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Abstract 

This thesis develops an innovative process-based analysis of contemporary model 

performance of precipitation over southern Africa. This region is typically understudied 

and not fully understood due to the complexity of various influences and drivers of 

precipitation. Historical simulations of precipitation are assessed including principal 

drivers, sources of biases and dominant modes of interannual variability. The South 

Indian Ocean Convergence Zone (SIOCZ), a large-scale, austral summer rainfall 

feature extending across southern Africa into the south-west Indian Ocean, is evaluated 

as the feature of interest in historical simulations. 

 

Most CMIP5 models simulate an SIOCZ feature, but are typically too zonally oriented 

and discontinued between land and the adjacent Indian Ocean. Excessive precipitation 

over the continent is likely associated with excessively high low-level moisture flux 

around the Angola Low, which is almost entirely due to model circulation biases. 

Drivers of precipitation over southern Africa include three dominant moisture flux 

transport pathways which originate from flow around the SIOHP and SAOHP and 

monsoon winds. Interannual variability in the SIOCZ is shown by a clear dipole 

pattern, indicative of a northeast-southwest movement of the SIOCZ. Drivers of this 

shift are significantly related to the El Niño Southern Oscillation and the subtropical 

Indian Ocean dipole in observations. However models do not capture these 

teleconnections well, limiting confidence in model representation of variability. 
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A large majority of the population rely heavily on precipitation over southern Africa for 

agricultural purposes. Therefore spatial and temporal changes in precipitation are 

crucial to identify and understand with intentions to ultimately provide useful climate 

information regarding water security over the region. Key climate change signals over 

southern Africa are established in this thesis (OND and DJF), in which the dominant 

regional mechanisms of precipitation change over southern Africa are quantified. 

Robustness and credibility of these changes are additionally quantified. The most 

notable projected change in precipitation over southern Africa is the distinct drying 

signal evident in the pre-summer season (OND). This has the implication of delaying 

the onset of the rainy season affecting planting and harvesting times. Future projections 

of the SIOCZ are determined, which indicate a northward shift of approximately 200km.   

 

A dipole pattern of precipitation wetting/drying is evident, where wetting occurs to the 

north of the climatological axis of maximum rainfall, hence implying a northward shift 

of the ITCZ, consistent with the SIOCZ shift. Using a decomposition method it is 

established that ∆P’s dipole pattern emerges largely from the dynamic component, 

which holds most uncertainty, particularly over the south-west Indian Ocean. Changes 

in precipitation over land are not solely driven by dynamical changes but additionally 

driven by thermodynamic contributions, implying projected changes over land and 

ocean regions require different approaches. SST patterns of warming over the Indian 

Ocean corroborate the warmest-get-wetter mechanism driving wetting over the south-

west Indian Ocean, which is robust in both key seasons. Coherent model behaviour is 

understood via across model correlation plots of principal components, whereby 

patterns of coherent warming patterns are identified. Composite analyses of diagnostic 

variables across models illustrate patterns driving projected precipitation changes.  
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Drying is more robust over land than over the south-west Indian Ocean. Clear robust 

drying signal in OND, however magnitude is uncertain. Drivers of uncertainty include 

SST pattern changes, which modulate atmospheric circulation patterns. Therefore 

reductions in uncertainty rely on the accurate representation of these processes within 

climate models to become more robust. 

 

There is a desire from both climate scientists and policy-makers to reduce uncertainty 

in future projections. No one particular methodology is unanimously agreed upon, 

however one approach is analysed in this thesis. Uncertainties of future precipitation 

projections are addressed using a process-based model ranking framework. Several 

metrics most applicable to southern African climate are selected and ranked, which 

include aspects of both mean state and variability.  

 

A sensitivity test via a Monte Carlo approach is performed for various sub-samples of 

“top” performing models within the CMIP5 model dataset. Uncertainty is significantly 

reduced when particular sub-sets of “top” performing models are selected, however 

only for austral summer over the continent. The result has the implication that potential 

value is established in performing a process-based model ranking over southern Africa. 

However additional investigation is required before such an approach may become 

viable and sufficiently credible and robust. Reductions in model spread are additionally 

established in SIOCZ projections, whereby model processes of change exhibit 

agreement, despite differing initial SIOCZ conditions. Therefore model process 

convergence and coherence is established with respect to projected changes in the 

SIOCZ, irrespective of initial climatology biases.  
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Chapter 1 

 

1. Introduction 

 

1.1. Motivation 

 

Southern Africa is underdeveloped and poverty afflicted where climate change and 

variability, due to anthropogenic forcing, play a significant role in this 

underdevelopment resulting in an enhanced state of vulnerability (Basher and Briceno, 

2006; Meadows, 2006; IPCC, 2007). However, much economic growth is currently 

developing in this region; therefore it is imperative that decisions are made with the 

most accurate climate change information in mind, as well as an awareness of intrinsic 

uncertainties. This will aid in ensuring economic growth is more sustainable in 

subsequent decades when the climate exhibits larger signals and hence have amplified 

impacts on water and food security.  

 

There are various causes of uncertainty in numerical weather predictions and 

projections of future climate change over Africa (e.g. Palmer, 1999), hence the need to 

create a better understanding of what climate models are physically doing when 

constructing a prediction. Evaluation of model performance has shown large amounts of 

uncertainty but is still the only way to indicate if models are trustworthy when 

simulating future climate. A more quantitative approach to process-based model 

evaluation is required, which is explored in this study. 
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Within the climate change time-scale, these uncertainties’ consist of systematic errors 

within climate models, for example the parameterization of cumulus convection is a 

particular source of uncertainty in model simulations over Africa (Ratna et al, 2014). 

Due to the inherent probabilistic nature of both numerical weather prediction and the 

projection of future climate change, the concern of probabilistic statements has become 

the norm across a range of time-scales from the next few days, to seasonal, to 

interannual, to decadal or even multi-decadal. There has been a growing demand from 

policy-makers and stakeholders for more quantitative simulations of the future climate 

deemed sufficiently reliable to aid in decision making in terms of adaption and 

mitigation (Collins et al, 2012; Knutti et al, 2010).     

 

This study proposes to evaluate and potentially reduce uncertainties associated with 

predicting future climate change and variability over the southern Africa, focusing on 

the prominent South Indian Ocean Convergence Zone otherwise known and hereafter 

stated as the SIOCZ. The SIOCZ is a convergence zone responsible for the majority of 

austral summer rainfall that occurs during December-January-February (DJF) (Cook, 

2000), as well as the shift in this feature being the leading pattern of interannual 

variability. During El Niño events or drier years the SIOCZ shifts north-eastward and 

during La Niña events or wetter years the SIOCZ shifts south-westward. Hence the 

SIOCZ has a significant impact on the many people, particularly commercial and 

subsistence farmers who rely on this consistent summer rainfall as their main form of 

livelihood. Therefore it is important to assess what possible future changes may occur 

with regards to this large-scale circulation system, such that appropriate planning 

measures may be put in place if and where necessary. 
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This feature and associated diagnostics will be analysed in terms of spatial and temporal 

variability, as well onset and intensity by evaluating contemporary climate to verify the 

most sophisticated coupled models available. A framework of process-based analyses 

will be developed to evaluate the different models credibility and hence constrain 

uncertainty and potentially increase confidence for future precipitation analyses. 

Projections of future characteristics of the SIOCZ system will be performed. Projected 

regional precipitation changes are identified over southern Africa and the south-west 

Indian Ocean. Using a decomposition methodology the main components (i.e. 

mechanisms of change) driving precipitation change are identified and attempts are 

made to understand change further through physically sensible diagnostics with the 

objective of reducing uncertainty of future precipitation projections over southern 

Africa. 

 

Decisions will be made in terms of model ranking according to the results found in the 

model evaluation stage. Uncertainties associated with future precipitation projections 

over the region will be quantified and potentially constrained through this model 

ranking framework. Particular attention will be paid to the dynamics of the SIOCZ 

feature and how models currently capture this feature and associated processes, as well 

as assessing the main modes of variability, so that future projections of this feature and 

southern African climate change can potentially be understood and articulated with 

more confidence, certainty, credibility and understanding.  

 

1.2. Key Thesis Questions 
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1. How well do current CMIP5 models perform at simulating present day 

precipitation over southern Africa with respect to mean state and variability? 

 

2. What are the key climate change signals over southern Africa? 

 

3. What are the dominant regional mechanisms of precipitation change over 

southern Africa? 

 

4. How robust and credible are changes in projected precipitation over southern 

Africa? 

 

5. Can uncertainty be significantly reduced for projected precipitation changes over 

southern Africa? 

  

2. Literature Review 

 

2.1. Southern African Precipitation Climatology 

 

Southern Africa exhibits a distinct seasonal cycle throughout the year with more than 

80% of annual rainfall occurring between October and March (Tyson, 1986). Austral 

summer in December-January-February (DJF) accounts for the largest proportion of 

annual rainfall, which is experienced for most of the region except for south-western 

extreme of the continent, which experiences winter rainfall in June-July-August (JJA) 

(Tyson, 1986). A large majority of southern Africa relies heavily on water for 
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agricultural purposes, both in commercial and subsistence sectors (Mason and Joubert, 

1995, Hansen et al., 2011). Therefore changes in precipitation over southern Africa have 

large societal impacts that are far reaching and therefore need to be understood and 

constrained with as much confidence as possible. Not only do these uncertainties in 

future precipitation projections need to be quantified, but additionally communicated 

effectively to the relevant end-users (Webster, 2003).  

 

The majority of austral summer rainfall over southern Africa can be attributed to 

convective activity, provided local conditions are optimum, such as sufficient moisture 

being available (Tyson, 1986; Tyson and Preston-Whyte, 2000). Convective activity is 

largely modulated by the influence of diurnal heating but additionally by various 

dynamic contributions from large-scale forcings and mesoscale and local effects 

(Tyson, 1986). These large-scale forcings include pressure systems such as localised 

heat lows, mid-latitude systems and ridging high pressures that provide a moisture 

transport pathways towards potential convective regions, causing low-level and mid-

level convergence and hence uplift resulting in convection (Taljaard, 1996).  

 

These influences from both tropical and subtropical conditions are conducive to the 

formation of enhanced precipitation that extends out into the south-west Indian Ocean 

(Cook, 2000). This enhanced band of diagonal precipitation over southern Africa and 

the adjacent Indian Ocean has been identified as a distinct feature of southern African 

mean climatology for many years (Taljaard, 1953; Streten, 1973; Tyson, 1986; Cook, 

2000). This mean climatological feature is responsible for the majority of southern 

African summer rainfall, known as the South Indian Ocean Convergence Zone 

(SIOCZ), which is described in more detail in section 2.1.1. Convergence zones form as 
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part of a fundamental response of the atmosphere of the southern hemisphere in relation 

to the influence of land in the tropical and subtropical regions (Cook, 2000). 

     

2.1.1. The South Indian Ocean Convergence Zone (SIOCZ) 

Streten (1973) identified three dominant cloud bands that appeared semi-stationary in 

nature in the southern hemisphere. These are known today as the three major 

convergence zones namely, the South Pacific Convergence Zone (SPCZ), the South 

Atlantic Convergence Zone (SACZ) and finally the South Indian Ocean Convergence 

Zone (SIOCZ). These three convergence zones are responsible for producing significant 

precipitation amounts during the Southern Hemisphere summer by creating links 

between the tropics and mid-latitudes (Streten, 1973). Initial studies regarding these 

convergence zones established two requirements being essential to the formation of 

these systems, firstly flow into the subtropical regions via the subtropical jet and 

secondly lower-level flow towards the poles along the western edges of the subtropical 

high pressure systems i.e. south  Indian Ocean high pressure (Kodama, 1992; 1993; 

Barreiro et al., 2002).   

 

Differences exist between the three known southern hemispheric convergence zones, 

the most obvious being the SPCZ differing from the SIOCZ and SACZ due to the SPCZ 

being located over ocean only, whereas the SIOCZ and SACZ are located over land and 

extend into adjacent ocean regions (Cook, 2000; Figueroa et al., 1995; Lenters et al., 

1995; Carvalho, 2004; Van Der Weil et al., 2015). Therefore the SPCZ is almost solely 

modulated via sea surface temperatures and associated circulation (Widlansky, 2013; 

Van der Weil, 2015). The SIOCZ and SACZ are modulated by a combination of effects 
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from both land and ocean namely, diabatic heating, land-sea contrasts, topographical 

influences and differences in relative humidity (Figueroa et al., 1995; Lenters et al., 

1995; Chadwick, 2016; Puaud, 2016). There is, however, a commonality identified 

between these three aforementioned convergence zones, which is their relationship with 

mid-latitude wave trains (i.e. Rossby waves). The vorticity maxima of these wave trains 

tend to extend equator-wards, which in turn interact enhancing atmospheric instability 

and therefore resulting in deeper convective activity over these three regions 

(Widlansky et al., 2011; Macron et al., 2014; Puaud et al., 2016).     

 

The SIOCZ, which is a land-based convergence zone (LBCZ) similar to the SACZ, was 

identified via the dynamic link between the large scale circulation and precipitation 

pattern found over southern Africa (Tyson, 1986; Cook, 1998; 2000; Niñomiya, 2008). 

This band is diagonal with a north-west south-east orientation that extends off into the 

south-east coastal regions (Cook, 1998; Niñomiya, 2008). Due to this feature spanning 

over both land and ocean regions, the position and intensity of this feature is influenced 

by surface conditions over southern Africa and additionally by the adjacent Indian 

Ocean (Cook, 2000; Lazenby et al., 2016). The SIOCZ can also be identified using 

other variables such as OLR, convergence fields, vertical uplift, high clouds and mean 

sea level pressure (SLP) (Liebmann et al., 1999; Brown et al., 2010) seen in Figure 1. 
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Figure 1: Overlay image of ERA-Interim mean sea level pressure (solid black lines) in 

hPa, mean CMAP precipitation (shaded colour contours) in mm month
-1

 and ERA-

Interim moisture flux at 850hPa (white arrows - length indicative of magnitude) in g  

kg
-1 

* m s
-1

 for DJF over southern Africa for the historical period 1979/80-98/99. 

Dashed black line represents the SIOCZ and solid black box is chosen as the SIOCZ 

region. 

 

In Cook’s (2000) study the SIOCZ is defined as an area of enhanced precipitation 

during austral summer, located over the southern African continent that extends off the 

south-east coast between 10˚S and 40˚S that extends to approximately 60˚E. The 

analysis indicated that LBCZ’s and hence the SIOCZ’s rainfall is influenced by zonal 

wind convergence, moisture convergence by transient eddy activity and lastly moisture 

convergence associated with moisture advection, whereas within the ITCZ moisture 

convergence in that region is a result of meridonal wind convergence in a moist 

environment (Cook, 2000). The zonal wind convergence that occurs between the 
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thermal low (Angola Low) and subtropical high pressure (South Indian Ocean high 

pressure (SIOHP)) is responsible for the dominant boundary for the SIOCZ over the 

southern African continent (Cook, 2000). These pressure systems draw in moisture from 

the Atlantic Ocean via circulation around the Angola Low and additionally from the 

Indian Ocean via the SIOHP circulation (Macron et al., 2014). There is an additional 

moisture source that originates from the north-western monsoon region, totalling three 

moisture pathways into the SIOCZ (Lazenby et al., 2016). The extension of the SIOCZ 

out into the Indian Ocean is mainly a result of the partially compensating influences of 

moisture advection and moist transient eddy activity as well as meridonal wind 

convergence (Cook, 2000). 

 

The SIOCZ has additionally been assumed to be a poleward excursion of the inter 

tropical convergence zone (ITCZ) (Taljaard, 1953; Tyson, 1986) and some coupled 

models, particularly from the older model generations, are unable to distinguish 

between the two features and simulate what is called a “double ITCZ” as both features 

appear very zonal in structure (Cook, 2000; Brown et al., 2010). A similar manifestation 

occurs for particular coupled models when assessing the SPCZ (Brown et al., 2010) 

therefore a common problem when attempting to identify these convergence zones. It is 

valuable to consider these LBCZ such as the SIOCZ as their own distinct feature from 

the ITCZ rather than just a poleward extension of the ITCZ and assess the rainfall 

observations according to this framework such that a physical understanding of rainfall 

variability over southern Africa can be established (Cook, 2000). 

 

2.2. Southern African Precipitation Variability 
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Southern African precipitation varies significantly in both spatial and temporal aspects 

(Tyson, 1986; Mason and Jury, 1997), whereby the continental region experiences 

wetter and drier seasons/years over varying regions over the continent (Fauchereau et 

al., 2003). This makes understanding the variability of southern Africa complex in 

nature. Southern African precipitation variability ranges from daily all the way through 

to multi-decadal time-scales. However in this thesis emphasis is placed on interannual 

time-scales of precipitation variability over southern Africa. Links have been derived 

between southern African precipitation variability and climatic drivers such as sea 

surface temperatures (SSTs) both locally and through remote interactions (Reason and 

Mulenga, 1999; Richard et al., 2000; Camberlin, 2001; Nicholson et al., 2001; 

Fauchereau et al., 2003).  

 

Variability over southern Africa has been captured over the austral summer season by 

several studies which show a dipole pattern in OLR, convection and rainfall (Cook, 

2000). This dipole pattern is evident on daily time scales (Lyons, 1991; Todd and 

Washington, 1998) all the way to interannual time scales (Lindesay, 1988; Jury, 1992; 

Pohl et al., 2009; Puaud et al., 2016). This dipole signifies an opposing correlation 

between the north-eastern regions including Madagascar and the eastern African regions 

below 20˚S (Cook, 2000). A General Circulation Model (GCM) ensemble forecast 

showed a north-eastward movement of the SIOCZ when evaluating an El Niño 

Southern Oscillation (ENSO)-like warming in the eastern Pacific region due to a 

convergence anomaly forming off the southeast coast of Africa (Cook, 2000). This was 

due to a weakening of the South Indian high pressure in the western parts, which in turn 

produces the dipole pattern in rainfall, where there is higher rainfall experienced in the 
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northeast and lower rainfall experienced in the southwest, which corresponds to typical 

warm events over southern Africa (Cook, 2000).  

 

In a recent study done by Dieppois et al (2016) more thorough analysis was performed 

regarding variability over southern Africa at various dominant time-scales. Three 

significant time-scales of variability were identified i.) interannual (2-8 years) ii.) quasi 

decadal (8-13 years) and iii.) interdecadal (15-28 years) (Dieppois et al., 2016). At these 

three different time-scales of variability, each showed differing relationships with SSTs 

and circulation patterns and hence implying the need to be dealt with independently 

regarding understanding of these drivers of variability. The main driver of austral 

summer precipitation variability stems from tropical or subtropical teleconnections 

(Dieppois et al., 2016).  

 

Interannual variability is the most well understood time-scale of variability in studies 

over southern Africa with the primary driver of variability at this time-scale being 

driven by ENSO (Lindesay, 1988; Mason and Jury; 1997; Rouault and Richard, 2005; 

Ratnam et al., 2014; Dieppois et al., 2015; Lazenby et al., 2016). However, ENSO 

influences over southern Africa can exhibit non-linear and interactions between 

synoptic-scale and interannual variability may occur e.g. Links between El Niño 

producing Rossby waves, resulting in a north-eastward shift of the SIOCZ (Cook, 2001; 

Ratnam et al., 2014), as well as El Niño causing northward shifts of the subtropical high 

pressure systems such as the SIOHP, reducing moisture flux into the southern African 

continent (Mulenga et al., 2003; Cook, 2004; Vigaud et al., 2009; Dieppois et al., 2015). 

 



12 
 

 
 

LBCZ’s are interfaces between thermal lows over the continent and subtropical high 

pressures over the ocean and therefore are affected by any changes within either of these 

features (Cook, 2000). For instance, if the thermal low over southern Africa (namely the 

Angola Low) shifts in position and/or becomes more intense due to enhanced thermal 

heating, this is likely to affect and alter the position and intensity of the SIOCZ. 

Additionally influences from global-scale processes, such as the proposed widening of 

the tropical circulation through the expansion of the Hadley circulation (Scheff and 

Frierson, 2012b; Lucas et al., 2014) can affect the SIOCZ by altering the subtropical 

highs magnitude, location and/or shape. Hence all these aforementioned interactions are 

physical factors that can potentially modulate variability of precipitation over this 

region (Cook, 2000). 

 

Another more general source of seasonal precipitation variability over tropical and 

southern African are changes in sea surface temperatures (SSTs), which are partially 

responsible for large interannual anomalies in precipitation patterns (Rowell, 2013). 

These types of teleconnections can prove useful in providing probabilistic information 

in advance about potential anomalously wet or dry seasons over vulnerable areas such 

as Africa. Rowell (2013) shows that specific regions over south-west and south-east 

Africa have particularly strong teleconnections between the Central Indian Ocean (CIO) 

index as well as having links to ENSO in which drier seasons over the region are 

associated with El Niño years and a warming of the central Indian Ocean (Makarau and 

Jury, 1997; Nicholson et al., 2001; Hoerling et al., 2006; Rowell, 2013).  According to 

previous studies (Reason, 2002; Washington and Preston, 2006; Morioka et al., 2015), 

the influence of the Subtropical Indian Ocean SST dipole (SIOD) could also induce an 
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anomalous anti-cyclonic circulation pattern which in turn drives anomalously low-level 

easterly moisture flux toward southern Africa at interannual and decadal timescales. 

 

An analysis over southern Africa was explored by Engelbrecht et al (2009), whereby 

climate change signals were projected by the Conformal-Cubic Atmospheric Model 

(CCAM) according to the A2 Special Report on Emissions Scenario (SRES), which is 

closely comparable to the new Representative Concentration Pathway (RCP) 8.5. 

Results from this study included changes in the precipitation climate-change signal in 

terms of location and intensity of the subtropical high pressure belt, specifically the 

South Indian Ocean High Pressure (SIOHP) (Engelbrecht et al., 2009). In spring over 

the southern hemisphere future climate suggests a deepening of the low level 

continental trough over the western parts of the interior as well as a strengthening of the 

SIOHP in both mid and upper levels over the Indian Ocean and central and eastern 

interior of southern Africa (Engelbrecht et al., 2009).  

 

This type of circumstance leads to the development of cloud bands over the central parts 

of South Africa, which translates into an increase in the frequency of occurrence of the 

SIOCZ (Washington and Todd, 1999; Cook, 2000; Engelbrecht et al., 2009). In another 

study done by Shongwe et al (2009), which is based on precipitation extremes over 

southern Africa using an ensemble of global climate models prepared for the 

Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4), 

it was found that in spring a significant decrease in moisture influx from the south-

western Indian Ocean was projected and therefore possibly responsible for the late onset 

of precipitation (Shongwe et al., 2009). 
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Engelbrecht (2009) states that future summer conditions show a broad deepening of the 

continental trough, which may be interpreted as an expansion of the tropical belt (Seidel 

et al., 2008; Engelbrecht et al., 2009; Lucas et al., 2014). Therefore some form of 

intensification of the Angola Low is implied, which is of interest in this study due to the 

Angola low being associated with the tropical component of SIOCZ development and 

maintenance. The SIOHP is found to intensify but now in the lower and mid-levels over 

the south western parts of the Indian Ocean and Madagascar, which leads to a 

favourable circulation pattern for more rainfall over the eastern parts of southern Africa 

due to the more frequent occurrence of the SIOCZ over the south-eastern interior 

(Washington and Todd, 1999; Cook, 2000; Engelbrecht et al., 2009).  

 

It has been implied that cloud band formation may gradually shift westwards in future 

climate over southern Africa due to mid-level high pressure systems becoming 

continually prominent over the eastern region of southern Africa (Engelbrecht, 2004; 

Engelbrecht et al., 2009). Shongwe et al’s (2009) study opposes this westward shift of 

the SIOCZ system as his study projects a possible offshore (north-easterly) shift of the 

cloud band, which is consistent with more severe droughts in the south-western parts of 

southern Africa and enhanced precipitation farther north in Zambia, Malawi, and 

northern Mozambique (Shongwe et al., 2009). 

 

The reason for the contrasting projections of future climate of southern Africa may be 

due to the difference in resolution of the two studies, as the study by Engelbrecht (2009) 

was performed at a much higher resolution than Shongwe et al’s (2009) study and may 

be more accurate in resolving smaller scale features and additionally more effective at 
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resolving the influence of topography, which plays a significant role in convection and 

precipitation over the southern African region.  

 

The SIOCZ is associated with the occurrence of tropical temperate troughs (TTTs) (e.g. 

Todd and Washington, 1998; 1999; Hart et al., 2010), as they are developed due to large 

amounts of moisture convergence. TTT events amalgamate on daily time-scales 

throughout the austral summer season to produce the climatological SIOCZ rain band 

feature (Hart et al., 2010). Therefore changes established in the SIOCZ, will imply 

consistent changes with respect to TTT’s in terms of frequency, intensity and position 

and precipitation. 

 

There is the working assumption stating the vast majority of local and regional climate 

change will come about via changes experienced by synoptic scale-circulation features 

in terms of intensity, persistence and frequency (Hewitson and Crane, 1996; Hart et al, 

2010). There will be a degree of uncertainty associated with this assumption due to 

potential large-scale changes in variables such as water vapour, which could in turn 

modify the relationship between circulation and precipitation as well as effect on the 

radiative properties on the modified airmass (Hewitson and Crane, 1996).  

 

2.3. Model Performance Evaluation 

 

Global climate model resolution is increasing as well as becoming more physically 

complex with the ultimate goal of improving accuracy, however future projections of 

these models still contain a vast amount of uncertainty, especially for precipitation 

(IPCC, 2007; Schaller et al., 2011). In order to make future climate simulations or 
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predictions with confidence using a particular model, it is essential that the model is 

able to adequately simulate the present climate (Sushama et al., 2006; Engelbrecht et al., 

2009). This is vital as the ability of a particular model's future climate predictions 

depends somewhat on its ability to predict the current climate (Sushama et al., 2006; 

Engelbrecht et al., 2009). 

 

There are several different ways to evaluate model performance with no one particular 

metric being proven best, as numerous studies have shown that different metrics result 

in different model rankings and little agreement has been found in separating ‘good’ 

versus ‘bad’ models (Gleckler et al., 2008; Knutti et al., 2009; Rowell et al., 2016). 

Model performance is generally evaluated on a grid point basis, disregarding the fact 

that models frequently produce results that are unreliable at such small spatial scales 

(Masson and Knutti, 2011). 

 

A common evaluator of model performance is error analysis of global maps against 

observations (Schaller et al., 2011) as well as correlations (spatial and temporal) 

between historical model simulations and observations. Masson and Knutti (2011) use a 

spatial smoothing technique that has a variable scale parameter, which shows a decrease 

in model errors as well as inter-model spread as the smoothing scale increases. This 

technique does however reduce the ability of small scale features to be replicated and 

simulated patterns become fuzzy (Masson and Knutti, 2011). A similar methodology 

with kernel smoothing was used by Jun et al (2008a) to investigate if model biases are 

correlated therefore implying model dependence, which was shown to be true and a 

second approach using local eigenvalue analysis in Jun et al (2008b) proved similar 

results using the CMIP3 models. (Jun et al., 2008a; Jun et al., 2008b).   
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2.3.1. Process-based model diagnosis of change 

An alternative approach to evaluating model performance is by assessing the 

representation of vital climate feedback processes on a number of different spatial and 

temporal scales. Feature-based metrics that are defined on a regional domain for only 

one variable may be a more practical and possibly better way in choosing which model 

is the most reliable (Schaller et al., 2011). In a study done by Christensen et al (2010) 

that explored performance based weighting of different RCM’s, the method of 

evaluating the performance of the various RCM’s included replication of large scale 

circulation patterns, detection of meso-scale signals, distributions of daily temperature 

and precipitation as well as capturing extremes, trends and the annual cycle 

(Christensen et al., 2010). Another more recent study by Thibeault and Seth (2013) used 

a similar technique, whereby a set of process-based analyses were developed forming a 

framework for evaluating model credibility in north-eastern North America. This study 

measured the model's ability to simulate observed spatial patterns, intensity of 

precipitation, dynamical atmospheric circulation features (i.e. the SIOCZ), moisture 

transport and divergence, long-term trends and SST patterns (Thibeault and Seth, 2013). 

  

 

It has been stated by Knutti et al (2009) that more quantitative methods are required to 

assess global model performance and are of key importance in optimizing the value of 

future climate change projections (Knutti et al., 2009). A potential way to address this 

and add quantitative value could be established by separating the models lack of 

agreement from the models lack of signal due to the natural internal variability found 

within models i.e. signal to noise ratio (Tebaldi et al., 2011).  
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It is important that models are able to simulate long term mean circulation patterns and 

surface fields with a fair amount of skill compared to observations, as well as the 

variability on all time-scales (Battisti, 1995; Renwick et al., 1999; Engelbrecht et al., 

2009). Combining multiple models is a practical way to identify the degree of model 

uncertainty and to hopefully lead to more reliable future climate projections (Knutti et 

al., 2012; Weigel et al., 2010); however determining the reliability of the projections 

still remains a challenge (Collins et al., 2012). A study done by Schaller et al (2011) 

showed that multi-model ensemble means, with regard to global fields, outperform all 

single individual models, however, when assessing the ensemble mean based on feature 

rankings the result is not as impressive and only average (Schaller et al., 2011). 

 

Interpretation of multi-model outputs has the following main challenges, i) the inability 

to verify future climate change projections (Tebaldi and Knutti, 2007), ii) the issue of 

models not being justifiably independent from one another (Jun et al., 2008b; Knutti, 

2010; Masson and Knutti, 2011; Knutti et al., 2013), iii) the lack of agreement between 

models possibly partly due to a low signal-to-noise ratio which can result in misleading 

information on the magnitude and sign of change (Schaller et al., 2011; Tebaldi et al., 

2011), iv) the number of models within the ensembles is typically small, (Knutti et al., 

2009), and iv) model bias and tuning effects (Tebaldi and Knutti, 2007). There is a large 

concern that development and evaluation of these models, as well as post weighting or 

ranking are all utilizing the same dataset (Knutti et al., 2009). 

 

2.3.2. Model ranking schemes 
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Model weighting or ranking is a new avenue that is still rather contentious as it has been 

shown to potentially add another degree of uncertainty as there is no compelling and 

consistent evidence indicating improved performance by weighting models than when 

using equal weighting from each individual model (Christensen et al., 2010; Rowell et 

al., 2016). According to Rowell et al (2016), only “moderate” discrimination is 

established in his study of a model ranking framework. This is due to the fact that much 

more knowledge and understanding is required before accurate weighted modelling can 

be performed, because if done incorrectly can result in a more unreliable projection 

(Weigel et al., 2010). Another more feasible possibility would be to remove ‘bad’ 

models if they have been proven to lack essential mechanisms that are necessary for 

valuable future climate predictions (Weigel et al., 2010; Lazenby et al., 2016).   

 

In this study an evaluation of the South Indian Convergence Zone (SIOCZ) and its 

seasonal climatology and interannual variability will aid in determining model 

performance of the current CMIP5 models by investigating if these AR5 models are 

able to capture the mean SIOCZ position and its associated variability. Therefore by 

using feature based metrics and developing a process-based framework in which to 

evaluate models, such as determining the large-scale processes imperative to southern 

African precipitation, conclusions may be drawn about “top” performing models and 

exclusion of “poor” models, which do not simulate this large-scale convergence zone 

over southern Africa with sufficient accuracy.  

 

In attempting to reduce the uncertainty in projections of future climate change with 

regard to the SIOCZ, it would essentially result in more reliable statements about the 

future climate and water security of southern Africa, including statements that are 
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physically defendable and actionable to such an extent that they can advise adaptation 

procedures. This study will attempt to quantify and improve the reliability level of 

probabilistic statements of the multi-decadal (Fauchereau et al., 2003; Malherbe et al., 

2012) climate futures over southern Africa. Moreover, research of the predictability and 

variability of the SIOCZ on verifiable time scales will provide insight into the 

limitations of predictability of the ocean-land-atmosphere system, and therefore insight 

into both models ability to realistically simulate weather and climate phenomena on 

extended time scales (e.g. Engelbrecht et al., 2011). The future simulations of southern 

African rainfall in terms of the SIOCZ can be used to highlight the processes that lead 

to model disagreement, therefore emphasising the processes that may be predominantly 

applicable in evaluating model credibility (Thibeault and Seth, 2013). 

 

2.4. Mechanisms of Change  

 

Based on analysis of precipitation projections various mechanisms have been proposed 

which link increased global temperatures and precipitation changes which approximate 

1-3% precipitation increases per degree global warming (Collins et al., 2013), notably 

the thermodynamic wet-get-wetter process of rainfall change also termed the rich-get-

richer mechanism (Held and Soden 2000; 2006; Allen et al., 2010; Christensen et al., 

2013; Chou and Neelin, 2004; Meehl et al., 2007, Chou et al., 2009; Seager et al., 

2010). This process is defined through increases in global specific humidity in a warmer 

atmosphere leads to an increase (decrease) in precipitation in the regions of mean 

moisture convergence (divergence). This is likely to be offset by the weakening of the 

mean tropical overturning Hadley circulation caused by a reduction in convective mass 

flux in regions of known high ascent due to a divergent feedback loop (Chadwick et al., 
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2013; Christensen et al., 2013; Ma and Xie, 2013; DiNezio et al., 2013; Vecchi et al., 

2016). 

 

Chadwick et al (2013) proposes the wet-get-wetter mechanism alone does not explain 

the global pattern of multi-model mean (MMM) projected rainfall change (the spatial 

correlation of projected change in precipitation (∆P) and mean precipitation (P) globally 

is low, such that at regional and seasonal scales in the tropics other processes dominate. 

These processes are substantially related to processes driving changes in spatial location 

of moisture convergence and hence convection. These include dynamic effects of 

regional gradients in near surface temperature change over oceans i.e. warmest-get-

wetter mechanism (Xie et al., 2010), whereby patterns of SST warming determine 

tropical precipitation change, land-sea temperature contrasts (Dong et al., 2009), land 

surface processes, aerosol direct, indirect and semi-direct effects and changes in 

circulation (moisture flux convergence) (Shepherd, 2014).  

 

Huang et al (2013) identifies an additional or rather modified mechanism of change 

known as the ‘modified warm-get-wetter’ mechanism. This ‘modified warmer-get-

wetter’ mechanism is described as the combination of SST changes (warmer-get-wetter 

effect) that is modified by background climatological moisture and SSTs due to the non-

linear relationship between tropical convection and SSTs. 

 

Another school of thought is the ‘upped-ante’ mechanism of change, which is explained 

by tropical tropospheric warming requiring a particular amount of moist static energy to 

become convectively unstable (Neelin et al., 2003). This additional energy required is 

comparable to an increased ante just like in a poker game. This leads to the convective 

http://journals.ametsoc.org/doi/full/10.1175/JCLI-D-14-00613.1
http://journals.ametsoc.org/doi/full/10.1175/JCLI-D-14-00613.1
http://journals.ametsoc.org/doi/full/10.1175/JCLI-D-14-00613.1
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edges experiencing a lack of precipitation and even potential drought conditions to be 

experienced over these convective margins (Neelin et al., 2003). 

 

Generally, processes operating over the ocean are better understood than those over land 

due to continental regions having additional factors to consider. Land-sea contrasts 

cause knock-on effects towards changes in atmospheric general circulation patterns and 

hence potential changes in precipitation (Bayr and Dommenget, 2013; Byrne and 

O’Gorman, 2013). Land-sea contrasts are more applicable and influential when 

assessing regional changes in climate (Joshi et al., 2008; 2013).  

 

There has been additional studies regarding widening of the tropical circulation, which 

is summarised in a recent study done by Lucas et al (2014). This effect of widening 

tropical circulation is attributed to forcings such as increased greenhouse gas 

concentrations, anthropogenic aerosols and stratospheric ozone depletion (Lucas et al., 

2014). GCMs tend to underestimate this widening, which may due to lack of accuracy 

within model representation of these physical and dynamical responses. Models exhibit 

clear drying patterns over the majority of subtropical regions, whereby these subtropical 

regions are associated with the downward flank of the Hadley circulation, or rather lie 

on the edge of the tropics. One proposed response to anthropogenic climate change is a 

shift of this circulation pattern towards the poles, hence enlarging the area experiencing 

more frequent drought conditions (Scheff and Frierson, 2012b).   

 

However, in all cases differing representation of these processes across models is likely 

driving projection uncertainty. Rowell et al (2015) highlights the importance of 

understanding the mechanisms of change within individual models as he identifies six 
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diverse hypotheses which could potentially explain the differences in East African 

rainfall change. He concludes stating further investigation should be aimed at 

developing expert judgement of process-based mechanisms and their reliability of 

projections, the role of natural variability and finally more exploration on the effect of 

anthropogenic aerosol emissions (Rowell et al., 2015). 

 

2.4.1. Decomposition Methodology 

Decomposition methodologies are a common way of understanding various components 

of a particular variable. Precipitation is often broken down into thermodynamic and 

dynamic components to potentially understand the mechanisms of change. There are 

various ways in which to break precipitation down, where slightly varying assumptions 

are used. For example Seager et al (2010) bases a precipitation decomposition on the 

projected changes in the term precipitation minus evaporation (P – E). Another example 

by Emori and Brown (2005) whereby the dynamic and thermodynamic breakdown is 

based on the probability density function using vertical velocity as the key variable. 

Chadwick et al (2013a; 2014) uses the assumption that P = M*q, where P is 

precipitation, M is convective mass flux and q is near surface specific humidity. The 

latter approach is utilised in this thesis and will be explained in further detail in Chapter 

5. 

 

2.5. Uncertainty and Robustness of Precipitation Projections 

 

Uncertainty in precipitation projections presents challenges to climate adaptation policy 

(Webster, 2003; Swart et al., 2009), and therefore there is considerable interest in 



24 
 

 
 

improving our understanding of mechanisms of model projected changes so that we 

may quantify and potentially improve the robustness and credibility of projections. The 

science of climate change attempts to identify changes and gauge physical 

understanding of the changes but it is equally important to quantify these projected 

changes at regional scales as well as provide levels of uncertainties (Webster, 2003; 

Shepherd, 2014). The awareness of these unknown uncertainties are enhanced by 

extreme events, such as the recent drought conditions experienced over southern Africa 

during and after 2015-2016’s El Niño event and the resultant effects on water supply 

and security resulting in restrictions in many provinces including Kwa-Zulu Natal and 

Limpopo. The question is then raised about the frequency of occurrence of these types 

of extreme events and can such events be predicted with greater certainty.  

 

There is a clear need to understand why climate models generate particular patterns of 

projected change to precipitation in future climate simulations for all the 

aforementioned reasons. General circulation model (GCM) output is used to inform 

decision-making at regional levels and therefore these outputs require understanding 

and a significant level of credibility and robustness (Tebaldi and Knutti, 2007). Due to 

the large ensemble of various models and their various different outputs regarding 

future projections uncertainty remains a problem that requires further understanding. 

The physical processes potentially driving projected change are numerous and may vary 

amongst models and lead to considerable uncertainty in the sign and magnitude of 

projected change (Rowell, 2012; Collins et al., 2013; Kent et al., 2015). Improvement of 

the understanding of these physical processes that govern projected precipitation 

changes in coupled and atmospheric models will contribute positively to reductions in 

uncertainty.  
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Precipitation is particularly more difficult to constrain as it is influenced by both 

temperature driven (thermodynamic) and circulation (dynamic) influences, therefore 

implying the majority of uncertainty arises from the circulation or more typically the 

dynamic component, as temperature changes are typically more robust and more easily 

constrained (Shepherd, 2014). The spatial scale at which precipitation projections are 

produced is imperative due to global projections being controlled by different 

mechanisms to that of projections at a regional or sub-regional scale (Chadwick, 2016).  

 

Global changes in precipitation are driven largely by atmospheric energy balances 

(Allen and Ingram, 2002); whereas regional changes in precipitation, particularly in 

tropical regions are controlled mainly through shifts in convection associated with 

atmospheric circulation changes (Chadwick et al., 2013a, Kent et al., 2015). When 

predicting precipitation on a regional-scale, there is a large influence from circulation 

dynamics, which requires clear understanding of the particular regions circulation 

patterns. Unfortunately there is generally weak theoretical understanding of circulation 

aspects of regional climate change as the dynamic responses are more indirect. There is 

often a lack of agreement on the model processes that drive circulation changes and 

hence projected precipitation changes (IPCC, 2014). 

 

There are several hypotheses that potentially explain the lack of convergence and 

associated reduction of uncertainty in CMIP5 models (Knutti and Sedlacek, 2013).  

(1) inherent limitations in the way models are built given limited computational 

resources and spatial resolution 

(2) lack of process understanding,  

(3) lack of accurate long term observations to constrain models,  
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(4) lack of consensus on metrics of present-day model performance that clearly 

separate better from worse models in terms of projection quality,  

(5) inherent limitation of climate change not being predictable owing to internal 

variability,  

(6) addition of dissimilar models from institutions new in CMIP5 and  

(7) addition of new processes, components, or forcings in CMIP5 that are not well 

understood, not well represented in the model, or not well constrained by observations. 

 

In this thesis a key focus is to make an attempt to reduce uncertainty in projected 

precipitation over southern Africa, which is addressed by paying particular attention to 

point 2 and 4 listed above.  

 

3. Thesis Research Aims and Objectives 

 

This thesis has the overall aim of evaluating models in contemporary climate using a 

process-based approach that can be used to understand regional projected changes over 

southern Africa, as well as potentially significantly reducing uncertainty for future 

climate change projections over southern Africa.  

 

Specific aims and objectives of this thesis are listed below: 

 

 Aim 1: Evaluate current CMIP5 model performance in simulating 

historical mean state climatology and variability over southern Africa. 

Objectives: 
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1.1. Identify the austral summer climatological precipitation pattern (i.e. the SIOCZ) in 

observations and CMIP5 models and derive biases. 

1.2. Determine the key dynamic processes that drive precipitation over southern Africa. 

1.3. Determine coherent behaviour between model processes that can potentially explain 

model biases. 

1.4. Investigate dominant modes and drivers of interannual variability over southern 

Africa in both observations and model simulations. 

 

 Aim 2: Identify the key precipitation climate change signals over southern 

Africa 

Objectives: 

2.1. Determine and summarize the key projected precipitation changes over southern 

Africa (SA) and the adjacent south-west Indian Ocean (SWIO) in latest CMIP5 models.  

2.2. Identify in which months/seasons the largest and most significant precipitation 

climate change signals are evident over southern Africa. 

2.3. Quantify uncertainty in projected future precipitation change with respect to 

robustness (model agreement) and credibility (physically feasible mechanisms driving 

change). 

2.4. Determine future changes of the SIOCZ over southern Africa including intensity, 

orientation and movement. 

2.5. Highlight coherent model behaviour between projected future precipitation and 

various diagnostic variables.   
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2.6. Assess future AMIP experiments to determine if idealised experiments provide 

insight in understanding future precipitation projections over southern Africa.  

 

 Aim 3: Explore the regional mechanisms of change over southern African 

Objectives: 

3.1. Unpack the key atmospheric processes vital to southern Africa pre-summer and 

austral summer precipitation through a precipitation decomposition analysis.  

3.2. Quantify contributions from the various components (dynamic and thermodynamic) 

of the mechanisms of change. 

3.3. Determine the proportion of uncertainty associated with the various mechanisms of 

change.  

3.4. Investigate potential drivers of multi-model ensemble uncertainty in precipitation 

projections through identifying the dominant patterns of inter-model precipitation 

change. 

 

 Aim 4: Constrain uncertainty of future changes in precipitation over 

southern Africa. 

Objectives: 

4.1. Create a ranking framework using the process-based model evaluation approach in 

Chapter 3 to broadly identify, good, average and poor models.  

4.2. Using the ‘top’ performing models from the ranking framework developed, 

determine future precipitation projections for key seasons of interest OND and DJF. 
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4.3. Assess if model exclusion i.e. selecting “top” performing models over southern 

Africa increases confidence and significantly reduces uncertainty in future precipitation 

projections. 

4.4. Discuss implications and findings with respect to future climate and water security 

over southern Africa.  

4.5. Discuss how future work can be used to provide additional insights and potentially 

reduce uncertainty further. 
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Chapter 2 

 

1. Research Data and Methodology 

 

1.1. Overview 

 

This thesis evaluates regional precipitation in both historical and future projections 

over southern African and the adjacent Indian Ocean. A brief overview of the data and 

methodology will be discussed in this Chapter, however in the substantive results 

chapters (Chapter 3, 4, 5 and 6) more extensive detail regarding the data and 

methodology will be provided. 

 

2. Datasets utilised in this thesis 

 

2.1. Observational datasets 

The observational precipitation dataset used primarily in this thesis is the monthly 

Climate Prediction Center Merged Analysis of Precipitation (CMAP, Xie and Arkin, 

1997). Other precipitation gridded gauge datasets were tested with essentially 

equivalent results (i.e. the Global Precipitation Climatology Project (GPCP) (Adler et 

al., 2003; Yin et al., 2004). The period of historical observed precipitation analysis 

includes a 20 year climatology from 1979-1999 due to the availability of CMAP data. 

Additional observed datasets used in this thesis include NOAA sea surface temperatures 
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(SSTs) (Reynolds et al., 2007) and various ERA-Interim reanalysis fields (Dee et al., 

2011). 

 

2.2. Model datasets 

Twentieth century simulations from the World Climate Research Programme (WCRP) 

Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model dataset, in the 

most recent Assessment Report (Fifth Assessment report (AR5)) of the 

Intergovernmental Panel on Climate Change (IPCC) are used in Chapter 3 (Meehl et al., 

2007, Taylor et al., 2012) (Table 1). Additionally Atmospheric Model Intercomparison 

Project (AMIP) (Gates, 1992; Gates et al., 1999) are analysed in historical simulations.  

 

Monthly data was extracted and analysed over southern Africa. Focus is placed on 

particular seasonal averages, which are derived for the transitional pre-summer season 

October-November-December (OND) and austral summer season December-January-

February (DJF) for key diagnostic variables to understand essential processes related to 

southern African climatology. The period of historical model analysis includes a 20 year 

climatology in Chapter 3 (due to the CMAP data constraint) and a 30 year climatology 

for the remainder of the analysis for the period 1971-2000. The first ensemble member 

was utilized in creating the MMM. All model data was interpolated to a common grid of 

1.5˚ X 1.5˚ to ensure uniformity. 

 

For the evaluation of projected precipitation changes over southern Africa (Chapter 4, 5 

and 6), output from simulations of the 20
th

 century and the 21
st
 century (under the 
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RCP8.5 emissions scenario) from varying CMIP5 models (Table 1) are used (Meehl et 

al., 2007, Taylor et al., 2012). From the set of emission scenarios referred to as 

Representative Concentration Pathways (RCPs) (Moss et al, 2010; van Vuuren et al, 

2011), the RCP8.5 emissions scenario was selected in the thesis for analysis. This 

emissions scenario corresponds to a high greenhouse gas emissions pathway (IPCC, 

2008), which is used in numerous studies of CMIP5 model evaluation (Chadwick, 2016; 

Rowell, 2016; Dieppois et al, 2015; Kent et al, 2015; Cai et al, 2014; Maloney et al, 

2014; Thibeault and Seth, 2014; Weller et al, 2014; Brown et al, 2013; Chadwick et al, 

2013; Zheng et al, 2013). RCP8.5 was chosen for this study due to (i) it has good data 

availability (large domain of variables available), (ii) it has the largest signal-to-noise 

ratios (i.e. it maximises the climate change signal compared to other scenarios (Fisher et 

al, 2007),  and (iii) it exhibits the greatest consistency with present-day emission trends 

which “track the high end of the latest generation of emission scenarios” (Friedlingstein 

et al, 2014; Clarke et al, 2014). Additionally, AMIP future experiments (Gates, 1992; 

Gates et al., 1999) are analysed to understand the role of SST warming and pattern 

effects (see glossary of future AMIP experiments defined in Chapter 4). 

  

Monthly CMIP5 model data were extracted for key diagnostic variables to understand 

essential processes linked to projected precipitation changes over the SA/SWIO sector. 

The period of analysis includes a 30 year climatology, which is derived from the future 

RCP8.5 scenario 2071-2100 minus the historical period 1971-2000, similarly to 

historical simulations. The first ensemble member was utilized and all model data was 

interpolated to a common grid of 1.5˚ X 1.5˚ to ensure uniformity. 
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Table 1: List of CMIP5 models used in this thesis including modelling center, institute 

ID and atmospheric resolution. (Models with an * indicate an equivalent atmosphere-

only model experiment, whereas models marked in italics are the atmosphere-only 

version of the CMIP5 model utilised in this study.) 

Model Name Modeling Center (or Group) Institute ID 
Atmospheric 

Resolution 

ACCESS1.0* 

ACCESS1.3* 

Commonwealth Scientific and 

Industrial Research Organization 

(CSIRO) and Bureau of Meteorology 

(BOM), Australia 

CSIRO-

BOM 
1.25˚ x 1.9˚ 

BCC-CSM1.1* 

BCC-CSM1.1(m)* 

Beijing Climate Center, China 

Meteorological Administration 
BCC 

2.8˚ x 2.8˚ 

1.12˚ x 1.12˚ 

BNU-ESM* 

College of Global Change and Earth 

System Science, Beijing Normal 

University 

GCESS 2.8˚ x 2.8˚ 

CanESM2 

CanAM4* 

Canadian Centre for Climate Modeling 

and Analysis 
CCCMA 2.8˚ x 2.8˚ 

CCSM4* 
National Center for Atmospheric 

Research 
NCAR 0.94˚ x 1.25˚ 

CESM1(BGC) 

CESM1(CAM5) 

CESM1(FASTCHE

M) 

CESM1(WACCM) 

Community Earth System Model 

Contributors 

NSF-DOE-

NCAR 

 

0.94˚ x 1.25˚ 

CMCC-CESM 

CMCC-CM* 

CMCC-CMS 

Centro Euro-Mediterraneo per I 

Cambiamenti Climatici 
CMCC 

3.71˚ x 3.75˚ 

0.75˚ x 0.75˚ 

1.9˚ x 1.9˚ 

CNRM-CM5* 

Centre National de Recherches 

Météorologiques / Centre Européen de 

Recherche et Formation Avancée en 

Calcul Scientifique 

CNRM-

CERFACS 
1.4˚ x 1.4˚ 

CSIRO-Mk3.6.0* 

Commonwealth Scientific and 

Industrial Research Organization in 

collaboration with Queensland Climate 

Change Centre of Excellence 

CSIRO-

QCCCE 
1.9˚ x 1.9˚ 

EC-EARTH* EC-EARTH consortium EC-EARTH 1.1˚ x 1.1˚ 

FGOALS-g2* LASG, Institute of Atmospheric 

Physics, Chinese Academy of Sciences 
LASG-CESS 2.8˚ x 2.8˚ 
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and CESS,Tsinghua University 

FGOALS-s2* 
LASG, Institute of Atmospheric 

Physics, Chinese Academy of Sciences 
LASG-IAP 1.7˚ x 2.8˚ 

FIO-ESM 
The First Institute of Oceanography, 

SOA, China 
FIO 2.8˚ x 2.8˚ 

GFDL-CM3* 

GFDL-ESM2G 

GFDL-ESM2M 

GFDL-HIRAM-

C180* 

GFDL-HIRAM-

C360* 

NOAA Geophysical Fluid Dynamics 

Laboratory 

NOAA 

GFDL 

 

2.0˚ x 2.5˚ 

GISS-E2-H 

GISS-E2-H-CC 

GISS-E2-R* 

GISS-E2-R-CC 

NASA Goddard Institute for Space 

Studies 
NASA GISS 

 

2.0˚ x 2.5˚ 

HadGEM2-AO 

National Institute of Meteorological 

Research/Korea Meteorological 

Administration 

NIMR/KMA 1.25˚ x 1.9˚ 

HadGEM2-CC 

HadGEM2-ES 

HadGEM2-A* 

Met Office Hadley Centre (additional 

HadGEM2-ES realizations contributed 

by Instituto Nacional de Pesquisas 

Espaciais) 

MOHC 

(additional 

realizations 

by INPE) 

 

1.25˚ x 1.9˚ 

INM-CM4* Institute for Numerical Mathematics INM 1.5˚ x 2˚ 

IPSL-CM5A-LR* 

IPSL-CM5A-MR * 

IPSL-CM5B-LR* 

Institut Pierre-Simon Laplace IPSL 

1.9˚ x 3.75˚ 

1.25˚ x 2.5˚ 

1.9˚ x 3.75˚ 

MIROC-ESM 

MIROC-ESM-

CHEM 

Japan Agency for Marine-Earth 

Science and Technology, Atmosphere 

and Ocean Research Institute (The 

University of Tokyo), and National 

Institute for Environmental Studies 

MIROC 
 

2.8˚ x 2.8˚ 

MIROC4h 

MIROC5* 

Atmosphere and Ocean Research 

Institute (The University of Tokyo), 

National Institute for Environmental 

Studies, and Japan Agency for Marine-

Earth Science and Technology 

MIROC 
0.56˚ x 0.56˚ 

1.4˚ x 1.4˚ 

MPI-ESM-LR* 

MPI-ESM-MR* 

Max-Planck-Institutfür Meteorologie 

(Max Planck Institute for 

Meteorology) 

MPI-M 
 

1.9˚ x 1.9˚ 
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MPI-ESM-P 

MRI-CGCM3* 

 
Meteorological Research Institute MRI 1.1˚ x 1.1˚ 

NorESM1-M* 

NorESM1-ME 
Norwegian Climate Centre NCC 1.9˚ x 2.5˚ 

 

Varying numbers of CMIP5 and AMIP models are utilised in alternate chapters of this 

thesis but are noted within those chapters as to the amount and choice of models utilised 

in each of the analyses. The majority of models are utilised whenever possible. In 

Chapter 5 a subset of 20 CMIP5 models are utilised from the above table of CMIP5 

models and will be shown as Table 1 in Chapter 5. A subset of only 20 CMIP5 models 

are evaluated in Chapter 5 due to the derivation of the alpha coefficient for the 

decomposition methodology, which was only derived for those specific 20 CMIP5 

models. In Chapter 4 and 6 larger subsets of 39 CMIP5 models from the above table are 

utilised due to the availability of future RCP85 scenario model runs.  

 

3. Research Methodology 

 

3.1. Framework for process-based model evaluation 

 

3.1.1. Model performance metrics: mean state and variability 

The ability of CMIP5 models to capture the SIOCZ feature is evaluated through spatial 

correlations of mean observed and model precipitation in Chapter 3 over the SIOCZ 
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region (domain: 0˚- 30˚S, 25˚E - 50˚E illustrated by black rectangle in Figure 1: Chapter 

1). Model error is quantified through mean bias and root mean square errors (RMSEs). 

 

To diagnose model errors, atmosphere-only experiments are evaluated to identify 

potential coupling errors with respect to SST biases and inconsistencies. SST 

climatology is assessed in multi-model ensembles (MMEs) to investigate potential 

relationships between SST biases and precipitation. Errors in circulation are additionally 

determined through analysis of model low-level moisture flux into the SIOCZ region 

compared to observed circulation patterns. This is performed to establish whether the 

key controls and drivers in the formation and maintenance the SIOCZ are simulated in 

models. Moisture flux is decomposed into observed and modelled wind fields and 

combinations of the two fields are derived and analysed to determine which component 

of moisture flux is contributing most significantly to the moisture flux bias.  

 

To determine SIOCZ variability, empirical orthogonal functions (EOFs) of DJF 

precipitation, for a 30 year period over southern Africa are derived for both models and 

observations. The first three primary EOFs are calculated for observations, as well as 

for all CMIP5 and AMIP models, from which the EOF exhibiting the highest 

association with the observed primary EOF is chosen for further model analysis. 

Composite analyses of moisture flux anomalies are evaluated to link the large-scale 

circulation to interannual variability of the SIOCZ. Global maps correlating the primary 

EOF (time coefficients) to global SSTs are generated to determine major SST 

teleconnections in observations and models ability to replicate and capture these remote 

and local teleconnections similarly. 
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3.2. Future Projected Changes 

 

3.2.1. Future precipitation projections and associated diagnostic variables 

To determine and summarize key changes in future southern African precipitation, the 

multi-model mean (MMM) of a total of 39 CMIP5 models is used. Individual models 

are additionally assessed in determining particular model processes in common driving 

changes in precipitation over southern Africa. Various diagnostic variables both 

thermodynamic and dynamic are analysed regarding future change in precipitation 

which include, temperature, SSTs, pressure, moisture, circulation and vertical velocity. 

 

Future precipitation projections in Chapter 4 are analysed in absolute terms and 

percentage change (see Appendix for individual CMIP5 model absolute and percentage 

change – Figures 2 to 5). This addresses the issue of signals that are over inflated in 

particular regions, solely due to the fact that historical precipitation totals are 

significantly smaller over those regions. Signal to noise ratios are derived for each 

calendar month to determine in which months the signal of precipitation change exceeds 

that of internal model variability or disagreement (Tebaldi et al., 2011).   

 

Atmosphere-only experiments are assessed to further understand future precipitation 

changes. Five AMIP future experiments are assessed in Chapter 4 to typically gauge 

additional understanding of SST influences in future change. AMIP future experiments 

may exhibit limited value in some instances and in Chapter 4 it is established whether or 
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not future AMIP experiments add additional understanding to projected precipitation 

change and their potential drivers over southern Africa. 

 

3.2.2. Projections in the SIOCZ 

Future simulations of the SIOCZ are determined over southern Africa in Chapter 4, with 

respect to intensity and movement. The SIOCZ is identified quantitatively by applying 

an algorithm adapted from Brown et al (2011) to the SIOCZ region. The SIOCZ region 

here is defined as the domain covering 0˚ to 30˚S and 25˚E to 50˚E. Cook (2000) 

defines the SIOCZ as being an area of enhanced precipitation during austral summer, 

which corresponds well and consistent with Brown et al’s (2011) definition of the 

SPCZ. 

 

The SIOCZ is characterised and classified using a simple metric to identify the SIOCZ’s 

mean latitude and orientation (slope) by insertion of an SIOCZ axis. This process 

involves extracting for each longitude point, the maximum precipitation value and 

corresponding latitude, and deriving the best fit/regression line through these maximum 

precipitation values over the chosen domain. This provides an objective way to compare 

the slope and mean latitudes of the SIOCZ, between the models and their corresponding 

observations (Brown et al., 2011). This process is performed over the defined SIOCZ 

region using the austral summer mean season DJF in both historical and future 

projections. Differences are analysed using individual model and MMM plots, such that 

projected changes in the SIOCZ can be established.  
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3.3. Mechanisms of Change  

 

3.3.1. Decomposition methodology 

Projected changes in precipitation are often decomposed into thermodynamic and 

dynamic components using a number of variations e.g. Seager et al (2010) and Emori 

and Brown (2005). In this thesis the decomposition methodology developed by 

Chadwick et al (2013a; 2014) is utilised. This methodology is based on the assumption 

that P = Mq, where P is precipitation, M is convective mass flux and q is near surface 

specific humidity. This approach is based on the assumption that in convective climate 

regimes mean precipitation (P) is equivalent to the vertical mass flux from boundary 

layer to free troposphere (M) multiplied by specific humidity in the boundary layer (q)) 

(Held and Soden, 2006). Extensive detail regarding this methodology is explained in 

Chapter 5. Additional clarity regarding this methodology can be found in the paper 

Chadwick et al (2013a).  

 

3.3.2. Analysis of uncertainty: climate sensitivity  

Normalising changes in precipitation removes the uncertainty associated with 

rates/magnitude of warming between models. This allows sole focus on patterns of 

change, not particularly magnitudes of change. This approach is used in Chapter 5 to 

potentially understand and unpack the mechanisms of change within models that cause 

changes.  
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MMM of change is used as the main parameter of change in Chapter 5, whereby 20 

CMIP5 models are used. All components of projected MMM change are normalised by 

the mean global surface temperature change of each individual model (∆Tglobal), 

therefore are expressed as per degree global warming. This removes the uncertainty due 

to inter-model spread in climate sensitivity and makes the results scalable to the 

magnitude of warming, which is tractable when informing policy-makers under 

different warming threshold scenarios. Removing the effect on ∆P of uncertainty in 

model ∆Tglobal related to model climate sensitivity has only a minor input on results (see 

section 2.3 in Chapter 5). Kent et al (2015) using the same decomposition method found 

no significant influence of global mean temperature change on ∆P in terms of 

understanding i) the spatial pattern of ∆P and relative contributions to ∆P of the various 

mechanisms of change in the decomposition, ii) the inter-model spread in ∆P, such that 

Kent et al (2015) states that dynamical uncertainty is unrelated to climate sensitivity 

which dominates precipitation change uncertainty across the globe.  

 

To quantify uncertainty of these projected changes, box-whisker plots and standard 

deviations (i.e. model spread) are derived. Land and ocean regions over southern Africa 

are assessed individually in Chapter 5 due to varying influences over the two domains. 

Dominant patterns of variation are established through EOF analysis of ∆P and 

additionally ∆PShift. Correlations of model coefficients versus global SST pattern 

changes are derived to determine coherent model behaviour and understand potential 

drivers of precipitation change. Composite analysis is performed on circulation patterns 

to determine patterns associated with projected precipitation changes.  
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3.4. Model Ranking Framework 

 

3.4.1. Model ranking in contemporary climate 

A model ranking framework is developed in Chapter 6 whereby ranks are awarded to 

models based on 7 metrics in total, whereby 4 are mean state metrics and 3 variability 

metrics. The framework is based on the 44 CMIP5 models evaluated in contemporary 

climate in Chapter 3. Mean state metrics include models ability to simulate observed 

spatial patterns and intensity of mean precipitation over southern Africa for austral 

summer (DJF) using spatial correlations and zonal averages of precipitation against 

observations. Biases and RMSE values for the region are also included. Variability 

metrics include models ability to simulate interannual variability of austral summer 

precipitation and associated drivers i.e. teleconnections vital to southern African 

precipitation. Model convergence between mean state and variability processes amongst 

models are evaluated. 

 

3.4.2. Reducing uncertainty in precipitation projections 

In the final substantive chapter of this thesis (Chapter 6), results from previous chapters 

are synthesised to make an attempt to significantly reduce uncertainty in future 

precipitation projections over southern Africa. This is determined by using analysis 

output from Chapter 3 to create a model framing work explained above in section 3.4.1 

and in more detail in Chapter 6. From this model ranking framework the “top” 10, 20 

and 30 performing models are selected to determine the standard deviation, inter-

quartile range and range of these three subsets of CMIP5 models.  



42 
 

 
 

A sensitivity analysis is performed by randomly sub-sampling 10, 20 and 30 models by 

10,000 iterations each i.e. using a Monte Carlo approach. Frequency distributions of the 

above spread statistics are derived for the 10
th

 and 90
th

 percentiles and compared to the 

critical values when models were “intelligently” selected. Results lying beyond the 

frequency distribution when randomly sub-sampled are deemed significant i.e. there is 

value in intelligently sub-sampling models over randomly sub-sampling. Therefore this 

analysis uses the understanding of process-based metrics to investigate whether 

uncertainty in projected precipitation over southern Africa can be significantly reduced. 

Results, if deemed significant in reducing uncertainty require additional scrutiny to 

establish whether results are physically credible or potentially falsely constrained.    

 

3.4.3. Addressing uncertainty in SIOCZ projections 

Uncertainty of future projections of the SIOCZ is analysed using box-whisker plot 

analysis to determine inter-model spread. An experiment is conducted to determine if 

models indicate enhanced agreement or convergence in future changes in the SIOCZ, 

irrespective of the individual models initial SIOCZ location in contemporary climate. 

To test this hypothesis a threshold value of greater than 5.5 mm day
-1

 (~165 mm/month) 

is chosen as the mask to identify the SIOCZ in historical simulations (derived from 

analysis completed in Chapter 3). The mask is determined for the MMM of the 39 

CMIP5 models and additionally for each individual CMIP5 model. Future projected 

precipitation changes over the SIOCZ are then derived for both the MMM and 

individual models. Results of future SIOCZ precipitation projections are plotted using 

box-whisker plots of area averaged percentage change in precipitation. Spread between 

the two different experiments is established.   
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3.4.4. Creating useable information for policymakers 

Significant results from this study regarding changes in the SIOCZ and precipitation 

changes will be beneficial in providing insight and understanding of the value of this 

type of ranking approach over southern Africa. Additional work is required to determine 

the credibility of projected changes in precipitation and to confidently inform end-users 

of these possible changes and their associated impacts (Webster, 2003; Swart et al., 

2009).  
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Chapter 3 

 

Climate Model Simulation of the South Indian Ocean 

Convergence Zone: Mean State and Variability 

 

Overview 

The dominant climatological feature over southern Africa responsible for the majority 

of austral summer rainfall (the SIOCZ) is evaluated in CMIP5 models in this chapter. 

Both the mean state and variability of this feature is evaluated. The main drivers of this 

system are additionally identified. Interannual variability of the SIOCZ is investigated 

in both observations and models as well as subsequent drivers of variability.   

 

Key Questions: 

1. How well do current CMIP5 models perform in identifying the key austral 

summer feature over southern Africa i.e. the SIOCZ? 

2. Can sources of precipitation biases be identified in models? 

3. Investigate dominant modes and drivers of interannual variability over southern 

Africa i.e. teleconnections. 

4. Are current CMIP5 models able to identify modes of variability and subsequent 

drivers? 
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ABSTRACT 

Evaluation of climate model performance at regional scales is essential in determining 

confidence in simulations of present and future climate. Here we developed a process-

based approach focussing on the South Indian Ocean Convergence Zone (SIOCZ), a 

large-scale, austral summer rainfall feature extending across southern Africa into the 

southwest Indian Ocean. Simulation of the SIOCZ was evaluated for the Coupled Model 

Intercomparison Project (CMIP5). Comparison was made between CMIP5 and 

Atmospheric Model Intercomparison Project (AMIP) models to diagnose sources of 

biases associated with coupled ocean-atmosphere processes. Models were assessed in 

terms of mean SIOCZ characteristics and processes of interannual variability. Most 

models simulated a SIOCZ feature, but were typically too zonally oriented. A systematic 

bias of excessive precipitation was found over southern Africa and the Indian Ocean, 
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but not particularly along the SIOCZ. Excessive precipitation over the continent may be 

associated with excessively high low-level moisture flux around the Angola Low found 

in most models, which is almost entirely due to circulation biases in models. AMIP 

models represented precipitation more realistically over the Indian Ocean, implying a 

potential coupling error. Interannual variability in the SIOCZ was evaluated through 

empirical orthogonal function analysis, where results showed a clear dipole pattern, 

indicative of a northeast−southwest movement of the SIOCZ. The drivers of this shift 

were significantly related to the El Niño Southern Oscillation and the sub-tropical 

Indian Ocean dipole in observations. However, the models did not capture these 

teleconnections well, limiting our confidence in model representation of variability.  

 

*Corresponding author: M.Lazenby@sussex.ac.uk 

 

KEY WORDS: CMIP5 · ENSO · Ensemble · Teleconnection · Model evaluation · 

South Indian Ocean Convergence Zone · SIOCZ · Southern Africa · December-

January-February · DJF 

 

1. Introduction 

 

1.1.Model evaluation 

Future projections of climate still contain a large amount of uncertainty, especially for 

precipitation (Schaller et al., 2011; Collins et al., 2013). In order to make future climate 

simulations with confidence, it is essential that models are able to adequately simulate 

mailto:M.Lazenby@sussex.ac.uk
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the present climate (Sushama et al., 2006; Engelbrecht et al., 2009), as well as long term 

mean circulation patterns and surface fields, and also particularly variability on all time 

scales (Battisti, 1995; Renwick et al., 1999; Engelbrecht et al., 2009). 

 

Common evaluators of model performance include error (bias) against observations 

(Schaller et al., 2011) and correlations (spatial and temporal) between historical model 

simulations and observations (Taylor, 2001). Complementary and more recent 

approaches to evaluate model performance suggest process-based analyses to form a 

framework for evaluating model credibility (e.g. Glecker et al., 2008; Thibeault and 

Seth, 2014). This includes evaluating models ability to capture the large-scale 

processes, such as the general circulation and variability of a particular feature or 

variable (Thibeault and Seth, 2014). The objective aims to identify the mechanisms or 

processes causing future change in models, therefore not solely relying on 

representation of present climatology as an indicator of credibility in future projections 

(Shongwe et al., 2011; Thibeault and Seth 2014; James et al., 2015).  

 

1.2. The South Indian Ocean Convergence Zone (SIOCZ) 

Southern African climate is relatively understudied and due to its generally high 

vulnerability to climate variability and change and low adaptive capacity, there is a 

growing demand from policymakers for more robust estimates of the future climate 

deemed sufficiently reliable to aid in decision making for adaption (Callaway, 2004; 

Knutti et al., 2010). Southern African climate is dominated by the SIOCZ, a diagonal 

north-west to south-east band of enhanced low-level convergence and precipitation 

during austral summer extending from the southern African continent into the southwest 

Indian Ocean over the south-east coast between 10˚S and 40˚S and 0˚E to 60˚E (Cook, 

http://www.sciencedirect.com/science/article/pii/S147470651300140X#b0065
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1998; 2000). It is a land-based convergence zone (LBCZ) that forms the dynamic link 

between the large scale circulation and the precipitation over southern Africa and south-

west Indian Ocean (Tyson, 1986; Cook, 1998; 2000; Niñomiya, 2008). It can be 

identified using variables such as OLR, convergence fields, vertical uplift, high clouds 

and mean sea level pressure (SLP), which has been done previously to identify the 

SACZ (Liebmann et al., 1999), and the SPCZ (Brown et al., 2011).  

 

The zonal wind convergence occurring between the thermal low (Angola Low) and 

South Indian Ocean High Pressure (SIOHP, a.k.a the Mascarene high pressure) are 

responsible for the dominant boundary of the SIOCZ over the southern African 

continent (Cook, 2000; Niñomiya, 2008) (Figure 1). The extension of the SIOCZ into 

the Indian Ocean is mainly a result of the partially compensating influences of moisture 

advection and moist transient eddy activity and meridonal wind convergence (Cook 

2000). Three clear sources of moisture flux to be noted in Figure 1 are: 1.) moisture flux 

from the circulation around the Angola Low, 2.) moisture flux from the NE monsoon 

region and lastly 3.) moisture flux from the circulation around the SIOHP that ridge 

over the continent.   
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FIG 1: Mean DJF climate over study region 1979/80-98/99. Sea level pressure (hPa, 

solid black lines from ERA-Interim data), precipitation (mm month
-1

), shaded colour 

contours from CMAP) and moisture flux at 850hPa (g kg
-1 

*m s
-1

, white arrows - length 

indicative of magnitude from ERA-Interim). Black box indicates the chosen SIOCZ 

region (0˚S - 30˚S, 25˚E - 50˚E) and the dashed black line represents the SIOCZ. Black 

arrows labelled 1, 2 and 3 represent the three major moisture flux pathways into the 

SIOCZ (see text for details). 

 

Climate variability over southern Africa and the south-western Indian Ocean is 

dominated by a dipole pattern in OLR, convection and rainfall, which can be interpreted 

as the interannual shift in the position of the SIOCZ (Cook, 2000) (see section 5). This 

dipole between the north-eastern regions and the eastern African regions (Cook, 1998) 

has a strong association with El Niño Southern Oscillation (ENSO) and the Indian 

Ocean (Makarau and Jury, 1997; Goddard and Graham, 1999; Nicolson et al., 2001; 
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Hoerling et al., 2006; Rowell, 2013). The subtropical Indian Ocean dipole (SIOD) is 

important in understanding southern African rainfall variability over interannual time-

scales (Goddard and Graham, 1999; Cook, 2000; Behera and Yamagata, 2001; Reason, 

2001).  

 

In this paper models are evaluated in terms of their ability to simulate the mean state of 

the SIOCZ and variability on an interannual time scale. The drivers of the interannual 

variability will also be identified in observations and models. It is important to note that 

the simulation of the SIOCZ has not previously been evaluated using the suite of 

CMIP5 climate models, and information about the SIOCZ in models will provide input 

for evaluating uncertainty in regional climate projections for southern Africa. 

 

2. Data & Methods 

 

2.1 Data 

The gridded precipitation observational dataset used here was the monthly Climate 

Prediction Center Merged Analysis of Precipitation (CMAP, Xie and Arkin, 1997). The 

period of historical observed precipitation from CMAP includes a 20 year climatology 

from 1979/80 to 1998/99 due to the availability of CMAP data. Other precipitation 

gridded gauge datasets were tested with essentially equivalent results (i.e. the Global 

Precipitation Climatology Project (GPCP) (Adler et al., 2003; Yin et al., 2004). Other 

observed datasets used include NOAA sea surface temperatures (SSTs) (Reynolds et al., 

2007) and ERA-Interim reanalysis fields (Dee et al., 2011). 
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Twentieth century simulations from a total of 44 models from the World Climate 

Research Programme (WCRP) Coupled Model Intercomparison Project Phase 5 

(CMIP5) multi-model dataset, in the most recent Assessment Report (Fifth Assessment 

report (AR5)) of the Intergovernmental Panel on Climate Change (IPCC) are used 

(Meehl et al., 2007; Taylor et al., 2012) (Table 1). The historical model analysis 

includes a 20 year climatology, allowing for a common period of comparison between 

observed and modelled rainfall climatology, as the CMIP5 model data available was 

only from 1975-2005 and preference of analysis was in periods of decades. The 

potential implication of only using a 20 year period could result in an enhanced 

modification from strong wet and dry rainfall seasons within the chosen time period, 

however a comparison of a 20 and 30 year observed climatological period (not shown 

here) did not exhibit significant differences and therefore a 20 year historical period is 

deemed sufficient for the analysis in section 3.  

 

A 30 year period is used for the remainder of the analysis i.e. from section 4 onwards as 

EOF analyses prove more robust with larger sample size i.e. larger number of time 

steps. Additionally 27 Atmospheric Model Intercomparison Project (AMIP) (Gates, 

1992; Gates et al., 1999) are analysed to attribute the source of biases. Monthly data 

was extracted for the December-January-February (DJF) austral summer season of key 

diagnostic variables to understand essential processes of southern African climate.  

 

Table 1: CMIP5 model list of the 44 models used including modelling center, institute 

ID and atmospheric. (Models marked with a * indicates the models where the 

atmosphere-only version of the model was also used in the analysis) 
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Model Name Modeling Center (or Group) Institute ID 
Atmospheric 

Resolution 

ACCESS1.0* 

ACCESS1.3* 

Commonwealth Scientific and 

Industrial Research Organization 

(CSIRO) and Bureau of Meteorology 

(BOM), Australia 

CSIRO-BOM 1.25˚ x 1.9˚ 

BCC-CSM1.1* 

BCC-CSM1.1(m)* 

Beijing Climate Center, China 

Meteorological Administration 
BCC 

2.8˚ x 2.8˚ 

1.12˚ x 1.12˚ 

BNU-ESM* 

College of Global Change and Earth 

System Science, Beijing Normal 

University 

GCESS 2.8˚ x 2.8˚ 

CanESM2 

CanAM4* 

Canadian Centre for Climate Modeling 

and Analysis 
CCCMA 2.8˚ x 2.8˚ 

CCSM4* 
National Center for Atmospheric 

Research 
NCAR 0.94˚ x 1.25˚ 

CESM1(BGC) 

CESM1(CAM5) 

CESM1(FASTCHE

M) 

CESM1(WACCM) 

Community Earth System Model 

Contributors 

NSF-DOE-

NCAR 

 

0.94˚ x 1.25˚ 

CMCC-CESM 

CMCC-CM* 

CMCC-CMS 

Centro Euro-Mediterraneo per I 

Cambiamenti Climatici 
CMCC 

3.71˚ x 3.75˚ 

0.75˚ x 0.75˚ 

1.9˚ x 1.9˚ 

CNRM-CM5* 

Centre National de Recherches 

Météorologiques / Centre Européen de 

Recherche et Formation Avancée en 

Calcul Scientifique 

CNRM-

CERFACS 
1.4˚ x 1.4˚ 

CSIRO-Mk3.6.0* 

Commonwealth Scientific and 

Industrial Research Organization in 

collaboration with Queensland Climate 

Change Centre of Excellence 

CSIRO-QCCCE 1.9˚ x 1.9˚ 

EC-EARTH* EC-EARTH consortium EC-EARTH 1.1˚ x 1.1˚ 

FGOALS-g2* 

LASG, Institute of Atmospheric 

Physics, Chinese Academy of Sciences 

and CESS,Tsinghua University 

LASG-CESS 2.8˚ x 2.8˚ 

FGOALS-s2* 
LASG, Institute of Atmospheric 

Physics, Chinese Academy of Sciences 
LASG-IAP 1.7˚ x 2.8˚ 

FIO-ESM 
The First Institute of Oceanography, 

SOA, China 
FIO 2.8˚ x 2.8˚ 

GFDL-CM3* NOAA Geophysical Fluid Dynamics NOAA GFDL  
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GFDL-ESM2G 

GFDL-ESM2M 

GFDL-HIRAM-

C180* 

GFDL-HIRAM-

C360* 

Laboratory 2.0˚ x 2.5˚ 

GISS-E2-H 

GISS-E2-H-CC 

GISS-E2-R* 

GISS-E2-R-CC 

NASA Goddard Institute for Space 

Studies 
NASA GISS 

 

2.0˚ x 2.5˚ 

HadGEM2-AO 

National Institute of Meteorological 

Research/Korea Meteorological 

Administration 

NIMR/KMA 1.25˚ x 1.9˚ 

HadGEM2-CC 

HadGEM2-ES 

HadGEM2-A* 

Met Office Hadley Centre (additional 

HadGEM2-ES realizations contributed 

by Instituto Nacional de Pesquisas 

Espaciais) 

MOHC 

(additional 

realizations by 

INPE) 

 

1.25˚ x 1.9˚ 

INM-CM4* Institute for Numerical Mathematics INM 1.5˚ x 2˚ 

IPSL-CM5A-LR* 

IPSL-CM5A-MR * 

IPSL-CM5B-LR* 

Institut Pierre-Simon Laplace IPSL 

1.9˚ x 3.75˚ 

1.25˚ x 2.5˚ 

1.9˚ x 3.75˚ 

MIROC-ESM 

MIROC-ESM-

CHEM 

Japan Agency for Marine-Earth 

Science and Technology, Atmosphere 

and Ocean Research Institute (The 

University of Tokyo), and National 

Institute for Environmental Studies 

MIROC 
 

2.8˚ x 2.8˚ 

MIROC4h 

MIROC5* 

Atmosphere and Ocean Research 

Institute (The University of Tokyo), 

National Institute for Environmental 

Studies, and Japan Agency for Marine-

Earth Science and Technology 

MIROC 
0.56˚ x 0.56˚ 

1.4˚ x 1.4˚ 

MPI-ESM-LR* 

MPI-ESM-MR* 

MPI-ESM-P 

Max-Planck-Institutfür Meteorologie 

(Max Planck Institute for 

Meteorology) 

MPI-M 
 

1.9˚ x 1.9˚ 

MRI-CGCM3* 

 
Meteorological Research Institute MRI 1.1˚ x 1.1˚ 

NorESM1-M* 

NorESM1-ME 
Norwegian Climate Centre NCC 1.9˚ x 2.5˚ 
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2.2 Model performance metrics 

The ability of models to capture the SIOCZ structure is derived through spatial 

correlations of the mean observed and model precipitation over the SIOCZ region 

(domain: 0˚- 30˚S, 25˚E - 50˚E illustrated by black rectangle in Figure 1). Model error is 

quantified through mean bias and root mean square errors (RMSEs) (metrics listed in 

Table 2). Both model and observational data were assessed for a 20 year climatological 

DJF period from 1979/80 to 1998/99, except for section 4’s analysis where a 30 year 

time period was utilised (1979/80 – 2008/09) due to EOF analyses becoming more 

robust with a larger sample size.  

 

Table 2: Spatial Correlations of precipitation between observations (CMAP) and 

CMIP5 models over the SIOCZ region. Area averages, model biases and RMSE 

calculated over the SIOCZ region. All calculations based on the period 1979/80-

1998/99. 

Model/Observation 

 

SIOCZ 

Region 

Spatial 

Correlation 

Area 

Average 

(mm/month) 

Model Bias 

(mm/month) 

Model 

RMSE 

(mm/month) 

CMAP / 135 / / 

ACCESS1-0 0.85 159 24 63 

ACCESS1-3 0.77 183 48 94 

bcc-csm1-1 0.85 144 9 42 

bcc-csm1-1-m 0.84 138 3 47 

BNU-ESM 0.75 180 45 86 

CanESM2 0.82 150 15 59 

CCSM4 0.85 180 45 72 

CESM1-BGC 0.85 177 42 71 

CESM1-CAM5 0.87 156 21 53 
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CESM1-FASTCHEM 0.84 174 39 70 

CESM1-WACCM 0.74 174 39 80 

CMCC-CESM 0.74 147 12 57 

CMCC-CM 0.77 126 -9 49 

CMCC-CMS 0.75 147 12 56 

CNRM-CM5 0.70 153 18 58 

CSIRO-Mk3-6-0 0.75 135 0 78 

EC-EARTH 0.81 147 12 46 

FGOALS-g2 0.83 114 -21 44 

FGOALS-s2 0.80 129 -6 51 

FIO-ESM 0.57 165 30 91 

GFDL-CM3 0.81 174 39 68 

GFDL-ESM2G 0.78 192 57 89 

GFDL-ESM2M 0.81 192 57 84 

GISS-E2-H 0.73 138 3 65 

GISS-E2-H-CC 0.66 138 3 76 

GISS-E2-R 0.73 129 -6 70 

GISS-E2-R-CC 0.74 129 -6 68 

HadGEM2-AO 0.84 156 21 67 

HadGEM2-CC 0.84 150 15 58 

HadGEM2-ES 0.83 150 15 64 

inmcm4 0.82 150 15 57 

IPSL-CM5A-LR 0.72 174 39 81 

IPSL-CM5A-MR 0.73 177 42 88 

IPSL-CM5B-LR 0.84 159 24 58 

MIROC4h 0.67 171 36 86 

MIROC5 0.70 189 54 103 

MIROC-ESM 0.48 174 39 105 

MIROC-ESM-CHEM 0.55 177 42 100 

MPI-ESM-LR 0.68 162 27 67 

MPI-ESM-MR 0.69 165 30 71 

MPI-ESM-P 0.68 156 21 64 

MRI-CGCM3 0.76 132 -3 60 
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NorESM1-M 0.54 189 54 107 

NorESM1-ME 0.58 189 54 103 

Model Mean (44) 0.79 159 24 71 

 

To diagnose model errors, we determine the errors in the structure of low level moisture 

flux into the SIOCZ region in models to understand the key controls in the formation 

and maintenance the SIOCZ. SST climatology is also assessed in multi-model 

ensembles to investigate the links and potential relationships between SSTs and 

precipitation. 

 

To determine SIOCZ variability, empirical orthogonal functions (EOFs) of DJF 

precipitation, for a 30 year period over southern Africa are derived for both models and 

observations. The first 3 EOFs are calculated for observations, as well as for all CMIP5 

and AMIP models, from which the EOF with the highest association with the observed 

EOF 1 is chosen for further model analysis. Composite analysis of specific humidity, 

zonal and meridonal winds are evaluated to link the large-scale circulation to 

interannual variability of the SIOCZ. Global maps correlating the EOF (time 

coefficients) to global SSTs are created to determine major SST teleconnection regions.  

 

3. Model representation of the SIOCZ 

 

3.1. SIOCZ climatology bias 

As discussed in Section 1 southern African austral summer climate is dominated the 

SIOCZ, which is driven by the circulation around the Angola Low and SIOHP, and an 

additional influx from the north-west region. These three moisture flux pathways 

converge at low-levels (850hPa) to form the SIOCZ (Figure 1).   



57 
 

 
 

 

 

FIG 2: (a) Zonal mean (averaged over longitudes 25˚E to 50˚E) DJF precipitation from 

observations (CMAP – solid bold black line), 44 individual CMIP5 models and CMIP5 

MME (dashed bold black line) for the period 1979/80-1998/99. (b) same as (a) but only 

b.) 

a.) 
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including observations (CMAP — solid bold black line), and the CMIP5 multi-model 

ensemble (MME, dashed red line). 

 

The zonal mean precipitation distribution indicates that most CMIP5 models 

overestimate the intensity of precipitation over the SIOCZ region in some models by up 

to 100 mm/month (Figure 2). The overall model bias over the SIOCZ region is 24 

mm/month, which is 18% of the observed mean of 135 mm/month (Table 2), with a 

standard deviation (not shown) of 17 mm/month. This indicates the multi-model mean 

(MMM) is relatively close to observations; however individual models show relatively 

high positive biases as well as excessively large RMSEs. Model RMSE average 71 

mm/month, which is approximately 53% or over a factor of 2 in excess of the 

climatological mean. 

 

3.2. Spatial structure of the SIOCZ 

The majority of CMIP5 models capture the spatial distribution of precipitation 

reasonably well in terms of identifying the SIOCZ (Figure 3). Main points to note are i) 

models exhibit a lack of continuity in the SIOCZ, i.e., a clear break in precipitation is 

seen between land and ocean, ii) majority of models simulate excessive precipitation 

over the southern African continent and adjacent Indian Ocean. 
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FIG 3: Mean DJF precipitation (mm month
-1

) over wider study region (1979/80-

1998/99) for the 44 CMIP5 models. 

 

The MMEs for both CMIP5 and AMIP have a SIOCZ that is relatively underestimated 

when compared to the positive precipitation bias over the continent and Indian Ocean 

(Figure 4). The SIOCZ does not have a negative bias, however when compared to the 

excessive bias over land and the Indian Ocean, the SIOCZ is potentially being relatively 

underestimated in models. AMIP has however reduced these biases in both regions 

demonstrating a coupled model error. Both MME plots show the SIOCZ to be too zonal 

in structure, particularly the CMIP5 MME.  
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FIG 4: Model simulations of study region precipitation. Multi-model ensemble (MME) 

mean DJF precipitation (mm month
-1

, 1979/80-1998/99) from CMIP5 (a) and AMIP (c) 

model runs (using the 27 models in common) and their respective biases against CMAP 

(see Figure 1). In (b) SST MME mean bias from CMIP overlaid (black contours with 

0.5 K intervals where solid lines are positive and dashed negative values. 

 

SSTs are overlaid on the CMIP5 MME bias plot (b) to potentially understand the large 

ocean precipitation bias. A negative SST bias (~-0.5˚C) is found over the Indian Ocean, 

therefore not explicitly explaining the overestimation of precipitation in this area by 

means of an overly warm ocean. Whereas, over the Atlantic Ocean, there is a large 

positive SST bias (~2˚C), which may be linked to the precipitation bias over this region. 

However both thermodynamic (local SST) and dynamic (circulation) components can 

contribute to precipitation biases. In recent studies by Bollasina and Ming (2013) the 
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dynamic contribution tends to explain the excessive precipitation bias through 

anomalous circulation over the Indian Ocean.    

    

Spatial correlations between observed and modelled DJF precipitation over the SIOCZ 

region are shown in Table 2. Majority of models have a correlation coefficient above 

0.7 and only 1 model (MIROC-ESM) below 0.5, therefore confirming that the vast 

majority of the models are able to capture the spatial structure of the summer rainfall 

pattern well over the SIOCZ region. Models with the highest spatial correlations e.g. 

bcc-csm1-1 (0.85) and CESM1-CAM5 (0.87), also tend to have the lowest or lower 

biases (0.3 & 0.7) and RMSEs (1.41 & 1.77).   

 

3.3. Moisture flux and large scale regional circulation 

The MME moisture flux bias shows that models on average over-simulate the three 

sources of moisture flux into the SIOCZ, particularly moisture flux pathway (2) from 

the NE Monsoon flow (from Figure 1), as well as the low-level moisture flux around the 

Angola Low, moisture flux pathway (1), where more moisture flux convergence (orange 

and red shading) is evident in Figure 5a. This may explain the excessive precipitation 

found over the continent in models. To deduce if moisture (specific humidity) or 

circulation (zonal and meridonal winds) contributes less/more/equally to the moisture 

flux bias, plots of observed specific humidity and MME wind bias and observed winds 

and MME specific humidity biases at 850hPa are shown in Figure 5(b) and (c) 

respectively. By plotting one observed component and one MME component of 

moisture flux at a time, this can determine which variable contributes most to the 

moisture flux bias. In this case the circulation component is almost solely responsible 

for the bias of moisture flux in CMIP5 models.   
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FIG 5: (a) CMIP DJF 850hPa moisture flux bias (g kg
-1

 * m s
-1

, magnitude shaded) for 

the period 1979/80-1998/99. (b) as (a) but derived using observed ERA-Interim winds 

and CMIP MME mean specific humidity bias and (c) same as (a) but derived using 

observed ERA-Interim specific humidity and CMIP MME mean u and v wind biases. 

 

Figure 6 shows three individual model biases for 850hPa moisture flux and moisture 

flux magnitude. ACCESS1-0 shows a moisture flux bias pattern most representative of 

most CMIP5 models. FGOALS-g2 bias is lower than most models and notably does not 

exhibit excessive precipitation in the DJF climatology (Figure 3). MIROC-ESM-CHEM 

exhibits large biases from all three moisture flux pathways identified in Figure 1. It is 

interesting to note that very wet models (seen in Figure 3) tend to show excessive 

moisture flux in excessively wet regions. For example ACCESS1-3 and MIROC-ESM-

CHEM exhibit excessive precipitation over central southern Africa and both models 
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show a large positive bias of low-level moisture flux over the same region. Therefore 

low-level moisture flux in models that is erroneously high may be a reason for the 

precipitation bias, particularly over the continent (e.g. Washington et al. 2013).  

 

FIG 6: As Figure 5(a) but for 3 individual selected, contrasting models from the CMIP 

archive. 

 

4. Interannual Variability of the SIOCZ 

 

4.1. Observed variability  

Interannual modes of SIOCZ variability in both observations and models are determined 

using EOF analysis. In observations variability is characterised by a clear dipole pattern, 

which can be interpreted as a NE-SW shift in the position of the SIOCZ axis (Figure 7) 

(Cook, 2001). Composite analysis was applied to other diagnostic fields, specifically 

low-level specific humidity and wind reanalysis fields. The top minus the bottom 5 
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years from observed EOF 1 time series were derived. The variability of the wind 

circulation appears to be driven by anomalously strong anti-cyclonic circulation in the 

south-west Indian Ocean (Figure 8), which brings in moisture from the Indian Ocean 

into the convergence zone (moisture flux pathway 3, see Figure 1).  

 

FIG 7: Primary DJF precipitation EOF calculated for CMAP for the 30 year period from 

1979/80-2008/09. The percentage of the total variance explained is shown in the top 

right-hand corner of the plot.   
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FIG 8: Moisture transport patterns associated with shifts in SIOCZ. 850hPa DJF 

moisture flux composite anomalies (g kg
-1

 * m s
-1

) for top 5 DJF seasons minus the 

bottom 5 DJF seasons of the CMAP precipitation EOF time series (see text for details). 

 

SIOCZ is clearly associated with dominant global and regional modes of interannual 

variability, apparent through correlations of EOF 1 time coefficients with global tropical 

SSTs (Figure 9 and Table 3). Specifically there is a significant correlation with ENSO 

and the SIOD at the 95% confidence interval (Table 3). The mean position of the 

SIOCZ lies approximately between the dipole pattern as shown in EOF 1 in Figure 7, 

consistent with previous analysis e.g. Cook (2001). Therefore the dipole pattern is 

indicating the variability of this feature, which is dominated by ENSO and the Indian 

Ocean (see Figure 9). 

 

Table 3: Spatial correlations of CMAP EOF 1 against model EOF 1, 2, or 3 (whichever 

highest) and temporal correlations of CMIP5 models EOF 1 against the Niño3.4 index 

and SIOD index. (Significant correlations at 95% confidence interval given in italics in 

column 3 and 4) 

Model/Observation 
EOF 

Spatial 

Correlation 

Temporal 

correlation 

of EOF 1 

vs. 

Niño3.4 

Temporal 

correlation 

of EOF 1 

vs. SIOD 

CMAP / -0.39 -0.37 

ACCESS1-0 -0.69 -0.25 -0.06 

ACCESS1-3 0.41 -0.01 -0.09 

bcc-csm1-1 -0.51 0.07 -0.21 

bcc-csm1-1-m -0.61 0.24 -0.11 
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BNU-ESM -0.35 -0.42 0.15 

CanESM2 -0.83 -0.04 0.04 

CCSM4 0.53 -0.27 0.19 

CESM1-BGC 0.61 0.30 -0.03 

CESM1-CAM5 -0.40 0.12 0.01 

CESM1-FASTCHEM -0.50 0.25 0.02 

CESM1-WACCM 0.62 -0.15 0.01 

CMCC-CESM -0.33 0.21 0.03 

CMCC-CM -0.69 -0.01 0.05 

CMCC-CMS -0.83 0.09 0.10 

CNRM-CM5 -0.41 -0.30 -0.10 

CSIRO-Mk3-6-0 0.53 -0.29 -0.11 

EC-EARTH -0.72 -0.03 -0.02 

FGOALS-g2 -0.54 0.16 0.07 

FGOALS-s2 -0.68 0.01 0.02 

FIO-ESM -0.55 -0.05 0.05 

GFDL-CM3 -0.71 -0.11 0.04 

GFDL-ESM2G 0.54 -0.06 0.05 

GFDL-ESM2M 0.68 -0.43 0.16 

GISS-E2-H 0.54 -0.10 0.21 

GISS-E2-H-CC -0.69 0.07 0.24 

GISS-E2-R -0.38 0.02 0.03 

GISS-E2-R-CC 0.43 0.10 -0.06 

HadGEM2-AO 0.58 0.05 -0.15 

HadGEM2-CC 0.68 0.09 0.02 

HadGEM2-ES -0.28 0.00 0.17 

INMCM4 -0.51 0.24 -0.09 

IPSL-CM5A-LR -0.63 -0.10 0.15 

IPSL-CM5A-MR 0.61 0.01 -0.09 

IPSL-CM5B-LR -0.47 -0.11 -0.21 

MIROC4h -0.46 0.05 0.04 

MIROC5 0.44 -0.19 0.11 

MIROC-ESM-CHEM 0.81 -0.10 -0.34 
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MIROC-ESM -0.79 0.02 -0.02 

MPI-ESM-LR -0.4 -0.21 0.11 

MPI-ESM-MR 0.58 0.11 -0.10 

MPI-ESM-P 0.55 -0.11 0.24 

MRI_CGCM3 0.49 -0.20 0.14 

NorESM1-M 0.25 0.10 -0.20 

NorESM1-ME 0.39 -0.07 -0.25 

 

4.2. Model variability 

In the majority of models a NW/SE dipole pattern indicative of the SIOCZ interannual 

variability emerges in the leading EOF. There was not any notable difference in skill 

between the CMIP5 and AMIP EOF plots. For 7 CMIP5 models there is no discernible 

SIOCZ dipole pattern similar to observations.  

 

FIG 9: Teleconnections associated with SIOCZ variability. Correlation of CMAP EOF 

1 time coefficients and observed global SSTs for DJF 1979/80-2008/09. 
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Observed drivers of variability are clearly distinguishable from Figure 9, with regions of 

highest correlations (~0.4) over the central Pacific and Indian Ocean. These global plots 

were replicated for CMIP5 and AMIP, however not shown due to space constraints. 17 

out of 44 CMIP5 models have EOF spatial correlations greater than 0.6 compared to the 

observed EOF 1, in which 6 of these models correlations of greater than 0.6 are found in 

EOF 2. Of the 17 models that exhibit this dipole, only 9 depict global SST correlation 

patterns similar to observations, i.e. with highest correlations found over the Pacific and 

Indian Ocean.  

 

FIG 10: As in Fig. 9, but for 3 selected and contrasting CMIP models (CESM1-BGC: 

good, bcc-csm1-1: average, and MPI-ESM_P: poor) 

 

Therefore the majority of CMIP5 models are not able to capture the relationship 

between the Pacific and Indian Ocean as in observations i.e. teleconnections. Three 

examples of these global correlation maps (CESM1-BGC: good, bcc-csm1-1: average 
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and MPI-ESM_P: poor) are shown (Figure 10). The vast majority of models are not able 

to capture the observed teleconnections, however are evidently better at capturing the 

ENSO teleconnection than the Indian Ocean influence (SIOD) (Table 3).  

 

5. Discussion and Conclusions 

 

The first key conclusion from this study is the majority of CMIP5 models perform well 

at simulating the spatial pattern of seasonal rainfall for DJF over southern Africa. An 

overall systematic bias toward an excessively wet southern African region is found, 

which is confirmed by the predominate amount of positive model biases and high 

RMSEs. However the SIOCZ itself is not particularly wet, but more the surrounding 

regions that exhibit excessive precipitation. Reasons for the SIOCZ itself not being 

particularly wet may be due to the dominant bias in the Indian Ocean as well as 

circulation biases that enhance moisture flux into the surrounding regions. There is a 

noticeable break in the SIOCZ in the vast majority of models between land and ocean. 

A potential reason for this break could be due to the different dynamics within models 

over land and ocean.   

 

These systematic biases implied the need to identify the cause (potentially excessive 

moisture flux convergence in models (Washington et al., 2013) and SST biases in 

models (e.g. Brown et al., 2011) so these can be corrected for in models. Therefore 

biases in model moisture flux were investigated and were found to be anomalously high 

around the Angola Low. The bias is mainly due to large-scale circulation biases and not 

specific humidity biases (Figure 5).   
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SST biases showed a small negative bias over the Indian Ocean region in the MME, 

therefore not linked to the excessive precipitation through overly warm ocean 

temperatures resulting in more convection and hence rainfall. Further studies are 

required to understand this Indian Ocean precipitation bias, SST gradients in models 

may also be a potential contributor.    

 

The EOF analysis provided the pattern of variabilty of the SIOCZ with the typical mean 

position of the SIOCZ located between the dipole pattern found in the primary EOF. 

This primary EOF also correlated significantly to Niño3.4 and the SIOD in 

observations. The dipole pattern found in EOF 1 could be interpreted as the movement 

or shift of the SIOCZ in wet and dry years i.e. La Niña and El Niño years respectively 

similar to the north-south displacement of the SPCZ during El Niño and La Nina years 

(e.g. Vincent et al., 2011), which is well captured by most CMIP3 (Brown et al., 2011) 

and CMIP5 (Brown et al., 2013) models. Most CMIP5 and AMIP (not shown) models 

captured the primary EOF dipole pattern consistent with observations, which imples the 

models do exhibit characteristics of variability to some extent, which is a step further in 

our understanding of model processes and dynamics. SIOCZ rainfall is complex in 

terms of variability as it is not just influenced by one major source but potentially 

several e.g. wave activity such as Rossby waves and the Matsuno-Gill response 

(Ratnam et al., 2014).   

 

The large-scale circulation of the SIOCZ was linked through to variability via 

composite analysis of the primary observed EOF time series and moisture flux fields. 

Variability is dominated by moisture flux pathway 3 (anti-cyclonic circulation around 
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the SIOHP), feeding into the eastern parts of southern Africa. This anomalous 

circulation of moisture flux highlights the change of importance in the 3 moisture flux 

pathways. 

 

There is a significant influence of ENSO and the SIOD on the meridonal position of the 

SIOCZ found in observations, however the CMIP5 and AMIP models were not able to 

significantly capture this relationship. Models make the SIOCZ shift north and 

southwards but not for the correct reasons i.e. weak correlations with Indian Ocean and 

Pacific SSTs. Implications are future climate change signals will be partly due to 

changes in SST gradients in the Pacific and Indian Ocean (e.g. changes to ENSO) 

(Power et al., 2006; Adler, 2011; Stevenson, 2012). Therefore models need to correctly 

simulate teleconnections presently, so future analyses can be valuable. 

 

The findings of this paper are the first of its kind in which CMIP5 models are evaluated 

regarding their ability to capture the climatology and variability of the SIOCZ. These 

results have implications for regional climate projections using the set of CMIP5 

models, such as which models are more accurate in capturing both mean state and 

variability (bcc-csm1-1 and bcc-csm1-1-m). Other implications include where biases are 

likely to be important within CMIP5 models such as in regions where there is excessive 

moisture convergence in those regions. Further work is needed to explore what 

processes are responsible for the model precipitation biases and what other potential 

drivers are driving variability within CMIP5 models besides the observed influence of 

ENSO and the SIOD. 
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7. Caveats and Implications 

 

Biases exhibited over the Indian Ocean are not well understood and cannot be explained 

in this chapter and hence require further analysis. CMIP5 model parameterisation 

schemes are most likely responsible for creating the Indian Ocean bias.   

 

Austral summer over southern Africa is not only influenced by interannual variability 

but additionally decadal variability (Dieppois et al., 2016). The signal of decadal 

variability is not as large as that of interannual variability over the region and hence the 

reason for exclusion in this chapter. However, climate change signals occur at decadal 

time-scales and therefore should be assessed in historical variability to determine and 

understand drivers of this decadal variability. This is a noted caveat in this thesis and 
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therefore future work including analysis of variability at this time-scale should prove 

valuable and provide additional insight to southern African variability. 

 

Another note to highlight regarding the lack of significant teleconnections exhibited in 

CMIP5 models compared to observations may be due the fact that the dominant mode 

of variability does not emerge within the first 3 principal components of the EOF 

analysis. Additional principal components could be derived and correlated to global 

SST’s to address this, however is not likely as principal components reduce in the 

amount of variability explained as more principal components are derived.     
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Chapter 4 

 

Summary of Projected Key Climate Change Signals 

over SA/SWIO 

 

Overview 

This chapter summarises future changes of projected precipitation and various 

diagnostic variables over southern Africa (SA) and the south-west Indian Ocean 

(SWIO). The most prominent climate change signals are identified and investigated in 

more detail. Future changes in the dominant austral summer feature, the SIOCZ, are 

additionally evaluated using an algorithm to quantitatively identify this feature in both 

historical and future simulations. Model processes of change are understood through 

determining potential links between projected precipitation changes and various 

diagnostic variables such sea surface temperatures and circulation patterns. Idealised 

future atmosphere-only experiments are assessed to potentially enhance understanding 

in projections.     

 

Key Questions: 

1. What are the key projected changes in precipitation over southern Africa? 

 

2. When do the key projected precipitation climate change signals occur? 
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3. What are the changes to the SIOCZ feature in future projections? 

 

4. Are links established between precipitation changes and diagnostic variables? 

 

5. Do atmosphere-only (AMIP) future experiments aid understanding of projected 

precipitation changes? 

 

6. What is the importance and implications of these projected changes and potential 

impacts on the region? 

 

1. Introduction 

 

1.1. Water security over southern Africa 

It is important to identify and understand future changes of precipitation over southern 

Africa, as it is a region of low adaptive capacity and particularly vulnerable to climate 

change (Basher and Briceno, 2006; Meadows, 2006; Kusangaya et al., 2014). Economic 

growth over the region is on the rise and therefore vitally important for future decisions 

to be addressed with the most advanced climate change information available; however 

additional understanding and awareness regarding the level of associated uncertainty 

with these projected changes (Swart et al., 2009). More informed adaptation decisions 

can therefore be made regarding water security in terms of agriculture and subsistence 

farming (Collins et al., 2012; Knutti et al., 2010). The ultimate goal aims to ensure 
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economic growth becoming sustainable in future decades when climate change signals 

are most prominent and therefore have enhanced impacts on water security.  

 

1.2. Seasons of future importance 

Projected monthly changes in precipitation are assessed to determine in which 

months/seasons the most prominent climate change signals emerge. Focus is placed on 

projected precipitation changes for the seasons OND and DJF, which will be analysed 

more thoroughly throughout this chapter and subsequent chapters. This is due to the 

importance of these two seasons i) DJF - austral summer and dominant rainfall season 

over the region providing largest contributions to annual rainfall over SA/SWIO and ii) 

OND - determines the onset of summer rainfall over southern Africa, impacting 

planting and harvesting timing for agriculture.  

 

The dominant austral summer rainfall feature (the SIOCZ), previously evaluated in 

contemporary climatology in Chapter 3, is analysed here regarding future projected 

changes in the SIOCZ. Projected changes in orientation, position and intensity of the 

SIOCZ are assessed, due to the significant reliance on this feature in providing the 

majority of rainfall totals over the region (Cook, 2000; Manhique et al., 2011).  

 

Considering global tropical changes in moisture and circulation, it is noted over the 

Pacific Ocean how flow has altered and re-directed out of the SPCZ region and into the 

equatorial ITCZ region. Various studies confirm drying of the SPCZ (Widlansky et al., 

2011; Widlansky et al., 2013; Chung et al., 2014) and the ITCZ is shown to get 
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increasingly wet. Studies state that the warmest-get-wetter hypothesis holds true for the 

ITCZ in the Pacific Ocean region (Brown et al., 2012; Brown et al., 2013; Widlansky et 

al., 2013). Therefore a potential and consistent hypothesis over tropical southern Africa 

could be the SIOCZ becomes less prominent i.e. less wet, while the Indian Ocean ITCZ 

becomes enhanced with increased wetting, through enhanced convergence and moisture 

flux into the region. 

 

1.3. Understanding model change 

Decreased precipitation over the subtropics is a commonly accepted notion of future 

climate projections (Allen and Ingram, 2002; Neelin et al., 2006; IPCC, 2007; Cai et al., 

2012; He and Soden, 2016). Difficultly arises in determining drivers of this projected 

change and how credible these changes are (He and Soden, 2016; Long et al., 2016). 

Two mechanisms of change over the subtropics are typically used to inform 

understanding i) increased moisture flux away from the subtropics and into the 

warmest-get-wetter regions (Held and Soden, 2006; Huang et al., 2013)) and ii) a shift 

of subsidence over the subtropics towards the polar regions due to the poleward 

expansion of the Hadley cell (Cai et al., 2012; Scheff and Frierson, 2012a; 2012b). 

Individual models are used to highlight common processes within models creating 

future change.  

 

Atmosphere-only (AMIP) simulations for various future experiments can be used to aid 

understanding of future precipitation projections. AMIP models provide insight through 

idealising specific scenarios such as focusing on the effect of one or more particular 

forcings at a time (Gates, 1999). For example future precipitation change can be 
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assessed using CO2 as the dominant forcing, other examples include prescribing models 

with future SST patterns to determine how change is affected and shown to change. 

This chapter aims to understand and provide insight into model behaviour i.e. whether 

models act in a coherent manner regarding their future projected precipitation changes. 

Links are investigated between model processes and projected changes in precipitation 

(i.e. do CMIP5 models that produce large wetting climate change signals exhibit 

excessive moisture flux transport as identified as a previous bias in Chapter 3? Or 

higher SSTs?)     

 

2. Data and Methods 

 

2.1. Data 

To identify and summarise future precipitation projections and diagnostic variables over 

SA and the SWIO, output from a total of 39 CMIP5 model simulations for the 20
th

 

century and the 21
st
 century (under the RCP8.5 emissions scenario) are used (see Table 

1). Models used are from the WCRP CMIP5 multi-model dataset, which provide results 

for the most recent assessment report (AR5) of the IPCC (Meehl et al., 2007; Taylor et 

al., 2012).  

 

Additionally five AMIP future experiments (Gates, 1992; Gates et al., 1999) are 

analysed to understand the role of SST warming, CO2 and pattern effects (see glossary 

of future AMIP experiments defined in section 3.5).  
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Both the multi-model mean (MMM) of the 39 chosen CMIP5 models are analysed as 

well as inter-model spread of model projections across the 39 model ensemble. Monthly 

data was extracted for precipitation and other key diagnostic variables to understand 

processes that may be linked to precipitation changes over the SA/SWIO sector. Area of 

future analysis includes 10˚N - 40˚S and 0˚ - 80˚E. The period of analysis was derived 

from the RCP8.5 scenario 2071-2100 minus the historical period 1971-2000, where 

only the first ensemble member was utilized in creating the MMM. For the future AMIP 

experiments precipitation anomalies are taken as the 30 year mean of each experiment 

minus the 30 year mean of the AMIP control run using the period 1979-2008. All model 

data was interpolated to a common grid of 1.5˚ X 1.5˚ to ensure uniformity. 

 

Table 1: CMIP5 model list of the 39 CMIP5 models used including modelling center, 

institute ID and atmospheric. (Models marked with an asterisk (*) indicates models 

where the atmosphere-only version of the model was also used in the analysis). Models 

in italics are where only the atmosphere-only version is used. 

Model Name Modeling Center (or Group) Institute ID 
Atmospheric 

Resolution 

ACCESS1.0 

ACCESS1.3 

Commonwealth Scientific and Industrial 

Research Organization (CSIRO) and 

Bureau of Meteorology (BOM), Australia 

CSIRO-

BOM 
1.25˚ x 1.9˚ 

BCC-CSM1.1* 
Beijing Climate Center, China 

Meteorological Administration 
BCC 

2.8˚ x 2.8˚ 

 

BNU-ESM 

College of Global Change and Earth 

System Science, Beijing Normal 

University 

GCESS 2.8˚ x 2.8˚ 

CanESM2 

CanAM4* 

Canadian Centre for Climate Modeling 

and Analysis 
CCCMA 2.8˚ x 2.8˚ 

CCSM4* 
National Center for Atmospheric 

Research 
NCAR 0.94˚ x 1.25˚ 
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CESM1(BGC) 

CESM1(CAM5) 

Community Earth System Model 

Contributors 

NSF-DOE-

NCAR 

 

0.94˚ x 1.25˚ 

CMCC-CM 

CMCC-CMS 

Centro Euro-Mediterraneo per I 

Cambiamenti Climatici 
CMCC 

0.75˚ x 0.75˚ 

1.9˚ x 1.9˚ 

CNRM-CM5* 

Centre National de Recherches 

Météorologiques / Centre Européen de 

Recherche et Formation Avancée en 

Calcul Scientifique 

CNRM-

CERFACS 
1.4˚ x 1.4˚ 

CSIRO-Mk3.6.0 

Commonwealth Scientific and Industrial 

Research Organization in collaboration 

with Queensland Climate Change Centre 

of Excellence 

CSIRO-

QCCCE 
1.9˚ x 1.9˚ 

EC-EARTH* EC-EARTH consortium EC-EARTH 1.1˚ x 1.1˚ 

FGOALS-g2 

LASG, Institute of Atmospheric Physics, 

Chinese Academy of Sciences and 

CESS,Tsinghua University 

LASG-CESS 2.8˚ x 2.8˚ 

FIO-ESM 
The First Institute of Oceanography, 

SOA, China 
FIO 2.8˚ x 2.8˚ 

GFDL-CM3 

GFDL-ESM2G 

GFDL-ESM2M 

NOAA Geophysical Fluid Dynamics 

Laboratory 

NOAA 

GFDL 

 

2.0˚ x 2.5˚ 

GISS-E2-H_p1 

GISS-E2-H_p2 

GISS-E2-H_p3 

GISS-E2-R_p1 

GISS-E2-R_p2 

GISS-E2-R_p3 

NASA Goddard Institute for Space 

Studies 
NASA GISS 

 

2.0˚ x 2.5˚ 

HadGEM2-AO 

HadGEM2-A* 

National Institute of Meteorological 

Research/Korea Meteorological 

Administration 

NIMR/KMA 1.25˚ x 1.9˚ 

HadGEM2-CC 

HadGEM2-ES 

 

Met Office Hadley Centre (additional 

HadGEM2-ES realizations contributed by 

Instituto Nacional de Pesquisas Espaciais) 

MOHC 

(additional 

realizations 

by INPE) 

 

1.25˚ x 1.9˚ 

INM-CM4 Institute for Numerical Mathematics INM 1.5˚ x 2˚ 

IPSL-CM5A-LR* 

IPSL-CM5A-MR 

IPSL-CM5B-LR* 

Institut Pierre-Simon Laplace IPSL 

1.9˚ x 3.75˚ 

1.25˚ x 2.5˚ 

1.9˚ x 3.75˚ 
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MIROC-ESM 

MIROC-ESM-

CHEM 

Japan Agency for Marine-Earth Science 

and Technology, Atmosphere and Ocean 

Research Institute (The University of 

Tokyo), and National Institute for 

Environmental Studies 

MIROC 
 

2.8˚ x 2.8˚ 

MIROC5* 

Atmosphere and Ocean Research Institute 

(The University of Tokyo), National 

Institute for Environmental Studies, and 

Japan Agency for Marine-Earth Science 

and Technology 

MIROC 1.4˚ x 1.4˚ 

MPI-ESM-LR* 

MPI-ESM-MR* 

Max-Planck-Institutfür Meteorologie 

(Max Planck Institute for Meteorology) 
MPI-M 

 

1.9˚ x 1.9˚ 

MRI-CGCM3* Meteorological Research Institute MRI 1.1˚ x 1.1˚ 

NorESM1-M 

NorESM1-ME 
Norwegian Climate Centre NCC 1.9˚ x 2.5˚ 

 

2.2. Multi-model analysis of change and spread 

There is no definitive consensus regarding which models to choose when understanding 

future projections (IPCC, 2001; Tebaldi and Knutti, 2007) and hence when evaluating 

future change the consensus is to use the multi-model mean (MMM) change (e.g. IPCC, 

2013a). Therefore to identify and summarize changes in precipitation projections and 

various diagnostic variables, the MMM is used predominantly throughout this chapter. 

To gauge the level of model agreement within these changes, the standard deviation is 

derived for the MMM of projected precipitation change. Individual models are 

additionally assessed to highlight processes most likely creating future change in 

precipitation using diagnostic variable analysis.   

 

Changes in precipitation in this chapter are expressed in both absolute terms and 

percentage change. Percentage change is calculated by dividing the future 30 year mean 

change (2071-2100) by the historical 30 year mean climatology (1971-2000) and 

multiplying by 100. This is to ensure larger signals in absolute terms in projected 



82 
 

 
 

precipitation changes are not misinterpreted due to the effect of historical precipitation 

totals over a specific region. Percentage change ensures that model change is scaled 

accordingly with respect to historical totals of individual models, therefore removing 

individual model sensitivity to projected change. Signal to noise ratios are additionally 

derived to determine which regions over southern Africa exhibit signals of precipitation 

change exceeding model disagreement. The signal to noise ratio in this study is 

calculated as follows:  

Signal / Noise = |∆P| / σ∆P,  

Where |∆P| is the absolute value of the MMM precipitation change and  

σ∆P is the standard deviation of the MMM precipitation change.     

 

2.3. SIOCZ algorithm to quantify future change  

The SIOCZ is a diagonally oriented precipitation band which is the dominant austral 

summer climatological feature over southern Africa. In order to quantify projected 

changes in this feature a quantitative metric is applied to identify the SIOCZ in 

observations and historical simulations. The algorithm involves deriving a best-fit line 

along maximum precipitation values within the SIOCZ domain (chosen to cover 0˚ - 

30˚S and 25˚E - 50˚E). This metric is adapted from Brown et al’s (2011) methodology, 

where the algorithm is applied to identify the SPCZ. The mean latitude and slope values 

of the SIOCZ axis are derived for observations, historical simulations and future 

projected changes, which are compared regarding position and orientation. This 

algorithm has inherent limitations attributable to the best-fit line being influenced by 

outliers of maximum precipitation loci within the chosen domain in individual models. 

To address this problem as best as possible the region is constrained to a rather small 
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domain such that the ITCZ is not included in the SIOCZ signal. Additionally MMM 

projected changes in the SIOCZ are assessed, therefore reducing the influence of 

individual model errors of misplaced ITCZ loci.   

 

2.4. Diagnostic variables of future projections 

In this Chapter the following variables and diagnostic variables will be assessed, 

projected changes in precipitation, annual cycle of precipitation, temperature, sea 

surface temperatures, mean sea level pressure, specific humidity at 850hPa, zonal and 

meridonal winds at 850hPa (circulation), low-level moisture flux at 850hPa and vertical 

velocity (uplift) at 500hPa i.e. to assess weakening of the tropical circulation. 

 

2.5. Future atmosphere-only experiments 

Atmosphere-only simulations for five various AMIP future experiments are assessed to 

determine if idealised future experiments aid in understanding projected precipitation 

changes over southern Africa. There are a limited number of AMIP model runs and all 

available AMIP future experiment model runs (11 individual AMIP models) are utilised 

for this analysis. To ensure consistency in comparison, the same 11 models from the 

coupled runs (CMIP5) were used to create the MMM of future precipitation changes for 

the RCP8.5 scenario (see Figure 11 below).    

 

3. Key changes over southern Africa and the SWIO 
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3.1. Projected changes in precipitation  

 

3.1.1. Spatial patterns of annual precipitation change 

Projected changes in annual precipitation and temperature are initially evaluated to 

obtain a broad overview of future change over southern African (Figure 1a and b). 

Precipitation over much of the continent is indicated to decrease and more significantly 

in the subtropical regions from approximately 10˚S to 30˚S, where warming is also 

enhanced (Figure 1b). Whereas tropical regions, i.e. Congo (~0˚S) are getting wetter 

and warming at a slightly lower rate than the subtropics. Northern and Eastern southern 

Africa show increasing precipitation, as well as the adjacent Indian Ocean in the more 

northern regions. The pattern of projected precipitation change exhibits a distinct zonal 

structure typical of a dipole pattern, where defined bands of wetting from approximately 

10˚N to 10˚S and drying from 10˚ to 40˚S. There is a localised wetting signal (stronger 

in magnitude in austral summer – see Figure 4 and 6) at approximately 30˚S and 30˚E. 

This is a coastal region with increased orography as one moves inland over the 

escapement towards Lesotho.  

 

b) a) 
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Figure 1: Absolute projected annual MMM (a) precipitation and (b) temperature change 

(mm day
-1

 and K respectively) for the period 2071-2100 minus 1971-2000 for RCP8.5 

emissions scenario. Overlaid contours (black) indicate standard deviation in mm day
-1

 

ranging from 0 to 1.2 in intervals of 0.2 and 0 to 2 by 0.25 respectively. 

 

Additionally each calendar month of absolute precipitation change is analysed to 

determine in which months the largest precipitation climate change signals emerge. 

From Figure 2, drying is projected over much of the subtropical southern African 

continent for each calendar month (evident in Figure 1); however the largest and most 

dominant signals of wetting and drying are evident in October, November and 

December. This dipole of projected precipitation change is most noteworthy during 

those months, which indicate a zonal climate change signal that is clear over both the 

continent and Indian Ocean (less zonal in October, with a drying locus evident over the 

western continent at ~10˚S). The drying signal evident in the early summer transition 

season can have significant impacts including later onset of summer rainfall and/or 

reduced rainfall totals received, adversely affecting agriculture over the region. 

Therefore this assessment of projected precipitation change highlights OND as an 

important season of future change requiring further investigation.   
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Figure 2: Absolute projected monthly MMM precipitation change in mm day
-1

 for the 

period 2071-2100 minus 1971-2000 for RCP8.5 emissions scenario.  

 

3.1.2. Projected changes in the annual cycle of precipitation 

Time versus latitude plots (Figure 3) of absolute changes in projected precipitation (∆P) 

confirms a dipole (tripole in some regions) pattern that emerges in the spatial plots of 

∆P over southern Africa (Figure 2). The climate change signal is most prominent and 

largest in magnitude from approximately September/October through to December, 

when the dipole pattern of wetting and drying is most evident over both SA and the 

SWIO.  

 

The most notable differences between land and ocean regions projected precipitation 

changes are i) the timing of the dipole and ii) the intensity of wetting and drying signals. 
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Over the SA continent the dipole pattern is most prominent during October-November-

December and over the SWIO is most prominent later on during November-December-

January. Interesting result to note the drying signal commences earlier over the 

continent than over the adjacent Indian Ocean region. This lag between ocean and 

continent may be explained by ocean influences driving continental changes through 

circulation patterns and moisture flux transport (Shepherd, 2014) from the Indian Ocean 

or land-sea contrasts (Dong et al., 2009; Byrne and O’Gorman, 2013; 2015). This is 

explored further in Chapter 5. 

 

Regarding intensity of projected precipitation changes, the Indian Ocean exhibits the 

strongest wetting signal over the equatorial regions commencing from July-August and 

tapering off towards January-February. The wetting signal over the SWIO migrates 

southward of the equator into the southern hemisphere only towards December-January. 

The drying signal is similar in magnitude over both land and ocean; however over land 

drying covers a slightly larger domain. Wetting is additionally much weaker over the 

continent than the ocean, which is expected due to the unlimited availability of moisture 

over the ocean.  
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Figure 3: Time versus latitude plots of absolute precipitation changes (∆P) in mm day
-1

 

for both land (top) and ocean (bottom) (regions 0˚ - 30˚S and 10˚E - 40˚E and 40˚E - 

80˚E respectively) for RCP8.5 for the period 2071-2100 minus 1971-2000. Overlaid 

black contours represent present day precipitation climatology in mm day
-1

 contoured 

from 1 to 10. 

 

Continental and ocean regions historical precipitation contours are overlaid in Figure 3, 

which do not coincide with projected changes in precipitation, but rather more evidently 

the wetting/drying signal straddles the climatological maximum of historical 

precipitation, particularly over land in DJF. Therefore confirming that the wet-get-

wetter mechanism of change does not hold true for the southern African region under 
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analysis. Due to the wetting signal being located over the equatorial regions; 

implications of a warmer-get-wetter mechanism of change is more plausible, which is 

explored in the Chapter 5. Over the continent historical precipitation maxima occurs 

during November, however future precipitation projections indicate precipitation a 

maximum shift eastwards (i.e. towards December). This implies a lag or delay in the 

precipitation maximum compared to contemporary climate, essentially delaying the 

onset of rainfall by approximately a month in the MMM. This is an important finding as 

this will impact agricultural practises and harvesting times over the region.    

 

3.1.3. Seasonal changes in precipitation 

Southern African experiences four distinct seasons throughout the year (Tyson and 

Preston-Whyte, 2000). Absolute precipitation change is assessed for these four seasons 

to identify when the largest absolute changes in precipitation occur, as well as inter-

model spread. Spatial patterns of precipitation change in three out of the four season’s 

exhibit a common trend of wetting over the northern parts and drying over the central 

continent, which is evident in the annual mean (Figure 1) and monthly analysis (Figure 

2). Only JJA, the winter season exhibits a distinctly different pattern of precipitation 

change.  

 

It is evident that spring (SON) and austral summer (DJF) exhibit the most notable 

absolute drying over most of the subtropical continent, with wetting evident over the 

northern Indian Ocean and equatorial continental region (Figure 4). Drying in SON 

spans a larger domain spanning further north than DJF wetting, which is located from 

10˚S and northwards. This was established in Figure 2 where October exhibits a drying 
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loci evident over ~10˚S essentially shifting the drying signal into the nearby equatorial 

regions.   

 

JJA is currently dry over most parts of southern Africa and especially the south-western 

region, however is projected to get even drier in future, particularly over the adjacent 

SWIO. Autumn (MAM) exhibits fairly similar spatial patterns of projected precipitation 

change to DJF, however slightly reduced magnitudes of change, especially drying over 

the subcontinent. In MAM drying over much of the continent is evident and wetting to 

the north (from ~10˚S) and over the adjacent Indian Ocean; however wetting is located 

more centrally over the Indian Ocean during the MAM season.  

 

Inter-model spread is more prevalent over the wetting regions with larger model 

disagreement in those regions of change. Drying is somewhat more robust in terms of 

model agreement in most seasons; however DJF exhibits the highest model 

disagreement over the drying regions with largest standard deviations in the eastern 

subtropical continental region. Therefore drying over the south-western SA continent 

throughout the year can be deemed rather robust and hence more plausible.  
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Figure 4: Plots of projected precipitation changes for the MMM using 39 CMIP5 

models for the period 2071-2100 minus 1971-2000 for RCP8.5. All four seasonal means 

are displayed (DJF, MAM, JJA, SON). Overlaid contours (black) indicate standard 

deviation in mm day
-1

 ranging from 0 to 1.2 in intervals of 0.2. 

 

Signal to noise ratios are useful in addressing impact assessments of climate change, as 

they provide a measure of signal strength compared to inter-model disagreement i.e. 

noise. Signal to noise ratios for all 12 calendar months over southern Africa are derived 

and displayed in Figure 5. The higher the ratio value, the larger the precipitation signal 

strength opposed to noise from model uncertainty.  
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Figure 5: Signal to noise ratio of projected precipitation changes for the MMM using 39 

CMIP5 models for the period 2071-2100 minus 1971-2000 for RCP8.5. All 12 calendar 

months are displayed from January to December. Light blue shading and darker indicate 

ratios equal to a value of one and above. 

 

The climate change precipitation signal dominates over local variability between models 

in regions where change is most dominant (see Figure 2) i.e. over wetting and drying 

regions of largest magnitude particularly in September and October; however noise (i.e. 

model disagreement) dominates over the transition zones or boundaries between wetting 

and drying (e.g. between 0˚ and 10˚S). This implies models are not able to agree on the 

precise location of where wetting ceases and drying commences. However larger 

agreement is evident over the projected drying regions during September and October, 

again the implication being drying over the SA continent is more plausible. 
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From individual month analysis and seasonal cycle analysis, months of significant 

change include October, November and December, particularly over land in Figure 3. 

The large drying signal over the SA continent in OND is concerning as this will affect 

the onset of austral summer rainfall and have large and potentially adverse impacts on 

agriculture. DJF is the main rainfall season over southern Africa, whereby the majority 

of rainfall is experienced and projected changes show relatively large amounts of drying 

over the continent. Therefore analysis from this point forwards will focus on the early 

summer transition season OND and austral summer season DJF, due to the projected 

signal strength and impact on water security. Constraining uncertainty in these two key 

seasons would be largely beneficial, which is investigated in Chapter 6. 

.
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Figure 6: ∆P in absolute and percentage change for OND (top) and DJF (bottom) over 

SA/SWIO for 39 CMIP5 models for the period 2071-2100 minus 1971-2000 for the 

RCP8.5 emissions scenario. Units are in mm day
-1

 and % respectively. Plots are 

overlaid with black contours representing standard deviation from 0 to 1.2 in intervals 

of 0.2 for absolute change and from 0 to 100 in intervals of 5 for percentage change.  

 

Figure 6 illustrates both absolute and percentage projected change in precipitation for 

both OND and DJF overlaid with model spread. Differences between the two categories 

of change are relatively small, with spatial patterns of change matching closely to one 

another between absolute and percentage change. This holds true for the vast majority 

of individual models (see Figures 2, 3, 4 and 5 in appendix illustrating this). This 

implies absolute projected signals are not largely skewed by historical climatology. 

Notable differences in precipitation projections include slightly higher rates of wetting 

over the Indian Ocean in absolute terms compared to percentage change. This indicates 

individual models historically simulate larger precipitation totals over the SWIO. 

 

Projected percentage wetting peaks at approximately 50% higher than historical 

precipitation climatology over the equatorial continent and northwards, whereas drying 

lies in the vicinity of ~20% drier than historical precipitation climatology. Interesting to 

note that over regions with largest projected drying, particularly in OND; inter-model 

spread over those regions are fairly low in comparison to wetting regions, which exhibit 

the highest inter-model spread.  
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3.2. Projected changes in diagnostic variables 

 

An analysis of 7 various diagnostic variables are assessed using the CMIP5 MMM. 

These diagnostics include, temperature, SSTs, mean seal level pressure, low-level 

moisture, low-level circulation patterns, low-level moisture flux and vertical velocity. 

All variables assessed are associated with driving or influencing precipitation over SA 

and the SWIO.  
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Figure 7: Projected future OND changes of 6 diagnostic variables for the period 2071-

2100 minus 1971-2000 for RCP8.5 MMM of 39 CMIP5 models. 1.) Temperature 2.) 

SSTs 3.) Specific humidity and zonal and meridonal winds at 850hPa 4.) Moisture flux 

at 850hPa 5.) Mean sea level pressure and 6.) Vertical velocity at 500hPa. Units are 

shown on the top right-hand side of each plot.  

 

 

Figure 8: Same as Fig 7 but for DJF. 
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3.2.1. Changes in temperature 

It is well established that temperatures are on the rise and to a large extent more rapidly 

over Africa and sub-Saharan Africa (IPCC, 2007). Changes in temperatures have 

significant knock-on effects and influences regarding changes in other variables, such as 

precipitation and circulation and therefore should be understood in model analysis. 

Land heats up faster than ocean regions and does not exhibit a moderating effect, 

whereby heat is retained. Numerous studies show that changes in warming patterns, 

particularly over the ocean, affect the circulation (Xie et al., 2010; Long et al., 2016). 

Therefore it is imperative to establish these projected temperature patterns and their 

effect on projected precipitation changes in future.  

 

Changes in temperatures show large increases over the central southern African 

continent ranging from increases of 4K to 6K in OND and 3.5K to 5.2K in DJF (see 

Figure 7 and 8), with the adjacent SWIO warming at a slightly slower rate of 

approximately 2K to 4K in both OND and DJF. There is a clear large scale warming 

over the continent, which is significantly larger in magnitude than the global average 

increase in temperature (Figure 1b). A direct inverse relationship is established over the 

southern African continent, whereby largest MMM projected warming is associated 

with regions of largest drying projections. 

 

A differential pattern of warming is notable over the Indian Ocean in both OND and 

DJF, whereby the northern Indian Ocean warms substantially more rapidly than the 

south, creating an enhanced SST gradient warming pattern. This notable differential 

warming pattern can be related to the difference in projected precipitation over the 
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region where wetting is clear in the north and drying in the southern parts of the Indian 

Ocean. This leads to the implication of the warmest-get-wetter hypothesis (Huang, 

2013; Weller et al., 2014). This hypothesis is assessed in more detail in Chapter 5.  

 

3.2.2. Changes in pressure 

The dominant pressure systems common to southern African climate are the South 

Indian Ocean High Pressure (SIOHP), South Atlantic Ocean High Pressure (SAOHP), 

Angola Low (AL), Heat Low (HL), just south of the Angola Low, and Botswana High 

(BH) (at 500 hPa) (Hart et al., 2010). These pressure systems are typically evident in 

austral summer. In the MMM the mean sea level pressure over land displays a rather 

zonal structure consisting of decreases in the north, increases in the central regions and 

decreases over South Africa. Projected changes in pressure in the MMM in both OND 

and DJF indicate a decrease of approximately 30-35 hPa over the south-western 

southern African continent, essentially indicating an intensification of the Heat Low. 

This is most likely due to a direct effect from the intense warming projected over that 

region in mode projections.  

 

Over the central Indian Ocean there is an increase in pressure in both OND and DJF, 

which could allude to the SIOHP strengthening. An intensification of the SIOHP will 

inevitably result in amplified flow and moisture influx from the Indian Ocean via 

enhanced easterly flow. This enhanced easterly flow could translate into increased cloud 

band formation imperative to the formation and maintenance of the SIOCZ, therefore 

potentially resulting in larger precipitation totals (e.g. Engelbrecht et al., 2008). An 

increase in pressure is evident over the adjacent Atlantic Ocean; implying divergence of 
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flow away from the western continent and therefore enhanced drying in the south-west 

region, which is projected over the south-west continent in both OND and DJF.   

 

Over the more northern continent, pressure is projected to decrease, which coincides 

with the wetting signal. This signal is physically sensible and easier to interpret, as low 

pressure systems are typically associated with enhanced low-level convergence and 

uplift resulting in precipitation. The main difference between this region and southern 

Africa is the equatorial region is access to moisture and moisture transport. All 

conditions need to be met for precipitation to result and any missing component will 

inhibit precipitation. Despite increased uplift in mid-levels being projected over South 

Africa (see Figure 7 and 8), insufficient moisture will inhibit precipitation.  

 

Large increases of pressure are projected around 40˚S, with extremely large relative 

magnitudes of change. Two implications emerge i) the dominant high pressure systems 

migrate southwards, ii) pressure over that region has vastly increased relative to 

historical climatology. The reason is most likely linked to what other studies have called 

the widening of the subtropical belt (Siedel et al., 2008) and additionally the poleward 

migration of the subtropical belt (Scheff and Frierson, 2012b).  

 

3.2.3. Changes in moisture, circulation and moisture flux convergence 

Moisture is clearly increasing everywhere; however there is a differential pattern 

evident, with the highest increases in moisture evident from approximately 10˚S 

extending northwards in OND and 20˚S extending northwards in DJF over both land 
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and ocean. Projected circulation patterns in OND and DJF indicate flow extending from 

the Indian Ocean and diverging into the continent with one divergent circulation 

pathway extending up into the north-eastern continent and adjacent Indian Ocean and 

the other diverging into southern Africa. Flow into the northern regions is towards 

regions of enhanced projected moisture, whereas southern Africa displays reduced 

moisture availability in future. This potentially explains and is seemingly linked to the 

dipole pattern of wetting/drying to the north/south over the continent. Projected flow 

into the northern Indian Ocean region is particularly strong, which is consistent with the 

projected wetting region over the SWIO. Therefore projected changes in circulation 

patterns corroborate the result of increased projected wetting in the northern regions, 

drying over the central continent and a small-scale wetting evident over the extreme 

south-eastern continent, most likely due to enhanced onshore flow over a region of 

increased topography.     

 

Important processes that drive precipitation over southern Africa and the adjacent 

SWIO in models are circulation patterns and moisture availability (Tyson and Preston-

Whyte, 2000; Held and Soden, 2006; Ma and Xie 2013; He et al., 2014). These changes 

in low-level moisture and circulation consistently agree with how models create future 

changes in precipitation. Circulation patterns are dynamic drivers which require better 

understanding as they are linked to direct and indirect thermodynamic effects i.e. 

through SST warming and pattern change respectively (Ma and Xie, 2013).  

   

Southern African austral summer precipitation is driven by 3 moisture flux pathways 

identified in Chapter 3 (Lazenby et al., 2016). These include cyclonic flow around the 
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Angola Low, moisture flux into the south-eastern continent via circulation around the 

SIOHP and finally moisture flow from the equatorial region into the central continent, 

normally referred to as easterlies or easterly flow. These 3 moisture transport pathways 

feed into the SIOCZ system creating low-level convergence over SA and the SWIO. 

However future projections in the easterly flow is shown to dampened into the continent 

and transform into a divergent flow away from the continent towards the northern 

Indian Ocean Region. Projected enhanced flow around the Angola Low is not dominant 

and lacking in moisture access and availability, which likely explains the reduction in 

precipitation over the central parts of SA. Flow around the SIOHP remains evident in 

future projections, however tends to diverge before reaching land and only provides 

convergence and uplift over a small region, which coincides with the region over 

Lesotho, which indicates enhanced rainfall.  

 

Future projections in low-level moisture increase largely over the equatorial and 

northern continent, but additionally over Madagascar and the south-eastern parts of the 

continent. Over the SIOCZ region there is no clear convergence with respect to low-

level circulation over the SIOCZ but contrastingly divergence to the north and south.  

 

Projected moisture flux fields exhibit the largest increases over the eastern periphery of 

the continent and over Angola and slightly northwards. Over the Indian Ocean larger 

differences between OND and DJF are exhibited, whereby enhanced moisture flux 

increases are located over the central Indian Ocean in OND and slightly southwards in 

DJF. This coincides with the drying signal in OND in comparison to DJF over the 

continent and ocean, as there is a larger difference in moisture availability and flux 
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being transported into those regions. Particularly interesting to note over the Indian 

Ocean in both DJF and OND, but more so in OND; moisture flux converges towards the 

equatorial regions, where the wetting signal is evident in projections. Moisture flux 

around the Angola Low indicates an increasing trend of enhanced flow.  

 

3.2.3. Changes in tropical circulation 

Omega also known as vertical velocity is used to diagnose changes in uplift and 

subsidence in the mid-levels of the atmosphere. In DJF the signal is particularly noisy 

with some subsidence evident over south-eastern Africa. Projected changes in MMM 

vertical velocity (∆Omega) shown in Figure 7 and 8 show notable patterns similar and 

closely consistent to those of ∆P, especially for OND, where a spatial correlation of -

0.66 is found and a correlation of -0.59 for DJF (both significant at the 0.05 significance 

level). Possible reasons for this spatial correlation not being higher include i) the 

influence of extra-tropical storm tracks are present, e.g. the southern tip of Africa, ii) 

omega includes the weakening circulation as well as circulation shifts and lastly iii) 

circulation changes in regions where no precipitation is present will show up in omega, 

but not in ∆P.   

 

This result implies weakening of the tropical circulation is more abrupt in OND than 

DJF. Many studies show a weakening of the tropical circulation (Vecchi et al., 2006; 

Vecchi and Soden, 2007; Chou et al, 2009; Bony et al., 2013; Ma and Xie 2013). There 

is a clear decrease in uplift over most of the central southern African continent, which 

inhibits rainfall to a large extent. Weakening in tropical circulation is most prominent in 

OND and tends to taper off slightly into DJF where subsidence slightly reduces in 
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magnitude but is still evident. Over the northern SWIO in OND there is evidence of a 

dipole pattern in vertical velocity, which maps closely onto the dipole of wetting and 

drying found over the SWIO. This finding physically reaffirms model projected drying 

over most of the subcontinent, which appears to be attributed to model increased 

subsidence over the region, as well as the ascent/descent dipole evident in precipitation 

projections in the SWIO in OND.  

 

3.3. Projected changes in the SIOCZ 

 

The key difference between observations and the historical MMM of the SIOCZ using 

the algorithm described in section 2.3 is the SIOCZ is simulated as too zonal in the 

CMIP5 MMM (already established from Chapter 3). However, positioning in terms of 

mean latitude is reasonably similar to observations with the MMM SIOCZ axis located 

slightly northwards by comparison. Projected future simulations of the SIOCZ in the 

MMM indicate a notably steeper slope in the SIOCZ and a northward shift of 

approximately ~200km (northward shift of 1.76˚ in mean latitude). The steeper slope 

simulated in future MMM projections can be attributed to the fact that maximum 

precipitation over the continent shifts northward in future projections (see Figure 9 – 

Difference MMM).  

 

The SIOCZ does not project consistent changes along the axis of the SIOCZ, but 

significant increases over the most north-western tip of the SIOCZ axis and decreases 

towards the south-eastern tip of the SIOCZ axis. Wetting over the northern regions of 
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the continent tend to shift the SIOCZ axis northwards and cause a steepening in 

orientation. The most notable changes are the wetting/drying dipole over the continent 

that extends out into the SWIO (already established in Figure 6 for DJF), not 

particularly along the axis of the SIOCZ. An alternate interpretation of the movement of 

the SIOCZ could be a reduction of southwards migration of the SIOCZ in future 

projections than in present day climatology. 

 

Figure 9: Mean CMAP, historical MMM, future MMM and difference MMM plots of 

DJF precipitation over southern Africa for the historical 30 year period 1971-2000 and 

future period 2071-2100 under RCP8.5 emissions scenario. The black block indicates 

the SIOCZ region (0˚S - 30˚S, 25˚E - 50˚E) where a best-fit line of maximum 

precipitation was derived over the longitude range 25˚E to 50˚E. Top right hand corner 

of each plot indicates the slope and mean latitude of the SIOCZ line. 
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Projected changes in the SIOCZ’s position is informative as it affects agriculture and 

subsistence farming that will no longer lie within the SIOCZ region in future. There is 

additionally a projected delay in the onset of the rainy season due to OND exhibiting a 

very large drying signal over much of the subcontinent (Figure 6 – OND). All results 

are important directly affecting decision-makers and particularly farmers at a local-scale 

over the region. 

  

Models are equivalently assessed individually regarding projected changes in the 

SIOCZ using the aforementioned algorithm. Figure 10 illustrates individual CMIP5 

models projected future SIOCZ axes as dashed black lines. Historical and observed 

individual SIOCZ plots are not shown here but are shown in the appendix - Figure 1 as 

a comparative reference. Individual CMIP5 models historical and future SIOCZ axes 

mean latitude and slope values as well as differences between the two are tabulated in 

Table 2. 20 CMIP5 models out of the total 39 individual models exhibit future SIOCZ 

axes almost horizontal in structure (depicted clearly in all 3 HadGEM2 models), 

providing consistency towards projected future change, which exhibits a zonal 

wetting/drying pattern towards the north/south of the historical climatological mean 

precipitation.  
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Figure 10: Projected future DJF precipitation plots over southern Africa for the period 

2071-2100 under the RCP8.5 scenario for 39 individual CMIP5 models. Spatial plots 

are overlaid with model SIOCZ axis (dashed) fitted to the maximum precipitation 

values along the longitudes 25˚E - 50˚E. Slope (s) and mean latitude (lat) are shown on 

the top right of each image. Units are in mm month
-1

. 

 

Table 2: Table of individual CMIP5 models historical and future mean latitude and 

slope of the SIOCZ. Differences between future and historical parameters are 

additionally derived and tabulated 

Name of Model 
Historical 

(slope) 

Future 

(slope) 

Difference 

(slope) 

Historical 

(latitude) 

Future 

(latitude) 

Difference 

(latitude) 

ACCESS1-0 -0.04 -0.03 0.01 -13.99 -14.07 -0.08 

ACCESS1-3 -0.07 -0.1 -0.03 -14.34 -10.81 3.53 

bcc-csm1-1 -0.43 -0.5 -0.07 -12.4 -11.78 0.62 

BNU-ESM 0.06 -0.16 -0.22 -14.87 -10.19 4.68 

CanESM2 -0.47 -0.42 0.05 -12.75 -12.4 0.35 

CCSM4 -0.16 -0.42 -0.26 -11.78 -10.19 1.59 

CESM1-BGC -0.25 -0.32 -0.07 -11.96 -12.04 -0.08 

CESM1-CAM5 -0.13 -0.51 -0.38 -14.51 -11.96 2.55 

CMCC-CM -0.34 -0.3 0.04 -13.54 -11.34 2.2 

CMCC-CMS -0.2 -0.36 -0.16 -13.19 -11.51 1.68 

CNRM-CM5 0.13 0.1 -0.03 -19.1 -17.51 1.59 

CSIRO-Mk3-6-0 -0.28 -0.27 0.01 -15.13 -13.63 1.5 

EC-EARTH -0.09 -0.2 -0.11 -14.69 -12.49 2.2 

FGOALS-g2 -0.18 -0.18 0 -12.22 -11.43 0.79 

FIO-ESM -0.26 0.12 0.38 -8.43 -5.87 2.56 

GFDL-CM3 -0.02 -0.03 -0.01 -14.87 -14.43 0.44 

GFDL-ESM2G -0.06 -0.09 -0.03 -15.49 -16.46 -0.97 

GFDL-ESM2M -0.06 0.03 0.09 -14.87 -14.78 0.09 

GISS-E2-H -0.28 0.04 0.32 -10.81 -12.04 -1.23 
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GISS-E2-R -0.3 -0.07 0.23 -12.66 -14.34 -1.68 

HadGEM2-AO -0.11 -0.12 -0.01 -13.54 -14.07 -0.53 

HadGEM2-CC -0.09 -0.05 0.04 -14.25 -13.63 0.62 

HadGEM2-ES -0.12 -0.05 0.07 -14.16 -13.9 0.26 

inmcm4 -0.18 -0.12 0.06 -12.75 -13.54 -0.79 

IPSL-CM5A-LR -0.17 -0.3 -0.13 -12.57 -12.75 -0.18 

IPSL-CM5A-MR -0.11 -0.39 -0.28 -11.96 -10.72 1.24 

IPSL-CM5B-LR -0.09 -0.22 -0.13 -15.93 -15.22 0.71 

MIROC5 -0.3 -0.61 -0.31 -18.93 -15.57 3.36 

MIROC-ESM 0.09 0.11 0.02 -6.93 -5.34 1.59 

MIROC-ESM-

CHEM 
0.08 0.14 0.06 -6.93 5.96 12.89 

MPI-ESM-LR -0.17 -0.4 -0.23 -13.99 -12.04 1.95 

MPI-ESM-MR -0.21 -0.31 -0.1 -13.28 -12.31 0.97 

MRI-CGCM3 -0.08 -0.14 -0.06 -15.93 -14.51 1.42 

NorESM1-M -0.13 -0.27 -0.14 -8.78 -8.25 0.53 

NorESM1-ME -0.32 -0.24 0.08 -9.04 -10.72 -1.68 

Model Mean -0.15 -0.19 -0.04 -13.16 -11.88 1.28 

 

Projected changes amongst individual CMIP5 models SIOCZ location and orientation 

are largely varied. Individual models with excessive precipitation over the continent and 

adjacent Indian Ocean typically exhibit more zonal SIOCZ structures, almost 

horizontal, which mirror the dipole change found in the MMM in Figure 9. A vast 

majority of 30 out of the 39 CMIP5 models indicate a northward shift in the SIOCZ axis 

i.e. a positive difference between historical and future mean latitude (column 7 in Table 

2). Therefore can conclude there is no distinct and consistent change along the SIOCZ 

feature in projected future climate, however there is consensus regarding an overall 

northward shift in the SIOCZ in austral summer precipitation.  
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The SIOCZ’s interannual variability is dominated by local and remote SST drivers, i.e. 

the subtropical Indian Ocean dipole (SIOD) and ENSO (i.e. Niño3.4 region), which was 

established in Chapter 3 (Cook, 2000; Lazenby et al., 2016). In Chapter 3 it is 

established a dipole pattern describes the shift in the SIOCZ i.e. when there are warmer 

temperatures in the Pacific Niño3.4 region and the SIOD is positive, the SIOCZ shifts 

northwards and when there are cooler temperatures over the Pacific and the SIOD is 

negative/weaker the SIOCZ shifts southwards.  

 

Hypothetically if future climate leaned towards a permanent El Niño type phase, the 

SIOCZ would permanently be shifted northwards. However studies are not conclusive 

whether this hypothesis holds true (Collins et al., 2010). The pattern of projected 

precipitation change additionally does not mirror the pattern of interannual variability. 

Further investigation is required to determine drivers of SIOCZ change including local 

and remote SST influences, as well as understanding potential links between variability 

and projected change over southern Africa.   

 

Regional changes to the SIOCZ are complex to fully understand and are likely to 

exhibit various drivers of change, as it spans from land and extends into the Indian 

Ocean, unlike the more well-defined SPCZ, which is entirely an ocean-based 

convergence zone. Therefore changes in the SPCZ are more easily determined and 

understood (Brown et al, 2011; 2013). Changes in SSTs will have a direct impact on the 

SIOCZ which extend into the Indian Ocean, as well as affecting the SIOCZ over land 

through circulation changes, however, the land component of the SIOCZ will 

potentially have additional factors affecting changes in this feature such as land-sea 
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contrasts (He and Soden, 2016) and therefore be more complex to fully understand, 

which is investigated in more detail in Chapter 5. 

 

3.4. Relationships between diagnostic variables and individual models 

 

Some notable relationships emerge when evaluating individual models future 

precipitation projections and various diagnostic variables. This type of analysis aids in 

identifying which processes in models tend to dominant and drive precipitation changes 

and additionally uncertainty. Knowledge of model biases in diagnostic parameters can 

inform model correction to reduce uncertainty through improvements of model 

parameterization schemes and specific physical processes. Here 3 individual models are 

highlighted with respect to precipitation changes and associated diagnostic variables 

potentially driving change in DJF and OND. Individual models analysed include 

CSIRO-Mk3-6-0, HadGEM2-ES and IPSL-CM5B-LR.   

 

 

Figure 11: Selected individual CMIP5 plots of absolute ∆P over SA and the SWIO for 

RCP8.5 for the period 2071-2100 minus 1971-2000 for DJF. Units are in mm day
-1

. 
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Figure 12: Same as Figure 11 but for OND. 

 

These 3 individual CMIP5 models exhibit differing patterns of precipitation change 

with respect to spatial patterns and intensity, however in both seasons a dipole and 

almost tripole pattern of change is distinct over the domain. CSIRO-Mk3-6-0 and 

HadGEM2-ES exhibit notably stronger wetting/drying signals, whereas IPSL-CM5B-

LR indicates more moderate precipitation changes. IPSL-CM5B particularly simulates 

less sub continental drying in OND and DJF in comparison to the other 2 individual 

CMIP5 models analysed here.   

 

The majority of CMIP5 models typically exhibit differential SST warming patterns over 

the Indian Ocean (not shown here due to space constraints), whereby higher rates of 

SST warming are evident over the northern Indian Ocean region. The differential 

warming pattern is clear in the 3 selected models (Figure 11 and 12), with strongest 

differential warming shown for CSIRO-Mk3-6-0 and subsequently HadGEM2-ES. The 

warmest regions coincide with the wetting region over the northern Indian Ocean (see 

Figure 11 and 12 vs. 13 and 14). This implies a warmest-get-wetter mechanism of 

change (Held and Soden, 2006; Xie et al., 2010; Huang et al., 2013), which is explored 



112 
 

 
 

in more detail in Chapter 5. Differential rates of warming show distinct associations 

with wetter regions projected over the Indian Ocean.  

 

 

Figure 13: Selected individual CMIP5 plots of projected ∆SST over SA and the SWIO 

for RCP8.5 for the period 2071-2100 minus 1971-2000 for DJF. Units are in Kelvin. 

 

 

Figure 14: Same as Figure 13 but for OND. 

Over the southern African continent individual models exhibiting larger climate change 

signals of wetting tend to indicate enhanced low-level moisture and circulation flow 

towards projected wetting regions from the 3 predefined moisture flux pathways in 

Chapter 3 (Lazenby et al., 2016). Models exhibiting higher lower-level moisture over 

the continent and SWIO typically exhibit higher rates of associated wetting. 

Additionally relationships are established between models exhibiting low-level 

convergence over the continent and projected wetting (e.g. HadGEM2-ES over East 

Africa). Individual models show large agreement in projected circulation changes, 
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which indicates flow from the central Indian Ocean diverging northwards towards 

equatorial regions to enhance the Indian Ocean ITCZ. The ITCZ over the Indian Ocean 

is projected to shift northwards and the circulation patterns within individual models 

show physically sensible and agreeable processes which corroborate the projected 

northward shift. 

  

 

Figure 15: Selected individual CMIP5 plots of low-level moisture (colour shading) and 

circulation (white vectors) projections over SA and the SWIO for RCP8.5 for the period 

2071-2100 minus 1971-2000 for DJF. Units are in g/kg and m/s respectively.  

 

 

 

Figure 16: Same as Fig 15 but for OND. 
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3.5. Future precipitation projections in atmosphere-only models  

 

To evaluate the role of SST patterns, SST warming and direct CO2 influences in 

determining projected changes in future precipitation, several AMIP future experiments 

are analysed (5 in total). AMIP future models are useful in attempting to understand 

model processes potentially causing projected precipitation changes, such as the 

projected drying over the subtropical regions (He and Soden, 2016).  

 

Glossary of AMIP experiments: 

 AMIP: Atmospheric-only simulation with no coupling, provided with observed 

SSTs and sea ice from 1979 to near present. 

AMIP Future Experiments 

 AMIP4K: As AMIP but with a uniform 4K anomaly applied to the SSTs. 

 AMIP4xCO2: As AMIP but with 4xCO2 (without plant response), and fixed 

SSTs. 

 AMIPFuture: As AMIP but with an SST pattern anomaly applied from the 

ensemble mean of CMIP3 models in the 1% per year except, at time of CO2 

doubling. 

 AMIPPattern =  AMIPFuture – AMIP4K 

 AMIPTotal =  AMIPFuture + AMIP4xCO2 
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Figure 17: Panel of absolute MMM future precipitation changes (∆P) for RCP8.5 and 

various AMIP future experiments for the period 2071-2100 minus 1971-2000 for DJF 

(left column) and OND (right column). 11 CMIP5 and AMIP models are used to create 

the MMM. Future experiments included are (a) & (b) RCP8.5, (c) & (d) AMIP4xCO2, 

(e) & (f) AMIP4K, (g) & (h) AMIPFuture, (i) & (j) AMIPPattern and (k) & (l) 

AMIPTotal. 
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Table 3: Table of ∆P correlations of the MMM RCP8.5 scenario versus the MMM 

future AMIP experiments for 11 CMIP5 models in common to both experiments. 

Correlations are derived for the study region 0˚- 30˚S and 0˚-80˚E for OND and DJF for 

the period 2071-2100 minus 1971-2000. 

Future AMIP experiments RCP8.5 DJF ∆P RCP8.5 OND ∆P 

AMIP4xCO2 0.12 0.22 

AMIP4K 0.22 0.27 

AMIPFuture 0.1 0.2 

AMIPPattern 0.13 0.27 

AMIPTotal 0.25 0.38 

 

Table 3 provides spatial correlations of MMM ∆P for coupled RCP8.5 CMIP5 models 

and 5 various future AMIP experiments. In order to determine whether AMIP 

experiments are useful over a particular region when determining the role of SST 

patterns, one needs to indicate whether AMIPTotal (AMIPFuture + AMIP4xCO2) 

appears significantly similar to the spatial pattern found in RCP8.5’s ∆P coupled 

MMM.  

 

From Table 3 correlations against the various AMIP future experiments indicate no 

significant relationship established between ∆P MMM RCP8.5 scenario and AMIPTotal 

(even though highest correlations were established for this experiment), for either DJF 

or OND. The implication being AMIP future scenarios over SA/SWIO appear to be of 

limited value in understanding future changes in precipitation in OND and DJF. 

However, interesting to note correlations were highest in OND in all 5 AMIP future 

experiments versus the coupled future change. Potential implications of this finding 

allude to OND precipitation change being seemingly less influenced by SST pattern 
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change than DJF i.e. more uncertainty arises in DJF from SST pattern change. Other 

influences such as the CO2 direct effect (Chadwick et al., 2014) and thermodynamic 

effects may be more influential. He and Soden (2016) establish that AMIP experiments 

aid in diagnosing subtropical drying drivers over the global tropical oceans in annual 

means, however over land results appear inconclusive, with suggestions of hydrological 

processes being more important over land. Here the focus is regional analysis over 

subtropical land regions and for particular seasons OND and DJF and not annual means. 

Additional insight regarding dynamic and thermodynamic influences is determined in 

Chapter 5.  

 

As a side note AMIP experiments are not ideal when examining the influence of SST 

pattern change, as the current AMIPFuture scenario only uses a single SST pattern of 

change for all individual models. New experiments in CMIP6 should be able to provide 

more insight into this issue (Eyring et al., 2016). It is equally important to note these 

future AMIP experiments are idealised and are most useful when analysing MMMs, not 

uncertainty across models. Therefore AMIP projections are not utilised further in this 

thesis to aid understanding of future precipitation projections over southern Africa. 

 

4. Summary and Conclusions 

 

Key changes in precipitation over southern Africa and the Indian Ocean include a 

distinct wetting/drying/wetting pattern indicative of a northward shift of the ITCZ. This 

pattern has strong seasonal cycle that peaks during the transition season (OND) and 

extends into austral summer (DJF) in the southern hemisphere. The general pattern of 
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precipitation change has a strong zonal north/south dipole structure over southern Africa 

that extends out into the Indian Ocean. When assessed in more detail, changes in 

precipitation over land and ocean have delayed and varied signals regarding the distinct 

dipole pattern of change i.e. wetting to the north of the climatological precipitation axis 

and drying to the south of this axis. Over the southern African continent drying peaks 

during November, whereas over the Indian Ocean the drying signal peaks later on in 

December. Alternatively, the wetting signal tends to peak earlier over ocean (August) 

and later over land (December). The dipole pattern of change weakens towards mid-late 

to summer.  

 

Potential reasons for these variations in timing may be due to the unlimited supply of 

moisture over the oceans in comparison to land regions and although conditions may be 

similar over both land and ocean with regards to increased wetting, the difference is 

moisture availability. The drying signal over land may occur before ocean drying due to 

land-atmosphere feedbacks. Circulation patterns are likely driving the differing timings 

on the wetting/drying dipole signal over southern Africa (He and Soden, 2016).      

 

Local variability between models is exceeded most evidently in the spring season 

peaking in October, whereby the signal of drying over the continent is dominant. This is 

essentially when model agreement is largest and the drying signal exceeds the “noise” 

from model disagreement. 
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Diagnostic variables including SST warming patterns, moisture flux and (uplift) vertical 

velocity show indications of driving projected precipitation changes, such that processes 

within models create precipitation changes. It is important to make sense of the physical 

processes that models use to project changes, as this enlightens our understanding of 

model processes of change. Regions of largest warming map closely onto wetting 

regions over the northern Indian Ocean in both MMM and individual CMIP5 models. 

Differential rates of SST warming show distinct associations with projected wetting 

regions the Indian Ocean. Implying a warmest-get-wetter mechanism of change over the 

northern Indian Ocean (Held and Soden, 2006; Xie et al., 2010; Huang et al., 2013), 

which is explored in more detail in Chapter 5. Projected changes over land are not as 

well understood and require additional insight and analysis. This thesis aims to 

understand why models are producing certain changes and additionally identifying 

whether models are behaving in a coherent manner, which is explored in subsequent 

chapters.  

 

Future changes in the SIOCZ feature are determined using a best-fit line along the 

maximum precipitation axis in the SIOCZ region. The SIOCZ feature does not show 

radical changes in precipitation along its projected axis; however a northward shift in 

the SIOCZ is evident of approximately 200km. This change impacts regions reliant on 

agricultural practises which lie within the proposed 200km region and would potentially 

require altered methods of farming such as drought resistant crop use or change in crop 

type requiring less water. The SIOCZ shift is likely linked to the northward shift of the 

ITCZ over the adjacent Indian Ocean and is likely driven by SST patterns and 

circulation changes (Power et al., 2006; Adler, 2011; Stevenson, 2012; He and Soden, 

2016), particularly variability in terms of the South Indian Ocean High (Dieppois et al., 
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2016). However, changes in precipitation do not project onto the climatological SIOCZ 

or the pattern of the interannual variability of the SIOCZ. Therefore additional analysis 

is required to understand the mechanisms of projected change in austral summer over 

southern Africa which is explored in Chapter 5.   

 

Individual model analysis established the following notable links regarding diagnostic 

variables and projected model precipitation change i) enhanced differential SST pattern 

projected warming over the Indian Ocean is associated with higher projected 

precipitation totals over the northern Indian Ocean region i.e. SST warming pattern 

associated with dipole pattern in the Indian Ocean, ii) continental projected wetting 

exhibits links with increased low-level moisture availability and enhanced low-level 

easterly flow, particularly over East Africa and iii) enhanced flow directed towards the 

northern Indian Ocean region in both OND and DJF i.e. larger magnitudes of flow are 

associated with enhanced projected wetting signals.  

 

Atmosphere only experiments are generally useful when attempting to gauge more 

understanding of the impacts of model SST patterns and coupling influences. Future 

atmosphere only experiments prove to have limited use in understanding future 

precipitation change over southern Africa, as they are not able to replicate the coupled 

RCP8.5 emissions scenario with sufficient skill in AMIPTotal. CMIP6 experiments will 

be able to deal with this issue more accurately (Eyring et al., 2016), as not only one 

MMM SST pattern will be utilised in these experiments. An aside comment when 

considering the AMIP future experiments was that during OND correlations were 

higher than DJF in all experiments, which seemingly infers OND precipitation changes 
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are potentially less influenced by SST influences and dynamics. This finding is 

physically sensible due to increased dynamic contributions in austral summer from 

increased convective activity than during pre-summer months (OND), when less 

convection is experienced, however this is more of an intriguing observation than a 

valid finding and should be noted with caution.     

 

These identified changes in precipitation over southern Africa will have significant 

impacts in terms of water security which affects livelihoods as well as commercial and 

subsistence farming over the region. Relatively small changes of 200km northward 

shifts in the SIOCZ will have magnified on the ground impacts. Therefore the 

robustness and credibility of these changes will be determined in the next 2 chapters (5 

and 6) whereby precipitation is decomposed into its dynamic and thermodynamic 

components as a means to identify which component is driving uncertainty and if we 

can potentially reduce that uncertainty, with the understanding of model processes and 

performance over the southern African region. 

 

5. Caveats and Implications 

 

This chapter summarises key changes in precipitation over the region and potential 

understanding of model processes resulting in projected precipitation changes. Some 

caveats need to be highlighted with regards to the SIOCZ algorithm to identify this 

feature in contemporary and future climate in CMIP5 models. The SIOCZ is a land-

based convergence zone that extends out into the SWIO, where the Indian Ocean ITCZ 
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feature is also apparent. The algorithm used to identify this feature is using a best-fit 

line along values of maximum precipitation along specified longitudes. Within this 

domain several models include the Indian Ocean ITCZ, which exhibits much larger 

magnitudes in precipitation than the SIOCZ. This results in the best-fit line deviating 

towards the Indian Ocean ITCZ, typically creating a more zonally orientated SIOCZ 

axis. The algorithm is constrained such that the majority of models exclude this Indian 

Ocean ITCZ loci influence, however this is not possible to account for all CMIP5 

models, therefore being a noted caveat in this methodology. An approach to counteract 

this caveat would be to create a SIOCZ mask using a threshold value specific to the 

SIOCZ, which is performed in Chapter 6. 

 

Atmosphere-only future experiments are analysed in the hope of yielding additional 

information regarding SST patterns. Current AMIP experiments are not ideal when 

examining the influence of SST pattern change, due to the AMIPFuture experiment only 

consisting of a single CMIP3 SST pattern change for all individual models. New 

experiments in CMIP6 should be able to provide more insight into this issue (Eyring et 

al., 2016) and therefore results presented here are provisional. Due to AMIP future 

experiments being idealised and most useful when analysing MMM’s, not particularly 

when assessing uncertainty across models, which is dealt with in the next chapter, 

therefore the AMIP analysis is taken no further due to the aforementioned limitations.  
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Chapter 5 

 

Future Precipitation Projections over Central 

Southern Africa and the Adjacent Indian Ocean: What 

Causes Uncertainty? 

 

Overview 

Decomposition analyses are common methods used to understand precipitation change, 

however has not been performed using this particular methodology over southern 

Africa. This chapter provides new insight of projected precipitation mechanisms of 

change over southern Africa. Dominant contributors and potential drivers of projected 

precipitation change and associated uncertainty is additionally established. This 

analysis will determine gaps within model process understanding and potentially aid in 

reducing uncertainty of future precipitation changes. 

 

Key Questions: 

1. What are the key climate change signals over southern Africa for future 

precipitation projections? 

2. What are the mechanisms of change over southern Africa for the key identified 

seasons OND and DJF? 
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3. Which component dominates projected precipitation change over southern 

Africa? 

4. How certain and robust are these components? 

5. What drives the dominant dynamical component and associated uncertainty? 

6. What are the dominant patterns of variation in projected precipitation change 

over southern Africa? 

7. What patterns of circulation are associated with future dynamic precipitation 

projections in OND and DJF? 

 

ABSTRACT 

Future projections of precipitation at the regional scale are vital to inform climate 

change adaptation activities and decision-making. However, for most of the tropics 

such projections remain highly uncertain, presenting a major barrier to the uptake of 

climate projections in adaptation decisions. Therefore, is it important to quantify 

projected changes and associated uncertainty (robustness), and to understand the 

model processes responsible. This paper addresses these challenges for Southern Africa 

and the adjacent Indian Ocean with a focus on the local summer wet season, critical to 

agriculture and associated livelihoods in this region which is especially vulnerable to 

climate change. Projections for the end of the 21
st
 century indicate a pronounced dipole 

pattern in the CMIP5 multi-model mean of changes to precipitation over the region. 

The dipole indicates future wetting (drying) to the north (south) of the climatological 

axis of maximum rainfall, implying a northward shift of the ITCZ and South Indian 

Ocean Convergence Zone, and therefore not consistent with a simple ‘wet-get-wetter’ 
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pattern. This pattern is most pronounced in the early Austral summer wet season 

suggesting a later and shorter wet season over much of southern Africa centred on 

~15˚S. Using a decomposition method the physical mechanisms underlying this dipole 

pattern of projected change are investigated. Uncertainty in future projections 

represented by the inter-model spread is additionally analysed. The projected 

precipitation change dipole is found to be largely associated with shifts in the location 

of convection associated with dynamical processes. This may reflect the response to 

patterns of SST changes in that future north-south SST gradients over the Indian Ocean 

are consistent with a ‘warmest-get-wetter’ mechanism driving the apparent northward 

shift in the ITCZ, further corroborated by the moderate association across the model 

ensemble between the projected precipitation and SST changes. Over land the 

subtropical drying signal is relatively robust, especially in the early season. This is 

associated with both dynamical shifts in location of convection, which may be related to 

SST structures in the Southern Indian Ocean but also thermodynamic contributions 

through a decline in relative humidity. Given that the dynamical shifts in convection 

hold most of the inter-model uncertainty the results suggests further analysis of the 

physical mechanism responsible for projected SST changes may inform interpretation of 

the credibility of model projections.  

 

1. Introduction 

 

 Africa is highly vulnerable to climate change, evident from the reliance on seasonal 

precipitation for agriculture, water supply and energy generation over the majority of 

sub-Saharan Africa (Basher and Briceno 2006; Meadows 2006). The region exhibits 

relatively low adaptive capacity (Kusangaya et al. 2014), as the El Niño drought event 
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of 2015-2016 amply demonstrates. Therefore future changes in rainfall over this region 

need to be identified and understood, such that stakeholders, from civil society to 

policymakers, can make informed decisions about future adaptation planning in key 

sectors (Collins et al. 2012; Knutti et al. 2010).  

 

For most of the tropics, at least at regional scales relevant to decision-making, 

considerable uncertainty is evident across the ensemble of global and regional models 

currently available in both sign and magnitude of future precipitation projections 

(Rowell 2012; Knutti, and Sedláček 2013; McSweeney and Jones 2013). Central and 

southern Africa are no exception (see Section 3) and there is a clear need for improved 

understanding due in part to a complex climatological setting in which regional climate 

drivers as well as remote influences affecting the region (Christensen et al. 2013; 

Solomon et al. 2007 (IPCC); Kusangaya et al. 2014). This presents challenges to 

climate adaption policy and the persistence of uncertainty in climate projections has led 

to the development of ‘Decision-making Under Climate Uncertainty’ approaches in 

adaptation e.g. Hallegatte et al. (2012). There is, therefore considerable interest in 

improving our understanding of physical mechanisms driving the particular patterns of 

projected model changes, so that we may determine and potentially improve the 

robustness and credibility of projections. The physical processes driving projected 

change are numerous and may vary between models. Projection uncertainty is a result of 

varying processes found within models including, amongst other, parameterizations 

schemes, climate sensitivity, and regional patterns of SST changes. 

 

Based on analysis of projections, various mechanisms have been proposed which link 

increased global temperatures and precipitation changes, notably the thermodynamic 
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wet-get-wetter process of rainfall change (Held and Soden 2000, 2006, Allen et al. 

2010; Christensen et al. 2013; Chou and Neelin 2004; Meehl et al. 2007; Chou et al. 

2009; Seager et al. 2010). This operates at the largest scales e.g. zonal means and 

involves the increase in global specific humidity in a warmer atmosphere leading to an 

increase (decrease) in precipitation in the regions of mean moisture convergence 

(divergence). In the tropics this is likely to be offset by the weakening of the mean 

tropical overturning circulation associated with a reduction in convective mass flux in 

regions of present-day high ascent (Chadwick et al. 2013; Christensen et al. 2013; Ma 

and Xie 2013; DiNezio et al. 2013; Vecchi et al. 2016). 

 

Chadwick et al. (2013), hereafter C13, however, proposed that the wet-get-wetter 

mechanism alone does not explain well the global pattern of multi-model mean (MMM) 

projected rainfall change. The spatial correlation of future precipitation change (∆P) and 

mean precipitation (P) globally is low, such that at regional and seasonal scales in the 

tropics other processes dominate. These processes are substantially related to changes in 

the spatial location of moisture convergence and hence convection. These include 

dynamic effects of regional gradients in near surface temperature change over oceans 

i.e. warmer-get-wetter (Xie et al. 2010), land-sea temperature contrasts (Dong et al. 

2009; O’Gorman et al., 2015), land surface processes (Pitman 2003), aerosol direct, 

indirect and semi-direct effects (Huang et al. 2007; Lohmann and Feichter 2005; 

Ackerman et al. 2000; Hansen et al. 1997) and changes in circulation (Sherperd 2014). 

The thermodynamic balance of the ‘upped-ante’ (Neelin et al. 2003) mechanisms 

additionally contributes leading to results such as the ‘modified warm-get-wetter’ 

mechanism (Huang et al. 2013). The ‘modified warmer-get-wetter’ mechanism is 

described as the combination of SST changes (warmer-get-wetter effect) modified by 

http://journals.ametsoc.org/doi/full/10.1175/JCLI-D-14-00613.1
http://journals.ametsoc.org/doi/full/10.1175/JCLI-D-14-00613.1
http://journals.ametsoc.org/doi/full/10.1175/JCLI-D-14-00613.1
http://journals.ametsoc.org/doi/full/10.1175/JCLI-D-14-00613.1
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background climatological moisture and SSTs due to the non-linear relationship 

between tropical convection and SSTs.  

 

Generally, the processes operating over the ocean are better understood than those over 

land but in all cases differing representation of these processes across models is likely to 

drive projection uncertainty. Most previous analyses have focused on the multi-model 

mean projected change quantities but Rowell et al. (2015) highlighted the importance of 

understanding the mechanisms of change within individual models and concluded 

further investigation be aimed at developing expert judgement of process-based 

mechanisms and their reliability of projections (Rowell et al. 2015).  

 

In this context, the aims of this paper are to 1) Determine the mechanisms of projected 

regional precipitation changes by decomposition into thermodynamic and dynamic 

components 2) Quantify the contribution to total ensemble projection uncertainty, as 

represented by inter-model spread, associated with these mechanisms 3) Identify 

possible causes of uncertainty, and to draw inferences regarding the robustness and 

credibility of projected changes. The mechanism of change decomposition method of 

C13 is used to identify causes of precipitation change (aim 1) and associated uncertainty 

(aim 2) (reported in Section 3.1) and causes of uncertainty are inferred (aim 3) through 

analysis of the inter-model spread (reported in Section 3.2). This paper focuses on 

projected regional precipitation changes over Southern Africa (SA) and the adjacent 

southwest Indian Ocean (SWIO) sector (0˚- 30˚S and 10˚E - 80˚E), where wet season 

rainfall is dominated by the South Indian Ocean convergence zone (SIOCZ) (Cook 

2000; Lazenby et al. 2016).  
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2. Data and Methods 

 

2.1. Data 

 

Output from simulations of the 20
th

 century and the 21
st
 century (under the RCP8.5 

emissions scenario) from 20 models (those used in C13, Table 1) from the World 

Climate Research Program (WCRP) Coupled Model Intercomparison Project Phase 5 

(CMIP5) multi-model dataset are used, which provide results for the most recent 5
th

 

Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC) 

(Meehl et al. 2007; Taylor et al. 2012) (Table 1). Both the multi-model mean (MMM) 

of the 20 chosen CMIP5 models and the spread of model projections across the 20 

model ensemble are considered, to address aims 1/2 and 3, respectively. Monthly data 

was extracted for key diagnostic variables to understand potential physical processes 

linked to precipitation changes over the SA/SWIO sector. The period of analysis for 

projected climate changes is 2071-2100 (in RCP8.5 experiment) minus the historical 

period 1971-2000. Only the first ensemble member was utilized in creating the MMM. 

All model data was interpolated to a common grid of 1.5˚ X 1.5˚ to ensure uniformity.  

 

Table 1: CMIP5 model list of the 20 models used including modeling center, institute 

ID and atmospheric. (Models marked with a * indicates the models where the 

atmosphere-only version of the model was used in the analysis) 

 Modeling Center (or Group) Institute ID 
Atmospheric 

Resolution 

BCC-CSM1.1(m) 

BCC-CSM1.1* 

Beijing Climate Center, China 

Meteorological Administration 
BCC 

2.8˚ x 2.8˚ 

1.12˚ x 1.12˚ 

BNU-ESM College of Global Change and Earth 

System Science, Beijing Normal 
GCESS 2.8˚ x 2.8˚ 
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University 

CanESM2 

CanAM4* 

Canadian Centre for Climate Modeling 

and Analysis 
CCCMA 2.8˚ x 2.8˚ 

CCSM4* National Center for Atmospheric Research NCAR 0.94˚ x 1.25˚ 

CESM1(BGC) 

CESM1(CAM5) 

 

Community Earth System Model 

Contributors 

NSF-DOE-

NCAR 

 

0.94˚ x 1.25˚ 

CNRM-CM5* 

Centre National de Recherches 

Météorologiques / Centre Européen de 

Recherche et Formation Avancée en 

Calcul Scientifique 

CNRM-

CERFACS 
1.4˚ x 1.4˚ 

CSIRO-Mk3.6.0 

Commonwealth Scientific and Industrial 

Research Organization in collaboration 

with Queensland Climate Change Centre 

of Excellence 

CSIRO-

QCCCE 
1.9˚ x 1.9˚ 

FIO-ESM 
The First Institute of Oceanography, SOA, 

China 
FIO 2.8˚ x 2.8˚ 

GFDL-CM3 

GFDL-ESM2G 

GFDL-ESM2M 

NOAA Geophysical Fluid Dynamics 

Laboratory 

NOAA 

GFDL 

 

2.0˚ x 2.5˚ 

GISS-E2-H 

 
NASA Goddard Institute for Space Studies NASA GISS 

 

2.0˚ x 2.5˚ 

HadGEM2-CC 

HadGEM2-ES 

HadGEM2-A* 

Met Office Hadley Centre (additional 

HadGEM2-ES realizations contributed by 

Instituto Nacional de Pesquisas Espaciais) 

MOHC 

(additional 

realizations 

by INPE) 

 

1.25˚ x 1.9˚ 

IPSL-CM5A-LR* 

IPSL-CM5A-MR 

IPSL-CM5B-LR* 

Institut Pierre-Simon Laplace IPSL 

1.9˚ x 3.75˚ 

1.25˚ x 2.5˚ 

1.9˚ x 3.75˚ 

MIROC5* 

Atmosphere and Ocean Research Institute 

(The University of Tokyo), National 

Institute for Environmental Studies, and 

Japan Agency for Marine-Earth Science 

and Technology 

MIROC 
0.56˚ x 0.56˚ 

1.4˚ x 1.4˚ 

MPI-ESM-LR* 

MPI-ESM-MR* 

Max-Planck-Institutfür Meteorologie 

(Max Planck Institute for Meteorology) 
MPI-M 1.9˚ x 1.9˚ 

MRI-CGCM3* 

 
Meteorological Research Institute MRI 1.1˚ x 1.1˚ 
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NorESM1-M 

NorESM1-ME 
Norwegian Climate Centre NCC 1.9˚ x 2.5˚ 

 

2.2 The ‘mechanism of change’ decomposition methodology 

 

To determine the main contributors to both the MMM precipitation change (see Section 

3.1) and associated uncertainty (i.e. inter-model spread, Section 3.2) over the study 

domain, the C13 decomposition of change methodology was applied to data from each 

model for each calendar month. Focus is then specifically placed on the early and main 

SA/SWIO wet seasons OND and DJF, respectively.  

 

Projected changes in precipitation can be decomposed into the dominant mechanisms of 

change; the thermodynamic and dynamic components. A number of methods have been 

proposed for the purpose e.g. Seager et al. (2010); Emori and Brown (2005). The 

method of C13 is utilised, which is based on the assumption that in convective climate 

regimes mean precipitation (P) is equivalent to the vertical mass flux from boundary 

layer to free troposphere (M) multiplied by specific humidity in the boundary layer (q)) 

(Held and Soden 2006); 

 

             (1) 

 

Because M (as defined here) is not directly available from most CMIP5 model outputs, 

in the decomposition a suitable surrogate M* is derived directly from model mean P and 

q:  

 

     
 

 
          (2) 
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C13 demonstrated M* to be a suitable replacement for actual column-integrated 

convective mass flux Mint at the grid point level in global climate models. Therefore, the 

projected precipitation change, ∆P, can be expressed as, 

 

                                                                                                          (3) 

                                                                                       (4) 

 

where M
*
 and q are the present day mean climatological values (1971–2000) of proxy 

mass flux and 2m specific humidity respectively and ∆M* and ∆q are the projected 

changes in those quantities over the period 2071-2100 compared to 1971-2000.  

 

In this formulation ∆q and ∆M* represent the thermodynamic and dynamic components 

of change, respectively. The C13 method has the advantage that the dynamical term 

∆M* can be further separated into, ∆M
*

weak and ∆M
*

shift. ∆M
*

weak represents the tropics-

wide weakening of the large-scale overturning circulation. It is derived from the 

climatological mean M* (∆M
*

weak = -αM
*
), where α is a constant derived for each 

model, separately from the strong negative relationship observed between 

climatological M
*
 and ∆M* across all grid cells in the tropics i.e. areas with higher M

*
 

experience greater declines in ∆M*, common to all models (see Figures 3 and 6 from 

C13).  

 

The weakening in tropical circulation (zonally asymmetric i.e. Walker circulation) is 

typically representative of a weakening in convective mass flux (Held and Soden, 2006; 

C13) as a consequence of global warming. This occurs due to tropospheric warming 

following the moist adiabat in tropical regions, and therefore increasing static stability 
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globally in response to SST warming (Ma et al., 2012). Studies indicate the circulation 

is weakened by a decrease in the occurrence of strong updrafts and an increase of weak 

updrafts (Vecchi and Soden, 2007). This response is robust amongst models; however, 

the mechanism causing this weakening is not as distinctly understood.  

 

Proposed reasons for this weakening are due to (i) the more rapid increase in dry static 

stability than in subtropical radiative cooling under enhanced greenhouse gas forcing 

(Knutson and Manabe, 1995), (ii) the less rapid increase of global-mean precipitation 

than atmospheric specific humidity (Held and Soden, 2006), (iii) higher extent of 

convection under global warming resulting in an uplift of the tropopause and therefore a 

more stable atmosphere (Chou and Chen, 2010). The aforementioned proposed 

mechanisms are linked to greater column warming that interacts with the mean 

circulation, thereby decelerating the tropical circulation (Ma et al., 2012). There is 

additionally a contribution to circulation weakening from the direct radiative effect of 

increased CO2 concentrations (e.g. Bony et al. 2013). 

 

          = ∆M
* 

-          i.e. the deviation in ∆M* from that estimated directly from 

the regression of M* and ∆M
*,

 and represents the effective ‘shift’ at a given grid cell 

towards a greater/weaker convective mass flux.  

 

∆q can also be further separated into two components:  

      the Clausius–Clapeyron change in surface q for the change in mean 2m 

temperature at each location (expected under fixed relative humidity).  

      is the residual of    -     , associated with changes in near surface 

relative humidity.  

http://journals.ametsoc.org/doi/full/10.1175/JCLI-D-11-00048.1
http://journals.ametsoc.org/doi/full/10.1175/JCLI-D-11-00048.1
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On this basis ∆P for each model can be decomposed into its individual components as, 

 

                                             ,                              (5) 

 

which for convenience in terminology can then be expressed as: 

 

                                     , where,                                       (6) 

 

    is the change in precipitation expressed per degree global warming 

    =        is the thermodynamic change due to Clausius–Clapeyron-driven 

increases in specific humidity 

       =        is the change due to near surface relative humidity changes 

       =            is the change due to the weakening tropical circulation 

         =            is the change due to spatial shifts in the pattern of 

convective mass flux  

         =       is the cross component of precipitation change, associated 

with interactions between the other components.  

 

The total thermodynamic component consists of          . For simplicity, the total 

thermodynamic component (           is combined with the dynamic component 

associated with the weakening of the tropical circulation (        to create a new 

component named        (hereafter named the ‘thermodynamic residual’ term, from 

Kent et al. 2015).        is included with the thermodynamic terms due to the strong 

anti-correlation between these components. This analysis of the mechanisms of change 

as applied to the ensemble MMM is presented in Section 3.1. 
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2.3 Analysis of uncertainty 

 

In order to quantify model uncertainty in projected change the spread in the 

precipitation change components over the 20-model member ensemble (Section 3.2) are 

assessed. The dominant spatial pattern of variation in ∆PShift between models is 

identified with EOF analysis, applied to the cross model ∆PShift fields (standardised) for 

two separate domains with our study region: the Southern African continental land 

region (10˚S - 30˚S, 10˚E - 40˚E) and Indian Ocean (0˚S - 30˚S, 40˚E - 80˚E) region, 

(see section 3.3). Potential drivers of this uncertainty are then assessed through 

correlations of the ∆PShift EOF component scores with diagnostic fields (SST and 

circulation indices) across the model ensemble and through composite analysis of 

diagnostic fields from models sampling the upper and lower 25% of models from the 

EOF scores (see section 3.3).  

 

Note: all components of projected change in this analysis are normalised by the mean 

global surface temperature change (∆Tglobal) of each individual model, and therefore all 

quantities are expressed as per degree global warming. This removes the uncertainty 

due to inter-model spread in climate sensitivity and makes results scalable to the 

magnitude of warming (assuming quasi-linearity of regional precipitation change with 

warming), and therefore tractable when applied to pre-defined warming levels for 

policymakers. Removing the effect on ∆P of uncertainty in model ∆Tglobal related to 

model climate sensitivity has minor influence on our results (see Figure 1). The 

implication of normalising each component by ∆Tglobal does not result in an effective 

removal of the Clausius–Clapeyron effect in the ∆PT term, but rather expresses the term 

as the local change measured per degree global warming.  
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Figure 1: Relation of absolute projected precipitation ∆Pabs change versus normalised 

precipitation change    for the 20 CMIP5 models for the period 2071-2100 minus 

1971-2000 under the RCP8.5 scenario for the seasons DJF and OND respectively. 

Quantities are area averaged over the study domain (0˚- 30˚S – 10˚- 80˚E). 

 

3. Results and discussion  

 

3.1. Changes in multi-model mean precipitation over southern Africa and adjacent 

Indian Ocean 

 

First, the annual cycle of zonally averaged MMM precipitation changes are considered 

over the study domain for land and ocean regions (Figure 2a and 2b, respectively). The 

most pronounced feature of projected changes in rainfall over both land and ocean is an 

opposing dipole of future wetter/drier conditions, which is oriented to the north/south, 

respectively of the climatological axis of maximum rainfall. As such, this ∆P 

wetter/drier dipole structure effectively straddles the ITCZ with wetting (Feature A in 
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Figure 2a, e) and drying (Feature B in Figure 2a, e) located to the north and south, 

respectively, of the ITCZ axis. This indicates an effective northward shift in the ITCZ. 

This dipole pattern however, has a strong seasonal cycle peaking in the austral spring 

(SOND) over both land and ocean. The OND season is often overlooked in studies of 

SA/SWIO climate in favour of the main rainy season, DJF, but here, a remarkably 

strong rainfall change signal in OND demands explanation. 
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Figure 2: Time-latitude plots of projected MMM changes in precipitation, and related 

mechanisms of change components, derived from the 20 CMIP5 models for the future 

period 2071-2100 minus 1971-2000 under the RCP8.5 scenario. Values are averaged 

over longitude bands indicative of the SA continent 10˚ - 40˚E for (land-only, left 

column) and the Indian Ocean 40˚ - 80˚E (ocean-only, right column). (a) and (e) show 

∆P (shaded) overlaid with historical climatological P (1971-2000). (b) and (f) as (a) and 

(e) but for ∆PShift (shaded). (c) and (g) as (a) and (e) but for ∆Ptwrh (shaded). (d) and (h) 

show ∆T overlaid with historical climatological T. Units of ∆P and associated 

components are in mm day
-1 

per degree global warming and P in mm day
-1

. Units of ∆T 

and T are in degrees Kelvin. See text for explanation of features marked A and B.  

 

The spatial patterns of MMM precipitation change over the study region for the key 

seasons OND and DJF (Figures 3 and 4) illustrate clearly this dominant zonally-

oriented pattern of wetter/drier conditions located to the north/south of the mean ITCZ,  

apparently connecting precipitation changes over the southern African continent with 

those in the equatorial and southwest Indian Ocean. The continental drying is most 

pronounced in OND (Figure 2, Feature B) centred ~15˚S over the SA continent. This 

may and may indicate a later start and reduced length of the growing season rainfall 

with serious implications on the agricultural sector. In addition to the wetting-drying 
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dipole there is evidence of additional wetting over 25˚ - 30˚S over eastern South Africa 

and across into the southwest Indian Ocean, especially in DJF. 

 

Table 2: Spatial correlations of MMM ∆P versus the different mechanisms of change 

components for both DJF and OND for the SA/SWIO region (0˚-30˚S and between 10˚-

80˚E) (Using a student’s t test correlation values above 0.44 are deemed significant at 

the 0.05 confidence interval, shown in bold) 

 

DJF ∆P 

(0˚-30˚S 

10˚-80˚E) 

∆P Land 

(0˚-30˚S 

10˚-40˚E) 

∆P Ocean 

(0˚-30˚S 

40˚-80˚E) 

OND ∆P (0˚-

30˚S 

10˚-80˚E) 

∆P Land 

(0˚-30˚S 

10˚-40˚E) 

∆P Ocean 

(0˚-30˚S 

40˚-80˚E) 

∆PShift 0.96 0.97 0.97 ∆PShift 0.94 0.95 0.95 

∆PT 0.18 0.04 0.24 ∆PT 0.29 0.26 0.29 

∆PWeak -0.23 -0.16 -0.29 ∆PWeak -0.35 -0.39 -0.33 

∆PRH 0.12 0.40 0.30 ∆PRH 0.21 0.46 0.54 

∆Ptwrh 0.30 0.53 0.27 ∆Ptwrh 0.46 0.70 0.33 

∆PCross 0.57 0.51 0.58 ∆PCross 0.35 0.19 0.43 

P 0.18 0.12 0.22 P 0.30 0.34 0.27 

 

The decomposition can aid in understanding the processes driving these changes. The 

thermodynamic component ∆PT, (Figure 3d, 4d) results in a wetting signal everywhere 

but whose magnitude is proportional to a rise in temperature through the Clausius-

Clapeyron relation i.e. it represents the ‘wet-get-wetter’ process and maps substantially 

onto mean rainfall. It is substantially offset by an equivalent pattern of drying from the 

weakening of the tropical overturning circulation ∆PWeak (Figure 3e, 4e), which is 

inversely proportional to M* and as such maps onto mean P. In addition, over land 

wetting from ∆PT is offset by drying from ∆PRH (Figure 3f, 4f), due to reduced relative 
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humidity, presumably resulting from moisture supply not keeping pace with increasing 

temperature. Together, these terms constitute the ‘thermodynamic residual’ term ∆Ptwrh 

(Figures 2c, 2g, 3g and 4g) which drives a net wetting signal, peaking over the oceanic 

climatological ITCZ and humid land regions. ∆P is therefore partly composed of a 

thermodynamic wet-get-wetter process magnifying the mean ITCZ rainband. However, 

the thermodynamic ∆PRH response also drives up to ~50% of the drying over 

subtropical land regions during OND (Feature C in Figure 2c) centred on ~20˚S. This is 

broadly coincident with the maxima in ∆T (Figure 2d, Feature D), suggestive of a land-

atmosphere positive feedback response in early wet season, which is overcome during 

the peak DJF wet season. As such over land in OND ∆Ptwrh is an important driver of the 

spatial pattern of ∆P (r = 0.70), substantially associated with ∆PRH.  

 

However, overall the study region as a whole, it is clear from Figures 2-4 and Table 2 

that the spatial pattern of ∆P in OND or DJF is not closely related to that of mean 

precipitation (P) (spatial correlations are not significant) nor to the thermodynamic 

residual term ∆Ptwrh (r = 0.46 and 0.3 for OND and DJF, respectively) such that the 

notable dipole features of ∆P are not driven by the ‘wet-get-wetter’ process. Rather ∆P 

most closely matches the dynamical component ∆PShift (r = 0.94 for OND and 0.94 for 

DJF) such that it is changes in the location of convection that explain the dipole. ∆PShift 

contributes most of the wetting/drying dipole over land and almost all of it over ocean, 

especially the drying signal south of the ITCZ. It is postulated here that this projected 

northward shift of the ITCZ over the Indian Ocean may be related to projected changes 

in the SST structure through a ‘warmest-get-wetter’ mechanism. The north-south 

gradient in SST over the Indian Ocean broadly representative of the ∆P dipole (~5˚N - 

20˚S) in the present day of ~2 - 4K over the austral summer-winter seasons (Figure 2h) 
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is enhanced in the MMM projections by ~0.5K (Figure 2h, 3h and 4h). This may lead to 

a northward displacement of convection towards the warmest oceanic waters, similar to 

that noted for the tropical Pacific (Widlansky et al. 2013).  

 

 

 

Figure 3: Projected MMM changes in precipitation (a), and related mechanisms of 

change components (b)-(g), derived from the 20 CMIP5 models for the future period 

2071-2100 minus 1971-2000 under the RCP8.5 scenario, for the OND season over SA 

and the SWIO region. ∆Ptwrh is the sum of ∆PT + ∆PWeak + ∆PRH. Black contours 

overlaid represent climatological precipitation for the specific season contoured from 0 

to 10 mm/day in intervals of 2 mm/day. Units are in absolute change per degree global 
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warming. (h) Projected 20 CMIP5 MMM temperature changes for the same time period 

and region with units in degrees Kelvin. 

 

 

Figure 4: Same as Fig 3 but for the DJF season 

 

3.2. Quantifying uncertainty in projected change in precipitation: ensemble spread 

 

Uncertainty across the multi-model ensemble remains a feature in projections of future 

precipitation across the tropics and is a major barrier to effective use of climate 

information in adaptation activities, notwithstanding approaches to ‘decision making 

under climate uncertainty’ e.g. Lempert and Collins (2007). Here, the contributions to 

total ensemble uncertainty from the various mechanisms of change are assessed in the 
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decomposition. The robustness of projected changes is evaluated from the magnitude of 

inter-model spread for each component as represented in two forms: First, as maps of 

the standard deviation of the ensemble at each grid cell (Figure 5 and 6). Second, as 

box-whisker plots of inter-model spread for each component averaged over specific 

regions of interest (Figure 7). Area averages over where the MMM change signal shows 

mean future wetting or drying to help inform interpretation of the robustness of key 

signals emerging from MMM commonly used e.g. IPCC WG1 Chapter 9 (Stocker et al. 

2013). Further, land and ocean are analysed separately given the differing level of 

importance for adaptation actions and mechanism driving changes. A number of broad 

signals emerge.  

(i) Changes in precipitation are more robust over land than ocean for both the 

future drying and the wetting signals i.e. total uncertainty in ∆P is lower for 

land compared to ocean (Figure, 7). This difference in the spread of ∆P is 

largely related to that in ∆PShift, such that uncertainty in the dynamical drives 

of projected change is dominant. The contribution of inter-model differences 

is explored in SST structures to uncertainty in ∆PShift Section 3.3.  

(ii) The MMM projected drying is more robust than the wetting over both land 

and ocean and in OND, but differences are small in DJF. The future signal 

with the greatest robustness is the continental drying over (especially 

western) SA during the OND season (Figure 5 and 7), reinforcing the 

importance of this early wet season component of the larger scale rainfall 

change dipole. During DJF (Figures 6 and 7) the MMM drying signal is less 

robust, and there are ‘hotpots’ of non-robust change include parts of Malawi, 

Tanzania, Madagascar and northern Mozambique with potentially important 
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implications for approaches to climate change adaptation. Areas of robust 

wetting include East Africa and the western Indian Ocean at ~0˚N. 

(iii) The local ‘hotspots’ in inter-model ∆P standard deviation show that 

uncertainty in ∆P does not simply scale with the absolute magnitude of ∆P. 

These are located for example proximate to the African great lakes, regions 

of complex topography (e.g. Madagascar), and at the transition boundaries of 

wetting-drying over the Indian Ocean (Figure 5a, 6a), raises the possibility 

that inter-model differences in background climatology may project onto the 

uncertainty in ∆P. However, only some of these hotpots of uncertainty 

correspond to locations of high inter-model spread in mean P (Figures 5h 

and 6h) such that most of the spatial pattern in uncertainty in ∆P is unrelated 

to background climatology. The high uncertainty in ∆P often apparent in 

wetting to drying transition zones suggest that caution needs to be attached 

to interpretation of near zero MMM ∆P change.  

(iv) Most of the total uncertainty in ∆P is contained in the ∆PShift component, 

whose uncertainty is typically greater by a factor of 2-4 times than that of the 

thermodynamic residual. Inter-model standard deviation within the ∆PShift 

term is markedly higher over ocean than land, notably over the ∆P dipole 

region. Whilst the MMM wetting/drying dipole over the Indian Ocean may 

result from a ‘warmest-get-wetter’ response to changes in the SST structure, 

high uncertainty in ∆PShift suggests strong inter-model divergence in the form 

of the ∆SST patterns responsible (Chadwick 2016), which is explored in 

Section 3.3. Indeed, in many regions, notably the region of projected drying 

over the Indian Ocean at 10˚-15˚S, the model uncertainty in ∆PShift is higher 
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than that in ∆P. ∆Ptwrh is especially robust over the ocean ITCZ where the 

thermodynamic response is closest to that of ∆PT.  

(v) Since the total uncertainty can be less than the sum of the individual 

components (e.g. Figure 7) it is inferred that the inter-model components are 

anti-correlated across models and offset each other, which acts to constrain 

total uncertainty in ∆P. For the drying over continental SA (during OND) 

and to a lesser extent over the Indian Ocean, uncertainty in the dynamical 

∆PShift and thermodynamic residual term ∆Ptwrh terms appear to offset each 

other, resulting in a total inter-model standard deviation of ∆P which is 

much less than the sum of the component terms.  

 

Figure 5: Inter-model standard deviation (shaded) in (a) ∆P (units mm/day/K), (b) - (g) 

and mechanism of change components therein (unit mm/day/K) and (h) ∆SST (units K), 
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for the OND season. Contours show MMM ∆P (values from -0.6 to 0.6 mm/day/K in 

intervals of 0.2, where dashed contours show negative values). Change quantities are for 

the period 2071-2100 minus 1971-2000 under the RCP8.5 scenario.  

 

 

Figure 6: Same as Fig 5 but for DJF 

 

 

 

 

 

 

 



147 
 

 
 

 



148 
 

 

 
 
 

Figure 7: Box-whisker plots of the future change in ∆P and various components therein 

from the 20 CMIP5 models, for the period 2071-2100 minus 1971-2000 for RCP8.5 of 

CMIP5 models for both land and ocean drying and wetting regions for OND and DJF 

respectively. Units are absolute change per degree global warming 

 

3.3. Understanding potential causes of uncertainty in the dynamic component of 

projected change 

 

The dynamical ∆PShift term provides the primary contribution to inter-model uncertainty 

in future projections of precipitation. Amongst the potential causes of this uncertainty in 

the location of tropical convection, a primary candidate is the varying patterns of model 

projected SST changes. This is explored here using EOF analysis of the inter-model 

∆PShift patterns. Over the Indian Ocean domain during both OND and DJF the leading 

mode of inter-model ∆PShift variability shows a loading pattern (Figure 8a and 8b) which 

projects strongly onto the pattern of the future wetting/drying dipole in ∆PShift (Figure 

3b and 4b), and indeed in ∆P explaining 37% and 31.5% of variability, respectively. 

These EOFs therefore represent well the strength of the MMM ∆P wetting/drying 

dipole, oriented broadly north-south, in individual models.  

 

The component scores of this leading EOF correlate moderately with inter-model ∆SST 

over the Indian Ocean in both OND and DJF (Figures 8c and 8d). In both cases the 

correlation is such that a stronger north/south wetting/drying dipole in individual 

models is associated with lower rates of SST warming in the Indian Ocean south of the 

Equator, and hence an increased north-south SST gradient across the Indian Ocean. This 
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response across models is consistent with the ‘warmest-get-wetter’ mechanism inferred 

from the MMM changes in precipitation and SST (Section 3.1). Moderate correlations 

also exist with ∆SST in the tropical Pacific broadly around the Nino3.4 region. During 

OND there is an additional indication that the ∆PShift EOF dipole is related to changes in 

mean the east-west SST gradient reminiscent of the Indian Ocean Dipole (IOD) mode of 

inter-annual variability active in this season (Saji et al., 1999). Previous analysis has 

related changes in long-term mean precipitation to a shift towards a preference for the 

positive mode of the IOD in some coupled models (Shongwe et al. 2011) which remains 

consistent with the ‘warmest-get-wetter’ mechanism.  

 

Figure 8: Leading EOF loading patterns of inter-model ∆PShift for 20 CMIP5 models 

over the Indian Ocean domain for (a) OND and (b) DJF. (c) and (d) respectively show 

the correlation coefficients of the EOF component scores versus inter-model ∆SST. 

Significant correlations at the 90% percentile are stippled. 
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Figure 9: Same as Figure 8 but for the Southern Africa land domain whereby ∆SST 

correlations are restricted only to the SWIO domain. 

 

Over the domain centred on the SA landmass the inter-model ∆PShift EOF analysis for 

both the OND and DJF seasons reveals a dominant EOF loading pattern oriented 

diagonally northwest to southeast across SA towards the southwest Indian Ocean 

(Figures 9a and 9b). The peak loadings lie to the southwest of the position of the mean 

SIOCZ feature such that the EOF represents the magnitude of the MMM drying signal 

to the south of the mean rainfall maximum. The MMM projected pattern of ∆PShift 

change across the region is more zonally oriented than the EOF SIOCZ-like orientation 
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(Figure 3b,4b see Section 3.1) such that the MMM change clearly masks considerable 

spread within the ensemble.  

 

The EOF pattern of inter-model ∆PShift appears associated with inter-model variability in 

SST, land heating and circulation and resulting moisture fluxes based on both 

correlations (Figure 9c, 9d) and composites of diagnostic fields based on samples of the 

upper and lower 25% of models from the EOF component scores (Figure 10). The EOF 

is rather weakly correlated to the inter-model structures of projected changes to SST 

across the southern Indian Ocean with an east-west dipole structure of correlation with 

the EOF component scores along ~20˚ - 25˚S (Figure 9c and 9d) and corroborated in the 

composites (Figure 10). For both the OND and DJF EOF, stronger future drying over 

SA in models is associated with weaker future warming in the Mozambique 

channel/southwest Indian Ocean and stronger warming in the Eastern subtropical Indian 

Ocean.  

 

Further, more intense drying over SA in models is associated with cyclonic low level 

circulation over the southwest Indian Ocean (Figure 10) around a weaker subtropical 

high, which will cause moisture divergence over SA and convergence over the adjacent 

Indian Ocean, driving the effective northeastward shift in the axis of the SIOCZ 

(Lazenby et al, 2016). In DJF (Figure 10b) intense drying is also favoured in models in 

which strong land heating at ~20˚S drives an intensification of the continental low 

pressure centre (the ‘Angolan low’ feature) and cyclonic low level circulation further 

pushing the shift in convergence northeastward.   
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These structures of inter-model differences in ∆SST, land temperature and low-level 

circulation that may drive the leading pattern of inter-model spread in ∆PShift over SA 

have some resonances with modes and structures of inter-annual variability in the 

region. Notably, (i) the regional response to ENSO characterised by the displacement in 

the SIOCZ associated with cyclonic low level anomalies over the southwest Indian 

Ocean during El Niño events (Cook 2001), similar to that in Figure 10. However, it is 

cautionary to note that the physical mechanisms and influence of local Indian Ocean 

SST (e.g. Goddard and Graham, 1999) versus remote Pacific SSTs (e.g. Cook, 2001, 

Ratnam et al, 2014) in driving this in the observed climate remain to be fully resolved. 

(ii) The South Indian Ocean dipole mode of east-west SST gradient in the subtropical 

Indian Ocean (Behera and Yamagata, 2001). In this case, although the form of the 

association of ∆PShift over SA and ∆SST matches that of inter-annual variability in SA 

rainfall and the phase of the SIOD (Reason, 2001), the circulation responses diverge. 

(iii) The intensity of the Angolan Low and associated circulation changes, known to be 

an important control on present day precipitation in observations (e.g. Manhique et al., 

2011) and in models (Munday and Washington, 2017). Differential rates of future 

warming over land versus ocean may be expected to intensify and displace the Angolan 

low and a clear differential response across models is seen, which are strongly related to 

inter-model uncertainty in the structure of future dynamical precipitation responses. 

 

Of course, it is not expected that the dynamical processes of inter-model spread in 

projected rainfall change to be consistent with all aspects of current inter-annual 

variability, given (i) the complex suite of inter-annual modes affecting the SA region 

(ii) the highly variable and mixed ability of coupled models to represent the mean state 



153 
 
 

 
 
 

and variability both through local processes (Lazenby et al. 2016) and remote 

teleconnections (e.g. Rowell 2015). Nevertheless the link between processes of climate 

variability and projected change has proved to be a fruitful focus in recent years in 

explaining why models make the future changes they do, providing some basis for 

assessing potential credibility of projected change.   

 

 

 

(a) 

(b) 
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Figure 10: Composite mean fields of diagnostic variables based on samples of the 

uppermost 25% minus the lowermost 25% of models selected from the component 

scores of the leading EOF of the inter-model ∆PShift (Figure 9a and 9b) for (a) OND and 

(b) DJF. Fields shown are changes in surface temperature (K, shaded), surface pressure 

(hPa, contours, interval 0.2) and 850hPa OND winds (ms
-1

, vectors).  

 

4. Discussions and Conclusions 

 

Human influence is expected to drive considerable changes to the hydrological cycle, of 

particular concern in regions, such as SA, which are currently vulnerable to climate. 

There is a need to quantify and understand the projections of future precipitation change 

and associated uncertainty to inform the possible use of climate information in 

adaptation planning. Our analysis of end of 21
st
 century projections from a sample of 20 

models from the CMIP ensemble reveals a dominant dipole pattern of precipitation 

change over SA/SWIO with a wetting/drying response to the north/south of the ITCZ, 

therefore an effective northward shift in the ITCZ. Pronounced drying is exhibited over 

land in OND, implying a delay in the onset of the wet season, an important and 

relatively robust signal.  

 

A decomposition framework is applied to separate the mechanisms of change in both 

the MMM and in individual models to shed light on the relative importance of the 

multiple, coincident and often competing mechanisms which may drive future 

precipitation changes in a warmer world. It is shown that the dynamical component 

∆PShift representing spatial shifts in convection explains most of the dipole structure of 
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∆P, as evidenced by high spatial correlations no less than 0.94 over the study domain.  

The thermodynamic component of increased moisture is offset by the weakening of the 

tropical circulation leading to a relatively weak ‘wet-get-wetter’ contribution. 

Considering the robustness of projected change, represented by the inter-model 

dispersal in response, it is found that ∆PShift holds the most uncertainty, whereas the 

thermodynamic component is typically more robust. Drying is more robust than wetting 

over the continent, notably in the early summer OND season. 

 

Over the Indian Ocean sector the dominant dynamically driven ∆PShift component is 

related to changes in SST structures. The wetting/drying dipole is associated with 

patterns of SST change, both in the MMM and across the model ensemble, that is 

consistent with a ‘warmest-get-wetter’ mechanism driving the northward shift in the 

location of convection and convergence. Much of the model uncertainty therefore is 

associated with inter-model differences in future SST patterns in the tropical Indian and 

Pacific Ocean and the atmospheric teleconnection response, such that better 

understanding of these projected changes and in the teleconnections linking these to 

rainfall may provide some basis for constraining uncertainty in projections. 

 

Changes in rainfall over land are likely more complex. First because over the 

continental interior of SA the contribution to mean drying of the thermodynamic 

reduction in relative humidity is roughly equal to that of the dynamical component. 

Reduced relatively humidity is likely itself to be related to the effects of enhanced land-

sea temperature contrasts and physical mechanism for suppression of convection 

through raised lifting condensation levels have been proposed e.g. Fasullo (2010). 



156 
 
 

 
 
 

Regarding the dynamical component of change, over the SA landmass it is found that 

inter-model uncertainty may be associated with low level circulation patterns associated 

with zonal gradients in SST changes in the subtropical Indian Ocean and the intensity of 

continental heating and the thermal low pressure centre. The land-sea heating contrast 

has been hypothesised by Bayr and Dommenget (2013) to be a driver of enhanced 

convergence over land with implications for convection at the continental scale, 

however results indicate that the response can be complex in the case leading to a 

northward shift of the ITCZ/SIOCZ and wetting/drying at the regional scale. Over both 

the ocean and land examination of inter-model dispersal yields structures with less 

zonal uniformity of change than represented by the MMM response. The sensitivity of 

∆PShift across models to the pattern of SST structures and their resemblance to 

contemporary modes of variability suggests that further analysis of future SST patterns 

and assessment of model representation of present rainfall-SST teleconnections and 

mean state biases may be useful to inform our interpretation of the credibility of 

projected changes.  
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6. Caveats and Implications 

 

With consideration of the decomposition methodology, a caveat regarding the 

derivation of M
*
 is noted. Although M

*
 is a reasonably sufficient approximation of the 

actual moisture flux (Mint), it is established CMIP5 models typically tend to 

underestimate M
*
 (see appendix and Fig. 13 in Chadwick et al. 2013). Therefore, 

caution should be taken to scientifically interpret results here. A potential manner to 

address this issue could be the application of a vertical velocity filter to constrain for 

convective moisture flux only, by using vertically integrated atmospheric moisture (q) 

between the surface and 700 hPa, instead of using the 2 m specific humidity (q) value.  

 

In addition, as noted by Chadwick et al (2013), shallow convection can contribute to the 

transportation of moisture horizontally into the deep convection cells, which is not 

excluded in the estimation of M
*
. Therefore the underestimation of M

*
 from Mint is 

likely due to the method including both shallow and deep convection and no 

discrimination being established between the two types. Future studies could include a 

precipitation rate filter, which could be applied to vertical velocity that would be 

representative of deep convection only and exclude shallow convection. 

 

Land and ocean regions exhibit differing drivers of uncertainty of change and the 

implication is that model analysis over both continental regions and ocean should be 

http://www.pcmdi.llnl.gov/
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made aware of differing model processes driving change over these regions. Within this 

chapter the seasons OND and DJF additionally exhibit differing drivers and influences 

from thermodynamic and dynamic influences and therefore highlighting the importance 

of treating seasons and even months of change separately to unpick the model processes 

dominant in each month/season. No one single component explains change and 

differing nuances should not be ignored as they may prove important.   

 

As a side note when differing ensemble sizes are evaluated for ∆P versus ∆SST, it is 

established that large differences emerge between the regions of model agreement that 

influence changes in ∆P over southern Africa. Therefore when investigating potential 

causes of future changes, one needs to be aware of the effect of ensemble size, which 

may sway results. Ideally a variety of different sample sizes should be chosen and 

evaluated to avoid this problem or alternately a sensitivity analysis should be performed 

on the dataset to determine if results are deemed significant. Therefore caution should 

be taken when selecting the number of models for future projections analysis. 

Seemingly when evaluating larger model ensemble sizes i.e. 20 models and above, 

results indicate more stability opposed to much smaller ensemble sizes.    
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Chapter 6 

 

Understanding Future Change and Reduction in 

Uncertainty 

 

Overview 

The final chapter of this thesis culminates by drawing upon results from previous 

chapters to determine the degree of certainty and confidence associated with future 

precipitation projections over southern Africa for the key identified seasons. 

Robustness, credibility and convergence of model change are established. A model 

ranking framework is developed using results from Chapter 3’s analysis of 

contemporary climate over southern Africa to assess whether uncertainty in future 

precipitation projections over the region can be significantly reduced in OND and DJF. 

Significant reductions in uncertainty allude to the fact that potential value is established 

in using this type of approach in model ranking, however this is only one approach and 

implications are discussed.   

 

Key Questions: 
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1. Can a model ranking framework developed for southern Africa significantly 

reduce uncertainty in future precipitation projections? 

2. Can future projection uncertainty in the SIOCZ feature over southern Africa be 

reduced? 

3. What are the spatial patterns of future precipitation projections over the southern 

African continent using “top” performing models? 

4. What are the key findings and implications regarding future precipitation 

projections over southern Africa? 

 

1. Introduction 

 

1.1. Robustness, credibility and convergence 

General circulation model (GCM) output is currently our best tool available in 

determining future projections. It is agreed that multi-model ensemble means (MMM’s) 

are the most consistent and fairest approach to address long term future projections 

(IPCC, 2001; Tebaldi and Knutti, 2007; Schaller et al., 2011). However, projections 

from GCMs and their MMM’s still exhibit large amounts of uncertainty, making 

confident statements about future climate challenging, particularly for precipitation 

(Knutti et al., 2010; Schaller et al., 2011; Rowell, 2012). More confidence is typically 

associated with models that are able to accurately simulate present day climatology as a 
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prerequisite to make projections into the future (Krishnamurti et al., 2000; Sushama et 

al., 2006; Engelbrecht et al., 2009), which was evaluated in Chapter 3.  

 

Robustness, credibility and convergence with respect to model understanding are 

defined here to ensure clarity regarding the use of these terms. 

 Robustness: The level of agreement between models i.e. a signal is considered 

robust if there is a high level of model agreement. 

 Credibility: The degree to which model change can be considered realistic and 

believable based on physically sensible principles. E.g. for a climate signal to be 

credible it needs to be robust as well as physically sensible or justifiable. Similar 

to Bocking’s (2004) pg. 164 definition, which states that scientific credibility is: 

“the extent to which science is recognised as a source of reliable knowledge 

about the world, and not simply as, say, random observations, or an expression 

of the preferences of a particular interest group”  

 Convergence: Convergence is used in this context to describe agreement in 

model processes. For instance if models perform well at simulating both mean 

state and variability of contemporary climate then model convergence is 

established between those two process-based parameters.  

 

In this final chapter robustness i.e. model agreement of future precipitation projections 

will be assessed. In OND over southern Africa there is large agreement in the sign of 

projected precipitation change being negative (a drying signal), however the magnitude 

of the spread is rather poorly constrained i.e. not robust. To potentially constrain this 

http://rsta.royalsocietypublishing.org/content/365/1857/2053.short#ref-35
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spread and determine if model change is more credible i.e. we can believe future 

projections with increased confidence through physical understanding, a model ranking 

framework is developed. Additionally performance of a sensitivity analysis can 

establish whether subsets of ranked models significantly produce more robust 

projections i.e. significantly reduce uncertainty; therefore potentially producing more 

credible model precipitation projections. From the model ranking framework developed, 

it is determined if model convergence is established between mean state and variability 

process-based metrics.       

  

1.2. Model ranking 

Rowell et al (2016) provides an analysis of model ranking using various metrics and 

concludes no particular amount of metrics are definitively accurate for reducing 

uncertainty and only makes a difference in some regions. Rowell’s study uses the term 

“moderate” discrimination as his main finding in the study between different rankings 

of models between different metrics. Therefore it remains unclear how many metrics are 

the “correct” or optimal amounts of metrics to use when ranking models and is 

recognised that there is no one clearly defined approach, which is unanimously agreed 

upon when tackling the task of model ranking.  

 

However, if it can be proved using “top” performing models that significant reductions 

in uncertainty are established, as well as being physically defensible, then there may be 

value in such a model ranking approach. In this chapter a model ranking framework is 
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developed and various sub-samples of the “top” performing models are used to 

determine if uncertainty can be significantly reduced over southern Africa.  

 

1.3. Implications of regional precipitation projections 

A definition from Nicholls (1999) states the ultimate goal of improved climate 

prediction is the reduction of adverse socioeconomic consequences of climate 

variability. The provision of climate information is a challenging task and fraught with 

difficulties, however if robust and credible signals that are physically defendable in 

future projections are established, it is ultimately beneficial for all parties affected to be 

informed. A major challenge includes the interpretation and understanding of climate 

information (Swart et al., 2009). The majority of end-users utilising climate information 

struggle with understanding probabilities, levels of uncertainty and the plausibility and 

possibility of risks (Nicholls, 1999; Archer, 2003; Webster, 2003). The common desire 

for both climate scientists and end-users e.g. decision-makers is to reduce uncertainty in 

climate change projections. 

 

There is an increasing need for climate research to be aimed towards the needs of end-

users and policymakers regarding climate information. This involves the relevant 

questions being asked by end-users to essentially drive the appropriate climate change 

research to be undertaken by climate scientists and provision of scientific output 

relevant to the initial questions proposed. The question this research aims to answer in 

this final chapter is – What are future precipitation conditions likely to be over southern 
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Africa? And what level of confidence, certainty and plausibility is associated with the 

projected changes?  

 

2. Data and Methods 

 

2.1. Data 

To evaluate future precipitation projection uncertainty, output from a total of 39 CMIP5 

model simulations for the 20
th

 century and the 21
st
 century (under the RCP8.5 emissions 

scenario) are used (see Table 1 in Chapter 4). CMIP5 models are used from the WCRP 

multi-model dataset, which provide results for the most recent Assessment Report 

(AR5) of the IPCC (Meehl et al., 2007; Taylor et al., 2012). Note a total of 44 CMIP5 

models (Table 1 in Chapter 3) are used to develop the model ranking framework (using 

contemporary climate performance), however a slightly smaller and varied subset (39) 

of CMIP5 models are used in future precipitation projections and sub-sampling 

analysis, due to limited data availability for future scenarios. The 39 CMIP5 models 

analysed here are equivalent to those used in IPCC future projections (Collins et al., 

2013 in IPCC WG1 AR5 Chapter 12). 

 

Monthly data was extracted for the period of analysis from the RCP8.5 scenario 2071-

2100 minus the historical period 1971-2000 and then seasonally averaged for the key 

seasons OND and DJF. Only the first ensemble member was utilized in creating the 

MMM. All model data was interpolated to a common grid of 1.5˚ X 1.5˚ to ensure 



165 
 
 

 
 
 

uniformity. Inter-model spread of CMIP5 model precipitation projections across the 39 

model ensemble is evaluated in this chapter. 

 

2.2. Model ranking framework methodology  

A model ranking framework is developed here to highlight the “top” performing models 

in terms of regional southern African seasonal climate (i.e based on the SIOCZ analysis 

in Chapter 3) and attempts to understand the degree of consistency and convergence 

between various metrics of model performance. The ranking framework uses a total of 7 

metrics evaluated in Chapter 3, which include: 1) spatial correlations of SIOCZ 

precipitation climatology, 2) spatial correlations of the annual cycle (latitude versus 

time diagrams), 3) model bias and 4) RMSE, 5) primary EOF spatial correlations of 

observations versus models, 6) Temporal correlations of primary EOF coefficients 

versus Niño3.4 and 7) the SIOD.  

 

The first 4 metrics are associated with mean southern African climatology and the latter 

3 metrics with interannual variability of southern African climate. Ranks are then 

awarded to individual CMIP5s model for each metric ranging from 1 to 44 (sample size 

of 44 models from Chapter 3). Mean ranks and standard deviations are derived for each 

CMIP5 model. Additionally to determine convergence of model performance between 

the climatology and variability metrics, mean ranks are calculated for each of the two 

parameters seperately and compared.  
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2.3. Reducing uncertainty: sub-sampling via a Monte Carlo approach 

To produce confident statements regarding future precipitation projections uncertainty 

needs to be significantly reduced to ensure projections are sufficiently robust and 

credible. One approach to make attempts in addressing this issue is to use a sub-sample 

of “top” performing models from a model ranking framework. A sensitivity analysis 

provides a platform to discriminate if there are significant differences between 

“random” sub-sampling and “intellegent” sub-sampling i.e. when choosing varying 

numbers of  “top” performing models over the region.  

 

A sensitivity analysis is performed for DJF and OND over both land and ocean regions 

whereby 10, 20 and 30 models from the avaliable 39 CMIP5 models are sub-sampled 

10,000 times using a Monte Carlo approach (e.g. New and Hulme, 2000; Knutti et al., 

2002). The Monte Carlo approach is a statistical technique used here to transform 

uncertainties in precipitation projections of model output into a probability distribution 

function (New and Hulme, 2000). By combinations of the distributions and selecting 

models at random, it recalculates the simulated model a large number of times (in this 

case 10,000 times) and provides the probability of the output occuring.  

 

Distributions of 3 statistical parameters measuring spread are dervied at the 10
th

 and 90
th

 

percentile levels. These parameters include standard deviation, range and inter-quartile 

range. For results to be deemed significant and hence uncertainty to be significantly 

reduced, the “intellegently” sampled crtitcal value needs to lie beyond the distribution 

of spread (i.e. below the 10
th

%tile value or above the 90
th

%tile value). Results from the 
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sub-sampling experiment will indicate if a significant difference is established when 

choosing models randomly opposed to choosing models “intellegently” based on the 

model ranking framework developed.  

 

To determine whether CMIP5 models indicate convergence in future precipitation 

change processes over the SIOCZ, an experiment was conducted to test this hypothesis. 

A threshold of greater than 5.5 mm day-1 (~165 mm/month) is chosen as the mask to 

identify the SIOCZ in historical simulations; derived from analysis completed in 

Chapter 3. This threshold is applied to the 39 CMIP5 MMM and additionally to the 39 

individual CMIP5 models. Future projections over the SIOCZ are then derived for both 

the MMM and individual models. Results are plotted using box-whisker plots of area 

averaged percentage change in precipitation over the SIOCZ domain (defined here from 

0˚ - 30˚S and 10˚E - 50˚E). Therefore spread between the two projected analyses can be 

established.   

 

3. Results and Discussion 

 

3.1. Model ranking framework 

Results from the ranking framework (Table 1) show that the 10 highest overall ranked 

models are bcc-csm1-1-m, bcc-csm1-1, FGOALS-s2, CanESM2, CMCC-CMS, 

ACCESS1-0, MPI-ESM-MR, CMCC-CM, HadGEM2-CC, MPI-ESM-LR. The 10 

lowest ranked models are ACCESS1-3, GISS-E2-R, MIROC5, GISS-E2-R-CC, FIO-



168 
 
 

 
 
 

ESM, MIROC-ESM, NorESM1-M, GFDL-ESM2G, MIROC-ESM-CHEM, NorESM1-

ME. To determine convergence of model perfomance with respect to all metrics, models 

from the 10 highest (lowest) ranking models are highlighted (shaded in grey for top 10 

models and in italics for bottom 10 models) that lie within the top (bottom) ten models 

for both SIOCZ climatology and variability metrics. Models in common with respect to 

the “top” performing models in terms of all metrics are bcc-csm1-1-m and bcc-csm1-1 

and the worst ranking models in terms of all metrics are GFDL-ESM2G and NorESM1-

ME. Models exhibited standard deviations of ranks ranging from approximately 8 to 17 

ranks (not shown here), while better performing models exhibited relatively small 

standard deviations.        

 

Table 1: Model ranking framework including mean model ranking, mean climatology 

metric ranks and variability metric ranks. Shaded models indicate the top 10 performing 

models and models in italics are indicative of bottom 10 performing models. Models in 

bold are models found within the top 10 best/worst performing models 

 Model 

Mean 

model 

ranking 

Model 

Mean 

ranking of 

climatology 

metrics 

Model 

Mean 

ranking of 

variability 

metrics 

1 bcc-csm1-1-m 11.5 bcc-csm1-1 8.7 
GFDL-

ESM2M 
11.8 

2 bcc-csm1-1 12.4 bcc-csm1-1-m 9.2 CCSM4 12.0 

3 FGOALS-s2 14.5 FGOALS-s2 11.2 BNU-ESM 13.4 

4 CanESM2 16.1 CanESM2 11.8 bcc-csm1-1-m 14.4 

5 CMCC-CMS 16.3 CMCC-CM 14.8 CMCC-CMS 14.8 

6 ACCESS1-0 16.8 HadGEM2-CC 14.8 GFDL-CM3 15.8 

7 CMCC-CM 17.4 CESM1-CAM5 15.2 MPI-ESM-MR 16.2 

8 MPI-ESM-MR 17.7 CMCC-CESM 15.7 bcc-csm1-1 16.8 
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9 HadGEM2-CC 17.8 ACCESS1-0 16.0 MIROC-ESM 16.8 

10 MPI-ESM-LR 17.8 FGOALS-g2 16.8 FIO-ESM 17.4 

11 
IPSL-CM5B-

LR 
18.2 HadGEM2-AO 16.8 ACCESS1-0 17.8 

12 CCSM4 18.3 IPSL-CM5B-LR 17.0 MPI-ESM-LR 18.0 

13 BNU-ESM 19.2 MPI-ESM-P 17.2 
IPSL-CM5A-

MR 
18.4 

14 FGOALS-g2 19.9 CMCC-CMS 17.5 FGOALS-s2 18.6 

15 
CSIRO-Mk3-

6-0 
20.1 MPI-ESM-LR 17.7 MIROC5 18.6 

16 CMCC-CESM 20.2 HadGEM2-ES 18.2 NorESM1-M 18.6 

17 GFDL-CM3 20.3 inmcm4 18.2 
IPSL-CM5B-

LR 
19.6 

18 
CESM1-

FASTCHEM 
20.5 CSIRO-Mk3-6-0 18.3 

IPSL-CM5A-

LR 
20.2 

19 CESM1-BGC 20.8 EC-EARTH 18.8 
CESM1-

FASTCHEM 
20.4 

20 
GFDL-

ESM2M 
21.1 MRI-CGCM3 18.8 CMCC-CM 20.4 

21 HadGEM2-ES 21.5 MPI-ESM-MR 19.0 MIROC4h 20.8 

22 MRI-CGCM3 21.8 CESM1-BGC 20.2 CanESM2 21.2 

23 MPI-ESM-P 22.5 ACCESS1-3 20.5 
MIROC-ESM-

CHEM 
21.2 

24 HadGEM2-AO 22.6 
CESM1-

FASTCHEM 
20.7 

GISS-E2-H-

CC 
21.4 

25 
IPSL-CM5A-

LR 
22.6 GISS-E2-R 22.5 HadGEM2-CC 21.4 

26 inmcm4 23.2 GISS-E2-H 23.0 CESM1-BGC 21.6 

27 
GISS-E2-H-

CC 
23.7 CCSM4 23.5 

CSIRO-Mk3-

6-0 
22.2 

28 
CESM1-

WACCM 
23.8 GISS-E2-R-CC 23.5 

CESM1-

WACCM 
22.6 

29 
CESM1-

CAM5 
23.9 BNU-ESM 24.0 FGOALS-g2 23.6 

30 MIROC4h 23.9 GFDL-CM3 24.0 CNRM-CM5 24.8 

31 EC-EARTH 24.1 CNRM-CM5 24.7 MRI-CGCM3 25.4 

32 
IPSL-CM5A-

MR 
24.1 IPSL-CM5A-LR 24.7 CMCC-CESM 25.6 



170 
 
 

 
 
 

33 GISS-E2-H 24.2 CESM1-WACCM 24.8 GISS-E2-H 25.6 

34 CNRM-CM5 24.7 GISS-E2-H-CC 25.7 HadGEM2-ES 25.6 

35 ACCESS1-3 25.7 MIROC4h 26.5 NorESM1-ME 26.2 

36 GISS-E2-R 25.7 GFDL-ESM2G 28.8 GISS-E2-R-CC 28.6 

37 MIROC5 25.7 GFDL-ESM2M 28.8 MPI-ESM-P 29.0 

38 GISS-E2-R-CC 25.8 IPSL-CM5A-MR 28.8 inmcm4 29.2 

39 FIO-ESM 27.5 MIROC5 31.7 GISS-E2-R 29.6 

40 MIROC-ESM 29.5 FIO-ESM 35.8 HadGEM2-AO 29.6 

41 NorESM1-M 30.1 NorESM1-ME 38.0 EC-EARTH 30.4 

42 
GFDL-

ESM2G 
30.4 

MIROC-ESM-
CHEM 

39.7 ACCESS1-3 32.0 

43 
MIROC-ESM-

CHEM 
31.3 NorESM1-M 39.7 

GFDL-

ESM2G 
32.2 

44 NorESM1-ME 32.6 MIROC-ESM 40.0 CESM1-CAM5 34.4 

 

Figure 1 is generated to determine whether model convergence between mean state and 

variability is illustrated. Correlation and coefficient of determination (r = 0.081 and r
2
 = 

0.007 respectively) across CMIP5 models is weak and almost negligible; therefore 

illustrating models which simulate contemporary precipitation climatology well, do not 

necessarily simulate variability well over southern Africa. Therefore a lack in 

convergence in model process performance is evident over the study domain. From the 

Table 1 it is deduced that only 2 CMIP5 models, namely bcc-csm1-1-m and bcc-csm1-1 

(bolded) show clear evidence of performing well in both aspects i.e. climatology and 

variability (ranking in the top 10 in each category), therefore exhibiting convergence in 

processes. NorESM1-ME and GFDL-ESM2G (bolded and italicised) are the CMIP5 

models that perform equally poorly in both mean state climatology and variability 

metrics i.e. these models are found in the bottom 10 models in each category.  
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Figure 1: Scatter plot of individual CMIP5 model ranks of mean state climatology 

metrics versus variability metrics. Units are in rank from 1 to 44. 

 

3.2. Significant reductions in uncertainty 

In an attempt to reduce uncertainty of future climate projections of projected 

precipitation over southern Africa, the “top” 10, 20 and 30 models with the overall 

highest skill in terms of simulating both mean state and variability over southern Africa 

were selected. It remains unknown as to what extent to trust models that only capture 

mean state with high accuracy or alternatively variability well, or if models are able to 

capture both. The most sensible and fairest option includes models ability to capture 

both aspects of contemporary climate and use those selected models to understand 

future projections, which is the approach applied here. Top performing models i.e. 
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(“top” 10, 20 and 30) CMIP5 models are illustrated in box-whisker plots (Figure 2, 3 

and 4) as red and blue dots for DJF and OND respectively. 

 

 

Figure 2: Box-whisker plots illustrating percentage change of precipitation for 39 IPCC 

models for DJF and OND. Box represents the inclusion of the 25
th

 and 75
th

 percentile 

values, with the solid line representing the median and whiskers indicating the 

minimum and maximum values. Solid dots (red DJF and blue OND) represent the “top” 

10 models chosen from the ranking framework derived in Chapter 3. 

 

The 10 “top” performing models tend to cluster in Figure 2 more closely over land than 

ocean. Over the continent in DJF, changes in precipitation percentage range from -16% 

to 9%. The “top” 10 performing CMIP5 models indicate projected changes in 

precipitation between 0% and 6%, which hence reduces spread of precipitation changes 

for DJF over the continent, implying a total wetting signal over the chosen land domain. 
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This does not imply no drying will occur, as the box-whisker plots are determined for 

an area average over a chosen spatial domain.  

 

Box-whisker plots additionally do not account for spatial changes in projected patterns 

of precipitation, which from previous chapters indicates a projected dipole pattern of 

wetting/drying found to the north/south of the continent. Therefore wetting and drying 

signals may cancel out to some extent in the box-whisker plot analyses. The wetting 

magnitude appears to be most dominant in DJF over the continent. Box-whisker plot 

analysis, however, is useful in determining reductions in model spread over particular 

domains. 

  

Spatial plots of future precipitation projections over the continent are illustrated in 

Figure 5 and 6 to avoid this issue and to specifically identify spatial patterns in 

precipitation projections over southern Africa using “top” performing models. Spatial 

plots of precipitation projections are only assessed over the southern African continent 

and not the SWIO, due to the imminent impacts to livelihoods and the need to inform 

adaption.   

 

For continental OND the total 39 MMM projected precipitation change ranges from -

24% to 4%, this is not surprising as the MMM in Chapter 4 and 5 demonstrates a 

distinct projected drying signal over the majority of southern Africa. Models, however, 

do not tend to cluster to the same degree as for DJF but still exhibit reduced spread 

which is constrained to changes of -11% to 4% in OND. The implication being that 
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“top” performing models indicate a projected drying signal but not of the magnitude 

initially proposed. 

 

Over the SWIO domain, changes in total MMM projected precipitation exhibit larger 

inter-model spread than land regions. Projected DJF precipitation changes over the 

SWIO range from -13% to 27% and for OND from -24% to 6%. In DJF over the SWIO 

choosing the “top” 10 performing models reduces the spread of possible precipitation 

change rather notably to -2% and 9%. During OND the spread is constrained to -8% and 

6%. The reduction in uncertainty evident in OND and DJF over the SWIO does not 

explicitly lead to a more robust and credible conclusion, but simply reduces the possible 

spread of the projected change. This reduction in uncertainty is most likely due to the 

spatial pattern of change cancelling out (e.g. potentially “top” performing models have 

similar or equivalent wetting to drying signal ratios over the selected domain due to the 

projected dipole pattern). Therefore results may be misleading and require additional 

physical investigation to determine if the reduction in uncertainty is potentially useful 

and credible. 
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Figure 3: Same as Figure 2 but for the “top” 20 model subset. 

 

When assessing reductions in spread using the “top” 20 performing models over the 

southern African continent, spread remains rather well constrained, whereby top 

performing models cluster in both DJF and OND, but specifically DJF. Over the SWIO 

the range increases to span the entire 39 MMM spread as maximum and minimum 

outliers are included in the “top” 20 model choice over the SWIO. 
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Figure 4: Same as Figure 2 and 3 but for the “top” 30 model subset. 

 

When approximately three quarters of the full MMM is illustrated in box-whisker plots 

i.e. “top” 30 performing models out of 39 CMIP5 MMM, spread almost entirely covers 

initial range of projected changes, the exception being for DJF over the continent. It is 

however interesting to note how the majority of the “top” 30 models tend to cluster 

together with much fewer outliers spanning the larger domain of spread.   

 

Therefore to summarise in both seasons when choosing the “top” 10 performing CMIP5 

models over the continent uncertainty is notably reduced by 13% in OND and 19% in 

DJF. When choosing increased numbers of “top” performing models i.e. 20 and 30 

models, spread tends to increase and include the vast majority of possible outcomes. 

The notable exception is over land in DJF, the “top” 20 and 30 models tend to cluster 

rather closely. This type of analysis is useful whereby magnitudes of projected change 

can be constrained slightly further through omission of bad and average models by 
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using only the “top” 10, 20 or 30 best model performers. However to determine the 

significance of these reductions in uncertainty, if any, a sensitivity analysis is performed 

to determine whether “intelligently” sub-sampling “top” performing models proves 

significant compared to models being “randomly” sub-sampled. 

  

Table 2: Sensitivity test results from Monte Carlo sub-sampling approach for 10, 20 and 

30 models. Distributions for the 10
th

 and 90
th

 percentiles are derived for standard 

deviation (SD), range and inter-quartile range (IQR). Bolded values are deemed 

significant at the 90
th

 percentile confidence interval. 

10th%tile 90th%tile 
Measures 

of Spread 

No. of 

Models 
Domain Season 

"Intelligent” 

Sub-sampling 

Critical Value 

1.68 7.65 SD 10 Land DJF 1.71 

4.84 23.5 Range 10 Land DJF 5.85 

0.41 2.07 IQR 10 Land DJF 1.48 

3.79 7.09 SD 20 Land DJF 1.61 

17.06 24.92 Range 20 Land DJF 6.16 

0.99 3.13 IQR 20 Land DJF 1.60 

4.18 6.86 SD 30 Land DJF 4.16 

19.34 24.92 Range 30 Land DJF 23.50 

1.03 2.09 IQR 30 Land DJF 1.62 

3.19 7.48 SD 10 Land OND 3.97 

10.19 24.1 Range 10 Land OND 15.04 

0.66 8.23 IQR 10 Land OND 1.60 

3.84 6.76 SD 20 Land OND 6.02 

13.35 25.89 Range 20 Land OND 25.89 

2.13 9.5 IQR 20 Land OND 4.18 

4.12 6.55 SD 30 Land OND 5.53 

14.28 25.89 Range 30 Land OND 25.89 
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2.51 9.02 IQR 30 Land OND 3.70 

2.54 9.54 SD 10 Ocean DJF 4.11 

7.87 30.69 Range 10 Ocean DJF 13.31 

0.82 5.17 IQR 10 Ocean DJF 4.08 

3.1 8.46 SD 20 Ocean DJF 8.36 

10.98 37.89 Range 20 Ocean DJF 37.88 

2.14 6.41 IQR 20 Ocean DJF 3.88 

3.64 8.1 SD 30 Ocean DJF 7.04 

18.81 37.89 Range 30 Ocean DJF 37.88 

2.47 5.75 IQR 30 Ocean DJF 3.93 

3.27 7.54 SD 10 Ocean OND 3.33 

10.01 25.56 Range 10 Ocean OND 10.49 

1.01 6.3 IQR 10 Ocean OND 4.62 

3.77 6.74 SD 20 Ocean OND 6.04 

13.63 27.47 Range 20 Ocean OND 27.47 

3.11 7.97 IQR 20 Ocean OND 6.46 

4.03 6.51 SD 30 Ocean OND 5.53 

15.05 27.47 Range 30 Ocean OND 27.47 

3.22 7.47 IQR 30 Ocean OND 6.39 

 

From Table 2 when selecting the “top” 20 and 30 performing models in DJF versus 

random sub-sampling, a significant difference is evident at the 90
th

 percentile 

confidence interval, inferring some added skill when “intelligently” selecting models. 

For OND this hypothesis does not hold true and random sub-sampling proved equally as 

skilful in reducing uncertainty compared to selecting “top” performing models. It is 

however, useful to note that most model metrics in the developed model ranking 

framework are tailored particularly towards the DJF season. Therefore would be 

interesting to determine whether an additional analysis of metrics specifically tailored 
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towards OND would potentially produce significant reductions in uncertainty over 

southern Africa.   

 

From this sub-sampling analysis, it can be inferred that potential value is evident in this 

type of model ranking approach over southern Africa. However, extensive research 

would be required before any consensus regarding this type of approach is considered 

robust. A noteworthy concern regarding lack of model convergence between mean state 

and variability metrics immediately raises doubt as to whether the reduction established 

in uncertainty is valid and physically sensible. Output from model ranking results may 

be misleading and reductions in uncertainty may be established but for unknown and 

non-sensible reasons. Another implication of this analysis is that such metrics are not 

typically perceived as process-based metrics and rather just metrics of performance. 

Future work can focus on identifying model processes causing precipitation change and 

be ranked according to those identified processes (hence a more representative process-

based analysis and ranking scheme) and not straightforward metrics such as biases, 

RMSE’s, seasonal cycles and variability that are used in this analysis.    
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Figure 5: Spatial plots illustrating projected absolute (left) and percentage change (right) 

in precipitation in mm day
-1

 and % change respectively for DJF using the “top” 10, 20 

and 30 MMMs from the suite of 39 available CMIP5 models. Absolute projected 

change plots are overlaid with back solid lines representing standard deviation values 

contoured from 0 to 2 in intervals of 0.2. 

 

It is clear from Figure 5 that patterns of projected precipitation change remain relatively 

similar between the three plots of differing model choice. Notably in the projected 

changes for the “top” 20 and 30 MMM plots are most similar, with the maximum peak 

of drying evident around 15˚S with respect to absolute projected changes. Considering 

projected percentage change in DJF, the notable difference is the drying peak, which is 

evident over the south-western extreme of the continent at ~25˚S opposed to ~15˚S in 

the absolute projected change.  
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Therefore from the sub-sampling sensitivity analysis, which highlights signifcant 

reductions in uncertainty when using the “top” 20 and 30 performing models, it can be 

inferred that in DJF drying is projected over much of the southern and south-western 

parts of the continent with enhanced certainty. Addtionally projected DJF drying signals 

exhibit lower standard devation values, compared to projected wetting evident over the 

north-eastern region, corroborating results established previously.  

 

 

Figure 6: Same as Figure 5 but for OND. 

 

In OND future precipitation projections over the continent, uncertainty was not 

significantly reduced, however consistency is evident in patterns of projected change 

between the “top” performing 10, 20 and 30 MMMs. Differences between differing 

number of “top” models selected include i) a relatively strong absolute wetting signal 

for the “top” 10 and 20 models over the central equatorial region but to a much lesser 
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extent for the “top” 30 model MMM and ii) the largest magnitude in absolute and 

percentage projected drying is evident in the “top” 20 MMM. Projected percentage 

change in OND shows large consistency between all 3 “top” model subsets with almost 

equivalent spatial patterns of drying. Projected drying distinctly dominates the majority 

of the continent, which indicates continuity into DJF (Figure 5), but with increased 

precipitation projections over the equatorial region and hence a slight southward shift in 

projected drying. Inter-model spread is also notably lower over the projected drying 

region in the pre-summer season, which reaffirms confidence through increased model 

agreement in the continental drying signal.  

 

3.3. Changes in the SIOCZ and associated uncertainty 

The SIOCZ feature in contemporary climate is captured by the majority of CMIP5 

models which exhibit a diagonal band of enhanced precipitation; however variations are 

noted between individual CMIP5 models when compared to observations (see 

appendix: Figure 1). When allowing individual models to provide their own SIOCZ 

masks (i.e. initial location of the SIOCZ) before projecting future changes in this 

feature, it tests the hypothesis of whether model processes exhibit agreement, despite 

differing initial conditions. Typically this type of analysis determines if model 

convergence is established with respect to processes of future change among models 

(i.e. coherent model behaviour). To make attempts in constraining SIOCZ projection 

uncertainty, threshold values greater than 5.5 mm day
-1

 are applied to both CMIP5 

MMM and individual CMIP5 models. Future precipitation projections over the SIOCZ 
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region are then compared for the 2 projected MMMs, whereby one uses only 1 initial 

SIOCZ mask derived from the MMM and the other which uses 39 initial SIOCZ masks.  

 

Figure 7: Box-whisker plot of percentage projected change in precipitation over the 

SIOCZ region (0˚ - 30˚S and 10˚ - 50˚E) of CMIP5 MMM using MMM SIOCZ mask 

(red) versus CMIP5 MMM using individual CMIP5 model SIOCZ masks (blue) for the 

period 2071-2100 minus 1971-2000 for RCP8.5 emissions scenario. Box represents the 

inclusion of the 25
th

 and 75
th

 percentile values, with the solid line representing the 

median and whiskers indicating the minimum and maximum values.  

 

Figure 7 clearly shows a distinct decrease in spread of possible projected changes in 

precipitation over the SIOCZ region when using individual models initial conditions 

versus the MMM single initial condition. Projected change in precipitation ranges from 

-9% to 11% when using the MMM SIOCZ mask, whereas spread is reduced to -4% and 

5% when models are able to use their own individual SIOCZ masks. This again does 
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not imply there is no change in the SIOCZ; in fact in Chapter 4 it is shown that the 

SIOCZ shifts northwards by approximately 200km in future projections using a best-fit 

line algorithm along the axis of maximum precipitation. This spread is projected 

changes is most likely due to the effect of the dipole pattern of precipitation change 

evident over the region, which essentially exhibits both wetting and drying signals 

which may cancel out one another when area averaging.   

 

Therefore there is a notable decrease in spread of 11% from the initial 20% to only 9%, 

just over half the initial range. This implies models are producing more physically 

agreeable and potentially sensible processes of change. Models may not locate the 

initial SIOCZ 100% accurately, however should not be penalized solely for this reason, 

as convergence in model processes of projected change are established (i.e. evidence of 

coherent model behaviour creating change). The equivalent analysis was performed for 

the decomposition analysis (for only 20 CMIP5 models – Table 1 Chapter 5) and 

similar results were established (see appendix: Figure 8). Spread of projected 

precipitation change is reduced from -2.3% and 1.8% to -0.5% and 1.8%. Therefore 

model processes exhibit enhanced agreement despite varying initial positions of the 

SIOCZ and reduced spread is additionally established despite differing ensemble sizes 

(20 and 39).  

 

An implication from this analysis is that projected model change may require alternative 

assessment approaches such as this one. Future analyses could include methods which 
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separate out model processes from influences of historical skill, which could potentially 

inform understanding of future change between models.  

 

4. Discussions and Conclusions  

A model ranking framework is developed over southern Africa, tailored particularly 

towards the austral summer season DJF. This framework is developed with the intention 

of addressing the question of uncertainty and whether significant reductions can be 

established through using “top” performing models. The framework incorporates both 

mean state and interannual variability processes, as both aspects are deemed equally 

important to southern African precipitation (Chapter 3).  

 

Models do not indicate convergence in performance between mean state and variability 

metrics. From the ranking framework developed a sensitivity analysis is performed 

where sub-sampling the “top” 10, 20 and 30 CMIP5 models established significant 

differences between random and “intelligent” sub-sampling of models. Uncertainty is 

significantly reduced at the 90
th

 percentile confidence interval when models are selected 

“intelligently” via a process-based analysis approach developed in this thesis for DJF 

over the continent when using the “top” 20 and 30 models. Therefore implying potential 

value in this particular approach of model ranking. Unfortunately for the transition 

season, OND, uncertainty was not significantly reduced. However, the drying signal is 

relatively credible and plausible with most models in agreement with projected drying 

over the southern and south-western continent. Precipitation change over the SWIO 

could not be constrained significantly, however it is most important to be able to 
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provide significant results over the continent where impacts are imperative and have 

direct implications for adaption.    

 

The DJF precipitation signal shows an overall area average of positive change in 

precipitation over the continent, however when assessed spatially using the “top” 10, 20 

and 30 selected models; DJF spatial patterns exhibit projected wetting from the equator 

to 10˚S and projected drying dominates the south-western part of the continent. In OND 

drying over land is clear in both area averages and spatial plots. Drying patterns over the 

continent in OND are almost identical for the various choices of “top” model plots.  

 

Projected precipitation changes in DJF are deemed more credible than OND due to 

significant reductions in uncertainty emerging only in DJF. This thesis simply uses one 

of many model ranking approaches to provide insight into understanding and potentially 

reducing uncertainty of future projections. These regional changes have important 

implications and should be relayed with the appropriate level of probability to policy 

and decision-makers, which hopefully aids decision-making at regional levels and 

informs water security measures over the region. 

 

Models are additionally able to constrain uncertainty over the SIOCZ region when 

allowing individual model masks of historical SIOCZ position, compared to a single 

MMM mask for the SIOCZ. This provides new insight as to how models produce 

change when allowed their own initial conditions. Uncertainty is reduced by more than 

half (spread reduced to 9% from the original 20%) when allowing models to spatially 
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vary. This alludes to convergence of model processes creating projected change i.e. 

coherent model behaviour.  

 

5. Caveats and Implications 

 

Model ranking schemes have been an on-going area of investigation with no consensus 

on which approach is most optimal (Schaller et al., 2011; Rowell et al., 2016). This 

analysis has demonstrated some value in using mean state and variability metrics to 

significantly reduce uncertainty over southern Africa in austral summer (DJF). There 

are a variety of approaches to address uncertainty and this is simply one approach to 

make attempts in reducing uncertainty. Potential dangers of this methodology should be 

noted, which include the issue of falsely reducing uncertainty i.e. uncertainty may be 

significantly reduced, however for the non-sensible reasons and may be misleading. It is 

established in this chapter that lack of model convergence is evident between mean state 

and variability metrics between models. Therefore although uncertainty is significantly 

reduced in some cases, the lack of model agreement in key processes implies this 

uncertainty might be falsely reduced or rather not physically defendable.  

 

Additionally the choice and number of metrics may not be optimal. To address this 

issue firstly a larger range of metrics could be derived, and then a sensitivity analysis 

could be performed, whereby varying numbers and combinations of metrics are chosen 

to determine if results remain consistent. This type of analysis could add more 

confidence to this approach in model ranking and reducing uncertainty.  



188 
 
 

 
 
 

The model ranking framework developed here is heavily tailored towards austral 

summer processes over southern Africa. It may add supplementary value to create a 

model ranking framework tailored specifically towards the season of interest i.e. OND 

in this case would potentially benefit through a ranking framework with metrics 

specifically tailored towards OND contemporary climatology and variability.  

 

Model ranking frameworks are fraught with difficulties, making the selection of “top” 

performing models an extremely complex task. Therefore from the aforementioned 

reasons, further work would be required before this type of model ranking approach 

becomes robust and potentially useful. However the analysis presented here 

demonstrates value in this type of approach to model ranking and exclusion.  

 

Future work should focus on identifying more specific model processes causing 

precipitation change and be ranked according to those identified processes (hence a 

more representative process-based analysis and ranking scheme) and not solely use 

straightforward model performance metrics such as spatial correlations, biases, 

RMSE’s, seasonal cycles and variability which are utilised in this model ranking 

scheme.    
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Chapter 7 

 

Synthesis and Conclusions 

 

Overview 

In this thesis models are evaluated based on their ability to simulate present day climate 

using a process-based approach of model performance with respect to mean state and 

variability over southern Africa. Dominant drivers, features and processes essential to 

precipitation are identified in models in contemporary climate and then used to 

understand regional projected precipitation changes over southern Africa and the 

adjacent south-west Indian Ocean. Key future changes in precipitation are identified 

over southern Africa. Mechanisms of regional precipitation change are investigated 

using a decomposition methodology of mean precipitation change. Uncertainties of 

projected change are constrained through a model ranking framework. Results show 

some evidence that such an approach has potential value regarding significant 

reductions in uncertainty for seasons of key importance over southern Africa.    
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1. Final discussion and summary of conclusions 

 

This thesis provides new contributions and insight regarding contemporary and future 

climate change over southern Africa using a process-based analysis. Initially models are 

evaluated in terms of contemporary climate in Chapter 3 focusing on mean state and 

variability in austral summer (i.e. rainy season). The majority of CMIP5 models 

perform well at simulating the spatial pattern of seasonal rainfall for DJF over southern 

Africa. Models are additionally able to capture the key austral summer feature (the 

SIOCZ) that dominates precipitation totals over the southern African continent and 

SWIO, however variations are noted. An overall systematic bias towards an excessively 

wet southern African region is established in contemporary climate. Along the SIOCZ 

axis, precipitation overestimation is relatively low; typically models overestimate 

precipitation totals in the surrounding regions. Reasons for the SIOCZ itself not being 

particularly wet may be due to the dominant bias evident over the adjacent Indian 

Ocean, as well as circulation biases enhancing moisture flux away from the SIOCZ and 

into surrounding regions.  

 

There is a notable discontinuity in the SIOCZ in the vast majority of CMIP5 models 

evident between land and ocean. A likely reason for this discontinuity could be the 

varying dynamics within model processes over land and ocean regions (Chadwick, 

2016). Majority of models illustrate a SIOCZ that is generally too zonal in orientation. 
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Systematic biases are related to various potential causes including SST biases in models 

(e.g. Brown et al. 2011) and potentially excessive moisture flux convergence in models 

(Washington et al. 2013; Lazenby et al., 2016). SST biases demonstrate a small negative 

bias over the Indian Ocean region in the MMM, therefore no direct link to the excessive 

precipitation through overly warm ocean temperatures resulting in higher moisture flux. 

Therefore it is likely that model precipitation parameterisation schemes are a potential 

source of bias or alternatively SST gradient biases within models.  

 

Biases in model moisture flux were additionally investigated. Three moisture flux 

transport pathways are identified as prominent contributing drivers of southern African 

precipitation. These moisture pathways originate from flow around the SIOHP, SAHP 

and monsoon winds, namely easterly flow, which convergence into the SIOCZ region 

during austral summer. Excessive precipitation over the southern African continent can 

be explained by excessively high moisture flux circulation patterns around the Angola 

Low. This bias is revealed to be almost entirely due circulation biases in models. 

 

Interannual variability is known to be the most significant time-scale in which austral 

summer precipitation varies over the southern African continent and adjacent Indian 

Ocean. A distinct dipole pattern derived via an EOF analysis depicts the dominant mode 

of interannual variability, which is interpreted as the northeast-southwest movement of 

the SIOCZ in wet and dry years i.e. La Niña and El Niño years respectively similar to 

the northwest-southeast displacement of the SPCZ during El Niño and La Nina years 
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(e.g. Vincent et al. 2011), which is well captured by the majority of CMIP5 (Brown et 

al. 2013) models.  

 

Large-scale circulation associated with the dominant mode of interannual variability of 

the SIOCZ is diagnosed via a composite analysis of the primary pattern of variation and 

moisture flux fields. Variability is shown to be dominated by anti-cyclonic circulation 

around the SIOHP, which transports moisture into the eastern regions of southern 

Africa. This anomalous circulation of moisture flux highlights the dominance of this 

moisture flux pathway with respect to variability over southern Africa. 

 

The structures and drivers of interannual variability over southern Africa are related to 

the El Niño Southern Oscillation and subtropical Indian Ocean SST dipole (SIOD) in 

observations; however this teleconnection is not well captured by CMIP5 individual 

models, restricting confidence in model understanding of teleconnections. SIOCZ 

rainfall is complex in terms of variability as it is not just influenced by one major source 

but potentially several e.g. wave activity such as Rossby waves and the Matsuno-Gill 

response (Ratnam et al. 2014) and additionally decadal influences (Dieppois et al., 

2016).  

 

Key climate change signals that emerge in the CMIP5 MMM over southern Africa are i) 

the drying signal over the southern African continent peaking in November ii) the 

dipole pattern of wetting/drying to the north/south of the continent which extends into 
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the Indian Ocean. This dipole pattern straddles the historical precipitation maximum 

and is interpreted as a northward shift of the ITCZ particularly over the Indian Ocean. 

This pattern has strong seasonal cycle that peaks during the transition season (OND) 

and extends into austral summer (DJF) in the southern hemisphere. Intriguing result of 

slightly offset timing of the dipole pattern over southern Africa and the south-west 

Indian Ocean is established in Chapter 4. A delay or lag is evident in projected drying 

over land peaking in November but subsequently later in December over the SWIO. 

Moisture availability is likely a factor influencing this result; however other influences 

may be valid, such as land-atmosphere feedbacks and circulation patterns (He and 

Soden, 2016).   

 

“Noise” from model disagreement is exceeded by the projected precipitation climate 

change signal most evidently in October, in which drying over the continent is largely 

dominant. Therefore the transition season OND is established as an important season 

regarding future precipitation change. 

 

The SIOCZ feature itself does not show radical changes in projected precipitation along 

its axis, however using the best-fit line of maximum precipitation, a slight northward 

shift in the SIOCZ feature is evident of approximately 200km. This shift is potentially 

linked to the northward shift of the ITCZ over the adjacent Indian Ocean and is likely 

driven by SST patterns and circulation changes (Power et al., 2006; Adler, 2011; 

Stevenson, 2012), particularly linked to variability around the South Indian Ocean High 

driving easterly flow (Dieppois et al., 2016; Lazenby et al., 2016). Changes in 
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precipitation, however, do not project onto the climatological SIOCZ or the pattern of 

the interannual variability of the SIOCZ. Therefore additional analysis is required to 

understand the mechanisms of change in pre- and austral summer over southern Africa 

explored in Chapter 5.   

 

Diagnostic variables such as SSTs, circulation pattern change (low-level winds and 

moisture flux) and dynamical uplift (vertical velocity) indicate direct associations with 

projected precipitation changes. It is important to identify and understand the physical 

processes governing model changes, as this provides additional insight and can be used 

to improve accuracy of particular model parameters and potentially reduce uncertainty 

in future projections. This thesis aims to understand why models produce certain 

changes by understanding model processes and identifying coherent model behaviour.  

 

Individual model analysis established the following relationships with respect to 

diagnostic variables and projected model precipitation change i) stronger differential 

SST pattern warming over the Indian Ocean is associated with higher projected 

precipitation over the northern Indian Ocean region, ii) enhanced flow towards the 

northern Indian Ocean region in both OND and DJF i.e. larger magnitudes of flow are 

associated with larger projected wetting signals and iii) continental projected wetting 

exhibits associations with increased low-level moisture availability and additionally 

enhanced low-level easterly flow, particularly into East Africa.   
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Comparison of coupled and atmosphere-only experiments are particularly useful in 

attempting to gauge more understanding of the impacts of model SST patterns and 

coupling influences. However, future atmosphere-only experiments here exhibit limited 

use in understanding future regional precipitation change over southern Africa, as 

experiments are not able to replicate the coupled RCP8.5 emissions scenario with 

sufficient skill in AMIPTotal, which include all forcings essentially equivalent to 

coupled model experiments. Other studies such as He and Soden (2016) establish value 

in using future AMIP experiments by diagnosing subtropical drying drivers over the 

global tropical oceans in annual means. However results appear inconclusive over 

continental regions, with suggestions of hydrological processes being more important 

over land. This thesis focuses on regional analysis over both continental and ocean 

regions and additionally for particular seasons, not annual means. Therefore 

highlighting the limited value in interpretation of future AMIP experiments. More 

sophisticated experiments in the newly developed CMIP6 dataset may provide 

additional insight into regional and seasonal analysis.   

 

Mechanisms of regional projected precipitation change over southern Africa and the 

south-west Indian Ocean are explored innovatively through a decomposition analysis, 

providing novel insight into drivers of change and uncertainty over the region. It is 

established that the ∆P north/south dipole pattern emerges largely from the dynamic 

component (∆PShift), which holds most uncertainty, particularly over the south-west 

Indian Ocean.  
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Projected precipitation changes over the continent appear not to be solely driven by 

∆PShift but are additionally driven by thermodynamic contributions (which are typically 

more robust), particularly from contributions in reductions of relative humidity. Drying 

over the continent is more robust than wetting. A distinct drying signal is evident across 

models in OND; however magnitude is uncertain and not particularly well constrained. 

Other studies performed over the region imply reductions in projected precipitation over 

the subtropics is related to the expansion of the Hadley Cell (i.e. tropical widening) 

(Scheff and Frierson, 2012a; 2012b; Lucas et al., 2014), in which OND may be 

consistent with that notion, however has not been analysed in this study. SST patterns of 

warming over the Indian Ocean significantly drive wetting, therefore corroborating the 

warmest-get-wetter mechanism over that SWIO domain.  

 

Drivers of precipitation change appear somewhat varied between land and ocean 

regions, despite the zonally uniform climate change signal evident extending from the 

southern African continent into the adjacent Indian Ocean. Over the continent changes 

are influenced by dynamic and additionally thermodynamic influences, whereas over 

the SWIO dynamic changes remain dominant.  

 

It appears evident that DJF is more dynamically driven and less so in OND, which was 

previously alluded to in Chapter 4 from future AMIP experiment correlations. 

Influences from thermodynamic contributions as well as reductions in relative humidity 

are additionally driving changes in OND, whereas in DJF spatial shifts in convection 

(dynamical component) and additional dynamic influences are established to be most 

prominent. DJF indicates significant associations with ∆PCross over the continent, which 
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is a secondary dynamic component. OND does not exhibit significant associations with 

this term as dynamic influences do not appear as prominent in the pre-summer transition 

season.    

 

For both OND and DJF pattern variation of projected precipitation change is dominated 

by a dipole pattern over the Indian Ocean. The dipole pattern appears similarly when 

applied to ∆PShift. Significant relationships are established with local Indian Ocean SST 

patterns of change and to a lesser extent the Pacific Ocean region. Independent analysis 

of dominant patterns of variation for land and ocean regions establish the following 

findings, i) land regions in both seasons, but particularly OND exhibit significant 

associations with the central Pacific Ocean, ii) whereas over the SWIO influences from 

SSTs tend to remain more local with significant relationships established in the south-

west Indian Ocean.   

 

Composite analysis of moisture flux fields across models illustrate circulation patterns 

driving projected drying in OND and DJF. Due to models exhibiting circulation biases 

over SA/SWIO in the present day (Lazenby et al., 2016), these biases are most likely 

responsible for the uncertainty established associated with the dynamic component of 

future precipitation projections. Drivers of uncertainty include SST pattern changes, 

which modulate atmospheric circulation patterns (He et al., 2014). Therefore if 

uncertainty is reduced in terms of replicating model circulation and SST patterns, future 

precipitation projections over southern Africa and the south-west Indian Ocean are more 

likely to become more robust and therefore credible.   
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To address the issue of uncertainty a model ranking framework is developed here, 

which includes both constituents of mean state and variability processes over southern 

Africa. Models do not show convergence between mean state and variability metric 

performance, indicating model inconsistency in performance between the two 

processes. A sensitivity analysis established significant differences between random and 

“intelligent” sub-sampling of models. At the 90
th 

percentile uncertainty is significantly 

reduced when models are selected “intelligently” through the process-based analysis 

approach developed in this thesis for DJF over the continent when using the “top” 20 

and 30 performing models, therefore indicating value in performing such ranking tasks. 

Unfortunately for the transition season, OND, uncertainty was not significantly reduced 

however, the drying signal is relatively credible and plausible with most models in 

agreement exhibiting drying over the southern and south-western continent. Projected 

precipitation change over the SWIO was not constrained significantly; however priority 

remains focused on provision of robust and credible projections over continental regions 

where impacts are most important and have direct implications on adaption.     

 

Models are additionally able to reduce projected precipitation uncertainty over the 

SIOCZ region when allowing individual model processes to emerge opposed to being 

penalised based on erroneous initial historical positioning of the SIOCZ. Uncertainty is 

constrained by more than half when allowing model processes to dominate. This 

provides new insight as to how models produce change, which appears to be consistent 

among models and physically agreeable.   
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Future precipitation projections in DJF are deemed more credible in this thesis, with 

projected drying apparent over the south-western continent and projected wetting 

peaking in the north-east. Projected precipitation changes in OND (deemed less credible 

here, as uncertainty could not be significantly reduced in this season) demonstrate large 

projected zonal drying over the majority of the southern African continent. Projected 

changes of 200km shifts in the dominant summer rainfall feature (SIOCZ) will have 

magnified on the ground impacts. This change will impact regions most reliant on 

agricultural practises within the 200km region and essentially require altered methods of 

farming practises, such as inclusion of drought resistant crops or change in crop type.  

 

These identified regional projected changes in precipitation over southern Africa have 

important implications regarding water security which affect livelihoods, as well as 

commercial and subsistence farming over the region. Climate information regarding 

projected future climate possibilities over southern Africa should be communicated to 

policy and decision-makers with the appropriate level of probability and plausibility. 

 

2. Future work 

 

Model caveats and implications are discussed in more detail within each relevant 

chapter of the thesis. Discussed here is a summary of the identified caveats of this 

thesis, providing ideas and approaches to potentially address those issues in future work 

where possible. 
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Future work with respect to contemporary climatology over southern Africa could be 

focused on i) Bias correction in CMIP5 models of the Indian Ocean bias through 

thorough analysis of model parameterisation schemes and SST pattern influence ii) 

improved understanding of model teleconnections regarding interannual variability (e.g. 

deriving additional principal components within models to assess if teleconnections 

emerge after the 3
rd

 principal component) iii) in depth austral summer variability 

analysis on all time-scales, particularly decadal time-scales (Dieppois et al., 2016), as 

this is the time-scale in which climate change occurs, iv) additional analysis of potential 

suspects driving variability over southern Africa, such as wave activity i.e. Rossby 

waves and the Matsuno-Gill response (Ratnam et al. 2014). Additonally model 

processes producing rainfall require further investigation rather than just metrics of 

performance.   

 

Key changes in precipitation in Chapter 4 include projected changes within the SIOCZ 

region. Notable caveats regarding the algorithm to quantify the SIOCZ in contemporary 

and future climate need to be highlighted. The SIOCZ is located within a rather 

confined domain in which the Indian Ocean ITCZ feature is additionally present in DJF. 

Therefore deriving the best-fit line along the maximum precipitation axis can prove 

troublesome in particular models where the Indian Ocean ITCZ is located more 

westwards towards the SIOCZ domain. Larger magnitudes of rainfall evident in the 

ITCZ will potentially alter the axis of the SIOCZ, generally modulating the SIOCZ 

orientation as too zonal. Therefore care was taken to exclude the Indian Ocean ITCZ in 

this algorithm by constraining the region as tightly as possible, but was not possible to 

get 100% accurate for all CMIP5 models. An approach to counteract this caveat would 
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be to apply a SIOCZ mask using a threshold value specific to the SIOCZ, which was 

performed in Chapter 6 with promising results. 

 

Atmosphere-only future experiments indicate limited value over the chosen regional 

domain. The AMIPFuture experiment currently only consisting of a single CMIP3 SST 

pattern of change for all individual models. New results from the newly established 

CMIP6 dataset (Eyring et al., 2016) will be interesting to analyse and hopefully 

enhances understanding into SST pattern influences within CMIP models over southern 

Africa. Studies performed by He and Soden (2016) show value in using AMIP future 

experiments, however only for annual means over the global domain.    

 

A caveat within the decomposition methodology is identified and approaches to address 

this issue are discussed. M
*
 is shown to be a good approximation of actual moisture flux 

(Mint), however models typically tend to underestimate M
*
, which Chadwick et al. 

(2013) states. The method is accepted for analysis even with this known caveat, 

however an approach to address this underestimation of M
*
 could include i) a vertical 

velocity filter to only include convective moisture flux, by using vertically integrated 

atmospheric moisture (q) between the surface and 700 hPa, instead of the 2 m specific 

humidity (q) value, ii) future analyses could incorporate a precipitation rate filter for 

vertical velocity that would be representative of only deep convection and exclude 

shallow convection.  
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Understanding drivers of precipitation changes and uncertainty associated with those 

changes are complex. From this thesis it is established that each key identified season 

(OND and DJF) and region (land versus ocean) over southern Africa and the SWIO, 

exhibit varying influences and drivers producing projected change and uncertainty.  

 

Gaps remaining include model understanding with respect to drivers and uncertainty of 

change i.) SST patterns are likely not the only mechanisms driving changes and do not 

fully explain changes, particularly over land regions, ii.) SST pattern changes are 

slightly easier to interpret and understand over ocean precipitation change regions, due 

to the known effects of temperature increases over regions of unlimited moisture and 

the warmest-get-wetter mechanism of change proving robust over ocean regions, iii) the 

concept of the widening of the tropical circulation (e.g. Lucas et al., 2014) is a 

dynamical response that could be an additional driver of change that requires additional 

exploration over southern Africa. Drying over the southern African continent is very 

prominent at 20˚S during OND and this proposed tropical widening effect appears to be 

consistent along the southern boundary of the subtropics, coinciding with the notable 

drying signal. Future work could be used to explore this issue further, iv) OND appears 

to be less dynamically driven in comparison to DJF. Further research is required to 

unpack this statement and its significance. 

 

No one particular approach to model ranking has been deemed best or most appropriate 

and therefore several different approaches can be assessed (Schaller et al., 2011; Rowell 

et al., 2016). This thesis makes attempts to provide further insight using only one 
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approach, however awareness of other approaches are appreciated. The ranking 

framework here shows promise with significant reductions in uncertainty being 

established. However results should be interpreted with caution for the following 

reasons.  

 

1) There is little to no model convergence between mean state and variability metrics 

used in the raking framework. This reduces credibility of any significant reductions of 

uncertainty established as it may be misleading. 2) The model ranking framework 

established in this thesis is tailored specifically towards austral summer (DJF) and may 

be a possible reason why no significant reductions in uncertainty were established in 

OND. To address this and given more time a ranking framework tailored towards OND 

based metrics could be performed and compared with this analysis. 3) Additionally 

ranking frameworks could be tailored separately for land and ocean regions, as the two 

domains exhibit varying influences and drivers of change and uncertainty. 4) The choice 

and number of metrics used in this analysis may not be optimal. To address this issue 

firstly a larger range of metrics could be derived, and then a sensitivity analysis could be 

performed, whereby the number of metrics and combinations of metrics are varied to 

determine if results remain consistent or change drastically. This could add more 

confidence to this type of approach in model ranking and reducing uncertainty.  

 

There is ultimately a need to tailor climate change data and projections into useable and 

credible climate change information. This study uses a process-based approach, 

whereby climate data is analysed using an understanding of processes that are unique to 
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the chosen study region. Physically relevant processes and metrics are then derived over 

the chosen region to rank and used to make attempts in reducing uncertainty in future 

precipitation projections. 

  

An approach that could prove beneficial and is currently in use is end-user driven 

research. Climate information should be more tailored towards suiting the adaption 

needs of policy-makers via initial questions being asked by end-users to drive the 

scientific climate research. Projecting climate changes under uncertainty through to 

adaption measures is fraught with difficulties, as this is a highly sophisticated problem 

and there can be potential trade-offs (Swart et al., 2009). Key points essential in 

disseminating clear climate projection information as a climate scientist are i) what is 

the degree of uncertainty associated with future projections? i.e. to quantify the 

uncertainties and ii) communicate those uncertainties to the appropriate target audience 

(Webster, 2003). This thesis provides insight and addresses point (i) over southern 

Africa, which hopefully will ultimately leads to informing point (ii).  
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Figure 1: Mean historical DJF precipitation climatology over southern Africa for the 

period 1971-2000 for the 44 CMIP5 models additionally overlaid with the model 

SIOCZ line (dashed) fitted to the maximum precipitation values along the longitudes 

25˚E - 50˚E. CMAP SIOCZ line is the solid black line and the slope (s) and mean 

latitude (lat) are shown on the top right of each image. Units are in mm month
-1

. 
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Figure 2: Absolute projected precipitation change for DJF over the southern African 

region and southwest Indian Ocean for 39 CMIP5 models for the period 2071-2100 

minus 1971-2000. Units are in mm day
-1

. 
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Figure 3: Same as Figure 2 but for OND. 
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Figure 4: Percentage change of projected precipitation for DJF over the southern 

African region and southwest Indian Ocean for 39 CMIP5 models for the period 2071-

2100 minus 1971-2000. Units are expressed as percentage change. 
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Figure 5: Same as Figure 4 but for OND. 
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Figure 6: DJF ∆P for 20 CMIP5 models for the period 2071-2100 minus 1971-2000. 

Units are expressed as mm day
-1

 K
-1

. 
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Figure 7: Same as Figure 6 but for OND 
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Figure 8: Box-whisker plots of DJF area averaged SIOCZ precipitation components 

with masks of greater than 5.5 mm day
-1

 applied to 20 CMIP5 (a) MMM (left) and (b) 

individual models (right). Area average is calculated over the domain (0˚ - 30˚S and 10˚ 

- 50˚E). Box represents the inclusion of the 25
th

 and 75
th

 percentile values, with the 

solid line representing the median and whiskers indicating the minimum and maximum 

values. Units are expressed as percentage change of each component.  

 

 

b.) Individual Masks a.) MMM Mask 


	PhD Coversheet
	PhD Coversheet
	Hopkins, Suzanna

	Lazenby, Melissa J.



