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Abstract

This thesis presents a detailed theoretical/computational analysis using quantum

chemistry to investigate the thermochemistry and reaction mechanisms of pallada-

cycles that underpin experimental observations. The thesis begins by establishing a

suitable computational methodology for the study of pincer palladacycles. It was

found that Density Functional Theory (DFT) was suitable for the accurate reproduc-

tion of geometric structures and energetics by comparing a range of commonly used

density functionals and basis sets with the X-ray crystal structures of symmetric pin-

cer palladacycles. The detailed electronic structure of several pincer palladacycles was

investigated using Complete Active Space Self-Consistent Field method (CASSCF)

and it was shown that the dominant configuration was larger than 0.96, indicating

that the ground state electronic structure has significant single-reference character.

DFT was used to investigate the stability of symmetrical pincer palladacycles, and

then by changing the donor ligand, unsymmetrical pincer palladacycles. The pincer

palladacycle formation was investigated and it was found that the barrier to C-H

activation was dependent on the ligand arm of the pincer that coordinates to PdCl2.

Topological analysis was performed using Quantum Theory of Atoms In Molecules

(QTAIM) for determining the strength and nature of the Pd and donor atom inter-

actions, showing that the bond strength depends on the type of donor atom and

trans influence in the pincer palladacycles. The mechanism for Pd(0) formation from

both symmetrical and unsymmetrical pincer palladacycle pre-catalysts for catalysis

in Suzuki-Miyaura carbon-carbon cross-coupling reactions was studied, and then

with the introduction of base and the effect of solvent. It was shown that the key

steps are transmetallation and reductive elimination processes, and differences in the

overall Gibbs free energy and transmetallation barrier provide an explanation for

observed catalytic activity. This has been in conjunction with experimental chemists.



iii

Finally, the functionalisation of benzodiazepines was investigated in three conditions;

with Pd(II)/Ru(II)-catalysts, with Pd(II)-catalysts and without catalyst. It was

found that the Ru(II) photocatalyst with Pd(II)-catalyst is the best condition for

functionalisation on benzodiazepines with the lowest energy barrier.
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Chapter 1

Introduction and Thesis Overview

1.1 Introduction to palladacycles and their applic-

ations

In 1965 Cope and Siekman first reported the synthesis of palladacycles and since

their discovery they have been found to have many useful and interesting applications

in modern organic chemistry.1 They play an important role as catalysts in a number

of chemical reactions, and are also utilised as intermediates in organic reactions.2,3

These palladacycles are also used in nanoscience applications such as gas sensors,4

chemical switches4 and in medicinal chemistry.5

For classification of palladacycles, two broad types exist, depending on how the lig-

and coordinates to the palladium centre. The first type is the C-anionic four-electron

donor ligand (CY) coordinating to the palladium centre and the second type is the

C-anionic six-electron donor ligand (YCY) known as a pincer ligand coordinating

to the palladium centre, where Y is a two-electron donor ligand (Figure 1.1).6 An

example of the C-anionic four-electron donor ligand is 1,3-bis(2-pyridyloxy)benzene

(Scheme 1.1).7 When this reacts with Pd(OAc)2, a palladacycle is formed as the

product. A C-anionic six-electron donor ligand pincer complex may be synthesised by

the reaction between m-hydroxyphenol and diphenylchlorophosphine with triethyl-

amine in toluene solvent. Palladium chloride is then added in the reaction mixture

(Scheme 1.2).8
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a)                                   b)

Pd XC
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Figure 1.1. Palladacycles; a) C-anionic four-electron donor (CY) complex and b)
C-anionic six-electron donor.6
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Scheme 1.1. Example of reaction involving a C-anionic four-electron donor ligand.7

HO OH

Ph2PCl, PdCl2

Et3N
toluene, reflux

O O

Ph2P PPh2Pd

Cl

Scheme 1.2. Example of reaction involving a C-anionic six-electron donor ligand.8

Many researchers have synthesised palladacycles and modified their structures for

catalytic applications. One of the widest applications is in the Heck reaction, which

involves the coupling of an α-olefin with an organic halide.9 PCP pincer palladacycles,

PdPCP 1 and 2 (Figure 1.2) were used to achieve the coupling between iodobenzene

and methylacrylate in solvent N -methylpyrrolidone and base sodium carbonate.10

Based on the work of Beller and Zapf,11 the PdPCP 3 (Figure 1.2) was synthesised

and used in the coupling of styrene with iodo- and bromobenzene.12 They observed

3 to be a good catalyst, providing both a high yield and regioselectivity. In addition,

this catalyst is inexpensive and stable in air. Moreover, the PdPCP 4 was found to

be a stable catalyst when it was introduced in the Heck reaction between methyl

acrylate and aryl bromides or iodides (Figure 1.2).13

SCS pincer palladacycles (PdSCS) have been found and used in the Heck reaction.

It has been shown that PdSCS 5 (Figure 1.3) was successful in catalysing a C-

C bond in the coupling of iodobenzene with either styrene or methyl acrylate in

dimethylformamide and this catalyst was easily recyclable.14 Furthermore, in the

literature, porous silica, Merrifield resin and poly(norbornene) bound PdSCS 6

(Figure 1.3) acted as pre-catalyts in the Heck coupling reaction between iodobenzene

and n-butyl acrylate.15 It has also been shown that supported palladacycles act as
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catalysts or pre-catalysts and have been investigated further.16–18

Pd P(Pri)2(Pri)2P
OCOCF3

1

Pd PR2R2P
OCOCF3

2

R = Pri, But

Pd
O O

P(Pri)2(Pri)2P
Cl

3

Pd PP
Cl

4

R = C2H4C6F13

R R

RR

Figure 1.2. PCP pincer palladacycles (PdPCP) 1, 2, 3 and 4.10,12,13

Pd

SPh

SPh

Cl

5

H
N

H
N

O
O

H3C
OO

n

Pd

SPh

SPh

Cl
H
N

O

support

6

support = silica, polymer

Figure 1.3. SCS pincer palladacycles (PdSCS) 5 and 6.14,15

Many types of palladacycles are also used in the well known Suzuki-Miyaura

cross-coupling reaction as a way to form C-C bonds. Examples of the catalytic

activity of the palladacycles as catalysts or pre-catalysts (catalytic precursors) for

the Suzuki-Miyaura reaction will be discussed below.

Based on the good catalysts, 1 and 2 in the Heck reaction, PdPCP 7 (Figure 1.4)

was synthesised and tested for catalytic activity in the Suzuki-Miyaura reaction. It

was found that the cross-coupling reactions of 4-bromoanisole with phenylboronic

acid using PdPCP 7 catalysts resulted in a very high turnover number, TON (TON

= product (mol)/catalyst (mol)) and good conversions.19 Furthermore, the phosphine

arm with the strong electron donating group in palladacycle 8 (Figure 1.4) was
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shown to be easily accessible and be highly efficient for the cross-coupling of less

reactive chloroaromatic compounds.20

Pd

OO

PPh2Ph2P

OCOCF3

7

Pd

Br

P
But2

2

8

Figure 1.4. Phophorus donor palladacycles 7 and 8 using in the Suzuki-Miyaura
cross-coupling reaction.19,20

Palladacycles containing sulfur donor atoms are also interesting and they have

been developed and applied for the Suzuki-Miyaura reaction. For instance, Zim et al.21

used catalyst precursor sulfur-containing palladacycles 9, 10 and 11 (Figure 1.5) for

cross-coupling using aryl bromides and chlorides. Their investigation showed that

these palladacycle complexes gave medium to excellent yields of products.

Pd SButButS

Cl

Pd

Cl

S
But

Me

2Pd

X

S
R

R'

2

R = But, Me
R' = Me, H
X = Cl, OAc

9 10 11

Figure 1.5. Sulfur donor palladacycles 9, 10 and 11 using in Suzuki-Miyaura
cross-coupling reaction.21

The pincer NCN palladacycle, PdNCN 12 (Figure 1.6) was tested for the catalytic

C-C bond formation of iodobenzenes with phenyl boronic acids. It was showed that

12 worked very well with high yields and gave more than 900,000 of TON and 45,000

h−1 of turnover frequency, TOF (TOF = TON/reaction time (h)).22
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Pd NN

Cl

O O

12

Figure 1.6. Nitrogen donor palladacycles 12 used in Suzuki-Miyaura cross-coupling
reaction.22

In other types of active catalysts, P-coordinated and As-coordinated NC pal-

ladacycles are shown in Figure 1.7. The catalytic activity of the P-coordinated

NC palladacycle 13 was examined in the Suzuki-Miyaura reaction and showed very

high TONs and excellent conversions in cross-coupling between PhB(OH)2 and a

broad range of aryl chlorides.23 Moreover, the P-coordinated NC palladacycle 14

(Figure 1.7) catalytic precursors were applied to polymer chemistry where they were

used for controlled Suzuki cross-coupling polymerisation and gave a very narrow

polydispersity index (PDI).24 Varying the ring size of P-coordinated to NC pallada-

cycles 15 (Figure 1.7) in the cross-coupling between aryl bromide and phenylboronic

acid showed that the catalytic activity increased with increasing ring size, due to

increasing the mobility of the P group.25 In addition, the catalytic activity of the

interesting As-coordinated NC palladacycle 16 (Figure 1.7) was investigated by

Bedford et al.26 and their results showed that As-coordination provided a high TON

but medium percentage conversion, compared to the results from P-coordinated NC

palladacycles 17 (Figure 1.7) showing both high percentage conversion and TON.

Pd PCy3Me2N

OCOCF3

Cy =

Pd PBut3
Cl

N
H2

PdEtHN

Ph2P

PPh2

n = 1,2

PdMe2N AsPh3

OCOCF3

PdMe2N PPh3

OCOCF3

13 14 15

1716

Figure 1.7. P-coordinated NC palladacycles 13, 14, 15, 16 and 17.23–26
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Oxime palladacycles are an interesting type of catalytic or pre-catalytic compound

which have an oxime arm (Figure 1.8). They act as catalysts or pre-catalysts in a

number of organic reactions. The oxime palladacycles 18,27 1927 (Figure 1.8) catalyst

precursors were used for the coupling reaction of aryl, allyl and benzylbromides and

chlorides with phenylboronic acid and the results provided a high TOF.27 An oxime

palladacycle has been claimed to form a recyclable catalyst when functionalised on

the polymer substrate, 20. (Figure 1.8) It has been shown that a polymer-supported

oxime palladacycle acted as a pre-catalyst and led to the cross-coupling reaction

between benzoyl bromide derivatives and phenylboronic acid in DMF-H2O. Using

these pre-catalysts gave excellent percentage yields.28

Some chemists are interested in reactions under eco-friendly conditions. It has

been shown that the oxime-derived palladacycle pre-catalyst 21 (Figure 1.8) used

for the reaction between benzoyl chloride and phenylboronic acid in the eco-friendly

solvent 2-MeTHF is chemically less hazardous. The oxime palladacycle pre-catalysts

provided a high catalytic activity with good percentage yield.29 There have also been

reports of palladacycles 22 and 23 (Figure 1.9) being applied as a catalyst for the

C-C bond formation in Suzuki-Miyaura reactions under eco-friendly condition.30,31

Pd

Cl

N

2

OH

R1

R2

a; R1 =                                   , R2 = H

b; R1 =                                   , R2 = OMe

c; R1 =                                   , R2 = Cl

d; R1 =  Me                            , R2 = H

OMe

Cl

18

Fe

Pd

N

Cl

OH

2

Pd

Cl

N

2

OH

21

N Pd
ClHO

O(CH2)12O

1

N
HO

O(CH2)12O

1.9

20

19

Figure 1.8. Oxime palladacycles 18, 19, 20 and 21.27–29
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Pd NCl
OH

2

OOC8F17 3 C8F173

22

Ph2P Pd

PPh2

Cl Cl O

23

Figure 1.9. Palladacycles 22 and 23 applied as catalysts in Suzuki-Miyaura reaction
under eco-friendly conditions.30,31

The other type of pincer palladacycle is the unsymmetrical type which has been

synthesised and its catalytic activity tested in the Suzuki-Miyaura reaction.6 The

unsymmetrical SCN pincer palladacycle 24 (Figure 1.10) was used as a pre-catalyst

in this reaction. It provided high percentage conversion when the reaction between

4-bromoanisole and phenylboronic acid in o-xylene and base K2CO3 was performed.32

In addition, unsymmetrical pincer palladacycles can be used in catalytic aldol

condensation. For example, Roffe et al. synthesised novel unsymmetrical NCN’ 25

and PCN 26 pincer palladacycles and tested the catalytic aldol condensation of

methylisocyanoacetate with benzaldehyde in dichloromethane. These catalysts gave

excellent yields (Scheme 1.3).33

24

N Pd
Cl

S

Figure 1.10. Unsymmetrical NCS 24 pincer palladacycle used in the Suzuki-
Miyaura reaction.32
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H
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OMe

O

[Pd]

iPr2EtN

CH2Cl2

O

N

H

MeO2C

Ph

H

O

N

H

MeO2C

Ph

H

[Pd]   = or

Scheme 1.3. Unsymmetrical NCN’ 25 and PCN 26 pincer palladacycles used in
the aldol condensation reaction.33
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Palladacycle compounds have also been used in biomedical applications. For

example, the palladacycle 28 (Figure 1.11) has been used to stunt the growth of

tumours. It showed a high antiproliferative activity against the MDA-MB231 and

MCF7 human breast cancer cell lines, with IC50 in the range 1-5 µM where IC50 is

the inhibition constant. This is the concentration of substance inhibiting biological

response by 50 percent.34 In addition, there is an excellent review which provides

examples of anti-cancer palladacycles.35

PdN

Ph

H
PPh3

X

a; X = OAc
b; X = Cl

28

Figure 1.11. Palladacycle 28 with antitumour activity.34

The foregoing literature survey above has discussed the many applications of

palladacycles. Their catalytic and biological activities depend upon the types of

ligand arms. Understanding the activities, structures and bonding of palladacycles

is crucial in the modification and development of such catalysts. Thus theoretical

and computational chemistry are major tools for gaining insight into the physical

and chemical properties of these important molecules. These methods are used

in rationalising the bonding of the complex, understanding the mechanism, and

predicting or explaining the observed selectivity from experiment.

1.2 Computational chemistry

Computers are used in nearly every industry, and they have had very wide-reaching

effects in science including computational chemistry. Chemists use computers in

order to simulate those chemical systems which cannot be observed by experiment.

Computational chemistry uses a mathematical description of chemistry, known

as theoretical chemistry, which is incorporated in computer programs for solving

chemical problems, understanding phenomena or predicting the results of future

experiments. Computational chemistry can be divided into two broad types, quantum

mechanics based on the Schrödinger equation and molecular mechanics based on

Newton’s second law.36 Normally, we can use molecular mechanics such as molecular
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dynamics or stochastic dynamics for simulation of proteins or very large molecules,

whilst for smaller systems, quantum mechanics may be used. In this thesis, we will

focus only on quantum mechanics, which is “the correct mathematical description of

the behaviour of electrons”.37 In principle, we cannot solve the Schrödinger equation

exactly for systems with more than two particles but we can use approximation

methods such as ab initio methods, semi-empirical and density functional theory

(DFT). The key ideas and concepts of approximation methods and some relevant

computational chemistry techniques relating with our work will be discussed in

theoretical background (Chapter 2).

1.3 Thesis overview

This thesis presents a computational investigation of the structure, bonding and

reactivity of some pincer palladacycles and Pd-based catalysts. First, the theoretical

background, including concepts of approximation methods, basis sets, quantum

theory of Atoms in Molecules (QTAIM) and natural bond orbital (NBO) analysis

will be provided in Chapter 2. The methodological requirement for the study of

pincer palladacycles is presented in Chapters 3 and 4, in order to secure and validate

a suitable methodology for the research in this thesis. Chapter 3 provides a method

validation for studying the geometries of pincer palladacycles and Chapter 4 contains

a complete active space self-consistent field (CASSCF) method investigation of pincer

palladacycles to determine the nature of the electronic structure. Chapter 5 presents

an investigation of the formation and stability of symmetrical and unsymmetrical

pincer palladacycles (PdYCY and PdYCY’, respectively) to determine the role of

the donor atoms Y and Y’ in their stability. Chapter 6 investigates the formation of

the active catalyst Pd(0) from the pincer palladacycle pre-catalysts, and the results

are used to provide insight into the desirable properties of an effective catalyst for

Suzuki-Miyaura cross-coupling reactions. Chapter 7 focusses on the functionalisation

of benzodiazepine using a Pd-catalyst and provides an explanation for the increased

reaction yield when a Ru-photocatalyst is presented in the experiment. Finally,

Chapter 8 presents the concluding remarks and future direction, and provides the

thesis outcomes of my work, including publications, oral presentations and posters.



Chapter 2

Theoretical Background

This chapter provides the theoretical background including the Hartree-Fock method,

post-Hartree-Fock method, Density Functional Theory (DFT) method, basis sets,

Quantum Theory of Atoms in Molecules (QTAIM) and Natural Bond Orbital (NBO)

analysis.

2.1 Introduction

In this thesis, the complete active space self-consistent field (CASSCF) method,

which is a post-Hartree-Fock method, is used to study electronic structure and

DFT methods are used to investigate structures, reactivities and physical properties.

Thus, we introduce some of the basic concepts behind these methods. We start with

the Schrödinger equation and Hartree-Fock method which lay the foundation for

CASSCF, following which DFT methods will be discussed. Finally, an overview of

the basis sets and analysis tools used in this thesis will be presented.

2.2 The Schrödinger equation

Atomic and molecular systems can be described using an eigenvalue equation known

as the Schrödinger equation. A wavefunction, Ψ, is a mathematical function which

contains all the information of the quantum system. The key piece of information

extracted from Schrödinger equation is the energy of the system, thus the main goal

for approximating the solution of the Schrödinger equation is to obtain the energy
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of the atomic or molecular system. When determining the energy of an atomic or

molecular system, quantum mechanics (QM) can be used to predict the behaviour of

electrons and nuclei and thus determine the molecular properties. The general form

of the non-relativistic, time independent, Schrödinger equation is

Ĥψ = Eψ, (2.1)

where Ĥ is the Hamiltonian operator and E is an eigenvalue which, here, is the

electronic energy.

The most general form of the Hamiltonian operator represented in atomic units

can be written as:

Ĥ =

kinetic terms︷ ︸︸ ︷
−1

2

N∑
i=1
∇2
i −

1
2

M∑
A=1

1
MA

∇2
A

potential terms︷ ︸︸ ︷
−

N∑
i=1

M∑
A=1

ZA
riA

+
N∑
i=1

N∑
j>i

1
rij

+
M∑
A=1

M∑
B>A

ZAZB
RAB

(2.2)

where A and B run over the M nuclei in the system, while i and j run over the N

electrons. The nucleus A has a mass equal to MA which is represented in multiples

of the electron mass. ZA and ZB are the atomic charge number for nucleus A

and B, respectively, and RAB is the distance between nuclei. riA represents the

distance between the electron i and nucleus A and rij represents the distance between

electrons i and j. The first two terms in equation (2.2) represent the system’s kinetic

energy and last three terms represent the potential energy, which consists of Coulomb

attraction and repulsion.38 ∇2
q (q = i or A) is the Laplacian operator which is defined

as the second derivative of the chosen coordinate system. For example, ∇2
q in terms

of the Cartesian coordinate system for a three-dimensional space (3D) is

∇2
q = ∂2

∂x2
q

+ ∂2

∂y2
q

+ ∂2

∂z2
q

. (2.3)

The Hamiltonian in equation (2.2) is rarely used directly in computational

software, but is simplified using the Born-Oppenheimer approximation.36,37 The

underlying physical justification of the Born-Oppenheimer approximation is that

the nuclei are much heavier than the electrons which move much faster than the

nuclei. From the point of view of the electrons, the motion of the nuclei is much

less and hence the nuclei can be approximated to be fixed. This situation leads to
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the nuclei’s kinetic energy being zero and their nuclear-nuclear repulsion potential

energy being constant. The molecular geometry can be represented by fixed nuclear

coordinates with electrons acting as a cloud of negative charge distributed around

the positions of nuclei. A plot of a number of different nuclear geometries for a

given system as a function of energy is called a potential energy surface (PES). The

minimum energy structure on the PES corresponds to the most stable structure of

a given molecule.39–41 In the Born-Oppenheimer approximation, the electronic and

nuclear motion are solved separately to simplify calculations and the Hamiltonian

operator in equation (2.2) is reduced to the electronic Hamiltonian (Ĥelec):

Ĥelec =

kinetic term︷ ︸︸ ︷
−1

2

N∑
i=1
∇2
i −

N∑
i=1

M∑
A=1

ZA
riA︸ ︷︷ ︸

nuclear-electron
attraction

electron-electron
repusion︷ ︸︸ ︷

+
N∑
i=1

N∑
j>i

1
rij

(2.4)

The first term of equation (2.4) is the kinetic operator of the electrons, second term

accounts for nuclear-electron attraction and the last term is the electron-electron

repulsion. A more compact form of equation (2.4) is

Ĥelec = T̂ + V̂ne + V̂ee (2.5)

where T̂ , V̂ne and V̂ee are the kinetic, nuclear-electron attraction and electron-electron

repulsion terms, respectively. The solution from Ĥelec operating with the electronic

wavefunction (Ψelec) is the electronic energy (Eelec). From this point, the total

electronic energy can be calculated by adding the Enuc which is the energy from the

constant nuclear repulsion term (the last term of the equation (2.2)) to Eelec:

Etotal = Eelec + Enuc. (2.6)

From now, the electronic Hamiltonian and electronic wavefunction are considered

and they can be written as ψelec = ψ and Ĥelec = Ĥ.38

The exact energy of the hydrogen atom and its exact wavefunction can be

calculated due to it being a two particle system and hence solvable analytically. For

many-electron wavefunctions, we do not know the exact form of the wavefunction,
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hence approximate methods are required to find the approximate wavefunction and

energy. Confidence in this approximate energy can be heightened by use of the

variational principle. This theorem states that the energy, E from any wavefunction

ψ is greater than or equal to the true (exact) energy, E(ex)
0 , of the ground state, i.e.

∫
ψ∗Ĥψdτ∫
ψ∗ψdτ

=

〈
ψ|Ĥ|ψ

〉
〈ψ|ψ〉

≥ E
(ex)
0 . (2.7)

where 〈ψ|ψ〉 is equal to 1 for a normalised function. The wavefunction ψ from

equation (2.7) is called the trial wavefunction.38 This theorem can be used to assess

the quality of the trial wavefunction: the lower the energy, E, the closer to the

true ground-state energy, E0, and, it is assumed, the better the trial wavefunction.

This trial wavefunction holds all information about the system and has to obey the

following fundamental postulate: ψ must be i) continuous, ii) single-valued, iii) finite

and iv) antisymmetric to electron exchange.37 The variational principle is also the

key mathematical concept for DFT.38 What we need to do in order to find the exact

energy of the ground state is to minimise the functional E[ψ] which “is a function

whose argument is itself a function”38 by searching through all eligible N -electron

wavefunctions. The formula for finding E(ex)
0 is

E
(ex)
0 = min

ψ→N
E [ψ] = min

ψ→N

〈
ψ|T̂ + V̂ne + T̂ee|ψ

〉
(2.8)

where ψ → N indicates that ψ is an allowed N -electron wavefunction. It is not

possible to solve equation (2.8) exactly, thus an approximate method is chosen for

determining the energy that best approaches E(ex)
0 .38
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2.3 The Hartree-Fock method

We will introduce the Hartree-Fock (HF) method which is the simplest type of ab

initio calculation (ab initio means “from the beginning”).37 It is the fundamental

approximation, which can be used to address the many-electron wavefunction problem

at a basic level and leads to some higher-level approximate methods such as the

CASSCF method. Thus, understanding this approximation will help to understand

other approximate methods.

The HF method starts from the Hartree scheme where it is built from one-electron

atomic orbitals corrected by electron spin. The electron-electron repulsion term is

treated by assuming average field of the other N − 1 electrons. In this method, the

wavefunctions approximate the N -electrons by a Slater determinant, Ψ, obeying the

Pauli exclusion principle:

Ψ = 1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1(~x1) ϕ2(~x1) · · · ϕN(~x1)

ϕ1(~x2) ϕ2(~x2) · · · ϕN(~x2)
... ... . . . ...

ϕ1(~xN) ϕ2(~xN) · · · ϕN(~xN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.9)

where ϕ(~x) is a spinorbital at position x where it is composed of a spatial orbital (ψ)

and spin function (α and β). The simpler notation for representing equation (2.9)

can be written using only its principal diagonal.42 That is

Ψ = (1/N !)1/2 |ϕ1(~x1)ϕ2(~x2) · · ·ϕN(~xN)|. (2.10)

Roothaan and Hall suggested an idea to use linear combination of atomic orbitals

(LCAO) or basis functions, χ to treat electron distribution qualitatively and it is

written as:40

ϕi =
m∑
s=i

csiχs (2.11)

where c are coefficients. The set of basis functions are called the basis set, which is

discussed in detail in section 2.7.

Next, we will introduce the HF equation for individual spinorbitals and the
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procedure for solving this equation. The HF equation is formed from:

f̂iϕi = εiϕi (2.12)

where ε is the eigenvalue and can be physically understood as the orbital energies

and ϕ being satisfied through the minimisation. f̂ is the Fock operator defined as:

f̂i =

kinetic term︷ ︸︸ ︷
−1

2∇
2
i −

M∑
A

ZA
riA︸ ︷︷ ︸

potential term

+VHF. (2.13)

The first two terms represent the kinetic term and the electron-nuclear interaction

(potential term). These terms (kinetic + potential) are known as the one-electron

core Hamiltonian or hydrogenic part, ε(0)
i . VHF, which is known as the Hartree-Fock

potential, is an average repulsion potential between electron ith and the other N -1

electrons. Therefore, in equation (2.13), the complicated two-electron repulsion

operator (1/rij) is replaced by VHF, leading to electron-electron repulsion being

considered in an average way. VHF consists of i) the Coulomb operator, Ĵj( ~x1),

representing the electron potential due to the average charge distribution of another

electron in ϕi and ii) the exchange operator K̂j( ~x1) being the correction term which

leads to an exchange of the variable in the two spinorbitals.38 VHF is given by:

VHF( ~x1) =
N∑
j

(
2Ĵj( ~x1)− K̂j( ~x1)

)
. (2.14)

The HF equations are solved through the self-consistent field (SCF) procedure

which uses an iterative process searching until a convergence criterion is satisfied.

When the basis functions, equation (2.11), are substituted in equation (2.12) and

then both sides multiplied by χ∗s′ and integrated overall space, we obtain:

m∑
s=i

Fs′scsi = εi
m∑
s=i

Ss′scsi (2.15)

Fs′s and Ss′s are the Fock and overlap matrix, respectively and can be written as:

Fs′s =
〈
χs′

∣∣∣f̂i∣∣∣χs〉 (2.16)
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Ss′s = 〈χs′|χs〉 (2.17)

Equation (2.15) is known as the Roothaan equation which is a set of simultaneous

equations for determining the coefficients. To find an unknown energy, εi, initially the

spinorbitals are constructed by choosing the set of basis functions and formulating a

set of trial coefficients, csi (using equation (2.11)). Next, Fs′s and Ss′s are calculated

using equation (2.16) and (2.17) then the energy, εi is solved using the self-consistent

field method. In each iteration, the new sets of csi are calculated until a convergence

criterion has been satisfied (either csi or εi are the minimal improvement compared

to previous iteration).42

2.4 Post-Hartree-Fock approximation

The HF method has no electron correlation and it does not consider the instantaneous

Coulomb interaction between electrons. HF considers the interaction between an

electron with an average field of other electrons (it does not consider the instantaneous

Coulomb interaction between electrons). Thus, the HF method fails to properly

account for the electron correlation, leading to errors when calculating molecular

properties. The Configuration Interaction (CI), Coupled Cluster (CC) and Complete

Active Space Self-Consistent Field (CASSCF) method are procedures to treat electron

correlation more precisely. Due to using the CASSCF method for studying electronic

structures in this thesis, the CI method, which is the principle of the CASSCF

method, will be introduced, after which the CASSCF will be discussed.

2.4.1 Configuration interaction

The configuration interaction (CI) method treats the Hartree-Fock determinant as

the ground state then adds other determinants as promotions of electrons from the

ground state to unoccupied or virtual orbitals for treating electron correlation.43

Each state of promotion can be defined as single, double etc. excitation as shown in

Figure 2.1.
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Unoccupied orbitals

Occupied orbitals

HF Single Single Double Double

Figure 2.1. Promotion of electrons to get single and double excitations.

Consider the wavefunction with N -electrons in the ground state, which can be

written as:

Ψ0 = (1/N !)1/2 |ϕ1(~x1)ϕ2(~x2) · · ·ϕm(~xm)ϕn(~xn) · · ·ϕN(~xN)| (2.18)

where ϕN(~xN) is the highest occupied molecular orbital, and ϕm(~xm) and ϕn(~xn)

are among the occupied spinorbitals. Equation (2.18) can be written in a simpler

notation with the normalisation factor implied as:

Ψ0 = ‖ϕ1ϕ2 · · ·ϕmϕn · · ·ϕN‖ (2.19)

When an electron is promoted to an excited state, the determinant will be re-written

to take account of this excited electron. For example, if one electron from the

occupied orbital ϕm is excited to a virtual ϕp, the singly excited determinant can be

written as:

Ψp
m = ‖ϕ1ϕ2 · · ·ϕpϕn · · ·ϕN‖ (2.20)

If two electrons have been promoted, one from the occupied orbital ϕm to a virtual

ϕp and one from ϕn to ϕq. This can be written as a doubly excited determinant as:

Ψpq
mn = ‖ϕ1ϕ2 · · ·ϕpϕq · · ·ϕN‖ (2.21)

We can write other possibilities for excited determinants as there are many possibilities

to promote the electron from the ground-state to a virtual orbital. Each determinant
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is called a configuration state function (CSF).42

The exact ground-state wavefunction can be expressed as a linear combination

of basis function (recall equation (2.11)), thus the excited-state determinants can

be added to the ground-state determinant as a linear combination of CSFs as well.

That is:
ΨCI = c0Ψ0 +

∑
m,p

cpmΨp
m +

∑
m<n
p<q

cpqmnΨpq
mn + · · · =

L∑
J=1

CJΨJ (2.22)

where cpm, cpqmn and CJ represent expansion coefficients. The second term represents

singly excited determinants involving one electron excitation; the third term is a

doubly excited determinant and so on. The expression represented in equation (2.22)

is called the configuration interaction (CI).42

The common kind of CI calculation is classified by the number of electrons

simultaneously promoted to virtual orbitals. The CI involving only single excitations

is called CIS. Other kinds of CI are CISD involving single and double excitation and

CISD(T) involving single, double and perturbative triple excitations. Furthermore,

if it involves all possible excitations, it is called full CI.42

2.4.2 Complete active-space self-consistent field method

The CASSCF method is a modified form of the multiconfiguration self-consistent

field method (MCSCF). The construction of the wavefunction starts from a linear

combination of two or more configurations.

ΨMCSCF =
∑
K=1

CKΨK (2.23)

where ΨK is the configuration state. The coefficients CK in equation (2.23) as well as

csi in equation (2.11) are optimised, while CJ and csi in equation (2.22) coefficient in

CI method are fixed at the Hartree-Fock values. The wavefunctions are themselves

optimised by determining the optimal values of coefficients. For determining the

optimal value of coefficients, the wavefunctions are divided into three classes:

1. A set of inactive orbitals is doubly occupied in all determinants corresponding

to core orbitals.

2. A set of virtual orbitals is unoccupied in all determinants remaining empty
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during calculation.

3. A set of active orbitals is all other orbitals which lie between the inactive and

virtual orbitals.

The active electrons and the number of active orbitals for calculating the system can

be chosen. Only the active electrons are distributed in the active orbitals which is

calculated using the full CI procedure. Therefore, the CSFs are built from all possible

combinations of active electron promotion in the active orbitals.42 For solving the

wavefunction, the coefficients CK are determined variationally using ΨK as the trial

wavefunction. In each iteration, the set of coefficients is solved continually until

self-consistency.

2.5 Density functional theory (DFT)

DFT is another computational methodology which can be used to treat the electron

correlation. This method is a technique employed to calculate molecular structures,

physical and chemical propeties, based on the electron density instead of the wave-

function. It provides good accuracy, compared to semi-empirical methods, and has

much lower computational cost, compared to some methods such as Møller-Plesset

perturbation, CASSCF and the coupled cluster method.

The two basic theorems behind DFT were proposed by Hohenberg and Kohn

where they are known as Hohenberg-Kohn existence and Hohenberg-Kohn variational

theorems. The Hohenberg-Kohn existence theorem proved that “the energy and all

other properties of a ground-state molecule are uniquely determined by the ground-

state electron probability density”.43 This proof guarantees that we can get the

information of molecular properties from the construction of the electron density of

the wavefunction. The Hohenberg-Kohn variational theorem, (c.f. equation (2.7))

but this theorem based on electron density, expresses that the energy from any trial

electron density is greater or equal to the true ground state energy. Thus, based on

these theorems, the ground-state energy of a molecule can be written as:

E [ρ] = T [ρ] + Vee [ρ] + Vne [ρ] (2.24)
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where E [ρ] is the total electronic energy, T [ρ] is the kinetic energy of the electrons,

Vee [ρ] is the electron-electron repulsion energy and Vne [ρ] is the nuclear-electron

interaction. The Vee [ρ], consists of the classical Coulomb interaction energy, J [ρ],

and the exchange energy, K [ρ]. The two classical terms Vne [ρ] and J [ρ] are well

treated and they can be calculated exactly via:

Vne [ρ] =
M∑
A=1

ZA
rA1

ρ(r1)dr1 (2.25)

J [ρ] =
∫ ρ(r1)ρ(r2)

r12
dr1dr2 (2.26)

In consideration of the equation (2.24), the first and second terms are more

difficult to deal with since energy terms for the kinetic and some components of the

potential have no classical form.40 To solve this issue, Kohn and Sham introduced a

general equation form to investigate the total electronic energy of the system:

E [ρ] = TS [ρ] + J [ρ] + Vne [ρ] + EXC [ρ] (2.27)

TS [ρ] is the exact kinetic energy of the non-interacting system which can be exactly

calculated. EXC is the exchange-correlation energy and it includes unknown terms:

the non-classical effects of self-interaction correction, exchange and correlation (con-

tributing to the potential energy of system) and a portion belonging to the kinetic

energy. Substituting equation (2.25) and (2.26) in equation (2.27), and expressing

the TS [ρ] term, the more precise equation (2.27) can be written as:

E [ρ] =
N∑
i=1

ψKS
i (r1)∇2

1ψ
KS
i (r1) +

∫ ρ(r1)ρ(r2)
r12

dr1dr2 −
M∑
A=1

ZA
rA1

ρ(r1)dr1 + EXC [ρ]

(2.28)

where, ψKS
i is the one-electron spatial orbital, and is known as the Kohn-Sham

orbital.

Generally, EXC[ρ] is determined by approximate techniques which can be con-

sidered to have two separate components: the exchange energy functional, EX[ρ],

and correlation energy functional, EC[ρ]:42

EXC[ρ] = EX[ρ] + EC[ρ]. (2.29)
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Kohn and Sham also introduced the set of equations for solving the electron

density, which closely follows the form of the Schrödinger equation (see equation

(2.1)). The equation is known as the Kohn-Sham equation:42

{
−1

2∇
2
1 +

∫ ρ(r2)
r12

dr2 +
M∑
A=1

ZA
r12

+ vXC(r1)
}
ψKS
m (r1) = εKS

m ψKS
m (r1) (2.30)

where εKS
m is the Kohn-Sham orbital energy and vXC(r1) is the exchange-correlation

potential defined as:

vXC(r1) = δEXC [ρ]
δρ

. (2.31)

and the electron density is defined as:

ρ(r) =
∑
occ
|ψi|2. (2.32)

To solve the Kohn-Sham equation, the trial electron density is generated and the

exchange-correlation potential is formulated by using EXC [ρ]. Then, the Kohn-Sham

equation is solved with an initial set of its orbitals. This procedure is repeated, and

each cycle updated with improved electron density until the exchange-correlation

and density have both reached the target tolerance set by the program. Next, the

main points of some functionals will briefly discussed.

2.6 Exchange-correlation functionals

As mention above, the exchange-correlation functional is unknown, thus the error

of calculation depends on the EXC approximation. The challenge is to decrease the

error of EXC[ρ] as much as possible by proper selection of exchange and correlation

functionals.42 Many researchers have developed the approximation form to obtain

the good accurate EXC[ρ]. There are no systematic ways for improving the quality

of EXC[ρ]. Thus, the best way to verify the performance of the exchange-correlation

functional is to compare the theoretical calculations with experimental results of

known systems.

The simplest exchange-correlation functional is the local density approximation

(LDA). This functional considers the electron density to be treated as a homogeneous
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electron gas to find the exchange-correlation energies:

ELDA
XC [ρ] =

∫
ρ(r)εLDAXC (ρ(r))dr. (2.33)

where εLDAXC (ρ(r)) represents the exchange-correlation energy per electron of a uniform

electron gas and ρ(r)εLDAXC (ρ(r)) represents the exchange-correlation energy density.44

However, it should be emphasised that the LDA uses the same spatial orbital to

fill spin-paired electrons, which means that this approximation will give inaccurate

results if the molecule is open-shell. Thus, the local-spin-density approximation

(LSDA), which allows the spin-paired electrons to fill in different spatial orbitals, is

used.

In addition to the inclusion of electron density as in LSDA, it also takes into

account the gradient of the density which is added to the exchange correlation energy

given in equation (2.33). As this functional is gradient-corrected, it is named the

generalised gradient approximation (GGA):

EGGA
XC [ρα, ρβ] =

∫
f(ρα(r), ρβ(r),∇ρα(r),∇ρβ(r))dr (2.34)

where f is a function consisting of densities and the gradients of densities.42 There

are a variety of exchange-correlation functionals for GGA such as PBE, BP86 and

B97D. Functionals have a more complicated mathematical form, thus we will present

only the important terms of functionals and refrain from giving their details.

The PBE (Perdew-Burke-Ernzerhof) functional was developed by Perdew et al.45,46

where it consists of the PBE exchange energy and the PBE correlation energy:

EPBE
XC [ρα, ρβ] = EPBE

X [ρα, ρβ] + EPBE
C [ρα, ρβ]. (2.35)

In short, equation (2.35) can be written as: EPBE
XC [ρ] = EPBE

X [ρ] + EPBE
C [ρ]. The

exchange energy per electron of a uniform electron gas for PBE is written as an

enhancement factor (F (s)), containing the reduced density gradient (s(r)), multiplied

by the LSDA exchange energy per electron, εLSDAX :

EPBE
X [ρ] =

∫
ρ(r)εPBEX (ρ(r))dr =

∫
ρ(r)εLSDAX (ρ(r))F (s)dr (2.36)
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and

s(r) = |∇ρ(r)|
2kFρ(r) (2.37)

For the correlation part, the PBE correlation energy per electron is calculated from

the LSDA correlation energy per electron, εLSDAC , corrected by gradient contribution,

H(t):

EPBE
C [ρ] =

∫
ρ(r)εPBEc (ρ(r))dr =

∫
ρ(r)[εLSDAC (ρ(r)) +H(t)]dr (2.38)

The performance of this functional which is improved by adding F (s(r)) and

H(t) was tested by the atomisation energy calculation on twenty small molecules

compared to experimental data. It was shown that the PBE functional had a mean

absolute error less than LSDA, indicating that atomisation energy calculation errors

were reduced by using PBE.45

The BP86 functional consists of B (sometimes one also finds B88) exchange and

P86 correlation functional. The B exchange energy, EB
X [ρ], is constructed in the form

of a correction term, which is added to the LSDA functional:

EB
X [ρ] = ELSDA

X − β
∑∫

ρ(r)4/3 x2
σ

1 + 6βx2
σsinh

−1x2
σ

dr (2.39)

xσ = |∇ρ(r)|
ρ(r)4/3 (sometimes one also finds |∇ρσ|

ρ
4/3
σ

) (2.40)

where β is the constant which is determined by fitting to exact atomic Hartree-Fock

data and σ represents the α or β spin.47

The P86 correlation is constructed to improve the approximate energy for atoms,

molecules and solids for the inhomogeneous electron gas system since ELSDA
C gives

serious errors for calculating these systems.48 The EP86
C form, proposed by Perdew48

in 1986, is built from the LSDA functional with a correction term:

EP86
C [ρ] = ELSDA

C +
∫ d−1e−ΦC(ρ)|∇ρ(r)|2

ρ(r)4/3 dr (2.41)

It clearly shows the inclusion of an extra term which has the gradient of the electron

density, ∇ρ(r).

Another example of a GGA functional which is used for validation purposes
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in this thesis is B97D. This functional is constructed using the GGA functional

introduced in 1997,49 and an extension term is added in order to account for van der

Waals interactions:

EB97D
X [ρ] = EB97

X [ρ] + EB97
C [ρ] + Edisp (2.42)

The EB97D
X [ρ] consists of the γ parameter, chosen to fit the known energy value, and

the reduced gradient, xσ (recall equation (2.40) for xσ).

EB97
X [ρ] =

∑∫
ρ(r)εLSDAX (ρ(r)) γXσx

2
σ

1 + γXσx2
σ

dr. (2.43)

For the B97D correlation energy, EB97D
C [ρ], opposite spins and parallel spins are

calculated separately. For correlation energy with opposite spins:

EB97
Cαβ[ρ] =

∫
ρα,β(r)εLSDAC (ρα(r), ρβ(r)) γCαβx

2
av

1 + γCαβx2
av
dr (2.44)

where x2
av = 1/2(x2

α + x2
β) and correlation energy with parallel spins:

EB97
Cσσ[ρ] =

∑∫
ρ(r)εLSDAC (ρ(r)) γCσσx

2
σ

1 + γCσσx2
σ

dr (2.45)

This functional uses an empirical (scaled) dispersion correction for Edisp. It can be

written as:

Edisp = −s6

Natom−1∑
i=1

∑
j=i+1

Natom
C6

r6
ij

fdamp(rij) (2.46)

where s6 is the scaling factor for this correction term, Natom is the number of atoms in

the system, C6 represent the dispersion coefficient and fdamp(rij) is called a damping

function.

In a further improvement on GGA functionals, inclusion of the second derivative

of the electron density (Laplacian of the electron density) or kinetic density energy

allows for improved accuracy. This functional name is the meta-generalised gradient

approximation functionals (meta-GGA) which is known as third rung of Jacob’s

ladder. Hence, we can write a meta-GGA in the general form:

EMGGA
XC [ρα, ρβ] =

∫
f(ρα(r), ρβ(r),∇ρα(r),∇ρβ(r),∇2ρα(r),∇2ρβ(r))dr (2.47)
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The TPSS functional is one of the meta-GGA functionals and this method includes

the reduced Laplacian as a variable which is added in the enhancement factor of

the exchange energy. The correlation energy for the TPSS functional consists of the

kinetic energy density, τw(r), acting as a correction term.50 Another example of a

meta-GGA functional, used in the validation calculations in Chapter 3, is M06L

which has the spin kinetic energy density included in the exchange part and the

opposite spins and parallel spins in the correlation term are treated separately.51

We now move up Jacab’s ladder of DFT to hybrid-GGA functionals which include

contributions from Hartree-Fock theory. The B3LYP functional, which is a popular

hybrid, consists of the Becke exchange functional with 3 parameters a, b and c for

their linear combination (B3) and the Lee-Yang-Parr (LYP) correlation functional:

EB3LYP
XC = (1− a)ELSDA

X + aEHF
X + b∆EB

X + (1− c)ELSDA
C + cELYP

C (2.48)

where a, b and c are 0.20, 0.72 and 0.81, respectively.36

M06 is the hybrid functional which is an improvement from M06L by Truhlar

et al.52 The general form of this functional is given by:

EM06
XC = X

100E
HF
X +

(
1− X

100

)
EDFT
X + EDFT

C (2.49)

where X is the percentage of Hartree-Fock exchange in the total exchange functional.

This functional splits the exchange term into 27 % of Hartree-Fock and 73 % of DFT.

In this work, most of single-point calculations are performed with the hybrid

functional ωB97XD. This functional was developed by Head-Gordon et al. to improve

the ωB97X functional which does not include van der Waals interaction.53 The X of

the name ωB97X stands for the use of the ESR-HF
X functional (SR = short-range).

The general equation for ωB97X can be written as:

EωB97XD
XC = ELR-HF

X + cXE
SR-HF
X + ESR-B97

X + EB97
C + Edisp (2.50)

where there are three exchange terms, one correlation term and one dispersion

correction. In the Hartree-Fock exchange term, the long-range (LR) and short-

range (SR) operators to partition the Coulomb operator are used. They contain the
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parameter ω which defines the range of the operators; this functional has ω = 2.0

Bohr−1 which denotes the distance between long and short range. cX of the ESR-HF
X

term is the fractional number of short-range operator. As can been seen in equation

(2.43), the B97 exchange is modified by replacing the εLSDAX (ρ) with εSR−LSDAX (ρ).

The εSR−LSDAX (ρ) includes the ω parameter and if ω is equal to 0, εSR−LSDAX (ρ) is

reduced to εLSDAX (ρ)). ωB97XD includes 100 % HF exchange at long range, while

it includes a small fraction of exact HF exchange and B97 exchange at short-range.

For correlation energy, EB97
C has the same form as equation (2.44) and (2.45). For

Edisp, the unscaled dispersion correction is used in this functional (not including s6

scaling factor). It is given by:

Edisp = −
Natom−1∑
i=1

Natom∑
j=i+1

C6

r6
ij

fdamp(rij) (2.51)

2.7 Basis set

The basis set is the set of basis functions. Ideally, one would want to use an infinite

basis set, in order to achieve the HF limit, but in practice, an infinite basis set

is computationally intractable, therefore the choice of basis set is important as it

must provide good accuracy whilst being computationally efficient.54 The basis set

must not be too small or too big. It should be suitable for describing the molecular

problem.

There are two functional forms to be used for a basis set: Slater functions

exp(−ζr) and Gaussian functions exp(−ξr2).41 The Slater function is good for

approximating an atomic wavefunction (Figure 2.2), but it requires substantial

computer time to conduct all numerical integrations for the molecular system. The

Gaussian function, implemented within the Gaussian09 program, is a better choice

for evaluating the molecular system as it requires less demanding calculation and

thus a lower computation time (Figure 2.2).

The main disadvantage of the Gaussian function is that a single Gaussian is a

poor approximation, as it lacks a cusp at the nucleus and the shape of the function at

large distance is different from the ideal atomic orbital.40,54 For solving this problem,

several linear combinations of a single Gaussian function are used to approximate

the system. For example, STO-3G uses three Gaussian functions to approximate
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a Slater function, and STO-3G represents “Slater-type orbital (approximated by)

three Gaussians”.40 However, STO-3G is not good enough for research because it is

too small.40 Therefore, split-valence basis sets, which are used in this work, are more

widely adapted in computational research rather than using STO-3G.

r

χ

r

χ
Figure 2.2. (left) Slater functional plot. (right) Gaussian functional plot.

2.7.1 Split-valence basis set

The split-valence basis set was introduced by Pople et al.55 and also goes by the

name Pople basis set. For instance, The 3-21G basis set consists of a core orbital

using one basis function, which is composed of three Gaussians (hence the “3”), and

the valence orbital splits into an inner shell and an outer shell (hence the “21”) which

is known as a double zeta basis set. The inner shell involves two Gaussians and the

outer shell involves only one Gaussian. Therefore, CH4 uses 17 basis functions; each

H has a 1s orbital split into 1s’ and 1s”; C has 1s function for the core electron and

2s, 2px, 2py and 2pz orbitals split into eight functions (2s’, 2px’, 2py’, 2pz’, 2s”, 2px”,

2py” and 2pz”). Linear combinations of the 17 basis functions are used to build 17

molecular orbitals. Accuracy can be improved by using a double zeta basis set known

as 6-31G which allows one orbital to represent the core orbital where is composed

of six Gaussian functions, and the valence orbitals are split into an inner and outer

shell, comprised of 3 and 1 Gaussians, respectively. To increase flexibility, the valence

orbitals can also split into three parts, with an example being 6-311G, where they

are called triple zeta basis sets. Thus, in the case of 6-311G, the H and He atoms for

triple zeta have a total of 3 basis functions and the second period of the periodic

table have a total of 13 basis functions. The greater flexibility of the basis function
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leads to the improvement of the computational result quality. However, adding more

additional basis functions results in a more computationally expensive calculation.

Polarisation functions can be used to further improve the basis set and increase

flexibility. They allow the valence orbitals to change shape by adding in functions

that are one unit of angular momentum higher. For example, p functions are added

to hydrogen atoms and d functions are added to C, O, N etc. The simple 3-21G basis

set becomes 3-21G∗ (sometimes written as 3-21G(d)) when polarisation functions are

added to the non-hydrogen and helium atoms. Polarisation functions can be added

to all atoms, including the hydrogen and helium atoms with the basis set referred to

as 3-21G** (sometimes written as 3-21G(d,p)). Diffuse functions can be included

in the basis set. Adding these functions lead to an expansion of the asymptotic

behaviour of the Gaussian, representing the expanding electron cloud. The symbol

“+” is added to a Pople basis set to represent the addition of diffuse functions to

non-hydrogen atoms and “++” when diffuse functions are added to all atoms.40

All calculations in this work are performed using a double zeta Pople basis set

for the optimisation of structures on all atoms (except for Pd and Ru) augmented

with polarisation and diffuse functions on all non-hydrogen atoms and polarisation

functions on the hydrogen atoms. This is a 6-31+G(d,p) basis set. In the single

point energy calculation, to obtain the accurate energy the triple zeta Pople basis set

is used with added polarisation and diffuse functions (2p for hydrogen atom and 2df

for others). This basis set is 6-311++G(2df,2p) and it is used for all atoms except

Pd and Ru. The basis set for Pd and Ru will be discussed in the next section.

2.7.2 Effective core potential (pseudopotentials)

There are many electrons in Pd and Ru, hence a large set of functions to describe

them is required. In addition, most electrons are in the core shell, which have a small

effect on chemical properties. The solution to this problem is to have a combined

nuclear-electronic core and treat it as a nuclear point charge. The core electrons

can be replaced with an effective potential proposed by Hellmann,56 now referred

to as the effective core potential (ECP).36 The key for ECP construction is how

many electrons are added to the ECP, and in some cases the scalar and/or spin-orbit

relativistic effects might be added in the effective potential. The popular ECP
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choices, which are widely used, are the Stuttgart/Dresden (SDD)57 and Los Alamos

National Laboratory double zeta (LanL2DZ)58,59 and they were also used for Pd

and Ru atoms in this thesis. They consider 28 electrons for Pd and Ru in the core

shell and include relativistic treatment. The valence (non-ECP) electrons are treated

using a double-zeta basis set.

2.8 Solvation model

Solvent effects can be included in a theoretical calculation on the compound to obtain

the results corresponding with experiment. In quantum mechanical calculations,

an implicit solvation model is often used in the calculation rather than using an

explicit solvation model. One of the implicit solvation models normally used is

the polarisable continuum model.60 The idea of this solvent model is that a solute

molecule is put into the cavity formed by interlocking spheres around the atoms

of the solute molecule. At the same time, the molecule in the cavity is treated

inside of a continuous dielectric field representing the solvent.60 For the Gaussian09

program, one of the popular specific solvation methodologies implemented is the

integral equation formalism polarisable continuum model (IEFPCM) which is the

default for Gaussian09 and IEFCPM is the synonym for PCM. This model was

developed originally by Cancès and Mennucci in 1997.61–63 It is “a reformulation of

dielectric polarisable continuum model (DPCM) in terms of the integral equation

formalism”.64 The solute-solvent interaction is calculated from the interaction of the

electrostatic potential of the solute with the polarisation of the dielectric field.65 The

other popular model is the conductor-like polarisable continuum model (CPCM).

It considers the dielectric continuum as a conductor-like continuum. These models

provided an accurate approximation to the Gibbs free energy64 and they were used

in this thesis.

2.9 Quantum theory of Atoms in Molecules

The wavefunction ψ has all the information of the atomic or molecular system

considered but we cannot observe it directly. The Quantum Theory of Atoms in

Molecules (QTAIM) is a model for extracting the information from ψ. This model



30

was developed by Bader and co-workers.66 The principal concept of the QTAIM is to

separate the molecule into basins containing individual atoms with electron density.

Then the electron density (ρ(r)), which is physically observable, within the molecule

is plotted to investigate its topology. Therefore, the view of the molecule is observed

as a network of bond paths linking atoms in the molecule.66 Chemical bonds and

physical properties can be gained from this topology of the electron density.

2.9.1 Critical points

The plotting of the electron density provides information on the electronic structure.

Maxima, minima or saddle points in space can be observed by the first derivative of

the electron density, ∇ρ(r). At these points, ∇ρ(r) are called “critical points”, where

the ∇ρ(r) are equal to zero. For classification between minima, maxima or saddle

point, the second derivative of the electron density, ∇2ρ(r) which is known as the

Laplacian of the density can be used to describe these points. The diagonalisation

of the Hessian matrix form, with respect to the x, y, z principal axes, is used to

determine the curvature of the density (λ). The diagonal form can be written as:

∇2ρ(r) =


∂2ρ
∂x2 0 0

0 ∂2ρ
∂y2 0

0 0 ∂2ρ
∂z2

 =


λ1 0 0

0 λ2 0

0 0 λ3

 (2.52)

where, λ1, λ2 and λ3 are the curvature of the density.

The types of critical point are classified by the number of non-zero curvatures of

ρ, called rank (ω), and the algebraic sum of the signs of the curvature, called the

signature (σ). The symbol for the representation of each critical point can be written

as (ω,σ). Normally, ω = 3 is found for a molecular structure with an equilibrium

charge distribution, and each curvature contribution is +1 or -1 depending on positive

or negative curvature. Thus, the critical points of the molecule can be divided into

four types:67

1. The first type is (3,-3). This type has three local maxima which have three

negative curvatures. This type refers to the nuclear critical point (NCP).

2. The second type has two negative curvatures (3,-1). This critical point is found
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at the saddle points having a maximum of ρ in the plane but the third axis,

which is perpendicular to this plane, is a minimum. This point is known as the

bond critical point (BCP).

3. The third type concerns two positive curvatures (3,+1), where ρ is a minimum

in the plane and the second derivative of ρ is positive along two axes. This

point is called the ring critical point (RCP).

4. The last type is known as the cage critical point (CCP) which has three negative

curvatures (3,+3). This point is found at the central point of a cage molecular

structure.

The Poincaré-Hopf relationship can be applied to confirm that all critical points

have been found and identified in an isolated molecule or an infinite crystal. This

relationship is given by:

nNCP − nBCP + nRCP − nCCP =

1 (Isolated molecules)

0 (Infinite crystals)
(2.53)

where n is the number of each type of critical point (CP) and {nNCP, nBCP, nRCP, nCCP}

is known as the “characteristic set”.68 Thus, the Poincaré-Hopf relationship is neces-

sary for proving there are no missing CPs in the calculation of the molecule and the

crystal.

The example topology of the electron density and molecular graph of benzene are

shown in Figure 2.3. The NCPs (small violet dots) give the maximum of ρ density,

whilst the charge distribution between provides the saddle points. All of the saddle

points represent BCPs (small orange dots). The centre of the benzene ring gives

the point of minimum charge density in this plane which is a RCP. This analysis

satisfied the Poincaré-Hopf relationship which has summation of the number CP = 1

(nNCP = 12, nBCP = 12, nRCP = 1 and nCCP = 0).
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Figure 2.3. Topology of the electron density (left) and molecular graph (right) for
benzene. The NCPs, BCPs and RCPs are shown in the molecular graph as small
violet dots, orange dots and yellow dots, respectively.

In Figure 2.3 (right), the yellow lines connect to the maximum charge linking

between nuclei. This line is defined as the bond path. At the BCP, the intersection

is always found between the bond path and atomic surface (the atomic surface is

defined as the boundary of the atom basins).66 Thus, the bond path and BCP can

be used as confirmation of linking between nuclei. However, the bond paths do

not necessarily represent chemical bonds, they represent an interaction between the

nuclei.69 The connecting of bond paths also represent the shape of the molecule and

are referred to as a molecular graph.68

2.9.2 Bond strength and the nature of the bond

To rationalise the stability of a structure, the topological analysis can be used to

investigate the strength and nature of interactions. At the BCP, the value of ρ(r) can

be used to characterise the strength of an atomic interaction, reflecting the strength

of a bond and the magnitude of ρ(r) can be used to indicate the nature of the bond.

When ρ(r) is greater than 0.20 a.u. between atoms they have a shared interaction

(covalent bond), and when ρ(r) is less than 0.10 a.u. this indicates a closed-shell

interaction (e.g. ionic interaction, van der Waals, hydrogen bond etc.).68

When considering ∇2ρ(r) which is made up from the summation of three
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curvatures (recall equation (2.52)), an important indicator for the identification

of the regions of the local electronic charge, correspond to the accumulation or

depletion at the BCP. If the value of ∇2ρ(r) is greater than zero, the density of

the electrons at the BCP is locally depleted, while when the value of ∇2ρ(r) is

less than zero, the density of the electrons at the BCP is locally concentrated. In

addition, ∇2ρ(r) can be used to identify the nature of the bond where covalent

bonds have charge concentration (∇2ρ(r) < 0) but ionic bonds have charge depletion

(∇2ρ(r) > 0).68

Another way to determine the nature of the bond interaction is to investigate

the potential energy density, V (r) and the gradient kinetic energy density, G(r) at

the BCP. The V (r) value is always negative, while G(r) is everywhere positive. The

sum of V (r) and G(r) provide another quantity for determining the nature of the

bond that is the total energy density, H(r), proposed by Cramer and Kraka.70 The

sign of H(r), which is controlled by the balance between V (r) and G(r), is used to

classify the nature of the bond. The dominant V (r) causes H(r) to be more negative,

representing more electron density accumulation at the BCP which indicates a shared

interaction between atoms. On the other hand, H(r) has a positive sign when the

G(r) value is greater than V (r), representing the depletion of electron density which

indicates a closed-shell interaction.

2.9.3 π-character in the single bond

As mentioned above, the curvatures (their summation) can be used to characterise

the nature of a bond. They can also be used to describe the π-character. The ratio

of two curvatures λ1 and λ2 are used to determine how pronounced the elliptical

shape is and leads to the so-called ellipticity parameter, ε:

ε = λ1

λ2
− 1 (2.54)

where |λ1| ≥ |λ2| and the ε are in the ranges between zero and infinity. Thus, when

ε is equal to zero i.e. |λ1| = |λ2|, and the ellipticity is zero, it represents a single or

triple bond.68 In the case of a single bond, the π-character increases with increasing

ε value.68



34

2.10 Natural bond orbital (NBO) analysis

In this work, the NBO program was used to analyse the bond between donor atom

and Pd-centre where the NBO program performs “the analysis of a many-electron

molecular wavefunction in terms of localized electron-pair bonding units”.71 The

NBO analysis, first developed by Weinhold and co-workers, can be used to investigate

hybridisation and covalency effects.72 The concept idea for this analysis is to transform

a wavefunction to a localised form to try to get the Lewis structure picture and it

is constructed from the natural atomic orbital (NAO) which is transformed from a

density matrix.71

The starting point of NAO construction is that the density matrix is written in

terms of blocks of “basis functions”:41

D =



DAA DAB DAC ...

DBA DBB DBC ...

DCA DCB DCC ...

· · · · · · · · · . . .


(2.55)

The NAO for each atom will be defined as a diagonalised density matrix i.e. the

NAO for atom A in the molecule is DAA, for atom B in the molecule is DBB etc.

The off-diagonal elements in the block matrix can be used to identify bonds between

atoms. The procedure for finding the NBO is as follows:41

1. In the density matrix, NAOs that have occupancy numbers very close to 2

(greater than 1.999) are identified as core orbitals and are removed from the

density matrix.

2. NAOs that have occupancy numbers greater than 1.90 are identified as lone

pair orbitals and their contribution are also removed.

3. The off-diagonal matrix elements are considered and NBOs are identified when

they have occupancy numbers greater than 1.90.

4. If the sum of the occupancy number from the above procedure are less than

the number of electron in the system, an alternative search is required. An

alternative means is to search for rare three-centre two-electron bonds for
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example some boron compounds. The NBO acceptance criteria can be lowered

gradually until an adequately large fraction of the electron has been assigned

to bonds. Contribution from diatomic bonds are removed from the density

matrix, followed by diagonalisation of all 3× 3 sub-blocks.

In this thesis, the donor-acceptor interaction was used to investigate the interaction

of dative bonds where it can be extracted from the donor-acceptor stabilisation energy

E(2) from each donor NBO (i) and acceptor NBO (j). The equation used by the

program for its determination is:

E(2) = ∆Eij = qi
F (i, j)2

εi − εj
(2.56)

where qi is the donor orbital occupancy; εi and εj are diagonal elements (orbital

energies) and F (i, j) is the off-diagonal NBO Fock matrix element.71 The NBO

program implemented in the Gaussian09 package is used in this work.



Chapter 3

Determining a Method for Pincer

Palladacycle Calculations

This chapter presents density functional theory (DFT) calculations on symmetrical

pincer palladacycles, PdYCY, to test the method and basis set for the determination

of their geometric and electronic structures.

3.1 Introduction

The structure and bonding of palladacycles can be investigated using DFT, however

an appropriate choice of functional, basis set, and relativistic effective core potential

(ECP) for Pd, is essential for obtaining accurate structures, and hence thermodynamic

and kinetic data.73 Moreover, the DFT and ab initio methods have been widely used

to study and predict electronic structure, spectroscopy and reaction mechanism in

both organic and inorganic chemistry.74,75

There has been an increasing level of interest in the study of transition metals

using DFT calculations to accurately predict of chemistry phenomena at a cheap

computational cost compared to electron-corrected ab initio methods. Such DFT

methods are applied to probe the properties of the reactions involving transition

metals. For example, DFT has been used to study bond lengths and vibrational

frequencies,76 and to determine binding energies for cationic hydrides.77 DFT has

many functionals to predict physical and chemical properties.75 As a review through

the literature, we have found that several works focused on validation studies
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using DFT in studying the geometries of transition metal complexes compared to

experimental data, including a 2007 study by Waller and co-workers.78 They employed

DFT to study the geometries of second row transition metal complexes, where the

ability of 15 different functionals used in the determination of the geometries of 19

metal complexes were evaluated. The structures with hybrid functionals, compared

to experimental data, have standard deviations smaller than pure generalised gradient

approximation (GGA) functionals indicating that the hybrid functionals are better

than GGA functionals in predicting the structures of second-row transition metal

complexes. The smallest errors were obtained for the hybrid functionals, i.e. B3P86

≈ B3PW91 ≈ PBE-hybrid < TPSSh ≈ B3LYP < BP86 < BLYP < LSDA ≈ VSXC.

Sieffert and Bühl79 investigated the bond distances around the metal centre of

the complexes Ru(CO)Cl(PPh3)2(CH−−CHPh) and Ru(CO)Cl(PPh3)3(CH−−CHPh)

using BP86, B3LYP, B3LYP-D and B97D. They claimed that the metal-ligand bonds

of structures optimised using BP86 (standard GGA functional) are in good agreement

with the experimental data. They also found that B97D (dispersion functional) agreed

well with the experiment except for the Ru-Cl bond with a slight deviation of 0.07 Å,

while the B3LYP functional had the largest deviation from the experimental Ru-P

distance (by 0.089-0.239 Å). Similarly, Rydberg and Olsen80 concluded, in their study,

that the B3LYP functional gave the largest average bond deviation for metal-ligand

bonds (Fe-N) when the performance of seven DFT functionals (BP86, PBE, PBE0,

TPSS, TPSSh, B3LYP and B97D) in the study of Fe complexes was investigated.

These functionals were good for studying geometries except for the B3LYP functional

that had a problem with over-estimation of Fe-ligand distances. They also found, in

terms of computational cost, that BP86, PBE and TPSS functionals could save the

cost of computational time significantly. They suggested that TPSS is one of the

best functionals for studying transition metal systems.80

Marom et al.81 claimed that the dispersion corrected functionals were important

in determining the geometry. They found that M06 and PBE+vdW (van der

Waals (vdW) interaction is a term of dispersion correction) for considering metal-

phthalocyanine dimers (metal=Ni and Mg) gave accurate geometries. This result

was contradictory to the ones given in Rydberg’s80 work which claimed to achieve

accurate metal-ligand distances without the inclusion of a dispersion correction.
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In 2012, Minenkov et al.82 investigated the eight most commonly used DFT

functionals B3LYP, BP86, PBE, TPSS, B97D, ωB97XD, M06 and M06L in the study

of organometallic and transition metal complexes with the effective core potential

(ECP) of the Stuttgart-Dresden (SDD) basis set for all non-hydrogen elements. The

ECPs replaced the inner electrons such as two-electron ECP for C, N, O and F and

ten-electron for P and Cl. Hydrogen atoms were determined by a Dunning double-ζ

basis set. The B3LYP, BP86, PBE and TPSS are standard functionals without

dispersion, whereas the B97D, ωB97XD, M06 and M06L have dispersion effects

included. Eighteen ruthenium organometallic complexes were studied for validating

these methods using the crystal structures as a starting point for DFT geometry

optimisation calculation. Furthermore, in the same study, ten other organometallic

complexes (Ti, Fe, Co, Ni, Zr, Mo, Rh, Pd, W and Ir transition metal complexes)

were also tested by comparing the DFT optimised and crystal structures. The root

mean square (RMS) deviations were used to evaluate the quality of the eight DFT

methods in the study of the geometries. The results showed that the methods without

dispersion correction (B3LYP, BP86, PBE and TPSS), over-estimated all interatomic

distances. On the other hand, the functionals which incorporate dispersion (B97D,

ωB97XD, M06 and M06L) gave a significantly lower absolute error for the ruthenium

complexes. ωB97XD was found to be the best method to study geometry and

minimises the over-estimated bond lengths of the ligand and metal-ligand bonds. In

addition, the calculations with dispersion functionals showed that the geometries of

the ten transition metal (Ti, Fe, Co, Ni, Zr, Mo, Rh, Pd, W and Ir) complexes were

also accurately reproduced. Minenkov et al. pointed out that this method may be

used to study classes of relatively large transition metal complexes.

Moreover, not only the method is important for the study of inorganic molecules

but the basis set and the ECP also strongly influence the accuracy in the study of

heavy metal compounds. A Stuttgart/Dresden (SDD)57 basis set or Los Alamos

National Laboratory double ζ (LanL2DZ)58,59 with an effective core potential (ECP)

is a popular basis set to study metals in complexes.

Zhao et al.83 reported the performance of the basis set ECPs (LanL2MB, LanL2DZ

and SDD) for determining transition metal complex structures. RHF and B3LYP

were used with the three basis sets to study the MX2, where M is Zn, Cd, Hg and X
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is F, Cl, Br, and compared to the experiment. They found that B3LYP/SDD level

was the best functional and basis set for reproducing the experiment.

The palladium and platinum complexes (cis−M(Met)X2 and cis−M(His)X2 where

M = Pd and Pt; X = F, Cl, Br and I; Met = methionine; His = histidine) were

studied by Yang et al. (Figure 3.1).84 Two relativistic ECP LanL2DZ and SDD were

used to treat the Pd and the Pt complexes. Their results proved that the SDD basis

set is closer to experimental data. The best method and basis set for these complexes

is B3LYP/SDD.
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Figure 3.1. Structure of a) cis−M(Met)X2 and b) cis−M(His)X2 where M is Pd
and Pt, and X is F, Cl, Br and I.84

Li et al.85 studied the performance of method and basis set using an ONIOM

calculation for ten palladium complexes in 2005. They evaluated the seven DFT

functionals i.e. B3LYP, PBEP86, B3P86, B3PW91, BPBE, PW91PW91 and six ECP

basis sets i.e. CEP-121G, CRENBL, LanL2DZ, LanL2DZ+p, SDD and sbkjcvdz.

These were used for determining in the core layer of the ONIOM method. The

HF method with LandL2MB basis set was fixed in the whole layer for all of the

molecules. Their results showed that the six ECP basis sets provided the similar

performance. However, the LanL2DZ+p basis set was slightly better than the other

methods. Overall, the ONIOM(B3P86/LanL2DZ+p//HF/LanL2MB) was the best

method for geometry with the smallest average error for bond lengths, bond angles

and dihedral angles.
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3.2 Aim of this work

The effects of the computational method and the basis set for light atoms such as C, H,

N, O, Cl etc. and the relativistic effective core potential (ECP) for Pd are important

in calculating accurate geometries of transition-metal complexes. Therefore, the aim

of this chapter is to determine an optimum DFT methodology and basis set for the

study of pincer palladacycles that combines accuracy and computational speed. This

will be achieved by evaluating the performance of a range of functionals in their ability

to reproduce the structural features of two experimentally characterised symmetrical

pincer palladacycles. This work has been published in “Dalton Transactions”.86

3.3 Computational details

All calculations were performed using the Gaussian09 package.87 The geometries

and electronic structures of complexes 1 [PdCl{2,6-(NMe2CH2)2(C6H3)}] and 2

[PdCl{2,6-(SMeCH2)2(C6H3)}] in Figure 3.2 were calculated using eight density

functionals. The set of density functionals investigated were three generalized

gradient approximation (GGA) functionals: BP86,47 PBE45,46 and B97D,88 a hybrid-

GGA functional (HGGA): B3LYP,47,89 two meta-GGA functionals (MGGA): TPSS50

and M06L,51 and two hybrid meta-GGA functionals (HMGGA): ωB97XD53 and

M06.52 The B97D, M06L, M06 and ωB97XD functionals include the dispersion

correction, while the PBE, BP86, TPSS and B3LYP functionals do not contain

the dispersion correction. The basis sets tested are 6-31G(d) and 6-31+G(d,p)

for all atoms except Pd in which an effective core potential (ECP), Los Alamos

National Laboratory double ζ (LanL2DZ)58,59 or Stuttgart/Dresden ECP (SDD),57

was employed to replace the core electrons. These will be referred to as follows: BS1

= 6-31G(d)[LanL2DZ], BS2 = 6-31G(d)[SDD], BS3 = 6-31+G(d,p)[LanL2DZ] and

BS4 = 6-31+G(d,p)[SDD], where [SDD] and [LanL2DZ] means that ECPs SDD or

LanL2DZ were used on Pd, respectively. The neutral complexes were studied in

this case. The spin singlet complexes were considered in all calculations and the

local minimum structures were confirmed by frequency calculation. All optimization

calculations were compared with X-ray crystallography to check for their accuracy.

The Cambridge Structural Database entries for complex 190 is 720256 and for complex
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291 is 725124.

Figure 3.2. Symmetrical pincer palladacycle complexes 190 and 291 investigated in
this study.

3.4 Results and discussion

Complexes 1 and 2 were optimised starting from X-ray crystal structure coordinates

and compared to their X-ray crystal structures.

3.4.1 The RMS error in Cartesian coordinates, and the er-

ror of interatomic and bond distances, in symmetrical

pincer palladacycles

In the fully optimised geometry, complex 1 (Figure 3.3a) is a distorted square-planar

complex and the NMe2 groups of the aryldiamine unit on opposite sides of the aryl

plane are in excellent agreement with the X-ray crystal structure.90 In addition,

because hydrogen is a light atom, it is hard to determine its position in the X-ray

structure. Therefore, it is not considered in the RMS error in Cartesian coordinates,

interatomic and bond distances analyses.

The Quatfit program92 determines the error between the calculated and experi-

mental X-ray structures by analysing the difference between the Cartesian coordinates

of each atom pair in the complex. The reference molecule is fixed, while the analysed

molecule is translated and rotated to align to the centre of the reference molecule

for fitting with each pair of atoms. Particularly important atom pairs can be given

a greater weight. In this work, the crystal structure was fixed and the calculated

structure was analysed using the Quatfit program.
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Figure 3.3. a) Optimised geometry of complex 1 and b) optimised geometry of
complex 2 (grey = carbon, white = hydrogen, dark blue = nitrogen, light green =
chlorine, dark green = palladium and yellow = sulphur).

The RMS error in Cartesian coordinates using the Quatfit program was performed

on all pairs of atoms with equal weight except for the hydrogen atoms which were not

considered. We analysed complexes 1 and 2 separately. The result for the complex 1

are illustrated in Figure 3.4. The GGA B97D, MGGA M06L and HMGGA ωB97XD

show larger RMS errors while the other five functionals give smaller RMS errors

and prove to be effective for complex 1. When comparing the effect of the diffuse

and polarisation functions in the basis set on the optimisation, when basis sets were

changed from 6-31G(d) to 6-31+G(d,p), a small change in RMS error was found

(comparing between BS1 and BS3 or between BS2 and BS4). In addition, studying

the effect of ECP on the Pd heavy atom, the SDD basis (BS2 and BS4) for Pd shows

a smaller RMS error than LanL2DZ (BS1 and BS3) indicating that SDD is superior

to LanL2DZ for Pd in all calculations. This result agrees well with the result of Yang

et al.84 where SDD and LanL2DZ were used for Pd and the bond length deviation

was compared.

Considering complex 2 (Figure 3.3b), it is also distorted from a perfect square

planar geometry. The orientation of the methyl groups, which are connected to sulfur,

is trans and equatorial. The comparison of eight functionals for complex 2 is shown

in Figure 3.5 and shows that all functionals have a similar error. Furthermore, the

calculations reveal that SDD is again a better choice for Pd compared to LanL2DZ.
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Figure 3.4. RMS error for complex 1. Optimised structure compared to its X-ray
crystal structure using the Quatfit program.

Figure 3.5. RMS error for complex 2. Optimised structure compared to its X-ray
crystal structure using the Quatfit program.
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We have analysed the average RMS errors between the optimised complex and

X-ray crystal structure for complexes 1 and 2 together using the Quatfit program.

The complexes 1 and 2 have different numbers of atoms. For unbiased analysis, we

have used equation 3.1 to calculate the average RMS of complexes 1 and 2;

RMSaverage =
√

((RMS1)2 × n1) + ((RMS2)2 × n2)
n1 + n2

(3.1)

where n is the number of atoms excluding hydrogen; n1 for complex 1 and n2 for

complex 2. RMS1 and RMS2 are RMS errors for complex 1 and 2, respectively. The

average RMS error by Quatfit shows that the GGAs PBE and BP86 have slightly

smaller errors than other functionals. However, the difference between the best and

worst functionals is less than 0.020 Å.

Figure 3.6. Average RMS errors for complex 1 and 2 optimised structures compared
to their X-ray crystal structures using the Quatfit program.
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To clarify and gain an insight into the systematic over or underestimation, the

bonded and interatomic distances are determined. We have analysed the mean signed

errors (MSE) and the mean unsigned errors (MUE) for each structure. The MSE

is the average of the deviation between calculation and experiment (equation 3.2),

whereas the MUE is the absolute deviation (equation 3.3).

MSE = 1
N

N∑
i,j=1

(Rij(DFT)−Rij(Experiment)) (3.2)

MUE = 1
N

N∑
i,j=1
|Rij(DFT)−Rij(Experiment)| (3.3)

where Rij is the atom-atom distance and N is the number of atoms (excluding

hydrogen atoms). Therefore, a total of 240 interatomic distances of complex 1 and

182 interatomic distances of complex 2 were determined and compared with their

corresponding X-ray crystal structures. Moreover, we have considered 18 bonded

and 16 bonded distances for complexes 1 and 2, respectively.

Figure 3.7 shows MSE and MUE for interatomic distances in complex 1. It

reveals three excellent performers; M06, M06L and ωB97XD functionals which

include dispersion correction, accurately determine the geometry of the complex 1

and have small MSE (<0.023 Å) and MUE (<0.037 Å). Whereas, B3LYP, BP86,

PBE and TPSS, where dispersion was not included, over-estimated distance in

agreement with Minekov et al.82 A comparison between MSE and MUE for each of

the functionals suggests that the smaller error of MSE than MUE is due to the fact

that some of the over-estimated distances cancel out some under-estimated distances.

The 18 bonded distance for complex 1 is analysed to investigate the bond distances

between atoms (Figure 3.8). The results for the MSE shows that the functionals

containing the dispersion correction (M06, M06L and ωB97XD with the exception

of B97D) have small errors (<0.009 Å). The functionals without dispersion over-

estimated the bond distance in a similar manner to interatomic distances. This result

agrees with Waller et al. where they claimed that the standard DFT functionals

over-estimated bond distances.78
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We have investigated changing the basis set from 6-31(d) to 6-31+G(d,p), and

LandL2DZ to SDD. In the Figure 3.7 and Figure 3.8, the MSE and MUE of 6-31G(d)

and 6-31+G(d,p) are very similar. However when considering the ECP for Pd the

MUE and MSE of interatomic and bond distance show a greater difference. It is

found that the SDD (BS2 and BS4) is better than LanL2DZ (BS1 and BS3) in all

DFT calculations.

The 182 interatomic distances are analysed for complex 2 and compared with the

rac-form X-ray crystal structure.91 The interatomic distances in Figure 3.9 show that

functionals including the dispersion M06, M06L and ωB97XD, with the exception of

B97D functionals, have the smallest MSE and MUE, as in the case of complex 1. The

MSE and MUE of 16 bonded distances of complex 2 are shown in Figure 3.10. The

MSE and MUE for bonded distances also show the functionals that include dispersion

correction have smaller errors. The SDD is a better ECP basis set compared to

LanL2DZ for complex 2 optimisation.
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Figure 3.7. Interatomic distance MSE and MUE for complex 1 (excluding hydrogen)
compared to the X-ray crystal structure varying the method and basis set.
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Figure 3.8. Bonded distance MSE and MUE for complex 1 (excluding hydrogen)
compared to the X-ray crystal structure varying the method and basis set.
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Figure 3.9. Interatomic distance MSE and MUE for complex 2 (excluding hydrogen)
compared to the X-ray crystal structure varying the method and basis set.



48

0.000 

0.005 

0.010 

0.015 

0.020 

0.025 

0.030 

B
S1

 

B
S2

 

B
S3

 

B
S4

 

B
S1

 

B
S2

 

B
S3

 

B
S4

 

B
S1

 

B
S2

 

B
S3

 

B
S4

 

B
S1

 

B
S2

 

B
S3

 

B
S4

 

B
S1

 

B
S2

 

B
S3

 

B
S4

 

B
S1

 

B
S2

 

B
S3

 

B
S4

 

B
S1

 

B
S2

 

B
S3

 

B
S4

 

B
S1

 

B
S2

 

B
S3

 

B
S4

 

B3LYP B97D BP86 M06 M06L PBE TPSS ωB97XD 

E
rr

or
 / 

Å
 

MSE (bonded) MUE (bonded) 

Figure 3.10. Bond distance MSE and MUE for complex 2 (excluding hydrogen)
compared to the X-ray crystal structure varying the method and basis set.

It is important to study the average MUE and MSE to determine the efficiency

of functionals for investigating pincer palladacycles. Due to different numbers of

atoms in complexes 1 and 2, we have used equations 3.4 and 3.5 for the calculation

of average MSE and MUE.

MSE(average) = (MSE1 × n1) + (MSE2 × n2)
n1 + n2

(3.4)

MUE(average) = (MUE1 × n1) + (MUE2 × n2)
n1 + n2

(3.5)

where n is the number of interatomic or bonded distances; n1 for complex 1 and n2

for complex 2, respectively. The MSE1 and MUE1 are for complex 1, and the MSE2

and MUE2 are for complex 2.

It is clear that the SDD ECP for complexes 1 and 2 from the Cartesian coordinates

approach using the Quatfit program, and MSE and MUE, show good agreement with

their X-ray crystal structures. Moreover, the difference between RMS error, MSE

and MUE errors of the 6-31(d) and 6-31+G(d,p) is small. Our results suggest that

the small basis set with SDD is adequate to study geometry optimisation. However,
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the diffuse and polarisation functions are desirable to study geometry because this

provides flexibility for the calculation of the structure. Adding diffuse function to the

basis set, however, does not significantly increase the computational time. Therefore,

in what follows, only BS4 for studying the average MSE and MUE were analysed.

A total of 422 interatomic distances (240 interatomic distances of complex 1 and

182 interatomic distances of complex 2) with BS4 and eight different methods are

analysed. Figure 3.11 reveals that the functionals that have dispersion interaction

result in a lower MSE and MUE. The three good functionals provide MUE and MSE

in the range of 0.010 - 0.012 Å and 0.023 - 0.025 Å, respectively. The MSE is lower

than MUE because the over-estimated values cancel out the under-estimated ones.

In Figure 3.11, the 34 bond distances, which are 18 bond distances of complex

1 and 16 of 2), were studied. The result reveals a similar trend to that found in

the analysis of average MSE and MUE of interatomic distance, when dispersion is

accounted for in the functional (except B97D) a more accurate geometry is obtained.

The three best functionals have average MSE and MUE in the range of 0.005 - 0.009

Å and 0.012 - 0.015 Å, respectively.

Figure 3.11. Average bonded and interatomic distance MSE and MUE for PdNCN
and PdSCS compared to their X-ray crystal structures.
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3.4.2 The RMS Cartesian coordinates, and the error of in-

teratomic and bond distances of Pd-L

The catalytic activity of a transition metal complex is directly controlled by metal-

ligand bonds since many reactions involve bond cleavage or formation of a metal-ligand

bond,93 therefore, we have investigated the accuracy of the bonds around the Pd

centre (i.e. the Pd-L bond where L = N, S, C, Cl). From the results in the RMS

error in Cartesian coordinates, and the error of interatomic and bond

distances in the symmetrical pincer palladacycles section, only BS4 is used

for the validation of the Pd-L bond study using the RMS, MSE and MUE. The

average performance of the eight functionals is shown in Figure 3.12. Firstly, the RMS

error from Cartesian coordinate approach by the Quatfit program is used to judge

the accuracy of the method. Our analysis shows that non-hybrid functionals with no

dispersion included, PBE, BP86 and TPSS give smaller RMS errors when, predicting

the Pd-L bonds, with RMS errors in the range 0.036 - 0.037 Å. Additionally, the

dispersion-included MHGGA ωB97XD also provides good accuracy in predicting

the Pd-L bonds. The popular B3LYP functional and dispersion-included B97D,

M06 and M06L show the lowest accuracy. The over- and under-estimation of bond

length of Pd-L bonds are observed using MSE and MUE (Figure 3.12). In the MSE

result, the PBE, TPSS, BP86 and ωB97XD show good performance with a range

of 0.014 - 0.015 Å. Based on MUE, the PBE, TPSS, BP86 and ωB97XD also give

excellent performance in Pd-L bond prediction. Overall, the most accurate method

for determining Pd-L bond distance having obtained the lowest RMS error and the

lowest MSE and MUE is PBE (RMS/MSE/MUE = 0.036 Å/0.014 Å/0.023 Å) in

agreement with Minenkov et al.82 and Jiménez-Hoyos et al.94 where they claimed

that the PBE gave the best performance for Pd-L bond prediction.
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Figure 3.12. Average RMS error using the Quatfit program, bond and interatomic
distance MSE and MUE for Pd-L bonds of complexes 1 and 2 compared to their
X-ray crystal structures.

On considering the data from all average MUE, MSE of interatomic and bonded

distances, it was concluded the ωB97XD gives the best performance, having the

smallest error (Figure 3.11). In addition to the accuracy of method, the computational

cost is also important to consider for large molecules. Given the high performance

of PBE for key Pd-L bonds, the PBE functional is preferred for studying pincer

palladacycles due to lower computational cost compared to ωB97XD. However, the

ωB97XD is an equally acceptable choice. To confirm this statement, we have studied

the Gibbs free energy of palladacycle formation between the pincer ligands and

PdCl2 (Scheme 3.1) using PBE and ωB97XD functionals with 6-31+G(d,p)[SDD]

basis set for optimisation of the geometry and frequency analysis. To evaluate the

accurate energy, we have used ωB97XD/6-311++G(2df,2p)[SDD] to determine the

single point energy. The Gibbs free energy of formation shows that the PBE and

ωB97XD optimised geometries provide very similar energy (less than 2 kJ mol-1)

(Table 3.1). Furthermore, the PBE functional has been used previously to study the

ligand free Pd reaction.95,96



52

Scheme 3.1. Formation reaction of pincer palladacycles.

Table 3.1. Gibbs free energy, ∆G0, of complexes 1, 2 and PdPCP ([ClPd2,6-
(Me2PCH2)2C6H3]) for the formation reaction using ωB97XD/6-311++G(2df,2p) for
both PBE/6-31+G(d,p) and ωB97XD/6-31+G(d,p)-optimised geometries.

Complex ∆G0/kJ mol-1
PBE ωB97XD

1 -207.3 -206.6
2 -213.2 -214.9
PdPCP -318.7 -320.4

3.5 Conclusion

Eight density functionals and four basis sets have been used to calculate the struc-

tures of the pincer complexes 1 [PdCl{2,6-(NMe2CH2)2(C6H3)}] and 2 [PdCl{2,6-

(SMeCH2)2(C6H3)}] and validate the performance of the computational methodo-

logies compared to their experimental crystal structures. From average MSE and

MUE analysis, we found that functionals that include dispersion provide slightly

better performance than non-dispersion corrected functionals. Moreover, the SDD

ECP (used for the Pd atom) gives greater accuracy than the LanL2DZ ECP. The

critical bonds around Pd (Pd-L bonds), which are important in the complex, were

analysed. The RMS error, MSE and MUE showed that the GGAs PBE and BP86,

and the meta-GGA TPSS gave the lowest errors (RMS < 0.037 Å, MSE < 0.015

Å and MUE < 0.025 Å) indicating that they were in good agreement with X-ray

crystal structure. However, we found that the structural data obtained at all levels

of theory agreed well with the crystal structure data having the average RMS error,

MSE (interatomic), MSE (bonded), MUE (interatomic) MUE (bonded) less than

0.080 Å, 0.038 Å, 0.022 Å, 0.044 Å and 0.023 Å, respectively. Overall, in order

to save computational costs while maintaining good accuracy for Pd-L bonds, the

PBE/6-31+G(d,p)[SDD] was shown to be a good choice for geometry optimisation.



Chapter 4

Pincer Palladacycles Studied

Using CASSCF Method

In this chapter, complete active space self-consistent field (CASSCF) calculations

are performed on pincer palladacycles to determine their geometric and electronic

structures. This provides a reliable indication of the reference character (single-

reference or multireference) required to study the electronic structures of pincer

palladacycles.

4.1 Introduction

4.1.1 Electronic structure using CASSCF method

CASSCF is a quantum chemistry method based on the concept of configuration

interaction (CI), first introduced by Björn Roos in 1972.97 Like DFT, the CASSCF

method has been used to study the electronic structures and chemical properties of

molecular systems. The fundamental limitation of the DFT method is that it uses a

single-reference to determine electronic structures of molecules. Sometimes, DFT

cannot describe the electronic structure of the metal complex structure sufficiently.

For example, Yamamoto and Kashiwagi98 used CASSCF to determine the electronic

structure of an oxyheme model complex (Figure 4.1). It was shown that the major

weight configuration for the ground state was only 0.683 (coefficient = 0.826), which

implied that this structure had a multireference character.
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Figure 4.1. Model of oxyheme studied by Yamamoto and Kashiwagi via CASSCF.98

Jensen99 reported the ground state structure of cob(I)alamin, first studied by

CASSCF then followed by complete active space second-order perturbation theory

(CASPT2) (Figure 4.2). The results showed that cob(I)alamin had multireference

character, with 67% weight in the major configuration state. Kumar et al.100

also studied the electronic properties cob(I)alamin in 2011. They studied the role

of the axial base in cob(I)alamin using CASSCF, followed by quasi-degenerate

perturbation theory with multiconfiguration self-consistent field reference function

(MC-XQDPT2).101 Their results revealed that this complex also had multireference

character.

N N

NN
Co

N N

NN
Co

N

HN

a)                                                    b)

Figure 4.2. Structure of a) the cob(I)alamin99 and b) the interaction of base with
cob(I)alamin.100

In 2009 Takatani et al.102 reported the electronic structure of d6 metal-salen com-

plexes using CASSCF (Figure 4.3). They found that the singlet state of Fe(II)-salen,

as well as the singlet and the quintet states of Ru(II)-salen exhibited multireference

character, while the triplet and quintet states of Fe(II)-salen, and the triplet state of

Ru(II)-salen had single-reference character.

CASSCF calculations require as input the active orbitals, inactive orbitals, the

number of electrons and total spin. The probability of an electronic configuration

within the active orbitals is determined. The electrons in inactive orbitals remain

fully occupied. Specifying the number of active orbitals and the number of electrons

herein is a challenging issue for the user. Roos’s rules can provide a guide to selecting
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Figure 4.3. Metal-salen catalysts; a) full salen ligand and b) model for simulation.102

the active space for transition compounds. Björn’s rules suggest that for second and

third row transition metal compounds, the extra d-shell and all orbitals of d-character

are not required to be put in the active space. For high oxidation states, more active

orbitals are required to be included due to large charge transfers.103 For instance, the

protonation of square-planar palladium(II) complex reaction ([Pd(H)2(Cl)(NH3)]– +

H+ → [Pd(H)3(Cl)(NH3)]) was studied by Milet and Dedieu.104 They calculated the

palladium(II) complexes, determining the proton affinity using two different sizes

of active space; i) 4 electrons in 4 active orbitals (CAS(4,4)) and ii) 10 electrons in

10 active orbitals (CAS(10,10)). CASSCF method followed by CASPT2 calculation

was performed. The active orbitals for CAS(4,4) involved the orbitals along the

z-axis: the Pd-H bond at the axial position was described by these orbitals, while

the CAS(10,10) calculation could observe all metal-ligand bonds at both axial and

equatorial positions. Their results showed that the deviation of the proton affinity

results between CASSCF and CASPT2 using 10 electrons in 10 active orbitals was

26.3 kJmol−1. By comparing CASSCF with HF theory, most of the correlation effects

are shown to be of the non-dynamical nature with an energy difference of 108.7

kJmol−1. The CASSCF calculation (non-dynamic correlation effect) was sufficient

for calculating the protonation of the square-planar palladium(II) complex reaction.

Additionally, the difference in the proton affinities between CAS(4,4) and CAS(10,10)

was 33.5 kJmol−1, which the proton affinity for CAS(4,4) was 1197.9 kJmol−1 and

for CAS(4,4) was 1231.4 kJmol−1. This energy (33.5 kJmol−1) was recovered from

the metal-ligand bond at the equatorial positions. This demonstrates the importance

of selecting an active space that is sufficient to model the system accurately.
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In 2000, the electronic spectra of M(2-thienylpyridine)2, where M is Pd or Pt,

were reported using the CASSCF/CASPT2 method (Figure 4.4).105 Sixteen electrons

in twelve active orbitals were chosen involving bonding and antibonding interactions

between 2-thienylpyridine (thpy) and M, the low-lying excited state orbitals (four

for the d orbitals) and the HOMO-LUMO thpy π orbitals. They105 included the

thpy π orbitals in order to determine the nature of the π-π∗ ligand-centred excited

state. The method successfully explained the electronic spectra. Matsushita et al.106

studied the emission mechanism of M(2-thienylpyridine)2. Seven orbitals including d

and π orbitals were chosen for calculation. These orbitals were selected to provide a

description of both metal-to-ligand charge transfer (MLCT) and ligand-centred (LC)

transitions. Their results showed good agreement with experimental data.

M = Pd, Pt
N

S

N

S

M

Figure 4.4. Structure of M(2-thienylpyridine)2.105,106

Another example of a calculation on a metal complex using CASSCF was reported

by Freitag and co-workers.107 They investigated how the NO ligand coordinated

to Ru in their complex and its effect on the central Ru oxidation state (NO is

known to be a non-innocent ligand). The NO ligand coordination mode to Ru in

trans−[RuCl4(NO)(1H−indazole)] was investigated to explain its electronic structure

(Figure 4.5). All Ru d orbitals and those of the ligands interacting with them were

selected as active orbitals. Sixteen electrons in thirteen active orbitals were chosen

for the CASSCF calculation, where active orbitals involve the five Ru 4d, two pairs

of NO π and π∗, the π and π∗ of the indazole, one p for σ bond between Cl and

Ru on the Cl atom and the NO σ. This calculation showed that the formal Ru

oxidation state is 2.5 since the electronic configuration of Ru consisted of nearly equal

d5(Ru(III)) and d6(Ru(II)) contributions. The electronic structure of this complex

was Ru(III)-NO0, rather than Ru(II)-NO+, due to the NO electron configuration

displaying a predominantly neutral character.
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Figure 4.5. trans−[RuCl4(NO)(1H−indazole)] structure studied by Freitag and
co-workers.107

4.2 Aims of this work

The main goal of this chapter is to determine the method requirements (single-

reference or multireference character) for studying pincer palladacycles. We have

probed the electronic structure of symmetrical and unsymmetrical pincer pallada-

cycles using CASSCF method, to determine the weight of the dominant configurations

and hence the reference character of the ground state.

4.3 Computational details

All calculations were carried out using the Gaussian09 program.87 Both symmet-

rical and unsymmetrical pincer palladacycles (PdYCY and PdYCY’) in Figure 4.6

were studied. The pincer palladacycle optimisation geometries were obtained using

PBE45,46/6-31+G(d,p)[SDD57] (SDD ECP for Pd and 6-31+G(d,p) for the other

atoms), which were then used as starting structures for a geometry optimisation using

CASSCF.108–112 Canonical orbitals at the pincer palladacycle optimisation geometries

were generated using the restricted Hartree-Fock (RHF) method with the contracted

Gaussian function STO-3G basis set for all atoms and SDD effective core potential

(ECP) for Pd (HF/STO-3G[SDD]). The canonical orbitals at HF/STO-3G[SDD]

were used to select the active space for the CASSCF calculations. The CASSCF

with n electrons in m active orbitals, referred to as CAS(n,m), was then studied.

Electron occupations, using diagonal elements of the density matrix, were examined

to check the active orbitals. If the occupancy value is equal to two it represents

a doubly occupied state, and if the value is equal to zero, it represents an empty

orbital. Therefore, in either case, there is no electron promotion in the active space

indicating that the electrons are not distributed.103 Some calculations were found
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difficult to converge, therefore the maximum number of iterations was extended to

increase and/or a quadratically convergent SCF procedure was used. The keyword

for increasing the number of iterations is SCF(maxcycle=N) where N is the number

of SCF cycles. For the quadratically convergent SCF procedures, the keyword is

use=L506 or SCF=qc. Optimised PdNCN and PdSCS geometries were compared to

their experimental X-ray crystal structure data.90,91

Pd NMe2Me2N
Cl

Pd SMeMeS
Cl

Pd PMe2Me2P
Cl

PdNCN PdSCS PdPCP

Pd SMeMe2N
Cl

Pd PMe2MeS
Cl

Pd PMe2Me2N
Cl

PdNCS PdSCP PdNCP

Figure 4.6. Symmetrical and unsymmetrical pincer palladacycles used in this study.

4.4 Results and discussion

4.4.1 Symmetrical pincer palladacycles

The canonical orbitals from HF used for CASSCF are shown in Figure A.1, Figure A.2

and Figure A.3 in Appendix A for pincer palladacycles PdNCN, PdSCS and PdPCP,

respectively. Orbitals with a significant d character were chosen for the active space

of the CASSCF calculation. For allowing electronic promotion from the ground state

to excited states and getting a realistic description, we have added π∗ valence virtual

orbitals in the active orbitals.

PdNCN: The chosen occupied orbitals 58a, 59a, 60a, 61a, 62a, 63a and 65a and

unoccupied orbitals 75a, 76a, 77a and 78a are studied. The CAS(14,11), CAS(12,10),

CAS(10,9), CAS(8,8) and CAS(6,6) were evaluated.

Table 4.1 gives information involving the ground-state electronic structure where

the numbering labels of the orbitals have no relation to orbital energies. All CAS(n,m)

geometry optimisations at the ground state have the configuration interaction (CI)

coefficient (configuration contribution) more than 0.90 (81%). The CI coefficient of



59

the CAS(14,11), CAS(12,10), CAS(10,9), CAS(8,8) and CAS(6,6) contain 0.96, 0.97,

-0.97, 0.97 and 0.97, respectively. This result shows that PdNCN has the electronic

ground state well separated from the excited state with a contribution of more

than 94% indicating that the overall wavefunction of PdNCN has a single-reference

character. The occupation number is used to analyse the size of CAS(n,m). It should

not be near 2.00 (double occupation) and 0.00 (unoccupied).103 CAS(14,11) has

nearly 2.00 in the orbitals 60a and 59a, CAS(12,10) has 59a and 60a, and CAS(10,9)

has 60a (Table 4.1). This result suggests a reduction of the active space is acceptable.

When decreasing the CASSCF active space to CAS(8,8) and CAS(6,6), the maximum

occupation number was found to be 1.988 which is far enough away from 2.00 to be

acceptable.

According to the occupation number analysis, the CAS(8,8) and CAS(6,6) have

been chosen as they do not have an occupation number near 2.00. Table 4.2 reveals

details of the configuration interaction (CI) coefficient and its weight (square of CI

coefficient) of optimised PdYCY. The configuration pattern at the largest weight

are the closed-shell singlet configuration 22220000 for CAS(8,8) and 222000 for

CAS(6,6). The second dominant configuration has been analysed. It has a weight

of just 0.03 and has a closed-shell configuration, where for CAS(8,8) it is 02222000

and for CAS(6,6) it is 0222000 (Table 4.2). The weight configuration suggests a

single-reference character is sufficient for determining the PdNCN ground state

structure.
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Table 4.1. Occupation number of CAS(n,m) in symmetrical pincer palladacycles
(PdYCY), where n is number of electrons and m is number of active orbitals.
The configuration interaction (CI) coefficient and weight (w.) of the dominant
configuration is also provided. The numbering of orbitals is not based on orbital
energy level.

PdYCY Orbital Occupation number
CAS(14,11) CAS(12,10) CAS(10,9) CAS(8,8) CAS(6,6)

PdNCN 11a 0.018 0.018 0.017 0.017 0.016
10a 0.010 0.011 0.010 0.017
9a 0.040 0.015 0.015 0.015 0.015
8a 0.080 0.075 0.073 0.073 0.073
7a 1.982 1.981 1.982 1.982 1.983
6a 1.988 1.988 1.988 1.988
5a 1.989 1.984 1.984 1.984 1.984
4a 1.927 1.931 1.931 1.931 1.929
3a 2.000 2.000 2.000
2a 1.995 1.997
1a 1.972

CI/w. 0.96/0.92 0.97/0.94 -0.97/0.94 0.97/0.94 0.97/0.94
PdSCS 11a 0.016 0.017 0.017 0.016 0.014

10a 0.013 0.013 0.013 0.012
9a 0.015 0.015 0.015 0.014 0.014
8a 0.070 0.073 0.074 0.069 0.071
7a 1.998
6a 1.986 1.986 1.986 1.987
5a 1.995 1.995 1.995
4a 1.938 1.935 1.934 1.934 1.931
3a 2.000 1.999
2a 1.985 1.984 1.984 1.985 1.985
1a 1.983 1.983 1.983 1.983 1.984

CI/w. -0.97/0.94 0.97/0.94 -0.97/0.94 0.97/0.94 0.98/0.96
PdPCP 11a 0.017 0.016 0.016 0.016 0.015

10a 0.018 0.016 0.016 0.016 0.016
9a 0.065 0.056 0.056 0.056 0.061
8a 0.016 0.015 0.015 0.015
7a 1.982 1.982 1.982 1.982 1.983
6a 1.983 1.983 1.983 1.983 1.984
5a 1.943 1.947 1.947 1.947 1.941
4a 2.000 2.000 2.000
3a 1.984 1.984 1.984 1.984
2a 2.000 2.000
1a 1.993

CI/w. 0.97/0.94 0.97/0.94 0.97/0.94 0.97/0.94 0.98/0.96
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Figure 4.7. Active space orbitals of PdNCN resulting from CASSCF optimisation
calculation and an orbital numbering scheme which is not based on orbital energy.
The orbitals in blue and red squares are the active orbitals for CAS(8,8) and CAS(6,6),
respectively. The isovalue for representative orbitals is 0.05 (grey = carbon, white =
hydrogen, dark green = palladium, light green = chlorine and dark blue = nitrogen).
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Table 4.2. Configuration state function (CSF), configuration interaction (CI)
coefficient and its weight of optimised-PdYCY ground state using CASSCF(6,6) and
CASSCF(8,8) with 6-31+G(d,p)[SDD]. All configurations with weight > 0.01 are
listed.

PdYCY CAS(n,m) CSF CI coefficient Weight
PdNCN CAS(8,8) 22220000 0.97 0.94

02222000 -0.16 0.03
CAS(6,6) 222000 0.97 0.94

022200 -0.17 0.03
PdSCS CAS(8,8) 22220000 0.97 0.94

02222000 -0.16 0.03
CAS(6,6) 222000 0.98 0.96

022200 -0.17 0.03
PdPCP CAS(8,8) 22220000 0.97 0.94

20220200 -0.13 0.02
CAS(6,6) 222000 0.98 0.98

022020 -0.15 0.02

PdSCS: The chosen orbitals are 58a, 59a, 60a, 61a, 62a, 63a, 65a for occupied

orbitals and 75a, 76a, 77a and 78a for unoccupied orbitals (Figure A.2 in Appendix

A). We have studied CAS(14,11), CAS(12,10), CAS(10,9), CAS(8,8) and CAS(6,6)

the same size as for the PdNCN study. All leading configuration state functions

(CSFs) have the weights greater than 0.94, indicating that a single-configuration

wavefunction is used for determining the ground state structure of PdSCS (Table 4.1).

CAS(14,11), CAS(12,10) and CAS(10,9) have the doubly occupied state: orbitals

60a and 62a for CAS(14,11), orbitals 60a and 62a for CAS(12,10), and orbital 62a

for CAS(10,9).

We have analysed the quality for CAS(8,8) and CAS(6,6). In Table 4.2, there are

two types of the configuration for CAS(8,8) and CAS(6,6), where each configuration

has a weight greater than 0.01. The largest weight shows the closed-shell singlet

configuration in both CAS(8,8) and CAS(6,6). The configuration for the second

most dominant CI coefficient with small weight 0.03 is 02222000 and 0222000 for

CAS(8,8) and CAS(6,6), respectively.
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Figure 4.8. Active space orbitals of PdSCS resulting from CASSCF optimisation
calculation and an orbital numbering scheme which is not based on orbital energy.
The orbitals in blue and red squares are the active orbitals for CAS(8,8) and CAS(6,6),
respectively. The isovalue for representative orbitals is 0.05 (grey = carbon, white =
hydrogen, dark green = palladium, light green = chlorine and yellow = sulphur).
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PdPCP: The chosen orbitals for occupation are 66a, 67a, 68a, 69a, 70a, 71a

and 73a, and those for unoccupation are 83a, 84a, 85a and 86a (Figure A.3). In

Figure 4.6, it is also shown that the wavefunction for the PdPCP ground state is

dominated by a single configuration as all the leading configurations for CAS(n,m)

have a percent weight over 94%. CAS(14,11), CAS(12,10) and CAS(10,9) have the

doubly occupied state: orbitals 66a, 67a and 69a for CAS(14,11), orbitals 67a and

69a for CAS(12,10), and orbital 69a for CAS(10,9).

To evaluate the electron distribution of CAS(8,8) and CAS(6,6), the electron

configuration with the occupation number is determined. The calculation shows that

the largest weight is for the singlet ground state configuration: 22220000 and 222000

for CAS(8,8) and CAS(6,6), respectively. The second configuration, with small

weight of 0.02 for CAS(8,8) and CAS(6,6) are 20220200 and 022020, respectively

(Figure 4.9).
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Figure 4.9. Active space orbitals of PdPCP resulting from CASSCF optimisation
calculation and an orbital numbering scheme which is not based on orbital energy.
The orbitals in blue and red squares are the active orbitals for CAS(8,8) and CAS(6,6),
respectively. The isovalue for representative orbitals is 0.05 (grey = carbon, white =
hydrogen, dark green = palladium, light green = chlorine and orange = phosphorus).
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4.4.2 Electronic structures of symmetrical pincer pallada-

cycles

In order to perform the occupation number analysis, CAS(8,8) and CAS(6,6) are

good choices for symmetrical pincer palladacycles. Interestingly, both PdNCN orbital

59a and PdPCP orbital 66a involve the interaction between Pd and donor atoms

(see Figure A.1 for PdNCN and Figure A.3 for PdPCP). These orbitals are doubly

occupied, indicating no promotion of electrons from these. It is shown that some

bonding orbitals of Pd-Y bonds are not important for including as active orbitals that

determine the PdYCY ground state structures. However, Pd-L bonding, where L =

Y, C and Cl, orbitals is important as these bonds involve two-electron excitation from

[dx2−y2 + σ] to [dx2−y2 − σ]∗, which are the bonding and antibonding orbitals of Pd-L

bonds, and these bonds occur simultaneously. When we analyse the second dominant

configuration of PdYCY, the configuration for both CAS(8,8) and CAS(6,6) involve

a two-electron excitation from [dx2−y2 + σ] to [dx2−y2 − σ]∗, which are the bonding

and antibonding orbitals of Pd-L bonds, respectively (see Figure 4.7 for PdNCN,

Figure 4.8 for PdSCS and Figure 4.9 for PdPCP), and hence why we include Pd-L

bonding in active orbitals. To clarify the picture of the chemical bond information

around the Pd centre, the isovalue contour plots of [dx2−y2 + σ] and [dx2−y2 − σ]∗ are

set to 0.02 (Figure 4.10). Figure 4.10 shows more electron delocalisation between Pd

and C rather than other bonds. It indicates the strong interaction of the Pd-C bond

compared to Pd-Cl and Pd-Y bonds. However, the choice of active space should in

general be minimised because of computational costs.99 Therefore, the CAS(6,6) has

been chosen as the best choice for studying PdYCY.

4.4.3 CASSCF efficiency for optimisation of the pincer struc-

ture

To determine the accuracy of the predicted CASSCF geometry, testing was done on

the optimised structure using CAS(6,6) with 6-31+G(d,p)[SDD] basis set. The mean

signed error (MSE) and mean unsigned error (MUE) are used to evaluate the accuracy

of CASSCF optimisation, and their geometries by comparison to X-ray data.90,91

Considering MSE (interatomic) and MUE (interatomic) values, CAS(6,6) optimised
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geometries are in good agreement with X-ray structures, with MSE (interactomic)

< 0.048 Å and MUE (interatomic) < 0.055 Å (Table 4.3). To gain insight into the

accuracy of the calculated chemical bonds, the MSE and MUE of bond distances

are measured, and it is shown that they have a small error. However, MSE and

MUE show that the DFT geometry (PBE exchange-correlation function) has slightly

smaller errors than CAS(6,6) optimised geometries.

Table 4.3. Bond and interatomic distance MSE and MUE (excluding hydrogens)
using PBE and CAS(6,6) with a 6-31+G(d,p)[SDD] basis set, compared to X-ray
crystal structure.

PdYCY Analysis Error / Å
PBE CAS(6,6)

PdNCN MSE (interatomic) 0.032 0.046
MUE (interatomic) 0.014 0.055
MSE (bonded) 0.014 0.014
MUE (bonded) 0.014 0.026

PdSCS MSE (interatomic) 0.030 0.048
MUE (interatomic) 0.038 0.052
MSE (bonded) 0.015 0.019
MUE (bonded) 0.019 0.024

4.4.4 Unsymmetrical pincer palladacycles

The chosen canonical orbitals from HF for PdNCS, PdSCP and PdNCP are shown

in Appendix, Figure A.4, Figure A.5 and Figure A.6, respectively. Orbitals with a

significant d character and virtual p-orbitals are considered important to include in

the active space when studying unsymmetrical pincer palladacycles (PdYCY’). We

have studied CAS(14,11), CAS(12,10), CAS(10,9), CAS(8,8) and CAS(6,6).

PdNCS: The results of the CASSCF calculation for PdNCS are shown in

Table 4.4. The CASSCF optimisations are converged except for CAS(12,10) (Table 4.4).

The results suggest that the single-reference wavefunction is acceptable for PdNCS

structure optimisation (weight greater than 0.94). For CAS(14,11) and CAS(10,9),

orbitals with double occupancy are found. Double occupation has not been found,

when decreasing the number of the electrons and the active spaces to CAS(8,8) and

CAS(6,6) (Table 4.4). Table 4.5 shows the configuration interaction coefficient and

its weight of CAS(8,8) and CAS(6,6). The large weight configuration in this case also

shows a closed-shell singlet electron configuration 22220000 and 222000 for CAS(8,8)
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a)                            b)                            c)

Figure 4.10. Molecular orbitals involved in the excited state configuration of
symmetrical pincer palladacycles: a) PdNCN, b) PdSCS and c) PdPCP. Contour
plots for isovalue 0.02 leading to clearer plot between Pd-L bond interactions (grey
= carbon, white = hydrogen, dark green = palladium, light green = chlorine, dark
blue = nitrogen, yellow = sulphur and orange = phosphorus).

and CAS(6,6), respectively. The configuration which has a weight over 0.01 still

has a small value (weight < 0.03). The configuration for this weight is 20222000

and 022002 for CAS(8,8) and CAS(6,6), respectively. The active orbitals which

are involved in the CASSCF optimisation for CAS(8,8) and CAS(6,6) are shown in

Figure 4.11.
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Table 4.4. Occupation number of CAS(n,m) in unsymmetrical pincer palladacycles
(PdYCY’), where n is number of electrons and m is number of active orbitals.
The configuration interaction (CI) coefficient and weight (w.) of the dominant
configuration state is also provided. The numbering of orbitals is not based on orbital
energy level.

PdYCY’ Orbital Occupation number
CAS(14,11) CAS(12,10) CAS(10,9) CAS(8,8) CAS(6,6)

PdNCS 13a 0.017 n/a 0.018 0.016 0.015
12a 0.012 0.011
11a 0.012
10a 0.069 0.074 0.070 0.072
9a 0.015 0.015 0.014 0.015
8a 1.983 1.982 1.982 1.984
7a 1.986 1.987
6a 1.988
5a 1.938 1.933 1.933 1.931
4a 1.984 1.984 1.984 1.985
3a 1.995 1.995
2a 1.999
1a 1.999

CI/w. -0.97/0.94 -0.97/0.94 0.97/0.94 0.98/0.96
PdSCP 11a 0.018 0.019 0.018 0.016 0.015

10a 0.017 0.017 0.016 0.014
9a 0.065 0.068 0.068 0.060 0.064
8a 0.019 0.019 0.019 0.016 0.014
7a 1.983 1.982 1.982 1.983 1.984
6a 1.998
5a 1.982 1.982 1.982 1.983 1.984
4a 1.945 1.943 1.942 1.944 1.939
3a 1.985 1.984 1.985 1.985
2a 1.999 1.997
1a 1.989 1.989 1.989

CI/w. 0.97/0.94 0.97/0.94 -0.97/0.94 0.97/0.94 0.98/0.96
PdNCP 13a 0.020 0.019 0.019 0.017 0.016

12a 0.017 0.016 0.014
11a 0.021 0.020 0.020 0.016 0.015
10a 0.077 0.069 0.069 0.062 0.065
9a 0.042
8a 1.981 1.981 1.981 1.982 1.983
7a 1.984 1.985
6a 1.981 1.981 1.981 1.983 1.984
5a 1.935 1.942 1.941 1.942 1.938
4a 1.991 1.985
3a 1.987 1.988 1.988
2a 1.969
1a 1.998 1.998

CI/w. 0.96/0.92 -0.97/0.94 0.97/0.94 0.97/0.94 0.98/0.96
n/a = not available because optimisation of this CAS is not converge.
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Figure 4.11. Active space orbitals of PdNCS resulting from CASSCF optimisation
calculation and an orbital numbering scheme which is not based on orbital energy.
The orbitals in blue and red squares are the active orbitals for CAS(8,8) and CAS(6,6),
respectively. The isovalue for representative orbitals is 0.05 (grey = carbon, white =
hydrogen, dark green = palladium, light green = chlorine, dark blue = nitrogen and
yellow = sulphur).
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Table 4.5. Configuration state function (CSF), configuration interaction (CI)
coefficient and its weight of optimised-PdYCY’ ground state using CASSCF(6,6)
and CASSCF(8,8) with 6-31+G(d,p)[SDD]. All configurations with weight > 0.01
are listed.

PdYCY’ CAS(n,m) CSF CI coefficient Weight
PdNCS CAS(8,8) 22220000 0.97 0.94

20222000 -0.16 0.03
CAS(6,6) 222000 0.98 0.96

022002 -0.17 0.03
PdSCP CAS(8,8) 22220000 0.97 0.94

02220200 -0.14 0.02
CAS(6,6) 222000 0.98 0.96

022020 -0.16 0.03
PdNCP CAS(8,8) 22220000 0.97 0.94

20220200 -0.13 0.02
CAS(6,6) 222000 0.98 0.98

022020 -0.16 0.03

Unsymmetrical SCP pincer palladacycle (PdSCP): For PdSCP, the chosen

orbitals are 63a, 64a, 65a, 66a, 67a, 68a and 69a for occupied molecular orbitals,

and 79a, 80a, 81a, and 82a for unoccupied molecular orbitals. The wavefunction is

dominated by a single configuration having a weight greater than 0.94 in all CASs.

Only CAS(14,11) and CAS(12,10) have a doubly occupied orbital (64a) but the

system does not have a doubly occupied state when optimised using CAS(10,9),

CAS(8,8) and CAS(6,6) (Table 4.4).

For CAS(10,9), the largest weight, 0.94, corresponds to the ground state configur-

ation 222220000. Due to the limitation of Gaussian output files, we cannot show the

excited-state configuration of CAS(10,9). Here, we have focused on CAS(8,8) and

CAS(6,6). Figure 4.12 shows the active space orbitals and their occupation numbers

for PdSCP. Table 4.5 shows that the largest weight ground state configurations of

both CAS(8,8) and CAS(6,6) are greater than 0.94 and the second most important

configuration contributes less than 0.03. This corresponds to the configuration

02220200 for CAS(8,8) and 022020 for CAS(6,6) (Figure 4.12).

Unsymmetrical NCP pincer palladacycle (PdNCP): The chosen occupied

orbitals are 61a, 62a, 64a, 65a, 66a, 67a and 69a and the unoccupied orbitals are

79a, 80a, 81a and 82a. The weight results from all CAS indicate a single-reference

character with contribution 0.92 of the weight. It is also shown that CAS(14,11) and
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CAS(12,10) are doubly occupied (Table 4.4).

For CAS(10,9), CAS(8,8) and CAS(6,6), the calculations reveal that the overall

wavefunction for PdNCP has single-reference character with a large weighting (over

0.96). On considering all configurations of weight greater than 0.01, the dominant

configuration involves the closed-shell singlet configuration, while the second con-

figuration has a much smaller weight (<0.03). This is also a closed-shell singlet

configuration. These are 20220200 and 022020 for CAS(8,8) and CAS(6,6), re-

spectively (Table 4.4). The active space orbitals for these CASSCFs are shown in

Figure 4.13.

4.4.5 Electronic structures of unsymmetrical pincer pallada-

cycles

The overall wavefunction of unsymmetrical pincer palladacycles shows significant

single-reference character, as was found in the case of symmetrical pincer palla-

dacycles. The orbitals from CAS calculations were used to describe the bonding

in the unsymmetrical pincer palladacycles. Figure 4.14 shows that Pd interacts

with both donor atoms simultaneously, i.e. electron density is delocalised over the

Y-Pd-Y’ bonds. However, by increasing the isovalue of the electron density plot

(Figure 4.12 and Figure 4.13), it is clear that the Pd-P interaction is stronger than

the Pd-S bond (in PdSCP; Figure 4.12) and Pd-N bond (in PdNCP; Figure 4.13).

Moreover, the electron promotion occurs from the bonding Y-Pd-Y’ orbitals (with

occupation ∼1.94e) to the antibonding Y-Pd-Y’ orbital (with occupation ∼0.06e),

see Figure 4.11, Figure 4.12 and Figure 4.13 for PdNCS, PdSCP and PdNCP, re-

spectively. It appears to be this specific orbital that is involved in the two-electron

excitation, i.e. [dx2−y2 + σ] to [dx2−y2 − σ]∗, in both symmetrical and unsymmetrical

pincer palladacycles.
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Figure 4.12. Active space orbitals of PdSCP resulting from CASSCF optimisation
calculation and an orbital numbering scheme which is not based on orbital energy.
The orbitals in blue and red squares are the active orbitals for CAS(8,8) and CAS(6,6),
respectively. The isovalue for representative orbitals is 0.05 (grey = carbon, white
= hydrogen, dark green = palladium, light green = chlorine, yellow = sulphur and
orange = phosphorus).
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Figure 4.13. Active space orbitals of PdNCP resulting from CASSCF optimisation
calculation and an orbital numbering scheme which is not based on orbital energy.
The orbitals in blue and red squares are the active orbitals for CAS(8,8) and CAS(6,6),
respectively. The isovalue for representative orbitals is 0.05 (grey = carbon, white =
hydrogen, dark green = palladium, light green = chlorine, dark blue = nitrogen and
orange = phosphorus).
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a)                            b)                         c)

Figure 4.14. Molecular orbitals involved in the excited state configuration of
unsymmetrical pincer palladacycles: a) PdNCS, b) PdSCP and c) PdNCP. Contour
plots for isovalue 0.02 leading to clearer plot between Pd-L bond interactions (grey
= carbon, white = hydrogen, dark green = palladium, light green = chlorine, dark
blue = nitrogen, yellow = sulphur and orange = phosphorus).

4.5 Conclusion

The geometry and electronic structures of pincer palladacycles have been analysed

using the CASSCF/6-31+G(d,p)[SDD] method. It was found that the CAS(6,6)

optimised structure was in good agreement with X-ray crystal data.90,91 Moreover,

our calculation showed that the ground state structure of the pincer palladacycles

had a significant single-reference character and a closed-shell singlet configuration

for large and small active spaces. The weight of the dominant configuration was

greater than 0.92 in all cases. It was found that CAS(8,8) and CAS(6,6) are adequate

for investigating the ground state of the pincer palladacycles. Given the significant

single-reference character for all pincer palladacycle structures both symmetric and

unsymmetric, our calculations suggest that density functional theory is a good and

appropriate method for studying pincer palladacycles.



Chapter 5

Formation Reaction of Pincer

Palladacycles

In this chapter, the formation pathways for symmetrical and unsymmetrical pincer

palladacycle have been investigated using density functional theory (DFT). The

thermodynamic and kinetic properties and energy barriers of the formation reactions

are also described. In addition, the stability of the pincer palladacycles are studied

and presented.

5.1 Introduction

Palladacycles are organometallic compounds and are popular and attractive choices

as the catalyst or pre-catalyst in organic reactions. A way to synthesise palladacycles

is through C-H bond activation with palladium. C-H bond activation is a simple

method for palladacycle formation because the ligand does not need to be modified,

leading to fewer synthesis steps.113 For example, the first successful palladacycle

synthesis via C-H bond activation was reported through the reaction of azobenzene

and PdCl2 by Cope et al. (Scheme 5.1).1

5.1.1 C-H bond activation

C-H bond activation is a fundamental method for forming palladacycles after Cope

et al. reported.1 Palladacycle chemistry has become of increasing interest.114 For

example, Takahashi and Tsuji115 first studied substituted azobenzene reacting with
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Scheme 5.1. Formation reaction of palladacycle by Cope et al.1

PdCl2 to form palladacycles via C-H bond activation. They investigated the effect

of substituents on the benzene ring in reactions with PdCl2 to form palladacycles.

Ryabov114 wrote a useful review providing details of the C-H bond activation in

transition-metal complexes including C-H bond activation of palladacycle formation

reactions. There are three simple C-H bond activation mechanisms; i) oxidative

addition, ii) electrophilic substitution and iii) multicentred reaction (Scheme 5.2).114

For oxidative addition, the C-H bond activation occurs via donation of two electrons

from metal centre to σ∗ orbital of the C-H bond. The oxidation state of the metal

centre of the product increases whereas the reactant is reduced. For electrophilic

substitution mechanism, the central metal does not change its oxidation state. The

hydrogen cleaves from the complex. It is a free proton in solution or bound to base.

For the last type, the alkyl group forms with hydrogen, then RH is eliminated from

the complex.

C
H

M(n) M(n)C + RH

R

iii)

C
H

M(n) M(n+2)
C

H

C
H

M(n) M(n)C + H+

i)

ii)

Scheme 5.2. C-H bond activation types; i) oxidative addition, ii) electrophilic
substitution and iii) multicentred reaction.114
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For palladacycle formation via C-H bond activation, two possible mechanisms

have been proposed (Scheme 5.3).6 These pathways are controlled by the substituent

on the arene. The initial step of this reaction is donor atom coordination to the

palladium centre followed by either electrophilic aromatic substitution or an agostic

C-H bond activation. In electrophilic aromatic substitution, the π complex is formed

followed by a σ complex intermediate giving the palladacycle product. In the agostic

pathway, a hydrogen bond complex (see Scheme 5.3) has been proposed followed by

an agostic complex then producing a palladacycle.6

D

HR

D

HR
PdX2

Coordination complex

D

HR
PdX2

D

HR
PdX2

D

HR
PdX2

D

HR
Pd X

X

D

R Pd
X

-HX-HX

hydrogen bonded complexπ complex

σ complex
(arenium intermediate) agostic complex

palladacycle

PdX2

electrophilic
aromatic

substitution

agostic
C-H bond
activation

D = donor atom

Scheme 5.3. Two proposed reaction mechanism pathways: electrophilic aromatic
substitution (left hand side) and agostic C-H bond activation (right hand side).6

There is another process competing with the reaction in Scheme 5.3, namely a

bridge formation to make a 14e specie, PdX2(D−CH)2 (Scheme 5.4). The strength

of Pd-D, where D is donor atom, controls the direction of pathway. If the Pd-D bond

is strong, the 14e species is formed more easily.6 In contrast, if the Pd-D bond is too

weak, the D of the ligand arm cannot coordinate to PdX2. The nature of the Pd-D

bond has great importance in controlling whether a palladacycle or 14e species is

formed.
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R

D-CH
PdX2(D-CH)2

+ D-CH

- D-CH

Scheme 5.4. Formation of palladium coordination complex as 14e species,
PdX2(D−CH)2.6

In 2005, a density functional theory (using BP86 method, and SDD ECP for Pd

and 6-31G(d,p) for C, H, N and O atoms) study of the formation of a palladacycle

between palladium acetate, Pd(OAc)2, and dimethylbenzylamine was reported.116

This calculation found that the process occurred via an agostic C-H bond activation

intermediate. There were two transition states; one arm of a κ2-acetate was replaced

by the agostic interaction (TS-I), and proton was transferred via six-membered ring

(TS-II), shown in Scheme 5.5.

Scheme 5.5. Pincer palladacycle reaction profile calculated by Davies et al.116

Moreover, in a theoretical study, Pascual et al.117 and Garcìa-Cuadrado et al.118

(Scheme 5.6) studied the palladacycle formation reaction. Pascual et al. used the

B3LYP method with LanL2DZ for Pd and Br which basis set for Br was expanded

to add polarisation and diffuse function. For the other atoms, they used 6-31+G(d)

basis set. Whereas, Garcìa-Cuadrado et al. used the ONIOM(B3LYP:UFF) method

with LanL2DZ for Pd and Br, which in the case of Br d polarisation was included.

6-31+G(d) basis set was used for others. Their work found no evidence of an agostic

intermediate. They found that there were three variations of mechanistic pathways;



80

i) assisted intramolecular, ii) assisted intermolecular and iii) unassisted pathways. In

the case of the assisted pathways, an external base could coordinate with either the

metal (assisted intramolecular) or the hydrogen (assisted intermolecular), whereas

the unassisted pathway was that the metal-carbon bond was involved in a concerted

reaction without the hydrogen transferred to the base.

For controlling the reaction mechanism pathway, there are three main influences

in palladacycle formation. These are i) the donor group on the side arm, ii) Pd

precursor and iii) the C-H bond strength which depends on substitution on the

aromatic carbon.6
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HBr

HCO3-

Pd

PR3

Br

H
HO2CO

H2CO3
Pd

PR3

Br

Br-

i)

iii)

ii)

Scheme 5.6. Possible formation reaction; i) assisted intramolecular, ii) assisted
intermolecular and iii) unassisted mechanism.117,118

5.1.2 C-H bond activation on pincer palladacycles

A pincer ligand (YCY) is a specific type of ligand. It consists of tridentate ligand

that can coordinate to a Pd centre via two donor and an anionic carbon atoms giving

a pincer palladacycle.9 A pincer palladacycle is also synthesised through C-H bond

activation. There are two possible reaction mechanism processes. The C-H bond

activation occurs via a dimeric/polymeric compound to form the pincer palladacycle
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or the C-H bond activation occurs directly to form the pincer palladacycle. In the

C-H bond activation via dimeric or polymeric compound, for example, the pincer

palladacycle is formed by reaction between PdCl2(NCR’)2 (where R’ is Ph) and

a PCP pincer ligand. The reaction mechanism is proposed in Scheme 5.7. The

strong interaction between Pd and P atoms leads to polymeric or dimeric species

(Scheme 5.7). Then, the polymeric or dimeric species is rearranged to form a four

coordinate Pd intermediate. In the last step, C-H bond activation occurs to give a

pincer palladacycle.6

Scheme 5.7. Formation reaction mechanism of a pincer palladacycle.6

Another reaction mechanism pathway of C-H bond activation to form pincer

palladacycle was proposed by Steenwinkel et al.119 Only one donor atom of the

pincer ligand coordinates to Pd in PdCl2 (Scheme 5.8). In the next step, the arenium

ion interacts with the PdCl2. Then, there are two possible products; only one arm

coordinated to Pd or two arms coordinated to Pd.
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Scheme 5.8. Proposed reaction mechanism for C-H bond activation.119

5.1.3 Palladium chloride chemistry

There are several useful Pd(II) precursors for pincer palladacycle formation, for

example Pd(OAc)2, PdCl2, PdCl2(NCR)2, [Pd(NCR)4]2+. Pd(OAc)2 was found to

be polymeric or trimeric and PdCl2 also formed a polymeric structure, all of which are

not simple from a calculation standpoint. In the literature, it is shown that the PdCl2
molecule is one of the good choices to be used for studying the reaction mechanism

pathways using DFT because it is a simplest structure. For instance, a DFT study

investigated the reaction mechanism of cyclopalladation between azobenzene and

trans-PdCl2(dmf)2 (dmf = N,N-dimethylformamide).120

When PdCl2 geometry is considered, it was found that there are two possible

geometries of PdCl2; bent singlet and linear triplet structures.121 Previously, the

singlet state monomeric PdCl2 was used to study bond activation for checking

performance of DFT.122 To study the pincer palladacycle formation reaction, therefore

the singlet state monomeric palladium chloride (PdCl2) is used in the present work

as a simple precursor to determine the C-H bond activation.

5.1.4 Trans influence

A pincer palladacycle has a square planar palladium centre. In the ground state, the

bond strength between metal and ligand is affected by the bond trans to itself in the

complex. This term is knows as trans influence that was first defined by Pidcock123

as “the tendency of a ligand to weaken the bond trans to itself”. This is the key effect

in explaining the structure in the ground state or thermodynamic state. Therefore,

sometimes, it is called the thermodynamic trans effect. The trans effect refers to
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the kinetic rate of ligand substitution in square planar or octahedral complexes. In

this case, it is sometimes called the kinetic trans effect.124 The view of the trans

influence can be explained in terms of the metal orbital overlap with the ligand

orbital (Figure 5.1). If the ligand L has strong overlap with M, the strength of the

M-X interaction is weaker than the M-L bond as ligand L withdraws the electron

density from the M-X bond leading to decreasing electron density of M-X bond. The

trans influence has often been brought into study in the organometallic field. It is

used to explain stability of compounds in square planar complexes. The trans effect

is important for explaining reaction pathways. There are many experimental studies

on the trans influence that generally use spectroscopy or X-ray crystallography

to study the trans influence.125–128 The DFT study of structure optimisation and

molecular orbital analysis has been also employed for the study of trans influence

in organometallic complexes and to explain the trans influence in complexes.129–133

Considering the pincer palladacycle structure, the geometry of this is a square planar.

Therefore, the trans influence will affect the strength of interaction between Pd and

donor atom.

Figure 5.1. Trans influence involves sigma orbitals. The strength of the interaction
and bond distance between Pd-X depends on the effect of the ligand L which is
situated trans to X donor atom.

5.2 Aims of this work

The aims of this chapter are to determine the reaction mechanism of the formation

of symmetrical and unsymmetrical pincer palladacycles (PdYCY and PdYCY’,

respectively) and to determine the role of the donor atom (Y, Y’ = N, S, or P), on

the stability and reactivity of the pincer palladacycles. The nature of the bonding

and the strength of the bonds around the Pd centre (Pd-L, L = Y, Y’, Cl, C) in the

pincer complexes are also determined.
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5.3 Computational details

All calculations were performed with the Gaussian09 package.87 Geometry optim-

izations were carried out at the PBE45,46/6-31+G(d,p)[SDD] level of theory. The

6-31+G(d,p) basis set was used for all atoms except Pd for which a Stuttgart/Dresden

effective core potential57 (SDD ECP) was used. For the ECP, the ECP28MWB57

(28 electron in the core) data was used as a multi electron fit using the quasi-

relativistic formalism. A single point energy calculation using the ωB97XD53/6-

311++G(2df,2p)[SDD] methodology was performed. This functional includes non-

covalent interactions that are important to obtain accurate energetics.79,134–136 The

spin singlet state of the neutral ligands, intermediates, complexes, PdCl2 and HCl

was calculated in all cases. The frequencies were used to confirm stationary points

by the presence of one imaginary mode for transition states (TS) and absence of

imaginary modes for minimum structures.

A topological analysis of quantum theory of Atoms in Molecules (QTAIM)66–68

was used to carry out investigations into the strength and nature of the bonds

around the Pd centre. The ωB97XD/6-311+G(2df,2p)[DGDZVP] methodology was

used instead of ωB97XD/6-311+G(2df,2p)[SDD]. The all-electron DGDZVP basis

set was used to treat Pd atom because the bond path cannot be found using an

ECP.68,137 The electron density, ρ(r), the Laplacian of the electron density, ∇2ρ(r),

and total energy density, H (r), at the bond critical point (BCP) are evaluated using

the Multiwfn program.138 The ρ(r) at the BCP can be used to measure the strength

of the bond. The ∇2ρ(r) provides information on the charge accumulation or the

charge depletion. The negative value of ∇2ρ(r) shows that the charge is accumulated

at BCP indicating a shared covalent interaction, whereas the positive value ∇2ρ(r)

shows that the charge is depleted at BCP indicating a closed-shell interaction (ionic

interaction). The H (r) is sum of potential electron energy density, V (r), and kinetic

electron energy density, G(r). The sign of H (r) parameter indicates the covalent

interaction when H (r) is negative value, while the H (r) parameter indicates ionic

interaction if H (r) is positive value.
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5.4 Results and discussion

The results for the formation reaction pathway of symmetrical (YCY) and unsym-

metrical (YCY’) pincer ligands with PdCl2 calculated using density functional theory

(DFT) in the gas phase are presented. Their mechanisms are proposed based on the

unassisted mechanism of Pascual et al.117 and Garcìa-Cuadrado et al.118 (Scheme 5.6).

The reaction mechanism and Gibbs free energy barriers are studied. In the first step,

the donor atom of one of the arms coordinates to Pd atom of PdCl2. In the first

transition state, a Pd-C bond is formed in a concerted process and a C-H bond is

activated. Then, the second donor atom arm coordinates to the Pd centre giving

the pincer palladacycles, PdYCY’ (Y’=Y or Y’ 6=Y) (Scheme 5.9). All Gibbs free

energies presented for the PdYCY and PdYCY’ formation pathways are relative to

YCY’(Y’=Y or Y’6=Y) + PdCl2 (i.e. the Reactant) in kJmol−1.

Various ligand conformers were investigated to ascertain whether they have an

effect on the formation reaction energy profile. Firstly, the cis- and trans-ligand

conformers are studied (Figure 5.2). We define the position of the N donor atoms in

the ligand to be either cis in the same direction or trans in opposite direction relative

to the plane of the benzene ring. The starting conformer is maintained throughout

the reaction. The energy profile for PdNCN formation reaction starting from cis-

and trans-form are compared in Figure 5.3. The differences in their energies are

insignificant (less than 5.5 kJmol−1). This result indicates that the ligand conformer

has no effect on the reaction energy mechanism profile. Therefore, for studying the

effect of donor atom with no biased results, the same conformer of NCN, SCS and

PCP ligands are studied. We have used only trans conformer ligands.
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Scheme 5.9. An unassisted formation reaction pathway for PdYCY.YCY = Pincer
ligand, Int = Intermediate, TS = Transition state and PdYCY = Symmetrical
pincer palladacycle
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side view 

top view 
a) cis-form b) trans-form 

Figure 5.2. NCN ligand conformer; a) cis-form and b) trans-form.



88

�250

�200

�150

�100

�50

0

�
G

/
k
J

m
ol

�
1

6a

6c

�250

�200

�150

�100

�50

0

�
G

/
k
J

m
ol

�
1

6a

6c

�250

�200

�150

�100

�50

0

�G
/k

Jm
ol�1

rac-PdNCN

mer-PdNCN

�250

�200

�150

�100

�50

0

�G
/k

Jm
ol�1

rac-PdNCN

mer-PdNCN

�250

�200

�150

�100

�50

0

�
G

/
k
J

m
o
l�

1

rac-PdNCN

mer-PdNCN

�250

�200

�150

�100

�50

0

�
G

/
k
J

m
o
l�

1

rac-PdNCN

mer-PdNCN

Int1 

Int2 
Int3 

Product 

TS1-2 
TS3-Product 

-160.7 
-164.1 

-43.1 
-44.7 

-75.2 
-79.8 -94.1 

-94.2 

-58.2 
-58.4 

-201.8 
-207.3 

Reactant 

trans-NCN ligand 
cis-NCN ligand 

Figure 5.3. Gibbs free energy profile of trans-NCN and cis-NCN pincer ligands in
the gas phase.

5.4.1 Formation reaction of symmetrical pincer palladacycles

The pathway involving the symmetrical pincer palladacycle formation reaction is

shown in Scheme 5.9. The first step of the reaction mechanism is that one of the donor

atoms (Y1) of the ligand coordinates to PdCl2 to form Int1. Next, a metal-carbon

bond is formed in a concerted fashion and a carbon-hydrogen bond is broken to form

Int2 via TS1-2. HCl is eliminated from the complex leaving Int3. Finally, the

symmetrical pincer complex is formed via TS3-Product which involved an inversion

configuration for NCN and PCP or a rotation for SCS of the uncoordinated pincer

arm to form the Pd-Y2 bond.

The Gibbs free energy profile for the formation reaction pathways of symmetrical

NCN, SCS and PCP pincer palladacycles (PdNCN, PdSCS and PdPCP, respectively),

with trans conformers of the YCY ligands, are presented in Figure 5.4. The stationary

points along the reaction pathway are labelled asReactant, Int1, TS1 andProduct

(the Reactant, Int, TS and Product stand for YCY + PdCl2, intermediate,

transition state and PdYCY + HCl, respectively). In the discussion to follow, N, S

and P are appended to the named of each part along their reactions, e.g. Int1N for

Intermediate 1 of the NCN pathway. The key bond distances in each step are shown

in Table 5.1. The optimised geometry of each stationary point along the pathways

for PdNCN, PdSCS and PdPCP is shown in Figure 5.5, Figure 5.6 and Figure 5.7,
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Figure 5.4. Gibbs free energy profile for the formation reaction pathway of sym-
metrical NCN, SCS and PCP pincer palladacycles (PdNCN, PdSCS and PdPCP,
respectively).
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In the first step (STEP 1, Scheme 5.9), one donor atom coordinates to PdCl2
directly. The Gibbs free energy for donor atom binding to PdCl2 (YCY + PdCl2 →

YCY−−−PdCl2 (Int1)) is negative indicating this step is spontaneous. The formation

of Int1 is exergonic by -149.5, -164.1 and -216.6 kJmol−1 for SCS, NCN and PCP

ligands, respectively (Figure 5.4). The significant change in the Gibbs free energy of

this step suggests the possibility of additional steps, such as solvent coordination to

PdCl2 prior to it coordinating to the ligand. However, the simplest way to model

this step is by the direct ligand coordination to PdCl2. In an earlier report of

phosphine binding to Pd, they found a strong interaction between Pd and phosphine

due to a view of π back-donation.95 This interaction occurs from dπ-dπ overlap

involving occupied palladium d orbital into an empty d orbital on phosphorus. The

traditional Pd-P overlapping orbital diagram is shown in (Figure 5.8).139 However,

Orpen and Connelly139 modified the traditional Pd-P diagram and reported that the

back-donation occurred from mixing of P-R phosphine σ∗ and d orbital overlapping

to provide π-acceptor hybrid orbital. In our results, the phosphorus arm binds

strongly to PdCl2, for the same reason Pd is stabilised by the lone-pair on the P

and π back-donation leading to the most stability. We have found that the Int1 for

N coordination to Pd is more favourable than S. This is attributed to the π donor

and π∗-acceptor in the double bond on benzene stabilising PdCl2 leading to a strong

interaction between PdCl2 and ligand. Figure 5.9 reveals the molecular orbital Int1.

The d-orbital on Pd in Int1N have more electron density than d-orbital on Pd in

Int1S, showing that Int1N has a stronger overlap with benzene than in Int1S,

and the bond distance between the Pd and C2 in Int1N is shorter than in Int1S

(Table 5.1).

PPd π back-donation

Pd P σ donation

Figure 5.8. Traditional orbital of metal-P interaction. Upper figure is σ donation
and π back-donation.139
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Figure 5.9. Molecular orbital showing the Pd overlap with the benzene ring; a)
Int1N and b) Int1S.

In the next step (STEP 2, Scheme 5.9), the C-H bond of the benzene ring is

activated and Pd inserts via this concerted mechanism of TS1-2. The calculations of

TS1-2 show that the Gibbs free energy barriers are 121.0, 106.2 and 94.6 kJmol−1 for

PdNCN, PdSCS and PdPCP processes, respectively (Table 5.2) indicating that C-H

bond breaking via PCP process is easier than SCS and NCN pathways. Considering

the selected bond distance at TS1-2, Pd forms a bond with the C2 on the benzene

ring and Cl1 forms a bond with H (Figure 5.5 - Figure 5.7). Intramolecular distances

for both Pd-C2 and H-Cl1 decrease compared to Int1. At the same time, the bond

length of both C2-H and Pd-Cl1 increase. These data indicate that the Pd-C2 bond

and H-Cl1 are forming (Table 5.1).

In Int2, the complexes are stabilised by HCl. The Pd can coordinate with either

the H or the Cl of the HCl molecule. A BCP between Pd and ClH (for N and S), and

Pd and HCl are shown in Figure 5.10. The Gibbs free energy of Int2P is the lowest

because the lone-pair donor and π-acceptor in phosphine plays a role in stabilising

Pd, while Int2N and Int2S have only lone-pair donors. Moreover, Int2S has a

lower Gibbs free energy than Int2N because, in Int2S, the HCl binds to S2 and
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Pd with the stronger interactions, ρ(r)Cl−Pd = 0.060 a.u. and ρ(r)H−S2 = 0.087 a.u.

(Figure 5.10b), while in Int2N HCl binds to palladium complex with the weaker

interactions, ρ(r)Cl−Pd = 0.057 a.u., ρ(r)Cl−H = 0.011 a.u. and ρ(r)H−H = 0.018 a.u.

(Figure 5.10a). Moreover, in Int2S, HCl stabilises the structure but, in addition the

softer S prefers binding to soft Pd rather than N binding to Pd.

In STEP 4 (Scheme 5.9), the HCl is removed from the complex. The Gibbs

free energies for Int2 to Int3 are -19.0, 8.2, -16.9 kJmol−1 for NCN, SCS and PCP,

respectively (Figure 5.4). The Gibbs free energy is negative in NCN and PCP

processes leading to a favourable spontaneous process, while the Gibbs free energy

in the SCS process is slightly positive. We have determined the enthalpy change of

this step. These are endothermic processes of 27.6, 56.7, 21.8 kJmol−1, respectively.

The effect is to eliminate the interaction between complex and HCl.

STEPs 5 and 6 (Scheme 5.9) are the formation of the bond between the second

donor atom of Y2 and Pd. To form this bond, TS3-Product shows that N and P

coordination to Pd involve N and P inversion of configuration, respectively, whereas

S coordination to Pd involves a rotation of the ligand arm. The P inversion leads

to production of PdPCP with a Gibbs free energy barrier 92.3 kJmol−1, i.e. a

higher Gibbs free energy barrier than N inversion (36.0 kJmol−1). We have found

that the activation of N inversion of N(CH3)3 calculated by Kölmel et al.140 has

a significantly smaller energy barrier than P inversion in P(CH3)3. The energy

barriers for N(CH3)3 and P(CH3)3 are 38.4 kJmol−1 and 185.6 kJmol−1, respectively.

Moreover, Montgomery141 mentioned that the energy barrier for amine is in the range

round 20 to 40 kJmol−1, whereas phosphine inversion normally requires in excess of

125 kJmol−1. His statement showed that phosphorus inversion had a significantly

higher energy barrier than nitrogen inversion. Again, our calculation for phosphorus

inversion has a significantly higher Gibbs free energy than for nitrogen inversion

in agreement with Montgomery’s statement and Kölmel et al.’s work. The TS3-

Product for S has very small barrier (8.4 kJmol−1) compared to TS3-ProductN

and TS3-ProductP because the second Y2 arm for S rotates to bond with Pd (no

inversion configuration).

The ∆G for the formation reaction of PdYCY (Figure 5.11) are -207.3, -213.2

and -318.7 kJmol−1 for PdNCN, PdSCS and PdPCP, respectively. The results show
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Figure 5.10. Molecular graphs of Int2; a)Int2N, b) Int2S and c) Int2P. The
BCPs are shown as small blue dots and RCPs are shown as orange dots. In Int2N
and Int2S, the HCl position is on the plane of palladium complex leading to have a
few interactions between HCl and palladium complex. While, in Int2P, the HCl
position is perpendicular to Pd complex leading to more interactions between H
(−CH3/−CH2−) and Cl (HCl).
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clearly that the ∆G values are negative for all reactions indicating the formation

reaction of the symmetrical pincer palladacycles in the gas phase via this mechanism

is spontaneous. The formation of P-donor pincer palladacycles is the most favourable.

For NCN and SCS ligands, the reaction energy is much smaller (difference < 5.9

kJmol−1). The reaction trends of the symmetrical pincer palladacycles under thermo-

dynamic control are PdPCP > PdSCS ≈ PdNCN. The ∆G‡ along the symmetrical

pathways of all cases show that the C-H bond activation has the highest barrier

indicating that the C-H bond activation is the rate-determining step (Table 5.2).

Figure 5.11. Model formation reaction of palladacycles from PdCl2.
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Table 5.1. Key structure data along pathway of PdYCY formation.

YCY Bond type Bond distance/Å
Int1 TS1-2 Int2 Int3 TS3-Product Product

NCN Pd-C2 2.384 2.070 2.027 1.952 1.954 1.930
Pd-Cl1 2.307 2.490 2.456 ∞ ∞ ∞
Pd-Cl2 2.308 2.353 2.413 2.375 2.370 2.424
Pd-N1 2.140 2.116 2.101 2.108 2.108 2.140
Pd-N2 5.474 4.926 4.778 4.034 4.085 2.141
Pd-H 2.675 1.799 3.124 ∞ ∞ ∞
C2-H 1.098 1.768 3.408 ∞ ∞ ∞
H-Cl1 3.772 1.508 1.316 1.293a 1.293a 1.293a

SCS Pd-C2 2.455 2.101 2.044 2.002 1.993 1.993
Pd-Cl1 2.307 2.495 2.394 ∞ ∞ ∞
Pd-Cl2 2.312 2.341 2.448 2.288 2.318 2.402
Pd-S1 2.323 2.292 2.279 2.298 2.253 2.313
Pd-S2 4.614 4.944 4.361 4.464 3.779 2.313
Pd-H 2.492 1.880 3.160 ∞ ∞ ∞
C2-H 1.102 1.618 3.254 ∞ ∞ ∞
H-Cl1 3.565 1.518 1.467 1.293a 1.293a 1.293a

PCP Pd-C2 2.500 2.113 2.018 2.010 2.010 2.032
Pd-Cl1 2.346 2.654 3.459 ∞ ∞ ∞
Pd-Cl2 2.308 2.332 2.334 2.346 2.418 2.402
Pd-P1 2.251 2.211 2.200 2.186 2.215 2.287
Pd-P2 5.230 5.167 4.288 4.180 2.798 2.287
Pd-H 2.051 1.882 2.108 ∞ ∞ ∞
C2-H 1.127 1.530 2.902 ∞ ∞ ∞
H-Cl1 3.082 1.574 1.357 1.293a 1.293a 1.293a

aThe bond distance for HCl calculation.
The calculation data of bond length for HCl using PBE with high basis set (cc-pCVTZ)
from the NIST website is 1.289 Å (http://cccbdb.nist.gov/geom2.asp).

Table 5.2. Gibbs free energy barrier, ∆G‡ for symmetrical pincer palladacycles in
kJmol−1.

Compound ∆G‡ (TS1-2) ∆G‡ (TS3-Product)
PdNCN 121.0 36.0
PdSCS 106.2 8.4
PdPCP 94.6 92.3
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5.4.2 Formation reaction of unsymmetrical pincer pallada-

cycles

Unsymmetrical NCS pincer palladacycle (PdNCS) formation reaction: there are

two possible mechanisms for PdNCS formation; N coordination to Pd first or S

coordination to Pd first (Figure 5.12). The stationary points along the reaction

pathways are labelled with the suffix, NCS when N is first coordinated to Pd (Path

A), and SCN when S is first coordinated to Pd (Path B). For example, intermediate

1 along Path A is labelled Int1NCS. The key bond distance in each step is shown

in Table 5.3.

Figure 5.13 and Figure 5.14 show the geometries along the two pathways, Path

A and Path B, respectively. In the first step, the NCS pincer ligand bonds with

PdCl2. The Gibbs free energy for NCS + PdCl2 −→ Int1 is -160.2 kJmol−1 for

Int1NCS (blue pathway in Figure 5.15) and -147.4 kJmol−1 for Int1SCN (red

pathway in Figure 5.15). Therefore, both Path A and Path B are spontaneous

favourable processes in this step.

The next step is formation of the C-H bond activation transition state. The

calculation of TS1-2NCS shows that the Gibbs free energy barrier is 117.0 kJmol−1

and TS1-2SCN is 100.2 kJmol−1. This result indicates that the Pd of the un-

symmetrical pincer favours Path A more than Path B because Int1NCS is more

stable than Int1SCN. The key structural data (Table 5.3) show the Pd-C2 bond

distance at TS1-2 of both Path A and Path B are shorter compared to Int1,

while in both cases the C2-H distance is longer than the C2-H distance in Int1. It

indicates that the Pd-C2 bond is forming and the C2-H bond is breaking to generate

HCl (Table 5.3).
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Figure 5.12. An unassisted formation reaction pathway for unsymmetrical NCS
pincer palladacycle (PdNCS); Path A is N coordination to Pd first and Path B
is S coordination to Pd first (Reactant = pincer ligand (YCY’) + PdCl2, Int =
Intermediate, TS = Transition State and Product = palladacycle (PdYCY’) +
HCl.
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Figure 5.13. Optimised geometry of each stationary point along the PdNCS
formation reaction pathway which N coordinates to Pd first (Path A) (grey = C,
white = H, green = Cl, green/blue = Pd, blue = N and yellow = S).
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Figure 5.14. Optimised geometry of each stationary point along the PdNCS
formation reaction pathway which S coordinates to Pd first (Path B) (grey = C,
white = H, green = Cl, green/blue = Pd, blue = N and yellow = S).
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Figure 5.15. The formation reaction mechanism profile of PdNCS. Path A
corresponding to the blue pathway represents the N coordination first to the Pd
atom while Path B corresponding to the red pathway represents the S coordination
first to the Pd atom.

Int2NCS and Int2SCN are both stabilised by HCl. The Int2NCS shows

strong interaction between HCl and palladium complex (ρ(r)Pd−Cl = 0.089 a.u. and

ρ(r)H−S = 0.067 a.u., Figure 5.16a), while for Int2SCN the HCl interaction is

weaker (ρ(r)H−H = 0.014 a.u., ρ(r)Pd−Cl = 0.051 a.u. and ρ(r)Cl−H = 0.010 a.u.,

Figure 5.16b). This is why the Int2NCS is more stable than Int2SCN (Figure 5.15

and Figure 5.16).

The HCl is removed from the complex. The Gibbs free energy for these processes

are -5.5 and -27.5 kJmol−1 for Path A and Path B, respectively. Therefore, both

Int2NCS −→ Int3NCS and Int2SCN −→ Int3SCN are spontaneous processes.

The enthalpies of HCl elimination from the complex of Int2NCS −→ Int3NCS and

Int2SCN −→ Int3SCN are 40.3 and 13.8 kJmol−1, respectively. This evidence

indicates the HCl binding with the complex in the Int2NCS is stronger than in the

Int2SCN.

The TS3-Product is the formation of a bond between the second donor atom and

Pd, and reveals that the inversion configuration of nitrogen via Path B (TS2SCN

is 38.0 kJmol−1) has a higher Gibbs free energy than the rotation of the sulfur arm

via Path A (TS2NCS is 24.5 kJmol−1).

Upon comparison between the TS1-2 and TS3-Product for both Path A and
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Path B, we find that in both cases the TS1-2 has a higher Gibbs free energy barrier

than TS3-Product, indicating that the C-H bond activation is the rate-determining

step of PdNCS formation. In the rate-determining step, S coordination to Pd first is

slightly lower in Gibbs free energy than N coordination first. Moreover, the PdNCS

formation reaction is a spontaneous process (∆G for Path A is -215.7 kJmol−1 and

∆G for Path B is -214.9 kJmol−1).

a) b) 

ρ(r)Pd-Cl = 0.089 a.u. 
ρ(r)H-S   = 0.067 a.u. 

ρ(r)Pd-Cl 

ρ(r)H-S 
ρ(r)H-H 

ρ(r)Pd-Cl 

ρ(r)H-H  = 0.014 a.u. 
ρ(r)Pd-Cl = 0.051 a.u. 
ρ(r)Cl-H  = 0.010 a.u. 
 

ρ(r)Cl-H 

HCl 

HCl 

Figure 5.16. Molecular graph of Int2 for a) Path A and b) Path B. The BCPs
are shown as small blue dots and RCPs are shown as orange dots.
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Unsymmetrical SCP pincer palladacycle (PdSCP) formation reaction: This form-

ation reaction has two pathways; either S coordination to Pd first, Path C, or

P coordination first, Path D, (Figure 5.17). Figure 5.18 shows the Gibbs free

energy profile for the SCP ligand. The geometric structures of the stationary points

along the formation reaction pathway of PdSCP Path C and Path D are shown in

Figure 5.19 and Figure 5.20, respectively.

When PdCl2 binds to the SCP ligand, the formation of Int1 is exergonic by

-145.5 and -210.3 kJmol−1 for S coordination first (red pathway, Path C) and P

coordination first (green pathway, Path D), respectively (Figure 5.18).

Int1PCS (green pathway, Path D) have a lower Gibbs free energy than

Int1SCP (red pathway, Path C) owing to the π back-donation. From Int1PCS

→ Product at each stationary point along the pathway, the Path D formation has

a greater stability than the Path C (Figure 5.18).

For both pathways in the next step, the C-H bond activation (TS1-2), the Pd-C2

distance at TS1-2 shortens compared to Int1, indicating that the Pd-C bond is

formed and the H-Cl1 distance also shortens leading to the formation of the HCl

molecule (Table 5.4). On comparing the Gibbs free energy barrier, the P coordination

first (Path D) has a lower Gibbs free energy barrier than S coordination first (Path

C). This result is consistent with the findings in earlier symmetrical pincer formation

reactions that in the C-H activation transition state PdPCP formation has a lower

Gibbs free barrier than PdSCS formation.

Int2 −→ Int3 involves the removal of HCl. Both Path C and Path D are

spontaneous reactions, where the Gibbs free energy of reaction for this process is -30.8

and -11.3 kJmol−1 for Path C and Path D, respectively. When HCl is removed

from the complex in Path C, an agostic interaction is found in Int3SCP. The

distance between Pd and H-CH2-P arm is 1.959 Å, and Pd-H-C angle is 103.2◦, and

are in the range of an agostic interaction. For an agostic interaction, the distance

between metal and hydrogen in the range 1.8 - 2.3 Å and the metal-hydrogen-carbon

angle in the range 90 -140◦.142

In the TS3-4 transition state, the C-P rotation is found only for Path C with a

Gibbs free energy barrier of 51.9 kJmol−1. In PathD, the product is formed directly.

TS3/4-Product involves the other arm coordinating to Pd. For the TS3-
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product via Int3 (Path D), the S arm rotates to coordinate with Pd, while

for TS4-product via Int4 (Path C) the Pd coordinates P through P inversion

configuration. The Gibbs free energy barrier for the TS3-product via S rotation is

9.4 kJmol−1, which is significantly lower than for the TS4-product via P inversion

configuration (69.4 kJmol−1).

In overall reaction, the PdSCP formation is the spontaneous process in both

pathways (∆G = -275.6 kJmol−1 for Path C and ∆G = -269.8 kJmol−1 for Path D).

The reaction pathway shows that the C-H bond activation is still the rate-determining

step.
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Figure 5.18. The formation reaction mechanism profile of PdSCP. Path C cor-
responding to the red pathway represents the S coordination first to the Pd atom,
while Path D corresponding to the green pathway represents the P coordination
first to the Pd atom.
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Figure 5.19. Optimised geometry of each stationary point along the PdSCP
formation reaction pathway which S coordinates to Pd first (Path C) (grey = C,
white = H, green = Cl, green/blue = Pd, yellow = S and orange = P).
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Figure 5.20. Optimised geometry of each stationary point along the PdSCP
formation reaction pathway which P coordinates to Pd first (Path D) (grey = C,
white = H, green = Cl, green/blue = Pd, yellow = S and orange = P).

Unsymmetrical NCP pincer palladacycle (PdNCP) formation reaction: In Fig-

ure 5.21, two PdNCP formation reaction mechanism pathways are N coordination

to Pd first, as in Path E, and P coordination to Pd first as in Part F. Figure 5.22

and Figure 5.23 present the geometry of the reaction mechanism for N coordination

to Pd first and P coordination to Pd first, respectively.

In the key C-H bond activation step, transition state (TS1-2), Pd-C2 and H-Cl1

distances decrease, while Pd-Cl1 and C2-H distances increase compared to Int1

indicating Pd-Cl1 and HCl are formed in this step (Table 5.5). Considering the

transition barrier in this step, the Gibbs free energy barrier for Path F (green

pathway) is lower than Path E (blue pathway) (∆G‡ for Path F and Path E are

90.8 and 120.1 kJmol−1, respectively). This indicates that P coordination to Pd first

is more favourable than N coordination first.
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Int2 then undergoes dissociation to form HCl and the palladium complex (Int3).

The Gibbs free energies for this process are -46.2 and -17.3 kJmol−1 for Path E and

Path F, respectively. This shows that Int2 → Int3 (both Path E and Path F)

represent the spontaneous process.

TS3-4 for Path E and TS3-5 for Path F concern a C-C bond rotation, with

both the barriers very similar (25.2 kJmol−1 for Path E and 26.6 kJmol−1 for

Path F). From this point, Path E and Path F have different numbers of steps

to form PdNCP. In Path E, an agostic interaction is found in Int4 (the Pd-H

distance and Pd-H-C angle are 1.880 Å and 102.7◦, respectively). A rotation of

the C-P bond occurs in TS4-5 with Gibbs free energy barrier 38.9 kJmol−1. The

agostic interaction is preserved in Int5 with P now in position to coordinate with

Pd. Whereas, in the Path F after TS3-5 transition state, Int5 is produced directly.

An agostic interaction between Pd and H of MeN arm of Int5 for Path F is found

(the Pd-H distance is 1.878 Å and Pd-H-C angle is 116.2◦).

In the last step, the second arm donor atom coordinates to the Pd centre to form

PdNCP. On comparing the Gibbs free energy barrier of TS5-Product between

Path E and Path F, Path F which involves N inversion (∆G‡ = 26.2 kJmol−1) is

more favourable than Path E which involves P inversion (∆G‡ = 67.8 kJmol−1).

In the overall reaction pathways, C-H bond activation has the highest Gibbs free

energy barrier in both cases (Path E and Path F) for PdNCP formation, indicating

that this step is rate-determining.
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5.4.3 Kinetic study

The Gibbs free energy barriers at the rate-determining step for C-H bond activation

are used to determine the rate constant. In term of kinetic reaction, we calculated

the reaction rate by following Eyring equation;143

k(T ) = kBT

hc0 e
−∆G‡/RT (5.1)

where k(T ) is the reaction rate constant at temperature T, kB is Boltzmann constant

(kB = 1.381× 10−23 JK−1), T is temperature (T = 298.15 K), h is Planck’s constant

(h = 6.626× 10−34 J s), c0 is concentration (c0 = 1) and ∆G‡ is Gibbs free energy of

activation and R is the gas constant (R = 8.314 Jmol−1 K−1).

As shown in Table 5.6, the rate constants are calculated using ∆G‡ at TS1-2

(C-H bond activation barrier) as the rate-determining step. For PdYCY formation,

the PdPCP formation rate constant is about 2 and 5 orders of magnitude faster than

that for the PdSCS and PdNCN formation reaction, respectively. For PdYCY’, P

coordination to Pd first for the SCP and NCP ligands is fastest due to the important

role played by P stabilising the charge on Pd resulting in a lower Gibbs free energy

barrier. In combination of PdYCY and PdYCY’ formation, the P coordination to

Pd first is the fastest due to the lowest Gibbs free energy barrier being the rate-

determining step in all cases (the difference between PdPCP, Path D fo PdSCP

and Path F of PdNCP formations is very small, < 4.9 kJmol−1).

Table 5.6. Gibbs free energy barrier, ∆G‡, and rate constant of reaction, k, at the
rate-determining step C-H bond activation.

YCY(Y’) ∆G‡/kJmol−1 k/s−1

NCN 121.0 3.9× 10−9

SCS 106.2 1.5× 10−6

PCP 94.6 1.7× 10−4

NCS (Path A) 117.0 2.0× 10−8

NCS (Path B) 100.2 1.7× 10−5

SCP (Path C) 101.3 1.1× 10−5

SCP (Path D) 89.7 1.2× 10−3

NCP (Path E) 120.1 5.6× 10−9

NCP (Path F) 90.8 7.7× 10−4
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5.4.4 The energetic span model for pincer palladacycle form-

ation

It has been discussed in the literature that the concept of a rate-determining step is

badly defined, and a more accurate description is the rate-determining state. This is

defined as “the transition state and intermediate which exert the strongest effect on

the overall rate with a differential change on their Gibbs energies”.144 To determine

the rate-determining state for the pincer palladacycle formation reaction the energetic

span model has been used.144 δE is the energetic span of the reaction and serves

as the apparent activation energy of the full reaction.144 δE is defined in terms

of the highest transition state (TSmax) and the lowest intermediate (Imin). When

TSmax occurs after Imin in the Gibbs free energy profile, δE = TSmax − Imin. When

TSmax occurs before Imin in the Gibbs free energy profile, δE = TSmax− Imin + ∆Gr.

A comparison of δE for the reactions considered in this chapter are provided in

Table 5.7. For PdYCY formation, the δE for the SCS and PCP symmetrical ligand

reactions are similar (less than 4.0 kJmol−1). In the case of PdYCY’, it shows

that P coordination to Pd first (Path D and Path F) is more reactive (smaller

δE) than when N or S coordinates to Pd first (Path C and Path E). In addition,

PdNCS formation reactions for N or S coordination (Path A and Path B) have a

large δE value compared to when P coordinates to Pd first. The result of PdYCY

formation indicates that the reactivity of SCS and PCP ligands are similar but based

on both symmetrical and unsymmetrical pincer palladacycle formations, the δE

reveals that P coordination to Pd first is the most reactive in agreement with when

a rate-determining step is used for studying reactivity.

Table 5.7. Energetic spans (δE) of PdYCY(Y’) formation.

YCY(Y’) Figure Imin/kJmol−1 TSmax/kJmol−1 δE/kJmol−1

NCN 5.4 -164.1 -43.1 121.0
SCS -149.5 -43.3 106.2
PCP -216.6 -106.7 109.9

NCS (Path A) 5.15 -160.2 -43.2 117.0
NCS (Path B) -147.4 -47.2 100.2
SCP (Path C) 5.18 -145.5 -36.4 109.1
SCP (Path D) -210.3 -174.9 35.4
NCP (Path E) 5.24 -159.9 -24.8 135.1
NCP (Path F) -215.7 -124.9 90.8
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5.4.5 Nature of bonding in pincer palladacycles

The quantum theory of Atoms in Molecules (QTAIM) and natural bond orbital

(NBO) analysis are tools used to characterise the strength and the nature of the

Pd-L bond, where L = Y (N, S, P), C, Cl. The bond critical point (BCP) is the

point to be a minimum of the shared electron density along the bond path between

interacting atoms. The BCPs (blue points) around the Pd centre are observed for

all complexes in molecular graphs and contour maps as expected (Figure 5.25). We

have found an unexpected BCP between the Cl atom and H atom of the YCH3 arm

for PdNCN and PdSCS, while we have not found it for PdPCP. The absence of a

BCP between Cl and H atom in PdPCP is attributed to the longer Cl-H distance

(3.33 Å) compared to those in PdNCN (2.76 Å) and PdSCS (2.95 Å).

The magnitude of the electron density (ρ) at the bond critical point (BCP)

indicates the strength of the interaction between atoms. The values of ρ(r) at BCP

for each Pd-L interaction are shown in Table 5.8. The ρ(r) around Pd-L bond

indicates that the Pd-C bond is strongest, while Pd-Cl bond is the weakest in all

three PdYCYs. Moreover, we have found the order value of ρ(r) is Pd-P > Pd-S

> Pd-N indicating that Pd-P bonds are stronger than the Pd-S bonds, which are

stronger than the Pd-N bonds.
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Table 5.9. Laplacian, ∇2ρ(r), total energy density, H (r), ellipticity, ε and delocal-
isation index, δ(Pd-L). All values are in atomic units.

Strcutrue Bond type ∇2ρ(r) H (r) ε δ(Pd-L)
PdNCN Pd-N1 0.383 -0.014 0.033 0.908

Pd-N2 0.383 -0.014 0.033 0.908
Pd-C 0.236 -0.070 0.081 1.126
Pd-Cl 0.238 -0.011 0.198 1.219

PdSCS Pd-S1 0.257 -0.025 0.040 1.157
Pd-S2 0.257 -0.025 0.040 1.157
Pd-C 0.223 -0.055 0.061 1.051
Pd-Cl 0.237 -0.013 0.114 1.234

PdPCP Pd-P1 0.183 -0.036 0.022 1.124
Pd-P2 0.183 -0.036 0.022 1.124
Pd-C 0.224 -0.047 0.050 1.029
Pd-Cl 0.232 -0.013 0.085 1.258

In terms of Pd-Y bond length, the results show that the Pd-S bond (2.312 Å) is

rather long compared to the Pd-P bond (2.287 Å), which is longer than Pd-N (2.140

Å) (Table 5.8). The calculated bond lengths correlate with the ionic radii of the

donor atom, i.e. P3− = 2.12 Å, S2− = 1.84 Å and N3− = 1.71 Å.145

To evaluate the strength of interaction in the absence of bond length effects the

Pd-Y bond was fixed at 2.300 Å and Pd-Y bond strength has been evaluated. We

have found that the ρ(r) values at BCP showing the strength of the Pd-Y bonds are

Pd-P > Pd-S > Pd-N (Table 5.8). This trend is similar to the optimised structures.

This confirms that the interaction between Pd and P is the strongest, while Pd and

N is the weakest. The Pd-P bonds is stronger than the Pd-S bonds in view of π

back-donation.

To confirm the strong back-donation interaction, the second order perturbation

of natural bond orbital (NBO) is used to study back-donation. A ligand interacts

with metal using a σ-donor, while it also can accept electron density from Pd in

the form of a π-acceptor. Therefore, the back donation from the free electron pair,

denoted as n-to-π-acceptor, are analysed to explain back-donation in Pd-Y bonds.

The calculation shows the E(2) of back donation of PdNCN to be 6.4 kJmol−1, in

PdSCS it is 32.2 kJmol−1 and in PdPCP it is 46.4 kJmol−1. This result shows that

the Pd has the strongest back donation to the phosphine.
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In addition, to gain insight into the nature of Pd-L bond, ρ(r) at BCP can be used.

When this has greater value than 0.20 a.u. the interaction is considered as covalent

and when ρ(r) is less than 0.10 a.u. it is considered as the closed-shell (e.g. ionic, van

der Walls, hydrogen bond, etc.).68 Moreover, using the combination of the Laplacian

of electron density (∇2ρ(r)), total energy density (H(r) and delocalisation index

δ(Pd-L), the nature of the bonding of Pd-L can be determined. The combination of

H(r) and ∇2ρ(r) are good indices to describe the nature of bond.137,146 Both ∇2ρ(r)

and H(r) are negative at the BCP indicating a purely covalent bond. If ∇2ρ(r) is

positive whereas H(r) is negative, described as transit closed shell bonding with

some covalent interaction.147,148 The transit closed shell interactions are typically

in many dative bonds.137,149–152 For pure closed-shell interactions, both ∇2ρ(r) and

H(r) are positive. The δ(Pd-L) is used to determined the degree of covalency.149,153

The sign of ∇2ρ(r) of the Pd-L bonds are positive in the range from 0.083 to 0.101

a.u., while H(r) are negative, in the range from -0.013 to -0.036 a.u. (Table 5.9).

Therefore, Pd-L bonds are transit closed shell interactions.147,148 The extent of the

electron sharing around Pd, δ(Pd-L), gives an independent measure of the degree of

covalency. The δ(Pd-L) is in the range 0.9-1.3 a.u., indicating that the Pd-L bonds

have significant covalent character.

The Pd-N bonds have most ionic character, as they have the largest ∇2ρ(r) and

H(r) value, and the smallest δ(Pd-L) values. Moreover, the Pd-S bonds are more

ionic in character than the Pd-P bonds.

The degree of σ and π character in the Pd-L bonds can be studied by the bond

ellipticity (ε). The value of ε reflects the shape of electron density distortion, when

distorted away from the bond axis.154 A low ε value indicates dominant σ character.

Table 5.9 reveals that the Pd-Cl bond of Pd-L bonds exhibit a greater π contribution,

whereas Pd-Y bonds give a lower π character.

Next, we discuss the strength and the nature of bonding in PdYCY’ (PdNCS,

PdSCN and PdNCP), where Y is trans to Y’ and the geometry around Pd is square

planar. Therefore, the strength of Pd-Y bond depends on the donor atom trans to

itself. The trans influence is the tool for explaining the strength of the Pd-Y and

Pd-Y’ bonds.

There are no experimental data with which to study the trans influence of PdYCY’.
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We have tried to understand how the donor atoms on the side arms affect the strength

of interaction between donor atoms and the Pd centre on PdYCY’. In the literature,

it has been shown that the ρ(r) at BCP of Pd-Cl bond, where Cl is trans with

respect to the donor atom, is a good way to measure the trans influence in PdCl3X

complexes.155–157 Therefore, firstly, we have studied the structure I, II and III in

Figure 5.26 to measure Pd-Cl interactions relating to the trans influence directly

from the donor atom. We have then studied the trans influence on the PdYCY’.

Pd
Cl

ClMe2N Pd
Cl

ClMeS Pd
Cl

ClMe2P

I II III

Figure 5.26. Model palladacycles I - III studied to investigate trans influence.

Trans influence in I - III: The compounds shown in Figure 5.26 were studied

to evaluate the trans influence before studying the trans influence on unsymmetrical

pincer palladacycles (4 - 6). These structures contain the same ligand, Cl, trans to

different donor atoms (NMe2, SMe2 and PMe2). The Cl trans to the donor atom is

fixed in order to monitor the strength of trans influence. ρ(r) at the BCP of the

Pd-Cl bond that is situated trans to the donor atom is determined using topological

analysis of QTAIM. When a ρ(r) value at BCP of the Pd-Cl bond has a high value,

it indicates that the donor atom situated trans to Cl has a weak trans influence.

By contrast, the low ρ(r) value at BCP of Pd-Cl bond indicates a strong trans

influence of the donor atom trans to Cl. In practice, the Pd-Cl bond distance is also

affected by the strength of the trans influence. Therefore, we have also studied the

trans influence using the Pd-Cl bond distance. On considering Cl situated trans to

donor atom, when the donor atom has a strong trans influence, Pd-Cl bond distance

increases. In contrast, if the Pd-Cl bond is situated trans to a group exerting weak

influence, Pd-Cl bond distance decreases. Table 5.10 shows the Pd-Cl bond length

and ρ(r) value. The ρ(r) value at BCP of the Pd-Cl bond in III is smallest, while the

ρ(r) value of II is intermediate and I is largest. It indicates the trans influence trends

PMe2 > SMe > NMe2. To support the ρ(r) data, we have considered the Pd-Cl

bond length. It is found that the Pd-Cl bond situated trans to NMe2 is shorter than

that situated trans to SMe. Furthermore, the Pd-Cl bond situated trans to PMe2 is
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significantly longer than that trans to NMe2 and SMe. It again demonstrates that

PMe2 has the strongest trans influence, SMe is intermediate and PMe2 is the weakest.

Based on this analysis the ordering of trans influence series is PMe2 > SMe > NMe2.

This is in good agreement with Kapoor and Nakkar’s study.158 They studied square

planar Pt complexes using DFT. Their results showed the order of trans influence

to be P > S > N for these complexes. Moreover, Sajith and Suresh156 studied the

correlation between ρ(r) and trans influence on square planar Pd complexes and

found a good linear relation between ρ(r) and the strength of the trans influence.

The order of trans influence strength was PMe3 > SMe2 > NH3.156

Table 5.10. The electron density, ρ(r), from the topological analysis parameters
of QTAIM and Pd-Cl bond length trans to donor atom (NCH3 in I, SMe in II and
PMe2 in III).

Compound ρ(r) at BCP of Pd-Cl bond/a.u. Pd-Cl bond length/Å
I 0.080 2.334
II 0.077 2.352
III 0.070 2.395

Trans influence in PdYCY’: The ρ(r) value at BCP of Pd-L bonds using a

topological analysis of QTAIM, was used to investigate the strength of the trans

influence in the PdYCY’ shown in Figure 5.27. This result showed clearly that there

are four Pd-L interactions. The ρ(r) value between Pd and donor atoms (N, S and P)

were evaluated. For the species PdPCY’, where Y’ is N or S, the ρ(r) value at BCP

of the Pd-P bond increases compared to PdPCP, for which ρ(r) of the Pd-P bond in

PdPCN is 0.114 a.u.; ρ(r) of the Pd-P bond in PdPCS is 0.110; ρ(r) of the Pd-P

bond in PdPCP is 0.101 a.u. (Table 5.8 for PdPCP and Table 5.11 for PdPCY’).

The difference is attributed to the strengths of trans influence of N and S donors

being weaker than that of the P donor, leading to a stronger Pd-P interaction. This

is confirmed by the ρ(r) at BCP of Pd-N in PdNCP where it is 0.075 a.u. and the

ρ(r) at BCP of Pd-S in PdSCP where it is 0.082 a.u. as shown in Table 5.11. This

is confirmed by the ρ(r) value at BCP of Pd-N bond in PdNCP (0.075 a.u.) and the

ρ(r) value at BCP of Pd-S bonds in PdSCP (0.082 a.u.) shown in Table 5.11. On

the other hand, the N donor ligand has a weak influence on the P donor ligand trans

to it, which manifests as an decreased ρ(r) of compare to ρ(r) at BCP of Pd-N bond

in PdNCN (0.086 a.u.). Furthermore, ρ(r) of Pd-S in PdSCP decreases compared to
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ρ(r) of Pd-S in PdSCS (0.091 a.u.). We have also studied bond lengths in order to

evaluate the effect of the trans influence. Table 5.12 provides bond distances around

the Pd centre. The effect of trans influence is explained in term of bond length

between donor atoms (N, S and P) on PdYCY’. We have found that the Pd-N bond

in PdNCP (2.203 Å) increases compared to the Pd-N bond in PdNCN (2.140 Å),

while Pd-P bond in PdNCP bond decreases (2.222 Å) compared to Pd-P bond in

PdPCP (2.287 Å). These show that the N donor has trans influence weaker than

the P donor. Similarly in case of PdNCS the stronger trans influence of S leads to

an increased Pd-N bond distance.

Investigating the nature of bond for PdYCY’ using the combination of ∇2ρ(r) and

H (r) parameters, the Pd-L bonds are transit closed shell interactions (Table 5.11).

Moreover, the ε value of all Pd-L bonds indicates domination of the σ character

rather than π character. The δ(Pd-L) of PdYCY’ reveal significant covalent character

and fall in the range 0.9-1.3 a.u. (Table 5.11).
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c) 

Figure 5.27. Pictures of left hand are shown the molecular graphs and pictures of
right hand are shown the contour map of electron density. The BCPs are shown in
blue dots and RCPs are shown in orange dots; a) PdNCS, b) PdSCP and c) PdNCP.
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5.5 Conclusion

The formation reactions of symmetrical and unsymmetrical pincer palladacycles

(PdYCY and PdYCY’, respectively) and the role of the donor atom (N, S and P) in

the stability and reactivity of the PdYCY and PdYCY’ have been investigated. It

was found that, for all pincer formation reactions, the Gibbs free energy barriers for

the C-H bond activation are highest. It indicates that the C-H bond activation is

the rate-determining step of the formation reaction.

For symmetrical pincer palladacycles, the PdPCP is both thermodynamically and

kinetically stable, while the PdNCN is the least stable. The stability of the pincer

complex is supported by the topological analysis of quantum theory of Atoms in

Molecules (QTAIM). The results reveal that the Pd-P bond is the strongest, whereas

the Pd-N bond is the weakest. It was also found that the Pd-P bond has more

covalent character than the Pd-S bond or the Pd-N bond. The Pd-N bond was

the most ionic in character. The nature of all Pd-Y bonds is classed as a transit

closed shell interaction.147,148 Work conducted on the symmetrical pincer palladacycle

formation reaction has been published in “Dalton Transactions”.86

For the reactivity of unsymmetrical pincer palladacycles, the PdPCY’ formation

(Y’ = S and N) is the most kinetically favourable, while PdNCP formation is the

most thermodynamically favourable. The strength of the bond interaction between

Pd and donor atoms of PdYCY’ depends upon the trans influence. The PdPCN

shows the strongest Pd-P interaction and the weakest Pd-N interaction, due to the

trans influence. The calculations of the nature of the bond between Pd and Y are

the transit closed shell interaction. Work conducted on the trans influence has been

published in the peer reviewed journal “Inorganics”.159

For both PdYCY and PdYCY’ formation reactions, the calculations clearly show

that the P coordination to Pd first is the most reactive (lower C-H activation barrier

and formation most exergonic). This greater stability is attributed to the lone-pair

donor and π-acceptor ability of the phosphine making the strong interaction of Pd-P

bond and stabilising the transition state structure.



Chapter 6

Formation of the Active Catalyst

Pd(0) from Symmetrical and

Unsymmetrical Pincer

Palladacycles

This chapter provides the details of the formation of Pd(0) from a pincer palladacycle

pre-catalyst. The Pd(0) formation reaction mechanism proceeds via two key steps,

transmetallation and reductive elimination, which are investigated using density

functional theory (DFT) calculations. The catalytic reactivity of both symmetrical

and unsymmetrical pincer palladacycles in the gas phase with and without base and

with and without solvation corrections are studied using DFT.

6.1 Introduction

In Chapter 5, the pincer palladacycle formation reaction mechanism and the nature

of the bonding around the palladium centre were presented. In this chapter, we will

study pincer palladacycles acting as pre-catalysts. First of all, we will introduce the

proposed mechanism pathways and then the calculated stationary points along these

reaction mechanism pathways will be presented. This chapter will conclude with a

comparison to experimental catalytic activity.
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6.1.1 Palladium complex (pre)-catalysts

In 1968, an alkyl or aryl halide was reacted with an alkene using palladium salt and

is now referred to as the Heck reaction.160 A conventional Heck reaction occurs from

a reaction between an aryl iodide or bromide reacting with a terminal alkene in the

presence of the catalyst Pd(0) to facilitate C-C bond formation (Scheme 6.1).161

RX
EWG

Pd(0)

base EWG

R

Scheme 6.1. A traditional Heck coupling reaction, where R is aryl or vinyl and
EWG is electron withdrawing group.161

Scheme 6.2 shows the typical Heck catalytic cycle reaction which involves a

Pd(0)-complex and Pd(II)-complex.162 The reaction begins with the Pd(0)-complex

catalyst generated from the Pd(II)-complex pre-catalyst. Then an aryl halide (ArX)

reacts with the Pd(0)-complex in an oxidative addition step to produce a Pd(II)-

complex intermediate. Next, the Pd(II)-complex intermediate binds to the alkene

(syn addition) to yield an alkyl intermediate, creating the Pd-C and C-C bonds.

Finally, the product and the HPdXL2 are produced in the β-hydride elimination

step.

Amatore and Jutand163 proposed a new mechanism for the Heck reaction to clarify

the classical Heck catalytic reaction. Scheme 6.3 depicts the new Heck reaction where

the new pathway is shown as the solid arrow, while the classical pathway is shown

as a dashed line arrow. The new Heck reaction begins from Pd(OAc)2 reacting with

nPPh3 rapidly to form Pd(OAc)2(PPh3)2, which can be observed by 13P-NMR and

electrochemical techniques.164,165 Slow formation of a Pd(0)-complex then occurs via

intramolecular reduction of Pd(OAc)2(PPh3)2 to form a [Pd0(PPh3)2(OAc)]– active

species (tricoordinated anionic palladium(0)). The latter reacts with an aryl halide

in the oxidative addition step to produce [ArPdX(OAc)(PPh3)2]– (pentacoordinated

complex). After oxidative addition, ArPd(OAc)(PPh3)2 is formed, releasing a hal-

ide ion. ArPd(OAc)(PPh3)2 reacts with styrene, which is a syn-addition reaction,

and this reaction competes with the equilibrium process (ArPd(OAc)(PPh3)2 �

ArPd(PPh3)2+ + AcO–). The final step is a β-hydride elimination, which is the same

step as in the classical mechanism.
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Pd(OAc)2 nPPh3

PdXL2Ar

ArPdXL2

Pd(0)L2

HPdXL2

R

Ar

β-hydride elimination

HNEt3X

NEt3

ArX

oxidative addition

R

syn addition

H R
HH

Scheme 6.2. General process for the Heck catalytic cycle reaction.162

Pd(OAc)2 + nPPh3

Pd(OAc)2(PPh3)2

(O)PPh3  +  H+
PPh3

ArPdX(OAc)(PPh3)2

Pd(0)(PPh3)2(OAc)

X-

ArPd(OAc)(PPh3)2 ArPd(PPh3)2+  +   AcO-

HOAc

+ H+ NEt3

R

HPd(OAc)(PPh3)2

R

Ar

NEt3

HNEt3+ ArX

Pd(OAc)L2Ar

H R
HH

Scheme 6.3. The Heck catalytic cycle reaction proposed by Amatore and Jutand.163
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The active Pd(0)-complex is also used in the cross-coupling reaction, which is the

reaction between an aryl halide and a nucleophile (Scheme 6.4).163 The classic process

of catalytic cycle is shown in Scheme 6.5. Pd0L4, or PdCl2L2 + reducing agent, is

a source of the Pd0L2 active species. The first step in the catalytic cycle for the

classical cross-coupling reaction is an oxidative addition. In this step the Pd0L2 reacts

with aryl halide to produce a trans-ArPdXL2. The second step is a transmetallation,

a nucleophilic attack on the trans-ArPdXL2, followed by the isomerisation step. The

final step is the formation of the product by reductive elimination.

Ar X Nu- Ar Nu + X-

Scheme 6.4. A traditional cross-coupling reaction, where Ar is an aryl group and
Nu− is a nucleophile.163

Pd0L2

Pd0L4  or {PdCl2L2 + reducing agent}

L
Pd X
L

Ar
(trans)

oxidative addition

ArX

Nu-

X-

transmetallation
L

Pd Nu
L

Ar
(trans)

L
Pd L
Nu

Ar
(cis)

ArNu

reductive elimination

Scheme 6.5. General process for cross-coupling reactions.163

A new cross-coupling reaction was proposed and the reaction cycle is shown in

Scheme 6.6. Firstly, tricoordinated anionic Pd(0)-complex [L2Pd0Cl]– is produced

via reduction of PdCl2(PPh3)2. This anionic complex reacts quickly with ArX to

form a pentacoordinated anionic Pd(0)-complex [L2ArPdClX]–. Next, a chloride ion

departs from the [L2ArPdClX]– and the solvent (S) coordinates with Pd instead to

produce a neutral trans-pentacoordinated complex L2ArPdSX. The L2ArPdSX is

attacked by the nucleophile to produce the anionic trans-pentacoordinated complex

([ArPdL2NuX]–). Then the production of ArNu and [PdL2X]– occurs through ox-

idative addition. The evidence for supporting the new mechanism, which occurs
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via pentacoordinated complexes are generated from reaction of 2-thiophenyl anion

with anionic pentacoordinated complexes faster than reaction of 2-thiophenyl anion

with trans-PhPdI(PPh3)2.163 Moreover the reaction between the nucleophile and

trans-PhPdI(PPh3)2 yields a slowly occurring cross-coupling product.166 However, a

side cycle can be found which is a possible competition reaction to the main cycle.

If Pd0L4 is introduced in the reaction, the process occurs via the side cycle first then

it develops to the main cycle (see Scheme 6.6 at the bottom).

L
Pd Nu
L

Ar
(trans)

L
Pd L
Nu

Ar
(cis)

L
Pd X
L

Ar
(trans)

Nu-

X-

side cycle

main cycle

Pd0L2

initiation

ArNu

X-

ArX

+L

-L
Pd0L3

+L

-L
Pd0L4

L
Pd
L

Ar
S
X

L
Pd
L

Ar
Nu
X

ArNu
L

Pd0

L
X

L
Pd
L

Ar
X
X

ArX

+X-

-X-

Nu-

S

-Cl-
+Cl-

L
Pd
L

Ar
Cl
X

L
Pd0

L
Cl

Reduction

PdCl2(PPh3)2

ACTIVATION

ArX

Scheme 6.6. New mechanism for the cross-coupling reactions proposed by Amatore
and Jutand.163

One of the popular reactions for formation of C-C bonds is the Suzuki-Miyaura

reaction, which is a palladium catalyst cross-coupling reaction between organoboron

compounds and an alkyl halide (Scheme 6.7).167 Based on the proposed catalytic cycle

from Suzuki, Scheme 6.8 is the reaction catalytic cycle of the Suzuki-Miyaura cross-

coupling.168 This reaction starts from Pd(0)-complex catalysts. The Pd(0)-complex

is introduced and reacts with alkyl halide R2-X to generate the Pd(II)-complex via
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oxidative addition, followed by the exchange of an anion between Pd and the metal

(metathesis). Next, the organoboron compound reacts with L2Pd(OR)R2 via the

transmetallation step, then in the final step the reductive elimination occurs to yield

the production of C-C bond and Pd(0)-complex catalyst.

R1 B(R)2 R2 X
Pd(0) catalytic

base, ligand
R2 R1 X B(R)2

Scheme 6.7. Suzuki-Miyaura cross-coupling reaction.167

Pd(0)Ln
R2 X

oxidative addition

L2Pd(II)
X

R2

M(OR)

MXL2Pd(II)
OR

R2

metathesis

R1B(R)2

Pd(II)
R1

R2

B(OR)2

OR

R1-R2

transmetallation
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Scheme 6.8. General catalytic cycle of Suzuki-Miyaura cross-coupling reaction
based on Suzuki proposal.168

In 1989, Bumagin and co-workers169 studied the arylation of acrylic acid and

acrylonitrile using aryl halides with Pd(OAc)2 in water. The proposed reaction

mechanism consists of Pd(OAc)2 acting as a pre-catalyst to generate a Pd(0)-active

catalyst, which accelerates the reaction (Scheme 6.9). The Pd(0)-active catalyst

reacts with aryl iodides, ArI to produce ArPdI. The ArPdI reacts with CH2−−CHR

to yield an intermediate then the intermediate transforms to produce the product

and HPdI. In the final step, the active Pd(0)-active catalyst is generated again by a

reaction between HPdI and base.

Pd(0) + ArI ArPdI + R

R

Ar
H H

H

PdI

R

Ar
+ HPdI

HPdI +   B Pd(0)   +    BHI R = COOH, CN
B = base

Scheme 6.9. Reaction of aryl halide with acrylic acid using a palladium catalyst.169
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de Vries et al.170 reported the idea of ligand-free palladium acting as the active

catalyst in the Heck reaction. They showed that the Pd(OAc)2, Pd(II), was a source

for the Pd(0) active catalyst, and proposed the reaction process for its formation.

They revealed that there were two competing processes. The active catalyst entered

into a catalytic cycle or aggregated to form an inactive catalyst species, which is

known as palladium black (Scheme 6.10).

Pd black

Soluble
Palladium 
Clusters

Pd(0)

Pd(II)

Catalytic 
Cycle

ArBr, heat

olefin

Product

Scheme 6.10. Proposed formation mechanism of ligand free palladium in the Heck
reaction.170

The Pd(0) catalyst can also be generated from pincer palladacycles. For example,

pincer palladacycles were used as pre-catalyst in the Suzuki-Miyaura cross-coupling

reactions. The unsymmetrical NCS pincer complex with phenylboronic acid and

K3PO4 as a base in dimethylformamide (DMF) were studied to observe the reaction

for formation of Pd(0) and investigate its catalytic activity. The proposed reaction

pathway for this is shown in Scheme 6.11.171
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Ph Ph
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PhB(OH)2

K3PO4

Pd

P

N

S

Ph

Ph Ph

Reductive

elimination
Ph

P

N

S
Ph Ph

+   Pd(0)

Scheme 6.11. The reaction process for generating the Pd(0) catalyst.171

There is evidence indicating that Pd(0) formation can be achieved using PCP

pincer palladacycles. For example, Pd(0) particle formation from PCP pincer

palladacycles in the reaction of phenyl halides with styrene was confirmed by kinetic

studies, a Hg drop test (the method for testing Pd(0) particles), NMR study and a

quantitative poisoning test.172 Moreover, Nilsson and Wendt173 (2005) proposed the

PCP pincer palladacycles serving as pre-catalyst in the Heck reaction by decomposing

and forming a colloidal Pd(0) species. There is no direct evidence to support their
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proposal as they just examined the colloidal Pd(0) by using the Hg drop test. Clear

evidence supporting Pd(0) particle formation from pincer palladacycle is found

in work conducted by Costa et al.174 They evaluated the pincer palladacycles as

pre-catalysts in the Heck reaction by using pincer palladacycles in the reaction of

iodobenzene and methyl acrylate. From observing particles by transmission electron

microscopy, they found Pd(0) nanoparticles. This led to the conclusion that pincer

palladacycles are decomposed to generate Pd(0) in the form of a colloidal, cluster or

nanoparticle. Furthermore, work by Bedford et al.175 also showed that the Pd(0)

species from CN palladacycles can be formed via a reductive elimination in the

Suzuki-Miyaura reaction.

In general, the pincer palladacycle generates the Pd(0) catalyst via two ele-

mentary processes: transmetallation and reductive elimination. We have found

the literature to study the transition structures of both steps. For instance, in the

transmetallation step, the intermediate [(Phbz)Pd(Ph)(PPh3)] (Figure 6.1a) Phbz

is N-phenylbenzaldimine was detected using electrospray ionisation mass spectro-

scopy (ESI-MS) from the reaction of [Pd(Phbz)(R)(PPh3)] pre-catalyst (Figure 6.1b)

with PhB(OH)2. This is an indirect method to prove the transmetallation product

(Figure 6.1a).176 Kapdi et al.177 studied the reaction of [Pd(Phbz)(OAc)(PPh3)]

with 2,4,6-triflurophenylboronic acid in THF. They found the transmetallation

product [Pd(Phbz)(2,4,6−F3C6H2)(PPh3)], which was verified by X-ray crystallo-

graphy. This is direct evidence to confirm the formation of the transmetallation

intermediate before generating Pd(0). They proposed the transition state structure

for the reaction between arylboronic acid and palladacyclic complex (Figure 6.2).

Pd
PPh3

RN
Ph

Pd
PPh3

PhN
Ph

ba

R = succ, mal, glut, oxa, AcO

N

O

O

N

O

O

N

O

O
O

N

O

succ            mal                 glut                   oxa             AcO

O

O

Figure 6.1. a) The transmetallation intermediate, [(Phbz)Pd(Ph)(PPh3)] and b)
palladacycles (pre-catalyst), [Pd(Phbz)(R)(PPh3)]).176
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Pd
PPh3

N O

B(OH)2
Ar

Figure 6.2. Transition state of transmetallation reaction between arylboronic acid
and palladacyclic complex.177

The reductive elimination step which is a transformation step in organometallic

chemistry was investigated using palladium complexes, (diphosphine)Pd(R)(CN) (R

= CH2−TMS, CH2CMe2).178 The results showed the kinetic rate depended on the

environment of the phosphorus ligand, i.e., bite angles, chelate flexibility and steric

hindrance. They suggested that the elimination product occurs via the transition

state in Scheme 6.12.178
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P P
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Scheme 6.12. Reductive elimination reaction pathway of palladium complex.178

The reductive elimination from arylpalladium cyanide complexes were studied

using both experiment and calculation.179 The calculation was done using B3LYP

with LANL2TZ for Pd and P and 6-311G(d,p) for all other atoms. They used

PMe3−ligated arylpalladium cyanide complexes for determining the effect of electron-

donating and electron-withdrawing substituents on the aryl ligand via reductive

elimination in Scheme 6.13. In the experimental part, they determined the kinetic

rate through a reductive elimination reaction under the condition in Scheme 6.14

while in the calculation part they determined the energy barrier through the transition

structure in Figure 6.3. The results from calculation revealed that the electron-rich

arylpalladium cyanide complexes have a lower energy barrier than electron-poor

complexes. This agrees with the experimental data that the electron-rich arylpalla-

dium cyanide complex has a rate constant greater than electron-poor arylpalladium

cyanide complex, indicating that the reaction rate of the electron-rich complex is

faster than the electron-poor complex for rate of reductive elimination reaction.
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Scheme 6.13. Reductive elimination of arylpalladium cyanide complexes to generate
arylnitrile and Pd(0).179
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Scheme 6.14. Reductive elimination step of arylpalladium cyanide complexes.179

Me3P
Pd

CN

Me3P
R = CF3, H, NH2

R

Figure 6.3. Transition state of reductive elimination studied by Klinkenberg and
Hartwig.179

Palladium catalysts have become commonly used in various organic reactions. It is

very hard to observe the reaction mechanism processes by experimental measurements,

therefore computational chemistry has a role to investigate the reaction mechanism

processes. It can be used to calculate the geometric and energetic reaction profile

involving the reactant, the intermediates, the transitions and products. In the next

section, examples of reaction mechanism studies of palladium complex catalysts using

computational chemistry are presented.
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6.1.2 DFT study of Palladium catalysis

Over the last ten years, the reaction mechanism using the palladium catalyst has

been covered extensively. Many researchers investigated to understand the catalytic

processes using DFT.74 In this section, literature examples will be shown of the

mechanistic pathways when palladium catalysts were introduced in the organic

reaction.

Goossen et al. reported a computational study investigating the reaction mech-

anism of the oxidative addition of aryl halides to Pd(0) complexes.180 The BP86

functional with LANL2DZ for Pd, P and I, and Dunning/Huzinaga full double-ζ basis

sets for C, H and O were used for investigating the transition states and intermediates.

Single-point solvent-correction for THF using the CPCM model and UAKS radii

was used to obtain the energy at the stationary points: SDD ECP was used to treat

Pd, the SDB-cc-pVTZ for I, the aug-cc-pVTZ for O, P and C, and cc-pVDZ for H.

Scheme 6.15 shows the reaction process and it was found that the tricoordinated

anionic Pd(0)-complex that had a distorted-trigonal-planar structure around the

Pd-centre, was a stable structure, and it could serve as a catalytically active species.

Then, the halide of the aryl halide coordinates to the distorted-trigonal-planar palla-

dium complex to form a square-planar palladium complex rapidly with no energy

barrier (step 1). In the oxidative addition of square-planar palladium complex, they

found a multistep process before forming the π-complex, which is an intermediate

structure for carbon-halide bond cleavage (step 2). Next, the bond breaking of the

carbon-halide is found in step 3, followed by the isomerisation process as the final

step which is rate-determining.
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Scheme 6.15. Oxidative addition of aryl halides to Pd(0) complexes study using
DFT by Goossen and co-workers. The process involves coordination (step 1), oxidative
addition (step 2), C-X bond cleavage (step 3) and isomerisation (step 4).180

In 2006, a DFT computational investigation studied the full catalytic cycle

of Suzuki-Miyaura cross-coupling between CH2−−CHBr and CH2−−CHB(OH)3– us-

ing Pd(PH3)2 and PdPH3 catalytic general models by Braga et al.181 All cal-

culations were performed using the B3LYP functional. The Pd and Br heavy

atoms were treated using an effective core potential LanL2DZ and H, B, C, O

and P were calculated using 6-31G(d) basis set. In the reaction starting from

Pd(PH3)2 catalyst, the main steps of the catalytic cycle consist of oxidative addition,

first isomerisation, transmetallation, second isomerisation and reductive elimina-

tion. The oxidative addition concerns a formation of a four coordination sphere

around the Pd-centre (cis-Pd(PH3)2(CH2−−CH)Br) and a changing Pd oxidation

state from 0 to +2. The cis-Pd(PH3)2(CH2−−CH)Br structure changes to trans-

Pd(PH3)2(CH2−−CH)Br at the first isomerisation step. Then the halide from trans-

Pd(PH3)2(CH2−−CH)Br is substituted by the organic group from the boronic acid spe-

cies (CH2−−CHB(OH)3–) to produce trans-Pd(PH3)2(CH2−−CH)2 via multiple steps.

After this step, second isomerisation occurs to change trans-Pd(PH3)2(CH2−−CH)2 to

cis-Pd(PH3)2(CH2−−CH)2. In the final step, a bond between the organic groups forms



145

to release CH2−−CH−CH−−CH2 and Pd(PH3)2 catalyst which is the reductive elimin-

ation step. For the monophosphine system, the PdPH3 is coordinated with CH2−−CH

and Br– to produce a T-shape complex and the oxidation state of Pd changes from

0 to +2. There are three possible isomers (Figure 6.4). Isomers T1 and T2 occur

directly from oxidative addition. Isomer T3 occurs via a Y-shape transition structure

of isomer T2. Isomer T2 goes directly to the transmetallation step, while isomer

T1 is changed to isomer T2 before going to the transmetallation step via a Y-shape

transition at the first isomerisation process. The transmetallation process starts

from coordination between isomer T2 and CH2−−CHB(OH)3–. The organic group

from the boronic acid species migrates to the Pd-centre while Br– is removed from

the complex to form Pd(PH3)(CH2−−CH)2 and B(OH)3 via multiple steps. Finally,

the reductive elimination occurs by C-C forming to produce CH2−−CH−CH−−CH2

and Pd(PH3) catalyst. In the theoretical investigation it is stated that the reaction

mechanism is dependent on the experimental system considered.181

H3P Pd Br Pd Br
PH3

PdH3P
Br

T1 T2 T3

Figure 6.4. Three different T-shape isomers.181

The choice of ligand arm can affect the cross-coupling reaction. In 2008, Huang

et al.182 studied the effect of the donor atoms (N and P) on the cross-coupling

reaction. A study using B3LYP with a 6-31G(d) basis set for all atoms except

LandL2DZ for Pd atom were treated for determining the reactions. Palladium

complexes with three different categories of bidentate ligands diimines, diamines and

diphosphines were used for determining the reaction mechanism of cross-coupling

between phenyl chloride and phenylboronic acid in the presence of a base and base-

free. The computational calculation showed that the main processes are oxidative

addition, transmetallation and reductive elimination. The transmetallation step is a

rate-determining step and the base is important for decreasing the energy barrier

at this step. Comparing diimine, diamine and diphosphine ligands at the rate-

determining step, they showed that palladium with a diphosphine ligand has the

lowest energy barrier.

A palladium(II) pincer catalysed Heck coupling reaction via a Pd(II)/Pd(IV)



146

process was studied.183 The reaction mechanism was studied using the B3PW91

functional with 6-31G(d) basis set for C, H, N, O, S atoms and LanL2DZ for Pd

and I. They investigated the oxidative addition mechanism of hypervalent iodonium

salts with pincer complexes and illustrated that the hypervalent iodonium salts are

a good oxidising agent for palladium(II) pincer complexes with a low energy barrier

compared to phenyl iodide (Figure 6.5).
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Figure 6.5. Reaction of oxidative addition of PdNCN pincer with a) hypervalent
iodonium salts and b) phenyl iodides.183

The excellent review by Tsipis74 in 2014 showed that DFT methods are successful

for applications to investigate the structure, bonding, and spectroscopy of complexes

and from literature above DFT is a good method for studying the reaction mechanisms.

To our knowledge, no one has reported the mechanism of Pd(0) active catalyst

formation from pincer palladacycles as a pre-catalyst. Thus from this point of view it

is interesting to elucidate Pd(0) formation from pincer palladacycles. Moreover, there

are the two main types of pincer palladacycles: symmetrical and unsymmetrical. They

are interesting for investigating the role of the donor atom in the Pd(0) formation

pathways. Furthermore, some literature report unsymmetrical pincer palladacycles

have higher catalytic activity than symmetrical pincer palladacycles.184–186 A member

of the Spencer and Cox group, Dr G. W. Roffe, synthesised unsymmetrical pincer
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palladacycles and tested their activity in the Suzuki-Miyaura coupling reaction

and found that both symmetrical and unsymmetrical pincer palladacycles were

good pre-catalysts.187 The aim of this work is to rationalise the difference in the

activity observed by studying the formation of the active Pd(0) catalyst from simple

symmetrical and unsymmetrical pincer palladacycle pre-catalysts. These calculations

will complement the calculations and experiment by Dr G. W. Roffe on his synthesised

unsymmetrical pincer palladacycles.

6.2 Aims of this work

The aim of this chapter is to study the Pd(0) formation reaction mechanism of

symmetrical pincer palladacycles, PdYCY which are PdNCN (1), PdSCS (2) and

PdPCP (3) and unsymmetrical pincer palladacycles, PdYCY’ which are PdNCS (4),

PdSCP (5) and PdNCP (6) (Figure 6.6). These structural and energetic findings will

be compared with experimental activity data to infer the role the donor atoms (Y, Y’)

play in the effective formation reaction of the active Pd(0) catalyst. This study starts

from the investigation of Pd(0) formation of PdYCY and PdYCY’ in the absence and

presence of the base; then, the effects of non-polar and polar solvents are determined.

This work has been published in “Journal of Organometallic Chemistry”.188
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Figure 6.6. The symmetrical (1-3) and unsymmetrical (4-6) pincer palladacycles
used in this study.
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6.3 Computational details

All structures along the reaction pathways were optimised using the GGA PBE.45,46

The 6-31+G(d,p) basis set was used for C, H, Cl, O and B atoms while the SDD57

effective core potentials (ECP) were used for describing Pd. In Chapters 3 and 4,

it was shown that the PBE/6-31+G(d,p)[SDD] is a good method and basis set for

studying the structure of pincer palladacycles. The vibrational frequencies were

used for confirming the minimum structures which have no imaginary frequencies,

while transition structures have one imaginary frequency. Eigenvector following

was used in each case to ensure the transition state structure connected the desired

minima. Single point energy calculations were performed at ωB97XD53 which includes

non-covalent interactions that are important to obtain accurate energetics.79,134–136

6-311++G(2df,2p) was used for all atoms except Pd, for which SDD was used. Zhao

and Truhlar136 showed the ωB97XD functional is one of the best of the 30 functionals

they tested. They showed that it had the smallest average mean unsigned error for

calculating a range of reaction energies. All calculations in the present work were

performed with the Gaussian 09 program.87

Solvent effects were considered using continuum solvation models. The polarisable

continuum model (PCM)60 using Universal Force Field (UFF) atomic radii were em-

ployed to do single point energy calculation at the ωB97XD/6-311++G(2df,2p)[SDD]

level of theory of all PBE/6-31+G(d,p)[SDD] optimised structures. The solvents

considered were; the non-polar solvents toluene (ε = 2.374) and tetrahydrofuran,

THF (ε = 7.426) and the polar solvent acetonitrile (ε = 35.688), where ε is the

dielectric constant.
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6.4 Results and discussion

Scheme 6.16 presents the Pd(0) formation reaction from pincer palladacycles in the

absence and the presence of a base. It has been experimentally proven by Serrano

et al.176 that the reaction can occur without base when mixing imine-palladacycles

with PhB(OH)2 in distilled THF at ambient temperature. Smith et al.189 proposed

that the reaction can occur with base, where the PhB(OH)2 is bound by base to

produce the arylboronate species (PhB(OH)3–), the active species for the reaction.

Therefore here the Pd(0) formation reaction mechanism from the pincer palladacycle

is investigated in the absence of the base using arylboronic acid (PhB(OH)2) and

in the presence of the base using (PhB(OH)3–). In this work, the Pd(0) formation

reaction pathways from PdYCY, PdNCS, PdSCP and PdNCP in base-free condition

are labelled as A, B, C and D, respectively, i.e. Int1A is an intermediate 1 for

Pd(0) formation reaction from PdYCY (Table 6.1). In the presence of the base

condition, PdYCY, PdNCS, PdSCP and PdNCP are labelled as E, F, G and H,

respectively (Table 6.1).

Y Y'Pd
Cl

+
B(OH)2 Y Y'

+ B(OH)2ClPd(0) +

Y Y'Pd
Cl

+
B(OH)3 Y Y'

+ B(OH)3 + Cl-Pd(0) +

i)

ii)

_

Scheme 6.16. Pd(0) formation for the pincer palladacycles i) without base and ii)
with base.
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Table 6.1. The label for Pd(0) formation reaction from each pincer type presented
in this work, where Y = N, S or P.

Label Pincer type Condition
A PdYCY base-free
B PdNCS base-free
C PdSCP base-free
D PdNCP base-free
E PdYCY with base
F PdNCS with base
G PdSCP with base
H PdNCP with base

Based on Aleksanyan and co-workers’ work,171 we proposed the general reaction

mechanism of Pd(0) formation given in Scheme 6.17. There are two main processes

in this reaction; a transmetallation (TM) step and a reductive elimination (RE) step.

Y
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Y
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Y
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B(OH)2

Transmetallation transition state

ClB(OH)2

Y
Pd

Y

Ph

Y
Pd

Y

Ph

Reductive elimination transition state

Y
Ph

Y Pd(0)

Scheme 6.17. Proposed mechanism of generation of Pd(0) from pincer palladacycle
by phenylboronic acid.

First of all, we have studied the geometry of phenylboronic acid, PhB(OH)2
(Figure 6.7). There are three possible conformers of PhB(OH)2. The calculation

shows that the coordination sphere around boron of conformers i and ii is planar

while conformer iii is distorted planar. The torsion angles (C-C-B-O) of conformer i,

ii, and iii are 0.0, 0.0 and 30.1 degrees, respectively. In term of structural stability,

conformer i is the most stable, whereas conformer iii is the least stable. The relative

energies of conformer i, ii and iii compared with the conformer i are 0.0, 9.0 and 12.5

kJmol−1, respectively. Therefore, conformer i of PhB(OH)2 shown in Figure 6.7 will

be used to study the Pd(0) formation reaction mechanism.
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i                          ii                           iii

Figure 6.7. Geometrical optimisation of PhB(OH)2 conformers i, ii and iii.

6.4.1 Base-free Pd(0) formation from symmetrical pincer

palladacycles

We first consider the Pd(0) formation reaction mechanism of the symmetrical pincer

palladacycles (PdYCY). The reaction mechanism of PdYCY is shown in Scheme 6.18.

Figure 6.8 shows the Gibbs free energy profile of PdYCY where Y is N, S and P

and the Gibbs free energy profile is relative to the energy of the separated reactants

(PdYCY + PhB(OH)2).

The reaction begins with the non-covalent interaction between the pincer palla-

dacycle and the phenylboronic species (Int1). The Gibbs free energy in this step

shows that Int1 from PdPCP is more stable than Int1 from PdNCN and PdSCS.

Int1 from PdPCP is the most stable due to the orientation of phenylboronic species

relative to the pincer palladacycle.190,191

In the TM transition state (TS1-2), the geometries of this transition state

structure are shown in Figure 6.9. They represent the phenyl migration from the

boronic species to the Pd-centre and involve the bond breaking of C-B and Pd-Cl and

the bond forming of Pd-C and B-Cl via the concerted four-membered ring of Pd-C-

B-Cl. The distance of Pd-C decreases while the distance of Pd-B increases in TS1-2

compared with Int1. The Gibbs free energy barrier of the PdPCP reaction with 289.4

kJmol−1 is the highest whilst the energy barriers of the PdNCN with 202.2 kJmol−1

and PdSCS with 208.8 kJmol−1 are similar. The results from Braga et al.,192 who

studied the TM process from [PhPd(PH3)2Br] with PhB(OH)2 without base, where

they used the B3LYP method and 6-31G(d) for all atoms except LANL2DZ for Pd

and Br, found a high-energy barrier of the TM transition state (243.1 kJmol−1).

The energy barrier of PdPCP in this work without thermal correction to Gibbs free
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energy is 286.2 kJmol−1. This has a higher energy barrier than that of Braga et al.

but has a similar magnitude. The overall TM reaction process using PdPCP in this

work without thermal correction to Gibbs free energy is 172.4 kJmol−1 compared

to 134.7 kJmol−1 found in the work of Braga et al. This shows that the reaction

is endothermic similar to that reported by Braga et al. The Gibbs free energy

barrier for TM with PdPCP is significantly larger than for PdNCN and PdSCS

since the Pd-P bond is stabilised by the σ-donating and π-accepting character of the

phosphine139 leading to a strong interaction between Pd and phosphine compared to

the Pd-S and Pd-N interactions.
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Scheme 6.18. Catalytically active Pd(0) species formation reaction from symmet-
rical pincer palladacycles.
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generate catalytically active Pd(0) species (base-free).
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Figure 6.9. Geometry of the transition state structure for the transmetallation
step TS1-2 in the base-free for Pd(0) formation from a) PdNCN, b) PdSCS and c)
PdPCP (grey = C, white = H, blue = N, red = O, pink = B, blue/green = Pd, light
green = Cl, yellow = S and orange = P). Distances are in angstroms.

Then, B(OH)2Cl is removed from the complex; this involves the cleavage of the

intermolecular interaction between Int2 and B(OH)2Cl → Int3. This process is

endergonic. The structures of Int3 in all cases have only one arm of the pincer

ligand coordinated to the Pd-centre (Scheme 6.18).

The RE takes place leading to Pd(0) formation in TS3-4/5 involving a three-

centred dissociative transition state.137,193,194 In these calculations, we have found

that RE involves the aryl group migrating to form a C-C bond and removing Pd

from the complex (Scheme 6.18). The geometries of this transition are shown in

Figure 6.10. In the case of PdNCN, the RE proceeds via a single transition step

(TS3-5) due to the weaker interaction between Pd and N and the Gibbs free energy

barrier of this step for PdNCN is 108.7 kJmol−1. Int5 is the Pd coordination with

N and with the aromatic ring before it is removed from the molecule. The aromatic

ring interaction with Pd was found in the experimental data of palladium complexes,

studied by Ossor et al.195 In the cases of PdSCS and PdPCP, these proceed via two

transition steps; RE (TS3-4) and a de-coordination (DC) transition step (TS4-5).

The RE for PdSCS and PdPCP leads to the re-coordination of the side arm to form

Int4 due to the stronger interaction between Pd-S bond and Pd-P bond. The Gibbs

free energy barrier from PdPCP is the lowest at 55.7 kJmol−1 compared to RE

of PdSCS which is 91.8 kJmol−1 and PdNCN which is 108.7 kJmol−1. Then the
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TS4-5 in the next step represents the ligand arm DC from Pd(0).

2.017

2.050
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2.136
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2.144
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a) b) c)

Figure 6.10. Geometry of the transition state structure for the reductive elimination
step TS3-4/5 in the base-free for Pd(0) formation from a) PdNCN, b) PdSCS and
c) PdPCP (grey = C, white = H, blue = N, blue/green = Pd, yellow = S and orange
= P). Distances are in angstroms.

The DC transition state (TS4-5) shows that the bond between Pd and donor

atom is breaking, while the bond between Pd and C is forming. The Gibbs free

energy barrier in this step from PdPCP is 105.9 kJmol−1 which is higher than from

PdSCS which is 63.0 kJmol−1. The final product formation (Int5 → Product)

requires 84.0, 120.7 and 176.3 kJmol−1 for PdNCN, PdSCS and PdPCP, respectively.

Overall, the Pd(0) active species formation reactions are endergonic processes with

a total Gibbs free energy of 171.0, 173.0 and 284.9 kJmol−1 for PdNCN, PdSCS

and PdPCP, respectively. From these calculated results, it is shown that a lot

of energy is required for generating the Pd(0) active species indicating that it is

not realistic from an experimental perspective. However, there are many possible

pathways to cleavage the Pd(0) species from the compound but in here we have used

the simplest model which is the direct Pd(0) de-coordination from the compound

to investigate the Pd(0) active species formation. In comparison of the two main

steps, the results show that the transmetallation reaction has a larger energy barrier

than the reductive elimination in all cases agreeing with palladium-catalysed Pd(0)

formation calculation using a N- and P-chelating ligand with phenyl boronic acid.182
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6.4.2 Base-free Pd(0) formation from unsymmetrical pincer

palladacycles

In this section, the Pd(0) formation reactions from unsymmetrical pincer palladacycles

PdYCY’ which are PdNCS, PdSCP and PdNCP were investigated to determine the

role and effect of the donor ligand arms on the reaction mechanism pathway. The

Gibbs free energy profile of Pd(0) formation from PdNCS, PdSCP and PdNCP are

shown in Figure 6.11, Figure 6.12 and Figure 6.13, respectively where the relative

Gibbs free energy of all reactions are compared with each PdYCY’ + PhB(OH)2.

The full schemes of the reaction mechanism are provided in Scheme 6.19, Scheme 6.20

and Scheme 6.21 for PdNCS, PdSCP and PdNCP, respectively.
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In the first step of all unsymmetrical pincer palladacycles, Int1B, Int1C and

Int1D are concerned with the interaction between PdYCY’ and PhB(OH)2. The

unsymmetrical pincer palladacycles have two different ligand donor arms, leading

to two possible pathways depending on either Y de-coordination first or Y’ de-

coordination first from Pd. The results of the computational calculation show that

in Int1B for PdNCS of the N de-coordination from Pd first (blue pathway) and S

de-coordination from Pd first (red pathway), the PhB(OH)2 interaction with PdNCS

produces Int1B. The Gibbs free energies of Int1B for both cases are quite similar,

differing by 7.5 kJmol−1 (Figure 6.11). For the Pd(0) formation from PdNCP, it

was also found that PdNCP corresponds to two different arm de-coordinations, i.e.

N or P de-coordination first from Pd (Scheme 6.21) and Int1D for both cases has

similar energy, only differing by 0.6 kJmol−1 (Figure 6.13). For PdNCS, only S

de-coordination from the Pd-centre has been found but there are still two pathways

which are path a and path b corresponding to the orientation of the phenyl group in

the boronic species (Scheme 6.20). The Gibbs free energy difference between Int1C

path a and Int1C path b is 20.1 kJmol−1. In the TM step, each reaction mechanism

follows the same mechanism as the symmetrical pincer palladacycles. The geometries

for PdYCY’ of the TM structures are shown in Figure 6.14.

In the removal of the B(OH)2Cl from Int2, the reaction is endergonic in all

cases. Next, the Pd is eliminated in the RE step. However, for PdNCP path b an

additional step occurs just prior to RE step. This involves a phenyl rotation (Int3D

→ Int4D).

In the RE process, for PdNCS, the Gibbs free energy barrier is 28.7 kJmol−1 lower

when N de-coordinated first (TS3-5B) compared to when S de-coordinated first

(TS3-4B) because TS3-5B is stabilised by strong S-Pd interaction compared to the

N-Pd interaction in TS3-4B. Focusing on TS3-4B in the path of S de-coordination

first, an additional re-coordination step is found after the RE step leading to both

arms coordinating to Pd. In TS4-5B these results show that the transition energy

barrier of N de-coordination (route I in Scheme 6.19) has a lower energy than S

de-coordination (route II), which corresponds with the bond strength between Pd-N

being weaker than Pd-S (as discussed in Chapter 5). The product Int5B via route

I is significantly more stable than Int5B via route II. For PdSCP, the Gibbs free



164

energy barriers of both pathways differ by only 7.5 kJmol−1. The TS3-4C in both

cases produce the same intermediate Int4C in which the Pd(0) coordinates with

both the P and the S donor atoms simultaneously. Then, there are two routes

for de-coordination from the donor atom which are S de-coordination from Pd in

route I and P de-coordination in route II (Scheme 6.20). The energy barrier of the

de-coordination step shows that route II has a higher energy barrier than route

I as the interaction between P and Pd is stronger than that between S and Pd

(Figure 6.12). For PdNCP, the transition from Int4D to Int5D via TS4-5D (green

pathway), there is a re-coordination step, leading to both arms coordinating to Pd,

whereas TS4-6D has not found this coordination, so only Int6D occurs. In the

de-coordination step (TS5-6D), the calculation shows that N de-coordination from

Pd has lower energy than P de-coordination from Pd. The bond strength of Pd-P is

much greater than Pd-N so it is easier to cleave the bond between Pd-N (as discussed

in Chapter 5). For Int6D the Pd coordination of both P and Ph is more stable

than coordination with N and Ph in agreement with the results using symmetrical

pincer palladacycles which showed that the Pd coordination with P is stronger than

coordination with N.

The total Gibbs free energy of the Pd(0) active species formation reaction from

unsymmetrical pincer palladacycles is greater than zero in all cases, indicating that

the reaction is endergonic. Furthermore, in the reaction mechanism, when the pincer

palladacycle has a S or P donor ligand arm, an additional DC step occurs after the

RE step, similar to the situation for PdSCS and PdPCP.
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Figure 6.15. Geometry of the transition state structure for the reductive elimination
step for Pd(0) formation from a) PdNCS, b) PdSCP and c) PdNCP (grey = C, white
= H, red = O, pink = B, blue/green = Pd, light green = Cl, blue = N, yellow = S
and orange = P). Distances are in angstroms.

6.4.3 Pd(0) formation reaction in the presence of a base

A base is normally required in the Suzuki-Miyaura cross-coupling reaction but the

role of it has not been clarified.196 For checking the effect of the base in the Pd(0)

formation reaction, we have investigated the reaction following Scheme 6.16ii). The

OH– is chosen since it is the simplest, typical base. The reaction in the presence

of the base starts from the organoboronic species binding to the base OH– to form

the organoboronate species PhB(OH)3–. In the literature, PhB(OH)3– species was

used for studying the presence of the base condition in the Suzuki-Miyaura cross-

coupling reaction calculation.192,197,198 Therefore, based on Scheme 6.16ii), the Pd(0)

formation reaction with base are studied using PhB(OH)3– as the reactant interacting

with the pincer palladacycles.
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Firstly, the Pd(0) formation reaction generated from PdNCN, PdSCS and PdPCP

are discussed. The general Pd(0) formation mechanisms for them are shown in

Scheme 6.22. The initial step for this reaction starts with the intramolecular in-

teraction between PdYCY and PhB(OH)3– to form Int1E which corresponds to

the van der Waals complex of PdYCY and PhB(OH)3–. Evidence for a van der

Waals complex is supported by Braga and co-workers,197 who found a van der Waals

complex between trans-Pd(CH−−CH2)(PH3)2Br and (CH−−CH2)B(OH)3–. The Gibbs

free energy profile of PdYCY in the presence of the base is presented in Figure 6.16,

where the relative energies of the stationary points along the reaction pathway are

compared with the separated reactants (PdYCY + PhB(OH)3–). Considering the

Gibbs free energy formation of Int1E, the intramolecular interaction of PhB(OH)3–

with PdNCN and PdPCP is an exergonic processes compared to Reactants E while

it is an endergonic process for PdSCS.

The first transition state corresponds to a substitution nucleophilic bimolecular

(SN2) step which is the substitution of the Cl– by the PhB(OH)3– in the coordination

sphere of the Pd-centre. This process is shown in TS1-2E which is via a trigonal

bipyramidal geometry to form Int2E. The intermediate Int2E involves the OH

bridging between Pd and B, with Cl– binding to the OH bridge. The TS1-2E for

PdNCN, PdSCS and PdPCP has a low energy barrier of 31.6, 10.6 and 28.5 kJmol−1,

respectively. Then, Cl– is removed from the complex to produce Int3E, which is an

endergonic process in all cases.

Next, the TM transition state occurs via TS3-4E. The transition state structure

is similar to the instance with no base and takes place through a four-membered ring

in which the phenyl migrates from B to the Pd centre. However, in the base-free

pathway the four-membered ring involves Cl-B-C-Pd but here it involves O-B-C-Pd.

The geometries of the TM step are presented in Figure 6.17. In consideration of

the TM energy barrier, the PdPCP pathway has a large barrier of 162.0 kJmol−1

compared to that from PdNCN of 105.5 kJmol−1 and PdSCS of 93.5 kJmol−1

(Figure 6.16).

The RE step under base conditions is similar to that in the absence of the base,

including the additional re-coordination of the ligand arm in Int6E for PdPCP and

PdSCS. For PdNCN, the re-coordination of the ligand arm was not found, instead
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Int7E is formed directly from the RE transition state as in the case of the base-free

process. The geometry of the RE transition and de-coordination structures in the

presence of the base is identical to that in the absence of the base. The energy

barrier of RE is 108.6, 91.8 and 55.7 kJmol−1 for PdNCN, PdSCS and PdPCP,

respectively. Moreover, we have found that these values are almost identical to the

base-free values which are 108.7, 91.8 and 55.7 kJmol−1 for PdNCN, PdSCS and

PdPCP, respectively.
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Scheme 6.22. General mechanism of Pd(0) formation reaction from symmetrical
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Figure 6.16. The Gibbs free energy profile of symmetrical pincer palladacycles to
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Figure 6.17. Geometry of the transition state structure for the transmetallation
step TS3-4 in the presence of the base for the Pd(0) formation from a) PdNCN, b)
PdSCS and c) PdPCP (grey = C, white = H, red = O, pink = B, blue/green = Pd,
blue = N, yellow = S and orange = P). Distances are in angstroms.
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Within this section, the plausible mechanisms of Pd(0) formation from the unsym-

metrical pincer palladacycles, PdNCS, PdSCP and PdNCP, have been investigated

in the presence of the base. The full reaction paths are provided in Figure 6.18,

Figure 6.19 and Figure 6.20 for PdNCS, PdSCP and PdNCP, respectively. In Int1

for all cases, the pincer palladacycles bind to PhB(OH)3– to produce a van der Waals

complex similar to Int1 from the symmetrical pincer palladacycle process. The

Cl– is then replaced by PhB(OH)3– via a substitution reaction (TS1-2) with a low

Gibbs free energy barrier of 13.5, 26.8 and 26.7 kJmol−1 for PdNCS, PdSCP and

PdNCP, respectively (Figure 6.21). It should be emphasised that the substitution

step is the important initial step for the condition with base for both symmetrical

and unsymmetrical pincer palladacycles. In the case of the unsymmetrical pincer

palladacycle in the absence of the base, the results show that there are two possible

pathways, depending on either Y or Y’ de-coordination from the Pd-centre for PdNCS

and PdNCP in the TM step or depending on the phenyl orientation for PdSCP

in the Int1, whereas in the presence of the base, only one route has been found

for each pincer palladacycle. At this transition step, Pd(0) formation from PdNCS

and PdNCP involves N de-coordination from the Pd-centre leading to Int4 and for

PdSCP we have found S de-coordination to produce Int4. The Gibbs free energy

barrier values of this transition state are 126.2, 122.0 and 130.1 kJmol−1 for PdNCS,

PdSCP and PdNCP, respectively (Figure 6.21). Based on the TM barrier, Int4 from

PdNCP is harder to produce than from PdNCS and PdSCP due to having the highest

activation energy barrier. Another interesting observation from our calculation is

that the activation energy in the presence of the base of all unsymmetric cases is

significantly lower than in the absence of the base. The Gibbs free energy barriers

with base for PdNCS, PdSCP and PdNCP are 126.2, 122.0 and 130.1 kJmol−1,

respectively while barriers without base for PdNCS, PdSCP and PdNCP are 226.4

(path a: via N de-coordination first), 220.6 (path a: phenyl orientated over S) and

237.7 kJmol−1 (path a: via N de-coordination first), respectively. The geometrical

structures of this step are shown in Figure 6.22 which is the migration of phenyl

group from boron to palladium.

The next step is the RE step (TS5-6/7). This step is similar to the base-free

condition. Int7s are produced directly when the formation reaction occurs from
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PdNCS (blue path) and PdNCP (green path), while the DC step (TS6-7) is found

for PdSCP (red pathway). The geometries and the Gibbs free energy barrier at

this transition state are identical to the base-free condition. The Gibbs free energy

barriers of this step are 86.0, 80.8 and 78.2 kJmol−1 for PdNCS, PdSCP and PdNCP,

respectively. In the case of the DC step for PdSCP, the energy barrier is 49.5 kJmol−1

for S de-coordination (route I) and 95.8 kJmol−1 for P de-coordination (route II).

It is also found that the energy barrier of the DC for PdSCP in both the absence

and presence of the base are identical.
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6.4.4 Analysis of reaction energy barriers of PdYCY and

PdYCY’ pathways to Pd(0) formation in the absence

and presence of base

The results from the reaction pathway studies show that the mechanism is basically

composed of two elementary steps, TM and RE. Based on the previous symmetrical

and unsymmetrical pincer palladacycles data, the effect of the donor atoms of PdYCY’

compared to PdYCY will be discussed.

Table 6.2 summarises the two elementary steps and the total Gibbs free energy

without base. First of all, we have discussed the Gibbs free energy barrier of the

elementary steps in the gas phase. In consideration of PdYCY, the Gibbs free energy

barrier of TM step is higher than RE in all cases. This result indicates that the

TM step is a rate-determining step for Pd(0) formation from PdYCY with no base.

From this step, it is obvious that the energy barrier of Pd(0) from PdPCP is the

highest, whilst the energy barriers of Pd(0) from PdNCN and PdSCS are lower and

show little difference. Therefore, the active Pd(0) species from PdNCN and PdSCS

will more readily occur when compared to the Pd(0) generation from PdPCP. In the

case of PdYCY’, the rate-determining steps are still the TM in all cases, as the TM

step is higher than the RE. The results show that the TM energy barrier of PdNCP

via P de-coordination has the highest, while PdNCS via S de-coordination has the

lowest energy barrier. In addition, we have found that the Pd(0) formation from
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PdYCP, where Y is S or N, has a lower energy barrier when P coordinates to Pd

at the TM transition state as Pd is stabilised by the σ-donating and π-accepting

character of the phosphine.139

In the overall base-free reaction, the Gibbs free energies of both symmetrical and

unsymmetrical pincer palladacycle reactions, in the gas phase are predicted to be

endergonic, indicating non-spontaneous reactions.

Table 6.3 provides the results of the barrier of the two elementary steps and

the total Gibbs free energy for the reaction with base. For active Pd(0) catalytic

species formation, the presence of the base noticeably decreases the barrier of the

TM step compared to the base-free condition. In the case of PdNCN and PdSCS,

the energy barrier of TM is now similar to RE. It is not clear whether TM or RE

is the rate-determining step. From the total Gibbs free energy with base compared

to base-free, it is obvious that the role of the base affects the energy significantly

leading to a decrease in the energy. In summary, the primary role of the base in the

Pd(0) formation reaction is to reduce both the energy barrier of the TM step and

the total Gibbs free energy, leading to easy release of the active catalyst Pd(0).

In the overall reaction, the TM or RE step is the rate-determining step depending

on donor atoms and the total Gibbs free energy of the Pd(0) formation from both

PdYCY and PdYCY’ reactions indicate a non-spontaneous unfavourable process.

This provides a foundation for understanding the unsymmetrical and symmetrical

pincer complexes in solvent which will be used for predicting the catalytic activity.
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Table 6.3. The Gibbs free energy barrier, ∆G‡ for the main key steps TM and
RE and the total Gibbs free energy of reaction, ∆Gr for pincer palladacycles in gas
phase and solvent in the presence of a base. All energies are in kJmol−1.

Compound Step Gas phase Solvent
Toluene THF Acetonitrile

PdNCN TM 105.5 107.9 107.5 106.0
RE 108.6 114.7 120.9 125.1

∆Gr 85.3 43.6 31.4 29.4
PdSCS TM 93.5 98.7 103.1 105.2

RE 91.8 98.8 105.4 109.3
∆Gr 104.1 57.1 39.8 35.1

PdPCP TM 162.0 163.1 163.6 163.7
RE 55.7 62.3 67.8 70.6

∆Gr 216.0 169.4 151.9 147.2
PdNCS TM 126.2 122.3 119.1 117.5

RE 86.0 91.9 97.6 101.0
∆Gr 95.3 52.8 40.0 37.8

PdSCP TM 122.0 119.0 115.9 114.1
RE 80.8 89.9 78.9 102.5

∆Gr 151.6 110.9 99.0 97.2
PdNCP TM 130.1 127.9 125.9 124.7

RE 78.2 85.4 92.1 96.0
∆Gr 165.9 124.2 111.8 109.8

6.4.5 Solvation effects on the Pd(0) formation reaction

Three types of solvent, two non-polar solvents: toluene (ε = 2.374) and tetrahy-

drofuran (ε = 7.426) and the polar solvent acetonitrile (ε = 35.688), were used to

investigate the solvent effect on the Pd(0) formation reaction from the PdYCY and

PdYCY’.

The Gibbs free energy at each stationary point in the gas phase and solvent are

in the appendices (Table B.1 to Table B.4 for base-free and Table B.5 to Table B.8

with base). It is shown that the Gibbs free energy increases along the pathway, with

increasing solvent field. Table 6.2 and Table 6.3 show the effect of solvent on the key

steps in the formation reaction.

In considering the elementary steps under base-free conditions, the solvent effects

increase the activation energy when increasing the dielectric constant and the trend

in the reaction barrier follow a similar pattern as the gas phase (Table 6.2). Moreover,

the solvent-correction also affects the total Gibbs free energy, making the reaction
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less favourable (the total Gibbs free energy increases compared to gas phase).

Under the presence of the base, the energy barrier of the elementary steps are

similar in magnitude when the dielectric constant increases, and have a similar trend

to that in the gas phase (Table 6.3). However, the solvent effect on the total Gibbs

free energy causes a dramatic decrease compared to that in the gas phase, due to

the stabilisation of the free halide ion. It is clear that in the presence of the base the

solvent effect is crucial for decreasing the total Gibbs free energy and hence making

the reaction more favourable.

6.4.6 Rationalisation of the catalytic activity by the model

Pd(0) formation reactions

In order to rationalise the catalytic activity using Pd(0) formation reactions, the

experimental data of the catalytic activity in the Suzuki-Miyaura coupling reaction

using pincer palladacycle were used to compare against the computational calculations.

We collaborate with the Spencer group at Sussex and have used the catalytic activity

results from Dr G. W. Roffe.187 Roffe tested the activity of several unsymmetrical

pincer palladacycles PdYCY’ in the Suzuki-Miyaura coupling reaction (Scheme 6.23).

Br

B(OH)2 0.01 mol % [Pd],
K2CO3, o-Xylene
6 h, 130 oC

product I

Scheme 6.23. Suzuki-Miyaura cross-coupling reaction tested in order to compare
with the calculation data.

The experimental catalytic activities were studied under the base-condition in

the non-polar solvent o-xylene. In order to rationalise these reactivities using simple

pincer palladacycles (1-6), the presence of the base in toluene is chosen for comparing

with experimental data (toluene solvent was chosen since it has a dielectric constant

similar to o-xylene; ε for toluene is 2.374 and ε for o-xylene is 2.545).
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Table 6.4 provides the results from these calculations and the Gibbs free energy

profile is shown in Figure 6.23. In consideration of symmetrical pincer palladacycles,

the active Pd(0) from PdNCN and PdSCS have lower energy barrier and total Gibbs

free energy than PdPCP (PdPCP has the highest energy barrier and total Gibbs

free energy). When Pd(0) formation from the unsymmetrical pincer palladacycle

PdNCS is considered, the results show that the Gibbs free energy barrier increases

compared to PdNCN and PdSCS, but its total Gibbs free energy has only a small

change. If the N donor ligand arm of PdNCS is changed to P, providing PdSCP, it

was found that the Gibbs free energy barrier barely changes, but the total Gibbs

free energy increases dramatically. We have also found that when the S donor ligand

arm of PdNCS is changed to P, giving PdNCP, the Gibbs free energy barrier remains

similar, but the total Gibbs free energy increases significantly. These results indicate

that the P donor ligand arm in the unsymmetric palladacycles causes an increase in

the total Gibbs free energy.

Before using the simple pincer palladacycles (1-6) to rationalise the catalytic

activity, we will highlight the experimental catalytic activity results of unsymmetric

palladacycles and provide the key steps (TM and RE) and total Gibbs free energy

from computational studies by Roffe (Table 6.5).187 The experimental data reveals

that the pre-catalysts PdNCN’ (8-9) and PdNCP (10-11) provide the highest GC

percentage conversion of product I, while the PdNCS (7d-7e) achieve the lowest GC

percentage conversion. The results from calculations show that PdNCN’ (8-9) has a

higher TM and RE energy barrier compared to PdNCS (7d-7e). Comparing PdNCP

(10-11) and PdNCS (7d-7e), the total Gibbs free energy of PdNCP (10-11) has a

significantly greater value than PdNCS (7d-7e).

To rationalise the catalytic activity using simple pincer palladacycles (1-6), the

catalytic activities of PdNCS (7a-7c), PdNCP(10-11), PdSCP (12) and PdNCN

(13) in Table 6.4 are used to compare.

The experimental data of PdSCS (14) and the calculation results of PdSCS (2)

are considered (although it should be noted that this is for an alkyl substituted

thioether arm rather than phenyl substituted). The experimental result shows that

the PdSCS (14) achieves a low percentage conversion (47 %). In consideration of

the computational result, it was found that TM and RE energy barriers of PdSCS
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(2) have the lowest value and its total Gibbs free energy also has the smallest value.

These results agree with Roffe’s work and show that the lowest percentage conversion

has the lowest both Gibbs free energy barrier and total Gibbs free energy. The

results suggest that formation of the active Pd(0) species is easier when there is a

low energy barrier and a low total Gibbs free energy, but this does not result in a

higher yield.

The unsymmetric palladacycles PdNCP (10-11) provides a good catalytic activity

with 94 and 97 % conversion. In the calculated result, PdNCP (6) has a high energy

barrier and total Gibbs free energy. This agrees well with the calculated results

for PdNCP (10-11). The experimental observation can be explained as the high

energy barrier can control the active Pd(0) species generation by a slower release and

retards the agglomeration of palladium nano-particles to form inactive palladium

black, acting as an inactive catalyst.170 In addition, PdNCN (1) shows both a high

TM and RE transition state with low total Gibbs free energy, but it shows a high

percentage conversion (98 %) for PdNCN (13). However it is unclear the effect of

the Br ligand in PdNCN (13) and so a Pd(0) formation from PdNCN (1) calculation

cannot be used to provide an explanation of the catalytic activity of PdNCN (13).

The PdNCS (7a-7c) and PdSCP (12) have been found to have an intermediate

catalytic activity with a percentage conversion of around 64 - 85 %. The calculations

from the PdNCS (4) and PdSCP (5) reactions show that their energy barriers are

similar to PdNCP (6) but they have a lower total Gibbs free energy than PdNCP

(6). This result implies that the total Gibbs free energy is an important factor for

the high catalytic activity case. The evidence for supporting this is by comparison

between PdNCS (4) and PdSCP (5), where PdSCP (5) has a higher total Gibbs free

energy than PdNCS (4), which shows the catalytic activity of PdSCP (12) is better

than PdNCS (7a-7c).

Additionally, the energetic span model (see section 5.4.4) has been used to

determine the rate-determining state for the reaction of pincer palladacycles 1 to

6. The TSmax appears before Imin (see Figure 6.23) and thus the energetic span

δE can be calculated using TSmax − Imin + ∆Gr.144 Table 6.6 provides δE for the

formation of Pd(0) using 1 to 6. The trend in δE follows the trend in catalytic

activity discussed above, i.e. PdNCP (6) has the highest δE, and PdNCP (10-11)
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have good activity (94 - 97 %). PdNCS (4) and PdSCP (5) have intermediate δE,

and PdNCS (7a-7c) and PdSCP (12) have intermediate activity. PdSCS (2) has

the smallest δE and PdSCS (14) has the worst activity.

In summary, the results show that the active Pd(0) formation reaction originating

from simple pincer palladacycles (1-6) can be used to rationalise the catalytic activity.

The calculations suggest that a good catalyst should have the ability to allow a slow

release of active Pd(0) species, which is controlled by a higher energy barrier and

total Gibbs free energy.

Table 6.4. Gibbs free energy barrier (∆G‡) and total Gibbs free energy ∆Gr from
calculations in this work (with base and toluene solvent). Gibbs free energy values
are in kJmol−1.

Compound Computational data
Y Y’ ∆G‡(TM) ∆G‡(RE) ∆Gr

PdNCN (1) Me2NCH2 Me2NCH2 107.9 114.7 43.6
PdSCS (2) MeSCH2 MeSCH2 98.7 98.8 57.1
PdPCP (3) Me2PCH2 Me2PCH2 163.1 62.3 169.4
PdNCS (4) Me2NCH2 MeSCH2 122.3 91.9 52.8
PdSCP (5) MeSCH2 Me2PCH2 119.0 89.9 110.9
PdNCP (6) Me2NCH2 Me2PCH2 127.9 85.4 124.2
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Table 6.6. Energetic spans (δE) of Pd(0) formation from pincer palladacycle in the
presence of the base in toluene solvent. Energy values are in kJmol−1.

PdYCY’ TSmax Imin ∆Gr δE
PdNCN (1) 126.7 -40.6 43.6 125.0
PdSCS (2) 122.3 -60.9 57.1 116.1
PdPCP (3) 122.3 -45.4 169.4 117.9
PdNCS (4) 134.0 -68.3 52.8 122.3
PdSCP (5) 134.4 -63.5 110.9 126.9
PdNCP (6) 145.6 -52.9 124.2 146.7

6.5 Conclusion

The formation of Pd(0) has been investigated using symmetrical and unsymmetrical

pincer palladacycles with PhB(OH)2 in the absence and presence of a base. In

the Pd(0) formation mechanism, there are two main steps: transmetallation and

reductive elimination and it was found that all pincer palladacycles of symmetric

and unsymmetric nature favour a non-spontaneous process under both conditions.

In the absence of a base, the transmetallation step has a Gibbs free energy barrier

higher than the reductive elimination step indicating that the transmetallation step

is rate-determining. When the base was introduced in the reaction, it was shown that

the Gibbs free energy barrier of the transmetallation step and the total Gibbs free

energy of the reaction decreased dramatically. In addition, the inclusion of solvent

corrections causes an increase or decrease of the elementary transition energy barrier

and this is dependent on the absence or presence of a base. Furthermore, on the

inclusion of solvent effects with increasing dielectric constant, the total Gibbs free

energy became greater in the base-free reaction, while it decreased in the presence

of the base. In comparison with the experimental data, the computational results

suggest that a good pre-catalyst should have either a higher Gibbs free energy barrier

or a larger total Gibbs free energy, or both, leading to a slow release of the active

Pd(0)-catalyst. A fast release would result in Pd-black formation which stops the

reaction. Finally, our investigation showed that the symmetrical and unsymmetrical

pincer palladacycles show no significant difference in catalytic activity, but the pincer

donor ligands play a significant role.



Chapter 7

The Functionalisation of

Benzodiazepines Using

Pd(II)/Ru(II) Catalysts: a DFT

Study

In this chapter, density functional theory (DFT) calculations are performed on the

mechanism for the functionalisation of benzodiazepines via C-H bond activation. The

effects of catalyst have been studied. Three conditions have been investigated, which

are i) functionalisation reaction using Pd(II)/Ru(II)-catalysts, ii) functionalisation

reaction using a Pd(II)-catalyst and iii) functionalisation reaction without catalyst.

7.1 Introduction

7.1.1 Benzodiazepine chemistry

A benzodiazepine is a heterocyclic molecule, where the core structure consists of a

benzene ring attached to a diazepine ring (Figure 7.1) and there are two nitrogen

atoms in the diazepine ring.199 Benzodiazepines have been used for patients who

have psychological disorders such as sleep, anxiety, seizure disorder, etc.200 No one

understood how benzodiazepines worked until Haefely et al. found the mechanism

of benzodiazepines acting on specific sites.201,202 They concluded that an inhibitory
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neurotransmitter γ-aminobutyric acid (GABA) in the brain is important for the

benzodiazepine to work. If there is no GABA, the benzodiazepine has no function.201

Additionally, Okada et al.203 and Braestrup et al.204 studied a mechanism of the

benzodiazepines in the central nervous system and showed that the benzodiazepine

binds to specific sites in the central nervous system.

N

N
R1

R2

R4

R3

core structure of benzodiazepine γ-aminobutyric acid (GABA)

H2N OH

O

Figure 7.1. Core structure of benzodiazepines where R represents substitutions or
side chains on the core structure and γ-aminobutyric acid (GABA), a neurotransmit-
ter.205

A good review explaining the mechanism of benzodiazepine binding to receptors

was written by Rudolph and Knoflach.199 They showed an example of a GABAA

receptor mechanism, which is a ligand-gated chloride channel. The GABAA receptor

is a channel for allowing Cl– specifically to pass through postsynaptic membranes.

The most common GABAA receptor type has five subunits that consist of two

α-subunits, two β-subunits and one γ-subunit (Figure 7.2). The GABAA active

site is located at the interface between the α and β-subunits, while binding sites

of benzodiazepines occur between the γ and α-subunits. Normally, the brain will

produce more GABA, when we have more stress than normal. When GABA binds to

the GABAA receptor, the conformation of the GABAA receptor is changed to permit

Cl– ions to pass through. Cl– can hyperpolarise the cell, which means a change in

the membrane potential to a more negative charge; and this process can lower stress

in humans. In terms of benzodiazepine, it enhances the activity of GABA by binding

at a benzodiazepine active site on a GABAA receptor, and increases Cl– influx via

the postsynaptic membrane.204,205
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Figure 7.2. GABAA and benzodiazepine receptors on postsynaptic membrane.

Benzodiazepines are not only prescribed for psychological issues but have also

been found to possess a wide range of biological activities such as anti-HIV,206

antibiotic activity,207,208 antiarrhythmics,209 enzyme inhibitors210 and anticancer

agents.210

Sternbach et al.211 synthesised a chlorodiazepoxide (Figure 7.3a)). The authors

reported that the compound showed sedative and anticonvulsant properties when

tested on unanesthesised cats. Chemists then have tried to synthesise different types

of benzodiazepines for increasing activity and efficiency. Figure 7.3 shows some

common drugs prescribed for patients, in each case their structure consists of N

at positions 1 and 4 in the core seven-membered ring, and this is referred to as a

1,4-benzodiazepine.205 For example in organic synthesis, three principal ways for

1,4-benzodiazepine to be synthesised are shown in Scheme 7.1.205,212,213 Route i)

and ii) were proposed by Sternbach et al.212 For route i), 1,4-benzodiazepine was

synthesised via only one step, by mixing o-aminobenzophenone with excess glycine

ethyl ester in HCl and pyridine. In route ii), it starts from o-aminobenzophenone

reacting with XCH2COX to produce haloacetamido compound, then cyclisation

reaction occurred in liquid ammonia to produce 1,4-benzodiazepine. Route iii)

was proposed by Stempel et al.213 In the first step, o-aminobenzophenone reacted

with carbobenzoxyglycine to generate carbobenzoxyglycylamidobenzophenone where

carbobenzoxy acts as protecting group. Glycylamidobenzophenone was produced by

a deprotecting group using Pd-charcoal in acid or HBr with acetic acid. The final

step was the cyclisation of the glycylamidobenzophenone.
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Figure 7.3. Benzodiazepine compounds used for psychosedative and tranquilising
agents: a) chlorodiazepoxide, b) diazepam, c) oxazepam and d) nitrazepam.205
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Scheme 7.1. Three principal ways for 1,4-benzodiazepine synthesis.205,212,213
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To synthesise of a number of analogous compounds for testing for widespread

biological activities, large combinatorial libraries of 1,4-benzodiazepines are required.

An example of a library of 1,4-benzodiazepine synthesis was reported by Ellman et al.

(Scheme 7.2).214 It could be synthesised using 9-fluorenylmethoxycarbonyl (Fmoc)-

NHCH(R3)C(O)F (R3 is an amino acid group). Initially, o-aminobenzophenone deriv-

ative I reacted with Fmoc-amino acid fluoride in CH2Cl2, resulting in Fmoc-protected

anilines. This step provided the anilide compound. Then, the 1,4-benzodiazepine

library was formed by removing Fmoc protecting group using morpholine in dimethyl-

formamide (DMF) followed by adding lithiated 5-phenylmethyl-2-oxazolidinone in

DMF:THF (1:10), where THF is tetrahydrofuran.

O

NH2

N

NH
O

o-aminobenzophenone derivative I

O

O

NHCH(R3)C(O)F

FmocNHCH(R3)C(O)F

R2

R1

FmocNHCH(R3)C(O)F

CH2Cl2

O

NHR2

R1

O
R3

NHFmoc

1) morpholine, DMF

2) lithiated 5-phenylmethyl-2-oxazolidinone
    DMF/THF (1:10)

R2

=  solid support

R1

R3

R1 = OH
R2 = Cl, OH
R3 = amino acid group

Scheme 7.2. Libraries of 1,4-benzodiazepine proposed by Ellman el al.214

Another example of library synthesis is shown in Scheme 7.3. A 1,4-benzodiazepine

library I was synthesised from 2-amino phenylketone using tert-butyloxycarbonyl

(Boc)-NHCH(R2CO2H) where R2 is H, isopropyl (iPr), benzyl (Bn) or CH2OBn

with 2-ethoxy-1-ethoxycarbonyl-1,2-dihydroquinoline (EEDQ) in dichloromethane

(DCM), then adding TFA in DCM followed by CH3COONH4 with CH3COOH. A

1,4-benzodiazepine library II was synthesis from the 1,4-benzodiazepine library I by

using the substitution reactions. Hydrogen at nitrogen in 1,4-benzodiazepine library
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I was substituted by alkyl or benzyl when it was treated by sodium hydride with

alkyl halides.215

NH2

O

R1

Boc-NHCH(R2)CO2H

EEDQ, DCM N

H
N

O

R2

R1

2-amino phenylketone
library I

1,4-benzodiazepine

N

N
O

R2

R1

library II

1,4-benzodiazepine

R3

R1 = phenyl,  isopropyl, 2-pyridine, cyclohexyl  

R2 = H,  iPr, benzyl (Bn) and CH2OBn

R3 = H, methyl, Bn, 2-methylbiphenyl, 8-methlyquinoline, CH2CN, CH2COOBn and CH2COOH

NaH, R3Br

or MeI, DMF

Scheme 7.3. Libraries of 1,4-benzodiazepine proposed by Spencer et al.215

Reducing the number of steps in a synthesis is key for saving time and re-

agents for characterisation, therefore, a one-pot procedure is a good technique

for 1,4-benzodiazepine synthesis. For instance, in 2003, 2-substituted 5-phenyl-

1,4-benzodiazepine derivatives I and II were synthesised via cyano reduction and

reductive cyclisation reactions (Scheme 7.4).216 Amino nitrile was synthesised from

the reaction of o-aminobenzophenone, N-protected α-amino aldehyde and trimethyl-

silyl cyanide. To form 2,3-dihydro-1H -1,4-benzodiazepine, when Raney nickel catalyst

was added, the cycanide group was reduced to an amino group and then a seven-

membered ring was formed. 2-substituted 5-phenyl-1,4-benzodiazepine derivative

I was formed by removing the Boc-protecting group using HCl in EtOAc and

then bis(trichloromethyl)carbonate ((Cl3CO)2CO) was added. For 2-substituted

5-phenyl-1,4-benzodiazepine derivative II, HCl in EtOAc was added for removing

the protecting group, followed by adding the Mosher acid amide (α-methoxy-α-

(trifluoromethy)phenylacetic acid chloride).
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Scheme 7.4. 2-Substituted 5-phenyl-1,4-benzodiazepine derivatives synthesis by
Herrero co-workers. a: 1) HCl, EtOAc followed by 2) (Cl3CO)2CO, Et3N, CH2Cl2;
b: 1) HCl, EtOAc followed by 2) α-methoxy-α-(trifluoromethyl)phenylacetic acid
chloride.216
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Wang et al.217 proposed a new method for 1,4-benzodiazepine derivative synthesis

via a one-pot method. Initially, N -[2-bromomethyl(aryl)]trifluoroacetamide was

reacted with 1-arylaziridine-2-carboxylate in acetonitrile (Scheme 7.5). This reaction

produced the ring-opened compound. The 1,4-benzodiazepine derivative was found

via intramolecular nucleophilic displacement using acetonitrile in triethyamine as a

base.

NHCOCF3

Br N

CO2Me

CH3CN NHCOCF3

N
CO2CH3

Br

CH3CN, Et3N

N

N

F3COC
CO2Me

R
R R

R

R

R

N-[2-bromomethyl(aryl)]-
trifluoroacetamide

1-arylaziridine-
2-carboxlate ring-opened compound

1,4-benzodiazepine derivative

Scheme 7.5. One-pot synthesis of 1,4-benzodiazepine derivative by Wang et al.217

Recently, Popp et al.218 synthesised 1,4-benzodiazepine via a cyclisation re-

action in a one-pot synthesis (Scheme 7.6). The starting 2-aminobenzyl alcohol

reacted with di-tert-butyl dicarbonate, a N-protecting agent, in THF to form Boc-

protected aminobenzyl alcohol. Then, PPh3, diisopropyl azodicarboxylate and

N -(2,2-dimethoxyethyl)-2-nitrobenzenesulfonamide in THF were added, and Boc-Ns-

protected diaminobenzene was formed where Ns is 2-nitrobenzene-1-sulfonyl (nosyl)

protecting group. The Boc-protecting group was removed and cyclisation occurred

when trifluoroacetic acid and triethylsilane in dichloromethane were added in the

reaction. Finally, the Ns-protecting group was removed using thiophenol and K2CO3

in MeCN.
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Scheme 7.6. One-pot N-deprotection and cyclisation of a 1,4-benzodiazepine de-
rivative by Popp et al. a: di-tert-butyl dicarbonate, THF; b: PPh3, diisopropyl
azodicarboxylate, N -(2,2-dimethoxyethyl)-2-nitrobenzenesulfonamide, THF; c: tri-
fluoroacetic acid, triethylsilane, dichloromethane; d: thiophenol, K2CO3, MeCN.218

Among the metal-catalysts used in organic reactions, Pd-catalysts have been

found to be effective at increasing the rate of the reaction. It has been repor-

ted in reviews that Pd-catalysts were used in intramolecular cyclisation reaction

for heterocyclic compounds.219,220 Pd-catalysts were also used to synthesise het-

erocyclic benzodiazepine compounds. For example, Beccalli et al.221 synthesised

the 1,4-benzodiazepine derivative via intramolecular Pd-catalyst amination of N -

allyl-antranilamide (Scheme 7.7). The reaction started from mixing o-nitrobenzoyl

chloride and allylamine to produce o-nitrobenzamide, which was then reduced by

Fe/EtOH to produce aminoamide. The amino group in aminoamide was blocked

via tosylation. Finally, the 1,4-benzodiazepine product was produced by adding

Pd(OAc)2 in base via intramolecular cyclisation. In another example, Neukom et al.

(2011)222 discovered a process for the synthesis of the 1,4-benzodiazepine using

Pd-catalyst. 1,4-benzodiazepine product was prepared by Pd-catalysed coupling

between N -allyl-2-aminobenzylamine and aryl bromide (Scheme 7.8).
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Scheme 7.7. 1,4-benzodiazepine derivative synthesis via cyclisation using Pd-
catalysis.221

N

NH
Ar1

X R2

R1

X = O, H2

N

N
Ar1

X R2

R1

Ar2Ar2 Br
Pd-catalyst

NaOtBu, xylenes

N-allyl-2-aminobenzylamine 1,4-benzodiazepine

Scheme 7.8. Carboamination reaction of saturated 1,4-benzodiazepines using a
Pd-catalyst.222

In 2014, Rigamonti and co-workers223 proposed a method for the preparation

of a saturated 1,4-benzodiazepine (Scheme 7.9). The latter was synthesised using

the Pd(0) catalyst formed by reaction of Pd(CH3CN)2Cl2, BuLi and base in DMSO

(Scheme 7.9).

N

NH
R3

O R2

R1

N

N
R3

O R2

R1

Ar
Ar X

Pd(0)-catalyst

RR

Scheme 7.9. Pd-catalysed synthesis of saturated 1,4-benzodiazepines by Rigamonti
and co-workers.223

It has been found that 1,4-benzodiazepine structures (core structures) have been

studied widely, while the introduction of different R groups into benzodiazepine struc-

tures is inefficient.(Scheme 7.10) The functionalisation via C-H bond activation using

Pd(OAc)2, proceeding via palladacycle intermediate was reported by Spencer et al.224
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in 2008 and showed percentage conversion for the functionalised-1,4-benzodiazepine

product of around 60 % (R is only phenyl group). Recently, Khan et al. under the

supervision of Spencer225 studied functionalisation on benzodiazepine (Scheme 7.10).

They successfully studied the functionalisation of different R group on the aryl group

at position 5 (R = C6H5, o or m-FC6H4, o or m-CF3C6H4, and when methyl at N was

substituted by H, R = C6H4, o or m-FC6H4, o or m-CF3C6H4, p-CH3OC6H4) and

p-NO2C6H4). The 1,4-benzodiazepine structures were synthesised once, then func-

tionalised R groups were introduced via C-H bond activation either using Pd(OAc)2
alone or using Pd(OAc)2 with the photocatalyst tris-2,2’-bipyridylruthenium(II) ion

([Ru(bpy)3]2+).

N

N
OH3C

1,4-benzodiazepine

Pd(OAc)2
N

N
OH3C

R

functionalised 1,4-benzodiazepine

R X

Scheme 7.10. Pd-catalyst synthesis of functionalised 1,4-benzodiazepines by Spen-
cer group.225

The functionalised chloro-1,4-benzodiazepine which is shown in Scheme 7.11 for

R-X = (4-nitrophenyl)-(2,4,6-trimethylphenyl)iodonium triflate was synthesised using

Pd(OAc)2 in acetic acid, resulting in a yield of 55 %.225

N

N
OH

chloro-1,4-benzodiazepine

Pd(OAc)2

N

N
OH

functionalised chloro-1,4-benzodiazepine

Cl
NO2

Cl

I+

NO2

Scheme 7.11. Functionalised chloro-1,4-benzodiazepine using Pd(OAc)2 by Spencer
group.225

This yield was increased to 71 % when the functionalised 1,4-benzodiazepine was

synthesised by using p-nitrobenzenediazonium with Pd(OAc)2 and the photocatalyst

[Ru(bpy)3]2
+ in methanol (Scheme 7.12).
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N

N
OH

1,4-benzodiazepine

Pd(OAc)2/[Ru(bpy)3]2+
N

N
OH

functionalised 1,4-benzodiazepine

NO2

+N2

NO2

hυ

Scheme 7.12. Functionalised 1,4-benzodiazepine using Pd(OAc)2 and photocatalyst
[Ru(bpy)3]2

+ by Spencer group.

The aim of this chapter is to investigate the functionalisation of 1,4-benzodiazepines

using p-nitrobenzenediazonium (see Scheme 7.12) to elucidate the effect of the catalyst

Pd(OAc)2 with and without the photocatalyt [Ru(bpy)3]2
+.

7.1.2 [Ru(bpy)3]2+ chemistry

[Ru(bpy)3]2+ (tris-2,2’-bipyridylruthenium(II) ion) has played an important role since

Tokel-Takvoryan et al.226 studied its chemiluminescence behaviour. [Ru(bpy)3]2+

is a coordination complex, where the ruthenium centre coordinates with three 2,2’-

bipyridine bidentate ligands (Figure 7.4). The spectroscopy, photochemical properties

and redox properties of [Ru(bpy)3]2+ have been studied extensively.227

N
N

N
N

N

N
Ru

2+

Figure 7.4. Tris-2,2’-bipyridylruthenium(II) ion.

One of the most important applications of [Ru(bpy)3]2+ is as a photocata-

lyst.228–230 The exciting application of combining the Pd-catalyst and Ru-photocatalyst

allows for C-H activation at room-temperature.229 A possible reaction mechanism for

Pd(II)/Ru(II)-catalysed C-H activation is shown in Scheme 7.13 proposed by Kalyani

et al.229 in 2011. The key steps for this reaction are i) photoexcitation of Ru(II)-

photocatalyst, ii) oxidative quenching by [ArN2]BF4, an electron-accepting quencher,

and Ar-radical generated, iii) coordination of Ar-radical with Pd(II)-complex that was
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generated by Pd-catalyst coordination with the ligand (C-LH), iv) a single electron

transfer between Pd(III)-complex and [Ru(bpy)3]3+ to form the Pd(IV)-complex and

v) C-C formation reaction leading to the product.229

C
PdIVL

Ar

C
PdIIL

C L H

C L Ar+  H+

C
PdIIIL

Ar

Ar

Cycle 1

Ru(bpy)32+
Ru(bpy)32+*

Ru(bpy)33+

Cycle 2

[ArN2]BF4

BF4  +  N2  +  Ar

visible light
C L H =  ligand

Scheme 7.13. Possible reaction mechanism of functionalisation using Pd(II)/Ru(II)-
catalysts.229

This reaction mechanism will form the basis of the present study. The next

section will describe how we will calculate the electron transfer process.

7.1.3 Electron transfer theory

a) Description of the method for determining the excited state redox

potential

An electron transfer quenching process was first studied by Gafney and Adamson.231

They studied this process using the reaction between a [Ru(bpy)3]2+ donor and

[Co(NH3)5Br]2+ acceptor, where the [Ru(bpy)3]2+ is excited by ultraviolet (UV) and

visible light. The excited-state [Ru(bpy)3]2+* can be quenched through two processes;

i) oxidative quenching or ii) reductive quenching, by an electron-accepting (EA) or

an electron-donating (ED) quencher, respectively (Scheme 7.14).232

Redox properties of the [Ru(bpy)3]2+ ground-state and lowest excited-state can be

determined by applying a Latimer diagram.233 The Latimer diagram for the excited

state redox potential calculation is shown in Figure 7.5.
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[Ru(bpy)3]2+   +  hυ                   [Ru(bpy)3]2+*a)

[Ru(bpy)3]2+*   +  EA                    [Ru(bpy)3]3+   +   EA-b)

c) [Ru(bpy)3]2+*   +  ED                    [Ru(bpy)3]+   +   EA+

Scheme 7.14. a) Electron excited-state of tris-2,2’-bipyridylruthenium(II) ion by
UV and visible light, b) oxidative quenching and c) reductive quenching.232

[Ru(bpy)3]2+*

[Ru(bpy)3]2+ [Ru(bpy)3]3+[Ru(bpy)3]+
E0(Ru3+/2+)E0(Ru2+/+)

E0-0

Figure 7.5. The Latimer diagram for calculation of excited state redox potential.233

The excited-state reduction potential E0(Ru2+∗/+) can be calculated by:

E0(Ru2+∗/+) = E0(Ru2+/+) + E0−0, (7.1)

while the excited-state oxidation potential E0(Ru3+/2+∗) is determined using:

E0(Ru3+/2+∗) = E0(Ru3+/2+)− E0−0 (7.2)

where E0−0 is the 0-0 transition energy and E0(Ru2+/+) and E0(Ru3+/2+) are the

ground-state redox potentials.233

Based on the simplified Jablonski diagram (Figure 7.6), E0−0 can be determined

by the difference in energy of the excited-state (EES) and the energy of the ground

state (EGS), which gives the adiabatic energy (Eadia). This value is then corrected

for the zero-point vibrational energy (ZPVE):234,235

E0−0 = (EES − EGS) + (EZPVE-ES − EZPVE-GS) = Eadia + ∆EZPVE. (7.3)

where EZPVE-ES is the ZPVE of the excited-state structure and EZPVE-GS is the ZPVE

of the ground-state structure.
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EES

EGS

EZPVE-ES

EZPVE-GS

E0-0Eadia

Geometry

Energy

Figure 7.6. Simplified Jablonski diagram.234

b) Electron transfer between complexes

Electron transfer (ET) is a chemical process that can be found in biological and

chemical processes such as ET in protein,236 or dye sensitised solar cells.237 In

this thesis chapter, we have focused on inorganic chemical reactions that can be

divided into two mechanisms.238 The first is the outer-sphere ET mechanism. In this

mechanism, an electron is transferred when two complexes contact each other, which

occurs when the coordination sphere of the donor molecule contacts the coordination

sphere of the acceptor molecule, giving rise to ET between the molecules. For this

process, there is only a small change in the bond distance between the metal and

ligand (Figure 7.7a). The second process is an inner-sphere ET mechanism, which

involves a bridging ligand transferring electrons between complexes. When the

complexes contact each other, a ligand substitution will create the bridge between

the complexes, and the coordination spheres of both complexes are changed. This

leads to a change in the oxidation state of the complexes (Figure 7.7b). Examples of

good bridging ligands for inner-sphere reaction are Cl–, SCN–, N3
– and CN–. In this

work, only the outer-sphere electron transfer mechanism is considered.
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Figure 7.7. Electron transfer process diagram of inorganic reaction; a) outer-sphere
and b) inner-sphere redox reactions.

c) Marcus theory

Marcus239–243 developed a theory to explain electron transfer. We can use two para-

bolic curves for representing the structures along the reaction coordinate (Figure 7.8).

DG0

DG++

l

Reaction 
coordinate

G

Figure 7.8. Parabolic curves to represent electron transfer from reactant to
product.244

There are two parameters to control the ET reaction that are i) the driving

force and ii) the reorganisation energy.244 The driving force is −∆G0, while the

reorganisation energy (λ) is the energy change when a molecule is rearranged. From

the relationship of two parabolas, Marcus provided the equation (7.4) to find the
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Gibbs free activation energy (∆G‡).

∆G‡ = (λ+ ∆G0)2

4λ = λ

4

[
1 + ∆G0

λ

]2

(7.4)

When the driving force is zero i.e. ∆G0 = 0, the equation (7.4) reduces to:

∆G‡ = ∆G‡0 = λ

4 . (7.5)

λ consists of the inner reorganisation energy of the reactants (λi) and the solvent

reorganisation energy (λo):

λ = λi + λo (7.6)

Marcus defined these parameters for a homogeneous ET process. λi is described by

the following equation:

λi =
kRj k

P
j

kRj + kPj
(qRj − qPj )2 (7.7)

where kRj and kPj are the normal mode constants at the vibrational coordinates of

reactant and product, respectively and qRj − qPj are the changes in the bond lengths

and bond angles of the reactant and product. λ0 can be calculated by the following

equation:

λo = NAe
2

4πε0

(
1
εop
− 1
εs

)( 1
2r1

+ 1
2r2
− 1
R

)
(7.8)

where, NA is the Avogadro constant (6.022× 1023 mol−1), e is the electronic charge

(1.602× 10−19 C) , ε0 is the vacuum permittivity (8.854× 10−12 J−1 C2 m−1) and, εop
and εs are the optical and static dielectric constant for the solvent, respectively. r1,

r2 and R are the hard sphere radii of donor, acceptor and sum of hard sphere radii

donor and acceptor, respectively. The optical dielectric constant can be calculated

from the square of the reflective index.245

d) Marcus theory with outer-sphere electron transfer

Savéant246 stated that the redox reaction in liquid phase does not involve a bond

breaking or a bond forming. In this situation, a quadratic activation free energy-

driving force relationship can be used to calculate the Gibbs free energy of activation,

which was developed by Marcus239–243 and Hush.247 In the case of the outer-sphere
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ET, it is also not involving the bond breaking or bond formation and this reaction

occurs at zero driving force. We can determine the Gibbs free energy barrier for

outer-sphere ET ∆G‡ET by using:

∆G‡ET = ∆G‡0
[
1 + ∆Gr

4∆G‡0

]2

(7.9)

where ∆Gr is the reaction energy and ∆G‡0 is the intrinsic barrier (i.e. the Gibbs

free energy barrier at zero driving force).248,249

7.2 Aim of this work

We have used density functional theory calculations to study the feasibility of

mechanisms for functionalisation via C-H bond activation at the 5-position on 1,4-

benzodiazepines. In this work, reactant 1,4-benzodiazepines are called unfunctionalised-

benzodiazepines (unf-BZD) and product 1,4-benzodiazepines are called functionalised-

benzodiazepines (func-BZD). We have examined the role of the catalyst by calculating:

i) the reaction with Pd(OAc)2/[Ru(bpy)3]2+-catalysts (Pd(II)/Ru(II)-catalysts), ii)

the reaction using only Pd(OAc)2 (Pd(II)-catalyst) and iii) the reaction without any

catalyst (Scheme 7.15).
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N2+

NO2

NO2

H

H+i

N

NH
O

Pd(OAc)2

N

NH
O

N2+

NO2

NO2

H

ii

MeOH, Δ

N

NH
O

N

NH
O

N2+

NO2

NO2

H

iii MeOH

N2

H+ N2

H+ N2

Scheme 7.15. Model reactions investigated in this study, calculated in methanol
solvent.
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7.3 Computational details

All calculations were performed using the Gaussian09 program.87 All optimisation of

structures were carried out with the same procedure as our pincer palladacycle study

since this method provides accurate bond distances around the palladium atom,

i.e. the PBE45,46 functional with the effective core potential of Stuttgart/Dresden

ECP (SDD)57 for describing Pd and Ru, and 6-31+G(d,p) basis set for other atoms

(PBE/6-31+G(d,p)[SDD]) to find the stationary state structures. Single-point energy

calculations were carried out at the PBE optimised geometries using both the PBE

and the ωB97XD53 functional, with implicit solvent corrections. The SDD ECP was

used for Pd and Ru, while the large basis set 6-311++G(2df,2p) was used for other

atoms.

Firstly, we studied the effect of solvation and cavity models on the ground-state

redox potential of [Ru(bpy)3]2+ in its low spin state (singlet) and high spin state

(quintet). [Ru(bpy)3]+ and [Ru(bpy)3]3+ were also calculated in the low-spin and

high-spin states; the low-spin and high-spin states of [Ru(bpy)3]+ are doublet and

quartet, respectively; low-spin and high-spin states of [Ru(bpy)3]3+ are doublet

and sextet, respectively. Solvent effect on both the high-spin and low-spin states

[Ru(bpy)3]n+ (n = 1, 2, 3) structures were taken into account through two models: i)

the polarisable continuum model (PCM) using the integral equation formalism model

(IEFPCM)60 and ii) conductor-like polarisable continuum model (CPCM).250,251

Three types of molecular cavity, which is the atomic radii of sphere around each

solute atom, were considered: i) UFF,252 ii) UAKS87 and iii) Bondi models.253 The

UAKS uses the radii of the United Atom Topological Model (UA), optimised for DFT

method (Kohn-Sham energy, KS), the UFF uses the radii of Universal Force Field

and Bondi uses Bondi’s radii.87 The standard absolute redox potential (E0(abs))

was calculated by the following:

E0(abs) = −∆G0(soln, redox)
ZF

(7.10)

where F is the Faraday constant (23.061 kcalV−1 g−1), Z = 1 as we are considering a

one-electron redox process and ∆G(soln, redox) is the redox Gibbs free energy change

in solution. ∆G(soln, redox) was calculated using a Born-Haber cycle (Figure 7.9).
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Ru(bpy)3
n+(gas)   +   e-(gas)                                Ru(bpy)3

(n-1)+(gas)

Ru(bpy)3
n+(soln)   +   e-(soln)                            Ru(bpy)3

(n-1)+(soln)

ΔG0(solv, prod.)ΔG0(solv, reac.) ΔG0 = 0

ΔG0(soln, redox)

ΔG0(gas, redox)

Figure 7.9. Born-Haber cycle for calculating the redox Gibbs free energy change.

From the Born-Haber cycle, the ∆G(soln, redox) can be calculated by:

∆G0(soln, redox) = ∆G0(gas, redox)+∆G0(solv, prod.)−∆G0(solv, reac.) (7.11)

where, ∆G0(gas, redox) is free energy change in the gas phase, ∆G0(solv, prod.) is

free energy change of the product and ∆G0(solv, reac.) is free energy change of the

reactant. To compare the theoretical and experimental redox potential, the absolute

potential calculation, E0(cal, SCE) using saturated calomel electrode as reference

(SCE) was carried out using the following:254

E0(cal, SCE) = E0(abs)− E0(abs, SCE) (7.12)

and

E0(abs, SCE) = E0(ref, SCE)− ELJ (7.13)

where, E0(abs, SCE) is an absolute redox potential (E0(abs, SCE) = 4.429 V),

which is calculated by difference between a reference absolute potential, E0(ref, SCE)

and the liquid junction potential, ELJ .255 The reported experimental values of

E0(ref, SCE) and ELJ , used for calculating E0(abs, SCE), were E0(ref, SCE) is

4.522 V255 and ELJ in MeCN is 0.093 V.256 In order to compare the calculated and

experimental data, E0(abs) was corrected by E0(abs, SCE), providing E0(cal, SCE)

that was used for comparing to the absolute potential experimental value, E0(expt).

The E0(expt) in MeCN for [Ru(bpy)3]2+ + e− → [Ru(bpy)3]+ is -1.33 V and for

[Ru(bpy)3]3+ + e− → [Ru(bpy)3]2+ is 1.29 V.257

However, methanol (rather than MeCN) was used as the solvent in the exper-
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imental functionalisation reaction. Therefore, we performed single-point energy

calculation on the reacting species in methanol (ε = 32.613). For calculating

E0(cal, SCE) in MeOH solvent, E0(abs, SCE) = 4.497 V was used for correcting

E0(abs) (E0(ref, SCE) = 4.522 V and E0(abs) ELJ for MeOH = 0.025 V256).

All optimisation structures at minima and transition states of reaction mechanism

determinations were verified by vibrational frequency analysis, where transition state

structures were characterised by one imaginary frequency, while the frequencies of

minimum structures were real. Every transition state was confirmed by eigenvector

following to confirm that the transition state connected to the right intermediates.

Determination of 0-0 energies (E0−0) were performed using time-dependent dens-

ity functional theory (TDDFT). CAM-B3LYP258/6-31+G(d,p)[SDD] with methanol

solvent was used for optimisation of both ground-state and excited-state struc-

tures of [Ru(bpy)3]2+. For the excited-state optimisation, the tight keyword (tight

convergence criteria) was used, recommended by Jacquemin et al.234,259

7.4 Results and discussion

7.4.1 Reduction potential

The results in Table 7.1 show the comparison of the calculated redox potential with

experiment. The two continuum solvation models used in this study are CPCM and

PCM with different solute cavity models, UFF, UAKS and Bondi. Firstly, two sets of

calculations, which are i) PBE/6-311++G(2df,2p)[SDD]//PBE/6-31+G(d,p)[SDD]

and ii) ωB97XD/6-311++G(2df,2p)[SDD]//PBE/6-31+G(d,p)[SDD], were examined

with fixed solute cavity model using UFF. Within the CPCM with UFF results,

the data shows that the reduction potential (E0(cal, SCE)) of [Ru(bpy)3]2+ using

ωB97XD functional has an absolute deviation (0.35 V) lower than using PBE (0.44

V). The E0(cal, SCE) of [Ru(bpy)3]3+ follows the same trend. Moreover, in the PCM

solvation and UFF solute cavity models, the E0(cal, SCE) of both [Ru(bpy)3]2+ and

[Ru(bpy)3]2+ obtained using ωB97XD functional is found to have a smaller absolute

deviation, compared to that obtained using the PBE functional. This suggests that

the single-point energy calculation using ωB97XD method is more accurate than the

PBE method.
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Cavity effects in the CPCM and PCM approaches are studied using the different

solute cavity models, UFF, UAKS and Bondi. Our results show that when the

cavity models are changed (fixing solvation model), the deviation between calculation

and experiment changes (∆E0 changes). Thus, PCM and CPCM correction are

dependent on the choice of cavity model. These results are in agreement with Dinescu

and Clark260 who investigated ∆G0 values and they stated that “PCM correction are

highly dependent on the choice of cavity model”. In the present work, we calculate

E0(cal, SCE) values which are derived from ∆G0 values.

To gain insight into the effect of solvation and cavity models, we have ana-

lysed them. At CPCM, the E0(cal, SCE) of [Ru(bpy)3]2+ using UFF, UAKS and

Bondi calculations underestimates the experimental value, while the E0(cal, SCE)

of [Ru(bpy)3]3+ using UFF overestimates. When UAKS and Bondi are used, the

results show an underestimation. Using PCM provides results that are similar to

the CPCM results, i.e. underestimation of E0(cal, SCE) for both [Ru(bpy)3]2+ and

[Ru(bpy)3]3+ except for the E0(cal, SCE) of [Ru(bpy)3]3+ which is overestimated.

Moreover, this calculation also shows that, when we use the same cavity model,

we found very little difference between PCM and CPCM (< 0.01 V). However, the

CPCM is slightly better than PCM.

When taking into account the cavity model for E0(cal, SCE) using CPCM, the

deviation between calculation and experiment for the E0(cal, SCE) of [Ru(bpy)3]2+

are 0.35, 0.57 and 0.59 V using UFF, UAKS and Bondi cavities, respectively, and for

the E0(cal, SCE) of [Ru(bpy)3]3+ are -0.05, 0.39 and 0.51 V using UFF, UAKS and

Bondi cavities, respectively. Therefore, the results for the calculation with a UFF

cavity agree most closely with the experimental data. Thus, the ωB97XD functional

with the CPCM solvation model and UFF solute cavity model for E0(cal, SCE)

determination was used in subsequent calculations.

To determine the effect of spin multiplicity, we have also calculated the high-

spin [Ru(bpy)3]2+ and [Ru(bpy)3]3+ complexes. The E0(cal, SCE) calculations

with CPCM and PCM corrections with UFF cavity for both [Ru(bpy)3]2+ and

[Ru(bpy)3]3+ complexes are shown in Table 7.2. The ωB97XD functional predicts the

E0(cal, SCE) of [Ru(bpy)3]2+ better than PBE, while PBE predicts the E0(cal, SCE)

of [Ru(bpy)3]3+ better. However, PBE gets the sign wrong for [Ru(bpy)3]2+ + e− →
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[Ru(bpy)3]+. The calculated results reveal that all ωB97XD calculations overestimate

E0(cal, SCE) and are significantly different from experimental value (the deviation

between calculation and experiment is more than 1.00 V for one-electron transfer

(96.5 kJmol−1)).

As discussed above, our results for E0(cal,SCE) of [Ru(bpy)3]2+ are not consistent

with the experimental data, but the reaction mechanism in this study involves the

reduction of [Ru(bpy)3]3+ low-spin complex ([Ru(bpy)3]3+ + e− → [Ru(bpy)3]2+),

with the smallest error (0.05 V), which is in agreement with the ligand type that

the 2,2’-bipyridine ligand exerts a strong ligand field leading to form low-spin

complexes.238 It indicates that the best agreement with the experimental value

in MeCN can be achieved using the ωB97XD/6-311++G(2df,2p)[SDD] combined

with the CPCM solvation and UFF solute cavity model approach after PBE/6-

31+G(d,p)[SDD] optimisation (Gaussian 09 implementation). Therefore, all reaction

mechanisms in this study performed in MeOH will use these methods, basis sets,

solvation model and solute cavity model.

Using this methodology, i.e. ωB97XD/6-311++G(2df,2p)[SDD]//PBE/6-31+G(d,p)

[SDD] with the CPCM solvation and UFF solute cavity model, the absolute potential

of the reaction [Ru(bpy)3]3+ + e− → [Ru(bpy)3]2+ in MeOH (rather than MeCN

used for this validation) is 1.26 eV.
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7.4.2 Mechanism of functionalisation using Pd(II)/Ru(II)-

catalysts

A possible reaction mechanism for functionalisation of a benzodiazepine using

Pd(II)/Ru(II)-catalysts for the entire catalytic cycle is shown in Scheme 7.16, based

on Scheme 7.13. Cycle 1 involves a Pd(II)-catalyst and cycle 2 involves the Ru(II)-

catalyst.

C
PdIVL

Ar

C
PdIIL

C
PdIIIL

Ar

Ar

Cycle 1

Ru(bpy)32+
Ru(bpy)32+*

Ru(bpy)33+

Cycle 2

[ArN2]BF4

visible light

H+

C L H

C L ArBF4  +  N2  +  Ar

C L H =

N

NH
O

H

Ar  =

NO2

and

Ar-N2+

, Ar-N2+  =

N2

NO2

Scheme 7.16. Possible reaction cycle of functionalisation using Pd(II)/Ru(II)-
catalysts used in this work. The dotted line indicates the role of Pd(II) in the
absence of the Ru(II)-photocatalyst.

First, we have studied reaction i in Scheme 7.15. The Gibbs free energy profile

for functionalisation of benzodiazepine is given in Figure 7.10. The Gibbs free

energies are calculated relative to the Gibbs free energy of Pd(OAc)2 + [Ru(bpy)3]2
+

+ p-nitrobenzenediazonium + unf-BZD + H2O. To take account of the proton (H+)

energy, H3O+ is calculated and H2O is used to balance the chemical equation in

Scheme 7.15i.

C-H bond activation process: This process involves three steps and occurs

via an agostic complex (Int2). The first step is the coordination between unf-BZD
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and the Pd-centre of Pd(OAc)2 to form Int1 where the N1 atom of the unf-BZD

coordinates to the Pd-centre (Scheme 7.17). The Pd coordination sphere in Int1 is

square planar. This process is exogenic by -34.1 kJmol−1 (Figure 7.10).

The second step occurs via TS1-2 with Gibbs free energy barrier 36.6 kJmol−1,

leading to agostic complex (Int2). The agostic interaction in Int2 is confirmed by

the shortening of the Pd· · ·H bond (1.903 Å) and the elongation of C-H distance

(1.147 Å), compared to Int1 and these bond lengths of Int2 are in good agreement

with Davies et al.116 who calculated the mechanism of cyclometalation by palladium

acetate (Pd· · ·H distance = 1.91 Å and C-H bond = 1.15 Å). In addition, the bond

distances of Pd· · ·C (2.262 Å) and Pd· · ·H (1.903 Å) of the agostic complex Int2

are in excellent agreement with the Rh· · ·C (2.273 Å) and Rh· · ·H (1.950 Å) in an

agostic rhodium arene complex.261

The third step involves the C-H bond activation TS2-3 and leads to Int3 which

involves two η1-acetate ligands coordinated to the Pd-centre. The TS2-3 occurs via

a six-membered ring by transferring a H atom from C1 to O2 with Gibbs free energy

barrier of 41.4 kJmol−1 and the total Gibbs free energy of Int2 to Int3 is -64.7

kJmol−1, indicating that this step is a spontaneous process. This step is similar to

the calculation of cyclometallation of Pd(OAc)2 with dimethylbenzylamine116 and

cyclisation of phenyl-tert-butanol using Pd(OAc)2.262
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Figure 7.10. Gibbs free energy profile of the functionalisation of the benzodiazepine
mechanism using Pd(II)/Ru(II)-catalysts. In the reaction mechanism cycle, [Ru2+]
and [Ru3+] represent [Ru(bpy)3]2+ and [Ru(bpy)3]3+, respectively.
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Scheme 7.17. Calculated geometries for C-H bond activation process. The bond
distances are given in Å.
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Isomerisation process: This step involves the orientation of the C1-Pd-O3

angle, which changes from 132.0 to 172.0° from Int3 to Int4. Scheme 7.18 reveals the

geometrical structures of this isomerisation step. Int4 involves O3 atom coordinating

and O1 atom de-coordinating, where O1 atom and O3 atom are part of the same

acetate ion, from the Pd via TS3-4, with Gibbs free energy barrier of 27.8 kJmol−1.

In addition, the torsion angle of N1-C1-O4-O3 (35.1°) changes to square planar

(N1-C1-O4-O3 = 1.4°).

Int3 Int4TS3-4

O2

O1

O3
Pd

O2

O1
O3

Pd

O2 O1

O3
Pd

O4 O4
O4

Pd-O1 = 2.188
Pd-O3 = 3.135
C1-Pd-O3 = 132.0
N1-C1-O4-O3 = 35.1

C1
N1

C1

N1
C1 N1

Pd-O1 = 2.547
Pd-O3 = 2.466
C1-Pd-O3 = 144.5
N1-C1-O4-O3 = 30.5

Pd-O1 = 3.576
Pd-O3 = 2.191
C1-Pd-O3 = 172.0
N1-C1-O4-O3 = 1.4

SET

(+ [Ru(bpy)3]2+ + Ar-N2
+ + H2O) (+ [Ru(bpy)3]2+ + Ar-N2

+ + H2O) (+ [Ru(bpy)3]2+ + Ar-N2
+ + H2O)

N1 NH

O

C1

Pd

O1
O4

O2

Me

O3

Me

H1

N1
NH

O

C1

Pd

O1

O4

O2
Me

O3

MeH1

N1
NH

O

C1

Pd

O1

O4

O2

Me
O3

Me
H1

Scheme 7.18. Calculated geometries for isomerisation process. The bond distances
are shown in Å and bond angles are in degree.

Single-electron transfer (SET) process: Scheme 7.19 shows the reaction

mechanism of the SET. In experimental observation, [Ru(bpy)3]2+ absorbs the visible

light then [Ru(bpy)3]2+* is generated.263 [Ru(bpy)3]2+* is oxidatively quenched by

p-nitrobenzenediazonium to give nitrobenzene radical.263 The isomerisation in the

previous process occurs to avoid steric hindrance with the nitrobenzene radical. Now,

the nitrobenzene radical can bind at the Pd-centre of Int4 to form Int5 and the

Gibbs free energy decreases to -121.8 kJmol−1, indicating a spontaneous process.

We have not found the transition structure between Int4 and Int5. It appears

to be a barrierless process, confirmed by calculating the energy whilst varying the

Pd· · ·C2 atomic distances of Int5 which increases monotonically. This SET step

involves a change in the oxidation state of the Pd-centre from Pd(II) to Pd(III). The
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geometry around Pd coordination sphere changes from a square planar (Int4) to a

distorted-octahedral Pd complex (Int5). Int5 geometry is consistent with the X-ray

structure of Pd(III)-complexes reported by Khusnutdinova et al.,264,265 where the

Pd complexes were six-coordinate structures. In Int5, O2 moves to bind with the

Pd-centre, changing the Pd· · ·O2 distance from 3.273 Å in Int4 to 2.283 Å in Int5

and Pd-O4 bond increases from 2.065 Å in Int4 to 2.470 Å in Int5, indicating that

the interaction of Pd-O4 bond in Int5 is weaker than Pd-O4 in Int4.

Applying Marcus and Savéant theory, we can calculate the SET Gibbs free energy

barrier, ∆G‡ET, using equation (7.9). ∆Gr is the energy difference between Int5 and

Int6 where Int5 corresponds to the energy of Pd(III)-complex + [Ru(bpy)3]3+ +

N2 + H2O and Int6 corresponds to the energy of Pd(IV)-complex + [Ru(bpy)3]2+ +

N2 + H2O. This has a value of -83.4 kJmol−1. To calculate ∆G‡0 (equation (7.5)),

we need to calculate λ = λi + λ0 (equation (7.6)). In this work, as in previous

work,249,266 it is assumed the inner reorganisation energy of the reactants is zero

(λi = 0). Therefore, λ is equal to λ0 which is calculated using equation (7.8). The

hard sphere radii approximation of [Ru(bpy)3]3+ and the Pd(III)-complex (Int5)

were calculated using keyword VOLUME in Gaussian09. We have found that the

hard sphere radii of [Ru(bpy)3]3+ is 6.18 Å and for the Pd(III)-complex (Int5) is

6.47 Å. The optical dielectric constant can be approximated from a refractive index

squares.267 The optical dielectric constant of methanol is 1.76268 and the static

dielectric constant of methanol is 32.613. Therefore, λ = λ0 = 59.1 kJmol−1. Now,

we can calculate ∆G‡0, the intrinsic barrier at zero driving force for the outer-sphere

electron transfer, i.e. ∆G‡0 = λ/4 = 14.8 kJmol−1. Substituting the values of ∆G‡0
and ∆Gr in equation (7.9), the SET Gibbs free energy barrier, ∆G‡ET = 2.5 kJmol−1.

This value is a similar magnitude to that obtained for the Au/Ru-complexes SET

process by Zhang et al.269 These authors found that ∆G‡ET ranged from 0.4 to 15.1

kJmol−1 depending on the ligand.

As shown in Scheme 7.19, Int5 is oxidised by [Ru(bpy)3]3+ to generate Int6

(Pd(III) → Pd(IV) complex). Int6 is still a six-coordinate structure, commonly

occurring for Pd(IV) geometry,270 while bond distances around the Pd-centre change

compared to Int5.
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Scheme 7.19. Calculated geometries for single-electron transfer (SET) process.
The bond distances are in Å.
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Figure 7.11. The energy plot by varying the bond distance between Pd and C2 to
confirm no transition state between Int4 and Int5 (assuming Pd-C2 is the reaction
coordinate). The energies are shown in hartrees.

Reductive elimination process: The C1-C2 bond is formed through a re-

ductive elimination step (Scheme 7.20). The oxidation state of the Pd-complex

changes from Pd(IV) to Pd(II). C2 migrates from the Pd-centre to C1 via TS6-7

with Gibbs free energy barrier of 43.2 kJmol−1; C1· · ·C2 in Int7 shortens to 1.485

Å, indicating a bond forming between C1 and C2. In Int7, we have found η2(C=C)

interacting with Pd; Pd· · ·C3 is 2.356 Å and Pd· · ·C4 is 2.351 Å. This structure is

supported by investigation of the reductive elimination mechanism from bimetallic

palladium complex by Ariafard et al.271 and Canty et al.272 work. They found

the η2-coordination with Pd· · ·C after the reductive elimination step in their DFT

calculations.
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Scheme 7.20. Calculated geometries for reductive elimination process. The bond
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For cycle 2, the excited-state redox potential is determined. The excited-state was

calculated using TDDFT with the CAM-B3LYP functional. The Latimer diagram is

performed for excited-state redox potential calculations. We found that the redox

ground state [Ru(bpy)3]3+ + e– → [Ru(bpy)3]2+ is accurate enough for calculation

of excited-state redox potential, with an error of only 0.05 V (see Table 7.1).

For saving CPU time, we calculated this step using CAM-B3LYP/6-31+G(d,p)[SDD]

with methanol solvation CPCM and UFF cavity models, and hence only get the Eadia.

We have found that the frequency calculation of the excited state is hard to converge.

Jacquemin et al.234 mentioned that 90% of the time for determining the excitation

optimisation came from the vibration frequency calculation. In our calculation, CPU

time for optimisation of the excited-state was ca. 51 days (single core), therefore the

vibration frequency for determination of this structure is estimated to be ca. 459

days. Therefore, we firstly approximate E0−0 ≈ Eadia. This may introduce an error,

but in the absence of experiment, this cannot be confirmed. The HOMO-LUMO

transition, chosen to study the E0−0, involves a metal-to-ligand charge transfer

(MLCT) complex (Figure 7.12). Our calculation reveals that the Eadia is 2.98 eV.
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We do not have a E0−0 experimental data of [Ru(bpy)3]2+ in methanol. This is a

limitation of our benchmark set for checking the calculation. Therefore, we have

used a vertical excitation energy (Ever) for checking our calculation. In theory, Ever

should be more than or equal to Eadia. Our calculation shows that Ever is 3.36 eV

with oscillator strength of 0.0013, which is greater than our calculated Eadia.

Using Latimer diagram for excited state redox potential (equation (7.2)), the

excited-state redox potential of [Ru(bpy)3]2+ is -1.72 eV calculated as the difference

between reduction potential E0(SCE) = 1.26 eV (see section 7.4.1 for reduction

reaction: [Ru(bpy)3]3+ + e− → [Ru(bpy)3]2+) and E0−0 ≈ Eadia = 2.98 eV which is

the excitation energy of [Ru(bpy)3]2+ in MeOH.

LUMO

HOMO

Figure 7.12. Molecular plot of HOMO and LUMO of [Ru(bpy)3]2+.

In summary, the overall reaction of the functionalisation of benzodiazepine using

a Pd(II)-catalyst with a Ru(II)-photocatalyst is -189.3 kJmol−1. The energy barrier

of C-H bond activation step (TS2-3) differs from the reductive elimination step by

only 1.8 kJmol−1, indicating that they are the rate-determining steps in this reaction.

In the SET step, the Gibbs free energy barrier is just 2.5 kJmol−1.

7.4.3 Mechanism of functionalisation using Pd(II)-catalyst

It is assumed that the mechanism for functionalisation using a Pd(II)-catalyst involves

the following main processes: i) C-H bond activation, ii) isomerisation, iii) oxidative
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addition and iv) reductive elimination. The processes i), ii) and iv) are the same as

those discussed in the previous section for the reaction using Pd(II)/Ru(II)-catalysts.

Therefore, in this section, we have discussed only the oxidative addition process.

To compare between Pd(II)-catalyst and Pd(II)/Ru(II)-catalysts, we have studied

the Pd(II)-catalysed reaction at room temperature. The Gibbs free energy profile of

the mechanism is provided in Figure 7.13. The zero energy is set to be energy of

Pd(OAc)2 + p-nitrobenzenediazonium + unf-BZD + H2O.

To model the oxidative addition process, we have adapted a transition structure

based on the transition state found by Canty et al.272 who studied Ar-Ar bond

formation via binuclear Pd(II)-complexes. The results show that in Int5, nitrobenze-

nediazonium is bound to the Pd-complex species. Then, in TS5-6, phenyl migrates

from N to the Pd-centre; the C2-N2 bond is broken and the C2-Pd bond is formed.

An oxidation state change of the Pd-centre to Pd(IV) involves a changing ligand co-

ordination sphere. The Gibbs free energy barrier of the oxidative addition transition

state is 127.1 kJmol−1. This value is significantly higher than the other Gibbs free

energy barriers in the mechanism indicating that this step is the rate-determining step.

The Gibbs free energy process of this step (Int5 to Int6) is a thermodynamically

favourable process (∆G = −110.6 kJmol−1).

In the next step, N2 is eliminated from the Pd-complex. The removal of N2

from Int6 → Int7 is a thermodynamically favourable process, with a Gibbs free

energy change of -20.5 kJmol−1. The calculation of Int6 → Int7 is an endothermic

reaction, with enthalpy change of +3.0 kJmol−1, since N2 needs to absorb energy to

break the interaction between N2 and the Pd(IV)-complex.
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In summary, the overall Gibbs free energy reaction is the same as for mechanism

involving photocatalyst, however it is shown that in the reaction mechanism involving

only a Pd(II)-catalyst the oxidative addition is the rate-determining step.

7.4.4 Mechanism of functionalisation without catalyst

Scheme 7.15iii involves the reaction of the p-nitrobenzenediazonium with unf-BZD

in the absence of a catalyst. It was not possible to abstract the H1 on benzene at

position 5 in the proposed reaction mechanism using a simple dielectric model for the

solvent (Scheme 7.22). Therefore, an explicit MeOH molecule to model the solvent

was introduced to abstract the H1 and facilitate the migration of the nitrobenzene

to the carbon to form the C-C bond. Figure 7.14 shows the Gibbs free energy

profile where the energy is relative to p-nitrobenzenediazonium + unf-BZD + MeOH

(explicit solvent). At the first step, the structure of p-nitrobenzenediazonium binds

to unf-BZD (Scheme 7.22). We have found that this step is a thermodynamically

unfavourable process with ∆G of 40.4 kJmol−1. In the TS1-2 transition, the

mechanism is a SN2 reaction where the N2 in the diazepine ring acts as a nucleophile

which attacks the C1 of electrophilic p-nitrobenzenediazonium to generate Int2.

Following Int2, Int3 involves the removal of N2, and this step is spontaneous. In

the next step, H1 needs to be abstracted to facilitate the migration of the nitrogen

to the carbon, forming the product. An explicit MeOH molecule was used to try and

abstract H1 via TS4-5 but given that H1 is not acidic and MeOH is not sufficiently

basic to abstract this H, the reaction could not proceed.

In the absence of a catalyst to facilitate the H1 abstraction, we conclude that

this reaction will not proceed.
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7.4.5 Consideration of the role of the catalyst

The calculations show that the catalyst has a major effect on the functionalisation

reaction. If no catalyst is loaded in the reaction, the functionalisation of benzo-

diazepine does not occur in experiments, supported by computational investigation

of the reaction without a catalyst. In the reaction with the Pd(II)/Ru(II)-catalysts,

it is shown that the TS2-3 of C-H bond activation step and TS6-7 of reductive

elimination step have very similar Gibbs free energy barrier where they differ by 1.8

kJmol−1 and the SET barrier was just 2.5 kJmol−1. Therefore, both TS2-3 and

TS6-7 were rate-determining steps. In the reaction with just the Pd(II)-catalyst,

the rate-determining step was the oxidative addition, which had a barrier of 127.1

kJmol−1 Thus it has been shown that the Pd(II)/Ru(II)-catalytic condition has an

energy barrier lower than the Pd(II)-catalytic condition by 83.9 kJmol−1. In the

overall reaction mechanism studied, it suggests that the best condition for func-

tionalisation of benzodiazepine is the reaction using the Pd(II)-catalyst with the

Ru(II)-photocatalyst.
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7.5 Conclusion

In this chapter, the functionalisation reaction of a benzodiazepine under three

conditions i) Pd(II)/Ru(II)-catalysts, ii) Pd(II)-catalyst and ii) without catalyst was

investigated. First, we investigated an effective and a reliable solvation and cavity

model to calculate the reduction potential of tris-2,2’-bipyridylruthenium(m) ion

(m = II and III) ([Ru(bpy)3]n+, n = 2, 3). The reduction potential calculation of

[Ru(bpy)3]2+ and [Ru(bpy)3]3+ using ωB97XD/6-311++G(2df,2p)[SDD]//PBE/6-

31+G(d,p)[SDD] with solvent correction using either CPCM or PCM solvation

models, with UFF solute cavity provided the best results. The results were in

good agreement with experiment with the deviation of ≈ 0.36 eV for the reduction

potential of [Ru(bpy)3]2+ and 0.05 eV for [Ru(bpy)3]2+. These results imply that the

solute cavity model is important for studying the Gibbs free energy.

Through theoretical study of functionalisation on benzodiazepines, we have found

that for the Pd(II)/Ru(II)-catalyst calculations, the reaction occurred via C-H bond

activation, isomerisation, single-electron transfer, reductive elimination and catalytic

recovery. The C-H bond activation and reductive elimination are the rate-determining

steps, but in consideration of thermodynamic properties, the reductive elimination

is a more thermodynamically favourable process than C-H bond activation. The

calculation results show good agreement with the proposed reaction mechanism by

Kalyani et al.229

In the mechanism with just the Pd(II)-catalyst, there are five steps; C-H bond

activation, isomerisation, oxidative addition, reductive elimination and catalytic

recovery. We have found that in this condition the oxidative addition is the rate-

determining step and is also a thermodynamically favourable process. For the

condition without catalyst, no product was found.

In summary, these calculation have shown that in the absence of the photocatalyst,

the reaction proceeds via oxidative addition and this is the rate-determining step.

When the photocatalyst is introduced the rate-determining oxidative addition step

is circumvented as the reaction proceeds via a SET process. The barrier to SET is

considerably smaller, at just 2.5 kJmol−1, compared with oxidative addition which

is 127.1 kJmol−1 explaining the increased yield in the presence of the photocatalyst.



Chapter 8

Concluding Remarks, Future

Direction and Thesis Outcome

8.1 Concluding remarks

In this thesis, we have used quantum chemistry to elucidate the reactivity and

mechanism of some palladium catalysts. It was shown in Chapters 3 and 4 that

density functional theory is a suitable methodology for studying the electronic and

geometric pincer palladacycle structures. DFT provides a good performance for

accurate prediction of pincer palladacycle structures86 and all pincer palladacycle

structures both symmetric and unsymmetric require a single-reference method.

The main focus has been the catalytic behaviour of palladium complexes. In this

thesis, we have demonstrated that the donor atoms of the pincer palladacycles play

a crucial role in the stability, pincer palladacycle formation reaction (Chapter 5) and

catalytic activity of the pincer palladacycle pre-catalysts (Chapter 6). For forming

pincer compounds, the C-H bond activation step was key, and its energy barrier

depends on the type of donor atom coordinating to the palladium atom.32,86 The

strength and nature of dative bonds of pincer palladacycles can be investigated using

the Quantum Theory of Atoms In Molecules and there was an interesting point in

the case of the unsymmetric palladacycles which are the strength of the dative bond

depended on the trans influence (Chapter 5).159 In the catalytic activity (Chapter

6), it was shown that good pincer palladacycle pre-catalysts should have a large TM,

RE or overall reaction energies to control the release of catalytically active Pd(0).
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The magnitude of the barriers were again found to depend on the donor atoms, and

which donor ligand arm de-coordinated first.188

In Chapter 7, Pd(II)-catalysis was considered. It was found that the reaction

can be enhanced when the Pd(II)-catalyst is used in conjunction with a Ru(II)-

photocatalyst. When photocatalyst ruthenium complex was introduced in the

reaction, the single electron transfer (SET) reaction occurred instead of the rate-

determining oxidative addition and the SET barrier was considerably smaller, ex-

plaining the increased yield.

8.2 Future direction

R. Raysa in the Spencer group has conducted functionalisation of benzodiazepine

using different starting reagents using the palladium complex catalyst and photocata-

lyst ruthenium complex. The percentage yield of functionalised-benzodiazepine

products was found to vary when substitution in the aryldiazonium salt was changed

(Figure 8.1).
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N
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Figure 8.1. Percentage yield for functionalised-benzodiazepine products using
different aryldiazonium salt.

It would be beneficial to investigate the effect of substitution in the aryldiazonium

salt for functionalisation on benzodiazepine. It will be interesting to determine

the reaction mechanism and thermodynamic properties using DFT to observe the

effect of substitution in the aryldiazonium salt for rationalising and explaining the

experimental data hence and determine the key physical and chemical properties for

production of high yield.
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8.3 Thesis outcomes

Various parts of this thesis have been published in journals and presented at UK

and international conferences. The following is a summary of these publications and

events:

Publications:

1. S. Boonseng, G. W. Roffe, J. Spencer and H. Cox “The nature of the bonding

in symmetrical pincer palladacycle”, Dalton Trans., 2015, 44, 7570-7577. DOI:

10.1039/C5DT00031A

2. G. W. Roffe, S. Boonseng, C. B. Baltus, S. J. Coles, I. J. Day, R. N. Jones, N.

J. Press, M. Ruiz, G. J. Tizzard, H. Cox and J. Spencer “A synthetic, catalytic

and theoretical investigation of an unsymmetrical SCN pincer palladacycle”,

Royal Soc. Open Sci., 2016, 3, 150656. DOI:10.1098/rsos.150656

3. S. Boonseng, G. W. Roffe, R. Jones, G. Tizzard, S. Coles, J. Spencer and H. Cox

“The trans influence in unsymmetrical pincer palladacycles: an experimental and

computational study”, Inorganics, 2016, 4, 25. DOI:10.3390/inorganics4030025

4. S. Boonseng, G. W. Roffe, M. Targema, J. Spencer and H. Cox,“Rationalization

of the mechanism of in situ Pd(0) formation for cross-coupling reactions from

novel unsymmetrical pincer palladacycles using DFT calculations”, J. Organo-

met. Chem., In Press. DOI:http://dx.doi.org/10.1016/j.jorganchem.2017.02.040

5. R. Khan, S. Boonseng, P. D. Kemmitt, R. Felix, S. J. Coles, G. J. Tizzard,

G. Williams, O. Simmonds, J. Harvey-Cox, J. Atack, H. Cox and J. Spencer

“Combining Sanford arylations on benzodiazepines with the nuisance effect”,

In preparation.

Book chapter:

1. G. W. Roffe, S. Boonseng, H. Cox and J. Spencer “Pincer Compounds: Chem-

istry and Applications, Chapter: Synthesis and uses of unsymmetrical pincer

palladacycles in catalysis.”, Elsevier, In press.



235

Poster presentations:

1. Sarote Boonseng and Hazel Cox “Symmetric pincer palladacycles and the

reactivity of their ligands: a DFT study”, NSCCS User Meeting 2013 on 11

December 2013, Imperial College, London, UK.

2. Sarote Boonseng, Gavin W. Roffe, John Spencer and Hazel Cox “The formation

of Pd(0) from pincer palladacycles”, ISTCP IX 2016 Conference on 17−22 July

2016, Grand Forks, North Dakota, USA.

Poster presentations (with flash/oral presentation):

1. Sarote Boonseng, Gavin W. Roffe, John Spencer and Hazel Cox “The nature

of the bonding in symmetrical pincer palladacycles”, Young Modellers’ Forum

2014 on 28 November 2014, School of Oriental & African Studies (SOAS),

London, UK.

2. Sarote Boonseng, Gavin W. Roffe, John Spencer and Hazel Cox “The nature

of the bonding in symmetrical pincer palladacycles”, NSCCS User Meeting

14/15 on 18 February 2015, Imperial College, London, UK.

3. Sarote Boonseng, Gavin W. Roffe, John Spencer and Hazel Cox “The theoretical

investigation of Pd(0) formation from pincer palladacycles”, Postgraduate Re-

search Colloquium 2015 on 7-8 September 2015, University of Sussex, Brighton,

UK.

Oral presentation:

1. Sarote Boonseng, Gavin W. Roffe, John Spencer and Hazel Cox “Pincer

palladacycles as a source of catalytically active Pd(0): a computational study”,

Postgraduate Research Colloquium 2016 on 5-6 September 2016, University of

Sussex, Brighton, UK.

Virtual conference:

1. Sarote Boonseng, Gavin W. Roffe, John Spencer and Hazel Cox “The reactivity

of unsymmetrical pincer ligands and the nature of the bonding in unsymmetrical

pincer palladacycles”, Virtual conference on computational chemistry VCCC-

2015 on 1-31 August 2015.
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Transferable skills training:

1. NSCCS Gaussian Workshop for Beginners on 17-18 September 2013, Imperial

College, London, UK.

2. NSCCS Gaussian Workshop on Computing Molecular Excited States on 12-13

December 2013, University of Sussex, Brighton, UK.

3. NSCCS ADF Workshop 2014 on 8-9 April 2014, Imperial College, London, UK.

4. Virtual winter school for computational chemistry on 3-9 February 2016.
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58a 59a 60a

61a 62a 63a 65a

75a 76a 77a 78a

Figure A.1. Representation of canonical molecular orbitals of a symmetrical NCN
pincer palladacycle resulting from the HF calculation.
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58a 59a 60a
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75a 76a 77a 78a

Figure A.2. Representation of canonical molecular orbitals of a symmetrical SCS
pincer palladacycle resulting from the HF calculation.



258
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Figure A.3. Representation of canonical molecular orbitals of a symmetrical PCP
pincer palladacycle resulting from the HF calculation.
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58a 59a 60a
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Figure A.4. Representation of canonical molecular orbitals of an unsymmetrical
NCS pincer palladacycle resulting from the HF calculation.
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Figure A.5. Representation of canonical molecular orbitals of an unsymmetrical
SCP pincer palladacycle resulting from the HF calculation.
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Figure A.6. Representation of canonical molecular orbitals of an unsymmetrical
NCP pincer palladacycle resulting from the HF calculation.



Appendix B



263

Table B.1. The relative Gibbs free energy of reaction for PdYCY in gas phase and
solvent under the base-free condition.

Reaction process Relative Gibbs free energy/kJmol−1

for PdYCY Gas Toluene THF Acetonitrile
PdNCN

Reactants A 0.0 0.0 0.0 0.0
Int1A 2.3 7.9 11.8 13.4
TS1-2A 204.5 215.7 223.4 226.6
Int2A 130.1 145.0 155.7 160.4
Int3A 141.3 144.9 145.3 144.1
TS3-5A 250.0 259.5 266.3 269.2
Int5A 87.0 100.8 111.0 115.7

Product A 171.0 185.0 196.3 201.5
PdSCS

Reactants A 0.0 0.0 0.0 0.0
Int1A 2.7 7.2 10.3 11.6
TS1-2A 211.5 224.4 233.6 237.6
Int2A 130.1 148.4 162 168.3
Int3A 146.7 153.1 156.3 157.0
TS3-4A 238.5 252.0 261.8 266.3
Int4A 65.8 83.1 95.5 101.1
TS4-5A 128.8 144.7 156.4 161.7
Int5A 52.3 68.7 81.1 87.0

Products A 173.0 186.7 197.7 203.0
PdPCP

Reactants A 0.0 0.0 0.0 0.0
Int1A -12.7 -4.1 1.8 4.3
TS1-2A 276.7 293.5 305.4 311.0
Int2A 219.8 238.9 252.6 259.0
Int3A 226.4 233.0 236.5 237.5
TS3-4A 282.1 295.4 304.3 308.0
Int4A 66.6 84.3 96.6 101.9
TS4-5A 172.5 187.8 198.3 202.8
Int5A 108.6 125.1 136.9 142.4

Products A 284.9 299.0 309.9 315.0
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Table B.2. The relative Gibbs free energy of reaction for PdNCS in gas phase and
solvent under the base-free condition.

Reaction process Relative Gibbs free energy/kJmol−1

for PdNCS Gas Toluene THF Acetonitrile
Path a: (via N de-coordination first)

Reactants B 0.0 0.0 0.0 0.0
Int1B -2.4 2.5 6.1 7.7
TS1-2B 224.0 235.8 244.2 247.9
Int2B 139.4 156.8 169.7 175.6
Int3B 156.4 162.0 164.7 165.1
TS3-5B 242.4 253.9 262.2 266.0
Int5B 57.0 73.1 85.5 91.3

Products B 181.0 194.2 204.9 210.0
Path b: (via S de-coordination first)

Reactants B 0.0 0.0 0.0 0.0
Int1B 5.1 10.0 13.1 14.2
TS1-2B 209.1 220.1 227.6 230.5
Int2B 126.8 142.2 153.3 158.0
Int3B 146.4 149.5 149.7 148.6
TS3-4B 261.1 272.5 280.8 284.4
Int4B 121.1 136.9 148.7 154.0

TS4-5B,I / TS4-5B,II 139.0 / 164.5 154.3 / 178.8 165.4 / 189.4 170.3 / 194.2
Int5B,I / Int5B,II 57.0 / 98.8 73.1 / 111.4 85.5 / 120.6 91.3 / 124.7

Products B 181.0 194.2 204.9 210.0
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Table B.3. The relative Gibbs free energy of reaction for PdSCP in gas phase and
solvent under the base-free condition.

Reaction process Relative Gibbs free energy/kJmol−1

for PdSCP Gas Toluene THF Acetonitrile
Path a: phenyl orientated over S (S de-coordination)

Reactants C 0.0 0.0 0.0 0.0
Int1C 5.3 10.3 13.7 15.1
TS1-2C 225.9 238.4 247.4 251.3
Int2C 161.4 176.6 187.8 192.7
Int3C 181.6 185.2 186.3 186.0
TS3-4C 262.4 275.0 284.3 288.5
Int4C 70.0 86.1 97.8 102.8

TS4-5C,I / TS4-5C,II 119.5 / 165.8 133.5 / 175.1 143.1 / 181.2 147.0 / 183.6
Int5C,I / Int5C,II 62.1 / 116.4 77.1 / 131.7 88.3 / 143.4 93.4 / 149.0

Products C 238.9 251.6 261.8 266.7
Path b: phenyl orientated over P (S de-coordination)

Reactants C 0.0 0.0 0.0 0.0
Int1C -14.8 -6.6 -0.1 3.0
TS1-2C 244.2 256.2 264.5 267.9
Int2C 166.6 182.1 193.4 198.5
Int3C 181.6 185.2 186.3 186.0
TS3-4C 269.9 281.7 290.1 293.9
Int4C 70.0 86.1 97.8 102.8

TS4-5C,I / TS4-5C,II 119.5 / 165.8 133.5 / 175.1 143.1 / 181.2 147.0 / 183.6
Int5C,I / Int5C,II 62.1 / 116.4 77.1 / 131.7 88.3 / 143.4 93.4 / 149.0

Products C 238.9 251.6 261.8 266.7
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Table B.4. The relative Gibbs free energy of reaction for PdNCP in gas phase and
solvent under the base-free condition.

Reaction process Relative Gibbs free energy/kJmol−1

for PdNCP Gas Toluene THF Acetonitrile
Path a: via N de-coordination first

Reactants D 0.0 0.0 0.0 0.0
Int1D 1.2 7.1 11.1 12.9
TS1-2D 238.9 252.0 261.4 265.5
Int2D 173.6 190.1 202.0 207.3
Int4D 196.4 201.5 203.6 203.7
TS4-6D 274.6 286.9 295.7 299.6
Int6D 72.0 88.5 100.7 106.4

Products D 251.6 265.5 276.6 281.8
Path b: via P de-coordination first

Reactants D 0.0 0.0 0.0 0.0
Int1D 0.6 7.3 11.7 13.6
TS1-2D 278.1 290.1 298.1 301.4
Int2D 207.0 222.9 234.5 239.7
Int3D 215.6 220.3 222.0 221.7
TS3-4D 256.6 264.9 269.5 270.7
Int4D 196.5 201.6 203.7 203.7
TS4-5D 291.3 303.2 311.5 315.1
Int5D 125.1 140.8 151.7 156.2

TS5-6D,I / TS5-6D,II 138.1 / 222.4 152.9 / 236.2 162.8 / 246.3 166.7 / 250.9
Int6D 72.1 / 168.8 88.5 / 182.2 100.7 / 191.9 106.4 / 196.3

Products D 251.6 265.6 276.6 281.9
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Table B.5. The relative Gibbs free energy of reaction for PdYCY in gas phase and
solvent under the presence of the base.

Reaction process Relative Gibbs free energy/kJmol−1

for PdYCY Gas Toluene THF Acetonitrile
PdNCN

Reactants E 0.0 0.0 0.0 0.0
Int1E -29.1 1.7 15.7 19.9
TS1-2E 2.5 32.8 47.0 51.8
Int2E -18.4 2.5 10.5 12.5
Int3E 65.7 18.8 2.3 -1.7
TS3-4E 171.2 126.7 109.8 104.3
Int4E 32.9 -9.5 -24.1 -27.9
Int5E 55.6 3.5 -19.5 -28.0
TS5-7E 164.2 118.2 101.4 97.1
Int7E -53.9 -40.6 -53.9 -56.5

Products E 85.3 43.6 31.4 29.4
PdSCS

Reactants E 0.0 0.0 0.0 0.0
Int1E 10.3 35.2 44.5 46.0
TS1-2E 20.9 47.2 56.9 58.2
Int2E -25.8 6.2 21.2 26.1
Int3E 65.2 19.4 2.3 -2.5
TS3-4E 158.7 118.1 105.4 102.7
Int4E 56.6 13.2 -1.9 -5.6
Int5E 77.8 23.5 -1.6 -10.8
TS5-6E 169.6 122.3 103.8 98.5
Int6E -3.1 -46.6 -62.5 -66.8
TS6-7E 59.9 15.1 -1.6 -6.1
Int7E -16.6 -60.9 -76.8 -80.8

Products E 104.1 57.1 39.8 35.1
PdPCP

Reactants E 0.0 0.0 0.0 0
Int1E -27.3 4.4 17.9 21.5
TS1-2E 1.2 35.2 50.4 54.8
Int2E -19.0 10.0 22.0 25.0
Int3E 53.7 11.6 -2.8 -6.1
TS3-4E 215.7 174.7 160.8 157.6
Int4E 119.7 81.7 70.7 69.0
Int5E 157.5 103.4 78.5 69.6
TS5-6E 213.2 165.7 146.3 140.2
Int6E -2.3 -45.4 -61.4 -66.0
TS6-7E 103.6 58.1 40.3 34.9
Int7E 39.7 -4.6 -21.0 -25.4

Products E 216.0 169.4 151.9 147.2
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Table B.6. The relative Gibbs free energy of reaction for PdNCS in gas phase and
solvent under the presence of the base.

Reaction process Relative Gibbs free energy/kJmol−1

for PdNCS Gas Toluene THF Acetonitrile
Reactants F 0.0 0.0 0.0 0.0

Int1F 2.2 27.0 36.7 39.0
TS1-2F 15.7 44.4 55.5 57.9
Int2F -29.5 -3.7 7.7 11.3
Int3F 55.8 11.7 -3.6 -7.3
TS3-4F 182.0 134.0 115.5 110.2
Int4F 47.9 8.1 -3.9 -6.2
Int5F 70.7 20.6 -0.2 -7.1
TS5-7F 156.7 112.5 97.4 93.9
Int7F -28.8 -68.3 -79.5 -80.8

Products F 95.3 52.8 40.0 37.8

Table B.7. The relative Gibbs free energy of reaction for PdSCP in gas phase and
solvent under the presence of the base.

Reaction process Relative Gibbs free energy/kJmol−1

for PdSCP Gas Toluene THF Acetonitrile
Reactants G 0.0 0.0 0.0 0.0

Int1G -20.4 9.1 21.8 25.0
TS1-2G 6.4 39.3 53.5 57.2
Int2G -23.0 7.5 20.8 24.6
Int3G 56.8 15.1 1.4 -1.7
TS3-4G 178.8 134.1 117.3 112.4
Int4G 69.5 31.2 20.3 18.8
Int5G 94.3 44.5 42.6 16.5
TS5-6G 175.1 134.4 121.5 119.0
Int6G -17.3 -54.5 -65 -66.7
TS6-7G 32.2 / 78.5 -7.1 / 34.4 -19.6 / 18.4 -22.5 / 14.1
Int7G -25.2 / 29.1 -63.5 / -8.9 -74.5 / -19.4 -76.1 / -20.5

Products G 151.6 110.9 99.0 97.2
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Table B.8. The relative Gibbs free energy of reaction for PdNCP in gas phase and
solvent under the presence of the base.

Reaction process Relative Gibbs free energy/kJmol−1

for PdNCP Gas Toluene THF Acetonitrile
Reactants H 0.0 0.0 0.0 0.0

Int1H -25.1 5.3 18.7 22.7
TS1-2H 1.6 35.4 51.3 56.7
Int2H -27.6 -1.1 10.7 14.3
Int3H 52.8 9.1 -6.2 -9.8
TS3-4H 182.9 137.0 119.7 114.9
Int4H 85.8 45.0 31.8 28.9
Int5H 110.7 60.2 38.8 31.6
TS5-7H 188.9 145.6 130.9 127.6
Int7H -13.7 -52.9 -64.1 -65.7

Products H 165.9 124.2 111.8 109.8
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