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Summary 

Maintenance of genome integrity and stability is fundamental for any form of life. 

This is complicated as DNA is highly reactive and always under attack from a 

wide range of endogenous and exogenous sources which can lead to different 

damages in the DNA. To preserve the integrity of DNA replication, cells hav 

evolved a variety of DNA repair pathways. DNA damage tolerance mechanisms 

serve as the last line of defence to rescue the stalled replications forks. TLS, 

error-prone type of DNA damage tolerance, acts to bypass DNA lesions and 

allows continuation of DNA replication. Surprisingly majority of archaeal species 

lack canonical TLS polymerases. This poses a question as to how archaea restart 

stalled replication in the absence of TLS or lesion repair pathways. This thesis 

establishes that archaeal replicative primase (PriS/L), a member of the archaeo-

eukaryotic primase (AEP) superfamily, possessing both primase and polymerase 

activities, is able to bypass the most common oxidative damages and highly 

distorting lesions caused by UV radiation.  It has been postulated that archaeal 

replicative polymerases (Pol B and Pol D family Pols) can bind tightly to the 

deaminated bases uracil and cause replication fork stalling four bases prior to dU. 

A specific mechanism for resuming replication of uracil containing DNA by PriS/L 

is suggested in this thesis.  

In this thesis, we also reported how the enzymatic activities of archaeal PriS/L 

are regulated. Here, it is demonstrated that in contrast to archaeal replicative 

polymerases, single-strand binding proteins (RPA) significantly limit the 

polymerase activity of PriS/L. The remaining results chapter interrogates the 

possible interactions between PriS/L and RPA. Finally, the attempts to 

reconstitute an archaeal CMG complex in vitro, with the aim of shedding light on 

the role of archaeal replicative primase in replication-specific TLS are described.  
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1.1 DNA 

1.1.1. Biological function of DNA 

The most fundamental and radical feature of all living organisms is the ability to 

reproduce giving rise to progeny and this would not be possible without the 

existence of a genetic make-up containing all the instructions about the 

organism’s structure, metabolism, and reproduction. Although Oswald T. Avery 

and his co-workers reported DNA as the source of genetic material in 1940s, most 

scientists believed that proteins were the site of the gene rather than DNA.  Avery 

expanded the earlier work of Griffith who demonstrated that the non-pathogenic 

strain of Streptococcus pneumonia could be transformed into a pathogenic strain. 

Therefore, he discovered the process of transformation in 1928 (Griffith, 1928). 

Sixteen years later Oswald T.Avery and colleagues investigated that the chemical 

nature of this transforming factor is most likely DNA (Avery et al., 1944). This 

discovery was then confirmed by other scientists in 1952 (Hershey and Chase, 

1952). Soon after, Watson and Crick published their revolutionary discovery of 

DNA based on the X-ray data provided by Wilkins and Franklin and information 

of the base ratio data provided by Chargaff (Chargaff et al., 1952; Watson and 

Crick, 1953; Zamenhof et al., 1952). 

1.1.2. Structure of DNA 

Early in 1953, Watson and Crick published the double-helix structural model of 

DNA based on the diffraction data of Rosalind Franklin, Ray Gosling and Maurice 

Wilkins. DNA structure consists of two helical strands and each chain is coiled 

around the same axis (Figure 1.1). The two DNA stands are anti-parallel and 

complementary. The DNA consists of four deoxynucleotides, which covalently 

connected to one another. Each nucleotide possesses five-carbon sugar, 2’ 

deoxyribose. At the 5’ position of the sugar one phosphate group is esterified and 

one nitrogen group is bound to the 1’ position. Each chain contains two type of 

nitrogen bases, purines (A-adenine, G-Guanine) and pyrimidines (C-cytosine and 

T-thymine). Complementary bases from each DNA strand are linked by hydrogen 

bonds. The chains are connected by a dyad perpendicular to the fibre axis. The 

nitrogen bases are situated on the inside of the helix while the phosphates are 

situated on the outside (Watson and Crick, 1953). 
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  Figure 1.1. Structure of DNA double helix  

DNA consists of two antiparallel complimentary strands, made of sugars 
(pink) and phosphates (light blue) twisted around each other and 
connected with nitrogen bases (A, T, C, G) (Watson and Crick, 1953). 
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Following to this discovery, significant number of studies described how genes 

encode proteins. This process has two major steps. Firstly, the genetic 

information in DNA is transferred into a messenger RNA (mRNA) through a 

process known as transcription. In the second step, the produced mRNA, which 

is a copy of the gene, is translated into a protein molecule (Crick, 1970). 

Messenger RNA (mRNA) contains a sequence of bases. A set of three bases 

called a ‘codon’ encodes for one amino acid and the next three bases code other 

amino acids and so on; the codons do not overlap (Crick et al., 1961). 

1.2. Genome replication 

Genome replication is a fundamental process occurring in all organisms to copy 

their DNA before each cell division. The semi-conservative nature of DNA 

replication, a process in which each parental strand serves as a template for the 

synthesis of a new complementary daughter strand (Figure 1.2) was first 

suggested by Watson and Crick and subsequently confirmed by Meselson and 

Stahl (Meselson and Stahl, 1958). The two strands of DNA helix align in an anti-

parallel fashion. During DNA replication, all of double-stranded (ds) DNA is 

duplicated to generate a second identical DNA double helix and it must do so 

faithfully to prevent any genome instability and tumorigenesis. DNA replication in 

vivo is a much-regulated process involving a number of replication factors. This 

process occurs in three stages: initiation, elongation and termination.  

The initiation of DNA replication is a three-step process: (i) Loading of initiator 

proteins to the specific sites of origin of replication (ori); (ii) recruitment of other 

replication components by initiator proteins for fork assembly; (iii) unwinding the 

origin by DNA helicase (Baker and Bell, 1998; Mackiewicz et al., 2004). Bacterial 

DNA replication initiates by DnaA initiator protein. In bacteria, DNA replication 

initiation of Escherichia coli (E. coli) is the best characterized.  
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  Figure 1.2. Schematic illustration of semiconservative DNA 

replication 

The parental DNA double helix (blue) is separated, creating two single 
strands. Each strand acts as a template for the complementary strand 
(purple) to produce two progeny DNA molecules (blue and purple) 
(Meselson and stahl, 1958). 
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Bacteria which have a single, circular chromosome possess a single origin of 

replication, OriC, consisting of an A-T enriched region and an array of several 

DnaA boxes (Messer, 2002; Mackiewicz et al., 2004). In most bacteria, the DnaA 

protein recognizes a cluster of four DnaA boxes. Once the DnaA binds to the 

replication recognition sequence, the A-T rich region is melted, resulting in ssDNA 

bubble onto which the  replicative helicase, DnaB in the case of E. coli loads 

(Kaguni, 2006). Following recruitment of proteins required for elongation of DNA, 

the multiprotein complex of replisome machinery is assembled on the parental 

DNA template (Messer, 2002). Bacterial helicase moves along the strand onto 

which it is bound in 5’→3’ direction and unwinds the dsDNA. Following unwinding, 

bacterial single subunit primase, DnaG, binds to DnaB helicase and form 

primosome which moves away from the origin and makes an RNA primer that 

starts synthesis of first DNA strand (Alberts et al., 2002). A specialized enzyme 

called DNA polymerase, which moves along the fork in a 5’ to 3’ direction, carries 

out the elongation step. Interestingly, DNA polymerase increases the unwinding 

activity of the DNA helicase more than 10-fold (Kornberg and Baker, 1987). Due 

to the 5’ to 3’ direction of DNA polymerase, replication of one of the strands, called 

leading, is continuous while the other strand, termed as lagging, is synthesised 

discontinuously in segments (Okazaki fragments) that are 1000-2000 base pairs 

in length (Okazaki et al., 1968). A set of proteins is required to remove RNA 

primers, synthesis new DNA across the resulting gap, and DNA ligation (Baker 

and Bell, 1998). 

1.3. DNA damage 

Maintenance of genome integrity and stability is fundamental for any form of life. 

This is complicated as DNA is highly reactive and always under attack from 

endogenous and exogenous environmental agents, which can lead to ~ 50,000-

100,000 different lesions in the DNA. If unrepaired, this can lead to mutations and 

disease (Hübscher and Maga, 2011). The current section will introduce 

commonest causes of DNA damage and in the next section (1.4), the ways in 

which cells deal with DNA damage will be discussed. 
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1.3.1. Ionizing radiation-induced DNA damage 

For the first time, in 1927 Muller proved that ionizing radiation causes genetic 

mutations in living organisms, using Drosophila melanogaster as a model. Muller 

proposed that mutation rates were significantly higher in X-irradiated Drosophila, 

comparing to unirradiated flies (Muller, 1927). Ionizing radiation is a radiation with 

enough kinetic energy to cause ionization (loss of an electron) in atoms or 

molecules. However, not all electromagnetic (EM) radiation is ionizing. Among all 

electromagnetic (EM) radiations, only the high frequency portion of the 

electromagnetic spectrum including, gamma rays and X-rays are ionizing. 

Ionizing radiation is capable of producing reactive oxygen species (ROS), 

including peroxide, superoxide, and hydroxyl radical through interacting with 

intracellular molecules (oxygen and water). ROS can result in significant damage 

DNA. Radiochemical damage can occur by either direct action or indirect action. 

Alpha particles, beta particles or X-rays can directly break one or both of the sugar 

phosphate backbones.   

Ionizing radiation leads to variety of damages to individual DNA bases including, 

single-stranded DNA breaks (SSBs) and double-stranded DNA breaks (DSBs). 

The most severe generated lesions are DSBs that are mainly repaired via either 

homologous recombination (HR) or non-homologous end-joining (NHEJ) 

pathways (Olive, 1998). 

1.3.2. UV-induced DNA damage 

DNA is very vulnerable to UV-induced damage in all forms of life. UV radiation 

induces two major classes of mutagenic DNA lesions known as cyclobutane 

pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts ((6-4) 

PPs), and their Dewar valence isomers. Photoisomerization of 6-4PPs by 

wavelengths longer than 290 nm results in formation of Dewar valence isomers 

(Figure 1.3). Although CPDs are the most abundant lesions after UV irradiation, 

6-4PPs may also have lethal and mutagenic effects. Translocation of an OH 

group at the carbon at the 4’ position of the 3’-nucleobase to the carbon in position 

6’ of the 5’ nucleobase leads to generation of 6-4PPs.  

  



8 
 

 

 

  

Figure 1.3. Structure of DNA lesions induced by UV light 

(A) Two major types of DNA damage are developed as a result of absorption 

of UV light (CPD and (6-4) PPs) through irradiation of two adjacent (thymine) 
pyrimidines. (6-4)PPs can subsequently be converted into the Dewar valence 
isomer (panel A taken from Kobayashi et al., 2001) (B) Structures of DNA 
duplexes showing the presence of UV lesions (in green) of CPD, (6-4) PP, 
and (6-4) PP Dewar isomer (panel B taken from Rastogi et al., 2010).  

B 

A 
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It was proposed that all members of (6-4) photoproducts class are converted to 

their Dewar valence isomers upon exposure to UV light (Taylor et al., 1990).  Both 

lesions can distort the DNA helix by inducing a kink or bend of 44° and 7-9°, 

respectively.  

CPDs can form in ssDNA and at flexible ends of poly (dA)-(dT) tracts. On the 

other hand, CPD formation is limited in the rigid centre of poly (dA)-(dT) and also 

when there is bending of the DNA towards the minor groove (Becker and Wang., 

1989; Lyamichev, 1991). Different studies on various organisms have been 

postulated that CPD is able to block DNA replication by inhibiting the activity of 

DNA polymerases. In addition, the transcription activity of RNA polymerase II 

from mammalian is eliminated in the presence of both CPDs and 6-4PPs (Mitchell 

et al., 1989; Protic-Sabljic and Kraemer, 1986). Therefore, DNA replication and 

transcription can be affected by UV-induced lesions and if not repaired, will result 

in cell death 

1.3.3. Oxidative DNA damage  

There has to be a balance between oxidants and antioxidants in cells and any 

disruption in this balance will results in oxidative stress. Reactive oxygen species 

(ROS) is known as the main source of oxidative stress in all living organisms.  

Among the characterized oxidative DNA modifications in mammalian genetic 

makeup, guanine (G) is believed to be the most vulnerable base because of its 

low redox potential (Halliwell and Aruoma., 1991). When the guanine (G) base is 

oxidised, it modified to 8-oxo-2’-deoxyguanosine (8-oxo-G) (Figure 1.4). 8-oxo-G 

is able to functionally mimic thymine in its syn conformation, which is the most 

mutagenic conformation of this lesion. It has been shown that formation of 8-oxo-

G during DNA replication results in generation of double-strand breaks (DSBs) 

(Cheng et al., 1992).  

The DNA double helix structure consists of a π-stack array that is formed by the 

heterocyclic base pairs.  Since this structure is suitable medium for the migration 

of charge across long distances, it is suggested that oxidation of guanine to 8-

oxo-G occurs up to 37 Å away from the site of reactive species, thereby, oxidative 

damage does not depend on distance (Hall et al., 1996). 
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Figure 1.4. Oxidation of guanine by reactive oxygen species (ROS). 

  

Figure 1.4. Oxidation of guanine by reactive oxygen species (ROS). 

Reactive oxygen species like superoxide molecules can form 8-
oxoguanine (8oxoG) from guanine (Gerald et al.,2004). Oxidative 
phosphorylation in mitochondria or ionising radiation produce superoxide 
radicals in the cell. If superoxide radicals metabolised to hydrogen 
peroxide, they might be used to oxidise iron molecules and results in the 
release of hydroxide ions and hydroxyl radicals. These hydroxyl radicals 
react with guanine to produce 8-oxoguanine (Taken from Nakabeppu et 
al., 2014). 
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Notably, oxidative of guanine to 8-oxo-G does not happen randomly. It is 

experimentally proven that between the two adjacent guanine moieties, 5’ 

guanine is the most easily oxidized. There is a lot of evidence that 8-oxoG is 

responsible for G–C to T–A transversions, however, it is not responsible for G–C 

to C–G transversions as guanine is not inserted opposite 8-oxoG. However, there 

is some evidence to suggest that other oxidative lesion products of guanine 

including, imidazolone (Iz), guanidinohydantoin (Gh) and spiroiminodihydantoin 

(Sp) can cause G–C to C–G transversions. Considering difficulty of guanine 

incorporation, it is suggested that incorporation of guanine in the G–C to C–G 

transversions is achieved by specific DNA polymerases through formation of 

hydrogen bond (Kino and Sugiyama, 2001; 2005). 

1.3.4. Alkylating agents and their effects on DNA 

The alkylating agent bis (2-chloroethyl) sulphide (mustard gas) is another 

chemical agent that can induce DNA damage. Following the use of this chemical 

agent as a poison gas during World War I in 1917, the toxic, mutagenic and 

carcinogenic effects of this agent were recognised (Haddow, 1973; Philips, 1950). 

Nitrogen analogues of this compound showed more significant effects on DNA as 

it could be absorbed through the skin more quickly. The biological effects of this 

alkylating agent and its eighteen different analogues were studies by Koller in 

1958. This study postulated that these lesions could inhibit cell growth either 

temporary or permanent (Koller, 1958).  In addition, they evolved cytotoxic effects 

including, mitotic suppression; chromosomal breaks and bridges, and excessive 

fragmentation with loss of relationship to the spindle apparatus. These molecules 

also cross-link DNA (Rink et al., 1993; Rosenberg et al., 1969). 

Alkylating agents generate different types of adducts based on their 

nucleophilicity. Alkylating agents with high nucleophilicity will undergo 

bimolecular SN2 substitutions, like Methyl methanesulfonate (MMS). On the other 

hand, those with low nucleophilicity will undergo unimolecular (SN1) substitutions, 

like N-ethyl-N-nitrosurea (ENU) (Hoffmann, 1980). Those adducts generated by 

high nucleophilicity are located at the nitrogen’s position 7 of guanine and position 

3 of adenine which leads to development of methylated adducts N7-

methylguanine (7meG) and N3-methyladenine (3meA) respectively. Around 60-

80% of methylated adducts are 7meG and approximately 20% of them are 3meA. 
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7meG is not cytotoxic; however, it is vulnerable to the formation of 

apurinic/apyrimidinic (AP) sites (section.1.3.5). In contrast, 3meA is highly 

cytotoxic since it can stop the DNA polymerase activity (Drabløs et al., 2004). SN1 

substitutions are not as abundant as SN2. They can generate adduct lesions at 

position 7 and 6 of guanine (Hoffmann, 1980). 

1.3.5. Abasic sites in DNA  

One of the most common DNA damages in DNA is Apurinic/apyrimidinic (AP) 

sites. AP sites are formed as a consequence of spontaneous hydrolysis of the N-

glycosylic bond (Nakamura et al., 1998). Notably, apurinic sites are more 

common than apyrimidinic sites. Studies on mammalian indicated that 10,000 

bases are lost per cell per day (Lindahl and Nyberg., 1974).  In addition, excision 

of damaged or inappropriate bases by DNA N-glycosylases results in formation 

of AP sites (Krokan et al., 1997). Genetic studies on yeast cells indicated that 

incorporation of dUTP instead of dTTP during DNA synthesis, leads to formation 

of the most spontaneous AP sites. Such that when the uracil is removed by Uracil 

DNA glycolase (Ung1), a potentially toxic AP site is created. If the Ung1-induced 

AP site lesion is not repaired, it will be bypassed by an error-prone Polζ DNA 

polymerase.   

AP sites are known as cytotoxic and mutagenic since they stall DNA replication, 

transcription, and yield single base-pair substitution. Furthermore, cleavage of AP 

sites by AP endonucleases or AP lyases generates DNA single-strand breaks 

(SSBs) with 5'- or 3'-blocked ends, respectively (Demple and Harrison, 1994; 

Krokan et al.,1997). Since AP sites are mostly found as intermediates in base 

excision repair (BER) (see section 1.4.2.), this machinery often repairs them. 

1.3.6. Cytosine deamination 

A growing body of evidence indicate that cytosine is especially prone to 

deamination. Deamination of cytosine occurs by removal of exocyclic amino 

group and converting it into uracil. Uracil is normally found in RNA but not in DNA, 

therefore it can be detected and removed by DNA repair mechanisms. If the 

deamination remains unrepaired, it can base pair with adenine during DNA 

replication. As a consequence of this adenine base pairing, deamination of 

cytosine leads to C to T transitions (where G is replaced by A on the other strand 
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of DNA) mutation (Figure 1.5) (Duncan and Miller, 1980). Uracil can also found 

in DNA as a result of dUMP misincorporation in the place of dTMP during 

replication. It is proposed that the number of cytosine deaminations is around 60-

500 per genome per day. Moreover, cytosine can also be deaminated by 

enzymatic activity. (Cytosine-5)-methyltransferase (MT) is able to deaminate 

cytosine when the content of S-adenosylmethionine (SAM) within the cell is low, 

or when the concentration of the MT is high. Uracil DNA glycolase can recognise 

and remove the inappropriate uracil and leaves an abasic site (AP) in the DNA 

(Krokan et al., 2002). 

1.4. DNA repair pathways  

Some vital processes in the cell, such as DNA replication and transcription can 

be interfered by divers DNA lesions. Therefore, damaged DNA must be repaired 

to ensure cell viability. To prevent genomic alterations that causes cancer or other 

diseases, cells have developed a network of DNA repair mechanisms to remove 

various DNA damages (Bertram, 2000; Hoeijmakers, 2009). Regardless of the 

type of lesion, cells have developed a highly coordinated cascade of events 

known as the DNA damage response (DDR). When genomes encounter 

damaged DNA, the DDR senses the damage and signals cells to activate DNA 

repair mechanisms (Zhou and Elledge, 2000). DNA repair deficiencies result in 

number of hereditary diseases such as, Ataxia-telangiectasia, Fanconi anemia, 

and Xeroderma pigmentosum (McKinnon, 2009). In this section, different types 

of DNA repair pathways will be introduced (Figure 1.6). 

In general, cells have evolved two classes of DNA repair mechanisms to maintain 

their genomes integrity; (1) direct reversal repair and (2) excision of the damaged 

bases followed by replacement of the new DNA. Moreover, in rare cases when 

the damage avoids these repair systems, additional mechanisms are developed 

by cells to tolerate the DNA lesion and restart the stalled replication fork.   
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Figure 1.5. Consequence of cytosine deamination to uracil. 

Cytosine undergoes spontaneous hydrolysis and is deaminated to a uracil base. The 
immediate product of this deamination in a double-stranded DNA is U:G mispair and 
if the uracil bases persist into replication, 50% of the progeny inherit a transition 
mutation (taken from Connolly, 2009). 
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Figure 1.6. DNA repair pathway and mechanism.  

Wide variety of exogenous and endogenous agents causes different types of DNA 
lesions. Several repair mechanisms are used to remove and repair damaged DNA 
including base excision repair (BER), nucleotide excision repair (NER), mismatch 
repair (MMR), double-strand break repair and direct reversal. Nonhomologous end-
joining (NHEJ) and homologous recombination (HR) are two mechanisms through 
which double strand breaks are repaired.  
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1.4.1. Direct reversal repair 

Only a few types of DNA damage, like UV induced pyrimidine dimers and 

alkylated guanine residues, are repaired by direct reversal of the damage. This 

mechanism is the simplest and the most energy efficient form of DNA repairs. UV 

induced pyrimidine dimers and methylation of guanine can be reversed directly 

by specialized enzymes photolyase and O6-methylguanine-DNA-

methyltransferase (MGMT), respectively. 

To recover UV induced damage of DNA, a light dependent process known as 

photo-reactivation is used. An enzyme known as photolyase facilitates this 

process. Photo-reactivation process removes the pyrimidine dimers without 

altering other nucleotides. This process uses visible light (blue) as source of 

energy. Photoreactivation has been found in bacteria, archaea and eukaryotes, 

however, some species such as humans do not possess this DNA repair pathway 

(Minato and Werbin, 1972; Todo et al, 1996). 

1.4.2. Excision Repair 

Excision repair mechanism is considered to be one of the most efficient way to 

repair a wide variety of chemical alterations to DNA, in both prokaryotes and 

eukaryotes.  There are three types of excision repair pathways. These are: (1) 

base excision repair (BER), (2) nucleotide excision repair (NER) (3) mismatch 

repair (MMR). These pathways exist to recognise and remove the damage, either 

as free bases or as nucleotides following by replacing them with undamaged 

counterparts. 

 Base excision repair (BER) can recognise and remove different abnormal bases 

such as hypoxanthine, uracil-containing DNA, pyrimidine dimers and bases 

damaged by oxidation and ionizing radiation (Almeida and Sobol, 2007; Hitomi et 

al., 2007). Notably, deamination of adenine leads to formation of hypoxanthine.  

The excision of the uracil, which arises in DNA either by incorporation of dUMP 

in place of dTMP or deamination of cytosine to uracil, is catalysed by DNA 

glycosylase.  DNA glycosylase cuts the N-glycosylic bond between the base and 

the deoxyribose of the DNA backbone releasing a uracil base and leaving an AP 

site in the DNA. (Duncan and Miller, 1980; Krokan et al., 2002). 
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 In general, DNA glycosylases are categorized into two groups: (1) 

monofunctional glycosylases, which only performs glycosylase activity before 

strand incision by AP endonuclease (APE1) (2) bifunctional glycosylases, which 

are glycosylase/β lyases these group are able to perform both strand incision and 

glycosylase activity (Fortini et al., 1999; Hitomi et al., 2007) 

Following DNA glycosylase activity, the resulting AP site is cleaved by an AP 

endonuclease at the 5’ side, resulting in a nick with a 3’ hydroxyl and a 5’ 

phosphate group which is then processed by two pathways: the short patch (1-

nucleotide gap filling) and the long patch (2–6 nucleotide resynthesize) BER.  

During short patch pathway, DNA polymerase (pol) β displaces the AP site, 

resynthesize DNA and fill in the gap. The process is followed by DNA ligase III 

activity that forms a phosphodiester bond and completes the repair pathway. The 

long patch pathway, requires polymerases δ, ε, or β, combined with PCNA, flap 

structure-specific endonuclease 1 (FEN1), and DNA ligase I. Pol β-PCNA through 

strand displacement and polymerase activities displaces a DNA flap of up to 13 

bases in length which then removed by FEN1 and finally DNA ligase I ligates the 

DNA. (Fortini et al., 1998; Gary, 1999; Prasad., 2001; Prasad et al., 2000; Stucki 

et al., 1998). 

Nucleotide excision repair (NER) is a mechanism to recognize and repair bulky 

DNA adducts, such as those induced by UV lesions (CPD and (6-4) PPs), 

crosslinking lesions like cisplatin. NER removes the damaged bases as part of an 

oligonucleotide patch containing the lesion. In common with BER, several 

enzymes are required to fulfil NER pathway (Hess et al., 1997; Kuraoka et al., 

2000; Reardon et al., 1999). 

Nucleotide excision repair is more complicated in eukaryotes than in prokaryotes. 

In prokaryotes, the products of three genes facilitate NER (UvrA, UvrB, and 

UvrC). UvrA initially detects a damaged DNA and recruits UvrB to the lesion. UvrB 

separates the two DNA strands to verify the position of the lesion. The reaction 

is followed by releasing of UvrA and recruiting UvrC. UvrC contains two nuclease 

domains that incise the 3’ and 5’ sides of the damaged site and excise an 

oligonucleotide consisting of 12 or 13 bases.  DNA helicase II (also known as 

UvrD) then comes in, cuts the hydrogen bonds between the complementary 

bases, and removes the excised segment. The gap created by this process is 
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filled by DNA polymerase I and DNA ligase (Memisoglu and Samson, 2000; 

Moolenaar et al., 2001). 

In mammalian cells, initiation of NER pathway requires XPC-RAD23B initiator 

protein that binds nondamaged strand opposite the lesion. XPC-RAD23B 

interacts with TFIIH protein that pries the DNA open with its XPB subunit. XPB is 

known as helicases that unwind the damaged DNA. The XPD subunit of TFIIH 

track along DNA until stalls at the site of damage and verifies the chemical 

modifications of the damage. Stalling of XPD leads to recruitment of XPA, RPA, 

and XPG. The XPF/ERCC1 complex then cuts in the 5’ direction, and XPG cuts 

in a 3’ direction, resulting in formation of a gap measuring 24-32 nucleotides in 

length (Huang et al., 1992; Matsunaga et al., 1996; O'Donovan et al., 1994). This 

gap then appears to be filled in by DNA polymerase δ or ε, in association with 

PCNA and RPA and subsequently, sealed by either DNA ligase I or a complex of 

XRCC1 and Ligase III (Moser et al., 2007; Popanda and Thiemann, 1992; Shivji  

et al., 1992). 

DNA polymerases perform proofreading activity to remove most of the mismatch 

bases (section 1.8.5.) but some mismatch bases can skip the editing step and 

stay in the genome. To remove the remaining ones, mismatch repair system 

(MMR) scans the newly synthesised DNA and remove the mismatch base 

specifically from the newly synthesised DNA. In eukaryotes, in comparison with 

regular DNA, the mismatched DNA can be detected and bound by MUtS 

homologue with a higher affinity (Gradia, 2000; Schofield et al., 2001). MMR is 

an ATP-dependent pathway that requires activation of MutS and MutL. 

Heterodimeric complex of MutS-MutL related proteins initiate MMR (Iyer et al., 

2006). Mutation of MutS and MutL homologues increase cancer susceptibility in 

both mice and humans. Since a mismatched base itself contains no signal to 

activate the MMR, in E.coli, the absence of methylation at the restriction site is 

used to direct the repair to the error-containing strand. MutH, a methylation 

specific endonuclease, interacts with MutS via MutL and in the presence of ATP 

nicks the unmethylated strand at the hemimethylated GATC site to introduce an 

entry point for the excision reaction. After nicking the daughter strand by MutH, 

DNA helicase unwinds the DNA and exonuclease I excises the DNA 
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bidirectionally (Acharya et al., 2003). Finally, DNA polymerase III fills in the 

resulting gap and DNA ligase ligates the strand (Iyer et al., 2006).   

 1.4.3. Homologous recombination  

Homologous recombination (HR) is a DNA metabolic process that conserved in 

all living organisms. This process performs high-fidelity template-dependent 

repair or tolerance of different DNA lesions, such as double-stranded breaks 

(DSBs) and DNA inter-strand crosslinks. This process is also vital for telomere 

maintenance and chromosome segregation (Game and Mortimer, 1974; Li and 

Heyer, 2008). Interestingly, HR competes with NHEJ and translesion DNA 

synthesis (TLS) pathways in the repair of DSBs and damage tolerance, 

respectively.   

The Mre11, Rad50, and Nbs1 complex (MRN) is known as the key HR associated 

factors that performs important functions at stalled replication forks. The MRN 

complex binds to DSBs and initiates resection prior to repair by HR (van den 

Bosch et al., 2003).  In the first stages of HR, RecA/Rad51 assembles onto 

ssDNA, by nucleation of a short tract of RecA protein onto ssDNA and 

displacement of SSB protein. Assembly of RecA on ssDNA results in formation 

of helical presynaptic filaments (Sung and Klein, 2006). While ATP binding is 

required for assembly of presynaptic filaments, ATP hydrolysis is not essential. 

After binding, presynaptic filaments stretch as much as 50% of the length of the 

duplex molecule in order to search for homology (Klapstein et al., 2004). After 

finding the homolgy, the single-stranded pre-synaptic filament performs strand 

invasion to invade the identical recipient duplex DNA and forms a displacement 

loop (D-loop) between the invading 3’ overhang strand and the homologous 

chromosome.   

After strand invasion, HR occurs by either double-strand break repair (DSBR) or 

synthesis-dependent strand annealing (SDSA) (Helleday et al., 2007; Sung and 

Klein, 2006).  In DSBR, the second 3’ end of DSB can be captured and forms a 

Holliday junction with the homologous chromosome. Using nicking 

endonucleases, the Holliday junction structure is resolved into crossover or non-

crossover recombination products. In SDSA, a DNA polymerase extends the 

invaded 3’ strand. The newly synthesis 3’ invading strand is then able to annea l 
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to the second end of the DSB. This is then followed by gap-filling DNA synthesis 

and ligation. The SDSA always forms a non-crossover repair product (Helleday 

et al., 2007; Sung and Klein, 2006) (Figure 1.7). 

Notably, homologues of Rad51 and Mre11 proteins are present in archaea.  It 

has been shown that in yeast, Rad52 stimulates the binding specificity and strand 

invasion activity through interaction with Rad51 and RPA (New et al., 1998). On 

the other hand, in higher eukaryotes, tumour suppressor protein (BRCA2) assists 

in the assembly of Rad51 onto ssDNA (Yang et al., 2005).  Due to the mediatory 

function of BRCA2 in HR, mutation of this protein leads to cancer formation. 

1.5. DNA damage tolerance  

Even though cells develop a variety of repair mechanisms that target and repair 

a vast array of DNA modifications, it is inevitable some DNA damages cannot be 

removed by DNA repair pathways therefore will persist in the genome and leads 

to replication fork stalling.  DNA damage tolerance mechanisms have evolved to 

restart stalled replication forks and achieve the high fidelity for genome 

duplication. These include translesion DNA synthesis (TLS) mediated by 

specialized polymerases and error-free recombination-mediated restart and 

template switching (TS) (Figure 1.8). 

Although the molecular mechanisms of TS are not fully understood, studies in 

yeast and mammalian cells suggested that repriming is able to restart the stalled 

replication fork and leaves gaps opposite the lesions. These gaps are then filled-

in using newly synthesised strand as template. Template switching can be 

promoted by the RecQ helicase Sgs1 (BLM in mammalian cells) or Werner 

syndrome ATP-dependent helicases (WRN) (Machwe et al., 2006). BLM, WRN, 

and RAD51 are able to facilitate fork regression into a holiday junction. When the 

chicken foot Holiday junction is formed, Rad51 protein allows the double-stranded 

DNA end of the chicken foot Holiday junction to undergo strand invasion and form 

a D-loop (Petermann et al., 2010). D-loop formation leads to re-loading of the 

replication machinery. Re-loading of replication machinery results in formation of 

Holliday junction structure which prevents recombinant proteins being generated. 

Therefore, this structure requires dissolution (Petermann and Helleday, 2010). 
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Translesion DNA synthesis (TLS) is a process carried out by specialized DNA 

polymerases that synthesis short tracts of DNA opposite lesions, therefore 

making restart of replication possible.  Since TLS polymerases perform low 

fidelity during synthesis of undamaged DNA, it is vital that they are only recruited 

when they are needed (Sale et al., 2012). TLS polymerases include pols η, ι, κ 

and REV1 from the Y family, pol μ from the X family and pol ζ from the B family 

of polymerases (Hübscher and Maga, 2011). 

In 1996, it was found that, in yeast, the product of REV1 and REV3 genes are 

dCMP transferase and DNA pol ζ, respectively (Nelson et al.,1996b). It was also 

discovered that pol ζ could bypass cyclobutane pyrimidine dimer (CPD) (Nelson 

et al., 1996a). A few years later, it was shown that Rad30 is a bona fide DNA 

polymerase (termed Pol η) that is capable of bypassing cis-syn cyclobutane T-T 

dimers (Johnson et al., 1999). By the end of 1999, a human homologue of Rad30 

was identified (Masutani et al., 1999). Soon after, E.coli DinB and UmuD′2C 

complex were characterized as bona fide TLS polymerases called E.coli Pol IV 

and Pol V, respectively (Reuven et al., 1999; Wagner et al., 1999).  Together, 

these discoveries led to the defining of TLS as an enzymatic process, which is 

facilitated by conserved specialized polymerases. The mechanism of TLS 

involves several ‘polymerase switching’. Once the replicative polymerase 

encounters damaged DNA, it stalls at site of damage and must be displace and 

replace with a TLS polymerase. Subsequently, the TLS polymerase incorporates 

either correct or incorrect nucleotides opposite a lesion and then either the same 

or the second TLS polymerase extends from the (mis)incorporated nucleotide. 

Finally, after bypassing the lesion, the TLS polymerase is quickly replaced by a 

replicative polymerase to complete genome duplication (Figure 1.9) (Johnson et 

al., 2000; Shachar et al., 2009). TLS can either be regulated during replication 

with the non-catalytic activity of REV1, or post-replicatively through 

monoubiquitination of PCNA. 

The ability of REV1 to interact with all TLS polymerases, suggests, that REV1 

acts as a scaffold for TLS polymerase and allows TLS polymerase switching  
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Figure 1. 7.  Homologous recombination pathways  

Repair of double strand breaks by homologous recombination 
initiates through generation of 3’ single-stranded DNA (ssDNA) 
tails by MRN complex. Subsequently a Rad51 binds to the ssDNA 
and promotes invasion of the DNA ends into the homologous 
duplex DNA which leads to formation of D-loop structure. The D-
loop is then used as both a template and primer for DNA synthesis. 
HR continues either through the DSBR mechanism (left), leading 
to crossovers or  through the SDSA mechanism (right), which 
results in non-crossovers.  
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Figure 1.8. DNA damage tolerance mechanism 

Various repairing mechanisms have evolved to tolerate damage during 
replication. Including, translesion DNA synthesis (TLS) catalysed by TLS 
DNA polymerases that synthesize short tracts of DNA opposite lesions 
and error-free bypass mechanisms, mediated by homologous 
recombination, utilize an alternative undamaged template to restart the 
stalled replisome. 
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Figure 1.9. The basic mechanism of translesion DNA synthesis 

Replication continues until it encounters the damage on the ssDNA. The 
replicative DNA polymerase stalls at the site of damage , following by 
polymerase idling. TLS DNA polymerase replicates over the lesion and 
before further synthesis replaced with a replicative polymerase to complete 
genome replication. 
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(Friedberg et al., 2005). PCNA mono-ubiquitylation plays a key role in TLS 

regulation by recruitment of the TLS polymerases to the site of damage when the 

replicative polymerases stall and leave ssDNA gaps.  

All eukaryotic TLS polymerases contain specialised ubiquitin-binding motifs 

(UBM, UBZ), which stimulate their affinity for ubiquitinated PCNA (Lehmann et 

al., 2007). The existing theory for which polymerase is recruited to specific lesion 

is that the selection depends on the lesion itself, which means, if the polymerase 

can accommodate the damaged template-primer in its active site, it is able to 

complete polymerisation before dissociating, otherwise, another polymerase  is 

then recruited to bypass the damage (Sale et al., 2012). 

In bacteria, the product of E.coli dinB, DNA polymerase IV, a member of Y family 

DNA polymerase is able to incorporate nucleotides opposite different DNA 

lesions through TLS. This enzyme can bypass various DNA damages such as 

those induced by nitrofurazone (NFZ), benzo(a)pyrene, alkylating agents and 

oxidative damage. Similar to other Y family polymerases, Pol IV interacts with the 

homo-dimeric β-clamp through two distinct modes. First mode (CTP,) relies on 

the interaction of a C-terminal peptide of Pol IV with a hydrophobic pocket on the 

surface of β. Second mode (LF), relies on the interaction of the little finger of Pol 

IV and the edge of the β ring at the dimer interface (Bunting et al., 2003). It has 

been shown that the Pol IV LF-β interaction is required for Pol IV replicative 

activity. However, unlike CTP-β, LF-β interaction is not required for translesion 

synthesis activity of Pol IV (Wagner et al., 2009). 

1.6. Bacterial DNA replication 

Understanding of DNA replication comes largely from studies of E.coli.  DNA 

replication in bacteria is a bidirectional and semi-conservative process and begins 

at specific sequences called origins of replication (oriC). Remarkably, bacterial 

chromosome has single origin of replication. In general, DNA replication is a 

three-step process: initiation, elongation, and termination. In bacteria, replication 

initiates through binding of initiation factor (DnaA) to the origin of replication which 

promotes the unwinding of DNA at oriC. The DnaB helicase unwinds origin of 

replication and extend the ssDNA for copying (Mott and Berger, 2007). As the 

duplex DNA is unwound by helicase, single strand binding proteins (SSB) cover 
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the single stranded regions to stabilize and protect ssDNA from possible threats 

including, nuclease attack and chemical modifications (Iftode et al., 2008; Wold, 

1997).  Subsequently, the DNA primase binds to the DNA and initiates synthesise 

of leading strand through synthesise of short RNA segments called RNA primers. 

During elongation step, DNA polymerase III extends the RNA primer to start 

synthesise of new DNA strand in the 5’ to 3’ direction. Specifically, DNA 

polymerase III holoenzyme consists of a β-subunit clamp which ensures that the 

polymerase attaches on the DNA. Bacterial beta clamp, a processivity-promoting 

factor, is assembled around the DNA by ATP hydrolysis and gamma subunit 

(Bloom, 2009). Following assembly around the DNA, the affinity of beta subunit 

for gamma subunit is replaced by an affinity for alpha and epsilon subunits, 

leading to formation of the complete holoenzyme. Once the β-subunit dimer 

tightly binds the DNA, it functions as a ‘‘clamp’’ that slide along the DNA and 

improves the processivity of polymerase. On the lagging strand, the free ssDNA 

is copied into short RNA primers by DNA primase. Pol III binds the 3’-OH group 

of each primer and elongates them through addition of deoxyribonucleotides. The 

produced short fragments are called Okazaki fragments. Subsequently, the RNA 

primers of the adjacent fragments are removed by Pol I which unlike Pol III has 

5’ to 3’ exonuclease activity. The Pol I then fills in the gap between Okazaki 

fragments. Finally, DNA segments are joint together by another critical enzyme 

called DNA ligase (Garg et al., 2004; Lehman, 1974). 

1.7. Eukaryotic DNA replication 

Compared with bacteria, eukaryotic chromosomes are much larger (up to a billion 

bp) and linear and if eukaryotic DNA replication initiates at only one origin of 

replication (oriC) then it would take weeks to fully replicate a chromosome. 

Therefore, eukaryotic chromosomes have multiple origins of replication to 

replicate the entire genome significantly faster. In mammalian cells, the number 

of these specific sites is around 30,000-50,000(Cairns, 1966; Huberman and 

Riggs, 1968). Replication of DNA in eukaryote is performed using a similar 

process of bacterial replication. It starts with recognition of origin of replication by 

the eukaryotic initiator Origin Recognition Complex (ORC) and continues with the 

assembly of pre-replication complex (pre-RC) (Rao and Johnson, 1970), and the 

activation of pre-RC.  Binding of initiator protein results in partial untwisting of the 
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duplex DNA following by further unwinding in the presence of helicase (Figure 

1.10). DNA replication licensing, the first in DNA replication, occurs by the 

sequential recruitment of ORCs, cell division cycle 6 (Cdc6), CDC10 Target 1 

(CDT1), to the origins at the late M and G1 phases. These two factors in concert 

with MCM9 can load the minichromosome maintenance (MCM) helicase complex 

MCM2-7 in an ATP-dependent manner to replication origins (Bell and Dutta 2002; 

Remus et al., 2009). Upon entry into S phase other replisome components 

required for activation of the replication origin including, Cdc45 and GINS are 

loaded to the replication origins. This loading is dependent on Dpb11, Sld2 and 

Sld3. These proteins are regulated by two kinases known as cyclin-dependent 

kinase (CDK) and Dfb4-dependent kinase (DDK) which phosphorylate MCM and 

Cdc6, respectively. The phosphorylated MCM2-7 helicase together with Cdc45 

and GINS forms the CMG complex. To facilitate origin unwinding, a marked 

remodelling of CMG complex after loading onto ds DNA is required (Huang and 

Zhang, 2011). In order to prevent DNA re-replication within one cell cycle, 

geminin binds to Cdt1 and blocks binding of MCM to Cdt1 (Wohlschlegel et 

al.,2000). DNA unwinding by MCM2-7 leads to formation of the replisome at the 

bubble. Two steps facilitate synthesis of new DNA during S phase, synthesis of 

a short RNA primer by a DNA primase (PriS/PriL) and extension of the primer by 

specialized enzymes called DNA polymerases. 

In eukaryotic cells the three main DNA polymerases involved in DNA replication 

are DNA polymerases α, δ and ε,which are able to synthesise DNA strands in 

5’→3’ direction. Replicative primases typically form a heterodimeric complex 

consisting of a small catalytic subunit (Prim1/PriS) and a large regulatory subunit 

(PriL). This heterodimer together with DNA Pol α subunits (A and B) forms a 

complex in eukaryotes which can initiate DNA replication. Following synthesis of 

short RNA primer of 10-15 nucleotides in length by primase, Pol α elongates the 

primer. The longer DNA primer produced by Pol α is subsequently extended by 

Pol δ and ε (Burgers, 1998; Frick and Richardson, 2001).   
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Figure 1.10. Assembly of eukaryotic pre-replication complex at replication 
origins 
Origin recognition complex (ORC) recognises replication origins and recruits 
CDC6, CDT1 to the origins. These two factors in concert with MCM9 can load 
the MCM2-7 in an ATP-dependent manner to replication and form the pre-RC 
complex. The phosphorylated MCM2-7 together with Cdc45 and GINS form the 
CMG complex. Activation of pre-RC requires CDC45, GINS, CDK, DDK and 
other factors. 



29 
 

 

 

Pol δ and ε are two processive polymerases with 3’→5’ exonuclease activity 

which are used for high fidelity replication of the DNA (M. Simon et al., 1991). 

Different studies suggesting that MCM10, a conserved eukaryotic protein 

essential for chromosomal replication, in budding yeast is required for loading 

and stability of pol α and pol δ (Rick and Bielinsky, 2004; 2006). A recent study 

proposed the importance of MCM10 in origin unwinding and in functioning of 

CMG complex (Watase et al., 2012). Cdc45 is also required for recruitment of pol 

α to the replication fork (Aparicio et al., 1999; Kukimoto et al., 2001). During 

elongation, the primase (PriS/ Prim 1) subunit of the Pol α complex synthesises  

short RNA primer of 10-15 nucleotides in length that prime DNA synthesis and 

extends from this about 20 nucleotides of DNA, from which other polymerases 

can extend (Conaway and Lehman, 1982).  

Replication protein A (RPA), a heterotrimeric ssDNA-binding protein, is required 

during DNA replication to stabilize unwound single stranded conformations. This  

enzyme also prevents the formation of secondary structures straightening the 

single stranded DNA regions in lagging strand (Iftode et al., 2008; Wold, 1997). 

Other essential proteins during replication include proliferating cell nuclear 

antigen (PCNA), replication factor C (RFC), topoisomerase I and, topoisomerase 

II. The eukaryotic PCNA sliding clamp is a toroidal-shaped homotrimer which 

encircles DNA and slides along the duplex while binding to polymerases (Kelman, 

1997). The RFC clamp loader is a heteropentameric complex that is responsible 

to open and close the circular PCNA in an ATP-dependent manner (Jonsson et 

al., 1997; Li and Burgers, 1994) PCNA sliding clamp plays an important role in 

improving the processivity of DNA polymerases during chain extension. 

A model regarding replisome elongation initially suggested by Sugino lab and 

supported by the Kunkel lab. This model proposes following replication initiation, 

pol ε synthesises a continuous strand DNA opposite the leading template strand 

and pol δ produces discontinuous DNA strands opposite the lagging template 

strand (Kunkel and Burgers, 2008; Stillman, 2008). The synthesis of short 

segments on the lagging strand is named Okazaki fragments in honour of their 

discoverer Reiji Okazaki.  Recently, a new model has been proposed, which is 

not compatible with the old model (Kunkel and Burgers. 2008; Stillman, 2008). 
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This model suggests following elongation, Pol ε is replaced by Pol δ as pol ε 

moves away from origin of replication and disconnected from the DNA, 

subsequently replication is continued by Pol δ (Pavlov and Shcherbakova, 2010).  

Maturation of Okazaki fragments is a highly coordinated process which requires 

interaction of Pol δ, FEN1 and DNA ligase I with proliferating cell nuclear antigen. 

Polymerase δ reaches the previously produced Okazaki fragment. After gap 

filling, Pol δ is replaced by FEN1 to cleave short flap structures subsequently, 

DNA ligase I facilitates joining of Okazaki fragments in an ATP-dependent 

manner (Barnes et al., 1990; Garg et al., 2004; Lehman, 1974). 

During replication, DNA unwinding and progression of the replication fork 

generates positive supercoils ahead of the replisome that can causes 

supercoiling tension in DNA that must be relaxed. Topoisomerases are important 

molecular machines employed to release this torsional stress. Topoisomerases 

are classified into two groups based on the number of strands that they can break. 

Topoisomerase type I subfamily (IA, IB) breaks one strand of a DNA helix. In 

order to relax the helix DNA, the broken strand is rotated around the intact strand 

and subsequently the ends of broken strand are released. Topoisomerase type 

II (IIA, IIB) solves the topological problems associated with DNA replication by 

breaking and rejoining double-stranded DNA. Topo II unlike topo I is ATP 

dependent (Champoux, 2001). 

1.8. Archaeal replisomes 

DNA replication is a conserved process which exists in all domains of life 

(bacteria, eukaryote and archaea). In 1977, a phylogenetic analysis of ribosomal 

RNA sequences of a group of prokaryotes demonstrated remarkable differences 

between this group and bacteria, which led to classify this group as a separate 

domain: called Archaea (Woese and Fox, 1977). Archaea the third domain of life 

is superficially similar to bacteria in size and shape. Both bacteria and archaea 

are unicellular with no nucleus but both have cell walls and use flagella to swim. 

Despite the similarity of archaea and bacteria in terms of structure, bioinformatics 

and genetic studies have demonstrated that proteins involved in the very 

important biological processes, including, DNA replication, transcription, and 

translation are more similar to their eukaryotic counterparts than bacteria (Table 
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1.1). Identification of eukaryotic homologues in archaeal replication machinery 

including ORC (origin recognition complex), Cdc6, GINS (Sld5-Psf1-Psf2-Psf3), 

MCM (minichromosome maintenance), RPA (replication protein A), PCNA 

(proliferating cell nuclear antigen), RFC (replication factor C), FEN1 (flap 

endonuclease 1), DNA primase, DNA polymerase, and DNA ligase suggested 

that eukarya and archaea share a common ancestor (Figure 1.11) (Grabowski 

and Kelman, 2003; Kelman and Kelman, 2003). Since archaeal replication 

machinery is a simplified form of that in eukaryotes, archaea has been used as a 

model organism since 1990 to elucidate the functions of each of the components 

of the eukaryotic-type replication complex. 

1.8.1. Archaeal replication origin 

In 2001, Matsunaga and colleagues identified the first archaeal replication origin 

in Pyrococcus abyssi, an anaerobic hyperthermophile, by using pulsed-field gel 

electrophoresis and two-dimensional gel analysis (Figure 1.12). This origin was 

located upstream of a gene encoding the archaeal homologue of both eukaryotic 

Cdc6 and Orc1. Due to this sequence similarity and binding of the protein to oriC 

region, this protein was named Cdc6/Orc1. This single origin of P. abyssi 

contained one A-T-rich region referred to as duplex unwinding elements (DUE) 

(Matsunaga et al., 2001). In contrast to P.abyssi, three origins of replication were 

identified in Sulfolobus acidocaldarius and Sulfolobus solfataricus which belong 

to Crenarchaeota phylum. Characterization of Sulfolobus origins confirmed the 

presence of the conserved 13 bp repeats (DUE) and few longer repeated 

sequences called ORBs (Origin Recognition Box) (Lundgren et al.,2004; 

Robinson et al., 2004). Several studies subsequently postulated that similar to 

eukaryotes other archaeal species contain multiple origins. In general, archaeal 

origins have one or more DUE elements, which are surrounded by ORBs and 

these ORBs were shown to be the binding site for Cdc6 proteins. In many 

species, Cdc6 protein also binds to a consensus sequence named as mini-ORB 

that has sequence similarity with ORBs (Bell, 2012). 
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Table 1.1. A summary of DNA replication features in three domains of life

  

Bacterial, eukarya, and arcahaeal-specific proteins are shown. Parentheses 

represent the number of homologs identified in different species.   
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Figure 1.11. The overall architecture of archaeal replisome. 

The role of hexameric MCM, at the replication fork is to unwound the duplex DNA 
into two ssDNA. The ssDNA can be protected by replication protein A (RPA) from 
endonucleolytic degradation. The pentameric replication factor C (RFC) loads the 
trimeric PCNA onto the DNA in an ATP-dependent manner. The processivity factor 
(PCNA) encircles the DNA and attaches the DNA polymerase to the template. 
Heterodimeric DNA primase synthesis a short strand of RNA or DNA primer, 
subsequently the primer is extended by DNA polymerase (Kelman and Kelman., 
2014). 
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Figure 1.12. The oriC region in Pyrococcus genome.  

oriC is a conserved region with 13 bp repeats. DUE, is surrounded by two origin 
recognition boxes (ORB). The 13 base repeat is called a mini-ORB. Small 
arrowheads indicate two mimi-ORB and the ORB1 and ORB2 are indicated by 
large arrow. Green arrows indicate the transition site. The orange arrow indicatest 
he cdc6/orc1 that binds to the oriC located in downstream (Ishino and Ishino, 
2013). 



35 
 

 

Amino acid sequence alignments revealed that archaeal Cdc6/Orc1 proteins 

belong to AAA+ family of protein. In addition, crystal structure study of the 

Cdc6/Orc1 protein from Pyrobaculum aerophilum and Aeropyrum pernix 

demonstrated that Cdc6/Orc1 proteins consist of an N-terminal AAA+ ATPase 

domain and a C-terminal domain with a conserved winged helix fold. Both 

domains are shown to be involved in origin DNA binding (Singleton et al., 2004). 

Following the binding of Cdc6/Orc1 to the ORB sequence, the protein changes 

its conformation in the presence of ATP. It is believed that this conformational 

change is important for replication initiation, similar to that of bacterial DnaA 

protein (Akita et al., 2010).  

Notably, loading of the replicative DNA helicase, another important protein 

involved in the initiation of DNA replication, at oriC is Cdc6/Orc1-dependent, but 

not in an ATP-dependent manner (Akita et al., 2010). Archaeal pre-recombination 

complex (pre-RC) consists of the assembly of the Cdc6/Orc1 and MCM helicase 

at the replication origins. However, until recently the archaeal homolog of 

eukaryotic Cdt1 has been identified only in some species belonging to 

crenarchaeota phylum. 

1.8.2 MCM helicase 

The first biochemically characterized archaeal MCM homologue was from 

Methanothermobacter thermautotrophicus (Kelman et al., 1999). Since then, 

many remarkable studies have been done to characterize other archaeal MCM 

proteins. Most archaeal species have a single gene encoding MCM. However, in 

those consisting more than one MCM genes, only one is important for viability 

(Ishino et al., 2011). Unlike eukaryotic MCM, archaeal MCM is a homohexamer 

or homo double hexamer, which shows DNA helicase activity on its own in vivo 

and in vitro. However, in P. furiosus, similar to eukaryotes, efficient MCM helicase 

activity was observed in the presence of other accessory factors e.g. GINS 

(Yoshimochi et al., 2008). In common with archaeo-eukaryotic replicative 

helicases archaeal MCM shows 3’→5’ helicase activity (Barry et al., 2007; 

Grainge et al., 2003). As with other helicases, archaeal MCM translocates along 

ssDNA and dsDNA in an ATP-dependent manner. Characterization of 

Archaeoglobus fulgidus pre-replication complex demonstrated that both 

Cdc6/Orc1 and MCM proteins have DNA substrate specificity. Based on this data, 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2953368/#R5
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these proteins prefer a single stranded bubble that mimics early replication 

intermediates (Grainge et al., 2003). Different studies have been characterized 

the function of Cdc6/Orc1-MCM interaction in various archaeal species. While in 

both M. thermautotrophicus and S. solfataricus Cdc6/Orc1 inhibits MCM activity, 

Cdc6/Orc1 from Thermoplasma acidophilum stimulates the helicase activity of 

MCM (De Felice et al., 2003; Haugland et al.,2006). 

Structurally, MCM contains two distinct (N-terminal and C-terminal) domains and 

a catalytic region. These domains are interacting with one another through a 

conserved long loop named as allosteric control loop (ACL). This conserved loop 

can facilitates the N-terminal and C-terminal interaction in response to ATP 

hydrolysis. The N- terminal domain of MCM possesses C4-type zinc finger and β-

hairpin motifs, essential for DNA binding (Brewster and Xiaojiang, 2010). It was 

proposed that addition of N-domain can regulates processivity and DNA substrate 

specificity of the MCM (Barry et al., 2007). The C-terminal is an AAA+ helicase 

domain and consists of a small winged helix bundle. This conserved region 

involves in ATP hydrolysis and DNA unwinding. The central part is the catalytic 

region of MCM contains three β-hairpins that are required for helicase activity 

(Fletcher et al., 2003). 

Recruitment of MCM to oriC has been extensively studied in recent years. An in 

vitro study on P. furiosus illustrated the importance of Cdc6/Orc1 in MCM helicase 

assembly at oriC. Based on this study, preloading of Cdc6/Orc1 onto the ORBs 

significantly reduced MCM assembly onto the DNA, which suggested that free 

Cdc6/Orc1 is needed for MCM recruitment (Akita et al., 2010). Using protease 

sensitivity assay, Samson and colleagues investigated the relationship between 

ATP binding and hydrolysis activi ty of Cdc6/Orc1 and regulation of MCM 

recruitment onto oriC. It was reported that, in the presence of ATP, the 

conformation of Cdc6/Orc1 was changed which led to MCM recruitment. 

Interestingly, once the MCM is loaded, subsequent hydrolysis of ATP to ADP 

prevents further MCM recruitment by Cdc6/Orc1 (Samson and Bell, 2013). 

1.8.3 GINS 

Although archaeal MCM is able to act on its own without need to bind other 

proteins. However, the CMG complex also exists in archaea (Xu et al., 2016). 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2953368/#R5
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Eukaryotic GINS is a ring-shaped heterotetramer, comprising the Sld5, Psf1, Psf2 

and Psf3 subunits (GINS is derived from the Japanese go-ichi-ni-san, meaning 

5-1-2-3) (Figure 1.13). As well as interacting with MCM and Cdc45, the GINS 

complex also shows interaction with Polα-primase and Pol ε DNA polymerases. 

This suggests the role of GINS complex in both initiation and elongation in 

eukaryotes DNA replication (Labib and Gambus, 2007; Takayama et al., 2003). 

Bioinformatics analyses, using archaea and eukaryotic genomic information, led 

to the proposal that archaeal GINS complexes are simplified versions of the 

eukaryotic complexes. The first archaeal GINS homologue was biochemically 

detected in Solfolobus solfataricus and due to the sequence similarity to Psf2 and 

Psf3 it named as Gins23. Yeast two-hybrid analyses indicated an interaction 

between Gins23 and MCM in S. solfataricus (Marinsek et al., 2006). Although 

some species consist of a single homologue, the Crenarchaeota and 

Euryarchaeota have another homologue with sequence similarity to Sld5 and 

Psf1, referred to as Gins51 (called Gins15). In general, in common with human, 

archaeal GINS proteins are formed in tetrameric complexes, either 

homotetramers or a heterotetramer of two copies of Gins15 subunit and 

twocopies of Gins23 subunit (Ishino et al., 2011; Marinsek et al., 2006) (Figure 

1.13). Structural studies suggested that each of the Gins15 and Gins23 subunits 

are made of two domains with different orientations: one large A and one smaller 

B domain. In Gins15 subunit the A domain is located at the N-terminal and the B 

domain is at the C-terminal (AB type) whereas, in Gins23 the B domain is at the 

N –terminal and the A domain is at the C-terminal (BA type). Notably, the archaeal 

and human GINS show a difference in the way the two subunits connect with 

each (Kamada, 2012; Oyama et al., 2011). A crystal structure of T. kodakarensis 

GINS revealed that the protein is a tetramer consisting of Gins51 Gins23, in such 

a way that two Gins15 proteins are on top of the two Gins23 proteins forming a 

trapezoid shape with a narrow cavity in the centre. In Gins51 protein, there is a 

long disordered region. This region enables the conformation of C-terminal 

domains to be more flexible. Subsequently this creates asymmetrical 

homotetramer, rather than a symmetrical formation of the T. kodakarensis GINS 

(Oyama et al., 2011).   
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Figure 1.13. The GINS family.  

(A). Heterotetrameric eukaryotic GINS is made up of Sld5, Psf1, Psf2 and Psf3 

subunits. Archaeal GINS protein is a tetrameric complex consisting of two copies 
of Gin15 subunit and two copies of Gin23 subunit. Both eukaryotic and archaeal 
GINS proteins contain an ‘A-domain’ that is rich in α-helices and a ‘B-domain’ 
that is rich in β-strands. (B). This carton illustrates organization of the subunits 

within eukaryotic and archaeal GINS complex (Labib and Gambus., 2007). 
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Recently it has been shown there is a similarity in structure of the B domain of 

archaeo-eukaryotic GINS protein and the C-terminal region of the catalytic 

subunit of archaeal primase (PriS). This can shed a light on the evolution of these 

proteins (Swiatek and MacNeill, 2010).  A number of studies have been 

suggested that the GINS complex from archaea interacts with some of the 

fundamental components of relisome, including primase, MCM, DNA polymerase 

D (polD), PCNA, and RecJ-like proteins, this supports the idea that GINS  

functions as a scaffolding complex. Using yeast two-hybrid analyses, interactions 

between Gins23 and both small and large subunits of primase were detected in 

S. solfataricus (Marinsek et al., 2006). Li and colleagues successfully co-purified 

Gins15 and Gins23 from Thermococcus kodakarensis with both subunits of PolD 

and PCNA1/PCNA2 proteins, respectively (Li et al., 2010).  Although in both S. 

solfataricus and P. furiosus, Gins23 interacts with MCM, the effect of the 

interaction on the helicase activity of MCM is different in each species. The 

interaction of S. solfataricus Gins23 with MCM does not affect the helicase 

activity. However, in the case of P. furiosus, the MCM helicase activity 

significantly is stimulated by the interaction with Gins23 (MacNeill, 2011). 

1.8.4. Archaeal Cdc45  

Although Cdc45 is a key DNA replication factor, until recently no counterpart for 

Cdc45 protein was identified in archaea. Interaction studies using two-hybrid 

studies indicated that there is an interaction between S. solfataricus GINS and a 

protein known as RecJdbd (RecJ-like DNA-binding domain), which is 

homologous to the C-terminal domain of bacterial RecJ. In addition, similar to 

eukaryotic Cdc45, RecJdbd protein lacks the nuclease domain (Marinsek et al., 

2006). A recent study on T. kodakarensis demonstrated that the GINS complex 

interacts with a novel protein known as GINS-associated nuclease (GAN), which 

is a bona fide orthologous of bacterial RecJ with a DHH phosphoesterase 

domain. It has been reported that this protein is a processive exonuclease that 

degrades DNA in the 5’→3’ direction (Li et al., 2010). Another related report 

showed sequence similarity between human Cdc45 and a putative ssDNA-

specific exonuclease (RecJ protein) belonging to DHH family of 

phosphoesterases. These studies suggests that Cdc45 and archaeal RecJ-like 

proteins originated from an ancestral 5’-3’ exonuclease  that during evolution 
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underwent dramatic evolutionary events and lost its catalytic activity, but still 

retained for its ssDNA binding role (Krastanova et al.,2012; Makarova et al., 

2012). Considering that archaea share the core eukaryotic replisome 

components, and that Cdc45 (the apparent RecJ orthologous) plays a significant 

role in replication, it is proposed that archaea possess a homolog of CMG 

complex consisting of RecJ-MCM-GINS. 

1.8.5. Single-stranded DNA binding protein 

Single-stranded DNA binding protein is one of the critical replication components 

in all domains of life. In bacteria, single-stranded DNA protein is referred as SSB, 

whereas in eukaryotes and archaea is known as replication protein A or RPA. 

Following unwinding the ds DNA by MCM, SSB proteins bind to stabilize and 

protect ssDNA from possible threats including, nuclease attack and chemical 

modifications during DNA replication, repair and recombination process (Prakash 

and Borgstahl, 2012). Significant structural similarities between the bacterial, 

eukaryotic, and archaeal SSBs, suggests that these proteins may derived from a 

common ancestor (Kelly et al., 1998). 

SSB and RPA interact with ssDNA using a common fold, called the OB 

(oligonucleotide/oligosaccharide binding)-fold (Murzin, 1993).  Bacterial SSB is a 

homotetramer in which each monomer consists of one N-terminal domain with a 

single OB fold and a flexible acidic C-terminal domain (Kelman et al., 1998). In 

contrast, the eukaryotic RPA is a stable heterotrimer comprises of RPA70, 

RPA32, and RPA14 proteins. RPA70 contains two OB folds and a conserved C4-

type zinc-finger motif. Only one of the OB folds from RPA70 is involved in ssDNA 

binding. On the other hand, RPA32 and RPA14 each contain a single OB fold.  In 

addition, RPA32 possess a winged helix domain (WHD) near the C-terminal tail. 

It is postulated that the C4-type zing-finger and winged helix motifs facilitates 

protein-protein interactions (Prakash and Borgstahl, 2012). 

Following the identification of homologous SSBs encoded by Methanobacterium 

thermoautrophicum and Archaeoglobus fulgidus genomes (Klenk et al., 1997), in 

1998, the first homologue of SSB from Methanocaldococcus jannaschii was 

characterized. There is a similarity of the amino acid sequence between M. 

jannaschii RPA and the eukaryotic RPA70. The amino acid sequence contains 
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four OB folds and one zinc finger motif.  M. jannaschii RPA is a monomer and in 

common to eukaryotic RPA, binds to ssDNA with high affinity (Kelly et al., 1998). 

In contrast to methanogenic archaea, P. furiosus RPA is a heterotrimer in 

solution, comprising of three subunits, RPA41, RPA14, and RPA32 similar to the 

eukaryotic RPA. It was shown that Pfu-RPA strikingly stimulates in vitro strand-

exchange reaction through interaction with RadA recombinant protein (Komori 

and Ishino, 2001). 

It is believed that the RPA proteins from different archaeal lineages are divers in 

structure and domain organization. While in euryarchaea single, multiple and 

complex forms of the RPA have been identified, in crenarchaeal more similar to 

the bacterial, RPA proteins consist of single OB fold and a flexible C-terminal tail 

(Ishino and Ishino, 2013). 

Methanosarcina acetivorans RPA has a unique feature. Two of the M. 

acetivorans RPAs (MacRPA2 AND MacRPA3) have two OB folds in the N-

terminal region and a zinc finger motif in the C-terminal part.  On the other hand, 

MacRPA1 is composed of four OB folds and lacks the conserved zinc finger 

domain.  Interestingly, each of the M. acetivorans RPA is a putative SSB protein 

and can stimulate the primer extension activity of DNA polymerase BI from M. 

acetivorans (Lin et al., 2008). 

From eukaryotic studies, it has been shown that replication protein A can 

modulate primase activity (Guilliam et al, 2015).  Previous study from our lab has 

established the interaction of RPA70 and human PrimPol (Guilliam et al., 2015). 

Unlike SSBs, which stimulate replicative polymerase activity (Braun et al., 1997), 

RPA70 significantly limits the primase and polymerase activities of PrimPol 

(Guilliam et al., 2015). However, it was recently reported that the primase activity 

of PrimPol can alsp stimulates by RPA70 if it titrates at 1:1 levels. (Guilliam et al., 

under review).  

1.9. DNA polymerases 

1.9.1. Discovery of DNA polymerases 

The term ‘‘polymerase’’ was used for the first purification and characterisation of 

an enzyme system from Escherichia coli in 1958, for the first time. This enzyme 

was capable to incorporate deoxynucleotides (dNTPs) into DNA in the presence 
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of Mg2+ and all four deoxynucleotides in the form of triphosphate (Lehman et al., 

1958). Soon after, Kornberg and collaborators showed that polymerases catalyse 

DNA polymerization of deoxynucleoside triphosphates by liberation of an 

inorganic pyrophosphate. They also suggested that polymerase activity requires 

a DNA primer. The polymerization mechanism involves transferring an “activated” 

nucleoside triphosphate onto the growing strand of DNA following nucleophilic 

attack by the 3’-hydroxyl group of the primer terminus on the α and  phosphate 

groups of the incoming dNTP, resulting in liberation of pyrophosphate (PPi) 

(Figure 1.14). One of the characteristic features of DNA is to have complementary 

base pairs, i.e. adenine is paired with thymine by two hydrogen bonds and 

cytosine with guanine by three hydrogen bonds. This is achieved through the 

large difference in enthalpy between matched base pairs and mismatched base 

pairs (Petruska et al., 1988).  

Probably the most remarkable feature of DNA polymerases is the rapid and 

accurate rate of DNA replication.  DNA replication high fidelity is dependent on 

the correct geometry of base pairs and proofreading mechanisms. DNA 

polymerases catalyse the first step of proofreading just before a new nucleoside 

triphosphate is added to the growing chain. The next step, which is referred as 3’ 

exonuclease proofreading, occurs once the incorrect nucleoside is covalently 

added to the growing strand of DNA. It is worth noting that DNA polymerases 

cannot synthesise novel strands of DNA de novo. Instead, this activity needs a 

primer with a free 3’-hydroxyl group that produced by specialised proteins known 

as DNA primases (section 1.9.). 

 

1.9.2. Classification of DNA polymerases 

DNA polymerases are the main enzymes responsible for of DNA replication in all 

three domains of life. Discovery of the first DNA polymerase, named as DNA 

polymerase I and isolated from E.coli, was followed by isolation and 

characterisation of many different DNA polymerases (Lehman et al., 1958). With 

the growing number of DNA polymerases, it became necessary to classify the 

enzymes groups sharing similar structural and functional features. DNA 

polymerases are categorized into seven families, A, B, C, D, E, X, and Y based 
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on the amino acid sequence similarity (Table 1.2) (Bebenek and Kunkel, 2004; 

Joyce and Benkovic, 2004).  

Although the ability of DNA polymerases to synthesise DNA strand is conserved 

among all DNA polymerase families, other features, such as processivity, fidelity, 

and substrate nucleotide selectivity are different in each case. Enzymes within 

the same family often exhibit similar properties.  It is believed that E.coli contain 

five DNA polymerases; Pol I, Pol II, and Pol III belong to families A, B, and C, 

respectively, Pol IV and Pol V, which belongs to Y family DNA polymerases that 

are specialize in translesion synthesis and bypassing damaged bases. (Guo et 

al., 2009; Ohmori et al.,2001). 

It is reported that family B DNA polymerases contain the highest number of 

polymerases in viruses, bacteria, archaea and eukaryotes (Braithwaite and Ito, 

1993). These polymerases are highly accurate and show high processivity when 

they bind to the sliding clamp cellular processivity factor, PCNA (Capson et 

al.,1992).  In eukaryotes, replicative polymerases α, δ, ε belong to family B DNA 

polymerases.  

Eukaryotic DNA polymerase ζ is a unique family B polymerase, which in contrast 

to the other members does not possess a 3’→5’ exonuclease activity  but is 

involved in translesion DNA synthesis. Some bacteria possess a family B DNA 

polymerase, and Pol II from E.coli is the most characterised example (Lovett, 

2011). In common with bacteria and eukaryotes, archaea possess several DNA 

polymerases. Unlike crenarchaeota which possess at least two family B 

polymerases, in euryarchaeota only one family B polymerase exists (Uemori et 

al., 1993; Uemori et al., 1995).  

Examples of each family and their putative functions in vivo are listed in Table 

1.2.  Features of each DNA polymerase are also summarized.   
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  Primer strand Primer strand Template strand Template strand 

Figure 1.14. General scheme of DNA polymerisation. 

The reaction is catalysed by DNA polymerases. Nucleophilic attack of the 
3’-OH group of the primer on the α-phosphate group of the incoming dNTP 
forms a phosphodiester bond and releases a pyrophosphate. The pink 
lines indicate hydrogen bonds between complementary bases (Taken 
from Cooper, 2001). 
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Family Examples Functions Features  
A T7 DNA poly merase, 

E.coli pol I, Taq pol I 
Eukary otic pols  γ, ν ,θ 
  

Chromosomal and mitochondrial 

DNA replication.  
Okazaki f ragment processing. 
NER 

5’→3’exonuclease, 
3’→5; exonuclease 

B Eukary otic pols  α, δ, ε, ζ, 
T4 DNA poly merase, 
E.coli pol II,  
Some Viral and archaebacterial 

poly merase. 

Chromosomal DNA replication 
These enzy mes are generally  

tethered by  a processiv ity  factor 
Pol ζ used in DNA damage by pass 

3’→5’exonuclease 

C Bacterial DnaE, 
E.coli pol III, 
Bacillus subtilis pol III 

Chromosomal DNA replication 
DNA damage by pass  3’→5’exonuclease 

D Euarchaeota poly merases 
Including Py roccocus f uriosus 

poly merase II 
suggested to be a replicativ e 

poly merase  3’→5’exonuclease 

X Eukary otic pols β, μ, λ, 
Yeast pol IV, 
Af rican Swine Fev er 
Virus polX, Human Terminal 

Deoxy nucleotide Transf erase 

Inv olv ed in DNA damage processing 

including base excision repair and 

double strand break repair 
5’-deoxy ribose 

phosphate ly ase 

Y Eukary otic pols  η, κ, ι and REV1 
E.coli DinB, UmuC DNA damage by pass. V(D)J DNA damage by pass 

RT 
HIV RT, Moloney  murine 
Leukaemia v irus RT 
Hepatitis B RT, Telomerase 

Rev erse transcription of  v iral 

genomes.Telomerase has an innate 

RNA component to sy nthesise GC-

rich repeats at telomeres 
RNase H 

 

 

 

 

 

 

 

 

 

 

 

Table 1.2. Representative members of seven families of DNA 

polymerase. 

Examples of each family and their putative functions in vivo are listed. 
Features of each DNA polymerase are also summarized.  
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Interestingly, euryarchaeal genomes encode a family D polymerase, which is 

unique to the archaea and has never been found in other domains (Cann et al., 

1998). However, novel phyla in archaea including, Thaumarchaeota, 

Korarchaeota, and Aigarchaeota, harbour the genes encoding Pol D.  Ishino and 

colleagues first discovered heterodimeric family D polymerase (Imamura et al., 

1995). The family D polymerases comprise a small subunit (DP1), with sequence 

similarity to the non-catalytic B subunit of eukaryotic family B DNA polymerases.  

On the other hand  the larger subunit of this family (DP2) shows no remarkable 

homology to other DNA polymerases (Cann et al., 1998).  It appears that DP1 

possess 3’→5’ exonuclease activity and DP2 is involved in polymerisation (Cann 

and Ishino., 1999; Cann et al., 1998). Discovery of the 3’→5’ exonuclease activity 

of family D polymerases and association with the sliding clamp (PCNA) suggests 

the involvement of this family in chromosomal DNA replication and DNA repair in 

archaea.  A recent study of the biochemical behaviour of Thermococcus 

kodakarensis D and B polymerases postulated, unlike Pol B, Pol D is adequate 

for genome replication. Therefore, Pol D may be the essential replicative DNA 

polymerase in this species (Cubonova et al., 2013). 

In addition, a few studies proposed that T.kodakarensis Pol D could form a stable 

complex in vivo with other replisome components including, Cdc6, GINS, MCM1, 

PCNA1, PCNA2, and GAN. Conversely, Pol B has not been present as a complex 

with these proteins. Based on these data, it can be concluded that Pol D, and not 

Pol B, functions as the genome-replicating DNA polymerase in T.kodakarensis. 

On the other hand, a biochemical study suggested that Pyrococcus abyssi Pol D 

is the major lagging strand polymerase and Pol B synthesizes the leading strand 

(Henneke et al, 2005).  In order to complete Okazaki fragment maturation on the 

lagging strand, PolD requires other accessory proteins such as RPA, PCNA and 

RFC. Pol B is also required to fill the single-stranded gaps and displaces the 5’- 

end of the downstream fragment and form a flap structure which is subsequently 

cleaved by Fen1 (Greenough et al, 2015). 

Unlike replicative polymerases from bacteria and eukaryotes, the archaeal 

replicative polymerase PolB recognizes uracil in DNA templates and stalls 

replication encountering these bases. Specifically family B DNA polymerases 
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through a specialized binding pocket in their N-terminal domain can bind tightly 

to uracil containing DNA templates (Greagg et al., 1999). Uracil commonly arises 

in DNA by deamination of cytosine to uracil, and replication of the deaminated 

bases results in transition mutations (C:G → A:T) in 50% of progeny (Lindahl., 

1993). This unique property of Pol B family polymerases is not restricted to 

hyperthermophilic archaea. In fact, family B polymerases from mesophilic 

archaea, like M. acetivorans (optimum growth temperature 35-40 °C) can bind to 

template-strand uracil as firmly as Pfu-Pol B (Kelman and White, 2005;Wardle et 

al., 2008). A recent study proposed that the presence of dU base in DNA 

significantly reduces the polymerization activity of archaeal Pol D (Richardson et 

al., 2013). Together, the ability of the two polymerases to bind and respond to 

uracil can shed a light on the importance of these polymerases in DNA replication, 

as previously suggested.   

Family Y DNA polymerases are relatively new DNA polymerases that shows little 

homology to any of the five previously discovered family polymerases. This family 

was first described as UmuC/DinB/Rev1/Rad30 superfamily and has been 

identified in all three domains of life. The most remarkable feature of this family 

is performing low fidelity while copying undamaged DNA templates. If members 

of A, B, C, D, and X family of polymerases block replication at sites of damage, 

Y family polymerases can bypass the lesion and rescue the stalled replication 

fork. Phylogenetic analysis reveals that the DinB family is widely distributed 

across three domains of life. In E.coli, Pol IV belongs to DinB family and in human 

Pol ɵ and Pol ĸ are products of DINB1 gene (Ohmori et al., 2001). The first 

homologue of UmuC in archaea was identified in Sulfolobus solfataricus using 

the motif PCR approach. This homologue with high sequence similarity to DinB 

was designated as dbh (dinB homolog), which is also known as Dpo4 (Kulaeva 

et al., 1996). It has been reported that Dpo4 is an error-prone enzyme which can 

read through an abasic site, a cis-syn thymine–thymine dimer, as well as acetyl 

aminofluorene adducted- and cyclobutane pyrimidine dimer (Boudsocq et al., 

2001; Ling et al., 2003). Y family DNA polymerases are 100-1000 fold less 

accurate than polymerases from other families. Among Y family polymerases, 

DinB is the most accurate enzyme, making about one mistake per 103 to 104 

bases copied (McCulloch and Kunkel, 2008). 
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1.9.3. Structure and function of DNA polymerases 

The carboxyl-terminal domain of DNA polymerase I isolated from E. coli retains 

DNA polymerase and 3’→ 5’ exonuclease activities.  This domain, known as the 

Klenow fragment (Klenow and Overgaard-Hansen, 1970), was the first DNA 

polymerase structure resolved by X-ray crystallography (Ollis et al., 1985). All 

DNA polymerases whose structures are solved to date, share a common overall 

architecture. The overall structure resembles that of a right hand with the palm 

domain at the bottom and thumb and fingers domains at each side which form a 

‘‘U’’ shaped cleft (Figure 1.15). The function of each domain appears to be 

conserved in all polymerases. The palm domain that contains the polymerase 

active site involved in catalysis. The function of fingers domain is to interact with 

the incoming nucleoside triphosphates and on the other hand, the thumb domain 

is important for binding to template DNA and also plays a role in processivity and 

translocation (Steitz, 1999). Y family DNA polymerases possess conserved 

sequences at the N-terminal domain, in which all the essential catalytic amino 

acids reside. On the other hand, C-terminal domain does not contain the 

conserved primary motifs, but contains a conserved tertiary structure, consisting 

of four-stranded β sheet with two long α helices on one side. This domain is 

referred as PAD (polymerase-associated domain) in eukaryotes and little finger 

domain in archaeal and bacterial system. In addition, in Y family, the fingers and 

thumb subdomains appear to be smaller which makes the palm domain more 

open and solvent accessible (Pata, 2010, Johnson et al., 2001). 

Based on solution studies, the DNA polymerisation mechanism consists of series 

of reactions. Polymerisation starts with binding of DNA substrate followed by 

addition of deoxynucleoside triphosphates to the polymerase-DNA complex. 

Binding of DNA results in minimal changes in the finger and palm domain but 

leads to significant conformational change in a helix-loop-helix motif in the thumb 

domain.  If the incoming dNTP that binds to fingers domain is correct, a rate-

limiting conformational change forms a tight ternary complex. Subsequently, a 

chemi ca l reac t i on leads  to  fo rma ti on o f t i ght ly bound  enzym e - 
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Figure 1. 15. Structures of Polη and T7 DNA Polymerases 

(A) Polη and (B) T7 DNA polymerases share the common right hand shape 

architecture. In both polymerases, the palm domain is at the bottom and 
fingers and thumb domains are at each site, which form a U shape cleft. 
As indicated, the Polη fingers and thumb domains are smaller than the 
equivalent domains in T7 polymerase (Taken from Johnson et al., 2001). 
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product complex. In the next step, another conformational change relaxes the 

tightly bound enzyme-product complex.  This step results in formation of 

phosphodiester bond and releasing pyrophosphate ion, which helps translocation 

of the DNA for the next nucleotide addition (Li et al., 1998). 

DNA polymerase requires two metal ions for its activity that involves a 

nucleophillic attack by the 3’-OH group of the primer on the α-phosphate of the 

incoming dNTP. Both metal ions are located in the active site. While 

deoxynucleoside triphosphate (dNTP) and hydroxyl group of the primer are 

bound by one metal ion, the other one interacts only with the hydroxyl group 

(Figure1.16) (Steitz, 1993).  Carboxyl groups of two aspartate residues in the 

palm domain connect the two metal ions. Both metal ions are presumed to 

stabilise the transition state through stabilising the extra negative charges that 

build up on the trigonal-bipyramidal transition state. Interestingly, a new study 

through using in crystal reaction and time resolved X-ray diffraction analysis 

discovered, in contrast to the two-metal-ion theory, an additional metal ion is 

required for the polymerisation mechanism.  It is suggested that unlike the two 

metal ions, this third metal ion is not coordinated by DNA polymerase and may 

facilitates the phosphoryltransfer reaction with or without enzyme catalysis 

(Figure1.17) (Yang et al., 2016). 

1.9.4. Fidelity of DNA polymerase 

Since high accuracy of DNA replication is an essential factor for maintaining 

genomic stability, DNA polymerases are required to ensure faithful DNA 

replication through multiple steps. In general this is performed with approximately 

one error is generated during replication of each 109 to 1010 bases (Echols and 

Goodman, 1991). There are multiple steps to achieve the fidelity of DNA 

replication, including the ability of DNA polymerase to read a template strand, 

and select the correct nucleoside to insert at the 3’ primer terminus. At this point, 

replication accuracy is estimated to be approximately one error per 103 to 105 

bases. If an incorrect nucleotide being inserted into the growing chain, DNA 

polymerase can remove the incorrectly incorporated nucleotide by the action of 

3’-5’ exonuclease, referred  to as ‘‘proofreading’’ (section 1.8.5). This can 

increase the fidelity by a factor of several hundred fold. In the case of escaping 

selection and proofreading steps, incorporation of the wrong nucleotide results in  
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Figure 1.16. The two metal ion mechanism of the T7 DNA polymerase 

Aspartic-acid residues 705 and 882 coordinate the two divalent metal ions 
A and B to T7 DNA polymerase. The metal ion A binds to water molecules, 
which are shown in black circles (Taken from Steitz.,1998).  
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A B 

Figure 1.17. Comparison of two versus three metal ion mechanism in DNA 

polymerisation 

(a) In three-metal ion catalysis, phosphoryltransfer reaction initiates by cleavage 

of phosphodiester bond in dNTP by the C-site metal ion. Deprotonation of the 
C-site metal ion is the result of this reaction. (b) In two-metal ion catalysis, 

initiation of phosphoryltransfer reaction is done through deprotonation of 3’-OH 
group. A comparison of the initiation of phosphoryltransfer in two- versus three-
metal ion catalysis is shown (Taken from Yang et al., 2016). 
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a mismatch.In this case, the damage can be removed by replicative excision 

repair pathways, such as MMR (See section 1.4.2.) leading to increasing the 

fidelity few hundred times (Rothwell and Waksman, 2005).   

The first proposed model for the deoxynucleotide incorporation pathway was 

based on the structure of DNA (Watson, 1953a; Watson, 1953b). One way to 

determine selection of correct over incorrect nucleotides is by the A‐T and G‐C 

hydrogen bond–mediated base pairing. However, the error rate limiting of DNA 

polymerases for nucleotide insertion is 10-3–10-6 per base incorporation and the 

difference in free energy between correct and incorrect base pairs is sufficient 

only for  an error rate of 1 per 2 x 102 (Loeb and Kunkel, 1982).  The second 

model was proposed based on the similar geometry of the correct Watson-Crick 

base pairs. This model relies on the assumption that the shape of DNA 

polymerase active site can accommodate only correct Watson-Crick base pairs 

and non-Watson-Crick base pairs might be rejected (Bruskov and Poltev, 1979; 

Engel and von Hippel, 1978). Recent study on DNA polymerase β postulated that, 

binding of the correct Watson-Crick base pair induces chemical shift changes 

resulting in DNA polymerase rotation leading to a switch from an open to a closed 

conformation. In contrast, incorporation of the wrong nucleotide does not affect 

the enzyme conformation and remains it in an open unstable conformation. This 

suggested, only in the presence of correct nucleotide the DNA polymerase 

switches to a closed ternary complex conformation (Moscato et al., 2015). 

1.9.5. Proofreading mechanisms  

As discussed earlier, many polymerases achieve high-fidelity DNA replication 

through their 3′→ 5′ exonuclease activity, often referred to proofreading.  In 1972, 

two similar proofreading activities by two different DNA polymerases were 

discovered. Brutlag and Kornberg reported that E.coli Pol I DNA polymerase 

possess an exonuclease active site, which plays a significant role in error 

avoidance (Brutlag and Kornberg, 1972). It was also suggested, in common with 

Pol I, bacteriophage T4 DNA polymerase performs similar 3′→ 5′ exonuclease 

activity (Muzyczka et al., 1972). It was revealed that the replication fidelity can be 

affected by the T4 alleles through altering the spontaneous mutation frequency 

(Speyer, 1965). A structural study of Klenow fragment of DNA polymerase I has 

shown that the DNA polymerase domain and exonuclease domain are separated 
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from each other by a distance of 33 Å (Beese and Steitz, 1991). When 

misincorporation of a base occurs then further polymerisation becomes very slow, 

followed by translocation of the 3’-end of the primer to the proofreading active site 

through a DNA binding cleft between the polymerase and exonuclease domains.  

The first step in proofreading is to recognise the misincorporated nucleotide at 

the primer-end and then to decide whether to continue mismatch extension or to 

transfer the primer-end from the polymerase to the exonuclease active site. In T4 

and RB69 DNA polymerases, there is a β hairpin structure. This structure places 

itself between the template and primer to separate them. Once the incorrectly 

incorporated nucleotide at the primer-end is transferred into the exonuclease 

active site, it will be removed rapidly from the primer-end. Finally, the trimmed 

primer-end will be transferred back to the polymerase active site. Therefore, 

proofreading is a switching process between polymerase-to-exonuclease and 

exonuclease-to-polymerase active site (Baker and Reha-Krantz, 1998; 

Darmawan et al., 2015). 

1.10. DNA Primase  

As previously discussed, DNA polymerases are unable to initiate de novo 

polymerase synthesis reactions. Early studies suggested that DNA replication 

initiation requires RNA transcription (Brutlag et al., 1971). It was believed that 

DNA replication initiation proceed in two separate stages. The first step requires 

ribonucleoside triphosphates (rNTPs), a single stranded DNA, and enzymes. A 

DNA polymerase can continue DNA synthesis using the product of the first step, 

a short RNA chain, and dNTPs (Wickner et al., 1972). Soon after, Bouche and 

colleagues discovered that E.coli DnaG gene has a role in the replication initiation 

of nascent (Okazaki) fragments (Bouche et al., 1975). DNA-dependent RNA 

polymerases, distinct from classical RNA polymerases, which are capable of 

priming, were named as DNA primase (Rowen and Kornberg, 1978). 

Until relatively recently, it was believed that the role of DNA primases was only 

limited to initiation of DNA replication. However, a large body of recent evidence 

has established that the activities and cellular roles of this family of polymerases 

extends much further than simply the initiation of DNA replication. Over recent 

years, different studies established the importance of primases in wide range of 
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biological processes including, DNA replication, repair, damage tolerance and 

transcription. 

1.10.1. DNA primases- evolution and structure 

Nature has evolved several distinct mechanisms for generating primers with a 

free 3’ hydroxyl group to be subsequently elongated by DNA polymerases: (1) In 

all known systems and some DNA viruses, phages and plasmids generation of a 

short RNA primer with a free 3’-OH group is required.  The synthesised primer is 

subsequently elongated by a DNA polymerase (Frick and Richardson, 2001).  (2) 

Retroviruses initiate DNA replication using a tRNA with a free 3’-OH group which 

can be elongated using a reverse transcriptase (Mak and Kleiman, 1997).  (3) In 

adenoviruses, Ser580 of the terminal protein provides a free 3’-OH group, which 

can be elongated by DNA polymerase (Pronk and van der Vliet, 1993). (4) 

Several DNA viruses, like parvoviruses, utilize a rolling-circle replication (RCR) 

system. During RCR, an endonuclease nicks one strands of DNA. The 5’ end of 

nicked DNA is transformed onto a tyrosine residue on the nuclease and the 3’ 

end with free OH group is elongated by a DNA polymerase to synthesis new 

strand (Noirot-Gros and Ehrlich, 1996). 

Generally, primases are structurally different in two ways, either the primase 

activity requires one or two subunits, or the primase contains archaeo-eukaryotic 

primase (AEP) fold or a toprim architecture, which exists in bacterial and phage 

primases (Iyer et al., 2005). Bacterial primase is a single subunit protein 

belonging to the superfamily of DnaG. This primase consists of a common 

catalytic, Toprim (topoisomerase-primase) domain. The toprim domain of 

bacterial DnaG is also conserved in archaeal DnaG orthologous, topoisomerase 

Ia and topoisomerase II. This suggests the presence of toprim domain in the last 

universal common ancestor (LUCA) (Aravind et al., 1998). Eukaryotes and 

archaea contain of two subunit primases that are typically referred to as the small, 

catalytic subunit (PriS/Prim1) and a large accessory subunit (PriL/Prim2). The 

two-subunit primases are also found in herpes viruses, which contain a primase 

subunit and a helicase subunit (Iyer et al., 2005; Kuchta and Stengel, 2010).  The 

superfamily of proteins that contain an archaeal / eukaryotic fold are known as 

archaeo-eukaryotic primases, or AEPs.  The AEP superfamily proteins are 

composed of a catalytic core with an N- terminal (α/β)2 unit which is not structuraly 
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identical to other proteins in structural database (PDB). The C-terminal domain 

of the catalytic core contains a highly derived version of the RNA recognition motif 

(RRM), conserved in viral RNA-dependent RNA polymerases and A-B-Y family 

DNA polymerases (Iyer et al., 2005).  

1.10.2. Evolutionary history of AEPs 

The absence of homology between bacteria and eukarya/archaea is not limited 

to DNA primase superfamilies. The core components of transcription and 

translation including, DNA ligases, PCNA, RNAse HII, clamp-loaders, etc that are 

highly conserved in all divisions of life. Conversely, the core components of 

replication are unrelated or only distantly related between bacteria and 

eukarya/archaea (Edgell and Doolittle, 1997; Leipe et al.,1999). Two major 

scenarios are suggested to explain the existence of two groups of replicative 

enzymes. In the first model, bacteria and archaeal/eukaryotic replication 

machineries evolved separately twice from a last universal common ancestor, 

which carried out reverse transcription to replicate an RNA/DNA genome (Leipe 

et al 1999) as still happens in retroviruses, e.g HIV.  It is believed that by the 

evolution of core components of DNA replication system, selective pressure 

eradicates the reverse transcription pathway from most organisms.  This scenario 

is supported by the reverse transcription ability of some DNA primases and 

polymerases (Jozwiakowski and Connolly, 2011; Gill et al, 2014; Jozwiakowski 

et al, 2015). This model can clarify the similarity of transcription and translation 

core components between bacteria and archaea/eukaryotes (Figure 1.18). 
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Figure 1.18. Evolution of AEP and Toprim primases (1) 

The first model proposes that two replicative systems evolved twice separately from a 
common ancestor (LUCA) which has reverse transcriptase activity. Bacterial ancestors 
evolved toprim primases and archaeal and eukaryotic ancestors evolved AEP 
primases. Horizontal gene transfer between two lineages results in AEP primase’s role 
in NHEJ in bacteria and toprim-type primase’s in role in archaeal RNA degradation.   
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The second model proposes that the last universal common ancestor (LUCA) 

employed a dual-primase system consisting of both toprim (DnaG) and AEP 

(PriSL) primase (Hu et al., 2012).  Apart from the dual-primase role, both toprim 

and AEP primases in the last universal common ancestor were able to perform 

RNA degradation and NHEJ processes respectively.  Based on this hypothesis, 

selective pressure eliminated AEPs as replicative primases in bacteria and 

retained their role in NHEJ (Weller and Doherty, 2001). While in archaea, 

selective pressure led to the loss of toprim primase’s replicative primase activity 

but the non-essential role in RNA degradation is reserved.  Moreover, this model 

predicts that in eukaryote, the (DnaG) primase is lost and other proteins have 

replaced to serve its primase activity (Figure 1.19) (Hu et al., 2012). 

There could be an alternative hypothesis to these two models. In this scenario, 

the last universal common ancestor consisted of either a toprim primase or AEP 

and following dramatic evolutionary events, the selective pressure caused the 

emergence of second primase superfamily to be revealed in either bacteria or 

archaea/eukarya respectively (Figure 1.20) (Guilliam et al., 2015). 

1.10.3. Structural analysis of the AEP superfamily  
 

The AEP superfamily shares a catalytic core (Figure 1.21) with an N-terminal 

(α/β)2 unit.  This has no structural homology with other proteins and a C-terminal 

unit which is a highly derived version of the RNA recognition motif (RRM). This 

motif is also found in viral RNA-dependent RNA polymerases and the catalytic 

palm domain of A-B-Y family DNA polymerases.  The active sites residues of the 

catalytic core are placed in between the two units, which are packed against each 

other. The conserved structure consists of six strands (1-6) (two tp belong to N-

terminal unit and four to C-terminal domain) and four helices (1-4) (two from each 

unit).  This catalytic core harbours three conserved motifs. Motif I, a hhhD motif 

in strand 3. Motif II, an sxH motif in strand 5 and motif III, an h- in strand 6 (‘h’ is 

a hydrophobic residue,‘s’ refers to small residue, ‘x’ refers to any residue and ‘–’ 

is an acidic residue) (Iyer et al., 2005). 
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Figure 1.19. Evolution of AEP and Toprim primases (2) 

The second model suggests that the last universal common ancestor (LUCA) 
employed a dual-primase system consisting of both toprim and AEP primases. 
Selective pressure during evolution led to elimination of replicative function of AEP 
primases in bacteria but retained them for the auxiliary function of NEHJ DNA 
repair. During evolution of archaea and eukaryotes selective pressure led to the 
loss of toprim primase’s replicative primase activity but retained the none-essential 
role of these primases in RNA degradation. 
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Figure 1.20. Evolution of AEP and Toprim primases (3) 

The third model of primase evolution proposed that LUCA was consisting of 
either AEP or toprim-like primases. Subsequently, unknown evolutionary 
pressure could have forced the second class of primase to become another 
type. 
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A B C 

D  

Figure 1.21. AEP catalytic subunit crystal structures from three 

domains of life 

(A) Crystal structure of human primase (Prim1). (B) Crystal structure of small 
catalytic subunit from Prococcus horikoshi, a hypethermophillic archaea. (C) 
Crystal structure of PolDom from of Mycobacterium tuberculosis. (D) The 
AEP domain of RepB’ gene from Escherichia coli.  In each structure, the 

shared catalytic core is demonstrated with lighter colour and catalytic groups 
are shown as sticks with the acidic oxygen in red. Zinc atoms in the zinc 
finger domains are shown in tan. (taken from Guilliam et al .,2015).  

Hs Prim1 
Ph PriS Mt NHEJ Polymerase 

Ec RepB’ AEP  
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Site-directed mutagenesis studies have revealed the importance of these acidic 

residues for catalysis (Bianchi et al., 2013; Lao-Sirieix and Bell, 2004; Lipps et 

al., 2004; Iyer et al., 2005).  Lipps and colleagues proposed that mutation of acidic 

residues in Prim-Pol, a member of AEP superfamily, which will be discussed later, 

abolishes both polymerase and primase activities (Lipps et al., 2004). 

Comparison of the amino acid sequences, proposed a significant sequence 

homology between AEP superfamily and PolX superfamily which includes 

nucleotidyl transferases (Aravind and Koonin., 1999; Kirk and Kuchta., 1999).  To 

date, all characterized DNA primases consist of a zinc binding motif which plays 

a key regulatory role in sequence-specific recognition of the DNA template by 

primase (Ilyina et al., 1992; Pan and Wigley, 2000).  Some AEPs in addition to 

the AEP polymerase domain contain zinc-binding domains and helicases 

domains.  Several studies suggested variety of roles for AEPs including, terminal 

transferase, strand displacement, translesion DNA synthesis (TLS) and gap-

filling synthesis (Figure 1.22) (Della et al., 2004; Pitcher et al., 2007; Zhu et al., 

2006; Guilliam et al, 2015). 

1.10.4. Eukaryotic AEP primases 

The eukaryotic primase is a heterodimer consisting of a small catalytic subunit, 

49 KDa (PriS, Prim1 or p48) and a large non-catalytic subunit, 58 KDa (PriL, Pri2 

or p58). Eukayotic primase together with  DNA polymerase α (Pol α or p180) and 

the B subunit (p70) form a polα/primase complex (Conaway and Lehman, 1982b; 

Wang,1991).The Polα-Primase complex encoding genes have been identified in 

humans, rats, mice, Drosophila, and yeast (Frick and Richardson, 2001). 

Although no enzymatic activity has been characterized for PolB subunit, PriS 

synthesises RNA primers and Polα extends these primers with DNA. PriL is a 

non-catalytic subunit, which is predicated to regulate the PriS primer synthesis 

activity (Arezi et al., 1999; Zerbe and Kuchta, 2002).  This subunit also transfers 

a primer of a 10 -15 nt in size to Polα. Subsequently, the Pol α extends the RNA 

primer and generates a RNA-DNA primer of ~30-40 nt in length. Co-

immunoprecipitation studies revealed that the interaction between primase and 

Polα directly mediated by PriL subunit (Longhese et al., 1993). 

 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4348247/#CR32
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Primase 

Polymerase 

Strand Displacement 

Translesion Synthesis 

Terminal  Transferase 

Figure 1.22. AEP primase-polymerases possess a variety of nucleotidyl 

transferase  activities.  

In addition to priming DNA,  distinct AEPs can perform a range of nucleotidyl 
transferase activities such as DNA-dependent DNA polymerase, DNA-
dependent RNA polymerase, strand displacement, translesion synthesise 
and terminal transferase activities.  
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The interaction between PriL and PriS is enabled by a conserved protein-protein 

interface, located in N-terminal domain of PriL (Lao-Sirieix et al., 2005). There is 

a [4Fe-4S] cluster in the C-terminal domain of PriL, coordinated by four conserved 

cysteine ligands. Based on biochemical studies, while single cysteine 

substitutions only slightly decrease the Fe binding and iron-sulfur cluster content, 

mutation of two cysteines out of four prohibits iron binding and can significantly 

affect the initiation of RNA synthesis in vitro (Liu and Huang.,2015). Iron-sulphur 

cluster binding domains are also found in other DNA processing enzymes 

including XPD (Rad3 in Saccharomyces cerevisiae) and FancJ helicases of 

Nucleotide Excision Repair (NER)  (Liu et al., 2008) and DNA glycosylases of 

Base Excision Repair (BER) pathway (Messick et al., 2002). 

1.10.5. AEPs involve in NHEJ 

Several studies have identified eukaryotic homologues of the Ku protein in 

prokaryotes. Ku is a heterodimer that binds to the ends of DNA double strand 

breaks and is required for end-joining repair in eukaryotes. Soon after the 

characterisation of archaeal primases as template-dependent polymerases, the 

AEP homologues was discovered in bacteria (Koonin et al., 2000; Doherty, et al., 

2001; Weller and Doherty, 2001; Weller et al., 2002).  Interestingly, these AEP 

genes were often co-operonically associated with the Ku gene (Koonin et al., 

2000), which suggested the existence of a conserved NHEJ pathway in 

prokaryotes. Homologues of NHEJ pathway in bacteria and archaea consists of 

another protein known as Ligase D (LigD). In mycobacteria, LigD consist of a 

phosphoesterase (PE) domain, LigD domain, and an AEP primase- polymerase 

(PolDom) domain. Together, these findings shed a light on our understanding 

regarding additional and unexpected roles of AEPs in DNA metabolism (Guilliam 

et al., 2015).  In contrast to replicative AEPs, PolDom is not able to synthesis de 

novo primers from single nucleotides opposite a DNA template (Brissett et al., 

2007).  

Although both NHEJ AEPs and replicative primase (PriS) share a conserved 

catalytic architecture, NHEJ AEPs show some distinctive adaptations that 

distinguishes them from related enzymes. These primase-polymerases have 

some distinctive DNA binding modes that assist them to function even at the 

extreme ends of DNA.  They are also able to bind specifically to a 5’ phosphate 
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at the end of DSB using a positively charged surface pocket to accomplish the 

end processing. Crystal structures of Mycobacterium tuberculosis PolDom 

uncovered the ability of this domain to mediate the synapsis of two non-

complementary DNA ends through variety of interactions to form a stable 

microhomology-mediated end joining (MMEJ) (Figure 1.23) intermediate. 

(Brissett et al., 2007, 2011, 2013; Bartlett et al., 2016). During MMEJ process, 

two PolDom polymerases bind to each side of the break and specific surface 

loops then promote break annealing.  Eukaryotes family X polymerases perform 

gap-filling strand displacement and, terminal transferase activities.  They are also 

involved in some repair pathways such as base excision repair and NHEJ. AEPs 

share similarities with catalytic and regulatory regions of family X polymerases, 

specifically pol β (Kirk and Kuchta., 1999).  Recently, it was shown that, Pol θ 

belongs to family A polymerase performs microhomology-mediated end joining 

(MMEJ) in eukaryotes (Kent et al., 2015).   

1.10.6. Viral AEP primases 

Prokaryotic, eukaryotic, and archaeal AEPs appear to have viral origins. Viruses 

encode a range of AEPs including, UL52-like primases from herpes simplex 

viruses, D5-like primases from NCLDVs and Lef-1 primases from phage and 

baculoviruses.   

Herpes virus type 1 encodes a heterotrimeric protein complex consisting of UL5-

UL52-UL8. This three-subunit complex shows both helicase and primase 

activities. The complex may prime lagging strand synthesis while unwinding the 

viral DNA replication fork (Crute and Lehman, 1991). UL5 is required for the 

helicase activity (Gorbalenya et al., 1989) while UL52 is an AEP that facilitates 

priming activity (Crute and Lehman, 1991). In contrast to two other subunits, the 

UL8 subunit that is related to B-family polymerases appears to have lost its 

catalytic activity (Marsden et al., 1997; Sherman et al., 1992). This can be due to 

the evolution as it was suggested that evolution led to elimination of active site 

and most of DNA-binding motifs of UL8 (Kazlauskas and Venclovas, 2014).  

Interestingly, there are some evolutionary connections between UL5-UL52 

components and a newly identified human primase (PrimPol), which belongs to 

AEP superfamily. This primase is discussed in next section (Section 1.9.7). 
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Figure 1.23. Examples of AEPs crystal structures bound to DNA 

substrates.  

(A). Crystal structure of NHEJ repair polymerase (PolDom/LigD-Pol) in a 
pre-ternary catalytic conformation which is attached to a double-stranded 
DNA break with a 3’ overhanging from Mycobacterium tuberculosis. The 
cyan colour represents UTP and pink represents manganese cofactors. (B). 

micro-homology mediated end-joining (MMEJ) intermediate crystal 
structure representing synapsis of DBS ends by NHEJ repair polymerase. 
(Taken from Guilliam et al., 2015). 
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UL5-Ul52 possess polymerase and the Pif1 helicase activates (Iyer et al., 2005). 

Similar to prokaryotic and eukaryotic primases, UL52 protein possess a putative 

zinc finger at its C terminal that is required for catalytic activity in vivo (Biswas and 

S. K. Weller, 1999).  

Another group of viral AEPs are present in poxviruses. DNA replication of this 

group of viruses takes place within the infected cells of cytoplasm.  D5 is an 

AEP/helicase fusion protein which has been characterised from vaccine virus 

(VACV). This enzyme which is conserved across all viruses has a C-terminal 

domain in charge of helicase activity and an N-terminal domain with sequence 

and structural similarities with AEPs.  In vitro studies indicated primase activity 

for this enzyme during DNA replication (De Silva et al., 2009).  

Baculoviruses encode another clade of viral AEPs known as Lef-1-like primases. 

These enzymes are more similar to the “proper” clade that includes replicative 

and NHEJ AEPs (Iyer et al., 2005).  Like archaeal replicative primase (PriS) 

(section 1.9.8.), Lef-1-like primases are able to produce RNA primers that are 

extended up to several kilobases in length (Mikhailov and Rohrmann, 2002). 

Unlike previously discussed viral AEPs, the gp43-like proteins from corynephage 

BFK20, do not show RNA primase activities.  These proteins are only capable of 

deoxyribonucleoside triphosphate incorporation (Halgasova et al., 2012). 

1.10.7. Discovery of second eukaryotic AEP, PrimPol 

The replicative primase, PriS / Prim1 is not the only AEP in the eukarya. 

Bioinformatics searches and in silico analysis of  the AEP superfamily detected a 

second AEP-like protein in eukaryotes, called Primase-Polymerase, or PrimPol 

(also known as CCDC111, FLJ33167, EukPrim2 or hPrimpol1) (Iyer et al., 2005). 

Previously, PrimPol was reported as a novel uncharacterized member of NCLDV-

that herpes virus clade of AEPs (Iyer et al., 2005).  PrimPol exists in most of of 

unicellular and multicellular eukaryotes, from planktonic, protists and algae to 

plants, animals, and mammals.  However, PrimPol has not been found in some 

eukaryotes including Caenohabditis elegans and Drosophila melanogaster. 

Based on this distribution it has been suggested that PrimPol was obtained from 

a viral source through horizontal gene transfer and lost in several occasions in 

several organisms during evolution (Iyer et al., 2005). 
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PrimPol has an N-terminal AEP domain and a conserved C-terminal UL52-like 

zinc finger domain. The N-terminal domain is consisting of three distinct catalytic 

motifs of an AEP, motif I shares the consensus sequence LYFDLE, motif II shares 

the consensus sequence SxH and motif III the consensus sequence VD (Iyer et 

al., 2005). To reflect the ability of this enzyme to catalyse both primase and 

polymerase activities, it was named as PrimPol (Bianchi et al.,2013; Garcia-

Gomez et al., 2013; Keen et al., 2014; Rudd et al.,2014). 

A recent study has shown that PrimPol is also a competent TLS polymerase. It 

was indicated that PrimPol efficiently bypass a number of replication stalling 

damages including 6-4 photoproducts, an UV-induced lesion, and 8-oxo-dG, an 

oxidative lesion (Bianchi et al., 2013).  Similar to many diverse DNA primases, 

PrimPol requires a zinc finger domain for its primase activity but notably this 

conserved element is not essential for PrimPol’s polymerase activity (Keen et al., 

2014).  Although PrimPol polymerase activity is not dependent on the zinc finger 

domain, it has been shown that this element can affect the fidelity and 

processivity of DNA synthesis (Keen et al., 2014).  A catalytically active fragment 

of human PrimPol, which contains the AEP domain (PrimPol1–354), unlike the wild 

type enzyme, is able to bypass CPD lesions (Keen et al., 2014). 

Due to the presence of PrimPol in both nucleus and mitochondria, it has been 

believed that it might play a role in damage tolerance in both cellular 

compartments. Deletion of PrimPol encoding gene leads to mitochondrial DNA 

defects (Bianchi et al., 2013).  Furthermore, it was reported that the primase 

activity of PrimPol during replication plays a significant role in re-initiation of 

stalled replication fork, as the enzyme is able to bypass most UV irradiation-

derived lesion through repriming event (Keen et al., 2014; Mouron et al., 2013). 

PrimPol is also able to bypass G4 structures and chain terminating nucleosides 

analogues by repriming downstream of these blockages (Schiavone et al., 2016; 

Kobayashi et al 2016). 

Recent work has shown that human PrimPol interacts with the major cellular 

SSBs, RPA and mtSSB (Guilliam et al., 2015). This investigation showed that 

unlike replicative polymerases, which are regulated with mono-ubiquitinated 

PCNA, both the primase and polymerase activities of PrimPol are significantly 

modulated by these SSBs (Guilliam et al.,2015).  PrimPol is a highly mutagenic 
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enzyme with a strong bias toward insertion-deletion (INDEL) errors therefore it 

likely to be tightly regulated in the cell and it has been proposed that SSBs may 

help to regulate its recruitment and activities at sites of stalled replication. 

1.10.8. Archaeal AEP primases 

As discussed earlier, archaea and eukaryotes share most of the core components 

of DNA replication, and DNA primases are no exception. The first archaeal 

primase to be biochemically characterized was from the thermophilic 

euryarchaeon Methanococcus jannaschii (Mjpri). Genome sequence analysis 

identified an open reading frame encoding a homologue of eukaryotic DNA 

primase (Desogus et al., 1999). This study demonstrated the ability of Mjpri 

primase to synthesise de novo oligoribonucleotides on homopyrimidine ss DNA 

templates [poly(dT) and poly(dC)] in the presence of divalent cations such as Zn2+ 

, Mg2+ and Mn2+ (Desogus et al., 1999). Soon after, a homologue of p48 

eukaryotic primase (Pfup41) was found in a hyperthermophilic euryarchaeote 

Pyrococcus furiosus (Bocquier et al., 2001). This primase was shown to prefer 

using dNTPs as substrates to synthesis DNA primer on non-synthetic template, 

the M13mp18 (Bocquier et al., 2001). Identification of p58-like protein (Pfup46) in 

P. furiosus led to biochemical characterization of the Pfup41-Pfup46 as a stable 

primase complex in archaea.  In contrast to Pfup41, which can only synthesis 

oligodeoxynucleotide using dNTPs on ssDNA, the Pfup41-Pfup46 complex were 

able to synthesis RNA primer on M13 single-stranded DNA. In addition, the 

Pfup41-Pfup46 complex showed more efficient DNA binding activity, higher rates 

of DNA synthesis and shorter DNA fragments, compared to the catalytic Pfup41 

subunit alone (Liu et al., 2001). The properties of DNA primase complexes 

isolated from different archaea vary widely. Similar findings to P. furiosus primase 

have been reported for the primase complex isolated from Pyrococcus abyssi (Le 

Breton et al., 2007). Previous study on Thermococcus kodakaraensis suggested 

poor RNA synthesis with rNTPs by the catalytic subunit alone. This primase 

produced longer DNA fragments than those formed by the complex. T. 

kodakaraensis primase complex showed a preference for dNTPs over rNTPs to 

synthesis primer (Chemnitz Galal et al., 2012). While binding constant is in a 

same range for  both dNTPs and rNTPs in Pyrococcus abyssi, primases from 

other archaeal species such as Pyrococcus horikoshii, Solfolobus solfataricus 
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and Pyrococcus furiosus prefer using dNTPs rather than rNTPs to form primer 

(Lao-Sirieix and Bell, 2004; L. Liu et al., 2001). Rest of the euryarchaeal 

organisms such as Methanothermobacter thermoautotrophicus 

(Methanobacterium thermoautotrophicum), Archaeoglobus fulgidus, and 

Halobacterium, consist of open reading frames (ORFs) homologous to Pfup41-

Pfup46.  

It is important to note that, unlike eukaryotic primases which form a primase-

ssDNA-NTP-NTP quaternary complex to initiate primer synthesis, some of the 

archaeal primase complexes initiate chains using dNTPs and are able to extend 

primers using both rNTPs and dNTPs, with a marked preference for dNTPs. The 

size of DNA primer extension product by archaeal primases can vary between 

>500 bases in length to <6 kilobases (Bocquier et al., 2001; Chemitz Galal et al., 

2012b; Lao-Sirieix and Bell, 2004; Le Breton et al., 2007; Liu et al., 2001). These 

studies showed the p41-p46 complex, in different species of archaea, is 

responsible for primer formation during DNA replication as in the eukaryotic 

polymerase α-primase complex (Liu et al., 2001).  

Different studies have suggested that archaeal DNA primases in addition to 

primer synthesis activity, fulfilling multifunctional roles from DNA replication to 

DNA repair. The primase from crenarchaeon Solfolobus solfataricus showed the 

ability to synthesis greater than template length primers via terminal transferase -

like activity (Lao-Sirieix and Bell, 2004; Guilliam et al., 2015). Terminal 

transferase is an enzyme which adds nucleotides to the 3’ end of a DNA in a 

template-independent manner. This activity was also observed in M. jannaschii. 

There is now significant evidence accruing that AEPs play roles in DNA damage 

tolerance and repair, including the role of closely related NHEJ AEPs in break 

repair (Weller et al., 2002; Della et al., 2007; Bartlett et al, 2013, 2016). It has 

been reported that Solfolobus solfataricus primase shares a common active site 

architecture with family X DNA polymerase, the family that possess strand 

displacement and gap-filling activities (Lao-Sirieix and Bell, 2004). Given that the 

family X DNA polymerase is absent in archaea, it is not implausible that PriSL 

could have a role in DNA damage repair. As discussed in section 1.4, cells 

develop different cellular pathways to rescue the stalled replication fork, including 

translesion DNA Synthesis (TLS) or error-free bypass mechanisms.  Despite the 
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high degree of conservation between eukaryotic and archaeal replisome 

machinery, the majority of archaeal species lack canonical TLS enzymes (e.g., Y 

family DNA polymerases). Among those archaeal species, which encode 

translesion DNA synthesis polymerases the best characterized example is Dpo4 

(DinB), a member of Y family DNA polymerases from S. solfataricus (Kulaeva et 

al., 1996; Kelman and White., 2005).  Furthermore, the existence of a nucleotide 

excision repair (NER) or photolyase pathways in archaea is still unclear.  Only 

some mesophilic archaea like M. thermautotrophicus, possess a complete set of 

UvrABC (bacterial excision pathway) genes, but most archaeal species lack one 

or more eukaryal-type NER enzymes (Table 1.3) (Kelman and White., 2005). In 

addition, an alternative pathway analogous to mismatch excision repair that exist 

in bacteria and eukarya has not yet been identified in archaea.  These differences 

lead us to question how archaeal species, specifically those reside in extreme 

environmental conditions (such as high temperature) tolerate DNA damage in the 

absence of TLS or lesion repair pathways.  Deamination of cytosine to uracil can 

lead to G.C to A. T transition mutation if not repaired (Greagg et al., 1999). Since 

this process sped up in high temperature, hyperthemophilic archaeae are in high 

risk of cytosine deamination (Lindahl and Nyberg, 1974). Despite the lack of base 

excision repair pathway in archaea, which repair cytosine deamination by a uracil-

DNA glycosylase (UDG) or a G⋅U/T mismatch-specific DNA glycosylase 

(TDG/MUG) in bacteria and eukarya (Greagg et al., 1999), archaea utilize a 

specific uracil detection system to stop replication. In Archaea, replicative 

polymerases (B and D Pols) stall at deoxyuracil containing templates due to the 

presence of a uracil binding pocket located in their amino-terminal domain 

(Richardson et al., 2013; Firbank., 2008). This poses a question as to how 

archaea restart replication after dU-induced replisome stalling. 

The overall aims of this thesis were to investigate the biochemical properties of a 

number of archaeal PriS/L complexes, predominantly from Archaeoglobus 

fulgidus, and investigate the roles this enzyme system play in standard DNA 

replication. The thesis commences with the characterization of enzymatic and 

DNA-binding activities of the DNA primase complex (PriS/L) isolated from three 

different archaeal species, two hyperthemophiles and one mesophile, using 

biochemical methods (Chapter 3). In Chapter 4, lesion bypass proficiencies of 

archaeal replicative primases on damaged DNA templates as well as, measuring 
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the fidelity of PriS/L using standard primer-extension assay are explored. Chapter 

5 reports the regulatory roles of single-stranded binding proteins on polymerase 

activity of PriS/L and interrogates the possible interactions between RPA and 

PriS/L.  Chapter 6 describes attempts to reconstitute an archaeal CMG complex 

in vitro, with the aim of shedding light on the role of archaeal replicative primase 

in replication-specific TLS. This chapter also introduces initial observations 

regarding the potential interaction between PriS/L and RadA recombinase.  
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Table 1.3. Distribution of archaeal DNA repair proteins. 

The table is started with crenarchaea, followed by euryarchaeal species, ranked by 
growth temperature. The circles represent the presence of bacterial repair genes in 
archaeal genomes and the numbers indicate number of each repair gene in each 
species (Kelman anad white., 2005). 
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2.1. Molecular Biology Methods 

2.1.1. Preparation of competent E.coli DH5α 

Lysogeny broth agar plates (1 % (w/v) tryptone, 0.5 % (w/v) yeast extract, 1 % 

(w/v) NaCl, pH 7) were used for plating DH5α cells. One colony of DH5α cells 

selected from LB plates was inoculated into 3 mL of LB medium and incubated 

overnight at 37°C with shaking at 180 x g.  250 mL super optimal broth (SOB) 

medium (2% (w/v) tryptone, 0.5 % (w/v) yeast extract, 10 mM NaCl, 2.5 mM KCl, 

10 Mm MgSO4 and 10 mM MgCl2) was then used to dilute the culture. Diluted 

culture was incubated at 18°C with shaking. The optical density measured at 600 

nm (OD600) was 0.4. Cells were cooled down on ice for 10 minutes and then 

collected by centrifugation (4,000 x g, 10 minutes, 4°C, Sorvall Legend RT, 

75006445 rotor).  80 mL precooled transformation buffer (100 mM PIPES (pH 

6.7), 15 mM CaCl2, 250 mM KCl, 55 mM MgCl2) was used to resuspend the cells. 

After incubation on ice for 10-30 minutes, centrifugation carried out and then cells 

resuspended in 20 mL pre-cooled transformation buffer supplemented with 7% 

(v/v) dimethyl sulphoxide (DMSO). After 10 minutes incubation on ice, 50-100 µL 

aliquots of DH5α cells were frozen in liquid nitrogen and stored at -80°C.  

2.1.2. Transformation of competent DH5α 

50 µL of chemically competent DH5α cells (section 2.1.1) was defrosted on ice. 

1 µL of plasmid DNA from a Miniprep (~ 50-100 ng) (section 2.1.3) or few µL of a 

ligation reaction (section 2.1.7) was mixed and incubated with 50 µL competent 

cells.  After 20 minutes incubation on ice, the mixture was heat shocked at 42°C 

for 35 second and then returned to ice for further 2 minutes. 500 mL SOB medium 

was added to the cell and DNA mix following by one hour incubation at 37°C with 

shaking. One LB agar plate containing proper antibiotics was pre-warmed and 

then 100 µL of the cell growth was plated on it. Subsequently, the plate was 

incubated at 37°C overnight to allow colonies to grow. 100 µg/mL and 34 µg/mL 

final concentrations of ampicillin and kanamycin antibiotics were used. 
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2.1.3. Plasmid DNA amplification and purification 

After successful transformation of plasmid DNA into DH5α cells (section 2.1.2) 

one colony was selected and inoculated into 5 mL of LB medium with appropriate 

antibiotic.  Overnight incubation at 37°C with shaking at 180 x g was followed by 

purification of the plasmid DNA using the QIAprep Spin Miniprep Kit (Qiagen) 

according to the manufacturer’s instructions. Plasmid DNA was eluted in 50 µL. 

ND-1000 NanoDrop spectrophotometer (Thermo Scientific) was used to measure 

DNA yields at a wavelength of 260 nm.  Finally, the DNA stored at -20°C. 

2.1.4. Agarose gel electrophoresis of DNA 

DNA samples were loaded in DNA loading buffer (5% (v/v) glycerol, 3.3 mM Tris 

pH 8, 0.04% bromophenol blue) and then resolved on  a 1% (w/v) agarose TAE 

(200 mM Tris, 100 mM Acetic Acid, 5 mM EDTA) gel supplemented with  ̴ 0.3 µg 

mL-1 ethidium bromide.  DNA samples were resolved alongside a 1 kb (New 

England Biolabs) or a 100 bp (New England Biolabs) DNA ladder and 

electrophoresed at 120 V for ̴ 20-30 minutes. To visualise the DNA, UV 

illuminator (Syngene InGenius Gel Analysis System) was used and analyses of 

images was carried out using GeneSnap (Syngene).  

2.1.5. Polymerase Chain Reaction (PCR) 

PCR was performed using  ̴ 5 ng of template plasmid or 100-200 ng  of genomic 

DNA, 1 mM dNTPs, 10 mM MgCl2, 20 % DMSO, 1 U Phusion high-fidelity DNA 

polymerase (New England Biolabs) and 1 µM of each of a forward and reverse 

primer.  The primers were designed typically to have a Tm of ̴ 55-65°C. Primers 

were flanked by relevant restriction digestion sites.  Reactions were assembled 

into 200 µL tubes in 50 µL final volume.  Using a Professional Trio Thermocycler 

(Biometra) the reactions were initially denatured for 1 minutes at 98°C before 30 

cycles of 95°C for 30 seconds, annealing temperature, which was typically 3°C 

above the Tm’s of the primers, for 30 seconds, elongation at 72°C for 1 minutes 

and a final elongation of 72°C for 3 minutes. The elongation time was depended 

on the desired DNA’s size. To confirm the PCR, agarose gel electrophoresis 

(section 2.1.4) was carried out and PCR products were detected using a UV 

transilluminator (UVP).  Confirmed PCR product was purified using the QIAquick 
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Gel Extraction kit (Qiagen) according to the manufacturer’s instructions. The 

nucleotide sequence of primers used can be found in Table.2.1.  

2.1.6. Restriction Digestion 

In order to generate a construct, 20 µL of Miniprep plasmid DNA ( ̴ 2 µg) or 30 µL 

of PCR product was digested with 10 U of the appropriate restriction enzymes 

(New England Biolabs)  in a 50 µL reaction containing 100 µg/mL bovine serume 

albumin (BSA), and the proper reaction buffer. Following incubation at 37°C for 

3-4 hours, to prevent recircularisation of the plasmid, the digested plasmid DNA 

was treated with Antarctic phosphatase (New England Biolabs) and incubated 

with Antarctic phosphatase buffer (50 mM Bis-Tris-propane-HCl pH6, 1 mM 

MgCl2, 0.1 mM ZnCl2) for further 30 minutes.  The digested plasmid DNA was 

purified using the OIAquick PCR purification kit (Qiagen) according to the 

manufacturer’s instructions.  

2.1.7. Ligation of DNA 

In a final volume of 20 µL reaction, restriction digested plasmid DNA and PCR 

products were ligated using  200 units T4 DNA ligase, and T4 DNA ligase buffer 

(50 mM Tris HCL pH 7.5, 10 mM MgCl2, 1 Mm ATP, 10 mM DTT).  Following 1 

hour or overnight incubation at room temperature or 12°C respectively, 2 µL of 

reaction was transformed into DH5α (section 2.1.2)..  

To determine the concentration of digested DNA the ND-1000 NanoDrop 

spectrophotometer (Thermo Scientific) was used, and concentration measured 

at a wavelength of 260 nm.  Ligation reactions were set up at a ratio (n) of 6:1 or 

3:1 of insert (I) to vector (V) using the following equation:    I(ng) = nx [ I(bp) / V(bp) ] 

x V(ng) 

 2.1.8. Sequencing of DNA products 

To confirm successful cloning, sequencing of plasmid DNA was performed by 

GATC biotech using universal primers or gene-specific primers. The sequencing 

chromatogram was read using 4peaks (Mekentosj). 
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Table 2.1. Primers used in PCR to produce expression vectors.  

The designed primers listed here are used in this thesis for the construction of expression vectors  

listed in Table 2.3. 
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2.1.9. Yeast two hybrid methods 

To detect interacting proteins Yeast two-hybrid system (Y2H) was performed.  

The S. cerevisiae Y190 strain was used in this system. pGBKT7 (containing the 

GAL4 DNA binding domain) and pGADT7 (containing the GAL4 DNA activation 

domain) were used as the vectors in the two-hybrid assay.  Plasmid constructs 

used in this thesis are detailed in Table 2.2. 

2.1.9.1. Yeast culture 

Y190 yeast strain was grown in Yeast Extract medium (YE: 0.5% (w/v) yeast 

extract, 3% (w/v) glucose, 0.02% (w/v) adenine, and 0.1% (w/v) uracil, histidine, 

arginine and leucine) or on YEA plates (YE medium solidified with 2.5% 

granulated agar) at 30°C.  Yeast plate was stored at 4°C for short time.  For longer 

storage, one colony from the yeast plate was collected and resuspended in 

growth media and then supplemented with glycerol to a final concentration of 25% 

and finally stored at -80°C. To make a new culture, a few microliter of glycerol 

stock was streaked onto YEA plates following by incubated at 30°C for 3-5 days. 

2.1.9.2. Yeast transformation 

Few colonies of Y190 were inoculated into 1 mL of YE, vortexed vigorously to 

disperse clumps. 1 mL culture transferred into 50 mL of YE and incubated 

overnight at 30°C (250 x g) until growth reached stationary phase (OD600 > 1.5). 

2 mL of an overnight cell culture was used to inoculate 100 ml of pre-warmed YE 

medium and incubated at 30ºC for 3-4 hours. After centrifugation, cells were 

washed with 25ml of sterile water and again subjected to centrifugation.  The cells 

were then resuspended in 1mL of LiOAc buffer (100mM LiOAc, 100mM Tris-HCl, 

and 10mM EDTA) and incubated at 30ºC for 30 minutes. The yeast 

transformation competent cells were aliquot in 100µl samples, and spun down 

again.  Next, each pellet was gently resuspended with 50µL LiOAc buffer and 

mixed with 1-5µg of plasmid DNA, 150µg of single-stranded salmon sperm DNA. 

Finally the cells and DNA suspension was treated with 700µl of PEG/LiOAc buffer 

(40% PEG 3,350, 100mM LiOAc, 100mM Tris-HCl (pH 7.5), and 10mM EDTA) 

and incubated at 30ºC for 30 minutes.  
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# Primer Sequence 

1 Afu-PriS        
FP 

5’-GTTTCTTCATATGGCAGCAGGTTGTGATTATCAACTTCG -3’ 

2 Afu-PriS        
RP 

5’-

GTTTCTTCTCGAGTTAGGAATCGTAGCTTGCATCCCCTCTGCAAATC 

-3’ 

3 Afu-KU          

FP 

N/A 

4 Afu-KU          
RP 

N/A 

5 Afu-LigD       
FP 

N/A 

6 Afu-LigD       
RP 

N/A 

 

Table 2.2. Primers used to generate plasmid constructs for two-hybrid assay 

The designed primers listed here are used in this thesis to generate plasmid constructs listed   in 

Table 2.4. for yeast-two hybrid analysis  
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The incubation of yeast with plasmid DNA was followed with heat shock step at 

42ºC for 20 minutes.  Finally, cells were spun briefly, resuspended in 80 µL of 

sterile water and plated on yeast minimal medium plates (YMM; yeast nitrogen 

base (YNB), 10 % glucose, 2.5 % granulated agar) supplemented with 20 mL 

adenine and histidine. After 2-3 days incubation in a 30°C incubator, colonies 

appear on the plate.   

2.1.9.3. Detection of interaction 

Colonies of both pGBKT7 and pGADT7 transformed cells were resuspened in 20 

µL sterile water. 10 µL of cells were plated on YMM plates containing adenine 

and histidine and the rest 10 µL were spread on YMM plates containing adenine 

and 25 mM 3-amino-1, 4-triazole (3-AT). 3-AT is a heterocyclic organic compound 

which limits biosynthesis of HIS3 protein, therefore inhibiting low-level leaky 

expression (Durfee et al., 1993).  The plates were incubated at 30°C for 2-3 days. 

Cell growth in plates with no histidin (3-AT plates) suggested a potential 

interaction of the proteins fused in pGBKT7 and pGADT7.  Plasmid constructs 

used in two-hybrid assay are listed in Table 2.3. 

2.2. Purification of recombinant proteins 

2.2.1. Preparation of chemically competent E.coli strains 

In this thesis, chemically competent BL21, SHuffle and Rosetta E.coli strains 

were used for purification of recombinant proteins. All of the chemically 

competent E.coli expression strains were prepared in the same manner as DH5α 

(section 2.1.1).  

2.2.2. Strain optimisation of protein expression 

A 50 µL aliquot of chemically competent E.coli expression strain was transformed 

with 2 µL of appropriate expression construct (Table 2.4).  A fresh single colony 

was inoculated into 5 mL of LB medium containing the antibiotic resistance 

present on the expression construct. The culture was incubated at 37°C overnight 

with shaking at 180 x g. 1 mL of overnight culture was added to 50 mL of LB 

medium containing the appropriate antibiotic resistance and incubated at 37°C 

until exponential growth (OD600 = 0.4-0.6).  
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# Gene product Vector source Primers 

A1 Afu-PriS pET28a PCR-Genomic DNA 1,2 

A2 Afu-PriL pETduet-1 PCR-Genomic DNA 3,4 

A3 Afu-PolB pET28a Dr. Stanislaw Jozwiakowski 13,14 

A4 Afu-PolD1 pETduet-1 Dr. Stanislaw Jozwiakowski 16,17 

A5 Afu-MCM pET28a PCR-Genomic DNA 19,20 

A6 Afu-GINS pET28a PCR-Genomic DNA 21,22 

A7 Afu-RecJ99 pETduet-1 PCR-Genomic DNA 23,24 

A8 Afu-RecJ99/98 pETduet-1 PCR-Plasmid A7 25,26 

A9 Afu-RPA-780 pET28a PCR-Genomic DNA 27,28 

A10 Afu-RPA-382 pGEX-6p-1 PCR-Genomic DNA 29,30 

A11 Afu-RadA pET28a PCR-Genomic DNA 31,32 

P1 Pfu-PriS pET28a Dr. Stanislaw Jozwiakowski 5,6 

P2 Pfu-PriL pETduet-1 Dr. Stanislaw Jozwiakowski 7,8 

M1 Mma-PriS pET28a Dr. Stanislaw Jozwiakowski 9,10 

M2 Mma-PriL pETduet-1 Dr. Stanislaw Jozwiakowski 11,12 

  

Table 2.3. Plasmid expression vectors and their associated gene products.   

pET28a and pETduet-1 plasmids containing a T7 promoter and a lac operon are used as the 
expression vectors in this thesis. Plasmid A10 is located within the polylinker of the pGEX plasmid 
for expression.  The source is given with polymerase chain reaction (PCR) products indicated and 

the plasmid that was used as a template. Other scientist donated plasmids A1, A2, A3, and A4. 

Primers column is the list of primer numbers (#) from Table 2.1 that used to generate constructs. 
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# Gene 

product 

Vector Source Yeast 

strain 

Genotype Primers 

A12 Afu-PriS pGBKT7-

pGADT7 

PCR-

Plasmid 
A1 

Y190 MATa, ura3-52, his3-D200, lys2-

801, ade2-101,trp1-901, leu2-3, 
112, gal4D, gal80D, 

URA3::GAL1UAS-GAL1TATA-lacZ, 

cyhr2, LYS2::GALUAS-HIS3TATA-HIS3 

1,2 

A13 Afu-PriL pGBKT7-

pGADT7 

PCR-

Plasmid 
A2 

Y190 MATa, ura3-52, his3-D200, lys2-

801, ade2-101,trp1-901, leu2-3, 

112, gal4D, gal80D, 
URA3::GAL1UAS-GAL1TATA-lacZ, 

cyhr2, LYS2::GALUAS-HIS3TATA-HIS3 

3,4 

A14 Afu-KU pGBKT7-
pGADT7 

Dr. 
Nigel 
Brissett 

Y190 MATa, ura3-52, his3-D200, lys2-

801, ade2-101, trp1-901, leu2-3, 

112, gal4D, gal80D, URA3::GAL1UAS-

GAL1TATA-lacZ,cyhr2, LYS2::GALUAS-
HIS3TATA-HIS3 

N/A 

A15 Afu-
LigD 

pGBKT7-
pGADT7 

Dr. 
Nigel 
Brissett 

Y190 MATa, ura3-52, his3-D200, lys2-
801, ade2-101, trp1-901, leu2-3, 

112, gal4D, gal80D, URA3::GAL1UAS-

GAL1TATA-lacZ,cyhr2, LYS2::GALUAS-

HIS3TATA-HIS3 

N/A 

 

Table 2.4. Plasmid constructs for yeast-two hybrid 

Constructs used and generated in this thesis for expression of proteins in S.cereviase for yeast-

two hybrid assay are listed. The genotype of Y190 yeast strain is also indicated. pGBKT7 
(containing the GAL4 DNA binding domain) and pGADT7 (containing the GAL4 DNA activation 
domain) are used. Plasmids A14 and A15 were donated by other scientist. Primers column is the 

list of primer numbers (#) from Table 2.1 which used to generate constructs.  
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The culture was then cooled on ice for 10 minutes.  Few µL of uninduced sample 

was collected and remainder of expression was induced for expression through 

addition of 400 µM isopropyl β-D-1-thiogalactopyranoside (IPTG). The induced 

culture was returned to incubator for the desire amount of time.  Cells were 

collected by centrifugation and resuspended in water or lysis buffer (300 mM 

NaCl, 50 mM Tris-HCl pH 7.5, 30 mM imidazole, 10% (v/v) glycerol, 1 protease 

inhibitor cocktail tablet EDTA-free (Roche), and 5 mM β-mercaptoethanol).  The 

lysate was then sonicated (Vibrs-cell sonicator) on ice, 3 rounds for 20 second 

pulses at 30% amplitude.  After sonication, cells were centrifuged at 13,000 x g 

for 1 hour at 4°C to clarify the cell lysate.  Clarified cell lysate was then suspended 

in sample buffer, incubated at 95°C for 5 minutes and analysed by sodium 

dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) (section 

2.3.1). 

2.2.3. Expression of recombinant proteins 

Chemically competent E.coli expression strain was transformed with appropriate 

expression construct. One colony was added into 50 mL of LB medium 

supplemented with appropriate antibiotic resistance and incubated at 37°C 

overnight. The overnight incubation followed by the 1:100 dilution of the culture 

into a large volume (1-6 Litres) of fresh LB medium containing appropriate 

antibiotic resistance and incubated at 37°C  with shaking until  exponential growth 

(OD600 = ~ 0.4). Growths were then incubated at 4°C for 30 minutes and 

subsequently 400 µM of IPTG was added for expression induction. Growths were 

then incubated at temperatures ranging from 16-25°C for 3-16 hours. The 

induction conditions for each of the proteins in this thesis are listed in Table 2.5.  

Cells were spun down by centrifugation (4,000 x g, 15 minutes, 4°C, Sorvall 

Evolution, SLC-6000 rotor) and resuspended in water or lysis buffer (15 mL per 

litre of culture grown). Lysate was then supplemented with 1 mg/mL of chicken 

egg lysozyme and stir for 30-45 minutes.  Following sonication using a Vibra-Cell 

sonicator (Sonics) on ice at 30% amplitude for 3 second pulses, with a 10 second 

rest between pulses, for a total 6 minutes sonication time, the soluble lysate was 

separated from insoluble cell debris through centrifugation (18,000 x g, 1 hour, 

4°C, JA 25-50 rotor). 
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Protein E.coli strain Genotype Growth 

Medium 

Induction 

Temperature and 
Length 

Afu-PriS/L 

 
BL21 

B F– ompT gal dcm lon 

hsdSB(rB–mB–) [malB+]K-
12(λS) 

LB   20°C overnight 

Afu-PolB 

 
Rosetta 

F- ompT hsdSB(rB- mB-) gal 

dcm (DE3) pRARE (CamR) LB 20°C 4 hours 

Afu-PolD1 

 
Rosetta 

F- ompT hsdSB(rB- mB-) gal 

dcm (DE3) pRARE (CamR) LB N/A 

Afu-MCM 

 
Rosetta 

F- ompT hsdSB(rB- mB-) gal 

dcm (DE3) pRARE (CamR) LB 25°C overnight 

Afu-GINS 

 
Rosetta 

F- ompT hsdSB(rB- mB-) gal 

dcm (DE3) pRARE (CamR) LB 25°C overnight 

Afu-

RecJ99 

 

BL21/Rosetta 
˶ 

LB 
25 /20/16 °C 

overnight 

Afu-
RecJ99/98 

 

BL21/Rosetta 
˶ 

LB 
25 /20/16 °C 

overnight 

Afu-RPA-

780 

 

Rosetta 

F- ompT hsdSB(rB- mB-) gal 

dcm (DE3) pRARE (CamR) 
LB 25°C overnight 

Afu-RPA-

382 

 

Rosetta 

F- ompT hsdSB(rB- mB-) gal 

dcm (DE3) pRARE (CamR) 
LB 25°C overnight 

Afu-RadA 

 
Rosetta 

F- ompT hsdSB(rB- mB-) gal 

dcm (DE3) pRARE (CamR) LB 25°C overnight 

Pfu-

PriS/PriL 

 

BL21 

B F– ompT gal dcm lon 

hsdSB(rB–mB–) [malB+]K-

12(λS) 
LB 20°C overnight 

Mmp-
PriS/PriL 

 

BL21,Rosetta 
˶ 

LB 20°C overnight 

 

Table 2.5. Growth conditions for recombinant proteins 

The E.coli strains used in the growth of recombinant proteins are listed. The genotype of each 

strain is also indicated. Lysogeny Broth (LB) was used as the growth medium. E.coli growths 

were induced at 16 °C, 20°C and 25°C.  
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The soluble cell lysate was next passed through a 0.45 µM filter (Milipore) and 

then subjected to chromatography columns for protein purification.  

2.2.4. Immobilised metal affinity chromatography 

In this thesis, the recombinant proteins fues to a 6xHis tag were purified using 

Immobilised metal affinity chromatography (IMAC).  A column with 5 mL or 25 mL 

of nickel-nitrolotriacetic acid (Ni2+-NTA) agarose resin (Qiagen) was subjected to 

chromatography using ÄKTAprime (GE Healthcare) system. The column was 

pre-equilibrated in IMAC buffer A (500 mM NaCl, 20 mM Tris-HCl pH 7.5, 20 mM 

imidazole, 10% (v/v) glycerol, 5 mM β-mercaptoethanol). The soluble cell lysate 

was then loaded onto the column at a flow rate of 2 mL/miN.  Next, the column 

was washed with buffer A until all the unbound proteins were eluted which was 

measured by the absorbance at a wavelength of 280 nm (A280) returning to basal 

levels.  The column was then washed with 10% IMAC buffer B (buffer A with 300 

mM imidazole) in order to eliminate weakly bound proteins.  The bound proteins 

were eluted at 2 mL/min with 100% IMAC buffer B. -IPTG, Insoluble fraction, load, 

flow through, wash, 10% buffer B wash and 100% B elution samples were 

analysed by SDS-PAGE with Coomassie staining (section 2.3.1 and 2.3.2). 

 2.2.5. Heparin affinity chromatography  

HiTrap Heparin HP (GE Healthcare) column was prepacked with Heparin 

Sepharose.  Heparin binds to a wide range of biomolecules via both affinity and 

ion exchange mechanism. Heparin sepharose column was pre-equilibrated in 

Heparin buffer A (150mM NaCl, 20 mM Tris-HCl pH 7.5, 10% (v/v) glycerol, 5 mM 

β-mercaptoethanol). The IMAC elute was diluted 1:10 into Heparin buffer A to 

reduce the salt concentration to improve binding. Following loading the protein 

onto the column at a flow rate of 2 mL/min, the column was washed extensively 

with Heparin buffer A to elute unbound proteins. Proteins were eluted by gradient 

elution up to 50% Heparin buffer B (Heparin buffer A with 1 M NaCl).  Fractions 

containing protein were collected and analysed by SDS-PAGE with Coomassie 

staining (section 2.3.1 and 2.3.2). 
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2.2.6. Ion-Exchange chromatography recombinant proteins 

Ion-exchange chromatography is a chromatography process that separates ions 

and polar molecules based on their affinity to the ion exchanger. Recombinant 

proteins were subjected to either 5 mL HisTrap Q Sepharose FF columns (GE 

Healthcare) or HisTrap SP sepharose FF (GE Healthcare) based on their 

predicted isoelectric point (pI). Typically, HisTrap Q Sepharose FF column is used 

as an anion exchanger and HiTrap SP Sepharose FF is used as a cation 

exchanger. To purify proteins using Ion-exchange chromatography similar 

process as HiTrap Heparin HP column was performed (section 2.2.5).  

2.2.7. Affi-Gel Blue chromatography 

Some proteins (Table 2.6) were subjected to Affi-Gel Blue as an affinity 

chromatography resin.  Affi-Gel Blue is a cross-linked agarose bead to which the 

dye Cibacron Blue F3GA has been covalently attached. The Cibacron Blue dye 

has ionic, hydrophobic, and aromatic character therefore displays affinity for 

many type proteins.  5 mL Affi-Gel Blue (Bio-Rad) column was pre-equilibrated 

with buffer A (50 mM HEPES-NaOH, pH 7.5, 10% glycerol, 10 mM β-

mercaptoethanol, and 500 mM NaCl). The column was first washed with buffer 

A, and then with buffer A containing 1 M NaCl, then with buffer A containing 500 

mM NaSCN.  Following loading the protein into the column, the protein was eluted 

with 50 mL of buffer A containing 1.5 M NaSCN.  Eluted fractions were pooled 

and dialyzed against buffer A with 100 mM NaCl, and 0.1% Tergitol-type NP-40. 

Precipitated materials were removed by centrifugation and the sample was 

analysed by SDS-PAGE with Coomassie staining (section 2.3.1 and 2.3.2). 

2.2.8. Hydrophobic interaction chromatography (HIC) 

Hydrophobic interaction chromatography is a technique that separates proteins 

from one another based on hydrophobicity. HIC is  mostly suitable for the the 

intermediate steps of purification.  HiTrap Phenyl FF (GE Healthcare) column was 

prepacked with phenyl sepharose. The column was pre-equilibrated in HIC buffer 

A (40 mM Tris-HCl pH 7.5, 500 mM NaCl, 1 M ammonium sulfate and 5 mM β-

mercaptoethanol). 
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Protein Affinity Ion 

exchange 

Hydrophobicity Gel 

filtration 

 Ni-

NTA 
IMAC         

Heparin Affi-Gel 

Blue 

Q   

Afu-PriSL 

 

✓ ✓     ✓ 

Pfu-PriSL 

 

✓  ✓      

Mmp-PriSL 

 

✓  ✓     ✓ 

Afu-PolB 

 

✓  ✓      

Afu-MCM 

 

✓    ✓  ✓  

Afu-GINS 

 

✓    ✓   

Afu-RecJ99/98 

 

✓    ✓    

Afu-RPA780 

 

✓  ✓    ✓   

Afu-
RPA780/382 

 

  ✓  ✓   

Afu-RadA 

 

✓      ✓ 

Afu-

RadA/PriSL 

 

✓      ✓ 

 

Table 2.6. Purification steps for recombinant proteins. 

The purified recombinant proteins are listed along with the chromatography columns used in this 

thesis.  
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 Eluted protein from previous step was first concentrated using Vivaspin 

concentrators with an appropriate molecular weight cut off membrane (GE 

Healthcare) and diluted 1:1 into HIC buffer A with 1 M NaCl and 2 M ammonium 

sulfate.  Following loading protein onto the column at a flow rate of 2 mL/min, the 

column was washed extensively with HIC buffer A and the protein eluted from 

Phenyl sepharose column with HIC buffer B (40 mM Tris-HCl pH 7.5, 500 mM 

NaCl, 5 mM β-mercaptoethanol).  The fractions containing proteins were pooled 

and analysed by SDS-PAGE with Coomassie staining (section 2.3.1 and 2.3.2). 

2.2.9. Size-exclusion chromatography  

Some proteins in this thesis were subjected to size exclusion chromatography 

(SEC) for the final step of purification.  (SEC) is a chromatographic method in 

which proteins are separated by their size. Based on the size of each protein, 

either an S75 or S200 10/300 GL gel-filtration column (GE Healthcare) was used. 

The column was subjected to ÄKTAprime system and pre-equilibrated with SEC 

buffer (50 mM Tris-HCl pH 7.5, 300 mM NaCl, 10% (v/v) glycerol and 0.5 mM Tris 

(2-carboxyethyl) phosphine (TCEP)) which had been sterile-filtered using a 0.2 

µM pore size vacuum filtration system (Nalgene). 5 mL loop was pre-filled with 

SEC buffer and then the concentrated protein sample was loaded onto the loop. 

The protein was concentrated to ~ 4 mL using a Vivaspin sample concentrator. 

The SEC column was run at a flow rate of 2 mL/min and fractions were collected 

following 100 mL of flow-through.Fractions containing protein were analysed by 

SDS-PAGE with Coomassie staining(section 2.3.1 and 2.3.2). 

2.2.10. Cleavage of His-tagged proteins with Thrombin 

Since the hexahistidine tag linker in pET28a contains a thrombin cleavage site, 

the his tag at the N-terminal was removed using thrombin. The thrombin 

concentration used for cleavage is typically 1 unit per mg purified protein. 

Following mixing thrombin with purified protein, the mixture was incubated 

overnight at room temperature. To separate the thrombin and cleaved His-tag 

from the purified protein, 1 mL HisTrap HP column FF (GE Healthcare) connected 

in series to a HiTrap Benzamidine FF column (GE Healthcare) was used. The 

cleaved protein alongside the uncut protein was analysed by SDS-PAGE (section 

2.3.1). 
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2.2.11. Storage of purified recombinant proteins 

For storage, the purified proteins were concentrated using a Vivaspin sample 

concentrator (GE Healthcare) with the appropriate molecular weight filter. 

Concentrations of proteins were measured at A280 using ND-1000 NanoDrop 

(Thermo Scientific). Purified proteins were aliquoted into small volumes (50-100 

µL) and stored -80°C. 

2.3. Biochemistry Methods 

2.3.1. SDS polyacrylamide gel electrophoresis 

Protein samples were prepared through the addition of Laemmli sample buffer 

(2% (w/v) SDS, 10% v/v β-mercaptoethanol, 20% (v/v) glycerol, 0.02% 

bromophenol blue, 125 mM Tris-HCl pH 6.5) (Laemmli, 1970).  SDS-PAGE gels 

were prepared in either 1 or 1.5 mm Novex Gel cassettes (Invitrogen) consisting 

of a stacking gel layer cast over resolving gel (Sambrook and Russell, 2006). The 

resolving gel was usually 8-12% acrylamide/bisacrylamide 30% (37.5:1) mix 

(National Diagnostics) 375 mM Tris-HCl (pH 8.8), 0.1% (w/v) SDS, 0.1% 

ammonium persulphate (APS), 0.04% N, N, N’, N’-Tetramethylethylenediamine 

(TEMED).  Isopropanol and water were added on top the resolving gel mix, after 

one hour removed, and topped with a layer of stacking gel mix (5% acrylamide 

mix, 125 mM Tris pH 6.8, 1% (w/v) SDS, 0.1 (w/v) APS, 0.04% (v/v) TEMED. The 

gel allowed setting after adding a well comb. After boiling at 95°C for 5 minutes, 

protein samples were run alongside a molecular weight marker, Precision Plus 

(Bio-Rad) for Coomassie staining (section 2.3.2) or Precision Plus Dual Marker 

(Bio-Rad) for western blotting (section 2.3.4). The XCell Surelock Mini-Cell 

Electrophoresis System (Invitrogen) was utilized and samples were 

electrophoresed at 170 V in SDS running buffer until the dye reached the bottom 

of gel.   

2.3.2. Coomassie blue staining 

To detect protein bands SDS gels were stained in Coomassie blue solution (50% 

(v/v) methanol, 10% (v/v) acetic acid, 0.5% (w/v) Commassie brilliant blue) with 

shaking on a rocking table for ̴ 10-20 minutes.  Coomassie blue solution was then 
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discarded and gels were rinse briefly with water. Destaining solution (10-20% 

(v/v) methanol, 10% (v/v) acetic acid) was then added to cover the gels .Gels 

were incubated in destain solution for 2-16 hours on the rocking table unti l 

adequate decolouration of the dye background. Gels were then air-dried using 

the GelAir Drying System (Bio-Rad) following the manufacturer’s instructions.  

2.3.3. In vitro pull down assays 

To detect protein-protein interaction we took advantage of pull down assays. For 

His-pull down assay, 400 nM of the His-tagged protein and 400 nM of the non 

His-tagged protein were mixed with binding buffer (40 mM Tris pH 7.5, 100 mM 

NaCl and 30 mM imidazole) in 50 µL total volume. After 30 minutes incubation on 

ice protein mixture was added to pre-equilibrated Ni2+-NTA Agarose resin and 

mixed on spinning wheel at 4ºC for 1 hour.  The supernatant was removed after 

spinning at 2,000 x g for 2 min. The resin was then  rinsed with 100 μL of wash 

buffer (40 mM Tris pH 7.5, 100 mM NaCl and 30 mM imidazole) for three times. 

25 µL of elution buffer (40 mM Tris pH 7.5, 250 mM imidazole) was added to the 

protein mix and incubated for 15 minutes on a rocking table.  After 2 minutes 

spinning at 2,000 x g, eluted protein was collected and analysed by 12% 

SDS.PAGE (section 2.3.1). 

In GST-pull down assay, a GST-fused protein (bait protein) (either purified protein 

or cell extract) was mixed with a non-GST-tagged protein (Prey protein). The 

mixture was then loaded onto 30µL GST magnetic beads and incubated at 4°C 

for one hour.  Following incubation, beads were washed three time in a buffer 

containing 40 mM Tris-HCL, pH 7.5, 300 mM NaCl, 5 mM β-mercaptoethanol, 

0.1% NP-40.  Next, beads were eluted, boiled and then run on a SDS-PAGE gel 

to visualize the interacting proteins.  

2.3.4. Western blot analysis 

Samples to be analysed by western blot were first resolved with SDS-PAGE. 

Following activating a polyvinyladine fluoride (PVDF) membrane (Milipore) with 

100% methanol, the electrophoresed gel was washed with water and equilibrated 

in transfer buffer (20 mM Tris, 50 mM glycine, 10% (v/v) methanol).  In order to 

transfer the proteins to the PVDF membrane the XCell II Blot Module (Invitrogen) 

was used according to the manufacturer’s instructions.  Transfer was carried out 



92 
 

 

at 25 V for 60 minutes in transfer buffer.  Blocking buffer (Tris buffered saline) 

(TBS: 280 mM NaCl, 20 mM Tris) supplemented with 0.05% (v/v) Tween 20 and 

5% (w/v) non-fat dried milk (Marvel) was used for blocking the membrane for at 

least 1 hour at room temperature. Membrane was incubated in 5 mL fresh 

blocking buffer containing primary antibody for 1 hour at room temperature or at 

4°C overnight. The membrane was then rinsed 2 times in TBS containing 0.05%  

(v/v) Tween 20 and 5% (w/v) non-fat dried milk and one time in TBS 

supplemented only with 0.05 (v/v) Tween 20. Secondary antibody was diluted 

into 5 mL of blocking buffer and incubated for 1 hour at room temperature on 

rocking table. Following three times washes, Amersham ECL Western Blotting 

Detection reagent (GE Healthcare) was used for chemiluminescent detection 

according to the manufacturer’s instructions.  Light emission was captured with 

Amersham Hyperfilm (GE Healthcare) autoradiography film and developed using 

a Xograft compact X4 developer.  Anti-6X His was used as the primary antibody 

at dilution of 1:3000 and Rabbit anti-mouse IgG H&L secondary antibody 

conjugated with horseradish peroxidase (HRP) (Abcam) was used at dilution of 

1:5000. 

2.3.6. Annealing of primer-template substrates 

The DNA oligomers used to prepare the synthetic primer-template substrates 

were designed by Dr. Stanislaw Jozwiakowski and were HPLC grade 

manufactured by ATDBio. All DNA primers were labelled with 

hexachloroflurescein at 5’ end.  The sequences of all the oligonucleotides used 

in primer extension assays, DNA primase assays, electrophoretic mobility shift 

assays (EMSAs) and helicase assay are detailed in this thesis are in Table 2.7. 

To anneal primer-template substrates equimolar ratio of the labelled DNA primer 

and DNA templates were mixed to a final concentration of 200 nM in annealing 

buffer (50 mM NaCl, 1 mM EDTA, 20 mM Tris-HCl pH 7.5).  Oligonucleotides 

were heated at 95 °C for 5 minutes. Annealed primer-template substrates were 

incubated at room temperature for 1 hour to allow annealing and then stored at -

20°C.  
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Primer Dire

ctio

n 

Label Sequence 

Undamaged 

substrate(50/

20mer) 

5’-3’ 

3’-5’ 

5’-Hex 

None 

TGTCGTCTGTTCGGTCGTTC 

ACAGCAGACAAGCCAGCAAGCCAGAAGTTCCGACA

ACACGCGGGACGCGC 

50mer 

ssDNA 

5’-3’   5’-Hex TGTCGTCTGTTCGGTCGTTCGGTCTTCAAGGCTGTT

GTGCGCCCTGCGCG  

50mer 

dsDNA 

5’-3’ 

3’-5’ 

5’-Hex 

None 

TGTCGTCTGTTCGGTCGTTCGGTCTTCAAGGCTGTT

GTGCGCCCTGCGCG 

ACAGCAGACAAGCCAGCAAGCCAGAAGTTCCGACA

ACACGCGGGACGCGC 

45mer 

ssDNA 

5’-3’  5’-FAM AGTCGCATAGTGTAGTCGGTCTTGTTCGGTCATAGC

TCATCGTGG 

45mer 

dsDNA 

5’-3’ 

3’-5’ 

5’-FAM 

None 

AGTCGCATAGTGTAGTCGGTCTTGTTCGGTCATAGC

TCATCGTGG 

CCACGATGAGCTATGACCGAACAAGACCGACTAACA

TATGCGACT 

65mer 

ssDNA 

5’-3’ 5’-

Biotin 

GTCTTCTATCTCGTCTATATTCTATTGTCTCTATGAAT

ACCTTCATTCATTCTCACATAGATGCATC 

Poly(dA) 5’-3 5’-

Biotin 
 

 

Poly(dC) 5’-3’ 5’-

Biotin 
 

Poly(dG) 5’-3’ 5’-

Biotin 
 

Poly(dT) 5’-3’ 5’-

Biotin 
 

Fidelity 

substrate 

(AA) 

5’-3’ 

3’-5’ 

5’-Hex 

None 

TGTCGTCTGTTCGGTCGTTCGGTCTTC  

ACAGCAGACAAGCCAGCAAGCCAGAAGAACCGACA

ACACGCGGGACGCGC 

Fidelity 

substrate 

(CC) 

5’-3’ 

3’-5’ 

5’-Hex 

None 

TGTCGTCTGTTCGGTCGTTCGGTCTTC  

ACAGCAGACAAGCCAGCAAGCCAGAAGCCTTGACA

ACACGCGGGACGCGC 

Fidelity 

substrate 

(GG) 

5’-3’ 

3’-5’ 

5’-Hex 

None 

TGTCGTCTGTTCGGTCGTTCGGTCTTC 

ACAGCAGACAAGCCAGCAAGCCAGAAGGGCCGACA

ACACGCGGGACGCGC 

Fidelity 

substrate 

(TT) 

5’-3’ 

3’-5’ 

5’-Hex 

None 

TGTCGTCTGTTCGGTCGTTCGGTCTTC  

ACAGCAGACAAGCCAGCAAGCCAGAAGTTCCGACA

ACACGCGGGACGCGC 

Mismatch 

substrate 

(A/AA) 

5’-3’ 

3’-5’ 

5’-Hex 

None 

TGTCGTCTGTTCGGTCGTTCGGTCTTCA  

ACAGAGACAAGCCAGCAAGCCAGAAGAACCGACAA

CACGCGGGACGCGC 

 

Mismatch 

substrate 

(C/AA) 

5’-3’ 

3’-5’ 

5’-Hex 

None 

TGTCGTCTGTTCGGTCGTTCGGTCTTCC  

ACAGCAGACAACCAGCAAGCCAGAAGAACCGACAA

CACGCGGGACGCGC 

Mismatch 

substrate 

(G/AA) 

5’-3’ 

3’-5’ 

5’-Hex 

None 

TGTCGTCTGTTCGGTCGTTCGGTCTTCG  

ACAGCAGACAAGCCAGAAGCCAGAAGAACCGACAA

CACGCGGGACGCGC 
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Mismatch 

substrate 

(T/AA) 

5’-3’ 

3’-5’ 

5’-Hex 

None 

TGTCGTCTGTTCGGTCGTTCGGTCTTCT  

ACAGCAGACAACCAGCAAGCCAGAAGAACCGACAA

CACGCGGGACGCGC 

Mismatch 

substrate 

(A/CC) 

5’-3’ 

3’-5’ 

5’-Hex 

None 

TGTCGTCTGTTCGGTCGTTCGGTCTTCA  

ACAGCAGACAGCCAGCAAGCCAGAAGCCCCGACAA

CACGCGGGACGCGC 

Mismatch 

substrate 

(C/CC) 

5’-3’ 

3’-5’ 

5’-Hex 

None 

TGTCGTCTGTTCGGTCGTTCGGTCTTCC  

ACAGCAGAAAGCCAGCAAGCCAGAAGCCCCGACAA

CACGCGGGACGCGC 

Mismatch 

substrate 

(G/CC) 

5’-3’ 

3’-5’ 

5’-Hex 

None 

TGTCGTCTGTTCGGTCGTTCGGTCTTCG  

ACAGCAGACAGCCAGCAAGCCAGAAGCCCCGACAA

CACGCGGGACGCGC 

Mismatch 

substrate 

(T/CC) 

5’-3’ 

3’-5’ 

5’-Hex 

None 

TGTCGTCTGTTCGGTCGTTCGGTCTTCT  

ACAGCGACAAGCCAGCAAGCCAGAAGCCCCGACAA

CACGCGGGACGCGC 

Mismatch 

substrate 

(A/GG) 

5’-3’ 

3’-5’ 

5’-Hex 

None 

TGTCGTCTGTTCGGTCGTTCGGTCTTCA  

ACAGCAGACAAGCCAGCAAGCCAGAAGGGCCGACA

ACACGCGGGACG 

Mismatch 

substrate 

(C/GG) 

5’-3’ 

3’-5’ 

5’-Hex 

None 

TGTCGTCTGTTCGGTCGTTCGGTCTTCC  

ACAGCAGACAAGCCAGCAAGCCAGAAGGGCCGACA

ACACGCGGGACG 

Mismatch 

substrate 

(G/GG) 

5’-3’ 

3’-5’ 

5’-Hex 

None 

TGTCGTCTGTTCGGTCGTTCGGTCTTCG  

ACAGCAGACAAGCCAGCAAGCCAGAAGGGCCGACA

ACACGCGGGACG 

Mismatch 

substrate 

(T/GG) 

5’-3’ 

3’-5’ 

5’-Hex 

None 

TGTCGTCTGTTCGGTCGTTCGGTCTTCT 

ACAGCAGACAAGCCAGCAAGCCAGAAGGGCCGACA

ACACGCGGGACG 

Mismatch 

substrate 

(A/TT) 

5’-3’ 

3’-5’ 

5’-Hex 

None 

TGTCGTCTGTTCGGTCGTTCGGTCTTCA  

ACAGCAGACAAGCCGCAAGCCAGAAGTTCCGACAA

CACGCGGGACGCGC 

Mismatch 

substrate 

(C/TT) 

5’-3’ 

3’-5’ 

5’-Hex 

None 

TGTCGTCTGTTCGGTCGTTCGGTCTTCC  

ACAGCAGACAAGCCACAAGCCAGAAGTTCCGACAA

CACGCGGGACGCGC 

Mismatch 

substrate 

(G/TT) 

5’-3’ 

3’-5’ 

5’-Hex 

None 

TGTCGTCTGTTCGGTCGTTCGGTCTTCG  

ACAGCAGACAAGCAGCAAGCCAGAAGTTCCGACAA

CACGCGGGACGCGC 

Mismatch 

substrate 

(T/TT) 

5’-3’ 

3’-5’ 

5’-Hex 

None 

TGTCGTCTGTTCGGTCGTTCGGTCTTCT  

ACAGCAGACAGCCAGCAAGCCAGAAGTTCCGACAA

CACGCGGGACGCGC 

CPD 

Substrate  

 

 

5’-3’ 

3’-5’ 

5’-Hex 

None 

TGTCGTCTGTTCGGTCGTTC 

ACAGCAGACAAGCCAGCAAGCCAGAAGT=TCCGACA

ACACGCGGGACGCGC 

 

8-oxo-G 

Substrate  

 

 

5’-3’ 

3’-5’ 

5’-Hex 

None 

TGTCGTCTGTTCGGTCGTTC 

ACAGCAGACAAGCCAGCAAGCCAGAAG8oGCCGAC

AACACGCGGGACGCGC 

Uracil 

Substrate  

 

5’-3’ 

3’-5’ 

5’-Hex 

None 

TGTCGTCTGTTCGGTCGTTC 

ACAGCAGACAAGCCAGCAAGCCAGAAGUCCGACAA

CACGCGGGACGCGC 
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MCM 

helicase 

substrate 1 

5’-3’ 

3’-5’ 

5’-3’ 

3’-5’ 

5’-Hex 

None 

None 

None 

GACGCTGCCGAATTCTACCAGTGCCTTGCTAGGACA

TCTTTGCCCACCTGCAGGTTCACCC 

ATCGATAGTCGGATCCTCTAGACAGCTCCATGTAGC

AAGGCACTGGTAGAATTCGGCAGCGT 

TGGGTGAACCTGCAGGTGGGCAAAGATGTCC 

CATGGAGCTGTCTAGAGGATCCGACTATCGA 

MCM 

helicase 

substrate 2 

5’-3’ 

3’-5’ 

5’-3’ 

5’-Hex 

None 

None 

 

GACGCTGCCGAATTCTACCAGTGCCTTGCTAGGACA

TCTTTGCCCACCTGCAGGTTCACCC 

ATCGATAGTCGGATCCTCTAGACAGCTCCATGTAGC

AAGGCACTGGTAGAATTCGGCAGCGT 

TGGGTGAACCTGCAGGTGGGCAAAGATGTCC 

MCM 

helicase 

substrate 3 

5’-3’ 

3’-5’ 

5’-3’ 

5’-Hex 

None 

None 

GACGCTGCCGAATTCTACCAGTGCCTTGCTAGGACA

TCTTTGCCCACCTGCAGGTTCACCC 

ATCGATAGTCGGATCCTCTAGACAGCTCCATGTAGC

AAGGCACTGGTAGAATTCGGCAGCGT 

CATGGAGCTGTCTAGAGGATCCGACTATCGA 

MCM 

helicase 

substrate 4 

5’-3’ 

3’-5’ 

 

5’-Hex 

None 

 

GACGCTGCCGAATTCTACCAGTGCCTTGCTAGGACA

TCTTTGCCCACCTGCAGGTTCACCC 

ATCGATAGTCGGATCCTCTAGACAGCTCCATGTAGC

AAGGCACTGGTAGAATTCGGCAGCGT 

8-oxo-G 

substrate 

5’-3’ 

3’-5’ 

 

5’-Hex 

None 

 

TGTCGTCTGTTCGGTCGTTCGGTCTTCA 

CGCGCAGGGCGCACAACAGCC(G)TGAAGACCGAAC

GACCGAACAGACGACA 

 

CPD 

substrate 

5’-3’ 

3’-5’ 

 

5’-Hex 

None 

 

TGTCGTCTGTTCGGTCGTTCGGTCTTCA 

CGCGCAGGGCGCACAACAGCC(T=T)TGAAGACCGA

ACGACCGAACAGACGACA 

Uracil 

substrate 

5’-3’ 

3’-5’ 

 

5’-Hex 

None 

 

TGTCGTCTGTTCGGTCGTTCGGTCTTCA 

CGCGCAGGGCGCACAACAGCC(U)TGAAGACCGAAC

GACCGAACAGACGACA 

Tg substrate  5’-3’ 

3’-5’ 

 

5’-Hex 

None 

 

CACTGACTGTATGATGA 

CTCGTCAGCATC(T/T)CATCATACAGTCAGTG 

AP substrate 5’-3’ 

3’-5’ 

 

5’-Hex 

None 

 

CACTGACTGTATGATGC 

CTCGTCAGCATC(T/T)CATCATACAGTCAGTG 

Table 2.7. List of oligonucleotides used in this thesis 

Primer, template oligonucleotides used in this thesis are listed. Mismatched bases are 

colored in blue (i.e. none Watson-Crick base pairs). DNA lesions in templates are 

indicated in red: T=T, cyclobutane pyrimidine dimers; 8oG, 8-oxo-guanine; U, uracil. 
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2.3.7. Primer extension assays 

The annealed substrate (20 nM) was mixed with 1x reaction buffer (20 mM Tris, 

pH 8.8, 10 mM KCl, 10 mM (NH4)2SO2, 2 mM MgSO4) and 200 µM dNTPs. 

Reactions were incubated at 55°C for Archaeoglobus fulgidus and Pyrococcus 

furiosus or at 37°C for Methanococcus maripalidus. Protein concentration used 

in the reactions was 200-300 nM. Reactions were quenched at multiple time 

points (30 second, 1, 3, 5, 30 minutes) using equal volume of 2x stop buffer (95% 

formamide, 0.09% xylene cyanol, 0.05% bromophenol blue, 200 nM competitor 

oligonucleotide). The reason to use the competitor oligonucleotide in the stop 

buffer, which is complementary to the template strand, is to prevent re-annealing 

of the labelled reaction products with the template strand, which would affect 

analysis of gel electrophoresis.  The reactions were then boiled at 95°C for 5 

minutes and resolved by electrophoresis on a 15% polyacrylamide gel (37.5% 

(v/v) acrylamide/bisacrylamide (19:1) 40% mix (National Diagnostics), 7 M urea, 

TBE (89 Mm Tris, 2 mM EDTA, 0.89 M boric acid, pH 8.3) 0.1% (w/v) APS, 0.03% 

(v/v) TEMED).  Prior to 3 hours electrophoresis at 15-20 watts in TBE, samples 

were pre-run at 15 W for 1 hour.  To detect the hexachlorofluorescein label of the 

reaction products, the gel was scanned (Cy3, 532 nm) using a FLA-1500 scanner 

(FUJI).  

2.3.8. DNA primase assays 

The non-radioactive primase assay was performed using 1 µM homopolymeric 

single stranded templates with biotin labelling at the 5’ end (Table 2.7).  In a final 

volume of 20 µL, the DNA was mixed with 250 µM rNTPs (Invitrogen) or dNTPs 

(Roche), 40 mM Tris-HCl pH 7.5, 10 mM MgCl2  or 4 mM MnCl2, 2 mM 

Dithiothreitol (DTT) and 20 mM NaCl. Following adding 200 µM of protein the 

reaction was supplemented with 2.5 µM FAM dNTPs (Jena Bioscience) and 

incubated at 55°C for Archaeoglobus fulgidus and Pyrococcus furiosus 

(hyperthermophile species of archaea) and 37°C for Methanococcus maripalidus 

(methanogen species of archaea) for 1 hour. The primer synthesis/labelling 

enzymatic reactions were terminated by adding 400 μl of binding-washing (B-W) 

buffer (10 mM Tris-HCl (pH 8.0), 500 mM NaCl, 10 mM EDTA). 20 µL of 

streptavidin-coated beads (Invitrogen) was mixed with the quenched reaction on 

spinning wheel for 1 hour at 4°C to allow the ssDNA binds to the beads. The 
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supernatants were removed using magnetic separation rack and then the beads 

were washed three times with 1 mL B-W buffer.  The beads were then suspended 

in 20 μl of the B-W buffer supplemented with equal volume of loading buffer (8 M 

Urea, 10 mM EDTA). After heating at 95°C for 5 minutes the reaction were 

resolved by DNA-PAGE in TBE buffer. The gels were scanned for fluorescent 

signal detected by a Fujifilm FLA-5100 image reader. 

The radioactive primase assay was performed using 250 ng M13mp18 ssDNA in 

a 20 µL reaction volume. The DNA mixture contained  40 mM Tris-HCl pH 7.5, 

10 mM MgCl2, 4 mM MnCl2, 2 Mm Dithiothreitol (DTT), 20 mM NaCl , 250 µM 

rNTPs or dNTPs including [α-32P]ATP. The reactions were supplemented with 

500 nM primase and incubated at 55 °C for Archaeoglobus fulgidus  and 

Pyrococcus furiosus (hyperthermophile species of archaea) and 37°C for 

Methanococcus maripalidus (methanogen species of archaea) for 30 minutes. 

The mixtures were then stopped by the addition of equal volume of stop buffer 

(95% formammide, 10 mM EDTA and 0.05% bromophenol blue), boiled at 95°C 

for 5 minutes and subjected to electrophoresis through a 15% polyacrylamide gel 

containing 7 M urea in 1× TBE.  The gel was exposed to a phosphor screen film 

and scanned and analysed using a FLA-1500 scanner (FUJI). 

2.3.9. Electrophoretic mobility shift assays 

Electrophoretic mobility shift assays (EMSA) were performed using 60nM of 

either hex-labelled single-stranded DNA or double-stranded DNA (Table 2.7). 

DNA was added to 1x NEB buffer (10 mM Bis-Tris-Propane-HCl pH 7.0, 10 mM 

MgCl2, 100 µg/mL BSA) unless otherwise specified and supplemented with 

different concentrations of proteins.  After 1 hour incubation of samples at room 

temperature, 2 µL of 25% (w/v) ficoll was added to reactions.  Reaction were 

resolved on a 5% polyacrylamide gel (12.5% (v/v) acrylamide/bisacrylamide 

(19:1) 40% mix (National Diagnostics), 0.5x TBE (44.5 mM Tris, 1 mM EDTA, 

0.445 M boric acid, pH 8.3) 0.1% (w/v0 APS, 0.03% (v/v) TEMED) cast in a 1 mm 

Novex Gel cassette (Invitrogen).  To run the gel, the XCell SureLock Mini-Cell 

Electrophoresis System (Invitrogen) was used. To detect the 

hexachlorofluorescein label of the reaction products, the gel was scanned (Cy3, 

532 nm) using a FLA-1500 scanner (FUJI). 
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2.3.10. DNA helicase assays 

Reactions prepared using 500 nM of helicase enzyme mixed with 20 nM Tris (pH 

7.5), 20 mM MgCl2,1 mM EDTA and 200 nM of each substrate in a total volume 

of 20 µL.  Substrates contained a 5’ end labelled oligonucleotides annealed to 

other oligonucleotides.  After 5 minute incubation at 50°C, ATP was added in 

different concentrations.  Reactions were then stopped using stop buffer (10% 

glycerol, 1% SDS, 10 mM EDTA and bromophenol blue). Products were 

separated by electrophoresis on 15% polyacrylamide native gel run in 1x TBE 

buffer at 10 W for 2 hours.  To detect the hexachlorofluorescein label of the 

reaction products, the gel was scanned (Cy3, 532 nm) using a FLA-1500 scanner 

(FUJI). 

2.4. Bioinformatics and analytic tools 

2.4.1. Computation of physical and chemical parameters of 

proteins 

The information regarding chemical and physical properties of proteins were 

provided by the ProtParam program, from the ExPASy server.  These parameters 

were determined from the primary protein sequence including pI, molecular 

weight and molecular extension coefficient. 

 2.4.2. Multiple sequence alignment 

The gene sequences required for alignment were gathered using the National 

Centre for Biotechnology Information from GenBank (Benson et al., 2009; Sayers 

et al., 2010). To design and analyse multiple sequence alignments, Clustal 

Omega and JalView were used respectively (Sievers et al., 2011;Waterhouse et 

al., 2009).  
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3.1. Introduction 

Archaea encode both bacterial DnaG-type and AEP primases (Liu et al., 2015). 

All experimentally characterized AEP primases from archaea form heterodimers 

consisting of PriS and PriL, which are termed PriSL (Bocquier et al., 2001; 

Guilliam et al., 2015; Kelman and Kelman, 2014; Liu et al., 2001). The archaeal 

PriSL has been suggested to function as the replicative primase. Archaeal 

replicative primase not only capable of synthesizing primers but also is able to 

elongate them. The primer elongation capacity of replicative primase in various 

archaeal species ranges from less than 500 bases in length to >7 kb (Bocquier 

et al., 2001). In contrast with the majority of eukaryotic primases, which only 

synthesise RNA primers, archaeal PriSL can perform de novo synthesis of both 

DNA and RNA primers in vitro, using either dNTPs or rNTPs (Liu et al., 2001). 

Open reading frames (ORFs) that show sequence similarity to the eukaryotic 

DNA primase subunit p48 have been identified and characterized from different 

archaeal species including, Methanococcus jannaschii, Pyrococcus furiosus and 

Archaeoglobus fulgidus (Kirk and Kuchta., 1999). Moreover, comparative 

analysis identified the presence of an ORF overlapping with P.furiosus primase 

small subunit (Pfup41) which showed sequence similarity to eukaryotic DNA 

primase large subunit (p58) (Liu et al.,2001).  

Three-dimensional structures of archaeal DNA primase catalytic subunits (PriS) 

revealed that PriS comprises a large catalytic domain and a small α-helical 

domain.  In addition, the catalytic domain possesses a zinc-finger motif that is 

conserved in eukaryotes (Sarmiento et al., 2013).  It has been suggested that the 

zinc-finger motif facilitates interaction of the primase with DNA (Iyer et al., 2005). 

There is an iron-sulfur domain in the C-terminal domain of PriL that might be 

important for retaining the correct three-dimensional structure of this domain 

(Lao-Sirieix et al., 2005).  Since there is no direct interaction between PriL and 

the active site of PriS subunit, it is believed that PriL subunit may contact with the 

synthesized primer and regulate its length (Ishino and Ishino, 2013). Studies on 

the Pyrococcus furiosis PriSL complex indicated that although PriL increases 

RNA polymerase activities, it decreases the DNA polymerase activity. This 

subunit can also reduce the length of the DNA oligonucleotides synthesised by 
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PriS. Therefore, it has been concluded that PriL acts as a regulator in the primase 

complex (Liu et al., 2001). 

The available evidence seems to suggest that archaeal replicative primases 

possess an additional role, extending primers with dNTPs in a polymerase mode 

that is similar to eukaryotic Pol α, therefore establishing that archaeal replicative 

primases can be categorized as primase-polymerases (Prim-Pols). 

In this chapter, the biochemical properties of archaeal replicative primases, PriSL, 

from three different species, Archaeoglobus fulgidus, Pyrococcus furiosus and 

Methanococcus maripaludis are characterised. Here, both primase and 

polymerase activities of PriSL complex from these archaeal species are 

illustrated (Figure 3.1 and 3.2). A two-hybrid system was used to confirm the 

interaction between PriS and PriL in Archaeoglobus fulgidus. In addition, the 

ability of archaeal replicative primase to perform both DNA and RNA primase 

activities is demonstrated in this chapter. We also showed that the PriSL complex 

from Archaeoglobus fulgidus binds both double-stranded and single-stranded 

DNA. In general, the aim of this chapter was to characterise and compare the in 

vitro activities of PriSL from different archaeal species. 

3.2. Identification of protein partners using the Yeast Two-Hybrid 

assays 

 To identify interactions between the DNA primase small subunit (PriS) and large 

subunit (PriL) from the archaeon Archaeoglobus fulgidus, the yeast two-hybrid 

(Y2H) system was chosen.  In this genetic assay, transcriptional factors are used. 

In particular GAL4 protein of the yeast Saccharomyces cerevisiae, a 

transcriptional activator which promotes transcription of genes containing Gal4  is 

utilized.  This protein consists of two discrete domains: An N-terminal domain that 

binds to the upstream activation domain (UAS) and a C-terminal domain required 

for transcription activation.  In practice, the DNA binding domain (BD) of the GAL4 

protein is fused to a protein X (bait) and the transcriptional activation domain (AD) 

is fused to a protein Y (prey).  If bait and prey interact with each other, the two 

domains of the GAL4 protein are brought together and transcription of the 

specially designed reporter genes occurs which provides evidence for protein-

protein interactions (Figure. 3.3) (Fields and Song,1989).  
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Figure 3.1. Alignment of archaeal primase small subunit (PriS1) homologues. 

The alignment of the three archaeal PriS1 homologues that are studies biochemically 

in this thesis from Archaeoglobus fulgidus, Pyrococcus furiosus, and Methanococcus 

maripaludis C5. 

  

  



103 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Alignment of archaeal primase large subunit (PriL) homologues. 

The alignment of the three archaeal PriL homologues that are analysed biochemically 
in this thesis from Archaeoglobus fulgidus, Pyrococcus furiosus, and Methanococcus 
maripaludis C5. 
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Bait  

Bait  

BD 

BD 

Prey 

Prey 

AD 

AD 

Transcription 

No Transcription 

GAL4 UAS LacZ ( or HIS3) reporter gene 

GAL4 UAS LacZ ( or HIS3) reporter gene 

Figure 3.3. Principles of the yeast two-hybrid system 

(A) Two-hybrid screening is designed to fuse the bait protein to the GAL4 DNA 

binding domain (BD) to screen against a library of the prey protein which is fused 
to the GAL4 transcriptional activation domain (AD). The BD binds the upstream 
activating sequence (UAS) and the AD domain activates transcription.  When the 
bait protein interacts with the prey protein GAL4 transcription factor is 
reconstructed and allows expression of the reporter genes. (B) When bait and prey 
proteins do not interact, the GAL4 transcription factor is not reconstructed and so 
the reporter genes are not expressed. 
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Whilst searching for archaeal PriS orthologous in A.fulgidus, in addition to PriS1, 

we identified a second primase (AF_RS11580) which we have called PriS2.  The 

genes encoding PriS1, PriS2 and PriL were cloned in both the pGBKT7 (bait 

vector) and pGADT7 (prey vector) in frame with the sequences encoding the 

GAL4 BD and AD domains, respectively (Figure 3.4) (Table 2.2).  All 

combinations of bait and prey plasmids were successively transformed into the 

yeast strain Y190 with LacZ and HIS3 reporter genes (Van Creikinge and 

Beyaert, 1999). The transformed cells were plated onto media lacking His, Arg, 

and Leu (SD-His-Leu-Arg) supplemented with optimal concentration of 3-AT, a 

competitive inhibitor of the yeast HIS3 protein that inhibits low-level leaky 

expression (Durfee et al., 1993),  and incubated for 2-3 days at 30°C. 

Y190 strain was first co-transformed with each pGBKT7:PriS1, pGBKT7:PriS2, 

and pGBKT7:PriL and empty pGADT7 vector in order to check whether 

expression of PriSL in the Y190 strain resulted in auto-activation of the LacZ and 

HIS3 reporter genes. LacZ transcription results in expression of β-galactosidase 

and transcription of HIS3 allows growth on media containing no histidine.  In the 

absence of prey protein, expression of all three bait proteins (pGBKT7:PriS, 

pGBKT7:PriS2, and pGBKT7:PriL)  did not result in expression of reporter genes. 

Since expression of  these fusion proteins did not lead to reporter genes auto-

activation therefore they could be used in the  yeast two-hybrid assay (Figure 3.5. 

and 3.6). On the other hand, co-transormation of S. cerevisae Y190 with 

pGBKT7:PriS1 and pGADT7 PriL constructs, on a media containing 3-AT and 

lacking His, Leu, and Arg ended up with cell growth (Figure 3.5).  This procedure 

was also carried out with a reverse order of bait and prey vectors. Co-

transformation of Y190 with pGBKT7:PriL (bait) and pGADT7:PriS1 (prey) also 

showed detectable growth on the same media (Figure 3.6). Together, these 

results suggest a strong interaction of PriS1 with PriL.  Interestingly, no interaction 

was observed between PriS2 and PriL. To ensure that the detected interaction 

was not a false positive, pGADT7:Ku and pGBKT7:LigD constructs were created 

(gift from Dr.Nigel Brissett, Doherty lab) (Table 2.2). Different studies have been 

demonstrated that in many prokaryotes, Ku and LigD proteins interact and form 

a complex to facilitate re-joining of DSBs (Guilliam et al., 2015; Bartlett et al., 

2013).  

https://www.ncbi.nlm.nih.gov/pubmed/?term=Jozwiakowski%20SK%5BAuthor%5D&cauthor=true&cauthor_uid=25646444
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PT7 

GAL4-DNA      
BD     

pGBKT7 

PriL 

MCS 

NdeI SalI 

PT7 

GAL4-DNA      
BD     

pGADT7 

PriS1 or PriS2 

MCS 

NdeI XhoI 

pGBKT7 

PriL ̴1113bp 

PriS1  ̴1083bp 
PriS2  ̴843bp 

pGADT7 

Figure 3.4. Cloning of PriS1, PriS2, and PriL into pGBKT7 and 

pGADT7 vectors 

The open reading frame of PriS1, PriS2, and PriL primase subunits were 
amplified from A fulgidus genomic DNA (Table 2.2) introducing the 
relevant restriction sites to allow insertion into the multiple cloning site 
(MCS) of the yeast expression vector (either pGBKT7 or pGADT7). The 
PCR products were combined with 10x DNA loading dye and run on 1% 
agarose gels containing ethidium bromide.  
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Figure 3.5.  Afu-PriS1 subunit interacts with Afu-PriL subunit. 

(A) Results of two-hybrid assay on SD-His-Arg-Leu plates containing 3-AT,where 

genes encoding PriS1,PriS2 and PriL subunits were cloned in both the pGBKT7 
(bait vector) and pGADT7 (prey vector). (B) Summary of bait and prey pairs used 
in the two-hybrid system. Strong interaction detected between PriS1-pGBKT7 and 
PriL-pGADT7. 
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2 PriS2-pGBK +PriL-pGAD -His/-Arg/-Leu+3AT NO

3 pGBK+  PriL- pGAD -His/-Arg/-Leu+3AT NO

4 PriS2-pGAD+ pGBK -His/-Arg/-Leu+3AT NO

5 PriS1-pGAD+pGBK -His/-Arg/-Leu+3AT NO

6 pGAD+pGBK -His/-Arg/-Leu+3AT NO
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Figure 3.6. Afu-PriS1 and Afu-PriL subunits are interacting partners 

(A) Results of two-hybrid assay on SD-His-Arg-Leu plates containing 3-AT,where 

genes encoding PriS1,PriS2 and PriL subunits were cloned in both the pGBKT7 
(bait vector) and pGADT7 (prey vector). (B) Summary of bait and prey pairs used 

in the two-hybrid system. (5) Strong interaction detected between PriL-pGBKT7 
and PriS1-pGADT7. 
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Transformation of pGADT7: Ku and pGBKT7:LigD plasmids showed strong 

interaction (Figure 3.7). Thus, this result suggested that the yeast two-hybrid 

system worked properly and confirmed that the obtained interaction between 

PriS1 and PriL was true. This result is consistent with different studies in which it 

was reported that archaeal DNA primase is a heterodimer of PriS and PriL 

(Bocquier et al., 2001; Kelman and Kelman, 2014; Liu et al., 2001). 

3.3. Cloning of the archaeal PriS/L genes into expression vectors 

In order to characterise the enzymatic activities of archaeal PriS/L in vitro, the 

genes encoding PriS1 and PriL subunits from Archaeoglobus fulgidus, 

Pyrococcus furiosus, and methanococcus maripaludis C5 were first cloned into 

appropriate expression vectors. The Pfu-PriS1, Pfu-PriL, Mma-PriS1and Mma-

PriL expression constructs were provided by my colleague Dr. Stanislaw 

Jozwiakowski (Table 2.3). The ORF corresponding to Afu-PriS1 (AF_RS03760) 

and the ORF corresponding to Afu-PriL (AF_RS01565) were amplified from 

A.fulgidus genomic DNA (using primers in table 2.1) and cloned individually into 

the E.coli expression vector pET28a and pETduet-1, respectively, generating 

constructs pET28a:Afu-PriS1 and pETduet-1:Afu-PriL. PriS1 was cloned in-frame 

with an amino-terminal 6-histidine tag and expression of these fusions was under 

the control of T7 promoter (Figure 3.8). The open reading frame corresponding 

to Pfu-PriS1 (PF_RS00545) and the open reading frame corresponding to Pfu-

PriL (PF_RS00550) were amplified from P.furiosus genomic DNA (using primers 

in table 2.1) and cloned individually into the E.coli expression vector pET28a and 

pETduet-1 respectively, generating constructs pET28a:Pfu-PriS1 and pETduet-

1:Pfu-PriL. In parallel, the ORF corresponding to Mma-PriS1 

(MMARC5_RS08185) and the open reading frame corresponding to Mma-PriL 

(MMARC5_RS08555) were amplified from M.maripalidus genomic DNA (Using 

primers in table 2.1) and cloned individually into the E.coli expression vector 

pET28a and pETduet-1 respectively, generating constructs pET28a:Mma-PriS1 

and pETduet-1:Mma-PriL. 
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Figure 3.7. Studying Protein-Protein interaction using yeast two-hybrid 

assays 

(A) Results of two-hybrid assay on SD-His-Arg-Leu plates containing 3-AT, 

where genes encoding LigD and Ku proteins were cloned in both the pGBKT7 
(bait vector) and pGADT7 (prey vector). (B) Summary of bait and prey pairs 

used in the two-hybrid system. (6) Strong interaction detected between 
pGBKT7-LigD and pGADT7-Ku. 
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6xHis       MCS 

pET28a or pETDuet-1 

PriS 

PriL 

NdeI XhoI 

EcoRI NotI 

pETDuet 

PriL ̴ 1113bp 

pET28a 

PriS1 ̴ 1083 bp 

Figure 3.8. Cloning of Afu-PriS1 and PriL into pET28a and pETDuet-1 

respectively 

The open reading frames corresponding to PriS1 and PriL primase subunits 
were amplified from A. fulgidus genomic DNA (Table 2.3) introducing the 
applicable restriction sites to allow insertion into the multiple cloning site 
(MCS) and (MCS-2) of the pET28a and pETDuet-1 expression vectors 
respectively. A 6-histidine tag downstream of a T7 promoter (PT7) was in 

frame with cloned PriS1 the PCR products were combined with 10x DNA 
loading dye and run on 1% agarose gels containing ethidium bromide. 
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3.4. Expression and purification of A. fulgidus PriS1/L 

The Afu-PriS1 and Afu-PriL expression constructs were co-transformed into BL21 

E.coli, which provides high-level expression of recombinant proteins and also 

improves cell lysis (Inouye et al.,1973;Moffatt and Studier,1987;Studier, 1991). 

To stabilise the zinc finger motif of the PriS1L, cultures were supplemented with 

the addition of 100mM zinc sulphate (ZnSO4) to the media and expression was 

induced by addition of 1mM IPTG.  The pET28a expression vector was utilised 

for expression as it allowed a (6x-His) affinity tag to be fused to the N-terminus 

of PriS1L thus allowing for purification by affinity of the imidazole rings to nickel 

affini ty resin. Elution of recombinant PriS1L from the nickel affini ty 

chromatography column was induced by addition of imidazole.  Eluted PriS1L 

was resolved on an SDS-polyacrylamide gel to confirm the correct size. The 

result was in agreement with their predicted molecular masses. PriS1 has a 

predicted molecular mass of ~ 41 kDa and PriL has a predicted molecular mass 

of ~ 42 kDa (Figure 3.9). PriS1L was further purified using heparin column 

chromatography, a pseudo-affinity column that is commonly used for purification 

of proteins with affinity for DNA. The eluted peak fraction from the Ni2+-NTA 

column was first diluted 10 fold into a buffer with 100mM NaCl to decrease the 

salt concentrations and then applied to a heparin chromatography column. The 

column was equilibrated with Heparin Buffer A (150 mM NaCl, 40 mM Tris-HCl 

pH 7.5, 10% (v/v) glycerol).  After loading the Ni2+-NTA eluted fractions into the 

column, buffer A was used to wash the column to elute any non-specifically 

bound proteins.  Proteins were eluted by gradient elution up to 50% Heparin 

Buffer B (1 M NaCl).  Fractions containing protein were resolved on SDS-PAGE 

gel and concentration was determined by absorbance at 280 nm.  For the final 

step of purification, to remove low molecular weight contaminants such as salt, 

size-exclusion chromatography (Gel filtration) was performed (Figure 3.9). Gel 

filtration columns are  used for separation of molecules with different molecular 

sizes. An S75 gel-filtration column was pre-equilibrated with gel filtration buffer 

(40 mM Tris-HCl (pH7.5), 100 mM NaCl, 10% (v/v) glycerol and 2mM β-

mercaptoethanol) and then the concentrated protein was loaded onto the column.  

Finally, fractions were collected following 100 mL of flow-through and  
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Figure 3.9. The chromatography purification of the Afu-PriS1/L complex  

Purification of Afu-PriS1L complex (PriS1: 41 KDa and PriL: 42 KDa). A three litre 
culture of E.coli BL21 transformed with both pET28a: Afu-PriS1  and pETduet-1: 
Afu-PriL expression constructs was grown at 37°C for 3 hours then induced with 
1 mM IPTG and incubated overnight. Following cell lysis, soluble cell lysate 
loaded onto Ni ²⁺-NTA chromatography.  Bound Afu- PriS1/L was washed and 
then eluted with 300 mM imidazol. The 100% eluted peak fraction from the  Ni2+-
NTA column then subjected to heparin column, successfully eluting Afu-PriS1/L 
with 1M NaCl. In the last step of purification, protein containing fractions were 
subjected to S75 gel-filtration column which was pre-equilibrated with 300 mM 
NaCl. Finally,  fractions were collected following 100 mL of flow-through and 
analysed by SDS-PAGE gel.  

PriL  
PriS1 

KDa 

KDa 
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to confirm the correct size resolved on SDS-PAGE gel and determined by 

absorbance at 280 nm.  We also attempted to co-transform the pET28a:Afu-PriS1 

and pETduet-1:Afu-PriL expression constructs into Rosetta E.coli strains that 

possess additional tRNAs used in eukaryotes but rarely used in E. coli (data not 

shown).  However, we observed that BL21 E. coli cells offered a significantly 

greater yield of PriS1/L. In order to compare the biochemical properties of PriS1/L 

complex with each subunit, pET28a: Afu-PriS1 and pETduet-1: Afu-PriL 

expression constructs were transformed into BL21 strain individually and purified 

in the same manner as the Afu-PriS1L complex (Figure 3.10).  Purification of both 

Afu-PriS1 and Afu-PriL subunits started with the loading of the prepared soluble 

cell lysates onto a Ni2+-NTA agarose affinity chromatography that was pre-

equilibrated with buffer A with 500 mM NaCl.  The bound PriS1 and PriL eluted 

over a range of imidazole concentrations. Successfully eluted PriS1 and PriL was 

then analysed by SDS-PAGE to confirm the correct size of each primase subunit.  

Heparin affinity chromatography was then used to remove contaminating 

proteins. Both the Afu-PriS1 and Afu-PriL and E.coli contaminants were bound to 

the column. The contaminant was eluted with low salt concentration while both 

PriS1 and PriL eluted at 1 M NaCl.   Following analysis of protein containing 

fractions using SDS-PAGE, some bands corresponding to E. coli contamination 

were observed in the case of PriL, therefore, size exclusion chromatography was 

utilized to remove the contaminants. The S75 gel-filtration column was used.  

After concentration, protein was loaded using a 5 mL loop.   Finally, fractions were 

collected following 100 mL of flow-through and to confirm the correct size 

resolved on SDS-PAGE gel and determined by determined by absorbance at 280 

nm.   

.  

3.5. Expression and purification of P. furiosus and M. 

maripalidus PriS1/L 

Replicative primase (PriS1/L) from P. furiosus and M.maripalidus was purified to 

compare our results with PriS1/L from two other archaeal species, one 

hyperthermophile and one mesophile. These two complexes were purified in the 

same manner as the Afu-PriS1/L.  Cultures of E.coli BL21 were transformed with 

either the Mma-PriS1/L or Pfu-PriS1/L (co-transformation of PriS1 and  
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Figure 3.10. Purification of Afu-PriS1 and PriL subunits 

Each pET28a: Afu-PriS1 and pETduet-1:Afu-PriL plasmid was purified 
individually. (A) Illustrates SDS-PAGE analysis of Afu-PriS1 (41 KDa) 
purification. (B) Illustrate SDS-PAGE analysis of the Afu-PriL (42KDa) 

purification. Soluble cell lysate from each PriS1 and PriL was subjected to Ni 
²⁺-NTA chromatography. Bound Afu- PriS1 and PriL  were washed and then 
eluted with 300 mM imidazol. The eluted peak fractions from the Ni2+-NTA 
column then subjected to heparin column, successfully eluting  both Afu-
PriS1 and PriL with 1M NaCl.  SDS-PAGE analyses of heparin affinity 
purification showed E.coli contamination in case of Afu-PriL, so the PriL was 
subjected to S75 gel-filtration column which was pre-equilibrated with 300 
mM NaCl to remove the contaminants. Finally, fractions were collected 
following 100 mL of flow-through and analysed by SDS-PAGE gel.  
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PriL) expression constructs, and then grown until exponential phase and protein 

expression was induced by the addition of 1 mM IPTG. The soluble cell lysatewas 

prepared and subjected to Ni2+-NTA agarose affinity chromatography. To 

concentrate the eluted fractions as much as possible, a single elution of 300 mM 

imidazole was performed.  This successfully eluted protein was resolved on an 

SDS-polyacrylamide gel to confirm the correct size and purity.  The results were 

in agreement with their predicted molecular masses.  Pfu-PriS1 has a predicted 

molecular mass of ~ 41 kDa and Pfu-PriL has a predicted molecular mass of ~ 

46 kDa (Figure 3.11A).  Mma- PriS1 has a predicted molecular masst of ~ 42 kDa 

and Mma-PriL has a predicted molecular mass of ~ 43 kDa (Figure 3.11B).  

Heparin affinity chromatography was used to remove E. coli contaminants for 

both species. The eluted peak fraction from the Ni2+-NTA column was first diluted 

10 fold into a buffer with 100mM NaCl to decrease salt concentration and then 

applied to a heparin chromatography column.  The column was equilibrated using 

pre-chilled Heparin Buffer A (150 mM NaCl, 40 mM Tris-HCl pH 7.5, 10% (v/v) 

glycerol). The Ni 2+-NTA eluted fractions were subjected to Heparin column and 

subsequently column was washed with Heparin Buffer A.  Proteins were eluted 

by gradient elution up to 50% Heparin Buffer A with 1 M NaCl. Fractions 

containing protein were resolved on SDS-PAGE gel and determined by A280 level. 

Mma-PriS1/L was further purified using gel filtration column.  S75 gel-filtration 

column was pre-equilibrated with gel filtration buffer (40 mM Tris-HCl (pH7.5), 

300 mM NaCl, 10% (v/v) glycerol and 2mM β-mercaptoethanol). After 

concentration protein was loaded using a 5 mL loop. Finally, fractions were 

collected and determined by absorbance at 280 nm. The results were in 

agreement with their predicted molecular masses. Pfu-PriS1 has a predicted 

molecular weight of ~ 41 kDa and Pfu-PriL has a predicted molecular mass of ~ 

46 kDa (Figure 3.11A).  Mma- PriS1 had a predicted molecular mass of ~ 42 kDa 

and Mma-PriL had a predicted molecular mass of ~ 43 kDa (Figure 3.11B).  

3.6. Archaeal replicative primase is an active polymerase 

Previous studies indicated that PriS/L complexes from different archaea, 

including Pyrococcus horikoshii, Pyrococcus furiosus, Sulfolobus solfactaricus 

and Thermococcus kodakaraensis are active DNA polymerases (Bocquier et al., 

2001; Lao-Sirieix et al., 2004). We examined the polymerase activity of 
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Archaeoglobus fulgidus PriS1/L using standard primer extension assays.  Primer 

extensions employ a DNA oligonucleotide primer containing a fluorescent moiety 

(HEX) at the 5’ end annealed to a longer DNA oligonucleotide template, yielding 

ds DNA with a 5’ over-hang (Figure 3.12). In the presence of dNTPs, DNA 

polymerase replicates the template and produces labelled products. In the first 

experiment, the primer-template substrate was incubated with dNTPs, in a buffer 

containing magnesium and either Afu-PriS1 and Afu-PriL. PriL alone resulted in 

no extension of the labelled primer (Figure 3.12A). However, PriS1 alone 

exhibited limited extension of the primer (Figure 3.12A). However, incubation of 

the purified Afu-PriS1/L complex with the primer-template substrate and dNTPs 

resulted in full extension of the primer (Figure 3.12B).  Similar to A. fulgidus, the 

PriS1/L complex from M. maripalidus was able to extend the primer in the 

presence of dNTPs and Mg2+ (Figure 3.12B).  The DNA polymerase activity of 

the purified Pfu-PriS1/L complex was tested as a positive control enzyme (Figure 

3.12B). However, our data suggested that the polymerase activity of Pfu and 

Mma PriS1/L was much slower than that of Afu-PriS1/L. In agreement with 

previous in vitro studies, these results indicate that the large subunit alone 

displays no polymerase activity and both small and large subunits interact and 

form a complex in vitro which is required for efficient polymerase activity.   

3.7. Primase activity of archaeal replicative primase  

It was next tested whether PriS1/L from A.fulgidus and M.maripalidus, similar to 

P. furiosus and some other archaea, could synthesise primers using both dNTPs 

or rNTPs. Different primase assays were carried out to confirm the primase 

activity of PriS1/L. 

To determine whether PriS1/L, similar to eukaryotic primases, had DNA substrate 

preference, each of the four homopolymeric templates were used to study the 

primase activity of the PriS1/L. 60-mer 5’-biotinylated homopolymeric templates 

(poly-dA, poly-dC, poly-dG and poly-dT) were used (see sequences 7-10 in Table 

2.7) to evaluate whether, in the presence of either rNTPs or dNTPs, primers were 

synthesised de novo on these templates.  Primers were extended using Klenow 
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Figure 3.11. Purification of Pfu-PriS1L and Mma-PriS1L 

(A) SDS-PAGE analysis of Pfu-PriS1L purification (PriS1: 41KDa and PriL: 
46KDa). Samples from (B) SDS-PAGE analysis of Mma-PriS1L (PriS1: 42KDa and 

PriL: 43KDa) purification. Cultures of E.coli BL21 transformed with either Pfu-
PriS1/L or Mma-PriS1/L expression (co-transformation of PriS1 and PriL). Cultures 
of both Pfu-PriS1/L and Mma-PriS1/L were grown at 37°C for 3 hours then induced 
with 1 mM IPTG and incubated overnight at 20°C. Following cell lysis, soluble 
fractions loaded to Ni ²⁺-NTA chromatography.  Bound Pfu- PriS1/L  and Mma-
PriS1/L were washed and then eluted with 300 mM imidazol. The eluted peak 
fractions from the  Ni2+-NTA column then subjected to heparin column, 
successfully eluting Pfu-PriS1/L and Mma-PriS1/L with 1M NaCl. Fractions 
containing protein were analysed by SDS-PAGE to confirm the size of proteins. 
Mma-PriS1/L was further purified using S75 size-exclusion chromatography which 
was pre-equilibrated with 300 mM NaCl to remove the contaminants. Finally, 
fractions were collected following 100 mL of flow-through and analysed by SDS-
PAGE gel.  
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Figure 3.12. Afu-PriS/L is an active primase and polymerase.  

(A) DNA primase was incubated with substrate 1 from Table 2.7. (Shown 
schematically)  dNTPs and  a reaction buffer containing MgCl2 at  0.5 , 1, 3, 5, 

10 and 30 minute time points alongside a control containing no protein. Afu-
PriS1 showed limited polymerase activity on undamaged oligonucleotide 
substrate. No activity was observed with Afu-PriL. (B) Incubation of Afu-PriS1/L 

complex with dNTPs and reaction buffer resulted in significant extension of 
primer. Both Pfu-PriS1/L and Mma-PriS1/L  exhibited efficient extension of 
undamaged DNA using dNTPs. 
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Taq supplemented with a fluorescent nucleotide analogue to allow for the 

fluorescent labelling of primers. The reactions were terminated and added to 

streptavidin-coated beads. After washing the beads to remove excess 

nucleotides, reactions were resolved on a polyacrylamide gel and detected by 

fluorescence (Keen et al., 2014).  

As previously discovered, the archeal Pfu-PriS/L complex can synthesise primers 

using both dNTPs and rNTPs, but preferentially utilize deoxyribonucleotides 

(dNTPs) to synthesize DNA primers (Bocquier et al., 2001). Similar to P. furiosus, 

the PriS/L complex from Sulfolobus solfataricus is also capable of utilizing both 

ribonucleotides and deoxyribonucleotides.  However, in contrast to P. furiosus, it 

has significantly higher affinity for rNTPs than dNTPs (Lao-Sirieix et al., 2004).  

Here, using a non-radioactivity primase assay, PriS1/L from all three species 

exhibits very limited primase activity on homopolymeric templates using rNTPs. 

However, Pfu-PriS1/L exhibited primase activity in the presence of both rNTPs 

and dNTPs (Figure 3.13). The four homopolymeric substrates were used with 

varying efficiencies by Afu-PriS1/L, with oligo ( dG) being the least preferred 

substrate and oligo(dC) the most preferred one. In contrast, the preferred 

substrate of Pfu-PriS1/L was oligo (dA). Notably, the detected primase activity by 

Mma-PriS1/L was not as significant as activities observed by Afu and Pfu 

enzymes (Figure 3.13). It was previously shown that PrimPol, a newly discovered 

eukaryotic archaeo-eukaryotic primase, is able to catalyse de novo synthesis of 

primer strands on a 65-mer template containing G-quadruplex (G4) (Schiavone 

et al., 2016).  We decided to examine the primase activity of archaeal PriS1/L 

using the same template.  The PriS1/L proteins were incubated with 5’ biotin-

labelled template and reaction buffer.  Reactions were incubated with either 

rNTPs or dNTPs and FAM dNTPs for 30 minutes.  After quenching the reactions, 

DNA was bound to streptavidin-coated beads for 1 hour and then the beads were 

washed and suspended in stop buffer prior to resolving on a polyacrylamide gel 

and detection by fluorescence.  Although Pfu-PriS1/L exhibited primase activity 

on the 65-mer template, no primase activity was detected by Afu-PriS1/L and 

Mma-PriS1/L (Figure 3.14).  Notably, the observed primase activity of Pfu-PriS1/L 

was only in the presence of rNTPs.  Our data suggested that maybe other assays 

a re  requi red  to  de tec t the  p r i mase  ac t i vi ty.   We  the re fo re  next  
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Figure 3.13. DNA primase activity of PriS1/L 

Single-stranded homopolymeric templates (see sequences 7-10 in Table 2.7) 
were incubated with dNTPs or rNTP, 10 mM MgCl2 , 20 mM NaCl, and either 

Afu-PriS1/L or Pfu-PriS1/L or Mma-PriS1/L for 1 hour.  Not very significant 
primase activity was observed with all three proteins. Afu-PriS1/L has 
primase activity similar to the Pfu-PriS1/L (around 15 Nt). However, the 
primase activity observed for Mma-PriS1/L was lower than the activity 
observed for Pfu-PriS1/L. The left panel indicates the oligonucleotide 
nucleotide (Nt) length markers. 
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Figure 3.14. PriS1/L primase activity with on a synthetic DNA 

template 

PriS1/L from three archaeal species were incubated for 30 minutes with 
rNTPs (250 µM) , FAM-dNTPs (dATP, dCTP, dUTP) (2.5 mM), 10 mM 
MgCl2, and 65-mer biotin-labelled DNA  template (1µM). Identical 

reactions were also performed with dNTPs (250 µM) instead of rNTPs. 
Oligonucleotide nucleotide (Nt) length markers are shown in left. 2 µM of 
PrimPol was used as the positive control. Only Pfu-PriS1/L shows de 
novo production activity using rNTPs. Neither AfuPriS1/L nor Mma-
PriS1/L exhibit de novo primase activity.  

 Afu PriSL              
 Pfu PriSL                  
 Mmp PriSL               
 Primpol                    
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tested whether PriSL complexes possessed primase activity on longer non-

synthetic single-stranded M13 DNA templates. The M13 ssDNA was incubated 

with reaction buffer containing MgCl2 and either Afu-PriS1/L, Pfu-PriS1/L or Mma-

PriS1/L and rNTPs or dNTPs including [α-32P] dATP/dCTP for 30 minutes. 

Identical reactions were also performed in the presence of MnCl2 instead of 

MgCl2.Reactions were then stopped and separated on a polyacrylamide gel. The 

gel was exposed to a phosphor screen and scanned and analysed using an FLA-

1500 scanner (Fuji). 

All three purified archaeal protein complexes displayed primase activity on a 

single-stranded M13 DNA. Afu-PriS1/L and Pfu-PriS1/L can synthesise primer 

strands in the presence of either Mg2+ or Mn2+, however, both primases were 

more active in the presence of Mg2+ for RNA synthesis, yielding significant 

products that were not generated in the presence of Mn2+ (Figure 3.15).  Detected 

primase activity by Mma-PriS1/L was only visible in the presence of Mg2+ (Figure 

3.15).  From this experiment alone, it was immediately evident that these 

enzymes showed a preference to prime using rNTPs over dNTPs.  

Together, our data provide experimental evidence that the replicative primase 

complexes (PriS/L) from A.fulgidus and M.maripalidus can utilize 

deoxyribonucleotides and ribonucleotides for de novo primer synthesis. Similar 

to T. kodakaraensis and S. solfataricus these replicative primases select rNTPs 

in preference to dNTPs.  Given that PriS1/L complexes from Afu, Pfu and Mma 

are able to initiate and elongate RNA and DNA strands, it seems reasonable to 

assume that, these enzymes can be categorized as primase-polymerases (Prim-

Pols).  

3.8. A.fulgidus PriS1/L can bind DNA  

Since the PriS1/L complex is capable of extending primers at primer-template 

junctions, we tested whether the Afu-PriS1/L binds to ssDNA, dsDNA, or both. 

Gel electrophoresis mobility shift assays (EMSAs) were used with increasing 

concentrations of protein to examine the DNA binding abi li ty of PriS1/L. 

Interestingly, PriS1/L was able to bind to both ssDNA and dsDNA with 

approximate comparable affinities. However, quanti fications of protein-DNA 

binding suggest a little more preference for dsDNA over ssDNA by PriS1/L  
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Figure 3.15. PriS1/L complex is a RNA/DNA primase 

Primers synthesis on M13 ssDNA using either rNTPs or dNTPs. A scheme 
of primase reaction is shown. Afu-PriS1/L, Pfu-PriS1/L and Mma-PriS1/L 
were all analysed for RNA/DNA-dependent primase activity on M13 ssDNA. 
PriS1/L proteins were incubated with either 10 mM of  MgCl2 or  4 mM of 

MnCl2    and 250 ng of M13 ssDNA. Samples were resolved on a 

polyacrylamide gel along with a control (C) containing no protein. 
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DNA binding activity of PriS1/L complex was analysed on 60 nM of both single-
stranded and double-stranded templates (Substrates 2 and 3 from Table 2.7) 
by EMSA. Increasing concentrations of protein were used as indicated. 
Although PriS1/L is able to bind both templates with approximate comparable 
affinities, the shifts of the fluorescent oligonucleotide templates on the 
polyacrylamide gel and quantifications suggest a little more binding affinity for 
dsDNA than ssDNA by PriS1/L. 2µM protein concentration showed highest 
DNA binding activity in both cases.  
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(Figure 3.16). Binding was apparent at ~0.5 µM  and a complete binding was 

observed at 2 μM of PriS1/L (Figure 3.16). This DNA binding specificitymight 

suggest the presence of two closely clustered binding sites which allow the 

enzyme to recognize a primer-template junction. This data is consistent with the 

DNA binding ability of the archaeal primase complex isolated from P. furiosus, 

which is able to bind both ssDNA and dSDNA (Liu et al., 2001). It has also been 

previously demonstrated that the AEP polymerase domain of PrimPol also binds 

to both ssDNA and dsDNA (Keen et al., 2014). 

3.9. A.fulgidus PriS1/L binds to homopolymeric ssDNAs 

It was next tested whether Afu-PriS1/L has any binding preference for 

homopolymeric DNA templates. EMSAs were performed on 50-mer 

hexachlorofluorescein labelled single-stranded homopolymeric DNA substrates 

(poly-dA, poly-dC, poly-dG and poly-dT). The PriS1/L complex showed significant 

affinity to poly-dC and poly-dT (Figure 3.17).  This interaction is consistent with 

Afu-PriS1/L’s preference to synthesise de novo primers on polypyrimidine 

templates (dC and dT).  PriS1/L showed affinity for poly dA, but it was not as 

significant as other homopolymeric templates. Interestingly, PriS1/L exhibited 

super-shifted intermediates with poly dG, which suggested that Afu-PriS1/L might 

have sequence or structural specificity for dG homopolymers (Figure 3.17). Poly 

dG sequences can form G-quadruplexes (G4), four-stranded helical structures, 

which have been shown to form just upstream of replication origin sites, which 

may reflect their regulatory role in activation of replication origins (Cayrou et al., 

2012).  Interestingly, it was recently demonstrated that PrimPol has an affinity for 

Poly-dG templates and can reprime downstream of G4 quadruplexes (Schiavone 

et al., 2016).  Together, these findings shed a light on possible additional roles of 

archaeal PriS/L in repriming after G4 quadruplexes and origin firing. 

3.10. Summary and discussion 

In this chapter, we have characterized some of the biochemical properties of the 

DNA primase complex isolated from a hyperthermophilic archaeon, 

Archaeoglobus fulgidus and a mesophilic archaeon, Methanococcus maripaludis. 

We cloned, isolated, and characterised both A.fulgidus and M.maripaludis 

PriS1/L complexes. 
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Figure 3.17. Afu-PriS1/L binds homopolymeric ssDNA templates 

DNA binding preference of Afu-PriS1/L was analysed on 50-mer homopolymeric  
single-stranded templates. The EMSA binding patterns for increasing 
concentrations of Afu-PriS1/L (0.1, 0.5, 1 and 2µM) incubated with 
homopolymeric ((dA), (dC), (dG) and (dT)) is illustrated. PriS1/L showed higher 
DNA binding activity on poly-dC and dT templates.  The DNA binding affinity of 
PriS1/L for poly-dA was not as significant as other templates.  The highest DNA 
binding affinity PriS1/L was for poly-dG template.  
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Unlike bacterial monomeric DnaG, in archaea primases consist of two subunits 

that are shared by archaea and eukaryotes and compose of the core replicative 

primase. 

In both archaea and eukaryotes, the small subunit of the primase performs the 

catalytic activity (Bocquier et al., 2001). Interestingly, in A.fulgidus the there are 

two small subunits (PriS1 and PriS2). Previous studies indicated that the 

interaction of the large subunit with the small subunit of DNA primase regulates 

and stabilizes the primase activity of small subunit (Liu et al., 2001).  The data 

presented in this chapter demonstrates that PriS1 and PriL subunits from 

Archaeoglobus fulgidus, a genus of the phylum Euryarchaeota, interact and form 

a stable complex (PriS1/L). However, the possible interaction between PriS2 and 

PriL was not tested. To date, many studies have identified the interaction between 

PriS and PriL subunits in different species of archeae (Galal et al., 2012; Lao-

sirieix and Bell, 2004; Liu et al., 2001).  A growing body of evidence indicates that 

many archaeal PriS/L complexes display DNA-dependent DNA polymerase 

activity and also are able to synthesise primers using both dNTPs and rNTPs.  It 

was reported that the primase catalytic subunit from M. janaschii, in common with 

the eukaryotic primase, could synthesise RNA primers (Desogus et al., 1999). 

However, the PriS (Pfu41) subunit from the hyperthermophile Pyrococcus 

furiosus, in contrast with eukaryotic primase, can synthesise primers using 

dNTPs (Liu et al., 2001). Subsequently, the primase complex (p41-p46) was 

characterized and the RNA primase activity which was not observed with the PriS 

(Pfu41) subunit was detected. Here, we observed that the PriS1 subunit of DNA 

primase in the absence of PriS2, together with PriL subunit is able to accomplish 

primase activity. We showed that the PriS1/L complex from Archaeoglobus 

fulgidus performs both priming and primer extension. We confirmed that PriS1/L 

complexes from Archaeoglobus fulgidus and Methanococcus maripaludis are 

DNA-dependent DNA polymerases in vitro. Interestingly, A.fulgidus replicative 

primase showed higher polymerase activity compared to the M. maripaludis and 

P. furiosus replicative primases. Although A.fulgidus DNA primase possess two 

small catalytic subunits (PriS1 and PriS2) there is less known about the roles and 

importance of the PriS2. This subunit maybe required for more efficient primase 

activity. It is also possible that PriS2 in addition to primase activity has an 
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additional role during DNA replication.  However, in many species of archaea the 

PriS2 does not exist.  

Our data suggest that A.fulgidus PriS1/L has a preference for polypyrimidine 

templates d(C) and d(T) for primase activity. This template specificity is a 

common feature among AEPs.  As previously indicated, AEPs from M. janaschii 

and T. kodakaraensis have a preference for polypyrimidine templates (Bocquier 

et al., 2001; Desogus et al., 1999; Galal et al., 2012b).  Moreover, a study on a 

primase from S. solfataricus demonstrated that it was able to synthesise primers 

on a synthetic thymine-containing bubble structure that mimics early replication 

intermediates (De Falco et al., 2004).  Recently, PrimPol, a novel eukaryotic AEP 

superfamily primase-polymerase was found to preferentially prime on 

homopyrimidine (poly dT) but not homopurine templates (Keen et al., 2014).   We 

found that similar to most species of archaea, including Pyrococcus horikoshii, 

Sulfolobus solfactaricus and Pyrococcus furiosus, the PriS1/L complex from 

Archaeoglobus fulgidus was also capable of synthesising primers utilizing both 

rNTPs and dNTPs.  However, it showed a preference to prime using rNTPs over 

dNTPs. These observations are in keeping with properties of Sulfolobus 

solfataricus primase complex (Lao-Sirieix and Bell, 2004).This promiscuous 

feature of archaeal replicative primases mimics the dual activities of the Polα / 

primase complex in eukarya. Therefore, it is possible that DNA replication in 

archaea initiates with synthesis of an RNA primer and continues by extension of 

the primer by PriS/L. Furthermore, it is plausible that other replisome components 

are required to regulate primase-polymerase activities of PriS/L. 

The intracellular concentration of nucleotides in archaea is still unknown but the 

average intercellular concentration of nucleotides in mammalian cells is ~ 0.3 to 

3 mm for rNTPs and 10 to 50 μm for dNTPs (Traut, 1994).  The higher levels of 

rNTPs compared to dNTPs suggests that DNA primases likely select rNTPs to 

initiate primer synthesise, as reported for several archaeal species.  Surprisingly, 

our data showed that Mma-PriS1/L could only synthesis RNA primers on a non-

synthetic M13 ssDNA. This difference may be due to the diverse environments in 

which these species grow. Unlike A.fulgidus that grows in extremely hot 

environments, M. maripaludis, a methanogen species, lives in temperatures that 
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are more moderate. Therefore, diverse environments have caused that archaea 

to adopt separate protein features that are customized for each environment. 

Frick and Richardson have presented a simple mechanism for primer synthesis 

(Frick and Richardson, 2001; Frick et al., 1999).  Based on this model, there are 

two nucleotide-binding sites in DNA primase; the initiation site and the elongation 

site. In the first step, the primase binds to ssDNA.  Once the primase encounters 

an appropriate initiation site it binds to two nucleotides, forms a metal-dependent 

covalent dinucleotide linkage and releases inorganic pyrophosphate.  Next, the 

dinucleotide is moved to the initiation site and allows addition of the third 

nucleotide in the free elongation site.  It has been strongly indicated that zinc 

finger motifs play significant roles in primases. This structural element which has 

been found in most DNA primases, is not only required for DNA binding, but also 

is important for primer synthesis. Similar to herpes virus UL52, in PrimPol, the 

zinc finger domain exhibited an essential role in primase activity.  Studies on AEP 

UL52 protein reported that mutation of the  zinc finger led to lose of primase 

activity (Biswas and S. K. Weller, 1999; Chen et al., 2005).  Deletion of the zinc 

finger domain in PrimPol totally inhibits the primase activity but not the 

polymerase activity (Keen et al., 2014).  Therefore, since zinc finger motifs bind 

DNA and their deletion inhibits primer synthesis, it is believed that this element 

together with the polymerase mode stabilise the binding of the template, 

polymerase and nucleotides, which lead to generation of primer.  Although this 

study was not focused on the role of the zinc finger domain in archaeal primase, 

it is known that PriS/L like other AEP primases contains a zinc finger motif and 

as discussed here, PriS/L can bind to ssDNA and catalyse primer synthesis.  

Therefore, it would be rational to assume that the zinc-finger motif in archaeal 

PriS/L is also important for the synthesis of initial primer. This primer is then 

extended in a more processive way by the polymerase to produce a longer 

product (Figure 3.18). 
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Figure 3.18. Archaea PriS/L performs primase and polymerase activities. 

The model represents the catalytic activities of archaeal replicative primase. 
PriS/L complex performs both primase and polymerase activities. Upon binding 
the PriS/L complex to the specific ssDNA, the small catalytic subunit (PriS) which 
possess the zinc finger motif and AEP domain catalyses synthesis of a short RNA 
primer.  The zinc finger domain highly likely stabilises the binding of the complex 
on the ssDNA also is required for synthesis of a dinucleotide.  PriS together with 
the large non-catalytic accessory subunit (PriL) can bind to primer-template 
junction and in the presence of rNTPs or dNTPs are able to extend the short 
primer more processively to form a longer product. PriS/L Possesses two distinct 
synthesis modes, primase and polymerase, that are carried out under different 
DNA binding conditions. 



132 
 

 

 

 

 

 

 

 

 

Chapter 4 
 

 

Archaeal replicative primases 

perform translesion DNA 

synthesis 
 

 

 

 

 

 

 

 



133 
 

 

4.1. Introduction  

Although accuracy of DNA replication plays a crucial role in maintaining genome 

integrity in all living organisms, this process is continually threatened by various 

physical and chemical lesions and barriers (Aquilera and Gomez-Gonzales, 

2008).  Therefore, cells develop different repair pathways to rescue the stalled 

replication forks. Among these restart pathways translesion DNA synthesis 

(TLS), catalysed by specialized DNA polymerases, plays an important role in 

rescuing stalled replisomes (Sale et al, 2012). Another bypass mechanism is 

error-free recombination-mediated template switching, which is also able to 

rescue stalled replication forks (Li and Heyer, 2008).  In addition, repriming 

downstream of lesions can also rescue progression of stalled replisome (Heller 

let al, 2006; Keen et al., 2014; Lopes et al, 2006; Schiavone et al., 2015). 

Specialized TLS DNA polymerases have been widely found in eukarya and 

bacteria, but surprisingly many archaeal species lack canonical TLS polymerases 

(Figure 4.1) (Kelman and White, 2006). Even though many key archaeal genes 

and several metabolic pathways are closely related to those of eukaryotes, 

majority of archaea lack canonical DNA repair pathways e.g. nucleotide excision 

or mismatch repair (Kelman and White, 2006). These differences lead us to 

question how archaeal species tolerate DNA damage in the absence of TLS or 

lesion repair pathways, specifically those that reside in extreme environmental 

conditions such as high temperature that can lead to deamination of cytosine into 

uracil.  Archaeal replicative polymerase (PolB) stalls at deoxyuracil containing 

templates in order to avoid promutagenic bypass of these templates in which 

results in C–T transition (Richardson et al., 2013; Firbank, 2008).  X-ray structural 

data has revealed that, a specific uracil binding pocket in the N-terminus of PolB 

mediates tight binding of PolB to  the deaminated bases. In addition, inhibition of 

archaeal PolD activity by uracil was also suggested (Richardson et al., 2013). A 

recent study on family D DNA polymerases from A.fulgidus demonstrated that, 

uracil is able to limit the polymerase activity of Afu-PolD either in cis, when the 

deaminated base impedes replication of the strand on which it is situated, or in 

trans, when the deaminated base impedes replication of the alternate strand.  

However, the latter has not yet been observed with PolB (Abellon-Ruiz et al., 

2016).  Altogether, this poses a question as to how archaea restart replication 

after dU-induced replisome stalling? 
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In this study, we demonstrate that archaeal replicative primases (PriS1 and 

PriS1/L) perform translesion DNA synthesis bypass of different DNA lesions. 

Based on our data which are discussed in this chapter it seems reasonable to 

assume that archaeal primases not only catalyse de novo primer synthesis, but 

are also involved in DNA damage tolerance and DNA repair. 

The crystal structures of TLS (Y-family) polymerases suggest that, compared to 

replicative polymerases, the TLS polymerases possess smaller finger and thumb 

sub-domains, which leads to an open and accommodating active site (Yang, 

2005). Since archaeal replicative primases are also competent TLS polymerases, 

it is expected that they have similar active sites. The more open, accessible active 

site can affect the polymerase’s fidelity and its tolerance for mismatched bases. 

In this chapter, I explore these properties of PriS/L from three archaeal species.  

As archaeal replicative primases have been found in all archaeal species, we 

chose this enzyme as a candidate to investigate if it is responsible for lesion 

bypass synthesis in archaea.  Archaeal PriS catalytic subunit, a member of the 

AEP family, together with the PriL accessory subunit perform both primase and 

polymerase activities (Chapter 3). There is now significant evidence showing that 

AEPs play roles in DNA damage tolerance and repair, including the role of closely 

related NHEJ AEPs in DNA break repair (Bartlett et al., 2013., 2016; Pitcher et 

al., 2007b; Della et al., 2004; Weller et al., 2002).  It has recently been shown that 

PrimPol is also a competent TLS polymerase. PrimPol efficiently bypasses a 

number of replication stalling lesions including 6-4 photoproducts, and 8-oxo-dG 

(Bianchi et al., 2013). Altogether, AEPs belong to a class of primase-polymerases 

called PrimPols to reflect their enzymatic activities and origins.  

4.2. Purification of Archaeoglobus fulgidus PolB 

In order to examine the TLS activity of archaeal replicative primase in the 

presence of stalled replicases, archaeal replicative polymerase (PolB) from 

Archaeoglobus fulgidus was expressed and purified.  
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Figure 4.1. Many species of archaea lack canonical TLS polymerases.  

(A). The genes encoding Y-family polymerases are absent in majority of 
archaea. Only 79  archaeal genome among 173 encode canonical TLS DNA 
polymerases. (B). The structural elements of  A. fulgidus replisomal enzymes 

analysed in this chapter. 



136 
 

 

pET28a:Afu-PolB and pET28a:Afu-PolD expression constructs were provided by 

my colleague Dr.Stanislaw Jozwiakowski (Table 2.3). Afu-PolB expression 

construct was transformed into the Rosetta E.coli strain. A culture of Afu-PolB 

was grown at 37°C until it reached exponential phase (OD600= ~0.6) followed by 

addition of 1 mM IPTG for 4 hours at 20°C.  For thermostable enzymes like Afu-

PolB, which can tolerate high temperature without denaturing, a heat step can be 

used to allow the enzyme to reform or redissolve. The prepared cell lysate was 

first subjected to heat denaturation for 20 minutes at 70°C and, after cooling down 

on ice, the denatured proteins can be removed by centrifugation. The cell lysate 

was then loaded onto a Ni2+-NTA agarose affinity chromatography column. The 

bound PolB was eluted with 300 mM imidazole. The successfully eluted PolB was 

resolved on an SDS-polyacrylamide gel. Afu-PolB has a predicted molecular 

weight of 89 kDa (Figure 4.2).  The Ni2+-NTA eluate was diluted at least 10 times 

to reduce the salt concentration and then applied into a heparin chromatography 

column connected in series with 1 ml HiTrap DEAE FF column, a weak anion 

exchanger. The columns were equilibrated with 100 mM NaCl. Proteins were 

eluted with a 100–700 mM NaCl gradient in Tris pH 7.5. Collected proteins were 

resolved using SDS–Polyacrylamide gel. Proteins running at ~89 kDa were 

pooled and concentrated using a Vivaspin® centrifugal concentrator (Figure 4.2). 

Afu-PolD was purified by my colleague Dr. Stanislaw Jozwiakowski.    

4.3. Archaeal replicative primase can bypass 8-oxo-dG  

Free-radical and non-radical oxidants which are common sources of endogenous 

DNA damage generate 8-oxo-dG lesions through altering individual bases. 

Oxidation of DNA under physiological conditions and environmental stress also 

leads to formation of 8-oxo-dG damage (Lindahl, 1993).  Unlike UV irradiation 

damage, 8-oxo-dG does not majorly distort the DNA helix, however, it is able to 

stall replicative polymerases. In addition, the processivity of replicative 

polymerases can be reduced by 8-oxo-dG (McAuley-Hecht et al., 1994, 

Lipscombe et al., 1995).  When replicative polymerases encounter a template 

containing 8-oxo-dG, they readily misincorporate dATP opposite this damage  

(Berquist and Wilson, 2012).  
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Figure 4.2. Purification of Afu-PolB 

A culture of E.coli Rosetta transformed with pET28a:Afu-PolB was grown to 
exponential phase( OD600  =~ 0.6).  After induction with 1 mM IPTG for 4 hours 

at 20°C, cells were lysed and subjected to heat-treatment for 20 minutes at 
70°C. The denaturated proteins were removed by centrifugation and the 

soluble cell lysate was loaded to Ni
2+

-NTA agarose column. Bound PolB was 
washed and eluted with 300 mM (100%B) imidazole and then subjected to 
heparin affinity chromatography connected in series with HiTrap DEAE FF 
column.  The coulms were equilibrated with 100 mM NaCl and then developed 
with a 100–700 mM NaCl gradient in Tris pH 7.5. Fractions were analysed by 
SDS–Polyacrylamide gel and those containing a protein running at ~89 kDa 
were pooled and concentrated  
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We tested whether purified archaeal replicative polymerases (PolB and PolD) and 

replicative primase (PriS1/L) isolated from Archaeoglobus fulgidus (Afu) and 

Pyrococcus furiosus (Pfu), can read through a templated 8-oxo-dG. Standard 

primer extension assays were performed using a 50-mer template, containing a 

site-specific 8-oxo-dG at base 29, annealed to a 20-mer 5’ flourescent labelled 

primer (Figure 4.3).  A marked stalling before and after the 8-oxo-dG lesion was 

observed by Afu polymerases (PolB and PolD) and primase while bypassing the 

lesion.  TLS activity was also observed for Pfu-PriS1/L (Figure 4.3).  

It was next investigated whether bypass of a templated 8-oxo-dG by Afu-PriS1/L, 

Afu-PolB, Afu-PolD, and Pfu-PriS1/L was error-prone. Fidelity of 8-oxo-dG 

bypass was tested using single nucleotide incorporation assays. To generate the 

required substrate for the single nucleotide incorporation assays, the 3’ end of 

the fluorescently labelled primer was annealed to the base 3’ of the 8-oxo-dG 

containing template (Figure 4.4). Single nucleotide incorporation assays revealed 

that Afu-PolB incorporated dA opposite the lesion, while Afu-PolD and both 

primases (Afu-PiS1/L and Pfu-PriS1/L) incorporated dA and dC opposite 8-oxo-

dG lesion with comparable efficiency (Figure 4.4). Our data suggested that 

bypass of a templated 8-oxo-dG by Afu-PolB is error-prone, but by Afu-PolD and 

both replicative primases can be both error-prone and error-free.  

4.4. Error-free bypass of CPDs by Afu replicative primase 

Despite an apparent lack of canonical TLS polymerase bypass mechanisms in 

the majority of archaea, hyerthermophilic archaea such as Archaeoglobus 

fulgidus and Pyrococcus furiosus can tolerate high doses of UV light and have 

mutagenic signatures indicative of the presence of TLS (Beblo et al., 2011; Watrin 

and Prieur, 1996). Cyclobutane pyrimidine dimers (CPDs) are one of the major 

types of UV-induced lesions (Sale et al., 2012; Sinha and Hader, 2002). This 

helix-distorting and replication blocking lesion is induced through cross-linking of 

adjacent pyrimidine bases in DNA by UV irradiation (Svoboda and Vos, 1995; 

Lopes et al., 2006). However, organisms can be threatened by similar blocking 

lesions even in the absence of UV light, e.g. produced by cross- linking with 

aldehyde (Voulgaridou et al. 2011). 
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Figure 4.3.  Archaeal replicative primase can bypass 8-oxo-dG.  

The primer-template substrate used in the primer extension assay is shown 
schematically. A 50-mer template containing 8-oxo-dG was annealed to a 28-
mer primer that was fluorescent labelled at the 5’ terminus (Table 2.7).  Primer-
extension experiment was performed using 20nM of the substrate, 2 mM 
MgSO4, 50 μM of each of the four dNTPs, and 100nM of the indicated primases 
and polymerases. The letter C denotes no enzyme control. All reactions were 
incubated at 50°C at 30 s, 1', 5', and 10'. The experiments showing the bypass 
of 8-oxo-dG by Afu-PolB and Afu-PolD were carried out by Dr. Stanislaw 
Jozwiakowski. 
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Figure 4.4. Single nucleotide incorporation opposite 8-oxo-dG. 

The primer-template substrate used in the single nucleotide incorporation assay 
is shown schematically. A 50-mer template containing 8-oxo-dG was annealed 
to a 28-mer primer that was fluorescent labelled at the 5’ terminus (Table 2.7). 
Single nucleotide incorporation experiment carried out using 20nM of the 
substrate, 2 mM MgSO4, 50 μM of the particular dNTP under investigation, and 
100nM of the indicated primases and polymerases. The letter C denotes no 
enzyme control. All reactions were incubated at  50°C for 10 minutes and then 
quenched and resolved by SDS-PAGE.  

5’ 

5’ 3’ 



141 
 

 

Since oxidative stress can speed up the formation of this type of DNA lesion, it is 

assuming that CPD-like lesions are abundant in hyperthemophilic archaea. First, 

we assayed Afu replicative polymerases for bypass of a CPD lesion by primer 

extension of a short, labelled primer annealed to a template containing T-T CPD 

at bases 28 and 29 (Table 2.7).  Consistent with a CPD being a replication-

blocking lesion, both replicative polymerases (PolB and PolD) were not able to 

fully extend the primer annealed to a CPD containing template (Figure 4.5).  

However, TLS activity across this UV-induced lesion was observed by Afu-

PriS1/L. This indicated that Afu replicative primase is able to bypass a CPD 

lesion.  In contrast to Afu, Pfu-PriS1/L cannot perform TLS opposite this lesion 

(Figure 4.5).  

To determine whether replication of a CPD containing template by Afu replicative 

primase was error-prone, a single nucleotide incorporation assay was performed. 

Two dAs were incorporated by Afu-PriS1/L opposite both templating thymines of 

the CPD, revealing that the primase performs error-free bypass of this UV-

induced lesion. Interestingly, error-free bypass of a CPD by Afu replicative 

primase is consistent with TLS activity of eukaryotic Pol η, which is able to bypass 

CPDs relatively accurately (Johnson et al., 1999).  Incorporation of the correct dA 

base opposite the first thymine of the dimer was observed by Pfu-PriS1/L. (Figure 

4.6). 

 

4.5. Bypass of deoxyuracils by archaeal primase 

Hydrolytic deamination of cytosine to uracil in DNA is one of the most abundant 

spontaneous changes, and can lead to mutations if left unrepaired.  Since this 

mutagenic process is considerably enhanced at higher temperatures, i t is 

believed that thermophiles are at significantly risk from hydrolytic deamination 

(Lindahl and Nyberg, 1974).  Archaeal replicative PolB recognizes uracil in DNA 

templates and stalls replication when encountering these bases. Specifically, 

family B DNA polymerases can bind tightly to uracil in DNA template through a 

specialized binding pocket located in the N-terminal domain of the polymerase 

(Greagg et al., 1999). Remarkably, Pol B / PCNA binds tightly to dU and prevents 

the completion of DNA replication (Emptage et al., 2008).  Therefore, it is believed 
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Figure 4.5. Afu-PriS1/L bypass CPD lesion 

The primer-template substrate used in the primer extension assay is shown 
schematically. A 28-mer primer with a 5’ fluorescent label was annealed to a 
50-mer template containing a T-T CPD. Primer-extension experiment was 
performed using 20nM of the substrate, 2 mM MgSO4, 50 μM of each of the 

four dNTPs, and 100nM of the indicated primases and polymerases. . The 
letter C denotes no enzyme control. All reactions were incubated at 50°C at 
30 s, 1', 5', and 10'.Afu-PriS1/L is capable of inserting nucleotides opposite, 
and extending from, a CPD lesion in vitro. However, the Pfu-PriS1/L and both 
Afu replicative polymerses were unable to read through a CPD. 
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Figure 4.6. Single nucleotide incorporation opposite CPD 

The primer-template substrate used in the single nucleotide 
incorporation assay is shown schematically. A short primer with a 5’ 
fluorescent label was annealed to a 50-mer template containing a T-T 
CPD. Afu and Pfu replicative primases were analysed for their fidelity 
opposite a CPD. Afu-PriS1/L  showed incorporation of dA nucleotides 
opposite both the 3’- and 5’-thymines of the CPD. Pfu-PriS1/L could 
incorporate a single dA opposite the first (3’) base of the dimer.  
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that this mechanism is used to protect the integrity of dU-containing DNA during 

replication.  In addition, polymerase activity of archaeal Pol D family polymerases 

is significantly reduced by the presence of uracil in the DNA template strand 

(Richardson et al., 2013). The ability of archaeal replicative primases to perform 

TLS on a dU-containing template was next tested. First, Afu replicative 

polymerases (PolB and PolD) were incubated with a template containing 

deoxyuracil to assess whether they could traverse du.  Afu-PolB showed stalling 

four bases prior to the dU and the ability of Afu-PolD to extend the labelled primer 

annealed to the dU-containing template was significantly decreased (Figure 4.7). 

Next, we investigated whether Afu-PriS1/L is able to replicate the DNA template 

containing deoxyuracil. Our data indicated that the PriS1/L from A.fulgidus 

significantly bypassed dU (Figure 4.7). A similar profile of bypassing dU was 

observed for Pfu-PriS1/L (Figure 4.7). These proteins were also assessed for 

their fidelity in incorporation opposite a dU lesion.  Single nucleotide incorporation 

assays revealed that PolD and both replicative primases specifically incorporated 

a dA opposite dU (Figure 4.8) suggesting that the PriS1/L dependent bypass of 

dU is pro-mutagenic. 

Although archaeal replicases bind tightly to a template-strand uracil, which leads 

to replication fork stalling, no restart mechanism has yet been investigated.  In 

order to identify the possible role of replicative primases in restarting stalled DNA 

replication, TLS activities of Afu-PriS1/L on 30nt DNA templates containing one 

dU was tested. In this experiment, the substrate was pre-incubated with 

PolB/PCNA complex. The Afu-PriS1/L was able to fully extend the labelled primer 

annealed to a dU containing template, even in the presence of stalled PolB/PCNA 

complex (Figure 4.9). These data suggest that PriS1/L can read through dU-

containing templates and also displace the uracil-bound polymerase thus 

restarting arrested replication forks. 

Together, our results propose that archaeal replicative primases participate in 

both initiation and elongation of DNA synthesis by performing TLS bypass of DNA 

damages, therefore, preventing the archaeal replisome from arresting. 
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Figure 4.7. Archaeal replicative primase can bypass deoxyuracil 

The primer-template substrate used in the primer extension assay is 
shown schematically. A 28-mer primer with a 5’ fluorescent label was 
annealed to a 50-mer template containing dU. Archaeal replicative 
primase and polymerases were incubated with 20 nM of the substrate, 2 
mM MgSO4  (make sure you correct all such superscripts in your thesis)  

and, 50 μM of each of the four dNTPs at 50°C at 30 s, 1', 5', and 10' time 
points alongside a control containing no protein. Afu-PolB stalled four 
bases before dU and polymerase activity of PolD was significantly 
decreased. Both Afu and Pfu PriS1/L primases were able to read through 
a uracil base in the DNA without stalling.  
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The primer-template substrate used in the single nucleotide incorporation 
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was annealed to a 50-mer template containing a dU. Single nucleotide 
incorporation experiment performed using 20nM of the substrate, 2 mM 
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control. All tested proteins showed incorporation of an adenine nucleotide 
opposite uracil. 
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Figure 4.9. Stalled PolB/PCNA complex is rescued by Afu-PriS1/L 

TLS activity. 

The primer-template substrate used in the primer extension assay is 
shown schematically. PolB/PCNA complex cannot read through a dU 
containing template and stalls four bases prior the dU. Afu-PriS1/L was 
incubated in reaction containing PolB/PCNA, dU containing template and. 
dNTPs at 50°C at 30 s, 1', 5', and 10' time points Afu-PriS1/L harbour the 
ability to read through dU and rescue stalled PolB/PCNA complex. The 
letter C denotes no enzyme control .The experiments shown here were 
carried out by Dr. Stanislaw Jozwiakowski.  
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4.6. Translesion DNA synthesis activity of M.maripaludis PriS1/L 

Archaea exist in a diverse range of environmental conditions. Unlike 

hyperthermophiles, such as A.fulgidus and P.furiosus that thrive in extremely hot 

environments, mesophilic archaea like M.maripaludis (Mma) live in mild 

temperatures. Therefore, archaea have protein and cellular pathway adaptations 

to drastically varying biosystems. To investigate whether mesophilic replicative 

primases can also perform TLS, previously described primer extension assays 

were employed to examine TLS activity of purified Mma-PriS1/L using 

oligonucleotide templates containing site-specific replication-blocking DNA 

lesions (Figure 4.10).  Our data indicate that Mma-PriS1/L has the capacity to 

replicate DNA templates containing deoxyuracils, however it is completely 

incapable of reading through 8-oxo-dG and CPD lesions.  Upon testing the fidelity 

of Mma-PriS1/L when incorporating opposite dU, we found that, similar to Afu 

and Pfu primases, Mma-PriS1/L incorporates adenine opposite dU, which also 

suggests a pro-mutagenic bypass of dU by this PriS1/L complex (Figure 4.10). 

Together, our data suggest that compared to Afu and Pfu replicative primases 

and other TLS polymerases, Mma-PriS1/L is not efficient in replicating through 8-

oxo-dG and CPD lesions, which could be due to protein adaptations to mild 

temperatures.  Notably, organisms living in lower temperatures possess reduced 

enzyme activity, genetic expression and protein function (Reed et al., 2013; Yang 

et al., 2007).  It is assumed that due to the moderate environmental conditions 

under which mesophilic archaea reside, they are threatened by less levels of DNA 

damage or they may use other damage tolerance mechanisms such as 

recombination. Therefore, the replicative primase in this archaea might not play 

an important role in translesion DNA synthesis.  However, further investigation is 

required.  

4.7. Detecting PriS/L’s repriming activity  

Since the PriS/L complex is known as a proficient DNA primase in archaea, it is 

highly likely that its primase activity as well as its TLS activity, is needed to 

tolerate a variety of DNA damages.  Priming allows the enzyme to initiate DNA 

synthesis de novo downstream of a lesion following replication stalling at the  
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Figure 4.10. Mma-PriS1/L is not an efficient TLS polymerase 

Schematic pictures of primer-template substrates used in primer-extension 
assay (A, B, C) and single nucleotide incorporation assay (D) are illustrated 
above each fluorescent gel. (A) Mma-PriS1/L was incubated with dU containing 
template. Mma-PriS1/L could bypass dU but with decreased processivity in 
comparision with Afu and Pfu primases. (B) Mma-PriS/L was not able to read 
through 8-oxo-dG lesion. (C) Mma-PriS1/L was incapable of extending the CPD 
lesion. (D) Mma-PriS1/L incorporated a dA opposite dU base. 
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site of damage, this leaves a ssDNA gap in the daughter strand (Bianchi et al., 

2013 Keen et al 2014; Schiavone et al., 2015).  It is believed that repriming is 

limited to lesions on the leading strand replication.  Due to the discontinuous 

nature of lagging-strand replication, DNA blocking lesions or obstacles are likely 

to be inherently tolerated (Pagès and Fuchs, 2003; Svoboda and Vos, 1995).  In 

the lagging strand, primers are constantly produced for Okazaki fragment 

synthesis. The newly generated primer is able to restart replication downstream 

of a lesion and generate a ssDNA gap.  Repriming replication post-lesion has 

been reported in different organisms (Rupp and Howard -flanders, 1968).  In 

mammalian cells, repriming downstream of UV lesions has been proposed 

(Lehman, 1972). Furthermore, repriming downstream of UV-irradiated stalled 

replication forks, which leave behind ssDNA gaps in the leading strand, has been 

detected in yeast (Lopes et al., 2006).  Bacterial DnaG primase can also catalyse 

leading-strand repriming in E. coli (Heller and Marians, 2006; Yeeles and 

Marians, 2011). Remarkably, PrimPol, a novel eukaryotic DNA primase-

polymerase can perform repriming downstream of different blocking lesions and 

obstacles and it was reported that PrimPol can facilitate close-couple repriming 

downstream of a G quadruplex (G4) structures (Schiavone et al., 2016).  

Moreover, in avian cells, the exhibited repriming activity by PrimPol could restart 

stalled replication forks following UV damage (Keen et al., 2014). Recently, 

PrimPol exhibited downstream repriming of  apurinic/apyrimidinic site (Ap site) 

and thymine glycol (Tg) lesions in the template strand. (Kobayashi et al., 2016). 

In order to assess the capacity of archaeal PriS/L to reprime downstream of 

lesions, Afu-PriS1/L was incubated with a template containing either 

apurinic/apyrimidinic site (Ap site) or thymine glycol (Tg) lesion.  In common with 

PrimPol, archaeal replicative primases are unable to bypass Ap and Tg lesions 

through TLS, in the presence of Mg2+ (Jozwiakowski et al., 2015).  However, this 

inability does not preclude the possibility that PriS/L rescue the stalled replication 

through repriming activity.  To test this, we used a primer containing a terminal 3’ 

dideoxynucleotide moiety, which was annealed upstream of the templating 

lesions that represent the replication stalling site. This stops template-

independent primer extension that impedes the assessment of PiS/L’s repriming 

activity. As a control, PrimPol was also incubated with both templating lesions. 

As indicated, on the non-damaged template with no annealed primer, Afu-PriS1/L 
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Figure 4.11. Archaeal PriS/L cannot catalyse repriming downstream of Ap 

and Tg 

Reactions containing 1µM of Afu-PriS1/L, 250µM of dNTPs or rNTPs, 2.5µM of 
FAM dNTPs and 1µM of primer-templates (as indicated in schematic) were 
incubated for 15 minutes at 50°C and 37°C for Afu-PriS1/L and PrimPol, 
respectivelyIn order to test the repriming ability of PriS1/L rather than its TLS 
activity, primers with a 3′ dideoxynucleotide were annealed upstream of the 
lesion on templates containing Ap and Tg. PrimPol showed close-coupling 
repriming downstream of lesions as the length of primer extension products 
produced in each lesion was near identical. Afu-PriS1/L was unable to reprime 
downstream of templates containing Ap and Tg. Oligonucleotide nucleotide (Nt) 
length markers are indicated on the left. The letter C denotes no enzyme control 
and “ND” denotes non-damaged template without an annealed primer. 
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showed significant priming activity (Figure 4.11). Unlike PrimPol, which was able 

to perform close-couple repriming downstream of an Ap site and Tg blocking 

lesions, no repriming activity downstream of these lesions was observed by Afu-

PriS1/L, either in the presence of rNTPs or dNTPs.  We observed efficient priming 

by AfuPriS1/L complex with M13 ssDNA using a radioactivity assay in chapter 3.  

Hence, considering that PriS1/L is a genuine primase in archaea and maintaining 

replication following potential lethal DNA lesions can be facilitated by repriming 

activity of DNA primases in different organisms, the inability of Afu-PriS1/L in 

repriming downstream of Ap and Tg lesions cannot be conclusive.  Unlike higher 

eukaryotes, in other organisms such as budding yeast, which lack PrimPol, the 

leading strand repriming is dependent on the replicative DNA primase (Prim1) of 

the Pol α complex (Iyer et al.,2005). This is in common with E. coli DnaG primase 

that is required for leading strand repriming. This suggests that in archaea, 

instead of PriS/L, the non-essential bacterial-like DnaG primase might be 

required for repriming activity. Although this is just speculation and further 

research is necessary.   

4.8. Nucleotide insertion fidelity of the PriS1/L complex 

TLS is a two step process, first a polymerase (mis)incorporates a nucleotide 

oppsite a DNA lesion and then subsequently extends past this lesion (Sale et al., 

2012). Similar to PrimPol and other TLS polymerases, archaeal replicative 

primase (PriS/L) lacks a 3’-5’ exonuclease activity (Liu et al., 2001; Guilliam et 

al., 2015; Keen et al., 2014). This suggests that archaeal replicative primases 

have low fidelity and such low fidelity is also a hallmark of canonical TLS 

polymerases.  In order to measure the fidelity of PriS1/L, we utilized primer 

extension assays based on single incorporation of correct or incorrect 

nucleotides. To analyse the single base incorporation, a 27-mer primer was 

annealed with a 50-mer template with either adenine (dA), cytosine (dC), guanine 

(dG) or thymine (dT) interrogated as the primary templating base (N+1 position) 

and also at the N+2 position.  In three substrates, one templating cytosine (dC) 

was located following the first and second templating bases (N+3 position). 

However, in one substrate where C was at N+1 and N+2 positions, dT was the 

following templating bases (N+3 position).   In this experiment, PriS1/L from three 

archaeal species (A.fulgidus, P.furiosus and M.maripalidus) was incubated with 
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each primer-template substrate and either dATP, dCTP, dGTP or dTTP as the 

incoming bases.  

4.8.1. Afu-PriS1/L shows a tendency for misincorporation 

Single-base misincorporation assays using Afu-PriS1/L suggested that these 

enzymes have a strong tendency to misincorporate some bases opposite 

templating bases (Figure 4.12). Our data showed that Afu-Pris1/L misicorporated 

dGTP as the incoming base opposite templating dG and dT (Figure 4.12). This 

result was consistent with the reported ability of PrimPol to misincorporate dGTP 

opposite templating dG (Guilliam et al., 2015).  In addition to dGTP, PriS1/L also 

displayed misincorporation of dCTP and dATP opposite templating A and C, 

respectively (Figure 4.12).  Single misincorporation of dATP opposite templating 

C was also observed by PrimPol (Guilliam et al., 2015).  When dATP was used 

as the correct incoming base opposite two templating dTs incorporation of dATP 

opposite the third cytosine nucleotide at the N+3 position was visible (Figure 

4.12). In addition, incorporation of dG opposite two templating cytosines was 

followed by incorporation of a dG opposite the third nucleotide base, thymine, at 

the N+3 position (Figure 4.12).  Therefore, these results suggested that PriS1/L 

could misincorporate dA and dG opposite templating dC and dT, respectively. 

Another possibility would be that PriS1/L scrunches the template strand and one 

of the thymidines and cytosines is read twice as a templating base. Together, 

these observations propose that Afu-PriS1/L has a propensity for nucleotide 

misincorporation.  

4.8.2. Nucleotide misincorporation by Pfu-PiS1/L 

Similar single incorporation assays were employed to analyse the base 

substitution fidelity of Pfu-PriS1/L.  Similar to Afu-PriS1/L, Pfu-PriS1/L exhibited 

a tendency to misincorporate dG, especially opposite templating dT (Figure 4.13). 

In addition, when PriS1/L incorporated dGTP opposite two templating cytosine 

followed by two templating thymines (N+3 and N+4 positions), significant product 

bands were observed at N+3 and N+4 positions (Figure 4.13). Again, these 

correspond to the propensity of PriS1/L to misincorporate dGTP opposite a 

templating dT. Single misincorporations, albeit not very significant, were visible 

opposite templating dC when dATP was used as the incoming base.  Additionally, 

there was some evidence for the incorporation of dA opposite templati ng 
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Figure 4.12. Single nucleotide incorporation fidelity of Afu-PriS1/L 

Fidelity of Afu-PriS1/L was measured using single-base incorporation assay. The 
primer-template substrate used in the single incorporation assay is shown 
schematically. PriS1/L was incubated with 20 nM primer-template substrate 
(Table 2.7.) containing either AA, CC,GG or TT as two templating bases and 
supplemented with 100µM of either dCTP, dTTP, dGTP or dATP at 50°C for 30 
seconds, 1, 5, 10, 20 minutes. The templating bases are shown on the left and 
the incoming dNTPs are indicated above. The letter C denotes no enzyme control.  
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Fidelity of Pfu-PriS1/L was measured in the same manner as Afu-PriS1/L. 
PriS1/L was incubated with individual dNTPs and substrates from table 2.7 at 
50°C for 30 seconds, 1, 5, 10, 20 minutes. Watson-Crickbase pairing opposite 
each templating base is observed.  Although, the enzyme shows erroneously 
incorporation of dCTP opposite templting C (N+3 and N+4 positins) when 
incorporating cytocine opposite templating G. In addition, when PriS1/L 
incorporating dGTP opposite two templating cytocine followed by two templating 
thymines (N+3 and N+4 positions), significant product bands were observed at 
N+3 and N+4 positions. The templating bases are shown on the left and the 
incoming dNTPs are indicated above. The letter C denotes no enzyme control.  
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dT at the N+3 position, which also suggests that Pfu-PriS1/L can misincorporate 

dA opposite templating dC. This misincorporation was also observed in the case 

of Afu-PriS1/L.  A similar result was detected on a dG template with the correct 

incoming base (dCTP) and misincorporation of dC opposite templating dC was 

observed at the N+3 and N+4 positions (Figure 4.13).  This increased N+3 and 

N+4 incorporation could be due to the over incubation of PriS1/L, rather than 

through misincorporation, as it was visible after 20 minutes incubation. These 

results suggest that, similar to Afu-PriS1/L, Pfu-PriS1/L has a tendency for 

nucleotide misincorporation.  

4.8.3. Nucleotide misincorporation by Mma-PiS1/L 

As previously indicated (section 4.6.), in comparison to PriS1/L complexes 

isolated from A.fulgidus and P.furiosus that showed bypass of different lesions 

through TLS, PiS1/L isolated from M.maripalidus was only able to read through 

dU containing templates.  Therefore, this suggested that Mma-PriS1/L might not 

be an efficient TLS DNA polymerase. To measure the fidelity of Mma-PriS1/L, 

single-base incorporation assay was used.  Although Mma-PriS1/L only showed 

incorporation of correct nucleotides opposite most templating bases, a small 

amount of aberrant incorporation of nucleotides was also observed (Figure 4.14). 

Our data indicated that, consistently, product bands at N+3 and N+4 positions 

were detectable on the templating C when dGTP was the incoming base which 

suggested misincorporation of dGTP opposite templating T (Figure 4.14).  Since 

all three examined PriS1/L complexes carried out this type of misincorporation, it 

can be concluded that archaeal PriS/L has a strong tendency to misincorporate 

dGTP, mostly opposite templating T.  This could be the error signature of PriS1/L.  

Furthermore, very weak misincorporation of dCTP and dTTP opposite templating 

T by Mm-PriS1/L was observed (Figure 4.14).  

4.9. PriS/L has the capacity for mismatch extension  

Alteration of the coordination of incoming bases for strand extension can also 

change the coordination of primer DNA.  DNA polymerases differentiate against 

mismatches at the binding and insertion steps (Johnson and Beese, 2004), so 

the abi li ty of archaeal PriS1/L to tolerate mismatches at primer -template  
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Figure 4.14. Single nucleotide incorporation fidelity of Mma-PriS1/L 

Fidelity of Mma-PriS1/L was also examined in the same manner as Afu and Pfu 
PriS1/L complexes. The primer-template substrate used in the single 
incorporation assay is shown schematically.  Mma-PriS1/L shows less 
misincorporation relative to two other replicative primases. The templating bases 
are shown on the left and the incoming dNTPs are indicated above. The letter C 
denotes no enzyme control.  
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junctions suggests reduced catalytic efficiency for this enzyme.  Therefore, next, 

we tried to analyse the mismatch extension abilities of PriS1/L on different 

templates with a mismatch at the primer-template junction. Following incubation 

of Afu-PriS1/L with each primer-template substrate, a proficient extension from a 

G-G mismatch was detected. Moreover, this enzyme exhibited a capacity to 

extend A-C, A-G, C-C and T-G mismatches (Figure 4.15). However, incubation 

of Pfu-PriS1/L with these Primer-template substrates showed only very weak 

extension from G-T and T-C mismatches (Figure 4.16). In contrast, Mma-PriS1/L 

was not able to extend from any of the mismatched bases (Figure 4.17). The 

inability of Mma-PriS1/L to extend terminal mismatched base pairs is consistent 

with the lack of ability of this replicative primase to extend beyond some lesions.  

The results obtained from mismatch extension experiments are summarized in 

Table 4.1.  In some cases, PriS1/L was able to form a Watson-Crick base pair 

with the next templating base (N+1 position) following accommodation of the 

mismatch in the active site. Therefore, it could extend the mismatch in a template-

dependent fashion.  However, there is one case in which dGTP is incorporated 

where the next templating base is not cytosine but rather the cytosine is located 

at N+2 position (Table 2.7).  This can happen by scrunching the template by Afu-

PriS1/L and incorporating dGTP opposite the downstream C, which would in turn 

leads to deletions in vivo. 

4.10. Summary and discussion 

This chapter reports that archaeal replicative primases are able to perform 

translesion DNA synthesis in order to bypass replication-blocking lesions and 

rescue stalled replication forks in vitro.  Our data indicated that PriS1/L complexes 

isolated from hyperthermophilic archaea (A.fulgidus and P.furiosus) are capable 

of traversing 8-oxo-dG containing templates.  In addition, unlike archaeal 

replicative polymerases, both Afu-PriS1/L and Pfu-PriS1/L show the ability to 

replicate past dU bases. Furthermore, both primases exhibit correct incorporation 

of dC, through Watson-Crick base pairing and incorrect incorporation of dA by 

forming Hoogsteen base pairing opposite an 8-oxo-dG lesion. This propensity of 

incorporating C, as well as A, opposite 8-oxo-dG is evident in some other 

polymerases.  However, presence of some proteins such as PCNA and RPA 



159 
 

 

 

 

  

CC 

AA 

GG 

C T G A 

TT  

Time Time Time Time 

Primer 

Primer 

Primer 

Primer 

C C C C 

Primer 

C  C 

A A/ G G/ T T 

/A/ T /C  G 

  

Figure 4.15. Afu-PriS1/L performs mismatch extension  

Mismatch extension ability of Afu-PriS1/L was measured in the presence of all 
four dNTPs and primer-template substrates from table 2.7. Each primer-template 
substrate consists of a mismatch base at the 3’ terminal of the primer. Four 
variants of primer-template substrates show Watson-Crick base pairs, while, 12 
substrates represent other possible combinations of base pairs.  The templating 
bases are shown on the left and each mismatched base at the 3’ end of the 
annealed primer is illustrated above.  
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Figure 4.16. Analyses of Pfu-PriS1/L base mismatch tolerance 

Mismatch extension by Pfu-PriS1/L was studied in the same manner as Afu-
PriS1/L. Incubation of Pfu-PriS1/L with 16 different primer-template substrates 
indicated tolerance for G-T and T-C mismatches by this enzyme. The templating 
bases are shown on the left and each mismatched base at the 3’ end of the 
annealed primer is illustrated above. 
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Figure 4.17. Analyses of Mma-PriS1/L base mismatch tolerance 

Mismatch extension by Mma-PriS1/L was analysed in the same manner as Afu 
and Pfu PriS1/L proteins. In contrast to Afu and Pfu, Mma-PriS1/L was not able 
to extend from any of none Watson-Crick base pairs. 
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Table 4.1. Summary of mismatch tolerance of archaeal replicative primase. 

Previously, confirmation of 12 possible combinations of DNA mispairs was   structurally 
characterised (Johnson and Bees, 2004). Although both Afu-PriS1/L and Pfu-PriS1/L are 
tolerated to some mismatches, Mma-PriS1/L cannot tolerate the extension of all 12 
mismatch combinations. 
  



163 
 

 

can drastically increase the preference of Pols λ and η for adenine over cytosine 

(Maga et al., 2007; van Loon et al., 2010). However, this has not yet been 

observed for archaeal PriS/L.  Apurinic/apyrimidinic (AP Sites) which are  

produced as a result of oxidative stress, can also block replication. Similar to 

PrimPol and Pol γ, the mitochondrial replicative polymerase, archaeal PriS/L 

cannot bypass this lesion (Graziewicz et al., 2007; Keen et al., 2014; Pinz et al., 

1995).  We also demonstrated that Afu-PriS1/L could perform TLS activity on a 

template containing a CPD photo-lesion. Afu-PriS1/L can catalyse error-free 

bypass of CPDs through incorporating two dAs opposite a T-T CPD.   

In contrast to the tested hyperthermophilc archaea, the PriS1/L complex isolated 

from M.maripalidus, which is a mesophile, could not read-through either 8-oxo-

dG or CPD lesions. However, similar to Afu and Pfu primases it can replicate past 

dU bases. The inability of Mma PriS1/L to bypasss CPD and 8-oxo-dG lesions 

may reflect the difference in environmental conditions under which these 

organisms reside. Since M.maripalidus grows in moderate environmental 

conditions, comparing to two other species, it may be exposed to lower levels of 

genotoxic DNA lesions, such as cross-links. Another possibility could be the 

usage of other repair / damage tolerance pathways in this species to overcome 

such damage during replication. 

As PriS/L is able to insert nucleotides opposite, and extend from bulky and 

distorting lesions, most probably the active site of this polymerase, which is 

involved in phosphodiester bond formation, is large and flexible enough for DNA 

lesions to be accommodated.  Therefore, it is not suprising that PriS/L displays 

low fidelity when incorporating bases opposite some lesions.  Notably, this 

hallmark is also exhibited by PrimPol, which has low fidelity when bypassing 

highly distorting lesions (Bianchi et al., 2013; Keen et al., 2014; Rudd et al., 2013). 

Accommodation of lesions, e.g.8-oxo-dG, at the active site of PriS/L decreases 

the fidelity of the polyemerase, hence PriS/L is a low fidelity polymerase that can 

connect non-specifically to replicating base pairs.  

The presence of different DNA lesions and obstacles in the genome is pro-

mutagenic, therefore, to overcome this problem cells have developed various 

DNA repair pathways.  However, in some cases, repair mechanisms are not able 

to remove the damage, therefore, the lesion stays in the genome and if left 
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unrepaired it can lead to problems, such as replisome stalling.  In this situation, 

DNA damage tolerance mechanisms have been evolved by cells to rescue stalled 

replication forks.  DNA damage tolerance can either occur at the fork by TLS or 

template switching, or it can take place after replication by repriming.  During 

repriming on the leading strand, a primase initiates DNA synthesis de novo 

downstream of lesion following replication stalling at the sites of damage, which 

leaves a ssDNA gap opposite the lesion. Repriming downstream of lesions has 

been proposed for different organisms, such as, mammalian cells and budding 

yeast (Rupp and Flander, 1968; Lehman, 1972; Lopes et al.,2006;). Although we 

have discovered that archaeal replicative primases (PriS/L) can act as TLS DNA 

polymerases that bypass DNA lesions and rescue stalled replication forks, we 

were unable to show repriming downstream of lesions by archaeal PriS/L.  Since 

these enzymes are proficient DNA primases, it is conceivable that they perform 

repriming downstream of lesions but our assays are not sensitive enough to 

detect this.  Therefore, further studies are required to investigate this. 

Until recently, it was strongly believed that DNA primases were a class of proteins 

that were only required for initiation of DNA replication through synthesis of short 

RNA primers. However, a growing body of evidence has indicated that the 

enzymatic activity of these diverse enzymes is not limited to producing RNA 

primers.  Indeed, this class of proteins are capable of performing a wide range of 

roles from DNA replication to DNA damage tolerance and DNA repair. It is now 

known that AEP-like primases, which were initially identified in eukaryotes, first 

arose in prokaryotes and bacteriophage to facilitate DNA repair mechanisms 

(Weller et al., 2002; Della et al., 2004).  These studies highlighted the necessity 

for a re-evaluation of both the origin and roles of AEP-like primases in biology.  

DnaG is a bacterial DNA primase which fulfils the role of primer synthesis to 

initiate replication in bacteria and bacteriophage.  Soon after the discovery of the 

polymerase activity of archaeal primases, AEP orthologous were also found in 

prokaryotes. This discovery suggests an early diversification in AEP protein’s 

roles. It is believed that the last universal common ancestor (LUCA) employed a 

dual-primase system consisting of both DnaG and AEP (PriS/L) primases 

(Guilliam et al., 2015; Hu et al., 2012). Based on this hypothesis, selective 

pressure eliminated AEPs as replicative primases in bacteria and retained their 
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role in NHEJ (Weller and Doherty, 2001). While in archaea, the replicative 

primase activity of DnaG was supressed by selective pressure.   

Archaeal DnaG comprises N- and C- terminal domains flanking a TOPRIM 

domain. While NT and TOPRIM domains are conserved among all archaea, 

conservation of CTD correlates with the presence of the exosome. Recently it 

was discovered that the NT is a novel RNA-binding domain. It was also shown 

that degradation of A-rich RNA by the exosome can be increased by a protein 

containing the eukaryotic homologue of Cs14 and the NT domain of DnaG. 

Together these findings suggested that archaeal DnaG is an RNA-binding protein 

and this enzyme in the context of the exosome degrades stable RNA (Hou et al., 

2014). 

In 2005, following division of the AEP superfamily into three distinct clades, using 

in silico analyses, a second primase called PrimPol was discovered as a novel 

AEP in higher eukaryotes (Iyer et al., 2005). PrimPol is assigned to the NCLDV-

herpes virus clade. Interestingly, the primase and polymerase activities described 

in this thesis (Chapter 3) for archaeal replicative primases (PriS/L) mirror primase 

and polymerase functions of PrimPol. PriS, and the NHEJ AEPs, belong to the 

more ancient “proper” clade of AEPs that also includes the eukaryotic PriS / 

Prim1.  

Previously, it was assumed that Dpo4, a defining member of the Y family DNA 

TLS polymerases, which exists in some species of archaea and has lesion-

bypass properties, would be important for damage tolerance.  However, it was 

recently been shown that in the absence of Dpo4, Sulfolobus strains do not show 

increased sensitivity to damaging agents, including UV radiation (Sakofsky et al., 

2012). This study suggests the presence of other TLS pathways for traversing 

replication blocking damages in archaea.  Notably in this regard, another study 

on Sulfolobus reported that UV induction could decrease expression of DNA 

replication genes, notably with the exception of Pris, and increase expression of 

some genes encoding unknown proteins (Gotz et al., 2007). The mutagenic 

consequences of ethyl methanesulfonate (EMS) and UV on Pyrococcus abyssi 

has been tested. This study indicated both EMS and UV could significantly 

increase the rates of mutagenicity, such that the spontaneous mutation frequency 

elevated ∼150-fold after EMS treatment and ∼400-fold after UV exposure (Watrin 
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and Prieur, 1996).  This finding supports the possible existence of DNA damage 

tolerance mechanisms in archaea. Furthermore, fractionation experiments of 

Pyrococcus furiosus whole cell extracts, which showed polymerase activities in 

three main fractions, also supported this prediction (Ishino and Ishino, 2006).  

Notably, TLS activity was observed in one fraction and, even though the 

polymerase that catalysed this activity was not identified, it was reconcilable with 

the elution peak containing the PriS/L complex although the significance of this 

escaped the notice of the authors.  

Together, these findings by other groups add additional support to our presented 

model in this thesis, which postulates that archaeal replicative primases play 

important roles in DNA damage tolerance in some archaea by performing 

translesion synthesis and also probably by repriming replication restart 

downstream of lesions or secondary structures (Figure 4.18). Since replicative 

primases are core components of the replisome, it asserts that in many living 

organisms the DNA replication machinery is inherently TLS proficient and that 

other DNA damage tolerance mechanisms may act as “back-ups” to rescue more 

profoundly stalled replication forks. These findings shed new light on the further 

roles of DNA primases during DNA replication and the subsequent evolution of 

related PrimPol-centric TLS/ repriming pathways in eukaryotic cells. 

Taken together, the data presented in this chapter indicates that, similar to other 

TLS polymerases, PriS/L has a lower fidelity than replicative polymerases. 

Hence, PriS/L is a relative error-prone polymerase and the enzymatic activities 

of this protein need to be tightly regulated. Otherwise, its unscheduled or 

deregulated activities would synthesise long tracts of DNA in an error-prone 

fashion, which could lead to the accumulation of multiple genetic errors.   
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Figure 4.18. The roles of archaeal replicative primases in DNA damage 

tolerance 

The picture on the top illustrates the polymerase activity of replicative polymerase 
(Pol B, blue) with sliding clamp (PCNA).  Encountering of the PolB/PCNA complex 
with a blocking lesion leads to polymerase idling and recruitment of the primase 
(PriS/L complex, yellow). In the next step, depending on the type of damage, PriS/L 
rescues the stalled replication employing either translesion DNA synthesis (TLS) 
activity or re-priming. The picture on the right shows a situation where the blocking 
lesion is rather small (e.g., 8-oxo dG, dU, or CPD) and primase (PriS/L) can bypass 
the damage through TLS activity, this leads to resuming the DNA replication by 
PolB/PCNA complex. The fidelity of TLS carried out by A.fulgidus PriS/L is also 
illustrated. The picture on the left demonstrates the re-priming activity of PriS/L 
downsteam of relatively larg lesions which leaves a gap on the damaged DNA and 
synthesis a short primer after the lesion so that PolB/PCNA complex can restart the 
DNA replication.  
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5.1. Introduction  

Unlike replicative polymerases, specialised TLS DNA polymerases display low 

fidelity when copying undamaged DNA templates. Therefore, these polymerases 

need to be regulated at several different levels, otherwise their deregulated 

activity gives rise to mutagenesis (Sale et al., 2012). One way to regulate the 

enzymatic activity of proteins, which are required in response to specific stresses, 

such as TLS polymerases, is to control their intracellular concentration.  In E. coli, 

the concentration of these proteins is under the control of the SOS response to 

ensure that their concentration is low in undamaged cells and induced in the 

presence of damage (Michel, 2005).  In vertebrate cells, access of TLS proteins 

to the replisome is regulated through post-translational modification of PCNA. 

Replication fork stalling that occurs in the presence of damage stimulates mono- 

ubiquitination of PCNA which in turn increases its affinity for TLS polymerases. 

This leads to recruitment of TLS enzymes to the stalled replication fork. Following 

bypass of the lesion by a TLS polymerase, TLS polymerase idling occurs. The 

TLS polymerase is then displaced and replaced with a high fidelity replicative 

DNA polymerase which continues DNA replication (Friedberg et al., 2005). This 

polymerase switching mechanism plays a key role in limiting the progression of 

replication by a low fidelity DNA polymerase. This allows TLS polymerases 

access to the replisome only when DNA damage tolerance is required.  Recently, 

it was shown that there is no interaction between PrimPol, which is involved in 

DNA damage tolerance through TLS or re-priming, and PCNA.  Indeed, it was 

discovered that, human PrimPol interacts with the key cellular single-stranded 

DNA binding proteins, RPA, and mitochondrial SSB (mtSSB) (Guilliam et al., 

2015).  Both RPA and mtSSBs increase the activity of their respective replicative 

Pols, δ and γ (Oliveira and Kaguni, 2010; Tsurimoto and Stillman, 1989).  By 

contrast, polymerase activity of PrimPol is restricted by both RPA and mtSSB 

(Guillium et al., 2015).  In addition, these SSBs can also inhibit the primase 

activity of pol α-primase (Collins and Kelly, 1991). More recently, it has been 

demonstrated in our lab that, depending on the concentration of RPA, the effect 

of RPA on the primase activity of PrimPol can be changed. While sub-saturation 

of RPA significantly stimulates primer synthesis, increasing RPA’s concentration 

restricts this activity (Guilliam et al., under review). Chapter 4 established that 

archaeal PriS1/L is an error-prone DNA polymerase, capable of bypassing uracil 
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and base lesions. Therefore, strict regulation is probably required during its 

participation in DNA replication. The aim of this chapter was to study the 

regulatory effect of RPA on A.fulgidus PriS1/L.  In particular, to study whether 

RPA was able to affect the enzymatic activities of PriS/L, which would be 

consistent with the effect of RPA and mtSSB on human PrimPol.  In addition, in 

this chapter we also discuss our attempts to identify the potential interaction 

between RPA and PriS1/L in A.fulgidus.  

5.2. Cloning the archaeal PriS/L genes into expression vectors  

Eukaryotic RPA is a heterotrimer consisting of three subunits (RPA70, RPA32 

and RPA14). Although in general archaeal RPAs are similar to their eukaryotic 

counterpart, members of archaea possess various forms of single-stranded 

binding proteins (Kelman and Kelman, 2014).  In euryarchaeota, different forms 

of RPA, such as single, multiple and complex have been identified. Unlike 

Methanococcus jannaschii and Methanothermobacter thermoautotrophicus, RPA 

from P.furiosus forms a hetero-oligomeric complex composing of three subunits 

including, RPA41, RPA32 and RPA14 (Komori and Ishino, 2001). Two RPA41 

homologues have been identified in A.fulgidus, RPA-780 which contains a zinc 

finger motif and RPA-382.  Since RPA-780 and RPA-382 are ordered in a tandem 

arrangement in A.fulgidus genome, it is believed that these RPAs are functionally 

associated (Komori and Ishino, 2001). In order to characterise the effect of 

archaeal RPA on the polymerase and primase activities of the A.fulgidus 

replicative primase, two ORFs corresponding to RPA orthologous in A.fulgidus 

(AF0-780 and AF0-382) were amplified from A.fulgidus genomic DNA (using 

primers in table 2.1) and cloned into the pET28a and pGEX-6p-1 E.coli 

expression vectors, respectively.  Therefore, pET28a:Afu-RPA-780 and pGEX-

6P-1:Afu-RPA-382 expression constructs were generated (Figure 5.1). 

5.3. Expression and purification of A.fulgidus RPA-780 and RPA-

382 

The Afu-RPA-780 and Afu-RPA-382 expression constructs were transformed 

into Rosetta E.coli strain. 3 litre cultures were grown at 37°C for 3 hours unti l 

exponential phase and induced with 1mM IPTG at 25°C overnight.  First, we  
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Figure 5.1. Cloning of the A. fulgidus RPA genes, Afu-RPA-780 and 

RPA-382  

The open reading frames corresponding to RPA-780 and RPA-382 were 
PCR amplified from A.fulgidus genomic DNA (Table 2.3), introducing the 
applicable restriction sites to allow insertion into the multiple cloning site 
(MCS) of the pET28a and pGEX-6p-1 expression vectors, respectively. 
RPA-780 and RPA-382 were cloned in-frame with 6-histidine and GST tags 
downstream of the promoter. The PCR products were combined with 10x 
DNA loading dye and run on 1% agarose gels containing ethidium bromide.  
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attempted to purify RPA-780, which was cloned into the pET28a expression 

vector using Ni2+-NTA agarose affinity chromatography, which specifically binds 

the fused 6X His tag.  The prepared soluble cell lysate was loaded onto the Ni2+-

NTA chromatography, followed by elution of bound RPA-780 from the nickel 

column with a range of imidazole concentration.  Eluted RPA-780 was resolved 

on a SDS-polyacrylamide gel to confirm the correct size. The result was in 

agreement with its predicted molecular mass.  RPA-780 has a predicted 

molecular mass of ~35 kDa (Figure 5.2). To remove E.coli contaminants, the Ni2+-

NTA eluate was subjected to purification on a Heparin affinity column. The 

column was equilibrated with Heparin Buffer A (150 mM NaCl, 40 mM Tris-HCl 

pH 7.5, 10% (v/v) glycerol).  After 1:10 dilution with Heparin Buffer A (100mM 

NaCl), the Ni2+- NTA eluate was slowly loaded onto the Heparin column and 

eluted with 500 mM NaCl.  For the last step of purification, Hydrophobic 

Interaction Chromatography (HIC) was employed. HIC is usually used to separate 

protein based on hydrophobicity. To decrease the availability of water molecules 

in solution and enhance hydrophobic interactions, salting-out ions (e.g. sodium 

chloride, potassium chloride or ammonium sulphate) are used typically.  Phenyl 

Sepharose 6 Fast Flow, a standard aromatic hydrophobic interaction 

chromatography (HIC) medium was chosen for this purification.  Heparin fractions 

containing protein were first concentrated using a Vivaspin® centrifugal 

concentrator. Protein sample was prepared with a 1:1 volume of protein and HIC 

buffer with high-salt ammonium sulfate (2M (NH4)2SO4) to make the salt 

concentration of the protein roughly equivalent to the starting buffer used for 

column equilibration. After loading the sample onto the column and washing it 

with sodium chloride and 1M ammonium sulfate, the bound RPA-780 was eluted 

in a buffer with 500 mM sodium chloride and no ammonium sulfate. Collected 

fractions were monitored at 280 nm and analysed by SDS-PAGE. A band 

corresponding to RPA-780 was detected on the gel (Figure 5.2). 

Afu-RPA-382 was cloned into the pGEX-6P-1 vector with a GST tag located at 

the N-terminus.  Since GST has a high affinity to glutathione coupled to a 

Sepharose matrix, we attempted to purify RPA-382 using Glutathione Sepharose 

4 Fast Flow medium. Prepared cell lysate was mixed with glutathione sepharose 

and incubated at 4°C for 2 hours. The cell lysate and resin mix was packed into 

a column.   
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Figure 5.2. Chromatography purification of Afu-RPA-780 

A culture of E.coli strain Rosetta transformed with pET28a:Afu-RPA-780 
expression construct was grown at 37°C for 3 hours then induced with 1 mM 
IPTG and incubated overnight. Prepared cell lysate was subjected to Ni²⁺-
NTA chromatography. Bound Afu- PriS1/L was washed and then eluted with 
range of imidazole concentration. The 80% B eluted peak fraction was then 
subjected to heparin affinity chromatography to remove E.coli contaminants. 
The bound RPA-780 was eluted with 500 mM NaCl. Heparin fractions were 
loaded into Phenyl Sepharose 6 Fast Flow, a standard aromatic hydrophobic 
interaction chromatography and washed with 1 M ammonium sulfate. the 
bound RPA-780 was eluted in a buffer with sodium chloride and no 
ammonium sulfate. Collected fractions were monitored at 280 nm and 
analysed by SDS-PAGE. As indicated, the size of obtained bands was in 
agreement with RPA-780  predicted molecular mass (~ 35 KDa ).  

KDa 

KDa KDa 
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The column was subjected to ÄKTA prime system and then washed with 100 mM 

NaCl.  For elution, buffer containing 40mM Tris pH 7.5, 50 mM NaCl, 0.5 mM 

TCEP, 20 mM containing 500 mM NaSCN, reduced glutathione and, 10% 

glycerol was used.  Eluted proteins were analysed by SDS-PAGE gel.  Although 

RPA-382 was expressed in soluble form, the protein did not elute from the GST 

column.  Unexpectedly, the remained beads after elution showed no protein on 

the SDS gel. This result suggested that the protein did not bind to GST beads 

(data not shown), an observation that could potentially be explained if the fusion 

protein caused misfolding.  We decided to remove the GST tag from the RPA-

382 expression construct and reverted to co-purification of RPA-780 with RPA-

382 using Affi-Gel Blue affinity chromatography (see below). 

5.4. Co-purification of Afu-RPA-780/RPA-382 using Affi-Gel Blue 

chromatography 

Affi-Gel Blue is a cross-linked agarose resin to which the dye Cibacron Blue 

F3GA has been covalently attached. The Cibacron Blue dye has ionic, 

hydrophobic, and aromatic characteristics and it therefore displays affinity for 

many types of proteins. In order to prevent the potential disrupting effect of the 

GST tag on the formation of Afu-RPA-780/382 complex, as in some cases the 

fused tag can cause insolubility of proteins, we first tried to remove the GST tag 

from pGEX-6P-1:Afu-RPA-382 through PCR amplification with new primers 

complementary to the ends of the GST sequence.  After ligation in order to ensure 

that the GST sequence was removed from the construct, double digestion using 

the relevant restriction enzymes was carried out.  Finally, deletion was confirmed 

by sequencing.  

The pET28a:Afu-RPA-780 expression construct was co-transformed with pGEX-

6P-1:Afu-RPA-382 construct (with no tag) into Rosetta E.coli strain. Three litre 

cell culture was grown to exponential phase (OD600=~0.6) at 37°C for 3 hours and 

then induced for expression with addition of 1 mM IPTG at 25°C overnight.  Cell 

lysate was prepared using lysis buffer (50 mM HEPES-NaOH, pH 7.5, 0.1mM 

EDTA, 10 mM β-mercaptoethanol, 500 mM NaCl, 100 mM spermidine, 4 mg/ml 

lysosome and 1 mM phenylmethylsulfonyl fluoride (PMSF).  A 5 mL Affi-Gel Blue 

(Bio-Rad) column was pre-equilibrated with buffer A (50 mM HEPES-NaOH, pH 
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7.5, 10% glycerol, 10 mM β-mercaptoethanol, and 500 mM NaCl).  After loading 

the clarified cell lysate onto the Affi-Gel Blue column, the column was washed 

first with buffer A, and then with buffer A containing 1 M NaCl, then with buffer A 

eluted with 50 mL of buffer A containing 1.5 M NaSCN. Eluted proteins were 

collected and dialyzed against buffer A with 300 mM NaCl, 50 mM HEPES-NaOH, 

and 0.1% NP-40. Precipitated materials were removed by centrifugation. RPA-

780/RPA-382 complex was co-eluted with considerable amounts of E. coli 

contaminants (Figure 5.3). Therefore an additional step of purification was 

required. To remove E.coli contaminants, the purified Afu-RPA-780/RPA-382 

complex was subjected to an anion exchange column. Afu-RPA-780/RRPA-382 

complex was eluted with 300 mM NaCl, while E.coli contaminants were washed 

away with low salt. The successfully purified RPA complex, with an apparent 

molecular mass of ~ 35 and ~25 kDa corresponding to RPA-780 and RPA-382 

respectively resolved on a SDS-PAGE which was in agreement with their 

predicted molecular masses (Figure 5.3).  

5.5. Examination of DNA binding affinity of A.fulgidus RPA 

Eukaryotic RPA, a heterotrimeric complex, has high affinity for binding to ssDNA 

(Broderick et al., 2010). Additional studies have shown that archaeal RPA 

homologues also bind to ssDNA. The single-stranded DNA binding proteins from 

Sulfolobus solfataricus and Methanococcus jannaschii exhibited ssDNA binding 

with high affinity (Kernchen and Lipps, 2006; Kelly et al., 1998).  Interestingly, in 

contrast to other archaeal and eukaryotic RPA proteins, each RPA subunit 

isolated from Methanosarcina acetivorans separately showed a distinct ssDNA 

binding ability (Robbins et al., 2003).  To confirm the ability of recombinant 

A.fulgidus RPA-780 and RPA-780/RPA-382 complex to bind to ssDNA, we 

employed agarose gel mobility shift assays with 50-mer fluorescently labelled 

ssDNA (Table 2.7) and increasing concentrations of proteins. These assays 

showed that both RPA-780 and RPA-780/RPA-382 complex significantly bind to 

ssDNA. Our data suggested that Afu-RPA-780 has higher affinity for ssDNA 

binding when it is in complex with Afu-RPA-382, compared to Afu-RPA-780 alone 

(Figure 5.4). Moreover, in the case of Afu-RPA-780 protein alone, binding was 

apparent at 0.1 µM protein and a prominent super-shifted complex was observed 

at a protein concentration of 5 μM (Figure 5.4B), while in the case of the Afu-

RPA-780/RPA-382 complex, binding was apparent at 0.05 µM protein and a  
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Figure 5.3. Co-purification of the Afu-RPA (RPA780 / RPA382) complex 

A 3 litre culture of E.coli strain Rosetta transformed with Afu-RPA780/Afu-
RPA382 was grown to exponential phase and then induced with 1 mM IPTG. 
A 5 ml pre-packed  Affi-Gel Blue column. was washed sequentially with 500 
mM NaCl, 1 M NaCl and, 500 mM NaSCN. Next, cell lysate was loaded into 
the column and the bound protein eluted with 1.5 M NaSCN. To remove 
E.coli contaminants, The 80% B eluted peak fraction from Affi-Gel Blue 
column was subjected to MonoQ column and after wash step, the bound 
RPA780/RPA382 complex was eluted with 500 mM NaCl. The successfully 
purified complex, with an apparent molecular mass of ~ 35 and ~25 kDa 
corresponding to RPA780 and RPA382, respectively, resolved on a SDS-
PAGE which was in agreement with their predicted molecular masses  
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Figure 5.4.  ssDNA binding activities of Afu-RPA proteins examined using 

EMSA 

50-mer fluorescently labelled ssDNA (Table 2.7) was incubated with increasing 
concentration of either RPA-780 (B) or RPA-780/382 (D). The concentrations of 

RPA used in these experiments are shown below each gel. In parallel, both RPA-
780 and RPA-780/382 were incubated with dsDNA as the negative control (A,C). 

The RPA-780/382 complex shows binding to ssDNA at lower concentration than 
RPA780 single protein.  
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super-shifted complex at 2 μM protein (Figure 5.4D). Identical reactions were also 

performed with dsDNA, instead of ssDNA, as a negative control.  As expected, 

both Afu-RPA-780 and RPA-780/RPA-382 did not show any binding to dsDNA.  

We quantified our data to determine KD (DNA) values for Afu-RPA-780 and Afu-

RPA-780/RPA-382 using Sigma plot.  The dissociation constant of Afu-RPA-

780/RPA-382 to ssDNA was nearly four times lower than Afu-RPA-780.  The Afu-

RPA-780/RPA-382   KD (DNA) was 0.25 μM, compared with Afu-RPA-780 of 0.97 

μM (Figure 5.5). To confirm our results, we repeated these experiments using 

different concentrations of each protein (data not shown).  The outcome was 

consistent with the results described earlier. Together, our data establish that 

purified RPA complex from A.fulgidus is a real single-stranded DNA binding 

protein that possesses high affinity for ssDNA.  

5.6. Regulatory effect of RPA on enzymatic activities of Afu-

PriS1/L 

There is a direct interaction between RPA and the primase subunit of 

Polα/primase complex in eukaryotes (Dornreiter et al., 1992). Recently, it was 

demonstrated that there is a direct interaction between PrimPol and the N-

terminal domain of RPA70, which suggested that PrimPol might be recruited to 

the replication fork by RPA (Guilliam et al., 2015; Wan et al., 2013).  In addition, 

it was found that RPA can supress enzymatic activities of PrimPol (Guilliam et 

al., 2014). In archaea, immunoprecipitation experiments strongly supported the 

idea that RPA41 from P. furiosus interacts with the primase 41 subunit (Pfu41) 

(Bocquier et al., 2001; Komori and Ishino, 2001). However, the influence of RPA 

on enzymatic activities of archaeal primase has not been yet been evaluated.  

5.6.1. The effects of RPA on the primase activity of Afu-PriS1/L 

 As priming by Afu-PriS1/L was much more efficient on ssM13 templates, shown 

in Chapter 3, we examined the ability of RPA to influence the primase activity of 

Afu-PriS1/L on ssM13 templates. In addition, since Afu-PriS1/L showed a 

preference to prime using rNTPs over dNTPs (Chapter 3), in this radioactivity-

based ssM13 primase assay, the enzyme was incubated with ssDNA, rNTPs and 

Mg2+. 500 nM, 1 µM and 2 µM of RPA-780/382 complex was added into the 

reactions before the addition of PriS1/L (1 µM). 
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Figure 5.5. Quantification of DNA binding efficiency of Afu-RPA 

The ssDNA binding affinity of Afu RPA, detected by gel mobility shift assays 
(Figure 5.4), was subsequently quantified using Sigmaplot to determine the 
Kᴅ(DNA) values for RPA-780 alone and the RPA-780/382 complex. The 
binding efficiency of RPA-780/382 for ssDNA was nearly four times lower than 
RPA780. The RPA-780/382  complex has a calculated Kᴅ (DNA) of 0.25 μM, 
compared with  0.97 μM for RPA780. 
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The RPA concentrations were chosen based on the obtained results from EMSA 

(Section 5.5). In order to ensure that the DNA is fully covered by RPA, excess 

amounts of RPA complex over ssDNA were used (Figure 5.6).  As discussed 

previously, Afu-PriS1/L is able to synthesise primers on ssDNA in the absence of 

RPA. However, addition of RPA with increasing concentrations did not show any 

significant effect on the primase activity of Afu-PriS1/L (Figure 5.6). This 

observation was in contrast with studies of the Polα complex and PrimPol, which 

indicated that RPA suppresses de novo primer synthesis by these enzymes 

(Collins and Kelly, 1991; Guilliam et al., 2014).  

5.6.2. The effects of RPA on primer extension by Afu-PriS1/L 

Although RPA inhibits primer synthesis by Polα, it has been shown that this 

enzyme stimulates the polymerase activity of the Polα during elongation (Braun 

et al., 1997). This implicates a role for RPA in inhibiting Polα binding to ssDNA, 

while also acting to promote primer extension.  Moreover, polymerase activities 

of both Polδ and Polγ are shown to be stimulated by RPA and mtSSB, 

respectively (Oliveira and Kaguni, 2010; Tsurimoto and Stillman, 1989). Next, the 

effect of RPA on the polymerase activity of Afu-PriS1/L was tested. T4 SSB was 

also used as a non-interacting control. Standard primer extension assays were 

carried out using a 50-mer primer-template substrate and increasing 

concentration of either RPA or T4. These experiments mimic the situation in 

which DNA polymerase and helicase are uncoupled because of the accumulation 

of DNA damage, which in turn leads to the formation of stretches of RPA-bound 

ssDNA (Byun et al., 2005; Lopes et al., 2006).  Our data showed that, in the 

absence of RPA, Afu-PriS1/L could fully extend the primer by the last time point.  

Addition of RPA to the reaction led to significant inhibition of polymerase activity, 

especially when the concentration of RPA was >5-fold higher than the 

concentration of PriS1/L (Figure 5.7). Interestingly, the presence of T4 SSB also 

caused remarkable suppression of primer extension by Afu-PriS1/L (Figure 5.8).  

Restricted primer extension  by PriS1/L in the presence of RPA proposed that 

PriS1 /L was not able to displace the RPA from ssDNA during primer extension.  

These findings suggest that free ssDNA ends adjacent to the primer-template 

junction are bound by PriS1/L until the PriS1/L encounters downstream RPA. 
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rNTPs                      +  +   +  + 
PriS1/L                     +  +   +  + 
Mg²⁺                         +  +   +  + 

RPA                          +  +   +  - C 
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Figure 5.6. Afu-RPA does not affect the primase activity of Afu-

PriS1/L 

250ng of M13mp18 ssDNA  was incubated with 10 mM MgCl2, rNTPs and 

100nM PriS/L, either alone or in the presence of RPA-780/382 complex. 
RPA was used at protein concentrations of 0, 100, 200 AND 500 µM. After 
30 minutes incubation at 50°C, samples were subjected to electrophoresis. 
Primer synthesis by PriS1/L was detected in presence and absence of 
RPA. The left panel indicates the oligonucleotide nucleotide (Nt) length 
markers . 
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Figure 5.7. Afu-RPA limits the primer extension activity of the  Afu-PriS1/L 

complex 

20 nM of primer-template substrate with dNTPs and 100nM Afu-PriS1/L were 
incubated with increasing concentration of RPA as indicated above each gel, for 
0.5,3,5,10 min. Identical reactions were also performed in the absence of RPA. 
(A) The polymerase activity of PriS1/L was significantly supressed with 

increasing concentrations of RPA. “N” denotes primer and “C” denotes no 
enzyme control. (B) Quantification of 10 minutes time-point of each gel 
confirmed limitation of PriS1/L primer extension by RPA. (C) Cartoon schematic 

showing the inhibition of PriS1/L primer extension activity by RPA.  
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Figure 5.8. T4 limits the primer extension activity of  Afu-PriS1/L 

20 nM of primer-template substrate with dNTPs and 100nM Afu-PriS1/L were 
incubated with increasing concentration of T4 SSB as indicated above each 
gel, for 0.5,3,5,10 min. Identical reactions were also performed in the absence 
of T4 SSB. (A) The polymerase activity of PriS1/L was significantly inhibited 

with increasing concentrations of RPA. “N” denotes primer and “C” denotes 
no enzyme control. (B) Quantification of 10 minutes time-points of each gel 
confirmed the suppression of PriS1/L primer extension by T4 SSB.  
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This in turn leads to the dissociation of PriS1/L from DNA and due to presence of 

RPA the enzyme cannot bind to the ssDNA again.  Notably, the varying levels of 

suppression by RPA and T4 SSB could be due to the different affinities of RPA 

and T4 SSB for the DNA template. Our data suggested that the polymerase 

activity of PriS1/L is also inhibited by T4 SSB.  This effect is probably not as the 

result of PriS1/L interaction with SSBs. Notably, these observations are 

consistent with a recent study on the polymerase activity of human PrimPol, 

which also indicated a severe inhibition of PrimPol’s polymerase activity by either 

RPA, mtSSB or T4 SSB (Guilliam et al., 2015). Archaeal replicative polymerases 

(PolB and PolD) were also incubated with RPA and T4 SSB in the same 

conditions in which the polymerase activity of PriS1/L was limited.  Although the 

presence of RPA slightly decreased the polymerase activities of the replicative 

polymerases, both enzymes showed the ability to displace RPA (Figure 5.9) and 

T4 SSB (Figure 5.10) to extend most of the primers. This demonstrates the 

differences in the capacities of PriS1/L and the replicative polymerases to 

displace RPA.  

Altogether, these results strongly indicate that RPA considerably inhibits 

polymerase activity of Afu-PriS1/L.  As previously shown (Chapter 4), PriS1/L is 

a proficient TLS polymerase that can bypass different DNA lesions with relatively 

low fidelity. It is assumed that the inability of PriS1/L to displace RPA-bound 

ssDNA stretches, acts as a mechanism to restrict PriS1/L involvement in DNA 

replication.  

5.7. Evalution of the interaction between Afu-PriS1/L and RPA 

Uncoupling of priming and unwinding in response to replication fork stalling leads 

to fork uncoupling, which in turn results in the generation of ssDNA stretches in 

both DNA strands (Lopes et al., 2006). Although on the lagging strand synthesise 

of new Okazaki fragments reduces the impact of this process, on the leading, 

strand extended uncoupling can result in the production of long stretches of 

ssDNA. It has been reported that RPA can coat the resulting ssDNA and facilitate 

initiation of checkpoint responses (Zou et al., 2003). 

A growing body of evidence indicates extensive interactions between RPA and 

other core components of the replisome in all domains of life.  In eukaryotes, 

RPA interacts with the  DNA polymerase α-primase complex directly via  
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Figure 5.9. Archaeal replicative polymerases can displace Afu-RPA 

20 nM of primer-template substrate with dNTPs and 100nM of either Afu-PolB or 
Afu-PolD were incubated with increasing concentrations of RPA as indicated above 
each gel, for 0.5,3,5,10 min. Identical reaction were also performed in the absence 
of RPA. Both PolB and PolD showed ability to displace RPA to extend primers. “N” 
denotes primer and  “C” denotes no enzyme control.  
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Figure 5.10. Archaeal replicative polymerases can displace T4 SSB 

20 nM of primer-template substrate with dNTPs and 100nM of either Afu-
PolB or Afu-PolD were incubated with increasing concentrations of T4 SSB 
as indicated above each gel, for 0.5,3,5,10 min. Identical reactions were also 
performed in the absence of T4 SSB. Both PolB and PolD showed ability to 
displace T4 SSB to extend primers. “N” denotes primer and  “C” denotes no 
enzyme control.  
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interaction with the primase subunits (Dornreiter et al., 1992).  Recent studies 

demonstrated the interaction between RPA70, the largest subunit of eukaryotic 

RPA, and human PrimPol (Wan et al., 2013; Guilliam et al., 2015).  More recently, 

the structural basis for PrimPol’s interaction with RPA has been characterised 

and it has been shown that disruption of this specific interaction can influence the 

cellular role of PimPol. In fact, mutation of the RBM-A motif in PrimPol, which is 

the main mediator of this interaction in vivo, leads to disruption of PrimPol’s ability 

to restart stalled replication forks following UV-damage (Guilliam et al., under 

review).  Together, these findings suggest that RPA recruits PrimPol to the stalled 

replication fork by means of this interaction. 

In archaea, immunoprecipitation experiments strongly supported the idea that 

RPA41 from P. furiosus interacts with the small catalytic subunit  of primase 

(Pfu41 or PriS) (Bocquier et al., 2001; Komori and Ishino, 2001). Therefore, to 

test whether RPA is responsible for recruiting Afu-PriS1/L to the stalled replication 

fork, next, we tried to detect the potential interaction between RPA and DNA 

primase in A.fulgidus.  

5.7.1. Studying PriS1/L’s interaction with RPA by GST pull-down 

assays 

To assess the interaction between PriS1/L and RPA, GST pull-down experiments 

were carried out. In theory, for GST pull-down, a GST-fusion bait protein, 

expressed in E.coli is required. The GST fusion protein can bind to glutathione 

(GSH)-coupled beads, which allows us to purify its interacting proteins (prey). In 

practice, prey protein is either cell lysates or recombinant purified proteins (Figure 

5.11).  

PGEX-6P-1:Afu-PriS1 and pGEX-6P-1:Afu-PriL expression constructs were 

provided by my colleague Dr. Stanislaw Jozwiakowski. Both constructs were 

transformed with BL21 strain E.coli.  After incubation at 37°C, growth was induced 

with 1mM IPTG and then incubated at 20°C overnight. The cell lysate was 

subjected to sonication and then cleared by centrifugation. 30µL of GST magnetic 

beads were washed three times with buffer containing 40 mM Tris pH 7.5, 100 

mM NaCl and 30 mM imidazole. The purified RPA-780/382 protein was incubated 

with 1ml of either PriS1 or PriL cell lysates in buffer containing 100  
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Figure 5.11. Schematic illustration of the principles of GST pull-

down assays 

The procedure starts with expression of GST fusion bait proteins in 
E.coli . Next, the GST fusion protein from cell lysate or other biological 
samples is captured by glutathione-agarose beads. The bait protein 
is incubated with the prey protein and subsequently, the interacting 
complex is eluted using reduced glutathione. Glutathione binds to the 
GST-agarose beads and displaces the interacting complex.  
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mM NaCl. The protein mix was then added to the GST beads and incubated for 

1 hour at 4°C.  After incubation, the mixed proteins were washed three times. 25 

µL of elution buffer (40 mM Tris pH 7.5, 100 mM NaCl, 20mM glutathione, 0.5 

mM TCEP) was added to the protein mix and incubated for 15 minutes on a 

rotating platform. Using a magnetic separator, eluted proteins were collected and 

then analysed by 12% SDS-PAGE gel (Figure 5.12). As expected, when pulling 

down the RPA complex (prey) with PriL (bait) protein, a band with an apparent 

molecular mass of ~ 68 kDa, corresponding to the fusion protein (PriL-GST), was 

observed in the eluate obtained from immobilized GST fusion protein beads 

(Figure 5.12A).  We also observed a faint band with an apparent molecular mass 

of ~ 35 kDa consistent with RPA-780 prey protein. However, this band was also 

observed in the control sample, where only RPA complex (no PriL) was incubated 

with the beads, suggesting a false-positive result (Figure 5.12A).  In addition, no 

band corresponding to RPA-382 protein was observed in the eluate obtained from 

the immobilized fusion protein sample (Figure 5.12A). On the other hand, when 

RPA was pulled down with PriS1,  a band with an apparent molecular mass of ̴ 

67 KDa corresponding to the fusion protein (PriS1-GST) in the eluate was 

obtained. However, no band corresponding to RPA780 and RPA-382 was 

detected.  Although, the GST pull-down assay suggested there was no interaction 

between both PriS1 or PriL subunits and the RPA complex, further experiments 

were attempted to examine this possible interaction between PriS1/L and RPA-

780/382 in A.fulgidus.  

5.7.2. Identifying protein-protein interactions using His pull-

down assays 

In addition to GST pull-down experiments, to assess the interaction between 

PriS1/L and RPA, we also performed in vitro His tag pull-down assays. In general, 

pull-down assays are similar to immunoprecipitation but, instead of an antibody, 

a bait protein with affinity for the prey protein is used. To do these pull-downs, 

previously purified proteins (Afu-PriS1/L and Afu-RPA-780/382) were used. 

As both purified proteins possessed a histidine (His) tag at the N-terminal, we 

first tried to cleave the His-tag from Afu-PriS1/L recombinant protein using  
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Figure 5.12. Detecting protein-protein interactions using GST-Tag pull-

down assays 

E.coli BL21 strain was transformed with either pGEX-6P-1:Afu-PriL (A) or 
pGEX-6P-1:Afu-PriS1 (B) expression constructs. Cultures were incubated at 
37°C for 3 hours and then induced by 1 mM IPTG and incubated at 20°C 
overnight. 30µL of GST magnetic beads was washed with 100 mM NaCl and 30 
mM imidazole. 1 ml of each cell lysate was incubated with RPA780/382 purified 
protein. The mix protein was then added to the GST magnetic beads and 
incubated for 1 hour at 4°C. After washing the beads the GST fusion protein was 
eluted with 25µL of elution buffer containing 100 mM NaCl and 20mM reduced 
glutathione and subsequently analysed by SDS-PAGE gel. (A) in the elute 

obtained from immobilized PriL-GST protein, two bands with apparent molecular 
masses of ̴ 68 KDa and ̴ 35 KDa corresponding to the bait protein (PriL-GST) 
and the prey protein (RPA780) respectively are shown. In control sample the 
band with molecular mass of ̴ 35 is also indicated. (B) In the elute obtained from 

immobilized PriS1-GST protein beads, one band, with an apparent molecular 
mass of ̴ 67 KDa corresponding to the bait protein (PriS1-GST) is shown, 
however, no band corresponding to RPA780 and RPA382  proteins can be 
detected.  
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thrombin as it contains a thrombin cleavage site after the tag. The thrombin 

concentration used for this cleavage was 1 unit per mg purified protein.  Following 

cleavage, Afu-PriS1/L was separated from the cleaved His-tag by HisTrap and 

HiTrap Benzamidine columns connected in series.  Cleaved PriS1/L was 

analysed by SDS-PAGE gel (Section 2.2.10) (Figure 5.13A).  400 nM of the His-

tagged protein (RPA-780/382) and 400 nM of the non His-tagged protein 

(PriS1/L) were mixed with binding buffer (40 mM Tris pH 7.5, 100 mM NaCl and 

30 mM imidazole) in a total reaction  volume of 50 µL. After 30 minutes incubation 

on ice, the protein mixture was added to pre-equilibrated Ni-NTA Agarose resin 

and mixed on a spinning wheel at 4ºC for 1 hour. The supernatant was removed 

after spinning at 2,000 x g for 2 min. The resin was washed three times with 100 

μL of wash buffer (40 mM Tris pH 7.5, 100 mM NaCl and 30 mM imidazole) and 

then 25 µL of elution buffer (40 mM Tris pH 7.5, 250 mM imidazole) was added 

to the protein mix followed by 15 minutes incubation on a rotating platform. After 

2 minutes spinning at 2,000 x g, eluted protein was collected and analysed by 

SDS-PAGE gel. His-tag pull-down assay exhibited two bands with apparent 

molecular masses of ~ 35 and ~ 41/42 kDa corresponding to RPA-780 and 

PriS1/L, respectively.  However, no band corresponding to was detected (Figure 

5.13B).  Subsequently, western blotting analysis using anti His-tag antibody was 

carried out. The protein samples were blotted on a membrane to confirm the 

interaction between RP780 and PriS1/L.  However, only one band corresponding 

to RPA-780 was observed on the blot.  No band corresponding to PriS1/L could 

be detected (Figure 5.13C). Consistent with the GST pull-down experiment 

(section 5.7.1), these data suggest that there is no physical interaction between 

RPA-780/382 and PriS1/L in A.fulgidus. However, these results are not consistent 

with previous studies by Ishino and colleagues, which reported that PriS subunit 

from P. furiosus interacts with RPA (Bocquier et al., 2001; Kayoko and Ishino, 

2001). This interaction might facilitate the recruitment of the primase to stalled 

replication forks. Since our data do not fully rule out the possibility of the 

interaction between Afu-PriS1/L and Afu-RPA-780/382, further strategies such as 

mass spectrometry are required to test possible interactions between PriS1/L and 

RPA in A.fulgidus. 
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Figure 5.13. Detecting protein-protein interactions using His-Tag pull-

down assays 

(A) 1 unit thrombin per mg of Afu-PriS1/L protein was used to cleave the his 
tag at the N-terminal of protein. (B) 400 nM of RPA780/382 and 400 nM of 

PriS1/L were mixed with binding buffer containing 100 mM NaCl and 30 mM 
imidazole. The protein mixture was added to pre-equilibrated Ni-NTA 
Agarose resin and mixed for 1 hour. The resin was washed with 100 μL of 
wash buffer.  25 µL of elution buffer (40 mM Tris pH 7.5, 250 mM imidazole) 
was added to the protein mix and incubated for 15 minutes . Eluted protein 
was collected and analysed by 12% SDS PAGE. SDS-PAGE gel indicated 
presence of two bands with apparent molecular masses of  ̴35 and  ̴41/42 
kDa corresponding to RPA-780 and PriS1/L respectively. No band 
corresponding to RPA-382 was detected. Letter C  denotes no GST beads 
control samples. (C) Western blotting analysis using anti his-tag antibody 

was carried out. The protein samples were blotted on a membrane to confirm 
the interaction between RP780 and PriS1/L. Only one band corresponding 
to RPA780 was detected on the blot. No band corresponding to PriS1/L 
could be observed  

A 

B 

C 

RPA780 

RPA780 

PriS1/L 

  C     C   elution1  elution2  elution3 



193 
 

 

5.8. Summary and Discussion 

Archaeal PriS1/L complex is a DNA primase-polymerase enzyme that belongs to 

the AEP super-family (Guilliam et al, 2015).  An additional role is discovered for 

PriS1/L in DNA damage tolerance through performing translesion DNA synthesis 

during DNA replication (Chapter 4). To accomplish this role, PriS1/L must be 

efficiently recruited to the ssDNA downstream of the lesion. Recent studies 

explored that human PrimPol, another member of the AEP super-family, which 

also performs TLS activity, interacts with SSBs. This suggested that PrimPol is 

recruited to the stalled replication fork by RPA. In addition, this interaction 

proposed a unique regulatory mechanism discrete from mechanisms used by 

other TLS polymerases (Guilliam et al., 2015; Lehmann et al., 2007; Wan et al., 

2013). Subsequent studies illustrated the impact of SSBs on enzymatic activities 

of PrimPol. It was shown that, SSBs act to remarkably supress both primase and 

polymerase activities of PrimPol (Guilliam et al., 2015). This was in common with 

previous findings regarding the inhibitory role of RPA on primase activity of the 

Polα complex (Collins and Kelly, 1991). These studies implicated the important 

role of SSBs in regulating the non-specific primase and polymerase activities 

during replication. Since archaeal PriS1/L displays a relatively low fidelity and 

could be error-prone on undamaged templates, similar to other TLS polymerases 

strict regulation is likely required during its participation in DNA replication. 

Otherwise, its unscheduled or deregulated activities would synthesise long tracts 

of DNA in an error-prone fashion, which could be very mutagenic. Our results in 

this chapter, suggest a possible regulatory mechanism by RPA that limits the 

involvement of PriS1/L in DNA replication.  

We initially showed that two RPA orthologous from A.fulgidus (RPA-780 and 

RPA-382) possess high affinity for ssDNA. Next, we demonstrated that the RPA-

780/382 complex isolated from A.fulgidus has no regulatory effect on primer 

synthesis by Afu-PriS1/L, which was in contrast with the detected inhibitory role 

of RPA on de novo primer synthesis by Polα complex and PrimPol. As DNA 

primases are able to bind to and prime on ssDNA with high affinity, deregulated 

primase activity could lead to unscheduled priming whenever ssDNA is present 

and since the generated primers are subsequently extended by other 

polymerases, this deregulation could be detrimental to cells. Although our data 
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did not show any regulatory effect by RPA on Afu-PriS1/L pimase activity, this 

does not preclude the possibility that primase activity of Afu-PriS1/L is regulated 

by other components of replisome.  

RPA stimulates the polymerase activity of Polα and Polδ (Kenny et al., 1989; 

Tsurimoto and Stillman, 1989). Stimulation of Polγ’s polymerase activity by 

mtSSB was also demonstrated (Oliveira and Kaguni, 2010).  On the other hand, 

both RPA and mtSSB inhibit the polymerase activity of PrimPol (Guilliam et al., 

2015). In this chapter, it was shown that the Afu-RPA-780/382 complex 

significantly limits the primer extension activity of Afu-PriS1/L. In addition, Afu-

PriS1/L’s polymerase activity is considerably supressed by the non-interacting T4 

SSB. This might suggest that the inhibitory role of RPA on polymerase activity of 

PriS1/L is not due to the physical interaction between these two proteins. 

Interestingly, in E.coli, the primer extension by Pol II and Pol IV TLS polymerases 

is also inhibited by SSB (Indiani et al., 2013). It is assumed that the inhibitory role 

of RPA on PriS1/L’s polymerase activity is partly due to the inhibition of rebinding 

of the PriS1/L to ssDNA. In Chapter 4, we provided experimental evidence, which 

suggested that archaeal PriS1/L is a relative error-prone TLS DNA polymerase. 

Therefore, it can be concluded that, restriction of PriS1/L’s DNA synthesis by RPA 

acts as a mechanism by which the contribution of PriS1/L in DNA replication is 

regulated to prevent its mutagenic effects, which could threaten genome stability. 

We also demonstrated that archaeal replicative polymerases (PolB and PolD), in 

contrast to replicative primases, are able to displace both RPA and T4 SSB and 

extend most of the primers. Interestingly, RPA stimulates the polymerase activity 

of Polα and Polδ (Kenny et al., 1989; Tsurimoto and stillman, 1989). A 

subsequent study revealed thtat Polγ’s polymerase activity is also stimulated by 

mtSSB (Oliveira and Kaguni, 2010). Stimulation of the polymerase activity of 

replicative polymerases by RPA implies the ability of replicative polymerases to 

readily displace RPA. Therefore, these enzymes continue DNA synthesis on 

RPA-coated ssDNA until they encounter a DNA lesion. In fact, the orientation of 

the interaction of replicative polymerases with RPA might explain this ability.  It is 

believed that binding of RPA to ssDNA occurs with a defined polarity (Fan and  

Pavletich, 2012; Kolpashchikov et al., 2001). In eukaryotes, RPA70 binds to 

ssDNA in a tandem fashion. Initially RPA70 binds ssDNA through the DNA-
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binding domain A (DBD-A) and DBD-B oligonucleotide binding (OB) folds, which 

forms an 8-nt interaction mode. The binding complex subsequently stretched to 

20-30 NTs through the binding of DBD-C and DBD-D, which takes place in a 5’-

3’ direction on the DNA template (Brosey et al., 2013). Given that replicative 

polymerases bind RPA from the 3’ end, they first encounter the weakly bound 

DBD-D and DBD-C domains.   As the result, the 20-30-nt binding complex is 

shifted to the 8-nt mode, which is weaker in terms of binding. Therefore allows 

the displacement of RPA by replicative polymerases.  

In general, replicative polymerases have high processivity. These enzymes are 

able to incorporate thousands of nucleotides without dissociation from the DNA 

template. However, in contrast to replicative polymerases and similar to TLS 

polymerases, AEP primases have low processivity. It has been reported that 

PrimPol shares the characteristic of low processivity with canonical TLS 

polymerases. This enzyme can incorporate only 1-4 nucleotides per binding 

event (Keen et al., 2004). Even though the processivity of archaeal priS/L has not 

been tested yet, it is highly likely that this enzyme, similar to PrimPol, is a low 

processive polymerase. This might explain the different capabilities of replicative 

polymerases and  replicative primases in displacing RPA in archaea.  

The possible different RPA regulatory mechanisms that influence archaeal 

replicative polymerases and primases are summarized in Figure 5.14.  

PriS1/L has not yet been shown to perform repriming downstream of lesions.  But 

since PriS1/L is a proficient primase, the possible ability of this enzyme to reprime 

replication post lesion cannot be excluded.  Replication fork uncoupling as the 

result of leading-strand damage leads to the generation of ssDNA stretches on 

leading strand.  RPA binds to ssDNA as replication progresses.  PriS1/L is able 

to bind to free ssDNA. Recruitment of PriS1/L to ssDNA might be facilitated by 

RPA. Following binding to ssDNA, PriS1/L might perform repriming downstream 

of lesion until it encounters  RPA which can inhibit primer extension activity of  

PriS1/L. Subsequently, the primer is handed-off to the PolB replicative 

polymerase to continue DNA replication.  However, clearly further studies are 

required to explore this possible mechanism.  
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Despite the discovery of a possible RPA regulatory role on polymerase activity of 

Afu-PriS1/L, we were unable to demonstrate a direct interaction between RPA 

and PriS1/L in this study. Given that the interaction between RPA and DNA 

primase has been identified in some other species of archaea and also in 

eukaryotic cells, our data does not categorically rule out the possibility of an 

interaction between RPA and PriS1/L. Therefore, future interaction studies with 

RPA are required to definitively show whether a bona fide interaction with PriS1/L 

exists or not.  

Notably, another possible regulatory mechanism can be achieved through 

tethering the PriS/L to the CMG complex. Previous studies indicated that in 

eukaryotic cells, a complex of GINS and Ctf4 trimer is required to couple Polα to 

MCM2-7 (Gambus et al., 2009). It was indicated that coupling of replicative 

polymerases to MCM plays a key role in regulation of DNA replication in 

eukaryotes.  Interestingly, in Sulfolobus, GINS directly interacts with primase 

(Marinsek et al., 2006).  This can suggest that in archaea GINS acts to tether the 

primase to the CMG complex.  Moreover, previously, it was shown that archaeal 

PriS subunit has a GINS domain fused to its C-terminus. This relationship might 

play an important role for primase and GINS interaction (Swiatek and MacNeill, 

2010). Thus, the possible interaction between GINS and PriS/L could allow the 

primase to prime following DNA damage. Future studies are required to test this 

hypothesis. 
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Figure 5.14. Regulation of PriS1/L DNA synthesis by RPA during DNA 

replication  

(A) Replicative polymerases can synthesise DNA on RPA-coated ssDNA by 
displacing the bound RPA. (B) When the intolerant replicative polymerase 

encounters a DNA lesion, it stalls at the site of damage which leads to polymerase 
idling and displacing surrounding RPAs to generate an unbound ssDNA interface. 
(C) PriS1/L is then recruited to the free ssDNA, either upstream or downstream, 
of RPA. (D) PriS1/L performs TLS activity to bypass DNA lesion until is inhibited 

by downstream RPA. Replication is then continued with the replicative 
polymerase. 
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6.1. Introduction 

The CMG (Cdc45, MCM2-7, GINS) complex is pre-assembled at origins prior to 

the initiation of eukaryotic replication.  MCM2-7 helicase activity requires efficient 

coordination of Cdc45 and GINS accessory proteins (Costa et al., 2011; Moyer 

et al., 2006). Thus, the assembly of CMG complex plays an important role in the 

initiation and progression of DNA replication. A growing body of evidence has 

demonstrated that archaeal proteins involved in the processes of DNA 

replication, transcription, and translation are much more closely related to their 

eukaryotic counterparts than bacteria, suggesting that eukarya and archaea 

share a common ancestor (Grabowski and Kelman,2003;Kelman and 

Kelman,2003).  In some archaea, the active helicase is a simple homo-hexameric 

MCM (Kelman and Kelman, 2014). Unlike eukaryotes, most archaeal species 

possess a single MCM orthologous (Sakakibara et al., 2009). The archaeal 

homo-hexameric MCM has been characterised in several species, such as, 

Archaeoglobus fulgidus, Thermococcus kodakarensis, Pyrococcus furiosus, 

Sulfolobus solfataricus. In addition, similar evolutionary patterns, as with the 

MCM, were observed for archaeal GINS proteins. Most species of archaea 

possess a single GINS complex, containing two copies of a subunit related to 

eukaryotic Psf1 and Sld5, forming a homotetramer (Gins15). However, some 

archaea also possess a GINS complex containing two copies of a subunit related 

to eukaryotic Psf2 and Psf3 (Gins23) (Oyama et al., 2011). Notably, there is a 

direct physical interaction between archaeal GINS and MCM helicase. 

Interestingly, recent studies proposed the presence of archaeal CdC45 

homologs in several species. Bell and colleagues were able to co-purify the 

Sulfolobus GINS complex with a protein, which showed homology with the DNA 

binding domain of a bacterial exonuclease, RecJ (Marinsek et al., 2006). 

Therefore, they initially named the protein as RecJdbh. Following recent 

structural studies which demonstrated that RecJ and eukaryotic CdC45 are 

related to each other. RecJdbh was renamed to CdC45 (Xu et al., 2016). 

Together, these findings confirm that the CMG complex is a conserved 

component in all archaeal and eukaryotic DNA replication machineries. 

Interaction studies, using S.solfataricus as a model organism, detected direct 

interactions between Gin23 and MCM and also between Gins23 and the 
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heterodimeric core primase (PriS/L) (Marinsek et al., 2006). Since no direct 

interaction between MCM and primase was detected, it has been assumed that 

archaeal GINS acts to link the primase complex to the MCM, which in turn leads 

to coupling of helicase activity with priming on leading and lagging strands. This 

proposed that in archaea, GINS might act to tether the primase to the CMG 

complex. This possible interaction between GINS and PriS/L could allow the 

primase to either initiate priming at the initiation replication site or downstream of 

sites of damage. Therefore, assembly of the CMG complex might be required for 

the recruitment of PriS/L to the DNA.  In this chapter, we describe our initial steps 

towards the long-term goal of reconstituting the archaeal CMG complex in vitro. 

An additional aim discussed in this chapter is shedding light on the role of 

archaeal replicative primase in replication-specific TLS. We also biochemically 

characterised the in vitro activities of MCM and GINS proteins from A.fulgidus, 

and examined if Afu-GINS was capable of modulating the helicase activity of Afu-

MCM.  

 6.2. Cloning of the archaeal CMG complex genes into 

expression vectors 

In order to reconstitute the archaeal CMG complex in vitro and to characterise 

the biochemical properties of the CdC45, GINS, and MCM protein complexes, 

first the genes encoding CdC45, GINS, and MCM from Archaeoglobus fulgidus 

were cloned into appropriate expression vectors (Table 2.3). A. fulgidus encodes 

a single homologue of eukaryotic MCM2-7 (Grainge et al., 2003). The ORF 

corresponding to Afu-MCM (AF_RS02630) was amplified from A.fulgidus 

genomic DNA (using primers in Table 2.1).  A.fulgidus possesses a single GINS 

protein with sequence homology to those of eukaryotic Sld5/Psf1 (Yoshimochi et 

al., 2008). The ORF corresponding to Afu-GINS (AF1322) was amplified from 

A.fulgidus genomic DNA (using primers in Table 2.1.) (Figure 6.1).  Recently, two 

RecJ homologs have been identified in A.fulgidus (Makarova et al., 2012). Similar 

to two other genes, the ORFs corresponding to Afu-RecJ-like (Cdc45) (Af0699, 

Af0698) were amplified from A.fulgidus genomic DNA and Af0699 PCR-Plasmid, 

respectively (Table 2.3) (using primers in Table 2.1).  
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Figure 6.1. Cloning of Afu-MCM and GINS into pET28a  

The open reading frames corresponding to MCM and GINS were 
amplified from A. fulgidus genomic DNA (Table 2.3.) introducing the 
applicable restriction sites to allow insertion into the multiple cloning 
site (MCS) of the Pet28a expression vectors. A 6-histidine tag 
downstream of a T7 promoter (PT7) was in frame with cloned MCM 

and GINS. The PCR products were combined with 10x DNA loading 
dye and run on 1% agarose gels containing ethidium bromide. 

1kb ladder 
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Subsequently, the DNA fragments encoding MCM and GINS were cloned 

individually into the E.coli expression vector pET28a, generating pET28a:Afu-

MCM and pET28a:Afu-GINS expression constructs, respectively.  In parallel ,the 

Af0699 amplified gene was cloned into pETduet-1 expression vector to generate 

pETduet-1:Afu-RecJ699, and  Af0698 amplified DNA was subcloned into the 

pETduet-1:Afu-RecJ699 construct to generate pETduet-1:Afu-RecJ699/698 

expression construct (Figure 6.2). 

6.3. Expression and purification of Afu-MCM  

The pET28a:Afu-MCM expression construct was transformed into Rosetta E.coli 

and then incubated at 37°C for 3 hours. Following addition of 1 mM IPTG at 25°C 

overnight, the soluble cell lysate was prepared and loaded onto a Nickel-NTA 

agarose affinity chromatography column. MCM was eluted from the column by 

addition of 300 mM imidazole. Eluted MCM was resolved on an SDS-

polyacrylamide gel to confirm the correct size. The result was in agreement with 

its predicted molecular mass. Afu-MCM has a predicted molecular weight of ~ 78 

kDa (Figure 6.3). Since the MCM was co-eluted with a considerable amount of 

E.coli contaminants, anion exchange chromatography (Mono Q) was employed 

to remove the contaminants. The 80% B eluted peak fraction from nickel affinity 

column was subjected to MonoQ column and after a wash step, the bound MCM 

was eluted with 1M NaCl. A protein with an apparent molecular mass of ~ 78 kDa 

corresponding to Afu-MCM was observed on the SDS-PAGE (Figure 6.3).  For 

the final step of purification, size-exclusion chromatography (Gel filtration) was 

performed. A S75 gel-filtration column was pre-equilibrated with 300 mM NaCl. 

Concentrated protein samples were loaded onto a 5 mL loop. Finally, fractions 

were collected following 100 mL of flow-through and to confirm the correct size 

resolved on a SDS-PAGE gel and determined by A280 level (Figure 6.3). The 

MCM eluted as a single peak and at a size consistent with MCM forming a 

hexameric complex.  

6.4. Afu-MCM DNA binding activity 

The DNA binding activity of archaeal MCM proteins requires the presence of two 

distinct types of structural motifs, a β-hairpin motif and a zinc finger motif  
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Figure 6.2. Cloning of Afu-RecJ99 and RecJ98 into pETDuet-1 

The open reading frames corresponding to RecJ99 and RecJ98 were 
amplified from A.fulgidus genomic DNA and Af0699 PCR-Plasmid 
respectively (Table 2.3.) introducing the applicable restriction sites to allow 
insertion into the multiple cloning site (MCS) of the pETDuet-1 expression 
vector. A 6-histidine tag downstream of a T7 promoter (PT7) was in frame 

with cloned RecJ99. The PCR products were combined with 10x DNA 
loading dye and run on 1% agarose gels containing ethidium bromide. 
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Figure 6.3. Purification of Afu-MCM using chromatography 

Purification of Afu-MCM (78KDa). (A) A three litre culture of E.coli 

Rosetta transformed with pET28a: MCM  expression construct was 
grown at 37°C for 3 hours and subsequently induced with 1 mM IPTG 
and incubated overnight. Following cell lysis, soluble cell lysate was 
loaded ontoNickle column.  Bound Afu- MCM was washed and eluted 
with 300 mM imidazole. (B) The 80% B eluted peak fraction from nickel 

affinity column was subjected to MonoQ column and after wash step, the 
bound MCM was eluted with 1M NaCl. (C) In the last step of purification, 

protein containing fractions were subjected to S75 gel-filtration column 
which was pre-equilibrated with 300 mM NaCl. Finally,  fractions were 
collected following 100 mL of flow-through and analysed by SDS-PAGE 
gel. 
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situated at the N-terminus of the protein and a β-hairpin motif situated at the AAA+ 

catalytic domain (Sakakibara et al., 2009).  It was shown that, mutation of the zinc 

finger motif in M. thermautotrophicus and Aeropyrum pernix resulted in reduction 

of both ssDNA and dsDNA binding activities of these MCM proteins (Atanassova 

and Grainge, 2008;Kasiviswanathan et al.,2006).  Interestingly, while mutation of 

the β-hairpin motif of the M. thermautotrophicus MCM strongly inhibited its DNA 

binding activity (Fletcher et al., 2003), the equivalent mutation in the S. 

solfataricus MCM showed no effect on DNA binding activity of this enzyme 

(McGeoch et al., 2005). Thus, these results suggested that differences exist in 

the importance of the β-hairpin motif on DNA binding activity of archaeal MCM 

proteins. One interesting feature of archaeal MCM proteins is the different binding 

affinities of these proteins for various DNA substrates. For instance, MCM 

proteins from A.fulgidus, A. pernix and S. solfataricus show higher binding affinity 

for bubble and forked DNA substrates over ssDNA or dsDNA (Atanassova and 

Grainge, 2008; Grainge et al., 2003; Rothenberg et al., 2007). These findings 

suggested the potential replicative helicase activity of archaeal MCM proteins at 

the replication fork.  

To examine DNA binding activity of the purified MCM from A.fulgidus, standard 

electrophoretic mobility shift assays (EMSAs) was utilized. 45-mer labelled 

ssDNA and dsDNA were incubated with Mg2+ and increasing concentrations of 

MCM.  ATP was not used in this DNA binding assay as previous studies proposed 

that ATP has no effect on the DNA binding activity of MCM from several archaeal 

species (Fletcher et al., 2003; Kelman and Hurwits, 2003; Grainge et al.,2003). 

In the EMSAs, it was observed that both ssDNA and dsDNA were bound by Afu-

MCM and that the extent of binding was dependent on the concentration of 

protein (Figure 6.4). The presence of super-shifted MCM-DNA complexes 

suggested that the DNA was long enough for efficient binding. The binding of 

MCM to both ssDNA and dsDNA was apparent at a concentration of 0.1 µM 

(MCM) and complete shift of substrate exhibited at 0.2 µM. Although both ssDNA 

and dsDNA were shifted with approximately equal efficiency, quantifications of 

shifted MCM-DNA complexes showed little variation in binding efficiency between 

them (Fig 6.4). MCM exhibited slightly higher binding affinity for dsDNA over 

ssDNA.  Since previous studies proposed higher binding affinity for forked DNA 

substrates by MCM isolated from some archaeal species (A. fulgidus, A. pernix 
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and S. solfataricus) (Atanassova and Grainge, 2008; Grainge et al., 2003; 

Rothenberg et al., 2007), we next examined the DNA binding activity of Afu-MCM 

using a 60-mer duplex DNA substrate with a 30-mer tail at both 3’ and 5’ ends 

producing a forked substrate. This EMSA experiment was carried out under the 

same conditions used for ssDNA and dsDNA.  In this experiment MCM showed 

slower migration of the MCM-DNA complex compared to either the ssDNA or 

dsDNA shifted MCM species, which suggest that MCM has lower binding affinity 

for the forked substrate. (Figure 6.5).  While the binding of MCM to the 45-mer 

ssDNA and dsDNA was apparent at a concentration of 0.1 µM (MCM) and a 

complete shift of substrate was observed at 0.2 µM, in the case of the forked DNA 

substrate, MCM binding was apparent at 0.2 µM and a complete shift of substrate 

at ~0.5-1 µM.  Despite slower migration, efficient binding of MCM to the Y-shaped 

substrate may suggest a role for MCM as the replicative helicase at the replication 

fork. It is believed that binding of MCM to forked DNA is distinct. Binding takes 

place through encircling the 3’-tail of substrate by MCM, while 5’-tail interacts with 

the MCM surface (Rothenberg et al., 2007). This interaction might be important 

for substrate selectivity and MCM-forked DNA complex stability. In addition, this 

MCM and 5’-tail interaction might be required for DNA unwinding. Thus, it may 

explain why the MCM complex in both archaea and eukarya prefers unwinding 

the Y-shaped structures. 

6.5. DNA helicase activity of Afu-MCM 

Several studies demonstrated that the archaeal and eukaryotic replicative MCM 

complex share similar biochemical properties (Carpentieri et al., 2002; Kelman 

et al., 1999; Poplawski et al., 2001). To date, all biochemically characterised 

archaeal MCM proteins show an ATP-dependent 3’→5’ helicase activity.  Unlike 

eukaryotic MCM, some archaeal MCM proteins display helicase activi ty 

independent of accessory proteins in vitro (Duggin and Bell, 2006; Kelman and 

Kelman, 2003). Similar to eukaryotic MCM and Escherichia coli (DnaB), MCM 

p ro te i ns  i so la ted  from seve ra l spec i es  o f a rchaea , i nc lud i ng  M . 

thermautotrophicus and Thermoplasma acidophilum, not only translocate along 

ssDNA, but also translocate along dsDNA (Haugland et al., 2006). Different 

models for the unwinding were suggested; a steric-exclusion model, a  

 



208 
 

 

 

  
3’ 

5’ 

3’ 

Hex 

C    0.05    0.1    0.2      0.5       1 

Cons (µM) 

S
u

p
e

r-
s
h

if
te

d
 

DNA 

Figure 6.5. Binding of Afu-MCM to forked DNA substrate 

DNA binding affinity of Afu-MCM to a forked DNA substrate was 
examined. The substrate used in the mobility shift assay is shown 
schematically. A 60-mer duplex DNA with 30-mer 3’ and 5’ tails (Table 

2.7) was incubated with 10 mM Mg
2+

, 1 mM DDT and increasing 
concentration of MCM. The concentrations of MCM used in these 
experiments are shown below the gel. Considerable DNA binding was 
observed by MCM in the presence of this substrate. Binding was 
apparent at 0.2 µM and a complete shift of substrate at 0.5 µM.  
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ploughshare model and a rotary pump model (Sakakibara et al., 2009). In the 

steric-exclusion model, the MCM encircles and moves only along ssDNA. A 

number of studies support this model in archaea. On the other hand, both the 

ploughshare and rotary pump models propose the ability of helicase to 

translocate along duplex DNA.  Notably, in the rotary pump model, a large excess 

of MCM is required and since in archaea only six MCM subunits are present per 

replication fork (Matsunaga et al., 2001), this model might not be applicable to 

archaea.  

In order to test the helicase activity of Afu-MCM, we utilized various Y-shaped 

substrates containing a 5’ end labelled 60-mer duplex region with 30-mer 3’ and 

5’ tails (Table 2.7). In substrate 1, both 3’ and 5’ tails were annealed to a 

complementary oligonucleotide, while in substrates 2 and 3, either the 5’ tail or 3’ 

tail was annealed with the complementary oligonucleotide.  In substrate 4, none 

of the tails were annealed to an oligonucleotide. This experiment was performed 

to investigate requirements for forked DNA substrates. 500 nM of MCM was 

incubated with 200 nM of each substrate and 20 mM MgCl2 at 50°C for 5 minutes 

(See methods 2.3.10). different range of ATP was then added to reactions.  After 

10 minutes incubation, reactions were terminated using stop buffer (See methods  

2.3.10). Controls consisted of reactions lacking either ATP or MCM, where no 

activity was observed. No helicase activity was detected with 5 mM ATP but 

strand displacement activity was displayed with higher concentrations of ATP. 

Strand displacement starts with 10 mM of ATP, and at 25 mM ATP the most 

efficient helicase activity exhibited (Figure 6.6 ). Our data suggested that, among 

substrates used in this assay, the most efficient helicase activity by MCM was 

observed in the presence of the Y-shaped substrate with a 3’-ssDNA tail (Figure 

6.6).  No unwinding was observed when the substrate bearing both 3’ and 5’ tails 

annealed to an oligonucleotide (Figure 6.6). This could be due to the absence of 

a ssDNA tail in this substrate.  Initiation of duplex unwinding by DNA helicases 

requires a flanking ssDNA tail.  In the case of MCM helicases, which possess a 

3’→5’ helicase activity, the presence of a 3’-ssDNA end is essential.  It has been 

suggested that unwinding of a forked DNA is achieved through encircling the 3’-

ssDNA tail and interacting with the 5’ tail by MCM helicases (Rothenberget al., 

2007). Together, our data confirmed that, similar to most characterised archaeal 

helicases, MCM isolated from A.fulgidus displays helicase activity without the  
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Figure 6.6. Afu-MCM is an ATP-dependent helicase 

Y-shaped substrates, labelled on one strand, were incubated with 500 
nM of MCM and 20 mM MgCl2 at 50°C before adding various 

concentrations of ATP. The concentrations of ATP used in these 
experiments are shown on top of each gel. ssDNA was used as a 
comparison. The control lanes are reactions without either ATP or MCM, 
where no unwinding is observed. Arrows show the substrates (duplex 
DNA) and products (ssDNA). Among four substrates, substrate 2 was 
the best substrate for Afu-MCM helicase activity. The bands that are 
higher than the substrate in lanes are believed to be excessive amounts 
of MCM protein.   
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need for auxiliary factors in vitro. Moreover, we observe that A.fulgidus MCM has 

an ATP- dependent 3’→5’ helicase activity. This is similar to eukaryotic MCM, but 

in contrast to the helicase activity of E.coli DnaB, which possesses a 5’→3’ 

helicase activity, suggesting the requirement of both 3’ and 5’ tails for the 

unwinding activity of bacterial replicative helicases (Kaplan and Steitz, 1999).  

6.6. Expression and purification of Afu-GINS 

Toward our long-term goal of reconstituting an archaeal CMG complex in vitro, 

we next purified Afu-GINS using affinity chromatography. The pET28a:Afu-GINS 

expression construct was transformed into Rosetta E.coli and then incubated at 

37°C for 3 hours.  Following addition of 1 mM IPTG at 25°C overnight, the soluble 

cell lysate was prepared and loaded onto nickel-agarose affinity chromatography. 

Bound GINS was eluted from the nickel affinity chromatography column by 

addition of 300 mM imidazole. Eluted GINS was resolved on a SDS-

polyacrylamide gel to confirm the correct size. The result was in agreement with 

its predicted molecular mass.  Afu-GINS has a predicted molecular weight of ~ 

25 kDa (Figure 6.7).  As a second purification step, anion exchange 

chromatography (Mono Q) was employed to remove E.coli contaminants.  The 

100% B eluted peak fraction from nickel affinity column was subjected to MonoQ 

column and following a wash step, the bound GINS was eluted with 1M NaCl. 

The successfully purified protein resolved as a band with an apparent molecular 

mass of ~ 25 kDa on the SDS-PAGE (Figure 6.7).  

6.7. Characterisation of biochemical properties of Afu-GINS 

6.7.1. Afu-GINS DNA binding ability 

Previously GINS complex demonstrated a high affinity for binding ssDNA or for 

binding dsDNA containing ssDNA stretches (Boskovic et al., 2007).  It was shown 

that the GINS complex isolated from crenarchaeon S. solfataricus (SsoGINS), 

similar to human GINS, possesses DNA binding activity and preferentially binds 

to ssDNA over dsDNA (Lang and Haung, 2015). However, studies on the 

euryarchaea P. furiosus and T. acidophilum GINS complexes proposed no DNA 

binding activity by these proteins (Yoshimochi et al., 2008; Ogino et al., 2011). 

To determine if GINS protein isolated from A.fulgidus was capable of binding 
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Figure 6.7. Purification of Afu-GINS using chromatography 

A three litre culture of E.coli Rosetta transformed with pET28a: GINS  
expression construct was grown at 37°C for 3 hours and subsequently induced 
with 1 mM IPTG and incubated overnight. Following cell lysis, soluble cell 
lysate was loaded onto Ni ²⁺-NTA chromatography.  Bound Afu- GINS was 
washed and eluted with 300 mM imidazole. The 100% B eluted peak fraction 
from nickel affinity column was subjected to MonoQ column and after wash 
step, the bound GINS was eluted with 1M NaCl. Fractions were collected and 
analysed by SDS-PAGE gel. The result was in agreement with Afu-GINS 
predicted molecular mass.(~ 25 KDa). 
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to DNA, gel mobility shift assays (EMSAs) using a 45-mer labelled ssDNA and 

dsDNA substrates were used. Based on our results, unlike SsoGINS but similar 

to GINS complexes isolated from P. furiosus and T. acidophilum, almost no band-

shift was observed with Afu-GINS (Figure 6.8). This might suggest that Afu-GINS 

has little DNA binding ability by itself.  We also incubated the Afu-GINS with 

forked DNA, which was used for MCM DNA binding and helicase activity assays 

(section 6.4 and 6.5.).  Afu-GINS failed to bind the forked DNA as well (Figure 

6.9). Using protein sequence analysis, Lang and his colleague suggested that all 

known crenarchaeal GINS proteins are distantly related to their homologs in 

euryarchaea (Lang and Haung, 2015). Therefore, this could explain why GINS 

complexes show different DNA binding ability in these species.  

6.7.2. GINS does not stimulate MCM helicase activity  

As previously shown (section 6.5.), MCM protein isolated from A.fulgidus 

resembles its homologues in M. thermoautotrophicum and some other species 

(Ishino et al., 2011; Grainge et al., 2003; Kelman and Hurwits, 1999) possessing 

an independent 3’→5’ helicase activity.  However, a growing body of evidence 

indicated that homohexameric MCM isolated from Picrophilus torridus, S. 

solfataricus and P.furiosus require GINS as an auxiliary factor for helicase activity 

(Goswami et al., 2015; Lang and Huanf, 2015; Yoshimochi et al 2008).  To 

explore the effect of Afu-GINS on Afu-MCM, the helicase activity of Afu-MCM was 

measured in the presence and absence of Afu-GINS. Unexpectedly, the helicase 

activity of MCM was reduced by increasing concentrations of Afu-GINS (Figure 

6.10). It is not likely that Afu-GINS inhibits loading of Afu-MCM on the DNA, as 

Afu-GINS did not show any DNA binding activity in contrast to Afu-MCM (Sections 

6.4 and 6.7.1.) which suggests that Afu-MCM has a higher affinity for DNA 

compared to Afu-GINS.  Since an interaction between GINS and MCM has been 

identified in different archaea, it is possible that the GINS-MCM interaction, 

similar to the Cdc6-MCM interaction, regulates the helicase activity of MCM. 

Previously, Kelman and colleagues indicated that DNA-Cdc6 interaction was not 

required for helicase activity inhibition. Notably, the MCM-Cdc6 interaction 

resulted in the inhibition of helicase activity by MCM in Methanothermobacter 

thermautotrophicus (Kasiviswanathan et al., 2005). In section 6.9 (below), 

detection of interaction of GINS and MCM in A.fulgidus is described. 
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Figure 6.8. Afu-GINS shows no DNA binding activity 

The substrates used in the mobility shift assay are shown 
schematically. Various concentrations of Afu-GINS were incubated 

with either 45-mer ssDNA or dsDNA  (Table 2.7) and10 mM Mg
2+

. The 
concentrations of GINS used in these experiments are shown below 
each gel. No DNA binding activity was observed by Afu-GINS in the 
presence of both ssDNA and dsDNA. 
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Figure 6.9. Afu-GINS does not bind to forked DNA 

DNA binding affinity of Afu-GINS to a forked DNA substrate was 
examined. The substrate used in the mobility shift assay is shown 
schematically. A 60-mer duplex DNA with 30-mer 3’ and 5’ tails 

(Table 2.7) was incubated  with 10 mM Mg
2+

 ,1 mM DDT and 
increasing concentration of GINS. The concentrations of GINS 
used in these experiments are shown below the gel. Again no 
DNA binding was observed by Afu-GINS.  
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Figure 6.10. Afu-GINS does not affect the helicase activity by Afu-

MCM at stoichiometry level.  

The helicase activity of Afu-MCM was examined in the presence of GINS 
protein. The substrate used in DNA helicase assay is shown 
schematically. Y-shaped substrate, labelled on one strand, was 
incubated with 400 nM of MCM and 20 mM MgCl2 and increasing 

amounts of GINS at 50°C before adding 20 nM ATP. The concentrations 
of GINS used in the experiment are shown on top of the gel. The ssDNA 
was used as  a comparison. The control lanes are reactions without either 
ATP or GINS. The substrates (duplex DNA) and products (ssDNA) are 
shown by arrows. All reactions were incubated for 30 s, 5',  and 10'.  
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In addition, it cannot exclude the possibility that Afu-GINS requires to form a 

complex with another protein(s), such as Cdc45, in order to stimulate the helicase 

activity of Afu-MCM.  Therefore, further biochemical studies regarding the effects 

of Afu-GINS on Afu-MCM helicase activity are required. 

6.8. Expression and purification of Afu-RecJ-like (Cdc45) 

homologue 

Until relatively recently, a homologue of eukaryotic Cdc45 had not been identified 

in an archaeal genome.  However, in 2006, an interaction study on the Sulfolobus 

solfataricus GINS complex showed the co-purification of SsoGINS with an 

additional polypeptide, which was initially named as RecJdbd (RecJ-like DNA-

binding domain) due to its homology with the DNA binding domain of a bacterial 

exonuclease (RecJ) (Marinsek et al., 2006). Subsequent studies revealed that 

the GINS complex from euryarchaeon T. kodakarensis interacts with TK1252p 

nuclease protein known as GINS-associated nuclease (GAN) (Li et al., 2010; Li 

et al., 2011). Unlike RecJdbd, GAN possesses a distinguishable DHH 

phosphoesterase domain. Interestingly, sequence analysis studies demonstrated 

that Cdc45 possesses a DHH phosphoesterase domain at the N-terminus. These 

findings suggested that Cdc45 is the homologue of RecJ (Krastanova et al., 2012; 

Sanchez-Pulido et al., 2011). Subsequently, this homology was confirmed by 

further structural studies (Makarova et al., 2012; Yuan et al., 2016). Recently, 

RecJdbd was renamed as CdC45 (Xu et al., 2016). To date, except for Caldivirga 

maquilingensis, all sequenced archaeal genome possess at least one RecJ 

orthologous. This suggests the importance of this protein in archaeal replication 

machinery. In A.fuligidus genome two RecJ homologues have been identified 

using the arCOG database (Af0699 and Af0698) (Makarova et al., 2012).  

To purify Afu-RecJ-like (Cdc45), the pETduet-1:Afu-RecJ699/698 expression 

construct (section 6.2) was transformed into E.coli Rosetta and grown at 37°C for 

3 hours until late exponential phase (OD600=0.6) and then induced for expression 

using 1mM IPTG at 25°C overnight.  Cells were harvested and resuspended in 

20 ml lysis buffer with 20 mM Tris (pH 7.5) and 200 mM NaCl.  After sonication 

and centrifugation, whole cell lysate was subjected to heat denaturation at 70°C 

for 20 minutes. Clarified cell lysate was loaded to Nickel-NTA agarose affinity 
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chromatography. The column was washed with 20 mM imidazole before elution 

with 200 mM imidazole. The 100% B eluted peak fraction from the nickel affinity 

column was collected and diluted with buffer 10X to decrease the salt 

concentration. The eluate was then loaded onto a 5 ml MonoQ column, After 

washing the column with 200 mM NaCl, a linear salt gradient was applied to the 

column ( 200- 500 mM NaCl ). RecJ99/98 eluted at ~ 100 mM NaCl.  Fractions 

collected from both steps of purification were analysed on a 10% Tricine-SDS-

PAGE gel, which can be used to detect proteins in the mass range of 1-100 KDa 

(Figure 6.11). The reason we used a Tricine-SDS gel was to detect faster 

migrating proteins, such, as the Afu-RecJ698 with molecular mass of only ~8 

kDa.  The 100% B eluted peak fraction from the nickel affinity column showed 

over-expression of some non-specific bands, which were likely E.coli 

contaminants.  Although a band with a size similar to Afu-RecJ699 (48 kDa) was 

observed, unexpectedly, no band corresponding to Afu-RecJ698 was detected 

on the gel. Therefore, further optimisation of the purification protocol was 

required. Several strategies and induction temperatures for expressing Afu-

RecJ99/98 were tested, including the use of E.coli strains BL21 and Shuffle to 

improve correct folding of proteins. In each case, cultures were incubated at 

either 16°C or 20°C overnight following IPTG induction. Only when the Shuffle 

strain was used could a low level of IPTG-induced expression of RecJ99 be 

observed at 20°C (Figure 6.12). Other conditions did not show any soluble 

RecJ99 protein.  However, in none of the conditions tested could any soluble Afu-

RecJ98 be produced.  

Previously, Bell and colleagues were able to co-purify the GINS complex from S. 

solfataricus with RecJdbh in eight steps (Marinsek et al., 2006). They also purified 

S. acidocaldarius GINS-Cdc45 complex recently (Xu et al., 2016). Therefore, 

since we failed to purify the Afu-RecJ99/98 complex, it was decided to try the co-

purification of Afu-RecJ99/98 with Afu-GINS. To enable this co-purification, 

pET28a:Afu-GINS was co-transformed with the pETduet-1:Afu-RecJ699/698 

expression construct in a Rosetta E.coli strain and incubated at 37°C for 3 hours. 

The culture was then induced for expression using 1 mM IPTG followed by 

overnight incubation at 20°C. After sonication and centrifugation, harvested cells 

were subjected to the heat denaturation at 70°C for 20 minutes. 
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Figure 6.11. Purification of Afu-RecJ99/98 (Cdc45) complex 

A three litre culture of E.coli Rosetta transformed with pETDuet: Afu-
RecJ99/98 expression construct was grown at 37°C for 3 hours and 
subsequently induced with 1 mM IPTG and incubated overnight. Following 
cell lysis, clarified cell lysate was loaded onto Ni ²⁺-NTA chromatography. 
The column was washed with 20 mM imidazole before elution with 200 mM 
imidazole. The 100% B eluted peak fraction from nickel affinity column was 
collected and diluted at least 10X. The eluate was then subjected to 
MonoQ column and developed with a linear gradient to 20 mM Tris (pH 
7.5) and 500 mM NaCl. RecJ99/98 was then eluted at ~ 100 mM NaCl. 
Fractions collected from both steps of purification were resolved by a 10% 
Tricine-SDS-PAGE and coomassie stained. Arrow indicates the protein 
band with an apparent molecular mass of ~48 KDa.   
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Figure 6.12. Optimisation of Afu-RecJ99/98 expression in E.coli 

strains 

The pETDuet-1:Afu-RecJ99/98 construct was transformed into either 
BL21 or Shuffle E.coli strains and grown to exponential phase 
(OD600=~0.6). Cultures were then induced with addition of  1 mM IPTG 

before incubation at either 20°C (A,B) or 16°C (C,D). Clarified cell lysate 

was loaded to the Ni2+-NTA agarose affinity chromatography.  Eluted 
Samples along with –IPTG samples were analysed by SDS-PAGE gel. 
Arrow indicates a protein band with an apparent molecular mass of ~50 
KDa. 
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After centrifugation, clarified cell lysate was loaded onto nickel-NTA agarose 

affinity chromatography.  The column was washed with 20 mM Tris pH 7.5, 500 

mM NaCl and 10 mM imidazole before elution with 300 mM imidazole. Eluted 

protein complexes were resolved on a Tricine-SDS-PAGE gel. One band with a 

molecular mass of 25 kDa corresponding to Afu-GINS and one band with size of 

~ 50 kDa were detected on the gel (Figure 6.13). However, again no band 

corresponding to AfU-RecJ98 was observed.  Anion exchange chromatography 

(MonoQ) was used as the second step of purification. The 100% B eluted peak 

fraction from nickel affinity column was collected and diluted 10X  with buffer to 

decrease the salt concentration. The eluate was loaded onto a 5 ml MonoQ 

column, a linear salt gradient applied to the column (150 mM NaCl) and protein 

complex eluted at 1M NaCl.  Collected fractions were analysed on a Tricine-SDS 

gel. In addition to GINS protein, another band with a molecular mass of ~ 50kDa 

was detected. To identify whether this protein was the RecJ-like protein from 

A.fulgidus, this protein band was analysed by mass spectrometry, which was 

carried out by my colleague Dr. Peter Kolesar.  Even though the size of the band 

represented a protein with similar size to Afu-RecJ99, the mass spectrometry 

data indicated that the obtained protein was an E.coli contaminant (not shown). 

Therefore, a different approach for successful purification of Afu-RecJ99/98 

complex was required.  

Cloning and sequencing of the pETDuet-1Afu-RecJ99/98 expression construct 

was repeated and confirmed its identity. In addition, different ranges of salt 

concentration were applied to improve protein solubility (data not shown). 

However, despite the numerous attempts to express Afu-RecJ99/98 in different 

bacterial systems, we were unable to produce recombinant Afu-RecJ99/98  

protein in an E.coli heterologous expression system. Although recombinant RecJ-

like protein was not soluble in E.coli cells, it would be possible that this protein 

might be expressed from the endogenous locus. Recently, S. islandicus Cdc45 

protein was purified by Bell and colleagues. For this purification they took 

advantage of the pSSR plasmid and TSVY medium for expression and cell 

growth (Zheng et al., 2011; Xu et al., 2016). Due to time limitations, we were 

unable to pursue the purification of Afu-RecJ-like protein, therefore, future 

purification studies are required.  
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Figure 6.13. Co-purification of Afu-GINS with Afu-RecJ99/98  

pET28a: Afu-GINS was co-transformed with the pETduet-1: Afu-
RecJ699/698 expression construct into Rosetta  E.coli and incubated at 37°C 
until exponential phase (OD600=~0.6).  Subsequently the culture was induced 

with addition of 1 mM IPTG and incubated at 20°C overnight. Following heat 
shock at 70°C, clarified cell lysate was loaded onto Ni ²⁺-NTA 
chromatography. The column was then washed with 10 mM imidazole before 
elution with 300 mM imidazole. The 100% B eluted peak fraction from nickel 
affinity column was collected and diluted at least 10X. The eluate was then 
subjected to MonoQ column and developed with a linear gradient to 20 mM 
Tris (pH 7.5) and 150 mM NaCl. The complex was then eluted at ~ 1 M NaCl. 
Fractions collected from both steps of purification were analysed by SDS-
PAGE gel. Arrows indicate a protein band with an apparent molecular mass 
of ~50 KDa and GINS protein with molecular mass of 25 KDa. .  

KDa 

KDa 



223 
 

 

6.9. Towards reconstitution of an archaeal CMG complex in vitro 

It is evident that replicative DNA polymerases in all domains of life are not able 

to initiate synthesis of new strands of DNA de novo and thus the presence of a 

primer synthesised by a DNA primase is essential for initiation of all cellular DNA 

replication (Frick and Richardson, 2001). Primases only bind to ssDNA to start 

priming before MCM loading and unwinding activity. It has been shown that the 

DnaG primase from E.coli binds to the DnaB helicase. This binding not only 

assists synthesis of short RNA primers by DnaG, but also facilitates release of 

the regulatory protein DnaC from the helicase. This suggests that there is co-

ordination of priming and unwinding in bacteria (Kaguni, 2011).  In eukaryotes, 

the DNA polymerase α-primase complex catalyses priming. The heterotetrameric 

GINS complex that binds both Cdc45 and MCM2-7 proteins to form the CMG 

complex, may bind the Pol α/primase and recruit it to the replication fork. In 

budding yeast, it was demonstrated that a complex of GINS and the Ctf4 trimer 

is required to link the Pol α/primase complex to MCM2-7 (Gambus et al., 2009; 

Masai et al., 2010; Simon et al., 2014). These studies proposed that coupling of 

Pol α/primase to MCM helicase might be required for efficient DNA replication in 

eukaryotes. The archaeal DNA replication machinery is significantly similar to that 

of eukaryotes and recently it was indicated that the CMG complex is a conserved 

component in all archaeal and eukaryotic DNA replication machineries. In 

archaea, a heterodimeric AEP primase complex (PriS/L) performs priming. The 

presence of a GINS domain fused to the C-terminal domain of PriS subunit 

(Swiatek and MacNeill, 2010) as well as the GINS interactions with primase and 

helicase (Marinsek et al., 2006) suggest that archaeal GINS might act to link the 

primase to the CMG complex. These findings point towards the possible coupling 

of priming and unwinding events in archaea. A recent study indicated that 

repriming activity by Pol α/primase coupling by MCM helicase activity plays an 

important role in genomic stability in eukaryote.  Deregulated or limited repriming 

leads to replication fork uncoupling, that in turn generates long stretches of 

ssDNA at the fork (Fumasoni et al., 2015).  

In all domains of life, there are distinct DNA damage tolerance mechanisms that 

stabilize and rescue stalled replication forks, including repriming and TLS 

mechanisms. It is believed that repriming is limited to lesions on the leading 
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strand replication (Guilliam et al., under review).  Due to the discontinuous nature 

of lagging strand synthesis, the lagging-strand replication is inherently tolerant of 

DNA blocking lesions or obstacles (Pagès and Fuchs, 2003; Svoboda and Vos, 

1995). During lagging strand synthesis, primers are produced constantly for 

Okazaki fragment synthesis. During repriming, the newly generated primer is able 

to restart replication downstream of the lesion.  On the other hand, leading strand 

repriming past the lesion will generate ssDNA gaps opposite the lesion and 

subsequently these gaps can be filled by post-replicative TLS mechanisms. In 

this thesis, we have shown that archaeal replicative primase (PriS/L) plays a 

significant role in DNA damage tolerance by performing translesion synthesis 

(TLS). We discovered that PriS1/L is capable of bypassing some DNA lesions 

through TLS, which facilitates the resumption of stalled replication forks (Chapter 

4). Repriming downstream of lesions by archaeal PriS1/L has not yet been 

shown. However, it is likely that they also perform repriming post-lesion. Here, 

we describe our attempts toward reconstitution of the archaeal CMG complex in 

vitro with the aim of shedding light on the role of archaeal replicative primase in 

replication-specific TLS or repriming.  

To reconstitute the CMG complex from A.fulgidus, we first tried to express and 

purify components of CMG (MCM, GINS and Cdc45) separately, as discussed in 

sections 6.3, 6.6 and 6.8. Since we failed to purify Afu-Cdc45 either alone or as 

a complex with Afu-GINS (Section 6.8), we could only try to assemble the MCM 

and GINS complex onto DNA. We first loaded MCM onto a biotinylated dsDNA 

coupled to streptavidin magnetic beads (Yeeles et al., 2015). The protein 

recruitment assay was carried out using 1 µM DNA and low-salt buffer containing 

20 mM Tris, pH 7.5, 20 mM MgCl2, 1 mM EDTA and 2 mM DTT. 500 nM of MCM 

was added into the reaction prior to incubation with magnetic beads at room 

temperature for 30 minutes with agitation. Beads were washed three times with 

wash buffer (40m Mm Tris, pH 7.5, 20 mM MgCl2, 1 mM EDTA and 2 mM DTT) 

and subsequently resuspended in SDS-loading buffer. Immunoblotting was 

deployed to analyse bound MCM (Figure 6.14). The control consisted of a sample 

with no DNA. As a positive control, a purified his-tagged protein was used. The 

his-tagged MCM was recognized by anti-his antibody, thus, a band 

corresponding to MCM was detected on the blot (Figure 6.14). When the protein 
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was incubated with reaction buffer and no DNA, no band was detected by western 

blotting.  Therefore, this result confirmed an interaction of MCM with the DNA. 

We next tried to assemble both MCM and GINS onto the DNA.  Initially, MCM 

was loaded onto DNA and attached to the beads. Magnetic beads were then 

isolated and a low-salt buffer (20 mM Tris, pH 7.5, 20 mM MgCl2, 1 mM EDTA 

and 2 mM DTT) containing 1 µM GINS (his-tag was cleaved by thrombin) was 

added.  After incubation at room temperature for 30 minutes, beads were washed 

three times using wash buffer.  After resuspending in SDS-loading buffer, bound 

proteins were analysed by Immunoblotting.  Controls consisted of a sample with 

no MCM and a sample with no DNA (Figure 6.15).  We were able to assemble 

the MCM and GINS complex onto the DNA in vitro. As shown in figure 6.15, when 

loaded MCM was incubated with GINS, two bands corresponding to MCM and 

GINS were detected on the blot. In parallel, his-tagged GINS protein was used 

as the positive control and recognized by anti-his antibody.  Interestingly, in the 

absence of MCM, GINS was not loaded onto the DNA (Figure 6.15). Based on 

the results, recruitment of GINS requires MCM. When MCM was omitted GINS 

was not recruited to the DNA. Therefore, in A.fulgidus, similar to Sulfolobus 

solfataricus (Marinsek et al., 2006) GINS and MCM form a complex. 

In this chapter, we describe the cloning and purification of the MCM, GINS and 

Cdc45 proteins.  We also described initial biochemical characterisations of MCM 

and GINS proteins. However, despite the numerous attempts, we were not able 

to purify RecJ-like (Cdc45) protein. Therefore, we could not reconstitute the whole 

CMG complex in vitro, we only showed assembly of MG (MCM and GINS) 

complex on the DNA. Further experiments, including optimizing conditions for the 

purification of Cdc45 and recruitment of Cdc45 and MG into a stable complex are 

required to continue this study.  Additionally, once the CMG complex is 

reconstituted in vitro, an assay can be carried out to detect the ability of PriS1/L 

to replicate past a lesion by TLS or reprime downstream of a lesion following 

generation of ssDNAs by CMG complex, which can be bound by PriS1/L. 
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Figure 6.14. Afu-MCM recombinant protein loading onto DNA 

(A) Reaction scheme for MCM loading onto DNA. (B) Afu-MCM (500nM) 

was incubated with 1 µM of double-stranded biotinylated DNA and low-salt 
buffer containing 20 mM Tris, pH 7.5, 20 mM MgCl2, 1 mM EDTA and 2 mM 

DTT at 25°C for 30 minutes. The reaction was added to the streptavidin 
magnetic beads. Following more incubation, beads were washed  three 
times with wash buffer containing 40m Mm Tris, pH 7.5, 20 mM MgCl2, 1 

mM EDTA and 2 mM DTT. Subsequently beads were resuspended in SDS-
loading buffer. Bound MCM was visualized using Immunoblotting. Arrow 
indicates loaded MCM onto DNA in lane 1.  Lane 2 shows reaction with no 
DNA and lane 3 illustrates reaction with no MCM. Lane 4 shows detection 
of a his-tagged protein by antibody  which used as the positive control. 
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Figure 6.15. Assembly of MCM-GINS complex  

(A) Reaction scheme for Afu-GINS recruitment onto loaded Afu-MCM. (B) 
Reaction scheme for GINS and RecJ-like proteins onto loaded Afu-MCM. 
(C) After loading the MCM onto the DNA, beads were isolated. Low-salt 

buffer (20 mM Tris, pH 7.5, 20 mM MgCl2, 1 mM EDTA and 2 mM DTT) 

containing 1µM GINS was added to the beads. Reaction were incubated 
at 25°C for 30 minutes and then beads were washed  with wash buffer 
containing 40m Mm Tris, pH 7.5, 20 mM MgCl2, 1 mM EDTA and 2 mM 

DTT. Bound proteins were resuspended in SDS-loading buffer and 
visualized using Immunoblotting. DNA was added to reactions 1, 2 and 3 
but not 4. Lane 1 shows reaction containing MCMC.  Lane 2 shows 
reaction containing both MCM and GINS. Lane 3 shows purified his-
tagged GINS and lane 4 illustrates reaction with no MCM.  
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The plan to accomplish this long-term aim is to recruit other replication proteins 

which were purified in this study (PriS/L, replicative polymerases (PolB, PolD) 

and RPA) successively to the CMG complex for reconstitution of a minimal 

replisome in vitro.  

 A possible model for the roles, recruitment, and regulation of PriS/L by other 

proteins during DNA replication in the presence of a lesion is discussed below 

(Section 6.14). 

6.10. The possible role of RadA during replication in A.fulgidus 

DNA replication in all domains of life initiates at specific sites known as origins. 

The number of origins differs in different organisms (DePamphilis, 1993). While 

bacteria and some archaea possess single origin, in eukaryotes and most 

archaea there are multiple origins. Notably, initiation of replication in 

bacteriophage T4 occurs through two mechanisms: origin-dependent replication 

and recombination-dependent replication (Dudas and Kreuzer, 2001). Recently, 

a recombination-dependent replication mechanism was also investigated in 

Haloferax volcanii, a member of the euryarchaeota, which contains four 

chromosomal replication origins (Hawkins et al., 2013). It was found that, deletion 

of all four origins in this species led to a significant increase in growth rate. Strains 

with no origins grew 7.5% faster comparing to the wild-type strain (Hawkins et al., 

2013). This study also demonstrated that RadA, an archaeal homologue of RecA 

and Rad51 that catalyse homologous recombination, is required for initiation of 

replication in the absence of origins (Hawkins et al., 2013) suggesting the 

discovery of a recombination-dependent mechanism for initiating replication in 

this archaeal species. Although RadA-dependent replication has not yet been 

observed in other species of archaea, our primary results in this section might 

suggest a possibility that in A.fulgidus, RadA might be important for reinitiation of 

replication by homologous recombination downstream of lesion. We therefore set 

out to examine whether RadA interacts with PriS1/L in A.fulgidus. Cloning, 

expression and purification of Afu-RadA followed by GST pull down assays were 

carried out to test this interaction (see below).  
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6.11. Cloning of Afu-RadA gene into expression vectors 

To detect i f there is an interaction between RadA and PriS1/L, the ORF 

corresponding to RadA (AF0993) was PCR amplified from A.fulgidus genomic 

DNA (using primers in Table 2.1) and cloned into the pET28a E.coli expression 

vector, generating the pET28a:Afu-RadA expression construct (Figure 6.16). 

6.12. Expression and purification of Afu-RadA 

The pET28a:Afu-RadA expression construct was transformed into Rosetta E.coli 

and then incubated at 37°C for 3 hours. Following addition of 1 mM IPTG at 25°C 

overnight, the soluble cell lysate was prepared and loaded onto nickel-NTA 

agarose affinity chromatography. After washing with 500 mM NaCl and 10 mM 

imidazole, RadA was eluted from the nickel affinity chromatography column by 

addition of 300 mM imidazole. Eluted RadA was resolved on a SDS-

polyacrylamide gel. The result was in agreement with its predicted molecular 

mass. Afu-RadA has a predicted molecular weight of 37 KDa (Figure 6.17).  RadA 

co-eluted with considerable amounts of E.coli contaminants. Therefore, size-

exclusion chromatography (Gel filtration) was performed. An S75 gel-filtration 

column was pre-equilibrated with gel filtration buffer (40 mM Tris-HCl (pH7.5), 

300 mM NaCl, 10% (v/v) glycerol and 2mM β-mercaptoethanol). Concentrated 

protein samples were loaded onto the column via a 5 mL loop.  Fractions were 

collected following 100 mL of flow-through and analysed by a SDS-PAGE gel and 

determined by absorbance at 280 nm (Figure 6.17).  

6.13. Studying the interaction between Afu-PriS/L and Afu-RadA 

To date, an interaction between the recombination protein, RadA and the 

replication primase, PriS/L has not yet reported in archaea. To test whether 

PriS1/L from A.fulgidus interacts with Afu-RadA, we utilised a GST pull-down 

assay using either pGEX-6P-1:Afu-PriS1 or pGEX-6P-1:Afu-PriL expression 

constructs.  For the prey protein, we used either purified RadA protein or RadA 

cell extract. However, experiments with RadA cell extract provided us with better 

results.  

The pET28a: Afu-RadA was co-transformed with either pGEX-6P-1:Afu-PriS1 or 

pGEX-6P-1:Afu-PriL expression constructs into Rosetta E.col i strain. Cell 

cultures were incubated at 37°C for 3 hours unti l late exponential phase  
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Operator 

6xHis       MCS 

pET28a  

RadA NdeI XhoI 

pET28a 

RadA=~1014 

Figure 6.16. Cloning of Afu-RadA into pET28a  

The open reading frame corresponding to RadA was amplified from A. 
fulgidus genomic DNA (Table 2.3.) introducing the appropriate 
restriction sites to allow insertion into the multiple cloning site (MCS) of 
the pET28a expression vector. A 6-histidine tag downstream of a T7 
promoter (PT7) was in frame with cloned RadA. 10x DNA loading dye 

was added to PCR samples and then samples were run on 1% agarose 
gels containing ethidium bromide. 
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Figure 6.17. Purification of Afu-RadA 

 Transformation of pET28a:Afu-RadA expression construct into Rosetta 
E.coli followed by 3 hours  incubation at 37°C. 1 mM IPTG was added 
to the growth for expression. Soluble cell lysate was prepared and 
loaded onto nickle column. After washing with 500 mM NaCl and 10 mM 
imidazole RadA was eluted through addition of 300 mM imidazole. 
Eluted RadA was resolved on a SDS-polyacrylamide gel. Arrow 
illustrates Afu-RadA with molecular weight of 37 KDa. In order to remove 
E.coli contaminants size-exclusion chromatography (Gel filtration) was 
performed.  75 gel-filtration column was pre-equilibrated with gel 
filtration buffer (40 mM Tris-HCl (pH7.5), 300 mM NaCl, 10% (v/v) 
glycerol and 2mM β-mercaptoethanol). Concentrated protein samples 
were loaded onto a 5 mL loop.  Fractions were collected following 100 
mL of flow-through and analysed by a SDS-PAGE gel and determined 
by A280 level. 

KDa KDa 
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(OD600=0.6). Expression was induced using 1mM IPTG and cells were grown at 

37°C for 2 hours. To lyse the cells, cell lysis buffer (40 mM Tris, pH 7.5, 300 mM 

NaCl, 5 mM β-mercaptoethanol, 0.1% NP-40 and 1 tablet protease inhibitor) was 

used. After sonication and centrifugation, clarified cell lysate was incubated  

and insoluble pellet were diluted with water and boiled for 10 minutes at 72°C. 

30µL of GST magnetic beads at 4°C for one hour.  In parallel, 1ml of soluble cell 

lysate and insoluble pellet were diluted with water and boiled for 10 minutes at 

72°C.  Beads were washed three times using lysis buffer.  Subsequently, proteins 

were eluted and boiled in SDS-sample buffer for 5 minutes and visualized using 

12% SDS-PAGE gel (Figure 6.18). Interestingly, in both pull-down assays 

(PriS1/RadA and PriL/RadA), a band with an apparent molecular mass of ~ 37 

KDa corresponding to Afu-RadA was observed. In addition, a band of ~67 KDa 

corresponding to PriS1 and a very faint band of ~68 KDa corresponding to PriL 

were detected in PriS1/RadA and PriL/RadA pull-downs, respectively. Although 

further experiments are required to confirm this interaction, based on our data it 

can be proposed that RadA is a potential protein interaction partner of the 

replicative primase in A.fulgidus. This interaction suggests a potential coupling of 

replication and recombination in this species of archaea. Therefore, similar to 

bacteriophage T4 virus and Haloferax volcanii, origin-less firing mediated by 

RadA may also exist in A.fulgidus.  

6.14. Summary and discussion 

The critical preliminary step of DNA replication is unwinding of a duplex to two 

ssDNAs.  In all three domains of life, helicases catalyse the unwinding process. 

In eukaryotic cells, MCM helicase is active in a complex with GINS and Cdc45 

accessory proteins. However, in this chapter we could observe a robust 3’→5’ 

unwinding activity by MCM protein isolated from A.fulgidus on its own. This data 

was in agreement with previous studies implicated that the helicase activity by 

MCM proteins from several archaeal species did not require the presence of 

other accessory factors (Grainge et al., 2003; Sakakibara et al., 2009). In contrast 

to some studies, which reported a stimulatory effect of GINS on the unwinding 

activity of MCM, our data showed a decrease in unwinding of forked-DNA by 

MCM in the presence of Afu-GINS. Since Afu-MCM showed a high binding affinity 

to DNA, and Afu-GINS did not bind to DNA, it is not likely that Afu-GINS could 
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Figure 6.18. Potential interaction between Afu-RadA and Afu-PriS1/L 

 pET28a:Afu-RadA expression construct was co-transformed and co-
expressed with either pGEX-6P-1:Afu-PriS1(A) and pGEX-6P-1:Afu-PriL(B) 

into Rosetta E.coli strain. Cultures were grown at 37°C for 3 hours followed by 
addition of IPTG for induction. 1 ml of clarified cell lysate was subjected to the 
heat shock and remains were added to GST beads. After one hour incubation, 
beads were washed and subsequently proteins were eluted and boiled in 
SDS-sample buffer for 5 minutes and visualized using 12% SDS-PAGE gel.  
(A)Arrows illustrate bands corresponding to RadA (37 KDa) and PriS1 
(~67KDa). (B)Arrows indicate bands corresponding to RadA (37 KDa) and 

PriL (~68KDa). 

A B 

KDa KDa 
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inhibit loading of Afu-MCM onto the DNA. Although the exact reason for this 

inhibitory effect of GINS on MCMs helicase activity is not obvious, it is possible 

that the detected GINS-MCM interaction is responsible for this effect. This 

assumption is based on a study on M. thermautotrophicus that indicated that the 

inhibitory effect of Cdc6 on MCM helicase activity was not due to the Cdc6-DNA 

interaction, in fact, the MCM-Cdc6 interaction resulted in inhibition of helicase 

activity (Kasiviswanathan et al., 2005).  Moreover, we cannot exclude the 

possibility that similar to Sulfolobus acidocaldarius, in which the GINS/CdC45 

complex but not the GINS alone was required to stimulate the MCM helicase 

activity (Xu et al.,2016) Afu-GINS might need to form a complex with another 

protein, such as Cdc45, in order to stimulate the helicase activity of Afu-MCM. In 

addition, since Afu-MCM exhibited robust helicase activity alone, maybe no 

accessory protein is required for stimulation. Further biochemical studies 

regarding the effects of Afu-GINS on Afu-MCM helicase activity are required.  

The experiments in this chapter reflect the initial attempts to reconsti tute the 

archaeal CMG complex in vitro to investigate the role of archaeal replicative 

primase in replication-specific TLS or repriming. This work was designed to test 

the ability of PriS1/L to replicate past a lesion by TLS or reprime downstream of 

a lesion following generation of ssDNAs by CMG complex in vitro. To reconstitute 

the CMG complex, we first tried to express and purify each component (Cdc45-

MCM-GINS) individually. However, our attempts to express and purify the 

archaeal homologue of Cdc45 from A.fulgidus (RecJ-like) were not successful. 

To purify the RecJ-like protein, we took advantage of the His-Tag. Since the 

histidine residues are capable of binding to different types of immobilized metal 

ions, such as nickel, purification of his-tagged fusion proteins can be 

straightforward. Despite several attempts and using different strategies to 

express the Afu-RecJ-like protein in different bacterial systems, we were not able 

to produce this recombinant protein from a heterologous system. Although 

recombinant RecJ-like protein was not soluble in E.coli cells, it may be possible 

to express this protein from its endogenous locus or maybe in the actual A. 

fulgidus cells using a fermenter. Alternatively, soluble Afu-RecJ-like protein may 

be obtained from E.coli after codon optimization of the native gene. Although 

unsuccessful, purification of Afu-RecJ-like (Cdc45) recombinant protein 

prevented us from reconstituting the whole CMG complex, we were able to 
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assemble the MCM and GINS complex onto the DNA in a stage controlled 

manner and show that the binding of GINS to DNA is MCM-dependent. 

Maintenance of genome integrity and stability is fundamental for any form of life. 

However, it is inevitable that DNA replication will encounter DNA lesions.  Even 

though cells have a variety of repair mechanisms that target and repair a vast 

array of DNA modifications, some types of DNA damage will persist long enough 

to be encountered by the DNA replication machinery. To ensure genome stability, 

cells use DNA damage tolerance mechanisms (DDT). These include error-prone 

translesion DNA synthesis (TLS), and error-free recombination-mediated restart 

and template switching (TS).  DTT can also take place after replication by re-

priming. In this thesis, we discovered that archaeal replicative primase (PriS/L) 

plays an important role in DNA damage tolerance through performing translesion 

DNA synthesis (Chapter 4). Although, we were not able to show repriming 

downstream of lesions by archaeal PriS/L, as these enzymes are proficient DNA 

primases, it is possible that they perform repriming downstream of lesions. In 

eukaryotes, the DNA polymerase α-primase complex is involved in origin-

dependent replication initiation and also origin-independent replication initiation 

of lagging strands. This complex is also able to perform repriming downstream of 

lesions to restart stalled replication fork (Heller and Marians, 2006). Previously, it 

was postulated that in budding yeast, a complex of GINS and Ctf4 trimer is 

required to link the Pol α/pimase complex to MCM2-7 (Gambus et al., 2009; 

Masai et al., 2010;Simon et al., 2014). Remarkably, a recent study in 

Saccharomyces cerevisiae showed that, mutation of Primase/Ctf4, which is 

important for genome stability, resulted in deregulated or limited repriming which 

in turn can cause fork uncoupling and generation of ssDNA stretches at the fork. 

It was also suggested that uncoupling of MCM and repriming led to fork-reversal 

with ssDNA stretches (Fumasoni et al., 2015). In some archaeal species including 

Picrophilus torridus, Sulfolobus solfataricus and S. acidocaldarius, direct 

interaction between MCM and GINS has been shown (Goswami et al., 2015; 

Marinsek et al., 2006; Xu et al., 2006). In the present chapter, the physical 

interaction between MCM and GINS was also observed in A.fulgidus. Similar to 

eukaryotes, in some archaeal species interaction between GINS and primase has 

been identified (Marinsek et al., 2006; Swiatek and MacNeill, 2010). Although no 

direct interaction between MCM and primase has been discovered in archaea, it 
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is believed that MCM can interact with primase via GINS. This linkage might 

facilitate tethering of the primase to the CMG complex and allows coupling of 

MCM and primase on the fork. In the presence of a blocking lesion, uncoupling 

of unwinding and priming lead to uncoupling of leading and lagging strands and 

generation of long ssDNA stretches on the leading strand. ssDNAs are bound by 

RPA and provide a ssDNA-RPA interface.  In humans, PrimPol is recruited to the 

ssDNA via interaction with RPA.  Here, the regulatory effect of RPA on PriS/L has 

been identified (Chapter 5) but, detection of the possible interaction between RPA 

and PriS/L in A.fulgidus was not successful. However, interaction of RPA and 

primase in some archaeal species has been identified. This might suggest a 

possible role of RPA in the recruitment of PriS/L to the stalled replication fork. It 

is believed that unscheduled repriming would extend the internal gaps. These 

gaps can then be filled-in through a TLS mechanism. In archaea this process can 

be performed by replicative primase (PriS/L) until it is restricted by upstream RPA. 

RPA limits the involvement of PriS1/L in DNA replication to prevent any 

mutagenesis (Chapter 5). Altogether, it can be proposed that the coupling of 

helicase-priming events facilitated by the GINS complex plays a critical role in the 

maintenance of replication fork stability in archaea.  

The possible leading strand repriming by archaeal PriS/L recruited by either CMG 

complex or RPA is summarized in figure 6.19.  

It has been shown that DNA primases in bacteria and eukaryotes are involved in 

both origin-dependent replication and origin-independent replication. Previous 

studies on E.coli demonstrated the essential role of PriA, one of the components 

of the primosome, in damaged-inducible DNA replication (Kogoma et al., 1996; 

Kogomo, 1997).  Notably, PriA protein is required for oriC-independent replication 

induced by DNA damage in addition to normal DNA replication. It was shown that 

PriA mutants are defective in homologous recombination and that they are also 

sensitive to gamma rays (Kogoma et al., 1995). PriA together with PriB, PriC, 

DnaB, DnaC, DnaG and DnaT proteins form the replication-restart primosome 

complex, which is involved in origin-independent restart of replication in bacteria 

(Masai, 2013). Interestingly, Branzei and colleagues in their recent study 

suggested a role for Saccharomyces cerevisiae polα/primase complex in DNA 

damage tolerance (Fumasoni et al., 2015). They indicated that, mutation of this 
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complex could disrupt recombination-mediated damage bypass mechanism. A 

recent genetic study on Haloferax volcanii reported the remarkable role of RadA 

in origin-less firing (Hawkins et al., 2013). This finding illustrates for the first time 

the presence of recombination-dependent replication in archaea.  To date, origin-

less firing has yet not been observed in other archaea. Interestingly, we could 

detect an interaction between PriS1 and PriL subunits of primase with RadA, 

using pull-down assays. This data might reflect the possible role of RadA in 

replication. RadA is the core protein of homologous recombination in archaea.  

This recombinase catalyses strand invasion by loading onto the DNA. In common 

with RecA and Rad51, RadA mutation led to sensitivity towards UV and 

ethylmethane sulfonate in Haloferax volcanii (Woods and Dyall-smith, 1997). In 

spite of the preliminary nature of the interaction between RadA and PriS1/L in 

A.fulgidus, it might be possible that recombination-dependent replication also 

exists in A.fulgidus and PriS1/L might play an important role in this process.. 

Future studies are required to establish if RadA, in addition to its post-replication 

role, plays an important role during on-going replication and also examine the 

requirement of the replicative primase in RadA-dependent replication. 

 

.  
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Figure 6.19. Role of replicative primase during DNA replication 

 (A) On the leading strand, the replicative polymerase (PolB) is stalled 

encountering a blocking lesion. On the lagging strand replication continues. 
Uncoupling of leading and lagging strands leads to generation of ssDNA on 
the leading strand. Unwinding continues by CMG complex and RPA bound to 
ssDNA. (B) Replicative primase (PriS/L) is recruited to the ssDNA 

downstream of lesion and ssDNA/RPA interface. PriS/L might either recruited 
by RPA or CMG complex. PriS/L might perform repriming on the leading 
strand. (C) Primer extension continues by PriS/L until it restricted by RPA. 

Therefore, polymerase idling occurs and a replicative polymerase continues 
DNA replication. 
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