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Abstract

This thesis is concerned with C.B. Morrey’s notion of quasiconvexity in the calculus of

variations and the construction of various quasiconvex functions with desirable analytic

and geometric properties. For variational integrals of the form

I(u) =
Z

⌦

f(Du(x)) dx (1)

the existence of minimizers is intimately linked with the quasiconvexity of the integrand

f , namely, the condition
Z

⌦

f(⇠ +D'(x)) dx �
Z

⌦

f(⇠) dx, (2)

for ⇠ 2 RN⇥n and all � 2 C1
c (⌦,RN ). In this thesis we study quasiconvex functions in the

form of squared distance functions to various subsets K ⇢ RN⇥n or their relaxations when

appropriate. We also extend this to the construction of various quasiconvex functions

with specified growth and zero sets and investigate various connections with a number

of old and longstanding problems in harmonic analysis and geometric functions theory,

including, the Beurling-Ahlfors operator and the Burkholder functional. We also consider

the p-Dirichlet energy over a space of vector-valued Sobolev maps from generalised annuli

X into spheres and examine a geometric class of maps as solutions to the associated Euler-

Lagrange equation (i.e., p-harmonic maps)

�pu+ |ru|pu = 0, 1 < p < 1, (3)

where �p is the so-called p-Laplacian. We prove that in even dimensions this system has

infinitely many spherical twist solutions satisfying u(x) = x|x|�1 on @X.
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Chapter 1

Introduction

Variational problems and their associated minimization or maximization principles form

one of the most wide-ranging means of formulating mathematical models governing the

equilibrium configurations and stable states of physical systems. In this thesis we consider

variational problems that entail an integral functional in the form

I(u) =
Z

⌦

f(x, u(x), Du(x)) dx, (1.1)

where ⌦ ⇢ Rn (n � 1) is a bounded domain (open and connected set) with a point in ⌦

being denoted by x = (x
1

, x
2

, . . . , xn), u = (u
1

, u
2

, . . . , uN ) is a map assigning the value

u(x) 2 RN (N � 1) to x 2 ⌦ ⇢ Rn and f : ⌦⇥ RN ⇥ RN⇥n 7! R the integrand or energy

density. Associated with the energy functional I is the following minimization problem

(P):

↵ := inf

⇢

I(u) : u 2 X
�

, (1.2)

meaning that we wish to (hopefully) find a map ū 2 X such that

↵ = I(ū)  I(u), for all u 2 X. (1.3)

Here ū is called a minimizer of I over X and X is a suitable space of admissible maps

itself forming part of the mathematical model. For the sake of this thesis the space

of admissible maps X is often a suitable subset of Sobolev spaces of weakly di↵erentiable

functions: X = u
0

+W 1,p
0

(⌦;RN ), where u
0

is a given fixed map and therefore the notation

u 2 X is the shortcut for meaning that u = u
0

on @⌦ and u � u
0

2 W 1,p
0

(⌦;RN ). (Here

and throughout the exponent p is restricted to the range 1  p  1 often excluding the

end points p = 1 or 1 for technical reasons.)

The first crucial question that arises in connection with problem (P) is, of course, the

question of existence of minimizers. This naturally depends on the choice of admissible
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functions X as the qualitative features and properties of the integrand or energy density

f . A natural choice for the space of admissible maps would probably be a subspace of

C1(⌦;RN ) or even C1(⌦;RN ) to have existence and regularity of minimizers in one strike

and further to be able to write down the first order di↵erential equation associated to

the minimization problem better known as the Euler-Lagrange equation. This however

turns out to be a strategy too hard too implement in most problems, particularly those

dealing with partial derivatives (i.e n � 2). The essence of the so-called direct method

of the calculus of variations is to split the problem into two main parts. First to enlarge

the space of admissible maps, for instance, by considering spaces of weakly di↵erentiable

functions such as Sobolev spaces W 1,p (p � 1), so as to secure a general existence theorem

and second to prove some regularity or smoothness results that should be satisfied by any

minimizer of (P).

The existence of minimizers in the above framework can now be tackled by the direct

method of the calculus of variations and this is intimately connected with the fundamental

property of sequential weak lower semicontinuity in W 1,p. As it happens this property is

related to the convexity properties of the integrand, specifically, convexity of the function

⇠ 7! f(x, u, ⇠) in the scalar case and quasiconvexity in the vectorial case. In this thesis

we are mainly interested in the vectorial case n,N � 2, and so the focus is entirely on

the question and investigation of quasiconvexity. In the remainder of this introduction we

proceed by giving a brief outline of the thesis and the topics covered in each chapter.

Chapter 2

In chapter 2, we give an overview and background on the tools, techniques and main results

from the literature used in the thesis. In particular we give a brief account on the Direct

method in the Calculus of Variations. We express and describe in more depth the reason

why the concept of quasiconvexity is very important in the Calculus of Variations. There

are several other closely related convexity notions that are introduced and considered. We

investigate the relations amongst these notions and prove various statements and theorems

to that e↵ect. As expressed earlier the concept of quasiconvexity arises in conjunction with

the sequential weak lower semicontinuity in Sobolev spaces W 1,p. When dealing with the

Euler-Lagrange equations the natural concept is ellipticity or Legendre-Hadamard condi-

tion and this immediately leads to the notion of rank-one convexity. A more geometric

notion involving the minors and subdeterminants is that of polyconvexity. We present the

definition of these notions and the relations amongst them. As a very special case and
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for the sake of future applications we also discuss these notions in the so-called quadratic

case where tools from Fourier analysis and specifically Plancherel’s theorem lead to an in-

teresting equivalence between quasiconvexity and rank-one convexity [for quadratic forms

⇠ 7! f(⇠)]. Let N = n, the function

f(⇠) = �(det ⇠)

with � : R ! R convex is polyconvex hence quasiconvex and subsequently rank-one convex

but not in general convex. When n � 2 and N � 3 Šverák produced an example of a

function f that is rank-one convex but not quasiconvex hence answering a longstanding

conjecture of Morrey to the e↵ect that quasiconvexity is not implied by rank-one convexity.

The reverse implication is true regardless of the range of n,N . However it is still an open

problem if there are rank-one convex f that are not quasiconvex in the case N = n = 2

or more generally n � N = 2. As part of the discussion we look at the function studied

by Alibert-Dacorogna-Marcellini given by f� : R2⇥2 7! R for � 2 R, where

f�(⇠) = |⇠|2(|⇠|2 � 2� det ⇠). (1.4)

Further investigation of this interesting function continues in Chapter 4.

Chapter 3

In this chapter we discuss squared distance functions to sets K in the space of matrices

with particular emphasis and interest in their convexity properties and relaxation. We

start by setting the general problem and giving some useful and illustrative examples

including when K = {A,B} with rank(A � B) = 1 as well as K=subspace with rank-

one direction, K=subspace with no rank-one direction, K = SO(n) and more. We then

specialise exclusively to the special orthogonal group SO(n) n � 2 by first showing that

the squared distance to SO(n) is not quasiconvex and then finding an explicit formula for

this distance function. Then we specialise further to the case n = 2 and discuss matters

further by connecting to the rich and well-developed topic of geometric function theory,

plane quasiconformal maps and subspaces of conformal and anti-conformal matrices.

Chapter 4

In this chapter, we use exclusively the technique of Zhang in construction of Quasiconvex

functions with linear growth via maximal function methods. Then we introduce Müller’s
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improvement and variant of Zhang’s lemma. It also includes the examples of Dacorogna-

Marcellini. The parameter dependent function which is convex, quasiconvex, polyconvex,

rank-one convex for di↵erent ranges of parameters. This chapter then will end with some

open problems.

Chapter 5

In this chapter we look at the p-Dirichlet energy for a space of maps from a generalised

annulus and taking values in spheres. We take a close look at the associated Euler-

Lagrange equation, specifically, the p-harmonic map equation, and examine a class of

geometric maps, called spherical twists, as solutions. Spherical twists are mappings y

from X = {x 2 Rn : a < |x| < b} to Sn�1 taking the explicit form

y(x) = Q(r)✓, a < r = |x| < b, ✓ = x|x|�1 2 Sn�1, (1.5)

where Q = Q(r) lies in SO(n) and we require maps y to satisfy the boundary conditions

y(x) = x|x|�1 on @X. So it is evident that the compact Lie group SO(n) still plays a

significant role in this chapter. After some general discussion and standard calculations

we consider the p-Dirichlet energy as being restricted to the space of spherical twists. This

transforms the problem into one posed over closed curves in the pointed space (SO(n), In).

After a careful analysis of the stationary solutions to this variational problem (closely

related to a rescaled p-geodesic problem posed over the Lie group) we proceed by extracting

out of all such stationary curves, those that furnish a solution to the p-harmonic map

equation. It turns out that in even dimensions the probelm has infinitely many solutions

where as in odd dimensions there is only one spherical twist solution, namely, the map

y = x|x|�1. This chapter continues earlier works by Shahrokhi and Taheri [42, 44, 45, 43]

and Taheri [51, 52, 54, 53] and is part of joint work with these authors.
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Chapter 2

Preliminaries and Background

Material

2.1 The Direct Method of the Calculus of Variations

The direct method of the calculus of variations is a classical and fundamental method for

proving the existence of minimizers and maximizers. It generalises the principle that a

real-valued continuous function on a compact subset of a topological space attains both

its infimum and supremum. In most variational problems one is interested solely in min-

imization of a functional (which typically takes the form of some energy or entropy) and

attainment of infimum is related to existence of ground states or equilibirium states. The

direct method of the calculus of variations gives su�cient conditions for the existence of

minimizers of the energy or entropy functional over a suitable space of admissible states

and as one naturally expects convexity and coercivity here play essential roles. Let us

proceed by formulating this and introducing the necessary terminology and concepts in

a form most suitable and convenient for future applications. (We point out that the ex-

tent that topics are dealt with in this preliminary chapter is proportional and directed

towards later needs only and readers wishing a more in depth exposition should consult

the references in the bibliography.)

Definition 2.1.1. (Sequential lower semicontinuity)

A functional I : X = W 1,p(⌦,RN ) ! R[{+1} (with 1  p < 1) is said to be sequentially

weakly lower semicontinuous (often swlsc for short) if and only if, for every sequence

uj * u in X,

lim inf
j%1

I(uj) � I(u). (2.1)
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If p = 1, then, I is said to be sequentially weak⇤ lower semicontinuous in W 1,1(⌦,RN ),

if and only if (2.1) holds for every sequence uj
⇤
* u in X = W 1,1(⌦;RN ).

One of the main themes in the calculus of variations and this thesis is to consider the

problem of minimizing the integral functional I given by

I(u) =
Z

⌦

f(Du(x)) dx. (1)

Here f : Rn⇥N ! R (the integrand) is a continuous real-valued function on the space of

real N ⇥ n matrices denoted RN⇥n, and ⌦ is a bounded open subset of Rn. Furthermore

Du(x) denotes the gradient matrix of u : ⌦ ! RN at the point x 2 ⌦. The question to

begin with is when and under what conditions on f is the integral I sequentially weakly

lower semicontinuous on the Sobolev space X = W 1,p(⌦;RN )? It is a classical and funda-

mental result of C.B. Morrey that a necessary condition for this is that f is quasiconvex.

Furthermore under some additional conditions this quasiconvexity condition can be shown

to be su�cient. (See [39][38] as well as [1]). Motivated by this discussion we now give a

brief description and summary of the various convexity notions in the space of matrices

(specifically N ⇥ n real matrices) used and needed in this thesis and discuss their re-

lationship to one-another with particular emphasis on the vectorial case, that is, when

min(N,n) � 2, where these concepts become substantially di↵erent.

2.2 On Various Convexity Notions in the Space of N ⇥ n

Matrices

A major interest in this thesis is on Morrey’s quasiconvexity which as described above

arises from the characterization of integrands or energy densities f : RN⇥n ! R which

give rise to lower semicontinuous energy functionals I(u) =
R

f(Du)dx. Towards this

end let us proceed by introducing a number of related convexity notions associated with

integrands f as above.

First we recall that a function f is said to be convex if and only if for every pair of

matrices A,B 2 RN⇥n and scalar 0  t  1 we have

f(tA+ (1� t)B)  tf(A) + (1� t)f(B). (2.2)

Whilst for many applications convexity is an important and crucial property for the sake

of multi-dimensional calculus of variations it is far too strong and we need to look at

weaker convexity notions and conditions.
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Definition 2.2.1. (Quasiconvexity)

A function f : RN⇥n ! R is said to be quasiconvex at A 2 MN⇥n if and only if and for

every smooth compactly supported ' 2 Cc(⌦;RN ) the following inequality holds:

Z

⌦

f(A+D') dx �
Z

⌦

f(A) dx. (2.3)

If the above inequality holds for every A then f is said to be quasiconvex (everywhere).

It can be shown that this defition does not depend on the choice of the domain ⌦ ⇢ Rn

in the sense that if it is true for one domain then it also holds for any other domain. (This

can be done by using a Vitali’s type covering argument. See, e.g., J.M. Ball [10].)

Definition 2.2.2. (Rank-one Convexity)

A function f : RN⇥n ! R is said to be rank-one convex at A 2 RN⇥n if and only if for

every rank-one matrix B = a⌦ b 2 RN⇥n the function

t 7! f(A+ tB) (2.4)

is convex. (Note that this means as a function of the variable t with �1 < t < 1). We

say that f is rank-one convex if and only if f is convex at every A 2 RN⇥n. Thus here for

every A,B 2 RN⇥n with rank(A�B)  1 and every t we have

f(tA+ (1� t)B)  tf(A) + (1� t)f(B), B �A = a⌦ b. (2.5)

It is well-known that rank-one convexity is a necessary condition for quasiconvexity. It

was a longstanding open problem from the work of Morrey in 1952 if the two notions are

equivalent, however, in 1992 Šverâk produced an example to show that when n � 2, N � 3

this is not the case and indeed rank-one convexity does not imply quasiconvexity. The

question to this date remains completely open in the case n = 2, N = 2 and there are

conjecture asserting that here the two notions could be equivalent. We return to this

discussion in a later chapter. The next and final convexity notion in our list is that of

polyconvexity as introduced by Morrey and Ball as formulated below.

Definition 2.2.3. (Polyconvexity)

A function f : RN⇥n ! R is said to be polyconvex if and only if the function A 7! f(A)

can be written as a convex function of the minors of A, that is, f is a convex function of

all p⇥ p subdeterminants of A where 1  p  min{m,n}.

In order to clarify the concept let us give a basic example by considering the case

n = 2, N = 2. Indeed here a function f : R2⇥2 ! R is polyconvex if and only if there is a
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convex function, say, g : R5 ! R such that

f(X) = g(X, detX), X 2 R2⇥2. (2.6)

Note that here we are using X 7! (X, detX) as a map from R2⇥2 into R5 and f is

represented as a composition of this map with the convex function g. For higher dimensions

the situation is essentially the same but naturally the notation is more cumbersome. Let

us also remark before moving on, that polyconvexity is a weaker notion than convexity,

that is, it follows from the latter but does not imply it. For instance, letting h : R ! R

be a convex function, we see the function f : R2⇥2 ! R given by

f(X) = h(detX), X 2 R2⇥2, (2.7)

is polyconvex but not necessarily convex.

Before moving on we also remark that the above convexity notions can be extended

without much di�culty to the cases where the function f takes on the value +1 as well.

For various applications, e.g., in nonlinear hyperelasticity this is a crucial assumption as,

for example, it allows to incorporate the values f(A) = +1 when A satisfies detA  0.

In the language of nonlinear elasticity this is precisely the formulation of the physical

condition that material does not interpenetrate itself.

Let us now take a closer look at the convexity notion of polyconvexity and give a more

detailed form of the definition that is more in line with the description in the 2 ⇥ 2 case

outlined in the example above. Indeed a function f is polyconvex if and only if there exists

g : R⌧(n,N) ! R convex such that

f(X) = [g � T ](X) = g(T (X)), X 2 RN⇥n. (2.8)

Here T : RN⇥n ! R⌧(n,N) is the map given by the array of subdeterminants

T (X) = (X, adj
2

X, . . . , adjn^NX), (2.9)

where X 7! adjsX stands for the assignment of s⇥ s minors of X to the matrix X (note

that here X 2 RN⇥n, 2  s  n ^N = min{n,N}) and

⌧(n,N) =
n^N
X

s=1

�(s), (2.10)

with the quantity �(s) given explicitly by

�(s) =

✓

N

s

◆

=

✓

n

s

◆

=
N !n!

(s!)2(N � s)!(n� s)!
. (2.11)
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Having introduced all the necessary convexity notions, let us now proceed by saying a few

words about the relationship between them. As before suppose f : RN⇥n ! R. Then we

have the implications

f convex ) f polyconvex ) f quasiconvex ) f rank-one convex. (2.12)

Thus as the above implications suggests convexity is the strongest and rank-one convexity

is the weakest among them all. We also point out that none of these implications work in

the reverse direction. It is quite remarkable that the two notions at the start and the end of

the arrows can be verified directly, e.g., when f is di↵erentiable or su�ciently smooth by a

certain positivity of the second derivatives whereas there is no such pointwise condition on

quasiconvexity. (See J. Kristensen [33].) As a matter of fact subject to f 2 C2(RN⇥n) it is

seen that rank-one convexity is equivalent to the so-called Legendre-Hadamard condition

(or sometimes ellipticity condition)

N
X

i,j=1

n
X

↵,�=1

@2f(⇠)

@⇠i↵@
j
�

�i�jµ↵µ� � 0 (2.13)

for every

� 2 RN , µ 2 Rn, ⇠ = (⇠i↵)
1iN
1↵n 2 RN⇥n. (2.14)

For a proof of these implications and further discussion, we refer the reader to the standard

texts on the subject, e.g., B. Dacorogna [20]. For the sake of future reference and in line

with what indicated earlier, let us also note that when f : RN⇥n ! R [ {+1} (that is f

takes on the value +1 as well), then

f convex ) f polyconvex ) f rank-one convex. (2.15)

We point out that in scalar case, namely when min(n,N) = 1, all these convexity

notions are equivalent and hence coincide with the usual convexity. It is in passing from

scalar to vectorial case that the real di↵erence between these convexity notions begin to

present itself.

2.3 Relaxation, Quasiconvex Envelopes and Existence of

Minimizers

The direct method of the calculus of variations is based on the observation that on a

reflexive Banach space X a functional I that is bounded from below attains its infimum
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if it is firstly coercive and secondly it is sequentially weakly lower semicontinuous. For

funcationals in the form

I(u) =
Z

⌦

f(Du(x)) dx (2.16)

defined over X = W 1,p(⌦;RN ) (with 1 < p to ensure reflexivity) the coercivity condition

follows from a pointwise condition on the integrand f , namely,

f(X) � c
1

|X|p � c
2

, c
1

> 0, c
2

� 0, (2.17)

and the sequential weak lower semicontinuity follows from the growth condition

f(X)  c
0

(1 + |X|p), c
0

> 0, (2.18)

and quasiconvexity. (See, e.g., Acerbi and Fusco [1].)

When f fails to be quasiconvex the functional I is not sequentially weakly lower semi-

continuous and the direct method of the calculus of variations as indicated above does

not apply. One of the ways of getting around this di�culty is to consider the quasiconvex

relaxation of the integrand (i.e., the quasiconvex envelope of the function f) and sub-

sequently the relaxation of the functional I. By the quasiconvex envelope of f we mean

the largest quasiconvex function which is smaller than f . This will hereafter be denoted

by Qf or f qc. Towards this end let f : RN⇥n 7! R be a given continuous function. Then

we say

Qf = sup{g  f : g quasiconvex}. (1)

The quasiconvex envelope of f can be seen to be quasiconvex and hence replacing f with

Qf in the integral functional will result in the so-called relaxed functional Ī, specifically,

Ī(u) =
Z

⌦

Qf(Du(x)) dx. (2)

Although it is straightforward from the definition that Qf  f and hence Ī(u)  I(u) for

all u 2 X = W 1,p(⌦;RN ) it can be shown that in the level of the minimization problem

we have

inf I(u) = inf Ī(u). (2.19)

This means that for every u 2 W 1,p(⌦,Rn), there exists a sequence (uj) ⇢ u+W 1,p
0

(⌦,Rn)

such that,

uj * u, (2.20)

in W 1,p(⌦,Rn) as j % 1 while

Z

⌦

f(D(uj)(x)) dx !
Z

⌦

Qf(Du(x)) dx, (2.21)
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as j % 1. Note however that in the process of passing from I to Ī the relaxed functional

will attain its minimum whereas in general the original functional I will not. Indeed what

is happening here is that minimizing sequences of the original functional I will converge

weakly to minimizers of the relaxed functional Ī but in general a minimizer of the relaxed

functional is not a minimizer of the original functional I. The converse of the above is also

true in the sense that all minimizers of I are weak limits of a minimizing sequence for Ī.

Let us note that one can define the various semiconvex envelopes of a given integrand

f in a way similar to that of its quasiconvex envelope. These in turn will be the convex

envelopes, the polyconvex envelopes and the rank-one convex envelopes of f and denoted

in turn by f c, fpc and f rc respectively. (Here one restricts in the definition of Qf = f qc

the functions g with g  f to be convex, polyconvex or rank-one convex respectively.) As

a result in view of the relations between the various convexity notions discussed earlier it

is not di�cult to see that one has the chain of inequalities

f c  fpc  f qc  f rc. (2.22)

2.4 Convexity Notions and Quadratic Forms

Of particular interest is the case when the function f : RN⇥n ! R is quadratic (or a

quadratic form). Here as one can easily see the Euler-Lagrange equations associated with

I are linear and one can say a lot more about the relationship between the various convexity

notions introduced earlier. To fix notation let us agree to write

f(⇠) = hM⇠; ⇠i, ⇠ 2 RN⇥n, (2.23)

where without loss of generality M can be taken a symmetric matrix in R(N⇥n)⇥(N⇥n) and

h; i denotes the scalar product in RN⇥n. We then have the following.

Theorem 2.4.1. Suppose f is a quadratic form. Then the following statements hold.

(i) f is rank-one convex if and only if f is quasiconvex.

(ii) If N = 2 or n = 2, then

f polyconvex , f quasiconvex , f rank-one convex. (2.24)

We shall go through the argument and proof of this theorem shortly however before

attending to this let us note that if N,n � 3, then in general

f rank-one convex ; f polyconvex, (2.25)



12

and also that even if N = n = 2 and f is quadratic then in general

f polyconvex ; f convex. (2.26)

In preparation for the proof of the above theorem let us suppose as before that M is a

real symmetric (N⇥n)⇥ (N⇥n) matrix and that f is the quadratic form f(⇠) = h M⇠; ⇠i.
Then the following results hold.

(i) f is convex if and only if

f(⇠) � 0 (2.27)

for every ⇠ 2 RN⇥n.

(ii) f is polyconvex if and only if there exists ↵ 2 R�(2) such that

f(⇠) � h↵; adj
2

⇠i

for every ⇠ 2 RN⇥n. Here h.; .i denotes the scalar product in the real vector space R�(2)

and �(2) =
�N
2

��n
2

�

.

(iii) f is quasiconvex if and only if for one (and hence every) non-empty bounded open

set ⌦ ⇢ Rn and for every ' 2 W 1,1
0

(⌦;RN )

Z

⌦

f(D'(x)) dx � 0. (2.28)

(iv) f is rank-one convex if and only if

f(⇠) � 0 (2.29)

for every rank-one matrix ⇠ = a⌦ b where a 2 RN and b 2 Rn.

As we mentioned before quasiconvexity implies rank-one convexity and in general the

reverse implication is not true. Interestingly however if the function f is a quadratic form

it can be shown that rank-one convexity and quasiconvexity are equivalent notions and so

in particular quasiconvexity is implied by rank-one convexity.

Proposition 2.4.1. Let f be a quadratic function. Then

f quasiconvex () f rank-one convex. (2.30)

Proof. This observation is due originally to Morrey himself and the proof is a direct

consequence of the Plancherel formula. Indeed here we aim to show that for rank-one

convex quadratic form f and compactly supported ',

Z

Rn

f(r') dx � 0.
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To this end let f : RN⇥n ! R be a quadratic and rank-one convex function. Then

f(a⌦ b) � 0.

Since f is quadratic by assumption we can write

f(a⌦ b) = hM (a⌦ b), (a⌦ b)i � 0. (2.31)

Now the aim is to show that
Z

Rn

hMr',r'i dx � 0, (2.32)

for every ' 2 C1
0

(Rn;Rn).

Upon taking Fourier transform it is clear that

dr'(⇠) =
d@'i

@xj
= 2⇡i⇠j'̂i.

Hence substitution in f gives
Z

Rn

hMdr', dr')i d⇠ =

Z

Rn

hQ(�2⇡i⇠j'̂i),�2⇡i⇠j'̂ii d⇠.

Now using Plancherel theorem we can write
Z

Rn

hM (2⇡i⇠j'̂i), 2⇡i⇠j'̂ii =
Z

Rn

hM (�2⇡i⇠j'i), 2⇡i⇠j'ii.

As ⇠ ⌦ ' = (⇠j'i) is a rank-one matrix, it follows that
Z

Rn

hM (2⇡i⇠j'i), 2⇡i⇠j'ii =
Z

Rn

hM 2⇡i(⇠j ⌦ 'i), 2⇡i(⇠j ⌦ 'i)i.

Finally since f is a rank-one convex function, then the above integral is � 0, which means
Z

Rn

f(r') � 0,

and so the assertion follows.

2.5 Squared Distance Functions; Subspaces with no Rank-

one Directions

In this final section we briefly review some of the main properties of distance functions

to subspaces and particularly those subspaces containing no rank-one matrices. Squared

distance functions are of interest mainly because they are quadratic forms that capture

and encode the convexity properties of the sets which they measure distance from. (Here

we confine the discussion mostly to subspaces but in later chapters this assumption is

relaxed.)
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Proposition 2.5.1. Let L ⇢ RN⇥n be a subspace with no rank-one directions. Then there

exists ✏ = ✏(L) > 0 such that the squared distance function to L satisfies the following

bound

dist2L(u⌦ v) � ✏||u⌦ v||2. (2.33)

Proof. Let f denotes the squared distance function to L. The idea is to minimize f over

the compact set K = SN�1 ⇥ Sn�1. Towards this end note that in virtue of f being

quadratic we have f(tA) = t2f(A) for every t 2 R. Thus in the case ⇠ = (u ⌦ v) for

non-zero u 2 RN and v 2 Rn, upon setting ū = u/||u|| and v̄ = v/||v||, we have

f(u⌦ v) = kuk2kvk2f(ū⌦ v̄)

= ku⌦ vk2f(ū⌦ v̄).

Now since ū and v̄ are unit vectors in RN and Rn respectively to deduce the assertion

it su�ces to show that

✏(L) := inf
ū⌦v̄2K

f(ū⌦ v̄) > 0. (2.34)

However since the above infimum is attained over the compact set K = SN�1 ⇥ Sn�1 the

latter follows upon noting that L contains no rank-one matrix, that is, f(⇠) > 0 for every

non-zero ⇠ 2 L. The proof is finished.

The squared distance function to any subspace being quadratic and non-negative is

evidently convex. As a result of the above proposition given L ⇢ RN⇥n a subspace with

no rank-one directions it is seen that a slight negative perturbation of the squared distance

function f to L, specifically, the function g defined by

g(⇠) = f(⇠)� ✏(L)k⇠k2 (2.35)

is rank-one convex (note that g(⇠) � 0 for all rank-one ⇠) and in view of being quadratic

is also quasiconvex yet g is not convex.

Let us now give another interpretation of the above. As before let L ⇢ RN⇥n be a sub-

space with no rank-one directions and denote by L? ⇢ RN⇥n the orthogonal complement

of L. Then it is clear that the squared distance function to L can be written as

f(⇠) = dist2L(⇠) = kPL?(⇠)k2. (2.36)

Here and below we write PL and PL? for the orthogonal projections onto the subspaces

L and L? respectively. Now consider minimizing the quotient

�L = min
|a|=|b|=1

|PL?(a⌦ b)|2
|PL(a⌦ b)|2 . (2.37)
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Then as before since L does not contain any rank-one matrices, we have 0 < �L < 1.

Furthermore from the definition of �L, it is easy to see that �L is the largest positive

number � such that the quadratic function

q�(⇠) = kPL?(⇠)k2 � �kPL(⇠)k2 (2.38)

is rank-one convex and hence quasiconvex. As a matter of fact relating to the above

discussion we can write

dist2L(⇠) = kPL?(⇠)k2 � ✏(L)k⇠k2 (2.39)

and so

kPL?(⇠)k2 � ✏(L)
⇥kPL?(⇠)k2 + kPL(⇠)k2

⇤ � 0. (2.40)

Rearranging terms we can therefore write

kPE?(A)k2 � ✏

1� ✏
kPE(A)k2 � 0. (2.41)

Hence comparison with the expression for q� we have the following relation between the

quantities ✏ = ✏(L) > 0 and �L

�L =
✏(L)

1� ✏(L)
. (2.42)

In the next chapter we give various examples of subspaces L where we can obtain explicitly

via basic linear algebra the constant ✏(L) > 0 and hence �L > 0 for construction of

quadratic quasiconvex functions. Let us end by giving a couple of basic examples of

subspaces with no rank-one directions that will be used later on.

• Firstly in the 2 ⇥ 2 it can be easily seen that a non-zero matrix is rank-one if and

only if it has a vanshing determinant. This simple test can be used to show that the

two complimentary subspaces

R2⇥2 = C
+

� C� (2.43)

that is the subspaces of conformal and anti-conformal matrices have no rank-one

directions. (Note that each subspace is two dimensional.)

• As another example one can show that when n = N the subspace L ⇢ RN⇥n of skew

symmetric matrics (i.e., ⇠t = �⇠) contains no rank-one directions. Indeed assuming

u⌦ v 2 L we must have

u⌦ v + v ⌦ u = 0. (2.44)

Now if u and v are colinear vectors there is nothing to prove. Otherwise testing

the above equation against any vector u? in the plane generated by u, v results in
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u = 0. We point out that in contrast the space of symmetric matrices does contain

rank-one directions however that is not to say that certain of its subspaces can not

have no rank-one directions.
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Chapter 3

Distance Functions and their

Quasiconvexification

3.1 Introduction

The computation of the quasiconvex envelope of a function I(.) provides information on the

asymptotic behavior of minimizing sequences for the corresponding functional. Quasicon-

vex relaxation of certain distance functions to a given set in the space of matrices is an

important area in the study of optimal design problems. As obtaining of an explicit for-

mula is hard, hence an estimate of the lower bound of the quasiconvex relaxation will

provide us useful information on the set itself and on the relaxed function. The aim is

now to compute some of these quasiconvex envelopes for certain functions f : RN⇥n 7! R

which are defined on the set of N ⇥ n matrices through a quadratic forms.

3.2 p-Distance Functions to Sets K ⇢ RN⇥n and their Quasicon-

vexification

Definition 3.2.1. Let F (P ) denotes the distance function from a point P 2 MN⇥n to a

set K ⇢ MN⇥n. The p-distance function distp(.,K) characterizes the geometry of K and

can be defined as

F (P ) = distp(P,K) = inf
A2K

|P �A|p. (3.1)

Let MN⇥n be the space of all N ⇥ n real matrices with RNn norm. If E ⇢ MN⇥n is

a linear subspace, we denote PE and PE? as the orthogonal projection from MN⇥n to E

and its orthogonal complement E? respectively.
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Lemma 3.2.1. We can show the Quasiconvex envelope of distp(Q,P ) with

F (P ) = Qdistp(P,K)

for some closed subset K ⇢ MN⇥n, where MN⇥n is the space of all N ⇥ n real matrices,

without knowing the exact formula of F (P ), and where Qdistp(P,K) is the quasiconvexi-

fication of distp(P,K), and p > 1.

We consider the minimizing problem inf I(u) subject to certain boundary conditions,

where

I(u) =
Z

⌦

FK(Du(x))dx. (1)

We are interested in the case p = 2, where FK = dist2(.,K) denotes the squared Euclidean

distance function to the compact set K in matrix space MN⇥n. Here ⌦ is a bounded open

subset of Rn, Du(x) denotes the gradient matrix of u of x. Function f : Rn⇥N ! R is a

continuous real valued function on the space of real N⇥n matrices MN⇥n and u : ⌦ ! RN

is a mapping in the Sobolev space W 1,2(⌦;RN). The motivation for the investigation

of functional related to the distance function is, from purely mathematical viewpoint,

that a class of functional is natural generalization of the Dirichlet integral (when K is a

singleton), and also the potential applications to a class of di↵erential inclusions, namely

to find u : ⌦ ! RN satisfying a Dirichlet boundary condition on @⌦ and Du 2 K almost

everywhere in ⌦. In addition, distance functions are frequently used in mathematical

models for microstructure in solids where typical energy densities vanish a finite union of

energy wells and are positive elsewhere. (see[12],[13].) If the set K is convex, then the

metric projection ⇡ : MN⇥n ! K is uniquely defined, 1-Lipschitz and the squared distance

function on the set K is convex and C1,1. However, if K is not convex, then the squared

distance function even fails to be quasiconvex [23] [63], and so we consider the relaxed

functional instead,

Iqc(u) =
Z

⌦

F qc
K (Du(x))dy (2)

where F qc
K (.) = [dist2(.)]qc is the quasiconvex envelope of FK . (see [20][36].)

Proposition 3.2.1. Suppose f : MN⇥n 7! R is continuous, then

Qf(P ) = inf
�2C1

0 (⌦,RN
)

1

meas(⌦)

Z

⌦

f(P +D�(x))dx,

where ⌦ ⇢ Rn is bounded domain. In particular, here infimum is independent of ⌦.

As an example, we can see the set K = SO(n) is not convex, then the squared distance

function to it is not even quasiconvex.[60]. In the work [9] established Lipschitz regularity
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for the gradient of the relaxation F qc and hence the Euler Lagrange equations

Z

⌦

�(Du) : D'dx = 0 for all ' 2 W 1,2
0

(⌦;RN)

with � = DF qc
K can be used to drive regularity with minimizers (or extremal in general).

3.3 A Primer on Distance Functions and Metric Projections

For a closed subset K of H where it denotes a real and finite-dimensional of Hilbert space

with inner product h., .i and associated norm k.k. For a closed subset K of H we denote

its squared distance function by FK which is defined as

FK(x) = dist(x,K)2 := inf
y2K

kx� yk2.

For each x 2 K the above infimum is easily seen to be attained. Hence the set

⇡K(x) = {y 2 K : kx� yk2 = FK(x)}

is a nonempty, closed subset of K. We consider ⇡K : H ! 2K as a multi-valued (set-

valued) mapping, and refer to it as the metric projection onto K. For every closed subset

K of C
1

, C
2

, (the space of conformal, anti-conformal respectively) matrices in M2⇥2, the

quasiconvexification of the distance function dist(.,K) is bounded below by itself that is,

c dist(P,K)  Qdist(P,K)

and the constant c > 0 is independent of K. From the definition of quasiconvex relaxation

we have

Qdist(P,K)  dist(P,K).

As we see Qdist(P,K) is not convex, If K ⇢ C
1

(C
2

, respectively) is closed and non-

convex. It showed in [61] that dist(.,K) is not rank-one convex in M2⇥2, justifying for any

closed set K ⇢ M2⇥2 which is supported by C
1

(C
2

, respectively). In the case where C
1

is the supporting space of K, we have that

cdist(P,K)� C|PC1(P )|  Qdist(P,K).

The connected subsets of M2⇥2, a closed connected set K does not have rank-one connec-

tions if and only if K is a Lipschitz graph of mapping f from a closed set of C
1

to C
2

or

from a closed set of C
2

to C
1

respectively), such that

|f(A)� f(B)| < |A�B|, A 6= B
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for any p 2 (1,1), there exist some t(p) > 0, if K is such a graph satisfying

|f(A)� f(B)| < k|A�B| and kp < t(p),

then the quasiconvexification Qdist(.,K) satisfies

{P 2 M2⇥2, Qdist(P,K) = 0} = K.

Theorem 3.3.1. The gradient of any extremal u 2 W 1,2(⌦;RN ) of the variational problem

Iqc(u) belongs to BMO
loc

(⌦;MN⇥n). Moreover, this regularity is optimal in the sense that

for n = N = 2 and K = SO(2) there exist minimizers of Iqc(u) that are not locally

Lipschitz continuous on any open nonempty subset.[24]

Distance Function to sets K = {A,B}

Let ⌦ be a bounded open subset of Rn and measure of ⌦ is its Lebesgue measure. We

denote by MN⇥n the space of real N ⇥ n matrices with the standard RNn metric; hence

the norm of P 2 MN⇥n is defined by |P | = (trP TP )1/2, where tr is the trace operator and

P T is the transpose of P . The inner product of two matrices in MN⇥n is P : Q = trP TQ.

For a mapping � : ⌦ ⇢ Rn 7! RN , we denote by D�(x) its gradient matrix in MN⇥n at

x 2 ⌦. C1
0

(⌦,RN ) is the space of all RN -valued smooth functions with compact support

in ⌦. Let K = {A,B},

F : MN⇥n 7! R, F (P ) � 0, F (P ) = 0 , P 2 K,

where K = A,B with rank (A�B) > 1.

Theorem 3.3.2. [32] Let f : MN⇥n 7! R be a continuous function.

f(P ) = min{|P �A|2, |P �B|2} = dist2(P, {A,B}), (3.2)

where A,B 2 MN⇥n are fixed matrices. Then the quasiconvexification of f is given by

Qf(P ) = min
0✓1

{|P � ✓A� (1� ✓)B|2 + ✓(1� ✓)[|A�B|2 � �
max

]}, (3.3)

where �
max

is the greatest eigenvalue of the matrix (A�B)T (A�B).

Then, from Theorem 3.3.2. and the construction in [32] we can present the following

proposition.

Proposition 3.3.1. Let

f(P ) = min{|P �A|2, |P �B|2} = dist2(P, {A,B}). (3.4)
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Then

Qf(.) = Rf(.). (3.5)

Proof. (Proof of Proposition 3.3.2) We showed earlier that, Qf  Rf  f . Di↵erentiating

the right hand side of the equation we have

✓ =
2(P �B).(A�B)� [|A�B|2 � �

max

]

2�
max

,

or

2(P �B).(A�B) = 2✓�
max

+ |A�B|2 � �
max

.

When ✓  0, this is,

(P �B).(A�B)  1

2
[|A�B|2 � �

max

],

we should set ✓ = 0, so that

Qf(P ) = |P �B|2 = dist2(P,K) = f(P ).

Hence

Rf(P ) = Qf(P ) = f(P ).

When ✓ � 1, that is,

(P �B).(A�B) � 1

2
[|A�B|2 � �

max,

],

we should set ✓ = 1, so that

Qf(P ) = |P �B|2 = dist2(P,K) = f(P ).

Hence we still have

Rf(P ) = Qf(P ) = f(P ).

When 0< ✓ < 1, we consider

C
+

= P + (1� ✓)[(A�B)⌘]⌦ ⌘ and C� = P � ✓[(A�B)⌘]⌦ ⌘,

where ⌘ 2 Rn is a unit eigenvector of (A � B)T (A � B) corresponding to the biggest

eigenvalue. We easily see that rank (C
+

� C�) = 1 and ✓C
+

+ (1� ✓)C� = P. Sincce Rf

is rank one convex, we have

R(f(P )) = Rf(✓C
+

+ (1� ✓)C�)  ✓Rf(C
+

) +Rf(C�).
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Since,

(C
+

�B).(A�B) = (P + (1� ✓)([(A�B)⌘]⌦ ⌘ �B).(A�B)

= (P �B).(A�B) + (1� ✓)([(A�B)⌘]⌦ ⌘).(A�B)

= ✓�
max

+
1

2
(|A�B|2 � �

max

) + (1� ✓)�
max

=
1

2
(|A�B|2 + �

max

),

we have

Rf(C
+

) = |C
+

�A|2 = Qf(C
+

) = f(C
+

).

So, we can prove that

(C� �B).(A�B) =
1

2
(|A�B|2 + �

max

),

so that

Rf(C�) = |C� �B|2 = Qf(C�) = f(C�).

Consequently,

Rf(P )  ✓|C
+

�A|2 + (1� ✓)|C �B|2

= ✓|P �A|2 + (1� ✓)|P �B|2 � ✓(1� ✓)� �
max

= |P � ✓A+ (1� ✓)B|2 + ✓(1� ✓)(|A�B|2�
max

)

= Qf(P ).

So Rf(P ) = Qf(P ) for every P 2 MN⇥n.

Definition 3.3.1. (supporting space of set)

A non-empty, closed subset K of M2⇥2 is supported by C
1

(C
2

, respectively), if there exists

an orthonormal basis of {c
1

, c
2

} such that c
1

.P � 0 for all P 2 K and i = 1, 2 and dot

denotes the inner product of matrices when n = 2. We call C
1

(C
2

, respectively), the

supporting space of K.

Lemma 3.3.1. Suppose that K ⇢ C
1

(C
2

, respectively) is closed and non-convex. Then

dist(.,K) is not rank-one convex.

Theorem 3.3.3. Suppose that K ⇢ C
1

(C
2

, respectively) is closed (possibly unbounded).

If we denote by

K✏ = {P 2 M2⇥2, dist(P,K)} (3.6)
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the ✏-neighbourhood of K, there exists a constant c > 0 independent of K, such that

c dist(P,K)  Qdist(P,K)  dist(P,K),

for every P 2 M2⇥2.

We have then the following consequences of above Theorem.

Corollary 3.3.1. Under the assumption of Theorem 3.3.3, we have

Q
1

(K✏) ⇢ K✏ (3.7)

for every ✏ > 0, K ⇢ MN⇥n has a rank-one connection if there exist A,B 2 K such that

rank (A�B) = 1.

We are interested in the situation when inf I(u) = 0 with F satisfying F (P ) = 0,

P 2 K and F (P ) > 0, P 6= K. For the existence of such minimizers, quasiconvexity of

the function f is the necessary and su�cient condition.

Theorem 3.3.4. Let B be a compact subset of Rp and g a Carathéodory function of U⇥B.

There exists, a measurable mapping ũ : ⌦ ! B such that, for all x 2 ⌦, we have

g(x, ũ(x)) = min
a2B

{g(x, a)}. (3.8)

Proposition 3.3.2. Let B ⇢ Rp be compact and let u : ⌦ ! Rp be an integrable mapping.

Then there exists a measurable mapping ũ : ⌦ ! B such that, for all x 2 ⌦, we have

ku(x)� ũ(x)k = dist(u(x), B). (3.9)

Theorem 3.3.5. Let A 2 MN⇥n be a matrix with rank (A) > 1 and consider the vari-

ational integral

I(u) =
Z

⌦

dist2qc(Du, {A,�A})dy. (3.10)

(1) If ATA is not proportional to the identity matrix, then I[.] has a unique minimizer

u 2 W 1,2
u0 (⌦;RN ) for all f 2 L2(⌦;RN ) and all u

0

2 W 1,2(⌦;RN ).

(2) If ATA is proportional to the identity matrix, then there exist infinitely many min-

imizers of I[.] on W 1,2
0

(⌦;RN ) and there exists at least one minimizer that is not locally

Lipschitz continuous.

This result has to be contrasted with the importance of convexity of the set K in

connection with regularity results. Note that K = {I;�I} ⇢ M2⇥2 is a non-convex set

contained in the space of conformal matrices.
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Theorem 3.3.6. If K ⇢ M2⇥2 is a compact and convex subset in the two-dimensional

subspace of all conformal matrices, then all extremals of the I(u) are locally Lipschitz

continuous and even of a class C1,↵
loc

(⌦;R2) for some ↵ 2 (0, 1].

The regularity statements are optimal, are all closely connected to an explicit relaxation

formula for functions that depend only on the conformal part of a 2 ⇥ 2 matrix. We use

the orthogonal decomposition (with respect to the standard inner product h., .i in M2⇥2 of

a 2⇥ 2 matrix X into its conformal and anti-conformal part, X = X+ +X�. We include

a short proof of this fact in the more general setting of functions that depend only on

the conformal part, of the matrix. The key observation is that the conformal part of Du

has constant length whereas the anti-conformal part has a logarithmic singularity at the

origin. u is in fact a minimizer of the functional.

Theorem 3.3.7. Suppose K = {P 2 RN⇥n, f(P )  ↵} is compact, with f : MN⇥n 7! R

quasiconvex, Then,

{P 2 MN⇥n, Qdist(P,K) = 0} = K. (3.11)

Which means there exists a non-negative quasiconvex function with its zero set exactly K.

Proof. As the necessity is obvious, we need to prove the su�ciency of the conditions. In

fact, we just need to prove the claim for the case that distp(.,K) is rank-one convex,

because other types of semiconvexity imply rank-one convexity. Firstly we consider the

condition (i), p = 2. Suppose the claim is not true. Then there exists a closed non-

convex subset K of MN⇥n with n,N � 2, such that dist2(.,K) is rank-one convex (

if n = 1 or N = 1, all the semiconvex relaxations are the same and equal the convex

relaxation.) There is some P
0

2 MN⇥n and A,B 2 K, A 6= B, such that

|P
0

�A|2 = |P
0

�B|2 = dist2(P
0

,K).

As {A,B} ⇢ K,

dist2(P,K)  dist2(P, {A,B}) = min{|P �A|2, |P �B|2} := f(P ). (3.12)

Since dist(P,K) is rank-one convex, we have

dist2(P,K)  Rf(P ) = Qf(P ). (3.13)

set l = dist(P
0

,K). We will evaluate both functions in (3.13) at P
0

to reach a contradiction.

The left-hand side of (3.13) at P
0

gives l2. To evaluate the right-hand of (3.13) at P
0

, we
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denote the angle between A�P
0

and B�P
0

, which is less than or equal to ⇡ as 2↵. From

Theorem 3.3.2,

Rf(P
0

) = Qf(P
0

) = min
01✓

{|P
0

� ✓A� (1� ✓)B|2 + ✓(1� ✓)[|A�B|2 � �
max

]}, (3.14)

where �
max

is the greatest eigenvalue of the matrix (A�B)T (A�B). We claim that

0 < �
max

< |A�B|2.

Otherwise, let C = 1

2

(A+B), then Qf(C) = 0, so that C 2 K, while

|P
0

� C|2 < l2 = dist2(P
0

,K)2,

which leads to a contradiction. It is obvious that �
max

> 0. Now, we decompose P
0

� A

and P
0

�B as

P
0

�A = (C �A) + (P
0

� C), P
0

�B = (C �B) + (P
0

� C).

Notice that P
0

� C is orthogonal to C �A and C �B, while C �A = �(C �B)

|P
0

� C| = l cos↵ |C �A| = l sin↵.

We then have

Rf(P
0

) = min
0✓�1

{|P
0

� C + ✓(C �A) + (1� ✓)(C �B)|2 + ✓(1� ✓)[|A�B|2 � �
max

]}

= min
0✓�1

{|P
0

� C|2 + (1� 2✓)(C �B)|2 + ✓(1� ✓)[|A�B|2 � �
max

]}

It is easy to say the function reaches its minimum at ✓ = 1

2

by employing a simple calculus

argument. Therefore,

Rf(P
0

) = |P
0

� C|2 + 1

4
(|A�B|2 � �

max

)

= l2 cos2 ↵+ l2 cos2 ↵� 1

4
�
max

= l2 � 1

4
�
max

< l2,

which contradicts (3.13). The proof for case (i) is complete.

For case (ii), 1  p < 2, if distp(.,K) is rank-one convex, we have, from the fact that t
2
p

is a monotone increasing and convex function for t � 0, that dist2(.,K) = [distp(.,K)]2/p

is rank-one convex (see [11] for the quasiconvex set). The conclusion for case (i) implies

that K is convex.

Remark 3.3.1. If p 6= 2. We do not have explicit formula for the quasiconvexification of

Qdistp(., {A,B}).
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Remark 3.3.2. An interesting problem in the study of Qdistp(.,K) is to find those points

P , where

Qdistp(P,K) < distp(P,K).

Corollary 3.3.2. Suppose K is a closed non-convex subset of MN⇥n. For P 2 MN⇥n

such that the nearest-point property is not satisfied with respect to K, then

(i)Pdist2(P,K)  Qdist2(P,K)  Rdist2(P,K)  dist2(P,K)� �P ,

and

(ii)when1  p < 2,

Qdist2(P,K)  Rdist2(P,K)  (dist2(P,K)� �p)
p/2,

where

�p = sup{ 1

4n
|A�B|2, A,B 2 K,A 6= B, |P �A| = |P �B| = dist(P,K)}.

Proof. We only need to consider the rank-one convex relaxation. For case (i), that is

p = 2, we have

Rdist2(P
0

,K)  Rf(P
0

) = Qf(P
0

) = l2 � 1

4
�
max

= dist2(P
0

,K)� 1

4
�
max

.

From the definition of �
max

, we see that

�
max

� 1

n
|A�B|2.

Consequently,

Rdist2(P
0

,K)  dist2(P
0

,K)� 1

4n
|A�B|2.

Hence

Rdist2(P
0

,K)  inf{dist2(P
0

,K)� 1

4n
|A�B|2,

A,B 2 K, |P �A| = |P �B| = dist(P
0

,K)}
= dist2(P

0

,K)� �P0 .

For case (ii), notice that

(Rdistp(.,K))2/p  (distp(.,K))2/p = dist2(.,K).

Since (Qdistp(.,K)])2/p is a rank-one convex function when 1  p  2, we see that

(Rdistp(.,K))2/p  Rdist2(.,K).
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At the point P
0

, which does not satisfy the nearest-point property with respect to K, we

have

(Rdist2(P
0

,K))2/p  Rdist2(P
0

,K)  dist2(P
0

,K)� �P
0

.

Thus the conclusion follows.

Proof. The necessity part is easy: when K is convex, dist2(.,K) is convex, so all the

semiconvex relaxations equal dist2(.,K) itself;

Cdist2(P,K) = Pdist2(P,K) = Qdist2(P,K) = Rdist2(P,K) = dist2(P,K)

for all P 2 MN⇥n.

Next, we prove that the condition is su�cient. In fact, we need to prove that if K is

not convex, then for every R > 0, there exists PR 2 Ek ⇢ MN⇥n, with dist(PR,K) � R,

such that Rdist2(PR,K)  dist2(PR,K). The idea of this proof is to find a point which,

approximately, does not satisfy the nearest-point property with respect to K and is far

away from K. If dim C(K)  1, C(K) must be a closed line segment from a single point.

Since K is contractible, we see that K = C(K). The conclusion follows. Therefore we have

we may assume that dim K = C(K) � 2, which is contained in k-dimensional plane Ek of

MN⇥n. We claim that there exists a supporting plane L of C(K) in dim L = K � 1, such

that K \L is not convex. Otherwise, since it is easy to check that C(K \L) = C(K)\L,

we have

C(K) \ L = @C(K) \ L = K \ L.

Since for every relative boundary point P of C(K) in Ek, there exists at least one support

of plane of C(K) which contains P , we see that @C(K) ⇢ K. As K is a convex set so we

see contradiction. Let L be a supporting plane of C(K) such that K \ L is not convex.

Therefore, there is a point C 2 L such that C does not satisfy the nearest point property

with respect to K \ L. We may assume that C = 0, the zero matrix in MN⇥n, so that

L ⇢ E ⇢ MN⇥n are all subspaces. Hence we can find two points A,B 2 K \ L, A 6= B,

such that |A| = |B| = dist(0,K \ L). Let D 2 Ek be the unit vector in Ek which is

orthogonal to the subspace L, and L separates C(K) and D. Now let P = sD, with s > 0,

and let us give some estimates of the value of Qdist2(P,K) and dist2(P,K). Since

|P �A|� |P �A| = l =
p

s2 + |A|2 := R,

we see that

Rdist2(P,K)  Rf(P ) = Qf(P ) = R2 � 1

4
�
max

.
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Now, having f , Qf and Rf �
max

> 0 is the greatest eigenvalue of (A�B)T (A�B). Since

for any r > 0, with r < |A|, the closed ball Br = {X 2 L, |X|  r} in L, does not intersect

K, that is BrK = 0, we see that there exists � > 0 such that the close cylinder,

Br,� = {X � tD, X 2 L, |X|  r; 0  t  �}

does not intersectK. Hence, for su�ciently large s, if we set lr =
p
s2 + r2, the intersection

of the closed ball

Blr = {P,X 2 Ek, |X � P |  lr}

with the half-space

E�
k = {X � tD, X 2 L, t � 0}

is contained in Br,� , which is disjoint with K,Blr(P ) \ E�
k ⇢ Br,� . Therefore, for any

✏ > 0 there exists an s
0

> 0, when s � s
0

and P = sD,

dist2(P,K) � R2 � ✏,

where l =
p

s2 + |A|2. If we choose ✏ < 1

4

�
max

, there is an s
0

> 0, when s � s
0

,

dist2(P,K) � l2 � ✏ > l2 � 1

4
�
max

= Rf(P ) � Rdist2(P,K).

The proof is complete.

3.4 Distance Functions to Subspaces L ⇢ RN⇥n

We know that distance functions to subspaces are always convex because of being quadratic

and non-negative. So in particular they are quasiconvex. However, if the subspace has no

rank-one direction one can show a stronger assertion. (See the discussion at the end of

Chapter 2.)

3.5 Distance Functions to Subspaces L ⇢ R2⇥2 with No Rank-

one Directions

Here we proceed by presenting various concrete examples and working out the details of

the corresponding quadratic forms.
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Example 1

We consider the 2-dimensional subspace L of M2⇥2

L =

8

>

<

>

:

0

B

@

a b

b �a

1

C

A

: a, b 2 R

9

>

=

>

;

. (3.15)

Let us find the basis which span the subspace L.

A =

0

@

a
11

a
12

a
21

a
22

1

A = ↵

0

@

1 0

0 �1

1

A+ �

0

@

0 1

1 0

1

A+ �

0

@

1 0

0 1

1

A+ �

0

@

0 1

�1 0

1

A .

If we say A = A
1

+A
2

while A
1

2 L and A
2

2 L?, then

A =

0

@

a
11

a
12

a
21

a
22

1

A =

0

@

↵ �

� �↵

1

A+

0

@

� �

�� �

1

A .

Here
8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

↵ = a11�a22
2

,

� = a12+a21
2

,

� = a11+a22
2

,

� = a12�a21
2

.

We have then

dist2L = f(A) = kA
2

k2 = A
2

.A
2

=
(a

11

+ a
22

)2

2
+

(a
12

� a
21

)2

2
, (3.16)

and

dist2L? = h(A) = kA
1

k2 = A
1

.A
1

=
(a

11

� a
22

)2

2
+

(a
12

+ a
21

)2

2
. (3.17)

Now if we take a matrix

E =

0

@

e
11

e
12

e
21

e
22

1

A ,

we have
d2

dt
f(A+ tE)|t=0

= e2
11

+ e2
22

+ 2e
11

e
22

+ e2
12

+ e2
21

� 2e
12

e
21

.

As we see it is 2f(E) where, f(E) = dist2L(E), Since f is positive and quadratic, it is

convex. Hence f is quasiconvex, hence f is rank-one convex.

Now since f is a quadratic function on R2⇥2, we can write f(E) = hQE,Ei. So

f(E) =

⌧

0

B

B

B

B

B

B

@

q
11

q
12

q
13

q
14

q
21

q
22

q
23

q
24

q
31

q
32

q
33

q
34

q
41

q
42

q
43

q
44

1

C

C

C

C

C

C

A

0

B

B

B

B

B

B

@

e
11

e
12

e
21

e
22

1

C

C

C

C

C

C

A

,

0

B

B

B

B

B

B

@

e
11

e
12

e
21

e
22

1

C

C

C

C

C

C

A

�
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= q
11

e2
11

+ q
12

e
12

e
11

+ q
13

e
21

e
11

+ q
14

e
22

e
11

+ q
21

e
11

e
12

+ q
22

e2
12

+ q
23

e
21

e
12

+ q
24

e
22

e
12

+q
31

e
11

e
21

+ q
32

e
12

e
21

+ q
33

e2
21

+ q
34

e
22

e
21

+ q
41

e
11

e
22+

q
42

e
12

e
22

+ q
43

e
21

e
22

+ q
44

e2
22

.

Then
8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

1

2

q
11

e
11

= e2
11

! q
11

= 1

2

,

1

2

e2
22

= q
44

e2
22

! q
44

= 1

2

,

�e
12

e
21

= q
23

e
21

e
12

+ q
32

e
12

e
21

! q
23

+ q
32

= �1 ! q
23

= q
32

= �1

2

,

1

2

e2
12

= q
22

e2
12

! q
22

= 1

2

,

1

2

e2
21

= q
33

e2
21

! q
33

= 1

2

,

e
11

e
22

= q
14

e
22

e
11

+ q
41

e
11

e
22

! q
14

+ q
41

= 1 ! q
14

= q
41

= 1

2

,

and so

Q =

0

B

B

B

B

B

B

@

1

2

0 0 1

2

0 1

2

�1

2

0

0 �1

2

1

2

0

1

2

0 0 1

2

1

C

C

C

C

C

C

A

.

Then eigenvalues of Q are
8

>

<

>

:

�
1

= �
2

= 0,

�
3

= �
4

= 1,
(3.18)

in line with Q being a projection. Then, the eigenvectors of Q are as follows

�
1

= �
2

= 0, we have ~V
1

=

0

B

B

B

B

B

B

@

1

0

0

�1

1

C

C

C

C

C

C

A

, and ~V
2

=

0

B

B

B

B

B

B

@

0

1

1

0

1

C

C

C

C

C

C

A

,

and

�
3

= �
4

= 1, we have ~V
3

=

0

B

B

B

B

B

B

@

1

0

0

1

1

C

C

C

C

C

C

A

, and ~V
4

=

0

B

B

B

B

B

B

@

0

1

�1

0

1

C

C

C

C

C

C

A

.

As we see all the eigenvalues are � 0. Hence Q is non-negative definite. Hence f is convex.

Restriction to rank-one matrices

Let us consider a rank-one matrix

D = (u⌦ v) =

0

@

u
1

v
1

u
1

v
2

u
2

v
1

u
2

v
2

1

A . (3.19)
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We have

dist2L(A) = f(A) =
(u

1

v
1

+ u
2

v
2

)2

2
+

(u
1

v
2

� u
2

v
1

)2

2
. (3.20)

As we see

d2

dt
f(A+ tD)|t=0

= u2
1

v2
1

+ u2
1

v2
2

+ u2
2

v2
1

+ u2
2

v2
2

= 2dist2L(D) > 0. (3.21)

Hence f is convex.

Claim .

dist2L(u⌦ v) � ✏kuk2kvk2.

Finding ✏ from (3.21), we have

1

2

[u2
1

v2
1

+ u2
1

v2
2

+ u2
2

v2
1

+ u2
2

v2
2

] = 1

2

[(u2
1

+ u2
2

) + (v2
1

+ v2
2

)] = 1

2

[kuk2 + kvk2]. Hence ✏ = 1

2

.

We found that f(A) is convex, Now If we define G(A) = f(A) � �kAk2, it means G(A)

can’t be convex. But it could be rank one convex only for 0 < �  1

2

.

Since we can write distL(B) = hBD,Di, we have

distL(B) = h

0

B

B

B

B

B

B

@

b
11

b
12

b
13

b
14

b
21

b
22

b
23

b
24

b
31

b
32

b
33

b
34

b
41

b
42

b
43

b
44

1

C

C

C

C

C

C

A

0

B

B

B

B

B

B

@

u
1

v
1

u
1

v
2

u
2

v
1

u
2

v
2

1

C

C

C

C

C

C

A

,

0

B

B

B

B

B

B

@

u
1

v
1

u
1

v
2

u
2

v
1

u
2

v
2

1

C

C

C

C

C

C

A

i

= b
11

u2
1

v2
1

+ b
12

u2
1

v
2

v
1

+ b
13

u
2

v2
1

u
1

+ b
14

u
2

v
2

u
1

v
1

+ b
21

u2
1

v
1

v
2

+ b
22

u2
1

v2
2

+ b
23

u
2

v
1

u
1

v
2

+

b
24

u
1

u
2

v2
2

+ b
31

u
1

u
2

v2
1

+ b
31

u
1

u
2

v2
1

+ b
32

u
1

v
2

u
2

v
1

+ b
33

u2
2

v2
1

+ b
34

u2
2

v
1

v
2

+ b
41

u
1

v
1

u
2

v
2

+

b
42

u
1

u
2

v2
2

+ b
43

u2
2

v
1

v
2

+ b
44

u2
2

v2
2

.

Then
8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

b
11

u2
1

v2
1

= 1

2

u2
1

v2
1

! b
11

= 1

2

,

b
44

u2
2

v2
2

= 1

2

u2
2

v2
2

! b
44

= 11

2

,

b
22

u2
1

v2
2

= 1

2

u2
1

v2
2

! b
22

= 1

2

,

b
33

u2
2

v2
1

1

2

u2
2

v2
1

! b
33

= 1

2

,

and so

B =

0

B

B

B

B

B

B

@

1

2

0 0 0

0 1

2

0 0

0 0 1

2

0

0 0 0 1

2

1

C

C

C

C

C

C

A

.

The eigenvalues of B are

�
1

= . . . = �
4

=
1

2
. (3.22)

So the minimum eigenvalue is 1

2

, which is equal to the ✏ that we found earlier.
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Determinat

Let us now consider the matrix

E =

0

@

e
11

e
12

e
21

e
22

1

A . (3.23)

Clearly, det E = e
11

e
22

� e
12

e
21

. and distL(E) = hCE,Ei

= h

0

B

B

B

B

B

B

@

c
11

c
12

c
13

c
14

c
21

c
22

c
23

c
24

c
31

c
32

c
33

c
34

c
41

c
42

c
43

c
44

1

C

C

C

C

C

C

A

0

B

B

B

B

B

B

@

e
11

e
12

e
21

e
22

1

C

C

C

C

C

C

A

,

0

B

B

B

B

B

B

@

e
11

e
12

e
21

e
22

1

C

C

C

C

C

C

A

i

= c
11

e2
11

+ c
12

e
12

e
11

+ c
13

e
21

e
11

+ c
14

e
22

e
11

+ c
21

e
11

e
12

+ c
22

e2
12

+ c
23

e
21

e
12

+ c
24

e
22

e
12

+

c
31

e
11

e
21

+ c
32

e
12

e
21

+ c
33

e2
21

+ c
34

e
22

e
21

+ c
41

e
11

e
22

+ c
42

e
12

e
22

+ c
43

e
21

e
22

+ c
44

e2
22

.

If we compare it with det E we have
8

>

<

>

:

c
14

e
22

e
11

+ c
41

e
11

e
22

= e
11

e
22

,

c
23

e
21

e
12

+ c
32

e
12

e
21

= �e
12

e
21

.
)

8

>

<

>

:

c
14

= c
41

= 1

2

,

c
23

= c
32

= �1

2

.

Hence

C =

0

B

B

B

B

B

B

@

0 0 0 1

2

0 0 �1

2

0

0 �1

2

0 0

1

2

0 0 0

1

C

C

C

C

C

C

A

.

So we can say

A = B � C. (3.24)

If we consider

B = A� µC, (3.25)

then

B =

0

B

B

B

B

B

B

@

1

2

0 0 1

2

0 1

2

�1

2

0

0 �1

2

1

2

0

1

2

0 0 1

2

1

C

C

C

C

C

C

A

� ✏

0

B

B

B

B

B

B

@

0 0 0 1

2

0 0 �1

2

0

0 �1

2

0 0

1

2

0 0 0

1

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

@

1

2

0 0 1�µ
2

0 1

2

�1+µ
2

0

0 �1+µ
2

1

2

0

1�µ
2

0 0 1

2

1

C

C

C

C

C

C

A

.

The eigenvalues of B are

)

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

�
1

= µ
2

,

�
2

= 1� µ
2

,

�
3

= 1� µ
2

,

�
4

= µ
2

.

(3.26)
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As we see if 0 < µ < 2, then � > 0. and if µ = 1 we have � > 0. Also, If ✏ = 1 then, � =

1

2

min e.v which is positive.

Example 2

Consider the one-dimensional subspace L of M2⇥2

L =

8

>

<

>

:

0

B

@

a 0

0 a

1

C

A

: a 2 R

9

>

=

>

;

. (3.27)

Let us find the basis which span the subspace L. We have

A =

0

@

a
11

a
12

a
21

a
22

1

A = ↵

0

@

1 0

0 1

1

A+ �

0

@

1 0

0 �1

1

A+ �

0

@

0 1

1 0

1

A+ �

0

@

0 1

�1 0

1

A .

If we say A = A
1

+A
2

while A
1

2 L and A
2

2 L?, we have

A =

0

@

a
11

a
12

a
21

a
22

1

A =

0

@

↵ 0

0 ↵

1

A+

0

@

� '+ �

'� � ��

1

A .

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

↵ = a11+a22
2

,

� = a11�a22
2

,

' = a12+a21
2

,

� = a12�a21
2

.

We have

dist2L(A) = f(A) = kA
2

k2 = A
2

.A
2

= (
a
11

� a
22

2

2

) + a2
12

+ a2
21

+ (
a
11

� a
22

2
)
2

,

and

dist2L?(A) = h(A) = kA
1

k2 = A
1

.A
1

= (
a
11

+ a
22

2
)
2

+ (
a
11

+ a
22

2
)
2

. (3.28)

Now if we take a matrix

E =

0

@

e
11

e
12

e
21

e
22

1

A .

Then
d2

dt
f(A+ tE)|t=0

= e2
11

+ e2
22

� 2e
11

e
22

+ 2e2
12

+ 2e2
21

, (3.29)

which is 2 dist2L(E) = 2f(E) and � 0. So f is convex. Hence f is quasiconvex, hence f is

rank-one convex. Again, since f is a quadratic function on R2⇥2, we have

f(E) = hQE,Ei
= q

11

e2
11

+ q
12

e
12

e
11

+ q
13

e
21

e
11

+ q
14

e
22

e
11

+ q
21

e
11

e
12

+ q
22

e2
12

+ q
23

e
21

e
12

+ q
24

e
22

e
12

+ q
31

e
11

e
21

+ q
32

e
12

e
21

+ q
33

e2
21

+ q
34

e
22

e
21

+ q
41

e
11

e
22+

q
42

e
12

e
22

+ q
43

e
21

e
22

+ q
44

e2
22

.
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Comparing with f(E) formula, we get

Q =

0

B

B

B

B

B

B

@

1

2

0 0 �1

2

0 1 0 0

0 0 1 0

�1

2

0 0 1

2

1

C

C

C

C

C

C

A

.

The eigenvalues of Q are �
1

= 0 and �
2

= �
3

= �
4

= 1 in line with Q being a projection

matrix.

The eigenvectors of Q are as follows

�
1

= 0 we have ~V
1

=

0

B

B

B

B

B

B

@

1

0

0

1

1

C

C

C

C

C

C

A

,

and

�
2

= �
3

= �
4

= 1, we have ~V
2

=

0

B

B

B

B

B

B

@

1

0

0

�1

1

C

C

C

C

C

C

A

~V
3

=

0

B

B

B

B

B

B

@

0

1

1

0

1

C

C

C

C

C

C

A

~V
4

=

0

B

B

B

B

B

B

@

0

1

�1

0

1

C

C

C

C

C

C

A

.

As we see all the eigenvalues are � 0. Hence Q is non-negative definite, and f is convex.

Restriction to rank-one matrices

We consider a rank-one matrix

D = (u⌦ v) =

0

@

u
1

v
1

u
1

v
2

u
2

v
1

u
2

v
2

1

A .

Wehavedist2L(A) = f(A) =
(u

1

v
1

� u
2

v
2

)2

2
+ u2

1

v2
2

+ u2
2

v2
1

. (3.30)

We see

d2

dt
f(A+ tD)|t=0

= u2
1

v2
1

+ u2
2

v2
1

� 2u
1

v
1

u
2

v
2

+ 2u2
1

v2
2

+ 2u2
2

v2
1

= 2dist2L(D). (3.31)

Hence f is convex.

Claim.

dist2L(u⌦ v) � ✏kuk2kvk2.

As we know, f(A) is convex, Now If we define G(A) = f(A)��kAk2, it means G(A) can’t

be convex. But it could be rank one convex only for 0 < �  1

2

. Findind the ✏, we have,
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again f being a quadratic function, we have distL(D)=hBD,Di

= h

0

B

B

B

B

B

B

@

b
11

b
12

b
13

b
14

b
21

b
22

b
23

b
24

b
31

b
32

b
33

b
34

b
41

b
42

b
43

b
44

1

C

C

C

C

C

C

A

0

B

B

B

B

B

B

@

u
1

v
1

u
1

v
2

u
2

v
1

u
2

v
2

1

C

C

C

C

C

C

A

,

0

B

B

B

B

B

B

@

u
1

v
1

u
1

v
2

u
2

v
1

u
2

v
2

1

C

C

C

C

C

C

A

i

=b
11

u2
1

v2
1

+ b
12

u2
1

v
2

v
1

+ b
13

u
2

v2
1

u
1

+ b
14

u
2

v
2

u
1

v
1

+ b
21

u2
1

v
1

v
2

+ b
22

u2
1

v2
2

+ b
23

u
2

v
1

u
1

v
2

+

b
24

u
1

u
2

v2
2

+ b
31

u
1

u
2

v2
1

+ b
31

u
1

u
2

v2
1

+ b
32

u
1

v
2

u
2

v
1

+ b
33

u2
2

v2
1

+ b
34

u2
2

v
1

v
2

+ b
41

u
1

v
1

u
2

v
2

+

b
42

u
1

u
2

v2
2

+ b
43

u2
2

v
1

v
2

+ b
44

u2
2

v2
2

.

Then

B =

0

B

B

B

B

B

B

@

1

2

0 0 ↵

0 1 �1

2

� ↵ 0

0 �1

2

� ↵ 1 0

↵ 0 0 1

2

1

C

C

C

C

C

C

A

.

Now using, det(B � �I) = 0, we have,

[(
1

2
� �)2 � ↵2][(1� �)2 � (�1

2
� ↵)2] = 0

So the eigenvalues of B are
8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

�
1

= 1

2

+ ↵

�
2

= 1

2

� ↵

�
3

= 3

2

+ ↵

�
4

= 1

2

+ ↵

As we want all the eigenvalues to be positive, so if the minimum eigenvalue is positive, we

are done. If ↵ = 0 we have
8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

�
1

= 1

2

,

�
2

= 1

2

,

�
3

= 3

2

,

�
4

= 1

2

.

(3.32)

So substituting ↵ by 0, minimum eigenvalue is 1

2

and also

B =

0

B

B

B

B

B

B

@

1

2

0 0 0

0 1 �1

2

0

0 �1

2

1 0

0 0 0 1

2

1

C

C

C

C

C

C

A

.
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Determinant

Let us now consider a matrix E =

0

@

e
11

e
12

e
21

e
22

1

A. Clearly

det E = e
11

e
22

� e
12

e
21

.

We can say

distL(E) = hCE,Ei = h

0

B

B

B

B

B

B

@

c
11

c
12

c
13

c
14

c
21

c
22

c
23

c
24

c
31

c
32

c
33

c
34

c
41

c
42

c
43

c
44

1

C

C

C

C

C

C

A

0

B

B

B

B

B

B

@

e
11

e
12

e
21

e
22

1

C

C

C

C

C

C

A

,

0

B

B

B

B

B

B

@

e
11

e
12

e
21

22

1

C

C

C

C

C

C

A

i =

c
11

e2
11

+ c
12

e
12

e
11

+ c
13

e
21

e
11

+ c
14

e
22

e
11

+ c
21

e
11

e
12

+ c
22

e2
12

+ c
23

e
21

e
12

+ c
24

e
22

e
12

+

c
31

e
11

e
21

+ c
32

e
12

e
21

+ c
33

e2
21

+ c
34

e
22

e
21

+ c
41

e
11

e
22

+ c
42

e
12

e
22

+ c
43

e
21

e
22

+ c
44

e2
22

.

Comparing the result with det E we will get

8

>

<

>

:

c
14

e
22

e
11

+ c
41

e
11

e
22

= e
11

e
22

c
23

e
21

e
12

+ c
32

e
12

e
21

= �e
12

e
21

)

8

>

<

>

:

c
14

= c
41

= 1

2

,

c
23

= c
32

= �1

2

.

Hence,

C =

0

B

B

B

B

B

B

@

0 0 0 1

2

0 0 �1

2

0

0 �1

2

0 0

1

2

0 0 0

1

C

C

C

C

C

C

A

.

Then, we can show that

Q = B � C. (3.33)

If we say

B = Q� µC, (3.34)

then

B =

0

B

B

B

B

B

B

@

1

2

0 0 �1

2

0 1 0 0

0 0 1 0

�1

2

0 0 1

2

1

C

C

C

C

C

C

A

� µ

0

B

B

B

B

B

B

@

0 0 0 1

2

0 0 �1

2

0

0 �1

2

0 0

1

2

0 0 0

1

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

@

1

2

0 0 �1�µ
2

0 1 µ
2

0

0 µ
2

1 0

�1�µ
2

0 0 1

2

1

C

C

C

C

C

C

A

.

Finding eigenvalues of B, we have

det(B � �I) = 0,
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so

det

0

B

B

B

B

B

B

@

1

2

� � 0 0 �1�µ
2

0 1� � µ
2

0

0 µ
2

1� � 0

�1�µ
2

0 0 1

2

� �

1

C

C

C

C

C

C

A

= 0.

Then
8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

�
1

= 1 + µ
2

,

�
2

= 1� µ
2

,

�
3

= �µ
2

?,

�
4

= 1 + µ
2

.

(3.35)

If �2 < µ < 0, we have �i > 0 where i = 1, ..., 4.

3.6 Distance Function to Subspaces L ⇢ R3⇥3 with No Rank-

one Directions

Now we proceed to the 3-dimensional case and show the result in this form. Here we are

interested in subspace L of skew-symmetric matrices. It is easily seen that in general this

subspace has no rank-one directions. Indeed consider the 3-dimensional subspace L of

M
3

(R) given by

L =

8

>

>

>

>

>

<

>

>

>

>

>

:

0

B

B

B

B

B

@

0 a b

�a 0 c

�b �c 0

1

C

C

C

C

C

A

: a, b, c 2 R

9

>

>

>

>

>

=

>

>

>

>

>

;

. (3.36)

Distanse function

Let us find the basis for subspace L. We have

A =

0

B

B

B

@

a
11

a
12

a
13

a
21

a
22

a
23

a
31

a
32

a
33

1

C

C

C

A

=

+↵

0

B

B

B

@

0 1 0

�1 0 0

0 0 0

1

C

C

C

A

+ �

0

B

B

B

@

0 0 1

0 0 0

�1 0 0

1

C

C

C

A

+ ✓

0

B

B

B

@

0 0 0

0 0 1

0 �1 0

1

C

C

C

A

+ �

0

B

B

B

@

0 1 0

1 0 0

0 0 0

1

C

C

C

A

+⌘

0

B

B

B

@

0 0 1

0 0 0

1 0 0

1

C

C

C

A

+ ⌧

0

B

B

B

@

0 0 0

0 0 1

0 1 0

1

C

C

C

A

+ �

0

B

B

B

@

1 0 0

0 0 0

0 0 0

1

C

C

C

A

+ µ

0

B

B

B

@

0 0 0

0 1 0

0 0 0

1

C

C

C

A

+ ⇣

0

B

B

B

@

0 0 0

0 0 0

0 0 1

1

C

C

C

A

.
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If we say A = A
1

+A
2

while A
1

2 L and A
2

2 L?, then

A =

0

B

B

B

@

a
11

a
12

a
13

a
21

a
22

a
23

a
31

a
32

a
33

1

C

C

C

A

=

0

B

B

B

@

0 ↵ �

�↵ 0 ✓

�� �✓ 0

1

C

C

C

A

+

0

B

B

B

@

� � ⌘

� µ ⌧

⌘ ⌧ ⇣

1

C

C

C

A

Then we have
8

>

>

>

>

>

<

>

>

>

>

>

:

↵ = a12�a21
2

� = a13�a31
2

✓ = a23�a32
2

8

>

>

>

>

>

<

>

>

>

>

>

:

� = a12+a21
2

⌘ = a13+a31
2

⌧ = a23+a32
2

8

>

>

>

>

>

<

>

>

>

>

>

:

� = a2
11

µ = a2
22

⇣ = a2
33

Finding distance A to L, we have

f(A) = kA
2

k2 = A
2

.A
2

= a2
11

+ a2
22

+ a2
33

+
(a

12

+ a
21

)2

2
+

(a
13

+ a
31

)2

2
+

(a
23

+ a
32

)2

2
,

(3.37)

and also for distance A to L?, we have

h(A) = kA
1

k2 = A
1

.A
1

=
(a

12

� a
21

)2

2
+

(a
13

� a
31

)2

2
+

(a
23

� a
32

)2

2
. (3.38)

Now if we take a matrix

E =

0

B

B

B

@

e
11

e
12

e
13

e
21

e
22

e
23

e
31

e
32

e
33

1

C

C

C

A

,

we can see

d2

dt
f(A+ tE)|t=0

= 2e2
11

+ 2e2
22

+ 2e2
33

� 2e
12

e
21

+ 2e2
23

+ e2
32

� 2e
12

e
21

= 2dist2L(E) � 0.

Hence

f is convex ) f is quasiconvex ) f is rank-one convex.

Now since f is a quadratic function, we can write

f(E) = hQE,Ei
= q

11

e2
11

+ q
12

e
12

e
11

+ q
13

e
21

e
11

+ q
14

e
22

e
11

+ q
21

e
11

e
12

+ q
22

e2
12

+ q
23

e
21

e
12

+ q
24

e
22

e
12

+ q
31

e
11

e
21

+ q
32

e
12

e
21

+ q
33

e2
21

+ q
34

e
22

e
21

+ q
41

e
11

e
22+

q
42

e
12

e
22

+ q
43

e
21

e
22

+ q
44

e2
22

.

Finding Q and its eigenvalues, we see that all the �s are � 0. So Q is non-negative definite.

Hence, f is convex, in line with Q being a projection.
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3.7 A Subspaces L ⇢ R2⇥2 with Rank-one Directions

We consider the 2-dimensional subspace L of M
2

(R)

L =

8

>

<

>

:

0

B

@

a b

b a

1

C

A

: a, b 2 R

9

>

=

>

;

.

Distanse function

Let us find the basis for subspace L.

A =

0

@

a
11

a
12

a
21

a
22

1

A = ↵

0

@

1 0

0 1

1

A+ �

0

@

0 1

1 0

1

A+ �

0

@

1 0

0 �1

1

A+ �

0

@

0 1

�1 0

1

A .

If we say A = A
1

+A
2

while A
1

2 L and A
2

2 L?, then

A =

0

@

a
11

a
12

a
21

a
22

1

A =

0

@

↵ �

� ↵

1

A+

0

@

� �

�� ��

1

A .

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

↵ = a11+a22
2

,

� = a12+a21
2

,

� = a11�a22
2

,

� = a12�a21
2

.

Finding distance A to L and L? we have

f(A) = kA
2

k2 = A
2

.A
2

=
(a

11

� a
22

)2

2
+

(a
12

� a
21

)2

2
,

and

h(A) = kA
1

k2 = A
1

.A
1

=
(a

11

+ a
22

)2

2
+

(a
12

+ a
21

)2

2
.

So

dist2L(A) = f(A) =
(a

11

� a
22

)2

2
+

(a
12

� a
21

)2

2
.

Now if we take a matrix

E =

0

@

e
11

e
12

e
21

e
22

1

A .

We have

d2

dt
f(A+ tE)|t=0

= e2
11

+ e2
22

� 2e
11

e
22

+ e2
21

+ e2
21

� 2e
12

e
21

= 2 dist2L(E) � 0. (3.39)

Hence

f is convex ) f is quasiconvex ) f is rank-one convex.



40

Now since f is a quadratic function, we have

f(E) = hQE,Ei = q
11

e2
11

+q
12

e
12

e
11

+q
13

e
21

e
11

+q
14

e
22

e
11

+q
21

e
11

e
12

+q
22

e2
12

+q
23

e
21

e
12

+

q
24

e
22

e
12

+q
31

e
11

e
21

+q
32

e
12

e
21

+q
33

e2
21

+q
34

e
22

e
21

+q
41

e
11

e
22+

q
42

e
12

e
22

+q
43

e
21

e
22

+q
44

e2
22

.

So

Q =

0

B

B

B

B

B

B

@

1

2

0 0 �1

2

0 1

2

�1

2

0

0 �1

2

1

2

0

�1

2

0 0 1

2

1

C

C

C

C

C

C

A

.

The eigenvalues of Q are �
1

= �
2

= 0 and �
3

= �
4

= 1. As we see as �
1

,�
2

,�
3

,�
4

are � 0,

Q is non-negative definite. Hence, f is convex in line with Q being a projection.

Restriction to rank-one matrices

Let us consider a rank-one matrix

D = (u⌦ v) =

0

@

u
1

v
1

u
1

v
2

u
2

v
1

u
2

v
2

1

A .

We have

dist2L(A) = f(A) =
(u

1

v
1

� u
2

v
2

)2

2
+

(u
1

v
2

� u
2

v
1

)2

2

= [(u2
1

+ u2
2

) + (v2
1

+ v2
2

)]� 4u
1

v
1

u
2

v
2

= [kuk2 + kvk2]� 2u
1

v
1

u
2

v
2

.

As we see

d2

dt
f(A+ tD)|t=0

= u2
1

v2
1

+ u2
1

v2
2

+ u2
2

v2
1

+ u2
2

v2
2

� 4u
1

v
1

u
2

v
2

= 2dist2L(D) � 0,

hence f is convex.

Since, f is a quadratic function, we can find a matrix B from distL(B) = hBD,Di. Finding
the eigenvalues of B, we notice that the following claim

dist2L(u⌦ v) � ✏kuk2kvk2, (3.40)

could not be true in this case.

3.8 Distance Function to the Special Orthogonal Group K =

SO(n)

Before giving the definitions, let us introduce some notations. In this section we let O(n)

be the set of N ⇥ n orthogonal matrices,

D := (0, 1)n ⇢ Rn
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and W 1,1
per (D;Rn) be the space of periodic functions in W 1,1(D;RN ), meaning that

u(x) = u(x+ ei), for every x 2 D and i = 1, ..., n,

where {e
1

, ..., en} is the standard orthogonal basis of Rn, Wper denotes the subspace of

functions in W 1,1
per (D;Rn), whose gradients take only a finite number of values. We de-

note by SO(n) the set of all rotations in MN⇥n i.e., orthogonal matrices with unit de-

terminants, and we let C(K) be its convex hull and dim(C(K)) be its dimension. A

function f : RN⇥n ! R [ {1} is said to be SO(n) invariant if f(QAR) = f(A) for each

A 2 MN⇥n, Q,R 2 SO(n). Of particular importance is the case n = 2. It is known that

in the class of SO(2) invariant functions the convexity, polyconvexity, and quasiconvexity

are distinct.

Now we aim to find find fK(A), where FK(A) = dist2(A,K) and K = SO(n). Let A be a

N ⇥ n matrix. We have

f(A) = dist2(A,SO(n)) = inf
P2SO(n)

kA� Pk2

= inf [(A� P ) : (A� P )]

= inf [trace (A� P )(A� P )t]

= inf [trace (AAt �AP t � PAt + I)]

= inf [|A|2 � 2A : P + n]. (1)

Since A : P is the only term which depends on P , if we find the supremum of it, we are

done with finding inf kA� Pk2.
We let n = 2, then we have

A : P =

0

@

a
11

a
12

a
21

a
22

1

A :

0

@

cos ✓ � sin ✓

sin ✓ cos ✓

1

A = (a
11

+ a
22

) cos ✓ + (a
21

� a
12

) sin ✓. (3.41)

By taking derivative in respect to ✓, we have

d

d✓
= �(a

11

+ a
22

) sin ✓ + (a
21

� a
12

) cos ✓ (3.42)

d

d✓
= 0 ) tan ✓ =

a
21

� a
12

a
11

+ a
22

Straight-forward calculation, we have that

max A : P =
p

|A|2 + 2detA (3.43)

Hence,

dist2(A,SO(2)) = inf
P2SO(2)

kA� Pk2 = |A|2 � 2
p

|A|2 + 2detA+ 2 (3.44)
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Proposition 3.8.1. dist2(., SO(n)): Mn⇥n ! R is not quasiconvex.

Proof. Suppose f(P ) = min {|P �A|2, |P �B|2}, where P 2 MN⇥n and A,B 2 MN⇥n are

fixed matrices. The formula for the relaxation of the squared distance function to SO(2) is

certainly well-known to experts and can be found in various formulations in the literature.

Using the formula introduced in [32] we have

Qf(P ) = min
0✓1

{|P � ✓A� (1� ✓)B|2 + ✓(1� ✓)[|A�B|2 � �
max

]}, (3.45)

where �
max

is the greatest eigenvalue of the matrix (A � B)T (A � B). Now, let A = I,

B = J , where I is the n⇥ n identity matrix and

J =

0

@

�I
2

0

0 In�2

1

A .

Here I
2

and In�2

are 2⇥ 2 and (n� 2)⇥ (n� 2) identity matrices respectively.

Consider F (P ) = min {|P � I|2, |P � J |2}, for P 2 Mn⇥n. Since I, J 2 SO(n), we can

say, F (P ) � dist2(P, SO(n)). Let’s say dist2(P, SO(n)) is quasiconvex, then by Definition

of quasiconvexification, QF (P ) � dist2(P, SO(n)), for every P 2 Mn⇥n.

Now, we can check if it is true for the particular case when P is the n⇥ n zero matrix.

In fact, if we show QF (0) � dist2(0, SO(n)), is not true we are done.

We have

dist2(0, SO(n)) = n (3.46)

When A = I, B = J , �
max

would be the greatest eigenvalue for the matrix (I�J)T (I�J).

Since,

(I � J)T (I � J) =

0

B

B

B

B

B

B

B

B

B

@

4 0 0 . . . 0

0 4 0 . . . 0

0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

1

C

C

C

C

C

C

C

C

C

A

,

then, �
max

= 4.

Now we aim to find the QF (0).

QF (0) = min
0✓1

{|✓I + (1� ✓)J |2 + ✓(1� ✓)[|I � J |2 � �
max

]}

= n� 2 + min
0✓1

{|✓I
2

� (1� ✓)I
2

|2 + ✓(1� ✓)[|2I
2

|2 � �
max

]}

= n� 2 + min
0✓1

{2(2✓ � 1)2 + 4✓(1� ✓)} = n� 1.

As we see n� 1 < n. So there is contradiction. The proof is complete.
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Claim

dist2SO(2)

(A) = k⇡L?(A)k2 + dist2SO(2)

(⇡(A)). (3.47)

Proof. Let A = L+ L?, where L is a subspace of M
2

(R)

L =

8

>

<

>

:

0

B

@

a b

�b a

1

C

A

: a, b 2 R ,

9

>

=

>

;

and, L? is also a subspace of M
2

(R)

L? =

8

>

<

>

:

0

B

@

a b

b �a

1

C

A

: a, b 2 R

9

>

=

>

;

.

We can say

A =

0

@

a
11

a
12

a
21

a
22

1

A =

0

@

a11+a22
2

a12�a21
2

�a21+a12
2

a11+a22
2

1

A+

0

@

a11�a22
2

a12+a21
2

a21+a12
2

�a11+a22
2

1

A .

So

dist2L(A) =
(a

11

� a
22

)2

2
+

(a
12

+ a
21

)2

2
,

and

dist2L?(A) =
(a

11

+ a
22

)2

2
+

(a
12

� a
21

)2

2
.

As we showed earlier

dist2(A,SO(2)) = |A|2 � 2
p

|A|2 + 2detA+ 2

= a2
11

+ a2
22

+ a2
12

+ a2
21

� 2
q

a2
11

+ a2
22

+ a2
12

+ a2
21

+ 2(a
11

a
22

� a
21

a
12

) + 2.

Calculating the right-hand side, we have

k⇡L?(A)k2 = (
a
11

� a
22

2
)2 + (

a
12

+ a
21

2
)2 + (

a
12

+ a
21

2
)2 + (

�a
11

+ a
22

2
)2 (1)

=
(a

11

� a
22

)2

2
+

(a
12

+ a
21

)2

2

=
|A|2 � 2 det|A|

2
.

dist2SO(2)

(⇡(A)) =
(a

11

+ a
22

)2

2
+

(a
12

� a
21

)2

2
� (2)

2

r

(a
11

+ a
22

)2

2
+

(a
12

� a
21

)2

2
+ 2[

(a
11

+ a
22

)2

4
� (a

12

� a
21

)2

4
] + 2

=
|A|2 + 2 det|A|

2
� 2

r

|A|2 + 2det|A|
2

+
|A|2 + 2det|A|

2
+ 2

=
|A|2 + 2 det|A|

2
� 2

p

|A|2 + 2 det A+ 2.
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from, (1)+(2), we have,

|A|2 � 2 det |A|
2

+
|A|2 + 2 det |A|

2
� 2

p

|A|2 + 2 det A+ 2

= |A|2 � 2
p

|A|2 + 2 det A+ 2,

which is equal to the left-hand side and so the claim is right.

Theorem 3.8.1. Suppose that the continuous function f : MN⇥n ! R is quasiconvex and

that for the same real constant ↵, the level set

K↵ := {P 2 MN⇥n : f(P )  ↵} (3.48)

is compact. Then for every 1  q < +1, there is a continuous quasiconvex function

gq � 0, such that

� C
1

+ c|P |q  gp(P )  C
1

+ C
2

|P |q (3.49)

(It shows we have linear growth when q = 1.)

and

K↵ := {P 2 MN⇥n : gq(P ) = 0} (3.50)

where C
1

� 0, c > 0, C
2

> 0 are constants.

Remark 3.8.1. We shall prove this important Theorem in the chapter 4.

As we showed earlier distance function to SO(n) is not quasiconvex. Now, if we find

its quasiconvexification, it is quasiconvex and from the Theorem 3.8.1 its zero set is equal

to SO(n) itself.

Proposition 3.8.2. For any 1  p < 1

QK = {X 2 MN⇥n, Q distp(X,K) = 0}.

Proof. Let K
1

be

K
1

= {X 2 MN⇥n, Q distp(X,K) = 0}. (3.51)

We know QK ⇢ K
1

. Now, we define a quasiconvex function f : MN⇥n ! R. Let

↵f = sup
X2K

f(X) (3.52)

and

f↵f (X) = max{f(X)� ↵f , 0}. (3.53)
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So, f↵ is quasiconvex, QK ⇢ f�1

↵f (0) and QK = \ff
�1

↵f (0). We may assume that f�1

↵ (0)

is compact, otherwise, take the convex function

g(.) = dist2(., convK), (3.54)

which is the squared distance function to a convex set. Therefore f↵f + g is quasiconvex.

We claim that (f↵f + g)�1(0) ⇢ convK.

This is easy to see because f↵f � 0, and g�1(0) = conv K. We have, for fixed 1  p < 1,

Q distp(X, f�1

↵f (0))  distp(X, f�1

↵f (0))  distp(X,K) (3.55)

for all X 2 MN⇥n.

Since Q distp(X, f�1

↵f (0)) is quasiconvex, we have

Q distp(X, f�1

↵f (0))  Q distp(X,K). (3.56)

From Theorem 3.8.1, we see that for a compact zero set f�1

↵f (0) of a nonnegative quasicon-

vex function f↵f , the quasiconvexification of distance function Q distp(X, f�1

↵f (0)) for any

1  p < 1, the zero set remains itself. Therefore,

f�1

↵f (0) = {X 2 MN⇥n, Q distp(X, f�1

↵f (0)) = 0}. (3.57)

Hence, K
1

⇢ f�1

↵f (0) for every quasiconvex function f , thus K
1

⇢ QK. The proof is

complete.

Proposition 3.8.3. Let ⌦ ⇢ R2 be a unit disc B(0, 1), K = SO(2). Then u(x, y) =

1

2

(x,�y) ln(x2 + y2) is a minimizer for the functional

I[u] =

Z

⌦

FK(Du)dy =

Z

⌦

dist2(Du, SO(2))dy (3.58)

in W (1,2)
0

(⌦;R2).

Proof. We use the orthogonal decomposition with respect to the standard inner product

in M2⇥2 of a 2 ⇥ 2 matrix X into its conformal and anticonformal part, X = X+ +X�.

We can show it as below,

X =

0

@

X
11

X
12

X
21

X
22

1

A =

0

@

X11+X22
2

X12�X21
2

X21�X12
2

X11+X22
2

1

A+

0

@

X11�X22
2

X21+X12
2

X21+X12
2

X22�X11
2

1

A .

If we assume a = X
11

+X
22

, b = X
21

�X
12

, c = X
11

�X
22

, and d = X
21

+X
12

, we have

X+ =

0

@

a �b

b a

1

A , and X� =

0

@

c d

d �c

1

A .
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In particular, we record

2 detX = |X+|2 � |X�|2,

Let FK(Du) = dist2(Du,K) denotes the squared Euclidean distance function to the com-

pact set K in matrix space MN⇥n and U : ⌦ ! RN is a mapping in Sobolev space

W 1,2
0

(⌦,R2).

First we find the formula for FK(X) = dist2(X,K). As we showed, X = X+ +X� is an

orthogonal decomposition, we have

FK(X) = dist2(X,SO(2)) = min
R2SO(2)

|X+ �R|2 + |X�|2. (3.59)

Since,

min |X+ �R|2 = dist2(X+, R) (3.60)

and,

dist2(X+, R) = |X+|2 � 2
p

|X+|2 + 2detX+ + 2

= a2 + b2 + a2 + b2 � 2
p

a2 + b2 + a2 + b2 + 2(a2 + b2) + 2

= 2(a2 + b2)� 2
p

2(a2 + b2) + 2(a2 + b2) + 2

= 2(a2 + b2)� 4
p

a2 + b2 + 2

= |X+|2 � 2
p
2(
p
2
p

a2 + b2) + 2

= |X+|2 � 2
p

2(a2 + b2) + 2

= |X+|2 � 2
p
2|X+|+ 2.

Hence

FK(X) = |X+|2 � 2
p
2|X+|+ 2 + |X�|2. (3.61)

As we mentioned 2 detX = |X+|2 � |X�|2, So we can say

FK(X) = 2|X+|2 � 2
p
2|X+|+ 2� 2 det X. (3.62)

Lemma 3.8.1. Let g : R2 ! R be a given function and define

f : M2⇥2 7! R, f(X) = g(X+),

then

f c(X) = fpc(X) = f qc(X) = f rc(X) = gc(X+). (3.63)

In particular, if g : [0,1) ! R is a given function and if we define f : M2⇥2 ! R by

f(X) = g(|X+|)
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then

f c(X) = fpc(X) = f qc(X) = f rc(X) = g̃(|X+|), (3.64)

where g̃ is the largest convex function below g with

g(0) = inf
t�0

g̃(t). (3.65)

We aim to find the quasiconvex envelope of FK(X), where

FK(X) = 2|X+|2 � 2
p
2|X+|+ 2� 2 detX (3.66)

As 2 detX is quasia�ne, it is quasiconvex, So we just need to find the quasiconvexification

of 2|X+|2 � 2
p
2|X+| + 2. If we define a function g : [0,1) ! R, we can say f(X) =

g(|X+|). So,
g(X+) = 2|X+|2 � 2

p
2|X+|

and

D(g(X+)) = 4(X+)� 2
p
2 = 0.

So

|X+|2 = 2
p
2

4
=

1p
2
.

Hence, from above lemma, we have

F pc
k (X) = F qc

k (X) � 1� 2 det X for all X. (3.67)

Now if we are going to find find Du(x, y), where

u =

0

@

u
1

u
2

1

A =
1

2

0

@

x

�y

1

A ln (x2 + y2).

So

u
1

=
1

2
x ln (x2 + y2),

u
2

=
1

2
(�y) ln (x2 + y2).

We have

Du =

0

@

@u1
@x1

@u1
@x2

@u2
@x1

@u2
@x2

1

A ,

and

(Du)+ =
1

2r2

0

@

x2 � y2 2xy

�2xy x2 � y2

1

A .

|Du+|2 = 1

4r4
((x2 � y2) + 4x2y2)2 = frac12r4((x2 + y2)2) =

1

2r4
r4 =

1

2
. (3.68)
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Hence, |Du+|2 = 1p
2

. a.e. on the boundary. And consequently

FK(Du) = F qc
K (Du) = 1� 2 detDu on⌦. (3.69)

Now let ' 2 W 1,2
0

(⌦;R2). Then we estimate in a routine way

Z

⌦

FK(Du+D')dy �
Z

⌦

F qc
K (Du+D')

�
Z

⌦

(1� 2 det(Du+D'))dy =

Z

⌦

(1� 2 detDu)dy

=

Z

⌦

FK(Du)dy.

Suppose f(P ) = min {|P � A|2, |P � B|2}, where P 2 MN⇥n and A,B 2 MN⇥n are

fixed matrices. As we showed the formula of the quasiconvexification of f is,

Qf(P ) = min
0✓1

{|P � ✓A� (1� ✓)B|2 + ✓(1� ✓)[|A�B|2 � �
max

]}, (1)

where �
max

is the greatest eigenvalue of the matrix (A � B)T (A � B). Now, let P = X,

A = I and B = �I. We have

f(X) = min {|X � I|2, |X + I|2}.

In order to find quasiconvex envelope for f , we have

Qf(X) = min
0✓1

{|X � ✓I � (1� ✓)(�I)|2 + ✓(1� ✓)[|I � (�I)|2 � �
max

]}.

First, we find �
max

.

I � (�I) =

0

@

1 0

0 1

1

A�
0

@

�1 0

0 �1

1

A =

0

@

2 0

0 2

1

A .

So

(I � (�I))T =

0

@

2 0

0 2

1

A ,

and

(I � (�I))T (I � (�I)) =

0

@

2 0

0 2

1

A

0

@

2 0

0 2

1

A =

0

@

4 0

0 4

1

A .

Hence �
max

= 4.
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Considering X = X+ +X�, and 2 det = |X+|2 + |X�|2, we have

Qf(X) = min
0✓1

{|X � ✓I + I � ✓I|2 + ✓(1� ✓)[|2I|2 � 4]}

= min
0✓1

{|X + (1� 2✓)I|2 + ✓(1� ✓)4}

= min
0✓1

{|X+ + (1� 2✓)I|2 + |X�|2 + ✓(1� ✓)4}

=|X�|2 + min
0✓1

{|X+ + (1� 2✓)I|2 + ✓(1� ✓)4}

=|X�|2 � |X+|2 + min
0✓1

{|X+|2 + |X+ + (1� 2✓)I|2 + ✓(1� ✓)4}.

Now we are going to find

min
0✓1

{|X+ + (1� 2✓)I|2 + ✓(1� ✓)4}. (3.70)

As

X+ =

0

@

a �b

b a

1

A ,

we have,

min
0✓1

8

>

<

>

:

�

�

�

�

�

�

0

@

a �b

b a

1

A+

0

@

1� 2✓ 0

0 1� 2✓

1

A

�

�

�

�

�

�

2

+ ✓(1� ✓)4

9

>

=

>

;

= min
0✓1

8

>

<

>

:

�

�

�

�

�

�

0

@

a+ 1� 2✓ �b

b a+ 1� 2✓

1

A

�

�

�

�

�

�

2

+ ✓(1� ✓)4

9

>

=

>

;

= min
0✓1

{2[(a+ 1� 2✓)2 + b2] + ✓(1� ✓)4}.

Taking derivative in respect to ✓ we have

d

d✓
= 0 ) 4(�2)(a+ 1� 2✓) + 4(1� ✓)� 4✓ = 0

) �8a+ 8✓ � 4 = 0 ) ✓ =
2a+ 1

2
.

Substituting ✓ with 2a+1

2

, in the formula (1) we get

Qf(X) =

8

>

<

>

:

�

�

�

�

�

�

0

@

X
11

X
12

X
21

X
22

1

A�
0

@

2a+1

2

0

0 2a+1

2

1

A�
0

@

2a�1

2

0

0 2a�1

2

1

A

�

�

�

�

�

�

2

+ (
2a+ 1

2
)(
�2a+ 1

2
)4

9

>

=

>

;

=

8

>

<

>

:

�

�

�

�

�

�

0

@

X
11

� 2a X
12

X
21

X
22

� 4a
2

1

A

�

�

�

�

�

�

2

+ (2a+ 1)(�2a+ 1)

9

>

=

>

;

As
8

>

<

>

:

X
11

= a+c
2

X
12

= �b+d
2

X
21

= b+d
2

X
22

= a�c
2
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we have

Qf(X) =

8

>

<

>

:

�

�

�

�

�

�

0

@

a+c�4a
2

�b+d
2

b+d
2

a�c�4a
2

1

A

�

�

�

�

�

�

2

+ (2a+ 1)(�2a+ 1)

9

>

=

>

;

=(
�3a+ c

2
)2 + (

�b+ d

2
)2 + (

b+ d

2
)2 + (

�3a� c

2
)2 + (2a+ 1)(�2a+ 1)

=
1

4
[18a2 + 2c2 + 2b2 + 2d2]� 4a2 + 1

=
1

2
[a2 + c2 + b2 + d2] + 1.

Finding Qf(X) in another way

Let

2 detX = |X+|2 � |X�|2, (3.71)

where FK(X) = dist2(X,K) denotes the squared Euclidean distance function to the com-

pact set K in matrix space W 1,2
0

(⌦,R2).

First we find the formula for FK(X) = dist2(X,K). Now, let K = {I,�I},

FK(X) =dist2(X, {I,�I}) = min{|X+ � I|2 + |X+ � I|2}+ |X�|2

=|X�|2 � |X+|2 + |X+|2 +min{|X+ � I|2 + |X+ � I|2}
=� 2 detX + |X+|2 + {min{|X+ � I|2 + |X+ � I|2}
=� 2 detX + g(X+).

Hence by lemma (3.5.1) and a direct calculation

F pc
K = F qc

K = �2 detX + gc(X+) = �2 det + tr(JX)2 + f(tr(X)), (3.72)

where

f(a) =

8

>

>

>

>

>

<

>

>

>

>

>

:

a2 + 2a+ 2 when a  �1,

1 when |a|  1,

a2 � 2a+ 2 when a � 1.

Finding tr(JX)2 where, J is the counterclockwise rotation by 90o.

J =

0

@

0 �1

1 0

1

A .

So

tr(JX)2 =tr

0

@

�X
21

�X
22

X
11

X
12

1

A

2

=tr

0

@

X2

21

�X
11

X
22

X
21

X
22

�X
12

X
22

�X
11

X
21

+X
12

X
11

�X
11

X
22

+X2

12

1

A
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=X2

12

+X2

21

� 2(X
11

X
22

)

=
1

4
[b2 + d2 + 2bd+ b2 + d2 � 2bd]� 1

2
(a+ c)(a� c)

=(
b+ d

2
) + (

�b+ d

2
)� 2(

a+ c

2
)(
a� c

2
)

=
1

2
[2b2 + 2d2]� 1

2
[a2 � c2]

=
1

2
[b2 + d2 � a2 + c2].

Finding f(tr(X)), we have

tr(X) = X
11

+X
22

=
a+ c

2
+

a� c

2
= a,

so

f(tr(X)) = f(a) = 1. (3.73)

If ✓ = 1, we have

Qf(P ) ={|X � I|2}

=

8

>

<

>

:

�

�

�

�

�

�

0

@

X
11

� 1 X
12

X
12

X
22

� 1

1

A

�

�

�

�

�

�

2

9

>

=

>

;

=

8

>

<

>

:

�

�

�

�

�

�

0

@

a+c�2

2

�b+d
2

b+d
2

a�c�2

2

1

A

�

�

�

�

�

�

2

9

>

=

>

;

=(
a+ c� 2

2
)+(

�b+ d

2
)2 + (

b+ d

2
)2 + (

a� c� 2

2
)2

=
1

4
(2a2 + 2c2 + 2b2 + 2d2 � 8a+ 8)

=
1

2
(a2 + c2 + b2 + d2 � 4(a� 1))

=
1

2
[�a2 + c2 + b2 + d2] + a2 � 2a+ 2

=tr(JX)2 + f(tr(X)).
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If ✓ = 0, we have

Qf(P ) = {|X + I|2}

=

8

>

<

>

:

�

�

�

�

�

�

0

@

X
11

+ 1 X
12

X
12

X
22

+ 1

1

A

�

�

�

�

�

�

2

9

>

=

>

;

=

8

>

<

>

:

�

�

�

�

�

�

0

@

a+c+2

2

�b+d
2

b+d
2

a�c+2

2

1

A

�

�

�

�

�

�

2

9

>

=

>

;

= (
a+ c+ 22

)

+

(
�b+ d2

)

2

+ (
b+ d

2
)2 + (

a� c+ 2

2
)2

=
1

4
(2a2 + 2c2 + 2b2 + 2d2 + 8a+ 8)

=
1

2
(a2 + c2 + b2 + d2 + 4(a+ 1))

=
1

2
[�a2 + c2 + b2 + d2] + a2 + 2a+ 2

= tr(JX)2 + f(tr(X)).
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Chapter 4

Construction of Quasiconvex

Fucntions: Using Maximal

Function Techniques and

Perturbations

4.1 Introduction

In this chapter we present some techniques for the construction of quasiconvex functions

with specific qualitative properties. In a sense the chapter can be thought of as a con-

tinuation of what was described and discussed in the previous chapter. However here we

go further and discuss some constructions beyond the use of distance functions and their

relaxations. These not only produce quasiconvex functions with desirable properties but

also provide insights into some of the open problems in the field. As such the chapter can

be seen as an excursion into the works of Astala, Iwaniec, Sacksman [4],[5] Baernstein and

Montgomery [6], Banuelos,[15, 16, 17, 14] Burkholder[18], Iwaniec and Martin[29], Iwaniec

and Kristensen [33], Petermichel, Šverâk [48], [49], Volberg[57] and Zhang [59, 60, 63, 62].

The first topic we discuss is a classical method for constructing quasiconvex functions

and brought to the fore by Kristensen and Iwaniec and is based on observation that given

any suitably rank-one convex function R and any strongly quasiconvex function F the

function R + tF is quasiconvex for su�ciently large values of the parameter t. Naturally

here the underlying methodology is that we regard the rank-one convex function R as the

function that we ideally would like to show that is quasiconvex and the additional term tF

as a perturbation. The method is illustrated on a family of functions that was considered
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by Dacorogna-Marcellini [19], namely,

|⇠|4 � 2�|⇠|2det⇠, ⇠ 2 R2⇥2 (4.1)

and where � 2 R is a parameter.

Here |⇠| stands for the Euclidean norm of the 2⇥ 2 matrix ⇠ and therefore the function is

easily seen to be a homogeneous polynomial of degree 4. Let us also note that this function

is polyconvex precisely when |�|  1 and rank-one convex precisely when |�|  2/
p
3

[19, 21]. Interestingly the precise range of � for which the function is quasiconvex is still

unknown. The result of Alibert and Dacorogna states that there exists a positive number

✏ > 0 such that the function is quasiconvex whenever |�|  1 + ✏. Following Iwaniec

and Krsitensen we shall see how this results can be recovered as an application of this

construction. Note that upon replacing the Euclidean norm |.| in (4.1) by the so-called

spectral norm k.k, we obtain the function

k⇠k4 � 2�k⇠k2det⇠ (4.2)

and quite nicely apart from a constant factor this function is that considered by Burk-

holder in [18] in the study of martingale transforms and inequalities. See also the papers

cited earlier by Baernstein and Montgomery, Banuelos, Iwaniec and Volberg.

We next present another method for constructing quasiconvex functions with interest-

ing analytic and geometric properties and this is based on a quasiconvex modification of

the squared distance function dist2(X,K) [58].

In this second part following closely the work of Zhang we present a method for design-

ing nontrivial quasiconvex functions with a prescribed p-th growth at infinity starting from

a quasiconvex function. With this results we can construct a rich class of quasiconvex

functions, for example, those with linear growth at infinity and, for instance, having the

two-point set {A,B} as its zero set provided that rank(A� B) 6= 1. However for sets

like SO(n) we need much deeper results to cope with the zero set. It is clear that the

set K = SO(n) here is important for various reasons particularly in connection with the

study of quasiconformal mappings. As a by-product and again following Ball and Zhang

one can establish connections between these results and Tartar conjecture on sets without

rank-one connections. We show that for any compact subset K ⇢ R
+

SO(n) we can con-

struct quasiconvex functions f with K = f�1(0), i.e., the zero set of f , and with prescribed

growth at infinity.
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The main technique and basic idea for proving these results is to apply the maximal

function method developed by Acerbi and Fusco in the study of weak lower semi-continuity

of variational integrals [2] and an approximation result for Sobolev functions by Liu [35].

4.2 Construction by Perturbation

As mentioned earlier the discussion here we present a classical perturbation technique that

has been nicely developed and implemented in the context of quasiconvex functions by

Iwaniec and Kristensen. To spell out the details let R : RN⇥n ! R denote a C3-smooth

function which is positively homogenous of degree p > 3, that is,

R(t⇠) = tpR(⇠) (4.3)

for all ⇠ 2 RN⇥n and all t � 0.

We assume that for some � > 0 we have,

R00(⇠)[⌘, ⌘] � �|⇠|p�2|⌘|2 (4.4)

for all ⇠ and ⌘ 2 RN⇥n with rank(⌘)  1. The left-hand side stands for the second

di↵erential of R and is defined by

R00(⇠)[⌘, ⌘] ⌘ d2

dt2
R(⇠ + t⌘)|t=0

=
n
X

i,j=1

N
X

a,�=1

@2R(⇠)

@⇠ai @⇠
�
j

⌘ai ⌘
�
j .

The inequality (4.4) is a strict form of the well-known Legendre-Hadamard condition.

Observe that this inequality extends to complex rank-one matrices of the form ⌘ = A⌦ a,

where A 2 CN and a 2 Rn. It then reads as

R00(⇠)[⌘, ⌘̄] � �|⇠|p�2|⌘|2, (4.5)

where ⌘̄ denotes the (component-wise) complex conjugate of ⌘ and |⌘|2 = h⌘, ⌘̄i.

Definition 4.2.1. We say that a continous function F : RN⇥n ! R is strongly quasicon-

vex of degree p if for some positive ✏ > 0 we have

Z

Rn

(F (⇠ +r�(x))� F (⇠))dx � ✏

Z

Rn

|r�(x)|pdx (4.6)

whenever ⇠ 2 RN⇥n and � 2 D.
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Where D denotes space of maps � = (�
1

. . .�N )T : Rn ! RN for which each coordinate

function �j vanishes outside a bounded set and has continuous partial derivatives of any

order. Observe that there are functions F satisfying (4.6) for an ✏ > 0, but for which

F � ⇢|.|p is not quasiconvex for any ⇢ > 0. In particular for p > 3 the condition (4.6) at a

matrix ⇠ 6= 0 is a strictly weaker condition than strict, uniform quasiconvexity as defined

by Evans [26].

Theorem 4.2.1. Suppose that R is C3 and that (4.3), (4.4) hold. Then for a function F

satisfying (4.6) there exists a constant t
0

such that the function

R+ tF

is quasiconvex for each t � t
0

.

4.3 Strongly Quasiconvex Functions

Let A : RN⇥n ! RN⇥n be a linear transformation. We assume that the kernel of A
contains no rank-one matrices. Using the Lp�theory of the Riesz transforms [47] one

obtains for each p 2 (1,1) and any map � 2 D the bound

kA[r�]kLp � kpkr�kLp , (4.7)

where kp = kp(A) is a positive constant depending on p and A only.

Lemma 4.3.1. The function F : RN⇥n ! R defined by F (⇠) = |A⇠|p is strongly quasicon-

vex of degree p for each 2  p < 1.

Proof. It is well-known that for p � 2 and for vectors X,Y in an arbitrary inner product

space the inequality

|X|P � |Y |p � p|Y |p�2hY,X � Y i+ 22�p|X � Y |p (4.8)

holds. (see [37]). In particular,
Z

Rn

(F (⇠ +r�(x))� F (⇠))dx

� p|A⇠|p�2

⌧

A⇠,A
Z

Rn

r�(x)dx

�

+ 22�p
Z

Rn

|Ar�(x)|pdx

= 22�pkAr�kpLp ,

and involving (4.7) we obtain (4.6) with ✏ = 22�pkpp.
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The functions of Lemma 4.3.1 are convex, but not strictly convex since they are con-

stant on translate of the kernel of A.

Two examples of particular relevance two Lemma 4.3.1 are the functions

⇠ 7! |⇠�|p and ⇠ 7! |⇠+|p, (1 < p < 1) (4.9)

defined for squared matrices

⇠ =

0

@

⇠
11

⇠
12

⇠
21

⇠
22

1

A

Recall that the conformal part ⇠+ and the anticonformal part ⇠� of ⇠ are given by

⇠± = 1/2

0

@

⇠
11

± ⇠
22

⇠
12

⌥ ⇠
21

⇠
21

⌥ ⇠
12

⇠
22

± ⇠
11

1

A .

Lemma 4.3.1 applies to ⇠ 7! |⇠�|p because the kernel of the linear transformation

⇠ 7! ⇠� precisely the conformal matrices that, apart from the zero matrix, all have rank

two. A similar remark applies to ⇠ 7! |⇠+|p. Using complex notation inequality (4.7)

reduces to the familiar Beurling-Ahlfors inequality for the Cauchy-Riemann operators

�

�

�

�

@f

@z

�

�

�

�

Lp

 Ap

�

�

�

�

@f

@z̄

�

�

�

�

Lp

. (4.10)

More precisely, the complex notation is facilitated via the isomorphism i : R2⇥2 ! C2

defined as

i

0

@

0

@

⇠
11

⇠
12

⇠
21

⇠
22

1

A

1

A ⌘ (z
1

, z
2

),

where

z
1

⌘ 1

2
((⇠

11

+ ⇠
22

) + i(⇠
21

� ⇠
12

)),

z
2

⌘ 1

2
((⇠

11

� ⇠
22

) + i(⇠
21

+ ⇠
12

)).

With usual identification C h R2 we have for f ⌘ u+ iv : C ! C the real Jacobi matrix

rf =

0

@

ux uy

vx vy

1

A .

and i(rf) = (@f/@z, @̄f/@z̄).

We will derive (4.10) for p > 2 by means of elementary properties of harmonic func-

tions and well-known inequalities for the sharp function. (Note that it follows by partial

integration that k@f/@zkL2 = k@f/@z̄kL2 .) We do not suggest that this method is easier

than the approach based on Riesz transforms mentioned above, however, it has the virtue
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of also giving a point-wise version of the inequality. Recall that for a square integrable

function f : C ! C the (centred, quadratic) sharp function is defined as

f⇤(z) = sup
r>0

✓

Z

B(z,r)

|f(x)� fB(z,r)|2dx
◆

1
2

,

where fB(z,r) denotes the average of f over B(z, r). Here
R

is the average integral so we

could show it with a bar sign. The Hardy-Littlewood-Wiener maximal inequality and the

Fe↵erman-Stein sharp inequality imply that for each p > 2 there exist constants ap,�p

such that

apkfkLp  kf⇤kLp  �pkfkLp (4.11)

holds for all f 2 Lp(C,C). (see [47].) In the statement of the next result we adopt the

shorthand notation

@f ⌘ @f

@z
and @̄f ⌘ @f

@z̄
.

Lemma 4.3.2. For smooth and compactly supported functions f : C ! C the inequality

(@̄f)⇤(z)  8(@f)⇤(z) (4.12)

holds for all z 2 C.

Finally, the Beurling-Ahlfors inequality (4.10) is an immediate consequence of Lemma

4.3.2 and the inequalities (4.11).

Example 4.3.1. We consider the function

R(⇠; �) ⌘ |⇠|2(|⇠|2 � 2� det ⇠) (4.13)

defined for ⇠ 2 R2⇥2 and where � 2 R is a parameter. In view of the identities: |⇠|2 =

|⇠+|2 + |⇠�|2 and 2 det ⇠ = |⇠+|2 � |⇠�|2, it takes the form

R(⇠; �) = |⇠|2[(1� �)|⇠+|2 + (1 + �)|⇠�|2].

We know that R(.; �) is polyconvex if and only if |�|  1 and rank-one convex if and

only if |�|  2/
p
3.(see [28],[30]) Observe that for |�| < 2/

p
3 the function R(.; �) satisfies

condition (4.4) with p = 4. This follows from the decomposition

R(⇠; �) =

✓

1� �
p
3

2

◆

|⇠|4 + �
p
3

2
R
�

⇠;
2p
3

�

. (4.14)

However as previously mentioned, the question whether R(.; �) is quasiconvex for the

above range of the parameter � remains open. We fix 1 < � < 2/
p
3 and consider the

following perturbation of R(.; �):

R(⇠; �) + t|⇠�|4.
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For t large enough, this new function becomes quasiconvex. Although since it is 4-

homogeneous and it changes sign then, it is not polyconvex.

We show another example which follows by perturbing R(.; �) with the polyconvex

function

F (⇠) = R(⇠; 1) = 2|⇠|2|⇠�|2.

F is also strongly quasiconvex of degree 4. Observe that

R(⇠; �) + tF (⇠) = (1 + t)|⇠|2
✓

|⇠|2 � 2
� + t

1 + t
det ⇠

◆

.

If we take t su�ciently large we then recover a result of Alibert and Dacorogna, there-

fore, we say that the Alibert-Dacorogna-Marcellini function remains quasiconvex for some

parameters larger than 1, namely

�0 ⌘ � + t

1 + t
> 1.

4.4 The Example of Alibert, Dacorogna and Marcellini

Šverâk proved in [48] that when N = 2, n = 2 there exist quasiconvex functions with

subquadratic growth that are not polyconvex. By further developing this technique Zhang

showed how to construct nontrivial quasiconvex functions with linear growth at infnity.

As an application of the latter arguments Müller has constructed quasiconvex functions

that are positively homogeneous of degree one that are not convex. Another particular

interesting example in the list is produced by Alibert, Dacorogna and Marcellini, where

again N = 2, n = 2 and here f is a homogeneous polynomial of degree four. This example

allows one to illustrate the di↵erent notions of convexity by using a single real parameter

�.

Theorem 4.4.1. Let � 2 R and let f� : R2⇥2 ! R be defined as

f�(⇠) = |⇠|2(|⇠|2 � 2� det ⇠), ⇠ 2 R2⇥2. (4.15)

Then the following hold:

f� is convex , |�|  �c =
2
p
2

3
,

f� is polyconvex , |�|  �p = 1,

f� is quasiconvex , |�|  �q and �q > 1,

f� is rank-one convex , |�|  �r =
2p
3
.
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Note that in the above list, the conditions for f to be rank-one convex and polycon-

vex were established by Dacorogna and Marcellini. The other results were established

by Alibert and Dacorogna. Iwaniec and Kristensen showed a method for constructing

quasiconvex functions, which can also be applied to establish the third fact above. Note

that as a by-product this example also provides an instance of a quasiconvex function that

is not polyconvex. The question as to whether �q = 2p
3

is still open: if it were not the

case, then this would give a complete answer to Morrey’s conjecture. We now proceed

with the proof of the statement on the quasiconvexity of the function f� . Let us first start

with the following theorem. This result is proved by Alibert-Dacorogna (see [3]), which is

the consequence of regularity results for Laplace equation.

Theorem 4.4.2. Let 1 < p < 1 and ⌦ ⇢ R2 be a bounded open set. Then there exists

✏ = ✏(⌦, p) > 0 such that

Z

⌦

⇥|r'(x)|2 ± 2 det (r'(x))
⇤p/2

dx � ✏

Z

⌦

|r'(x)|pdx (4.16)

for every ' 2 W 1,1
0

(⌦;R2). Moreover, when p = 4, the inequality

Z

⌦

[|⇠ +r'(x)|2 (4.17)

± 2 det(⇠ +r'(x))]2dx

� (|⇠|2 ± 2 det⇠)2 meas⌦+ ✏

Z

⌦

|r'|4dx (4.18)

holds for every ⇠ 2 R2⇥2 and every ' 2 W 1,1
0

(⌦;R2).

The only trivial part of this (4.16) is the case p = 2. (In this case we can take ✏ = 1

and equality, instead of inequality, holds.) Observe also that this inequality (4.16) shows

that the functional on the left-hand side of (4.16) is coercive in W 1,p
0

(⌦;R2), even though

the integrand is not.

let us now, present the proof of the main theorem on the quasiconvexity of the function

f� .

Proof. (Theorem 4.4.1: Quasiconvexity). Indeed here we have to establish the implication

f� is quasiconvex , �  �q and �q > 1.

In the first step we prove the existence of a �q with the above property and in the step 2,

we show that �q > 1.

Step 1. Existence of �q.
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We start by showing that if f� is quasiconvex, then f� is quasiconvex for every 0  �  �.

Let

I�(⇠,') :=

Z

⌦

[f�(⇠ +r'(x))� f�(⇠)]dx

for every ⇠ 2 R2⇥2 and every ' 2 W 1,1
0

(⌦;R2). We have to show that I�(⇠,') � 0 implies

I�(⇠,') � 0. We have to deal with two cases

Case 1. If
Z

⌦

[|⇠ +r'(x)|2det(⇠ +r'(x)) � |⇠|2det⇠]dx  0,

then the claim is trivial using the convexity of ⇠ ! |⇠|4 and the fact that � � 0.

Case 2. If
Z

⌦

[|⇠ +r'(x)|2det(⇠ +r'(x))� |⇠|2det⇠]dx � 0,

we observe that

I�(⇠,')� I�(⇠,')

= 2(� � �)

Z

⌦

[|⇠ +r'(x)|2det(⇠ +r'(x))� |⇠|2det⇠]dx � 0,

as wished.

We may now define �q by taking the largest � such that f� is quasiconvex. It exists because

of the preceding observation and from the fact that

1 = �p  �q  �r =
2p
3

and this completes step 1.

Step 2. �q > 1. We therefore have to show that there exists ↵ > 0 small enough, so that

if � = 1 + ↵, then f� is quasiconvex. We start with a preliminary result.

Step 2’. We prove the quasiconvexity of f� at 0 for � = 1 + ↵ with ↵ > 0 small enough.

We have to prove that
Z

⌦

f�(r'(x))dx � 0

for every ' 2 W 1,1
0

(⌦;R2) and for some ↵ > 0. Observe first the following algebraic

inequality (we use the fact that |⇠|2 � 2det ⇠), valid for any ⇠ 2 R2⇥2,

f�(⇠) = |⇠|4 � 2(1 + ↵)|⇠|2det ⇠

=
1

2
[|⇠|4 � 4|⇠|2det⇠ + 4(det ⇠)2]

+
1

2
[|⇠|4 � 4(det ⇠)2]� 2↵|⇠|2det ⇠

� 1

2
[|⇠|2 � 2det ⇠]2 � ↵|⇠|4.
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We then integrate and use Theorem (4.4.2.) to get

Z

⌦

f�(r'(x))dx � (✏� ↵)

Z

⌦

|r'(x)|4dx. (4.19)

Choosing 0 < ↵ < ✏, we have indeed obtained the result.

Step 2”. We now proceed with the general case. We already know that �q � �p = 1, so

we will assume throughout this step that � � 1 and we will set ↵ = � � 1. Expanding f� ,

we find

f�(⇠ + ⌘) = f�(⇠) + hrf�(⇠); ⌘i+ 1

2
hr2f�(⇠)⌘; ⌘i

+ hrf�(⌘); ⇠i+ f�(⌘).

We rewrite this as

f�(⇠ + ⌘)� f�(⇠) = A�(⇠, ⌘) +B�(⇠, ⌘) + C�(⇠, ⌘) +D�(⌘) + E�(⌘) (4.20)

where

A�(⇠, ⌘) := hrf�(⇠); ⌘i � 2�|⇠|2det ⌘

B�(⇠, ⌘) :=
1

2
hr2f�(⇠)⌘; ⌘i+ 2�|⇠|2det ⌘

= 4(h⇠; ⌘i)2 + 2|⇠|2|⌘|2 � 4�h⇠; ⌘ih⇠̃; ⌘i � 2�|⌘|2det ⇠
C�(⇠, ⌘) := hrf�(⌘); ⇠i

= 4h⇠; ⌘i|⌘|2 � 4�h⇠; ⌘idet⌘ � 2�h⇠̃; ⌘i|⌘|2

D�(⌘) := (1� ✏)f
1

(⌘) +
✏2

2
|⌘|4

E�(⌘) := ✏f
1

(⌘)� 2(� � 1)|⌘|2det ⌘ � ✏2

2
|⌘|4

� ✏f
1

(⌘)� (↵+
✏2

2
)|⌘|4.

Observe that

D�(⌘) + E�(⌘) = f�(⌘).

From step 20, applying (4.18) with � = 1 and hence ↵ = 0, we have that for every

' 2 W 1,1
0

(⌦;R2),

Z

⌦

E�(r'(x))dx � [✏2 � (↵+
✏2

2
)]

Z

⌦

|r'(x)|4dx

which for ↵ > 0 su�ciently small with respect to ✏2 leads to

Z

⌦

E�(r'(x))dx � 0. (4.21)
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We also have that for ✏ > 0 and ↵ > 0 even smaller

�✏,↵(⇠, ⌘) = B�(⇠, ⌘) + C�(⇠, ⌘) +D�(⌘) � 0 (4.22)

for every ⇠, ⌘ 2 R2⇥2.

By combining (4.19), (4.20) and (4.21), we see that for every ⇠ 2 R2⇥2,' 2 W 1,1
0

(⌦;R2),

we have
Z

⌦

[f�(⇠ +r'(x)� f�(⇠)]dx �
Z

⌦

A�(⇠,r'(x))dx = 0. (4.23)

This concludes the proof of the theorem.

4.5 Zhang’s Construction and Zhang’s Lemma

Theorem 4.5.1. Suppose that the continuous function f : MN⇥n ! R is quasiconvex and

that for some real constant ↵, the level set

K↵ := {P 2 MN⇥n : f(P )  ↵} (4.24)

is compact. Then, for every 1  q < +1, there is a continuous quasiconvex function

gq � 0, such that

� C
1

+ c|P |2  gq(P )  C
1

+ C
2

|P |q (4.25)

and

K↵ = {P 2 MN⇥n : gq(P ) = 0} (4.26)

where c > 0, C
1

� 0, C
2

> 0 are constants.

Corollary 4.5.1. Under the assumptions of Theorem 4.5.1 without assuming that K↵ is

compact, for any compact subset H ⇢ K↵, satisfying

K↵ \ (convH\H) = 0, (4.27)

and 1  q < 1, there exists a non-negative quasiconvex function gq satisfying (4.25) and

with H as its zero set :

H = {P 2 MN⇥n : gq(P ) = 0}. (4.28)

With these results we can construct a rich class of quasiconvex functions with linear

growth.
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4.6 The Maximal Function Technique

Definition 4.6.1. (The Maximal Function).

Let u 2 C1
0

(Rn). We define

(M⇤u)(x) = (Mu)(x) +
n
X

↵=1

(Mu,↵)(x) (4.29)

where we set

(Mf)(x) = sup
r>0

1

!nrn

Z

B(x,r)

|f(y)|dy (4.30)

for every locally summable f . Here !n is the volume of the n dimensional unit ball.

Lemma 4.6.1. (See [46]) If f 2 L1(Rn), then for every � > 0

meas({x 2 Rn : (Mf)(x) > �})  C(n)

�

Z

Rn

|f |dx. (4.31)

Lemma 4.6.2. If u 2 C1
0

(Rn), then M⇤u 2 C0(Rn) and

|u(x)|+
n
X

↵=1

+|u,↵|  (M⇤u)(x) (4.32)

for all x 2 Rn. Moreover if p > 1, then

kM⇤ukLp
(Rn

)

 c(n, p)kukW 1,p
(Rn

)

(4.33)

and if p � 1, then

meas({x 2 Rn : (M⇤u)(x) � �})  c(n, p)

�p
kukpW 1,p

(Rn
)

(4.34)

for all � > 0.

Lemma 4.6.3. (see [1]) Let u 2 C1
0

(Rn) and � > 0, and set

H� = {x 2 Rn : (M⇤u)(x) < �}. (4.35)

Then for every x, y 2 H� we have

|u(x)� u(y)|
x� y

 Cn�. (4.36)

Lemma 4.6.4. Let X be a metric space, E a subspace of X, and k a positive real number.

Then any k-Lipschitz mapping from E into R can be extended to a k-Lipschitz mapping

from X into R.

See [25], for the proof.

Now, we shall present the following important lemma in the prove of the Theorem 4.5.1.
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Lemma 4.6.5. Let uj �* 0 in W 1,1
0

(⌦;RN ) and there is K > 0 such that
Z

⌦\{|Duj |�K}

|Duj |dx ! 0 as j ! 1. (4.37)

Then there exists a bounded sequence gj in W 1,1(⌦;RN ) such that
Z

⌦

|Duj �Dgj |dx ! 0 as j ! 1. (4.38)

We show the proof of the lemma.

Proof. (Proof of the lemma 4.6.5) For a fixed j, extend uj by zero outside ⌦ so that it is

defined on Rn. Since C1
0

(Rn,RN ) is dense in W 1,1
0

(Rn,RN ), there exists a sequence wj

in C1
0

(Rn,RN ) such that

kuj � wjkW 1,1
0 (Rn

;RN
)

<
1

j
,

and
Z

{x2Rn
:|Dwj |�2K}

|Dwj(x)|dx ! 0

as j ! 1, so that we can assume that uj 2 C1
0

(Rn;RN ).

For each fixed j, i, define

H�
i,j = {x 2 Rn : (M⇤uij)(x) < �},

where H�
j =

N
T

i=1

H�
i,j , and � � 4nK.

From Lemma (4.6.3), we know that for all x, y 2 H�
j ,

|uij(x)� uij(y)|
|x� y|  C(n)�. (4.39)

Let gij be a Lipschitz function extending uij outside H
�
j with Lipschitz constant not greater

than C(n)� (Lemma 4.6.4). Since H�
j is an open set, we have

gij(x) = uij(x), Dgij(x) = Duij(x)

for all x 2 H�
j , and

kDgijkL1
(RN

)

 C(n)�.

We may assume

kgijkL1  kuijkL1
(H�

j )
 C(n)� (4.40)

where set gij = (g1j , . . . , g
N
j ).

In order to prove that uj � gj ! 0 strongly in W 1,1(⌦;RN ), we have
Z

⌦

|Duj �Dgj |dx 
Z

⌦\H�
j

(|Duj |+ |Dgj |)dx. (4.41)
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Considering (4.38),

meas (⌦\H�
j ) ! 0.

From the definition of H�
i,j , we have

⌦\H�
i,j ⇢ {x 2 ⌦ : (Muij)(x) � �/2} [

⇢

x 2 ⌦ :
n
X

↵=1

✓

M
@uij
@x↵

◆

(x) � �/2

�

,

and
⇢

x 2 Rn :
n
X

↵=1

(Muij,↵)(x) � �/2

�

⇢
n
[

↵=1

⇢

x 2 Rn : (Muij,↵)(x) �
�

2n

�

.

Define h : Rn ! R by

h(s) =

8

>

<

>

:

0 as |s|  K,

|s|�K as |s| � K,

so that we can prove that

⇢

x 2 Rn : (Muij,↵)(x) �
�

2n

�

⇢
⇢

x 2 Rn : (Mh(Duij))(x) �
�

2n
�K

�

. (4.42)

In fact, when Muij,↵(x) � �
2n , we have a sequence of ✏k > 0, ✏ ! 0 and a sequence of balls

Bk = B(x,Rk) such that

1

meas(Bk)

Z

Bk

|uij,↵|dx � �

2n
� ✏k

which implies

Mh(Duij) �
1

meas(Bk)

Z

Bk\{x:|Dui
j(x)|�K}

(|Duij |�K)dx

� �

2n
� 1

meas(Bk)

Z

Bk\{x:|Dui
j |K}

|uij,↵|dx

� 1

meas(Bk)

Z

Bk\{x:|Dui
j(x)|�K}

Kdx� ✏k � �

2n
�K � ✏k.

Now, passing to the limit k ! 1, we obtain (4.42) (here we choose �
2n > K). From lemma

(4.6.1) we have

meas

✓⇢

x 2 Rn : (Mh(Duij))(x) �
�

2n
�K

�◆

 1
�
2n �K

Z

Rn

|h(Duij)|dx  1
�
2n �K

Z

{x2⌦:|Dui
j |�K}

|Duij |dx

 1
�
2n �K

Z

{x2⌦:|Duj |�K}

|Duj |dx ! 0
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as j ! 1. Also, from lemma (4.6.1) and embedding theorem, we have

meas({x 2 Rn : (Muij)(x) � �/2})  1

�/2

Z

⌦

|uij |dx ! 0,

as j ! 1, so that we conclude that

meas(⌦\H�
j ) ! 0 as j ! 1.

Proof. (Proof of Theorem 4.5.1) Now we are in the position to prove the theorem (4.5.1).

We can see that,

F (P ) = max{0, f(P )� ↵} (4.43)

is quasiconvex and satisfies assumption of theorem (4.5.1) with zero set

{P 2 Mn⇥N : F (P ) = 0} = K↵. (4.44)

Define

f̃↵ = dist(P ;K↵) (4.45)

and

G(P ) = Qf̃↵. (4.46)

We aim to prove that G(P ) = 0, if and only if P 2 K↵. From the definition of quasicon-

vexification of f̃↵, G is zero on K↵. Conversely, suppose G(P ) = 0, i.e.,

0 = G(P ) = inf
�2C1

0 (B;RN
)

1

meas(B)

Z

B

f̃↵(P +D�)dx (4.47)

for a ball B ⇢ Rn, we have a sequence �j 2 C1
0

(⌦;RN ) such that for K � 2 dist(P ;K↵),

0 = lim
j!1

Z

B

dist(P +D�j ,K↵)dx

� lim
j!1

Z

B\{x2⌦:|D�j(x)|�K}

[|D�j |� dist(P ;K↵)]dx

� lim
j!1

K/2 (meas{x 2 ⌦ : |D�j(x)| � K}),

hence,

Z

{x2⌦:|D�j |�K}

|D�j |dx ! 0

as j ! 1 and (|D�j |) are equi-integrable on ⌦ with respect to j. Then, by a vector-valued

version of Dunford-Pettis theorem, [27][22], there exists a subsequence (still denoted by
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�j) which converges weakly in W 1,1
0

(B;RN ) to a function �. Moreover, by an argument

of Tartar [55], and the embedding theorems, D�(x) 2 convK↵ for a.e. x 2 B, so that

� 2 W 1,1
0

(B;RN ). Define �j = �j � �. Then �j satisfies all assumptions of Lemma

(4.6.5). Hence there exists a bounded sequence gj 2 W 1,1
0

(B;RN ), such that
Z

B

|D�j �Dgj |dx ! 0, gj
⇤�* 0 in W 1,1

0

(B;RN ), (4.48)

asj ! 1.

Let {vx}x2B be the family of Young measures corresponding to the sequence Dgj (up to

a subsequence), we have

lim sup
j!1

Z

B

f̃↵(P +D�+Dgj)dx (4.49)

 lim
j!1

Z

B

|D�j �Dgj |dx+ lim
j!1

Z

B
f̃↵(P +D�+D�j)dx = 0 (4.50)

which implies
Z

B

h⌫x, f̃↵(P +D�(x) + �)i dx = 0 (4.51)

which further implies

supp ⌫x ⇢ K↵ � P �D�(x) for a.e. x 2 B. (4.52)

Since gj
⇤�* 0 in W 1,1(B;RN ), by Ball and Zhang [11] and (4.52), (up to a subsequence),

we have,

0 = F (P +D�+Dgj)
⇤�* h⌫x, F (P +D�(x) + �)i � F (P +D�(x)) (4.53)

for a.e. x 2 B, as j ! 1. By the definition of quasiconvex functions, we have

0 =

Z

B

F (P +D�(x) � F (P )meas(B) (4.54)

which implies F (P ) = 0, P 2 K↵.

Now, for q > 1, define

gq(P ) = max{[dist(P, convK↵)]
q, Qdist(P,K↵)}. (4.55)

As we see that gq satisfies (4.25) and (4.26).

4.7 Tartar’s Conjecture and Some Examples

Using theorem (4.5.1), we can study the connection between out constructions and Tartar’s

conjecture on oscillations of gradients. [56][7]
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Proposition 4.7.1. (TARTAR’S CONJECTURE).

Let K ⇢ MN⇥n be closed and has no rank-one connections, i.e. for every A,B 2 K,

rank(A�B) 6= 1. Let zj be a bounded sequence in W 1,1(Rn;RN ) and the Young measures

(⌫x) associated with Dzj satisfies ⌫x ⇢ K, and such that f(Dzj) is weak-? convergent in

L1(Rn) for every continuous f : MN⇥n ! R. Then (⌫x) is a Dirac mass.

The answer of this conjecture is, in general, negative.[7] However, there are a number

of cases when Tartar’s conjecture is known to be true for gradients under supplementary

hypotheses on the set K.

(i) K
1

= {A,B} with rank (A�B) > 1 [12],

(ii) K = SO(n), where n = N > 1. [31] In fact, more generally, for n > 1 and

K
2

= {tR : t � 0, R 2 SO(n)} := R
+

SO(n). (4.56)

Theorem 4.7.1. Suppose K ⇢ MN⇥n has no rank-one connections and Tartar’s conjec-

ture is known to be true for K. Moreover, for any bounded Q1,1 sequence with Young meas-

ures ⌫x ⇢ K has the property that ⌫x = �T with T a constant matrix in K (T = h⌫x,�i).
Then for any non-empty compact subset H ⇢ K, any 1  p < 1, there exists a continuous

quasiconvex function f � 0, such that

(i) c(p)|P |p � C(P )  f(P )  C
1

(p)(1 + |P |)p, with c(p), C
1

(p) > 0, C(P ) � 0;

(ii) {P 2 MN⇥n : f(P ) = 0} = H.

Remark 4.7.1. In the case K = K
1

, Kohn constructs a quasiconvex function with the

above properties when p = 2 and n,N > 1 arbitrary; Šverâk [48] does the same in the case

p � 1, n = N = 2.

Proof. (Proof of Theorem 4.7.1). To prove this theorem, we shall use the same argument

that we used for proving theorem (4.5.1). Firstly, we construct a quasiconvex function

with linear growth. Define as before

G(P ) = dist(P,H) and f(P ) = QG(P ) (4.57)

and assume that

f(P ) = inf
�2C1

0 (B;RN
)

Z

B

G(P +D�)dx = 0 (4.58)

to devide a sequence �j ! � in W 1,1
0

(B;RN ) with � 2 W 1,1
0

(B;RN ). In fact, we can

assume �j 2 C1
0

(Rn;RN ) and � 2 W 1,1
0

(Rn;RN ) supported in B. It is easy to see that

D�j converges in measure to the set H � P . Let gj be the approximate sequence in

W 1,1
0

(Rn;RN ), we have the young measures (⌫x)x2Rn associated with Dgj satisfy supp
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⌫x ⇢ H � P � D�(x) for a.e. x 2 Rn. Therefore, the Young measures associated with

P + D�(x) + Dgj(x) will be supported in H ⇢ K, so that from the assumption, they

are the same Dirac measure. Since, h⌫x,�i = Dg(x) = 0, P + D�(x) = constant 2 H.

Therefore � = 0 a.e. and P 2 H.

Example 4.7.1. Let K
1

= {A,B} with A,B 2 MN⇥n and assume that rank (A�B) > 1.

It is known that there exists a non-negative quasiconvex function f with quadratic growth

such that,

{P 2 MN⇥n : f(P ) = 0} = {A,B}. (4.59)

From Theorem (4.5.1), the zero set of quasiconvex function with linear growthQdist(P ;K
1

)

should be K
1

.

Example 4.7.2. Let K
2

= {P = tQ : t � 0, Q 2 SO(n)} = R
+

SO(n) and let H be any

non-empty compact subset of K
2

. Then, with applying Theorem (4.7.1) and a result due

to [40], [41], we can show that

{P 2 Mn⇥n : Qdist(P,H) = 0} = H. (4.60)

Here we employ the approach based on an argument of Ball [7]. Following the proof

of Theorem (4.5.1), the Young measures {⌫x}x2B associated with Dgj are supported in

H � P �D�(x) for a.e. x 2 B. Let us consider the quasiconvex function (see[7]).

F (P ) = |P |n � nn/2detP (4.61)

which is non-negative and has K
2

as its zero set. We have

0 =lim inf
j!1

Z

B

F (P +D�+Dgj)dx (4.62)

=

Z

B

h⌫x, F (P +D�(x) + �)idx �
Z

B

F (P +D�(x))dx � F (P ) meas(B). (4.63)

Since the function |.|n is strictly convex and
Z

B

h⌫x, det(P +D�(x) + �)idx =

Z

B

det(P +D�(x))dx = det P meas(B), (4.64)

we have
Z

B

h⌫x, |P +D�(x) + �|nidx =

Z

B

|P +D�(x)|ndx = |P |n meas(B), (4.65)

which implies

⌫x = �
0

, and D�(x) = 0 a.e. (4.66)

so that P 2 H.
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Remark 4.7.2. Since any non-empty compact subset of R
+

SO(n) can be the zero set of

some negative quasiconvex function, the topology of zero sets for quasiconvex functions

can be very complicated. For example let K be any compact subset of R2, define

K
1

=

8

>

<

>

:

0

B

@

a b

�b a

1

C

A

: (a, b) 2 K

9

>

=

>

;

, (4.67)

then K
1

⇢ R
+

SO(2) and has the same topology as K.

Remark 4.7.3. The method used in theorem (4.5.1) depends heavily on the compactness

of the level set k↵.

4.8 Müler’s Improvement and a Variant of Zhang’s Lemma

Let {uj} be a sequence of weakly di↵erentiable functions uj : Rn ! RN whose gradients

approach the ball B(0, R) in the mean, i.e.

Z

Rn

dist(Duj , B(0, R))dx ! 0. (4.68)

Motivated by work of Acerbi and Fusco [2],[1] and Liu [35], Kewei Zhang showed that the

sequence can be modified on a small set in such a way that the new sequence is uniformly

Lipschitz. The following theorem is a slight variant of Zhang’s lemma which is used in

[58].

Theorem 4.8.1. There exists a constant c(n,N) with the following property. If (4.68)

holds, then there exists a sequence of functions vj : Rn ! RN such that

kDvjk1  c(n,N)R, Ln({uj 6= vj}) ! 0. (4.69)

In fact one has the seemingly stronger conclusions

Ln({uj 6= vj or Duj 6= Dvj}) ! 0,

Z

Rn

|Duj �Dvj |dx ! 0. (4.70)

For the first conclusion it su�ces that for weakly di↵erentiable functions u and v the

implication

u = v a.e. in A ) Du = Dv a.e. in A (4.71)

holds.(See [12].) For the second conclusion observe that

|Duj �Dvj |  |Dvj |+ |Duj |  c(n,N)R+R+ dist(Duj , B(0, R))
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and integrate over the set {Duj 6= Dvj}. Theorem (4.8.1) has found important applications

to the calculus of variations, in particular the study of quasiconvexity, lower semicontinuity,

relaxation and gradient Young measures. The purpose of this section is to show that the

constant c(n,N) can be chosen arbitrarily close to 1 and that the ball B(0, R) can be

replaced by a compact, convex set.

Theorem 4.8.2. Let K be a compact convex set in RN⇥n. Suppose uj 2 W 1,1
loc

(Rn,RN )

and
Z

Rn

dist(Duj ,K)dx ! 0. (4.72)

Then there exists a sequence vj of Lipschitz functions such that

kdist(Dvj ,K)k1 ! 0, Ln{uj 6= vj} ! 0.

Remark 4.8.1. A more natural and apparently much harder question is whether the

same assertion holds if K is quasiconvex rather than convex. Let us denote the convex

hull of K by C(K) and CdistK be the convex relaxation of the distance function.

inf{
Z

B

dist(Dv,K�)dy : v = u on @B}

= inf{
Z

B

Cdist(Dw,K�) : w = u on @B}


Z

B

dist(Dũ, (CK)�)

 (1� 3�n)

Z

B

dist(Du,CK)dx.

A similar argument can be applied for N > 1 provided that a condition holds which is

slightly stronger than the requirenment that CK agrees with the quasiconvex hull QK of

K.

Application to Quasiconvex Functions

As we mentioned earlier, quasiconvexity plays a crucial role in the vector-valued calculus

of variations.[8][50] It states that a�ne functions minimize the functional u :! R

⌦

f(Du)

subject to their own boundary conditions. We also noticed that quasiconvexity is di�cult

to handle since no local characterization is known for n,N > 1 (and can not exist for

N � 3, n � 2; (see [34]). Even the approximation of general quasiconvex functions by a

more manageable subclass is a largely open question. We now comment further on this in
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the following corollary, as a result of Theorem 4.8.2.. We remark that every real-valued

quasiconvex function is continuous and even locally Lipschitz, since it is rank-one convex.

(see [20].)

Corollary 4.8.1. Let K ⇢ RN⇥n be a convex, compact set with non-empty interior. Let

f : RN⇥n ! R [ {�1,1} be a quasiconvex that satisfies

f 2 C(K;R), f = +1 on RN⇥n\K. (4.73)

Then, for all F 2 K,

f(F ) = sup{g(F ) = | g : RN⇥n ! R, g  f on K, g quasiconvex}. (4.74)

Proof. 1. We may assume 0 2 int K, since quasiconvexity is invariant under translation

in RN⇥n. We have

K ⇢ �int K, 8� > 1. (4.75)

Indeed, if A 2 @K, then tA + (1 � t)B 2 K for all t 2 (0, 1), and all B in a small

neighbourhood of zero. Hence tA 2 int K, 8t 2 (0, 1). Thus (4.75) holds.

2. Let G1 denote the right hand side of (4.74) and let P denote the nearest neighbour

projection onto K. For k 2 N [ {0} define

hk(F ) = f(PF ) + k dist(F,K)  f(F ).

Let gk = hqck denote the quasiconvex envelope of hk, i.e. the largest quasiconvex function

below hk. Thus gk(F )  G1. On the other hand, by standard relaxation results

gk(F ) = inf{
Z

Q

hk(Du)dx : u� Fx 2 W 1,1
0

(Q,RN )},

where Q = (0, 1)n. Hence there exist Lipschitz functions uk such that

lim sup
k!1

Z

Q

hk(Duk)dx  G1, uk = Fx on @Q. (4.76)

In particular,
Z

Q

dist(Duk,K)dx ! 0. (4.77)

Hence Duk is bounded in L1, and after possible passage to the subsequence we may assume

that uk ! u
0

in L1.

3. Let us first present the following Theorem.
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Theorem 4.8.3. Let K be a compact, convex set in RN⇥n, let ⌦ ⇢ Rn be open and let

{uj} be a sequence in W 1,1
loc (⌦;R

N ) that satisfies

uj ! u
0

in L1

loc(⌦;RN ),

dist(Duj ,K) ! 0 in L1

loc(⌦).

Then there exists an increasing sequence of open sets Uj, compactly contained in ⌦, and

functions vj 2 W 1,1
loc (⌦;R

N ) such that

vj = u
0

on ⌦ \ Uj ,

Ln({uj 6= vj} \ Uj) ! 0,

kdist(Dvj ,K)k1,⌦ ! 0.

By Theorem 4.8.3 there exist vk 2 W 1,1(Q,RN ) which satisfy

L({uk 6= vk}) ! 0, vk = Fx on @Q, (4.78)

kdist(Dvk,K)k1 ! 0. (4.79)

Taking into account (4.71), the uniform continuity of h
0

and the inequality h
0

 hk, we

see that

lim sup
k!1

Z

Q

h
0

(Dvk)dx = lim sup
k!1

Z

Q

h
0

(Duk)dx  G1. (4.80)

In view of (4.75) and (4.79), there exist �k & 1 such that ��1

k Dvk 2 K, ��1

k F 2 K. Using

the uniform continuity of h
0

as well as quasiconvexity and continuity of f , we obtain

f(F ) = lim
k!1

f(��1

k F )  lim sup
k!1

Z

Q

f(��1

k Dvk)dx (4.81)

= lim sup
k!1

Z

Q

h
0

(��1

k Dvk)dx  G1. (4.82)

The proof is finished.

Remark 4.8.2. The Iwaniec conjecture has close links with rank-one convexity and

quasiconvexity in the calculus of variations, specifically, to those of Morrey and Šverâk’s

counterexample on the one hand, and to the geometric function theory, especially planar

theory of quasiconformal mappings and the precise Lp-norm (1 < p  2) of the Beurling-

Ahlfors operator. In this direction there are a number of related conjectures, namely

those of Šverâk and Banuelos-Wang on the Burkholder functional (see Baernstein & Mont-

gomery [6]). Note that if the Banuelos-Wang conjecture is true, then the Iwaniec conjecture
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will be true and if the Banuelos-Wang conjecture is not true, then Morrey’s conjecture

would be settled for the case N = n = 2. The truth of the Iwaniec conjecture would also

have consequences for quasiconformal mappings in Rn. If the Iwaniec conjecture does hold,

then it would be a stronger variation of Astala’s area distortion theorem on quasiconvex

mappings.
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Chapter 5

SO(n) and a Class of Geometric

Maps into Spheres

5.1 Introduction

In this chapter we turn to the study of p-harmonic maps from a generalised annulus to

an sphere and examine a geometric class of maps in connection with the Euler-Lagrange

equation associated with the p-Dirichlet energy. In this regard our investigations continues

the work of Taheri [52], [54], [53] as well as Shahrokhi-Taheri [43], [45], [42], [44] in a slightly

di↵erent context. The compact Lie group SO(n) and the structure of its closed geodesics

will play an interesting role in this study.

5.2 Spherical Twists and W

1,p(X, Sn�1)

Let X := X[a, b] = {x 2 Rn : a < |x| < b} with 0 < a < b < 1 be a generalised annulus in

Rn (with n � 2) and for 1 < p < 1 fixed consider the p-energy

Ep[u;X] := p�1

Z

X
|ru|p dx (5.1)

over the space of admissible maps

Ap(X) =
⇢

u 2 W 1,p(X, Sn�1) : u|@X = x|x|�1

�

. (5.2)

Note that here @X = Sn�1

a [Sn�1

b is the union of two disjoint spheres centered at the origin

having radii a and b respectively. (It is not di�cult to see that the space of admissible

maps Ap(X) is non-empty.) Now a standard and straightforward calculation shows that

the Euler-Lagrange equation associated with this p-energy over the space of admissible
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maps Ap(X) takes the form

�pu+ |ru|pu = 0, (5.3)

where for the sake of brevity and convenience we have set �pu =div(|ru|p�2ru).

Definition 5.2.1. (Spherical twist)

Let X = X[a, b] = {x 2 Rn : a < |x| < b} with 0 < a < b < 1 and n � 2. A map

y 2 C(X, Sn�1) is called a spherical twist if and only if it can be expressed in the form

y(x) = Q(r)
x

|x| = Q(r)✓, x 2 X, (5.4)

where here and in sequel r = |x|, ✓ = x|x|�1 and Q 2 C([a, b],SO(n)).

Proposition 5.2.1. A spherical twist y lies in Ap = Ap(X) with 1 < p < 1 provided that

the following two conditions hold.

[1] Q 2 W 1,p([a, b], SO(n)),

[2] Q(a) = Q(b) = In.

Note that in view of [2] above the ”curve” r 7! Q(r) with a < r < b forms a closed

loop in the pointed space (SO(n), In).

Proof. Let y = y(x) be a spherical twist as defined above. Then referring to definitions it

is plain that

y 2 Ap(X) ()

8

>

>

>

>

>

<

>

>

>

>

>

:

y = x|x|�1 on @X,

|y| = phy, yi = 1 in X,

||y||W 1,p
(X,Sn�1

)

< 1.

(5.5)

The first two conditions are evidently true as a result of Q being an orthogonal matrix

valued map. Regarding the third condition a straight-forward calculation gives

ry =
1

r

h

Q+ (rQ̇�Q)✓ ⌦ ✓
i

. (2.3)

where r = |x|, ✓ = x|x|�1 and Q̇ := d
drQ. Thus we note that

|ry|2 = tr
�|ry||ry|t 

=
1

r2
tr
n

In �Q✓ ⌦Q✓ + r2Q̇✓ ⌦ Q̇✓
o

=
1

r2

n

n� hQ✓,Q✓i+ r2hQ̇✓, Q̇✓i
o

.

Again recalling that Q is an orthogonal matrix valued map we have hQ✓, Q✓i = 1 and

hQ̇✓, Q✓i = 0 for all ✓ 2 Sn�1. Hence for 1 < p < 1 fixed we have that

|ry|p =


1

r2
(n� 1) + |Q̇✓|2

�

p
2

. (2.4)
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Now in view of the pointwise condition |y|2 = 1 an application of Proposition 5.1 in []

gives

kykpW 1,p
(X) =

Z

X
(|y|p + |ry|p) dx

=

Z b

a

Z

Sn�1

(

1 +



1

r2
(n� 1) + |Q̇✓|2

�

p
2

)

rn�1dHn�1(✓) dr,

and so referring to [1] in the statement of the proposition the conclusion follows.

Proposition 5.2.2. Suppose that y is a spherical twist on Sn�1 with Q 2 C2(]a, b[, SO(n)).

Then we have that

�py :=div (|ry|p�2ry)

=Q



1

r
rs⌦ ✓ � 1

rn
d

dr
(rn�1s)In +

1

rn�1

d

dr
(rn�1sA) + sA2

�

✓, (5.6)

where A = QtQ̇ and

s = s(r, ✓) :=



n� 1

r2
+ |Q̇✓|2

�

p�2
2

. (5.7)

Proof. We begin by first computing �y and then �py.

Using the notation y = (y
1

, y
2

, ..., yn) we can write

�yi =
n
X

j=1

@@xj

(

1

r
Qij � 1

r

n
X

k=1

Qik✓k✓j +
n
X

k=1

Q̇ik✓k✓j

)

=
n
X

j=1

⇢�1

r2
Qij✓j +

1

r
Q̇ij✓j +

1

r2

n
X

k=1

Qik✓k✓
2

j�

1

r

 n
X

k=1

Q̇ik✓k✓
2

j +
1

r

n
X

k=1

Qik(�kj � ✓k✓j)✓j+

1

r

n
X

k=1

Qik✓k(1� ✓2j )

�

+
n
X

k=1

Q̈ik✓k✓
2

j+

1

r

n
X

k=1

Q̇ik(�kj � ✓k✓j)✓j +
1

r

n
X

k=1

Q̇ik✓k(1� ✓2j )

�

.

Hence after some basic manipulations and simplifications we have that

�yi =
n
X

k=1



(1� n)

r2
Qik +

(n� 1)

r
Q̇ik + Q̈ik

�

✓k.

As this is true for 1  i  n using the more convenient vector notation we can write

�y = Q



(1� n)

r2
In +

(n� 1)

r
QtQ̇ + QtQ̈

�

✓.

Now using the substitutions Q̇ = QA and Q̈ = Q[Ȧ + A2]✓, this reads as

�y = Q



(1� n)

r2
In +

(n� 1)

r
A+ Ȧ + A2

�

✓,

= Q



� 1

rn
d

dr
(rn�1)In +

1

rn�1

d

dr
(rn�1A) + A2

�

✓.
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Note that in this case we have s(r, ✓) = 1. Now in the general case 1 < p < 1 we have

that

�py = div (|ry|p�2ry) = div (sry) = ryrs+ s�y.

Hence we can write

�py =ryrs+ sry

=Q



1

r
In � 1

r
✓ ⌦ ✓ +A✓ ⌦ ✓

�

rs+

sQ



� 1

rn
d

dr
(rn�1)In + 1rn�1

d

dr
(rn�1A) + A2

�

✓

=Q



1

r
rs⌦ ✓ � 1

r
hrs, ✓i+ hrs, ✓iA

�

✓+

sQ



� 1

rn
d

dr
(rn�1)In +

1

rn�1

d

dr
(rn�1A) + A2

�

✓.

Now an easy and short calculation gives

rs =
1

r

⇥

rsrIn � �(A2 + |A✓|2In)
⇤

✓,

where we have set sr =
@s
@r and

� = �(r, ✓, p) := (p� 2)



n� 1

r2
+ |Q̇✓|2

�

p�4
2

.

On the other hand in view of A being a skew-symmetric matrix it can be easily seen that

hrs, ✓i = sr. Therefore substituting back gives

�py =Q



1

r
rs⌦ ✓ � 1

r
srIn + srA� s

1

rn
d

dr
(rn�1)In+

s
1

rn�1

d

dr
(rn�1A) + sA2

�

✓

=Q



1

r
rs⌦ ✓ � 1

rn
d

dr
(rn�1s)In +

1

rn�1

d

dr
(rn�1s(A) + sA2

�

✓,

which is the required identity.

5.3 The p-Energy Restricted to the Space of Spherical Twists

As before let us fix 1 < p < 1 and consider the p-energy Ep (as defined earlier in the

chapter) and let y be a spherical twist in Ap(X). Then we can write

Ep[y;X] =
1

p

Z

X
|ry|p dx

=
1

p

Z b

a

Z

Sn�1



n� 1

r2
+ |Q̇✓|2

�

p
2

rn�1dHn�1(✓) dr

=:

Z b

a
E(r, Q̇)rn�1 dr =: Ep[Q̇], (5.8)
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where in the last line we have set

E(r, ⇠) =

Z

Sn�1



n� 1
2

+ |⇠✓|2
�

p
2

dHn�1(✓). (5.9)

Now we consider the energy Ep restricted to the space of admissible loops which is defined

as

Ep :=

8

>

<

>

:

Q = Q(r) 2 W 1,p([a, b], SO(n)),

Q(a) = Q(b) = In.

9

>

=

>

;

(5.10)

Our aim here is to derive the Euler-Lagrange equation associated with this restricted

energy and analyse its solutions and their qualitative properties.

Proposition 5.3.1. Let Q 2 Ep with Q 2 C2(]a, b[, SO(n)). Then the Euler-lagrange

equation associated with Ep over Ep at Q takes the form

EL[Q] = 0, (5.11)

that is
d

dr

⇢

rn�1

h

E⇠(r, Q̇)Qt �QEt
⇠(r, Q̇)

i

�

= 0, (5.12)

on ]a, b[.

Proof. First fix Q as described and for " 2 R put Q" = Q+"FQ where F 2 C1
0

(]a, b[,Mn⇥n)

is a skew-symmetric matrix. Then in view of F being a skew-symmetric matrix it can be

easily seen that

Q"Q
t
" = In +O("2).

Thus we can write

0 =
d

d"
Ep[Q"]

�

�

�

"=0

=
d

d"

Z b

a
E(r, Q̇")r

n�1dr
�

�

�

"=0

=

Z b

a
hE⇠(r, Q̇"),

d

d"
Q̇"irn�1dr

�

�

�

"=0

=

Z b

a
hE"(r, Q̇), ḞQ + FQ̇irn�1dr

=: I+ II.

The next aim is to simplify each of the two terms in last above equation. For the first

term we have

I =

Z b

a
hE⇠(r, Q̇)Qt, Ḟirn�1dr

=

Z b

a

⌧

� d

dr

h

rn�1E⇠(r, Q̇)Qt
i

,F

�

dr.
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Note that in deducing the second identity we used integration by parts together with the

boundary conditions F(a) = F(b) = 0. On the other hand for the second term we have

II =

Z b

a

D

E⇠(r, Q̇),FQ̇
E

rn�1 dr

=

Z b

a

Z

Sn�1

D

psQ̇✓ ⌦ ✓,FQ̇
E

rn�1dHn�1(✓) dr

=

Z b

a

Z

Sn�1
pshQ̇✓,FQ̇✓irn�1dHn�1(✓) dr = 0,

where the last identity is a result of the F being skew-symmetric. Therefore putting the

two terms together we have that

0 =
d

d"
Ep[Q"]

�

�

�

"=0

=

Z b

a

⌧

� d

dr

h

rn�1E⇠(r, Q̇)Qt
i

,F

�

dr.

As this true for every skew-symmetric matrix F 2 C1
0

(]a, b[,Mn⇥n) it follows that the

skew-symmetric part of the tensor field in the brackets is zero. Which is the equation as

required.

Proposition 5.3.2. The Euler-Lagrange equations associated with Ep over Ep can be

alternatively expressed as
Z b

a

Z

Sn�1
h


d

dr
(rn�1sA)

�

✓,F✓i dHn�1(✓)dr = 0, (5.13)

for all skew-symmetric matrix F 2 C1
0

(]a, b[,Mn⇥n) and r 2]a, b[.

Proof. Referring to the proof of the last proposition and using the same notations for A

and s we can write

0 =
d

d"
Ep[Q"]

�

�

�

"=0

=

Z b

a

D

E⇠(r, Q̇), ḞQ
E

rn�1 dr

=

Z b

a

Z

Sn�1
phrn�1sA✓, Ḟ✓idHn�1(✓) dr

=

Z b

a

Z

Sn�1
�ph

⇢

d

dr
(rn�1f2sA)

�

✓,F✓idHn�1(✓) dr,

which is the required equation.

Any twist loop Q forming a solution to the Euler-Lagrange equation associated with

the energy Ep over Ep will be referred to as a p-stationary loop. Now, in view of the

previous proposition it is evident that a su�cient condition on an admissible loop Q 2 Ep
to be a p-stationary loop is that it satisfies

d

dr
(rn�1sA) = 0. (5.14)
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5.4 Minimizing p-Stationary Loops in Homotopy Classes

Consider the energy functional

Ep[Q] :=

Z b

a
E(r, Q̇)rn�1 dr, (5.15)

where the integrand is given by

E(r, ⇠) =
Z

Sn�1



(n� 1)(
1

r
)2 + |⇠✓|2

�

p
2

dHn�1(✓).

Furthermore recall that we are considering this p-energy over the space of admissible loops

Ep :=

8

>

<

>

:

Q = Q(r) 2 W 1,p([a, b], SO(n)),

Q(a) = Q(b) = In.

9

>

=

>

;

(5.16)

Proposition 5.4.1. Let 1  p < 1 and consider the p-energy Ep as defined above. Then

there exists d = d(p, a, b) > 0 such that

Ep[Q] � dkQkpW 1,p (5.17)

for all Q 2 Ep. Thus in particular the p-energy is W 1,p-coercive.

Proof. First note that for anyQ 2 Ep we can write

Ep[Q] =

Z b

a

Z

Sn�1



(n� 1)(
1

r
)2 + |Q̇✓|2

�

p
2

rn�1dHn�1(✓) dr

�
Z b

a

Z

Sn�1
rn�1|Q̇✓|pdHn�1(✓)dr.

It follows that for some suitable constant c > 0 we can write

Ep[Q] �
Z b

a

Z

Sn�1
rn�1|Q̇✓|pdHn�1(✓) dr � c

Z b

a
rn�1|Q̇|p dr

Thus an application of the Poincaré inequality completes the proof.

Recall that ⇡
1

[SO(2)] ⇠= Z and ⇡
1

[SO(n)] ⇠= Z
2

for n � 3. Let us denote the homotopy

classes of closed curves in the pointed space (SO(n), In) by ck[Ep] with k 2 Z when n = 2

and c↵[Ep] with ↵ 2 Z
2

when n � 3. Then an application of the direct method of the

calculus of variations gives the following result.

Theorem 5.4.1. Let 1 < p < 1. Then the following hold.

[1] (n = 2) for each k 2 Z there exists Qk 2 ck[Ep] such that

Ep[Qk] = inf
ck[Ep]

Ep, (5.18)

[2] (n � 3) for each ↵ 2 Z
2

there exists Q↵ 2 c↵[Ep] such that

Ep[Q↵] = inf
c↵[Ep]

Ep. (5.19)
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5.5 Spherical Twists on as p-Harmonic Maps

The aim of this section is to give a complete characterization of all those p-stationary

loops Q 2 Ep whose resulting spherical twist

y(r✓) = Q(r)✓ (5.20)

furnishes a solution to the Euler-Lagrange equation associated with the p-energy Ep over

the space Ap(X). We begin with the proposition below.

Proposition 5.5.1. Let X := X[a, b] = {x 2 Rn : a < |x| < b} and consider the vector

field v 2 C1(⌦,Rn) defined in spherical coordinates through

v = tA✓, (5.21)

where r 2]a, b[, ✓ 2 Sn�1, A = A(r) 2 C1(]a, b[,Mn⇥n) is skew-symmetric and

t := t(r, |A✓|2) > 0. (5.22)

Then we have the following:

[1] A = 0 if and only if for any close path � ⇢ Sn�1

Z

r�
hv(r�), r�0i = 0, (5.23)

[2] d
dr (tA) = 0 if and only if for any close path � ⇢ Sn�1

Z

r�
h d
dr

[v(r�)], r�0i = 0. (5.24)

Proof. Indeed we first note that in view of A being skew-symmetric it can be orthogonally

diagonalised, i.e., we can write A = PDPt where P = P (r) 2 SO(n) and D = D(r) 2 Mn⇥n

is in special block digonal form, i.e.,

[1] (n = 2k)

D = diag(d
1

J, d
2

J, ..., dkJ),

[2] (n = 2k + 1)

D = diag(d
1

J, d
2

J, ..., dkJ, 0),

with {±d
1

i,±d
2

i, . . . ,±dki} or {±d
1

i,±d
2

i, . . . ,±dki, 0} denoting the eigenvalues of the

skew-symmetric matrix A [as well as D] respectively. Now consider a parameterised family

of closed paths ⇢ 2 C1([0, 2⇡], Sn�1) give by

⇢ : [0, 2⇡] 3 t ! ⇢(t) 2 Sn�1 ⇢ Rn (5.25)
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such that
8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

⇢
1

= sin t sin'
2

sin'
3

. . . sin'n�1

,

⇢
2

= cos t sin'
2

sin'
3

. . . sin'n�1

,

⇢
3

= cos'
2

sin'
3

. . . sin'n�1

,

...

⇢n�1

= cos'n�2

sin'n�1

,

⇢n = cos'n�1

,

where 'i 2 [0,⇡] for all 2  j  n� 1. For fix 1  p <, q  n we introduce the matrix

�pq as that obtained by simultaneously interchanging the first and p-th and the second

and q-th rows of In, i.e.,

�pqej =

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

ep if j = 1,

e
1

if j = p,

eq if j = 2,

e
2

if j = q,

ej otherwise,

where {ej}ni=1

denotes the standard basis of Rn. Now in view of �p,q 2 O(n) setting

! = �pq⇢ it is clear that ! is closed path in C1([0, 2⇡], Sn�1).

[1] For prove this part via above notation it is su�cient show that di = 0 for all i, therefore

with su�cient selection for p and q it means p = 2j� 1, q = 2j for some 1  j  k = [n/2]

and � = P!, then we have

0 =

Z

2⇡

0

t(r, |PDPt�|2)hPDPt�, �0idt

=

Z

2⇡

0

t(r, |D!|2)hD!,!0idt,

but it easy show that hD!,!0i = d2i (⇢
2

1

+ ⇢2
2

) another hand t does not depend on variable

t because of |D!|2 does not depend on t therefore in view of t > 0 and ⇢2
1

+ ⇢2
2

6= 0 we can

write

0 =

Z

2⇡

0

t(r, |D!|2)hD!,!0idt

= t(r, |D!|2)
Z

2⇡

0

d2i (⇢
2

1

+ ⇢2
2

)dt

= d2i (⇢
2

1

+ ⇢2
2

)2⇡ = d2i .

Thus D = 0 and this shows that A = 0.
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[2] First we introduce the skew-symmetric matrix

F = F(r, ✓) := Pt d

dr
(tA)P.

Then straight-forward di↵erentiation shows that

F = trD+ tPtȦP,

it is clear that d
dr (tA) = 0 is equivalent to showing that F(r, ✓) = 0 for all r 2]a, b[ and

✓ 2 Sn�1. On other hand we setting � = P! with same ! is [1] we have

0 =

Z

2⇡

0

h d
dr

(tA)�, �0idt

=

Z

2⇡

0

h d
dr

(tA)P!,P!0idt

=

Z

2⇡

0

hPt d

dr
(tA)P!,!0idt =

Z

2⇡

0

hF!,!0idt

we remind that in above t = t(r,P!) and F = F(r,P!). we now want to show F = 0

but in view of F being skew-symmetric matrix it su�ces to justify the latter in the from

Fpq(r, ✓) = 0 only when 1  p < q  n. We consider the following two distinct case.

[2a] (p = 2j � 1, q = 2j for some 1  j  k = [n/2]) In this case again t does not depend

on variable t also it is true for F(r,P!) therefore we can write

0 =

Z

2⇡

0

hF(r,P!)!,!0idt

=

Z

2⇡

0

hF(r,P�pq⇢(t))�pq⇢(t),�pq⇢0(t)idt

= 2⇡(⇢2
1

+ ⇢2
2

)F(r,P!)

which in turn for ⇢2
1

+ ⇢2
2

6= 0 gives

Fpq(r,P!) = 0.

[2b] (p, q not as in [2a]) In this case t is depend on variable t but Dpq = 0 as can verified

by inspecting its block diagonal representation. Now for tis case we can write

0 =

Z

2⇡

0

hF!,!0idt (5.5)

=

Z

2⇡

0

8

<

:

n
X

j=0

Fpj!j!
0
p +

n
X

j=0

Fqj!j!
0
q

9

=

;

dt

=

Z

2⇡

0

8

>

>

<

>

>

:

(Fpq⇢
2

2

� Fqp⇢
2

1

) + ⇢
2

n
X

j=0
j 6=q

Fpj!j � ⇢
1

n
X

j=0
j 6=p

Fqj!j

9

>

>

=

>

>

;

dt

= I+ II+ III
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In order to evaluate the above terms we first observe that here t takes the form

t = t(r, |AP!(t)|2) := t(sin2 t, cos2 t),

because of

|AP!(t)|2 = |PDPtP!(t)|2

= �hD2!(t),!(t)i
= �hD2�pq⇢(t),�pq⇢(t)i
= d2

1

⇢2p + d2
2

⇢2q + . . .+ d2⇠⇢
2

1

+ . . .+ d2⇣⇢
2

2

+ . . .

Now returning to (5.5) we have

II =

Z

2⇡

0

⇢
2

n
X

j=0
j 6=q

Fpj!j dt

=

Z

2⇡

0

⇢
2

n
X

j=0
j 6=q

[Pt d

dr
(tA)P]pj!j dt

=
n
X

j=0
j 6=q

[Pt d

dr
(

⇢

Z

2⇡

0

⇢
2

t dt

�

A)P]pj!j ,

and in a similar way

III =

Z

2⇡

0

⇢
1

n
X

j=0
j 6=p

Fqj!j dt

=

Z

2⇡

0

⇢
1

n
X

j=0
j 6=p

[Pt d

dr
(tA)P]qj!j dt

=
n
X

j=0
j 6=p

[Pt d

dr
(

⇢

Z

2⇡

0

⇢
1

t dt

�

A)P]qj!j ,

however in view of the specific manner in which t depends on t it follows that both integrals

vanish and so as a result II =III = 0. It can be easily shown that as a result of periodicity

the following identities hold:

Z

2⇡

0

t(sin2 t, cos2 t) sin t dt = 0,

Z

2⇡

0

t(sin2 t, cos2 t) cos t dt = 0.
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Hence returning to (5.5) and in view of F being a skew-symmetric we can write

I =

Z

2⇡

0

(Fpq⇢
2

2

� Fqp⇢
2

1

) dt

=

Z

2⇡

0

(⇢2
1

+ ⇢2
2

)Fpq dt

=

Z

2⇡

0

(⇢2
1

+ ⇢2
2

)t[PtȦP]pq] dt

= (⇢2
1

+ ⇢2
2

)

⇢

Z

2⇡

0

t dt

�

[P tȦP]pq = 0.

Thus as t > 0 for ⇢2
1

+ ⇢2
2

6= 0 it shows that [PtȦP]pq = 0. But for range of p, q we have

that Dpq = 0 and it immediately implying that Fpq = 0.

Hence summarising we have shown in both case [2a] and [2b] foe fix r 2]a, b[ we have

Fpq(r, .) = 0 outside a copy of Sn�3. By continuity of Fpq(r, .) on Sn�1 this gives F(r, ✓) = 0

for all r 2]a, b[ and ✓ 2 Sn�1 and as a result we have that

d

dr
(tA) = 0.

The proof is therefore complete.

Theorem 5.5.1. Let y be a spherical twist and suppose that the twist loop Q lies in Ep
and that Q 2 C2(]a, b[, SO(n)). Then we have

EL[y] = 0 ()

8

>

<

>

:

(i) d
dr (r

n�1sA) = 0,

(ii) Q̇(r) 2 RSO(n) for all r 2]a, b[,

9

>

=

>

;

(5.26)

where A = QtQ̇ and

s = s(r, ✓) :=



n� 1

r2
+ |Q̇✓|2

�p�2

2. (5.27)

Proof. Let y = Q(r)✓ be a generalised twist. Then an application of Proposition 2.2 we

can write

EL[y] = 0 ()|ry|py +�py = 0

()


1

r2
(n� 1) + |Q̇✓|2

�

p
2

Q✓ +Q{1
r
rs⌦ ✓�

1

rn
d

dr
(rn�1s)In +

1

rn�1

d

dr
(rn�1sA) + sA2}✓

()1

r
rs + {



n� 1

r2
+ |A✓|2

�

p
2

In � 1

rn
d

dr
(rn�1s)In+

1

rn�1

d

dr
(rn�1sA) + sA2}✓ = 0.

((=)

By condition (ii) and this fact that QtQ̇ is skew-symmetric matrix, there exists some
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0 < � 2 R such that A2 = ��In. Now returning to (5.6) and using this note and condition

(i) together we have

EL[y] =
1

r
sr✓ +

(



n� 1

r2
+ |A✓|2

�

p
2

In � 1

r
srIn � n� 1

r2
sIn + sA2

)

✓

= s

⇢

n� 1

r2
In + �2In � n� 1

r2
In � �2In

�

✓ = 0.

(=))

Assume that EL[y] = 0. For the sake of clarity and convenience we break this part into

two steps.

Step1. [Justification of (i)]

We begin by extracting a gradient out of right side in 6.8 and hence rewrite it in the form

EL[y] =rrt +
1

r
rs +

⇢

n� 1

r2
+ |A✓|2

�

p
2

In � 1

rn
d

dr
(rn�1s)In+

1

rn�1

d

dr
(rn�1sA) + p�1rtrIn � s|A✓|2In

�

✓

=:rrt +
1

r
rs +



1

rn�1

d

dr
(rn�1sA) +H(r, ✓)In

�

✓ = 0,

where t = �p�1

⇥

(n� 1)(1r )
2 + |A✓|2⇤

p
2 . We consider the vector field

v := rrt +
1

r
rs +



1

rn�1

d

dr
(rn�1sA) +H(r, ✓)In

�

✓.

Now for this vector field we assign the di↵erential 1-form ! = v
1

dx
1

+ . . .+ vndxn. Then

in view of v being zero, for any closed path � 2 C1([0, 2⇡], Sn�1) it must be that

0 =

Z

r�
! =

Z

2⇡

0

hv(r�(t)), r�0(t)i dt

=

Z

2⇡

0

h d
dr

⇥

rn�1s(r, �(t))A
⇤

�(t), r�0(t)i dt+

r

Z

2⇡

0

H(r, �(t))h�(t), �0(t)i dt

=

Z

2⇡

0

h d
dr

⇥

rn�1s(r, �(t))A
⇤

�(t), r�0(t)i dt

where in concluding the last line we have used the identity h�, �0i = 0 that is true as a

result of � ⇢ Sn�1. Thus we prove for any closed path � 2 C1([0, 2⇡], Sn�1)

Z

2⇡

0

h d
dr

⇥

rn�1s(r, �(t))A
⇤

�(t), r�0(t)idt = 0.

An application of Proposition 5.1 part [2] gives

d

dr
(rn�1sA) = 0.
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Step2. [Justification of (ii)]

Again referring to (5.6) and using the result in above we can write for every ✓ 2 Sn�1

0 =
1

r
rs +

(



n� 1

r2
+ |A✓|2

�

p
2

In � 1

rn
d

dr
(rn�1s)In + sA2

)

✓

=
1

r
rs +

⇢

s



n� 1

r2
+ |A✓|2

�

In � n� 1

r2
sIn � 1

r
srIn + sA2

�

✓

=
1

r



srIn � �

r
(A2 + |A✓|2In)

�

✓ +

⇢

s(A2 + |A✓|2In)� 1

r
srIn

�

✓

= (s� �

r2
)
⇥

A2 + |A✓|2In
⇤

✓,

it can be easy check that

s� 1

r2
� = s

(p�4)
p�2



(n� p+ 1)
1

r2
+ |A✓|2

�

=: s
(p�4)
p�2

⇥

g(r) + |A✓|2⇤ ,

where g = (n� p+ 1)r�2. In view of s > 0 and latest identity we arrive to

0 =
⇥

g + |A✓|2⇤ ⇥A2 + |A✓|2In
⇤

✓, (5.7)

this identity is true for all ✓ 2 Sn�1 and r 2]a, b[. Fix r 2]a, b[ and since A is skew-

symmetric it follows that there exist P 2 SO(n) and block diagonal matrix D such that

A = PDPt

where

D =

8

>

<

>

:

diag(d
1

J, d
2

J, . . . , dkJ) n = 2k

diag(d
1

J, d
2

J, . . . , dkJ, 0) n = 2k + 1

with {±d
1

i,±d
2

i, . . . ,±dki} or {±d
1

i,±d
2

i, . . . ,±dki, 0} denoting the eigenvalues of the

skew-symmetric matrix A. We setting ! = Pt✓ and substituting in the (5.7) we will get

0 = (g + |D!|2) ⇥D2 + |D!|2In
⇤

!.

Since, above identity is true for all ! 2 Sn�1 if we for 1  i  [n/2] we set

!k =

8

>

>

>

>

>

<

>

>

>

>

>

:

sin t k = 2i,

cos t k = 2j := 2(i+ 1),

0 otherwise,

where t 2 R and then put this ! in (5.7), an easy calculation shows that

(d2i � d2j )(g + d2i cos
2 t+ d2j sin

2 t) cos t sin t = 0,
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thus must be

(d2i � d2j )(g + d2i cos
2 t+ d2j sin

2 t) = 0. (5.8)

Similar for

!k =

8

>

>

>

>

>

<

>

>

>

>

>

:

cos t k = 2i,

sin t k = 2j,

0 otherwise,

implying that

(d2i � d2j )(g + d2i sin
2 t+ d2j cos

2 t) = 0. (5.9)

But 5.8 and 5.9 together gives

(d2i � d2j ) cos 2t = 0

therefore d2i � d2j = 0 for all 1  i < j  n thus it implying that exists �(r) 2 R such that

D2 = ��2In

another hand A2 = PD2Pt so A2 is in RSO(n).

Theorem 5.5.2. Let X = X[a, b] = {x 2 Rn : a < |x| < b} and suppose y 2 Ap(X) with

1 < p < 1 is a spherical twist whose corresponding twist loop Q satisfies the following

assumptions:
8

>

<

>

:

(i) Q 2 C2(]a, b[,O(n)),

(ii) Q 2 Ep

9

>

=

>

;

(5.28)

Then the following are equivalent.

[1] y satisfies to full Euler-Lagrange equation associated with Ep over Ap,

[2] depending on n being odd or even we have that

[2a] (n = 2k) there exists g = g(r) 2 C2[a, b] with g(a), g(b) 2 2⇡Z and P 2 O(n) such

that

Q = Pdiag(R(g), . . . ,R(g))Pt,

where g is a solution on (a, b) to

d

dr

h

rn�1[(n� 1)r�2 + g02]
p�2
2 g0

i

= 0. (5.29)

[2b] (n = 2k + 1) in this case we have Q = In or equivalently y(x) = x|x|�1.
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5.6 Alternate Construction of Multiple p-Stationary Loops

In this section we consider special case for p-stationary loops where dimension is even. Let

p 2 [1,1[ and for m 2 Z set

Gm,p = G(m, p,X) :=

8

>

<

>

:

g = g(r) 2 W 1,p[a, b],

g(a) = 0, g(b) = 2⇡m

9

>

=

>

;

. (5.30)

Now for any g 2 Gm,p and P 2 O(n) we make Q as below

Q = Pdiag[R(g), . . . ,R(g)]Pt.

Evidently for each m we get that Q lies Ep. Now we considering an energy functional Gp

over teh space Gm,p as described above

Gp[g] := Ep[Q] =

Z b

a

Z

Sn�1



(n� 1)(
1

r
)2 + |Q̇✓|2

�

p
2

rn�1 dHn�1(✓)dr

=n!n

Z b

a



(n� 1)(
1

r2
) + g02

�

p
2

rn�1 dr. (5.31)

Theorem 5.6.1. Suppose that 1 < p < 1. Consider the energy functional Gp over the

space Gm,n. Then for each m 2 Z there exists g 2 Gm,p such that

Gp[g] = inf
Gm,p

Gp[.]. (5.32)

In additional g 2 C1[a, b] and satisfies in corresponding Euler-Lagrange equation

d

dr

h

rn�1[(n� 1)r�2 + g02]
p�2
2 g0

i

= 0. (6.11)

on [a, b].

Proof. This is an immediate consequence of applying the direct method of the calculus of

variation and a standard regularity theory.

Theorem 5.6.2. Let X = X[a, b] and consider the energy Ep over the space Ap(X) with

1 < p < 1. Then if the spherical twist y is a solution to the corresponding Euler-Lagrange

equation we have following:

[1] (n = 2k) there is infinite many generalised twist solution for corresponding Euler-

Lagrange equation and they can be described as

y = Q(r; a, b,m)✓

= Pdiag[R(g), . . . ,R(g)]Pt✓, (5.33)
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where P 2 SO(n) and g 2 C1[a, b] satisfies

d

dr

h

rn�1[(n� 1)r�2 + g02]
p�2
2 g0

i

= 0. (5.34)

[2] (n = 2k + 1) y = x|x|�1.

Proof. This is an immediate consequence of the previous theorem and Theorem 5.2.
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Appendix A

Convex Hull and Carathéodory’s

Theorem

Definition A.0.1. (Convex Hull)

Let K be a subset of Rn. We can call the smallest (nonempty) convex set containing of

K the convex hull of K and denote it by C(K) or co(K).

In other words, the convex hull of a set K 2 Rn, C(K) is the intersection of all convex

subsets in Rn that contain K.

Carathéodory’s theorem is one of the most important characterizations of the convex

hull. If K ⇢ Rn, then the convex combinations of at most n+ 1 points in K are su�cient

to describe C(K). In fact, the following holds.

Theorem A.0.1. Let K be a subset of n-dimensional vector space, Rn. Then, the convex

hull of K is equal to the set of convex combinations of at most n + 1 points. Let K be a

subset of Rn. Then,

C(K) =

⇢

a 2 R
�

� a :=
n+1

X

i=1

�iai �i � 0 ai 2 K 8i
n+1

X

i=1

�iai = 1

�

. (A.1)
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Appendix B

Proof of the Relaxation

(Quasiconvexification) Formula for

Functions in the Form f (x) = g(X+)

Proof. (Proof of Lemma 3.8.1) In this proof we consider R2 is the space of all conformal

matrices. From the assumption, function f : M2⇥2 ! R is defined by f(X) = g(X+),

where g : R2 ! R. Function X ! gc(X2) is convex and hence gc(X+)  f c(X). From

the chain of inequalities relating the semiconvex envelope of f , we can show that

f rc(X)  gc(X+). (B.1)

Considering X = X+ +X�, and fixing ✏ > 0. It su�ces to prove that

f rc(X)  gc(X+) + ✏. (B.2)

By Carethéodory’s theorem we find matrices Ci and parameters �i 2 [0, 1], i = 1, 2, 3 such

that

X+ =
3

X

i=1

�iCi, gc(X+) + ✏ �
3

X

i=1

�ig(Ci). (B.3)

We may assume that �
1

� �
2

� �
3

� 0. There is nothing to prove for �
2

= 0 since

g(C
1

) = f(X) � f rc(X). Suppose next that �
3

= 0 and �
2

> 0. For simplicity we write

� = �
1

and 1 � � = �
2

. The assertion is immediate if C
1

= C
2

and we may therefore

assume that ↵ = |C
1

� C
2

| 6= 0. Let

A
1

=
(1� �)↵p

2

0

@

1 0

0 �1

1

A , A
2

= ��↵p
2

0

@

1 0

0 �1

1

A . (B.4)
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By construction,

2det(A
1

+ C
1

� (A
2

+ C
2

)) = |C
1

� C
2

|2 � |A
1

�A
2

|2

= ↵2 �
�

�

�

�

↵p
2

0

@

1 0

0 �1

1

A

�

�

�

�

2

= 0.

Moreover �A
1

+ (1� �)A
2

= 0 and hence

gc(X+) + ✏ � �g(C
1

) + (1� �)g(C
2

)

= �f(C
1

+A
1

+X�) + (1� �)f(C
2

+A
2

+X�)

� f rc(X),

and this establishes (B.2). It remains to consider the case �
3

> 0. The idea is again to

construct anticonformal matrices Ai such that the pairs {(�i, Ci+Ai+X�)}i=1,2,3 satisfy

condition H
3

and
3

X

i=1

�i(Ci +Ai +X�) = X. (B.5)

A su�cient condition for this to hold is that the matrices Ai solve the system of equations

3

X

i=1

�iAi = 0, rank(C
1

+A
1

� (C
2

+A
2

)) = 1, (B.6)

and

rank

✓

�
1

�
1

+ �
2

(C
1

+A
1

) +
�
2

�
1

+ �
2

(C
2

+A
2

)� (C
3

+A
3

)

◆

= 1. (B.7)

Which is equivalent to
�

�

�

�

�
1

�
1

+ �
2

C
1

+
�
2

�
1

+ �
2

C
2

� C
3

�

�

�

�

2

=

�

�

�

�

�
1

�
1

+ �
2

A
1

+
�
2

�
1

+ �
2

A
2

�A
3

�

�

�

�

2

, (B.8)

or

|�
1

A
1

+ �
2

A
2

� (1� �
3

)A
3

|2 = |A
3

|2 = |X+ � C
3

|2. (B.9)

This implies that the system for the matrices Ai is equivalent to

3

X

i=1

�iAi = 0, |A
1

�A
2

|2 = |C
1

� C
2

|2 = ↵2, |A
3

|2 = |X+ � C
3

|2 = �2. (B.10)

If ↵ = 0, then C
1

= C
2

and therefore

3

X

i=1

�ig(Ci) = (�
1

+ �
2

)g(C
1

) + �
3

g(C
3

), (B.11)

and in this situation we employ the argument with two matrices to establish (B.2). Suppose

now that ↵ > 0 and that � = 0. It follows that C
3

= X+ and that

�
1

�
1

+ �
2

C
1

+
�
2

�
1

+ �
2

C
2

= X+ (B.12)
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We define A
1

and A
2

as in the case for two matrices with � = �
1

/(�
1

+ �
2

) and obtain

�g(C
1

) + (1� �)g(C
2

) = �f(C
1

+A
1

+X�) + (1� �)f(C
2

+A
2

+X�)

� f rc(X+ +X�)

and hence

3

X

i=1

�ig(Ci) = (�
1

+ �
2

)

✓

�
1

�
1

+ �
2

g(C
1

) +
�
2

�
1

+ �
2

g(C
2

)

◆

+ �
3

g(C
3

)

� (�
1

+ �
2

)f rc(X+ +X�) + �
3

f(X+ +X�)

� f rc(X).

It remains to consider the case ↵,� 6= 0. Without loss of generality we may assume that

A = diag(c
1

,�c
1

) A = diag(c
2

,�c
1

) A =
�p
2
diag(1,�1).

With this notation we may rewrite the system as

�
1

C
1

+ �
2

C
2

+
��

3p
2

= 0, 2(c
1

� c
2

)2 = ↵2.

We solve for c
1

and c
2

and obtain

c
1

=
�
2

�
1

+ �
2

� ↵p
2
� ��

3p
2�

2

�

, c
2

= � 1

�
1

(�
1

c
1

��
3p
2
).

We conclude that

3

X

i=1

�ig(Ci) =
3

X

i=1

�if(Ci +Ai +X�) (B.13)

� f rc

✓

3

X

i=1

�i(Ci +Ai +X�)

◆

= f rc(X). (B.14)

This establishes (B.1) in the general case and concludes the proof of the lemma.
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