the recursive
phase estimation algorithm. The first iteration gives the phase φ
(which represents the molecular energy) to four bits of accuracy. Each
subsequent iteration incorporates the previous estimate and increases
the accuracy by one bit, i.e. reduces the uncertainty by a factor of 2.
Here H denotes the Hadamard gate, QFTþ is the inverse quantum
Fourier transform, and Vk ¼ ½expð−i2πφk−1ÞV̂k−1�2. Adapted from
Aspuru-Guzik et al., 2005.
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Figure 2.5: Quantum circuit for the simulation of the Hamiltonian H = σz1⊗σz2⊗σz3.

The circles represent CNOT gates, whose action is given as |c〉|t〉 → |c〉|t ⊕ c〉.

The circuit works by computing the parity of the state of the three upper qubits,

storing it in the fourth (ancilla) qubit, applying the phase shift to the ancilla, and

then undoing the parity operations to revert the ancilla to its initial state. (Image

reproduced from ref. [64]).

quantum simulations have been performed for modest (∼ 10 qubits) system sizes

[81, 82].

If we leave momentarily aside the idea of building a full quantum computer,

and focus on simulating certain physical systems that cannot be classically simu-

lated, we may still obtain a device able to provide answers to interesting questions.

In opposition to digital simulation, the approach of implementing specific mod-

els with synthetic degrees of freedom is known as analogue quantum simulation

[83–87]. Analogue quantum simulators are based on the physical identification of

the Hamiltonian of the model to be simulated and the Hamiltonian describing the

quantum simulator. This mapping may be straightforward, as for the Hamiltonian

describing the atoms trapped in an optical lattice, which is already a Bose-Hubbard

model [88]. On the other hand, one can also identify different degrees of freedom,

and engineer interactions in the quantum simulator that account for those in the

target model. A nice illustration of this case is the simulation of the Dirac equation

with a single trapped ion [89, 90]. One identifies the dynamics of the electron with

that of the effective spin located in the ion. In this way, the physics associated with

the relativistic particle can be studied in a non-relativistic quantum system [91].

Errors and decoherence may hinder the reliability of a quantum simulation [92].

Analogue simulators, however, can operate in the presence of errors up to a certain
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tolerance level, and still offer meaningful information. A phase transition, for in-

stance, can be at least qualitatively established even if the control over the tuning

parameters is not completely accurate [64]. Regarding decoherence, it places an

upper bound for the time scales of the simulation. For many analogue quantum

simulators this bound is not critical: trapped-ion experiments, for instance, have

durations of µs [93], whereas qubit coherence times are of the order of ms [94].

The main element required to realize a quantum simulator is the availability of

quantum degrees of freedom. These can correspond with many different physical

systems. This thesis is concerned with trapped-ion analogue quantum simulators,

whose physics we describe in detail in section 2.3. Nevertheless, many different

systems can be used for this purpose. We refrain from giving a thorough account of

all of them, and refer the interested reader to the review article [64]. For illustration

purposes, we will mention the effective degrees of freedom and typical models arising

in trapped ultracold atoms [95–99] and superconducting circuits [100–103], since

the effective physics that can be realized in these systems is similar to the one

encountered in trapped-ion simulators.

2.2.2 Experimental platforms

Ultracold atoms trapped in optical lattices [95–99] are well-suited for the simulation

of strongly-correlated phases, since they allow the manipulation of large numbers of

particles. For instance, the superfluid-Mott insulator transition in the Bose-Hubbard

model (cf. Fig. 2.6) has been realized in a 3D optical lattice with ∼ 65 lattice sites

number of bits in the final answer) of DQS can
be arbitrarily high; however, this is costly
because the required number of quantum gates
scales exponentially with the precision of the
answer (17).

A DQS is not restricted to recreating the uni-
tary evolution of the system, but it also includes
efficient quantum algorithms [e.g., phase estima-
tion for computing eigenvalues (18) or algo-
rithms for computing partition functions (19)]. In
some instances, this approach may prove more
efficient than directly trying to simulate the uni-
tary time evolution.

Although in the long run the goal would be
to build a universal, all-mighty quantum simu-
lator (i.e., a DQS), in terms of practical im-
plementation in the near future, AQS has the
advantage. For this reason, most research groups
studying quantum simulators are currently in-
vestigating AQS, and therefore this trend is re-
flected in our review.

Applications
Quantum simulators would be able to emulate
far larger quantum systems than classical com-
puters. Moreover, being quantum systems them-
selves, quantum simulators would be able to
provide insight on quantum phenomena. There-
fore, they are best suited for problems that are
intractable on classical computers and those
for which more direct experimental studies are
very difficult or impossible. Quantum simu-
lators could help tackling difficult problems in
condensed-matter physics, most notably quantum
phase transitions (Fig. 1), quantum magnetism,

or high-temperature superconductivity. Quantum
simulators would also have applications in
high-energy physics, the simulation of analog
cosmological models, as well as in chemistry.
As practical quantum simulators become avail-
able, more disciplines might add quantum
simulation to their toolbox. Table S1 summa-
rizes some of the proposed applications, as well
as the physical systems in which they could be
implemented.

Building a Quantum Simulator
Building an AQS requires a controllable quan-
tummechanical system that can mimic (emulate)
the evolution of other quantum systems. How-
ever, to reproduce the dynamics of any quantum
system, one would need a DQS, which is the yet-
to-be-built quantum computer. As experience has
shown, such a device is rather difficult to make.
However, designing an AQS for a specific prob-
lem or a certain class of problems is a much
simpler task.

As an example, the study of many-body
problems in condensed-matter physics could
be achieved with an AQS consisting of an array
of qubits together with control fields. A sim-
ulator of this kind could be realized with atoms
in optical lattices (2, 20), atoms in arrays of
cavities (21, 22), arrays of trapped ions (23–25),
quantum dots (13, 26), superconducting cir-
cuits (27, 28), or electrons trapped on the sur-
face of liquid helium (29, 30) (Fig. 2). The
controls of the quantum simulator vary from
system to system. They could be laser pulses,
radio frequency (RF) pulses, or electric or mag-

netic fields. Next, let us look at some potential
quantum simulators.

Atoms and Photons
Neutral atoms in optical lattices. Atoms in op-
tical lattices are very well suited for mimicking
condensed-matter physics, as discussed in detail
in two recent reviews (2, 20).

Optical lattices can be used for implement-
ing both DQS and AQS. The dimensionality of
the lattice can be changed, and various lattice
geometries can be obtained by manipulating the
optical potential. Moreover, optical lattices are
flexible and provide several controllable pa-
rameters such as tunneling, on-site interactions,
next-neighbor, long-range and multiparticle inter-
actions, external potentials, and Rabi transitions.
Spin models can be simulated in a very similar
manner as in ion traps. For instance, for optical
lattices the interaction between two atoms could
be achieved by selectively displacing the optical
lattices, whereas in the case of trapped ions the
interaction could be realized by pushing the ions
with a state-dependent force. In the experiment
realizing the quantum phase transition from a
superfluid to a Mott insulator (12) (Fig. 1A), the
ratio between the tunneling and on-site interac-
tion energies was controlled by adjusting the
depth of the optical lattice, but it should also be
possible to control the atom-atom interactions
via Feshbach resonances (31). So far, addressing
individual atoms in optical lattices has been
difficult because the separation between neigh-
boring trapping sites is smaller than the best
achievable focusing width of the laser beams,

+

A

B

Superfluid Mott insulator

Quantum magnet

Fig. 1. Examples of analog quantum simulation of quantum phase
transitions using ultracold neutral atoms (A) and trapped ions (B). (A) The
schematics of the quantum phase transition from a superfluid to a Mott
insulator phase realized in (12) by using rubidium atoms trapped in an
optical lattice. The ratio between the tunneling energy and the on-site
interaction energy was controlled by adjusting the lattice potential depth such
that the quantum phase transition could take place. There are alternative

ways of simulating this quantum phase transition with arrays of cavities (21)
or arrays of Josephson junctions (27). (B) Magnetic quantum phase transition
simulated in (6) using trapped calcium ions. The interactions of individual
spins were realized by coupling the internal levels (representing the spin-1/2
states) with a resonant RF field, whereas the spin-spin interactions were
simulated by using a state-dependent optical dipole force implemented by a
walking wave.
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Figure 2.6: Ground-state phase transition of the Bose-Hubbard Hamiltonian (2.31)

of cold atoms in an optical lattice. In the superfluid phase the atoms are delocalized

all over the lattice, whereas in the Mott-insulating regime they are pinned to the

sites of the lattice. (Image reproduced from ref. [62]).
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in every direction [104]. Flexibility in the geometry of the trapping potentials makes

possible to create intricate arrangements, such as triangular or kagome lattices [105].

The typical degrees of freedom available in these systems are fermions and bosons,

which are directly realized by loading fermionic or bosonic species into the lattice.

For example, the dynamics of an interacting boson gas in a lattice potential is given

by the Bose-Hubbard Hamiltonian

HBH = −J
∑
〈j,l〉

a†jal +
∑
j

εjnj +
1

2
U
∑
j

nj(nj − 1). (2.31)

Operators a†j and aj correspond to bosonic creation and annihilation operators of

atoms at site j, nj = a†jaj, εj denotes the local energy offset stemming from the

harmonic trapping potential, U is the magnitude of the on-site repulsion, and J gives

the strength of the tunnelling between neighbouring sites. For U/J � 1 (superfluid

phase), the atoms delocalize all over the lattice, and they can be described by a

macroscopic wave function with long-range phase coherence. For U/J � 1 (Mott-

insulating phase), a fixed number of atoms pin to every site of the lattice. This

state has no phase coherence, but there is a correlation between the number of atoms

between lattice sites. One can study as well the effect of artificial gauge fields (e.g., a

magnetic field), which are incorporated by site-dependent phases into the operators,

so that aj → aje
i∆j . They are implemented by rotation of the trapping potentials

[98], or by periodic driving of the confining forces [106]. These systems suffer from

the difficulty of individual particle addressing with laser fields, since typical lattice

constants are of hundreds of nm [104]. This hinders the measurement of interesting

observables like correlators, or the preparation of localized excitations for the study

of their dynamics. Nevertheless, current efforts are devoted to overcome this issue

[107]. Finally, cold gases in optical lattices can realize spin systems as well [96]. For

instance, it should be possible to simulate the Kitaev model [45],

HKitaev =
∑

j+l:even

(
J⊥σ

x
j,lσ

x
j+1,l + J⊥σ

y
j−1,lσ

y
j,l + Jzσ

z
j,lσ

z
j,l+1

)
, (2.32)

by trapping polar molecules [108], and using an electric-field to induce the interaction

between their dipole moments, which realizes the spin couplings. Another possibility

is given by exploiting the large dipole moments of Rydberg atoms [109], that could

be used to realize exotic forms of magnetism, such as emergent gauge theories or

compass models [110].
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Superconducting circuits [100–103] involve lithographically printed waveguide

structures on the surface of a chip, which is then operated at low temperatures and

currents. Qubits are made up of linear elements, such as inductors and capacitors,

along with Josephson junctions to give rise to an anharmonic spectrum of the res-

ulting Hamiltonian. This anharmonicity allows us to encode the qubit in the two

lowest energy levels, since they lie far from excited states. Physically, the qubit can

correspond to, e.g., the presence or absence of superconducting electrons on a small

‘island’, or to the direction of a current around a loop. These two examples are

known as charge and flux qubits, respectively. Typical time scales in these systems

are in the MHz-GHz regime, and therefore they seem very promising candidates for

the realization of digital quantum simulation, which requires many operations. Nev-

ertheless, the macroscopicity of these systems makes them very sensitive to noise,

and coherence times do not exceed 100 µs [64]. This constitutes the current bot-

tleneck for the eventual application of error-correction protocols that would render

digital simulation reliable. Furthermore, the parameters in these circuits, that de-

termine qubit frequencies etc., are subjected to fluctuations from one fabrication

batch to another. Also, time-dependent fluctuations due to mobile material defects

can spoil the quality of the qubits. Leaving these issues aside, the qubits can be

coupled to form arrays (cf. Fig. 2.7), which are then described by the Hamiltonian

Figure 2.7: Array of superconducting flux qubits. The green circuit elements couple

the flux qubits, shown in blue. The smaller circuits perform the readout of the qubit

state. The gaps represent Josephson junctions. (Image reproduced from ref. [64]).

Hspin = −
∑
j

∆j

2
σzj −

∑
〈j,l〉

Jj,lσ
x
j σ

x
l . (2.33)
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In this expression, ∆j denotes the qubit level splitting, and Jj,l is their effective

coupling. There has been a proposal to simulate this Hamiltonian in a supercon-

ducting circuit, but embedding multiple qubits on one chip spoils dramatically their

overall coherence times, and makes an eventual implementation difficult [111]. On

the other hand, the qubits can be coupled to photons in resonators, which allows

the implementation of Jaynes-Cummings models [112]

HJC = ωra
†a+ εσ+σ− + g(aσ+ + a†σ−). (2.34)

Here, ωr and ε are the photon and qubit excitation frequencies, and a†, a, σ+ and

σ− denote the corresponding raising and lowering operators. If several resonators

are coupled together, one could realize lattices that allow for analogue quantum

simulation of spin-boson systems [113].

2.3 Trapped-ion quantum simulators

The phases that we explore in this thesis are not specific to any experimental plat-

form. However, our reference system will be trapped-ion chains. One of the main

motivations for the study of the specific models covered in this thesis is the feasibility

of realizing them with trapped-ion quantum matter.

Trapped-ion quantum simulators benefit from some comparative advantages with

respect to other platforms [28]. Typical distances between ions in traps are of the

order of microns, which grants the possibility of addressing individually every ion.

This allows experimentalists to prepare localized excitations, or to directly measure

local observables. Also, trapped ions feature short- and long-range interactions, the

latter stemming from their Coulomb repulsion. Since interactions are controlled by

external parameters, such as the trap potential, their range can be another para-

meter of the phase diagram, making it possible to explore the interplay between the

short- and long-range interactions regimes [114]. The exquisite degree of control in

these platforms has allowed the realization of one of the most complex quantum sim-

ulations so far (as of 2016), the first digital simulation of a lattice gauge theory [81].

Other recent achievements include establishing the violation of the Lieb-Robinson

bound for the propagation of correlations [115, 116], or studying the emergence of

thermalization in quantum systems [117].
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The idea of using trapped atomic ions as a platform for quantum simulation

emerged with the seminal contributions by Porras and Cirac [118, 119]. In these

works, the authors suggested that the internal levels could play the role of spins, and

interactions between them could be induced by employing laser fields to engineer

conditional forces upon the ions. Since the original proposals, many works have

aimed at realizing phases of strongly-correlated quantum matter [119–122]. The

simulation of quantum magnetism in particular has been carried out by many groups,

that have realized the symmetry-breaking transition of the Ising model [93, 123], or

instances of frustrated interactions [124, 125].

The three different models studied in this thesis can be understood as generaliza-

tions of these latter works. We do not limit ourselves to spin models alone, since the

vibrational degrees of freedom may be an asset for the realization of new strongly-

correlated quantum phases. In particular, we shall see in chapter 3 that magnetic

frustration can be simulated considering the whole spin-phonon Hamiltonian de-

scribing the trapped-ion chain. Also, the phonons allow for the implementation of

the lattice gauge theory of chapter 4. Finally, in chapter 5 we focus on a spin sys-

tem that goes beyond the simulation of quantum magnetism for the realization of a

topological insulator.

We begin this chapter explaining the physics associated with the vibrations of

the ions in the trap. Then we proceed to present the different interactions between

the internal and motional degrees of freedom of the ions. We conclude with some

comments on the initialization and readout of a trapped-ion quantum simulator.

2.3.1 Coulomb crystals in ion traps

In this section we are going to derive the phonon Hamiltonian associated with the

oscillations of the ions around their equilibrium positions.

A set of atomic ions confined in a potential can undergo a phase transition from

a plasma state into a crystalline arrangement, known as Coulomb crystal [126, 127].

This occurs whenever the kinetic energy of the ions is made fairly smaller than their

Coulomb repulsion, which is accomplished by means of Doppler cooling [128, 129].

The resulting form of the crystal depends on the trap geometry and the trapping

frequencies along different spatial directions (cf. Fig. 2.8).
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Figure 2.8: Fluorescence images of a Coulomb crystal of trapped ions undergoing a

structural phase transition, which can be induced by reducing the ratio of radial to

axial trapping frequencies. (a) A linear chain of ions along the z axis, with trapping

frequencies ωx,y � ωz. (b) Zigzag structure for ωx,y > ωz. (c) Three-dimensional

structure for ωx,y & ωz. (Image reproduced from ref. [28]).

We will consider linear Paul/RF traps [130], or linear arrays of microtraps [131–

133]. These latter systems, although originally proposed for quantum information

processing, have proved successful for quantum simulation as well [134–139]. Other

trapping schemes for trapped ions are possible, such as Penning [140] and optical

traps [141–143]. Structural phase transitions and effective Ising models can be read-

ily realized in 2D Penning crystals [144–148], opening up an avenue for the explor-

ation of physics beyond one-dimensional systems.

The confining potentials are effectively harmonic in every direction, with mag-

nitude ω2
β, β = x, y, z [149]. Along with the Coulomb repulsion of the ions, the

potential energy of the crystal can be written as

V =
m

2

N∑
j=1

∑
β

ω2
βr

2
β,j +

N∑
j>l=1

e2

|rj − rl|
, (2.35)

for N ions of charge e and mass m. Throughout the thesis we will assume units

of ~ = 1 and the Gaussian (CGS) system of units. For strong radial confinement
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ωx = ωy � ωz, the ions arrange along the trap axis z, and occupy equilibrium

positions r
(0)
j . These are determined by the equation (∂V/∂rj)rj=r

(0)
j

= 0. The

position of the ion j is given as

rj = δrx,jx̂j + δry,jŷj + (r
(0)
j + δrz,j)ẑj, (2.36)

where δrx,j, δry,j and δrz,j are the displacements from the potential minima. We

perform a Taylor expansion of V around the equilibrium positions up to second

order in the displacements. This is justified as long as the displacements are small

compared to the separation between ions. Since terms of the form δrx,jδry,j, δrx,jδrz,j

or δry,jδrz,j do not occur in this approximation, and higher order terms are neglected,

vibrations in different directions decouple. The Hamiltonian describing the motional

degrees of freedom reads [118]

Hmotion =
1

2m

N∑
j=1

∑
β

p2
β,j+

m

2

N∑
j=1

∑
β

ω2
βδr

2
β,j−

1

2

N∑
j>l=1

∑
β

cβe
2

|r(0)
j − r

(0)
l |3

(δrβ,j−δrβ,l)2,

(2.37)

where cx = cy = 1 and cz = −2.

Now we second quantize Hmotion by promoting the momenta pβ,j and displace-

ments δrβ,j to operators, that admit a representation in terms of local phonons,

namely

pβ,j = i

√
mωβ

2
(a†β,j − aβ,j), δrβ,j =

1√
2mωβ

(aβ,j + a†β,j). (2.38)

In terms of these local phonon operators, the motional Hamiltonian of the chain is

given as

Hphonon =
N∑
j=1

∑
β

ωβj a
†
β,jaβ,j +

1

2

N∑
j>l=1

∑
β

tβj,l(a
†
β,jaβ,l + H.c.), (2.39)

with the on-site frequency and Coulomb mediated long-range hopping given by

ωβj = ωβ −
1

2

∑
p 6=j

cβe
2

mωβ|r(0)
j − r

(0)
p |3

, tβj,l =
cβe

2

mωβ|r(0)
j − r

(0)
l |3

. (2.40)

In the final Hamiltonian (2.39), we have neglected terms of the form a†β,ja
†
β,l and

aβ,jaβ,l. This is justified as long as ωβ � tβj,l, since then processes that do not

conserve the particle number are highly suppressed.

Hamiltonian (2.39) shows that cooled Coulomb crystals in an ion trap are de-

scribed by a model of hopping phonons. As such, (2.39) can be expressed in terms
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of collective modes of motion aβ,n =
∑N

j=1M
β
j,naβ,j,

Hphonon =
N∑
N=1

∑
β

ωβna
†
β,naβ,n. (2.41)

2.3.2 Atom-light interactions

In principle, the former collective phonons are not coupled to the internal degrees

of freedom of the ions. To induce their coupling we need to add laser forces, that

can act differently depending on the internal state of the ion. We can always regard

every ion as an effective two-level system, or a qubit, as long as (i) the frequency of

the field inducing the coupling of the two internal levels is close to resonance, and

(ii) the couplings to any other levels are fairly smaller than the detuning relative to

off-resonant transitions [149]. The corresponding Hamiltonian for a single qubit is

given as

Hqubit = ω↓|↓〉〈↓|+ ω↑|↑〉〈↑| =
ω↓ + ω↑

2
(|↓〉〈↓|+ |↑〉〈↑|) +

ω

2
(|↑〉〈↑| − |↓〉〈↓|), (2.42)

where ω↓ and ω↑ are the energies of the ‘ground’ and ‘excited’ states of the qubit,

and ω ≡ ω↑ − ω↓.

Any operator in the Hilbert space of a single qubit can be written in terms of

the Pauli matrices associated with the spin-1/2 algebra. In particular, we have that

|↓〉〈↓|+ |↑〉〈↑| → I, |↑〉〈↑| − |↓〉〈↓| → σz, |↑〉〈↓| → σ+, |↓〉〈↑| → σ−. (2.43)

Thus, the qubit Hamiltonian can be reexpressed in terms of an effective spin

Hspin =
ω

2
σz, (2.44)

where we have neglected the contribution ∝ I.

Physically, the qubit can be encoded in a dipole-forbidden transition at optical

frequencies. The typical coherence times of these systems is of 1s [142]. Other

possible qubits utilize Zeeman/hyperfine levels, which may achieve coherence times

in the order of minutes [150, 151].

There are two types of effective atom-light interactions that can be implemented

with trapped ions: the σx/σy, and the σz interactions. In both cases, the coupling

between the spin and phonon degrees of freedom is realized by means of optical
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fields, for optical and Zeeman/hyperfine qubits. These latter can utilize microwave

fields as well, but they require magnetic field gradients to create a momentum kick

[152, 153].

We describe now these interactions in two particular experimental instances.

σx/σy interaction

The interaction of N ions with the electric field E(r, t) of a laser is described by

[154]

Hint = −
N∑
j=1

µj · E(rj, t), (2.45)

where µj = erj is the dipole operator for the transition |↓〉 ↔ |↑〉. Assuming

a bichromatic field, with momenta k1,k2 and frequencies ω1, ω2, the Hamiltonian

describing situation (a) in Fig. 2.9 is given as [155]

Hint =
N∑
j=1

Ω1,j(
∣∣↓(j)

〉 〈
virt(j)

∣∣+ H.c.)(ei(k1·rj−ω1t) + H.c.)

+
N∑
j=1

Ω2,j(
∣∣↑(j)

〉 〈
virt(j)

∣∣+ H.c.)(ei(k2·rj−ω2t) + H.c.). (2.46)

The Rabi frequencies Ω1,2 depend on the matrix element of the dipole operator

Figure 2.9: Level scheme for the implementation of the (a) σx/σy and (b) σz inter-

actions (Image reproduced from ref. [28]).
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upon the atomic orbitals, and the laser intensities and polarizations [156]. If the

laser (detuning) frequencies ∆1,2 ≡ ωvirt − ω1,2 − ω↓,↑ from the state |virt〉 fulfil

that ∆1,2 � Ω1,2, the upper state can be adiabatically eliminated [157]. Then, the

interaction Hamiltonian reads [155]

Hint =
N∑
j=1

Ωj(σ
+
j + H.c.)(ei(∆k·rj−ωLt) + H.c.), (2.47)

where Ωj = Ω∗1,jΩ2,j/∆R, ∆k = k1 − k2, and ωL = ω1 − ω2.

Now we move into an interaction picture with respect to

H0 =
N∑
j=1

∑
β

ωβna
†
β,naβ,n +

ω

2

N∑
j=1

σzj , (2.48)

so that

Hint → Ĥint =
N∑
j=1

Ωj(σ
+
j e

iωt + H.c.)(ei(∆k·rj(t)−ωLt) + H.c.). (2.49)

We consider that ωL = ω − δ. Applying the Rotating Wave Approximation (RWA)

leads then to

Ĥint =
N∑
j=1

Ωj(σ
+
j e

i(∆k·rj(t)+δt) + H.c.). (2.50)

The product ∆k · rj(t) can be expressed as

(∆kx,∆ky,∆kz) · (δrx,j(t), δry,j(t), r(0)
j + δrz,j(t))

=
N∑
n=1

∑
β

(ηβnM
β
j,naβ,ne

−iωβnt + H.c.) + ∆kzr
(0)
j , (2.51)

where ηβn = ∆kβ/
√

2mωβn are known as the Lamb-Dicke parameters [149]. If the

extension of every ion’s wave function is much smaller than 1/k, which is known as

the Lamb-Dicke regime, then ηβn � 1, and

Ĥint =
N∑
j=1

Ωjσ
+
j

[
1 + i

N∑
n=1

∑
β

(ηβnM
β
j,naβ,ne

−iωβnt + H.c.)

]
ei∆kzr

(0)
j eiδt + H.c. (2.52)

This Hamiltonian is further simplified by making the (detuning) frequencies δβn ≡

ωβ0n0
− ωβn − δ almost resonant with a particular motional band β0 and mode n0. We

distinguish the following three cases:

1. Carrier transition (δ = 0): In this case, the Hamiltonian reduces to

Ĥint =
N∑
j=1

Ωjσ
+
j e

i∆kzr
(0)
j + H.c. (2.53)
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The effective interaction acts exclusively in the internal degrees of freedom of

the ions, changing the qubit state. Assuming that ∆kz = 0 and Ωj = Ω,

Ĥint = Ω
N∑
j=1

σxj . (2.54)

This interaction allows to prepare the qubit in a particular state, or the sim-

ulation of a magnetic field acting on the spins [28].

2. Red sideband (δ = ωβn − ωβ0n0
+ δβn): If the laser frequency is red detuned

with respect to the qubit frequency ω, and it is made almost resonant with

a particular band β0 and mode n0, the only non-fast-rotating processes are

those conserving the total excitation number

Ĥint =
N∑

j,n=1

Ωj(iη
β0
n e

i∆kzr
(0)
j eiδ

β
ntMβ0

j,naβ0,nσ
+
j + H.c.). (2.55)

Motional bands in the axial and transverse directions are well separated [28],

so we can assume that the laser is resonant with the processes along β0 alone,

and drop the band index. Making iΩjηn ≡ Ωrsb and setting ∆kz = 0, we get

Ĥint = Ωrsb

N∑
j,n=1

(Mj,ne
iδntanσ

+
j + H.c.). (2.56)

This is the Jaynes-Cummings Hamiltonian, that arises naturally in cavity QED

systems. It permits the population transfer between the qubit and the phonon

degrees of freedom.

3. Blue sideband (δ = −ωβn + ωβ0n0
− δβn): In this case, the frequency of the laser

is tuned above ω, and the resonant processes are given by

Ĥint =
N∑

j,n=1

Ωj(iη
β0
n e

i∆kzr
(0)
j eiδ

β
ntMβ0

j,na
†
β0,n

σ+
j + H.c.), (2.57)

which do not conserve particle number any more. Making the same assump-

tions that for the red sideband interaction, the Hamiltonian reduces to

Ĥint = Ωbsb

N∑
j,n=1

(Mj,ne
iδnta†nσ

+
j + H.c.), Ωbsb ≡ iΩjηn. (2.58)

This anti-Jaynes-Cummings Hamiltonian has no counterpart in atom-photon

systems, since it would violate energy conservation. Therefore, trapped-ion

experiments can support richer dynamics than typical cavity QED systems.
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We note that by simultaneously addressing the red and blue sidebands, we can

generically implement the Hamiltonian

Ĥint = g
N∑

j,n=1

σx,yj (Mj,ne
iδntei∆kzr

(0)
j a†n + H.c.). (2.59)

where the final, effective Rabi frequency, is customarily renamed as g. The Pauli

operator in (2.59) can be chosen at will. This is done by fixing the relative phase

between the ‘red’ and ‘blue’ detuned lasers [158, 159]. This interaction, known as

the Rabi Hamiltonian, will be considered in the implementation of the IR model in

chapter 4.

σz interaction

Another possibility to give rise to a spin-phonon interaction is to excite the mo-

tional modes alone (cf. (b) in Fig. 2.9). A spin-dependent force is realized by

imposing different AC Stark shifts for the processes |↓〉 〈virt| and |↑〉 〈virt| [156].

The Hamiltonian describing the interaction is given by

Hint =
∑
s=↑,↓

N∑
j=1

Ω1,j(s)(
∣∣s(j)

〉 〈
virt(j)

∣∣+ H.c.)(ei(k1·rj−ω1t) + H.c.)

+
∑
s=↑,↓

N∑
j=1

Ω2,j(s)(
∣∣s(j)

〉 〈
virt(j)

∣∣+ H.c.)(ei(k2·rj−ω2t) + H.c.). (2.60)

Performing the adiabatic elimination of the upper level, we get [156]

Hint =
N∑
j=1

(Ωj(↑)
∣∣↑(j)

〉 〈
↑(j)
∣∣+ Ωj(↓)

∣∣↓(j)
〉 〈
↓(j)
∣∣)(ei(∆k·rj−ωLt) + H.c.), (2.61)

where Ωj(s) = Ω1,j(s)Ω2,j(s)/∆R. By choosing suitable laser polarizations it is

possible to make Ωj(↓) = −2Ωj(↑) ≡ Ωj [160]. Physically this stems from the fact

that the phase of the (sinusoidally varying at frequency ωL) laser force upon states

|↑〉 and |↓〉 is different. The corresponding Hamiltonian, in the rotating frame of the

phonons, is given as

Ĥint =
N∑
j=1

Ωjσ
z
j (e

i(∆k·rj(t)−ωLt) + H.c.), (2.62)

where we drop the contribution ∝ I. We consider the case ωL = ωβn − ωβ0n0
+ δβn.

Following the same manipulations as for the σx/σy interaction, we arrive at the
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effective Hamiltonian

Ĥint = g

N∑
j,n=1

σzj (Mj,ne
iδntei∆kzr

(0)
j a†n + H.c.). (2.63)

Hamiltonian (2.63) is completely analogous to (2.59), since they just differ by a local

rotation. We will use this interaction in the implementation of the cJT, IR and SSH

models in chapters 3, 4 and 5.

2.3.3 Initialization and readout

The internal states of the ions can be prepared with very high efficiency by optical

pumping [161]. This process utilizes spontaneous emission to make the qubit decay

to the ground state. On the other hand, motional modes must be cooled down to

reach the condition ηβn � 1, known as the Lamb-Dicke regime. This is necessary

to be able to resolve the sideband transitions. Doppler cooling [128, 129] along the

three spatial directions leads to a thermal state with n̄ . 10. Subsequently, one

can utilize cycles of red sideband transitions plus spontaneous emission to lower the

phonon number up to n̄ ' 0.05 [149]. This procedure is known as resolved sideband

cooling [162].

State-dependent fluorescence is used to read the states of the qubits. A dipole

allowed transition to an excited state from |↓〉 is driven in a closed cycle. At the

same time, spontaneous decay into the state |↑〉 is forbidden due to selection rules.

Also, the laser frequency is off-resonant for the transition from this latter level. As

a consequence, an ion in the state |↓〉 appears ‘bright’ when the laser is switched on,

whereas the state |↑〉 appears ‘dark’ [163–166]. Regarding the motional states, they

are mapped into the qubit state by means of the red or blue sideband transitions,

and subsequently read from the fluorescence signal.

2.4 The Density Matrix Renormalization Group

One of the aspects that arouses the interest in quantum simulators is the possibility

of simulating many-body models, whose complexity lies beyond the computational

capabilities of classical computers [18, 61]. Remarkably, though, there are situations

in which classical simulation of many-body problems is still possible. This is the
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case of 1D systems, for which the Density Matrix Renormalization Group (DMRG)

is able to provide the value of any observable up to the desired accuracy [32, 33]. We

will use this method in chapters 3 and 4 to discuss different ground-state properties.

In this chapter, we present an introduction to the DMRG, which is the most accurate

numerical method for many-body problems known to date [34, 35].

Historically, the huge dimension of the Hilbert spaces associated with many-

body problems remained an insurmountable obstacle for many years. Fortunately,

in 1975, Kenneth Wilson realized that the Kondo Hamiltonian –which models a

single magnetic impurity in a metal– could be effectively described in a state space

whose dimension remains constant, regardless of the size of the system [167]. He

discovered that many states in the Hilbert space offered redundant information, and

could be disposed of at no expense of the accuracy of the description of the problem.

Wilson devised a method, known as the numerical renormalization group (NRG),

to find an effective description of the model in a reduced state space, bypassing the

need for an exponentially large amount of resources.

After the success of the NRG in the Kondo problem, physicists tried to apply

Wilson’s ideas to other models. In the particular case of the quantum Ising chain,

for instance, the NRG evolved into the block renormalization group [168, 169]. In

this method, the chain is divided into two blocks of identical size. Initially comprised

of only two sites, one starts adding two new sites to the blocks to grow the chain.

To keep the dimension of the Hilbert space manageable, one has to discard some

states at every step. Let us imagine that we want to describe the ground state.

In that case, it is natural to discard all but the ground and low-lying states of the

Hamiltonian in every iteration. The states kept are then used as an effective basis.

By projecting the ground state and the Hamiltonian in this basis, we obtain new

effective representations, which are used in the next iteration. Since the dimension

of the effective basis remains constant, the size of the state and operators is kept

bound in spite of having an increasingly longer chain.

The former algorithm, though, provided unexpectedly inaccurate results in some

instances [32, 33]. The explanation for this bad performance had to wait until

1992, when Steven White realized that the choice of effective basis in the block

renormalization group method was highly inadequate. He found out that the optimal
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truncation procedure was to demand that the distance between the ground state

and its representation in the effective basis was minimal. Also, he proved that this

reduced basis must be given by the eigenstates of the density matrix of the ground

state in one block. The method was consequently named as the Density Matrix

Renormalization Group (DMRG) [32, 33].

The DMRG was a breakthrough not only because it provided an efficient method

to simulate any local Hamiltonian in 1D. It also brought to light the role of entangle-

ment in many-body problems [170, 171]. Very roughly speaking, the DMRG works

because the amount of entanglement in the ground state remains bound. Otherwise,

the dimension of the effective basis would have to be infinite to describe the ground

state. The interplay of quantum information theory and many-body physics is a

very active field of research nowadays, and has provided techniques that generalize

the DMRG to more than 1D, such as PEPS [172, 173] or MERA [174, 175].

There are two versions of the algorithm, concerned with finding |Ψ〉 in the ther-

modynamic limit, L→∞, or for finite L. We refer to them as infinite-system DMRG

and finite-system DMRG respectively. Both of them assume Open Boundary Con-

ditions (OBC). We will deal with finite chains throughout the thesis, so we are

interested in the finite-system version of the DMRG. Nevertheless, the algorithm re-

quires us to apply sequentially the infinite-system and then the finite-system DMRG

to achieve the optimal accuracy [32]. Thus we need to discuss both versions.

2.4.1 Infinite-system algorithm

In the infinite-system DMRG one builds up the chain iteratively, by inserting two

sites at every step, so that L = 2, 4, 6, . . . We always think of the chain as two blocks,

A and B, comprised of ` sites each, where ` is the block size at a given step of the

growing process (cf. Fig. 2.10).

Block A (B) is generically associated with a D-dimensional Hilbert space spanned

by the states
{
|a`〉A(B)

}
. D is the constant dimension of the effective basis, and is

known as bond dimension. The value of D, typically of O(100), is chosen by the

user to achieve the desired accuracy in the simulation.

The block representation of the Hamiltonian is given by the matrix elements

A(B)〈a|H` |a′〉A(B). Any local operator is analogously obtained as A(B)〈a|O
(j)
` |a′〉A(B).
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The starting point of DMRG is to ask for the ground state and ground state energy of bH. We can ask
this question for the thermodynamic limit L!1 or more modestly for finite L. In the first case, the
answer is provided by infinite-system DMRG albeit with quite limited precision; in the second case,
an answer can be read off from infinite-system DMRG, but it is more adequate to run a two-step pro-
cedure, starting with infinite-system DMRG and continuing with finite-system DMRG.

In any case, the numerical stumbling block is provided by the exponential growth of the Hilbert
space dimension, in our example as dL, where d ¼ 2 is the local state space dimension of a spin-1

2.

2.2. Infinite-system DMRG

Infinite-system DMRG deals with this problem by considering a chain of increasing length, usually
L ¼ 2;4;6; . . ., and discarding a sufficient number of states to keep Hilbert space size manageable. This
decimation procedure is key to the success of the algorithm: we assume that there exists a reduced
state space which can describe the relevant physics and that we can develop a procedure to identify
it. The first assumption is typical for all variational methods, and we will see that indeed we are lucky
in one dimension: for all short-ranged Hamiltonians in 1D there is such a reduced state space that con-
tains the relevant physics!

How is it found? In infinite-system DMRG (Fig. 2), the buildup is carried out as follows: we intro-
duce left and right blocks A and B, which in a first step may consist of one spin (or site) each, such that
total chain length is 2. Longer chains are now built iteratively from the left and right end, by inserting
pairs of spins between the blocks, such that the chain grows to length 4, 6, and so on; at each step,
previous spins are absorbed into the left and right blocks, such that block sizes grow as 1, 2, 3, and
so on, leading to exponential growth of the dimension of the full block state space as 2‘, where ‘ is
the current block size. Our chains then always have a block-site-site-block structure, A � �B.

Let us assume that our numerical resources are sufficient to deal with a reduced block state space
of dimension D, where in practice D will be of Oð100Þ to Oð1000Þ, and that for a block A of length ‘ we
have an effective description of block A in a D-dimensional reduced Hilbert space with orthonormal
basis fja‘iAg. For very small blocks, the basis dimension may be less than D, for larger blocks some
truncation must have occurred, which we take for granted at the moment. Let me mention right
now that in the literature, D – which will turn out to be a key number – comes under a variety of
names: in traditional DMRG literature, it is usually referred to as m (or M); more recent matrix product
state literature knows both D and v.

Within this framework, we may now ask (i) what is the ground state of the current chain of length
2‘þ 2, also referred to as superblock, and (ii) how can we find the reduced Hilbert space of dimension
D for the new blocks A� and �B.

superblock

block B

2 sites

block A

subsystem A  subsystem B

new block A new block B

block B2 sitesblock A

block B
growth

block A
growth

end of infinite
DMRG

block A size
minimal

end of finite
DMRG

(retrieved)

(retrieved)

(repeated sw
eeps)

Fig. 2. The left and right half of the figure present the iterations taken in the infinite-system and finite-system DMRG
procedures respectively. In both cases, new blocks are formed from integrating a site into a block, with a state space truncation
according to the density-matrix prescription of DMRG. Whereas in the infinite-system version this growth happens on both
sides of the chain, leading to chain growth, in the finite-system algorithm it happens only for one side at the expense of the
other, leading to constant chain length.

100 U. Schollwöck / Annals of Physics 326 (2011) 96–192

Figure 2.10: Iteration taken in the infinite-system DMRG. We integrate one new site

into each block, then form the superblock. The algorithm provides the Hamiltonian

and operators on the superblock in terms of two new blocks, comprised of a truncated

state space. We note that the integration of a new site into the block happens on

both sides of the chain, leading to a net system growth. (Image reproduced from

ref. [35]).

On the other hand, individual sites are associated with basis states
{
|σ`〉A(B)

}
,

whose local space is of dimension d.

In every iteration, we form the representation of the Hamiltonian in the resulting

structure of joining blocks A and B, and inserting two new sites between them. We

refer to this arrangement as superblock, or schematically as A • •B. By diagonalizing

the Hamiltonian of the superblock, we obtain the ground state

|Ψ〉 =
∑

aAσAσBaB

ΨaAσAσBaB |a〉A|σ〉A|σ〉B|a〉B. (2.64)

This state is comprised of (Dd)2 numbers. Nevertheless, we aim at finding a repres-

entation in terms of only D quantities. To this end, we form the representation of

the state in subsystems A • and •B, which is given as

|Ψ〉 =
∑
iAjB

ΨiA,jB |i〉A|j〉B, (2.65)

where |i〉A = |a〉A|σ〉A and |j〉B = |σ〉B|a〉B. Now we consider the reduced density

operator for A • and •B, that is

ρA • = Tr•B |Ψ〉〈Ψ|, ρ•B = TrA • |Ψ〉〈Ψ|. (2.66)
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These matrices are still of size Dd×Dd. The reduced bases are constructed from the

eigenvectors of these matrices corresponding to the D larger eigenvalues. As shown

in [33], this choice minimizes the distance between |Ψ〉 and its truncation into the

effective basis of each new block.

Let us sketch how the whole algorithm would be implemented, as originally

presented in [33]:

1. At the beginning blocks A and B are comprised of just one site, so that ` =

1. We add two new sites at the centre of the chain, and obtain the matrix

representations of the Hamiltonian and operators for the two sites and blocks

A and B.

2. The Hamiltonian on the resulting superblock A • •B is constructed by means

of Kronecker products, observing the block-site-site-block structure.

3. We diagonalize the superblock Hamiltonian to obtain the ground state

|Ψ〉 =
∑

aAσAσBaB

ΨaAσAσBaB|a〉A|σ〉A|σ〉B|a〉B. (2.67)

The expectation value of any operator can be measured at this point.

4. We form the reduced density matrices of subsystems A • and •B, ρA • =

Tr•B |Ψ〉〈Ψ| and ρ•B = TrA • |Ψ〉〈Ψ|, and diagonalize these as well.

5. We keep the eigenvectors corresponding to the D largest eigenvalues of ρA • and

ρ•B, and discard the rest. We form with these the state space
{
|a`+1〉A(B)

}
.

6. We form the matrix representation of H and any operators of interest in A •

and •B.

7. The former matrix representations are decimated by projecting them upon the

bases {|a`+1〉A} and {|a`+1〉B}.

8. The resulting matrices are stored as the block representations for block size

`+ 1.

9. We proceed again from step 2, up to a desired length L is reached.
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We note that for a finite D, there is a certain iteration for which D ≤ N `+1
site .

From then on, the effective block representations of the operators are of size D:

this is the way in which the DMRG circumvents the exponential scaling-up. Block

representations of all the operators must be stored for every `, and expectation

values can be taken whenever |Ψ〉 is obtained in every iteration.

2.4.2 Finite-system algorithm

The infinite-system DMRG can be applied until we reach a desired system size L.

Finite-system DMRG consists of the same decimation procedure as the infinite-

system version, but this time blocks A and B do not grow simultaneously (cf. Fig.

2.11). On the contrary, if we add one new site to, e.g., block A, we must consider

The starting point of DMRG is to ask for the ground state and ground state energy of bH. We can ask
this question for the thermodynamic limit L!1 or more modestly for finite L. In the first case, the
answer is provided by infinite-system DMRG albeit with quite limited precision; in the second case,
an answer can be read off from infinite-system DMRG, but it is more adequate to run a two-step pro-
cedure, starting with infinite-system DMRG and continuing with finite-system DMRG.

In any case, the numerical stumbling block is provided by the exponential growth of the Hilbert
space dimension, in our example as dL, where d ¼ 2 is the local state space dimension of a spin-1

2.

2.2. Infinite-system DMRG

Infinite-system DMRG deals with this problem by considering a chain of increasing length, usually
L ¼ 2;4;6; . . ., and discarding a sufficient number of states to keep Hilbert space size manageable. This
decimation procedure is key to the success of the algorithm: we assume that there exists a reduced
state space which can describe the relevant physics and that we can develop a procedure to identify
it. The first assumption is typical for all variational methods, and we will see that indeed we are lucky
in one dimension: for all short-ranged Hamiltonians in 1D there is such a reduced state space that con-
tains the relevant physics!

How is it found? In infinite-system DMRG (Fig. 2), the buildup is carried out as follows: we intro-
duce left and right blocks A and B, which in a first step may consist of one spin (or site) each, such that
total chain length is 2. Longer chains are now built iteratively from the left and right end, by inserting
pairs of spins between the blocks, such that the chain grows to length 4, 6, and so on; at each step,
previous spins are absorbed into the left and right blocks, such that block sizes grow as 1, 2, 3, and
so on, leading to exponential growth of the dimension of the full block state space as 2‘, where ‘ is
the current block size. Our chains then always have a block-site-site-block structure, A � �B.

Let us assume that our numerical resources are sufficient to deal with a reduced block state space
of dimension D, where in practice D will be of Oð100Þ to Oð1000Þ, and that for a block A of length ‘ we
have an effective description of block A in a D-dimensional reduced Hilbert space with orthonormal
basis fja‘iAg. For very small blocks, the basis dimension may be less than D, for larger blocks some
truncation must have occurred, which we take for granted at the moment. Let me mention right
now that in the literature, D – which will turn out to be a key number – comes under a variety of
names: in traditional DMRG literature, it is usually referred to as m (or M); more recent matrix product
state literature knows both D and v.

Within this framework, we may now ask (i) what is the ground state of the current chain of length
2‘þ 2, also referred to as superblock, and (ii) how can we find the reduced Hilbert space of dimension
D for the new blocks A� and �B.

superblock

block B

2 sites

block A

subsystem A  subsystem B

new block A new block B

block B2 sitesblock A

block B
growth

block A
growth

end of infinite
DMRG

block A size
minimal

end of finite
DMRG

(retrieved)

(retrieved)

(repeated sw
eeps)

Fig. 2. The left and right half of the figure present the iterations taken in the infinite-system and finite-system DMRG
procedures respectively. In both cases, new blocks are formed from integrating a site into a block, with a state space truncation
according to the density-matrix prescription of DMRG. Whereas in the infinite-system version this growth happens on both
sides of the chain, leading to chain growth, in the finite-system algorithm it happens only for one side at the expense of the
other, leading to constant chain length.
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Figure 2.11: Iteration taken in the finite-system DMRG. The growth in this case

happens only in one side of the chain, at the expense of the other. (Image reproduced

from ref. [35]).

that block B has shrunk by one site. Thus, the block Hamiltonian and operators

are updated only for block A in this case. This process continues until block B

is comprised of one site only. Then, the growth direction is reversed. A whole

sequence of growth and shrinkage is known as a sweep. To check if the method has

converged, we can monitor the value of a particular observable, such as the energy.

Since the DMRG can be regarded as the optimization of a variational ansatz [35], it

approximates the exact solution ‘from above’, meaning that increasing the number

of sweeps must necessarily lower the energy. Eventually this quantity must reach

a steady value within the goal tolerance. This value can be compared with further

simulations for increasing bond dimension D. Again, we expect that there is a value
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of D beyond which there are no further changes in the energy, showing that the

method has finally converged.
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Chapter 3

Magnetic frustration and quantum

annealing in the cooperative

Jahn-Teller model

3.1 Introduction

In this chapter we present the quantum simulation of a system exhibiting magnetic

frustration. In the context of magnetism, frustration arises if spins are coupled

through competing interactions that cannot be simultaneously satisfied [176]. This

leads to an extensive amount of degeneracy in the ground state.

We can illustrate the concept of frustration in a simple model comprised of three

spins. We assume that their energy is given by the following Hamiltonian

J
N=3∑
j,l=1

σzjσ
z
l , J > 0. (3.1)

The positive sign of the interaction strength favours configurations in which all the

three spins are antiparallel, since these lower the overall energy. However, as illus-

trated in Fig. 3.1, the ‘infinite range’ of the interactions prevents the spins from

arranging simultaneously in this way. Consequently, the system has six different

ground states, with the same energy. This type of frustration, that stems from

the interactions alone, is known as interaction-induced frustration. There are many

occasions, however, where it has a geometrical origin, and it is referred to as geo-

metric frustration [177]. The study of frustrated magnetism is an old discipline in
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Figure 3.1: Antiferromagnetic (AF) configurations of Hamiltonian (3.1). The black

(red) lines denote bonds where the antiferromagnetic interactions are (are not) sat-

isfied.

material science. However, it keeps being a very active field of research, since there

are theoretically-predicted properties that have eluded experimental confirmation so

far. In particular, under certain circumstances, a frustrated system should become

a quantum spin liquid [7].

In a system with frustrated interactions, an extensive amount of spins are free to

fluctuate among many low-energy configurations. Consequently, there is no average

spin order, and the system is a paramagnet. Usually these fluctuations are arbitrary,

and have no structure, but in some occasions they are severely restricted by the form

of the interactions. Although these restrictions stem from local constraints, they can

give rise to long-range effects, and therefore fluctuations may be long ranged. This

is the defining feature of a spin liquid, in which spins are free to fluctuate, but in a

correlated manner. Although there are many solid-state systems featuring frustrated

interactions, such as the spin-ice materials [178, 179], spin-liquid phases have been

difficult to observe in reality. This is because interactions are not always ideal,

lattice structures leading to spin liquids may be difficult to realize, and phonons,

temperature, or any other sources of noise may prevent their occurrence.

Quantum simulators are ideal test-beds for the exploration of the effects as-

sociated with frustrated interactions. There have been several proposals for the

realization of frustrated magnetism. One possible route is to introduce randomness
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in the spin interactions, for example by coupling a set of dipoles to a linear random

combination of cavity modes [180, 181]. Another possibility is to directly realize a

Hamiltonian analogous to (3.1). This has been accomplished for trapped-ion chains

up to N = 16 [124, 125]. In these experiments, a particular (collective) phononic

mode with long-range correlations, such as the centre-of-mass (COM) mode of the

longitudinal motion, is driven by a slightly off-resonant laser force. If the laser fre-

quency is suitably detuned from the mode, phonons are not excited, but they can

still mediate interactions between the spins. Because of the correlations present in

the COM mode, the effective interactions are ferromagnetic, and have long range

[182]. We stress that these experiments rely on the possibility of individually ad-

dressing the modes in the phononic band. Nevertheless, this becomes increasingly

difficult for long chains, since the energies of neighbouring modes get closer, and

they are more difficult to resolve. As a consequence, these implementations suffer

the serious drawback of not being scalable to larger numbers of ions.

In this chapter we depart from these proposals and consider an alternative, scal-

able scheme to give rise to frustrated interactions. Furthermore, our model exhibits

a far richer phenomenology than previously considered works, since it combines

randomness in the effective couplings with long-range interactions. We focus on a

generalized cooperative Jahn-Teller (cJT) [114, 122], or Rabi lattice model [183–

185], that can be readily implemented in trapped-ions chains. The cooperative

Jahn-Teller Hamiltonian is defined as [114]

H∆k
cJT =

N∑
n=1

ωna
†
nan +

Ωx

2

N∑
j=1

σxj + g
N∑

j,n=1

σzj (anMj,ne
−i∆kr(0)j + H.c.). (3.2)

This model describes a set of N coupled oscillators, each of which interacts with an

effective spin. Alternatively, it can be understood as a collection of spins coupled to

N normal bosonic modes. ∆k is the projection of the effective Raman wave vector

induced by the lasers on the chain axis. This model is invariant under the parity

transformation σzj → −σzj , an → −an. The ground state consists of the vacuum of

the phonons and no magnetization in z for g � ωn,Ωx, but a large enough spin-

phonon coupling can induce a phase transition into a symmetry-breaking state with

〈an〉 6= 0 and 〈σzj 〉 6= 0.

We present now the implementation of the model with trapped ions. Then we
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proceed to the discussion of the phase diagram in the absence of optical phases,

that is, with ∆k = 0. Once we establish the different regimes of the ground state

in this case, we explain how to give rise to the frustration of the interactions by

choosing a suitable ∆k 6= 0. We show that some features of the spin liquid phase

are observable in our implementation. Finally, we present an adiabatic protocol to

prepare the frustrated phase of our model. This protocol is an instance of a generic

algorithm known as quantum annealing [186–188]. We will discuss the properties of

the protocol and its suitability for finding the ground state in the event of frustra-

tion. We conclude the chapter presenting realistic experimental parameters for the

implementation of H∆k
cJT in state-of-the-art trapped-ion platforms, and giving some

conclusions.

3.2 Implementation with trapped ions

The cJT Hamiltonian arises naturally in a trapped-ion chain. Let us assume a set

of N trapped ions along the z axis. The transverse oscillations of the ions, in the x

direction, for instance, are described by the phonon Hamiltonian (cf. (2.39))

Hphonon =
N∑
j=1

ωxj a
†
x,jax,j +

1

2

N∑
j>l=1

txj,l(a
†
x,jax,l + H.c.), (3.3)

where ωxj and txj,l are given in (2.40). As we deal with oscillations in this direction

alone, we drop the index x in the following discussion.

We consider homogeneous chains (ions equally spaced by a distance d0, so that

r
(0)
j = d0j), a situation that gives an approximate description of the centre of a

linear Coulomb crystal, or describes linear arrays of ion microtraps. The phonon

tunnelling is expressed in the homogeneous case like

txj,l =
tC

|j − l|3
, tC =

e2

mωxd3
0

, (3.4)

and local trapping frequencies ωj are constant and approximately equal to ωx. There-

fore, we can write the Hamiltonian for the phonon chain as

Hphonon =
N∑

j,l=1

(
ωxδj,l +

1

2

tC
|j − l|3

)
a†jal =

N∑
n=1

ωna
†
nan, (3.5)

where an =
∑N

j=1Mj,naj are the normal mode phonon operators, and Mj,n are the

eigenstates of the matrix in the former parenthesis.
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The spin degrees of freedom can be simulated by encoding qubits in Zeeman or

hyperfine states of the ions. The transverse field in (3.2) is implemented directly by

a microwave, or via Raman transitions driving the carrier resonance. In any case,

we identify the effective Rabi frequency with the magnitude of the transverse field

Ωx.

Finally, the spin-boson interaction can be created by two lasers inducing an AC

Stark shift between the two spin levels. This corresponds to the σz interaction

already discussed (cf. (2.63)),

Hint(t) = g
N∑

j,n=1

σzj (Mj,ne
iδntei∆kd0ja†n + H.c.). (3.6)

The lasers push the ions in the x direction, to couple the spins with the transverse

oscillations. Nevertheless, there is also some momentum ∆k along the trap axis,

creating the phase dependence. The (detuning) frequencies δn = ωn − ωL will be

defined with respect to the lowest energy configuration of the phonon chain, corres-

ponding to the zigzag mode ωn=N/2 [114]. We will work in an interaction picture in

which phonons rotate with frequency ωL, so Hint(t)→ Hint(0) and the energy of the

phonons in Hphonon is given by δn.

3.3 Phase diagram for undressed couplings

In this section we present the phase diagram of the model with no optical phases

H∆k=0
cJT → HcJT. We establish that its phase transition belongs to the same univer-

sality class as the quantum Ising chain [42].

3.3.1 The polaron transformation

Consider the canonical transformation U = eS with

S =
N∑

j,n=1

g

δn
σzj
(
M∗

j,na
†
n − H.c.

)
. (3.7)

This is known as the polaron transformation [118]. It can be written as a displace-

ment in phase space,

U = D

(
N∑
n=1

αn

)
, with αn =

N∑
j=1

g

δn
σzjM

∗
j,n, (3.8)
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where D(x) is the displacement operator [189]. We note that because of the σzj

operator, this displacement acts differently on states |↑〉j and |↓〉j. Its action on the

boson operators is given as

a†n 7→ Ua†nU
† = a†n −

N∑
j=1

g

δn
σzjMj,n. (3.9)

If we apply U to HcJT, so that eSHcJTe
−S ≡ H̄cJT, the resulting Hamiltonian is

H̄cJT =
N∑
n=1

δna
†
nan+

N∑
j,l=1

Jj,lσ
z
jσ

z
l +

Ωx

2

N∑
j=1

(
σ+
j e
∑N
n=1

2g
δn

(M∗j,na
†
n−H.c.) + H.c.

)
. (3.10)

This expression tells us that the Jahn-Teller model is equivalent to an Ising model

with interaction strength,

Jj,l = −
N∑
n=1

M∗
j,n

g2

δn
Ml,n, (3.11)

plus some residual spin-boson coupling. In the perturbative regime of the spin-boson

coupling, g � δn, one obtains the Ising limit of the Jahn-Teller Hamiltonian

H̄cJT '
N∑
n=1

δna
†
nan +

N∑
j,l=1

Jj,lσ
z
jσ

z
l +

Ωx

2

N∑
j=1

σxj . (3.12)

This procedure is equivalent to the adiabatic elimination of the phonons [190]. The

former derivation makes possible the simulation of the quantum Ising chain with

trapped ions [93, 182].

In the Ising limit of the cJT model, the ground state of the problem is completely

defined by the magnetic order. We distinguish two cases:

1. The classical limit (Ωx = 0): The ground state is separable. Once we find the

spin configuration that minimizes the energy for the couplings Jj,l, which we

call |Ψspin〉, it maps onto the ground state of the phonons upon undoing the

transformation U , so that

|ΨGS〉 = |α〉|Ψspin〉, |α〉 = e−
∑N
j,n=1

g
δn
mz(M∗j,na

†
n−H.c.)|0〉, (3.13)

where mz = 〈Ψspin|σzj |Ψspin〉, and |0〉 is the vacuum of the phonons. This result

expresses that the motional (structural) configuration is inextricably linked to

the magnetic order (cf. Fig. 3.2). This fact has been exploited for instance

for the quantum simulation of the Jahn-Teller effect with trapped ions [122].
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Figure 3.2: Two different examples of how the magnetic order maps into the struc-

tural configuration of the chain. This situation corresponds to the ordered phase of

the ground state of HcJT with Ωx < Ωx,c.

2. The quantum regime (Ωx 6= 0): The ground state is still of the form (3.13),

but |Ψspin〉 does not need to be separable any more. The phases of the ground

state correspond to those of the quantum Ising chain [42]. We expect that the

two following cases are separated by a continuous phase transition at some

critical Ωx,c:

• Ordered phase (Ωx < Ωx,c): Below some critical value of the transverse

field, the σzjσ
z
l interactions favour a state with long-range order in the

z direction. This state breaks the parity symmetry of HcJT –invariance

under σzj → −σzj , aj → −aj– since 〈σzj 〉 6= 0. As |α〉 6= |0〉, we have∑N
j=1〈a

†
jaj〉/N 6= 0.

• Paramagnetism (Ωx > Ωx,c): Above the critical transverse field, the terms

σxj favour a state in which spins point in the x direction. This state

respects the parity symmetry of HcJT, and the phononic chain is in the

ground state, so that
∑N

j=1〈a
†
jaj〉/N = 0.

In the non-perturbative, or strong-coupling regime g & δn, |ΨGS〉 is of the form

(3.13) only in the classical limit. For finite Ωx, the ground state of HcJT does not

need to be a separable wave function of spins and bosons any more, and one has to

rely on a numerical diagonalization of the Hamiltonian to establish the properties

of |ΨGS〉.

Our aim for the rest of the chapter is to study the phase diagram of HcJT in

the strong-coupling regime. We split the discussion into the classical limit and the
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quantum regime. We start with the study of the classical limit, that is completely

determined by the couplings Jj,l.

3.3.2 The classical limit

Whenever Ωx = 0, HcJT in the polaron basis reads

H̄cJT =
N∑
n=1

δna
†
nan +

N∑
j,l=1

Jj,lσ
z
jσ

z
l . (3.14)

The ground state is then given as

|ΨGS〉 = |α〉|Ψspin〉, (3.15)

where α is written in Eq. (3.13), and |Ψspin〉 is the ground state of

N∑
j,l=1

Jj,lσ
z
jσ

z
l . (3.16)

Since there are no transverse terms σxj in HcJT, the spin ground state fulfils 〈σzj 〉 =

±1. In particular, |Ψspin〉 is the configuration that minimizes the energy for the

couplings

Jj,l = −
N∑
n=1

M∗
j,n

g2

δn
Ml,n. (3.17)

We have derived an analytical expression for these terms in appendix A. Specifically,

we have shown that in the thermodynamic limit N →∞,

Jj,l ' −(−1)j−lJexpe
−|j−l|/ξ +

Jdip

|j − l|3 j 6=l
, (3.18)

where

Jexp =
g2ξ

tC ln(2)
, Jdip =

g2tC
2(δN/2 + 7/4 tCζ(3))2

, ξ =

√
tC ln(2)

2δN/2
. (3.19)

In this expression, δN/2 is the (detuning) frequency of the spin-phonon force with

respect to the bottom of the band of transverse phonons, tC is the width of their

dispersion relation (cf. 3.4), and ζ(3) ' 1.20 is the Riemman zeta function [46].

Eq. (3.18) showcases the two different regimes of the effective Ising interaction

Jj,l: the exponential and the dipolar decays. By changing the detuning frequency

from the zigzag mode δN/2, and the width of band tC, we can tune ξ as well, so that

we have control over the range of the couplings. Regarding the consequences for the

ground state of HcJT, we distinguish two limits:
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• Short-range limit (δN/2 � tC, ξ � 1).- The effective Ising interaction shows

a dipolar decay, Jj,l ' Jdip/|j − l|3. Effectively, this coupling is among first

neighbours. Since Jdip > 0, the classical ground state is antiferromagnetic.

• Long-range limit (δN/2 � tC, ξ � 1).- The exponential decay is dominant,

and for regions of length L, with L � ξ, it becomes independent of j, l. The

classical ground state remains antiferromagnetic, because of the alternation of

signs in the first term in Eq. (3.18).

We see that for any range of the couplings, the spin ground state is antiferromagnetic.

This means that the structural configuration of the chain is the zigzag arrangement,

that breaks the reflection symmetry x→ −x (cf. blue line in Fig. 3.2).

Usually, the appearance of long-range spin interactions is associated with making

the spin-dependent force nearly resonant with one particular, motional mode –such

as the center-of-mass mode, Mj,n, n = 0–, which features distant spatial correlations

[125]. These are imprinted in Jj,l through the wave function Mj,n. This approach

may be problematic for N � 1, since then the energies of the different modes get

closer between each other and are more difficult to resolve individually. However,

from Eq. (3.18), we see that in the event of many ions, the range of Jj,l relies on

the relative values of δN/2 and tC, and not necessarily on some frequency matching

condition between the laser force and the motional modes. Furthermore, these

parameters are independently tunable. Specifically, δN/2 depends on the frequency

of the force, while tC is fixed by means of the trap frequency ωx.

3.3.3 Phase diagram in the quantum regime

The quantum ground state of

HcJT =
N∑
n=1

δna
†
nan +

Ωx

2

N∑
j=1

σxj + g

N∑
j,n=1

σzj (Mj,nan + H.c.) (3.20)

outside the perturbative regime of the spin-boson coupling is no longer a separ-

able wave function of the spins and the bosons. However, the analogy with the

Ising model is still valid. We expect a critical value of Ωx,c separating the anti-

ferromagnetic regime from a paramagnetic phase. This line of reasoning is based

on symmetry arguments: the invariance of HcJT under the parity transformation
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σzj → −σzj , aj → −aj is analogous to the Z2 symmetry of the quantum Ising chain

[40]. This suggests that the physics of HcJT is similar, including its critical beha-

viour.

To study the phase diagram we have carried out calculations with the DMRG [32,

35]. In our simulations, we neglect the dipolar character of the vibrational couplings

and keep nearest-neighbour interactions only, tj,l = tCδj,l+1. The phase diagram

of the model is presented in Fig. 3.3 for a wide range of transverse fields Ωx and

Coulomb couplings tC. Because of the parity symmetry, the z-magnetization is zero,

so we have to choose a different order parameter. We define the antiferromagnetic

order parameter (OAF) as

OAF :=
∑
j,l

(−1)|j−l|
〈σzjσzl 〉

N(N − 1)
. (3.21)

This observable captures the appearance of the ordered phase for Ωx < Ωx,c, whereas

is zero in the paramagnetic phase. We signal the boundary between these two

regimes with a white line in Fig. 3.3.

Figure 3.3: DMRG phase map, for N = 40 sites, in units such that δN/2 = g = 1. We

depict the expectation value of the OAF (3.21). For the DMRG algorithm we used

the parameters D = 22, number of states kept, and maximum number of phonons

per site n = 8.

We note a marked contrast in the response to the transverse field depending

on the value of tC. The two different regimes correspond to the limits of the Ising

couplings:
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• Short-range limit (δN/2 � tC).- In this case, the transition to the paramagnetic

phase occurs for weak transverse field Ωx. Since the detuning frequency δN/2

is large, phonon excitations are largely suppressed. Thus, the problem is

described by an effective Ising model on the phonon vacuum subspace

〈0|H̄cJT|0〉 =
N∑

j,l=1

Jj,lσ
z
jσ

z
l +

Ωx

2

N∑
j=1

σxj e
−2nj , (3.22)

where we have used the fact that the local phonon number fulfils that

nj = 〈αj|a†jaj|αj〉 = |αj|2, (3.23)

with αj =
∑N

n=1 g/δnM
∗
j,n (cf. (3.13)). In the case of tj,l = tCδj,l+1, the

dispersion relation is

δn = δN/2 + tC

(
1 + cos

(
2πn

N

))
, (3.24)

and the effective Ising couplings are given as

Jj,l = −
N∑
n=1

M∗
j,n

g2

δn
Ml,n '

g2tC
2δ2
N/2

(δj,l+1 + δj,l−1). (3.25)

Since the critical point of a quantum Ising chain with first-neighbours couplings

J and transverse field Γ is located at Γ = J [42], we conclude that

Ωx,c =
g2tC
δ2
N/2

e2n̄ (3.26)

where we assume an homogeneous value of nj, so that nj = n̄ =
∑N

j=1〈a
†
jaj〉/N .

The former prediction states that –at weak phonon coupling– the critical field

separating the AF and paramagnetic phases scales linearly with tC. We have

shown that this is consistent with the DMRG calculations in Fig. 3.4.

• Long-range limit (δN/2 � tC).- For large values of the hopping amplitude, we

note that the critical line becomes independent of tC. This is a consequence

of the fact that the detuning frequency is such that it singles out the zigzag

mode alone. Then HcJT reduces to a set of qubits coupled to a collective

bosonic mode, a situation reminiscent of the Dicke model of quantum optics

[191]. It is known that in this case a separable solution such as (3.13) is a

good approximation to the exact ground state at finite system size [192].
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Figure 3.4: OAF values for tC → 0. We show the DMRG (upper line) vs. the

short-range predictions (3.26) (bottom line). There is agreement in the short-range

limit tC � δN/2 = 1. The rest of the parameters are the same as in Fig. 3.3.

This last claim is supported by the increasing degree of correlation for larger

tC between the mean phonon number n̄ (Fig. 3.5) and the OAF parameter

(Fig. 3.3). We note that n̄ is non-monotonic in tC. This is a consequence of

the fact that when tC → 0 we recover again the Dicke model, for which the

boson number at Ωx � g is different from zero. The change of n̄ at Ωx = Ωx,c

signals the quantum magnetic/structural equivalent of the zigzag structural

phase transition [193, 194].

Figure 3.5: DMRG mean phonon number. Same parameters as in Fig. 3.3. The

white line indicates the phase boundary according to the AF order parameter, and

pinpoints the correlation with the mean phonon number for large values of tC.
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3.3.4 Universality class of the cooperative Jahn-Teller model

So far, we have established that –in the regime of strong coupling– there is a phase

transition between the ordered phase (〈σzj 〉 6= 0, 〈a†jaj〉 6= 0) and the paramagnetic

phase (〈σzj 〉 = 0, 〈a†jaj〉 = 0). The calculations show that this is a second-order phase

transition. In particular we have studied the behaviour of the correlation functions

Cxx
j,l = 〈σxj σxl 〉 − 〈σxj 〉〈σxl 〉. (3.27)

We see that the Cxx
j,l decay exponentially for values Ωx 6= Ωx,c and show a power-law

decay, Cxx
j,l ∼ |j − l|−ν for Ωx = Ωx,c, with ν ' 2, consistent with a phase transition

within the quantum Ising universality class [42] (cf. Fig. 3.6). By calculating the

Figure 3.6: DRMG correlations Cxx
j,l for tC = 0.2. Same parameters as in Fig. 3.3.

(a) Values Ωx = 2 × 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.82. (b) log 10− log 10 plot for

Ωx = Ωx,c = 1.64. We fit the result to a line, resulting in a slope ν ' 2.02.

points in the phase diagram for which the correlation functions have the longest

range we are able to identify the critical line shown in Fig. 3.3.

3.4 Emergence of frustration for dressed coup-

lings

Now we discuss the effect of non-trivial optical phases into the ground state of

H∆k
cJT. We will see that they lead to the frustration of the interactions. We explore

the consequences of this phenomenon for the classical and quantum regimes of the

Jahn-Teller model.
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3.4.1 Introduction

In this section we assume non-zero optical phases ∆k, and consider the dressed cJT

model

H∆k
cJT =

N∑
n=1

δna
†
nan +

Ωx

2

N∑
j=1

σxj + g

N∑
j,n=1

σzj (anMj,ne
i∆kd0j + H.c.). (3.28)

Let us make Ωx = 0 for simplicity, and apply the polaron transformation (3.7)

to the former Hamiltonian, so that

H̄∆k
cJT =

N∑
n=1

δna
†
nan +

N∑
j,l=1

J∆k
j,l σ

z
jσ

z
l . (3.29)

In this expression

J∆k
j,l = cos[∆k d0(j − l)] Jj,l, (3.30)

that is, the optical phases dress the effective spin couplings. The dependence in the

momentum may favour ground state orders beyond the AF/F magnetic phases of

the Ising model. In particular, we shall see that for long-range interactions there

are two different patterns that we can identify as the ground states of H∆k
cJT. This

is reminiscent of the Hopfield model of associative memory [195], that we briefly

review now.

3.4.2 The Hopfield model of associative memory

The Hopfield model of associative memory is a dynamical system in statistical mech-

anics with an energy function given by the Hamiltonian [196]

HHopfield = −1

2

N∑
j,l=1

Jj,lσ
z
jσ

z
l , 〈σzj 〉 = ±1, (3.31)

where

Jj,l =
1

N

p∑
µ=1

ξµj ξ
µ
l . (3.32)

The interactions are comprised of p patterns ξµj , or memories, with random values±1

at every site. The patterns are (quasi-) orthogonal, meaning that 1/N
∑N

j=1 ξ
µ
j ξ

ν
j =

δµ,ν when N → ∞. There are two minimum energy states associated with every

memory, 〈σzj 〉 = ±ξµj . This can be seen by noticing that any spin flip from the

previous configurations leads to an increase of the overall energy. We refer to the

ground states as Hopfield orders, which amount to 2p because of the Z2 symmetry.
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The Hopfield model acts as an associative memory because an initial random

state always evolve into one of the memories at the end of the dynamics generated

by HHopfield. That is to say that any input gets associated with a previously learned

memory. This can only happen if the overlap between the initial state and a given

pattern ξµj is above a certain threshold [197].

Now let us turn back to the dressed Ising couplings (3.30). In the long-range

limit of the couplings δN/2 � tC, and assuming that the interaction range ξ ' N ,

we can approximate

J∆k
j,l ' −Jexp

∑
µ=c,s

ξµj ξ
µ
l , (3.33)

with ξc
j = (−1)j cos(∆k d0j), ξ

s
j = (−1)j sin(∆k d0j). These two different config-

urations of the couplings can be independently satisfied, because they are (quasi-)

orthogonal. The orders 〈σzj 〉 = sign(ξc
j ) and 〈σzj 〉 = sign(ξs

j) are ground states of

the problem. Thus, we conclude that the classical limit of H∆k
cJT is equivalent to a

Hopfield model with two memories. We note that ξµj 6= ±1, and that they are not

random, since they are determined by the momentum of the lasers ∆k. Nevertheless,

we will refer to the previous ground states as Hopfield states.

On the other hand, in the limit of short-range interactions δN/2 � tC, J∆k
j,l '

cos[∆k d0(j− l)] Jdipδj,l+1. The ground state is either antiferromagnetic (AF) or fer-

romagnetic (F), depending on the sign of the nearest-neighbour couplings: 〈σzj 〉F =

〈σzj+1〉F if J∆k
j,j+1 < 0, and 〈σzj 〉AF = −〈σzj+1〉AF if J∆k

j,j+1 > 0.

In the regime in which δN/2 ' tC, the ground state must be an interplay of the

Hopfield and AF/F orders. However, the interactions favouring both types of orders

cannot be simultaneously satisfied. This leads to an extensive amount of degeneracy

in the ground state, which is a defining feature of magnetic frustration [176]. We

note that this regime must showcase some of the features of a phase transition,

despite of the fact that is not clear whether an order parameter can be defined in

this context.

3.4.3 Frustration in the classical limit of the Hamiltonian

The classical limit of H∆k
cJT is given in (3.29). The motional ground state consists of

ions arranged in the structural configuration dictated by the magnetic state 〈σzj 〉.
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On the other hand, the ground state of the spins is determined by the dressed

interactions J∆k
j,l .

To locate the region in which the frustration occurs, we have depicted the weights

of the exponential and dipolar components of Jj,l, that is, Jexpe
−1/ξ and Jdip (cf.

Fig. 3.7). We see that around the value tC = t̄C ' 0.5, the dipolar contribution

is overtaken by the exponential decay. Therefore, we expect that the interactions

leading to the AF/F and Hopfield orders are competing in this region.

Figure 3.7: Dependence on tC of the different contributions to the effective couplings

Jj,l. Units such that δN/2 = g = 1.

Let us consider the ground state for ∆k = 5π/3d0. In this case, the short-range

limit leads to an antiferromagnetic state, whereas the long-range limit is given by

〈σzj 〉 = sign[(−1)j cos(5π/3j)] or 〈σzj 〉 = sign[(−1)j sin(5π/3j)]. When tC = t̄C, there

is an extensive number of spins for which pointing either upwards or downwards gives

the same contribution to the energy (cf. Fig. 3.8). As a consequence, many different

states have energies that are very close to the global energy minimum.

Having understood the classical limit of H∆k
cJT, we proceed now to study the

regime with Ωx > 0. We focus exclusively on the magnetic ground state in the

following.

3.4.4 Spin-liquid features in the quantum regime

The interplay of the transverse field and the magnetic frustration gives rise to the

most interesting phenomena. Because of the extensive amount of degeneracy when



59

Figure 3.8: Magnetic ground states for ∆k = 5π/3d0. The frustrated spins con-

tribute equally to the ground state energy regardless of the direction they point

at.

tC ' t̄C, a small value of the field can trigger an observable magnetization in the

transverse direction. At the same time, spins are free to fluctuate, but they can only

explore the low-lying energy states, that are an interplay of the Hopfield and AF/F

orders. As a consequence, the fluctuations may feature emergent long-range correl-

ations. This regime with enhanced correlations should survive up to infinitesimal

values of Ωx, and is reminiscent of a spin-liquid phase [7].

We depict the mean transverse magnetization, mx = (1/N)
∑

j〈σxj 〉 in Fig. 3.9.

For tC & 0.5 many spins are subjected to frustrated interactions, and they must align

appreciably with σx for infinitesimal values of Ωx. Outside the frustrated regime,

we recover either the AF/F or the Hopfield orders, which are more resilient against

perturbations. Therefore, we see a sudden change in mx depending on whether the

system is in the frustrated region or not. We have calculated some spin orders for

different values of tC, that illustrate the transition between the ordered and the

frustrated phases (Fig. 3.10).

For the calculations of the spatial quantum correlations

Cxx
j,l = 〈σxj σxl 〉 − 〈σxj 〉〈σxl 〉, (3.34)

we have performed a simulation for a slightly longer chain. This is depicted in Fig.

3.11. We see that Cxx
j,l exhibits the typical exponential decay of gapped phases,
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Figure 3.9: Magnetization mx in the dressed cJT model, for N = 40 ions. Energy

units δN/2 = g = 1. We show the DMRG calculations for ∆k = 5π/(3d0). Rest of

parameters as in Fig. 3.3. The red circle pinpoints the highly frustrated regime.

The inset shows the sudden appearance of magnetization at tC ' t̄C for small Ωx.
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Figure 3.10: Different ground states for ∆k = 5π/(3d0),Ωx = 0.01. The rest of the

parameters are the same as in Fig. 3.3. For tC = 0.48 the system is in the AF phase.

It suddenly jumps into the frustrated regime for tC = 0.49, and features different

exotic configurations in the highly frustrated regime, around the value t̄C ' 0.5.

Finally, for tC = 1.6 the system is well inside the non-frustrated Hopfield phase.

for the short- and long-range coupling regimes [40]. The correlations in the AF/F
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Figure 3.11: Correlation functions Cxx
j,l for values of tC in the AF/F, Hopfield and

frustrated phases. Results for the ground state of a chain with N = 50 ions calcu-

lated with a DMRG algorithm (number of states kept D = 18, maximum number

of phonons n = 9), in units of g = 1, δN/2 = 1, with Ωx = 0.01, and ∆k = 5π/(3d0).

phase (tC = 0.48), exhibit no structure apart from the exponential decay. On the

contrary, in the Hopfield phase (tC = 1.5), the periodicity imprinted by the laser

force, ∆k = 5π/(3d0), shows up clearly on the spatial correlations. However, the

most interesting effect is the enhancement of correlations in the highly frustrated

regime. The abrupt change in correlation range between tC = 0.48 (no frustration)

and the value tC = 0.49 (frustrated region) shows that the variation on the physical

properties of the ground state between these two regimes happens very sharply. This

provides us with another accurate resource to pinpoint the frustrated regime, along

with the sudden appearance of transverse magnetization.

3.5 Quantum annealing in the cooperative Jahn-

Teller model

Finding the ground state of H∆k
cJT in the frustrated region is a difficult problem,

since the degeneracy in the low-lying sector of the Hamiltonian is enormous. Fortu-

nately, there are algorithms that may be able to ease this task. In this section we

discuss one of the most popular, known as quantum annealing [186–188]. This al-
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gorithm involves performing a unitary dynamics on the ground state, and therefore

its classical simulation is in general a complex problem [18, 61]. Therefore, we have

assessed the success of the algorithm within a mean-field approximation. We show

that trapped-ion quantum simulators are perfect test-beds for quantum annealing.

3.5.1 Introduction

Quantum annealing is an algorithm to find the ground state of a quantum model

[186–188]. The algorithm relies on the adiabatic approximation to the quantum

dynamics. Let us assume that we are given a time-dependent Hamiltonian, with

typical energies En, and an associated time scale τev. The adiabatic approximation

establishes that every eigenstate |En(0)〉 evolves into |En(t)〉 at a later time t as

long as En � ~/τev [51]. In quantum annealing one simulates the evolution of the

ground state under a time-dependent Hamiltonian with two limits: at time t0 = 0, it

describes a ‘trivial’ model whose ground state can be exactly computed; for tf � τev,

one arrives at the ‘target’ Hamiltonian, whose ground state may be a complicated

many-body state. Assuming that the adiabatic approximation holds, the initial

ground state must have evolved into the ground state of the target Hamiltonian.

Quantum annealing can be advantageous in finding the ground state of a quantum

Ising chain with frustrated interactions [198, 199]. The energy landscape of a sys-

tem with frustration is a rough surface, with many local minima separated by steep

‘hills’. Intuitively, tunnelling through narrow barriers during quantum annealing

decreases the probability of getting stuck in a ‘false’ minimum, and increases the

chance of hitting the actual ground state. Nevertheless, quantum annealing suf-

fers from the same difficulty as any other classical algorithm dealing with quantum

systems: if the problem is comprised of many degrees of freedom, the exponential

increase of the dimension of the Hilbert space prevents its efficient simulation with

a computer. This has triggered the creation of quantum annealing devices, which

are machines that simulate the Hamiltonian for the annealing protocol [200–202].

These devices are based on superconducting circuits, because of the large number

of qubits available in these systems, but there is no restriction in which physical

platform can simulate quantum annealing.

Trapped-ion systems exhibiting frustration in its ground state would also be
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perfect test-beds for implementing quantum annealing. Therefore, we are going to

study this algorithm for the case of the cJT model. To gain some insight into the

outcome of the protocol in a real experiment, we are going to solve the dynamics

in a mean-field approximation. This approach may describe the quantum evolution

correctly, as it has been shown that its predictions match the results of an actual

quantum annealing device [203]. As the mean-field wave function is separable, one

can argue that the build-up of quantum correlations along the evolution is not critical

for the performance of quantum annealers. However, this may not be true in general.

Only an eventual deviation of the mean-field prediction from the experimental result

can settle if there is an emergence of correlations in quantum annealing. Here

we limit ourselves to assess the performance of the protocol within mean-field, as

presented in the next section.

3.5.2 Mean-field theory

We present a study of quantum annealing for the ground state of H∆k
cJT in the different

regimes of the couplings. The simulation of the algorithm in trapped-ion chains is

straightforward, and proceeds by switching the different terms in the Hamiltonian

following a suitable schedule. In particular, we consider

Had(t) =
N∑
n=1

δna
†
nan +

Ωx(t)

2

N∑
j=1

σxj + g(t)
N∑

j,n=1

σzj (anMj,ne
i∆kd0j + H.c.), (3.35)

where the parameters follow the annealing schedules

Ωx(t) = Ωxe
− t
τev ,

g(t)2 = g2(1− e−
t
τev ).

(3.36)

According to (3.36), at t0 = 0 there is no spin-phonon coupling. We initialize the

dynamics in the ground state

|ΨGS(t = 0)〉 = |0〉
N⊗
j=1

|←〉j . (3.37)

The vector |←〉j is an eigenstate of the σxj operator, with 〈σxj 〉 = −1. |ΨGS(t = 0)〉

corresponds to the paramagnetic phase. The system evolves towards the ordered

phase in the strongly coupled spin-phonon regime Ωx → 0, g 6= 0, and at some
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time tf � τev, it reaches a final state, that under ideal adiabatic evolution would

correspond to

|ΨGS(t = tf )〉 = |0〉 |Ψspin〉 , (3.38)

where |Ψspin〉 is the ground state of
∑N

j,l=1 J
∆k
j,l σ

z
jσ

z
l .

The evolution of any observable Ô under (3.35) follows the Heisenberg equations

of motion
dÔ(t)

dt
= i[Had(t), Ô(t)]. (3.39)

In the mean-field approximation, we assume for all times that the wave function

does not contain any spin-boson or spin-spin correlations, so the former equations

applied to the expectation values are given as

d

dt
〈an(t)〉 = −iδn〈an(t)〉 − ig(t)

N∑
j=1

〈σzj (t)〉M∗
j,ne

i∆kd0j,

d

dt
〈a†n(t)〉 = iδn〈a†n(t)〉+ ig(t)

N∑
j=1

〈σzj (t)〉Mj,ne
−i∆kd0j,

d

dt
〈σxj (t)〉 = −2g(t)

N∑
n=1

〈σyj (t)〉(Mj,n〈an(t)〉e−i∆kd0j + c.c.),

d

dt
〈σyj (t)〉 = −Ωx(t)〈σzj 〉+ 2g(t)

N∑
n=1

〈σxj (t)〉(Mj,n〈an(t)〉e−i∆kd0j + c.c.),

d

dt
〈σzj (t)〉 = Ωx(t)〈σyj (t)〉.

(3.40)

To solve these equations, we write them in the interaction picture with respect

to
∑N

n=1 δna
†
nan. We focus on the first of these equations, that in the interaction

picture reads

d

dt
〈ãn(t)〉 = −ig(t)

N∑
j=1

〈σzj (t)〉ei∆kd0jM∗
j,ne

iδnt, ãn = ane
iδnt. (3.41)

Since the protocol starts in the paramagnetic phase, where 〈ãn(0)〉 = 0, we get after

an integration by parts,

〈ãn(t)〉 = −g(t)

δn

N∑
j=1

〈σzj (t)〉ei∆kd0jM∗
j,ne

iδnt

+
1

δn

∫ t

0

dt′eiδnt
′ d

dt′

[
g(t′)

N∑
j=1

〈σzj (t′)〉ei∆kd0jMj,n

]
. (3.42)

We can drop the second term in the right hand side of Eq. (3.42) as long as we

assume that
d

dt
〈σxj (t)〉 � δn, (3.43)
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and τ−1
ev � δn. The latter requirement is fulfilled for large enough τev, but the first

condition must be validated a posteriori from the self-consistency of the results. We

will return to this point at the end of the discussion. With this approximation, the

relation (3.42) renders a closed set of equations for the spin observables

d

dt
〈σxj (t)〉 = 2

N∑
l=1

(1− e−
t
τev )J∆k

j,l 〈σ
y
j (t)〉〈σzl (t)〉,

d

dt
〈σyj (t)〉 = −Ωx(t)〈σzj (t)〉 − 2

N∑
l=1

(1− e−
t
τev )J∆k

j,l 〈σxj (t)〉〈σzl (t)〉,

d

dt
〈σzj (t)〉 = Ωx(t)〈σyj (t)〉.

(3.44)

We recall that the expectation values are taken with respect to the initial state (3.37),

|ΨGS(t = 0)〉 = |0〉
⊗N

j=1 |←〉j. By plugging this initial condition in the former

equations we see that this state is actually a stationary solution. Nevertheless, this

result cannot be physical, as the spin-phonon coupling does not commute with σxj ,

and must favour the orientation of the spins in the z direction. The explanation

to this contradiction is that the stationary solution is a spurious artefact of the

mean-field approximation. We can cure this by adding an extra driving field into

the adiabatic protocol

Had(t)→ Had(t) +
Ωz(t)

2

N∑
j=1

σzj , Ωz(t) = Ωze
− t
τ ′ev . (3.45)

The typical time of Ωz(t) is such that τ ′ev � τev. The reason for this convention is

that the extra field plays a role at the beginning of the protocol exclusively. This

term must be zero when the evolution gets close to the classical limit, so it does

not spoil the form of the target Hamiltonian. The initial state must be modified

accordingly,

|ΨGS(t = 0)〉 = |0〉
N⊗
j=1

|θj〉 , (3.46)

where
⊗N

j=1 |θj〉 corresponds to the spin ground state, which depends on the relative

value of Ωx and Ωz. The evolution equations change as well, and we get

d

dt
〈σxj (t)〉 = −Ωz(t)〈σyj (t)〉+ 2

N∑
l=1

(1− e−
t
τev )J∆k

j,l 〈σ
y
j (t)〉〈σzl (t)〉, (3.47)

and

d

dt
〈σyj (t)〉 = Ωz(t)〈σxj (t)〉−Ωx(t)〈σzj (t)〉− 2

N∑
l=1

(1− e−
t
τev )J∆k

j,l 〈σxj (t)〉〈σzl (t)〉. (3.48)

The equation for 〈σz(t)〉 remains the same.
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3.5.3 Discussion of the algorithm

We have integrated these equations for different values of the hopping amplitudes

tC (cf. Fig. 3.12). We calculate 〈σzj (t)〉, and at a time t = tf � τev, τ
′
ev, we quantify

Figure 3.12: Outcome of the quantum annealing protocol. N = 20, in energy units

such that δN/2 = g = 1, and values of tC as indicated in the figure. ∆k = 2π/(3d0),

and Ωx = 5, Ωz = 10−1 Ωx, and τev = 10 τ ′ev.

the resemblance between the exact ground state in the classical limit, 〈σzj 〉ex, and

the result of quantum annealing , 〈σzj 〉QA, by the overlap,

F =
1

N

∣∣∣∣∣∑
j

〈σzj 〉ex〈σzj 〉QA

∣∣∣∣∣ . (3.49)

This calculation is performed for increasing typical evolution times τev. The exact

ground state 〈σzj 〉ex is the configuration that minimizes the energy of the Hamilto-

nian
∑N

j,l=1 J
∆k
j,l σ

z
jσ

z
l , and it can be computed by means of a minimization routine.

However, because of the large amount of degeneracy in the event of frustration, the

most reliable way to proceed is to consider all the possible configurations of the

spins, and single out the one with the minimum energy. Because of the exponential

enlargement of the configuration space, this approach becomes rapidly infeasible

with an increasing number of spins. Thus, we had to restrict our simulations to

N = 20 ions.

We depart from the previously considered value of ∆k, and focus on the case

∆k = 2π/3d0. The regimes of the ground state at Ωx = 0 are analogous to those

of ∆k = 5π/3d0 (cf. sect. 3.4.3), except for the short-range interactions limit,
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in which the ferromagnetic order minimizes the energy. The mean-field adiabatic

evolution of the spin-phonon system is predicted to reach the global ground state far

from the highly frustrated regime. Accordingly, for values of the coupling tC � t̄C,

the evolution hits the F phase (upper line in Fig. 3.12). Quite remarkably, when

tC = t̄C ' 0.5 (second line from the top), the mean-field dynamics is still able to

reproduce the exact solution.

The fact that it takes a longer time to converge signals the appearance of a

more convoluted energy landscape. We note as well that before reaching the value

F = 1 steadily, the protocol explores other orders, pinpointing the existence of

quasi-degenerate solutions. On the contrary, deeper in the highly frustrated regime

tC = 0.55 (bottom line), the mean-field approximation performs very poorly, and

it does not abandon the initial condition for any of the time scales considered. For

tC = 1 (third line from the top), the simulation is also unable to converge in the

time scales considered. These two latter results may imply that in this regime there

are features that cannot be captured by the mean-field approximation.

The mean-field approximation is only justified in the regimes where correlations

do not play a major role. We know that the ground state is well described by a

mean-field ansatz in the limit of Ωx →∞, and in the event of long-range interactions

tC � δN/2 [192]. Outside these regions, only an exact simulation of the full quantum

dynamics would assess the validity of quantum annealing. In the light of the previous

results, we cannot claim that the mean-field approach correctly predicts the exact

annealing dynamics, nor that it does not. Therefore, this system is an ideal scenario

for experiments to test whether a quantum correlated annealer would yield results

which cannot be described by the mean-field (separable) wave function.

Regarding the condition (3.43), we present in Fig. 3.13 the evolution of the spin

mean values during the annealing process. The inset shows the spin precession as a

result of the asymmetry in the typical times of evolution between the field Ωx and

the symmetry breaking term Ωz. We estimate the time derivative of 〈σzj (t)〉 as the

product of the amplitude of the oscillation divided by its period, so that

d

dt
〈σzj (t)〉 ∼ 10−3 � minnδn = δN/2 = 1. (3.50)

Therefore, we see that dropping the integral term in Eq. (3.42) is justified in this

case.
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Figure 3.13: Evolution of the spin expectation values. We set tC = 2, for units such

that g = δN/2 = 1, with ∆k = 0,Ωx = Ωz = 5, τev = 8τ ′ev = 10−4.

3.6 Trapped-ion experimental parameters

The cooperative Jahn-Teller Hamiltonian can be naturally implemented in state-of-

the-art trapped-ion experiments. In order to explore its phase diagram, the system

is initialized by cooling the chain close to the vibrational ground state. Then, by

tuning the different parameters, it is possible to realize the symmetry-breaking phase

transition into the frustrated region, as well as the adiabatic protocol for quantum

annealing.

Let us consider the parameters for the phonon Hamiltonian (3.5). A typical

average distance between ions is d0 = 10 µm [28]. Considering 9Be+ ions (m =

1.49650 · 10−23 g) and a radial trapping frequency ωx = 5 (2π) MHz, we get a

Coulomb coupling (e = 3.33564 · 10−10 cm3/2g1/2s−1)

tC =
e2

mωxd3
0

' 38 (2π) kHz. (3.51)

The latter is the most important experimental energy scale, limiting the overall speed

of an experiment. For the effective Rabi frequency Ωx we assume an optical driving

of the carrier resonance. Typical values for these processes are around 100 kHz [149],

and therefore on the same order of tC. Regarding the spin-phonon coupling with

the transverse modes, the interaction Hamiltonian is given as

Ĥint =
N∑
j=1

Ωjσ
z
j (e

i(∆k·rj(t)−ωLt) + H.c.). (3.52)
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Let us assume an optical force with |∆k| ≈ 2π/320 nm-1. We focus on the value of

laser momentum considered for quantum annealing, ∆k = 2π/(3d0). This can be

achieved by using an angle θ ≈ 0.6 degrees between the incident optical force and the

perpendicular to the ion chain, such that ∆kx = cos(θ)|∆k|, and ∆kz = sin(θ)|∆k|.

The laser phase is then given as

(∆kx, 0,∆kz) · (δrx,j(t), δry,j(t), r(0)
j + δrz,j(t))

=
N∑
n=1

(ηxnM
x
j,nax,ne

−iωxnt + H.c.) +
N∑
n=1

(ηznM
z
j,naz,ne

−iωznt + H.c.) + ∆kzr
(0)
j , (3.53)

where ηβn = ∆kβ/
√

2mωβn. For the values considered above, the Lamb-Dicke para-

meter of the transverse motion is maxn η
x
n ≈ 0.21. This ensures that the sidebands

can be addressed. Assuming that the processes on the axial direction are fast-

rotating, we have that

Ĥint → g
N∑

j,n=1

σzj (Mj,ne
iδntei∆kd0ja†n + H.c.). (3.54)

As in the case of the transverse field, the typical magnitude of the Rabi frequency g

is around 100 kHz [149]. The (detuning) frequency δn is referred to the zigzag mode

of transverse motion.

We have still to justify that the momentum ∆k in the trap direction does not

excite the axial modes. The corresponding axial trapping frequencies for d0 = 10

µm and 9Be+ ions, in the event of N = 20 and 50, are ωz = 192 and 94 (2π) kHz,

as can be read from a calculation of the ions’ equilibrium positions. The maximum

axial normal mode energies can be computed from a numerical diagonalization of

the elasticity matrix of the chain [118], and they are maxn ω
z
n = 2.29 (2π MHz)

and maxn ω
z
n = 2.5 (2π) MHz, respectively. Therefore, the normal axial modes are

not resonant with the transverse, centred around ωx = 5 (2π) MHz. Furthermore,

the spin-dependent force can be slightly off-resonant with respect to the transverse

modes, while far detuned from the axial modes. Also, with the former values, we

get Lamb-Dicke parameters maxn η
z
n = 0.011 (for N = 20, ωz = 192 (2π) kHz) and

maxn η
z
n = 0.016 (for N = 50, ωz = 94 (2π) kHz). The condition maxn η

z
n � maxn η

x
n

ensures that the coupling to the axial modes is negligible.

With the values considered above, the evolution time for quantum annealing

in Fig. 3.12 would be of the order of milliseconds. This time scale is within the
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experimental coherence times of these experiments, since typical simulation times

for adiabatic preparation of frustrated ground states are of 0.3 ms [124].

3.7 Conclusions

The aim of this chapter was to realize frustrated interactions with trapped-ion

quantum matter. Associated with the frustrated region in the phase diagram, we

expected to unveil some features of a quantum spin-liquid (QSL) phase. Also, we

wanted to assess the performance of quantum annealing in finding the ground state

in the presence of frustration.

In order to give rise to the frustrated interactions, we studied the effect of an in-

homogeneous addressing of the ions. This led to a competition between the dressing

by optical phases and the effective spin couplings mediated by the phonon collective

excitations. Since the resulting interactions could not be simultaneously satisfied, we

were able to realize the desired frustrated interactions. The simulation of frustrated

systems with trapped ions has been reported in [124, 125], but these experiments

relied on the weak-coupling regime and on the individual addressing of motional

modes. Our proposal opens up a scalable method to induce frustrated interactions

while allowing for fast simulation times. Furthermore, the dressing by optical phases

gives rise to far richer physics. ∆k provides us with a parameter to tune the frus-

tration, while the range of the interactions can be independently adjusted. The

interplay of these two elements originates a plethora of strongly-correlated states,

whose physics is still largely unexplored. Also, dressing by optical phases could

be carried over to other experimental platforms where long-range interactions are

available as well, such as ions in 2D Penning traps.

Regarding the features of the quantum spin-liquid phase, we performed DMRG

simulations focusing on the properties of the frustrated region. We established the

emergence of enhanced quantum fluctuations and correlations, which are typical of

QSL phases. In general, we have indications of the QSL behaviour, but a deeper

qualitative analysis is missing. The proper characterization of the quantum fluctu-

ations must be performed for increasing system size, as well as the enhancement of

quantum correlations. This would allow us to eliminate finite size effects, and to
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properly establish a possibly diverging susceptibility to external perturbations in the

frustrated phase. Also, an extensive simulation could shine light on the functional

form of the correlations in the frustrated region, which could be power-law because of

the underlying order in the fluctuations of the frustrated phase. A possible extension

of this work could consider the generalization to 2D experiments with trapped-ions.

This is specially appealing since one of the most popular quantum spin-liquid states,

the resonating-valence-bond, was originally proposed for a 2D lattice [204].

We recall that our DMRG approximated the dipolar coupling of the phonons by

a first-neighbours interaction. In general, DMRG is difficult to implement with long-

range interactions. This is because in the construction of the block Hamiltonian,

one must redefine the matrix representations of every operator within the block at

every step. This translates into a significant increase of computational time. In any

case, we must stress that neglecting the dipolar decay has not prevented us from

simulating spin interactions effectively long-ranged. Therefore, one can avoid the

implementation of DMRG with long-range couplings for the spins at the expense of

introducing the phononic degrees of freedom. The addition of the phonons means

also an overhead for the method, since the effective on-site dimension is no longer

that of the spin alone. Thus, it is interesting to assess if there is a trade-off in

including the phonons in these simulations. From the calculations presented in

this chapter, we cannot claim that there is an advantage or not, because we have

not compared the efficiency of our method with the DMRG in the event of long-

range interactions. Therefore, this issue could be settled by performing this latter

calculation.

Finally, trapped-ion quantum simulators are perfect test-beds to assess the po-

tential of quantum annealing. State-of-the-art trapped-ion experiments perform

adiabatic preparation of states routinely, and it is possible to ensure the quantum

coherence during the evolution [124]. This would allow us to settle the role played

by correlations in quantum annealing, since our mean-field calculation neglected this

feature. Thus, our calculations were not conclusive about the success of quantum

annealing. This could be supplemented with the use of Quantum Monte Carlo

simulations, that are able to tackle the exact unitary dynamics [202].
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Chapter 4

Gauge symmetry and first-order

phase transition in the Ising-Rabi

lattice model

4.1 Introduction

Our aim in this chapter is the realization of a minimal model with a local (gauge)

symmetry. Given a model defined on a lattice, a gauge symmetry is an invariance of

the Hamiltonian that holds independently at every site [205]. In contrast, we have

been discussing so far global symmetries, which act simultaneously on every site of

the lattice.

Models endowed with a gauge symmetry are very important in physics, in partic-

ular in the realm of high energies. For instance, the theory of the strong interactions,

QCD, enjoys a SU(3) gauge symmetry [13, 14]. This theory is well understood in

the weak-coupling limit, but a thorough study of its non-perturbative regime is still

lacking. Since the coupling strengths in quantum simulators can be tuned at will,

an eventual realization of QCD with synthetic quantum matter could gain access to

its whole phase diagram. Nevertheless, this goal is still beyond current experimental

capabilities. For this reason, several works have suggested the implementation of

simpler ‘toy models’ first, such as compact QED [206], or a lattice Schwinger model

[207]. Actually, the digital quantum simulation of the latter in a few-qubit quantum

computer has been recently reported [81].
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Following these advances, we present in this chapter the implementation of a

minimal system exhibiting a gauge symmetry. Actually, this can be accomplished

by a simple generalization of the Rabi lattice model [185]. Consider an Ising model

such as

HI =
∑
j

hjσ
x
j − J

∑
j

σzjσ
z
j+1. (4.1)

We provide this Hamiltonian with a local discrete invariance by promoting the clas-

sical field hj to a quantum variable, for instance the position operator of a local

bosonic field

hj → g(aj + a†j).

After this substitution, we get an Ising spin model where the transverse field is a

variable with quantum dynamics of its own. This Hamiltonian possesses a discrete

local symmetry, since it is invariant under a set of local transformations defined at

each site j, σxj → −σxj , aj → −aj. If we include a finite energy for the bosonic

modes, we arrive at

HIR = δ
N∑
j=1

a†jaj + g
N∑
j=1

σxj (a†j + aj)− J
N−1∑
j=1

σzjσ
z
j+1. (4.2)

This model turns out to be a Rabi lattice, where different sites are coupled by an

Ising interaction between spins. Thus, we refer to HIR as the Ising-Rabi lattice (IR)

model. We expect that, analogously to the cooperative Jahn-Teller model, the Ising-

Rabi lattice undergoes a phase transition between phases of different symmetry.

We proceed now to a systematic study of the invariances of HIR. Then we explain

the implementation of the model with trapped-ion microtraps. We discuss the phase

diagram of the model by means of perturbation theory and two variational wave

functions. Finally, we present the results of an exact diagonalization of the Ising-

Rabi Hamiltonian with DMRG, and conclude the chapter giving the experimental

parameters for an eventual implementation, and some conclusions.

4.2 Symmetry properties of the model

As stated above, Hamiltonian (4.2) is invariant under a gauge (local) Z2 transform-

ation, generated by

P(j)
gauge = e

iπ

(
a†jaj+

σzj
2

)
. (4.3)
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Physically, this transformation corresponds to the situation depicted in Fig. 4.1. As

Figure 4.1: Discrete gauge transformation in the IR model.

shown, P(j)
gauge is a rotation of the frame at site j, changing x by−x. As a consequence

σxj → −σxj and aj → −aj. In the event of spontaneous symmetry breaking of this

invariance, we would get a phase with 〈aj〉GS 6= 0 and 〈σxj 〉GS 6= 0, analogous to

the antiferromagnetic phase of the cooperative Jahn-Teller model. However, this

possibility is precluded by a general result known as Elitzur’s theorem [205, 208].

According to the theorem, there cannot be spontaneous symmetry breaking of a

gauge invariance in a lattice gauge theory.

The Hamiltonian (4.2) has also another symmetry, this time a global invariance

under the change z → −z, that carries σzj → −σzj (cf. Fig. 4.2). This symmetry is

Figure 4.2: Global transformation (4.4).

global, and it is generated by the unitary operator

P = eiπN ,with N =
N∑
j=1

σxj
2
. (4.4)

Analogously to the Ising model, the IR model can undergo the spontaneous sym-

metry breaking of this invariance, so that the ground state features a magnetization

〈σzj 〉 6= 0. However, in contrast to the Ising model, the ground state of HIR breaks

the global symmetry all over the phase diagram for finite system size N . This means

that an eventual phase transition in the IR model must occur between phases with

the same symmetries.
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4.3 Implementation with ion microtraps

Before starting with the discussion of the phase diagram of the model, we describe

the realization of the IR Hamiltonian with trapped-ion chains in arrays of microtraps

[134–139]. The choice of these systems instead of the usual collective ion traps stems

from the necessity of different trapping frequencies at every site of the chain, to give

rise to the bosonic part of HIR.

There are other experimental situations where HIR could be implemented. For

instance, superconducting qubits are a platform where Rabi lattice models are easily

realized [112]. As with trapped-ion quantum simulators, the effective Ising interac-

tion could be induced through the coupling to collective bosonic modes. Also, an

eventual realization with Rydberg ions [209] could benefit from the fact that the

spin couplings are directly implemented by the dipole-dipole interactions between

ions.

The Ising-Rabi lattice Hamiltonian

HIR = δ
N∑
j=1

a†jaj + g
N∑
j=1

σxj (a†j + aj)− J
N−1∑
j=1

σzjσ
z
j+1 (4.5)

consists of three parts. We begin by describing how to give rise to the bosonic part

of HIR. We recall that the quantized oscillations of the ions around their equilibrium

positions are given by a phonon Hamiltonian such as (2.39),

Hphonon =
N∑
j=1

∑
β

ωβj a
†
β,jaβ,j +

1

2

N∑
j>l=1

∑
β

tβj,l(a
†
β,jaβ,l + H.c.). (4.6)

The gauge symmetry of the IR model is based on the fact that we can make the trans-

formation aj → −aj for a particular j, and this leaves the Hamiltonian unchanged.

The terms tβj,l in (4.6) necessarily break this invariance. Thus, we would like to get

rid of tβj,l for at least one direction. At the same time, the phonon coupling between

modes in another direction needs to mediate the effective spin coupling Jj,lσ
z
jσ

z
l . A

possible way of meeting these requirements is using different local frequencies for

the phonons in a particular direction (cf. Fig. 4.3). We assume a set of different

trap frequencies along the transversal direction, ωxj . Then, the hopping events in

(4.6) associated with the motion in the x direction are fast rotating. Specifically, if

ions j and l are subjected to frequencies ωxj and ωxl , the terms a†x,jax,l would rotate
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Figure 4.3: Scheme representing trapped ions in a linear array of microtraps with

the electrodes printed on the surface. Solid arrows represent the laser fields acting

on the ion chain. We indicate the trap frequencies at every site.

with exp[−it(ωxj − ωxl )] in the interaction picture for the motion. We can perform

the Rotating Wave Approximation (RWA) as long as txj,l � |ωxj − ωxl |. Assuming

that this is the case, hopping terms in Hphonon can be safely ignored, and we are led

to the Hamiltonian for the transverse modes

Hx =
N∑
j=1

ωxj a
†
x,jax,j. (4.7)

The common frequency ωxj → δ can be achieved by means of local laser detunings,

discussed later on. We recall that the motional coupling between different traps

decays fast as a function of the inter-ion distance, tβj,l ∼ 1/|r(0)
j − r

(0)
l |3. Thus,

it is only necessary to eliminate the coupling between nearest or next-to-nearest

neighbour ions, since longer-range terms will give negligible contributions.

Regarding the motion in the z direction, we set ωzj → ωz. The Hamiltonian for

the longitudinal motion is

Hz =
N∑
n=1

ωzna
†
z,naz,n (4.8)

in the basis of collective modes of motion, az,n =
∑N

j=1 M
z
j,naz,j, with normal fre-

quencies ωzn. These normal modes will mediate the effective spin-spin interaction.

To this end, we add a pair of laser fields along the trap axis z, that induce a σz
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interaction (cf. (2.63))

Hz−force(t) = gz

N∑
j,n=1

σzj

(
M z

j,naz,ne
itδz0ei∆kzr

(0)
j + H.c.

)
, (4.9)

of strength gz. The laser (detuning) frequency is defined with respect to the lowest

energy mode of the longitudinal motion, which is the centre-of-mass (COM) mode

n = 0 [118]. We assume that r
(0)
j = d0j, with d0 the separation of the traps, and

∆kz is chosen as to give the same phase on every ion. We work in a rotating frame

such that Hz−force(t)→ Hz−force(0) =⇒ e±itδ
z
0 → 1. If δz0 is fairly off-resonant with

the bottom of the band, and gz � δz0 , a polaron transformation as in the cJT model

allows us to express (4.9) as

Hspin−spin =
N∑

j,l=1

Jj,lσ
z
jσ

z
l . (4.10)

We will assume the short-range limit tzj,j+1 � δz0 of the effective couplings (cf.

(3.18)),

Jj,l ' −
Jdip

|j − l|3
, Jdip '

g2
zt
z
j,j+1

2(δz0)2
, tzj,j+1 =

2e2

mωzd3
0

, (4.11)

which can be assimilated by a first-neighbours interaction.

Finally, local spin-phonon couplings in HIR require driving simultaneously red

and blue sideband transitions for the transverse oscillations (cf. (2.59)). However,

as we have already discussed, ωxj are different among close traps. This means that

matching the resonance conditions for the spin-dependent forces requires as many

laser wavelengths as different trapping frequencies. Let us consider the array of traps

as consisting of N/n, n ∈ N sequential sets of traps. Within these, neighbouring

traps frequencies are different. We set a constant difference between one trap and

the next, ωxj −ωxj+1 ≡ ∆ωx. All the sets have the same arrangement of n frequencies,

and they appear one after the other along the chain. Let us call these frequencies

ωx1 , . . . , ω
x
n. Any frequency can be written as ωx[j], where [j] = (j − 1) mod n + 1.

Now, we apply n laser fields transversally to the chain, with mutual detunings

∆ωx, . . . , (n − 1)∆ωx. Because of this frequency difference, they can address the

whole chain at the same time. In this way, the matching condition only happens

between a given laser with, let us say ωL = ω + ωx[j] − δx[j], and the ions that are

trapped at frequencies ωx[j] (ω is the spin transition frequency). This gives rise to



78

the σx-force (cf. (2.59))

Hx−force(t) = gx

N∑
j=1

σxj (a†x,je
iδx

[j]
t + ax,je

−iδx
[j]
t), (4.12)

where gx = iΩx,[j]η
x
[j], the laser Rabi frequency and Lamb-Dicke parameters of the

coupling, respectively. We rely on the local dependence of Ωx,[j] to achieve a ho-

mogeneous g along the chain, as ηx[j] depend on the on-site trap frequencies. Mov-

ing into a rotating frame with frequencies ωL
x,[j], we get ωx[j] → δx[j] in (4.7), and

Hx−force(t)→ Hx−force(0), so that

Hx−force = gx

N∑
j=1

σxj (a†x,j + ax,j). (4.13)

Since laser detunings are site-dependent, they can be shifted to give common on-site

phonon energies δ, ∀j, which leads to

Hx =
N∑
j=1

δa†x,jax,j (4.14)

as the effective phonon energy contribution.

The IR Hamiltonian is eventually implemented as the sum of Hx, Hspin−spin and

Hx−force, with gx → g and Jdip → J .

4.4 Qualitative discussion of the phase diagram

In this section we discuss, qualitatively, the phase diagram of the Ising-Rabi lattice

model. We begin by presenting a perturbative study of the Hamiltonian, and a

conjectural phase diagram. Then, we support these claims by studying two different

variational wave functions for the ground state.

4.4.1 Perturbative study of the phase diagram

We are going to consider two different regimes of

HIR = δ
N∑
j=1

a†jaj + g
N∑
j=1

σxj (a†j + aj)− J
N−1∑
j=1

σzjσ
z
j+1, (4.15)

e.g.: (a) the case with δ, J � g, which we refer to as the ferromagnetic (F) phase of

the model, and (b) the case with g, δ � J , that we call the dressed-ferromagnetic

(DF) phase. The nomenclature will become clear after the following discussion.



79

Ferromagnetic phase (δ, J � g)

We begin by considering the limit g → 0 of HIR

H0
F = δ

N∑
j=1

a†jaj − J
N−1∑
j=1

σzjσ
z
j+1. (4.16)

The two possible ground states of this Hamiltonian, for J > 0, are

|φF,↑〉 = |0〉b
N⊗
j=1

| ↑z〉j, |φF,↓〉 = |0〉b
N⊗
j=1

| ↓z〉j. (4.17)

They are completely analogous to the ordered states of the Ising model, so we refer

to them as the ferromagnetic states. These states break the global parity symmetry

z → −z.

If the IR Hamiltonian were analogous to the quantum Ising chain, the addition

of the spin-phonon coupling

H ′F = g
N∑
j=1

σxj (a†j + aj) (4.18)

would lift the degeneracy of the ferromagnetic states at finite N , and restore the

global parity symmetry (cf. section 2.1.3). By applying degenerate perturbation

theory up to an arbitrary order, we find that, actually, H ′F does not lift the degener-

acy. Therefore, the phases of the ground state of the Ising-Rabi lattice are in clear

contrast with the quantum Ising model, where the degeneracy is lifted at finite size

N in the ferromagnetic phase by an energy gap scaling like ∝ hN [210], with h the

value of transverse field in Eq. (4.1).

We establish the absence of parity restoration by means of the Brillouin-Wigner

perturbation theory [50]. We study if the addition of H ′F as a perturbation to H0
F

mixes the states |φF,↑〉 and |φF,↓〉. If this were the case, the new ground state at

g → 0 would be a particular superposition |φ′F〉 = c↑|φF,↑〉 + c↓|φF,↓〉 with lower

energy. At order n of perturbation theory, the weights c↑ and c↓ are the solutions

to the secular equations [49]
E

(n)
GS c↑ = E↑c↑ + 〈φF,↑|

H ′F
1−RGSH ′F

|φF,↑〉c↑ + 〈φF,↑|
H ′F

1−RGSH ′F
|φF,↓〉c↓,

E
(n)
GS c↓ = E↓c↓ + 〈φF,↓|

H ′F
1−RGSH ′F

|φF,↓〉c↓ + 〈φF,↓|
H ′F

1−RGSH ′F
|φF,↑〉c↑.

(4.19)
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In the former expressions the right-hand side is expanded up to n-th order, E↑ = E↓

are the ground state energies for g = 0, and

RGS =
1

E
(n)
GS −H0

F

(1− |φF〉〈φF|) , |φF〉 ∈ l. c.

{
|0〉b

N⊗
j=1

|↑z〉 , |0〉b
N⊗
j=1

|↓z〉

}
, (4.20)

is known as the resolvent. E
(n)
GS are the eigenvalues of the secular problem. We aim

at showing that there is no degeneracy lifting, and thus E
(n)
GS = E↑ = E↓ for every

n. Two necessary and sufficient conditions are that


〈φF,↑|

H ′F
1−RGSH ′F

|φF,↑〉 = 〈φF,↓|
H ′F

1−RGSH ′F
|φF,↓〉,

〈φF,↓|
H ′F

1−RGSH ′F
|φF,↑〉 = 0.

(4.21)

The first of these equations is trivially fulfilled because of the invariance of H ′F/(1−

RGSH
′
F) under the global Z2 transformation σzj → −σzj , and the action of this

symmetry upon the states, such that |φF,↑〉 ↔ |φF,↓〉. The second condition holds as

well, but this time we must rely on the local symmetry aj → −aj, σxj → −σxj , that

acting inside the expectation value leads to

〈φF,↓| (P(j)
gauge)†P(j)

gauge
H ′F

1−RGSH ′F
(P(j)

gauge)
†P(j)

gauge|φF,↑〉

= −〈φF,↓|
H ′F

1−RGSH ′F
|φF,↑〉 = 0, ∀j, (4.22)

where the effect of the parity upon the states is straightforwardly computed as

P(j)
gauge|φF,↑↓〉 = esji

π
2 |φF,↑↓〉, where sj = +1 (−1) for |φF,↑〉 (|φF,↓〉).

To sum up, we have established that the spin-boson coupling H ′F does not restore

the global parity symmetry. Thus, we can choose any of the ferromagnetic states to

study the effect of H ′F by means of conventional perturbation theory. Assuming that

the ground state is |φF,↑〉, the leading-order corrections to the ground state energy

when δ, J � g are

EF ' −J(N − 1)− g2

[
N − 2

δ + 4J
+

2

δ + 2J

]
. (4.23)

Perturbation theory also gives the leading-order corrections to any of the states
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(4.17), for example

|GS(F)〉 ' |φF,↑〉 −
g

δ + 4J

N−1∑
j=2

|1〉b,j| ↓z〉j
N⊗′

k=1

| ↑z〉k

− g

δ + 2J

∑
{j=1,2}

|1〉b,j| ↓z〉j
N⊗′

k=1

| ↑z〉k, (4.24)

where the prime denotes that terms such that k = j do not occur in the tensor

product. From this expression it is clear that corrections to the F ground states

scale as g/(δ + 4J). Thus, the F phase is stable for any relative value of δ and J ,

provided that any of them are much larger than g.

Dressed-ferromagnetic phase (g, δ � J)

In the J = 0 limit of HIR,

H0
DF = δ

N∑
j=1

a†jaj + g
N∑
j=1

σxj (a†j + aj), (4.25)

the ground states are obtained by making a polaron transformation as in the cJT

model. For further convenience, we work in a rotated basis where x ↔ z, so that

HIR → H̄IR,

H̄IR = RxzHIRR†xz, with Rxz =
1

2N/2

N⊗
j=1

(σxj + σzj ). (4.26)

Then, the transformation

U =
N⊗
j=1

eSj , Sj =
g

δ
σzj (a

†
j − aj), (4.27)

renders

UH̄0
DFU

† = δ

N∑
j=1

a†jaj −N
g2

δ
. (4.28)

In this basis, the ground state of H̄0
DF is the vacuum of the phonons, for any spin

configuration. This means that there are as many as 2N degenerate ground states, as

a consequence of the lack of inter-site couplings in H0
DF. This degeneracy is removed

by the Ising interaction, that acting within the ground state manifold leads to

〈0|H̄ ′DF|0〉 = −Je−4α2
N−1∑
j=1

σxj σ
x
j+1, α =

g

δ
. (4.29)
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The states that minimize the energy of this Hamiltonian are the ferromagnetic con-

figurations. Thus, undoing the rotation and the polaron transformation, the ground

states of HIR in this regime are given as

|φDF,±〉 =
1

2N/2

N⊗
j=1

(| − α, ↑x〉j ± |α, ↓x〉j). (4.30)

We refer to these states as dressed-ferromagnetic (DF). The surviving two-fold de-

generacy is consistent with that of the F phase.

Analogously to the ferromagnetic phase, we can compute perturbative correc-

tions upon any of the DF states. The leading-order correction to the energy is given

as

EDF ' −
Ng2

δ
− J(N − 1)e−4α2 − (N − 1)

J2

δ
P (α), (4.31)

where we have defined

P (α) =
∞∑
p=1

1

p

e−8α2
(8α2)p

p!
. (4.32)

The leading-order correction to the state is given by (J/δ)P (g/δ). This correction

is negligible if δ � J in the limit g � δ, and if g2 � Jδ in the limit g � δ. This

is because P (α) ∼ 8α2 if α→ 0, and P (α) ∼ (8α2)−1 if α→∞. In addition, P (α)

is upper bounded for any ratio g/δ, as maxα P (α) ' 0.52. Therefore, the DF phase

occurs as long as δ � J , for any value of g.

Perturbative insights into the quantum phase diagram

The previous considerations allow us to make a conjecture about the phase diagram.

We distinguish two cases:

(i) Slow-boson regime, δ � J . In this case, the condition g � J ensures that the

F states (4.17) are possible ground states of HIR. On the other hand, the DF states

are possible ground states if g �
√
Jδ. Thus, in the interval

√
Jδ < g < J , the

domain of the F and DF solutions overlap, and we expect a crossover between these

energy levels (cf. Fig. 4.4). Indeed, comparing the energies of the F and DF states,

we find that there must be a level crossing at g := gc =
√
Jδ, where we expect

the appearance of a F-DF phase transition. We hypothesise that this transition is

first-order, since the first derivative of the energy must be discontinuous at the level

crossing.
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Figure 4.4: Crossover of the F and DF phases in the slow-boson regime.

(ii) Fast-boson regime, δ � J . Here, the F states are valid ground states if

g � δ because their corrections scale as g/(δ + 4J). Also, the DF states are valid

ground states for any value of g. In the interval g � δ, F and DF solutions overlap,

however, here the DF state continuously converges to the F state. Thus we expect

a continuous transition from the DF to the F solution.

Putting together all the previous arguments, we expect that HIR presents a first-

order quantum phase transition along the critical line gc(δ, J), featuring a jump

from the F to the DF ground states in the regime of low-boson energies δ → 0.

This is in clear contrast with the quantum Ising chain in a transverse field, where

there is no coexistence of the ferro- and paramagnetic phases at neither side of the

(second-order) phase transition. In the HIR, however, there is a coexistence of the

phases already addressed if
√
δJ � g � J . This last set of inequalities cannot

be longer fulfilled if δ � J , and therefore the discontinuous behaviour is bound to

disappear for a given δ ∼ J . At this point, we could have either a second-order phase

transition or a critical end-point, but we are not going to address this question within

the present study. We have summarized these considerations in Fig. 4.5, where we

choose as order parameter the average boson number

n =
1

N

N∑
j=1

〈a†jaj〉 (4.33)

to capture the sudden change from the boson vacuum state (F phase) to a displaced

state (DF phase).
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Figure 4.5: Scheme of the phase map depicting the disappearance (at the dot) of

the discontinuous jump in the number of bosons along the critical line (solid) for

a given value of δ, g, J . The dashed line represents no boundary but a continuous

transition from the ferromagnetic to the dressed-ferromagnetic phase.

Leaving aside perturbative arguments, one can rely on clever guesses about the

form of the ground state wave function, to gain some insight into the phase diagram

of the model. The energy associated with these guesses, or wave functions, can

be variationally minimized with respect to the parameters occurring in the wave

function. We are going to pursue this strategy to validate the previous picture

about the phases and the transition in the HIR. In particular, we are going to

consider two different variational wave functions, that are separately suited for the

regimes of δ � J and δ � J .

4.4.2 Born-Oppenheimer variational ansatz (δ � J)

In the regime of slow-boson dynamics, δ → 0, the bosonic degrees of freedom are

effectively classical. This is a consequence of the correspondence principle [49]: the

low-energy associated with bosonic excitations gives rise to large quantum numbers,

such as the boson occupation. Thus, ladder operators can be treated as numbers,
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aj → αj ∈ C, and HIR is reduced to a spin Hamiltonian,

HBO = δ

N∑
j=1

|αj|2 + g

N∑
j=1

σxj (α∗j + αj)− J
N−1∑
j=1

σzjσ
z
j+1. (4.34)

This Hamiltonian describes a quantum Ising chain in a transverse field, for which

an exact ground state, |ΨI(αj)〉 can be exactly found [42]. The energy of HBO is

then given as

EBO({αj}) = δ

N∑
j=1

|αj|2 + EI,0({αj}), (4.35)

where EI,0({αj}) is the ground state energy of the quantum Ising chain with trans-

verse fields1 2gαj and interaction strength J . Assuming that EI,0({αj}) is a known

function, we can minimize (4.35) with respect to the (classical) amplitudes of the

bosonic fields. This gives rise to the final variational ansatz

|ΨBO〉 = |ΨI(−αj)〉
N⊗
j=1

|αj〉, (4.36)

from which we can compute any observable. We notice that, due to the underlying

gauge symmetry in the HIR Hamiltonian, (4.36) can be transformed into a solution

with the same energy if we change locally the sign of the displacement αj, and

simultaneously transform σxj → −σxj . There are thus 2N degenerate solutions of the

form |ΨBO〉, given by the values αj = sj|αj|, with sj = ±1.

The self-consistent approach we have just described, where one solves the Hamilto-

nian for the ‘fast’ degrees of freedom first, and then plugs the solution into the

equations for the ‘slow’ modes, is analogous to the Born-Oppenheimer approxima-

tion of molecular physics [211], from which we draw the name for the ansatz. In

that context, the degrees of freedom of the positions of the nuclei enter the elec-

tronic Hamiltonian as parameters in the same way the boson amplitudes appear in

the spin Hamiltonian (4.34).

Let us consider the solution of HBO for N → ∞. We are going to assume that

the αj take homogeneous values such that αj → α. The energy of the Hamiltonian

is then given as

EBO

N
= δα2 − 2αg

2

π
(1 + λ)E

[
4λ

(1 + λ)2

]
, λ =

J

2αg
, (4.37)

1We assume that αj ∈ R without loss of generality.
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Figure 4.6: Variational energy (4.37) for δ = J , with energy units such that J = 1,

as a function of the parameter α and different values of the spin-phonon coupling

g. Note that close to the origin there is a curvature change for a given g ≥ gc. This

point marks the criticality condition.

where E is the complete elliptic integral of the second kind [42]. By inspecting this

formula, one can realize that the energy attains a minimum for α = 0 as long as

g → 0, whereas the minimum gets shifted to a finite bosonic displacement for g > J

(cf. Fig. 4.6). We can estimate when this change occurs by performing a Taylor

expansion of EBO around α = 0, which renders

EBO

N
= −J + (δ − g2

J
)α2 +O(α4). (4.38)

By looking at the values for which the curvature changes its sign, we find that the

minimum shifts from the origin whenever

g ≥
√
δJ ≡ gc. (4.39)

Thus, (4.38) predicts a transition from a phase in which bosonic displacements

are inhibited (α = 0), and the spins point in the ±z directions, to a phase with

α = α0 6= 0, and the spin state is the lowest energy state of a quantum Ising chain

in a transverse field of magnitude 2α0g. This F-DF phase transition is consistent

with the level crossing picture that we gained from the perturbative study.

The Born-Oppenheimer wave function offers an estimate for the boson displace-
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ment in the DF phase. Assuming g � J , we can approximate

EBO

N
∼ δα2 − 2αg − J2

2αg
. (4.40)

This energy is minimum as a function of α whenever

α3 − g

δ
α2 +

J2

4δg
= 0. (4.41)

Assuming a root of the form α0 = α1 + α2ε, with ε = J2/16δg, and keeping up to

first order in ε, we obtain

α0 =
g

δ

(
1− J2δ2

16g4

)
, (4.42)

from which we can extract the prediction for the order parameter

n = α2
0 '

(g
δ

)2

. (4.43)

According to (4.42), in the regime g � δ we have that α0 = g/δ, and we

must recover the DF ground states from the Born-Oppenheimer wave function. In

this case |ΨBO〉 converges to
⊗N

j=1 | − α0, ↑x〉j and
⊗N

j=1 |α0, ↓x〉j. Since these kets

are degenerate, we can restore the Z2 gauge symmetry by considering a symmetric

superposition,

|Ψsym
BO 〉 =

1

2N/2

∑
s1,...,sN
sj=±1

∣∣∣ΨI

(
−sj

g

δ

)〉 N⊗
j=1

∣∣∣sj g
δ

〉
, (4.44)

such that we recover the solution |φDF,+〉. The solution |φDF,−〉 would correspond

to the antisymmetric linear combination of the former states.

4.4.3 Silbey-Harris variational ansatz (δ � J)

Now we investigate the regime of fast-boson dynamics, for which there is no longer

a first-order phase transition (cf. Fig. 4.5). To this end, we consider a displaced

trial wave function whose distance away from the origin in phase space is no longer

fixed, rather the variational parameter [212]. This approach has been shown to yield

an accurate description of the quantum phase diagram in Rabi lattice models [184,

213].

We start by considering HIR after a rotation x↔ z,

H̄IR = δ

N∑
j=1

a†jaj + g

N∑
j=1

σzj (a
†
j + aj)− J

N−1∑
j=1

σxj σ
x
j+1. (4.45)
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Then, we define the Silbey-Harris wave function as the one-parameter variational

ansatz

|ΨSH〉 = e−S(η)|0〉b
N⊗
j=1

|↑x〉j , S(η) = η
g

δ

N∑
j=1

σzj (a
† − a), (4.46)

where the parameter η continuously interpolates the bosonic displacement between

0 and g/δ for fixed values of these. The energy upon this state is given as

ESH(η) = N
g2

δ
(η2 − 2η)− J(N − 1)e−4η2( gδ )

2

. (4.47)

In contrast to EBO, the variational energy in this case does not admit a simple

estimate for the emergence of the phase transition. Nevertheless, we can compute

the number of phonons upon the Silbey-Harris solution, that is given as

n =
(η0g

δ

)2

, (4.48)

by minimizing ESH(η) for given values of J, δ and g. We present the results of the

Silbey-Harris phase diagram in Fig. 4.7. As shown, the Silbey-Harris ansatz predicts
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Figure 4.7: Silbey-Harris mean boson number n as a function of g, for different

values of δ, and energy units such that J = 1, and N = 50 sites.

two very different behaviours in the regimes of slow- and fast-boson dynamics. When

δ � J , the number of phonons features a discontinuous jump at some critical g = gc.

This jump happens between a phase with n = 0 and another with n > 0, which

is consistent with the perturbative prediction of a phase transition. However, the
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most important result of the Silbey-Harris ansatz is that it correctly predicts the

dissapearance of the transition when δ � J . Thus, the SB solution validates the

qualitative phase diagram of Fig. 4.5.

We conclude this part by studying the convergence of |ΨSH〉 to the F and DF

ground states in their correspondent phases. When η → 0, the ansatz is just

|ΨSH〉 = |0〉b
N⊗
j=1

|↑x〉j , (4.49)

that once we rotate into the original frame x↔ z gives one of the F states. On the

other hand, when η > 0, the wave function (4.46) can be written as

|ΨSH〉 =
N⊗
j=1

1√
2

(
e−S(η)|0〉b |↑z〉j + e−S(−η)|0〉b |↓z〉j

)
. (4.50)

Undoing the rotation x↔ z, this state converges to the symmetric DF state in the

event of η → 1.

4.5 DMRG phase diagram

In this section we present the quasi-exact numerical calculations of the ground state

properties of the IR Hamiltonian for a chain of N = 50 spins, obtained by means

of the DMRG algorithm [33]. We compare these results with the predictions of the

Born-Oppenheimer and Silbey-Harris variational wave functions. Finally, we discuss

the results relative to the critical line and correlations at the phase transition.

4.5.1 Comparison with the variational wave functions

To establish the different phases of the IR model, we rely on the mean boson number

n =
1

N

N∑
j=1

〈a†jaj〉 (4.51)

as the order parameter. We have plotted the results as a function of g for various

values of δ in Fig. 4.8, along with the predictions of the variational wave functions.

The solid lines represent the DMRG results. We note that there is a sudden jump

in n, between a phase with n ' 0 and another with n > 0. The jump smears out for

increasing δ. This is consistent with the perturbative and variational studies, that
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Figure 4.8: Mean boson number prediction for Born-Oppenheimer (dashed lines),

Silbey-Harris-type ansatz (dashed-dotted lines) and DMRG (solid lines) of a N = 50

sites chain, and energy units such that J = 1. For the DMRG method we set a bond

dimension D = 10, on-site boson cut-off Nc = 10 and local dimension d = 2 ·Nc.

predict a jump in the number of phonons in the slow-boson regime δ � J . However,

this jump should be a proper discontinuity stemming from a level crossing. Thus,

we expect a divergence in the derivative of the phonon number at the critical line

gC(δ, J).

We show the derivative of the mean phonon number in Fig. 4.9. From this

calculation, we infer that the jumps diverge in the limit of δ → 0, what is consistent

with the infinite number of phonons predicted by the BO and SB solutions (cf. (4.43)

and (4.48)). Nevertheless, the jumps are not infinite at finite δ. This is a consequence

of performing the calculation for a finite system. The phase transition only occurs,

strictly speaking, in the thermodynamic limit N → ∞. The most rigorous way

of establishing the transition is by computing the derivative for increasing N , and

inferring that it is actually infinite in the thermodynamic limit. This method, known

as finite-size scaling, is nevertheless very computationally intensive, and we have not

carried it out. The numerical results, however, are consistent with the fact that there

is a transition at some critical g, as predicted by our qualitative arguments.

We note that the solid lines in Figs. 4.8 and 4.9 are cut at some value of g. This
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Figure 4.9: Derivatives of the average boson number for different values of δ (N = 50,

energy units such that J = 1). Note that the DMRG diagonalization (solid lines)

gets closer to the Born-Oppenheimer prediction (dashed lines) for decreasing δ,

whereas the Silbey-Harris ansatz (dashed-dotted lines) improves for bigger values of

the boson energy. The step for the derivatives in all cases is the same and stems

from the precision used in the DMRG diagonalization: ∆g = 0.02 · J .

is a consequence of a technical detail of the DMRG algorithm. When simulating

bosonic degrees of freedom, one is forced to introduce a cut-off of the number of

phonons. In our calculations, we have considered that this cut-off is Nc = 10. This

imposes some limitations in the description of the DF phase in the event of δ � g.

Because of the low energetic cost of bosonic excitations, the ground state wave

function projects upon many different occupation number states. Thus, an accurate

description may require higher values of Nc. Consequently, we present exclusively

DMRG results fulfilling 2n ≤ Nc.

We expect a good agreement between the exact calculations and the BO ansatz

in the regime of slow-boson dynamics δ � J . In particular, we look for a closer

resemblance between the BO solution and the exact diagonalization for decreasing

values of δ (cf. Fig. 4.8). We see that the smaller the δ, the nearer the BO prediction

for the number of bosons lies to the DMRG observable. This is also true in the case

of the derivative of the number of bosons where, in contrast to the Silbey-Harris

ansatz, the BO approximation quantitatively predicts the height of the derivative
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when δ → 0 (Fig. 4.9).

Regarding the predictions of the Silbey-Harris wave function, Fig. 4.8 shows

that it correctly describes the existence of the discontinuity. However, this solution

must also give a suitable description of the phase with δ � J , as we know that the

dressed-ferromagnetic phase consists of a displaced state. We have therefore run

simulations for bigger values of δ and g (cf. Fig. 4.10) and compared them with the

SH ansatz, that effectively coincides with the exact solution when δ, g � J .
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Figure 4.10: DMRG average boson number (solid lines with symbols) vs. Silbey-

Harris ansatz (dashed line) for δ ≥ J (N = 50, energy units such that J = 1).

4.5.2 Criticality in the Ising-Rabi lattice model

The DMRG results allow us to extract the position of the critical line gc(δ, J). To

this end, we have localized the maximum values of the derivatives of n (cf. Fig.

4.9) for different values of g and δ. The perturbative study predicted a power-law

dependence for the transition line (cf. (4.39)), so we have extracted the exponent

from the fit to a line in a log-log plot (cf. Fig. 4.11). The result is consistent with

a power-law decay

gc ∼ δα, with α ' 0.66. (4.52)

This value of the exponent departs from the one extracted from the Born-Oppenheimer

ansatz, which predicts gc =
√
δJ , that is, α = 1/2.
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energy units such that J = 1). We depict the natural logarithm of δ, g.

Our numerical results should also show features of the first-order nature of the

transition. To this end, we have computed the spin correlation function

Czz
j,l = 〈σzjσzl 〉 − 〈σzj 〉〈σzl 〉. (4.53)

The DMRG shows that Czz
j,l ∝ e−|j−l|/χ along the whole phase diagram, where χ is

the correlation length. The exponential decay is observed even close to the first-

order phase transition in the regime δ < J (cf. Fig. 4.12). This is consistent with

our picture of the transition as a level crossing: F and DF states are both close

to eigenstates of HIR at the critical point, and both of them show exponentially

decaying correlations.

We note that this situation is in clear contrast with what one would expect in a

second-order phase transition [40]. For first-order phase transitions, the gap does not

close at criticality, and there is no divergence of the correlation length. Therefore,

we cannot rely on the framework of universality classes for the classification of the

critical behaviour. However, the appearance of a quantum critical endpoint is shared

in common with other models featuring first-order phase transitions, as the liquid-

gas transition of magnetic monopoles in spin ice [30], or the sudden magnetization

jump in metamagnetic samples [31].

At the critical line in our model, δ can be identified as the energy gap separating

the ground state sector from the lowest energy excitations. We thus expect that
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the correlation length on the critical line, χc, must be a decreasing function of δ.

Our DMRG calculations confirm this picture (cf. Fig. 4.12), and yield the scaling

χc ∝ 1/δ (cf. Fig. 4.13).
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Figure 4.13: Fitting of χ−1
c to a line, from the DMRG with N = 50, and energy

units such that J = 1. The results are consistent with the fact that the gap scales

linearly with the energy of the bosons along the critical line.
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4.6 Trapped-ion experimental parameters

For the implementation of

HIR = δ
N∑
j=1

a†jaj + g

N∑
j=1

σxj (a†j + aj)− J
N−1∑
j=1

σzjσ
z
j+1, (4.54)

we consider a linear array of microtraps [134–139] along the z direction (cf. Fig.

4.3). We assume that the traps are separated by a distance d0 = 30µm, each of them

containing one 9Be+ ion. We have that |r(0)
j − r

(0)
l | = d0. The spin-spin interaction

stems from the spin-phonon coupling (4.9), which is justified only in the Lamb-Dicke

regime

max
n

ηzn =
∆kz√
2mωz0

� 1. (4.55)

We propose a common ωz = 500 (2π) kHz for all traps, which leads to

tzj,j+1 =
2e2

mωzd3
0

' 29 (2π) kHz, (4.56)

and to ωz0 ' 431 (2π) kHz for the ground state centre-of-mass (COM) frequency

of the axial modes band. Therefore, a laser wavelength λzL ' 870 nm would give

maxn η
z
n ' 0.26 for beams on axis with the trap. The magnitude of the spin-spin

coupling is given as J = g2
zt
z
j,j+1/(2(δz0)2). Typical values of gz are 100(2π) kHz

[149], whereas we impose δz0 ' 2gz to neglect residual spin-phonon couplings [118].

This renders the value J ' 7(2π) kHz, which is the lowest energy scale involved in

the simulation.

Regarding the residual dipolar coupling between the transverse modes, we are

going to consider it as an error bound, so that every effective parameter in HIR

must be above this threshold. We quantify this error bound Err(n) depending on

the number n of different frequencies ωx,j present in the experiment. For the sake of

concreteness, let us assume n = 3. Assuming ωx[1] = 10 (2π) MHz, ωx[2] = 9 (2π) MHz,

and ωx[3] = 8 (2π) MHz, we have maxj(t
x
j,j+1) ' 0.9 (2π) KHz. This amount scales

with the distance, so Err(n = 3) = maxj(t
x
j,j+1/n

3) ' 33 (2π) Hz. Accordingly,

we prescribe δ, g, J � Err(n = 3) as the condition to be fulfilled to safely neglect

residual couplings. Furthermore, with the former choice of parameters, the RWA

condition is also fulfilled, as maxj,l(t
x
j,l/|ωxj − ωxl |) ' 10−3, l = j + 1, · · · , n.

For the spin-boson interaction in HIR, we consider laser beams with effective

wavelength λxL ' 320 nm acting transversely to the axis of the trap. With the former
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values for the transverse frequencies, the Lamb-Dicke parameters are max ηxn ' 0.16,

so the blue and red sidebands can be resolved. Typical values for g are again of the

order of 100 (2π) KHz. The energy of the transverse phonons is set by locally

detuning from ωxj to the common value δ for every site, and it can chosen such that

δ ∼ g, as we have theoretically studied.

In order to probe the phase transition we propose preparing the ferromagnetic

phase by cooling to the ground state of the phonons, while optical pumping to the⊗
j |↓z〉j spin state, where |↓z〉j is one of the qubit states. An adiabatic protocol

crossing the critical line would require evolution times of the order of the inverse of

the smallest of the parameters (J), which lies around t−1 ∼ 23µs.

4.7 Conclusions

The aim of this chapter was to realize a gauge theory with trapped-ion quantum

matter, and to understand its phase diagram. We considered a minimal extension

of the spin-boson models typically arising in quantum simulators. By promoting the

transverse field of the quantum Ising model to a dynamical variable, we were able

to realize the desired gauge theory: the Ising-Rabi lattice. This result is important

within the quantum simulation community, since there are many different experi-

mental platforms where the IR model could be naturally implemented. This stems

from the fact that spin and boson degrees of freedom are available in cavity QED,

superconducting qubits in resonators, or Rydberg atoms.

Our model served as a perfect test-bed for the variational wave functions con-

sidered. Although any mean-field theory is expected to give only a qualitative insight

into the phase diagram, both Born-Oppenheimer and Silbey-Harris wave functions

matched the numerical results in their respective regimes of applicability. This sup-

ports their suitability in the description of spin-boson chains, as exemplified in other

works, such as [184, 213, 214].

We have got perturbative and numerical evidences of the fact that the IR lattice

model undergoes a first-order transition. Also, we have shown that the there is

a point that separates the first-order phase transition from a continuous crossover

region. The perturbative arguments allowed us to estimate that this point happens
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around δ ∼ J . However, this result was based on a first-order expansion. Higher-

order terms in perturbation theory may feature significant deviations. Thus, it

would be interesting to analyse higher orders, to check the consistency with the

current results and the DMRG predictions. Regarding the numerical calculation,

establishing the discontinuity at the transition would require a finite-size scaling of

the derivative of the phonon number, that is divergent at the critical line. Only

by extrapolating to the thermodynamic limit we can claim that there is indeed a

first-order phase transition. Also, we have not discussed the location of the critical

end-point from the DMRG. A possible way to accurately characterize its position,

and its associated phenomenology, that may be related with a second-order phase

transition, is to perform DMRG calculations focused in that particular regime. The

emergence of a second-order phase transition is supported by the fact that δ ∼ J at

the critical point, and this competition between spin and phonon degrees of freedom

may cause the closing of the gap.

We have not explored other aspects associated with first-order phase transitions,

such as metastability or hysteresis [215]. If we drive the system through the discon-

tinuous transition, for example from the F to the DF phase, it is natural to expect

that we remain on the F state, because of the level crossing. The F state is then a

metastable state in the DF phase. If we provide a relaxation mechanism, such as a

coupling to a reservoir, this state should decay into the DF state. This decay time

is an internal time scale, that can compete with an external time scale stemming

from a time-modulated driving, leading to the phenomenon of hysteresis. Because

of the possibility of driving the phonons, that act as an external field for the spins

in the IR model, the former considerations can be naturally explored in an eventual

implementation of this system. Furthermore, metastable states could be considered

for quantum metrological purposes, since they can decay into the actual ground

state for very small perturbations. This has been actually explored for second-order

phase transitions in spin-boson systems [210].

In conclusion, the IR lattice is an example of the potential of spin-boson models

arising in quantum simulators to give rise to complex and rich physics. So far,

these models have been used mainly for the simulation of quantum magnetism, and

experiments have disregarded the phonons. Proposals such as the IR lattice can
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motivate further efforts for the realization of more ambitious implementations.
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Chapter 5

Emergence of topological edge

states in the Su-Schrieffer-Heeger

model

5.1 Introduction

This chapter is devoted to a new kind of phases of quantum matter, known as topolo-

gical insulators [21–23]. Topological insulators are gapped phases of non-interacting

fermions. They are insulating in the bulk, but feature conducting zero-energy modes

at the edges whenever the system is spatially cut into two. It is this dependence on

the boundary conditions that makes topological insulators ‘topological’. The differ-

ent phases of a topological insulator cannot be described by a local order parameter

[216], and only a special quantity –called bulk or topological invariant– is able to

distinguish between them.

Topological phase transitions are associated with highly non-local order paramet-

ers. Although some of them have been measured [217], it is unclear how to define a

Landau-like theory for these transitions [23]. On the other hand, edge states can be

observed, but only a particular value of the bulk invariant, along with the symmet-

ries of the Hamiltonian, can prove their topological origin [218]. Since computing

the bulk invariant for real materials is generally difficult, topological phase trans-

itions are not easy to establish. Nevertheless, it has been proved that topological

order should arise in some systems, like graphene [219] or quantum wells [220], and
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actual topological insulators have been experimentally confirmed [221].

The difficulty of realizing and probing topological order has spurred the interest

on simulating topological insulators with synthetic degrees of freedom. For instance,

there have been proposals for the preparation and characterization of topological

states of matter with ultracold atomic gases in optical lattices [106, 222–226], or

trapped ions [227–229]. These latter systems are specially suited for the study

of the interplay between interactions and topological order, since the range of the

interactions can be precisely tuned [114]. This is of great practical interest, as real

systems are usually strongly interacting. A proof-of-principle experiment to realize

a proposal to implement the S=1 Haldane chain [227] has been successfully realized

with 3 atomic ions [228], and subsequent works have explored the consequences of

long-range interactions in this system [229]. Nevertheless, it is not necessary to

rely on simulating higher-dimensional spins to give rise to topological order. The

Su-Schrieffer-Heeger (SSH) model [230–232]

HSSH = J
N−1∑
j=1

(1 + δ(−1)j)(σ+
j σ
−
j+1 + H.c.), (5.1)

is a well-known example of a topological insulator comprised of S=1/2 spin degrees

of freedom. One goal of this chapter is to show that this Hamiltonian can be imple-

mented with trapped-ion quantum simulators, in the regime of adiabatic elimination

of the phonons [119, 190].

It may seem puzzling that a spin model such as (5.1) is deemed a topological

insulator, since these systems are comprised of fermions and not spins. This dif-

ferentiation is actually irrelevant. Both degrees of freedom can be unequivocally

identified by means of the Jordan-Wigner transformation [43],

σ−1 = c1, σ−i =
i−1∏
j=1

(1− 2c†jcj)ci, (i = 2, . . . , N),

σ+
1 = c†1, σ+

i = c†i

i−1∏
j=1

(1− 2c†jcj), (i = 2, . . . , N),

(5.2)

and (5.1) can be equally represented as

HSSH = J
N−1∑
j=1

(1 + δ(−1)j)(c†jcj+1 − cjc†j+1). (5.3)
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The properties of the SSH model are easier to introduce in terms of fermions, so we

will stick to this representation in the beginning.

We start now by illustrating the phases of the SSH model, its edge states and

symmetries, and its associated bulk invariant. Then, we show how to implement the

model with trapped ions. We consider a periodic driving, which dresses the effective

spin-spin interactions to give rise to the two-fold periodicity of the couplings associ-

ated with the SSH model. The next-to-nearest neighbour terms induce interactions

upon the original HSSH, that we discuss in detail. We deal as well with the non-

interacting limit of the generalized SSH model, and perform a continuum description

to predict the localization length of the edge states. We discuss the parameter values

needed to ensure the existence of edge states, and suggest an experimental protocol

to probe them. Finally, we study the effect of the interactions upon the many-body

ground state within the Hartree-Fock approximation, and conclude presenting the

experimental parameters for an eventual implementation and some conclusions.

5.2 The Su-Schrieffer-Heeger model

In this section we are going to illustrate the concepts of edge states and bulk invariant

in the particular example of the SSH model. This will pave the way for the study

of the implementation with trapped ions.

5.2.1 Edge states

The SSH model

HSSH = J

N−1∑
j=1

(1 + δ(−1)j)(c†jcj+1 − cjc†j+1), (5.4)

describes electrons hopping along a chain comprised of two different species, A and

B, which comprise a unit called dimer (cf. Fig. 5.1). The hopping strengths A−B

and B − A are different, and their ratio is measured by the dimerization δ.

This model hosts a topological phase, since its spectrum depends on the bound-

ary conditions [233]. Under PBC, the spectrum is gapped for any value of δ 6= 0

(cf. Fig. 5.2). On the other hand, when the chain is open, and the dimerization is

positive, there are two modes in the mid-gap (cf. Fig. 5.3), but they disappear when
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Figure 5.1: Example of a dimerized chain. The units A − B are known as dimers.

The thickness of the bonds represents the different strengths of the hoppings in the

SSH Hamiltonian between A−B and B − A, for δ < 0.

Figure 5.2: Phases of the SSH model under PBC. N = 100, J = 1, δ = ±0.1.

The lower schemes show the corresponding arrangement of bonds for δ negative or

positive respectively, and N = 6.

δ < 0. Thus, changing the sign of the dimerization gives rise to two different phases,

with and without mid-gap states. The phase with zero-energy modes is considered

topologically non-trivial, because only in this situation the associated topological

invariant will take a value different from zero.

If we depict the wave function of any of the states lying in the mid-gap, we

find that they are exponentially localized at the edges (cf. Fig. 5.4). We can

approximately write the wave function of any of these edge states near the left

end of the chain as Mj,n ∼ e(N−j+1)/ξloc . The typical length associated with the
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Figure 5.3: Phases of the SSH model under OBC. The two modes in the mid-gap

correspond to the edge states. N = 100, J = 1, δ = ±0.1.

Figure 5.4: One of the zero-energy eigenstates of the Hamiltonian (5.5). The wave

function (blue line) is localized at the edges, and it features an exponential decay

into the bulk. N = 100, J = 1, δ = 0.1.

exponential decay is known as the localization length of the edge states.

We can estimate the localization length as a function of the dimerization with a

simple procedure [233]. We start by writing (5.3) as

HSSH =
N∑

j,l=1

hj,lĉ
†
j ĉl, where hj,l = J(1 + δ(−1)j)δj+1,l. (5.5)

Then, we look for particular eigenfunctions Mj,n0 such that they have zero energy,
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e.g.,
∑N

l=1 hj,lMl,n0 = 0,∀j. This leads to the set of equations (1− δ)M2m−1,n0 + (1 + δ)M2m+1,n0 = 0,

(1 + δ)M2m,n0 + (1− δ)M2m+2,n0 = 0,
(5.6)

for m = 1, . . . , N/2 − 1, with boundary conditions M2,n0 = 0 and MN−1,n0 = 0.

These equations can be solved iteratively, so that M2m+1,n0 = (−1)me−2m/ξlocM1,n0 ,

MN−2m,n0 = (−1)me−2m/ξlocMN,n0 ,
(5.7)

where we have introduced the localization length ξloc, that is consistently defined as

ξloc = −2/ ln
1− δ
1 + δ

, 0 < δ < 1. (5.8)

Since M1,n0 and MN,n0 are two independent initial conditions, we have two possible

solutions with zero energy, that are exponentially localized at the ends of the chain.

The existence of a topological insulator is not necessarily connected with the

emergence of edge states. A non-trivial topological phase is only defined through a

non-zero value of the bulk invariant. Nevertheless, if this argument is supplemented

with a particular symmetry of the Hamiltonian, then there is a direct correspondence

between the occurrence of edge states and the topological phase [218]. In the case

of the SSH model, this symmetry is the chiral symmetry, that we introduce now. It

will prove central in locating the boundary modes in more complex situations.

5.2.2 Chiral symmetry

Chiral symmetry is associated with an operator Γ , whose action upon the Hamilto-

nian is to change the sign of the fermionic operators defined on sites A (it can be

defined for sites B as well). It is straightforward to check that

ΓHSSHΓ = −HSSH. (5.9)

This symmetry has a very important consequence for any Hamiltonian that admits

a pseudo-spin representation. Let us illustrate this concept for the SSH model.

To write HSSH in its pseudo-spin representation, we introduce operators an and bn

associated with sites A and B, respectively, so that

HSSH = J(1− δ)
M∑
n=1

(a†nbn + H.c.) + J(1 + δ)
M−1∑
n=1

(b†nan+1 + H.c.), M =
N

2
. (5.10)
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In the plane wave basis an = 1√
M

∑M/2
µ=−M/2 e

i 2πn
M

µaµ, and recasting the former oper-

ators into a spinor, the pseudo-spin representation of the SSH model is given as

HSSH = J(1− δ)
M/2∑

µ=−M/2

(
a†µ, b

†
µ

)
hµ

aµ
bµ

 , (5.11)

with

hµ =

 0 1 +
1 + δ

1− δ
ei

2πµ
M

1 +
1 + δ

1− δ
e−i

2πµ
M 0

 . (5.12)

One can always parametrize hµ with a vector d(µ), through the identification,

hµ = d0(µ)I + d(µ) · σ, (5.13)

where σ = (σx, σy, σz), and I is the 2 × 2 identity matrix. The vector describes a

loop around d0(µ), and as long as d(µ) 6= 0, hµ represents a gapped Hamiltonian.

Let us denote by γ the pseudo-spin representation of the chiral symmetry op-

erator Γ . It must fulfil that γd(µ) · σγ = −d(µ) · σ. Some trial and error shows

that actually γ = σz. Since this must hold for any chiral-symmetric pseudo-spin

Hamiltonian

hµ ∝

 dz(µ) dx(µ)− idy(µ)

dx(µ) + idy(µ) −dz(µ)

 , (5.14)

we have that

γhµγ = −hµ =⇒ dz(µ) ≡ 0. (5.15)

Thus, we conclude that chiral symmetry implies that the loop parametrizing the

Hamiltonian lies in the XY-plane.

We finish now the introduction to the SSH model by finally presenting its bulk

invariant.

5.2.3 Topological invariant: the Zak phase

The topological invariant associated with the SSH is the Zak phase [234]. It is

defined as the Berry phase [235] acquired by the wave function of the ground state

in an excursion along the first Brillouin zone [236],

ν = i

∮
〈G.S.(k)|∂k|G.S.(k)〉dk. (5.16)
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Assuming that the Hamiltonian admits a pseudo-spin representation, the ket |G.S.(k)〉

is the eigenvector of hµ
N→∞→ h(k) corresponding to the lowest energy state. Al-

though this quantity can be exactly computed for the SSH model [233], usually is

not easy to obtain analytically. Therefore, we are going to describe how to compute

it numerically using the SSH model as illustration, and show that it indeed takes

different values depending on the sign of the dimerization.

We note that (5.16) assumes continuous values of k, but any numerical integra-

tion must proceed by discretizing the domain. Following reference [237], we intro-

duce the discrete version1 of the Zak phase,

ν ' − Im ln
M−1∏
s=0

〈G.S.(ks+1)|G.S.(ks)〉. (5.18)

In this expression, we have partitioned the momentum k into N + 1 different values,

so that

ks = −M
2

+
( s
M

)
·M, s = 0, . . . ,M. (5.19)

The kets |G.S.(ks)〉 stem from a numerical diagonalization of hµ for every ks. Since

they are comprised of complex values, there is an overall phase freedom in their

definition. The particular form of ν that we just introduced is defined in a way

that removes these arbitrary phase factors [237]. Now we are in position to see if ν

actually is able to distinguish the two phases of the SSH model. We have depicted

its value in Fig. 5.5. We see that as long as δ < 0, the Zak phase is zero, whereas for

positive dimerization its value can be ±π. Actually, 0 and ±π are the only possible

values of the Zak phase for inversion symmetric systems [234]. We will refer to the

non-zero value of ν as the non-trivial Zak phase, which is associated with the non-

trivial topological insulator featuring edge states. This procedure can be applied

to any Hamiltonian, and we will use it for the generalized SSH model arising with

trapped-ion quantum matter.

Now that we have introduced the main concepts of the edge states and the bulk

invariant in the context of the SSH model, we are ready to study their realization

1To convince oneself that (5.18) is actually equal to (5.16), we note that one can write 〈G.S.(k+

∆k)|G.S.(k)〉 as

1− 〈G.S.(k + ∆k)| (|G.S.(k + ∆k)〉 − |G.S.(k)〉) ' e−〈G.S.(k)|∂k|G.S.(k)〉∆k. (5.17)
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Figure 5.5: Zak phase of the ground state of the SSH model. The dimerization

δ tunes the topological phase transition between the topologically trivial regime

(δ < 0), and the topological regime (δ > 0), associated with a non-zero value of the

Zak phase.

in a trapped-ion experiment. This will be the aim of the following section.

5.3 Implementation with trapped ions

In this section we show how to implement the SSH model

HSSH = J
N−1∑
j=1

(1 + δ(−1)j)(σ+
j σ
−
j+1 + H.c.) (5.20)

in a quantum simulator with trapped ions. To begin with, we need to realize the

terms σ+
j σ
−
j+1 and σ−j σ

+
j+1, whereas terms such as σ+

j σ
+
j+1 and σ−j σ

−
j+1 should not

occur. This can be accomplished via a periodic driving of the Ising chain [238], to

make the latter terms fast-rotating. On the other hand, the alternating tunnellings

of the SSH model are not straightforward to realize, specially if we are restricted to

global operations on the ions. We suggest the dressing by optical phases analogous

to that of the generalized cJT model in chapter 3, which provides the desired site-

dependent couplings.

We know already that in the regime of adiabatic elimination of phonons, trapped-

ion quantum matter is described by an effective Ising Hamiltonian as the one derived
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in chapter 3. Likewise, we assume that the spin-spin interactions are mediated by

the transverse modes. We take the Ising limit of the cJT Hamiltonian (cf. (3.12)) as

our starting point, but we rotate the reference frame so that σxj → σzj and σzj → σxj ,

and therefore

HIsing =
N∑

j,l=1

J
(ions)
j,l σxj σ

x
l +

Ω

2

N∑
j=1

σzj . (5.21)

We recall that the effective spin-spin interaction is given by

J
(ions)
j,l = −(−1)j−lJexpe

−|j−l|/ξint +
Jdip

|j − l|3
, N � 1. (5.22)

These ion couplings –we will use this nomenclature in this part of the thesis, to

distinguish them from the Bessel couplings that we discuss below– have two different

regimes depending on the detuning: for δN/2 � tC they decay exponentially, and

their typical length can be made large, whereas for large δN/2 they decay like 1/|j−

l|3.

The first difference between HIsing and the SSH model (5.1) is that the first is

not invariant under arbitrary rotations around the z-axis. Also, J
(ions)
j,l do not have a

spatially repeating structure. To remedy these limitations, we introduce the periodic

laser driving

Hdriving =
ηωd

2
cos(ωdt)

N∑
j=1

cos(φj)σ
z
j , (5.23)

with frequency ωd, (dimensionless) coupling strength η, and a site dependent phase

φj (see Fig. 5.6). To analyse the effect of the driving, let us move into a frame

Figure 5.6: Two-level systems, separated by an energy Ω, and coupled through a

σxj σ
x
l interaction of magnitude J

(ions)
j,l . The interaction is induced by a standing wave

Edriving, periodically modulated at frequency ωd.

rotating with both Hdriving and the spin frequency Ω. Then, HIsing + Hdriving ≡
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Htotal → H̄total, with

H̄total = U(t)HtotalU
†(t)− iU(t)

d

dt
U †(t), (5.24)

where U(t) = exp [i
∑N

j=1 ∆j(t)σ
z
j ], and

∆j(t) =
Ω

2
t+

ηωd

2
cos(φj)

∫ t

0

cos(ωdt
′)dt′. (5.25)

This transformation leads to

H̄total =
N∑

j,l=1

J
(ions)
j,l

(
e2i(∆j(t)+∆l(t))σ+

j σ
+
l + e−2i(∆j(t)+∆l(t))σ−j σ

−
l

)
+J

(ions)
j,l

(
e2i(∆j(t)−∆l(t))σ+

j σ
−
l + e−2i(∆j(t)−∆l(t))σ−j σ

+
l

)
. (5.26)

The terms of the form σ+
j σ

+
l (σ−j σ

−
l ) rotate with a constant offset Ω (−Ω), which is

cancelled in the prefactors of σ+
j σ
−
l and σ−j σ

+
l . Now, let us assume that maxj,l |J (ions)

j,l | �

ωd � Ω. Applying the rotating wave approximation, only the processes in the second

line of (5.26) are non-negligible, and they rotate with the phase

e±iη(cosφj−cosφl) sinωdt = e∓2iη sin(
φj+φl

2
) sin(

φj−φl
2

) sinωdt. (5.27)

We rely on the Jacobi-Anger expansion to express this phase as a Fourier series in

terms of the Bessel functions Jn (see, e.g., [47]), i.e.,

eiz sin θ =
∞∑

n=−∞

Jn(z)einθ. (5.28)

This allows us to write the prefactors of the surviving terms in (5.26) as

J
(ions)
j,l

∞∑
n=−∞

Jn
(
∓2η sin(

∆k

2
(r

(0)
j + r

(0)
l ) + φ) sin

∆k

2
(r

(0)
j − r

(0)
l )

)
eitnωd , (5.29)

where we set φj = ∆k · r(0)
j + φ, with ∆k the total momentum of the driving, r

(0)
j

the equilibrium position of the ions, and φ a homogeneous phase. We suppose that

the r
(0)
j are equally spaced by a distance d0, and we use units such that d0 = 1,

so r
(0)
j = j. Since ωd � maxj,l |J (ions)

j,l |, any term with n 6= 0 gives a negligible

contribution to the dynamics, compared with the constant component stemming

from n = 0. Consequently, we ignore all the time-dependent terms, and we arrive

at the effective description of the dynamics dictated by

H∆k
eff (η, φ) =

N∑
j,l=1

J
(ions)
j,l J ∆k

j,l (η, φ)
(
σ+
j σ
−
l + σ−j σ

+
l

)
, (5.30)
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with

J ∆k
j,l (η, φ) ≡ J0(2η sin(

∆k

2
(j + l) + φ) sin

∆k

2
(j − l)). (5.31)

The signs of the argument of the Bessel functions in (5.29) have disappeared in this

last expression, because the zeroth order Bessel function is even under parity.

To understand the structure encoded in J ∆k
j,l (η, φ), we consider, only for illus-

tration purposes, the idealized limit of first-neighbours couplings J
(ions)
j,l → Jδj+1,l,

so that

H∆k
eff (η, φ)→

N−1∑
j=1

JJ ∆k
j,j+1(η, φ)

(
σ+
j σ
−
j+1 + σ−j σ

+
j+1

)
. (5.32)

The terms J ∆k
j,j+1(η, φ) are periodic in the site index j, with period T = π/∆k. The

parameters η, φ set their magnitude, as illustrated for some generic values in Fig.

5.7(a). The periodicity gives rise to repeating units, or clusters, of strongly coupled

spins, which in turn interact weakly with those of neighbouring groups. The size

of these clusters is given by T . This is depicted in Fig. 5.7(b), where the chain is

comprised of clusters of strongly coupled spins AB,ABC, · · · , and the thickness of

the bonds represents the coupling strengths. Setting ∆k = π/2, the Bessel couplings

are able to reproduce the alternating behaviour of the tunnellings in the SSH model.

Thus, we finally obtain Hamiltonian (5.1), e.g.,

HSSH = J
N∑
j=1

J π/2
j,j+1(σ+

j σ
−
j+1 + H.c.), (5.33)

where J π/2
j,j+1 can take one of the possible values

J odd ≡ J π/2
j,j+1

∣∣∣
j odd

= J0

[
2η sin

(π
4

)
cos
(π

4
+ φ
)]
,

J even ≡ J π/2
j,j+1

∣∣∣
j even

= J0

[
2η sin

(π
4

)
sin
(π

4
+ φ
)]
.

(5.34)

By analogy with (5.1), we see that

1− δ
1 + δ

=
J odd

J even
, (5.35)

so that the dimerization is given by the ratio

δ =
J even − J odd

J even + J odd
. (5.36)

The former first-neighbours limit is an approximation to the realistic ion coup-

lings J
(ions)
j,l . Only in that case the spin and fermion representations of HSSH are



111

1 2 3 4 5 6 7 8 9 10

J
k

j,
j
+
1
(η

0
,
φ
0
)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

(a)

(b)

Figure 5.7: (a) Magnitude of J ∆k
j,j+1(η0, φ0), in units of J , for η0 = 1, φ0 = 2π/5, and

∆k = π/2, π/3 and π/4. (b) Corresponding bond strengths for different periods.

alike, and consist of simple spin-spin or fermion-fermion couplings

HSSH = J

N∑
j=1

J π/2
j,j+1(σ+

j σ
−
j+1 + H.c.) = J

N∑
j=1

J π/2
j,j+1(c†jc

−
j+1 + H.c.). (5.37)

However, the former resemblance is an artefact of this limit. If we take into account

the arbitrary range of the ion couplings, the fermion representation of the spin
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Hamiltonian becomes a complex interacting problem. This is a consequence of the

string operator associated with the Jordan-Wigner transformation. Although the

resulting fermion problem is no longer the SSH model, changing the range of the

couplings allows us to switch on the interactions, and assess their effect on the

topological properties of HSSH.

Let us consider the SSH model with the ion couplings

H
(ions)
SSH =

N∑
j,l=1

J
(ions)
j,l J π/2

j,l (η, φ)
(
σ+
j σ
−
l + σ−j σ

+
l

)
, (5.38)

where

J π/2
j,l (η, φ) = J0(2η sin(

π

4
(j + l) + φ) sin

π

4
(j − l)). (5.39)

Now, we perform the Jordan-Wigner transformation (5.2) upon H
(ions)
SSH , that leads

to

H
(ions)
SSH =

N∑
l>j

2J
(ions)
j,l J π/2

j,l

(
c†jKj,lcl + cjKj,lc

†
l

)
, (5.40)

where we have introduced the notation

Kj,l ≡
l−1∏
m=j

(1− 2c†mcm). (5.41)

We note from (5.40) that the longer the range of the interactions, the more terms of

the string operator Kj,l appear in the Hamiltonian. These terms involve four, six,

etc. fermionic operators. They play the role of interactions among the one-body

eigenstates associated with the non-interacting Hamiltonian

H̄
(ions)
SSH =

N∑
l>j

2J
(ions)
j,l J π/2

j,l

(
c†jcl − cjc

†
l

)
=

N∑
j 6=l

J
(ions)
j,l J π/2

j,l

(
c†jcl − cjc

†
l

)
, (5.42)

which consists of terms involving only two fermionic operators. The minus sign

comes from the contribution of the string operator.

Our strategy to study H
(ions)
SSH is going to be the following: we think of this

problem as primarily associated with H̄
(ions)
SSH , whereas interactions among fermions

stemming from the Jordan-Wigner transformation introduce deviations from the

non-interacting limit. We ignore a priori if this approach is correct, since the mag-

nitudes of the interactions can be as large as those appearing in H̄
(ions)
SSH , so we will

have to justify it a posteriori. Accordingly, we first need to characterize the topolo-

gical features of the non-interacting limit, and then assess the role of the remaining
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terms in H
(ions)
SSH upon these physics. This is going to be the aim of the following

sections.

5.4 Localization length of the edge states in the

non-interacting limit

In this section we are going to establish the properties of the edge states of H̄
(ions)
SSH .

To this end, we perform a continuum description of its low-energy sector. This

framework allows us to extract the localization length of the edge states in the event

of long-range interactions. Finally, we discuss how to encode this information in the

survival probability of an excitation at the end of the chain.

5.4.1 Effective theory in the continuum limit

It is usual in condensed-matter physics to derive a continuum description of the low-

energy sector of a given problem, since the effective theory is often simpler to solve

than the underlying lattice model. We are going to illustrate how this is done for the

SSH model, following [239], and how it transfers into the more complex situation of

H̄
(ions)
SSH . To begin with, we note that

HSSH = J
N∑
j=1

J π/2
j,j+1(σ+

j σ
−
j+1 + H.c.), (5.43)

can be written as

HSSH =
N∑
j=1

JJ (+)(c†jcj+1 + H.c.) +
N∑
j=1

JJ (−)(−1)j(c†jcj+1 + H.c.), (5.44)

where J (±) = (J even ± J odd)/2 (cf. (5.34)). In the plane wave basis under PBC,

we get

HSSH =

N/2−1∑
µ=−N/2

εµc
†
µcµ +

N/2−1∑
µ=−N/2

∆µc
†
µ+N/2cµ + H.c., (5.45)

with

εµ = 2J cos

(
2πµ

N

)
and ∆µ = iJδ sin

(
2πµ

N

)
. (5.46)

Now we take the continuum limit, N → ∞, which entails substituting 2πµ/N by

k ∈ [−π, π] in the expressions involving sums over µ. The dispersion relation of the
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low-energy processes associated with εµ, which are located around the Fermi energy

(cf. Fig. 5.8), can be approximated by

Figure 5.8: Band diagram of HSSH for ∆µ = 0 (sinusoid). The (many-body) ground

state is comprised by all the eigenstates of HSSH with ε(k) < 0 (dark blue). The

energy bands of the continuum theory (red lines) are linear in k, and their slope is

set by the derivative of ε(k) at the Fermi points kF = ±π/2. The low-energy physics

occurs just above ε(k) = 0.

ε(k ± kF) = 2J cos(k ± kF) = ±2J sin(k) ' ±2Jk ≡ ±vFk. (5.47)

On the other hand, according to (5.45), the role of ∆µ is to mix fermions with a

given momentum with those that differ by µ = ±N/2 (k = ±π/2). If we assume

that δ � 1, the leading processes induced by ∆µ are those lifting the degeneracy,

which incidentally occurs at the Fermi momenta kF = ±π/2.

By making the final substitution

1

N

N/2−1∑
µ=−N/2

→ 1

2π

∫ π

−π
dk, (5.48)

into (5.45), and keeping only the previously described processes, we arrive at the

effective theory for the low-energy sector of the SSH model,

N

2π

∫ π

−π
dk ψ̄†(k) (vFkσ

z + ∆0σ
y) ψ̄(k), ψ̄(k)† =

(
c†R(k), c†L(k)

)
, (5.49)
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where we have defined

vF = 2J,∆0 ≡ ∆(±π/2) = 2Jδ. (5.50)

The two in the last definition stems from the fact that the processes mixing the left-

and right-moving fermion bands occur twice in the Hamiltonian. The operators

c†R(k) and c†L(k) create right- and left-moving fermions respectively, with dispersion

relation ±vFk (cf. Fig. (5.8)).

The effective theory (5.49) captures the low-energy physics of the SSH model

and, when solved, it presents a ‘continuum version’ of the edge states of the lattice

model [233, 239]. The localization length of these states must depend on the only

parameters available, vF and ∆0, which fulfil

vF

∆0

=
1

δ
. (5.51)

Recalling that (cf. (5.8))

ξloc = −2/ ln
1− δ
1 + δ

, (5.52)

we can write

ξloc = −2/ ln
1−∆0/vF

1 + ∆0/vF

' vF

∆0

. (5.53)

This result tells us something important. The continuum theory that we have just

derived is not exclusive to the SSH model. We are going to see that the low-energy

sector of H̄
(ions)
SSH can be effectively described by (5.49) as well, although the actual

values of vF and ∆0 depend on the parameters of the original lattice problem. The

fact that these two models share the same low-energy limit allows us to establish

an equivalence between them. In particular, we have that the localization length as

given by (5.53) applies to H̄
(ions)
SSH , with properly renormalized values of vF and ∆0.

To derive the corresponding values of vF and ∆0 for H̄
(ions)
SSH , let us write

H̄
(ions)
SSH =

N∑
j=1

N−j∑′

d=1−j

J
(ions)
d J (+)

d (c†jcj+d+H.c.)+
N∑
j=1

N−j∑′

d=1−j

J
(ions)
d J (−)

d (−1)j(c†jcj+d+H.c.),

(5.54)

where J (±)
d = (J even

d ± J odd
d )/2, and

J odd
d ≡ J π/2

j,j+d

∣∣∣
j odd

= J0

[
2η sin

(π
4
d
)

cos
(π

4
d+ φ

)]
, and

J even
d ≡ J π/2

j,j+d

∣∣∣
j even

= J0

[
2η sin

(π
4
d
)

sin
(π

4
d+ φ

)]
.

(5.55)
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The prime in the sum indicates that we exclude the term with d = 0. In the plane

wave basis, and assuming PBC, we get

H̄
(ions)
SSH =

N/2−1∑
µ=−N/2

εµc
†
µcµ +

N/2−1∑
µ=−N/2

∆µc
†
µ+N/2cµ + H.c., (5.56)

where we have defined

εµ = 4

N
2
−1∑

d=1

J
(ions)
d J (+)

d cos (
2πµ

N
d), (5.57)

and

∆µ = 2i

N
2
−1∑′

d=1

J
(ions)
d J (−)

d sin(
2πµ

N
d) + 2

N
2
−2∑′

d=2

J
(ions)
d J (−)

d cos(
2πµ

N
d) + J

(ions)
N
2

J (−)
N
2

(−1)µ.

(5.58)

The primes in the first and second sum in ∆µ mean that the index d runs only

over odd and even values respectively. To obtain vF from εµ we must compute its

derivative around µ = ±N/2, whereas ∆0 is given as ∆µ=±N/2. We have computed

these quantities numerically for large N , and this has given us a prediction for ξloc

according to (5.53). We shall see that this prediction is actually quite accurate, and

that it leads to non-trivial consequences in the long-range limit of J
(ions)
j,l .

5.4.2 Discussion of the edge states

The localization length of the edge states of H̄
(ions)
SSH depends on the parameters of

the Hamiltonian, which determine the values of J
(ions)
j,l and J π/2

j,l . They have two

kind of effects: (i) the modification of the range of J
(ions)
j,l , which depends on the

detuning from the bottom of the band of motional modes, δN/2, and (ii) controlling

the Bessel couplings through the values of η and φ. Altogether, δN/2, η and φ define

the parameter space of the problem. Naturally, we need to locate the edge states

in parameter space, before being able to check our prediction for the localization

length. We recall that the Bessel couplings fixed the dimerization pattern along the

chain, so they must play a major role in the presence or absence of edge states.

Thus, we study the emergence of edge states in H̄
(ions)
SSH in terms of η and φ, and

consider δN/2 only as a tuning parameter.

We already know from the discussion of the original SSH model that there is an

argument to prove the existence of edge states [218], based on (i) the chiral symmetry
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of the model, and (ii) the non-trivial value of the Zak phase. That reasoning should

carry over to H̄
(ions)
SSH , so let us seek under which conditions it fulfils the two previous

requirements.

In the event of the Hamiltonian being chiral-symmetric, its pseudo-spin rep-

resentation had no component dz(µ) (cf. (5.15)). If we define the two species of

operators aµ, bµ as we did for the SSH model (cf. 5.10), the corresponding matrix

hµ for H̄
(ions)
SSH reads

hµ =


∑N−1

d=0 J
(A)
d J

(A)
d ei

2πµ
N
d
∑N−1

d=0 J
(C)
d J

(C)
d ei

2πµ
N
d

∑N−1
d=0 J

(C)
d J

(C)
d e−i

2πµ
N
d
∑N−1

d=0 J
(B)
d J

(B)
d ei

2πµ
N
d

 , (5.59)

where d ≡ n−m is the distance between dimers n and m, and we have defined

J (A)
n,m = J (B)

n,m = J
(ions)
2n−1,2m−1 = J

(ions)
2n,2m, J (C)

n,m = J
(ions)
2n−1,2m, (5.60)

and 

J (A)
n,m = J π/2

2n−1,2m−1 = J0

[
2η sin π

2
d cos

(
π
2
d+ φ

)]
,

J (B)
n,m = J π/2

2n,2m = J0

[
2η sin π

2
d sin

(
π
2
d+ φ

)]
,

J (C)
n,m = J π/2

2n−1,2m = J0

[
2η sin(π

2
d− π

4
) sin

(
π
2
d− π

4
+ φ
)]
.

(5.61)

To make dz(µ) ≡ 0 in (5.59) we need that J (A)
d = J (B)

d . This is indeed possible for

two different values of φ, that have to fulfil

sin
(π

2
+ φ
)

= ± cos
(π

2
+ φ
)
, φ ∈ [0, π], (5.62)

which renders φ = π/4, 3π/4. We conclude that these two values of φ are the

chiral-symmetric points of the non-interacting limit in parameter space.

On the other hand, it turns out that η plays a minor role for the occurrence of

the edge states. However, it allows us to fix the actual value of the dimerization.

We recall that, in terms of the Bessel couplings, this quantity is given by (5.36)

δ =
J even
d − J odd

d

J even
d + J odd

d

, d = 1. (5.63)

We have depicted δ as a function of η in Fig. 5.9. We see that for any η, the

dimerization is positive for φ = 3π/4, whereas δ < 0 in the case of φ = π/4. By

analogy with the SSH model, we expect that the topologically non-trivial phase
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Figure 5.9: Plot of (5.63) as a function of η for the two values of φ leading to chiral

symmetry. We take η0 ' 0.62, which renders δ = 0.1. The inset corresponds to

the Zak phase for φ = π/4 and φ = 3π/4, in units of π, signalling the topologically

trivial and non-trivial phases, respectively.

arises when δ > 0, that is φ = π/4. This is confirmed by the fact that the Zak

phase is π in this latter case, as shown in the inset of the figure. Furthermore, we

verify that this value is robust against the continuous variation of the range of the

couplings, by changing the detuning δN/2.

We conclude this section by finally presenting the localization length of the edge

states for different ranges of J
(ions)
j,l . We recall that the edge states are eigenfunctions

of the form Mj,±n ∼ e(N−j+1)/ξloc , for instance near the left end, and that their

energy lies in the mid-gap. Therefore, we can identify these states in the numerical

diagonalization of the non-interacting limit,

H̄
(ions)
SSH =

N∑
j 6=l

J
(ions)
j,l J π/2

j,l

(
c†jcl − cjc

†
l

)
, (5.64)

and extract their exact localization length from a fitting to an exponential decay. We

have computed ξloc in this fashion for different values of δN/2, to check the prediction

of the effective description in terms of vF and ∆0. These are calculated from the

expressions for εµ and ∆µ in the previous section. Fig. 5.10 shows that, for any

range of the ion couplings, the localization length of the edge states of H̄
(ions)
SSH is

smaller than the one for the original SSH model. This means that the long-range
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Figure 5.10: Localization length of the edge states of H̄
(ions)
SSH , from the exact diag-

onalization of the one-body Hamiltonian, for N = 100 sites, and from expression

(5.53). The dimerization is δ = 0.1, that is, φ = 3π/4, η = η0 ' 0.62. In units of

tC, the width of the band of transverse motional modes, the long-range limit of the

ion couplings is attained for δN/2 < 1, whereas the dipolar decay occurs for large

detunings. We depict the results for δN/2 from 0.1 to 10.

components of J
(ions)
j,l yield an increase in the localization of the wave functions Mj,±n

at the ends of the chain. Physically, the effect of J
(ions)
j,l on the edge states is better

understood within the continuum theory. The prediction for the localization length

establishes that this quantity is just the interplay of vF and ∆0. The Fermi velocity

sets the typical energy of the fluctuations upon the ground state, whereas ∆0 is just

the effective dimerization. Our results show that these quantities get renormalized

by the ion couplings, so that vF decreases and ∆0 increases. This means that the

long-range interactions lower the typical energy of the excitations over the ground

state, and that the periodic nature of the couplings between distant sites reinforces

the dimerized structure of the problem.

The former result is highly non-trivial, and it would be interesting to realize in

an experiment. However, as we have discussed before, the eigenstates of H̄
(ions)
SSH get

mixed because of the interactions in

H
(ions)
SSH =

N∑
j,l=1

J
(ions)
j,l J π/2

j,l (η, φ)
(
σ+
j σ
−
l + σ−j σ

+
l

)
, (5.65)
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stemming from the Jordan-Wigner transformation. This seems to prevent us from

accessing the modes of the non-interacting limit, unless we could effectively elim-

inate the fermion-fermion interactions. Fortunately, it turns out that removing the

interactions is physically very simple: if we can prepare the system in a subspace

with only one fermion or, equivalently, one spin, then the interactions will play no

role. We have exploited this idea for an eventual protocol to prepare and measure

the localized solutions.

5.4.3 Protocol for the detection of the edge states

We have established that under certain conditions, the Hamiltonian H̄
(ions)
SSH supports

solutions localized at the edges of the chain. Nevertheless, the detection of these

edge states is not straightforward. The naive approach of preparing the many-body

ground state and looking for some magnetization at the edges is useless: the parity

and rotational symmetries of H
(ions)
SSH imply that all local spin observables are zero.

Furthermore, the edge states may mix with the bulk eigenfunctions because of the

interactions, and this would spoil their properties. Ideally then, we would like to

isolate the edge states from the rest of the spectrum. We note that the wave function

of an edge state located near the left end of the chain reads

|E.S.〉 ∼
N∑
j=1

e(N−j+1)/ξlocc†j|0〉. (5.66)

Since, in terms of spins,

c†j|0〉 = σ+
j

j−1∏
m=1

(−σzm) |↓↓↓ . . .〉 = σ+
j |↓↓↓ . . .〉 , (5.67)

we can write

|E.S.〉 ∼
N∑
j=1

e(N−j+1)/ξlocσ+
j |↓↓↓ . . .〉 . (5.68)

This state has a very important feature: it is a superposition of single excitations

upon |↓↓↓ . . .〉. These excitations span the single-excitation subspace, whose dy-

namics under the whole Hamiltonian H
(ions)
SSH is dictated by

hj,l ≡ 〈j|H(ions)
SSH |l〉 = 2J

(ions)
j,l J π/2

j,l , (5.69)
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where |j〉 = σ+
j |↓↓ · · · 〉. The former claim stems from solving the Schrödinger

equation (~ = 1),

i|ψ̇(t)〉 = H
(ions)
SSH |ψ(t)〉, where |ψ(t)〉 =

N∑
j=1

cj(t) |j〉 , with
N∑
j=1

|cj(t)|2 = 1. (5.70)

The coefficients cj(t) are just c-numbers, not to be confused with fermion operators.

Multiplying by 〈j|, we see that

iċj(t) =
N∑
l=1

hj,lcl(t). (5.71)

We note that the former derivation is based upon the property that H
(ions)
SSH decom-

poses into subspaces of constant value of Sz =
∑N

j=1 σ
z
j /2, because of its invariance

under rotations around the z axis. Consequently, states with different number of ex-

citations are not mixed in the evolution. Equation (5.71) is straightforwardly solved

by diagonalizing the matrix hj,l, so that hj,l =
∑N

n=1 εnMj,nMl,n, and therefore

cj(t) =
N∑

n,j′=1

e−iεntMj,nMj′,ncj′(0). (5.72)

Finally, we point out that the matrix hj,l coincides with the one-body Hamiltonian

of the non-interacting limit. Thus, Mj,n is comprised of the eigenstates of H̄
(ions)
SSH ,

and in particular must feature the state |E.S.〉.

We cannot physically prepare |E.S.〉 in a simple manner. However, |↑↓↓ . . .〉 is

trivial to initialize. Now we note that |E.S.〉 has a large overlap with |↑↓↓ . . .〉. Since

the edge state is an eigenstate of hj,l, the spin at the left end should take a long

time to evolve under H
(ions)
SSH . We define the survival probability of this state as

P ≡ |〈ψ(t)|σ+
1 σ
−
1 |ψ(t)〉|2, t→∞, (5.73)

for |ψ(t)〉 =
∑N

j=1 cj(t)|j〉, with cj(0) = δ1,j. This initial condition corresponds to

the spin excitation at the left of the chain. P is computed straightforwardly from

the application of (5.72), so that 〈ψ(t)|σ+
1 σ
−
1 |ψ(t)〉 is given by

N∑
j,k,n,m=1

〈↓↓↓ . . .|σ−j σ+
1 σ
−
1 σ

+
k |↓↓↓ . . .〉Mj,nM1,nMk,mM1,me

i(εn−εm)t, (5.74)

and for long times,

〈ψ(t)|σ+
1 σ
−
1 |ψ(t)〉 '

N∑
n=1

|M1,n|4 =⇒ P '

(
N∑
n=1

|M1,n|4
)2

. (5.75)
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We expect that the only contribution in this sum that depends on the localization

length is the one associated with the edge state. This dependence can be estimated

in the following fashion. We recall that the eigenfunction corresponding to the edge

state was given as

Mj,n0 ' e(N−j+1)/ξloc , and therefore, M1,n0 =
1

Z
eN/ξloc , (5.76)

where Z is the normalization factor of the edge state. Z can be computed from the

fact that

1

Z2

N∑
j=1

e2(N−j+1)/ξloc = 1 =⇒ Z =

√
e2N/ξloc − 1

1− e−2/ξloc
'
√
ξloc

2

√
e2N/ξloc − 1, (5.77)

where we have used the formula for the sum of a geometric series [47]

b∑
k=a

rk =
ra − rb+1

1− r
. (5.78)

Therefore, we conclude that

|M1,n0|4 ∝ ξ−2
loc . (5.79)

On the other hand, we expect that the rest of the states in the sum comprising P

contribute each with 1/
√
N , so that

P (1/ξloc) '
(
c1

ξ2
loc

+
c2

N

)2

. (5.80)

We have numerically confirmed the dependence of P on ξloc in Fig. 5.11. We note

that the survival probability attains a constant value whenever 1/ξloc → 0. On the

other hand, for 1/ξloc → 1, the survival probability scales as the edge state support

at the end of the chain, with exponent 4. Furthermore, we have checked that this

result holds for any regime of the range of the ion couplings, e.g., different δN/2.

The former result states that the probability of measuring a spin excitation at the

end of the chain, evolving under H
(ions)
SSH , is proportional to the localization length of

the state: the more localized it is, the greater the chance of finding it at long times.

The typical time to obtain P is given by maxn,m 1/|εn− εm|, which can be estimated

as the inverse of the effective gap ∆0, as long as |J (−)
d | � |J

(+)
d |. Following the

discussion on this section, we now suggest a possible experimental procedure to

study the prediction for ξloc of the edge states:
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Figure 5.11: Log-log plot of the survival probability P as a function of the inverse

of the localization length ξloc. P follows a power-law dependence for ξloc → 1, with

exponent β ' 3.8, consistent with the prediction β = 4. We have taken δN/2 = 1/3,

N = 1000, and values of η in the interval 0.13− 0.5, for φ = 3π/4.

1. Prepare the chain in the vacuum state |↓↓↓ . . .〉.

2. Apply a π-pulse to the ion in site 1, so that |↓↓↓ . . .〉 → |↑↓↓ . . .〉.

3. Switch on H
(ions)
SSH with φ = 3π/4 and η = η0, and wait until t > ∆−1

0 .

4. Measure the population on site 1.

5. Repeat for different values of the detuning from the band of transverse modes

δN/2, to check for the dependence on the range of the interactions.

Finally, we would like to recall that the edge states are one-body eigenstates.

These states should occur on the many-body ground state of H
(ions)
SSH , which is com-

prised of all the modes up to k = kF (cf. Fig. 5.8). However, there is a mixing of

all these states stemming from the interactions. The immediate question is if the

interactions spoil this picture for the ground state, and if the edge states survive

outside the non-interacting limit. To settle this, we are going to focus on the ground

state of the problem in the following section.
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5.5 Ground state of the interacting problem

In the previous section we have been dealing with the single-excitation subspace.

Nevertheless, the true many-body ground state of H
(ions)
SSH has not been yet addressed.

In this section, we compute the ground-state correlations between the ends of the

chain, which must be non-zero only if there is some localization present at the

edges. We see that the correlations degrade in the event of long-range interactions.

We reproduce this phenomenon in an effective model that shows that it stems from

the hybridization between the localized solutions and the bulk modes.

5.5.1 End-to-end correlations in the ground state

We seek to unveil any trace of localization at the edges in the ground state of the

Hamiltonian

H
(ions)
SSH =

N∑
j,l=1

J
(ions)
j,l J π/2

j,l (η, φ)
(
σ+
j σ
−
l + σ−j σ

+
l

)
. (5.81)

To begin with, we have to find an observable suited for this purpose. The sym-

metries of the model rule out any on-site magnetization, since there is no preferred

spin direction in the xy-plane or along the z-axis. Therefore, we must rely on the

correlations between different spins in the chain.

Since the edge states are the only eigenfunctions of H
(ions)
SSH that localize at the

ends of the chain, they must play the main role in giving rise to the end-to-end

correlations. In a finite chain, states localized at each end hybridize to give rise

to solutions that have support at the left and right boundaries. We expect that

the correlations between the ends are zero if there is no localization at the edges,

whereas they must have a non-zero value otherwise. This result has been established

for the SSH model [240], and it has been shown that the correlations stem from the

entanglement between the ends of the chain. We illustrate this fact in Fig. 5.12,

where we have computed 〈σz1σzL〉 as a function of the dimerization for both HSSH and

H
(ions)
SSH . The correlations in the ground state of the SSH model are non-zero for δ > 0

as expected. This holds qualitatively true for H
(ions)
SSH as well. Therefore, this result

reassures us that the edge states of the non-interacting limit are not destroyed by the

fermion-fermion interactions within (5.81). Indeed, in the regime of large detuning,

or short range, the correlations are larger than those of the SSH model, for any value
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Figure 5.12: Correlations 〈σz1σzL〉 for N = 16, φ = 3π/4 and using η to tune the

dimerization. The arrow shows the direction of decreasing range of the interactions,

or increasing detuning from the bottom of the motional band. We have plotted

curves for δN/2 = 0.5, 1 and 10.

of dimerization. This is consistent with the enhanced localization of the one-body

edge state predicted in the previous section (cf. Fig. 5.10).

Nevertheless, we observe a degradation of the end-to-end correlations in the long-

range regime of J
(ions)
j,l . The explanation for this is that the interactions are inducing

the mixing of the edge states with the bulk modes, so that the localized components

in the many-body ground state no longer follow a pure exponential decay. This

renders an effective decrease of the localization at the edges. To illustrate this

point, we are going to consider an effective model that captures the former effect.

5.5.2 Effective interacting Hamiltonian

Hamiltonian (5.81) does not admit an exact diagonalization in general. This is

because it is describing a highly-interacting model. Applying the Jordan-Wigner

transformation to the Hamiltonian,

H
(ions)
SSH =

N∑
l>j

2J
(ions)
j,l J π/2

j,l

(
c†jKj,lcl + cjKj,lc

†
l

)
, Kj,l ≡

l−1∏
m=j

(1− 2c†mcm), (5.82)
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shows that as long as there are long-range interactions, H
(ions)
SSH is comprised by

interaction terms between an arbitrary large number of fermions. On the other

hand, the problem is straightforwardly diagonalizable for short-range interactions,

since then

H
(ions)
SSH =

N∑
j

2J
(ions)
j,j+1J

π/2
j,j+1

(
c†jcj+1 − cjc†j+1

)
, (5.83)

is quadratic in the fermionic operators.

As we want to address the long-range limit of the ion couplings, we need to rely

on some approximation. Let us assume that we truncate the fermionic interactions

after the next-to-nearest-neighbours term. Then, (5.82) reduces to a Hamiltonian

with two-body interactions,

Heff =
N∑
j=1

J
(1)
j (c†jcj+1 + H.c.) +

N∑
j=1

J
(2)
j (c†j(1− 2c†j+1cj+1)cj+2 + H.c.). (5.84)

Equivalently, we can write Heff = H0 +Hint, where

H0 =
N∑
j=1

(J
(1)
j c†jcj+1 + J

(2)
j c†jcj+2 + H.c.), (5.85)

and

Hint = −2
N∑
j=1

J
(2)
j (c†jc

†
j+1cj+1cj+2 + H.c.). (5.86)

We assume that we can diagonalize H0, that is, we can write

H0 =
N∑
µ=1

εµc
†
µcµ, with cj =

N∑
µ=1

Mj,µcµ, Mj,µ ∈ R. (5.87)

In terms of the new operators cµ, the interaction term reads

Hint = −2
N∑

µ1,µ2,µ3,µ4=1

Uµ1,µ2,µ3,µ4c
†
µ1
c†µ2cµ3cµ4 , (5.88)

where

Uµ1,µ2,µ3,µ4 ≡
N∑
j=1

J
(2)
j (Mj,µ1Mj+1,µ2Mj+1,µ3Mj+2,µ4 +Mj+2,µ1Mj+1,µ2Mj+1,µ3Mj,µ4).

(5.89)

So far, we have not made any approximation. However, the interaction term is

difficult to deal with in general, so we rely on the following procedure, which we

refer to as the Hartree-Fock approximation: we form all the possible pairings of two
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operators c†µcµ′ in Hint, and evaluate them upon the ground state of H0. The other

two remaining operators are left unevaluated, and everything is placed in normal

order. There are four different pairings possible, e.g.,

c†µ1c
†
µ2
cµ3cµ4 , c†µ1c

†
µ2
cµ3cµ4 , c†µ1c

†
µ2
cµ3cµ4 and c†µ1c

†
µ2
cµ3cµ4 .

Since 〈c†µcµ′〉 = δµ,µ′ for µ 3 εµ < 0, we can compute straightforwardly the sums in

Hint, in terms of which we define the Hartree-Fock Hamiltonian

HHF =
N∑
µ=1

εµc
†
µcµ − 2

N∑
µ,µ′=1

Vµ,µ′c
†
µcµ′ , (5.90)

where

Vµ,µ′ =
N∑

q3εq<0

(−Uq,µ,q,µ′ + Uq,µ,µ′,q + Uµ,q,q,µ′ − Uµ,q,µ′,q) . (5.91)

We transform HHF back to the ‘real space’ operators cj, and compute the ground

state to check for the correlations. These are shown in Fig. 5.13. We find a good
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Figure 5.13: Correlations 〈σz1σzL〉 predicted by the HF approximation (circles) vs. the

exact diagonalization of Heff (lines). Values of δN/2 = 0.5, 1, 10. N = 16, φ = 3π/4

and η sweeps the values of the dimerization shown in the figure.

agreement between Heff and HHF. We must stress, however, that this effective

model fails to match the original correlations shown in Fig. 5.12. In any case, Heff

captures the fact that the interactions induce the degradation of the correlations.

Nevertheless, in contrast to H
(ions)
SSH , the current model allows us to understand the
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physical origin of these effects in terms of the one-body eigenstates, as we are going

to discuss.

5.5.3 Mixing between the edge and bulk states

The diminished end-to-end correlations in the ground state in the event of long-

range interactions stem from the hybridization of the edge states with the bulk

modes. This claim is based on the role of the potential Vµ,µ′ in the Hartree-Fock

approximation. In particular, VE.S.,µ′ gives the amplitude for the mixing of any of

the edge states with the other modes of the spectrum. Performing perturbation

theory up to first order in Vµ,µ′ , we see that the edge state changes into

|E.S.〉 = |E.S.(0)〉 −
N∑

µ6=E.S.

|µ(0)〉 2VE.S.,µ
εE.S. − εµ

. (5.92)

We note that this particular form of the perturbative expansion fulfils the condition

〈E.S.(0)|E.S.〉 = 1 [51]. The normalized version of (5.92), that we call |E.S.(N)〉,

differs from |E.S.〉 by an overall factor. Let us assume that |E.S.(N)〉 = Z1/2|E.S.〉.

Then, we have that

〈E.S.(0)|E.S.(N)〉 = Z1/2, (5.93)

i.e., Z represents the probability for the perturbed ket |E.S.(N)〉 to be in any of the

original edge states. Since 〈E.S.(N)|E.S.(N)〉 = Z〈E.S.|E.S.〉 = 1, we have that, to

first order in the potential,

Z−1 = 〈E.S.|E.S.〉 = 1 +
N∑

µ6=E.S.

4|VE.S.,µ|2

(εE.S. − εµ)2
, (5.94)

so that

Z ' 1−
N∑

µ6=E.S.

4|VE.S.,µ|2

(εE.S. − εµ)2
. (5.95)

The second term in Z represents the probability for finding the perturbed ket in

any of the bulk states. This bulk-edge mixing is behind of the detriment of the

correlations between the edges.

We conclude this section by studying the behaviour of Z with the range of the

interactions (cf. Fig. 5.14). As expected, the mixing between the edge states and the

bulk modes is larger the longer the range of the ion couplings (δN/2). Physically, we
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Figure 5.14: Value of the parameter Z as a function of the detuning δN/2. N =

16, φ = 3π/4 and the values of the dimerization shown in the figure.

interpret that, because of the interactions, the localized components in the many-

body ground state do not longer behave as exponentially decaying functions into

the bulk, although they are still responsible for the amount of localization observed.

This degradation of the one-body edge state induced by the interactions constitutes

an example of the physics beyond the usual framework of non-interacting topological

insulators.

5.6 Trapped-ion experimental parameters

The Hamiltonian for the simulation of the SSH is the sum of two terms,

HIsing +Hdriving =
N∑

j,l=1

J
(ions)
j,l σzjσ

z
l +

Ω

2

N∑
j=1

σxj +
ηωd

2
cos(ωdt)

N∑
j=1

cos(φj)σ
x
j . (5.96)

The Ising part originates from the adiabatic elimination of the phonons in the typical

cJT model (cf. chapter 3)

HcJT =
N∑
n=1

δna
†
nan +

Ω

2

N∑
j=1

σzj + g
N∑

j,n=1

σxj (anMj,n + H.c.), (5.97)

We consider a couple of lasers inducing a spin-dependent force upon the transverse

modes. Analogously to the implementation of the cJT model, let us assume a

(homogeneous) crystal of 9Be+ ions along a Paul trap, separated by distances d0 =
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10µm. The transversal trapping frequency is ωx = 5(2π) MHz, so that the width

of the radial modes is tC ' 38 (2π) kHz. In the short-range limit of the effective

couplings, we have that

J
(ions)
j,l ' J

|j − l|3
, with J ' g2tC

2(δN/2)2
, (5.98)

where δN/2 is the detuning from the bottom of the radial modes dispersion relation.

We assume that δN/2 ' 2g, so that we estimate J ' 30 kHz as the lowest time scale

in the simulation. δN/2 can be changed further to match the values considered in the

theory, that are given in units of tC. One could explore as well if there is a trade-off

for faster simulation times stemming from fixing δN/2 and tuning tC instead. The

magnetic field σzj in HcJT can be implemented via a microwave or Raman transition.

Typical magnitudes of the effective Rabi frequency Ω are 100 kHz [149].

Regarding the periodic driving, the standing wave can be implemented with two

couterpropagating running waves, or with the aid of a cavity. In turn, the effective

coupling stems from two-photon stimulated Raman transitions, and the resulting

interaction Hamiltonian is [241]

Hint =
N∑
j=1

Ω′σxj cos(∆k · rj) cos(ωLt), (5.99)

where ωL is the frequency of the wave created by the lasers, and ∆k is the wave vector

projected on the chain axis. We choose the laser intensities to match the condition

Ω′ = ηωd/2. Moving into the interaction picture, and making the rotating-wave

approximation, we get

Ĥint '
N∑
j=1

Ω′(σ+
j e

iωdt + H.c.) cos(∆k · rj(t)), (5.100)

where we have chosen ωL = ωd − ω, with ω being the frequency of the hyper-

fine/Zeeman qubit. The argument of the cosine can be expanded as

∆k · rj(t) = (∆kx, 0,∆kz) · (δrx,j(t), δry,j(t), r(0)
j + δrz,j(t))

=
N∑
n=1

(ηxnM
x
j,nax,ne

−iωxnt + H.c.) +
N∑
n=1

(ηznM
z
j,naz,ne

−iωznt + H.c.) + ∆kzr
(0)
j + φ.

(5.101)

To give rise to ∆kz = sin(θ)|∆k| = π/(2d0), and assuming λ = 320 nm and d0 =

10µm, the laser must be almost perpendicular to the chain, with a small tilting of
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θ ' 0.46 degrees. We consider trapping frequencies ωx = 5 (2π) MHz, and ωz =

192 (2π) kHz for N = 20 ions. With these values we get the Lamb-Dicke parameters

maxn η
x
n ' 0.21 and maxn η

z
n ' 0.009. The former values justify the Taylor expansion

of the cosine. We choose a value of ωd ' 50 kHz, so that |ωd − ωx,zn | � ωd. Then,

the force is not resonant with any motional sideband, and therefore

Ĥint '
N∑
j=1

Ω′(σ+
j e

iωdt + H.c.) cos(∆kzr
(0)
j + φ). (5.102)

We note that (σ+
j e

iωdt + H.c.) ∝ σxj cos(ωdt) + σyj sin(ωdt). We aim at implementing

a term proportional to σxj alone, so we would need to add an extra standing wave

with a (detuning) frequency −ωd to eliminate σyj . Another possibility is to utilize

the frequency modulation of the laser [242], to create two sidebands with frequencies

±ωd around ω. This has the additional benefit of allowing us to drive the carrier

transition as well. In any case, we obtain

Ĥint → Hdriving =
ηωd

2
cos(ωdt)

N∑
j=1

cos(∆kzd0j + φ)σxj . (5.103)

The assumption for eliminating the anomalous terms σ+
j σ

+
l and σ−j σ

−
l in the

derivation of HSSH was that

max
j,l
|J (ions)
j,l | � ωd � Ω. (5.104)

Since ωd ' 50 kHz, the previous condition is well satisfied. Finally, we recall that the

typical time associated with the detection of the edge state is ∆−1
0 . Since ∆0 ' 2Jδ,

for δ = 0.1 (η ' 0.62, φ = π/4), we have that ∆−1
0 ' 0.17 ms. This is consistent

with experimental times for the preparation and detection of many-body spin states

in trapped-ion quantum simulators [124].

5.7 Conclusions

The aim of this chapter was to prove if it was possible to realize the SSH model

with trapped-ions. Since the effective interactions between spins in these systems

have long range, we wanted to establish their effect on the localization of the edge

states, and on the many-body ground state.
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We considered a periodic driving to dress the effective couplings of the spins in

the ion trap. We obtained an XY model with periodically modulated couplings, and

for period two we recovered the SSH model. The ion couplings introduced some

interactions in the fermionic representation of the Hamiltonian. Similar techniques

to those we used have been proposed for the quantum simulation of topological

insulators with trapped ions. In particular, we can mention the photon-assisted

tunnelling [243], which consists in periodically driving the bosonic degrees of free-

dom, instead of the spins. In the end, this gives rise to similar dressed, effective

spin-ion couplings. Periodic drivings have been used as well to probe localization

effects [238]. Also, it is well-established that the spatial modulation of the couplings

can give rise to a kaleidoscope of topological phases with fermions [244]. The case

of long-range interactions has also been addressed in [245]. It is known that the

addition of a transverse field to H
(ions)
SSH gives rise to magnetization plateaus [246], as-

sociated with non-trivial topological phases. Direct realization of this physics would

be straightforward with our scheme.

We relied on a continuum theory of the low-lying sector of the spectrum to obtain

a prediction for ξloc of the edge states. This effective description proceeded along the

same lines of the original continuum limit for the SSH model, known as Takayama-

Lin-Liu-Maki theory [239]. In this work the authors take into account the phononic

degrees of freedom giving rise to the dimerization. However, one can dispose of

this technicality, as we did, or rely on other arguments to justify the existence of

localized solutions in the continuum limit, as the envelope-function approximation

[233]. We concluded that the long-range couplings induce an extra localization

of the edge states. In order to realize the boundary modes experimentally, we

discussed the parameter regime where they appear, and a protocol to prepare them.

Similar ideas have been put forward in the field of cold-atoms in optical lattices

[247]. However, our method addresses the one-body edge states, in contrast to

other proposals, where they deal with the many-body ground state. This is an

advantage of the implementation with trapped ions, where we count with individual

addressing. Furthermore, our setup offers the possibility to probe the prediction for

the localization length of the non-interacting limit, and the range of the interactions

can be tuned at will. The extra localization of the edge states raises the question
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of whether other topological models may present this same phenomenology when

subjected to long-range couplings, and therefore opens up a prospect for further

investigations. Also, the method to experimentally access the non-interacting limit,

bypassing the interactions, may apply to other problems as well. This is relevant to

systems where interactions cannot be rigorously neglected in any regime.

Finally, we computed the end-to-end correlations from an exact diagonalization

of the Hamiltonian. The reason behind this is that as long as there is any localization

at the ends of the chain, this amount will be different from zero. Taking into account

that the only one-body eigenstates with appreciable support at the edges are the

boundary modes, there is a direct correspondence between 〈σz1σzL〉 and the presence

of edge states within the many-body ground state. The calculation showed that

the edge states of the non-interacting limit were present as well in the interacting

problem. Nevertheless, for long-range ion couplings, the decrease in the correlation

between the ends indicated that the edge states were gradually disappearing. We

concluded that the origin of this phenomenon was the mixing between these modes

and the bulk states. This effect reminds of the depletion of the boundary mode in

the superlattice Bose-Hubbard model [247]. In this work, the authors claim that

this feature stems from the lack of chiral symmetry of the interacting problem, and

put forward a generalized bulk-boundary correspondence.

The existence of edge states in the presence of interactions is a very important

result. An immediate extension of this work would consist in the computation of

a topological invariant of the many-body ground state, such as the Zak phase, as

presented in [247], for instance. The behaviour of this quantity could shed light on

the non-trivial nature of the ground state as a function of the interactions. Also, it

would be interesting to check the behaviour of the correlations between the edges

and the bulk for long chains. This could be provided by a DMRG diagonalization

of the problem, but it would require the implementation of long-range interactions,

and a subsequent computational overhead.
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Chapter 6

Conclusions and Outlook

Our objective in this thesis was to exploit, from a theoretical perspective, the current

capabilities of trapped-ion quantum simulators for the implementation of models

hosting strongly-correlated phases. We have shown that spin-liquid phenomeno-

logy, gauge theories and topological insulators can be realized and characterized in

state-of-the-art trapped-ion systems. To finalize, let us summarize the main conclu-

sions drawn from the former chapters, and suggest questions that merit of further

investigation.

A first conclusion is that spin liquids may arise in trapped-ion quantum matter,

although further investigation is needed. The frustrated region presents enhanced

fluctuations and correlations, but we do not know if they survive the thermodynamic

limit. This question could be answered with more extensive DMRG calculations,

and we expect that the susceptibility to a quantum field in the frustrated region

diverges in the thermodynamic limit. Also, spin liquids present a temperature region

Tfreezing < T < Tc in which they are free to fluctuate in a correlated manner, but

do not present magnetic order. It would be interesting to establish if there is an

analogous transition field between the paramagnet and the liquid phase. To this

end, we would need to find suitable order parameters to establish clearly the phase

boundaries between AF/frustrated/Hopfield regimes, and the paramagnetic phase.

From our results we can also draw that there is an emergence of long-range

correlations in the cJT model, but the physical origin for this is not clear. The

correlations must arise from the constraints upon the fluctuations dictated by the

frustrated interactions. A possible method to gain insight into these constraints
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could be to study excited states, and establish some common features.

We have seen that the correlations in the Hopfield regime feature some interest-

ing structures as well. The spatially modulated periodic couplings can give rise to

a more regular instance of frustration. These kind of couplings have been studied

in connection with systems featuring modulated structures, whose physics is cap-

tured by the ANNNI model [42]. Since the frustration in the Hopfield regime is

better understood, we could look for the onset of a spin liquid in a more controlled

environment.

Regarding quantum annealing, we have concluded that, within mean-field the-

ory, it does not perform well in the cJT model. This may indicate that quantum

correlations are important for the success of the algorithm, or that the frustration

in the cJT is a ‘hard’ problem for the algorithm. We must note that quantum

annealing is a topic that has attracted a lot of attention since it was claimed that

certain commercial devices were performing the algorithm for hundreds of qubits

[202]. These devices are based on superconducting qubits, since they are easy to

scale up. Although the presence of quantum coherence on these machines is out of

doubt [248], the status of the algorithm as a way to outperform classical simulations

remains contested. In particular, it is not clear if quantum annealing would be able

to tackle computationally hard problems such as finding the ground state of a spin

glass, since it can require an exponentially large running time [203, 249]. In our par-

ticular case, it would be interesting to assess the complexity in finding the ground

state of the cJT model, and compare it with the hardness of the problems encoded

in superconducting quantum annealers. This study could highlight that trapped-ion

simulators showcase harder problems than those that can be encoded in commercial

quantum annealers.

We have concluded that the IR lattice undergoes a first-order phase transition.

We have backed up this claim by our perturbative, variational and numerical studies.

Nevertheless, we have already insisted on the necessity of performing a finite-size

scaling study of the divergences in the problem to put on sounder footing the emer-

gence of the transition. This should be amenable for our DMRG routines as long

as the phonon number is low. Further simulations would be useful to accurately

locate the critical endpoint, and to characterize it. We do not know if there is



136

actual criticality associated with this point, and it would be interesting to check

if at this point, for which δ ∼ J , there is a vanishing of the energy of the fluctu-

ations. The phenomenon of hysteresis in spin systems [215] could be studied in the

IR lattice as well. In particular, the periodic driving of the phonons would allow

the study of metastability around the transition. Finally, the IR lattice is a perfect

test-bed for the accuracy of other spin-boson variational wave functions, such as

the multipolaron ansatz [250], which has been introduced in the study of dissipative

systems.

The classification of topological orders in topological insulators is well-established

[21], but less is known when interactions are added into these systems [251]. We have

proven that the interacting SSH model features topological edge states, although a

proper characterization in terms of the localization length of the many-body ground

state is missing. This would require the simulation of longer chains. We could try to

perform a DMRG simulation of this problem, but the long-range interactions intro-

duce an overhead of the method. On the other hand, the versatility of the periodic

drivings would allow us to implement other interesting models, such as the Kitaev

wire [252]. Another possible direction is the study of 2D systems, where dressed

interactions can be explored for simulation of more general models of topological

order, such Kitaev’s honeycomb model [45].

The systems that we have studied do not necessarily exceed the computational

capability of a classical computer, owing to their 1D nature. This has not prevented

us from studying phases that are scientifically very appealing, since they cannot be

easily realized in nature. The implementation of our proposals may serve as proof-

of-principle experiments that could be later scaled up. For example, the IR lattice,

if implemented, would be the first analogical simulation of a lattice gauge theory.

The extension of our work to further dimensions is an exciting research direction,

since the generalization of our phases to 2D would give rise to richer spin-liquid and

topological orders.

On the other hand, we must stress that quantum simulation with trapped ions,

although usually restricted to 1D, where we can perform DMRG, is getting very

close to the major goal of outperforming classical computers. This is the case of

trapped-ion experiments where normal modes, along with the spins, play a role
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in the dynamics. In these cases, the complexity of the spin-phonon Hamiltonian

increases exponentially with the number of modes. This places a restriction for

the system sizes that can be simulated with DMRG. Current works are exploiting

this route to study fundamental questions in quantum statistical mechanics, such

as the emergence of thermalization in the dynamics of a single qubit coupled to an

engineered bosonic bath [117].

This thesis has showcased the exciting possibilities for simulating phases of mat-

ter featuring strong correlations with trapped ions. Although current experiments

are limited to N . 20 ions [125], this does not prevent the implementation of physics

that, because of the subtle conditions required for its onset, can only occur in these

systems, owing to the exquisite control over all the degrees of freedom available. The

prospects for quantum simulation are exciting, since simulations are already giving

answers about the behaviour of exotic phases of matter, and are closer than ever

to outperform classical computers. This would mean a new scientific revolution,

not only because of finally succeeding in dominating the elusive nature of quantum

mechanics, but because this power may have technological applications that we are

not able to devise yet.
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J. J. Garćıa-Ripoll, E. Solano, R. Blatt and C. F. Roos, “Quantum simulation

of the Klein paradox with trapped ions”, Phys. Rev. Lett. 106, 060503 (2011)

(cit. on p. 23).

92P. Hauke, F. M. Cucchietti, L. Tagliacozzo, I. Deutsch and M. Lewenstein, “Can

one trust quantum simulators?”, Rep. Prog. Phys. 75, 082401 (2012) (cit. on

p. 23).

93A. Friedenauer, H. Schmitz, J. T. Glueckert, D. Porras and T. Schaetz, “Simu-

lating a quantum magnet with trapped ions”, Nature Phys. 4, 757–761 (2008)

(cit. on pp. 24, 28, 48).

94F Schmidt-Kaler, S Gulde, M Riebe, T Deuschle, A Kreuter, G Lancaster, C
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98J. Dalibard, F. Gerbier and P. Öhberg, “Colloquium: artificial gauge potentials

for neutral atoms”, Rev. Mod. Phys. 83, 1523–1543 (2011) (cit. on pp. 24, 25).

99I. Bloch, J. Dalibard and S. Nascimbene, “Quantum simulations with ultracold

quantum gases”, Nature Phys. 8, 267–276 (2012) (cit. on p. 24).

100J. You and F. Nori, “Superconducting circuits and quantum information”, Phys.

Today 58, 42–47 (2005) (cit. on pp. 24, 26).

http://dx.doi.org/10.1038/nature08688
http://dx.doi.org/10.1103/PhysRevLett.106.060503
http://stacks.iop.org/0034-4885/75/i=8/a=082401
http://dx.doi.org/10.1038/nphys1032
http://stacks.iop.org/0953-4075/36/i=3/a=319
http://dx.doi.org/10.1016/j.aop.2004.09.010
http://dx.doi.org/10.1016/j.aop.2004.09.010
http://dx.doi.org/10.1080/00018730701223200
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.83.1523
http://dx.doi.org/10.1038/nphys2259
http://dx.doi.org/http://dx.doi.org/10.1063/1.2155757
http://dx.doi.org/http://dx.doi.org/10.1063/1.2155757


147

101J. Clarke and F. K. Wilhelm, “Superconducting quantum bits”, Nature (London)

453, 1031–1042 (2008) (cit. on pp. 24, 26).

102R. J. Schoelkopf and S. M. Girvin, “Wiring up quantum systems”, Nature (Lon-

don) 451, 664–669 (2008) (cit. on pp. 24, 26).

103J. Q. You and F. Nori, “Atomic physics and quantum optics using superconduct-

ing circuits”, Nature (London) 474, 589–597 (2011) (cit. on pp. 24, 26).

104M. Greiner, O. Mandel, T. Esslinger, T. W. Hansch and I. Bloch, “Quantum

phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms”,

Nature (London) 415, 39–44 (2002) (cit. on p. 25).

105G.-B. Jo, J. Guzman, C. K. Thomas, P. Hosur, A. Vishwanath and D. M. Stamper-

Kurn, “Ultracold atoms in a tunable optical kagome lattice”, Phys. Rev. Lett.

108, 045305 (2012) (cit. on p. 25).
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Appendix A

Analytical expression of the

effective Ising couplings

In the regime of weak spin-phonon coupling, and as long as the frequency of the laser

force is not resonant with any motional mode, the phonons can be adiabatically elim-

inated in the description of trapped-ion quantum matter [118]. The dynamics of the

system is given in terms of interacting spins alone, and the effective spin interac-

tions are mediated by virtual phonons. Since the phonons are extended objects, the

interactions can be long ranged.

Situations in which virtual boson exchange leads to long-range interactions are

familiar in physics. One can generically show that there is an attractive interaction

between particles which couple to a massive scalar field [253]. In nuclear systems,

for instance, neutrons and protons couple to the pion field, and the result of the

exchange of this object is a potential energy between them. The corresponding

potential is named after Hideki Yukawa, the Japanese physicist who introduced it

in 1935 [254], and is given as

VYukawa = −ge
−r/ξ

r
, ξ−1 = km. (A.1)

In this expression, g gives the magnitude of the interaction (with units of energy and

distance), and r is the separation between the particles. The range of the interaction

is inversely proportional to the mass m of the scalar field (pion), and k is just a

constant with units of distance and inverse of mass. Conceptually, the Yukawa

potential is important since it makes a connection between the typical energy scale
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of the mediating field (the mass of the pion) and the range of the interaction. In

particular, we see that when m→ 0, the interaction is not bounded by any typical

length, and is long ranged. We can carry this intuition over to the case of phonon-

mediated spin interactions. In the event of many ions, the energies of phonon modes

along a particular direction form a band, whose typical energy scale tC is a function of

the Coulomb repulsion and the trapping potential. This quantity, on the other hand,

gives the hopping parameter in the phonon chain. It can be equivalently regarded

as inversely proportional to the mass in the kinetic energy operator. Therefore,

there is a length scale associated with the effective interactions, which is inversely

proportional to the mass of the phonon, and therefore proportional to tC. In the

event of tC →∞, the typical length diverges, and the interactions are long ranged.

To derive a closed expression for the effective ion couplings Jj,l of chapter 3,

we need to assume that the (detuning) frequency of the laser lies outside the band

of transverse normal modes, since otherwise we would create phonon excitations.

Furthermore, we are going to assume that the force is detuned from the minimum

of the band, and therefore we can approximate well the dispersion relation by a

harmonic potential. We work with Periodic Boundary Conditions (PBC) without

loss of generality. The dispersion relation of the collective modes of the phonon

Hamiltonian (3.5) can be written as

Hphonon =
N∑

j,l=1

(
ωxδj,l +

1

2
tCFj,l

)
a†jal =

N∑
j,l=1

Aj,la
†
jal, (A.2)

where

Fj,l =


0 if j = l,
1

|j − l|3
if 0 < |j − l| ≤ N

2
,

1

N − |(j − l)|3
if
N

2
< |j − l| ≤ N .

(A.3)

The matrix Aj,l is diagonal in terms of plane waves Mj,n = ei
2πn
N
j, n = 0, . . . , N − 1.

The dispersion relation of the radial modes is given as

ωn =
N−1∑
m=0

N∑
j,l=1

Aj,lMj,nM
∗
l,m = ωx +

tC
2

FN/2(−1)n +

N/2−1∑
q=0

2 cos(
2πqn

N
)Fq

 . (A.4)

The minimum of ωn is attained for n = N/2, that corresponds to the zigzag con-

figuration shown in Fig. 3.2 (blue line). The energy of this mode can be estimated



164

as ωN/2 ' ωx + 3/4tCζ(3) in the limit N → ∞, where ζ(x) is the Riemann zeta

function [46]. We depict ωn in Fig. A.1. The dispersion relation gets shifted in the

0 1 2 3 4 5 6
2πn
N

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

ω
n

∝ tC

ωN/2 ≃ −

3
4
tCζ(3)

δN/2 = ωN/2 − ωL

Figure A.1: Dispersion relation of the transverse modes in a trapped-ion chain. We

assume N →∞, tC = 1. We shift the zero of energies so that ωx = 0. We note that

the minimum energy is attained at ωN/2. The width of the band is proportional to

tC.

rotating frame of HcJT, so that ωx → δx = ωx − ωL. The continuum limit of the

couplings can be written then as

Jj,l = −
N−1∑
n=0

g2

δn

1

N
ei

2πn
N

(j−l) N→∞∼ − 1

2π

∫ 2π

0

g2eix|j−l|

δ(x)
dx, (A.5)

where δ(x) = δx + tC
∑∞

k=1 cos(kx)/k3. We estimate this integral by means of the

residue theorem (cf., e.g., [47]), which allows us to write

− 1

2π

∫ 2π

0

g2eix|j−l|

δx + tC
∑∞

k=1
cos(kx)
k3

dx = Res
z=z+

(
g2eiz|j−l|

iδ(z)

)
+

1

2π

∫
γ

g2eiz|j−l|

δ(z)
dz. (A.6)

In this expression, we have introduced the analytical continuation of δ(x), that is

given by

δ(z) = δx +
tC
2

(Li3(e−iz) + Li3(eiz)), z = x+ iy, (A.7)

where Li3(z) =
∑∞

k=1 z
k/k3, |z| ≤ 1 is the polylogarithm function [255]. The integ-

ration contour is shown in Fig. A.2(a) along with z+, which is a simple pole of the

integrand. The poles of 1/δ(z) are located in the line z = π. We depict the one in
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the upper complex plane in Fig. A.2(b). Their position can be estimated assuming

that they lie very close to the real axis, so that

δ(π + iy±) ' δx + tC

∞∑
k=1

(−1)k

k3
(1−

k2y2
±

2
) = δx −

3

4
ζ(3)tC − y2

± ln(2)
tC
2
. (A.8)

We solve δ(π + iy±) ' 0, and since we are only interested in the residue of δ(z) at

the pole, we further assume that δ(z) ' (z − z+)(z − z−). Then,

2πiRes(
−g2eiz|j−l|

2πδ(z)
, z+) ' −(−1)|j−l|

g2ξ

tC ln(2)
e−
|j−l|
ξ , (A.9)

where

ξ =

√
δx − 3/4ζ(3)tC
tC ln(2)/2

. (A.10)

We note that ξ is only well-defined as long as δx > 3/4tCζ(3). Any detuning fre-

quency below that threshold is resonant with the band of normal modes, and the

former argument breaks down. Indeed, the exponential decay (A.9) is the continu-

ous version of the laser being close to resonance with the modes at the base of the

dispersion relation, whose effective spread upon the chain is ξ. To estimate the

(a) (b)

Figure A.2: (a) Integration contour for the evaluation of (A.6). The curve γ

corresponds to the red segments. (b) Plot of |eiz/δ(z)|, with z = x + iy, δx =

2 + 3/4ζ(3), tC = 1.

integral along γ, we start by neglecting the contribution from the upper segment

in Fig. A.2(a). This is justified since the exponential in the numerator cancels
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anything far away from the real axis. Regarding the vertical segments, we can make

1

2π

∫
γ

g2eiz|j−l|

δ(z)
dz ' g2

2π

(∫ 0

t0

e−t|j−l|

δ(it)
idt+

∫ t0

0

e−t|j−l|

δ(2π + it)
idt

)
=

g2

2π

∫ t0

0

dt ie−t|j−l|
(

1

δ(2π + it)
− 1

δ(it)

)
=

g2

2π

∫ t0

0

dt ie−t|j−l|(−2i) Im

(
1

δ(it)

)
'

g2tC
4(δx + tCζ(3))2

∫ ∞
0

t2e−t|j−l|dt. (A.11)

In this derivation, we have relied on the fact that δ(it) and δ(2π + it) belong to

different branches of the polylogarithm, for which the imaginary part changes its

sign [255]. Also, we approximate 1/δ(it) by its series expansion, to second order,

for t→ 0+, since these are the only values not exponentially eliminated by e−t|j−l|.

We have assumed as well that no further error is included if we make t0 → ∞.

Performing the previous integral, we arrive at

1

2π

∫
γ

g2eiz|j−l|

δ(z)
dz ' g2tC

2(δx + tCζ(3))2

1

|j − l|3
, |j − l| � 1. (A.12)

Finally, defining δN/2 ≡ δx − 3/4ζ(3)tC, which corresponds to the detuning with

respect to the bottom of the band of normal modes, we can write the couplings as

Jj,l ' −(−1)j−lJexpe
−|j−l|/ξ +

Jdip

|j − l|3 j 6=l
, (A.13)

where

Jexp =
g2ξ

tC ln(2)
, Jdip =

g2tC
2(δN/2 + 7/4 tCζ(3))2

, ξ =

√
tC ln(2)

2δN/2
. (A.14)

This expression gives very accurate results even for moderate N when compared to

the exact result, as can be seen from Fig. A.3.
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Figure A.3: Effective spin coupling as a function of ion-ion separation in a N = 20

ion chain, between ion j = 4 and the rest of the chain. Energy units such that

δN/2 = g = 1, tC = 0.1, 1, 5. Circles: exact calculation. Continuous line: estimate

from Eq. (A.13).
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