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SUMMARY 

 

Epstein-Barr virus (EBV) immortalises resting B-lymphocytes to lymphoblastoid 

cell lines (LCLs) and is associated with many cancers. The cell-cycle regulator 

response gene to complement 32 (RGC-32) is upregulated in EBV-infected 

cells, binds the mitotic kinases CDK1 and PLK1 and disrupted cell cycle 

checkpoints. RGC-32 may therefore play a role in EBV-mediated cell-cycle 

deregulation. RGC-32 has no homology with any other known proteins, so 

affinity-tagged forms of RGC-32 were expressed in E.coli for structure-function 

studies. Replacing a polyhistidine tag with a glutathione S-Transferase (GST) 

tag and optimising expression conditions improved RGC-32 solubility. Purified 

soluble RGC-32 was produced for structural studies, but no crystals were 

obtained. Using the GST-RGC-32 fusion protein I showed that RGC-32 

interacts with CDK1, Plk1 and the kinetochore component Spc24 from B-cell 

lysates. Interestingly, RGC-32 did not interact with cyclin B1, suggesting that it 

may activate CDK1 in a cyclin-independent manner. Mapping the regions of 

interaction between RGC-32 and CDK1 and Plk1 revealed these kinases bind 

to different but adjacent regions of RGC-32. To investigate the role of RGC-32 

in cell cycle disruption by EBV, I made a series of cell-lines stably expressing 

inducible RGC-32 constructs and RGC-32 disrupted G2/M checkpoint in an 

additional B-cell line. Investigating the mechanism of RGC-32 transcription 

control in EBV-infected cells demonstrated that although EBV transcription 

factors bind to intronic regions of the RGC-32 gene, no regulation was detected 

in reporter assay. These data reveal a novel aspect of CDK1 activation by 

RGC-32, identify the sites of protein-protein interactions and provide new cell-

lines for further investigation of RGC-32 function. 
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1 Introduction 

1.1 Cell cycle 

Cell division describes the process by which organisms precisely duplicate the 

DNA in the chromosomes and pass it on to two daughter cells.  It is divided into 

four phases in eukaryotes G1, S, M, G2 and a resting phase, G0 (Figure 1-1). In 

synthesis (S) phase, the DNA in the cell is replicated and chromosomes are 

duplicated from single chromatids to double (sister) chromatids. In mitosis (M) 

phase the cell is divided into two daughter cells followed by nuclear division. M 

phase is a complicated process which is composed of prophase, prometaphase, 

metaphase, anaphase and telophase. During prophase, chromatin condenses 

into chromosomes and in prometaphase the nuclear membrane breaks down. 

Chromosomes then line up along the equatorial plate in metaphase, separate at 

centromeres and sister chromatids then move to the cell poles in anaphase. 

During telophase a new nuclear membrane is formed and chromosomes 

decondense into chromatin. S and M phases are separated by two gap phases 

(G1 and G2) in which cells prepare for DNA replication or mitosis. 

 

1.1.1 Cell cycle control system 

Three main checkpoints in G1, G2 and mitosis make sure that appropriate 

processes in the cell cycle occur in the proper sequence, i.e. prevent progress 

into the next phase if the process is not completed. The key components of the 

cell cycle control system are cyclin-dependent kinases (CDKs) and cyclins  
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Figure 1-1 Cell cycle overview.  

The cell cycle is divided into four phases (G1, S, G2 and M) and a resting phase G0. The CDK/Cyclin 
complexes, Plk1 and the status of Rb phosphorylation regulate progression of cells through the different 
phases of the cell cycle.  
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which are activated throughout the cell cycle and regulate the transition of each 

cell from one cell cycle state to the next (Pines 1995) (Figure 1-1). 

 

1.1.2 CDK1 and Cyclin B1 

Original investigations into genes which control cell size at cell division (Nurse 

1990) and subsequent research on amphibian oocytes led to the identification 

of M phase-promoting factor (MPF) (Smith and Ecker 1971, Masui and Markert 

1971). Later work with Xenopus oocytes revealed the components of MPF to be 

CDK1 (Gautier et al. 1988, Arion et al. 1988, Dunphy et al. 1988, Labbe et al. 

1988) and cyclin B (Gautier et al. 1990, Labbe et al. 1989). The CDK1/cyclin B1 

complex remains inactive until late G2, although cyclin B1 is expressed in late S 

and G2 phases (Pines and Hunter 1989, Nurse 1990, Maller 1991).  

 

In normal cells, the assembly of CDK1 and cyclin B1 only produces a partly 

active complex and its full activity is reached through phosphorylation at 

Threonine 161 in CDK1 by CAK (cdk-activating kinase) (Solomon, Lee and 

Kirschner 1992), a complex of CDK7 and cyclin H. CAK activity is constant 

throughout the cell cycle (Tassan et al. 1994, Bartkova, Zemanova and Bartek 

1996). CDK1 is however inactivated by phosphorylation on Threonine 14 and 

Tyrosine 15 by the kinases Wee1 and Myt1 (McGowan and Russell 1993, 

Mueller et al. 1995), even in the presence of CAK-catalyzed activating 

phosphorylation. The activities of both Wee1 and Myt1 are regulated by 

phosphorylation and localization (McGowan and Russell 1995, Watanabe, 

Broome and Hunter 1995, Wang et al. 2000, Liu et al. 1997). At the G2/M 
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transition, inhibitory phosphorylation on Threonine-14 and Tyrosine-15 of CDK1 

is removed by the phosphatase CDC25 which allows cells to enter mitosis 

(Kumagai and Dunphy 1991) (Figure 1-2). 

 

In addition, the activity of the CDK1/cyclin B1 complex is regulated by cellular 

localization (Hagting et al. 1998, Yang et al. 1998). In interphase, CDK1/cyclin 

B1 complexes localize to the cytoplasm (Pines and Hunter 1991, Ookata et al. 

1993, Bailly et al. 1992) and during late prophase most CDK1/cyclin B1 

complexes are translocated from cytoplasm to the nucleus (Hagting et al. 1999, 

Clute and Pines 1999). The phosphorylation of Threonine 161 by CAK is 

achieved in the nucleus where CAK is localized (Obaya and Sedivy 2002) and 

some evidence indicates that CDC25C is also localized in the cytoplasm during 

interphase and moves to the nucleus during prophase (Seki et al. 1992, Heald, 

McLoughlin and McKeon 1993, Kumagai and Dunphy 1991, Dalal et al. 1999, 

Graves et al. 2000). 

 

If DNA is damaged, the G2/M checkpoint is activated. Ataxia telangiectesia 

mutated (ATM) and ataxia telangiectasia and Rad3-related protein (ATR), two 

central components of the DNA damage response are activated (Elledge 1996). 

ATM is a 350 kDa protein and has homology to the phosphoinositide 3-kinases 

(Shiloh 1997, Perry and Kleckner 2003, Bakkenist and Kastan 2003, Savitsky et 

al. 1995). ATR is a 303 kDa protein with homology to other phosphoinositide 3-

kinase-like kinase (PIKK) family members (Sancar et al. 2004). As downstream  
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Figure 1-2. G2/M checkpoint.  

In absence of cytotoxic stress, inhibitory phosphorylation on Threonine-14 and Tyrosine-15 of CDK1 is 
removed by the phosphatase CDC25 which allows cells to enter mitosis at the G2/M transition. In the 
presence of cytotoxic stress downstream activators of ATR and ATM, chk1 and chk2 can phosphorylate 
CDC25C on Serine-216 and this phosphorylation can result in CDC25 degradation, resulting in a failure to 
dephosphorylate CDK1 on Threonine-14 and Tyrosine-15. So CDC25 cannot remove those two inhibitory 
phosphates from CDK1 which leads to G2 arrest.  
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activators of ATR and ATM, chk1 and chk2 (Abraham 2001, Matsuoka, Huang 

and Elledge 1998)can phosphorylate CDC25C on Serine-216 and this 

phosphorylation can result in CDC25 degradation, resulting in a failure to 

dephosphorylate CDK1 on Threonine-14 and Tyrosine-15 (Matsuoka et al. 1998, 

Henle, Henle and Diehl 1968). The ATM-Chk2-CDC25 pathway responses to 

double-stranded DNA breaks caused by ionizing radiation and UV light 

exposure and the ATR-Chk1-CDC25 pathway responses to single-strand DNA 

breaks caused by replication errors and hydroxyurea. So once DNA is damaged, 

either the ATM-Chk2-CDC25 or the ATR-Chk1-CDC25 pathway is activated to 

arrest the cell cycle in G2 (Zhao and Piwnica-Worms 2001, Xu et al. 2002, 

Brown and Baltimore 2003). 

 

1.1.3 Plk1 

The polo gene was first discovered in Drosophila (Sunkel and Glover 1988) and 

five Plks (Plk1-5) have been identified in humans (Glover, Hagan and Tavares 

1998, Andrysik et al. 2010). The human Plk1 was cloned in 1994 and is 

expressed highly at the mRNA level in tissues that contain dividing cells.  Plk1 

protein level changes in cell cycle, and are highest in mitosis (Golsteyn et al. 

1994).  

 

Aurora A can activate Plk1 by phosphorylating threonine 210 in the activation 

loop in the G2 phase, but only when Plk1 binds to Bora, an aurora A kinase 

activator in cell cycle (Macurek et al. 2008, Jang et al. 2002, Seki et al. 2008). 

The exact mechanism of how Bora and Plk1 interact is still not clear, but one 
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possibility is that the interaction is triggered through the phosphorylation of Bora 

by CDK1 (Chan et al. 2008). During the G2/M transition, Plk1 phosphorylates 

CDK1/Cyclin B and Cdc25 leading to mitotic entry (Kumagai and Dunphy 1996). 

So there is controlling loop between CDK1 and Plk1.  

 

When DNA is damaged, activation of the DNA damage pathway ATM/ATR-

Chk2/1-p53 results in cell cycle arrest and Plk1 inactivation (Smits et al. 2000, 

Taylor and Stark 2001). The first Plk1 substrate that is involved in DNA damage 

recovery is Claspin which bridges ATR and Chk1 (Mamely et al. 2006, 

Peschiaroli et al. 2006). Claspin is phosphorylated by Plk1 and this 

phosphorylation causes degradation of claspin, which is necessary for the 

termination of the DNA replication checkpoint which allows cells to go into 

mitosis (Mailand et al. 2006, Mamely et al. 2006, Peschiaroli et al. 2006). 

 

1.1.4 Spc24-25 

Core components of the kinetochore are the constitutive centromere associated 

network (CCAN) and the Knl1-Mis12 complex-Ndc80 complex (KMN) which 

bind to centromeric DNA and microtubule respectively and both of them are 

conserved across eukaryotes (McAinsh and Meraldi 2011, Cheeseman et al. 

2006). The KMN network (Figure 1-3) includes kinetochore null 1 (Knl1), the 

four-protein Mis segregation 12 (Mis12) complex and the four-protein nuclear 

division cycle 80 (Ndc80) complex (reviewed in (Foley and Kapoor 2013). The 

Ndc80 complex is a heterotetramer comprised of Ndc80 protein, nuclear 

filamentous 2 (Nuf2), spindle pole component 24 and 25 (Spc24-25) (reviewed  
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Figure 1-3. The KMN network.  

The KMN network (Figure 1-3 d) is a kinetochore protein complexes. It is formed by kinetochore null 1 
(Knl1, Figure 1-3 a), the mis-segregation 12 (Mis12) complex (Figure 1-3 b) and the nuclear division cycle 
80 (Ndc80) Complex (Figure 1-3 c). This figure was taken from (Godek et al., 2015). 
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in (Foley and Kapoor 2013). CCAN localises to the inner kinetochore and KMN 

network localises to the outer kinetochore (Cheeseman and Desai 2008).  

 

The four proteins in Ndc80 complex form a rod like structure and Ndc80 and 

Nuf2 form a complex which localises to the outer kinetochore and Spc24-25 

form a complex which localises to the inner kinetochore (Cheeseman and Desai 

2008). The Ndc80 complex is important for the attachment of kinetochore to 

microtubule and Spc24-25 interacts with yeast histone-fold protein Cnn1 

(human homologue CENP-T) illustrating how this connection links microtubule 

to chromosome (Malvezzi et al. 2013). Cnn1 binds to the hydrophobic pocket 

located in the globular domain of Spc24-25 (Malvezzi et al. 2013).  

 

1.2 EBV 

Epstein-Barr virus (EBV) was originally discovered in 1964 in B lymphocytes 

cultured from an African Burkitt’s lymphoma (BL) (Epstein, Achong and Barr 

1964) and was the first herpes virus to have its genome completely cloned and 

sequenced. The virus causes a latent and persistent infection and is a gamma 

herpes virus known to be associated with several cancers such as Burkitt’s 

lymphoma (BL), Hodgkin’s lymphoma (HL), Nasopharyngeal carcinoma (NPC) 

and post-transplant lymphoproliferative disease (PTLD) (reviewed in Crawford 

2001). In vivo, primary EBV infection usually occurs during childhood via saliva 

(Niederman et al. 1976) in about 90% of the world-wide population and is 

asymptomatic (De Matteo et al. 2003, Henle et al. 1969). However, infectious 
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mononucleosis (IM) can develop if primary infection occurs in adolescence 

(Niederman et al. 1968).  

 

EBV is able to infect and transform B lymphocytes but can also infect epithelial 

cells and in some situations may infect T cells and natural killer cells (Kieff and 

Rickinson, 2007). EBV attaches to B cells due to a high-affinity interaction 

between major viral envelope glycoprotein gp350 and complement receptor 

CD21 (also known as CR2) on the B cell (Nemerow et al. 1985), then through 

the binding of a second glycoprotein gp42 to human leukocyte antigen (HLA) 

class II molecules as a co-receptor (Borza and Hutt-Fletcher 2002). After the 

virus attaches to the B cell surface, the virus fuses its envelope to the vesicle 

membrane through CD21 (Miller and Hutt-Fletcher 1992).  The EBV DNA is 

found to occur after uncoating of the virion 12-16 hours after infection when 

coinciding with early latent viral gene expression (Adams and Lindahl 1975, 

Hurley and Thorley-Lawson 1988). Infection of epithelial cells takes place at the 

cell surface (Miller and Hutt-Fletcher 1992) and is thought to happen in a 

gp350-dependent or -independent manner (Fingeroth et al., 1999; Maruo et al., 

2001). Recently it has been called transfer infection in which EBV infects 

epithelial cells by first binding to resting B cells which act as a transfer vehicle 

(Shannon-Lowe et al. 2006).  

 

Two types of EBV has been described as EBV type 1 (EBV-1) and 2 (EBV-2) 

and the major difference between them is only 64% of the gene and 53% of the 

amino acids sequence of EBNA 2 is conserved between types (Adldinger et al. 



1-11 
 

1985). EBV-2 infection rarely happens in Western Europe and USA, but is 

common in Africa (Rowe et al. 1989, Young et al. 1987, Zimber et al. 1986).  

1.2.1 EBV genome 

The EBV genome is a linear 170 kb double-stranded DNA in the virion and 

becomes closed circular episome after infection (Hurley and Thorley-Lawson, 

1988; Lindahl et al., 1976). In vitro, EBV can transform resting B cells to 

generate latently infected lymphoblastoid cell lines (LCLs) which express a 

limited set of viral genes, encoding six EBV nuclear antigens (EBNA1, 2 3A, 3B, 

3C and -LP) and three latent membrane proteins (LMPs 1, 2A and 2B) (Figure 

1-4) (Young and Rickinson 2004). EBV encoded RNAs (EBER1 and 2) which 

do not have a polyadenylated tail, so remain as untranslated RNA and are 

expressed in all forms of latency (Young and Rickinson 2004). EBV encodes 

multiple microRNAs (miRNA) from two independent transcripts, BamHIA 

rightward transcripts (BARTs) and BamHI rightward reading frame 1 (BHRF1) 

(Young and Rickinson 2004). This pattern of latent EBV gene expression which 

is activated only in B-cell infection is defined as latency III (reviewed in Young 

and Rickinson, 2004). EBV displays two other latency programmes in various 

EBV-related malignancies and in healthy infected hosts characterised by more 

restricted latent gene expression patterns (reviewed by (Shah and Young 2009): 

latency I and latency II. Latency I is associated with expression of EBNA 1 and 

Epstein-Barr virus Encoded RNAs (EBER 1 and EBER 2). Latency II is 

associated with expression of EBNA1, LMP 1, 2A, 2B and Epstein-Barr virus 

Encoded RNAs (EBER 1 and EBER 2) (summarised in Table 1-1).  
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Figure 1-4. Location and transcription of the EBV latent genes on the double-stranded 

viral DNA episome.  

The red circle line represents EBV transcription during latency III in which all the EBNAs are transcribed 
from promoter C or W. The blue circle line represents EBV transcription during latency I and II in which 
EBNA1 is transcribed from promoter Q during latency I and II. The yellow shows the origin of plasmid 
replication (oriP). The purple arrows represent exons encoding the latent proteins and the direction in 
which the genes are transcribed. The two yellow arrows on the top represent the non-polyadenylated 
RNAs EBER1 and 2 (Murray and Young 2001).  
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  Latency 0 Latency I Latency II Latency III 

Gene  
expressed 
  
  
  
  
  

  
  
  
  
  
  
  
  
  
  
  

EBNA 1 (Qp) 
EBER 1 
EBER 2 
  
  
  
  
  
  
  
  

EBNA 1 (Qp) 
LMP 1 
LMP 2A 
LMP 2B 
EBER 1 
EBER 2 
  
  
  
  
  

EBNA 1 (Cp) 

EBNA 2 

EBNA 3A 

EBNA 3B 

EBNA 3C 

EBNA LP 

LMP 1 

LMP 2A 

LMP 2B 

EBER 1 

EBER 2 

Site in vivo 
 
 
 

Periphery 
resting 
memory B 
cells 

Periphery 
dividing 
memory B 
cells 

Tonsil GC B cells Tonsil naive 
B cells 
 
 

 Diseases   
  
  
  

BL 
  
  
  

HD, NC, 
T cell lymphomas 
  

AIDS- 
associated  
lymphomas, 
PTLD 

  

  

  

 

Table 1-1. EBV gene expression pattern during different states of infection and tumours 

(modified from (Thorley-Lawson 2015)). 

In latency 0, no latent EBV protein is expressed. In latency I, EBNA 1, EBER 1 and 2 are expressed and 
this pattern of expression is found in Burkitt’s lymphoma group I. In latency II, EBNA 1, LMP 1, 2A and 2B 
are expressed and this pattern of expression is found in Hodgkin’s disease (HD), nasopharyngeal 
carcinoma (NC) and T cell lymphomas. In latency III, all latency EBV genes are expressed and this pattern 
of expression is found in AIDS-associated lymphomas and post-transplant lymphoproliferative disease 
(PTLD).  
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The EBV genome contains different promoters which contribute to the 

expression of the latent EBV proteins (reviewed in (Young and Rickinson 2004). 

The C promoter (Cp) and the W promoter (Wp) are both located within the EBV 

major internal repeat (IR-1). The Q promoter (Qp) only expresses EBNA 1 

transcript. The activation of Wp by B cell transcription factors on initial infection 

causes the expression of EBNA2 and EBNA LP (Bell et al. 1998); Kirby et al., 

2000; (Walls and Perricaudet 1991, Kirby, Rickinson and Bell 2000). Within 36 

hours after infection, Cp activation by EBNA 2 switches promoter usage from 

Wp to Cp which leads to the expression of all EBNA proteins ((Puglielli, 

Woisetschlaeger and Speck 1996); (Woisetschlaeger et al. 1990). Qp drives the 

expression of EBNA 1 in the absence of Cp activation and EBNA 2 expression 

((Nonkwelo et al. 1996); (Schaefer, Strominger and Speck 1995). In EBV-

infected B-cells, Cp and promoters of the vial LMP1, 2A and 2B genes is 

activated by EBNA 2 (Abbot et al. 1990, Fahraeus et al. 1990, Ghosh and Kieff 

1990, Jin and Speck 1992, Sung et al. 1991, Wang et al. 1990). In absence of 

EBNA 2 in latency II, the expression of LMP1 is maintained by cytokine-induced 

activity of signal transducers and activators of transcription (STAT) and also 

transcription factors of the CCAAT enhancer-binding protein (C/EBP) family 

(Chen et al. 2001, Chen et al. 2003, Kis et al. 2006, Kis et al. 2010, Kis et al. 

2011, Noda et al. 2011). The EBNA 3 genes (EBNA 3A, 3B and 3C) are 

arranged in tandem sequence in the EBV genome and transcribed as 

alternatively spliced tanscripts from the very long mRNA initiated by the Cp 

(White et al. 2010) which is active in EBV transformed lymphoblastoid cell lines 

(LCLs) but blocked in some EBV-associated cancers through hypermethylation 

(reviewed in (Allday, Bazot and White 2015). 
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More than 90% of the human population are infected by EBV (Henle et al. 1969) 

carrying the virus as a life-long persistent latent infection in B lymphocytes 

(Babcock et al. 1998, Thorley-Lawson, Miyashita and Khan 1996) with virus 

production into the saliva (Niederman et al. 1976, Yao, Rickinson and Epstein 

1985).  

1.2.2 EBV infection in vivo 

1.2.2.1 EBV infection in healthy hosts 

How EBV infects and persists in the host is not fully understood, but a proposed 

model has been described as a dynamic equilibrium between the immune 

system response and the different states of infection (Figure 1-5) (Young and 

Rickinson 2004). In primary infection, EBV infects naive B cells and transforms 

them to B blasts expressing all latent EBV proteins (latency III) (Babcock et al. 

1999). The B blasts differentiate to germinal centre cells which display EBNA 1, 

LMP1 and 2A (latency II) probably because the expression of EBNA 2 blocks 

the differentiation of B cells to memory cells and therefore it is silenced (Polack 

et al. 1996). The germinal centre cells then differentiate to resting viral-genome-

positive memory B cells in which all latent gene expression is turned off (latency 

0) (Babcock et al. 1999). In the rarely dividing memory B cells, expression of 

EBNA 1 from the Q promoter is observed (latency I) to make sure the episome 

is not lost during cell division in hosts (Davenport and Pagano 1999, Hochberg 

et al. 2004).  
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Figure 1-5. In vivo model of interactions between EBV and host cells (Young and 

Rickinson 2004).  

a. Primary infection. Virus establishes lytic replication in the oropharynx then spreads to the lymphoid 

tissues as a latent (latency III) growth-transforming infection of B cells. Many proliferating cells are 
removed by the latent-antigen-specific primary T-cell response, but some escape by downregulating 
antigen expression and establishing a reservoir of resting viral-genome-positive memory B cells (latency 0) 
in which viral antigen expression is mostly suppressed. b. Persistent infection. The reservoir of EBV-

infected memory B cells migrate and differentiate under physiological control. These EBV-infected cells 
might be recruited into germinal centre, after which either re-enter the reservoir as memory cells or move 
to mucosal sites in the oropharynx and activate the viral lytic cycle (reviewed in (Young and Rickinson 
2004).  

 

1.2.2.2 Latent EBV gene expression in diseases 
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Unlike other herpes viruses, EBV has the unique ability to transform resting B 

cells to immortal latently infected lymphoblastoid cell lines (LCLs) in vitro 

indicating its tumourigenic ability (Pope, Horne and Scott 1968). Different 

patterns of latent EBV gene expression are observed in EBV-related diseases 

(summarised in Table 1-1). In latency I, only EBNA 1 and two EBERs are 

expressed and this pattern is observed in many Burkitt’s lymphoma tumour cells 

(Rowe et al. 1987, Brooks et al. 1993). In Wp-restricted Burktt’s lymphoma, 

EBNA 1, 3A, 3B, 3C and -LP are expressed in the absence of ENBA 2 and the 

LMPs (Kelly et al. 2006). In latency II, EBNA 1, all three LMPs and the two 

EBERs are expressed and this pattern is detected in Hodgkin’s disease, 

nasopharyngeal carcinoma and T cell lymphomas (Brooks et al. 1992, Deacon 

et al. 1993, Chen et al. 1993). In latency III, all latency EBV genes including 

EBNA 1, 2, 3A, 3B, 3C, LP, all three LMPs and the two EBERs are expressed 

and this pattern is found in AIDS-associated lymphomas and post-transplant 

lymphoproliferative disease (Young et al. 1989, Gratama et al. 1991). 

 

1.2.3 EBV latent proteins 

1.2.3.1 EBNA 1 

Epstein-Barr nuclear antigen 1 (EBNA1) is expressed in all patterns of EBV 

latency and it was the first latency protein identified by anti-complement 

immunofluorescence in EBV-immortalized cells (Reedman and Klein 1973). It is 

necessary for B lymphocyte transformation (Lee, Diamond and Yates 1999). 

EBNA 1 is 641 amino acids in length from the prototype EBV type 1 strain B95-
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8 (see section 1.2 EBV) and has a molecular weight of approximately 76 kD on 

SDS-PAGE gels.  

 

EBNA 1 plays a key role in replication and mitotic segregation of EBV episome 

to ensure vial persistence in latent infection and also activates transcription of 

other EBV latency genes (reviewed in (Frappier 2015). EBNA 1 is the only viral 

protein required for the replication of the origin of latent DNA replication (oriP) 

(Figure 1-4) (Yates, Warren and Sugden 1985). EBV episomes replicate only 

once in each cell cycle alongside host DNA (Yates and Guan 1991) and the 

dyad symmetry (DS) element, one of two functional elemens in oriP (Reisman, 

Yates and Sugden 1985), is essential and sufficient for plasmid replication in 

the presence of EBNA 1 (Wysokenski and Yates 1989, Harrison, Fisenne and 

Hearing 1994, Yates, Camiolo and Bashaw 2000). The central Gly-Arg repeat 

region of EBNA 1 (325-376) binding to its recognition sites in the family of 

repeats (FR), the other functional elements in oriP, is necessary for its 

segregation function (Shire et al. 1999). EBNA 1 plays a role in inducing the 

expression of latency genes in latent infection by activating expression from the 

viral Cp and LMP promoters (Sugden and Warren 1989, Gahn and Sugden 

1995). The 65-83 N-terminal sequence (Wu, Kapoor and Frappier 2002, 

Kennedy and Sugden 2003) and the central Gly-Arg repeat region are required 

for transcriptional activation (Ceccarelli and Frappier 2000, Wang et al. 1997, 

Van Scoy et al. 2000).  
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Importantly EBNA 1 can auto-downregulate its own expression by binding to 

two sites located downstream of the Q promoter (Sample, Henson and Sample 

1992). This autoregulation mechanism functions to reduce EBNA 1 expression 

when its level is high, since it will only bind to the two Qp sites when its 

expression is high enough to saturate the DS and FR elements first, due to the 

high affinity for these elements than the two Qp sites (Jones, Hayward and 

Rawlins 1989, Ambinder et al. 1990).  

 

EBNA 1 has been shown to play a role in regulating cellular protein function. 

The cellular ubiquitin-specific protease USP7, also known as HAUSP, is one of 

several cellular proteins identified to be bound by EBNA 1 (Holowaty et al. 2003, 

Malik-Soni and Frappier 2012). The expression of EBNA 1, but not a USP7-

binding mutant of EBNA 1 in U2OS cells has been reported to reduce the 

accumulation of p53 in response to DNA damage and apoptosis (Saridakis et al. 

2005). Similar results have been shown that EBNA 1 expression in CNE2 NPC 

cells decreased the accumulation of p53 in response to DNA damage 

(Sivachandran, Sarkari and Frappier 2008). These findings suggest that EBNA 

1 might modulate p53 to promote cell survival in EBV-infected epithelial cells. 

EBNA 1 has been reported to affect several signalling pathways. First it 

increases the expression of STAT1 in three different carcinoma cell lines (Wood 

et al. 2007, Kim and Lee 2007). Second, its expression decreases the 

expression of TGF-β-responsive genes implying that EBNA 1 is involved in 

TGF-β signalling (Wood et al. 2007, Kim and Lee 2007). Third, EBNA 1 inhibits 

NF-κB activity and DNA binding in carcinoma cell lines (Valentine et al. 2010). 
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1.2.3.2 EBNA 2 

EBNA 2 is a 487 amino acid protein in the prototype EBV type 1 strain B95-8 

(see section 1.2 EBV) (Baer et al. 1984, Skare et al. 1982) which has a 

molecular weight of about 84 kDa on SDS-PAGE gels. Transcription of EBNA 2 

initiates first from Wp following primary infection of B cells, then generally 

switches to Cp, which is upstream of Wp, activated during later stages of 

infection or in LCLs (Alfieri, Birkenbach and Kieff 1991, Bodescot, Perricaudet 

and Farrell 1987, Woisetschlaeger et al. 1990, Woisetschlaeger et al. 1991).  

 

EBNA 2 is essential for B cell transformation. EBV strain P3HR-1 which has a 

deletion of EBNA2 has no B cell immortalizing capacity (Miller et al. 1974) and it 

is able to transform primary B cells when the cloning fragment containing the 

EBNA 2 gene is reconstituted into the EBV genome (Cohen et al. 1989, 

Hammerschmidt and Sugden 1989). EBV-1 and EBV-2, two main types of EBV, 

differ in their ability to immortalise primary B cells (Adldinger et al. 1985, 

Dambaugh et al. 1984) due to mainly difference of sequence in the C terminus 

of them (Tzellos et al. 2014, Tzellos and Farrell 2012) and they due to the 

difference of sequence in the EBNA 2. EBNA 2 is not expressed in latently 

infected memory B cells of healthy hosts or EBV-associated malignancies of 

immunocompetent patients, such as Burkitt’s lymphoma or Hodgkin’s disease 

(reviewed in (Bornkamm and Hammerschmidt 2001, Macsween and Crawford 

2003).  
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Instead binding to DNA directly, EBNA 2 utilises RBP-Jκ, the cellular Notch-

pathway adapter protein CBF1, to bind upstream of and activate the latent Cp 

(Sung et al. 1991, Jin and Speck 1992), LMP1, 2A and 2B (Fahraeus et al. 

1990, Ghosh and Kieff 1990, Wang et al. 1990). EBNA 2 minimal binding 

domain with RBP-Jκ is mapped at aa 318-327 on EBNA 2 (Ling and Hayward 

1995). In addition to viral gene, EBNA 2 is found to regulate many cellular 

genes by microarrays analysis using EBNA 2 conditional LCLs or EBV negative 

BL cells expressing only EBNA 2 (Cahir-McFarland et al. 2004, Thompson et al. 

1999, Maier et al. 2006). The cellular EBNA 2 targets include CD21 (Cordier et 

al. 1990), the B cell activation marker CD23 (Wang et al. 1987), the proto-

oncogene Myc (Kaiser et al. 1999), the B cell transcription factor RUNX 3 

(Spender et al. 2002) and the G1 Cyclin D2 (Sinclair et al. 1994).  

 

1.2.3.3 EBNA-LP 

Transcription of EBNA leader protein (-LP) is required for B cell immortalisation 

(Allan et al. 1992, Mannick et al. 1991). EBNA-LP co-activate EBNA 2 during 

infection as Chloramphenicol acetyltransferase (CAT) reporter assays 

containing upstream Cp or LMP1p are enhanced by co-expression of EBNA 2 

and -LP by 10-30 fold compared to expression of EBNA 2 alone, but EBNA-LP 

repressed the transcription from LMP1p and Cp in the absence of EBNA 2 

(Harada and Kieff 1997). In addition to viral genes, EBNA-LP has been shown 

to co-stimulate EBNA 2-dependent transcription of the Cyclin D2 gene (Sinclair 

et al. 1994) and the transcription factor HES1 (Portal et al. 2011).  
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EBNA-LP is a phosphoprotein (Petti, Sample and Kieff 1990). Phosphorylation 

of EBNA-LP, occurs predominately on serine residues and is detected 

throughout the cell cycle.  EBNA-LP is hypophosphorylated during G1/S and 

hyperphosphorylated during G2/M (Kitay and Rowe 1996). Serine 35 in EBNA-

LP is a predicted CDK1 site and phosphorylation of it is crucial for EBNA-LP 

mediated transcriptional function (Peng et al. 2000a, Peng, Tan and Ling 2000b, 

McCann et al. 2001, Yokoyama et al. 2001). 

 

1.2.3.4 EBNA3 family  

The EBNA3 family of proteins was first detected as an extra 142 kD band along 

with other previously identified latent proteins EBNA1, 2, and LMP1 by Western 

blotting using human sera from rheumatoid arthritis patients and normal EBV-

infected people (Hennessy, Fennewald and Kieff 1985, Rickinson and Moss 

1997b). It has been shown that EBNA3A and EBNA3C are necessary for B-cell 

immortalization (Tomkinson, Robertson and Kieff 1993), but EBNA3B is not 

(Tomkinson and Kieff 1992). However EBNA3B is one of the main targets in 

immortalized cells to be recognized by cytotoxic T cells (Rickinson and Moss 

1997a) and has been reported as a virus-encoded tumour suppressor because 

its inactivation promotes immune evasion and virus-driven lymphomagenesis 

(White et al. 2012) 

 

1.2.3.4.1 Transcriptional regulation by the EBNA 3s 

EBNA3 proteins function as transcriptional regulators by interacting with many 

cellular DNA binding proteins or other transcription factors instead of directly 
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binding to DNA (reviewed in (Bhattacharjee et al. 2016). All three EBNA3 

proteins are proved to interact with the RBP-Jκ and the interacting domains 

overlap with the most highly conserved domain amino acids 90-320 (Robertson 

et al. 1995, Robertson, Lin and Kieff 1996, Waltzer et al. 1996). Interestingly all 

three EBNA 3 proteins can bind RBP-Jκ and repress EBNA 2-activated 

transcription by destablilising the binding of RBP-Jκ to DNA (Johannsen et al. 

1996, Waltzer et al. 1996). EBNA 2 can activate Cp via RBP-Jκ and mutation in 

the RBP-Jκ binding site lead to the loss of the transforming ability of EBV 

(Fuentes-Panana et al. 2000, Sung et al. 1991, Yalamanchili et al. 1994). So 

EBNA 3 proteins form a negative feedback loop which may lead to the 

abrogation of EBNA 2 upregulation of EBNA 3 transcription. The interaction 

region of each EBNA 2 with RBP-Jκ is located in the middle of the homology 

domain between 170-221 aa for EBNA 3A, 176-227 aa for EBNA 3B and 180-

231 aa for EBNA 3C (Bourillot et al. 1998, Calderwood et al. 2011, Dalbies-Tran 

et al. 2001, Lee et al. 2009, Maruo et al. 2005, Maruo et al. 2009, Robertson et 

al. 1996). Also all EBNA3 proteins are reported to repress the activation of 

LMP1 and LMP2 by EBNA 2 (Le Roux et al. 1994, Waltzer et al. 1996). 

Inactivation of EBNA 3A and 3C does not increase the activation of some target 

promoters containing RBP-Jκ binding sites by EBNA 2 in infected cells (Maruo 

et al. 2005, Maruo et al. 2009).  

 

EBNA 3A and 3C, but not EBNA 3B, interact with the co-repressor carboxy-

terminal binding protein (CtBP) (Hickabottom et al. 2002, Touitou et al. 2001) 

which is identified as one of a highly conserved family of co-repressors of 

transcription (Chinnadurai 2007). There are two transcription factors: CtBP1 and 
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CtBP2 which share substantial sequence homology (Chinnadurai 2002, 

Chinnadurai 2009). EBNA 3A contains two non-consensus CtBP binding motifs, 

located at the C-terminal region, ALDLS (aa 857-861) and VLDLS (aa 886-890) 

(Hickabottom et al. 2002). The PLDLS (aa 728-732) motif in the C-terminal of 

EBNA 3C is essential and sufficient for EBNA 3C to interact with CtBP1 

(Touitou et al. 2001). Although the requirement for CtBP binding is not yet 

understood, it has been shown that C terminus of EBNA 3C, specifically the 

PLDLS CtBP-binding site, is essential to rescue proliferation in EBNA 3C-

conditional LCLs culture without the activator (Lee et al. 2009).  

 

The finding that expression of both EBNA 3A and 3C is necessary to repress 

the transcription of BCL2L11 (BIM) shows the first evidence that EBNA 3A and 

3C can cooperate to regulate host cell genes using EBNA 3 knockout 

recombinant B95.8-derived EBVs to infect EBV-negative BL31 BL-derived cells 

(Anderton et al. 2008).  Bcl2-interacting mediator (BIM) is a pro-apoptotic 

member of the BH (BCL2 homology) 3-only family and is encoded by the 

BCL2L11 gene (O'Connor et al. 1998). BIM expression reduction has been 

found very soon after EBV infection in cultured B cells (Anderton et al. 2008, 

Skalska et al. 2013). Also EBNA 3C is necessary to repress the expression of 

the CDK inhibitor p16INK4a shown by using a recombinant Akata EBV encoding a 

conditional EBNA 3C fused to a modified oestrogen receptor (Maruo et al. 

2006). p16INK4a (cyclin-dependent kinase inhibitor 2A) is a tumour suppressor 

protein encoded by the CDKN2A gene (Stone et al. 1995). EBNA 3A also plays 

a role in repression of CDKN2A in LCLs established with EBNA 3A knockout 

and conditional viruses (Maruo et al. 2011, Skalska et al. 2010). The reduction 



1-25 
 

of BIM and p16INK4a does not involve CpG methylation, but correlated with loss 

of histone acetylation, deposition of histone H3 lysine 27 trimethylation 

(H3K27me3) and the recruitment of polycomb repressor complex 1 and 2 

(PRC1, 2) (Paschos et al. 2009, Paschos et al. 2012, McClellan et al. 2012, 

McClellan et al. 2013, Skalska et al. 2010). 

 

1.2.3.4.2 Cell cycle regulation 

The role of the EBNA 3 proteins in cell cycle regulation has been shown in Raji 

cells. An EBV positive Burkitt’s lymphoma derived cell line in which EBNA 3C is 

deleted, could be arrested in the G1 phase in the cell cycle and the cell cycle 

activity was restored by EBNA 3C expression (Allday and Farrell 1994). It has 

been shown that EBNA 3C can physically interact with many important proteins 

involved in cell cycle regulation at both G1/S and G2/M checkpoints, for 

example tumour suppressor proteins pRb and p53, oncoproteins cyclin D1 and 

Myc and DNA damage responder Chk2 and H2AX (Jha et al. 2013, Jha et al. 

2014, Saha and Robertson 2013). All these data suggest its ability to disrupt 

cell cycle control.  

 

It has been shown that NIH3T3 cells expressing EBNA 3C rescue the growth 

arrest at G1 phase caused by serum starvation and continue through G2/M 

while EBNA 3C negative cells arrest in G1 (Parker, Touitou and Allday 2000). 

The initial clue for a possible mechanism of EBNA 3C overriding G1/S 

checkpoint is the expression of EBNA 3C rescue Raji cells arrested in G1 phase 

through increasing the phosphorylation of Rb (Allday and Farrell 1994). Later 
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EBNA 3C is found to form a complex with Rb (Knight, Sharma and Robertson 

2005, Kashuba et al. 2008) and the interaction between them is stabilised in the 

presence of proteasomal inhibitor  which indicates that EBNA 3C might also 

play a role in Rb degradation apart from regulating its phosphorylation (Knight 

et al., 2005). But EBNA 3C maintains a hyperphosphorylation status of Rb but is 

not involved in its degradation in the studies using LCLs with conditionally active 

EBNC 3C (Maruo et al. 2006, Zhao et al. 2011). All these data and the earlier 

findings that EBNA 3C can increase the kinase activity of CDK6/Cyclin D1 (G1 

phase) and CDK2/Cyclin A (S phase) suggest that it disrupts G1/S checkpoint 

by regulating the phosphorylation of Rb (Knight et al. 2004, Saha et al. 2011).  

 

EBNA 3A, 3B and 3C expressing LCLs disrupt the G2/M checkpoint response 

induced by treatment with the histone deacetylase inhibitor azelaic 

bishydroxamine (ABHA) (Krauer et al. 2004). These three proteins can reduce 

the accumulation of inactive CDK1 which is inhibited by phosphorylation at 

threonine 14 and tyrosine 15 during G2/M arrest (Krauer et al. 2004). Further 

research shows that EBNA 3A and 3C can bind and inactivate Chk2 which is a 

downstream target kinase of ATM-dependent DNA damage signal pathway 

(Krauer et al. 2004, Choudhuri et al. 2007). The interaction between EBNA 3C 

and Chk2 can phosphorylate CDC25 on Serine-216 to cause its sequestration 

and degradation (Krauer et al. 2004, Choudhuri et al. 2007), so it cannot 

remove the inhibitory phosphates on CDK1 which results in G2 arrest (Matsuoka 

et al. 1998). Recent research shows that inhibition of ATM and Chk2 increases 

transformation efficiency of primary B cells and EBNA 3C is required to 

attenuate the DNA damage response induced by EBV (Nikitin et al. 2010, Li 
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and Hayward 2011). All these findings suggest a possible mechanism by which 

EBNA 3C disrupts the G2/M checkpoint to maintain the continuous proliferation 

of EBV-transformed B cells.  

 

1.2.4 EBV-associated diseases 

1.2.4.1 Infectious Mononuleosis 

During primary infection, adolescents and young adults are more likely to 

experience infectious mononucleosis (IM) than children (Krabbe, Hesse and 

Uldall 1981). IM was identified as an EBV-related disease in 1968 (Henle et al., 

1968) and symptoms can range from mild transient fever to several weeks of 

pharyngitis, lymphadenopathy (Niederman et al. 1968). It also increases the risk 

of Hodgkin’s disease but the association between the occurrence of IM and the 

risk of Hodgkin’s disease still remains uncertain (Hjalgrim et al. 2000).  

 

1.2.4.2 Lymphomas in immunocompromised patients 

Post-transplant lymphoproliferative disorders (PTLDs) is a complication in 

transplant patients who are using immunosuppressive drugs (Penn 2000) and 

70 to 100% of these disorders is associated with EBV (Juvonen et al. 2003). A 

latency III type EBV gene expression pattern was found in early PTLDs 

(Knowles 1999, Young et al. 1989, Gratama et al. 1991). The lower amount of 

EBV-specific cytotoxic T cells are not able to fight the infection and allow the B 

cells to proliferate because the immune system is suppressed in the patients by 

using immunosuppressive drugs (Holmes and Sokol 2002).  Rituximab 
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monotherapy, a monoclonal antibody directed against CD20, is a highly 

effective treatment for EBV-positive PTLD (Taylor, Marcus and Bradley 2005). 

AIDS-related lymphomas (ARLs) are mostly of B cell origin and unlike PTLDs, 

only 30 to 40% of AIDS-related BL is associated with EBV (Neri et al. 1991, 

Shibata et al. 1993).  

 

1.2.4.3 Lymphomas in immunocompetent patients 

1.2.4.3.1 Burkitt’s lymphoma (BL) 

Burkitt’s lymphoma (BL) was originally described in equatorial Africa where it is 

the commonest childhood cancer (Burkitt and O'Conor 1961). EBV is present in 

about 95% of endemic BLs in Africa but only 10%-20% in Europe and the USA 

and this difference is caused by the early age of EBV infection in Africa 

compared with industrial countries (Magrath, Jain and Bhatia 1992). In the 

endemic tumours among which Wp-restricted latency BLs are comparatively 

common, only EBNA 1 is expressed (latency I) (Rowe et al. 1986). BL is 

characterised by Myc translocation from chromosome 8 to the Ig heavy chain 

on chromosome 14 leading to the overexpression of c-myc (Zech et al. 1976). 

After translocation Myc is active and promotes cell cycle progression (Bhatia et 

al. 1993, Cesarman et al. 1987, Magrath 1990). EBV infection in latency I 

program promotes BL cell growth by inhibiting apoptosis induced by Myc 

through the upregulation of Bcl-2 and downregulation in Myc expression (Ruf et 

al. 2001).  
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In 1969 malaria was found to play a role in the generation of BL (Burkitt 1969). 

The role of malaria in BL and the mechanisms of how malaria induces the 

pathogenesis of BL are still not clear. The possible mechanisms include 

expansion of the EBV-infected B cells, suppression of EBV-specific T cell 

immunity, reactivation of EBV induced and activation-induced cytidine 

deaminase (AID)-dependent genomic translocation by malaria (reviewed by van 

Tong et al., 2017). B cell activation in malaria has been shown both 

experimentally and clinically and the risk of expansion and transition of EBV-

infected B cells enhanced by increasing proliferation of polyclonal B cells could 

lead to the emergence of a malignant B cell clone (Rochford et al., 2005). In 

malaria patients, the failure of EBV-specific T cells to control EBV-infected cells 

causes the expansion and abnormal proliferation of EBV-infected B cells 

(Whittle et al., 1984). The finding that Plasmodium falciparum infection causes 

more mature B cell lymphomas by stimulating prolonged AID expression in 

germinal centre B cells uncovers that AID is a key player for the controlling of 

chronic malaria and the lymphomagenesis induced by malaria (Robbiani et al., 

2015). 

 

1.2.4.3.2 Hodgkin’s disease (HD) 

Hodgkin’s disease is characterised by the presence of malignant 

Hodgkin/Reed-Sternberg cells (HRS) cells (Kuppers 2009) which are large, 

often multinucleated with a peculiar morphology and an unusual 

immunophenotype that is not similar to any normal cell in the body (Kuppers 

and Hansmann 2005) and some studies showed that in many cases of HD HRS 
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cells are derived from germinal centre B cells (Marafioti et al. 1997). The 

relationship of EBV and HD was established in 1989 due to the detection of 

monoclonal EBV in the HRS cells from HD (Weiss et al. 1989). EBNA 1, LMPs, 

the non-coding EBERs and miRNAs are expressed in EBV-infected HRS cells 

(Deacon et al. 1993, Niedobitek et al. 1997, Murray et al. 1992, Grasser et al. 

1994).  

 

1.2.4.4 Epithelial and other malignancies  

1.2.4.4.1 Nasopharyngeal carcinoma (NPC) 

NPC is a common malignancy in southern China (Yu and Ho et al., 1981) and 

the reports suggest that environmental factors inherent in southern Chinese are 

responsible for the high incidence of NPC in the region (Warnakulasuriya et al., 

1999; McCredie et al., 1999; Buell, 1974). Ingestion of salted fish which is a 

traditional southern Chinese food favoured by the Cantonese was suggested as 

a cause of the high incidence of NPC (Ho et al., 1978). Several nitrosamines 

have been reported in Chinese salted fish (Tannenbaum et al., 1985; Zou et al., 

1992; Zou et al., 1994). Other preserved foods, e.g. salted vegetables and 

preserved meat, were found to be related to an increase risk of NPC and like 

salted fish, these foods contain carcinogenic nitrosamines and other genotoxic 

substances (Ward et al., 2000).  

 

The EBV genome was detected in malignant epithelial cells of patients with 

NPC in 1975 (Wolf, Werner and zur Hausen 1975, Davenport and Pagano 1999) 

(Pagano et al. 1975). Compared with EBV infection in B cells, epithelial cells are 
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more difficult to infect (see section 1.2 EBV) and the EBV genome is frequently 

missing in stable cell lines established in tumours (Dittmer et al. 2008, Cheung 

et al. 1999, Lin et al. 1990). It is characterised by the abundant transcription of 

BARF1 (Brink et al. 1998, Decaussin et al. 2000, Chen et al. 1992), which is 

located in the BamHI-A fragment of EBV genome and has activity as an 

oncogene in epithelial cells (Sbih-Lammali et al. 1996, Decaussin et al. 2000, 

Wei et al. 1994).  

 

1.2.4.4.2 Gastric carcinoma 

EBV was first detected in gastric adenocarcinomas in USA in 16% of the cases 

(Shibata and Weiss 1992) and about 10% of human gastric carcinomas are 

EBV-positive (Iizasa et al. 2012). The EBV genome in EBV-associated gastric 

carcinomas is monoclonal (Imai et al. 1994) and LMP2A is expressed in about 

half of EBV-associated gastric carcinomas (Sugiura et al. 1996, Luo et al. 2005). 

The BARF1 gene is expressed in nearly 100% of EBV-associated gastric 

carcinomas so it is thought that BARF1 may play as the alternative viral 

transforming factor (zur Hausen et al. 2000). Expression of BARF1 in gastric 

carcinoma cells induces significant alterations in host gene expression, 

particularly genes related to proliferation and apoptosis and cells expressing 

BARF1 show chemoresistance and increased Bcl-2 and Bax ratio (Wang et al. 

2006).  

 

1.3 RGC-32 
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Response gene to complement-32 (RGC-32) was first identified using mRNA 

differential display PCR in primary rat oligodendrocytes (OLG) in a screen to 

find novel genes whose expression changed as a result of sub-lytic complement 

treatment with C5b-9 to mimic complement activation of the cells (Badea et al. 

1998). 32 cDNA species were identified in the screen and the cDNAs were 

designated as RGC-1 to 32 according to the order of identification (Badea et al. 

1998).  

 

The rat RGC-32 gene encodes a protein of 137 amino acids and the human 

RGC-32 gene encodes a protein of 117 amino acids (Badea et al. 1998). 

Human RGC-32 has 92% sequence similarity with rat and mouse RGC-32 

(Badea et al. 1998). RGC-32 is located at 13q14.11 and this chromosomal area 

is involved in loss of heterozygosity (LOH) or loss of copy number in glioma 

cells (Nishizaki et al. 1998, Kunwar et al. 2001). Human RGC-32 has two 

transcript variants, a shorter and a longer form (Figure 1-6). The shorter form 

lacks the end of exon 1 and the start of exon 2 (Badea et al. 2002) and the 

longer form encodes a protein with 20 more amino acids at the N terminus 

(NM_014059). Data from the West laboratory confirmed the expression of the 

shorter form in B cell lines (Schlick et al. 2011) and the longer form has not 

been detected in any cells to date.  

 

RGC-32 mRNA in rat was detected in brain, heart, kidney, lung, skin, spleen 

and thymus , but not in testis or liver (Badea et al. 1998). Human RGC-32 

mRNA expression was found in many tissues like artery, bladder, brain, breast,  
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Figure 1-6. Two RGC-32 transcript variants (modified from Schlick et al., 2011).  

Blue boxes show exons and yellow boxes show introns. Blue lines show that the end of exon 1 and the 
start of exon 2 of longer RGC-32 (C13ORF15) transcript (nm_014059) are spliced in shorter RGC-32 
transcript (AF036549). The longer form encodes a protein with an additional 20 amino acids close to the N 
terminus.  
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cervix, colon, heart, kidney, liver, lung, muscle, nerve, ovary, pancreas, skin, 

stomach, testis, thyroid (NCBI GTEx). Genotype-Tissue Expression (GTEx) 

project is a database of gene expression on RNA level in human tissues. RGC-

32 protein in human was detected in brain, heart and liver (Badea et al. 2002). 

RGC-32 mRNA expression was up-regulated in breast cancer (Kang et al. 2003, 

Fosbrink et al. 2005), colon cancer (Fosbrink et al. 2005), lung cancer (Fosbrink 

et al. 2005), ovarian cancer (Donninger et al. 2004), stomach cancer (Fosbrink 

et al. 2005), but down-regulated in multiple myeloma (Zhan et al. 2006), drug-

resistant glioblastoma (Bredel et al. 2006, Saigusa et al. 2007) and high-grade 

astrocytomas (Saigusa et al. 2007). Overexpression of RGC-32 protein level 

has been reported in several human tumours including bladder, breast, lung 

and prostate (Fosbrink et al. 2005). All these data suggest a dual role for RGC-

32 in cancer development or progression perhaps depending on the tissue type.  

 

RGC-32 (protein sequence see Figure 4-7.) has no homology with any other 

known protein and contains no motif that could suggest its biochemical function 

(Badea et al. 1998). Human RGC-32 is localised in the cytoplasm then 

translocated to the nucleus when smooth muscle cells are exposed to activated 

complement (Badea et al. 2002). Saigusa et al. have shown that RGC-32 

located in the cytoplasm of tumour cells during interphase and concentrates in 

centrosomes and spindle poles during prometaphase and metaphase (Saigusa 

et al. 2007). 
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Some evidence have been shown that RGC-32 plays a role on tumour 

promotion. Overexpression of RGC-32 in the OLG-C6 glioma cell line leads to 

an increase in DNA synthesis in response to serum growth factors (Badea et al. 

1998). Sublytic C5b-9 induces cell cycle activation and an increase in kinase 

activity of CDK1, 2 and 4 (Niculescu, Badea and Rus 1999, Rus, Niculescu and 

Shin 1996). It has been shown that RGC-32 directly binds to CDK1 and 

increases its activity by glutathione S-transferase pull-down assay in vitro and 

immunoprecipitation in vivo and western blot (Badea et al. 2002). RGC-32 was 

phosphorylated by CDK1-cyclinB1 in vitro and mutation on Thr-91 of RGC-32 

prevented the phosphorylation mediated by CDK1 (Badea et al. 2002). 

Overexpression of RGC-32 protein leads to S-phase and G2/M entry in smooth 

muscle cells (Badea et al. 2002). RGC-32 has also been suggested to influence 

muscle cell differentiation as its expression is increased to 50-fold after 24 

hours treatment in a microarray analysis of transforming growth factor (TGF)-β-

treated neural crest cells to identify downstream targets of TGF-β-induced 

smooth muscle cell differentiation (Li et al. 2007). Our group supported the role 

of RGC-32 in proliferation of EBV-infected cells by showing stable 

overexpression of it alone is enough to disrupt the G2/M checkpoint in B cell 

lines (Schlick et al. 2011). All these findings show that RGC-32 plays a role in 

the promotion of cell proliferation and cell differentiation.   

 

Other studies also suggest the role of RGC-32 as a tumour suppressor. RGC-

32 expression is frequently silenced in glioma cell lines compared with normal 

brain and restoration of RGC-32 causes the suppression of glioma cell growth 

(Saigusa et al. 2007). Overexpression of RGC-32 protein delayed mitotic 
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progression in HeLa cells (Saigusa et al. 2007). It is associated with 

centrosome/spindle poles in mitosis by immunocytochemical analysis (Saigusa 

et al. 2007) and Plk1 is also located to the central spindle in mitosis (Barr, Sillje 

and Nigg 2004). Further experiments demonstrate that RGC-32 forms a 

complex with polo-like kinase 1 (Plk1) during mitosis and is phosphorylated by 

Plk1 (Saigusa et al. 2007). This suggests that RGC-32 might negatively 

regulate the cell cycle.  

 

RGC-32 has been shown as a transcriptional target of p53 (Saigusa et al. 2007). 

It has also been identified as one of the potential downstream targets of RUNX1 

as silencing of RUNX1 mRNA expression mediated by siRNA reduced the level 

of RGC-32 markedly (Jo and Curry 2006). We found that RGC-32 protein is 

differentially upregulated in EBV-positive cell lines and RGC-32 mRNA 

expression in human B-cells is controlled by RUNX1c (Schlick et al. 2011). We 

also reported that EBNA 2 activated RUNX1 expression by binding to RUNX1 

upstream super-enhancer (Gunnell et al. 2016). RUNX1 super-enhancer 

binding by EBNA 3B and 3C attenuated the activation of RUNX1 by EBNA2 in 

BL cells (Gunnell et al. 2016). All these data show that the expression of RGC-

32 levels depend on the balance of many transcriptional factors, e.g. EBNAs, 

p53 and RUNX1.  

 

Interestingly, we found that the RGC-32 protein expression is not consistent 

with its mRNA expression in EBV-positive cell lines latency I and latency III due 

to the blocking of its translation at a post-initiation stage in latency I cells 
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(Schlick et al. 2011). It is still unclear how the changes of RGC-32 mRNA level 

by EBNAs influence the expression of its protein level.  

 

1.4 Speedy/Ringo 

RGC-32 has no homology to other human proteins, but as a CDK1 activator it 

may work similarly to Speedy/Ringo another class of CDK1 activator proteins.  

 

Speedy (xSpy) was first identified to induce rapid maturation of Xenopus 

oocytes resulting in activation of M-phase promoting factor (MPF) (Lenormand 

et al. 1999) and Xenopus Rapid INducer of G2/M progression in oocytes 

(xRINGO) was identified in an expression-cloning screen for genes involved in 

G2/M progression in Xenopus oocytes (Ferby et al. 1999). The first human 

homologue identified has 40% homology to xSpy/xRINGO and was named 

Spy1 and it was proposed to be a new cell cycle regulator which can promote 

cell proliferation by activating CDK2 at G1/S transition (Porter, Kong-Beltran and 

Donoghue 2003).  

 

xSpy/xRINGO can directly activate CDK1 and CDK2 (Karaiskou et al. 2001) 

and mammalian Speedy/RINGO family members can bind to and activate 

CDK1 and CDK2 with different efficiencies, but cannot activate CDK4 and 

CDK6 (Cheng et al. 2005a, Dinarina et al. 2005). Interestingly, the activation of 

CDK1 and CDK2 by Speedy/RINGO proteins does not require phosphorylation 

in the activation loop of the kinase domain by CAK (Karaiskou et al. 2001, 
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Cheng et al. 2005a, Cheng et al. 2005b), which is necessary for full activation of 

CDKs by cyclins. Another important difference from CDK/cyclin complexes is 

that CDK1 and CDK2 activated by xRINGO are less sensitive to inhibition by 

Myt1 which negatively regulates CDK1 activity through phosphorylation on 

residues Threonine 14 and Tyrosine 15 (Karaiskou et al. 2001).    

 

1.5 Aim of the project 

RGC-32 is upregulated in EBV-infected cells, binds CDK1 and Plk1 and plays a 

role in cell cycle regulation. RGC-32 has no homology with any other known 

proteins. This project set out to express and purify soluble milligram quantities 

of RGC-32 for functional and structural studies, investigate the interaction 

between RGC-32 and CDK1, Cyclin B1 and Plk1, examine the effect of RGC-32 

on cell cycle regulation and investigate the potential role of EBV latency III gene 

products in the regulation of RGC-32 mRNA expression.   
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2 Materials and Methods 

2.1 Reagents 

Phosphate buffer:   

                 

Buffer 

 

0.1M PO4 buffer pH7.5 

1M Na2HPO4 15ml 

1M NaH2PO4 5ml 

MilliQ H2O 180ml 

Total vol 200ml 

 

Blotting buffer: 1 litre Methanol (Fisher), 75 g Glycine (Fisher), 15 g Tris 

(hydroxymethyl)-methylamine (Fisher) and 4 litre dH2O. 

 

Buffers for His-RGC-32 purification: 

Buffer A: 40 mM PO4 buffer pH7.5, 300 mM NaCl, 2 mM Benzamidine, 2 mM 

Imidazole and 3.55 mM B-ME. 

Buffer B: 40 mM PO4 buffer pH7.5, 300 mM NaCl, 2 mM Benzamidine, 2 mM 

Imidazole, 3.55 mM B-ME and 10% NP40.  

Buffer C: 40 mM PO4 buffer pH7.5, 1 M NaCl, 2 mM Benzamidine, 2 mM 

Imidazole, 3.55 mM B-ME and 10% NP40. 

Buffer D: 40 mM PO4 buffer pH7.5, 300 mM NaCl, 2 mM Benzamidine, 2 mM 

Imidazole, 3.55 mM B-ME. 
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Buffer E: 40 mM PO4 buffer, 300 mM NaCl and 100 mM EDTA. 

Buffer F: 20 mM PO4 buffer and 200 mM NaCl. 

 

Buffer (volume/final concentration)     
X Y 

1M HEPES (KOH) pH7.5 2.5ml / 50mM 1.25ml / 50mM 

100% Glycerol 5ml / 10% 2.5ml / 10% 

200mM Benzamidine (add just before use) 500ul / 2mM 250ul / 2mM 

GuHCL (powder) 4.7765g / 1M 14.3295ul / 6M 

MilliQ H2O 42ml 21ml 

Total vol (final pH7.5) 50mls 25mls 

 

Buffers for GST-RGC-32 purification: 

Lysis buffer: 20 mM HEPES Ph7.5, 500 mM NaCl and 5 mM EDTA. 

Elution buffer (pH 7.5): 20 mM HEPES Ph7.5, 500 mM NaCl and 20 mM L-

Glutathione  

PreScission buffer: 20 mM HEPES Ph7.5, 500 mM NaCl,  

 

CsCl plasmid purification buffers: 

CsCl prep solution І: 50 mM Glucose, 25 mM Tris-HCl pH 8.0, 10 mM EDTA 

(Sigma). 

CsCl prep solution II: 200 mM NaOH, 1% SDS. 
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CsCl prep solution III: 300 ml 5 M KAC, 57.5 ML Glacial Acetic Acid, 142.5 ml 

H2O. 

CsCl-saturated butanol: 100 g Caesium Chloride (Invitrogen) in 200 ml H2O and 

200 ml butanol. 

 

The destaining buffer (kinase assay): 10% Ethanol, 5% Acetic Acid and 85% 

H2O.ECL solution: Solution I: 2.5 mM Luminol, 396 µM Coomaric Acid and 100 

mM Tris pH 8.5 in 2ml H2O. Solution II: 0.0192% Hydrogen Peroxide (H2O2) and 

100 mM Tris pH 8.5 in 2 ml H2O. Mix solution I and II before use. 

 

Fixing and staining buffer (kinase assay): 40% Methanol, 7% Acetic Acid and 

1.14 mg/ml Brilliant Blue R (Sigma-Aldrich) and 53% H2O. 

 

GSB (gel sample buffer): 50 mM Tris, 4% SDS, 5% 2-Mercaptoethanol (Sigma), 

10% glycerol, 1 mM EDTA and 0.01% Bromophenol Blue.  

 

Lysis buffer (Niculescu et al. 1997): 50 mM Tris-HCl pH 7.5, 150 mM NaCl, 20 

mM MgCl2, 10 mM EDTA, 1% Nonidet P-40 (Sigma) and 0.5% (w/v) Sodium 

Deoxycholate. 

 

PBS-T: 100 PBS tablets (Fisher) and 10 ml Tween 20 (Fisher) in 10 litre dH2O. 

2.2 Cell lines 
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Akata 

Akata cell line was derived from a Japanese patient with Burkitt’s lymphoma 

and t(8;14) translocation (Takada et al., 1991). 

 

BJAB 

BJAB cell line was isolated from human Burkett’s lymphoma which is EBV 

negative, but does not have a c-myc translocation characteristic of Burkitt’s 

lymphoma cell lines.  

 

DG75 

DG75 cell line was a gift from M. Rowe and was established from a 10-year-old 

boy with EBV-negative Burkitt’s lymphoma in 1975 (Ben-Bassat et al., 1977).  

 

Mutu I  

The Mutu I cell line clone 179 was a gift from Martin Rowe (University of 

Birmingham). Mutu I cells only express EBNA1 and EBERs (Gregory, Rowe 

and Rickinson 1990) and are cultured in RPMI supplemented with 10% FBS 

and 1% PSG. Mutu I cells are passaged 1 in 5 twice per week. 

 

Mutu III 
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The Mutu III cell line clone 48 was a gift from Martin Rowe. Mutu III cells arose 

spontaneously from Mutu I cells and express all EBV genes: EBNA1, 2, 3A, 3B 

and 3C and LMP1, 2A and 2B and EBERs (Sinclair et al. 1995). 

 

Adherent cell lines 

HEK293 

HEK293 cell line was generated by transformation of human embryonic kidney 

(HEK) cells with sheared fragments of human adenovirus type 5 (Ad5) DNA 

(Davies et al., 1977).  

 

HeLa 

HeLa cell line was derived from a human cervical carcinoma from a 31 years 

old woman in 1951, which is epithelial cell line and were transformed by human 

papillomavirus 8 (Scherer et al., 1953). HeLa cells were cultured in DMEM 

supplemented 10% FBS and 1% PSG at 37°C with 5% CO2 and were 

passaged by trypsinization 1 in 10 twice weekly. 

2.3 Molecular Biology 

2.3.1 Agarose gel electrophoresis  

1 g agarose powder (Helena BioSciences) was added to 100 ml 

1×Tris/Borate/EDTA (TBE) buffer, dissolved by heating in a microwave and then 

cooled. 0.5 µl Gel Red (Biotium) was added and the agarose mixture was then 

poured into a BioRad Mini-Sub Cell GT tank (BIO-RAD) with a comb to set. The 
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comb was removed once the gel was set and the gel was submerged in 1×TBE 

then run at 90 V 400 mA for about 1 hour.   

 

2.3.2 Transformation of bacterial cells 

Around 100 ng of plasmid DNA was mixed with 100 µl of competent E.coli 

DH5α cells and incubated on ice for 45 minutes. The cells were then heat-

shocked at 42°C for 45 seconds and left on ice for 2 minutes. Transformed cells 

were spread on agar plates with appropriate antibiotics using a sterile glass 

spreader then colonies grown at 37°C overnight.  

 

2.3.3 Small-scale purification of DNA (Miniprep)  

A colony was picked using a pipette tip and grown in 2 ml LB containing 

appropriate antibiotics. The transformed bacteria were incubated at 37°C 

overnight with shaking. The overnight culture was pelleted by centrifugation at 

13,000 rpm (16,060 x g) for 1 minute using accuSpin Micro R Benchtop 

Centrifuge (Fisher). Plasmid DNA was extracted using a QIAprep Spin Miniprep 

Kit (250) (Qiagen) according to manufacturer’s instructions.  

 

2.3.4 Large-scale Caesium chloride (CsCl) DNA purification 

5 ml LB with proper antibiotics was inoculated with a single colony and grown at 

37°C during the day with shaking.The culture was transferred into 400 ml LB 

with appropriate antibodies and cultured at 37°C overnight. Cells were pelleted 

by centrifugation at 6,000 rpm (10,598 x g) for 10 minutes at 4°C using a JA-10 
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rotor in Beckman Coulter Avanti J-20 XP centrifuge. The cell pellet was 

resuspended in 14 ml solution I and then 28 ml of solution II to lyse the cells. 22 

ml solution III was then added and cell debris was pelleted by centrifugation at 

7,000 rpm (10,644 x g) for 10 minutes at 4°C using Heraeus Megafuge 8R 

centrifuge (Thermo Scientific). The supernatant was filtered through Kim wipes. 

0.6 volume of isopropanol was added and the sample was left 5-10 minutes at 

room temperature to precipitate DNA. The samples were spin down at 4,000 

rpm  (6,082 x g) for 15 minutes at 4°C using Heraeus Megafuge 8R centrifuge 

(Thermo Scientific) and then the pellets were dissolved in 6 ml MilliQ H2O and 5 

M NH4 acetate was added to precipitate the RNA.  

 

After 1 hour incubation on ice, the samples were spin down at 4,000 rpm (6082 

x g) for 10 minutes at 4°C using Heraeus Megafuge 8R centrifuge (Thermo 

Scientific) and 2 volume of 100% ethanol was added to the supernatant to 

precipitate DNA. After 10 minutes incubation at room temperature the samples 

were centrifuged at 4,000 rpm (6,082 x g) for 10 minutes at 4°C using Heraeus 

Megafuge 8R centrifuge (Thermo Scientific). Resuspended the pellets in 4 ml 

MilliQ H2O and 4.3 g CsCl and 1 mg Ethidium Bromide was added. The 

samples were removed to optiseal centrifuge tube (Beckman) and placed in Vti 

65.2 rotor. The centrifugation at 50,000 rpm (376,250 x g) overnight was used 

to separate plasmid DNA and chromosomal DNA in Beckman Optima LE-80K 

centrifuge. 
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Used a 19G needle to extract the plasmid DNA and Ethidium bromide was 

washed by adding an equal volume of CsCl saturated butanol several times. 

Dilute the DNA with 3 volume MilliQ H2O and 2 volume of ethanol. After 1 hour 

incubation at -20°C, spin down at 4,000 rpm (6,082 x g) for 20 minutes at 4°C 

using Heraeus Megafuge 8R centrifuge (Thermo Scientific) and resuspended in 

250 µl nuclease free H2O. The concentration of plasmid DNA was determined 

by spectrophotometry.  

  

2.3.5 Spectrophotometric determination of DNA concentration 

2 µl of DNA were diluted in 98 µl H2O in a UV-cuvette micro (Plastibrand) and 

measured in Eppendorf BioPhotometer at 260nm.  

 

2.3.6 Coomassie staining 

After SDS-PAGE, the gel was washed with MilliQ H2O twice for 5 minutes and 

then submerged in Bio-Safe Coomassie stain (BIO-RAD) for 1 hour on a shaker. 

The gel was washed with MilliQ H2O three times for 5 minutes and left in MilliQ 

H2O overnight at room temperature on a shaker. The gel was placed on filter 

paper and then dried using a vacuum gel dryer for 45 minutes at 80ºC.  

 

2.3.7 Immunoprecipitation 

2×107 cells were lysed in 1 ml lysis buffer (Niculescu et al. 1997) with 1 mM 

PMSF, protease inhibitor cocktail and phosphatase inhibitor cocktail and left on 

ice for 30 minutes. Samples were then sonicated at 30% amplitude for 5 × 10 
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seconds with 10 seconds intervals. The debris was removed by centrifugation 

for 5 minutes at 13,000 rpm (16,060 x g) at 4ºC using accuSpin Micro R 

Benchtop Centrifuge (Fisher). The lysates were pre-cleared with 40 µl 1:1 

Protein A-Sepharose beads slurry (Sigma-Aldrich) by incubating for 30 minutes 

at 4ºC with rotating. Then lysates were spun briefly and 2 µg of normal mouse 

IgG, anti-cyclin B1 antibody (GNS1, Santa Cruz) or anti-CDK1 antibody (cdc2 

p34, Santa Cruz) were added and the samples incubated on ice for 30 minutes. 

The immune complex was captured by adding 40 µl 1:1 Protein A-Sepharose 

beads (Sigma-Aldrich) slurry and incubated at 4ºC with rotation overnight. The 

following day, the beads were washed with 3 × 0.5 ml lysis buffer and 2 × 0.5 ml 

kinase buffer. After washing, the samples were divided into two for kinase assay 

and western blotting. 

 

2.3.8 Kinase Assay (in vivo) 

After immunoprecipitation, beads were spun down and resuspended in 5.2 µl 

mastermix including 3 µl kinase buffer, 2 µl 1 mg/ml Histone H1 and 0.2 µl 5 

µCi/µl 32P-γATP. After incubation at 37ºC for 10 minutes, samples were placed 

on ice and 20 µl 2 × GSB then added followed by western blotting.  

 

2.3.9 Kinase Assay (in vitro) 

cdk1/cdc2 Kinase Assay Kit (upstate) method: 
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2 units of recombinant CDK1/cyclin B1 (NEB) in a 1:10 dilution of Assay Dilution 

Buffer I (ADBI) (cdk1/cdc2 Kinase Assay Kit upstate) were mixed with 0.7 µM, 

1.4 µM and 2.8 µM of RGC-32 protein in elution buffer.  

 

After 10 minutes incubation at 30 ºC, 12.5 µl of 5×GSB was added and the 

samples were heated at 95ºC for 10 minutes for SDS-PAGE. After SDS-PAGE, 

the gel was fixed and stained by rocking 1 hour in fixing and staining buffer and 

then destained by rocking in destaining buffer and changing the buffer several 

times during destaining. Finally, the gel was dried onto filter paper (Whatman) 

for 45 minutes at 80 ºC. The dried gel was then exposed to a phosphor screen 

for various times depending on the intensity of the radioactivity. The phosphor 

screen was scanned by a Storm 860 scanner and analysed using ImageQuant 

5.1 software (Amersham Biosciences). 

 

In house kinase assay method: 

2 units of recombinant CDK1/cyclin B1 (NEB) in kinase buffer, 8 µg Histone H1 

(MERCK) was mixed with 0.7 µM, 1.4 µM and 2.8 µM of RGC-32 protein in 

elution buffer.   

                                                                 

2.3.10 Histidine-tagged RGC-32 preparation 

The E. coli strain BL21 pLysS was transformed with pET-16b-RGC-32 (Schlick 

et al., 2011). The bacteria were streaked out on a plate with 100 µg/ml ampicillin 

and 42 µg/ml chloramphenicol and grown overnight at 37ºC. The following day 
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50 ml LB with appropriate antibiotics was inoculated with a single colony and 

grown overnight at 37ºC. The next day 4 ml of the culture was added to each of 

5×flasks with 400 ml LB and grow at 37ºC until the OD 600 nm reached 0.5. 1 

mM IPTG was added and cells grown at 37ºC for 4 hours. The cells were then 

pelleted at 8,000 rpm (14,131 x g) at 4ºC for 15 minutes using a JA-10 rotor in 

Beckman Coulter Avanti J-20 XP centrifuge and the pellets were resuspended 

in total 80 ml cold Buffer A. To lyse the cells, the bacteria were frozen and 

thawed 3 times and then left at room temperature for 15 minutes after adding 10 

µg/ml DNase I. The cell lysates were sonicated 6×10 seconds with 10 seconds 

gaps at 25% amplitude using Vibra-Cell sonicator (SONICS) and then 

centrifuged at 9,800 rpm (22,666 x g) at 4ºC for 20 minutes using JA-20 rotor 

(Beckman) in a Beckman Coulter Avanti J-20 XP centrifuge and resuspended in 

20 ml Buffer X. This step was repeated and afterwards centrifuged at same 

condition but repsuspended in 20 ml Buffer Y.  

 

1:1 slurry of HIS-Select Nickel Affinity Gel (Sigma-Aldrich) was added into the 

supernatant and rotated for 90 minutes at 4ºC. To refold the protein, beads 

were then washed twice with 25 ml Buffer A, Buffer B, Buffer C and Buffer A. To 

elute the protein, 1 ml Buffer E was added and the beads were rotated for 20 

minutes at 4ºC. This step was repeated 5 times and the first 3 elutions pooled 

together. 40 µl of each sample of elution 1~3, 4, 5 and 6 was added 10 µl 5 × 

GSB.   

 

2.3.11 Dialysis 
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RGC-32 protein elutions 1~3 was dialysed following the instructions by Slide-A-

Lyzer Dialysis Cassettes (Thermo SCIENTIFIC) for 2 hours at 4ºC against 600 

ml Buffer F. The buffer was then changed and samples dialyzed for another 2 

hours. Following another change of buffer, samples were dialyzed overnight at 

4ºC.  

 

2.3.12 GST-tagged RGC-32 preparation  

RGC-32 was cut out of pFLAG-RGC-32 (created by Helen Webb) as a 

BamHI/NotI fragment and cloned into pGEX-6P3 digested with BamHI/NotI 

(Figure 2-1). The pGEX-6P3-RGC-32 was transformed into competent cells 

(Rosetta or Arctic cells). One colony was used to inoculate 100 ml of LB media 

containing 150 µg/ml ampicillin, which was placed in a 37°C shaker overnight. 

The next day 100 ml out of this overnight culture was used to inoculate 10 L of 

LB media (10 ml overnight culture used per 1 L) containing 150 µg/ml ampicillin 

and 30 µg/ml chloramphenicol. When the OD 600 nm reached 0.8 the flasks 

were put on ice for 45 minutes and then the cells were induced by 0.8 mM IPTG 

overnight at 18°C. The next day the cells were harvested by centrifugation at 

4,000 rpm (7,066 x g) for 20 minutes using a JA-10 rotor in Beckman Coulter 

Avanti J-20 XP centrifuge. The cell pellet was either stored at -20°C until 

required or used directly for purification. The clarified cell extract was incubated 

with 5ml of Glutathione Sepharose 4B beads (GE Healthcare), pre-washed with 

lysis buffer three times, with rotation for 4 hours at 4ºC. The beads were then 

washed twice with 35ml wash buffer (20 mM HEPES pH7.5 and 500 mM NaCl). 

The protein was eluted with 3ml of elution buffer re-adjusted pH to 7.5 (20 mM  
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Figure 2-1. Schematic graph of cloning process.  

RGC-32 was cut out of the pFLAG-RGC-32 plasmid (created by Helen Webb) as a BamHI/NotI fragment 

and cloned into pGEX-6P3 vector.  
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HEPES pH7.5, 500 mM NaCl and 20 mM L-Glutathione) then incubated at room 

temperature for 10minutes. The eluted protein was incubated with PreScission 

buffer (200μl 2mg/ml PreScission in 20 mM HEPES pH7.5, 500 mM NaCl and 1 

mM DTT) with rotation at 4°C overnight. The protein was then injected onto a 

desalting column pre-equilibrated in 20 mM HEPES pH7.5, 500 mM NaCl and 1 

mm DTT. The eluted protein was then passed through a 5ml GSTrapTM pre-

equilibrated with 20 mM HEPES pH7.5, 500 mM NaCl and 0.5 mM tris (2-

carboxyethyl) phosphine (TCEP) to remove cleaved GST. The sample was 

further purified using a gel filtration column S75 16/600 pre-equilibrated in 20 

mM HEPES pH7.5, 500 mM NaCl and 0.5 mM TCEP.  

 

2.3.13 Bradford Assay 

10 µl diluted or undiluted protein samples were added to 200 µl 1:5 dye reagent 

(BIO-RAD) and absorbance at 600 nm was measured using GloMax-Multi 

Detection System (Promega).  

 

2.3.14 SDS-PAGE 

Cell lysates in gel sample buffer (GSB) were heated at 95ºC for 10 minutes and 

vortexed. 5 µl of SeeBlue Plus2 Pre-Stained Standard marker (Invitrogen) and 

15 µl of each sample were loaded onto NuPAGE Bis-Tris gels (Invitrogen) and 

the gels were run in 1×MES or 1×MOPS NuPAGE SDS running buffer 

(Invitrogen) according to the size of proteins. Gels were electrophoresed at 

200V for 35 minutes for MES or 50 minutes for MOPS.  
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2.3.15 Western Blotting 

After SDS-PAGE, proteins were transferred to Protran Nitrocellulose Transfer 

Membrane (Whatman) in blotting buffer at 85 V for 90 minutes using a Trans-

Blot Cell (BIO-RAD). The membrane was stained in Ponceau S stain for 1 

minute, rinsed in PBS-T and then blocked with shaking in 5% milk in PBS-T for 

1 hour to prevent non-specific binding. The appropriate primary antibody diluted 

in 10 ml 5% milk in PBS-T was added to the membrane and incubated on a 

rocker overnight at 4ºC. The following day the membrane was washed with 

PBS-T three times for 10 minutes and then incubated in secondary antibody 

conjugated to horseradish peroxidise diluted in 10 ml 5% milk in PBS-T for 1 

hour on a rocker. The membrane was then washed again with PBS-T three 

times for 10 minutes. The membrane was incubated with 4 ml enhanced 

chemiluminescence (ECL) solution and then exposed to Fuji medical X-ray film 

(Fisher) for different times. The films were developed using a Konica SRX-101A 

processor.  

 

2.3.16 Pull down assay 

The pGEX-6P3, pGEX-6P3-RGC-32 and pGEX-6P3-RGC-32 T91A were 

transformed into competent cells (Rosetta cells). One colony was used to 

inoculate 100 ml of LB media containing 150 µg/ml ampicillin and 30 µg/ml 

chloramphenicol. pGEX vector has ampicillin resistance and Rosetta has pLysS 

which is a designation given to hosts carrying a chloramphenicol-resistant 

plasmid. When the OD 600 nm reached 0.8 the flasks were put on ice for 45 

minutes and then the cells were induced by 0.8 mM IPTG overnight at 18°C. 
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The next day the cells were harvested by centrifugation at 4,000 rpm (6,082 x g) 

for 20 minutes at 4°C using Heraeus Megafuge 8R centrifuge (Thermo 

Scientific). Cell pellets were dissolved in 1 ml lysis buffer (20 mM HEPES pH7.5, 

500 mM NaCl, 5 mM EDTA and 1 tablet per 50 ml proteinase inhibitor cocktail 

EDTA-free (Roche)) and sonicated at 40% amplitude 10 minutes with 10 

seconds on and 20 seconds off. The cell debris was pelleted at 13,000 rpm 

(16,060 x g) for 1 hour at 4°C using accuSpin Micro R Benchtop Centrifuge 

(Fisher) and the supernatant was incubated with 50 µl glutathione beads, pre-

washed with purification buffer three times, with rotation at 4°C overnight. 

 

2×107 BJAB or Mutu I cells were lysed in 1 ml lysis buffer (Niculescu et al. 1997) 

with 1 mM PMSF, protease inhibitor cocktail and phosphatase inhibitor cocktail 

and left on ice for 30 minutes. Samples were then sonicated at 30% amplitude 

for 5 × 10 seconds with 10 seconds intervals. The debris was removed by 

centrifugation for 5 minutes at 13,000 rpm (16,060 x g) at 4ºC using accuSpin 

Micro R Benchtop Centrifuge (Fisher). The lysates were added into the 

glutathione beads and left at room temperature for 30 minutes. The beads were 

washed with 2 × 0.5 ml lysis buffer. After washing, the samples were used for 

Western blot. 

 

2.3.17 Transient transfection (Electroporation) 

Cells were split 1 in 3 one day before electroporation . The next day cells were 

pelleted at 1,300 rpm (1,606 x g) for 10 minutes at 4ºC using accuSpin Micro R 

Benchtop Centrifuge (Fisher) and the supernatant was kept as conditioned 
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media. DNA in total maximum volume of 50 μl was incubated on ice for 10 

minutes in electroporation cuvettes (Bio-Rad). The cells were resuspended in 

serum free media to count, then pelleted and resuspended at 2 x 107 cells/ml in 

cold serum free media. 1 x 107 cells were added to each cuvette and mixed, 

then incubated on ice for 10 minutes. The samples were electroporated at 230 

V and 950 μF using a BioRad Gene Pulser II. Cells were incubated at 37 ºC for 

30 minutes then transferred to flasks containing 9 ml conditioned media. The 

samples were incubated at 37ºC for 48 hours. Cells were pelleted and 

resuspended in 10 ml PBS, then counted. Then cells were pelleted and 

resuspended in 1 ml PBS to transfer into a 1.5 ml tube. The cells were pelleted 

at 6,000 rpm (7,412 x g) for 5 minutes using accuSpin Micro R Benchtop 

Centrifuge (Fisher) and the supernatant was removed. The cell pellets were 

snap frozen on dry ice and stored at -80ºC until required. 

 

2.3.18 Transient transfection (Effectene Transfection Reagent from 

QIAGEN) 

Day before transfection, 7x105 cells were seeded in 60 mm dish in 5 ml 

appropriate growth medium containing serum and antibiotics. On the day of 

transfection (40-80% confluent), dilute 3 µg of DNA (empty & fusion) with a 

minimum concentration of 0.1µg/µl with the DNA condensation buffer EC to a 

final volume of 450 µl. After 24 µl of Enhancer was added, samples were mixed 

by vortexing for 1 second and incubated at room temperature for 2-5 minutes 

then span down for a few seconds. 75 µl Effectene Transfection reagent was 

added to the DNA-Enhancer mixture. Samples were mixed by pipetting up and 
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down 5 times, or by vortexing for 10 seconds. The samples were incubated for 

5-10 minutes at room temperature to allow transfection-complex formation. The 

growth medium was gently aspirated from the plate and cells were washed 

once with 4 ml of PBS. 4 ml fresh growth medium (complete) was added to the 

cells and 1 ml growth medium to the transfection complex. It was mixed by 

pipetting twice and added immediately drop-wise onto the cells in the dish. The 

dish was gently swirled to ensure uniform distribution of the transfection 

complexes. The cells were incubated with the transfection complexes for 18 

hours then washed with PBS and 5 ml of fresh growth medium (complete) was 

added to cells. The cells were harvested and check for protein expression by 

western blotting.  

 

2.3.19 Stable transfection 

RGC-32 was cut of pUC19 RGC-32 as an SfiI/SfiI fragment and cloned into 

pRTS-1 (gift from Georg W. Bornkamm Figure 2-2) digested by SfiI. 10 μg 

pRTS-1α RGC-32 was transfected into DG75 cells using electroporation and 

cells were incubated for 48 hours at 37ºC and 5% CO2. Cells were then counted 

and plated into 96-well plates in 100 μl at a density of 5, 50 and 500 viable cells 

per well and the spare cells were bulk cultured in flasks. Cells were cultivated in 

growth medium supplemented with 100 μM α-thioglycerol and 3 mM sodium 

pyruvate. After 5-6 days, 100 μl supplemented growth medium was added 

containing 200 μg/ml hygromycin B. After that, replace 50 μl of the cell 

supernatant with supplemented selection medium weekly.  
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Figure 2-2. pRTS-1 vector map.  

 

It has a bidirectional promoter driving expression of two genes (firefly luciferase and eGFP) and ampicillin-
resistance gene, hygromycin B resistance gene, the EBV episomal origin of replication (oriP) and the 
EBNA 1 gene.  (Bornkamm et al., 2005). Ptetbi-1 is the bidirectional tetracycline-regulated promoter. oriP 
is the EBV episomal origin of replication carrying the family of repeats (FR) and the dyad symmetry 
elements (DS). RGC-32 was cut of pUC19 RGC-32 as an SfiI/SfiI fragment and cloned into pRTS-1 
digested by SfiI.  
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2.3.20 Doxycycline treatment of stable expression of RGC-32 DG75 cells 

1 μg/ml doxycycline was added to stable expression of RGC-32 DG75 cells and 

after 48 hours, the expression of RGC-32 was verified by Western blot.  

 

2.3.21 Luciferase assay 

48 hours after transfection cells were pelleted at 1,300 rpm (1,606 x g) for 10 

minutes at 4ºC using accuSpin Micro R Benchtop Centrifuge (Fisher) and 

resuspended in 10 ml PBS and 1 ml was used as samples for Western blot 

analysis. The remaining 9 ml cells were pelleted and the cell pellet lysed in 90 µl 

passive lysis buffer (Promega) at room temperature for 30 minutes followed by 

another 30 minutes on ice. Cell debris were pelleted at 13,000 rpm (16,060 x g) 

for 5 minutes using accuSpin Micro R Benchtop Centrifuge (Fisher) and the 

supernatant was transferred to a new eppendorf. 2 x 10 µl of each lysate was 

added to a 96-well plate. 50 µl of Luciferase Assay Reagent II (LAR II) reagent 

followed by 50 µl of Stop and Glo reagent (Promega luciferase dual assay kit) 

were added to the lysates, then the signals were measured using injector Dual-

luciferase protocol of Promega. 

 

2.3.22 Etoposide treatment 

Different concentrations (depend on the cell type) of etoposide were added to 

cells and incubate at 37ºC with 5% CO2 for 8, 24 or 48 hours. The cells were 

harvested and washed. After counting in PBS, half of the cells was fixed in 1 ml 
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of 70% ethanol per 106 cells at 4ºC for at least 30 minutes then stained with 

prodidium iodide. The other half was used for protein analysis.  

 

2.3.23 Propidium Iodide staining 

After cells were washed in PBS and counted, 1 x 106 cells were transferred to a 

FACS tube and pelleted at 1,000 rpm (1,235 x g) for 5 minutes at 4ºC using 

accuSpin Micro R Benchtop Centrifuge (Fisher). Celle were fixed by suspending 

in ethanol at 1 x 106 cells/ml then washed twice in PBS. The pellet was 

resuspended in 500 µl PI stain containing 12 µl Rnase (2 mg/ml) and samples 

were incubated at room temperature for at least 30 minutes. The cell cycle 

distribution was analysed with the BD FACSCanto Flow Cytometer (BD 

Biosciences).  

 

2.3.24 Real-time Polymerase Chain Reaction 

Quantitative PCR (qPCR) was performed in duplicate using an Applied 

Biosystems 7500 real-time PCR machine. For ChIP-qPCR analysis, 3 µl DNA 

was added to a SYBR master mix containing 7.5 µl 2×GoTaq qPCR Master Mix 

(Promega), 150 µM forward and reverse primers and sterile Millipore water to a 

final volume of 15 µl. Input controls were diluted 4 fold to generate a standard 

curve for each primer set. The following conditions was used: initial 

denaturation step at 95ºC for 10 minutes, 40 cycles amplification step at 95ºC 

for 15 seconds and 60ºC for 1 minute. A dissociation curve was used by one 

cycle at 95ºC for 15 seconds, at 60ºC for 1 minute and 95ºC for 15 seconds.  
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3 Purification of RGC-32 for functional and structural 

studies 

3.1 Introduction  

RGC-32 was first identified in rat and encodes a protein of 137 amino acids. 

The human RGC-32 gene encodes a protein of 117 amino acids as a result of 

differential splice site usage and runs with a molecular weight of 15 kD on SDS-

PAGE (Badea et al. 1998, Badea et al. 2002). Human and mouse RGC-32 

share 92% homology with rat RGC-32, but human RGC-32 has no homology 

with other human proteins (Badea et al. 1998, Badea et al. 2002). Secondary 

structure prediction using JPRED (http://www.compbio.dundee.ac.uk/jpred/) 

identifies three possible α-helical regions in RGC-32 (Figure 3-1). The aim of 

this chapter was to express and purify soluble milligram quantities of RGC-32 

for functional and structural studies.  

 

3.2 Can RGC-32 increase CDK1 activity without cyclin B1? 

RGC-32 was shown to bind to the CDK1/cyclin B complex in vitro and increase 

its activity (Badea et al. 2002). This activation was dependent on 

phosphorylation of threonine 91 of RGC-32 by CDK1 (Badea et al. 2002). RGC-

32 has no homology with other proteins and there is no motif that could imply its 

function (Badea et al. 1998). However, the action of a protein (RINGO) 

described as rapid inducer of G2/M progression in Xenopus oocytes could 

indicate a possible mechanism for CDK1 activation by RGC-32. RINGO has no  
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Figure 3-1. RGC-32 secondary structure prediction using JPRED.  

RGC-32 amino acid sequence was aligned in UniRef database which combines identical sequences from 
any organism. The accession numbers link to the corresponding UniProtKB and UniParc records. Cysteine 
is highlighted as yellow, proline as blue and histidine as red. Aliphatic residues (Isoleucine, leucine and 
valine) are boxed. The three predicted α-helices in RGC-32 are shown as red cylinders under the 
sequences. 
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homology with RGC-32, but may be a functional homologue as it also binds and 

activates the kinase activity of CDK1 (Badea et al. 2002, Ferby et al. 1999). 

Interestingly, RINGO associates with CDK1 in the absence of cyclin B1 (Ferby 

et al. 1999). 

 

Experiments were therefore designed to test whether RGC-32 can increase 

CDK1 activity in the absence of cyclin B1. Previously purified recombinant His-

RGC-32 prepared via denaturation from inclusion bodies and renaturation 

would be incubated with extracts from Sf9 insect cells infected with a 

recombinant baculovirus expressing untagged human CDK1 (gift from D. 

Morgan) and the kinase activity would be determined using Histone H1 kinase 

assays based on previous protocol (Badea et al. 2002) (see figure 3-2). CAK, a 

complex of CDK7 and cyclin H, phosphorylates CDK1 and cyclin B1 complex at 

Threonine 161 in CDK1 to make it reach the full activity (Solomon et al. 1992). 

The CDK1 in extract used in this experiment was activated by insect CAK. 

Recombinant His-tagged cyclin B1 (165-433) (plasmid provided by E. Petri) 

purified from E. coli cells will be used.  

 

RGC-32 cloned in pET-16b vector was expressed in E.coli strain BL21 pLysS 

as a tagged protein with an N-terminal His tag. His-RGC-32 expression was 

induced by IPTG and purified using denaturation and renaturation techniques. 

The purity of His-RGC-32 after Nickel affinity purification was checked by SDS-

PAGE followed by Coomassie staining. The His-tagged RGC-32 protein has a 

molecular weight of 14 kD and around 3 ml His-RGC-32 (0.4 mg/ml) was  
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Figure 3-2. The strategy to study if RGC-32 can activate CDK1 activity in the absence of 

Cyclin B1. 

Recombinant RGC-32 is incubated with extract from insect cells infected with a CDK1-expressing 
recombinant baculovirs (gift from D. Morgan) and histone H1 kinase assays is carried out. Control 
experiments use soluble, active, bacterially expressed truncated Cyclin B (plasmid provided by E. Petri) to 
activate CDK1.  
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obtained from 2 L culture. His-RGC-32 was yielded with a high degree of purity 

from the pooled elutions 1~3 (0.25 mg/ml) and the concentration decreased in 

following elutions (Figure 3-3).  

 

Recombinant baculovirus carrying untagged full length CDK1 was used to infect 

Sf9 insect cells and an extract was made. Western blotting analysis confirmed 

expression of CDK1 in infected Sf9 cells. The full length CDK1 protein has a 

molecular weight of 34 kD and strongest expression was when the cells were 

infected at 0.5% and 1% (Figure 3-4).  

 

Expression of pET-28(a+) cyclin B1 (residues 165-433) was carried out in E. 

coli strain BL21 plysS. N-terminal 165 residues of Cyclin B1, which is removed 

from Cyclin B1 to improve solubility has been demonstrated natively unfolded 

(Cox et al. 2002). Cyclin B1 (165-433) containing a PEST sequence on C-

terminal and Cyclin box required for CDK1 activity and binding has been 

purified in previous experiments successfully (Petri et al. 2007). Cyclin B1 

(residues 165-433) protein has a molecular weight of around 30 kD and was 

induced as expected on incubation in the presence of IPTG (Figure 3-4). 

Different induction temperatures were used (15ºC and 37ºC) and Cyclin B1 

protein was then purified using His-select Nickel affinity beads. Compared with 

37ºC, more soluble Cyclin B1 was obtained when the induction was carried out 

at 15ºC (Figure 3-5). However, expression levels were low and not enough 

soluble protein was obtained after affinity purification (Figure 3-6).  
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Figure 3-3. SDS-PAGE gel analysis of purified His-RGC-32.  

1/375 of elution 1-3, 1/12.5 of elution 4, 5 and 6 from 2 L culture (pooled 1-3, 4, 5 and 6) of purified His-
RGC-32 protein from His-select nickel affinity resin were loaded in a SDS-PAGE gel and the gel stained 
with Coomassie stain.  

 

 

 

 

 

 

 



3-66 
 

 

 

 

Figure 3-4. Coomassie staining and western blot analysis of CDK1 expressionin insect 

cells.  

Sf9 insect cells were infected with different concentrations (0%, 0.1%, 0.2%, 0.5% and 1%) of baculovirus. 
Total cell lysate was separated on a Novex Bis-Tris gel (Invitrogen). A. Gel stained with Coomassie 
staining (Bio-Rad). B. Nitrocellulose membranes containing the transferred proteins were probed with 
CDK1 antibody. Bands were visualised with ECL. 
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Figure 3-5. Western blotting analysis of cyclin B1 expression and solubilisation.  

Temperature of 15°C and 37°C expression from 50 ml culture was carried out at prior to extraction in 
buffer contained 20mM Ph8.3 Tris, 0.8M NaCl and 10% glycerol. 1/400 of pellet and 1/400 of supernatant 
were separated using an SDA-PAGE gel. 
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Figure 3-6. Coomassie staining analysis of cyclin B1 purification. 

Temperature of 20°C and 25°C expression from 1 L culture was carried out at prior to extraction in buffer 
contained 20mM pH 8.3 Tris, 0.8M NaCl and 10% glycerol. 1/25000 of pellet and 1/25000 of supernatant 
were separated using an SDA-PAGE gel. The gel stained with Coomassie stain.  
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3.3 The effect of RGC-32 on CDK1 kinase activity 

RGC-32 was shown to pull down the CDK1/Cyclin B1 complex in vitro and 

immunoprecipitate CDK1 in vitro and increase the activity of CDK1 in a manner 

dependent on the phosphorylation of threonine 91 on RGC-32 by CDK1 (Badea 

et al. 2002). Other evidence showed that transiently overexpressed Flag- or 

Myc-RGC-32 did not co-precipitate with exogenously expressed Cyclin B1 in 

HEK 293-T cells (Saigusa et al. 2007). Previously in the West lab, purified 

recombinant His-RGC-32 was observed to increase the activity of CDK1 in vitro 

by Histone H1 kinase assay measuring the phosphorylation of Histone H1 by 

CDK1 using 32P-labelled ATP (Schlick et al. 2011). Purity of RGC-32 purified 

was assessed as good enough to test whether His-RGC-32 was functional 

using kinase assays. To check if the purified His-RGC-32 generated was active, 

in vitro kinase assays were carried out. CDK1 activity increased more than 4-

fold at the highest His-RGC-32 protein concentration (1.4 µM) (Figure 3-7) 

indicating that the purified His-RGC-32 was active.  

 

To investigate the mechanism of the activation of CDK1 by RGC-32, we 

collaborated with Jane Endicott and Nick Brown (initially University of Oxford, 

now University of Newcastle). To determine whether the activation of CDK1 by 

RGC-32 was dependent on CAK phosphorylation of CDK1 and whether RGC-

32 can activate other CDKs such as CDK2, in vitro kinase assays were carried 

out. Purified recombinant dialysed and undialysed His-RGC-32 protein was 

used. Purified CDK1 and CDK complexes in activated (pCDK1/Cyclin B and 

pCDK2/Cyclin A) and unactivated (CDK1/Cyclin B) forms provided as part of  
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Figure 3-7. The effect of His-RGC-32 on CDK1 kinase activity.  

Recombinant CDK1/cyclin B1 (NEB) was mixed with His-RGC-32 to a final concentration of 0.7 and 1.4 
µM in the presence of γ-32P ATP and histone H1 as substrate. A. Samples were separated using a 10% 
NuPAGE Novex Bis-Tris gel (Invitrogen). B. Radioactively phosphorylated histone H1 was measured using 
a phosphorimager. CDK1 activity was quantified and expressed relative to the control (no RGC-32) (n=1). 
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collaboration with University of Oxford (Figure 3-8). Initially, whether RGC-32 

can activate pCDK1/Cyclin B, pCDK2/Cyclin A or CDK1/Cyclin B was examined. 

Whether RGC-32 can activate CDK1 without CAK (CDK7/Cyclin H) 

phosphorylation was also examined. 

 

Two-thirds of the purified His-RGC-32 from 2 L culture was dialysed in dialysis 

buffer (20 mM PO4 buffer and 200 mM NaCl) and undialysed protein was 

retained in elution buffer (40 mM PO4 buffer, 300 mM NaCl and 100 mM EDTA). 

Unfortunately, the experiments carried out by Nick Brown in University of Oxford 

failed to show RGC-32 activation of any of the kinases (pCDK1/Cyclin B, 

pCDK2/cyclin A and CDK1/Cyclin B) (Figure 3-8). Kinase activity was measured 

by quantifying the phosphorylation of Histone H1 by kinases using 32P-labelled 

ATP and there was no increase in the levels of phospho-Histone H1 compared 

in the presence of RGC-32. Undialysed RGC-32 inhibited the activity of any 

kinases as no radioactive activity was detected in experiments containing 

undialysed RGC-32 (lane 3, 6, 9, 12 and 15). This was because the undialysed 

His-RGC-32 used was eluted in 40 mM PO4, 300 mM NaCl and 100 mM EDTA. 

Mg2+ is required for kinase activity was therefore likely to be chelated by EDTA. 

Although some dialysed His-RGC-32 in 20 mM PO4 buffer pH 7.5 was also 

used, it was too dilute (RGC-32:CDK1 14 ng: 1 ng) in the experiment done in 

University of Oxford compared to our experiment (RGC-32:CDK1 500 ng: 1 ng), 

in which CDK1 activity increased more than 4-fold at the highest His-RGC-32 

protein concentration (Figure 3-7). The dialysed RGC-32 produced for these 

experiments was therefore at too low concentration.  
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Figure 3-8. The effect of His-RGC-32 on different CDK/cyclin complexes.  

Recombinant kinases or kinase complexes were mixed with dialysed and un-dialysed His-RGC-32 in the 
presence of γ-32P ATP and histone H1 and samples were separated in a 12.5% SDS-PAGE gel. 
Experiment carried out by Nick Brown (initially University of Oxford, now University of Newcastle). A. 
Analysis of the CDK1 and CDK2 complexes. B. Analysis of the CDK7/Cyclin H complex.  
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To determine whether adding an excess of magnesium cations could improve 

the kinase assay results with the undialysed protein, Mg2+ was added to the 

reaction to a final concentration of 35 mM. 35 mM Mg2+ was higher than the 

concentration of EDTA (10 mM) in the purified His-RGC-32 protein preparation. 

The results showed that the activity of CDK1/Cylin B was increased by 2-fold 

using 1 ng Oxford-purifed CDK1 (Figure 3-9C), and 2.5-fold using 2 ng Oxford-

purified CDK1 (Figure 3-10 C) with the highest His-RGC-32 protein 

concentration used (2.8 µM). This is lower than previously demonstrated in our 

lab which showed that CDK1 activity was enhanced by up to 12-fold with 5 µM 

RGC-32 protein (Schlick et al., 2011). We therefore examined the quality of the 

RGC-32 protein. 

 

3.4 Examination of His-RGC-32 aggregation 

Dynamic Light Scattering (DLS), a technique to measure the size and 

distribution of proteins, was carried out to investigate whether there was any 

protein aggregation in the His-RGC-32 we purified (Figure 3-11). It showed that 

all His-RGC-32 preparations were homogenous but both the undialysed and 

dialysed samples contained a lot of aggregation (Figure 3-11). The dialysed 

sample (Figure 3-11B) was centrifuged to pellet aggregates and the remaining 

soluble RGC-32 (Figure 3-11C) had a smaller volume in DLS, consistent with 

the lack of aggregates. 
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Figure 3-9. The effect of His-RGC-32 CDK1 kinase activity in CDK1/cyclin B1 preparations.  

1ng recombinant CDK1/Cyclin B1 (NEB) or pCDK1/cyclin B1 (Oxford) was mixed with His-RGC-32 to a 
final concentration of 0.7, 1.4 and 2.8 µM in the presence of γ-32P ATP and histone H1. The concentration 
of Mg2+ was 35 mM (n=1). A. SDS-PAGE analysis of histone H1 phosphorylatioin using 1 ng recombinant 
CDK1/cyclin B1 (NEB) or pCDK1/cyclin B1 (Oxford). B & C. CDK1 activity in A was quantified. 
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Figure 3-10. The effect of His-RGC-32 CDK1 kinase activity in CDK1/cyclin B1 

preparations.  

Recombinant CDK1/Cyclin B1 (NEB) or pCDK1/cyclin B1 (Oxford) was mixed with His-RGC-32 to a final 
concentration of 0.7, 1.4 and 2.8 µM in the presence of γ-32P ATP and histone H1. The concentration of 
Mg2+ was 35 mM (n=1). A. SDS-PAGE analysis of histone H1 phosphorylatioin using 2 ng recombinant 
CDK1/cyclin B1 (NEB) or pCDK1/cyclin B1 (Oxford). B & C. CDK1 activity in A was quantified.   
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Figure 3-11. Analysis of His-tagged RGC-32 using Dynamic Light Scattering.  

Three measurements are shown as different colors. A. Un-dialysed His-tagged RGC-32. B. Dialysed His-
tagged RGC-32. C. Supernatant from B after centrifugation. Larger volume indicates aggregates. 
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3.5 Expression of GST-RGC-32 

To improve solubility, RGC-32 was re-cloned as a Glutathione-S-Transferase 

(GST) fusion protein using the pGEX-6P3 vector, since GST often improves the 

solubility of proteins. Expression and solubilisation of GST-RGC-32 was 

compared to His-RGC-32 using RosettaTM 2(DE3) pLysS SinglesTM competent 

cells (Novagen) and Arctic Express (DE3) competent cells (Agilent 

Technologies) and different extraction buffers. Rosetta 2 cells are BL21 

derivatives designed to enhance the expression of eukaryotic proteins that 

contain codons rarely used in E. coli (Novagen). Arctic cells are derived from 

BL21 competent cells and co-express chaperonins Cpn10 and 60 from the 

psychrophilic bacterium, Oleispira Antarctica (Agilent Technologies) which show 

high protein refolding activities at temperatures of 4 to 12ºC (Ferrer et al. 2003).  

 

RGC-32 fusion protein expression was induced by addition of 0.8 mM IPTG at 

12°C and 18°C respectively for Arctic and Rosetta cells. Cell pellets were 

resuspended in different buffers in the presence of protease inhibitors and 5 

mM EDTA. Buffer A contained 20 mM HEPES pH7.5 and 500 mM NaCl. Buffer 

B contained 20 mM HEPES pH7.5 and 200 mM NaCl. Buffer C contained 20 

mM HEPES pH7.5, 200 mM NaCl and 10% glycerol. Buffer D contained 20 mM 

HEPES pH7.5, 200 mM NaCl and 1% Tween 20. The supernatant and pellet 

after lysis of Arctic (Figure 3-12) or Rosetta (Figure 3-13) cells were loaded on a 

gel.  
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Figure 3-12. His-tagged RGC-32 and GST-tagged RGC-32 purification test in Arctic cells.  

A. Stained SDS-PAGE gel of supernatant from lysates of Arctic cells induced to express His-RGC-32 or 
GST-RGC-32. Cells were lysed in different buffers (A-D) and 1/60 of soluble supernatant as analysed.  B. 

Stained SDS-PAGE gel 1/60 cell pellets from lysates of Arctic cells. The His-RGC-32 protein has a 
molecular weight of 17 kD and GST-RGC-32 protein has a molecular weight of 40 kD. 
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Figure 3-13. His-tagged and GST-tagged RGC-32 purification test in Rosetta cells.  

A. Stained SDS-PAGE gel of supernatant from lysates of Rosetta cells induced to express His-RGC-32 or 

GST-RGC-32. Cells were lysed in different buffers (A-D) and 1/60 of soluble supernatant were analysed.  
B. Glutathione or His beads were added to the supernatant and protein purified on beads was loaded on a 
gel.   
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For Arctic cells, more soluble GST-RGC-32 was detected when using lysis 

buffer A and for His-RGC-32 buffer B and C are better than buffer A and D for 

solubility (Figure 3-12A). GST was self-cleaved in each buffer (Figure 3-12A). 

Also insoluble GST-RGC-32 and His-RGC-32 were detected in pellet when 

using all lysis buffers (Figure 3-12B). 

 

For Rosetta cells, less soluble His-RGC-32 protein was obtained compared with 

GST-RGC-32 protein in the supernatant (Figure 3-13A). More GST-RGC-32 

could be detected when lysed in buffer A than other buffers and GST was again 

self-cleaved in each buffer (Figure 3-13A). Glutathione or His beads was added 

to the supernatant and protein purified on beads were loaded on the gel. GST-

RGC32 protein was purified effectively (Figure 3-13B).  

 

To summarise, in the purification test of GST-RGC-32 in Rosetta or Arctic cells, 

more soluble RGC-32 was obtained using Rosetta cells rather than Arctic cells 

and more RGC-32 protein was obtained when using buffer A. For further 

experiments GST-RGC-32 was expressed using Rosetta cells and buffer A. 

GST-RGC-32 was more soluble so used this from now on. Further experiments 

with GST-RGC-32 are described in Chapter 4. Since we had optimised GST-

RGC-32 purification we attempted to obtain sufficient purified soluble RGC-32 

for structural studies. 

 

3.6 Large scale GST-RGC-32 purification using Rosetta cells 
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3L of Rosetta cells expressing pGEX-6P3 RGC-32 were induced by IPTG to 

express GST-RGC-32 protein and lysates prepared using buffer A. The RGC-

32 on beads was eluted with elution buffer contained 20 mM HEPES pH 7.5, 

500 mM NaCl and 20 mM L-Glutathione. Then the eluted protein was incubated 

with the PreScission protease (200 µl 2 mg/ml PreScission in 20 mM HEPES 

pH7.5, 500 mM NaCl and 1 mM DTT) to cleave the GST tag. Samples of elution 

and GST tag cleaved off were loaded on a gel (Figure 3-14A). The GST protein 

is visible as a 26 kD protein and RGC-32 as a 14 kD protein. The GST tag was 

successfully cleaved from GST-RGC-32 protein. To verify that the cleaved 

product was RGC-32, samples were analysed using an anti-RGC-32 antibody 

by Western blotting (Figure 3-14B). Different sizes of proteins (61, 44, 32, 15 

and 12 kD) were detected. The detected proteins were RGC-32 plus additional 

larger proteins that could be dimers or trimers. There were also some smaller 

species that may be cleavage products. Purified RGC-32 was concentrated to 

0.9 mg/ml in a total volume of 100 µl.  

 

This experiment demonstrated that we were able to purify soluble RGC-32 for 

crystal trials to offer more structural information of RGC-32, so we next scaled-

up the preparation to obtain milligram quantities. Also, we needed to examine 

the interaction between RGC-32 and CDK1 using GST-RGC-32 we made to 

carry on the collaboration with Professor Jane Endicott and Dr. Nick Brown 

(University of Newcastle) (see Chapter 4).  

 

To obtain mg amounts of RGC-32 for crystalisation, GST-RGC-32 was purified 
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Figure 3-14. GST-RGC-32 purification from 3L Rosetta culture.  

A. GST-RGC-32 elution before and after precission treatment. B. Purified cleaved RGC-32 analysed by 

western blotting using polyclonal anti-RGC-32 antibody 
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from 10 L of Rosetta cells. GST-RGC-32 was eluted and the GST tag cleaved 

off using the PreScission protease (Figure 3-15). A HiTrap desalting column (GE 

Healthcare Life Sciences) was then used to remove free glutathione and a 

GSTrap 4B column (GE Healthcare Life Sciences) was used to remove GST 

from cleaved RGC-32. GST was completely removed after running through a 

GSTrap column (Figure 3-16).   

 

RGC-32 protein was concentrated and applied to a gel filtration column S75 

16/60 to further purify the sample. Fraction C10 to D1 was confirmed as 

containing RGC-32 protein (Figure 3-17A) by SDS-PAGE analysis (Figure 3-

17B). It has a very low absorbance because of no tryptophan residues in RGC-

32. The high molecular weight contaminants (first peak from gel filtration in 

Figure 3-17A) were successfully removed after gel filtration (Figure 3-17B). The 

purified RGC-32 was concentrated to 1.5 mg/ml in a total volume of 170 µl.  

 

 

3.7 Crystallisation trials 

Crystallization screening was performed with RGC-32 at a concentration of 1.5 

mg/ml using Crystal Phoenix (Art Robbins Instruments) employing the sitting 

drop vapour diffusion method. Commercial screening kits used were Structure 

Screen 1+2 (Molecular Dimensions), PEG/Ion HT (Hampton Research), Natrix 

HT (Hampton Research), Index HT (Hampton Research), SaltRx HT (Hampton 

Research) and JCSG-plus (Molecular Dimensions).  

 

Structure Screen 1 & 2 is a 96 reagent, sparse-matrix screen for Structure  



3-84 
 

 

 

 

 

 

 

Figure 3-15. GST-RGC-32 purification from 10L Rosetta culture.  

GST-RGC-32 elution before and after precission treatment.  
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Figure 3-16. GST-RGC-32 purification from 10L Rosetta culture.  

RGC-32 after precission treatment (5, 10 and 15 µl) and after passing through a Glutathione column to 
remove GST protein from sample. 
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Figure 3-17. Gel filtration purification of RGC-32.  

(A) RGC-32 was concentrated and applied to an S75 16/60 gel filtration column pre-equilibrated in 10 mM 
HEPES pH7.5, 500 mM NaCl and 0.5 mM TCEP. 1.7 ml fractions were collected. (B) Samples (fraction 

1B11 to 1C5 from first peak and fraction C10 to D1 from second peak) after gel filtration were analysed by 
SDS-PAGE and gel staining. 
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Screen 1 and the classic extension to this screen Structure Screen 2 (Jancarik 

and Kim, 1991). PEG/Ion HT combines PEG/Ion and PEG/Ion 2 in a single 96 

deep well block. PEG/Ion is a sparse matrix profile of anions and cations in the 

presence of monodisperse polyethylene glycol (PEG) 3,350 over pH 4.5 – 9.2 

and PEG/Ion 2 is a profile of titrated organic acids in the presence of 

monodisperse PEG 3,350 over pH levels 3.7 – 8.8 

(http://hamptonresearch.com/product_detail.aspx?sid=30&pid=11). Natrix HT 

contains 1 ml of each reagent from Natrix and Natrix 2 

(https://hamptonresearch.com/product_detail.aspx?cid=1&sid=27&pid=8). 

Natrix contains 48 unique reagents, 10 ml each and is based on the sparse 

matrix formulation (Scott et al., 1995). As an extension of Natrix, Natrix 2 

contains 48 unique reagents, 10 ml each and based on extracting patterns from 

crystallization data as well as reagent formulations (Berger et al., 1996). Index 

HT contains 10 ml 96 unique reagents in a single deep well block format 

(http://hamptonresearch.com/product_detail.aspx?sid=24&pid=5). SaltRx HT 

contains the 96 reagents from SaltRx 1 and SaltRx 2 in a single deep well block 

format. SaltRx 1 and SaltRx 2 contain 10 ml unique reagents 1-48 and 49-96 of 

the original SaltRx 96 reagent kit 

(http://hamptonresearch.com/product_detail.aspx?sid=32&pid=12). JCSG-plus 

contains 10 ml each of 96 sterile filtered reagents incorporating PEG, salts, 

neutralised organic acids or organic precipitants across a pH range from 4.0 to 

10.5, and including a range of salt additives (Newman et al., 2005). 

 

Plates were kept at 20°C to allow the crystals grow. Unfortunately no crystal hits 

were obtained. To increase the concentration of RGC-32 obtained from  

https://hamptonresearch.com/product_detail.aspx?cid=1&sid=27&pid=8
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Figure 3-18. Purified RGC-32 from 20 L cell culture.  

Samples of RGC-32 after concentration (10 µl and 3 µl) and before concentration were analysed by SDS-
PAGE and gel staining. 
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purification, 20 L Rosetta cells expressing pGEX-6P3 RGC-32 were cultured 

and protein purified to higher concentration up to 4.5 mg/ml for 200 µl (Figure 3-

18). Again the sitting drop vapour diffusion technique was employed with the 

commercial screening kits Structure Screen 1+2 (Molecular Dimensions), Natrix 

HT (Hampton Research), Index HT (Hampton Research), SaltRx HT (Hampton 

Research) and JCSG-plus (Molecular Dimensions) at 4 and 20°C. No crystal 

hits were obtained at either temperature. 

 

3.8 Discussion 

RGC-32 can bind to CDK1/Cyclin B1 complex in vitro (Badea et al. 2002), but 

other evidence shows that transiently overexpressed Flag- or Myc-RGC-32 did 

not co-precipitate with exogenously expressed Cyclin B1 in HEK 293-T cells 

(Saigusa et al. 2007). It implies a possibility of RGC-32 competing with Cyclin 

B1 for CDK1. RGC-32 has been shown to increase CDK1 activity in a manner 

dependent on the phosphorylation of threonine 91 in RGC-32 by CDK1 (Badea 

et al. 2002). Kinase assays using recombinant RGC-32 protein confirmed this 

increase of CDK1 activity. Like RGC-32, xRINGO/Speedy has been shown to 

activate CDK1 but does not associate with CDK1/Cyclin B complexes (Gastwirt, 

McAndrew and Donoghue 2007). Further evidence confirms that xRINGO can 

bind CDK1 and Cyclin B individually but not the CDK1/Cyclin B complex (Ferby 

et al. 1999). More interestingly Speedy/RINGO could even bypass the 

requirement for phosphorylation in the activation loop of CDKs (Karaiskou et al. 

2001). Like the ability of RGC-32 disrupting the cell cycle, overexpression of 

Speedy/RINGO was shown to reduce the percentage of cells in G1 phase of the  

cell cycle, promoted late S phase progression and disrupted the G2/M 
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checkpoint (Porter et al. 2002, Cheng and Solomon 2008). It would be 

interesting to see if RGC-32 works at similar way to Speedy/RINGO. Previously 

experiments were designed to test whether RGC-32 can increase CDK1 activity 

in the absence of cyclin B1 (Figure 3-2). The initial experiments designed to 

determine whether RGC-32 can increase CDK1 activity without Cyclin B1 were 

not conclusive because we could not purify enough soluble Cyclin B1. So we 

changed the strategy of the experiments to use the CDK1 and Cyclin B1 

provided as part of collaboration with Professor Jane Endicott and Dr. Nick 

Brown (initially University of Oxford, now University of Newcastle). 

 

Previously in the West lab, RGC-32 was purified as a His-tagged protein from 

inclusion bodies using denaturation and renaturation. To improve the solubility 

of RGC-32 protein, we successfully cloned RGC-32 DNA into pGEX-6P3 vector 

and expressed it in Rosetta and Arctic cells. In the purification test, the results 

showed that the solubility of RGC-32 is better with a GST tag than His tag and 

in Rosetta cells than Arctic cells. Therefore RGC-32 was purified using a 

glutathione column and gel filtration and 4.5 mg/ml for 200 µl (900 µg in total) 

was achieved from 20 L cells. Unfortunately no crystal has been yielded to date. 

Further crystallisation trials could be made with higher concentration of RGC-32 

or the temperature for setting up the crystal trials. Another attempt is to co-

crystallise RGC-32 with one of its interaction partner to yield diffraction quality 

crystals, e.g. CDK1 becausae the complex formed could be more soluble and 

stable compared with single protein.   
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Next, it is important to determine whether there is an interaction between RGC-

32 and CDK1, or Cyclin B1, or Plk1 in B cells. It can be achieved by pull-down 

assays using GST-RGC-32 (see Chapter 4). The interaction of RGC-32 and 

CDK1 or Cyclin B1 in vitro could also be tested using surface plasmon 

resonance (SPR) which is an optical technique used for detecting two different 

molecules in which one is mobile (analyte) and one is fixed on a thin film (ligand) 

(Schuck 1997). Binding of the analyte to ligand changes the refractive index of 

the film and the angle of extinction of light reflected after polarised light 

impinges on the film is changed and measured in reflected intensity (Drescher, 

Ramakrishnan and Drescher 2009). Firstly, RGC-32 will be immobilised by an 

amine-coupling reaction on a senor chip (Biacore) which is inserted into the flow 

chamber. Then CDK1 or CDK1/Cyclin B1 complex will flow through the chip 

fixed with RGC-32 to produce a small change in refractive index at the gold 

surface which can be quantified, so binding affinities can be yielded from the 

ratio of rate constants to obtain a characterisation of RGC-32 and CDK1 or 

CDK1/Cyclin B1 interaction. 
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4 Mechanism of RGC-32 disrupting cell cycle 

4.1 Introduction 

RGC-32 has been shown to bind CDK1/Cyclin B1 complex in vitro and in vivo 

(Badea et al. 2002). This interaction appears to be specific since RGC-32 does 

not bind CDK2 or CDK4 (Badea et al. 2002). RGC-32 activates CDK1 kinase 

activity and both binding and the enhancement of CDK1 activity appear to 

depend on the phosphorylation of RGC-32 by CDK1 at Threonine 91 (Badea et 

al. 2002). Our lab confirmed that RGC-32 activates CDK1/Cyclin B1 in vitro 

(Schlick et al. 2011), but the mechanism of CDK1 activation by RGC-32 

remains unclear. Others have reported that RGC-32 can associate with the 

centrosome-associated polo-like kinase 1 (Plk1) in human embryonic kidney 

(HEK) 293-T cells and can be phosphorylated by Plk1 in vitro (Saigusa et al. 

2007). These authors also stated that they were unable to co-precipitate Cyclin 

B1 with RGC-32 (Saigusa et al. 2007). Initial attempts to address whether RGC-

32 activates CDK1 in the absence of Cyclin B1 in Chapter 3 were not 

conclusive so we next investigated the interaction between RGC-32 and CDK1 

and Cyclin B1 and Plk1 using pull-down assays. 

 

The role for RGC-32 in the promotion of cell proliferation was demonstrated in 

oligodendrocytes (OLG) (Badea et al. 1998) and G1 arrested smooth muscle 

cells (Badea et al. 2002). Our group showed that overexpression of RGC-32 

alone can disrupt the G2/M checkpoint (Schlick et al. 2011). Interestingly, other 

studies have revealed the role of RGC-32 as a tumour suppressor as it was 

found to be absent in glioma cell lines and restoration of it caused suppression 
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of cell growth (Saigusa et al. 2007). In this chapter, we set out to further 

examine the effect of RGC-32 on cell cycle regulation by generating stable cell-

lines containing inducible RGC-32 expression constructs. 

 

4.2 RGC-32 can interact with CDK1 and Plk1 but not Cyclin B 

To verify the association of RGC-32 with CDK1 and Plk1, GST pull-down 

assays were carried out using GST-tagged RGC-32 incubated with lysates from 

the EBV negative B cell lymphoma cell line BJAB. We found that GST-tagged 

RGC-32 was able to pull down CDK1 and Plk1. This interaction was specific 

because beads alone or GST alone did not pull down RGC-32 (Figure 4-1). It 

has been shown that the Threonine 91 is the phosphorylation site of RGC-32 by 

CDK1 and important for RGC-32 increasing CDK1 kinase activity (Badea et al. 

2002). So we also tested if RGC-32 with a threonine 91 to alanine substitution 

(T91A) could influence the interaction of RGC-32 and CDK1 or Plk1. Our results 

showed that GST-tagged RGC-32 mutant T91A could also pull down CDK1 and 

Plk1 (Figure 4-1). The interaction of RGC-32 with CDK1 appears to be specific 

because we showed that GST-tagged RGC-32 failed to pull down CDK2 (Figure 

4-1) which is consistent with previous reports (Badea et al. 2002). Saigusa et al. 

stated that they could not demonstrate a physical interaction between RGC-32 

and Cyclin B1 (Saigusa et al. 2007). Our results showed that GST-tagged RGC-

32 did not pull down Cyclin B1 (Figure 4-1) which strengthen the evidence that 

Cyclin B1 is not in the complex of CDK1 and RGC-32. The pull-down assays in 

another Burkitt’s lymphoma cell line Mutu I showed similar results that GST-

tagged RGC-32 could pull down CDK1, but not CDK2 and Cyclin B1 and that  
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Figure 4-1. Western blot analysis of in vitro interaction of RGC-32 in BJAB cells. 

Glutathione agarose beads or beads bound to GST, GST-RGC-32 (WT) or GST-RGC32 mutant (T91A) 
were mixed with BJAB total cell lysates. CDK2 was used as a negative control.  

 

 

 

 

 

 

 



4-95 
 

this interaction of RGC-32 with CDK1 is not dependent on Threonine 91 of 

RGC-32 (Figure 4-2). 

 

4.3 Mapping the regions of interaction between RGC-32 and 

CDK1 or Plk1 

To identify the regions of RGC-32 required for the interaction with CDK1 and 

Plk1 we generated deletion mutants of RGC-32. To help in the design of 

mutants we used JPred to predict RGC-32 secondary structure (Figure 3-1). 

The protein sequence was searched against UniRef 90 to identify regions of α-

helix, β-strand and coil. Three predicted α-helices (5-23 aa, 31-43 aa and 101-

115 aa) predicted were identified (Figure 3-1). Next, to localize the region of 

RGC-32 that directly interacts with CDK1 or Plk1, we generated four GST-

tagged truncation mutants designed to delete each of the predicted helices 

sequentially (Figure 4-3). Truncation 1-25, spanning amino acid residues 1-25, 

contains one potential α-helices; truncation 1-50, spanning amino acid residues 

1-50, contains two potential α-helices; truncation 1-75 or 1-100, spanning amino 

acid residues 1-75 or 1-100, contains two potential α-helices and following 25 or 

50 residues. Mutants were expressed and purified on Glutathione beads and 

used in GST pull-down assays to identify regions required for the interaction of 

RGC-32 with CDK1 or Plk1. 

 

In two independent experiments (Figure 4-4), truncation 1-75 and 1-100 pulled 

down CDK1, but truncations 1-25 and 1-50 did not. This indicates that 50-75 

residues of RGC-32 are crucial for CDK1 binding (Figure 4-6). 
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Figure 4-2. Western blot analysis of in vitro interaction of RGC-32 in Mutu I cells. 

Glutathione agarose beads or beads bound to GST, GST-RGC-32 (WT) or GST-RGC32 mutant (T91A) 
were mixed with Mutu I total cell lysates. CDK2 was used as a negative control 
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Figure 4-3. Schematic diagram of RGC-32 truncations.   

RGC-32 was shown as blue bars and three predicted helical regions in RGC-32 were shown as red bars.   
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Figure 4-4. In vitro interaction of RGC-32 truncations with CDK1. 

Glutathione agarose beads or beads bound to GST, GST-RGC-32 FL or truncations were mixed with 
BJAB total cell lysates. A and C. SDS-PAGE gel analysis of GST, GST-RGC-32 FL and truncations used 
in pull-down assay. B and D. Western blot analysis of interaction of RGC-32 truncations with CDK1.  
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Figure 4-5. In vitro interaction of RGC-32 truncations with Plk1. 

Glutathione agarose beads or beads bound to GST, GST-RGC-32 FL or truncations were mixed with 
BJAB total cell lysates. A and C. SDS-PAGE gel analysis of GST, GST-RGC-32 FL and truncations used 
in pull-down assay. B and D. Western blot analysis of interaction of RGC-32 truncations with Plk1.  

 



4-100 
 

 

 

 

 

Figure 4-6. Summary of potential RGC32 binding domains with CDK1 and Plk1. 

RGC-32 was shown as blue bars and three predicted helical regions in RGC-32 were shown as red bars.   ̶ 
means there is no binding between RGC-32 truncations and CDK1 or Plk1 and + means there is binding.  

 

 

 

 

 

 

 

 

 



4-101 
 

For Plk1 binding (Figure 4-5), only truncation 1-25 failed to pull down Plk1. All 

other truncations (1-50, 1-75 and 1-100) and full length RGC-32 pulled down 

Plk1 successfully. Hence amino acid residues between 25 and 50 in the RGC-

32 are required for Plk1 binding (Figure 4-6). 

 

4.4 Mutation analysis of RGC-32 binding to CDK1 or Plk1 

To further identify the functional binding sites of RGC-32, we aligned RGC-32 in 

difference species to identify amino acids within the regions identified as 

important for CDK1 or Plk1 binding that are conserved (NCBI) (Figure 4-7). We 

then identified conserved amino acids that may play a role in protein-protein 

interactions to mutate (amino acid framed in black boxes in Figure 4-8). To 

study CDK1 binding, we mutated the hydrophobic amino acids phenylalanine 68 

and 70 to alanine (Figure 4-8). To study PLK1 binding, we mutated the 

hydrophobic amino acids tyrosine 33 to A and positively-charged cluster lysine 

41, arginine 42 and 43 to negatively charged glutamic acid (Figure 4-8).  

 

The results of two independent experiments showed that substituting both 

phenylalanine to alanine in RGC-32 increased the binding activity for CDK1 to 

1.8-fold compared to RGC-32 wildtype (Figure 4-9E). But this change was not 

significant using statistical analysis so it indicated the interaction of RGC-32 and 

CDK1 was not dependent on F68 and 70 on RGC-32.  
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Figure 4-7. Conserved domains alignment of RGC-32 in different species. 

The alignment was done using Conserved Domains (NCBI). Upper case amino acids are aligned and 
lower case grey amino acids are unaligned. The red to blue color scale shows the degree of conservation 
with red representing highly conserved. Gi number represents the different species. Potential interaction 
domains of RGC-32 and CDK1 or Plk1 are underlined as pink and black. Amino acids framed are the 
mutated residues for CDK1 and Plk1 binding (also see Figure 4-7).    
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Figure 4-8. Mutated residues in RGC-32 for CDK1 or Plk1 binding (also see Figure 4-10). 

A. Mutation of RGC-32 (F68A, F70A) for CDK1 binding. B. Mutation of RGC-32 (Y33A,K41E, R42E, R43E) 
for Plk1 binding. 
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Figure 4-9. In vitro interaction of RGC-32 mutant with CDK1. 

Glutathione agarose beads or beads bound to GST, GST-RGC-32 WT, truncations or mutant were mixed 

with BJAB total cell lysates. A and C. SDS-PAGE gel analysis of GST, GST-RGC-32 WT, truncations and 

mutant used in GST pull-down assay. B and D. Western blot analysis of interaction of RGC-32 mutant with 

CDK1. E. The intensity of bands was quantified using Licor and relative to the WT. This figure shows the 

mean of 2 independent experiments.  
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For Plk1 binding, Y33 K41 R42 R43 mutating to A33 E41, 42 and 43, which 

were present in the predicted helix, decreased the binding activity for PLK1 to 

around 40% compared to RGC-32 wildtype (Figure 4-10C). Since this was the 

result of one experiment, this would need to be repeated to confirm this 

observation and due to time constraints this was not possible. 

 

4.5 RGC-32 can interact with Spc24 

During the course of this study, we identified the third α-helix (Figure 3-1) has a 

homology to the N terminus of histone-fold protein Cnn1 using HHpred (Figure 

4-11). It has been shown that Cnn1 is bound as an α-helix in a hydrophobic cleft 

at the interface between Spc24 and Spc25 (Malvezzi et al., 2013). Spindle pole 

component 24 and 25 (Spc24-25) are Ndc kinetochore complex component and 

play a role in the attachment of kinetochore to microtubule (Malvezzi et al. 2013) 

(see section 1.1.4). Next, we tested if there was an interaction of RGC-32 and 

Spc24. We found that GST-tagged RGC-32 was able to pull down Spc24 

(Figure 4-12). RGC-32 truncation mutants were used to identify the domains 

required for binding to Spc24. Only truncation 1-25 failed to pull down Spc24. 

All other truncations (1-50, 1-75 and 1-100) and full length RGC-32 pulled down 

Spc24 successfully (Figure 4-12). Hence amino acid residues between 25 and 

50 in the RGC-32 are the required for Spc24 binding (Figure 4-13). RGC-32 has 

been reported to concentrate in centrosomes and spindle poles during 

prometaphose and metaphase (Saigusa et al. 2007). Our results suggest that 

RGC-32 might play a role in the attachment of kinetochore to microtubule by 

interacting with Spc24.  
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Figure 4-10. In vitro interaction of RGC-32 mutant with Plk1. 

Glutathione agarose beads or beads bound to GST, GST-RGC-32 WT, truncations or mutant were mixed 
with BJAB total cell lysates. A. SDS-PAGE gel analysis of GST, GST-RGC-32 WT, truncations and mutant 
used in GST pull-down assay. B. Western blot analysis of interaction of RGC-32 mutant with Plk1. C. The 

intensity of bands was quantified using Licor and relative to the WT. This figure shows data of one 
experiment.  
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Figure 4-11. Sequence alignment of RGC-32 and Cnn1 using HHpred. 
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Figure 4-12. In vitro interaction of RGC-32 truncations with Spc24. 

Glutathione agarose beads or beads bound to GST, GST-RGC-32 FL or truncations were mixed with 

BJAB total cell lysates. A. SDS-PAGE gel analysis of GST, GST-RGC-32 FL and truncations used in pull-

down assay. B and C. Western blot analysis of interaction of RGC-32 truncations with Spc24.  
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Figure 4-13. Summary of potential RGC32 binding domains with Spc24. 

RGC-32 was shown as blue bars and three predicted helical regions in RGC-32 were shown as red bars.   ̶ 
means there is no binding between RGC-32 truncations and Spc24 and + means there is binding 
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4.6 Characterisation of stable RGC-32 expressing cell lines 

Expression of RGC-32 has been shown to promote S and M phase entry of 

smooth muscle cells following G1 arrest (Badea et al. 2002). Our group 

demonstrated that stable overexpression of RGC-32 alone is sufficient to 

disrupt the G2/M checkpoint (Schlick et al. 2011). Unfortunately, continued 

culture of the stable cell lines overexpressing RGC-32 that were generated for 

this work led to the loss of their cell-cycle disruption phenotype.  

 

We therefore set out to generate stable cell lines expressing inducible RGC-32 

to avoid the accumulation of compensatory mutations. RGC-32 was cloned into 

pRTS-1 vector (Figure 2-2) between SfiI restriction sites to replace the 

luciferase gene. This Doxycycline-dependent expression system has a 

bidirectional promoter which allows the expression of two genes, eGFP and the 

gene of interest. The expression of the gene of interest is switched on or off by 

adding doxycycline or not.  This vector carries the EBV plasmid origin of 

replication (oriP) and EBNA1 which binds to oriP and maintains episomal 

replication of the episome to daughter cells (Bornkamm et al. 2005).  

4.6.1 DNA test using HEK293T cells   

Initially, RGC-32 was cloned into this vector and transfected into the EBV 

negative BL cell line DG75. Stable cell lines were selected by limited dilution in 

the presence of 200 µg/ml hygromycin. The expressions of EBNA 1 and RGC-

32 were not detected in total cell lysates by western blotting (data not shown). 

Therefore we tested the DNA for transfection using HEK293T cells which have 

higher transfection efficiency than DG75.  
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HEK293T cells were transiently transfected with pRTS1 empty vector or 

pRTS1-RGC-32 (old and new) and Doxycline (DOX) was add 24 hours post-

transfection to induce the expression of eGFP and luciferase or RGC-32. 

Luciferase assay showed that addition of Doxycline induced the expression of 

eGFP (Figure 4-14). Then we tested using old DNA which had been stored at -

20°C after being made and new DNA which were used without storage -20°C to 

see if the way storing DNA made difference for transfection. Flow cytometry 

experiments showed that transfection efficiency is higher using new DNA than 

old DNA (Figure 4-15) and Western blot analysis confirmed the expression of 

EBNA1 and RGC-32 using both DNAs (Figure 4-16).  

 

 

4.6.2 Stable Akata cell line expressing RGC-32  

4.6.2.1 Optimisation of DOX induction 

Akata cells were transfected with pRTS1 empty vector or pRTS1-RGC-32 and 

then cultivated in growth medium. The hygromycin concentration in medium 

was increased gradually to 100 µg/ml by replacing the medium with hygromycin 

containing medium weekly. Within the next 2-4 weeks, hygromycin resistant 

cells grew out.  

 

 

 



4-112 
 

 

 

 

Figure 4-14. Verification of DNA used in making stable cell lines using HEK293T cells.  

Luciferase assay of with/without DOX induction in HEK293T cells transfected with pRTS-1 vector. This 

figure shows the mean of 2 independent experiments.  
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Figure 4-15. FACS analysis of transiently transfected HEK293T cells.  

HEK293T cells were transiently transfected with old pRTS-1-RGC-32 (DNA had been stored at -20 °C 
before transfection) and new pRTS-1-RGC-32 (DNA was used in transfection after made). 3 µg DNA was 
transfected using Effectene Transfection Reagent (QIAGEN). Cells were harvested 48 hours and the 
percentage eGFP-positive cells determined by flow cytometry. 
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Figure 4-16. Western blot analysis of EBNA 1 and RGC-32 expression in HEK293T.  

HEK293T cells were transiently transfected with old DNA (DNA had been stored at -20 °C before 
transfection) and new DNA (DNA was used in transfection after made). Cells were harvested and total cell 
lysates of -/+ DOX induction were separated on a gel. The Mutu III cell line total cell lysate was used as a 
positive control for EBNA 1 and RGC-32 expression. 
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To optimise the expression of RGC-32 in Akata cells, 1 or 2 µg/ml Doxycycline 

and 24 or 48 hours induction time were tested. Western blotting analysis 

showed that the expression of both EBNA 1 and RGC-32 were higher at 48 

hours than 24 hours (Figure 4-17). More RGC-32 was expressed using 1 µg/ml 

Doxycycline induction compared to 2 µg/ml at 48 hours (Figure 4-17). 1 µg/ml 

Doxycycline and 48 hours induction time were used for further experiments.  

 

4.6.2.2 The effects of stable RGC-32 overexpression  

 

To investigate the effect of RGC-32 overexpression on the G2/M checkpoint, 

etoposide, a topoisomerase II inhibitor, was used to induce double stranded 

DNA breaks and arrest cells in G2. DOX was added to induce RGC-32 and then 

etoposide was added 48 hours post DOX induction. Cells without DOX 

induction are used as control. Western blotting analysis confirmed the 

expression of EBNA 1 and RGC-32 in cells before and after etoposide 

treatment (Figure 4-18). The proportion of cells in each cell cycle phase was 

analysed after 8, 24 and 48 hours etoposide treatment. DOX induction 

increased apoptosis, such as a sub-G1 population by 8% without etoposide 

(Figure 4-19).  The results showed that compared to Akata cells not 

overexpressing RGC-32, Akata cells overexpressing RGC-32 cells displayed an 

increased proportion of cells in G0/G1 and a decreased proportion of cells in 

G2/M (Figure 4-19). RGC-32 overexpressing Akata cells showed 2%, 5% and 

13% increase in the G0/G1 phase after 8, 24 and 48 hours etoposide treatment 

respectively, compared with control cells (Figure 4-20). The G2/M population of 

Akata cells expressing RGC-32 decreased 6%, 25% and 14% after 8, 24 and  
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Figure 4-17. Western blotting analysis of stable Akata cell lines after DOX induction.  

Akata cells were stable transfected with pRTS-1α empty vector or pRTS-1α RGC-32 then harvested 24 or 
48 hours post doxycycline treatment (1 or 2 µg/ml) and whole cell lysates of -/+ DOX induction were 
separated on a gel. The Mutu III cell line is a positive control for EBNA 1 and RGC-32 expression. Actin is 
a loading control.   
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Figure 4-18. Western blotting analysis of stable Akata cells after etoposide treatment. 

Akata cell lines stably expressing RGC-32 were exposed to 400 nM etoposide for 8, 24 and 48 hours after 
48 hours of DOX induction. Whole cell lysates were separated on a gel. The IB4 cell line is a positive 
control for EBNA 1 and RGC-32 expression. Actin is a loading control.   
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Figure 4-19. FACS analysis of stably transfected Akata cells after etoposide treatment. 

Akata cell lines stably expressing RGC-32 were exposed to 400 nM etoposide for 0, 8, 24 and 48 hours 
(n=1). Cells were stained with propidium iodide to visualise cell cycle distribution.  
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Figure 4-20. Percentage change of Akata cells -/+ etoposide in each phase. 

Akata cell lines stably expressing RGC-32 were exposed to 400 nM etoposide for 8, 24 and 48 hours. The 
percentage change of cells -/+ etoposide in each phase was relative to control cells. 
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48 hours etoposide treatment respectively, compared with control cells (Figure 

4-20). It indicated RGC-32 disrupted G2/M checkpoint in Akata cell line which 

was consistent with our previously published data in BJAB and DG75 cell lines 

(Schlick et al. 2011). It is possible that RGC-32 expression activates CDK1 

activity which results that the cells override etoposide-induced G2 arrest. 

 

4.6.3 Stable HEK293 cell line expressing RGC-32  

4.6.3.1 Optimisation of DOX induction 

HEK293 cells were transfected with pRTS1 empty vector or pRTS1-RGC-32 

and then cultivated in growth medium. The hygromycin concentration in medium 

was increased gradually to 50 µg/ml by replacing the medium with hygromycin 

containing medium weekly. Within the next 2-4 weeks, hygromycin resistant 

cells grew out.  

 

To optimise the expression of RGC-32 in the HEK293 cell line, 0.5, 1 or 2 µg/ml 

Doxycycline and 8, 24 or 48 hours induction time were tested. Western blot 

showed that the expression of both EBNA 1 and RGC-32 was higher at 48 

hours than 8 and 24 hours (Figure 4-21). More RGC-32 was expressed using 1 

µg/ml Doxycycline induction compared to 0.5 and 2 µg/ml at 48 hours (Figure 4-

21). 1 µg/ml Doxycycline and 48 hours induction time were used for further 

experiments. 

 

4.6.3.2 The effects of stable RGC-32 overexpression  
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Figure 4-21. Western blotting analysis of stable HEK293 cell lines after DOX induction.  

HEK293 cells were stable transfected with A. pRTS-1α empty vector or B. pRTS-1α RGC-32 then 

harvested 8, 24 or 48 hours post doxycycline treatment (0.5, 1 or 2 µg/ml) and whole cell lysates of -/+ 
DOX induction were separated on a gel. The Mutu III cell line is a positive control for EBNA 1 and RGC-32 
expression. There is some problem with sample at 24 hours with 1 µg/ml DOX as no expression of both 
EBNA 1 and RGC-32 had been shown.  
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Western blotting analysis confirmed the expression of EBNA 1 at 8, 24 and 48 

hours and RGC-32 at 8 and 48 hours before and after etoposide treatment 

(Figure 4-22). There was very little RGC-32 expression at 24 hours. The 

proportion of cells in each cell cycle phase was analysed after 8, 24 and 48 

hours of etoposide treatment (Figure 4-23). The results showed that HEK293 

cells did not arrest at G2/M after 8, 24 or 48 hours etoposide treatment (Figure 

4-24). It is possible the concentration of etoposide was not high enough to 

arrest the cells, but due to time constraints I was not able to perform any further 

titrations.   

 

4.6.4 Stable HeLa cell line expressing RGC-32  

4.6.4.1 Optimisation of DOX induction 

HeLa cells were transfected with pRTS1 empty vector or pRTS1-RGC-32 and 

then cultivated in growth medium. The hygromycin concentration in medium 

was increased gradually to 100 µg/ml by replacing the medium with hygromycin 

containing medium weekly. Within the next 2-4 weeks, hygromycin resistant 

cells grew out.  

 

To optimise the expression of RGC-32 in HeLa cells, 1 or 2 µg/ml Doxycycline 

with 24 or 48 hours induction time were tested. Western blotting analysis 

showed that the expression of both EBNA 1 and RGC-32 were similar at 24 and 

48 hours, but less actin was expressed when induction time was 48 hours 

compared to 24 hours (Figure 4-25). More RGC-32 was expressed using 1 

µg/ml Doxycycline induction compared to 2 µg/ml at 24 or 48 hours (Figure 4- 
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Figure 4-22. Western blotting analysis of stable HEK293 cells after etoposide treatment. 

HEK293 cell lines stably expressing RGC-32 were exposed to 1 µM etoposide for 8, 24 and 48 hours after 
48 hours of DOX induction. Whole cell lysates were separated on a gel. The Mutu III cell line is a positive 
control for EBNA 1 and RGC-32 expression. Actin is a loading control.   
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Figure 4-23. FACS analysis of stably transfected HEK293 cells after etoposide treatment. 

HEK293 cell lines stably expressing RGC-32 were exposed to 1 µM etoposide for 0, 8, 24 and 48 hours. 
Cells were stained with propidium iodide to visualise cell cycle distribution.  
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Figure 4-24. Percentage change of HEK293 cells -/+ etoposide in each phase. 

HEK293 cell lines stably expressing RGC-32 were exposed to 1 µM etoposide for 8, 24 and 48 hours. The 
percentage change of cells -/+ etoposide in each phase was relative to control cells. 
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Figure 4-25. Western blotting analysis of stable HeLa cell lines after DOX induction.  

HeLa cells were stable transfected with pRTS-1α empty vector or pRTS-1α RGC-32 then harvested 24 or 
48 hours post doxycycline treatment (1 or 2 µg/ml) and whole cell lysates of -/+ DOX induction were 
separated on a gel. The GM12878 cell line is a positive control for EBNA 1 and RGC-32 expression. Actin 
is a loading control.   
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25). 1 µg/ml Doxycycline and 48 hours induction time were used for further 

experiments. 

 

4.6.4.2 The effects of stable RGC-32 overexpression  

Western blot confirmed the expression of EBNA 1 and RGC-32 before and after 

etoposide treatment (Figure 4-26). The proportion of cells in each cell cycle 

phase was analysed after 8, 24 and 48 hours of etoposide treatment (Figure 4-

27). The HeLa cells expressing RGC-32 were arrested at G2 phase only at 48 

hours, but the expression of RGC-32 did not change the proportion of cells in 

each phase (Figure 4-28). Interestingly, Saigusa et al. has shown the similar 

results of HeLa cells overexpressing RGC-32 protein display simultaneous 

transition into G2/M phase from G1, but delayed transition into G1 phase from 

G2/M phase compared with control cells (Saigusa et al. 2007). Due to time 

constraints, I was not able to perform any further titrations of etoposide 

concentration.  

 

4.7 Discussion 

In this chapter, which regions are involved in the CDK1 and Plk1 interaction and 

the mechanism of RGC-32 disrupting cell cycle were investigated. Previously 

RGC-32 was found to associate with the recombinant CDK1/Cyclin B1 complex 

in vitro (Badea et al. 2002). Our results provided the first evidence that RGC-32 

interacted with CDK1 in B-cells but interestingly not with Cyclin B1. It is possible 

that activation by RGC-32 is Cyclin-independent or RGC-32 competing with  
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Figure 4-26. Western blotting analysis of HeLa stable cells after etoposide treatment. 

HeLa cell lines stably expressing RGC-32 were exposed to 1 µM etoposide for 8, 24 and 48 hours after 48 
hours of DOX induction. Whole cell lysates were separated on a gel. The IB4 cell line is a positive control 
for EBNA 1 and RGC-32 expression. Actin is a loading control.   
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Figure 4-27. FACS analysis of stably transfected HeLa cells after etoposide treatment. 

HeLa cell lines stably expressing RGC-32 were exposed to 1 µM etoposide for 0, 8, 24 and 48 hours. Cells 
were stained with propidium iodide to visualise cell cycle distribution.  
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Figure 4-28. Percentage change of HeLa cells -/+ etoposide in each phase. 

HeLa cell lines stably expressing RGC-32 were exposed to 1 µM etoposide for 8, 24 and 48 hours. The 
percentage change of cells -/+ etoposide in each phase was relative to control cells. 
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Cyclin B1 for CDK1. It indicated that the interaction of RGC-32 and CDK1 was 

specific. RGC-32 was shown to activate CDK1 in a manner of dependent on its 

Thr 91 phosphorylated by CDK1 (Badea et al. 2002). Mutation of RGC-32 

protein at threonine 91 did not show any change compared to the ability of 

RGC-32 wildtype to bind CDK1 in our pull-down assays. So it might suggest 

that phosphorylation of Thr 91 in RGC-32 is important for its activity but not its 

binding with CDK1. 

 

To further identify the potential regions of RGC-32 binding to CDK1, RGC-32 

truncations were constructed based on secondary prediction derived using 

JPred. Pull-down results showed 50-75 aa was the potential domain involved in 

CDK1 binding which didn't include any predicted α-helix. Next we could do 

kinase assays using these truncations to map the domain which is crucial for 

increasing CDK1 activity.  

 

RGC-32 was shown to interact with Plk1 upon phosphorylation by it in vitro but 

not with CDK1, indicating another possible way in which RGC-32 level mediates 

cell cycle control (Saigusa et al. 2007). During the G2/M transition, Plk1 

phosphorylates CDK1/Cyclin B and Cdc25 leading to mitotic entry (Kumagai 

and Dunphy 1996). We showed that RGC-32 bound to both CDK1 and Plk1. In 

our pull-down results, GST-tagged RGC-32 interacted with Plk1 in B-cells and 

the potential binding region identified as 25-50 aa which included one predicted 

α-helix. To test if RGC-32 binds to CDK1 and Plk1 at the same time, we could 

purified them separately then do gel filtration chromatography which is a 
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technique to separate proteins based on molecular size: the larger molecules 

will elute before the smaller ones.  

 

In the West lab, overexpression of RGC-32 in two different B-cell backgrounds 

previously shown to disrupt the G2/M checkpoint (Schlick et al. 2011) which 

indicated a role of it in EBV-mediated cell cycle deregulation. It has been shown 

that overexpression of RGC-32 alone can disrupt the G2/M checkpoint in B-cell 

lines (Schlick et al. 2011). But the cell cycle disruption phenotype was reduced 

in the following experiments. The attempt of making stable DG75 

overexpressing RGC-32 did not work due to the low transfection efficiency. So 

stable cell line overexpressing RGC-32 was make in Akata, an EBV positive BL 

cell line. It was confirmed that RGC-32 alone can disrupt the G2/M checkpoint. 

Combined with the pull-down experiments which showed that RGC-32 can 

interact with CDK1 and Plk1 which are important in G2/M checkpoint, it implied 

the possible way RGC-32 interrupting G2/M checkpoint is through CDK1 or Plk1. 

This stably expressing RGC-32 Akata cell line can be used to test more drugs 

to see their effect on cell cycle. Also the concentration of drugs using to arrest 

HEK293 and HeLa cells need to be titrated for further investigation of RGC-32 

expression on cell cycle disruption.   
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5 Mechanism of RGC-32 expression on 

transcriptional level 

5.1 Introduction  

RGC-32 is expressed at the RNA level in many different human tissues 

including artery, bladder, brain, breast, cervix, colon, heart, kidney, lung, liver, 

lung and pancreas. RGC-32 is overexpressed at the RNA level in multiple 

human tumours including bladder, breast, colon, lung, prostate and ovaries 

(Kang et al. 2003, Donninger et al. 2004, Fosbrink et al. 2005). Interestingly 

West’s lab has shown that RGC-32 protein is not expressed in EBV-negative 

and EBV-positive latency I B cell lines, however highly expressed in EBV-

positive latency III B cell lines (Figure 5-1A). The RGC-32 mRNA expression 

has shown the opposite since it is higher in some EBV-negative and EBV-

positive latency I B cell lines than in EBV-positive latency III B cell lines (Figure 

5-1B). Although RGC-32 mRNA expression is low in latency III cell lines, 

EBNAs may keep it high enough so RGC-32 protein can be made. It suggests 

that EBNAs might play a role in regulation of RGC-32 expression in EBV-

infected cells. Therefore, this chapter aims to investigate the potential role of 

EBV latency III gene products in the regulation of RGC-32 mRNA expression.  

 

Figure 5-2 summarised how RGC-32 mRNA expression is regulated by EBV 

transcription factors in different cell line backgrounds. RGC-32 mRNA 

expression is negatively regulated by EBNA 2 in EBV-negative B cell line (Maier 

et al. 2006). Two EBV-negative B cell lines were used to perform a screen for  
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Figure 5-1. RGC-32 expression on protein and mRNA levels in different types of EBV 

latency (Schlick et al. 2011).  

A. Western blotting analysis of RGC-32 protein expression in EBV negative and positive B cell lines. Actin 

is used as a loading control. B. q-PCR analysis of RGC-32 mRNA expression in EBV negative and 

positive B cell lines. Results show the mean of 3 independent experiments +/- standard deviation. This 

figure was taken from (Schlick et al. 2011). 
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Figure 5-2.  Summary of how RGC-32 is regulated by EBNA 2 or EBNA 3A, 3B or 3C in 

different cell background.  

Orange indicates that the EBV gene product has a negative effect on the expression of RGC-32 and blue 
indicates that the EBV product has a positive effect on the expression of RGC-32. The 2.95-fold change of 
RGC-32 downregulation in EBNA 3A deficient LCL is the average of 2 EBNA 3A mutants from all 3 donors.  
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EBNA 2 targets and both of them expressed a chimeric EBNA 2 protein fused to 

estrogen receptor EBNA 2 (ER/EBNA 2). The expression of EBNA 2 can be 

switched on and off by estrogen. It has shown that RGC-32 expression is 

decreased after EBNA 2 activation (Maier et al. 2006). 

 

RGC-32 is positively regulated by EBNA 3A, 3B and 3C in LCLs (Hertle et al. 

2009, Skalska et al. 2013, White et al. 2010) (see Figure 5-3). The West’s lab 

has shown that RGC-32 is positively regulated in EBV-negative B cell line 

(McClellan et al. 2012). We carried out a microarray analysis of the effects of 

EBNA 3C on cellular gene expression in BJAB cell line which expresses higher 

levels of EBNA 3C than are present in latently infected cells. RGC-32 

expression is upregulated with higher EBNA 3C expression.  

 

Figure 5-3 showed the dotplots analysis of RGC-32 expression regulation of by 

EBNA 3A (Figure 5-3A), 3B (Figure 5-3B) and 3C (Figure 5-3C) proteins in 

LCLs. This dotplots analysis is done by Professor Martin Allday’s group 

(http://www.epstein-barrvirus.org.uk/).  

 

Two different EBNA 3A mutant viruses were used in genome wide analysis of 

cellular genes differentially expressed by EBNA 3A positive and negative LCLs 

(Hertle et al. 2009) (Figure 5-3A). Mutant A (MutA) carried a deletion of the 

second exon of EBNA 3A and mutant B (MutB) has the entire EBNA 3A coding 

sequence deleted. It has shown that RGC-32 downregulated 2.95-fold in EBNA  

http://www.epstein-barrvirus.org.uk/
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Figure 5-3.  Dotplots analysis of RGC-32 mRNA regulation by EBNA 3A, 3B and 3C in 

LCLs by Professor Martin Allday group (http://www.epstein-barrvirus.org.uk/).  

Shapes of dots in the plot represent different donors. WT-BAC is wild type B95.8 bacterial artificial 
chromosome (BAC) EBV. A. RGC-32 expression when EBNA 3A WT is expressed (orange) or EBNA 3A 
is mutated (dark and light blue) (Hertle et al. 2009). MutA carries a deletion of the second exon of EBNA 
3A and mutB is lack of the whole EBNA 3A coding sequence. B. RGC-32 expression when EBNA 3B is 
expressed (orange) or EBNA 3B is knock-out (pink) (White et al. 2010). 3BKO is EBNA 3B knockout-
infected LCLs. C. RGC-32 expression when EBNA 3C is expressed (orange) or EBNA 3C is withdrawn 
(blue) (Skalska et al. 2013). HT plus represents there is EBNA 3C expression and withdrawn represents 
there is no EBNA 3C expression.  
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3A deficient LCLs. This fold in raw data is the average of two EBNA 3A mutants 

for all three donors (Hertle et al. 2009). Data reanalysed by Allday group are 3A 

deficient LCLs. This fold in raw data is the average of two EBNA 3A mutants for 

all three donors (Hertle et al. 2009). Data reanalysed by Allday group are shown 

with wild type EBV-BAC LCLs compared to the mutants as two independent 

groups (http://www.epstein-barrvirus.org.uk/arrays2.php). So EBNA 3A has a positive 

effect of RGC-32 mRNA expression. 

 

White et al. have shown RGC-32 expression is downregulated in EBNA 3B 

knock-out LCLs (White et al. 2010) (Figure 5-3B). Wild type EBV LCLs and 

EBNA 3B knockout (3BKO) were generated by infecting primary B cells with the 

B95-8 strain BAC (WT-BAC) and EBNA 3B exon2 deleted viruses from three 

donors (http://www.epstein-barrvirus.org.uk/arrays2.php).  

 

3CHT virus, which is an EBV containing an EBNA 3C fused at its C terminus to 

a modified estrogen receptor which controls EBNA 3C expression dependent on 

the presence of 4-hydroxy tamoxifen (HT), were used in a microarray (Skalska 

et al. 2013) (Figure 5-3C).  Figure 5-4 showed the microarray strategy. 4HT was 

washed out of cell lines that had been established in the presence of 4HT (day 

0). These cells were cultured in the absence of 4HT and same cell line in the 

presence of 4HT. After 32 days, cell with 4HT were split into two and one 

culture washed out of 4HT. Those cells grown in the absence of 4HT were also 

split into two. 4HT was re-added to one culture. At day 37, RNA was harvested 

for microarray analysis. RGC-32 expression is upregulated when EBNA 3C  

http://www.epstein-barrvirus.org.uk/arrays2.php
http://www.epstein-barrvirus.org.uk/arrays2.php
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Figure 5-4. Schematic representation of microarray results in Figure 5-3C.  

Horizontal lines indicate the growth either in the absence (blue lines) or presence (red lines) of 4HT. Block 
arrows represent the time points at which RNA was harvested for Microarray analysis. This figure was 
taken from (Skalska et al., 2013).  
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expression is restored by adding 4HT (http://www.epstein-

barrvirus.org.uk/arrays2.php). 

 

Microarray analysis indicates EBV-encoded EBNAs play a role in regulation of 

RGC-32 mRNA expression. To study how RGC-32 is regulated by EBNAs and 

whether this regulation is direct or indirect, we examined ChIP-sequencing data 

we obtained for EBNA 2, 3A, 3B and 3C to detect binding sites on RGC-32 

locus in Mutu III cell line (McClellan et al. 2013) (Figure 5-5). Mutu III is a 

Burkitt’s lymphoma cell line expressing the full panel of EBV latent genes.  

 

5.2 EBNA 2 binds to the second intron of RGC-32 in Mutu III 

cell line 

ChIP-seq data analysis detected four binding sites for EBNA 2 (E2, E4, E6 and 

E8) at the second intron of RGC-32 gene (Figure 5-5). To verify that EBNA 2 is 

able to associate with these binding sites, ChIP-qPCR was carried out to 

confirm the binding by using primer sets located at the binding sites. EBNA 2 

binding at the transcription start site of PPIA (peptidylprolyl isomerase 1) and 

the previously characterized CTBP2 binding site were used as negative and 

positive binding controls (McClellan et al. 2013). Our group has shown that 

EBNA 3A, 3B and 3C bind the C-terminal binding protein 2 (CTBP2) enhancer 

(McClellan et al. 2013). EBNA 2 binding at all four sites was confirmed by ChIP-

qPCR (Figure 5-6). These data indicate that EBNA 2 may repress RGC-32 

transcription directly by binding to intronic regulatory sites. To examine the 

potential role for the second intron of RGC-32 as a regulatory region, we  

http://www.epstein-barrvirus.org.uk/arrays2.php
http://www.epstein-barrvirus.org.uk/arrays2.php
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Figure 5-5. EBNA 3s and EBNA 2 binding at the RGC-32 locus.  

EBNA 2 and EBNA 3 proteins ChIP-seq reads in Mutu III cells and H3K27Ac signals in GM12878 from 
ENCODE. RGC-32 runs left to right in the human genome. Numbering indicates the potential binding sites 
in Mutu III cells (McClellan et al. 2013)  
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Figure 5-6. ChIP qPCR analysis of EBNA 2 binding in Mutu III cells.  

Precipitated DNA was analysed using to primer sets designed at the binding sites (2, 3, 4, 6 and 8) or 
trough regions (1, 5, 7 and 9). 3 µl DNA was added to a SYBR master mix containing GoTaq qPCR Master 
Mix (Promega), forward and reverse primers and sterile water to a final volume of 15 µl. EBNA 2 binding at 
the transcription start site of PPIA and CTBP2 were used as negative and positive control respectively. 
The mean percentage input signals of two independent ChIP experiments are shown after subtraction of 
no antibody controls (n=2).  
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examined publicly available histone modification data. ChIP-seq analysis of the 

active chromatin mark, histone H3 lysine 27 acetylation was high in the 

GM12878 LCL in the region bound by enhancer 2 (green box in figure 5-5). 

 

5.3 EBNA 2 has no effect on the RGC-32 promoter reporters 

that contain enhancer peaks 

To examine whether EBNA 2 regulates RGC-32 mRNA expression via these 

binding sites, each of the four binding sites were cloned into luciferase reporter 

constructs containing the RGC-32 promoter -1150 to +62. DG75 cells were 

transiently transfected using differenct amounts of EBNA 2 expressing plasmid 

pSG5-EBNA 2 (0, 10 20 µg). Positive control experiments were carried out with 

C promoter-reporter constructs. EBNA 2 has been shown to stimulate the 

expression of C promoter, the major latency promoter (Woisetschlaeger et al. 

1991). Negative control experiments were carried out with pGL3 Basic which 

has no promoter and pGL3 RGC-32 which has the RGC-32 promoter only. The 

luciferase assays did not show any significant effect of EBNA 2 on transcription 

form the RGC-32 promoter (Figure 5-7).  

 

5.4 EBNA 3C binds to RGC-32 in Mutu III cell line 

We identified a single binding site (E2) for EBNA 3 proteins in the second intron 

of RGC-32 (Figure 5-3). To confirm the ChIP-sequencing data, ChIP-qPCR was 

carried out to see which EBNA binds. As our ChIP-seq analysis was carried out 

using an antibody that precipitated all three EBNA 3 proteins, ChIP-qPCR in  
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Figure 5-7. Luciferase analysis of RGC-32 enhancer elements.   

DG75 cells (EBV negative cell lines) were transiently transfected with different amounts of firefly luciferase 
reporter plasmid containing A. the C promoter (positive control), B. pGL3 basic (no promoter), C. the RGC-

32 promoter alone, D-G. the RGC-32 promoter in the presence of each enhancer cloned upstream E2, E4, 
E6 and E8. Results shows 3 independent experiments +/- standard deviation in which RGC-32 promoter 
activation was measured and are displayed relative to the 0 µg EBNA 2 negative control (n=3).  
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Mutu III cells was carried out to examine the binding of EBNA 3A, 3B and 3C 

proteins individually using anti-EBNA 3A, anti-EBNA 3B and anti-ENBA 3C 

antibodies. We found that only EBNA 3C bound to RGC-32 intron at enhancer 2 

(Figure 5-8). It is possible that EBNA 3C might activate RGC-32 transcription by 

binding to enhancer 2. 

 

5.5 Discussion 

Our results showed that EBNA 2 binds to the second intron of RGC-32 in the 

Latency III BL cell line Mutu III, but no regulation was detected using reporter 

assays. The possible reason is those binding sites do not control the expression 

of RGC-32 mRNA individually, therefore we could investigate whether this 

whole region respond to EBNA 2. On further examination of the data we 

identified a cluster of EBNA 2 binding sites at 20 kb downstream from RGC-32 

gene (blue box in figure 5-9). EBNA 2 and 3 proteins have been shown to 

regulate cellular genes through their associations with long distance regulatory 

elements (McClellan et al. 2012, McClellan et al. 2013). Next, the distal binding 

sites need to be confirmed by ChIP-qPCR. It would be interesting to investigate 

whether these binding sites control the expression of RGC-32 mRNA using 

reporter assays.  

 

To investigate whether EBNA 2 expression alters expression of other genes, 

microarray analysis could be performed using EBNA 2 knockout LCLs. RGC-32 

mRNA expression is negatively regulated by EBNA 2 in EBV-negative B cell 

line (Maier et al. 2006). It is possible to repress RGC-32 expression by knocking 
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Figure 5-8. ChIP qPCR analysis of EBNA 3A (A.), EBNA 3B (B.) and EBNA 3C (C.) binding 

at RGC-32 in Mutu III cells.  

ChIPed DNA was used according to primer sets designed at the binding sites (2 and 3) or trough regions 
(1). EBNA 3s binding sites at the preciously characterized T6 which is a trough region adjacent to the 
binding sites and shows very low signal (Gunnell et al. 2016) were used as negative control. Binding sites 
CTBP2 were used as positive control. The mean percentage input signals of two independent ChIP 
experiments are shown -/+ standard deviation after subtraction of no antibody controls. 
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  E2 E4 E6 E8 

  SPI1 (1000) MTA3 (308) ZEB1 (127) POLR2A (1000) 

  RUNX3 (302) MAZ (179) CEBPB (283) BCL3 (216) 

    

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

NFATC1 (517) EP300 (272)   

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  NFIC (269) RUNX3 (1000) 

  RAD21 (185) SPI1 (344) 

  MEF2A (181) TAF1 (336) 

  RUNX3 (871) BCLAF1 (208) 

  PAX5 (685) ELF1 (695) 

  EGR1 (237) NFIC (722) 

  SP1 (160) MTA3 (443) 

  EBF1 (275) YY1 (237) 

  TCF12 (463) IRF4 (459) 

Transcription   

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

BHLHE40 (255) 

  PAX5 (522) 

 factors  FOXM1 (590) 

  POU2F2 (270) 

(signal intensity) EBF1 (259) 

  EGR1 (156) 

  MEF2A (280) 

  ATF2 (577) 

  ETS1 (143) 

  TCF3 (803) 

  NFATC1 (450) 

  SRF (273) 

  BATF (1000) 

  PBX3 (218) 

  RAD21 (190) 

  TCF12 (869) 

  BCL3 (430) 

  SP1 (427) 

  BCL11A (441) 

 

Table 5-1. Transcription factors binding at E2, E4, E6 or E8 (Genome browser).  

Transcription factors ChIP-seq reads in GM12878 cells (McClellan et al., 2013). The signal intensity is 
showed in brackets and the green highlight represents the highest scoring site of a Factorbook-identified 
canonical motif for the corresponding factor.   
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Figure 5-9. EBNA2, 3A, 3B, 3C and RBP-Jκ binding at the RGC-32 locus.  

EBNA 2, 3A, 3B and 3C ChIP-sequencing reads in Mutu III (McClellan et al. 2013), H3K27me3 signals in 
the EBV-immortalised LCL, GM12878 from ENCODE and RBP-Jκ ChIP-sequencing reads in the EBV-
immortalised LCL, IB4 detected by MACS (Zhao et al., 2011). RGC-32 runs left to right in the human 
genome. The black bars indicate the wholly enriched region from start to end. Summits indicate the 
highest pile up point within the peak region.  
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off a better activator. I examined the ChIP-seq data to identify other genes 

binding at the second intron of RGC-32 gene and summarised in table 5-1. The 

genes binding at E2, E4, E6 and E6 are present and the binding intensity is 

shown in brackets. The maximum of signal intensity is 1000 which represents 

the strongest binding and the genes highlighted in green are the highest scoring 

site of identified motif for the corresponding factor. RUNX3 binds to enhancer 2, 

4 and with high scoring of binding. Our previous data show that RUNX3 

represses the expression of RUNX 1 and RUNX1 activates expression of RGC-

32 mRNA (Gunnell et al. 2016). It would be interesting to investigate whether 

expression of RUNX3 regulates RGC-32 expression. Also we examined publicly 

available histone modification data, we identified some signal of Histone 3 

lysine 27 trimethylation (H3K27m3) from ENCODE (black box in figure 5-9) 

which is associated with lower of transcription and there defined as repression 

mark. Our previous date show that RGC-32 mRNA level is low in latency III cell 

lines (Schlick et al. 2011), so it is possible that mRNA expression of RGC-32 is 

repressed through histone modification in this region.  

 

EBNA 3C binds to RGC-32 in Mutu III at enhancer 2. It has been shown that 

EBNA 3C bound strongly to the p14ARF promoter through 

SPI1/IRF4/BATF/RUNX3, establishing RBPJ-κ, Sin3A-, and REST-mediated 

repression (Jiang et al. 2014). Interestingly SPI1 (PU.1), IRF4, BATF and 

RUNX3 all bind at the second intron of RGC-32 gene which suggests it is 

possible that EBNA 3C might form a complex with them to control RGC-32 

transcription. But the low expression of IRF4 in DG75 cell line, used for 
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luciferase assays, might abolish the association between EBNA 3C and RGC-

32 gene. 
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6 Discussion and future work 

6.1 What is the mechanism of CDK1 activation by RGC-32? 

RINGO/Speedy has been shown to function like RGC-32 in cell cycle 

progression (Gastwirt et al. 2007). RINGO/Speedy was initially described as a 

protein which induces the G2/M transition during oocyte maturation (Lenormand 

et al. 1999, Ferby et al. 1999). It was later shown to be able to activate CDK1 

and CDK2, although these proteins have no amino acid homology to Cyclins 

(reviewed in (Gastwirt et al. 2007). RINGO binds to CDK1 and Cyclin B1 

separately but not the CDK1/Cyclin B1 complex and it can activate CDK1 in the 

absence of Cyclin B1 (Ferby et al. 1999). RGC-32 also binds and activates 

CDK1 activity in vitro (Badea et al. 2002). Interestingly, RGC-32 did not interact 

with the CDK1/Cyclin B1 complex in immunoprecipitation experiments carried 

out in HEK293T cells (Saigusa et al. 2007) raising the possibility that RGC-32 

competes with Cyclin B1 for CDK1 as found for RINGO/Speedy proteins 

(reviewed in (Gastwirt et al. 2007). Our in vitro pull-down assays showed that 

RGC-32 only interacts with CDK1, but not Cyclin B1 in B cells (Badea et al. 

2002) suggesting it may activate CDK1 in a cyclin-independent manner like 

RINGO/Speedy protein. To further confirm our conclusion, surface plasmon 

resonance (SPR) is being carried out in University of Newcastle is being done 

as part of a collaboration with Professor Jane Endicott and Dr. Nick Brown. SPR 

provides a way to observe protein-protein interactions in real time. Initial 

experiments have indicated that RGC-32 binds to CDK1 at much higher affinity 

than the CDK1-Cyclin B complex. These experiments also confirmed that RGC- 
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32, unlike RINGO, seems to have specificity for CDK1 as no binding to CDK2 

was detected.   

 

In vivo and in vitro RINGO was found to activate CDK1 independent of the 

phosphorylation of threonine 161 in the activation loop on CDK1 (Ferby et al. 

1999, Karaiskou et al. 2001). Further experiments showed RINGO could bind 

and activate CDK2 in the absence of cyclin and independent of threonine 160 

phosphorylation (Karaiskou et al. 2001, Porter et al. 2002). So it would be 

interesting to test if RGC-32 activates CDK1 through a mechanism alleviating 

the requirement for activation by CDK-activating kinase (CAK).  

 

CDK1 has also been shown to bind other proteins to control critical cell cycle 

events, e.g. Cyclin-dependent kinase subunit (Cks). Cks protein was identified 

in a screen for genes that can suppress the termperature-sensitive phenotype 

of CDK1 alleles(Hayles et al. 1986). Cks proteins bind to CDKs and Cyclins 

(Zhang et al. 2004). Cks proteins enhance the phosphorylation of selected 

CDK1 substrates in mitosis (Patra et al. 1999). Structural studies have 

determined the structures of Cks with CDK1 alone and CDK1/Cyclin B complex 

(Brown et al. 2015). It is possible that RGC-32 could bind to CDK1 alone and 

CDK1/Cyclin B1 like Cks.  

 

6.2 What is the role of cellular localisation of RGC-32 in 

recruitment of CDK1, Plk1 or Spc24? 
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In U-87 MG cells, ectopically expressed RGC-32 protein is located in the 

cytoplasm during interphase with the strongest signal around the nuclear 

membrane (Saigusa et al. 2007). In prophase, RGC-32 protein levels increase 

at the centrosome and in prometaphase and metaphase they reach maximal 

levels at the centrosome and spindle poles. During telophase and cytokinesis 

RGC-32 protein levels remain low in centrosome (Saigusa et al. 2007). These 

data is consistent with a role of RGC-32 in mitotic progression.  

 

RGC-32 interacts with the centrosome-associated polo-like kinase (Plk1) and is 

phosphorylated by Plk1 in vitro (Saigusa et al. 2007). Our in vitro pull-down 

assays showed that GST-RGC-32 interacted with Plk1 in B cells and further we 

mapped the potential domain on RGC-32 which is crucial for the interaction. 

Plk1 is a key regulator in mitosis (Barr et al. 2004) and expression and kinase 

activity of it has been shown to elevate in many kinds of cancers (Dietzmann et 

al. 2001, Takai et al. 2005). It is possible that RGC-32 may regulate the cell 

cycle through the interaction with Plk1. Cytoplasmic linker protein (CLIP) 170 

promotes the localisation of Plk1 at kinetochore in early mitosis through a Polo-

Box domain (Amin et al. 2014) and Plk1 localises at kinetochores in 

prometaphase to stabilise the kinetochore and microtubule attachment (Liu, 

Davydenko and Lampson 2012). During cell division, chromosome segregation 

is dependent on the kinetochore-microtubule attachment on the mitotic spindle, 

which progresses chromosome alignment (Tanaka, Stark and Tanaka 2005, 

Tanaka 2012, Tanaka 2013). It would be interesting to test whether RGC-32 

localises to kinetochore and investigate the role of RGC-32 in the recruitment of 

Plk1 to kinetochore. We mapped the regions of interaction between RGC-32 



6-154 
 

and Plk1 by in vitro pull-down assays. RGC-32 deletion which lacks the 

interaction regions with Plk1 could be fused to a fluorescent marker then 

transfected into cells to visualise its expression and localisation using 

fluorescent microscope. 

 

During the course of this study, we identified the third predicted α-helix of RGC-

32 as having homology to a receptor motif in the N terminus of the histone-fold 

protein Cnn1 from Saccharomyces cerevisiae using HHpred. This receptor motif 

is required for the association of Cnn1 with Spc24-25 heterodimer (Schleiffer et 

al. 2012). We showed that RGC-32 interacts with Spc24 in pull-down assays 

suggesting RGC-32 might play a role in kinetochore assembly or in recruiting 

kinases there. Three conserved hydrophobic residues phenylalanine 69, lysine 

70 and 73 in Cnn1 are required for its interaction with Spc24-25 as these 

residues face the hydrophobic pocket of Spc24-25 globular domain (Malvezzi et 

al. 2013). Interestingly these three residues were present in the third α-helix of 

RGC-32. The structure of the budding yeast Spc24-25 and Cnn1 interaction has 

been deposited in the Protein Data Bank with accession code 4GEQ (Malvezzi 

et al. 2013). We substituted those three conserved residues (phenylalanine 69, 

lysine 70 and 73) in Cnn1 by corresponding amino acids in RGC-32 to model 

RGC-32 in the structure with Spc24-25 (Figure 6-1). The substitution of RGC-32 

could still fit in the hydrophobic pocket of Spc24-25 globular domain. Next, we 

could mutate RGC-32 on these three residues and determine whether they are 

required for the interaction of RGC-32 and Spc24 using in vitro pull-down 

assays. 
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Figure 6-1. Structural analysis by substituting amino acids on Cnn1 with corresponding 

amino acids on RGC-32. 

A. and B. Close-up view of the Cnn1 and Spc24-25 interaction network (Accession number 4GEQ) 

(Malvezzi et al., 2013). The secondary structure of Cnn1, Spc24 and Spc25 is shown as orange, blue and 
grey respectively. C. and D. Amino acids on Cnn1 were substituted by corresponding amino acids on 

RGC-32. These amino acids are present in the third α-helical of RGC-32 which is identified to be 
homologous to the N-terminus of Cnn1.  
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CDK1 phosphorylation of the N terminus of CENP-T has been shown to play a 

role in kinetochore assembly in human cells (Gascoigne et al. 2011). Malvezzi 

et al. have shown that CDK1 phosphorylation of the Cnn1 N terminus is not 

required for the interaction between Spc24-25 and Cnn1 (Malvezzi et al. 2013). 

So it would be interesting to investigate if CDK1 could phosphorylate the N 

terminus of RGC-32 which is the homologue with Cnn1. It has been shown that 

RGC-32 mutation at threonine 91 abolishes the CDK1-mediated 

phosphorylation and leads to loss of CDK1 kinase enhancing activity (Badea et 

al. 2002). Interestingly, threonine 91 on RGC-32 is near the potential interaction 

helix of RGC-32 and Spc24-25. Next, we would investigate whether mutation of 

RGC-32 at threonine 91 is required for the interaction of RGC-32 and Spc24-25 

using pull-down assays. It is possible that phosphor status of RGC-32 could 

ensure that it interact stably with the kinetochore and spindle only at the correct 

time during mitosis.  

 

6.3 Is RGC-32 an oncogene or tumour suppressor? 

Overexpression of RGC-32 in the OLG-C6 glioma cell line leads to an increase 

in DNA synthesis in response to serum growth factors (Badea et al. 1998) and 

leads to S-phase and G2/M entry in smooth muscle cells (Badea et al. 2002). 

RGC-32 mRNA expression was up-regulated in breast cancer (Kang et al. 2003, 

Fosbrink et al. 2005), colon cancer (Fosbrink et al. 2005), lung cancer (Fosbrink 

et al. 2005), ovarian cancer (Donninger et al. 2004), stomach cancer (Fosbrink 

et al. 2005). This evidence indicates that RGC-32 is an oncogene. Other studies 

however, point to a role for RGC-32 as a tumour suppressor. RGC-32 gene was 
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absent in glioma cell lines and restoration of it caused the suppression of cell 

growth and overexpression of its protein delayed mitotic progression in HeLa 

cells (Saigusa et al. 2007).  

 

Our previous data showed that stable overexpression of RGC-32 alone is 

sufficient to disrupt the G2/M checkpoint in the EBV-negative B cell line DG75 

and BJAB (Schlick et al. 2011). I generated new cell lines expressing inducible 

RGC-32 for further investigation of RGC-32 function. It has been shown that 

RGC-32 directly binds to CDK1 and increases its activity by pull-down assay in 

vitro and immunoprecipitation in vivo (Badea et al. 2002). It is interesting to 

investigate whether cells overexpressing RGC-32 still can overcome G2/M 

checkpoint when the CDK1 activity is inhibited by CDK1 inhibitor e.g. 1NM-PP1. 

1NM-PP1 is a cell-permeable inhibitor of kinases that have been mutated by a 

single base substitution to become analogue sensitive compared to wild type 

kinases (Cayman chemical CAS 221244-14-0). It can inhibit the kinase activity 

of CDK1.  

 

6.4 What is the role of RGC-32 in EBV transformation? 

RGC-32 expressed at the RNA level in many different human tissues including 

artery, bladder, brain, breast, cervix, colon, heart, kidney, lung, liver, lung and 

pancreas. RGC-32 overexpressed at the RNA level in multiple human tumours 

including bladder, breast, colon, lung, prostate and ovaries (Kang et al. 2003, 

Donninger et al. 2004, Fosbrink et al. 2005). Our previously data has shown 

that RGC-32 mRNA expression is significantly higher in Latency I BL cell lines 
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and in some EBV-negative cell lines compared to latency III cell lines (Schlick et 

al. 2011). It is possible that EBV latency III gene products play a role in the 

regulation of RGC-32.  

 

Further evidence indicates RUNX genes also play a role in regulation of RGC-

32 expression. Therefore we summarised the regulation of RGC-32 mRNA 

expression by EBNAs and RUNX (Figure 6-2). EBNA 2 downregulates RGC-32 

expression in EBV-negative B cell line (Maier et al. 2006). EBNA 3A, 3B and 3C 

activate RGC-32 expression in LCLs (Hertle et al. 2009, Skalska et al. 2013, 

White et al. 2010). Our previous data shows that RGC-32 mRNA expression in 

human B cells is activated by RUNX1c (Schlick et al. 2011). Also our previous 

data has revealed RUNX gene regulation is controlled by the EBNAs in EBV-

infected cells (Gunnell et al. 2016). EBNA 2, 3B and 3C activate RUNX3 

expression (Gunnell et al. 2016). EBNA 2 activates, however EBNA 3B and 3C 

repress the expression of RUNX1 (Gunnell et al. 2016). RUNX 3 represses 

RUNX1 expression (Gunnell et al. 2016). EBNA 3A activates the expression of 

RUNX1 in LCLs (White et al. 2010) and EBNA 3B activates the expression of 

RUNX1 in LCLs (Hertle et al. 2009). It suggests that the expression of RGC-32 

is a consequence of collaborative working of EBV encoded EBNAs and RUNX. 

 

Although a number of microarray analyses have been done on RGC-32 mRNA 

expression, these studies do not show whether RGC-32 mRNA expression 

changes leads to a change in protein expression. Surprisingly our previous data 

has shown that RGC-32 protein expression is not consistent with its mRNA  
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Figure 6-2. RGC-32 gene regulation by the EBNAs and RUNX (modified from Gunnell et 

al., 2016).  

EBNA 2 downregulates RGC-32 expression and EBNA 3A, 3B and 3C upregulate RGC-32 expression. 

RUNX1 upregulates RGC-32 expression. EBNA 2, 3B and 3C activate RUNX3 expression by binding to a 

distal upstream super-enhancer. Then RUNX3 represses RUNX1 transcription by binding to the RUNX1 

P1 promoter. The activation of RUNX1 transcription by EBNA 2 is through an upstream super-enhancer 

and cell type specific. The repression of RUNX1 transcription is also cell type specific. Total RUNX1 

expression depends on the balance between the expression of RUNX1 which drives RUNX1 repression, 

EBNA 2 activation and EBNA 3B and 3C repression which are controlled by super-enhancer binding.  
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expression in EBV-positive cell lines latency I and latency III due to the blocking 

of its translation at a post-initiation stage in latency I cells (Schlick et al. 2011). It 

is still unclear how RGC-32 protein expression is regulated in EBV-transformed 

cells. Although the microarray data have suggested RGC-32 expression 

promotes tumour development, it would be still too early to draw any conclusion 

in the investigation of the role of RGC-32 in EBV transformation.  

 

  



7-161 
 

7 Appendices 

7.1 Antibodies 

Antibody Host Dilution Informaiton Company/Cat. No. 

Anti RGC32 Rabbit 1:500 Polyclonal Eurogentec 

Anti CDK1 Mouse 1:500 Monoclonal Invitrogen/33-1800 

Anti CDK1 Mouse 1:1000 Monoclonal Santa Cruz/sc-54 

Anti Cyclin B1 (GNS1) Mouse 1:1000 Monoclonal Santa Cruz/sc-245 

Anti CDK2 (D-12) Mouse 1:3000 Monoclonal Santa Cruz/sc-6248 

Anti Plk1 Mouse 1:1000 Monoclonal abcam/ab14210 

Anti Spc24 Rabbit 1:500 Polyclonal abcam/ab157184 

Anti EBNA 1  
(M. Stacey serum) Human 1:200 Polyclonal Gift from M. Rowe. 

Anti actin Rabbit 1:5000 Polyclonal Sigma 
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7.2 Plasmids 

Plasmid Information Reference/ 

    Company 

pET16  
RGC-32 

RGC-32 was cut of pFLAG RGC-32 as an 
SalI/BamHI fragment and cloned into pET16b 
(Sigma) digested with XhoI/BamHI. 

Sigma and  
created by  
Helen Webb 

pET28  
Cyclin B1 

Cyclin B1 (residues 165-433) was amplified 
by PCR and cloned into 
pET28a (Novagen). 

Gift from E.  
Petri (Petri et 
al., 2007)  

pGEX   
RGC-32 

RGC-32 was amplified from pFLAG RGC-32 
and cloned into pGEX-6P3  
as a BamHI/NotI fragment. 

Created by  
Lina Chen 

pGEX  
RGC-32  
T91A 

RGC-32 was amplified from pFLAG RGC-32 
T91A and cloned into pGEX-6P3 as a 
BamHI/ NotI fragment. 

Created by  
Lina Chen 

pFLAG  
RGC-32 

RGC-32 was amplified from BJAB E3C-4 
(Wang et al., 1990) cDNA and cloned into 
pFLAG-CMV-2 as an XbaI/BamHI fragment. 

Created by  
Helen Webb 

pGEX   
RGC-32 
1-25 

RGC-32 (residues 1-25) was amplified from 
pFLAG RGC-32 and cloned into pGEX-6P3 
as a BamHI/XhoI fragment. 

Created by  
Lina Chen 

pGEX  
RGC-32  
1-50 

RGC-32 (residues 1-50) was amplified 
from pFLAG RGC-32 and cloned into pGEX-
6P3 as a BamHI/XhoI fragment. 

Created by  
Lina Chen 

pGEX  
RGC-32  
1-75 

RGC-32 (residues 1-75) was amplified from 
pFLAG RGC-32 and cloned into pGEX-6P3 
as a BamHI/XhoI fragment. 

Created by  
Lina Chen 

pGEX  
RGC-32  
1-100 

RGC-32 (residues 1-100) was amplified 
from pFLAG RGC-32 and cloned into 
pGEX-6P3 as a BamHI/XhoI fragment. 

Created by  
Lina Chen 

pMA  
RGC32  
mutant  
for CDK1 
binding 

RGC-32 mutant (F68A, F70A) was inserted 
into pMA as a KpnI/SacI fragment. 

Life 
technologies 

pMA  
RGC32  
mutant  

RGC-32 mutant (Y33A, K41E, R42E, R43E) 
was inserted into pMA as an SfiI/SfiI 
fragment. 

Life 
technologies 

for Plk1 
binding 

   

pGEX  
RGC-32 
mutant  
for CDK1 
binding 

RGC-32 mutant (F68A, F70A) was cut of 
pMA RGC-32 mutant for CDK1 binding and 
cloned into pGEX-6P3 as a BamHI/NotI 
fragment. 

Created by  
Lina Chen 

pGEX  
RGC-32 
mutant for  
Plk1 binding  

RGC-32 mutant (Y33A, K41E, R42E, R43E) 
was cut of pMA RGC-32 mutant for Plk1 
binding and cloned into pGEX-6P3 as a 
BamHI/NotI fragment. 

Created by  
Lina Chen 
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pRTS-1  
RGC-32 

RGC-32 was cut of pUC19 RGC-32 as an 
SfiI/SfiI fragment and cloned into pRTS-1 
(Georg W. Bornkamm) digested by SfiI. 

Created by  
Lina Chen 

pSG5 
EBNA 2 

The EBNA 2 open reading frame of EBV 
strain W91 under the control of the SV40 
early promoter in pSG5 vector 

Gift from M. 
Rowe  

pGL2  
RGC-32  

1.2 kb fragment (approximately from -1150 to 
+62 relative to predicted transcription start 
site) of the RGC-32 promoter was amplified 
from genomic DNA and cloned into pGL2 
Basic cut with HindIII/KpnI. 

Created by 
Helen Webb 

pGL3  
RGC-32  

The RGC-32 promoter fragment was but with 
HindIII/KpnI out of pGL2 RGC-32 and cloned 
into a pGL3 Basic vector. 

Created by 
Sandra Schlick 

pGL3  
RGC-32  
E2 

The RGC-32 enhancer element 2 
(approximately 600 bp) was amplified from 
genomic DNA and cloned into pGL3 RGC-32 
cut with KpnI. 

Created by  
Lina Chen 

pGL3  
RGC-32  
E4 

The RGC-32 enhancer element 4 
(approximately 700 bp) was amplified from 
genomic DNA and cloned into pGL3 RGC-32 
cut with KpnI. 

Created by  
Lina Chen 

pGL3  
RGC-32  
E6 

The RGC-32 enhancer element 6 
(approximately 800 bp) was amplified from 
genomic DNA and cloned into pGL3 RGC-32 
cut with KpnI. 

Created by  
Lina Chen 

pGL3  
RGC-32  
E8 

The RGC-32 enhancer element 8 
(approximately 700 bp) was amplified from 
genomic DNA and cloned into pGL3 RGC-32 
cut with KpnI. 

Created by  
Lina Chen 
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7.3 PCR primers 

Gene Sequence 

RGC-32 primers for making 
pGEX RGC-32 or pGEX  
RGC-32 T91A 
 
MW 594 (forward primer) 
MW 525 (reverse primer) 

 
 
 
 
GCG GAT CCT CTA GAA TGA AGC CGC CC 
CGG CGG CCG CTC ACA TAC TTG CTA AAG T 

RGC-32 primers for making 
pGEX RGC-32 1-25  
 
MW 594 (forward primer)  
MW 730 (reverse primer) 

  
 
 
GCG GAT CCT CTA GAA TGA AGC CGC CC 
GCT CGA GTC AGG GCG ACG CGA AGT CGG CCA G 

RGC-32 primers for making 
pGEX RGC-32 1-50  
 
MW 594 (forward primer) 
MW 731 (reverse primer) 

  
 
 
GCG GAT CCT CTA GAA TGA AGC CGC CC 
GCT CGA GTC AGT CGC TGA CAC TGG CGC TGC T 

RGC-32 primers for making 
pGEX RGC-32 1-75  
 
MW 594 (forward primer)  
MW 732 (reverse primer) 

  
 
 
GCG GAT CCT CTA GAA TGA AGC CGC CC 
GCT CGA GTC ACA GTT TTT CAT CAC TGA AGC T 

RGC-32 primers for making 
pGEX RGC-32 1-100  
 
MW 594 (forward primer)  
MW 733 (reverse primer) 

  
 
 
GCG GAT CCT CTA GAA TGA AGC CGC CC 
GCT CGA GTC ATG TGT CTC CTA ATT TAG CTT T 
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7.4 qPCR primers 

Gene Sequence 

RGC-32 ChIP qPCR E1   

MW 629 (forward primer) GCC AGT GTC TCG CAT GAA 

MW 630 (reverse primer) GTT GGT GCA CCT TCA GAC AG 

RGC-32 ChIP qPCR E2   

MW 631 (forward primer) CCA GCA TGA CAG ATG GCT TA 

MW 632 (reverse primer) AGG CTC CTC ATT GGC CTT A  

RGC-32 ChIP qPCR E3   

MW 633 (forward primer) GTG ATC AGC CAG CAA CAC AT 

MW 634 (reverse primer) AGC CGG ACA TCC TGT TCT T 

RGC-32 ChIP qPCR E4   

MW 635 (forward primer) GAT AGA GAG CGG AGG TGT GG 

MW 636 (reverse primer) CCG TGG CTA TGA AGG ATA CC 

RGC-32 ChIP qPCR E5   

MW 637 (forward primer) GGC CAG CTT CCT GTG TGT A 

MW 638 (reverse primer) CTC CGT GGA ACC TTA CTT GG 

RGC-32 ChIP qPCR E6   

MW 639 (forward primer) GAG CCA TGA TGT CAC TCC AA 

MW 640 (reverse primer) CTT CAG ATA AGC CAG AAG GTC AA 

RGC-32 ChIP qPCR E7   

MW 641 (forward primer) GTG ATC TTG GCT CAC TGC AA 

MW 642 (reverse primer) TAG CCA GGC ATA GTG GTG TG 

RGC-32 ChIP qPCR E8   

MW 774 (forward primer) ACA CCT GAA GAG CCA CTT CTC T 

MW 775 (reverse primer) CTG GCT GAG CAG CAC TGA  

RGC-32 ChIP qPCR E9   

MW 776 (forward primer) AGA GGG CAG AAG GGA CAT ATT 

MW 777 (reverse primer) TGT GTC AAA TCA AGT ATA CCA AAG G 
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