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UNIVERSITY OF SUSSEX 

OPEOLUWA OJENIYI MASTER OF PHILOSOPHY BIOCHEMISTRY 

INVESTIGATING THE MECHANISM OF CELLULAR GENE ACTIVATION AND 
REPRESSION BY THE EBV TRANSCRIPTION FACTOR EBNA 2 

SUMMARY 

Epstein-Barr virus (EBV) is a widespread human tropic B cell virus that is linked to several malignancies. 

EBV modulates the transcriptome of B lymphocytes to drive immortalisation and viral persistence. EBV 

nuclear antigens (EBNA) 2,3A, 3B and 3C are transcriptional regulators of both viral and cellular genes 

and are the primary drivers of the immortalisation and the continued proliferation of infected B-cells. 

EBNA 2 activates all EBV gene promoters and cellular growth control genes while EBNA3A, 3B and 3C 

activates or represses transcription. EBNA2 and 3 proteins do not bind directly to DNA. They bind 

through cellular DNA-binding proteins like RBP-Jκ and PU.1. The focus of this research was to 

investigate how EBNA 2 promotes immortalisation through the epigenetic reprogramming of cellular 

genes and how EBNA 3A, 3B and 3C antagonise or cooperate with EBNA 2 in gene regulation. Previous 

ChIP-seq results in our lab identified significant binding sites for EBNA 2 and EBNA 3s. I targeted three 

important novel shared EBNA 2 and EBNA 3s binding sites; the integrin ITGAL, cell cycle kinase WEE1 

and transcription repressor CTBP2 genes. I investigated if these shared sites are functional as EBNA 2 

response elements in reporter assay by transiently transfecting the endogenous promoter and any 

associated long range enhancer region of genes and performing luciferase assays. EBNA 2 activates the 

ITGAL promoter and EBNA 3s inhibits the activation while WEE1 and CTBP2 does not respond in 

reporter assay. I also performed site-directed mutagenesis to determine which cellular transcription 

factor was important for the activation of EBNA 2 at the ITGAL promoter. RBP-Jk site mutation 

disrupted the EBNA 2 activation. Another research focus was EBNA 2 association with gene activation 

and repression. BCR components CD79A and CD79B are involved in signal transduction and the 

regulation of B-cell growth and survival and transcription factor EBF1 plays an important role in B cell 

differentiation. I investigated the association of EBNA 2 with these repressed gene targets and if EBF1 

plays a role in the mechanism of repression using reporter assay. CD79A and CD79B activates EBNA 2 

and EBF1 does not significantly repress the activation in luciferase reporter assay. EBNA 2 have been 

mapped binding to enhancers at a new target gene interferon response factor 4 IRF4 and microarray 

data implicates EBNA 2 in its activation. When IRF4 expression is reduced in EBV transformed cells, cell 

proliferation rate is decreased and apoptosis enhanced so this activation may be important for B-cell 

transformation by EBV. I carried out reporter assays to determine if the site is EBNA 2 responsive and 

whether it interacts with the IRF4 promoter and enhancers. EBNA 2 slightly activates the promoter and 

enhancers. 



 

DEDICATION 

This work is dedicated to my father LATE MR. VINCENT OLATUNJI OGBE, who departed this 
world the day this program started, I love you and I miss you. Also, to my father-in-law LATE 
MR. JOHN OJENIYI for always making me smile. 

 

ACKNOWLEDGMENTS 

I would like to take this opportunity to thank my supervisor Professor Michelle West for her 
endless support and patience throughout the duration of this course. I would also like to thank 
the entire West and Sinclair lab members, in particular Andrea, David, Sarika, Hilda, Michele 
and Lina for never getting tired of supporting me with my experiments. 

A BIG THANK YOU to my amazing husband Adeola for seeing this course through financially, 
putting up with moods and for being my rock and no. 1 fan. I would also like to thank my 
children Philip, Hadassah and Isaac for loving me all the same. 

Also, many thanks to the entire Ogbe and Ojeniyi families for their prayers and support 
especially my sisters and Mum. 

Most importantly, thank you to God for his joy has been my strength. 

 

PUBLICATION 

McClellan, M. J., C. D. Wood, O. Ojeniyi, T. J. Cooper, A. Kanhere, A. Arvey, H. M. Webb, R. D. 
Palermo, M. L. Harth-Hertle, B. Kempkes, R. G. Jenner and M. J. West (2013). "Modulation of 
enhancer looping and differential gene targeting by Epstein-Barr virus transcription factors 
directs cellular reprogramming." PLoS Pathog 9(9): e1003636. 

 

 

 

 

 

 

 

 

 



 

ABBREVIATIONS 

 

ABBREVIATIONS  
AIDS Acquired Immunodeficiency syndrome 

BL Burkitt's Lymphoma 
Brd4 Bromodomain containing protein 4 
ChIP Chromatin Immunoprecipitation 
Cp C promoter 

CTD C-terminal domain 
DBD DNA binding domain 
EBER EBV encoded RNA 
EBNA Epstein-Barr Nuclear Antigen 
FACT Facilitates chromatin transcription 
GTF General transcription factor 
HAT Histone acetyltransferase 

HDAC Histone deacetylase 
HIV Human Immunodeficiency Virus 
HL Hodgkins Lymphoma 

HMT Histone methyltransferase 
IM Infectious Mononucleosis 
LCL Lymphoblastoid cell line 

LMP Latent membrane protein 
NELF Negative elongation factor 
NHL Non-Hodgkins Lymphoma 
OriP Origin of replication 
PCR Polymerase chain reaction 

Pol II RNA Polymerase II 
pTEFb Positive Transcriptional Elongation Factor 
PTLD Post transplant lymphoproliferative disease 
Qp Q promoter 

RBP-Jk recombining binding protein J kappa 
TBP TATA-box binding protein 
TF Transcription factor 
TR Terminal Repeat 

TAF TBP associated factor 
TAD Transactivation domain 
Wp W promoter 

 

 

 



1 
 

Table of Contents 

1. INTRODUCTION ........................................................................................................ 4 

1.1. Regulation of transcription .................................................................................... 4 

1.1.1. Assembly of RNA polymerase II initiation complexes .................................................. 4 

1.1.2. Promoter clearance and elongation ........................................................................... 6 

1.1.3. Transcription factors .................................................................................................. 8 

1.1.4. Epigenetics and histone modification ....................................................................... 12 

1.1.5. Role of enhancers in transcriptional regulation......................................................... 19 

1.2. Epstein-Barr virus .................................................................................................21 

1.2.1. EBV infection ................................................................................................................ 22 

1.2.2. EBV associated diseases ................................................................................................ 25 

1.2.2.1. BL ..................................................................................................................................... 25 

1.2.2.2. HL ..................................................................................................................................... 26 

1.2.2.3. NPC................................................................................................................................... 27 

1.2.2.4. IM ..................................................................................................................................... 27 

1.2.2.5. PTLD ................................................................................................................................. 28 

1.2.3. EBV latent gene promoters ...................................................................................... 28 

1.2.4. EBV latent genes ...................................................................................................... 30 

1.2.4.1. EBNA-LP .................................................................................................................... 30 

1.2.4.2. EBNA 1 ...................................................................................................................... 30 

1.2.4.3. EBNA 2 ...................................................................................................................... 31 

1.2.4.4. EBNA 3 family............................................................................................................ 35 

1.3. AIMS OF THIS PROJECT .........................................................................................39 

2. MATERIALS AND METHODS .....................................................................................40 

2.1. Tissue Culture ............................................................................................................. 40 

2.1.1. Tissue culture media and supplements .............................................................................. 40 

2.1.2. Maintenance of cell lines .................................................................................................... 40 

2.1.3. Freezing cells ................................................................................................................. 42 

2.1.4. Thawing cells ................................................................................................................. 42 

2.1.5. Haemocytometer cell counting .................................................................................... 42 

2.1.6. Transfection by Electroporation ................................................................................... 42 

2.1.7. Luciferase assay ............................................................................................................ 43 



2 
 

2.2. Biochemical reagents and methods.............................................................................. 43 

2.2.1. Reagents ............................................................................................................................. 43 

2.2.2. Preparation of whole cell lysates........................................................................................ 44 

2.2.3. SDS page ....................................................................................................................... 44 

2.2.4. Immunoblotting ............................................................................................................ 45 

2.2.5. Stripping gels................................................................................................................. 45 

2.3. Molecular Biology ....................................................................................................... 45 

2.3.1. Buffers and Reagents .......................................................................................................... 45 

2.3.2. pGL3 basic reporter vector – Promega ............................................................................... 47 

2.3.3. Plasmid Construction .................................................................................................... 48 

2.3.4. Q-PCR ............................................................................................................................ 49 

3. RESULTS ..................................................................................................................50 

3.1. Investigating the role of coincident binding of EBNA 2 and EBNA 3A, 3B and 3C to cellular 

genes and regulatory elements ............................................................................................... 50 

3.1.1. EBNA 2 activates the ITGAL promoter and EBNA 3 proteins inhibit the activation ........... 50 

 ......................................................................................................................................55 

3.1.2. Investigating the cellular transcription factors that direct EBNA 2 binding at the ITGAL 

promoter ....................................................................................................................................... 56 

RBP-Jk directs EBNA 2 activation of the ITGAL promoter.......................................................... 56 

3.1.3 EBNA 2 binds to an intragenic site at CtBP2 that does not respond in reporter assays ..... 60 

 .............................................................................................................................................. 66 

3.1.4. EBNA 2 binds to distal enhancers at WEE1 that do not respond in reporter assays ......... 67 

3.1.5. DISSCUSION ........................................................................................................................ 68 

3.2. Investigating EBNA 2 gene activation and repression .................................................... 78 

3.2.1. Investigating EBNA 2 association with CD79A and CD79B ................................................. 78 

3.2.2. Investigating EBNA 2 association with IRF4 ........................................................................ 86 

3.2.3. DISCUSSION............................................................................................................. 87 

4. DISCUSSION .............................................................................................................92 

5. BIBLIOGRAPHY.........................................................................................................97 

6. APPENDICES .......................................................................................................... 119 

6.1. Appendix A Antibodies for western blotting ............................................................... 119 

6.2. Appendix B Real time primers for QPCR ..................................................................... 120 

6.3. Appendix C DNA amplifying primers .......................................................................... 121 



3 
 

6.4. Appendix D Examples of designed reporter constructs ............................................... 123 

 

 

  



4 
 

1. INTRODUCTION 

1.1. Regulation of transcription 

Transcriptional regulation is the means by which a cell controls the conversion of DNA 

to RNA by RNA polymerase to manage gene activity. This control allows the cells to 

regulate the activity of a single gene’s activity by altering the amount of RNA copies 

being made in the cell in response to intra and extracellular signals. Eukaryotes have 

three RNA polymerases; RNA polymerase (Pol I), Pol II, and Pol III. Each polymerase 

has specific target genes and activities, and is regulated by independent mechanisms 

(Ranallo et al., 1999, Thomas and Chiang, 2006). 

1.1.1. Assembly of RNA polymerase II initiation complexes  

Pol II carries out the transcription of all protein coding genes and regulation of Pol II 

transcription is essential for all cellular processes including cell growth, differentiation 

and survival. Pol II has 12 subunits Rpb 1 – 12. To initiate transcription, Pol II requires 

additional transcription factors known as General transcription factors (GTFs). These 

include Transcriptional Factor for Pol II A, B, D, E, F, H (TFIIA, TFIIB, TFIID, TFIIE, TFIIF, 

and TFIIH). Pol II gene promoters can contain a recognition sequence called the TATA 

box, typically located 25bp upstream of the Transcription start site (TSS)  (Matsui et 

al., 1980, Kim et al., 1993). Binding of the GTF TFIID through its TATA box binding 

protein (TBP) subunit is the first event in the formation of the transcription initiation 

complex (Figure 1).  

 

The majority of eukaryotic promoters do not contain a TATA box but can still recruit 

TBP to the pre-initiation complex via another element called the initiator element that 

overlaps the TSS (Latchman, 2008).  TFIID also contains TBP associated factors (TAFs) 

which are required for transcription regulation (Mizzen et al., 1996). TFIIA interacts 

with TBP and helps in the binding of TBP to the TATA box thereby stabilizing TFIID, but 

TFIIA can often be unnecessary for efficient transcription initiation (Tang et al., 1996). 

TFIIB then binds to create a binding surface for Pol II and help in the recruitment of 

other transcription factors and aid in the determination of the transcription start site 

(Ha et al., 1991). TFIIF binds to Pol II when it is not in contact with any other factor and 

https://en.wikipedia.org/wiki/DNA
https://en.wikipedia.org/wiki/RNA
https://en.wikipedia.org/wiki/RNA_polymerase_I
https://en.wikipedia.org/wiki/RNA_Polymerase_II
https://en.wikipedia.org/wiki/RNA_polymerase_III
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Pol II and TFIIF are recruited together. TFIIF aids accurate initiation by stabilizing Pol II 

when in contact with TBP and TFIIB stopping it from contacting DNA outside of the 

promoter. TFIIF also recruits TFIIE and TFIIH to the complex (Kim et al., 1997, Lee and 

Young, 2000) (Figure 1). TFIIE binds and recruits TFIIH and stimulates the DNA-

dependent ATPase activities of TFIIH and the Carboxyl terminal domain (CTD) kinase 

of Rpb1 of Pol II. The CTD acts as a platform for interaction of many transcription and 

processing factors. TFIIE and TFIIH are thought to be required by RNA polymerase for 

promoter clearance (Peterson et al., 1991, Maxon and Tjian, 1994). TFIIE is also 

required for DNA melting at the promoter. TFIIH functions as a catalyst of ATP-

dependent DNA start site unwinding and also the phosphorylation of the CTD of the 

Rbp1 subunit of Pol II through its CDK7/cyclin H subunits. Once Pol II accesses the 

template strand, it starts the transcription of mostly abortive transcripts until a 

conformational change results in the release of Pol II from the promoter and 

transcription elongation begins (Lee and Young, 2000) (Figure 1).  

 

The phosphorylation of the CTD of Rpb1 in Pol II plays an important role in the 

regulation of efficient transcription and RNA processing (Horikoshi et al., 1992, Egloff 

and Murphy, 2008). The CTD in humans contains 52 heptapeptide sequence repeats 

(YSPTSPS). The CTD ‘code’ describes the regulation of Pol II by transient modifications 

of the CTD, of the second serine residue in the repeat (serine 2) during elongation and 

serine 5 phosphorylation at initiation. The CTD is phosphorylated by specific cyclin-

dependent kinases (CDKs) (reviewed in (Egloff and Murphy, 2008). TFIIH subunits 

CDK7/cyclin H phosphorylate the CTD on the serine 5 residues during initiation. Two 

other CDKs, CDK8/cyclin C and CDK9/cyclin T comprises the positive elongation factor 

(pTEFb) and phosphorylate the CTD during elongation. The CDK8/cyclin C are part of 

the mediator complex and phosphorylate the CTD on serine 2 or 5 during initiation (Lu 

et al., 1992, Hengartner et al., 1998, Komarnitsky et al., 2000). 
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Figure 1. RNA Polymerase II initiation complexes. 

Assembly of Pol II initiation complexes and highlighting the major GTF; Transcription 

factor for Pol II A, B, C, D, E, F, and H and the Carboxyl terminal domain (CTD) of Rpb1 

projecting from the assembly. 

 

 

1.1.2. Promoter clearance and elongation 

Pol II is recruited to promoters with a hypophosphorylated CTD. Upon 

hyperphosphorylation at serine 5 residues, promoter escape is facilitated and 

elongation progresses (Cutting et al., 1991, Yamamoto et al., 2001). The phosphor-

serine 5 CTD motif recruits capping enzymes immediately after promoter clearance to 

prevent the RNA from degrading and the activity of the capping enzyme is stimulated 

in vitro by serine 5 phosphorylation (Wen and Shatkin, 1999, Rodriguez et al., 2000). 

The regulator of transcription 1(Rtr1), a CTD phosphatase is bound and activated as 

the elongation progresses and the serine 5 phosphorylation mark is removed 

gradually (Mosley et al., 2009).  

 

Pol II 

+1 
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As the serine 5 phosphorylation gradually decreases serine 2 increases towards the 3’ 

end of genes marking the Pol II complex elongation process (Saunders et al., 2006). 

The phosphorylation of serine 2 by pTEFb is required for productive elongation 

(Marshall and Price, 1995). Two factors, DRB sensitivity-inducing factor (DSIF) and 

negative elongation factor (NELF) are associated with promoter proximal paused 

transcriptional complexes. pTEFb phosphorylates both the Spt5 subunit of DSIF and 

NELF relieving promoter proximal pausing of Pol II (Wada et al., 1998, Fujinaga et al., 

2004).  

 

In a cell, DNA is compacted in chromatin made up of basic units called nucleosomes. 

Each nucleosome contains an octameric core of histone proteins comprising two H3 - 

H4 dimers surrounded by two H2A-H2B dimers and the N-terminal histone tails 

protruding out from the nucleosome. DNA is wrapped twice around each histone 

octomer. Interestingly, it appears that NELF-induced promoter-proximal pausing is 

important for efficient transcription of many genes and may serve as a transcriptional 

checkpoint by obstructing nucleosome assembly around the promoter as the 

nucleosomes will impede the progress of transcription by Pol II (Gilchrist et al., 2008).   

 

Following the initiation and promoter clearance, the elongating Pol II can be affected 

by histones in the DNA. To aid the Pol II transcriptional elongation process the 

elongation factors Facilitates Chromatin Transcription (FACT) and Spt6 acts as histone 

chaperones by removing histones. FACT, a heterodimer that consists of Spt 16 and 

SSRP1 protein is recruited to elongation complexes through its association with Pol II, 

ATPase chromatin remodeller CHD1, and DSIF. It also mediates the removal or 

replacement of H3 when Anti-silencing function protein1 (Asf1) binds the Pol II 

associated factor1 (Paf-1) elongation complex and move along with Pol II is another 

representation of histone being modified to allow for the progress of transcription by 

Pol II (Orphanides et al., 1998, Kelley et al., 1999, Orphanides et al., 1999, 

Belotserkovskaya et al., 2003, Mason and Struhl, 2003). 
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1.1.3. Transcription factors  

A transcription factor (TF) is a protein that binds to DNA and is involved in its 

conversion to RNA. It contains domains that help it bind to specific DNA sequences to 

initiate and regulate gene transcription (Karin, 1990, Latchman, 1997).  TF can bind 

either promoter or enhancer region of DNA to regulate the gene activation or 

repression by promoting or obstructing RNA polymerase recruitment. In eukaryotes, 

an important class of TFs called general transcription factors (GTFs) forms part of the 

transcription initiation complex that interact with RNA polymerase to activate gene 

transcription. This allows genes to be expressed in specific manners and in different 

cell types during development. TFs either regulate the gene expression directly by 

attaching to specific DNA sequence through its DNA binding domain (DBDs) or with 

other regulatory sequences such as enhancers, these enhancers can be thousands of 

base pairs upstream or downstream from the gene being transcribed chromatin and 

requires looping to contact the activation domain as they lack DBDs (Roeder, 1996, 

Nikolov and Burley, 1997, Lee and Young, 2000).  

 

TFs bind DNA directly but can bind through interactions with other DNA binding TFs. 

DBDs of TFs recognise a specific sequence in DNA called the response element. The 

DBD is sequence specific but these sequences can be degenerative, so TFs have 

consensus motifs created by identifying all known binding sites and determining the 

extent to which nucleotides are conserved (Claessens and Gewirth, 2004). The DNA 

binding function is either structural or regulatory. DBDs involved in DNA structure 

have biological roles in DNA replication, repair and storage. DBDs interact with 

nucleotides in a DNA sequence specific manner and the recognition type is tailored to 

the protein’s function (Lefstin and Yamamoto, 1998). DBD may also interact with DNA 

in a non-sequence specific manner if there is molecular recognition between TF and 

DNA, the binding site sequence must be closely related to the consensus sequence.  

 

This means transcription binding can occur randomly highlighting the difficultly in 

predicting where a TF will bind in a cell. To achieve more recognition specificity, TF 

can also bind two or more adjacent sequence of DNA by using more than one DBD 
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(Hahn, 2004, Wang, 2005). Some types of DBDs include Zinc finger, leucine zipper, 

helix-loop-helix and homeodomains. Class I, Class II, Class IV HDACs have Zn-

dependent metalohydrolase activity and promote condensation of chromatin and 

gene repression, and are recruited by transcriptional repressors to specific genes (Kao 

et al., 2000, Li et al., 2000). 

  

TF can stimulate transcription in many ways including increasing PIC formation 

through direct interactions with components of the transcriptional machinery and can 

affect the rate of initiation, elongation and reinitiation (Orphanides et al., 1996, Lee 

and Young, 2000). TFs (activators) have a Transactivation domain (TAD) which act as 

a scaffolding domain for transcriptional coregulators. Through these they recruit 

chromatin modifiers to facilitate transcription by altering local chromatin structure 

and recent work suggests that specific transcription factor binding to DNA allows for 

accurate prediction of histone modifications present at that site (Benveniste et al., 

2014). Activators can have their activity further controlled by their interaction with 

co-activators e.g. TAFs and mediators. The amino acid sequence of co-activators does 

not exhibit many predicted functional domains and are interchangeable, they interact 

with DNA bound activators to determine the effect of the TFs on the DNA. Co-

activators function as a bridge between DNA and TFs and they modifying chromatin 

landscape and altering the composition of the core transcriptional machinery 

(Bjorklund and Gustafsson, 2005, Lonard and O'Malley, 2005, Copland et al., 2009). 

 

TFs can also contain a signal sensing domain (SSD) that may determine whether a TF 

is activated or deactivated during transcription to up/down-regulate gene expression. 

The SSD use several mechanisms such as ligand binding, for example, nuclear 

receptors that senses extracellular signals, bind DNA and regulate gene expression 

when a ligand is present. Depending on which coregulatory protein they recruit; co-

activators (which contain histone acetyltransferase HATs) or co-repressors (which 

contain histone deacetylases HDACs), they either promote or repress gene 

transcription.  Other mechanisms include protein phosphorylation e.g STAT proteins 

and interactions with other transcription factors or coregulatory proteins (Bohmann, 

1990, Weigel and Moore, 2007). In eukaryotes, combinatorial regulation of gene 
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expression where DBD and SSD residing on different TFs that associate within a 

transcription complex can occur, this type of regulation is often complicated with each 

specific combination resulting in different gene expression outcome (Remenyi et al., 

2004, Reece et al., 2011) (Figure 2).  This process can be complex with more factors 

involved and how and when they bind may also determining the effect on 

transcription.   
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Figure 2. Schematic representation of how combinatorial regulation may occur with 

different outcome for each transcription factor combination. (a) Shows transcription 

factors (activators and repressors) and their binding sites in a gene promoter. (b) 

Shows little or no transcription with only one activator present. (c) Shows gene 

activation when two activators are present and gene repression when one activator 

and one repressor is present (d) while (e) shows no transcription when the all three 

transcription factors are bound the gene expression is blocked.   
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1.1.4. Epigenetics and histone modification 

The nucleosome has ~147bp of DNA which completes nearly two full turns around the 

nucleosome with each nucleosome separated by 10-60 bp linker piece of DNA that is 

commonly bound by histone H1 on nucleosome near the entry of DNA (reviewed in 

(Peterson and Laniel, 2004). Modifications to both the histone tails and DNA regulate 

chromatin structure, accessibility to the gene and transcriptional machinery (Figure 

3).  

 

 

 

 

 

 

 

 

 

Figure 3. Diagram showing Epigenetic marks that regulate transcription. 
Chromosomal DNA is packaged around a histone octomer to form nucleosomes. 
Nucleosome spacing in the open structure that is accessible to nuclear factors is 
maintained, in part, by post-translational modification of histone tails, including lysine 
acetylation and specific lysine methylation of specific residues. CpG dinucleotides are 
unequally distributed throughout chromosomal DNA, and may be concentrated in 
regions called CpG islands that can overlap gene promoters. Methylation of cytosines 
in CpG dinucleotides is overall associated with inactive, condensed states of the 
chromosome. Inactive chromatin is also maintained by specific histone lysine 
modifications (Glant et al., 2014). 
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Epigenetic modification is a heritable stable change in gene expression that does not 

change the DNA sequence itself; this allows multiple cell types to differ despite sharing 

a DNA sequence. Chromatin can be remodelled in several interconnected ways: 

covalent histone modifications, exchanging the core histones with variants, disrupting 

the nucleosome and DNA modification (Kurdistani and Grunstein, 2003). One key 

epigenetic modification involves DNA methylation which commonly occurs at CpG 

motifs, termed ‘CpG islands’, which are regularly found 5’ to the coding sequences of 

constitutively expressed housekeeping genes, and are found at approximately 50% of 

promoters. DNA methylation of CpG islands promoters usually causes gene silencing 

by directly preventing transcription factor binding and recruiting methyl-binding 

domain proteins and histone deacetylases (HDACs) (Taby and Issa, 2010). It has been 

proposed that DNA methylation induced stable gene silencing may provide a memory 

function to progeny cells in remembering their identity (Riggs, 1990).  

 

Histone methyltransferases can mono (me), di (me2) or tri (me3) methylate histones 

on lysine residues and mono or di methylate histones (HKMTs) on arginine residues 

(HRMTs). Histone methylation can be either a positive (methylation sites associated 

with transcriptionally permissive chromatin called euchromatin) or negative 

(methylation sites fostering heterochromatin formation) influence on transcriptional 

regulation. Histone modification acts as binding sites and leaves a mark that effector 

proteins (coactivators or corepressors) read to allow specific transcriptional events 

(Armstrong, 2007, Volkel and Angrand, 2007).   

 

Post-transcriptional modification of the histone proteins, especially the histone tail, 

cause changes in gene expressions by either making the chromatin more or less 

accessible or directly recruiting other cellular factors that activate or inhibit 

transcription (Loizou et al., 2006). Histone acetylation at the ε-amino group of lysine 

residues in H3 and H4 tails is usually associated with promoting transcription and is 

also involved in loosening DNA histone contacts, during DNA replication and histone 

deposition, DNA repair and recruitment of proteins with acetyl binding domains.  
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Histone acetyltransferases (HATs) are the enzymes that catalyse lysine residues in 

both histone and non-histone proteins. Histone lysine methylation primarily occurs at 

the 5’ ends and gene promoters but can sometimes be detected throughout the gene. 

In the case of acetylysines, it is recognised by the bromodomain proteins (Kurdistani 

and Grunstein, 2003, Kim et al., 2006, Wang et al., 2008). 

 

Methylation of specific lysine (K) residues H3K4me2/3, H3K36me3 and H3K79me2/3 

is associated with gene activation, Set1, Set2 and Dot1 HKMTs are recruited directly 

by phosphorylated form of Pol II to the polymerase during elongation, for example 

Set1 associates with Ser5 phosphorylated form of Pol II and methylates H3K4 

(Nechaev and Adelman, 2008). Effector proteins (coactivators) play an important role 

in maintaining the chromatin transcriptional state by disrupting chromatin structure 

to allow Pol II promoter access, they include histone acetyltransferases HATs, ATP-

dependent remodelling complexes and HRMTs. For example, HATs targets H3 and H4 

histone tails and acetylate lysine residues, chromatin remodellers NURF/ISWI 

(ATPase) are involved in nucleosome repositioning by limiting access to the DNA 

during remodelling at target promoters (Mizuguchi et al., 1997, Gangaraju and 

Bartholomew, 2007, Li et al., 2007) and HRMTs targets H3 and H4 to methylate 

arginine residues (Kouzarides, 2007, Li et al., 2007). Activators may also recruit 

ATPases to remodel compacted chromatin before acetylation by HATs, for example, 

part of the SAGA HAT complex and chromodomain of Chd1 (ATPase) are recruited to 

the promoter proximal regions through Ser5 phosphorylated Pol II and bind by 

recognising the transcription activation mark at H3K4 methylation site (Vermeulen et 

al., 2007, Volkel and Angrand, 2007, Nechaev and Adelman, 2008). 

 

H3K9me3, H3K27me3 or H4K20me3 methylation states however, are associated with 

gene silencing or repression, for example, histone methyltransferase SUV39H1 and 

SUV39H2 methylate K9 on H3 and form a complex with heterochromatin protein 1 

(HP1) that is involved in repression of transcription at euchromatic sites (Lachner et 

al., 2001, Cheutin et al., 2003). The association between HP1 and DNA 

methyltransferases such as DMNT1 facilitates chromatin compaction and catalyses 
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the monoubiquitylation of histone H2A at K119 through ubiquitin ligases ring finger 

protein1 RING1A and RING 1B (Wang et al., 2004, Smallwood et al., 2007).  

 

DNMT1 maintains cellular levels of CpG methylation and during replication functions 

in a complex that recognises hemi methylated DNA to add methyl groups to non-

methylated daughter strands (Leonhardt et al., 1992, Cirio et al., 2008). The polycomb 

protein (Pc, CBX in mammals) binds to H3K27 through its chromodomain to regulate 

the repression of some genes to maintain pluripotency (Lennartsson and Ekwall, 

2009). When catalysed by the EZH2, a Polycomb repressive complex (PRC2) subunit, 

H3K27 is tri-methylated and interacts with PRC1 complexes to form a platform for the 

recruitment of DNA methyltransferases DNMT1, 3A and 3B highlighting cross-talk 

between DNA methylation and histone modification (Vire et al., 2006, Bannister and 

Kouzarides, 2011). The deacetylation of lysine residues on histone tails by histone 

deacetylases (HDACs) also promotes the closed chromatin state reducing promoter 

access leading to gene repression (Bannister and Kouzarides, 2011, Xhemalce B et al., 

2011).  

 

The HAT families, CREB binding protein (CBP), p300, MYST, and GNAT deposition of 

acetyl groups are mostly site specific, for example, GNAT members PCAF and GCN5 

acetylate H3 at lysine residues 9, 14 and 18 differentially during biological processes 

(Kouzarides, 2007, Berndsen and Denu, 2008), CREB binding protein (CBP) and p300 

can acetylate targets both in vitro and in vivo including H2AK5, H2BK12, H2BK15, 

H3K14, H3K18, H4K5 and H4K8 (Sterner and Berger, 2000, Kouzarides, 2007). 

Disruption to normal acetylation activity of CBP/p300 family members is associated 

with an autosomal dominant syndrome called the Rubenstein-Taybi syndrome,(Petrij 

et al., 1995, Zimmermann et al., 2007), highlighting the essential role these cofactors 

play in the regulation of proper gene expression combinations important in 

development and differentiation (Handy et al., 2011).  

 

Bromodomains, a recognition domain consisting of 4 D helices and 2 hydrophobic 

loops contained in the CBP/p300 and PCAF and GCN5 mediate their binding to 

acetylated lysine residues (Haynes et al., 1992). HATs deposit acetyl groups that 
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includes the GCN5 proteins and studies on GCN5 have revealed that it may be directed 

to H3K14 by surrounding residues(Rojas et al., 1999), in this case a glycine and a 

proline, which suggests substrate specificity partly due to short preferred consensus 

sites (Cieniewicz et al., 2014). Post translational modifications of histone tails were 

also shown to promote protein-protein interactions modulating transcription. TUP1, 

a protein involved in transcriptional silencing in yeast was shown to bind with greater 

affinity to unacetylated or monoacetylated histone H3 and H4 than hyperacetylated 

forms (Edmondson et al., 1996). HATs also acetylate proteins involved in transcription 

like GTF TFIIE and TFIIF (Imhof et al., 1997), CDK9 an elongation factor (Fu et al., 2007), 

and p53 whose acetylation by the CBP/p300 accounts for its stability and 

transcriptional regulation(Lill et al., 1997, Barlev et al., 2001, Ito et al., 2001). 

 

The histone deacetylases (HDACs) remove the acetyl group deposited on histones by 

HATs through a process requiring careful regulation and balance. Deacetylation of 

histones contributes to the compaction of DNA, transcriptional repression and 

correlates with CpG methylation and the inactive state of chromatin (Marmorstein, 

2001, Wade, 2001, de Ruijter et al., 2003). There are 4 classes of histone deacetylase 

enzymes (HDACs); Class I, Class II, Class IV and Class III/SIRTUIN family with members 

able to deacetylate of histones and/or other protein targets (Michan and Sinclair, 

2007). The HDACs have poor catalytic function without associating with other factors 

and are themselves subject to regulation by acetylation, phosphorylation, and 

sumoylation, this can affect their activity, subcellular distribution, and proteins they 

associate with (Codd et al., 2009, Mellert and McMahon, 2009). HDACs are known to 

associate with repressive complexes like nucleosome remodelling deacetylating 

complex (NuRD), co-repressor of RE1 silencing transcription factor (Co-REST) 

(Ahringer, 2000, de Ruijter et al., 2003, Belyaev et al., 2004).  HDACs have also been 

identified in the same complexes as HATs. Class I HDACs can interact with GCN5 and 

HDAC1 can interact with PCAF. Studies have also shown that GCN5 interaction with 

the CLR3 HDAC complex can regulate H3K14 acetylation on yeast (Yamagoe et al., 

2003, Johnsson et al., 2009, Johnsson and Wright, 2010).  

 



17 
 

Histone modification has been intensely studied by many laboratories in recent years 

as we try to understand epigenetic modifications and their functions. The ENCODE 

project has enabled much progress as a result of different labs conducting ChIP 

sequencing experiments to map where different marks and TFs may localise in the 

human genome in different cell lines. This pool of data is publicly accessible and 

different users can align their own data against the resource. Some epigenetic 

modifications studied in the ENCODE project are listed in the Table below (Table 1). 
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Histone 

 

Histone 

modification 

Transcriptional effect/ gene or chromatin location 

H3 K4me1 Gene activation/Important in development 

 K4me2 Gene activation 

 K4me3 Gene activation /5’ end transcriptionally active gene 

 K9ac Gene activation 

 K9me1 Gene silencing/ 5′ end of genes/ euchromatin 

 K9me2 Gene silencing/euchromatin 

 K9me3 gene silencing/promoters & heterochromatin 

gene activation/gene coding region 
 K27ac Gene activation 

 K27me1 Gene silencing/ heterochromatin 

 K27me3 gene silencing/inactive X-chromosome, imprinted regions & 
homeotic genes  

 

 K36me3 Gene activation (elongation) 

 K79me1 Gene activation 

 K79me2 Gene activation/preference for 5′ end of genes 

H4 K20me1 Gene silencing/Preference for 5′ end of genes 

 K20me2 Gene silencing/ heterochromatin 

 K20me3 Gene silencing/ heterochromatin 

 

Table 1. Table showing histone acetylation and methylation modifications, their locations, 

and the effects on transcription regulation (Handy et al., 2011). 
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1.1.5. Role of enhancers in transcriptional regulation 

An enhancer is short region of DNA, about 50-1500bp that can be bound by TFs to aid 

the transcriptional regulation of a specific gene. Enhancers are generally found 

scattered within the non-coding regions of the human genome and can act at long 

distances from their target genes. They can be located up to 1 Mbp upstream or 

downstream from the gene TSS, and in the forward or backward direction. The 

orientation may be reversed without affecting enhancer function (Blackwood and 

Kadonaga, 1998, Maston et al., 2006a, Pennacchio et al., 2013). Studies suggest that 

general information processing that occurs on enhancers occurs through the 

coordinate action of the enhanceosome, a cooperative protein complex that 

assembles at the enhancer and regulates target gene expression due to protein-

protein interactions within the complex. An alternative mechanism for enhancer 

function has also been suggested. This mechanism called a flexible information display 

or billboard is less integrative, and postulates that multiple proteins regulate gene 

expression independently and the basal transcription machinery sums up their read 

(Arnosti and Kulkarni, 2005). 

 

The regulation of transcription is initially coordinated by DNA elements which include 

the core promoter, promoter proximal elements and distal sites such as enhancers, 

silencers, insulators and locus control regions. These DNA elements create a module 

that allows cellular factor sets to bind in an ordered fashion creating a pool of unique 

expression patterns. When gene expression control is combined by factors bound at 

multiple DNA elements, it allows cells to respond rapidly to environmental or 

developmental stimuli (Venter et al., 2001). 

 

The core promoter is the site at which Pol II and general transcription factors bind, it 

identifies the transcription start site and direction of transcription(Smale and 

Kadonaga, 2003). The core initiation complex although able to transcribe a gene, 

generally only produces low levels of mRNA. DNA sequences that help recruit 

members of the Pol II initiation complex are present in the core promoter, however, 

statistical analysis of ~10,000 known promoters has shown only one eighth contain a 

https://en.wikipedia.org/wiki/DNA
https://en.wikipedia.org/wiki/Gene
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TATA box, and a quarter had none of the proposed core promoter DNA elements 

(Gershenzon and Ioshikhes, 2005). This suggests that other undescribed core 

promoter elements may be involved or the known sequences can be much more 

degenerate than initially implied. Another suggestion is that the exact sequence is 

secondary to the DNA secondary structure at the core promoter. Studies suggest that 

the way core promoter elements are composed contributes to the specific regulatory 

patterns of distal regulatory inputs (Morris et al., 2004, Florquin et al., 2005). Initiator 

elements (Inr) that surround the TSS can also direct accurate initiation when the TATA 

element is absent. The Inr is present in both TATA containing and TATA-less promoters 

and can direct transcription initiation itself or in association with downstream 

promoter elements (DPE) (Smale and Baltimore, 1989). Enhancers do not bind to the 

promoter region itself, they are bound through activator proteins, these activators 

generally bind to promoter proximal elements within a few hundred base pairs of the 

core promoter and this allows the enhancer to interact with GTFs and Pol II(Ptashne 

and Gann, 1997, Maston et al., 2006b, Eichenlaub and Ettwiller, 2011). Acetylation of 

histone H3K27 is regarded as a marker for active enhancer sites (Creyghton et al., 

2010). 

 

A single promoter can be acted upon by distinct enhancers at different times or in 

different tissues, allowing more unique gene expression patterns that cannot be 

achieved from promoter proximal elements alone (Atchison, 1988). Enhancers 

typically contain a cluster of transcription factor binding site TFBS, whose wide 

organisation and orientation to each other is important to its function as cis-

regulatory elements. Studies have shown that inserting 6bp of random DNA between 

two TFBS in an enhancer reduces its activating ability by ~17 fold (Thanos and 

Maniatis, 1995).  The difference between enhancers and promoter proximal elements 

may be the distance over which enhancers act, otherwise, they appear to function 

similarly and protein bound enhancers use many of the same mechanisms to stimulate 

transcription as promoter proximal elements and can physically contact the promoter 

in question via DNA looping (Vilar and Saiz, 2005).  
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Interestingly, it has been found that contact between enhancers and promoters on 

different chromosomes is possible. In fact, one enhancer was shown to interact with 

multiple promoters on different chromosomes, and it is likely that some promoters 

are contacted by multiple enhancers from different chromosomes (Spilianakis et al., 

2005, Lomvardas et al., 2006). Genes involved in critical developmental processes 

contain multiple enhancers with overlapping function. Secondary or shadow 

enhancers may be found many kb away from the primary or first enhancer, which is 

often closer to the gene being regulated. On its own, each enhancer drives nearly 

identical gene expression patterns but in some cases, a single enhancer sometimes 

fails to drive the complete pattern of expression while the presence of both enhancers 

allows for normal gene expression to be achieved (Perry et al., 2010). 

 

In the mammalian genome, regions of putative enhancer clusters which are bound by 

high levels of activation-related TFs, BRD4, the mediator component Med1 and emit 

broad Chip-seq signals are called super-enhancers (Hnisz et al., 2013, Whyte et al., 

2013, Pott and Lieb, 2015). Because of their proximity to genes important for 

controlling cell identity, they are said to play a major role in cell identity and 

oncogenesis. They also share typical enhancer function like looping to target genes 

and transcription activation, but are more sensitive to perturbation than typical 

enhancers. They are responsive to different signals, allowing the regulation of a single 

gene transcription by multiple signalling pathways (Lovén et al., 2013, Hnisz et al., 

2015, Pott and Lieb, 2015). Notch signalling pathway is an example of pathway that 

regulates target genes using super-enhancers (Yashiro-Ohtani et al., 2014).       

1.2. Epstein-Barr virus 

The Epstein-Barr virus (EBV) is a human γ-herpes virus found to asymptomatically 

infect the B-lymphocytes of more than 90% of the world population and establish a 

lifelong latent state. It was identified in 1964 by Epstein, Achong and Barr in a cell line 

made from a biopsy of an African patient diagnosed with Burkitt’s lymphoma (Young 

and Murray, 2003). EBV was viewed under the electron microscope as viral-like 

particles in a series of Burkitt’s lymphoma cell lines (LCL) (Epstein et al., 1964). EBV is 

a member of the herpesviridae family. The herpesviruses are divided into α, E and J 
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sub families. Due to its B cell tropism and its ability to replicate in lymphoblastoid and 

epithelial cell lines in vitro, EBV is classified as a J-herpesvirus (Roizman et al., 1981). 

The genome of EBV exists as a 172kb double stranded linear DNA molecule encased 

in a protein envelope(Hutt-Fletcher, 2007). 

  

Infection usually occurs during the early years of childhood when the maternal 

antibodies recede, through contact with saliva, and is asymptomatic. If primary 

infection is delayed until adolescence infectious mononucleosis (IM) (glandular fever) 

can occur. Glandular fever symptoms vary due to differences in the immune system 

response, but can include fever, sweating, sore throat and severe fatigue. In addition 

to transmission through saliva EBV can be transmitted through blood transfusion into 

a seronegative person (though rarely reported) and also through sexual transmission 

as EBV has been discovered in high levels in male and female genital secretions (Henke 

et al., 1973, Macsween and Crawford, 2003). Primary EBV infection in adults results in 

T lymphocyte proliferation and the release of cytokines, while in childhood i.e. the 

asymptomatic infection, T lymphocytes do not proliferate (Williams et al., 2004). 

 

             1.2.1. EBV infection 

EBV infects B cells and epithelial cells with different outcomes. Lytic infection is 

observed in epithelial cells of the nasopharynx in vivo and latent infection is observed 

in resting B-lymphocytes (Callan et al., 1996, Young and Rickinson, 2004). EBV is 

thought to enter the body through the mouth and replicates in the oropharynx 

thereby releasing infectious viral particles in the oral cavity (Macsween and Crawford, 

2003). The B-lymphocyte is infected by binding of the glycoprotein gp350 to CD21 

(CR2 receptor) on the B-cell surface in addition to the binding of gp42 to the human 

leucocyte antigen class II molecule (Young and Rickinson, 2004). Once internalised, 

the terminal repeats at either end of the viral genome fuse to form a circular episome 

which can then be transcribed by the cellular transcription machinery to encode the 

series of EBV proteins needed to infect and immortalise cells. EBV also replicates 

spontaneously in latently infected B-cells in a small quantity as a result of viral 

reactivation. After infection of B cells, EBV enters lytic replication when sporadically 



23 
 

reactivated from latency, taking the cells through the cycle and producing the 

components of its viral progeny. The cell is arrested in the G0/G1 phase inhibiting 

growth and amplifying its own genome 100 – 1000 before lysis occurs. The lytic phase 

allows the virus to be distributed, important in establishment of the host to host 

transmission (Macsween and Crawford, 2003, Burns and Crawford, 2004, Tsurumi et 

al., 2005).  

 

EBV can immortalise resting B cells in vitro to generate latently infected and 

permanently proliferating Lymphoblastoid cell lines (LCLs) (Henle et al., 1967). EBV 

encodes almost 90 genes, only 11 are expressed in EBV immortalised LCLs and of the 

11 genes, 9 encode the latent proteins: EBV nuclear antigens 1, 2, 3A, 3B, 3C, LP and 

Latent membrane proteins 1, 2A and 2B (Young and Rickinson, 2004). The remaining 

2 genes encode the RNAs EBER1 and EBER2 which remain untranslated and non-

polyadenylated and the latency III BamH1 A rightward transcript (BART transcripts and 

miRNAs) which is associated with B cell growth and proliferation (Figure 3) (Murray 

and Young, 2001, Young and Rickinson, 2004).  

 

Infected B cells migrate to the follicles to undergo the germinal centre (GC) reaction 

where they proliferate and differentiate into memory B cells(Klein and Dalla-Favera, 

2008). During the GC reaction, the latency III growth programme is down regulated to 

a latency II transcriptional program expressing EBNA 1, LMP1, LMP2A and LMP2B only 

(Thorley-Lawson, 2001). The proteins expressed in latency II are thought to drive 

aberrant GC B cell survival stopping infected cells from undergoing apoptosis (Babcock 

et al., 2000, Roughan and Thorley-Lawson, 2009, Spender and Inman, 2011). EBV 

therefore can provide the signals needed for survival in these cells (Caldwell et al., 

1998, Caldwell et al., 2000, Bechtel et al., 2005). After the GC reaction, EBV expressing 

either no latent genes or EBNA1 (latency 1) establishes a lifelong persistence in 

memory B cells(Babcock et al., 1998). 
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Figure 4. Diagram showing the location of latency genes within the viral genome.   Origin of 

replication (OriP) is shown in orange and the primary message produced from Wp or Cp is shown in 

red. This is then alternatively spliced to produce the latent gene transcripts shown with purple arrows. 

The EBNA1 promoter transcript encoding EBNA1 is shown in blue. The terminal repeats where 

circularisation takes place are shown in pink. Location and details of the LMP promoters and locations 

of the EBV encoded RNAs are also displayed (Murray and Young, 2001, Young and Murray, 2003). 
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EBNA 1, 2, 3A, 3C and LMP1 have been shown to play a critical role in the 

immortalisation process; when EBNA 2, 3C and LMP1 are individually expressed in 

human cells they can induce LCL-like phenotypic changes (Wang et al., 1990a). The 

role of EBV latent genes was later confirmed in the in vitro transformation of B cells 

by the generation of recombinant forms of EBV that lack individual latent genes (Knipe 

et al., 2001). In primary infection, EBV replicates in epithelial cells and establishes 

Latency III, II, and I infections in B-lymphocytes, the infected cell migrates to follicles 

and undergo germinal centre reaction, it is during this reaction that latency III is 

downregulated to latency II, after the GC reaction EBV established lifelong in memory 

B cells by expressing latency I or 0 (Babcock et al., 1998, Thorley-Lawson, 2001). 

Studies examining EBV latent gene expression in virus-associated tumours and cell 

lines have also revealed EBV latency I and II to be found in BL biopsies (Knipe et al., 

2001, Tao et al., 2006). Of all the latent proteins, EBNA1 is the only protein consistently 

expressed throughout the different EBV protein expression patterns observed in 

tumours probably because of its role as a DNA binding protein binding the origin of 

plasmid replication (oriP) to induce viral replication and maintain of the episomal EBV 

genome (Rickinson and Kieff, 1996). 

 

              1.2.2. EBV associated diseases 

 In addition to Burkitt’s lymphoma, EBV has been implicated in the development of 

tumours such as Hodgkins’s disease, T-cell lymphoma, undifferentiated 

nasopharyngeal carcinoma, AIDS associated immunoblastic lymphoma and transplant 

associated immunoblastic lymphoma.  

1.2.2.1. BL 

Burkitt’s lymphoma (BL) is classified into 3 forms; endemic, sporadic and HIV/AIDS-

related and EBV was implicated in endemic BL pathogenesis after being discovered in 

its cell lines. The association of EBV with sporadic and HIV/AIDS related tumours is less 

widespread with less than 40% incidence (Burkitt, 1958, Epstein et al., 1964, Magrath, 

1990). EBV-positive BL tumours usually occur in young children and present as 

tumours around the eyes, jaws and abdomen; whereas EBV-negative tumours are 

seen in the abdomen of all age groups (Thorley-Lawson and Allday, 2008). 
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Holoendemic malaria has been shown to coincide in areas with endemic BL and BL 

incidence decreases in areas with malaria eradication programmes (Burkitt, 1983, van 

den Bosch, 2004). Therefore, malaria has been classed as an endemic BL co-factor and 

has been shown to cause EBV reactivation and suppression of T-cell mediated 

responses (Ho et al., 1986, Ho et al., 1988b, Donati et al., 2004).  

 

The unifying feature of BL is a translocation of the oncogene MYC to an 

immunoglobulin locus; this translocation is dependent on activation-induced cytidine 

deaminase (AID) which is highly expressed in the GC (Filipovich et al., 1992, Dorsett et 

al., 2007, Pasqualucci et al., 2008, Allday, 2009b). The resulting hyper activation of 

MYC signalling as a result of its translocation to the immunoglobulin locus leads to 

apoptosis, perhaps the role of EBV is to counteract the high apoptosis rate either 

through EBERs or lingering epigenetic modifications of genes induced by other EBV 

factors (Allday, 2009a).  

1.2.2.2. HL 

Hodgkins lymphomas (HL) account for 30% of all lymphoid malignancies and, 

depending on the subtype of the disease, is up to 95% associated with EBV (Harris et 

al., 1999). There are two different types; classical HL which is characterised by the 

presence of Reed-Sternberg cells, often infected with EBV and expressing high levels 

of latent transcripts EBNA 1, LMP1, LMP 2A/B, BARTS RNAs and EBERs and the nodular 

lymphocyte predominant HL which only has 1% of the tumour mass accounting for 

malignant cells in the microenvironment surrounding it (Weiss et al., 1987, Weiss et 

al., 1989, Farrell and Jarrett, 2011). In classical HL, the expression of LMP1 and LMP2A 

mimics CD40 and BCR signalling respectively. This may provide the aberrant survival 

signals that HL need to survive and contribute to the loss of B cell identity that is 

characteristic of classical HL (Dukers et al., 2004, Mancao et al., 2005, Dutton et al., 

2007, Kapatai and Murray, 2007, Mancao and Hammerschmidt, 2007). 
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1.2.2.3. NPC 

Nasopharyngeal carcinoma (NPC) is very prevalent in Southeast Asia and Southern 

China (Chang et al., 2009). It is an epithelial cell tumour and is 100% associated with 

EBV depending on the location and subtype. It was discovered in early pre-invasive 

lesions indicating the virus in the initiation of tumours (Wolf et al., 1975, Raab-Traub 

et al., 1987). NPCs express a high level of latency II transcripts (LMPs, EBNA 1 and 

EBERs) (Brooks et al., 1992). EBNA 1 and LMP 1 have been shown to upregulate 

chemokine production and recruit T cells augmenting the survival of undifferentiated 

nasopharyngeal carcinoma (UNPC) cells, a type of NPC (Lai et al., Agathanggelou et al., 

1995, Lai et al., 2010). UNPC is characterised by the presence of a large lymphocyte 

infiltrate with a lower percentage UNPC cells, LMP1, LMP 2A, EBNA 1 and the ERERs 

are highly expressed in UNPC and EBV is present in a latency II state (Brooks et al., 

1992).  

Various T cell lymphomas such as the one occurring in the nasal cavity has also been 

shown to associate with EBV with both EBNA 1 and EBER 1 transcripts detected in 90% 

of the lymphoma. It is prevalent in Asia and China and are characterised by an absence 

of T cell antigens and infection may occur during T cell activation and eradication of  

EBV infected cells (Brink et al., 2000). 

             1.2.2.4. IM 

Infectious mononucleosis (IM) occurs when infection is delayed until adolescence, and 

is characterised by up to 1% EBV-positive cells in the B cell pool (Henke et al., 1973, 

Klein et al., 1976). It can become fatal if EBV-negative transformed cells become 

dominant, as seen in immune-supressed patients (Falk et al., 1990). In infected B cells, 

all EBV latency types expression can be detected and in response to delayed infection, 

a large hyper-activated T cell response that targets both latent and lytic proteins is 

generated, this contributes to the pathogenesis of the disease (Callan et al., 1996, 

FIELDS et al., 2001, Precopio et al., 2003). A study of the disease pathogenesis 

demonstrated the activation of improper CD8+ T cells could contributed to the 

pathogenesis (Clute et al., 2005). 
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1.2.2.5. PTLD  

Post-transplant lymphoproliferative disease (PTLD), a disease occurring in up to 10% 

of transplant patients, can arise as a result of EBV infection in 50% of cases in patients 

who have undergone artificial knock down of the immune system to prevent graft vs 

host disease (Ho et al., 1988a, Brink et al., 1997). These cells express a latency III 

pattern of gene expression, the products of which are generally considered to be the 

primary effector in tumour development. The disease could be fatal in 50% of cases 

with children who acquire EBV lymphoma post-transplant having the highest mortality 

rate (Brink et al., 1997, Nalesnik, 1998, Collins et al., 2001). 

1.2.3. EBV latent gene promoters 

Once infection takes place, the first latent promoter to become active is the W 

promoter (Wp), located within the tandem IR1 repeat regions (Woisetschlaeger et al., 

1990) (Figure 3). The EBV genome has a variable number of IR1 repeats between viral 

isolates. Ex vivo studies showed a mean of 5 to 8 IR1 repeats present in IM patients, 

in accordance with the optimal number of repeats required for transformation 

(Tierney et al., 2011). Each IR1 repeat contains a Wp, regulated by B cell transcription 

factors such as PAX 5 (Tierney et al., 2007). Transcription from Wp results in the 

synthesis of detectable EBNA-LP and EBNA 2 protein between 8 and 12 hours (Allday 

et al., 1989, Alfieri et al., 1991, Tierney et al., 2007). Around 48 hrs post infection, the 

main latent C promoter (Cp) is activated by EBNA 2 (Sung et al., 1991). Following Cp 

activation, Wp is subsequently methylated and transcriptional activity is reduced 

(Tierney et al., 2000b). 

 

The C promoter (Cp) is only active in B cells and drives the transcription of an 

approximate 120kb pre-mRNA that is differentially spliced to generate messages 

encoding all the other EBNAs required for immortalisation, including EBNA 1 

(Bodescot et al., 1987). EBNA 2 is the main regulator of Cp, this was demonstrated 

when primary infection using an EBNA 2-deleted virus mainly used Wp and did not 

switch back to Cp (Woisetschlaeger et al., 1991). Cp requires cellular transcription 

factors for its activity. When EBNA 2-dependant Cp is activated, RBP-Jk and Activating 

Transcription Factor 2 (ATF2) binding site are noted to be required (Ling et al., 1993, 
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Fuentes-Panana and Ling, 1998). Transcriptional activators NF-Y, SP1, SP3 and C/EBP 

also interact with Cp upstream elements in Rael cells, furthermore, NF-Y and Sp1 were 

shown to be required for Cp activation in the presence of EBNA 2, which may be 

important for the Wp to Cp switch (Nilsson et al., 2001, Borestrom et al., 2003).  

 

The binding of a chromatin binding factor known as CCCTC-binding factor (CTCF) 

between OriP and Cp may contribute to the maintenance of specific latency. Using the 

chromosome conformational capture technique, it was revealed that CTCF binding 

upstream of Cp and Wp together with both cellular and viral factors influenced the 

different tertiary chromatin structures associated with latency I and III cells. CTCF may 

therefore restrict access of transcriptional machinery to various latent promoters by 

looping DNA (Chau et al., 2006, Tempera et al., 2010, Tempera et al., 2011). Cp can 

also be subjected to epigenetic regulation since in latency I or II cells where Cp is not 

active, Cp is methylated on CpG dinucleotide sequence stopping transcription factor 

binding and promoter activity (Tierney et al., 2000a, Bakos et al., 2007). 

 

LMP 1 is expressed from the EBNA 2 dependent bi-directional LMP1 promoter 

(LMP1p) (Wang et al., 1990b). The LMP 1 gene is totally contained within the LMP 2A 

gene locus on the opposite DNA strand which means transcription occurs in the 

reverse orientation (Figure 4). Furthermore two RBPJk sites control the bi-directional 

transcription of LMP 1 and the truncated form of LMP 2A, LMP 2B (Meitinger et al., 

1994). Also, required for EBNA 2 dependent transcription are key regulatory regions 

mapped within the LMP1 regulatory sequence (LRS) including a PU.1 binding site, 

cAMP response element (CRE) and AP-2 consensus site (Laux et al., 1994, Johannsen 

et al., 1995a, Sjoblom et al., 1998, Jansson et al., 2007). They all play a role in EBNA 2 

dependent LMP 1p, LMP 1p can also be co-activated by EBNA 3C through a PU.1 

binding motif (Zhao and Sample, 2000, Lin et al., 2002).  

 

In the absence of EBNA 2 in latency II, LMP 1p can be activated by a heterodimer 

complex of ATF-1 and CREB-1 at CRE (Sjoblom et al., 1998). Additionally, an upstream 

E-box motif can also regulate LMP 1p activity (Sjoblom-Hallen et al., 1999). Once EBNA 

2 and the latency III growth programme have been switched off, only EBNA 1 and the 
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LMP genes are expressed. However, EBNA 1 is expressed from an alternate latent 

promoter Qp (Schaefer et al., 1995). In healthy adults infected with EBV, memory B 

cells harbouring the virus are usually in latency 0 (no viral protein expressed) (Babcock 

et al., 1998) 

1.2.4. EBV latent genes 

1.2.4.1. EBNA-LP 

The EBNA leader protein (LP) is essential for efficient B-cell immortalisation (Mannick 

et al., 1991, Allan et al., 1992). During early infection, different isoforms of EBNA-LP 

can be detected because the entire EBNA-LP coding sequence is contained within the 

W repeat region (IR1) (Speck et al., 1986, Wang et al., 1987b). Therefore, the size of 

EBNA-LP transcripts depends on the number of W repeats contained and from which 

Wp transcription is initiated from (Sample et al., 1986, Finke et al., 1987). The Cyclin 

D2 gene was the first demonstration of EBNA-LP functioning as a transcriptional co-

activator with EBNA 2 (Sinclair et al., 1994).  

 

In addition, EBNA-LP has been shown to co-activate all EBNA 2-dependent viral genes 

(Harada and Kieff, 1997, Nitsche et al., 1997) and the cellular gene hes1 (Portal et al., 

2011). Furthermore, the phosphorylation of the EBNA-LP Serine 35 residue is critical 

for the EBNA 2 dependent co-activation of LMP1 (McCann et al., 2001). Although the 

precise mechanism of EBNA-LP co-activation is unknown, EBNA-LP has been shown to 

bind co-repressor complexes such as Histone deacetylase 4 (HDAC 4) and NCoR 

resulting in the association between EBNA 2 and RBPJk being enhanced at promoters 

(Portal et al., 2006, Portal et al., 2011).  

1.2.4.2. EBNA 1 

EBNA 1 is the only latent protein expressed in all latencies and all EBV-associated 

diseases. EBNA 1 is a multifunctional viral protein that is required for B cell 

immortalisation (Humme et al., 2003). Through its interaction with OriP binding 

elements, EBNA 1 regulates viral replication, chromosome segregation and 

transcription (Yates et al., 1984, Lupton and Levine, 1985, Rawlins et al., 1985, Yates 

et al., 1985, Sugden and Warren, 1989). OriP contains two EBNA 1 binding elements; 

family of repeats (FR) and dyad symmetry (DS) (Reisman et al., 1985). DS is required 
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for viral replication (Wysokenski and Yates, 1989), while FR has been linked to mitotic 

segregation and transcriptional function (Reisman and Sugden, 1986).  

EBNA 1 has been shown to enhance both Cp and LMP 1 transcription through OriP 

binding and to regulate its own expression in latency I cells through Qp (Sugden and 

Warren, 1989, Sample et al., 1992, Gahn and Sugden, 1995). Furthermore, EBNA 1 was 

shown to functionally interact with the chromatin adapter protein Brd4, therefore 

EBNA 1-dependent transcription may be mediated through the elongation factor 

pTEFb, known to be a binding partner of Brd4 (Jang et al., 2005, Yang et al., 2005). 

Further interactions with cellular protein and p53 regulator USP7 elude to a potential 

anti-apoptotic function (Saridakis et al., 2005).  

1.2.4.3. EBNA 2 

EBNA 2 is a transcriptional regulator of both cellular and viral genes. It initiates and 

maintains the growth of infected B cells during latency III. P3HR-1 an EBV strain 

carrying a deletion of the gene encoding EBNA2 and the last two exons of EBNA-LP 

gave the first indication of the important role played by EBNA2 protein in B cell 

immortalisation by its inability to transform B cells (Cohen et al., 1989, Knipe et al., 

2001).  Upon restoration of EBNA 2 protein into P3HR-1, functionally essential 

domains of the protein were identified and this confirmed the role of EBNA 2 in the B 

cell transformation process (Rabson et al., 1982, Hammerschmidt and Sugden, 1989).  

 

EBNA 2 transactivates Cp and drives the switch from Wp to Cp in the early stages of B 

cell infection. EBNA 2 does not bind DNA directly, it interacts with RBP-Jk a cellular 

DNA binding protein to bind upstream of and activate the latent promoters C (Sung et 

al., 1991, Jin and Speck, 1992), LMP1, LMP 2A and LMP 2B. This makes RBP-Jk partly 

responsible for targeting EBNA 2 to promoters containing the RBP-Jk consensus 

sequence processing a common core sequence (GTGGGAAA) (Fåhraeus et al., 1990, 

Ghosh and Kieff, 1990, Wang et al., 1990b). RBP-Jk (CBF 1) is a cellular Notch-pathway 

adapter protein that recruits co-repressor complexes containing Ski-interacting 

protein (SKIP), histone deacetylases HDAC1 and HDAC2, Sin3A and silencing mediator 

for retinoic acid receptor and thyroid hormone receptor (SMRT) to repress 

transcription by condensing DNA and blocking transcription factor access (Kao et al., 

1998, Zhou et al., 2000a, Zhou and Hayward, 2001). EBNA 2 activates repressed 
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subsets of RBPJĸ targeted genes by binding to and masking the RBPJĸ repressive 

domain whilst recruiting transcriptional activators to the same sites (Figure 5) (Hsieh 

and Hayward, 1995). 

 

RBP-Jk repressed promoters are also activated by Notch receptors in a similar fashion 

(Grossman et al., 1994, Zimber-Strobl and Strobl, 2001). RBP-Jk is a downstream target 

in the Notch pathway. When the Notch pathway is activated by extracellular ligands 

bound to the Notch receptor, the intracellular domain of Notch, Notch-IC is cleaved 

which then interacts with RBP-Jk bound to DNA leading to transactivation by 

displacing the HDACs and recruiting HATs like p300. EBNA 2 can mimic the effects of 

intracellular (active) Notch in its association with RBP-Jk and can functionally replace 

the intracellular region of Notch at some targets so that the extracellular stimulation 

of the Notch receptor is redundant (Sakai et al., 1998, Zimber-Strobl and Strobl, 2001).  

 

Like Notch proteins, EBNA 2 can simultaneously bind RBP-Jk and SKIP to displace 

repressive complexes activating transcription (Sakai et al., 1998, Zhou et al., 2000a, 

Zhou et al., 2000b). Isoleucine residues 307 and 308 contained in the conserved region 

5 (CR5) and residues 318- 327 contained in the CR6 are crucial of EBNA 2 are crucial 

for EBNA 2 interaction with SKIP and RBP-Jk respectively (Figure 5) (Ling et al., 1993, 

Yalamanchili et al., 1994, Ling and Hayward, 1995, Zhou et al., 2000a). It has been 

shown that mutation of amino acid residues 323 and 324 completely abolished RBP-

Jk binding and Cp activation (Ling et al., 1993). Furthermore, mutation studies on RBP-

Jk showed reduced LMP1p transcriptional activation by 60% and demonstrated that 

removal of B cell specific transcription factor PU.1 binding site at the LMP1p eliminates 

EBNA 2 responsiveness as PU.1 no longer recruits EBNA 2 to this site (Johannsen et 

al., 1995a, Sjoblom et al., 1995, Sjoblom et al., 1998).  

 

In addition to viral genes, EBNA 2 has also been shown to regulate transcription of 

hundreds of cellular genes, most targets upregulated by mechanisms that are not yet 

fully understood (Thompson et al., 1999, Cahir-McFarland et al., 2004, Maier et al., 

2006). EBNA 2 is known to up-regulate CD21 (Cordier et al., 1990), the cell surface 

receptor utilised by the EBV for internalisation (Fingeroth et al., 1984). Other cellular 
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targets up-regulated by EBNA 2 include the B cell activation marker CD23 (Wang et al., 

1987a), the proto-oncogene c-MYC (Kaiser et al., 1999), the B cell transcription factor 

RUNX3 (Spender et al., 2002) and the G1 cyclin, Cyclin D2 (Sinclair et al., 1994) 

proteins. 

 

EBF and RUNX proteins have been implicated in targeting EBNA 2 to DNA (Zhao et al., 

2011). Once associated with DNA through a cellular binding partner EBNA 2 can 

transactivate through numerous mechanisms with its acidic transactivation domain 

(TAD) which has shown to be essential for transformation and transactivation (Cohen 

et al., 1991, Zhao et al., 2011). EBNA 2 TAD-GAL4 was shown to upregulate expression 

from plasmids containing GAL4 binding sites 125-fold compared to GAL4 only (Cohen 

and Kieff, 1991). 

 

Recent studies propose a new role for EBNA 2 that rather than static binding of B cell 

factors to consensus binding site at the target gene promoters as in previous studies, 

they suggest EBNA 2 induce dynamic and combinatorial binding sites. It was suggested 

that EBNA 2 can drive the formation of new EBNA 2 –dependent chromosomal binding 

sites for RBP-Jk and EBF1 which are in close physical proximity in cellular and viral 

genome. It was shown in their biochemical and shRNA studies which suggests that 

these newly formed co-occupied sites are cooperative and highly enriched at the 

promoter and enhancer regulatory elements of EBV activated genes that are required 

for proliferation and survival of B cells. It was suggested EBNA 2 facilitates new 

cooperative and combinatorial interactions on DNA by reprogramming the binding 

patterns of transcription factors RBP-Jk and EBF1 (Lu et al., 2016b).  

 

Interestingly, gene expression microarrays have shown EBV transformed LCLs or 

conditional B cells expressing EBNA 2 down-regulate many genes. For example, Maier 

et al found that of 18 genes were repressed at least 2-fold by EBNA including is the B-

cell receptor genes CD79A and CD79B (Thompson et al., 1999, Cahir-McFarland et al., 

2004, Maier et al., 2006). Immunoglobulin M (IgM) has also been shown to be 

repressed by EBNA 2, the transcriptional repression has also been shown to be 
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partially dependent on RBP-Jk (Jochner et al., 1996, Strobl et al., 2000, Maier et al., 

2005). 

 

 

 

 

 

Figure 5. Schematic representation of the mechanism of EBNA 2 transcription 

activation. EBNA 2 is recruited upstream of promoters through interactions with 

cellular adapter proteins. Interactions with histone modifiers and GTFs are indicated 

with black arrow. The blue arrow indicates an indirect mechanism where EBNA 2 

binding to promoters may facilitate serine 5 phosphorylation on the CTD. 

 

1.2.4.3.1. Transcriptional regulation by EBNA 2 

The TAD of EBNA 2 is known to interact with the histone acetyltransferases (HATs) 

p300, CBP and PCAF that meditate the acetylation of histone tails to activate 

transcription (Wang et al., 2000). Phosphorylated EBNA 2 interacts with the chromatin 

remodelling complex hSNF5 (Wu et al., 1996). The EBNA 2 TAD interacts with the basal 

transcription machinery components TFIIH (p62 and XPD) (Tong et al., 1995a), TFIIE 

(p100) (Tong et al., 1995b), TAF40 and TFIIB (Tong et al., 1995c). Mutation of 

tryptophan 454 in the EBNA 2 TAD to an alanine or threonine residue blocks the ability 
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of EBNA 2 to interact with these proteins (Tong et al., 1995a, Tong et al., 1995b, Tong 

et al., 1995c, Wang et al., 2000).  

Pol II serine 5 CTD phosphorylation at Cp also significantly increased on activation in 

the presence of EBNA 2 (Bark-Jones et al., 2006). Furthermore, both Cp and LMP 1p 

transcription was dependent on the elongation factor pTEFb (Bark-Jones et al., 2006). 

Therefore, EBNA 2 dependent activation of viral and cellular transcription is probably 

through the binding of adapter proteins, stimulating histone acetylation and Pol II Ser 

5 CTD phosphorylation at viral promoters (Bark-Jones et al., 2006, Day et al., 2007, 

Fejer et al., 2008). EBNA 2 recruitment to promoters appears to be regulated through 

the phosphorylation of its Serine 243 residue. This residue is targeted for hyper-

phosphorylation by CDK1 during mitosis (Yue et al., 2004, Yue et al., 2006) and by the 

EBV encoded Serine/Threonine protein kinase PK (Yue et al., 2005).  

1.2.4.4. EBNA 3 family 

The EBNA 3 family of proteins EBNA 3A, 3B and 3C have similar genetic organisation 

sharing a short 5’ exon and a long 3’ exon and encode hydrophilic proteins containing 

leucine, isoleucine or valine heptad repeats. They are tandemly located in the EBV 

genome and are thought to have evolved by a series of gene duplication events. The 

proteins share approximately 30% homology in the N terminal region (Ogiwara et al., 

1988, Robertson, 1997, Jiang et al., 2000). They function as transcriptional regulators 

and deregulators of the cell cycle and are expressed following the activation of 

transcription from Cp by EBNA 2 (Radkov et al., 1999). Each of the EBNA 3s can bind 

to RBP-Jk independently and prevent EBNA 2 activation in reporter assays but only 

EBNA 3A and 3C are essential for B cell transformation in vitro (Tomkinson et al., 1993, 

Waltzer et al., 1996, Zhao et al., 1996, Robertson, 1997). EBNA 3B was found to be 

completely dispensable but has a tumour suppressive function in vivo (Tomkinson and 

Kieff, 1992, White et al., 2012).  

 

The association of the EBNA 3 proteins with RBP-Jk has been shown to disrupt the 

binding of EBNA 2 to Cp but removal of EBNA 3s does not increase the EBNA 2 signal 

in infected cells that should result from increased Cp activity (Waltzer et al., 1996, 

Robertson, 1997, Maruo et al., 2005). Like EBNA2, EBNA 3C is also able to induce CD21 

expression in B-cells (Cotter and Robertson, 2000, Zhao and Sample, 2000) and 
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interacts with p300, prothymosin α and H1 to promote histone tail acetylation and 

modification of chromatin through transcriptional activation (Marshall and Sample, 

1995, Cotter and Robertson, 2000). 

 

Transcriptome analysis has shown the EBNA 3s to act synergistically, rather than 

individually, to regulate gene transcription (Skalska et al., 2010, White et al., 2010). 

Microarray data have identified large numbers of cellular genes involved in cell cycle, 

cell migration, apoptosis and B cell transcription factors differentially regulated in the 

EBNA 3 gene knockout (KO) BL cell lines; 210 in EBNA 3AKO, 598 in EBNA 3BKO and 

839 in EBNA 3CKO of the 1201 genes 390 needed multiple EBNA 3 proteins co-

regulation for gene expression to occur (White et al., 2010). Pro-apoptotic Bcl-2 

protein Bim regulates apoptosis through Bax activation, Bim expression is repressed 

by H3K27Me3 epigenetic silencing upon EBV infection and EBNA 3A and 3C were 

shown to downregulate Bim expression cooperatively (Anderton et al., 2008, Paschos 

et al., 2009, Wood et al., 2016).  

 

EBNA 3A and 3C have been shown to function as transcriptional repressor by 

associating with co-repressors such as CtBP (Hickabottom et al., 2002, Paschos et al., 

2012). Together, they to increase repressive epigenetic maker H3K27Me3 and co-

repress CDKN2A (which encodes P16INK4a and P14ARF) and enable G1 growth arrest to 

be by passed by EBV (Skalska et al., 2010, Maruo et al., 2011). EBNA 3C inactivation 

was shown to decrease phosphorylation of Retinoblastoma protein (pBb) 

hyperphosphorylation and accumulation of P16INK4a preventing the progression of cell 

cycle. Collectively, this data suggests the EBNA 3 family proteins uses polycomb 

proteins and histone modifications to co-regulate gene expressions and cell survival 

(White et al., 2010).  

 

 In an EBV-negative BL2 cell line EBNA 3C induces low-level activation and increases 

the effect of EBNA2 on the LMP1 promoter. Since EBNA2 already activates the LMP1 

promoter, this indicates that EBNA 3C supports EBNA2 in increasing LMP1 levels 

(Allday et al., 1993, Allday and Farrell, 1994). EBV-positive Raji cell lines, which carry a 

virus deleted for EBNA 3C cultured at high density in LMP1 expression showed most 
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of the cells arrested at G1 with a reduction in LMP1 expression indicating that LMP1 

is dependent on the cell-cycle state. LMP1 expression is influenced by EBNA 3C either 

by releasing the LMP1 repression or altering the state of the cell cycle because when 

EBNA3C was expressed in transfected Raji cells it did not reduce LMP1 expression in 

the growth arrested cells changes. EBNA 3C has been shown to also interact with PU.1, 

and co activates LMP1 though PU.1 binding sites at the promoter (Allday and Farrell, 

1994, Zhao and Sample, 2000, Taby and Issa, 2010).  

 

EBNA 3C can bind HDAC proteins (HDAC 1 and 2) in large repressive complexes 

associated with deacetylase activity to silence dependent transcription and its 

interaction with HDAC1 contribute to the transcriptional repression of Cp by RBP-Jk 

through this interaction (Radkov et al., 1999, Knight et al., 2003). As EBNA2 also acts 

through RBP-Jk it has been hypothesised that the two nuclear antigens (EBNA2 and 

EBNA3C) are further antagonistic as they compete for RBP-Jk molecules and binding 

sites (Lee et al., 2009), however these observations were found in vitro and recent 

evidence from arrays and ChIP sequencing suggests that the two proteins act in 

different ways and that the effects of EBNA3C cannot be attributed to antagonism 

alone (McClellan et al., 2012).  

White et al performed a gene expression microarray experiment in which BL cells were 

infected with wild type, or 3A, 3B or 3C knock out or revertant BAC derived virus. 36 

genes were shown to be regulated by all 3 EBNA 3 proteins. They revealed modest 

overlap between the different sets of genes. These genes were repressed by different 

subsets of EBNA 3 proteins. Investigation of the NOTCH2 promoters, repressed by 

EBNA 3A and 3C, RAS guanyl nucleotide-releasing protein 1 (RASGRP1) repressed by 

EBNA 3B and 3C and Thymocyte selection-associated high mobility group box protein 

(TOX) which is repressed by all the EBNA 3s revealed that H3K27me3 was decreased 

in knock out lines relative to wild type, correlating with gene repression. H3K4me3 

however was unchanged creating a poised chromatin state at these genes in the 

absence of one or more EBNA 3 proteins. H3K9Ac increases correlated with increased 

TOX and RASGRP1 expression but was unchanged at NOTCH2.  
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This suggests that cell context is crucial for directing EBNA 3 proteins to different 

targets and modulating transcription. This may be due to different chromatin contexts 

or abundance of different TFs (17 including NOTCH2, EBF1, PU.1 and Pax5) and 

cofactors. Crucially work from this paper implicates EBNA 3B as an essential EBV gene 

in vivo as many genes regulated by it are essential in the GC reaction which is not 

reproduced in in vitro immortalisation (White et al., 2010).  
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1.3. AIMS OF THIS PROJECT 

The overall aim of this project was to study how EBNA 2 promotes immortalisation through 

the epigenetic reprogramming of cellular genes.  

• I investigated EBNA 2 and EBNA 3 proteins coincident binding at the ITGAL promoter 
and to long range enhancers at CTBP2 and WEE1. I specifically investigated regulatory 
elements targeted by EBNA 2 and how they antagonise or complement EBNA 3A, 3B 
and 3C to promote immortalisation.  

• I also investigated EBNA 2 association with activated and repressed gene targets 
concentrating on repressed gene targets CD79A and CD79B and activated gene target 
IRF4. 
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2. MATERIALS AND METHODS 

2.1. Tissue Culture 

All reagents were purchased from fisher unless otherwise stated 

2.1.1. Tissue culture media and supplements 

100x Penicillin-Streptomycin-Glutamine (PSG) (Life Technologies) 

Contains 100 units/ml penicillin G, 100 µg/ml streptomycin sulphate and 29.2 mg/ml L-

glutamine with 0.85% saline and 10 mM citrate buffer. Stored in 5 ml aliquots -20°C.  

Dimethyl Sulphoxide (DMSO) (Sigma) 

Dulbecco’s Phosphate Buffered saline without CaCl2 and MgCl2 (PBS) (Life Technologies) 

Fetal Bovine serum (FBS) (Gibco)  

Pre-screened for endotoxins (≤5 EU/ml), haemoglobin (≤10 mg/dl) levels and heat inactivated 

at 56°C for 30 mins. Stored in 50ml aliquots at -20°C. 

Freezing mix 

80% RPMI media (supplemented with 10% FBS and PSG), 10% FBS and 10% DMSO. 

RPMI 1640 media without L-glutamine (Life Technologies) 

2.1.2. Maintenance of cell lines 

DG75 

DG75 are EBV-negative human B cell lymphoma line obtained from the pleural effusion of a 

10-year-old boy with Burkitt's lymphoma. Morphologically, they can be round to polygonal 

and single to cluster in suspension. DG75 were cultured in RPMI 1640 media containing 10% 

FCS and PSG and incubated at 37qC in 5% CO2. The cells were split 1:4 twice a week into pre-

warmed media and 1:3 24hrs before transfection. 
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BJAB 

BJAB are also EBV-negative human Burkitt’s lymphoma cell line from Africa. They are obtained 

from peripheral blood B lymphocytes. BJABs were cultured in in RPMI 1640 media containing 

10% FCS and PSG and incubated at 37qC in 5% CO2. The cells were split 1:4 twice a week into 

pre-warmed media and 1:3 24hrs before transfection. 

 

Cell lines mentioned in this study 

 

Cell line name Cell type Description Reference 

3A KO BL31 BL 31 EBV negative BL cell 
line with 3A 
knockout 
recombinant 
bacmids 

(White et al., 2010) 

3B KO BL 31 BL 31 EBV negative BL cell 
line with 3B 
knockout 
recombinant 
bacmids 

(White et al., 2010) 

3C KO BL31 BL 31 EBV negative BL cell 
line with 3C 
knockout 
recombinant 
bacmids 

(White et al., 2010) 

E3 KO BL31 BL 31 EBV negative BL cell 
line with 3 loci 
knockout 
recombinant 
bacmids 

(White et al., 2010) 

Wt BAC BL31 BL31 EBV negative BL cell 
line with wide type 
bacmids 

(White et al., 2010) 

3B KO LCL LCL EBV negative B-cell 
line with 3B 
knockout 
recombinant 
bacmids 

(White et al., 2010) 
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ER/EB2 BL41 EBV-negative B-cell 
lines fused to 
ER/EBNA 2 

(Kempkes et al., 

1995) 

ER/EB BJAB LCL EBV-negative B-cell 
lines fused to 
ER/EBNA 2 

(Kempkes et al., 

1995) 

 

2.1.3. Freezing cells 

200 mls of cells were pelleted by centrifugation at 13000g for 10 mins at 4qC and resuspended 

in 5 mls of freezing mix. Cells were aliquoted equally into 5 cryogenic vials, and frozen at -

80°C in a container with isopropanol. Vials were transferred to liquid nitrogen storage after 

at least 24 hrs at -80°C. 

2.1.4. Thawing cells 

Cells were transferred from liquid nitrogen storage to a 37°C water bath. Once thawed, the 1 

ml of cells were added to 10 mls pre-warmed RPMI media in a 25ml flask and incubated 

overnight at 37°C with 5% CO2. 

2.1.5. Haemocytometer cell counting 

15 µl of cells were counted using a Neubauer haemocytometer, which is divided into 9 equally 

spaced squares. Cells located in the 4 corners were counted, any cells outside or on these 

defined regions were not counted. The average cell counts of the four squares were used to 

calculate the cell culture concentration using the formula: 

Cells/ml = Average cell count x 1x104 cells 

2.1.6. Transfection by Electroporation 

DG75 or BJAB cell lines were transfected by electroporation. Cells were diluted 1:3 24hrs prior 

to transfection, and 1 X 107 cells in serum-free medium were mixed with DNA and 

electroporated at 230V and 950 μF using the Bio-Rad Genepulser III. Transfections contained 

2 Pg of the luciferase reporter vector pGL3 Basic or pGL3 cloned in with either of the genes 

investigated ITGAL, WEE1, CTBP2, IRF4, CD79A and CD79B or Cp1425 (EBNA2 positive 

control). 1 Pg pRL-TK or pRL- CMV which are the transfection control. 10 Pg or 20 Pg pSG5-

2A which expresses EBNA2, pCDNA3 EBNA3A, EBNA3B and EBNA3C expressing constructs. 2 
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Pg of pCMVSPORT6 EBF1 expressing EBF1. DNA levels were kept constant with pSG5 or 

pcDNA3 vector where necessary. 

2.1.7. Luciferase assay 

Cells were harvested 48H after transfection, washed in 10 ml PBS and 1 ml was taken and spin 

down, the pelleted cells were snap frozen for western blot, then remaining 9 ml was spin 

down, resuspended in 1 ml and the resulting pelleted cells was lysed in 90 Pl of 5x Passive 

lysis buffer (Promega). 10 Pl aliquots of cleared lysate were assayed in duplicate in a 96-well 

plate with 50 Pl of Luciferase assay reagent LAR (firefly) followed by 50 Pl of Stop and Glo 

(Renilla) solutions (dual luciferase assay kit-Promega) with the sequential injector system on 

the Glowmax Multidetection System. The firefly reaction generates a stabilized luminescent 

signal and after quantification the reaction is quenched. The Renilla luciferase reaction is 

simultaneously initiated by adding Stop & Glo Reagent to the same well. The firefly luciferase 

signal was adjusted for transfection efficiency with the renilla luciferase signal from the 

control plasmid pRL-TK or pRL-CMV. The values for the firefly luciferase activity were 

corrected by dividing them by the values for the Renilla luciferase activity. For individual 

experiment representation, the mean of the duplicate corrected value is plotted and the 

standard deviation used for error bars while for more than one experiment representation, 

the mean of two or three experiments values are plotted and the standard deviation used for 

error bars.  

 

2.2. Biochemical reagents and methods 

All reagents were purchased from Fisher unless otherwise stated 

2.2.1. Reagents 

ECL solutions I (1 ml) 

125 µM Luminol (250 mM stock in DMSO), 20 µM coumaric acid (Sigma) (90 mM stock in 

DMSO) and 5 mM Tris pH 8.5 in 1 ml sterile millipore water 

ECL solution II (1 ml) 

0.0075% Hydrogen Peroxide (H2O2) and 5 mM Tris pH 8.5 in 1 ml sterile millipore water. 
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Gel sample buffer 

50 mM Tris, 4% SDS, 5% 2-Mercaptoethanol (Sigma), 10% Glycerol, 1 mM EDTA and 0.01% 

bromophenol blue 

PBS-Tween 

100 PBS tablets (Oxoid) and 10 mls Tween-20 made up in 10L dH20. 

Transfer buffer 

15g Tris, 72g Glycine, 4L dH20 and 1 ml Methanol 

Stripping buffer for western blots 

100 mM 2-Mercaptoethanol, 2% SDS, 62.5 mM Tris-HCL pH 6.7 

NuPage Tris Acetate running buffer 20X (LIFE TECHNIOLOGIES 

NuPage MOPS SDS running buffer 20X (LIFE TECHNIOLOGIES) 

See Blue marker (LIFE TECHNOLOGIES) 

See Blue Plus marker (LIFE TECHNOLOGIES) 

 

2.2.2. Preparation of whole cell lysates 

Cells were washed in PBS, counted and resuspended in 100 µl/1x106 cells of 1x GSB. Cells 

were sonicated on ice using the Vibra-Cell VC 750 sonicator (Sonics) for 7 pulses at 25% 

amplitude for 10 seconds with 10 second gaps. Samples were boiled at 95°C for 10 mins, 

vortexed, briefly centrifuged for 30 seconds and stored at -20°C. 

 

2.2.3. SDS page 

20 µl samples were loaded into either a pre-poured 4-12% Bis-Tris gel, 10% Bis-Tris gel or 8% 

Tris Acetate gel (Life Technologies) using a gel loading tip. Lysates were resolved using either 

1x MOPS running buffer or 1x Tris Acetate running buffer (Life Technologies). 5 µl of SeeBlue 

Plus2 pre-stained standard marker (Life Technologies) was also loaded and electrophoresis 

carried out for 50 mins at 200 V for MOPS or 60mins at 150 V for Tris acetate. 
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2.2.4. Immunoblotting 

After separation by SDS-PAGE, proteins were transferred onto Protran nitrocellulose 

membranes (Whatman) in transfer buffer at 85 V for 90 mins using a blotting cell (Bio-Rad). 

Membranes were incubated with ponceau stain (Sigma) for one minute to examine loading 

and verify a successful transfer. Membranes were cut as required to probe for multiple 

proteins on one blot. Membranes were washed three times for 5 mins in PBS-Tween on a 

shaker and blocked for 1 H using 5% milk powder (sainsburys) in PBS-Tween. Primary 

antibodies (Appendix A) were added to membranes in a 5% milk PBS-Tween solution and 

incubated overnight at 4°C with rocking. After further washing with PBS-Tween (3x10 mins), 

secondary antibodies (Appendix A) made up in 5% milk PBS-Tween solution conjugated to a 

horse-radish peroxidase (HRP) enzyme were added to membranes and incubated with 

rocking at room temperature for 1 H. Final washing (3x10 mins) in PBS-Tween was performed 

and equal volumes of ECL solutions I & II were added to membranes. Membranes were 

imaged on a LiCor Odyssey imaging system. 

 

2.2.5. Stripping gels 

To re-probe blots with protein band to close for the membrane to be cut, the membranes 

were washed with PBS-Tween 2x10mins to remove any excess ECL solutions. Membranes 

were heated to 50°C for 15 mins in stripping buffer and washed 4x10 mins in PBS-Tween. 

Membranes were then blocked in 5% milk PBS-Tween solution for 1 H and probed with a 

different appropriate primary antibody.  

 

2.3. Molecular Biology 

2.3.1. Buffers and Reagents 

NEB enzymes: Xhol, SacI, KpnI, BglII, HindIII, NheI 

Markers: Hyperladder II (BIOLINE) 

Powdered agarose: low EEO agarose gel (Fischer) 

5x TBE loading dye (QIAGEN) 

L broth  

25 g L broth powder made up in 1 litre in distilled H2O and autoclaved 
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Agar  

5 g agarose in 400 mls L broth solution, stirred and autoclaved 

Ampicillin agar plates  

10 ml of melted agar solution, 100 µg/ml ampicillin 

Polymerase: Phusion high fidelity DNA polymerase (NEB) 

Alkaline phosphatase: Roche 

 

 

 

TBE:  

540 g Tris, 275 g Boric acid, 46.5 g EDTA dissolved in 1 litre of distilled water and autoclaved 

(10x). Then 100 mls of the mix is added to 900mls of Ultra-pure H2O to get 1X concentration. 
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2.3.2. pGL3 basic reporter vector – Promega 

 

Figure 6.  pGL3-Basic vector (http://www.citeulike.org/blog/Zephyrus/8307). pGL3 basic 

vector allows analysis of enhancer and promoter regions by luciferase assay. The multiple 

cloning site contains KpnI, SacI, MluI, NheI, Sma1, XhoI and BGIII sites and the vector confers 

ampicillin resistance to transfected cells. 
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2.3.3. Plasmid Construction 

Primer design 

In general, the DNA sequence for the gene of interest is obtained from the genome browser 

and put into Primer3Plus, an online primer design tool to make a primer set which is then 

ordered. The primers were designed to introduce specific enzyme digestion sites needed for 

cloning into the vector. It region of interest was then amplified from genomic DNA extracted 

from an LCL using Phusion high-fidelity polymerase (NEB) on a PCR machine. The PCR product 

was then run on a 1% TBE agarose gel and purified (QIAGEN) as required. The DNA sequence 

for those difficult to amplify by PCR was synthesized (LIFE TECHNOLOGIES and EUROFINS). 

ITGAL, CD79B, CTBP2, IRF4 enhancers were amplified from genomic DNA, IRF4 promoter was 

amplified from plasmid containing IRF4 promoter and WEE1 was amplified from BAC DNA.  

 

Enzyme digestion 

3-5 µg of plasmid was digested in a 20 Pl reaction with 2 µl of enzyme (NEB) and 2 µl of the 

appropriate buffer (NEB). The amplified PCR product was also digested with the appropriate 

enzyme and buffer (NEB). The samples were incubated at 37°C for 2 H. The linearized DNA 

fragments were separated on a 1% TBE agarose gel and then purified ad required 

 

DNA purification 

The DNA of interest is either cut out of a gel using a razor blade under UV- light or cleaned up 

over the column. DNA was purified using QlAquick Gel Extraction Kit (Qiagen) following 

manufacturer’s instructions and then eluted in 50 µl nuclease free water. 

 

Alkaline phosphatase treatment of vector 

To prevent single cut linearized vector from re-ligating, the samples were treated with 

alkaline phosphatase (ROCHE) to remove the 5’ phosphatase group from the cut ends. In a 40 

µl total volume reaction, 4 µl of alkaline phosphatase and 4 µl of 10x alkaline phosphatase 

buffer is added to the DNA solution. The samples were incubated at 37°C for 30 mins. 
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Ligation 

The gene of interest is cloned into the destination vector (pGL3 Basic) at the desired site on 

the vector’s multiple cloning site. To achieve ligation between 80-100 ng of vector was mixed 

with the insert in molar ratio of 1:1 and 1:3 in the presence of 2 µl of 10x T4 Ligase buffer and 

1.5 µl of T4 Ligase and nuclease free water to the total volume of 20 µl. The samples were 

incubated overnight on ice at bench top from 4°C to room temperature, then used for 

transformation of DH5α. 

 

Transformation of E. coli DH5α 

100 µl of an E. coli strain called DH5α is added to the ligation products and incubated on ice 

for 30 mins, they were then heat shocked for 45 seconds at 42°C in a waterbath. 250 µl of L 

broth was added to each sample and put back on ice for 2 mins. The samples were then 

incubated in a shaking incubator for 30 mins at 37°C at 225 rpm. The samples were spin down 

and most of the supernatant removed. The pellet was then resuspended and spread on 

ampicillin agar plates at 37°C overnight. 

 

2.3.4. Q-PCR 

Quantitative PCR (QPCR) was performed using an Applied Biosystems step one plus real-time 

PCR machine. For ChIP analysis, 3 µl DNA was added to a SYBR green master mix containing 

7.5 µl 2xGoTaq QPCR master mix (Promega), 150 nM forward and reverse primers (Appendix 

B) and sterile Millipore water to a final volume of 15 µl. Samples were heated to 95°C for 10 

mins, followed by 40 cycles at 95°C for 15 seconds and 60°C for 1 min and dissociation curve 

analysis. Input controls were serially diluted to generate a standard curve for each primer set 

(Appendix B). A percentage input value was obtained by measuring the crossing threshold (Ct) 

value in relation to each standard.  

 

 

 

 



50 
 

3. RESULTS 

3.1. Investigating the role of coincident binding of EBNA 2 and EBNA 

3A, 3B and 3C to cellular genes and regulatory elements 

 

Previous ChIP-sequencing data from our lab using EBNA 2 and pan-specific EBNA 3 antibodies 

identified binding sites for EBNA 2 and EBNA 3s in the human genome (McClellan et al., 2013). 

These binding sites were predominantly distal to transcription start sites (TSS) indicating a 

role in long range gene control. EBNA 2 had 75% of sites over 4kb from any TSS while EBNA 3 

was more pronounced with 84% over 4kb (Figure 7.1 a, b). To identify cellular genes targeted 

by the binding of EBNA 2 and 3 proteins, the closest gene to each binding site was identified 

irrespective of distance from the gene TSS. 80% (3157) of genes targeted by EBNA 3 was also 

targeted by EBNA 2 suggesting a high degree of cross talk between the EBNA 2 and 3 proteins 

and that they likely co-regulate a subset of cellular genes (Figure 7.1 c). We also analysed 

whether genes were being targeted individually by EBNA 2 and EBNA 3 sites or if the EBNAs 

were binding to shared sites, 25% of sites were bound by both proteins (Figure 7.1 d) 

(McClellan et al., 2013). We set out to investigate how EBNA 2 epigenetically reprogrammes 

cellular genes through these mapped elements, and how EBNA 3A, 3B and 3C may antagonize 

or cooperate with EBNA 2 in gene regulation. I focused on three EBNA 2 and EBNA 3 shared 

binding sites at ITGAL, WEE1 and CTBP2. 

 

3.1.1. EBNA 2 activates the ITGAL promoter and EBNA 3 proteins inhibit the activation 

Integrin alpha L (ITGAL) forms part of the cell surface heterodimeric activation antigen LFA-1 

together with the beta 2 chain (ITGB2) and is expressed on leukocytes. It binds members of 

the intercellular adhesion molecule family (CD11a/CD18, αLE2) and mediates essential 

adhesive interaction (Kishimoto et al., 1989). ITGAL is located on the chromosome 16p11.2 

very close to genes encoding other members of the intergrin family. LFA-1 is important in 

adhesive interactions between T cells, B cells, dendritic cells and macrophages. It is also 

important for antigen specific T cell activation, alloreactive responses, cytotoxic T cell 

responses and B cell help (Kishimoto et al., 1989). Using deletion analysis, it was observed 

that the first 40 bp 5’ to the transcription start site are very important for promoter function  
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(Cornwell et al., 1993). Previous Sequence analysis also identified SP1 and PU.1 binding motifs 

sites 120 bp upstream of the TSS (Cornwell et al., 1993, Nueda et al., 1993). Rapid and 

transient stimulation by cytokines presented on the cell surface can activate LFA-1 and 

promote firm adhesion to ICAM-1 which can subsequently cause transmigration through cells 

(reviewed in (Denucci et al., 2009). Importantly LFA-1 has also been shown to prevent B-cell 

apoptosis in the GC though adhesion to antigen presenting follicular dendritic cells (Lindhout 

et al., 1993). EBV LMP1 upregulates the expression of ITGAL expression and microarray 

studies in BL cells with recombinant knock-out EBVs have shown that ITGAL is repressed by 

EBNA 3B and EBNA 3C (Wang et al., 1990a, White et al., 2010). 
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Our ChIP sequencing data revealed EBNA 2 and EBNA 3 binding peaks at three distinct, 

coincident ITGAL promoter proximal regions with peak 3 being the largest for EBNA 3 proteins 

(Figure 7.2). This binding site was also coincident with H3K27ac in GM12878 cells from the 

ENCODE project highlighting that the binding sites are within gene regulatory regions that are 

active. To determine whether these binding sites direct EBNA 2 activation of ITGAL, I made 

ITGAL promoter-reporter constructs by cloning the 2 kb region encompassing all 3 binding 

sites into a reporter vector using primers designed to amplify all three peaks joined in the 

identified 2 kb region to investigate the regulation of ITGAL promoter by EBNA 2. The 

luciferase assay results demonstrating up to a 5-fold activation of the ITGAL promoter by 

EBNA 2. A similar fold activation was observed for the known EBNA 2 activated EBV C 

promoter. When co-expressed with the EBNA 3s, an inhibition of EBNA 2 activation was 

observed (Figure 7.3 a). Western blotting confirmed the expression level of EBNA 2, 3A, 3B 

and 3C proteins in the transfected cells (Figure 7.3 b). This result is consistent with a model 

where EBNA 3 proteins can compete with EBNA 2 for binding at the ITGAL promoter site. 

Although, in LCLs, additional experiments carried out in our lab, we found that EBNA 3A and 

EBNA 3C do not bind the ITGAL promoter significantly in vivo (McClellan et al., 2013), they 

can compete for binding at this site with EBNA 2 in reporter assay where the expression level 

is high. EBNA 2 and 3 proteins competitive binding at the ITGAL promoter was also supported 

by re-ChIP analysis of Mutu III BL cell line carried out in out lab, where no simultaneous 

binding of EBNA 2 and EBNA 3B and 3C were detected (McClellan et al., 2013). 
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1 2 
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Figure 7.2 Co-incident binding sites for EBNA 2 and EBNA 3 proteins located at the ITGAL 
promoter in EBV infected cells. ChIP-sequencing data in Mutu III BL cells for proximal 
promoter region of ITGAL reveals coincident EBNA2 and EBNA3 binding. Reads per million 
background subtracted reads is displayed on the y axis. The four proposed isoforms of ITGAL 
and direction of transcription is indicated by the arrow are shown below along with ChIP-
sequencing data for H3K27ac in from the EBV immortalised LCL GM12878. The exons are 
shown with the black boxes and the introns lined with arrows.  
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3.1.2. Investigating the cellular transcription factors that direct EBNA 2 binding at the 

ITGAL promoter   

EBNA2 and 3 proteins do not bind directly to DNA. They bind through cellular DNA-binding 

proteins. It has been previously reported that EBNA 2 and the EBNA 3 proteins share RBPJk 

as a cellular transcription factor and binding partner (Grossman et al., 1994, Henkel et al., 

1994, Le Roux et al., 1994, Waltzer et al., 1994) but others studies have also implicated PU.1 

in EBNA 2 and EBNA 3C gene targeting in vivo and EBF1 motifs have been found enriched at 

EBNA 2 binding sites in LCLs (Grossman et al., 1994, Waltzer et al., 1994, Johannsen et al., 

1995a, Zhao et al., 2011). To understand what factors are responsible for EBNA 2 activation 

of the ITGAL promoter in reporter assays we investigated whether known binding partners of 

EBNA 2 may be involved by examining available ChIP-seq data. We examined ENCODE 

GM12878 LCL ChIP-seq data for PU.1 and EBF1 and published RBP-Jk ChIP-seq data from the 

EBV-immortalised LCL IB4 (Zhao et al., 2011) to determine which cellular transcription factors 

bind at the ITGAL promoter. Significant pvalue<10-7 for RBP-Jk binding sites were present at 

all the ITGAL promoter peaks in IB4 cells but peak 3 was most significant, ENCODE data 

revealed that there were a large amount of cellular transcription factors at the ITGAL 

promoter that have not been described as EBNA 2 binding partners (Table 3). I proceeded to 

search for RBP-Jk motifs since this factor is already implicated as an EBNA 2 binding partner. 

I found two putative RBP-Jk motifs GTGAGAA (Friedmann and Kovall, 2010) at the ITGAL 

promoter peak 3 but no consensus was found at the site (Figure 7.4). I then tested whether 

these sites were required for EBNA 2 activation of ITGAL promoter. 

 

3.1.3. RBP-Jk directs EBNA 2 activation of the ITGAL promoter 

To determine whether RBP-Jk binding can be detected at the ITGAL promoter in vivo, I 

performed QPCR on RBP-Jk ChIP samples provided by Dr. Andrea Gunnell in our group. I used 

primer sets at the 3 EBNA 2 ITGAL promoter peaks (1, 2 & 3) and negative control primers at 

the PPIA gene where there is no EBNA 2 binding (McClellan et al., 2013). As a positive control 

for RBP-Jk binding I used primers at the viral LMP1 promoter RBP-Jk site (Palermo et al., 2008) 

and the EBNA 2 binding site at the CtBP2 gene (Figure 7.5). These data demonstrated that 

RBP-Jk bound at the highest level at peak 3 in the ITGAL promoter. These data are consistent 

with the presence of 2 consensus RBP-Jk sites at this position.  
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Table 3. List of transcription factor binding signals at ITGAL promoter peaks from ENCODE 
GM12878 LCL ChIP-seq data that was manually extracted from the USCS genome browser and 
sorted by ENCODE P - value in excel from highest maximum signal of 1000 (red) to lowest signal 
(blue) with (Y) indicating where motif is present. The RBP-Jk value shown was determined from the 
MACS peak at the ITGAL promoter peaks -10log

10
p-values signal. 

ITGAL�P1 ITGAL�P2 ITGAL�P3
TF VALUE MOTIF TF VALUE MOTIF TF VALUE MOTIF
RUNX3 1000 Y RUNX3 1000 Y RUNX3 1000
NFIC 1000 PAX5 719 Y EBF1 1000 Y
POU2F2 1000 Y EBF1 546 POLR2A 1000
BATF 1000 POU2F2 245 SPI1 1000 Y
BHLHE40 734 FOXM1 243 BHLHE40 744
FOXM1 654 BCL11A 230 MTA3 582
YY1 577 Y BATF 226 EP300 544
EP300 542 TAF1 218 TBP 530
ATF2 496 YY1 210 POU2F2 481
IRF4 442 TCF3 209 PAX5 426
POLR2A 440 RELA 177 RELA 422
NFATC1 408 BCL3 163 FOXM1 417
STAT5A 352 EP300 128 NFIC 406
EBF1 343 ATF2 381
MTA3 333 YY1 375
RELA 332 CHD2 371
BCL11A 329 PML 369
CEBPB 277 SP1 368
MEF2A 275 PBX3 365
TBP 263 CEBPB 356 Y
MAX 234 MXI1 350
TBL1XR1 222 TCF12 342
PAX5 219 ELF1 309
SPI1 219 TAF1 276
TCF3 216 IRF4 269 Y
TCF12 196 BCL11A 269
JUND 195 BATF 263
BCL3 176 TBL1XR1 246
BCLAF1 173 MAZ 244 Y
SP1 164 CHD1 235
CHD2 149 MAX 206
RAD21 133 TCF3 185

SMC3 159
RAD21 145
MEF2A 138
BCL3 137
WRNIP1 135
ETS1 99 Y

RBP-Jk_1 5 Y
RBP-Jk_2 7 11 68 Y
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Figure 7.4. Location of RBP-Jk putative motifs at the ITGAL promoter site. (a) ChIP-seq 
data for ITGAL promoter and MACS peaks of RBP-Jk ChIP-seq data (black boxes) (Wang 
et al., 2011) showing the RBP-Jk motifs (grey boxes).  

ITGAL PEAK 3 

RBP-Jk 
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To investigate whether RBP-Jk was important in directing the binding of EBNA 2 at the ITGAL 

promoter site I performed a site-directed mutagenesis on the putative RBP-Jk sites found at 

peak 3. I mutated the sequences individually and also created a construct with a double 

mutation (Figure 7.6), this mutated the RBP-Jk sequence from GTGAGAA to GTGCCAA in the 

mutant, the mutation of the position 4 A to C has been shown to inhibit the binding affinity 

of RBP-Jk up to 3-fold at nonconsensus sites (Friedmann and Kovall, 2010). These constructs 

were then transiently transfected into the EBV negative DG75 B cell line and luciferase assays 

performed. The results showed slightly reduced EBNA 2 activation of the RBP-Jk mutant 1 

promoter, in Figure 7.7a there seemed to be no effect but the basal fold is higher than the 

wild type basal so the activation is slightly lower compared to the wild type. There was no 

activation of the RBP-Jk mutant 2 promoter and the presence of the double mutation 

completely prevented EBNA 2 activation of the ITGAL promoter (Figure 7.7). This result is 

consistent with the known function of RBP-Jk as a cellular transcription factor for EBNA 2 

binding (Grossman et al., 1994, Johannsen et al., 1995a). In summary, my results 

demonstrated that RBP-Jk is the key mediator of EBNA 2 activation of ITGAL. 

 
3.1.4. EBNA 2 binds to an intragenic site at CtBP2 that does not respond in 

reporter assays  

 
C-terminal binding protein (CtBP) family proteins are unique to higher eukaryotes and are 

essential for normal animal development. They are modulators of several essential cellular 

processes; they function as transcriptional co-repressors in the nucleus and in the cytosol, 

they play a role in membrane trafficking. The vertebrate genome encodes two different, but 

related, genes CTBP1 and CTBP2. CTBP1 has two isoforms while CTBP2 has three isoforms 

(Boyd et al., 1993, Katsanis and Fisher, 1998, Chinnadurai, 2002). Their major splice variant 

functions as a transcriptional corepressor while their minor splice variant displays a diverse 

cytosolic function (Chinnadurai, 2002). The role of CTBP in oncogenesis was first observed in 

studies with the adenovirus E1A oncogene. These studies showed that E1A mutants in the 

PLDLS CTBP binding motif enhanced the transformation of primary epithelial cells in rodents 

in cooperation with the activated Ras oncogene. This suggested that the EIA interaction 

restricts tumorigenesis by antagonizing the activity CTBP (Chinnadurai, 2009). Whilst CTBP1 
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is both nuclear and cytosolic, CTBP2 appears to be only nuclear due to the presence of a 

nuclear localisation domain in its N terminus (Zhao et al., 2006b). 

 

 

 

 

 

GTGAGAA GTGAGAA 

RBP-Jk RBP-Jk 

RBP-Jk RBP-Jk 

RBP-Jk RBP-Jk 

RBP-Jk RBP-Jk 

ITGAL WT 

ITGAL MUT1 

ITGAL MUT2 

ITGAL MUT1+2 

1 2 

Figure 7.6 Site-directed mutagenesis of the putative RBP-Jk motifs at the ITGAL 
promoter. Diagram of the constructs made using Q5 site-directed mutagenesis 
kit for RBP-Jk motif site at the ITGAL promoter. 
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CTBPs are known to play a key role in EBV transformation, EBNA 3A and EBNA 3C epigenetic 

repression of p16INK4A has been shown to be mediated by CtBP (Skalska et al., 2010). ChIP-

sequencing data from our lab found a single, large intragenic peak of EBNA 2 and EBNA 3 

binding between the second and third exons of the longer isoforms of CTBP2 (Figure 7.8 a). 

The regulation of CTBP2 transcription by the EBNAs had not been previously reported.  

 

ChIP QPCR data from Michael McClellan in our group (McClellan et al., 2013) confirmed that 

all 3 EBNA 3 proteins and EBNA 2 bind to the CTBP2 enhancer sites in 2 different EBV-

immortalised cell lines. To determine whether EBNA 2 can activate transcription via this site 

in reporter assays and investigate and if EBNA 2 and 3 proteins could compete for this site, I 

attempted to generate CTBP2 reporter constructs containing the EBNA 2 and EBNA 3 binding 

peak using primers to amplify this region of the genome. Since this element could be a 

putative enhancer for CTBP2 gene, I attempted to create a luciferase reporter construct 

containing the CTBP2 promoter, with this region cloned upstream. However, despite multiple 

attempts with different primers, I was unable to amplify the CTBP2 promoter. This may have 

been because of its high GC content, I therefore used a reporter construct containing the 

heterologous HSV TK promoter and cloned the CTBP2 putative enhancer upstream.  

 

When this construct and the control plasmid with the TK promoter alone were transfected 

into DG75 cells in the presence of EBNA 2 expressing plasmid, the TK promoter was 

unexpectedly activated by EBNA 2 up to 2.5-fold. EBNA 2 activated the TK promoter - CTBP2 

enhancer plasmid up to 7-fold indicating that there may be some effect of EBNA 2 on the 

enhancer, however, the effect between the -/+ enhancer is not significant because of the 

large variation between my three experiments (Figure 7.8 b, c). I repeated the experiment in 

EBNA 3s alone to investigate their effect on the binding site at the CTBP2 putative enhancer. 

There was also an unexpected repression of the TK promoter which makes it hard to make 

conclusions as to the effect of EBNA 3s on the CTBP2 enhancer (Figure 7.9 a, b, c). To 

determine whether we could detect any effects of the EBNAs on the CtBP2 enhancer in 

another B cell background, I repeated the experiment using BJAB, a B cell lymphoma cell line. 

Similar to the previous results, the effects of EBNA 2 on the CTBP2 peak could not be 

separated from the effects on the TK promoter alone (Figures 7.10). It is possible that the  
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CTBP2 intronic region bound by EBNA 2 is only active in the context of its own promoter or 

requires the correct chromatin context to function. 

3.1.5. EBNA 2 binds to distal enhancers at WEE1 that do not respond in reporter 

assays  

 
Wee1 is a conserved nuclear tyrosine kinase. It was first discovered 25 years ago as a cell 

division cycle protein (cdc) mutant in fission yeast and is active during the S/G2 phase of the 

cell cycle. WEE1 negatively regulates the activity of Cdc2/cdc28 in budding yeast and the 

human homologue CDK1/cyclinB by phosphorylation on Y15 throughout S phase. This 

prevents exit from S phase until DNA replication is complete (Russell and Nurse, 1987, Gould 

and Nurse, 1989, Featherstone and Russell, 1991, McGowan and Russell, 1995, Watanabe et 

al., 1995). In the mammalian, DNA damage checkpoint G2/M, WEE1 phosphorylates CDK1 in 

the CDK1/Cyclin B complex at Y15 to prevent mitotic entry until the damage is repaired 

(Davies et al., 2011, Aarts et al., 2012). EBV has previously been reported to deregulate the 

cell cycle at multiple points including the G2/M phase, including misregulation of CDK1 

activity (Krauer et al., 2004, Schlick et al., 2011). WEE1 therefore makes an attractive target 

for novel cell cycle regulation by EBNA 2 and 3 proteins. 

 

ChIP-sequencing data from our lab identified WEE1 as the closest gene to two downstream, 

distal sets of EBNA 2 and EBNA 3 binding sites comprising a total of five distinct peaks. These 

binding sites coincide with peaks of H3K27ac from ChIP sequencing data from the EBV 

immortalised LCL GM12878 indicating the binding sites are within gene regulatory regions 

that are active (McClellan et al., 2013). The regulation of WEE1 by EBNA 2 and EBNA 3s like 

CTBP2 has not been previously reported. 

 

ChIP QPCR results from our lab revealed EBNA 2 binding to each of the five peaks in two 

different EBV-immortalised cell lines, Mutu III and PER253 and differential binding of EBNA 3 

proteins occurs at this locus, we observed low level binding of EBNA 3A binding at peak 4 and 

5 in LCLs and weak EBNA 3B binding at peak 1 and 2 in Mutu III cells, however, EBNA 3C  bound 

predominantly at peak 5 in Mutu III cells, but at both peak 4 and 5 in an LCL (McClellan et al., 

2013). I investigated the effect of EBNA 2 and EBNA 3s binding alone and in competition, at 

the WEE1 site in reporter assays. I generated luciferase reporter constructs containing the 
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WEE1 promoter site alone, then added enhancer 1 peaks separately and then together with 

enhancer 2 peaks (Figure 7.11 a). These constructs were transiently transfected into the DG75 

cells and luciferase assays performed (Figure 7.11 b), there was very little effect of EBNA 2 on 

transcription from constructs containing the enhancers compared to the activation at the  

promoter construct. Figure 7.11 c shows a western blot analysis of EBNA 2 levels in the 

experiments to confirm expression. To determine whether this result was cell line specific, I 

repeated the experiment using BJAB cell line similar to the DG75 cell line, there was no 

responsiveness to EBNA 2 (Figure 7.12). It is therefore possible that the WEE1 distal sets of 

regions bound by EBNA 2 are not active in reporter assays because they are out of chromatin 

context or they may lack the transcription factors needed for activation.  

 

3.1.6. DISSCUSION 

EBNA 2, 3A, 3B and 3C transcription factors have been previously reported to play essential 

roles in the transcription of viral and cellular genes. EBNA 2 has been shown to be the main 

viral activator of the viral C promoter. EBNA 3C has also been described as a negative 

regulator of Cp (Sung et al., 1991, Woisetschlaeger et al., 1991, Jin and Speck, 1992). The 

activation of Cp is essential for driving gene expression of all EBNAs with EBNA 2 feeding back 

to up regulate Cp. Methylation of Cp on CpG dinucleotide sequences results in promoter 

inactivity and inability to bind transcription factors (Henkel et al., 1994, Meitinger et al., 1994, 

Tierney et al., 2000b, Bakos et al., 2007). EBNA 2 is also involved with the transcriptional 

activation of cellular promoter CD23 and viral promoters; LMP1 and LMP2 (Cordier et al., 

1990, Wang et al., 1990a, Ling et al., 1994).  
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ITGAL encodes CD11a with (CD18)E2 intergrins to form LFA1, a heterodimer that binds 

ICAM1-3 and mediates homotypic and heterotypic adhesion. EBV upregulates LFA1, LFA3, 

ICAM1 and other activation molecules. It was previously shown that LMP1 expression in EBV 

negative B cells is sufficient to induce LFA1 expression on the cell surface indicating that LMP1 

is involved in the activation of ITGAL gene expression (Wang et al., 1988, Wang et al., 1990a). 

Since LMP1 cannot be expressed in the absence of EBNA 2, is it possible that the effects of 

EBNA 2 observed at the ITGAL promoter is through directly targeting LMP1?  

 

ChIP QPCR data from our lab shows that EBNA 2 and EBNA 3 proteins bind at the ITGAL 

promoter in infected cells (McClellan et al., 2013). Since the effects of LMP1 and EBNA 2 on 

ITGAL expression cannot be separated using cells which lack functional EBNA 2, I generated 

ITGAL promoter-reporter constructs and performed luciferase reporter assays and my result  

have now shown that EBNA 2 up-regulates the expression of the ITGAL promoter. Microarray 

data from Dr. Rob White studys shows that EBNA 3B and 3C may play a role in the repression 

ITGAL expression in BL31 cells, EBNA 3B was also shown to play a role in the repression of 

ITGAL expression in LCLs but no EBNA 3A role was detected (Figure 7.13) (Hertle et al., 2009, 

White et al., 2010). Our lab confirmed these studies in our ChIP QPCR analysis where binding 

of EBNA 3B was detected in LCLs but no significant EBNA 3A or EBNA 3C binding. Using an 

independent set of wild types and EBNA 3B knock-out LCLs regulation by EBNA 3B was 

detected supporting the hypothesis that these binding sites are directly contributing to the 

regulation of ITGAL (McClellan et al., 2013).  My assay result showed that all EBNA 3s can 

compete with EBNA 2 for binding sites to repress ITGAL transcription when expressed in high 

levels. To understand if EBNA 2 and 3 proteins bind simultaneously to coincident sites or if 

they bind separately by recruiting their own complex, our lab performed re-ChIP analysis in 

Mutu III BL cell line and no simultaneous binding was observed, consistent with my data 

where it appears the EBNA 3s bind competitively to repress EBNA 2 activation in reporter 

assays (McClellan et al., 2013).  

 

Although in LCLs, EBNA 3A and EBNA 3C do not bind the ITGAL promoter site significantly in 

vivo, all the EBNA 3 proteins are capable of exerting their transcriptional control when 

overexpressed to repress EBNA 2 activation at the ITGAL promoter perhaps by competitive 

binding in reporter assays. This suggests that in vivo the differential binding of the EBNA 3s at  
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the ITGAL promoter is regulated by the chromatin context and the binding of cellular 

transcription factors.  Previous B cell line analysis  interestingly reported no change in ITGAL 

expression when stably expressing EBNA 2 and EBNA 3C (Wang et al., 1987a, Wang et al., 

1990a) and microarray studies in newly EBV-infected hyperproliferating B cells where ITGAL 

expression is upregulated in the early stages of proliferation and then reduced in the resulting 

LCLs (Nikitin et al., 2010). This suggests that EBNAs effects at the ITGAL promoter is context 

specific and may depend on the expression of DNA targeting factors and combined action of 

the EBNA proteins in the infected cell (McClellan et al., 2013). 

 

The inhibition of EBNA 2 activation when the second RBP-Jk site in the ITGAL promoter peak 

3 was mutated and the Q-PCR result showing activation of EBNA 2 indicates that RBP-Jk is an 

important cellular transcription factor that is needed to direct EBNA 2 binding to the ITGAL  

promoter. This is consistent with EBNA 2 and the EBNA 3 proteins sharing RBP-Jk as a cellular 

transcription factor and binding partner (Grossman et al., 1994, Henkel et al., 1994, Le Roux 

et al., 1994, Waltzer et al., 1994).  

 

CTBP2 and WEE1 are both novel cellular gene targets identified by our lab and chosen for 

their proximity to EBNA 2 and 3s binding sites that may regulate their expression. CtBP protein 

binding by EBNA 3A and 3C is required for p16INK4a repression in infected cells which is 

essential in EBV transformation (Chinnadurai, 2009). Some studies have also implicated CtBP2 

as a transcriptional activator (Paliwal et al., 2012). There is no documented role for EBNA 2 

and 3s in the regulation of CTBP2, but reanalysis of Hertle et al microarray data from LCLs 

infected with wild type and EBNA 3A knock out EBV by Dr. Rob White (Figure 7.14) 

(www.epstein-barrvirus.org.uk) showed upregulation of CTBP2 expression in knock out EBNA  

3A LCLs (Hertle et al., 2009, Skalska et al., 2010), implicating EBNA 3A in the repression of 

CTBP2 transcription. As in the presence of EBNA 3A, the enhancer-promoter chromatin loops 

formation that correlates with increased CTBP2 transcription is blocked (McClellan et al., 

2013). Our analysis of CTBP2 mRNA expression in EBNA 3B knockout LCLs and wild type 

infected LCLs expressing CTBP2 showed that CTBP2 transcription increased when there is no 

EBNA 3B expression (McClellan et al., 2013).  Our lab mapped intragenic enhancer sites of 

CTBP2 where the EBNA2 and EBNA 3s coincident bind, using ChIP-QPCR we confirmed that 

EBNA 2 bound in vivo to the CTBP2 intragenic site and EBNA 3s interacted individually with  

http://www.epstein-barrvirus.org.uk/
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the CTBP2 site in Mutu III and LCLs. These data show all the EBNA 3s binding at the CTBP2 site 

and correlates with EBNA 3A and 3B repressing CTBP2 transcription. To investigate the effects 

of EBNA 2 in CTBP2 gene expression, our lab analysed CTBP2 mRNA levels in LCLs expressing 

a conditionally active estrogen receptor-EBNA 2 fusion protein (ER/EB 2.5) (Kempkes et al., 

1995) and although EBNA 2 bound at CTBP2 enhancer site, it did not seem to be 

transcriptionally functional at the site and our lab also did not observe any effect in the CTBP2 

mRNA levels when EBNA 2 lost in the presence of the EBNA 3s (McClellan et al., 2013). My 

reporter assay result showed no significant effect of the EBNAs on the CTBP2 enhancer as the 

TK promoter was unexpectedly responsive to EBNA 2 activation and EBNA 3 repression. This 

could be because the binding is cell-type specific or because there is no significant effect out 

of chromatin context. It could also be that the transcription factors needed to recruit EBNAs 

to the CTBP2 putative enhancer site is not expressed in the cell line used. It could also be an 

indication that it needed its own promoter to function which I tried to generate but was 

unsuccessful in amplifying it using different primer sets. Promoter specific enhancer function 

was shown in the regulation of E74-like factor 5 (Elf5)  in the trophectoderm where the 

expression of Elf5 to the extraembryonic ectoderm and ectoplacental cone was driven by two 

redundant enhancers required the presence of their endogenous proximal promoter for 

optimal activity (Pearton et al., 2011). 

 

WEE1 encodes a cell cycle kinase that regulates the activity of mitotic kinase CDK1. EBNA 3C 

has been previously shown to disrupt the G2/M checkpoint through multiple potential 

mechanisms so regulation of WEE1 expression may play a role in cell cycle deregulation by 

EBV. Microarray data showed that EBNA 3C represses WEE1 in BL31 cells infected with a 

series of EBNA 3 knock out viruses while there was no significant repressive effect of EBNA 

3A and 3B on WEE1 mRNA expression (Figure 7.15) (www.epstein-barrvirus.org.uk). Our ChIP- 

seq data mapped binding sites for EBNA 2 and EBNA 3 protein peaks at the WEE1 locus that 

may be responsible for its regulation. Our ChIP-QPCR analysis confirmed the binding of EBNA 

2 in Mutu III cells and LCLs, to understand its effect on WEE1 regulation we examined WEE1 

mRNA expression in BL31 cells infected with an EBNA 2 knock-out virus and in LCLs expressing 

conditionally active EBNA 2 and observed reduced WEE1 mRNA levels suggesting a role for 

EBNA 2 in positive regulation of WEE1 transcription.  

 

http://www.epstein-barrvirus.org.uk/
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We also confirmed EBNA 3A and 3C binding at enhancer 2 at low level in LCLs while EBNA 3B 

also bind weakly at enhancer 1 in Mutu III cells. EBNA 3C binds predominantly to enhancer 2 

in both Mutu III cells and LCL. We then examined WEE1 mRNA expression in BL31 cells 

infected with EBNA 3C knock-out virus and observed WEE1 transcript level increased in 

infected cells, we also examined LCLs expressing EBNA 3A and EBNA 3B knock-out cells and 

observed no significant effect on the WEE1 mRNA levels. This data indicated EBNA 3C binding 

to enhancer 2 plays a dominant role in repression on WEE1 transcription and EBNA 3A and 

3B showing very low effects on the enhancer sites. This suggests that EBNA 2 antagonises the 

EBNA 3C repression creating a balance that determines the level of WEE1 transcription in 

infected cells. It is therefore a possibility that EBNA 3C suppresses the negative effects of 

WEE1 on the G2/M checkpoint during the outgrowth of EBV- immortalized cells (McClellan et 

al., 2013). 

 

My assay result showed the WEE1 promoter and enhancer sites was not responsive to EBNA2 

activation. This also like CTBP2 could be because there is no significant effect out of chromatin 

context or that the transcription factors needed to recruit EBNAs to the WEE1 enhancer site 

is not expressed in the cell line used. 

In summary, EBNA 2 and 3 bind genes in cell type specific manner at a locus and their binding 

effects is predictive of the gene regulation, the factors at the target genes often regulate 

EBNA 2 and EBNA 3 coincident binding. EBNA 2 and 3 proteins compete for binding and do 

not bind simultaneously at a locus and differential binding of the EBNAs may be chromatin 

context specific. Also, luciferase reporter assays may not completely recapitulate the normal 

behaviour of a given promoter or enhancer. 
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3.2. Investigating EBNA 2 gene activation and repression 

 
EBNA 2 is known to regulate the expression of cellular genes as well as viral genes. Microarray 

data from EBV BL cells expressing only EBNA 2 or EBNA 2 conditional LCLs engineered to 

express estrogen receptor EBNA 2 (EBNA 2-ER) fusion protein have shown regulation of 

hundreds of cellular genes by EBNA 2 (Thompson et al., 1999, Cahir-McFarland et al., 2004, 

Maier et al., 2006). Maier et al in their studies of EBNA 2 regulated genes in BL41 and BJAB 

cells lines expressing EBNA 2-ER fusion identified over 200 genes up-regulated in BL41 and 

more than 100 genes up-regulated in BJAB cell lines, interestingly they also found 188 genes 

in BJAB and 76 genes in BL41 to be up to 2-fold repressed by EBNA 2 (Maier et al., 2006). The 

mechanism EBNA 2 uses to regulate most gene targets are unknown, although upregulation 

is likely to be mediated through its association with co-activators and general TFs. The 

mechanism of EBNA 2 mediated repression however is unknown and has received little 

attention. 

 

3.2.1. Investigating EBNA 2 association with CD79A and CD79B 

CD79A, also known as IgD or mb-1 and CD79B also known as IgE or B29 were identified as 

genes repressed by EBNA 2 expression in B cell (Maier et al., 2005). CD79A and CD79B are 

integral membrane proteins highly conserved among species (Sims et al., 2012). They are 

expressed in all stages of B cell development (Hermanson et al., 1988, Benlagha et al., 1999) 

and together they form a disulfide-linked heterodimer as part of the B- cell antigen receptor 

(BCR) complex (Hombach et al., 1990). They are both essential for BCR cell surface expression 

and signalling that leads to B cell activation (Clark et al., 1992, Grupp et al., 1993). Some 

studies have also shown CD79A and CD79B to be critical for B cell development and 

maturation, especially in VDJH recombination a genetic recombination process that occurs 

during T and B cells early development stages where different gene segments known as 

variable (V), diversity (D) and joining (J) genes randomly reassemble to generate antigen 

receptors (Hermanson et al., 1988, Papavasiliou et al., 1995, Gong and Nussenzweig, 1996, 

Torres et al., 1996). The promoters of CD79A and CD79B both contain a TATA-less promoter 

and share a high homology for transcription factor binding sites like EBF, OCT, SP-1, NFNB 

among others (Hermanson et al., 1989, Travis et al., 1991, Omori and Wall, 1993, Ha et al., 
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1994). Upon EBV infection in SCID mice it has been shown that CD79A and CD79B were both 

significantly downregulated (Mori et al., 1994). More recently microarray analysis of LCLs and 

EBV negative cells conditionally expressing LMP1 or EBNA 2 showed CD79B to be targeted for 

downregulation (Cahir-McFarland et al., 2004, Maier et al., 2006). In germinal B centre cells, 

it has also been shown that LMP1 downregulated CD79A and CD79B (Vockerodt et al., 2008).  

EBNA 2 does not bind DNA directly but through binding proteins like RBP-Jk and PU.1 

(Grossman et al., 1994, Henkel et al., 1994, Waltzer et al., 1994, Johannsen et al., 1995b). 

Previous  promoter studies have shown that a RPB-Jk binding site is not present at the CD79B 

promoter but PU.1 can bind from the predominant TSS (Omori and Wall, 1993). 

 

ChIP-seq data from our lab revealed two distinct EBNA 2 binding peaks at the CD79A promoter 

region (Figure 8.1 a) and one EBNA 2 binding peak at the CD79B promoter region (Figure 8.1 

b). Microarray data from White et al demonstrated that upon EBV infection, CD79A and 

CD79B expression levels are down-regulated by EBNA 3A, B and C and EBNA 3s in the BL31 

series cell lines (Figure 8.2 a-b) (White et al., 2010). Microarray data from Maier et al 2006 

studies also demonstrated expression levels of CD79A and CD79B being down regulated in 

ER-EB and BL41 cell line (Maier et al., 2006). This was supported by a gene expression analysis 

from Microfluidic array card carried out by Sarika Khasnis from our lab, using the EREB2.5 cell 

series, her data showed both genes downregulated in the presence of EBNA 2 (Figure 8.2 c-

d).  

 

To investigate the mechanism surrounding the regulation of these targets and determine 

whether these promoter binding sites direct the reported downregulation of CD79A and 

CD79B by EBNA 2, I created luciferase reporter construct containing a pGL3 basic vector and 

the CD79A promoter regions. After several failed attempts to amplify the two promoter peaks 

using primers I had each promoter peak region synthesised by an external supplier (Figure 

8.1a). I also made constructs containing the CD79B promoter region (Figure 8.1b). These 

constructs were then transiently transfected into DG75 cells and luciferase assays performed. 

The result showed up to 2.6-fold activation via the peak 1 region and up to 2.75-fold activation 

of the construct with both CD79A peaks together (Figure 8.3 a), there was also an activation 

up to 2.6-fold at the CD79B peak region and a 3-fold activation at the C promoter reporter, a 

positive control for EBNA 2 activation (Figure 8.3 c). Western blot analysis confirmed the 
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expression level of EBNA 2 in these experiments (Figure 8.3 b, d). Interestingly, my reporter 

assay result did not support all previous data of CD79A and CD79B mRNA levels being 

repressed in infected cell lines by EBNA 2 as my data showed EBNA 2 activates transcription 

through these binding sites. Although, the activation observed at construct with both CD79A 

promoter peaks together is not much higher than that of the construct with the peak 1 region 

alone as the basal fold is higher. 
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I therefore investigated whether the repressive effects of EBNA 2 may be mediated via 

competition with a cellular transcription factor that functions as a ‘stronger’ activator of these 

genes. I focused on Early B-cell factor 1 (EBF1), a sequence specific DNA binding protein that 

is expressed throughout B-cell development and induces numerous B-cell genes and 

maintains B-cell specific transcription programs (Dudziak et al., 2003, Pongubala et al., 2008, 

Lin et al., 2010, Treiber et al., 2010). EBF1 has also been implicated in epigenetic modification 

of CD79A promoter. EBF1 has been shown to activate CD79A and CD79B transcription 

(Hagman et al., 1991, Maier et al., 2004, Hagman and Lukin, 2005, Bohle et al., 2013). I 

transiently transfected DG75 cells with the CD79A and CD79B reporter constructs in the 

presence and absence of EBF1 expressing plasmid. The results demonstrated activation at 

both CD79A and CD79B constructs by up to 13-fold and 11-fold respectively supporting 

previous reports (Figure 8.4 a). However, when transfected in competition with EBNA 2, EBNA 

2 failed to inhibit this activation significantly. The luciferase assay result showed EBNA 2 

adding a very small further increase to the activation seen in the presence of EBF1 alone at 

CD79A and a slight repression effect CD79B when expressed at a high concentration (Figure 

8.4 c). However, my data demonstrated that EBF1 is a better activator of CD79A and CD79B 

than EBNA 2 and the lack of additional EBNA 2 activation of these promoters could indicate 

that the effects of EBNA 2 and EBF 1 activation is mutually exclusive (Figure 8.4 c). Western 

blot analysis showed the expression levels of EBNA 2 and EBF1 (Figure 8.4 b, d). This data also 

does not support the down regulation of CD79A and CD79B seen in the presence of EBNA2 or 

upon EBV infection in the EBNA 3s knockout cells (Maier et al., 2006, White et al., 2010). 

Perhaps other factors are involved at the binding sites in luciferase reporter assays that are 

not present in vivo or the expression of both genes in chromatin context is different. 
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3.2.2. Investigating EBNA 2 association with IRF4 

Interferon regulatory factor 4 (IRF4) is part of the interferon (IFN) regulatory factors (IRF) 

family, the family of transcription factor is made up of 9 members in mammalian cells. They 

are recognized with the consensus DNA of at least two GAAA repeats (Hiscott, 2007, Takaoka 

et al., 2008). They are multi-functional and play significant roles in multiple aspects of defense 

systems (Zhang et al., 2004, Honda and Taniguchi, 2006, Savitsky et al., 2010), e. g. 

involvement in the regulation of tumorigenesis and cell growth, differentiation and 

development. They all share a conserved DNA binding domain (DBD) at their N-terminus and 

a variable C-terminus that defines their biological functions (Baer et al., 1984, Nguyen et al., 

1997, Taniguchi et al., 2001, Zhang and Pagano, 2001, Amon et al., 2004). IRF4 functions as 

an interacting partner of PU.1. It is expressed in all B-cell development stages in both mature 

T-cells and macrophages and play critical role in their function (Eisenbeis et al., 1995, 

Mittrucker et al., 1997). It also interacts with EBV latency programs and play a key role in 

mediating the EBV transformation processes of human B lymphocytes. During EBV 

transformation, its expression is induced in primary B lymphocytes in vitro and detected in 

primary CNS lymphomas specimens in vivo, suggesting IRF4 is associated with EBV infection 

in vivo. When IRF4 expression is reduced in EBV transformed cells, it decreases cell 

proliferation rate and enhances apoptosis (Xu et al., 2008). Reporter assay studies shows IRF4 

to be induced by LMP1/NFkB signaling, studies in EBV LMP1 driven tumors in mice revealed 

IRF4 expression in all the mice (Xu et al., 2008, Hu et al., 2012). EBNA 2 has been shown in 

several microarray studies to regulate many genes (Spender et al., 2006b, Zhao et al., 2006a). 

Lucchesi et al in their studies implicated EBNA 2 as a direct inducer of IRF4 (Lucchesi et al., 

2008). 

 

ChIP seq data from our lab showed two EBNA 2 binding enhancers peaks upstream of the IRF4 

promoter (Figure8.5 a). Previous microarray expression profiling analysis showed EBNA 2 to 

directly target IRF4 (Spender et al., 2006a). When IRF4 expression is reduced in EBV 

transformed cells, cell proliferation rate is decreased and apoptosis enhanced so this 

activation may be important for B-cell transformation by EBV (Xu et al., 2008). To investigate 

whether EBNA 2 activates IRF4 enhancer sites in reporter assays, I created reporter constructs 

containing the promoter region of IRF4 and designed primers to amplify the two enhancer  
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regions (Figure 8.5 a). Constructs were generated with the promoter region alone, with the 

first enhancer peak E1 and with enhancer peak E1 and E2 (pGL3 IRF4pE1+E2). I transiently 

transfected these constructs into DG75 cells in the presence and absence of EBNA 2. The 

luciferase assay results demonstrated up to 1.4-fold activation at the IRF4 promoter and up 

to 2.2-fold and 3.4-fold activation at both IRF4 enhancer peaks constructs E1 and E1+E2 

respectively (Figure 8.5 b). We commonly find that enhancer alone decreases basal signal 

(enhancers contain repressors and activators) (Gunnell et al., 2016). When we see effects of 

EBNA 2, this often means we see a higher fold activation, so may be a mechanism to increase 

specificity and magnitude of activator effects. These data suggest that EBNA 2 interacts with 

the promoter though no binding peak is present there and the enhancer peaks are activation 

by EBNA 2. Western blot analysis showed this the expression level of EBNA 2 in the 

experiment (Figure 8.5 c). This result is shows EBNA 2 activates the IRF4 via the enhancer 

peaks supporting it as a direct target gene.  

 
3.2.3. DISCUSSION 

EBNA 2 is one of the genes initially expressed upon EBV infection and plays a critical role in 

the growth transformation process, through the activation of a multitude of viral and cellular 

gene targets, it can initiate transcriptional events that result in B-cell activation, LCLs 

maintenance and cell cycle entry (Cohen et al., 1989, Hammerschmidt and Sugden, 1989, 

Sinclair et al., 1994, Kempkes et al., 1995). The mechanism by which EBNA 2 targets cellular 

genes is not as widely understood as viral gene targets, studies have shown that all EBNA 2 

activated viral promoters share a RBP-Jk binding site (Lai, 2002, Hayward, 2004). ChIP-seq 

data from our identified cellular gene targets that have been shown to be repressed or 

activated by EBNA 2. 

 

Microarray data have shown B cell receptor (BCR) components: CD79A and CD79B to be 

downregulated by EBNA 2 in LCLs and EBV negative BL cells conditionally expressing EBNA 2 

and even the EBNA 3s in BL31 cells and LCLs (Maier et al., 2006, White et al., 2010). The 

mechanism however is unclear has it has not been shown that EBNA 2 recruits co-repressive 

complexes or stimulate negative histone markers linked to transcriptional inhibition like EBNA  
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3C. It could be that EBNA 2 acts at the promoter directly or through upregulating repressor 

proteins. (Cahir-McFarland et al., 2004, Vockerodt et al., 2008, Faumont et al., 2009).  

 

I searched for RBP-Jk motif at CD79A and CD79B promoter sites and did not find any, it has 

also been reported that both CD79A and CD79B promoters do not contain a RBP-Jk binding 

site but they bind PU.1. CD79B has been shown to have two PU.1 sites with one of binding 

PU.1 in vivo (Omori and Wall, 1993, Thompson et al., 1996, Xie et al., 2004). I set out to 

investigate the mechanism of the reported repression through reporter assay. Surprisingly, 

my data showed CD79A and CD79B activation at the EBNA 2 binding region. CD79A and CD79B 

forms a dimer and non-covalently assembles together with membrane bound IgM to form 

the BCR signalling complex (Weiss and Littman, 1994) and EBNA 2 has been shown to repress 

IgM transcription by partial dependency on RBP-Jk (Jochner et al., 1996, Strobl et al., 2000, 

Maier et al., 2005), as CD79A and CD79B does not contain RBP-Jk site, it could be that the 

transcription factor EBNA 2 needs for downregulation at the target genes is absent when out 

of chromatin context. Previous work from our lab by Richard Palermo investigating if EBNA 2 

could bind directly and downregulate CD79B promoter in Mutu III cells using EBNA 2 with a 

differentially methylated poly-arginine and glycine region (poly-RG) in ChIP assays 

demonstrated enhanced binding of asymmetrically di-methylated EBNA 2 (aDMA-EBNA 2) 

compared to symmetrically (s) sDMA-EBNA 2.  

 

This data suggests that EBNA 2 may bind CD79Bp directly and that the differential methylation 

of EBNA 2 determines its transcriptional regulation of genes by altering the way it interacts 

with adaptor proteins. Using ChIP to investigate histone modification at the CD79B promoter, 

he also demonstrated reduced H3K27ac in Mutu III cells compared to Mutu I consistent with 

reduced activation at CD79B, however, no difference could be seen in detected in the 

H3K27me3 status of both cells suggesting that the repression is not mediated through 

polycomb-dependent mechanisms.  

 

Previous studies have shown LMP1 independently downregulates CD79A and CD79B in the 

germinal centre B cell (Vockerodt et al., 2008), EBNA 2 may indirectly inhibit  the transcription 

of CD79B promoter through upregulation of LMP1p and cell signalling suggesting the 

existence of a potential co-repressive mechanism.    
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To investigate further if the down-regulation by EBNA 2 at the target genes may be through 

competition with another transcription factor that acts as a ‘stronger’ activator at the binding 

sites, I conducted a reporter assay with EBF1 expressing plasmid and my data showed it can 

activate transcription through the EBNA 2 binding site consistent with known studies of EBF1 

able to activate CD79A and CD79B transcription (Hagman et al., 1991, Maier et al., 2004). 

However, in the competition experiment, EBNA 2 failed to inhibit this activation at the CD79A 

promoter and only a slight decrease in activation was observed at CD79B, inconsistent with 

EBNA 2 downregulating these targets in EBNA 2 activated cell lines (Maier et al., 2006) which 

was also demonstrated in our lab. My data suggest that the repressive effects of EBNA 2 may 

not be easily reproduced out of cellular chromatin context and interactions with other 

chromatin-associated cellular factors may be involved. However, my data indicated that EBF1 

is a better activator of CD79A and B than EBNA 2 and the lack of additional EBNA 2 activation 

of these promoters could indicate that the effects of EBNA 2 and EBF 1 activation is mutually 

exclusive. This suggests EBF1 prevents EBNA 2 binding perhaps via the EBF1 site or an 

adjacent site. Interestingly, an EBF1 site is required for EBNA 2 activation of the EBV LMP1p 

by EBNA 2 (Zhao et al., 2011, Tzellos et al., 2014).    

 

A recent study has also put forward a model that EBNA 2 bind to sequence specific factors 

like EBF1 and RBP-Jk that are already bound to their correlated binding sites and displace co-

repressors bound to these factors then form a stable co-activation complex at selected 

promoters and enhancers to stimulate the transcription of the targeted gene, they indicated 

that EBNA 2 could drive the formation of new chromosomal occupancies for transcriptional 

factors like RBP-Jk and EBF1. RBP-Jk, EBF1 and EBNA 2 commonly co-occupy this new sites 

that are associated with activated chromatin and transcription function. They also indicated 

that EBNA 2 may function as a stabilizer of multiple protein interactions that includes 

cooperative binding between RBP-Jk and EBF1 at some genomic locations (Lu et al., 2016a). 

 

Several studies have shown IRF4 to be expressed in all B-cell development stages in both 

mature T-cells and macrophages and play critical role in their function (Eisenbeis et al., 1995, 

Mittrucker et al., 1997). IRF4 may play a key role in EBV transformation process. It is 

overexpressed in EBV-transformed cells and revealed to be induced through the LMP1/NFkB 

signaling (Cahir-McFarland et al., 2004, Xu et al., 2008), it has also been shown to be stabilized 
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by EBNA 3C in EBV-transformed cells (Banerjee et al., 2013). IRF4 has been shown to induce 

B-cell integration cluster (BIC) which encodes miR-155 that is associated with EBV latency, 

BIC/ miR-155 has been shown to be induced by EBV LMP1, LMP 2A and BCR engagement 

among others (Jiang et al., 2006, Kluiver et al., 2006, Du et al., 2011, Wang et al., 2011). EBNA 

2 has been shown to indirectly target IRF4 through LMP1 and directly as shown in microarray 

analysis (Arguello et al., 2003, Spender et al., 2006a).  

 

I set out to investigate how EBNA 2 regulates the activation of IRF4 in reporter assay. Studies 

have shown that regulatory elements, particularly enhancers, control transcription of their 

target gene by physically interacting with the gene promoter via chromatin loops, and it has 

been reported that multiple distal enhancers can regulate a target gene simultaneously or 

cooperatively (Chepelev et al., 2012, Marsman and Horsfield, 2012). Furthermore, cell type 

specific transcription factor can regulate the activity of enhancers and are involved in loop 

formation indirectly by recruiting co-factors or directly by driving the loop formation 

(Marsman and Horsfield, 2012). My data demonstrated EBNA 2 activates the IRF4 via the two 

enhancer peaks and is consistent with microarray expression profiling analysis showing IRF4 

as a direct gene target for EBNA 2 (Spender et al., 2006a). These data concludes EBNA 2 is 

able directly target and activate IRF4 in or out chromatin context. 

 

In summary, these data suggest that EBNA 2 association with activated and repressed genes 

may be chromatin context specific and the mechanism of regulation may depend on the its 

interaction with other factors present at the target gene locus. 
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4. DISCUSSION 

 
The EBV EBNA 2, 3A, 3B and 3C transcription factors have been previously reported to play 

essential roles in the transcription of viral and cellular genes. EBNA 2 activates transcription 

of numerous cellular and viral genes and the EBNA 3s function as both activators and 

repressors of cellular gene expression. In this study, I set out to investigate the mechanism 

through which EBNA 2 regulates cellular gene activation and repression and the role the EBNA 

3 family of proteins play in this regulation. To do this, I used luciferase reporter constructs 

containing target gene promoters and/or enhancers identified through ChIP-sequencing in 

our lab (McClellan et al., 2013), and studied their response to the EBNAs in transient reporter 

assays. Our ChIP-sequencing results identified coincident binding sites for EBNA 2 and EBNA 

3 at the ITGAL promoter and at putative enhancers distal to CTBP2 and WEE1. We 

demonstrated that EBNA 2 activated the ITGAL promoter via the EBNA2 binding site and that 

this activation was inhibited when the EBNA 3s were co-expressed. We demonstrated that 

RBP-Jk was the key mediator of the EBNA 2 activation of ITGAL. The effects of the EBNA3s is 

therefore consistent with reports of the EBNA 3 proteins associating with RBP-Jk and 

inhibiting EBNA 2 activation. All EBNA 3 proteins can bind RBP-Jκ to inhibit EBNA 2 activation 

via RBP-Jk sites in reporter assays (Le Roux et al., 1994, Robertson et al., 1995, Waltzer et al., 

1996). It is also consistent with a model where EBNA 3 proteins can compete with EBNA 2 for 

binding to RBP-Jκ at the ITGAL promoter site. 

 

EBNA 2 has been shown to interact with long-range enhancer sites to regulate transcription. 

For example, MYC expression was shown to be upregulated by EBNA 2 via long-range 

enhancer interactions and promoter looping (Zhao et al., 2011, Wood et al., 2016). I set out 

to investigate the regulation of transcription by the long-range intragenic CTBP2 and the two 

distal WEE1 EBNA 2 and EBNA 3 enhancer binding sites. Data from our lab demonstrated 

EBNA 2 and EBNA 3s compete for binding at the CTBP2 locus (McClellan 2013). EBNA 2 binding 

and EBNA 3 cell-type specific differential binding was also demonstrated at the WEE1 locus 

(McClellan 2013).  

 

Analysis of mRNA expression in infected LCLs, implicated EBNA 3A and EBNA 3B in the 

repression of CTBP2 transcription by preventing enhancer-promoter loop formation, RNA 
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level increased when EBNA 3A and B are knocked-out. CTBP2 was not expressed in some cell 

lines so it was not possible to assess the effects of EBNA 3C on CTBP2 expression. As a result 

of the problems with finding cell lines that expressed CTBP2, it was not possible to fully 

determine the effects of EBNA 2 loss on endogenous CTBP2 expression. In fact, one of the 

cell-lines conditionally expressing EBNA 2 that we examined initially (ER-EB 2.5) where no 

effect of EBNA 2 on CTBP2 expression was observed (McClellan et al., 2013), was 

subsequently found to lack EBNA 2 binding at the enhancer site. (White et al., 2010, McClellan 

et al., 2013). Unfortunately, I was unable to provide any evidence of this from my reporter 

assay data as the TK promoter used was unexpectedly responsive to EBNA 2 activation and 

was repressed by expression of EBNA 3 alone. The effects of EBNA 2 when the CTBP2 

enhancer was also present, were therefore difficult to assess. Further assessment of the 

CTBP2 enhancer will therefore require the generation of a construct containing either the 

endogenous promoter or a different heterologous promoter. The endogenous promoter 

sequence could be obtained by having it synthesised externally.  

 

Analysis of mRNA expression in infected LCLs demonstrated EBNA 2 activates the WEE1 

enhancers and that repression by the EBNA 3s creates a balance that determines the level of 

WEE1 transcription consistent with Rob White re-analysed microarray analysis in BL31s, the 

EBNA 3C repression is directed by enhancer-promoter loop formation (McClellan et al., 2013). 

Based on previous results and our observations at ITGAL, it is possible that WEE1 RNA levels 

are affected in cell lines by EBNA 2 and 3s. Even though my constructs contained the 

endogenous WEE1 promoter, I did not observe any significant response to EBNA 2 in 

constructs containing the WEE1 promoter and enhancer sites. This could be because EBNA 2 

and EBNA 3 binding at these locations is cell-type specific or because there is no significant 

effect out of chromatin context. It could also be that the transcription factors needed to 

recruit EBNAs to the CTBP2 putative and WEE1 enhancer site are not expressed in the cell line 

used. It is also possible that the enhancer site we have identified is not the site through which 

WEE1 transcription is regulated by the EBNAs and that binding of the EBNAs here is redundant 

and has no function. However, other experiments in the lab have shown that this site does 

loop to the promoter in EBV-infected cells and its interaction is disrupted by EBNA 3C, 

consistent with EBNA3C repression of WEE1 transcription. It is possible that this enhancer 

works together with another enhancer to regulate WEE1 transcription.  
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I also studied IRF4 as a gene targeted by EBNA2 alone. I demonstrated that EBNA 2 activates 

IRF4 via the enhancer peaks we identified near the locus. This is consistent with microarray 

expression profiling analysis that showed EBNA 2 to directly regulate IRF4 (Spender et al., 

2006a). Interestingly, many transcription factors including IRF4 have also been shown to co-

occupy EBNA 2 enhancer and super-enhancer sites, so EBNA2 activates the expression of a TF 

that is possibly involved in its targeting to DNA , thus enhancing its function in cellular gene 

regulation (Zhou et al., 2015). IRF4 functions as an interacting partner of PU.1 and the 

composite PU.1/IRF4 element is implicated in EBNA 2 EBV type-specific regulation of specific 

cellular genes (McClellan et al., 2013, Tzellos et al., 2014), so IRF4 works together with other 

TFs involved in EBNA2 targeting. A search for RBP-Jk, EBF1 and PU.1 could be carried out at 

The IRF4 enhancer sites to identify which TFs are required for EBNA 2 activation. Site-directed 

mutagenesis could then be used to assess the roles of these sites to obtain more information 

on how EBNA 2 activates IRF4. 

 

 The mechanism of EBNA 2 mediated repression has not received as much attention as EBNA 

2 mediated activation. ChIP-seq data from our lab identified EBNA 2 binding sites at the 

CD79A and CD79B promoters and microarray experiments indicate that these two genes are 

repressed by EBNA 2 (Maier et al., 2006, White et al., 2010). I examined if EBNA 2 affected 

the expression of these genes using reporter assays. To investigate the mechanism of EBNA 

2-dependent downregulation of these genes, I carried out luciferase reporter assays using 

CD79A and CD79B promoter constructs. My data showed EBNA 2 activating the CD79A and 

CD79B promoters. This was surprising as these targets have been reported to be 

downregulated by EBNA 2 and EBNA 3 in vivo. CD79A and CD79B  assembles together with 

membrane bound IgM to form the BCR signalling complex (Weiss and Littman, 1994) and 

EBNA 2 has been shown to repress IgM transcription by partial dependency on RBP-Jk 

(Jochner et al., 1996, Strobl et al., 2000, Maier et al., 2005). I did a motif search at CD79A and 

CD79B and did not find any RBP-Jk sites and it has also been previously reported that they do 

not contain RBP-Jk sites (Omori and Wall, 1993). To further my investigation I carried out a 

competitive reporter assay with an EBF1 expressing plasmid to examine if EBNA 2 

downregulation is through competition with a stronger activator of the target gene. My data 

demonstrated EBNA 2 was unable to inhibit EBF1 activation at the CD79A promoter or 
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significantly inhibit activation at CD79B promoter, suggesting that the repressive effects of 

EBNA 2 may not be easily reproduced out of cellular chromatin context and interactions with 

other chromatin-associated cellular factors may be involved. However, my data did indicate 

that EBF1 is a better activator of CD79A and B than EBNA 2 and the lack of additional EBNA 2 

activation of these promoters could indicate that the effects of EBNA 2 and EBF 1 activation 

is mutually exclusive. This could indicate that EBF1 prevents EBNA 2 binding perhaps via the 

EBF1 site or an adjacent site. Interestingly, an EBF1 site is required for EBNA 2 activation of 

the EBV LMP1p by EBNA 2 (Zhao et al., 2011, Tzellos et al., 2014).  

 

Previous studies have shown that LMP1 independently downregulates CD79A and CD79B 

(Vockerodt et al., 2008). EBNA 2 may therefore indirectly inhibit the transcription of CD79B 

promoter through the upregulation of LMP1p and cell signalling. However, microarray 

analysis of CD79B expression in cells only expressing EBNA 2 also detected repression of these 

genes by EBNA 2 (Maier et al., 2006). This indicates that both direct and indirect repression 

mechanisms may be used by EBNA 2. Studies by Richard Palermo in our lab (unpublished) 

confirmed that EBNA 2 binds CD79Bp directly by ChIP-QPCR. He examined CD79B expression 

in two BL cell lines, Mutu I and Mutu III. Mutu I cells express only EBNA 1, where Mutu III cells 

express all EBNAs and LMPs (Gregory et al., 1991). Using ChIP-QPCR to look at specific histone 

modifications, he found reduced H3K27ac levels in Mutu III cells compared to Mutu I, 

consistent with reduced activation of CD79B. He detected no difference in the H3K27me3 

status of the promoter in both cell lines suggesting that the repression is not mediated 

through polycomb-dependent mechanisms. These data support our hypothesis that EBNA 2 

may compete with a ‘better’ activator leading to reduced CD79B expression. Further 

experiments to test this using ChIP-PCR in cells where EBNA 2 activity can be switched on and 

off are needed to address this further. This way, EBF1 binding to the CD79A and B promoters 

and the binding of other TFs involved in CD79 gene activation Pax5 and E2A can be monitored 

in the presence and absence of EBNA 2 and correlated with the effects on CD79 transcription. 

 

In this study, we have shown that EBNA 2 activates IRF4 via a newly-identified enhancer and 

that it activates ITGAL via an RBP-Jk binding site. At ITGAL, EBNA 3 proteins repress EBNA 2 

activation. The lack of effect of EBNA 2 on CTBP2 and WEE1 regulatory elements bound by 

EBNA 2 in vivo suggests that differential binding of EBNA 2 with genes may be chromatin 
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context specific and regulation may depend on the its interaction with other factors present 

at the target gene locus. Also, luciferase reporter assays may not completely recapitulate the 

normal behaviour of a given promoter or enhancer, as it is an in vitro assay outside of the 

nuclear environment. Many factors such as dysregulation due to the amount of plasmid DNA 

in transfected cells, nucleosomal distribution and looping ability of endogenous enhancers 

may be lacking in the plasmids.  

 

Ultimately, understanding the mechanism behind the regulation of cellular gene will provide 

insight into the development of EBV-associated diseases and could help identify therapeutic 

targets for new drug inventions. Further studies using alternative strategies including ChIP-

QPCR and the creation of integrated reporter constructs using CRISPR gene targeting will be 

needed to study cellular gene regulation in more detail. 
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6. APPENDICES 

6.1. Appendix A Antibodies for western blotting 

 

 

 

 

 

 

 

Protein Antibody Antibody 

species 

Antibody 

dilution 

Company/generated 

by 

Secondary 

antibody 

Antibody 

dilution 

Company/generated 

by 

 

Actin Actin Rabbit 

polyclonal 

1:2000 Sigma Anti 

Rabbit-

HRP 

1:1000 CELL SIGNALLING 

EBNA2 PE2 Mouse 

monoclonal 

1:300 Gift from Martin 

Rowe 

Anti-

Mouse-

HRP 

1:1000 CELLSIGNALLING 

EBNA3A T2.78 Mouse 

monoclonal 

1:1000 Gift from Martin 

Rowe 

Anti-

Mouse-

HRP 

1:1000 Cell signalling 

EBNA3B EX 

ALPHA 

Sheep 

polyclonal 

1:500 Ex alpha Anti-

Sheep-

HRP 

1:1000 sigma 

EBNA3C E3A10 Mouse 

monoclonal 

1:300 Gift from Martin 

Rowe 

Anti-

Mouse-

HRP 

1:1000 Cell signalling 

EBF1 EBF1 Mouse 

monoclonal 

1:300 Santa cruz Anti-

mouse-

HRP 

1:1000 Cell signalling 
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6.2. Appendix B Real time primers for QPCR 

• Obtained from (McClellan et al., 2013) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Appendix B - primers      
Real time PCR primers for 
QPCR 

  
 

primer 
set 

primer sequence 5' to 3' notes 

 
 ITGAL     

1 Forward MW826 TGCACCTGTGGTTTCAGCTA peak primer B 

  Reverse MW827 CGATCACAGCTCAATGCAAC peak primer B 

2 Forward MW828 ACCCAGCCTCCAATTCTTTAG   

  Reverse MW829 TTTCTCTGGACCTTGAAAGATGT   

3 Forward MW830 TGCTTACACTTCCTCCCTGAA peak primer C  
 Reverse MW831 TTTCTCACAGAGGCAACAGG peak primer C 
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6.3. Appendix C DNA amplifying primers 

 

                                                                             Appendix C- primers  

                                                                            DNA Amplifying primers  

Sequence 5’ to 3’ Gene 

name/region/number 

PCR Product 

size/ sites 

introduced into 

primers 

GATATCTCGAGGTTGCAGGTTGTAGTGAGCCGAG WEE1 Promoter  

Fw MW842 

1250bp/ Xhol 

GCATAAGCTTCGAGGACAGGAGAGCGGA WEE1 Promoter  

Rv MW843 

Hindlll 

GTATGCTAGCACACAGTGTAGTGGAGGTATTAGGCAGA WEE1 Enhancer peak 1  

Fw MW844 

1550bp/ Xhol 

GATATCTCGAGACTCCAGCCTGGGTGACCA WEE1 Enhancer peak 1  

Rv MW845 

Nhel 

GGATGCTAGCTGCTTGTCACTTGGTGCAGACA WEE1 Enhancer peak 2  

Fw MW900 

2952bp/ Nhel 

GTATGCTAGCTGAGCAACAGAGTGAGACACCGT WEE1 Enhancer peak 2  

Rv MW847 

Sacl 

GTATGAGCTCGAGAATGACTCGAGCCCGTGAG ITGAL Promoter peaks  

Fw MW848 

1950bp/ Sacl 

GCATAAGCTTTTCCAGCACTCGAGGGACC ITGAL Promoter peaks  

Rv MW849 

Hindlll 

GAATACTCGAGATTCCCGCCACGCCAGTGT CTBP2 Enhancer peak  

Fw MW850 

549bp/ Xhol 

GTAGGTACCGCAGAGTGCCCCAGTTGC CTBP2 Enhancer peak  

Rv MW851 

Kpnl 

GATGTTAGTGccAAACCATGACAGC ITGAL_MUT1 Fw MW1524 1950bp/ Sacl 

CCAACTAAGGGCTCTGTAAAG ITGAL_MUT1 Rv MW1525  Hindlll 

TGCCTCTGTGccAAAGTACCACTGTAAG ITGAL_MUT2 Fw MW1526 1950bp/ Sacl 

ACAGGCTGGTGACACTGG ITGAL_MUT2 Rv MW1527  Hindlll 

GTCTCGAGATTACAGGCTTGAGCCACA IRF4 Promoter  969bp/ Xhol 
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Fw MW1497 

GACTCGAGCTGGACTCGGAGCTGAGG IRF4 Promoter  

Rv MW1498 

Xhol 

GAGCTAGCATCGCTTGAGGTTGCAGTG    IRF4 Enhancer peak 1  

Fw MW1076      

1236bp/ Xhol 

GTCTCGAGTGAAGCAGGCACTGTGATTC IRF4 Enhancer peak 1  

Rv MW1077       

Nhel 

GAGAGCTCAGCCATCTCCATCATCTGGT IRF4 Enhancer peak 2  

Fw MW1078        

996bp/ Nhel 

GAGCTAGCATGTGGAACGCTGGTCCT IRF4 Enhancer peak 2  

Rv MW1079          

SacI 

GTGCTAGCAAGAGTGAGAGACAGAGGAGGAG CD79B Promoter  

Fw MW1495 

942bp/ Sacl 

GAGAGCTCAGCTGTCTCCACCTACATCCA CD79B Promoter  

Rv MW1496 

Nhel 

Synthesized DNA by Eurofins CD79A Promoter Peak 1 971bp/ Xhol 

Hindlll 

Synthesized DNA by Life Technologies CD79A Promoter Peak 2 655bp/ Xhol 

Nhel 
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6.4. Appendix D Examples of designed reporter constructs 
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